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Abstract	

Emerging contaminants like pharmaceuticals and personal care products are increasingly being 

detected in soil and water bodies as a result of the release of wastewater effluent and the 

application of biosolids to land. Many emerging contaminants have not undergone thorough 

ecotoxicity testing, since they have only recently come to the attention of scientists, government, 

and the public. Earthworm toxicity tests play a key role in determining the risk of a contaminant 

to the health of soil organisms. Metabolomics is emerging as a useful tool for assessing toxicity, 

since it provides a snapshot of the physiological state of an organism and yields a greater depth 

of knowledge than traditional endpoints. This thesis uses standard earthworm toxicity testing 

methods combined with targeted gas chromatography-mass spectrometry (GC-MS) 

metabolomics to assess the toxicity to earthworms of three emerging contaminants (triclosan, 

methyltriclosan, and metformin) present in biosolids. Using the 48 hour filter paper test, triclosan 

caused mortality at the highest exposure concentrations, and sub-lethal changes in the ratio 

between specific metabolites as measured by the slope of regression lines. However, no toxic 

effects for triclosan were observed in the 14 day test in earthworm bedding, possibly due to 

reduced bioavailability of triclosan in the high organic matter substrate. Methyltriclosan, the 

most abundant environmental transformation product of triclosan, led to significant metabolic 

effects at >64 times lower concentration than triclosan in the 14 day test. Succinic acid was 

significantly increased, suggesting a potential effect on the membrane-bound tricarboxylic acid 

(TCA) cycle enzyme succinate dehydrogenase caused by methyltriclosan accumulation in 

membranes. This mode of action has been proposed for other hydrophobic organic contaminants. 

Discriminant analysis revealed that metabolite profiles in the 1 and 4 µg g-1 exposures were 

separate from the control and remaining treatments. The antidiabetic drug metformin caused a 
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reduction in glucose, malic acid, and margaric acid in the 14 day test, consistent with the mode 

of action (reduced gluconeogenesis and increased oxidation/reduced synthesis of fatty acids) in 

humans. Discriminant analysis revealed that time of exposure to metformin had a large influence 

on the metabolite profile, with significant discrimination between time points within a 

concentration at all concentrations except the highest. Discrimination within each time point 

based on concentration found that only Day 7 was significant, indicating that the standard 14-day 

exposure test may not be suitable to capture significant effects using metabolomics. In general, 

metabolomics detected significant effects of exposure at sub-lethal concentrations, and provided 

evidence to hypothesize an unknown mode of action for methyltriclosan (inhibition of succinate 

dehydrogenase) and to confirm a suspected mode of action for metformin (reduced 

gluconeogenesis and decreased synthesis/increased oxidation of fatty acids). 
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Résumé	

Des contaminants émergents, tels que les produits pharmaceutiques et de soins personnels, sont 

de plus en plus détectés dans les sols et les plans d’eau, résultant de déversements des effluents 

d’eaux usées ainsi que de l’épandage de biosolides sur les terres. Plusieurs de ces contaminants 

émergents n’ont pas fait l’objet de tests approfondis d’écotoxicité, puisqu’ils n’ont que 

récemment retenu l’attention des scientifiques, des gouvernements et du public. Des essais de 

toxicité chez le ver de terre jouent un rôle clé dans la détermination des risques de contamination 

pour la santé des organismes du sol. La métabolomique est un outil qui s’avère utile pour évaluer 

une telle toxicité, puisqu’elle offre un aperçu de l’état physiologique d’un organisme et fournit 

une connaissance plus approfondie que les réponses mesurées traditionnelles. Cette thèse utilise 

des méthodes normalisées d’essais de toxicité chez le ver de terre, combinées à la 

chromatographie en phase gazeuse-spectrométrie de masse (GC-MS) ciblée, en métabolomique, 

afin d’évaluer la toxicité pour le ver de terre, venant de trois contaminants émergents (triclosan, 

methyltriclosan et metformine) présents dans les biosolides. Utilisant l’essai du papier filtre de 

48 heures, le triclosan a causé la mort suite à une concentration d’exposition maximale, ainsi que 

des changements sublétaux dans le rapport entre des métabolites particuliers, mesurés par la 

pente des lignes de régression. Toutefois, l’essai de 14 jours n’a révélé aucun effet toxique pour 

le triclosan dans la litière de ver de terre, à des concentrations pouvant atteindre 64 µg g-1, 

possiblement en raison d’une réduction de la biodisponibilité du triclosan à l’intérieur du substrat 

à teneur élevée de matière organique. Le methyltriclosan, le produit environnemental transformé 

du triclosan le plus abondant, a vu des effets métaboliques significatifs à 1 µg g-1, une 

concentration de plus de 64 fois moins grande que le triclosan lors de l’essai de 14 jours. L’acide 

succinique a augmenté de façon significative, suggérant un effet potentiel sur l’enzyme succinate 
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désydrogénase du cycle de l’acide tricarboxylique (TCA) liée à la membrane, causé par 

l’accumulation de methyltriclosan dans les membranes. Ce mode d’action a été proposé pour 

d’autres contaminants organiques hydrophobiques. L’analyse discriminante a révélé que les 

profiles des métabolites à exposition de 1 et 4 µg g-1 étaient séparés des traitements de contrôle et 

des traitements restants. La metformine, un médicament antidiabétique, a causé une réduction du 

glucose, de l’acide malique et de l’acide margarique lors de l’essai de 14 jours, ce qui est 

conforme au mode d’action (réduction de la gluconéogénèse et augmentation de 

l’oxydation/réduction de la synthèse des acides gras) chez les humains. L’analyse discriminante 

a révélé que le temps d’exposition à la metformine avait une grande influence sur le profil des 

métabolites, avec une discrimination importante entre les différents moments précis et 

correspondant à une concentration, et ce à toutes concentrations à l’exception de la plus élevée. 

La discrimination à chaque moment précis et selon la concentration n’a été significative qu’au 

jour 7, démontrant que l’essai normalisé d’exposition de 14 jours en métabolomique pourrait ne 

pas être convenable pour saisir des effets significatifs. En général, la métabolomique a détecté 

des effets significatifs de l’exposition à des concentrations sublétales, et a fourni des preuves 

pour émettre des hypothèses sur un mode d’action inconnu pour le methyltriclosan (inhibition de 

la succinate désyhdrogénase), et pour confirmer un mode d’action soupçonné pour la metformine 

(réduction de la gluconéogénèse et diminution de la synthèse/augmentation de l’oxydation des 

acides gras). 
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Chapter	1:	Introduction	and	literature	review	

1.1.	Introduction	

Ecotoxicology is the field of science that studies the impacts from toxic chemicals on 

living systems, ranging from the large-scale ecosystem level down the cellular and molecular 

processes taking place within an organism (Timbrell 2008). There are over 100,000 synthetic 

organic chemicals in use today, and only a fraction have had their environmental fate and 

ecotoxicology thoroughly assessed (Timbrell 2008; Clarke and Smith 2011). Land application of 

biosolids is recognized as a frequent source of soil contamination by chemicals that enter the 

municipal wastewater stream and accumulate in the solids produced during wastewater treatment 

(Webber and Lesage 1989; Bright and Healey 2003; Kinney et al. 2006). However, it is also 

recognized that the documented presence and measured concentrations of chemicals in soil are 

inadequate to predict toxicity, since not all soil contaminants are bioavailable or toxic (Alexander 

2000; Dean and Scott 2004).  

Toxicity testing with model organisms is necessary for environmental risk assessment of 

a chemical to an ecosystem (European Commission 2003; Chalew and Halden 2009a; Clarke and 

Smith 2011), and earthworms are frequently used to assess the toxicity of organic contaminants 

in the soil environment (Spurgeon et al. 2003). The standard observation-based endpoints of 

mortality, weight loss, and reproduction are suitable to determine toxicity thresholds for risk 

assessment, but do not yield information on the mode of action (MOA, the biochemical 

interaction that leads to its activity) which can be applied more generally to other organisms with 

similar biochemical pathways (Aliferis and Jabaji 2011; Lankadurai et al. 2011a). Exposure of an 

organism to compounds with bioactive properties causes alterations in their metabolism that are 
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reversible or not depending on the MOA, exposure dose, exposure time, environmental variables, 

and the condition of the organism (Aliferis and Jabaji 2011). Metabolomics is an emerging 

method to assess the biochemical response of organisms exposed to a variety of stimuli (Bundy 

et al. 2009). It is the study of small molecules and metabolites within an organism, tissue, or 

biofluid, a comprehensive dataset that is called the metabolome (Viant 2008). Metabolomics now 

compliments traditional ecotoxicology studies on earthworms (Simpson and McKelvie 2009), 

yielding a greater depth of information that can reveal sub-lethal metabolic perturbations 

pointing to a toxic MOA for a test substance (Guo et al. 2009; Lankadurai et al. 2011a).  

There is accumulating evidence that exposure of earthworms to sub-lethal concentrations 

of a compound can lead to metabolic alterations that are measurable with GC-MS metabolomics. 

McKelvie et al. (2009) measured eleven metabolites in Eisenia fetida exposed to two pesticides, 

endosulfan and DDT. The alanine to glycine ratio could distinguish between the control 1.0 µg 

cm-2 for DDT and at 0.5 and 1.0 µg cm-2 for endosulfan. Jones et al. (2008) analyzed Lumbricus 

rubellus earthworms exposed to increasing doses of pyrene in a sterilized soil, and identified up 

to 51 metabolites using GC-MS. Using Partial Least Squares-Discriminant Analysis (PLS-DA), 

they could separate control vs. treated worms at concentrations of 40, 160, and 640 mg kg-1, but 

not at 10 mg kg-1. Guo et al. (2009) recently showed that earthworm samples exposed to sub-

lethal concentrations of three contaminants (cadmium, atrazine, and fluoranthene) differing in 

their mode of action could be distinguished from each other in a concentration-dependent 

manner using a variety of multivariate statistical techniques. The mode of action has been 

hypothesized for several toxic substances in earthworms using metabolomics, including possible 

inhibition of the enzyme succinate dehydrogenase disrupting energy metabolism for 

methyltriclosan (Chapter 5 of this thesis) and phenanthrene (Lankadurai et al. 2011b), increase in 
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oxidation of fatty acids and reduced ATP synthesis and for perfluorooctane sulfonate and 

perfluorooctanoic acid (Lankadurai et al. 2012; Lankadurai et al. 2013a), and induction of 

oxidative stress by nanoparticles of TiO2 (Whitfield Åslund et al. 2011b). These examples show 

the potential of metabolomics to improve the depth of information gained from toxicity testing.  

 

1.2.	Emerging	organic	contaminants:	a	contemporary	environmental	issue	

 In our modern society, we depend heavily on advancements in chemical synthesis to 

develop new medicines to cure diseases or improve quality of life, new pest control products to 

enable food production for a surging world population, and new consumer products that are 

desirable for a specific purpose and generate economic activity (e.g non-stick cookware or 

nuisance insect repellent). It is estimated that over 100,000 synthetic chemicals are in use today 

(Timbrell 2008). For comparison, this is more than the 70,000 known or suspected metabolites 

listed in the Human Metabolome Database (Wishart et al. 2013), and roughly half of the 

estimated 200,000 primary and secondary metabolites produced by plants (Hartmann 2007). For 

many products, ultimate disposal after use is directly (soap, shampoo, toothpaste, other ‘down 

the drain’ products) or indirectly (excreted pharmaceuticals, products washed off skin) to the 

wastewater treatment systems. In municipal collection systems, the contaminated wastewater 

from households, industries, hospitals, and storm water collection is aggregated for treatment to 

reduce nutrients, suspended solids, and pathogens before release into water bodies. The sewage 

sludge from wastewater treatment is typically treated to reach pathogen and metal quality 

guidelines before spreading on land (CCME 2010), although incineration occurs in some 

locations like Montreal (Bruemmer 2015). Conventional wastewater treatment processes do not 

remove all of the diverse synthetic compounds introduced by humans, and many different 
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contaminants remain dissolved in treated wastewater effluent (Loos et al. 2013) and sorbed to 

organic matter in biosolids produced from the residual solids (Monteith et al. 2010).  

 Over the last 60 years or so, researchers have sought to measure concentrations of 

organic contaminants in the environment, and methods for the routine detection and 

identification of contaminants have seen rapid advancements in the last 20 years (Noguera-

Oviedo and Aga 2016). As novel methods are developed, many new anthropogenic substances 

are being detected in the environment, which have collectively been termed emerging 

contaminants (ECs), emerging substances of concern (ESOCs), or other similar names. Many 

emerging contaminants are pharmaceuticals, including antibiotics, antidepressants, and lipid or 

glucose regulators. Others are personal care products like synthetic fragrances, UV filters in 

sunscreen, insect repellents, or antibacterial ingredients of soaps or toothpaste. Brominated flame 

retardants added to textiles and fluorinated non-stick coatings on cookware have also been 

detected. The land application of biosolids produced during wastewater treatment is a significant 

source of emerging contaminants in the soil environment (Wu et al. 2010a; Clarke and Smith 

2011; Clarke and Cummins 2015; Meng et al. 2016). Risk assessments based on human or 

environmental health pathways using the limited available occurrence and toxicity data indicate 

that some contaminants in biosolids can exceed levels that would cause a detrimental effect 

(Fuchsman et al. 2010; Langdon et al. 2010; Snyder and O'Connor 2013; Prosser and Sibley 

2015; Verlicchi and Zambello 2015; García-Santiago et al. 2016). Once present in soil, 

contaminants are subject to transport and degradation processes that affect their fate, which is 

described in Section 2.2. The assessment of detrimental effects with earthworm toxicity testing 

and the novel measure of toxicity (metabolomics) used in this thesis are outlined in Sections 2.3 

to 2.5. 
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1.3.	Environmental	fate	of	organic	contaminants	in	biosolids	applied	to	land	

In the soil matrix, organic contaminants are subject to transport, sorption/desorption, and 

degradation processes that are influenced by the chemical structure of the substance and the 

properties of the soil system (Peijnenburg 2004). Persistence is inversely related to the ability of 

a substance to be degraded by both abiotic and biotic processes. Geochemical processes like 

hydrolysis, oxidation-reduction, or condensation with soil organic matter reduce the persistence 

of some contaminants (Berkowitz et al. 2014). Soil microorganisms begin to decompose added 

organic matter within hours after incorporation, and can consume a large proportion of the 

material added to soil within a few weeks (Gillis and Price 2016). This microbial activity will 

also degrade or transform some contaminants depending on their chemical structure (Hesselsøe 

et al. 2001). Microorganisms can degrade contaminants with common biochemical functional 

groups, including carboxylic acids, alcohols, amines, amides, alkanes, cycloalkanes, and 

phenolic rings (Hickey 2005). Many substances like pharmaceuticals contain functional groups 

that are foreign to known life forms. These groups may be toxic to targeted organisms (e.g. 

pesticides) or have desirable effects (e.g. pharmaceuticals), but they impede degradation in soil 

or water, increasing persistence. Examples include halogen, nitro, cyano, and sulfonic acid 

functional groups, branched alkanes, and rings with O, N, or S (Hickey 2005). Microbial 

transformation requires modification of these groups before the compound can be utilized as a 

substrate, requiring specific detoxifying enzymes (Hickey 2005). In some cases, transformation 

products are more persistent and more toxic than the parent compound (McCormick et al. 2011).  

Substances that persist in soil have the potential to migrate from their original location in 

soil water depending on the properties of the chemical and nature of the soil (Huang et al. 2003). 

Water solubility determines the maximum amount of a substance that can be dissolved in water 
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to be transported. In addition, soil organic matter contains many different polar and nonpolar 

functional groups that are attracted to chemicals dissolved in soil water, forming hydrogen bonds 

or other noncovalent interactions that temporarily or permanently remove the substance from 

solution (Huang et al. 2003). Substances partition between soil water and soil organic matter 

based on the strength of the association with organic matter and the solubility in water, although 

substances can also become physically trapped within the organic matrix and irreversibly bound 

(Huang et al. 2003). The ratio at equilibrium between the amount of substance adsorbed to soil 

and the amount dissolved in water is termed the solid-water distribution coefficient (KD). Since 

the majority of sorption takes place to organic matter, the sorption coefficient can be normalized 

to the soil organic carbon fraction to express sorption as the organic carbon-water distribution 

coefficient (KOC). These properties are able to predict the transport of low polarity contaminants 

in soil under certain conditions (Huang et al. 2003), although ionisable compounds that are 

affected by soil pH are poorly described (Cunningham 2008). Substances with higher water 

solubility and lower KOC are more easily transported to deeper soil layers in percolating water, 

while those with lower water solubility and stronger sorption to organic matter have limited 

mobility. Soils with high organic carbon content increase the sorption of contaminants compared 

to low organic matter soils (Spark and Swift 2002; Wu et al. 2015a), although it is also related to 

the quality (polarity and aromaticity) of soil organic matter (Xing 1997). 

Soil contaminants that are persistent and partition into the organic carbon fraction have 

the potential to bioaccumulate in soil-dwelling organisms that occupy the contaminated space 

and consume the organic matter. Earthworms have been used in bioassays of contaminant 

bioaccumulation in soil, due to their direct physical contact and ingestion of large amounts of 

soil during their lifetime (Lanno et al. 2004). However, the assessment is complicated by 
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behavioural differences between species, and by artifacts of laboratory assays using 

homogenized and sieved soil that do not reflect field conditions (Jager et al. 2005). 

Bioaccumulation in earthworms is dependent on the desorption of contaminants from the soil 

matrix into pore water, which is influenced by sorption and degradation processes (Lanno et al. 

2004; Carter et al. 2014) and can lead to different patterns of bioaccumulation resulting from low 

or high desorption rates (Jager et al. 2005). Elimination of a compound occurs if the earthworms 

are moved to fresh material (Jager et al. 2005). The bioaccumulation and elimination processes 

have been described by first order kinetics, with the rate of change in organism concentration 

equal to the rate of intake from pore water minus the rate of excretion of accumulated substance 

(Carter et al. 2014). Other approaches have used modifications to account for additional 

processes affecting organism concentration, such as distinguishing between passive elimination 

and biotransformation (Ma et al. 1998). Some authors have calculated bioaccumulation factors 

by measuring contaminant concentrations in soil and in earthworm tissues from agricultural sites 

amended with either biosolids or animal manure (Kinney et al. 2008). Once a contaminant enters 

an organism, it has the potential to cause toxic effects, as discussed in the next section. 

 

1.4.	Emerging	contaminants	in	biosolids	

 In Canada, the management of toxic substances is under federal jurisdiction, falling under 

the Canadian Environmental Protection Act (CEPA), which mandates that the Government of 

Canada will protect human and environmental health from the risks arising from the use of and 

release into the environment of toxic substances (Government of Canada 1999). This is achieved 

through the List of Toxic Substances, which enables the Minister to regulate the import, export, 

production, use, sale, disposal, monitoring, or other activities that are permitted to be carried out 
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with substances that are on the list (Government of Canada 1999). Substances may be added to 

the list if human activity results in the substance entering the environment and there is evidence 

that the substance is toxic, persistent in the environment, and bioaccumulative in humans or other 

organisms (Government of Canada 1999). According to the CEPA, a substance is toxic if it 

enters the environment in a concentration or quantity that will “(a) Have or may have an 

immediate or long term harmful effect on the environment or its biological diversity; (b) 

constitute or may constitute a danger to the environment on which life depends; or (c) constitute 

or may constitute a danger in Canada to human life or health” (Government of Canada 1999).  

The legislative framework for biosolids in Canada has been reviewed in detail by the 

Canadian Council of Ministers of the Environment (CCME 2010). In Canada, the management 

of municipal biosolids (from production to disposal) is accomplished through the acts and 

regulations within each province or territory, unless the product is sold as a fertilizer which falls 

under the federal Fertilizer Act and Fertilizer Regulations (CCME 2010). Municipalities are 

granted the authority to regulate certain aspects of biosolids, including land application, which 

varies between locations. Municipalities can require permits or other approvals for the 

production or disposal of biosolids and can use by-laws to control the quality of effluent entering 

the wastewater stream (CCME 2010). The definition of a ‘biosolid’ varies by province, but 

generally refers to the solid residuals from the treatment of sewage wastewater, which have 

undergone some sort of further process to meet defined standards of quality. Nova Scotia and 

Quebec each have two categories of biosolids based on quality (NS: Class A and B; QC: Class 1 

and 2).  

While it varies by province, trace metals (including arsenic, cadmium, chromium, cobalt, 

copper, mercury, molybdenum, nickel, lead, selenium, and zinc) are generally controlled by 



 9 

maximum acceptable concentrations established for biosolids (CCME 2010). Only a few 

provinces specify limits for organic contaminants in biosolids, which consider dioxins, furans, 

and polychlorinated biphenyls (CCME 2010). Nova Scotia has a limit for dioxins and furans (in 

Toxic Equivalency Factor, TEQ) of 17 or 50 ng TEQ kg-1 for Class A or B biosolids 

respectively, and a limit of 800 ng g-1 for polychlorinated biphenyls in Class A. For Class B 

Biosolids in Nova Scotia, the guidelines state that analysis of selected industrial chemicals, 

alkylphenols and ethoxylates, flame retardants, pharmaceuticals, hormones, steroids, personal 

care products, and other substances must be monitored by producers every 10,000 Mg generated 

(NSE 2010). However, this does not apply to Class A biosolids, there are no specific 

contaminants mentioned by name, and no limits are specified.  

In response to the nation-wide lack of monitoring data for assessing risk of emerging 

organic contaminants in biosolids, the Canadian Council of Ministers of the Environment 

(CCME) conducted a survey of 71 pharmaceuticals and personal care products in biosolids from 

11 WWTPs across Canada (Monteith et al. 2010). Although some compounds were not detected 

in any samples, the pharmaceuticals diphenhydramine, carbamazepine, and ciprofloxacin, and 

the personal care product ingredients miconazole, triclosan, triclocarban, HHCB, AHTN, and 

ATII were detected in over 90% of samples. Two antimicrobial compounds, triclosan (up to 30 

µg g-1) and ciprofloxacin (up to 27 µg g-1), had the highest measured concentrations among all 

contaminants measured (Monteith et al. 2010). A similar picture emerged from the USEPA 

Targeted National Sewage Sludge Survey of contaminants in biosolids from across the US, with 

azithromycin, carbamazepine, ciprofloxacin, doxycycline, 4-epitetracycline, erythromycin, 

fluoxetine, gemfibrozil, miconazole, ofloxacin, tetracycline, triclocarban, and triclosan detected 
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in >90% of samples (USEPA 2009b). Triclosan (up to 133 µg g-1) and ciprofloxacin (up to 47 µg 

g-1) were among the highest concentrations detected in US samples as well.  

 

1.5.	Toxicity	assessment	using	earthworms		

Assessment of toxicity to an organism involves determining the effective dose or 

concentration at which specific impacts occur (Calow and Forbes 2003). Knowing the 

environmental concentration or dose at which a substance is toxic and causes harm to an 

organism is used for risk assessment as the threshold to which measured or predicted 

environmental concentrations are compared (European Commission 2003). Earthworms have 

been adopted as a standard organism in toxicity testing, and frequently represent soil organisms 

when establishing effect thresholds for environmental risk assessment (Spurgeon et al. 2003). 

There are two variations of the standard toxicity test: a 48 hour filter paper exposure, and 14 day 

‘soil’ exposure (OECD 1984). The OECD method provides a recipe for a ‘standard’ soil for 

exposure, with a high sand content to minimize sorption of the test substance. There are valid 

criticisms of the filter paper test and of the OECD soil used in the 14 day test in that they do not 

truly reflect real world scenarios, but both tests still have value for investigating toxicity 

(Spurgeon et al. 2003). In addition, the recommended test species Eisenia fetida is generally not 

a soil dwelling earthworm, preferring organic matter rich environments more than the mineral 

dominated OECD soil (Spurgeon et al. 2003). Other earthworm species that live in soil have 

been used, but generally reproduce slower than E. fetida and are more difficult to culture 

(Spurgeon et al. 2003). 

 Since the OECD method was published in 1984 to measure toxicity based on weight loss 

and mortality (OECD 1984), many alternative measures of toxic response have been developed 
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using the same or modified exposure methods. Damage to earthworm DNA in response to 

organic contaminants and heavy metals has been assessed using the COMET assay, which 

measures breaks in DNA strands (Reinecke and Reinecke 2004; Liu et al. 2009; Lin et al. 2010). 

Activities of enzymes involved in defense against free radicals (superoxide dismutase and 

catalase) and metabolism of xenobiotics (glutathione-S-transferase) have also been measured in 

response to emerging contaminant exposure (Xue et al. 2009; Lin et al. 2010; Yang et al. 2012; 

Han et al. 2014). Efforts have also expanded to include proteomics (Ji et al. 2013a; Zhang et al. 

2017) and metabolomics (Bundy et al. 2009; Whitfield Åslund et al. 2012; Lankadurai et al. 

2013b; McKelvie et al. 2013) analysis to determine protein or metabolite biomarkers that 

indicate toxicity. In particular, metabolomics has shown great promise since it can detect sub-

lethal changes in metabolite levels in response to stress on an organism (Bundy et al. 2009; 

Simpson and McKelvie 2009). Based on the affected metabolites and using knowledge of their 

biochemical pathways, a potential mode of action for the toxic substance can often be proposed. 

The use of metabolomics for toxicity assessment is described in Section 2.5. 

 

1.6.	Metabolomics	as	a	novel	measure	of	toxic	response	

1.6.1.	Modes	of	action	and	mechanisms	of	toxicity	

Aside from the regulatory definitions mentioned previously, toxicity can be generally 

defined as the ability of a substance to induce an adverse response or effect in an organism 

(Sparling 2016). All adverse effects have a biochemical basis, thus the effect is dependent on the 

target location within the organism where the toxicant interacts with the exposed biological 

system. Escher et al. (2011) define the mode of action as “a common set of physiological and 

behavioral signs that characterize a type of adverse biological response”. The toxic mechanism 



 12 

of action is defined as the critical underlying biochemical interactions or processes that give rise 

to a mode of action (Escher et al. 2011). Although the use of these terms is inconsistent in the 

literature, the mode of action is typically used to describe an observed toxic response in which 

the mechanism is not known, while mechanism of action implies knowledge of specific 

interaction between the toxic substance and one or more biochemical systems in an organism 

(Escher et al. 2011).  

There is a baseline toxicity of all substances that is non-specific and results from 

disturbances to the structure and function of biological membranes (van Wezel and Opperhuizen 

1995; Escher and Hermens 2002). This baseline toxicity, termed narcosis, is generally consistent 

for all chemicals, since the amount of substance in a biological membrane at the endpoint of 

lethality has been observed to be constant (Abernethyand et al. 1988; van Wezel and 

Opperhuizen 1995). Inert hydrophobic contaminants generally act through narcosis since they 

are bioaccumulative and have a high potential to accumulate in lipids, with the narcotic potency 

increasing with hydrophobicity expressed as log (KOW) (Verhaar et al. 1992). Aside from non-

specific narcosis, there can be specific membrane-related modes of action. If a substance is 

reactive, it can cause degradation of membrane lipids and proteins by forming reactive products 

that oxidize membrane lipids and proteins (Escher et al. 2011). Many important cellular 

processes, such as electron transport systems and cellular signalling, are controlled by 

membrane-bound enzymes that can be affected by disturbances to membrane characteristics or 

through the blockage of important sites (Escher et al. 2011). Foreign compounds within the 

membrane can interfere with proton shuttling mechanisms in mitochondria and lead to 

uncoupling (Escher et al. 2011), defined as “any process through which energy released from the 

combustion of a substrate (food) in the mitochondria is not conserved” (Nedergaard et al. 2005). 
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Blockage of receptor binding sites of membrane-bound proteins can inhibit the electron transport 

chain, while blockage of transport channels in the membrane can cause inhibition of ATP 

synthesis (Escher et al. 2011). 

Other compounds can interact with proteins, peptides, DNA, or RNA, through 

mechanisms that have their own modes of action. Electrophilic compounds have the ability to 

react with nucleophilic centers and can lead to improper functioning of proteins, peptides, DNA, 

or RNA, through oxidative damage or the formation of adducts (Escher et al. 2011). Damage to 

enzyme proteins can lead to the depletion of critical metabolites, while damage to DNA or RNA 

can lead to errors in transcription or translation (Escher et al. 2011). In addition, compounds with 

polar functional groups can covalently or noncovalently bind to enzyme receptors, leading to 

inhibition of the enzyme or competitive binding, with consequent effects on their respective 

biochemical pathways (Escher et al. 2011). 

 

1.6.2.	Metabolomics	and	its	use	in	toxicology	

Metabolomics looks at the last link of the “omics” chain, the small molecules that are 

acted on by enzymes and are the biological building blocks and functional molecules that make 

up the chemistry of life (Ryan and Robards 2006). The Human Metabolome Database (Wishart 

et al. 2013) includes entries for over 70,000 confirmed or suspected metabolites in humans, 

while plants may have more than 200,000 (Hartmann 2007). Metabolomics, as its own field of 

science, is just under two decades old, and analytical methods are still being developed and 

standardized (Kanani et al. 2008). To date, the exhaustive characterization of the metabolome 

has not been reported for any organism, but tens to hundreds of targeted metabolites can be 

routinely quantified in a sample, allowing many different biological questions to be answered 
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with this technique (Viant et al. 2017). This is only a small fraction of possible metabolites, and 

efforts are ongoing to automate metabolite identification and annotation for a wide range of 

metabolites in non-targeted analysis (Viant et al. 2017). 

Environmental metabolomics is the study of the interactions between organisms and their 

environment using a metabolomics approach, and includes the effects of chemical stimuli such as 

environmental pollutants (Bundy et al. 2009). Earthworms, a standard test organism in 

ecotoxicology (OECD 1984), have been adopted in environmental metabolomics to observe 

metabolic changes due to pollutant exposure. The ability to detect sub-lethal responses at lower 

pollutant concentrations is a significant advantage of metabolomics over mortality or 

reproduction based end-points (Bundy et al. 2002). There are a growing number of studies in the 

metabolomics literature investigating earthworm ecotoxicology using NMR (e.g. Warne et al. 

2000; Bundy et al. 2002; Brown et al. 2008; McKelvie et al. 2011) or GC-MS (e.g. Jones et al. 

2008; McKelvie et al. 2009; Baylay et al. 2012; Mudiam et al. 2013; Gillis et al. 2017), while 

LC-MS approaches have been limited to date. Metabolomics has also been used to investigate 

toxic responses in other organisms, including bivalves (Zhang et al. 2011; Ji et al. 2013b), fish 

(Samuelsson et al. 2006; Sotto et al. 2017), aquatic plants (Liu et al. 2011), and daphnids 

(Nagato et al. 2016; Wagner et al. 2017). A significant advantage of metabolomics in toxicology 

is the ability to confirm or hypothesize a mode of action for a test substance. In a metabolomics 

study, biomarkers of exposure to the substance are identified that characterize the toxic response, 

and from these it is possible to interpret the mode of action by placing the affected metabolites in 

the context of known biochemical pathways (Aliferis and Jabaji 2011). Knowing the mode of 

action of a toxic compound is important in risk assessment when deciding if toxicity can be 
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extrapolated between species (Schrenk 2014). If the biochemical pathway is conserved between 

species, they may be similarly affected by exposure.  

A search of the scientific literature for various terms describing environmental 

metabolomics studies with earthworms yielded 34 papers which are summarized in Table 1.1. 

Almost 80% (27/34 studies) used exclusively Nuclear Magnetic Resonance (NMR) 

spectroscopy. Three used Gas Chromatography-Mass Spectrometry (GC-MS), another three used 

NMR and GC-MS, while Ultra Performance Liquid Chromatography-Quadrupole-Time of Flight 

Mass Spectrometry (UPLC-QTOF-MS) was used once, making NMR the most common 

approach in this field to date. The filter paper contact test was the most common test media 

(14/34), followed by natural soils (11/34), artificial soils (8/34), and water (1/34). In many cases 

the metabolite profile of different chemicals can be clearly distinguished from one another based 

on unique features, while there also appears to be commonly affected metabolites (e.g. alanine) 

that may be general indicators of stress. In 25 studies, the authors were able to directly or 

indirectly hypothesize a mode of action to explain the observed effects on the metabolome. 

Effects on energy metabolism pathways were common and include the tricarboxylic acid cycle 

metabolites, glucose and other carbohydrates, as well as ATP. Enzyme production or protein 

catabolism explanations for increases or decreases in amino acid abundance were also commonly 

reported. Increases in osmoregulators such as betaine were attributed to the cellular response to 

membrane instability caused by some toxins. Only a few substances have been studied in more 

than one experiment, including phenanthrene (8/34) and endusulfan (5/34), and there exists a 

vast knowledge gap in understanding the metabolic effects of chemical toxins to earthworms. 

There is great potential to understand the mode of action of contaminants using metabolomics, 

and a long list of environmental contaminants for which the toxicity is poorly understood.  
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Table 1.1. Summary of earthworm toxicology studies using metabolomics, including biomarkers 

identified and mode of action hypothesized if applicable. ND – Not Determined; NR – Not 

Reported; NS – Not Significant. 

Reference Earthworm 
Species 

Test Media Analytical 
Platform 

Test Compound(s) Statistical 
Analysis 

Metabolite 
Biomarkers 

Hypothesized 
Mode of Action 

Baylay et 
al. (2012) 

Lumbricus 
rubellus 

Clay loam soil  
with 3% 
composted 
bark (28 
days) 

GC-MS, 
NMR 

Imidacloprid ANOVA, DA NR ND 

Lumbricus 
rubellus 

Clay loam soil  
with 3% 
composted 
bark (28 
days) 

GC-MS, 
NMR 

Thiacloprid ANOVA, DA NR ND 

Lumbricus 
rubellus 

Clay loam soil  
with 3% 
composted 
bark (28 
days) 

GC-MS, 
NMR 

Chlorpyrifos ANOVA, DA NR ND 

Lumbricus 
rubellus 

Clay loam soil  
with 3% 
composted 
bark (28 
days) 

GC-MS, 
NMR 

Nickel ANOVA, DA NR ND 

Brown et 
al. (2009) 

Eisenia 
fetida 

Filter Paper 
(2 days) 

NMR Naphthalene PCA, DA NS General stress 
response 

Eisenia 
fetida 

Filter Paper 
(2 days) 

NMR Phenanthrene PCA, DA NS General stress 
response 

Eisenia 
fetida 

Filter Paper 
(2 days) 

NMR Pyrene PCA, DA NS General stress 
response 

Brown et 
al. (2010) 

Eisenia 
fetida 

Commercial 
Worm 
Bedding (2 
days) 

NMR Phenanthrene t-test, PCA isoleucine, alanine, 
glutamine, maltose 

General stress 
response 

Bundy et 
al. (2001) 

Eisenia 
veneta 

Filter Paper 
(2 days) 

NMR 3-fluoro-4-
nitrophenol 

PCA malonate, acetate, 
succinate, 
trimethylamine-N-
oxide 

Interference with 
carbohydrate 
metabolism 

Bundy et 
al. (2002) 

Eisenia 
veneta 

Filter Paper 
(2 days) 

NMR 4-fluoroaniline PCA maltose ND 

Eisenia 
veneta 

Filter Paper 
(2 days) 

NMR 3,5-difluoroaniline PCA inosine 
monophoshate, 2-
hexyl-5-ethyl-3-
furansulfonate 

May affect 
nucleotide 
synthesis 

Eisenia 
veneta 

Filter Paper 
(2 days) 

NMR 2-fluoro-4-
methylaniline 

PCA inosine 
monophoshate, 2-
hexyl-5-ethyl-3-
furansulfonate 

May affect 
nucleotide 
synthesis 
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Table 1.1 Continued 
Reference Earthworm 

Species 
Test Media Analytical 

Platform 
Test Compound(s) Statistical 

Analysis 
Metabolite 
Biomarkers 

Hypothesized 
Mode of Action 

Bundy et 
al. (2007) 

Lumbricus 
rubellus 

Sampled 
from seven 
field sites 

NMR Metal contaminated 
site (likely zinc 
causing effect) 

Correlation, 
PCA 

histidine Protective 
mechanism to 
reduce cytotoxicity 

Ch et al. 
(2015) 

Metaphire 
posthuma 

Soil (14 days) GC-MS Cypermethrin t-test, PCA, 
PLS-DA 

22 metabolites 
(mainly fatty acids, 
sugars and amino 
acids) 

Disturbed neural 
system metabolism 

Dani et al. 
(2018) 

Eisenia 
fetida 

Filter Paper 
(2 days) 

NMR Atrazine t-test, PCA Maltose, fumarate, 
malate, threonine, 
lactate, 
ATP, betaine, scyllo-
inositol, glutamate, 
arginine, glutamine 

Reduced ATP 
synthesis 

Gibb et al. 
(1997) 
 

Eisenia 
andrei 

Sandy soil (in 
laboratory, 
28 days) 

NMR Cu(II) PCA, PLS-R NS ND 

Lumbricus 
rubellus 

Sandy soil 
(outdoor 
mesocosm, 
28 days) 

NMR Cu(II) PCA, PLS-R histidine Distrupted histidine 
catabolism and 
excretion, OR 
increased 
production of 
histidine 

Gillis et al. 
(2017) 

Eisenia 
fetida 

Filter Paper 
(2 days) 

GC-MS Triclosan ANOVA, 
Regression, 
PCA 

mannitol:inositol, 
valine:inositol 

ND 

Guo et al. 
(2009) 

Lumbricus 
rubellus 

Loam soil (28 
days) 

NMR CdCl2 Correlation, 
PCA, PLS-R 

beta-
hydroxybutyrate, 
fumarate, lysine, 
malate 

ND 

Lumbricus 
rubellus 

Loam soil (28 
days) 

NMR Atrazine Correlation, 
PCA, PLS-R 

glucose, asparagine, 
DMH, Asn, betaine, 
succinate 

Biochemical 
starvation 

Lumbricus 
rubellus 

Loam soil (28 
days) 

NMR Fluoranthene Correlation, 
PCA, PLS-R 

lysine, lactate, 
cytidine triphosphate 

ND 

He et al. 
(2018) 

Eisenia 
fetida 

Loam soil (10 
days) 

UPLC-
QTOF-MS 

(–)-PCB 91 
 

t-test, PCA, 
HCA 

18 identified 
metabolites 

amino acid 
metabolism, energy 
metabolism, 
neurodevelopment, 
and nucleotide 
metabolism 

Eisenia 
fetida 

Loam soil (10 
days) 

UPLC-
QTOF-MS 

(+)-PCB 91 
 

t-test, PCA, 
HCA 

66 identified 
metabolites 

amino acid 
metabolism, energy 
metabolism, 
neurodevelopment, 
and nucleotide 
metabolism 

Eisenia 
fetida 

Loam soil (10 
days) 

UPLC-
QTOF-MS 

(±)-PCB 91 
 

t-test, PCA, 
HCA 

19 identified 
metabolites 

amino acid 
metabolism, energy 
metabolism, 
neurodevelopment, 
and nucleotide 
metabolism 

Ji et al. 
(2013a) 

Eisenia 
fetida 

Water (4 
days) 

NMR 2,2ʹ,4,4ʹ-
tetrabromodiphenyl 
ether (PBDE 47) 

Correlation, 
ANOVA, 
PCA, PLS-
DA, O-PLS-
DA 

betaine, glycine, 2-
hexyl-5-ethyl-3-
furansulfonate, 
glucose, ATP, 
maltose, succinate 

Membrane 
destabilization; 
Osmotic stress; 
Disturbed energy 
metabolism 
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Table 1.1 Continued 
Reference Earthworm 

Species 
Test Media Analytical 

Platform 
Test 
Compound(s) 

Statistical 
Analysis 

Metabolite 
Biomarkers 

Hypothesized Mode 
of Action 

Jones et al. 
(2008) 

Lumbricus 
rubellus 

Sterilized 
loam soil 
(42 days) 

GC-MS, 
NMR 

Pyrene PCA, PLS-R, 
PLS-DA 

lactate, tetradecanoic 
acid, hexadecanoic 
acid, octadecanoic 
acid, alanine, leucine, 
valine, isoleucine, 
lysine, tyrosine, 
methionine 

Impaired glucose 
metabolism, 
increased fatty acid 
metabolism 

Lankadurai 
et al. 
(2011a) 

Eisenia fetida Filter Paper 
(2 days) 

NMR Phenanthrene t-test, PCA alanine, lysine, 
arginine, isoleucine, 
maltose, ATP, betaine 

Protein catabolism 
for energy 
production; 
General stimulation 
of metabolism; 
Induction or 
inhibition of 
Cytochrome P450  

Lankadurai 
et al. 
(2011b) 

Eisenia fetida Filter Paper 
(2 days) 

NMR Phenanthrene t-test, PCA alanine, glutamate, 
maltose, cholesterol, 
phosphatidylcholine, 
succinate, fumarate 

Inhibition of 
succinate 
dehydrogenase by 
membrane 
destabilization; 
Disrupted 
osmoregulation 

Lankadurai 
et al. 
(2012) 

Eisenia fetida Filter Paper 
(2 days) 

NMR Phenanthrene t-test, PCA leucine, alanine, 
glutamate, arginine, 
lysine, phenylalanine, 
maltose, malate, 
fumarate, succinate, 
betaine, scyllo-inositol, 
myo-inositol, 2-hexyl-
5-ethyl-3-
furansulfonate, ATP 

Inhibition of 
succinate 
dehydrogenase 

Lankadurai 
et al. 
(2013a) 

Eisenia fetida OECD 
artificial soil 
(2, 7, 14 
days) 

NMR Perfluorooctane 
sulfonate 

t-test, PCA, 
PLS-DA 

2-hexyl-5-ethyl-3-
furansulfonate, 
betaine, leucine, 
arginine, glutamate, 
maltose and ATP 

Elevated fatty acid 
oxidation; 
Disruption in 
energy metabolism; 
Interruption of ATP 
synthesis 

Lankadurai 
et al. 
(2015) 

Eisenia fetida OECD 
artificial soil 
(2, 7, 14 
days) 

NMR C60 
nanoparticles 

t-test, PCA leucine, isoleucine, 
valine, alanine, 
arginine, glutamate, 
lysine, glycine, 
phenylalanine, malate, 
succinate, fumarate, 
myo-inositol, betaine, 
inosine, 
glucose, maltose, 2-
hexyl-5-ethyl-3- 
furansulfonate 

Production of 
enzymes for 
defense and repair; 
Increased energy 
consumption; 
Increased glycolysis  

McKelvie et 
al. (2009) 

Eisenia fetida Filter Paper 
(2 days) 

GC-MS, 
NMR 

DDT t-test, 
linear 
regression, 
PCA 

alanine, alanine:glycine Protein breakdown 
or degradation 

 Eisenia fetida Filter Paper 
(2 days) 

GC-MS, 
NMR 

Endosulfan t-test, 
linear 
regression, 
PCA 

alanine, alanine:glycine Protein breakdown 
or degradation 

McKelvie et 
al. (2010) 

Eisenia fetida Artificial 
soil (30 
days) 

NMR Phenanthrene t-test, PCA, 
PLS-R 

betaine, alanine, 
isoleucine, leucine 

ND 
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Table 1.1 Continued 
Reference Earthworm 

Species 
Test 
Media 

Analytical 
Platform 

Test Compound(s) Statistical 
Analysis 

Metabolite Biomarkers Hypothesized 
Mode of 
Action 

McKelvie et 
al. (2011) 

Eisenia 
fetida 

Filter 
Paper (2 
days) 

NMR Carbaryl t-test, PCA Phenylalanine, tyrosine, lysine, 
alanine, valine, leucine 

ND 

Eisenia 
fetida 

Filter 
Paper (2 
days) 

NMR Chlorpyrifos t-test, PCA NS ND 

Eisenia 
fetida 

Filter 
Paper (2 
days) 

NMR Carbamazepine t-test, PCA Fumarate, glutamate, valine, 
leucine 

ND 

Eisenia 
fetida 

Filter 
Paper (2 
days) 

NMR Estrone t-test, PCA adenine, glutamine ND 

Eisenia 
fetida 

Filter 
Paper (2 
days) 

NMR Caffeine t-test, PCA NS ND 

Eisenia 
fetida 

Filter 
Paper (2 
days) 

NMR Aroclor 1254 t-test, PCA NS ND 

Eisenia 
fetida 

Filter 
Paper (2 
days) 

NMR PBDE 209 t-test, PCA maltose, lysine, glutamate ND 

Eisenia 
fetida 

Filter 
Paper (2 
days) 

NMR Nonylphenol t-test, PCA adenine, glutamate ND 

Eisenia 
fetida 

Filter 
Paper (2 
days) 

NMR Dimethyl phthalate t-test, PCA phenylalanine, alanine, leucine, 
valine 

ND 

McKelvie et 
al. (2013) 

Eisenia 
fetida 

Artificial 
soil, 1- 
27% OM 
(2 days) 

NMR Phenanthrene t-test, 
ANOVA, 
PCA, PLS-
DA 

alanine, lysine, arginine, 
isoleucine, maltose, ATP, 
betaine 

ND 

Mudiam et 
al. (2013) 

Metaphire 
posthuma 

Soil (7 
days) 

GC-MS Carbofuran t-test, PCA, 
PLS-DA, 2D-
HCA 

glucose, tyrosine, valine, 
pyroglutamic acid, phosphoric 
acid, glycine, leucine, 2-amino-
3-phenylpropane, galactose, 
proline, alanine, ornithine, 
serine, phenylalanine, 
isoleucine, methionine, 
succinic acid 

Disruption of 
energy 
metabolism; 
Disturbance 
of amino acid 
and 
carbohydrate 
metabolism 

Shi et al. 
(2018) 

Eisenia 
fetida 

OECD 
Artificial 
Soil (14 
days) 

NMR Hexabromocyclodo
decane 

ANOVA, 
correlation, 
PCA, O-PLS-
DA 

ATP, lactate, valine, lysine, 
betaine, glycine 

Disrupted 
energy 
metabolism; 
Disrupted 
membrane 
stability 

Warne et 
al. (2000) 

Eisenia 
veneta 

Filter 
Paper (3 
days) 

NMR 3-trfluoromethyl 
aniline 

Correlation, 
PCA, HCA 

glucose, glycine, asparagine, 
citrate, succinate, alanine, 
lactate 

ND 

Whitfield 
Åslund et 
al. (2011c) 

Eisenia 
fetida 

OECD 
artificial 
soil (2 
days) 

NMR Aroclor 1254 ANOVA, 
PCA, PLS-R 

ATP, lysine Disrupted 
energy 
metabolism; 
Disrupted 
membrane 
stability 
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Table 1.1 Continued 
Reference Earthworm 

Species 
Test Media Analytical 

Platform 
Test 
Compound(s) 

Statistical 
Analysis 

Metabolite Biomarkers Hypothesized 
Mode of 
Action 

Whitfield 
Åslund et al. 
(2011b) 

Eisenia 
fetida 

Sandy loam 
soil (20-23 
weeks) 

NMR TiO2 
Nanoparticles 
N 

PCA, PLS-DA leucine, valine, alanine, 
glutamate, lysine, 
tyrosine, phenylalanine, 
lactate, maltose 

Oxidative 
stress 

Eisenia 
fetida 

Sandy loam 
soil (20-23 
weeks) 

NMR TiO2 
Nanoparticles 
B 

PCA, PLS-DA leucine, valine, alanine, 
glutamate, lysine, 
tyrosine, phenylalanine, 
lactate, maltose 

Oxidative 
stress 

(Whitfield 
Åslund et al. 
2012) 

Eisenia 
fetida 

Aged (>30 
years) PCB 
contaminated 
soil 

NMR Aroclor 1254 ANOVA, 
Correlation, 
PCA, PLS-R 

ATP ND 

Whitfield 
Åslund et al. 
(2013) 

Eisenia 
fetida 

Aged (>20 
years) 
petroleum  
contaminated 
soil 

NMR Petroleum 
hydrocarbons 

PCA, PLS-R ND ND 

Yuk et al. 
(2010) 

Eisenia 
fetida 

Filter Paper (2 
days) 

NMR Endosulfan PLS-DA, 
MANOVA 

alanine, leucine, lysine, 
glutamate, glucose, 
maltose 

ND 

Yuk et al. 
(2011) 
 

Eisenia 
fetida 

Filter Paper (2 
days) 

NMR Trifluralin t-test, PCA Alanine, glycine, maltose, 
ATP 

Non-polar 
narcosis 

 Eisenia 
fetida 

Filter Paper (2 
days) 

NMR Endosulfan t-test, PCA weight change, leucine, 
phenylalanine, tryptophan, 
lysine, glutamate, valine, 
glycine, isoleucine, 
methionine, glutamine, 
alanine, maltose, glucose, 
meibiose, malate, 
fumarate, ATP 

Neurotoxic 

Yuk et al. 
(2012) 

Eisenia 
fetida 

Filter Paper (2 
days) 

NMR Endosulfan t-test, 
ANOVA, PCA 

Alanine, glycine, malate, 
alpha-ketoglutarate, 
succinate, betaine, myo-
inositol, lactate, 
spermidine, glutamine, 
fumarate, glutamate, 
maltose, melibiose, ATP  

Apoptotic 

Yuk et al. 
(2013) 

Eisenia 
fetida 

OECD artificial 
soil (7 days) 

NMR Endosulfan t-test, PCA alanine, glycine, betaine, 
succinate, aplha-
ketoglutarate, spermidine, 
myo-inositol, lactate 

Neurotoxic 
and apoptotic 

 Eisenia 
fetida 

OECD artificial 
soil (7 days) 

NMR Endosulfan 
Sulfate 

t-test, PCA alanine, glycine, betaine, 
succinate, aplha-
ketoglutarate, spermidine, 
myo-inositol, lactate 

Neurotoxic 
and apoptotic 
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1.7.	Sample	analysis	and	data	processing	in	GC-MS	metabolomics	

1.7.1.	Benefits	and	drawbacks	of	the	GC-MS	platform	for	metabolomics	

 GC-MS is a very common platform for metabolomics analysis, due to the high resolution 

of chromatographic peaks, high analyte sensitivity, high selectivity based on the unique mass 

spectra for each compound, good reproducibility of duplicate samples, and the availability of 

free (Golm Metabolite Database) and commercially available (Fiehn Lib, NIST Library) mass 

spectral libraries containing thousands of compounds to aid in the identification of unknowns in 

a complex sample (Hummel et al. 2007; Kind et al. 2009). The resolution of GC-MS allows clear 

separation of a wide range of compounds with a molecular weight less than 650 amu, although 

non-volatile metabolites require derivatization procedures, including methoximation of some 

sugars to prevent multiple peaks from open chain and cyclic isomers, and trimethylsilylation of 

O-H and N-H bonds to increase volatility (Kind et al. 2009). The volatility requirement decreases 

the metabolome coverage that is possible by GC-MS, although derivatization expands the range 

of possible metabolites.  

The sample preparation process to extract metabolites from earthworm tissue and 

produce a sample suitable for GC-MS analysis contains many steps that have the potential to 

introduce errors (technical variability) into the analysis (see Section 1.7.2.). Additional biological 

variability within the population under study, due to differences such as life stage, genetic code, 

or growth environment, can mask treatment effects depending on the magnitude of the biological 

differences (see Section 1.7.3.). The complexity of metabolomics analysis requires a number of 

steps to minimize or account for variability due to technical and biological sources (see Section 

1.7.6.). These steps vary greatly between studies, and the methods used for earthworm sample 
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preparation, analysis, and data normalization for GC-MS metabolomics have not been 

standardized (De Livera et al. 2012; Liebeke and Bundy 2012).  

 

1.7.2.	Sources	of	technical	variability	

 The general protocol for sample preparation in a metabolomics experiment (Fig. 1.1.) 

typically includes quenching metabolism through freezing and/or lyophilization, tissue disruption 

and homogenization of samples, solvent extraction of metabolites, centrifugation or filtration for 

removal of solids, evaporation of the supernatant and derivatization of the dried sample (in GC-

MS metabolomics), and analysis of the sample by the instrument of choice (typically GC-MS,  

 

 

Figure 1.1. Metabolomics work flow from sample processing to data analysis 
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LC-MS, or NMR). While quenching metabolism in liquid N2 is the first step after harvesting of 

organisms in most experiments, the remaining aspects of sample preparation are less consistent 

between studies. For instance, some authors lyophilize (freeze-dry) the samples prior to 

homogenization (Bundy et al. 2004; Brown et al. 2008; McKelvie et al. 2009; Schock et al. 2016; 

Gillis et al. 2017) or after samples have been ground (Bundy et al. 2008; Guo et al. 2009), while 

other authors extract the samples directly after flash-freezing in liquid N2 (Lenz et al. 2002; 

Rochfort et al. 2009). If storage until further processing is necessary, samples can be frozen at     

-20°C (Bundy et al. 2002; Gillis et al. 2017) or -80°C (Bundy et al. 2008; Guo et al. 2009; 

Rochfort et al. 2009). 

The homogenization of samples is an important step, since the stored samples are first 

exposed to ambient temperatures at this stage, potentially allowing degradation of sensitive 

metabolites. Some authors have performed tissue homogenization over ice (Lenz et al. 2005; 

Alvarez et al. 2010), dry ice (Jones et al. 2008), or liquid N2 (Bundy et al. 2008; Rochfort et al. 

2009; Liebeke and Bundy 2012) to prevent the activity of degradative enzymes, while other 

authors did not use this technique (Bundy et al. 2002; Brown et al. 2008; McKelvie et al. 2009; 

Schock et al. 2016; Gillis et al. 2017). Tissue disruption can be accomplished with a manual 

implement such as a mortar and pestle (Bundy et al. 2002; Bundy et al. 2004; Jones et al. 2008; 

Rochfort et al. 2009; Schock et al. 2016) or metal micro spatula (Brown et al. 2008; McKelvie et 

al. 2009; Gillis et al. 2017). Automated methods include electronic homogenizing equipment that 

can increase sample throughput and reduce variability (Lenz et al. 2002; Liebeke and Bundy 

2012), although this equipment is not available in all laboratories. Liebeke and Bundy (2012) 

tested different tissue disruption techniques for earthworm samples (mortar and pestle, cryogenic 

impact mill, cryogenic milling plus bead beater). They found that the mortar and pestle had the 
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highest variability, while the cryogenic milling and bead beating methods clustered similarly 

using both Principal Components Analysis and hierarchical clustering. However, there were 

reductions in a few metabolites after cryogenic milling plus bead beating compared to just 

cryogenic milling, suggesting a degradative effect from bead beating (Liebeke and Bundy 2012). 

 Sample extraction is perhaps the most influential step in sample preparation. There are 

multiple solvents (e.g. water, methanol, ethanol, isopropanol, acetonitrile, chloroform) used in 

different combinations that all yield a suitable extraction, and the chosen solvent system can 

greatly influence the metabolome coverage, abundance of extracted metabolites, and variability 

in measured abundances (Alvarez et al. 2010; Duportet et al. 2012; Liebeke and Bundy 2012). 

Other aspects of the extraction procedure can also influence the analysis. When water is added to 

frozen tissue, dramatic changes in certain metabolites can be observed after as little as 30 to 60 

seconds due to the re-solubilization of degradative enzymes that are present in the tissues 

(Liebeke and Bundy 2012). Heating the sample during extraction can denature degradative 

enzymes and prevent changes in the metabolite profile during sample preparation (Liebeke and 

Bundy 2012; Schock et al. 2016). Mixing of the sample during extraction is most commonly 

done by vortexing (McKelvie et al. 2009; Rochfort et al. 2009; Alvarez et al. 2010; Liebeke and 

Bundy 2012; Gillis et al. 2017), although ultrasonic extraction has also been used (McKelvie et 

al. 2009; Gillis et al. 2017). Some authors mix the sample by adding solvent during the 

homogenization procedure (Lenz et al. 2005; Guo et al. 2009). Following extraction, samples are 

typically centrifuged to remove suspended materials, but some studies have included a filtration 

step to minimize interferences by producing a cleaner sample that is less susceptible to 

degradation (Guo et al. 2009; Liebeke and Bundy 2012).  
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For GC-MS metabolomics, it is necessary to derivatize polar metabolites into a 

chemically stabile form that is volatile at the instrument operating temperatures. The 

derivatization is typically a two-step process. First, aldehyde and ketone groups are 

methoximated (R=O to R=N-O-CH3), primarily to ensure carbohydrates are in the linear rather 

than cyclic form, which reduces the number of chromatographic peaks generated for a single 

metabolite (Dettmer et al. 2007). The methoximation reaction is normally accomplished by 

adding methoxamine HCl dissolved in pyridine and incubating at elevated temperature for a 

period of time. Various temperature and incubation time combinations have been reported, such 

as 37°C for 90 min (Liebeke and Bundy 2012) and 70°C for 30 min (McKelvie et al. 2009). 

Second, functional groups containing acidic hydrogens are derivatized to trimethylsilyl or tert-

butyl dimethylsilyl forms, reducing the reactivity and polarity of these groups to increase 

stability and volatility for GC-MS analysis (Dettmer et al. 2007).  

Instrument conditions can strongly influence the variance within a batch and between 

batches analyzed on different days. Analyzing dirty samples (e.g. unfiltered derivatized 

earthworm extracts) leads to deposits of non-volatile and reactive substances in the front of the 

column that have active sites and can bind analytes, reducing the amount striking the detector. 

This is corrected by trimming the column at the receiving end by 1 meter between analysis runs, 

but it reduces the retention time of each run slightly as shown by the shift in retention time 

between each run in Fig. 1.2. Fouling of the ion source also occurs when dirty samples are 

analyzed, leading to reduced sensitivity of the instrument over time as shown in the reduction in 

average abundance between runs 1-2 and 4-5 in Fig. 1.2. The ion source can be cleaned 

periodically to restore the performance, as indicated in the increase in average abundance 
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between runs 3-4 in Fig. 1.2. This introduces a bias into the analysis that needs to be accounted 

for, to prevent artifacts of the sample analysis overshadowing any treatment effects.  

 

1.7.3.	Sources	of	biological	variability	

The analysis of metabolite profiles in biological samples provides a snapshot of the 

physiological state at the time of sampling. This state may ultimately be influenced by 

experimental treatments applied to the organism, but is also dependent on characteristics of the 

individual organism including genetics, food consumption, disease, age, and weight. Brown et al. 

(2008) note that it can take up to one month for earthworms to adjust to laboratory conditions 

and have a stable metabolite profile when a new population is established, since changes in diet, 

 

 

 
Figure 1.2. Effect of instrument deterioration (ion source fouling) and corrective actions 
(trimming column, cleaning ion source) on ion abundance and retention time between runs.  
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growth environment, and stress from shipping lead to unhealthy worms. To ensure a consistent 

organism response to the test substance in toxicity testing with E. fetida earthworms, the standard 

method recommends using visibly healthy adults at least 2 months old, weighing 0.3 to 0.6 g 

(0.45±0.15 g), and with a visible clitellum (OECD 1984). This minimizes potential differences 

due to age and developmental stage of the organism in the observed toxic response. This range is 

used by many authors in metabolomics studies (McKelvie et al. 2011; Whitfield Åslund et al. 

2012; Lankadurai et al. 2013a; Gillis et al. 2017), and has been sufficient to minimize biological 

variability and detect toxic effects in metabolomics experiments.  

Animals such as earthworms are unable to synthesize certain amino acids (including 

valine, leucine, and phenylalanine), and must obtain these essential amino acids from their diet 

(Pokarzhevskij et al. 1989; Pokarzhevskii et al. 1997; Costa et al. 2015). Amino acids are 

generally limited in soil and plant litter, but much more abundant in microorganisms 

(Pokarzhevskij et al. 1989). Earthworms obtain the majority of their essential amino acids 

through microorganisms in their diet and from the gut microbiome (Pokarzhevskii et al. 1997; 

Larsen et al. 2016). A similar influence of the gut microbiota exists for the earthworm fatty acid 

(FA) profile, where FAs measured from gut tissue reflect a bacterial and fungal origin, and differ 

greatly from bulk soil (Sampedro et al. 2006). The standard method for reproduction toxicity 

testing recommends feeding of oatmeal, cow manure, or horse manure as suitable foods (OECD 

2004), while some authors use commercially available worm food (Brown et al. 2008; McKelvie 

et al. 2009; Yuk et al. 2010). Lowe and Butt (2007) recommend manure that is urine-free, from 

animals that have not been recently medicated, and that it is dried, ground, and re-wetted before 

feeding for maximum palatability. It is not known how diet affects the earthworm metabolome or 

the response to toxic substances. Some authors recommend a depuration period where 



 28 

earthworms are allowed to evacuate gut contents for 24 to 96 hours prior to testing since 

metabolite variability between samples is lower (Warne et al. 2000; Lenz et al. 2005; Brown et 

al. 2008), but Warne et al. (2001) found that starvation effects on the metabolite profile can 

occur during periods of food deprivation. Brown et al. (2008) note that the abundance and 

variability in the sugar region of NMR spectra decreases after 96 hours of depuration, but this 

may not be desirable if information on sugars is required.  

 

1.7.4.	Structure	of	GC-MS	datasets	

 Datasets generated from GC-MS analysis have three dimensions: retention time (tR), 

fragment ion mass to charge ratio (m/z), and abundance (Fig. 1.3). Analytes elute from the 

column at different rates, providing separation between analytes and tentative identification 

based on the length of time required to pass through the column. The analyte retention time 

depends on the chemical properties of the compound, including polarity and molecular weight, 

which influence the interaction with the chromatography column. The tR is measured at point of 

highest abundance for each peak, but in reality the peak extends over a period of time, as can be 

seen in Fig. 1.2. Analytes can generally be separated based on tR, although compounds with 

similar properties can elute at the same time. Retention times for a particular analyte will vary 

slightly between runs (Fig. 1.2) due to small variations in the instrument operating characteristics 

such as mobile phase flow rates and temperature changes. The retention time is also affected by 

analyte concentration, as well as mobile and stationary phase composition. The mass spectrum, 

composed of the sampled m/z range and the abundance measured for each interval of m/z, is 

sampled several times per second over the GC-MS run to capture chromatographic peaks and  
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Figure 1.3. Example GC-MS analysis showing the three-dimensional data structure. Peaks falling 
along the red lines reflect the mass spectra for analytes eluting at the retention times shown. 
Abundances below a certain threshold are excluded from this figure to highlight the larger peaks. 
 

 

produce the third data dimension. The m/z values correspond to the masses of ion fragments 

divided by the formal charge on the fragment. Mass spectra of three example analytes eluting at 

different retention times are indicated with red lines in Fig. 1.3. With a typical scan range of 50-

600 amu, scan rate of 2/s, and run time of 40 minutes (2400 seconds), over 2,000,000 data points 

are acquired during each GC-MS run from a metabolomics experiment. Millions of data points in 

each sample must be reduced to a few dozen numbers that represent the quantity of each specific 

metabolite measured, which are further summarized through dimension reduction and statistical 

analysis to yield inferences about the system under study. 

Different MS designs can measure m/z to a greater or lesser accuracy, depending on the 

sampling speed and resolving power of the MS. More economical designs (e.g. single 
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quadrupole MS used in this thesis) can only distinguish between nominal masses (rounded to the 

nearest atomic mass unit or amu), with more advanced designs measuring masses to an accuracy 

of 0.001 (e.g. time of flight MS) to 0.00001 amu (e.g. Orbitrap MS). Additionally, some MS 

designs (e.g. ion trap MS) have a second step, in which a specific ion m/z is isolated and 

fragmented again to generate a mass spectrum for the isolated fragment. This is useful for the 

discrimination between co-eluting analytes that produce mass fragments with the same m/z but 

different chemical structure, since the fragmentation pattern is structure-dependent. In a typical 

GCMS metabolomics dataset, there may be hundreds of chromatographic peaks, some with some 

partially or completely overlapping retention times, so a combination of features is required to 

unambiguously identify metabolites in an unknown sample. 

Analytes are identified based on the unique combination of tR and the m/z for 

characteristic ions produced during fragmentation of a specific compound, which are determined 

from the analysis of pure standards. The retention time and fragmentation pattern (fragment ions 

and their relative abundances) produced for a specific analyte is generally consistent between 

analysis runs performed under the same instrument conditions (Fig. 1.4). The most abundant m/z 

is typically selected as the quantifying ion, although some high abundance m/z such as 73 

(trimethylsilyl group present in all derivatized analytes) may not be useful since they can be 

difficult to resolve from neighbouring chromatographic peaks. In addition, two or more m/z with 

high abundance and good resolution are selected as qualifying ions that must be present with the 

quantifying ion at the same retention time to confirm the identification. Once established for 

each analyte, the identifying information can be used to extract data on analyte presence and 

abundance in unknown samples.  
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Figure 1.4. Mass spectrum (A) and extracted ion chromatograms for three characteristic ions (B) 
of the amino acid serine extracted from a batch of earthworm samples, which all elute around the 
same retention time of 10.95 minutes. There is slight variability in the retention time from run-to 
run, but the peaks can be clearly resolved from any neighbouring analytes. The ion intensities for 
m/z 204, 218, 147 in (A) correspond to the peak heights shown in (B). 
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Abundance or intensity reflects the amount of each fragment ion striking the detector 

within each sampling interval across the chromatographic peak. Abundance of a 

chromatographic peak can be measured as peak height (highest value measured across the peak), 

or peak area (the sum of all values measured across a peak). The abundance produced per mass 

of analyte added is termed the response factor, and indicates the sensitivity of the instrument for 

detecting a specific compound. The sensitivity is compound-specific due to the varying ability of 

the ion source to fragment the compound and produce ions that can be accelerated to strike the 

detector.  

 

1.7.5.	Data	extraction		

 The general process for extracting data for a suite of metabolites from a batch of GC-MS 

runs includes peak detection, integration, peak alignment, and export of the data for further 

normalization and statistical analysis. Several free software packages are available to extract data 

from GC-MS chromatograms, including XCMS (Gowda et al. 2014), MAVEN (Clasquin et al. 

2002), Metabolite Detector (Hiller et al. 2009), and MZmine 2 (Pluskal et al. 2010). In this 

thesis, MZMine 2 was used for all data extraction, integration, alignment, and export. MZMine 2 

parses the nominal m/z ´ retention time ´ abundance matrix (Fig. 1.3.) and generates extracted 

ion chromatograms (retention time ´ abundance for a single m/z, Fig. 1.4B.). Peaks in each m/z 

are identified based on local maxima in abundance, or a recursive threshold method in which 

abundance exceeds a defined threshold value for a specified number of consecutive time points 

(Katajamaa and Orešič 2005; Pluskal et al. 2010). For targeted metabolomics where the retention 

time and characteristic ions are known for an array of metabolites, these identifying parameters 

are passed to the program in a .csv file for targeted peak detection, which searches the specified 
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m/z values for an identifiable peak at the specified retention time range. Sample data files are 

extracted in batches, generating a peak list for each sample containing the abundance and 

retention time of the detected peaks, which are then aligned across all samples based on the m/z 

and retention time combination (Katajamaa and Orešič 2005). This aligned peak list comprises 

the raw data, which can be normalized using algorithms included in MZMine 2 (Katajamaa and 

Orešič 2005; Pluskal et al. 2010), or exported for further processing. In some cases, the peak 

finding algorithm will not detect a peak and there will be gaps in the dataset, which complicates 

statistical analyses that will follow. MZMine 2 includes a gap-filling algorithm that searches 

through the original data files using less restrictive parameters attempting to find a peak for the 

missing values (Katajamaa et al. 2006).  

 

1.7.6.	Data	normalization	

Along with the desired variance caused by treatment or group differences in a 

metabolomics experiments, there are additional sources of biological and technical variance as 

discussed in previous sections. Biological variance can arise from natural fluctuations in 

metabolite concentrations based on organism age, development stage, health, weight, nutrition, 

genotype, or other causes, many of which are unknown or not measurable (Livera et al. 2015). 

The analysis of samples depends heavily on the functioning of the analytical instrument, which is 

subject to technical variation over long runs and between groups of samples analyzed on 

different days (Livera et al. 2015). Many of these sources of variability cannot be controlled or 

measured. In these cases, randomization is the only option to prevent bias due to a 

disproportionate influence of the variance on one treatment versus another. Randomly assigning 

treatments to the experimental units, randomizing the order of sample processing, and 
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randomizing the run order of samples will distribute biological and technical variance across all 

samples. Unwanted variability is unavoidable, and is confounded with treatment effects during 

statistical analysis which can reduce the ability to detect significant effects or lead to spurious 

results (Livera et al. 2015). Methods for data normalization (the overall removal of unwanted 

variation in a dataset) are included with most metabolomics data processing software (Clasquin 

et al. 2002; Pluskal et al. 2010; Gowda et al. 2014; Xia et al. 2015). 

If the source of unwanted variance can be measured or controlled, it is desirable to 

remove this unwanted variation either pre- or post-analysis, and a variety of methods have been 

developed to deal with this problem (Livera et al. 2015; Wu and Li 2016; Chen et al. 2017). 

However, the strategy for normalization is not standardized, and the chosen method can 

influence which metabolites differ between experimental treatments (Chen et al. 2017). 

Biological variance is best controlled prior to the experiment where possible by careful selection 

of generally uniform organisms of a consistent weight, development stage, diet, or other 

parameters (Brown et al. 2008; Wu and Li 2016). In some cases, biological variability can be 

normalized post-analysis by scaling the data to a reference variable. In urine samples, measured 

metabolite levels are often scaled to the level of creatinine or osmolality to account for dilute or 

concentrated urine that fluctuates based on water consumption and excretion (Warrack et al. 

2009). Variance due to weight differences within individual samples can also be reduced post-

analysis by scaling the instrument response to the weight of tissue extracted (Wu and Li 2016). 

Technical variance within an experiment results from aspects of the sample preparation 

and analysis, such as gradual changes in instrument response over time due to instrument 

contamination or deterioration of parts, abrupt changes in instrument response between analysis 

days due to instrument maintenance, or differences in the performance of personnel conducting 
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sample preparation, both between people and between days (van der Kloet et al. 2009; De Livera 

et al. 2012). These sources of variability can often be measured and quantified, allowing the 

structure of the error to be determined and a strategy implemented to remove it. Batch effects 

include intra-batch (run order) and inter-batch (day to day) variance, and methods for removal 

include scaling based on the median (Wang et al. 2003), mean, or dispersion (van den Berg et al. 

2006), spiked internal standards (Bijlsma et al. 2006), and linear regression modelling (Wang et 

al. 2013). More than one normalization approach is typically applied (van der Kloet et al. 2009). 

The most common method of normalization in metabolomics is through the use of one or 

more isotopically labelled internal standards spiked into each sample to scale metabolite 

abundances, assuming that the unwanted variance in the dataset matches the variance explained 

by differences in internal standard abundances between samples (De Livera et al. 2012). This 

may be the case if, for example, the completeness of derivatization varies between samples but is 

reflected in the abundance of the internal standard. However, internal standards do not account 

for variance introduced prior to the internal standard, such as during the extraction phase of 

sample preparation if the internal standard is added after extraction prior to derivatization. Using 

a single internal standard is the simplest approach, but it is unlikely that all metabolites behave 

similarly to the internal standard. Adding multiple internal standards representative of different 

classes of metabolites and normalizing within each class has also been employed (Bijlsma et al. 

2006; Sysi-Aho et al. 2007). Statistical methods have been developed in R that can further 

improve data normalization by modelling the unwanted variance explained by multiple internal 

standards (De Livera et al. 2012). 
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Figure 1.5. Effect of data correction on the abundances of succinic acid in earthworms from two 
experiments exposing earthworms to triclosan or methyltriclosan (A) or to metformin (B). 
Samples for the TCS and MTCS study (n=120) were analyzed in 10 randomized blocks of 12 
samples corresponding to one replicate of the experimental design, analyzed over 3 days (4 
blocks on day 1, 3 blocks on days 2 and 3). Samples for the metformin study (n=200) were 
analyzed in randomized groups of 40 samples (not corresponding to experimental design) on 5 
separate days. Samples within each group were scaled by a correction factor calculated for each 
group based on the ratio of the group mean to the mean of the largest group. 
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An alternative normalization technique involves analysis of quality control (QC) samples 

at the beginning and end of a batch, as well as interspersed every 10 samples or less throughout 

the run (Sangster et al. 2006; Kamleh et al. 2012). The QC sample is ideally composed of a 

suitable standard reference material extracted along with the experimental samples, although 

standardized materials are not always available. An alternative method involves generating a 

pooled sample by combining a fixed aliquot of extract from each sample extracted in the batch, 

and preparing aliquots of the pooled sample as QC samples (Gika et al. 2008; Lai et al. 2009). 

Analysis of the QC samples over the course of the run allows tracking of intra-batch effects and 

correction of samples based on a curve fit to the QC data (Dunn et al. 2011). Assuming that 

measurement errors within an experiment are distributed randomly throughout a batch and by 

randomizing samples between batches, the pooled QC sample can be used to scale batches to a 

reference batch (e.g. the highest abundance) or to the mean or median of all batches to remove 

inter-batch variance (Bijlsma et al. 2006; van der Kloet et al. 2009; Draisma et al. 2010).  

 

1.8.	Statistical	analysis	of	metabolomics	datasets	

The datasets generated in metabolomics experiments are inherently multivariate with an 

array of tens to hundreds of metabolites. Univariate statistical analyses (t-test, ANOVA, 

Regression Analysis) are suitable to examine one metabolite at a time for a limited number of 

metabolites, but the amount of effort for analysis and interpretation grows with the number of 

variables. As the number of independent tests for each metabolite grows, the probability of a 

false positive increases, requiring a correction to the a-level used to determine significance. In 

addition, there is often a high degree of correlation between certain pairs of metabolites and 
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univariate tests to not make use of this information describing the relationship between 

metabolites.  

Multivariate techniques that consider all metabolites at once and account for the 

covariance between metabolites have been used extensively to analyze metabolomics data, 

including multivariate ANOVA (MANOVA), Principal Components Analysis (PCA) and 

Discriminant Analysis (DA). There is no single standard approach used throughout the field, and 

it is recommended to use multiple approaches since each analyses will have different strengths 

and weaknesses, and will reveal different information about the data (Goodacre et al. 2007). 

Multivariate ANOVA provides a significance test for all variables at once based on the sum of 

squares and cross products matrix, and eliminates the need to correct for false positives due to 

multiple testing. A problem with multivariate data sets is multicollinearity, the tendency for 

some of the variables to be highly correlated and not independent. Both PCA and PLS-DA are 

dimension-reduction tools that eliminate multicollinearity by generating new, independent 

variables called canonicals that are linear combinations of the original variables (Goodacre et al. 

2007). Principal Components Analysis produces canonical variables (Principal Components, 

PCs) that describe as much variance in the original variables as possible. It is known as an 

unsupervised technique since it does not take into account pre-existing knowledge of the 

experimental treatments. The post-hoc assignment of samples to groups can reveal treatment 

effects, but if other sources of variance (e.g. technical) are dominant, treatment effects can be 

difficult to detect. Discriminant Analysis is a supervised technique that allows the assignment of 

samples to groups, and the canonical variables that are generated (Discriminant Functions) 

maximize the separation between groups rather than the total amount of variance described 
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(Goodacre et al. 2007). These univariate and multivariate statistical methods are outlined in the 

following sections. 

 

 

Figure 1.6. Correlations between metabolite pairs in untreated earthworm samples, highlighting 
groups of metabolites that show a high degree of correlation. 

	

 

1.8.1.	Univariate	ANOVA	

 Univariate methods consider one metabolite at a time, and test for differences between 

the means of two or more groups of samples that reflect the factors and levels in the 

experimental design. The Analysis of Variance (ANOVA) is a statistical technique that partitions 

the total variability in a dataset into its component parts: the variability between treatments, and 

the variability within treatments. The between-treatments variability represents the amount 
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explained by the treatments, while the within-treatments variability is considered the error or 

unexplained variability. In ANOVA, the data set is modelled to estimate the effect size 

(treatment mean minus overall mean) for each group by minimizing the variance in the dataset 

not explained by the statistical model, which is structured differently based on the experimental 

design (Montgomery 2005). The analysis then conducts a series of F-tests based on the statistical 

model to determine if the effect of at least one group is different from zero, based on the ratio of 

treatment mean squares (variance explained by treatments divided by treatment degrees of 

freedom) to error mean squares (residual variance divided by error degrees of freedom). This 

calculated F-value is compared to a critical F-value to determine significant effects based on the 

desired level of significance, the treatment degrees of freedom, and the error degrees of freedom. 

The use of ANOVA assumes that the error terms are normally and independently distributed 

with a constant variance for each level of each factor. Each test is based on a pre-determined 

level of significance (termed the a level, generally 0.05 or below) representing the probability of 

a false positive (type I error) occurring (Montgomery 2005).  

In a metabolomics dataset, where a large number of univariate tests may be run at 

a=0.05, the probability of encountering a false positive increases with each subsequent test. This 

increased probability of a false positive is frequently controlled in metabolomics studies by 

either the Bonferroni (Shaffer 1995) or Benjamini-Hochberg (Benjamini and Hochberg 1995) 

corrections. The Bonferroni method controls the family-wise error rate, and corrects the a level 

by dividing by the number of independent tests conducted (a/n, n = number of tests), requiring a 

larger effect size before declaring an effect significant (Shaffer 1995). It is a conservative 

method, eliminating all but the most significant responses as the number of tests grows from tens 

to hundreds or thousands. In the process, a number of potentially interesting true positive results 
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can be excluded if their p-values are not highly significant. The Bonferroni method gives a high 

degree of protection against false positives at the expense of statistical power. The Benjamini-

Hochberg method is a less conservative method that controls the false discovery rate (FDR) at a 

pre-defined level, which is the expected proportion of false positives in a series of independent 

tests (Benjamini and Hochberg 1995). In the Benjamini-Hochberg (BH) procedure, the p-values 

from the group of tests are ranked from high to low, and the BH a-level for each test is 

calculated as FDR´i/n, where FDR is the pre-defined false discovery rate, i = the rank for each 

test based on p-value, and n = number of tests. The ranked p-values are compared to the BH a-

level, and those less than or equal are declared significant. The Benjamini-Hochberg method 

penalizes based on a greater number of tests, but the tests with the lowest p-values are penalized 

less than the highest as i/n approaches 1. The Benjamini-Hochberg method is preferred in other 

omics fields since it has greater statistical power while still controlling false positives (Glickman 

et al. 2014). However, the pre-defined FDR is not standardized and ranges in the literature from 

a conservative value of 0.05 (equal to a) to a less restrictive 0.2 (Glickman et al. 2014).  

 

1.8.2.	Multivariate	ANOVA	(MANOVA)	

 The extension of ANOVA (partitioning total variability in a dataset into component parts) 

to a dataset with multiple response variables is called multivariate ANOVA or MANOVA 

(Rencher 2003). Where ANOVA tests for differences between the means of each group for a 

single response variable, MANOVA tests for differences between the vector of means for each 

group with multiple response variables. In MANOVA, variance is partitioned into a matrix of 

between-group sums of squares and products (SSP) and within-group SSP. The between group 

SSP reflects the variance associated with treatment effects and can be expressed as a matrix of 
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treatment means for all variables minus the overall mean, multiplied by its transpose. The within 

group SSP reflects error variance and can be expressed as a matrix of differences between 

treatment means and the observations for all variables, multiplied by its transpose. The test for 

significance is called Wilks’ Lambda, which is calculated as the ratio of determinants of the 

between SSP to the total (between plus within) SSP and compared to critical values to determine 

significance (Rencher 2003). A significant result can be followed up by a series of univariate F-

tests to investigate treatment effects within the responses. Other tests of significance have been 

developed based on eigenvalues and eigenvectors of the data matrix, including Roy’s Largest 

Root Test, Pillai’s, and Hotelling’s T2 (Rencher 2003). The three methods calculate the test 

statistic differently and vary in their power in rejecting the null hypothesis.  

 

1.8.3.	Principal	Components	Analysis	

In a metabolomics dataset, there can be tens to hundreds of metabolites measured in each 

sample, and summarizing the information to be visualized and interpreted becomes more 

challenging with a larger number of metabolites measured in a study. Principal components 

analysis (PCA) is a dimension reduction technique that transforms the dataset to derive a smaller 

subset of uncorrelated variables (components) that maximize the variance explained (Jolliffe 

2014). For each principal component calculated, a set of coefficients are generated (one for each 

response variable) which are multiplied by the corresponding value in each row of data (i.e. each 

sample) and summed to yield a one-dimensional component reflecting the entire set of response 

variables in a single column. This reduces the complexity of visualizing the data, providing a 

reasonable representation of high-dimensional data in fewer dimensions (Jolliffe 2014). Principal 

components analysis is an unsupervised technique, in that sample labels (experiment treatments 
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or groups) are not considered in the optimization of coefficient values. This contrasts with 

Discriminant Analysis (discussed in the next section), another dimension reduction technique 

where samples are identified with a categorical variable, and the multivariate distance between 

groups is maximized rather than the total amount of variance explained (Klecka 1980).  

In PCA, there are no tests for significance between groups, but t-tests, ANOVA, or 

MANOVA can subsequently be performed on the principal components to test for significant 

effects (Lankadurai et al. 2011a; McKelvie et al. 2011). This difference reflects an overall effect 

of a treatment on all metabolites as reflected in the coefficients for the linear combination of 

variables that makes up each principal component. By examining the standardized coefficients 

for each principal component, the metabolites that contribute most to the explained variance (i.e. 

largest coefficients) can be identified (Bylesjö 2015). In metabolomics, the largest coefficients 

are interpreted as important metabolites that contribute most to the variance in the dataset and to 

the observed separation between variables in the projected space (Worley and Powers 2013).  

 

1.8.4.	Discriminant	analysis	

 Discriminant analysis (DA) is another dimension reduction technique that transforms a 

multivariate dataset into a smaller subset of uncorrelated canonical variables called discriminant 

functions that are a linear combination of the original variables, similar to PCA, although the 

objectives and parameter optimization criteria of PCA and DA differ. Where the canonical 

coefficients in PC are optimized to maximize the variance explained by each canonical variable, 

DA optimizes the coefficients to maximize separation between groups in the multivariate space 

(Klecka 1980). In this way, discriminant analysis is a supervised technique where the sample 

classification is taken into account during the optimization procedure. Discriminant analysis 
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projects the data onto a new multivariate space, rotating the axis for each discriminating variable 

(i.e metabolite) to provide the largest separation between groups along that axis. The 

discriminant function coefficients, which are multiplied by metabolite abundances and summed, 

combine the characteristics of the data in such a way that the group means calculated from the 

discriminant function are as different as possible (Klecka 1980).  

Discriminant analysis uses the matrix of total sum of squares and products to represent 

the data, taking into account the inter-relationships among variables and the amount of dispersion 

in the dataset (Klecka 1980). The total SSP matrix represents distance from the grand centroid, 

which has coordinates that are the overall mean for all variables. Similarly, a group centroid can 

be defined as coordinates that are the group mean over all variables, and a within-group SSP 

matrix can be calculated for each group. If group locations are distinct from each other, then the 

dispersion around the group centroid will be less than the dispersion around the grand centroid, 

and the elements of the within-group SSP matrix will be smaller than the total SSP matrix 

(Klecka 1980). The difference between these is called the between-group SSP matrix, and the 

size of the between-group SSP relative to the within-group SSP provides a measure of how well 

the groups can be separated (Klecka 1980). Discriminant analysis derives coefficients using the 

between-group and within-group SSP matrices to achieve the maximum possible group 

separation (Klecka 1980). 

 

1.9.	Research	objectives	and	hypotheses	

Biosolids from municipal wastewater treatment plants (WWTPs) are frequently applied 

to soils in North America, and are known to be contaminated with a growing number of 

emerging substances of concern (ESOCs) (USEPA 2009b; Monteith et al. 2010). There is a 
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potential risk of exposure and harm to soil organisms that must be assessed using information 

gained from exposure experiments, and there are additional capabilities of metabolomics to study 

topics often neglected in traditional toxicity testing. This research project uses metabolomics to 

investigate the toxicity to earthworms of three prevalent but understudied biosolid and soil 

contaminants: triclosan (TCS, a ubiquitous contaminant in biosolids), methyltriclosan (MTCS, a 

persistent triclosan breakdown product with unknown toxicity), and metformin (MET, one of the 

most prescribed pharmaceuticals worldwide but lacks complete ecotoxicity information). The 

following questions were considered: 

 

1) Are there toxic effects on earthworms from these three prevalent contaminants at sub-lethal 

or environmentally relevant concentrations? 

 

2) Is methyltriclosan, a breakdown product, more or less toxic than its parent compound 

triclosan? 

 

3) How does exposure time impact the earthworm metabolite profile observed during 

exposure to a contaminant? 

 

4) What is the toxic mode of action of the three contaminants? 

 

The first objective was to determine if there are metabolic or physiological effects 

induced by the selected compounds at environmentally relevant exposure concentrations. This 

information can be employed in screening-level environmental risk assessments as a toxicity 



 46 

threshold for these substances in the soil compartment. While the toxicology of TCS has been 

well documented, the effects of MTCS and MET have not been studied in earthworms prior to 

this work. None of these compounds have been investigated in the earthworm using 

metabolomics. It is hypothesized that there will be metabolic effects in earthworms caused by 

exposure to these three contaminants, and that the effects will be concentration-dependent. 

 The second objective was to determine if toxicity increases or decreases when triclosan 

(TCS) is transformed into methyltriclosan (MTCS). This transformation occurs in wastewater 

treatment plants and soil, and MTCS concentrations can approach TCS concentrations in soil and 

earthworms. Triclosan is among the most commonly detected and highest concentration 

contaminants in biosolids, of which a large proportion will be transformed into MTCS following 

land application. There is a general lack of knowledge regarding toxicity of transformation 

products including MTCS to soil organisms, and the change in toxicity from the parent 

compound to transformation product will have relevance for other contaminants that undergo 

methylation in soil. It was hypothesized that the transformation product methyltriclosan is more 

toxic than its parent compound triclosan. 

The third objective was to determine how the earthworm metabolite profile varied over 

time in response to contaminant exposure. This is an underlying factor in any experiment, but 

there are very few earthworm metabolomics studies that investigate the effect of time. Standard 

methods for toxicity testing with earthworms recommend a fixed time of either 2-day filter paper 

or 14-day soil test, but are based on assessment of mortality, weight loss, and reproduction 

endpoints. The metabolic impacts would be expected to shift over time, and the recommended 

exposure intervals may not capture the most important effects. It was hypothesized that a 

concentration dependent pattern in metabolite profiles will emerge as a function of time. 
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Using metabolite data and knowledge of the biochemical pathways in which they are 

involved, the fourth objective was to hypothesize an unknown or confirm a suspected mode of 

action for each contaminant. The mode of action has not been confirmed for TCS, MTCS, or 

MET in earthworms. The mode of action for MET has been well characterized in humans and 

rodents, since it is a commonly prescribed pharmaceutical. The mode of action for TCS has been 

determined in bacteria since it is a common antimicrobial ingredient in consumer products. 

However, the target metabolic pathway is only present in bacteria and is not relevant in 

earthworms and other organisms. There is a general lack of information regarding the mode of 

action for MTCS, since it is only now emerging as an environmental contaminant of concern. 

The work was not designed to definitely prove a mode of action, but the information may 

identify likely targets for future investigations. It was hypothesized that significant changes in 

the metabolome will point towards a mode of action for the three contaminants tested.  

 

1.10.	Thesis	outline	

 

This thesis has 6 chapters, with this (General introduction and literature review) being the first.  

 

Chapter 2   Lists metadata and summarizes methods for each experiment to comply with the 

Metabolomics Standards Initiative (MSI) minimum required information about an 

experiment. This includes information on the biological system, chemical analysis, 

and data processing, which varied in some respects between experiments. 
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Chapter 3  Assessment of acute triclosan toxicity to earthworms using 48 hr filter paper 

contact test. This chapter has been published in the Journal of Hazardous Materials. 

 

Chapter 4  Comparison of toxicity between parent compound (triclosan) and its primary 

degradation product (methyltriclosan) using 14-day contact test in earthworm 

bedding. 

 

Chapter 5 Evaluation of time-dependent metabolic effects of metformin, the most commonly 

prescribed diabetes drug worldwide. 

 

Chapter 6 Summary and synthesis bringing together the most important contributions from 

each chapter. It includes a discussion of the results in a broader sense than in each 

chapter, and provides recommendations for future work.	
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Preface	to	Chapter	2	

 The preceding literature review described some of the available methods for sample 

preparation, chemical analysis, data normalization, and statistical analysis that are typically 

employed in metabolomics experiments. Chapter 2 compiles a summary of the methods used in 

the three experiments in this thesis (Chapters 3, 4, and 5), based on the reporting requirements 

for biological samples, chemical analysis, and data analysis published by the Metabolomics 

Standards Initiative (MSI). The MSI reporting standards seek to allow independent verification 

of results and improve data sharing by ensuring that all necessary metadata for a metabolomics 

experiment are reported. Chapter 2 also provides some justification for the decisions to use 

certain methods.   
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Chapter	2:	Metabolomics	Standards	Initiative	minimum	reporting	

requirements	for	a	metabolomics	experiment	

 

2.1.	Overview	

 The growth of the metabolomics field over the last two decades has benefitted from the 

optimization of sample preparation techniques, advancements in analytical instrumentation, and 

development of new and improved software for data extraction, processing, and statistical 

analysis. Early on, especially in the medical community, it was recognized that standardization  

was necessary for conducting and reporting results from a metabolomics experiment to allow 

exchange of data and independent verification of results (Lindon et al. 2005). This accompanied 

similar efforts in other fields like genomics, transcriptomics, and proteomics, which have greatly 

contributed to collaboration, data sharing, and the development of searchable databases of such 

things as the human genome (Brazma et al. 2001; Taylor et al. 2007; Field et al. 2008). The 

Metabolomics Standards Initiative (MSI) began in 2005 within the Metabolomics Society to 

develop policies and guidelines for the scientific community engaging in metabolomics research 

(Lindon et al. 2005; Fiehn et al. 2007; Sansone et al. 2007). The MSI has published standards 

relating to chemical analysis (Sumner et al. 2007), data analysis (Goodacre et al. 2007), 

biological samples (Morrison et al. 2007), and plant metabolomics (Jenkins et al. 2004). In 2014, 

the journal Metabolomics (the official journal of the Metabolomics Society) started requiring 

compliance with these standards for all published manuscripts (Goodacre 2014). 

 To maintain a standard of quality in this thesis consistent with the expectations of the 

field, the metadata required for MSI compliance from each experiment comprising Chapters 3, 4, 

and 5 has been aggregated and summarized in Figs. 2.1, 2.2, 2.3, and 2.4 of this chapter. It also 
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allows comparison of the methods across all three experiments, which were improved over the 

course of this thesis based on advancements in sample preparation that were published and 

discovered after work had begun (Liebeke and Bundy 2012; Liebeke et al. 2012). The 

chronological order in which the experiments were conducted differs from how they are 

presented in this thesis. Chapters 3 and 4 both deal with triclosan and were arranged 

consecutively in this thesis, but the experiment with metformin (Chapter 5) was conducted 

between the two triclosan experiments. There are several aspects to the methodology that change 

chronologically and the information is presented in this chapter to reflect this, but it differs from 

the order in which the experiments appear in this thesis. 

 

2.2.	Information	about	biological	samples	

 The earthworms in all three studies were taken from the same population maintained in 

the laboratory of Dr. Gordon Price throughout the project. The population was located at the Bio-

Environmental Engineering Center (BEEC) and maintained by Doug Burris and Cory Roberts. 

The original population was obtained from a local supplier. The earthworm bedding was 

generated on-site using a balanced recipe of horse bedding and spent hay. The temperature was 

monitored and the pile was turned regularly with a Supreme Enviro Processor 400 compost 

grinder when temperature dropped to ambient. Once the temperature stabilized and the compost 

had matured over winter, it was adjusted to pH 6 by addition of lime and mechanical mixing. 

Earthworms appeared healthy throughout the project and were actively reproducing based on the 

presence of cocoons and juveniles.  
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Figure 2.1. Description of biological samples involved in the exposure studies and laboratory 
contact information where all studies were conducted. 
 

2.3.	Information	about	chemical	analysis	

 In this thesis, two different sample preparation and GC-MS analysis methods were used. 

Chapter 3 used a method which was adapted from a recently published literature method 

(McKelvie et al. 2009). It provided reliable results but had a roughly 1 hour run time and 

captured a limited scope of metabolites, since it was optimized to provide complementary results 

with NMR and used a water-based extraction that was not exhaustive. After conducting this 

experiment, two papers dealing with GC-MS metabolomics sample preparation were published 

by others (Liebeke and Bundy 2012; Liebeke et al. 2012) using a faster (~40 minutes) GC-MS 

method that has become a standard within the field due to the availability of mass spectral and 

retention index libraries based on it (Kind et al. 2009). The paper by Liebeke and Bundy (2012) 

tested several solvent systems and sample preparation methods, and a new method was adopted 
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based on their recommendations. The solvent system and derivatizing agent were changed for a 

wider metabolome coverage, and a heating step during extraction was added to denature any 

degradative enzymes present during extraction. The GC column used between all three 

experiments had identical characteristics, except Chapters 4 and 5 used an additional 10 m 

Duraguard that can be cut to extend the life of the column. Due to equipment down-time, there 

was no freeze-dryer available for the metformin study. Instead, samples were stored in a -80°C 

freezer after quenching with liquid N2 to avoid degradation of samples during storage.  

 The data for Chapter 3 was generated during a single GC-MS run, but the experiments in 

Chapters 4 and 5 had to be broken up into several groups of samples to perform GC-MS 

maintenance between runs. The metformin dataset (Chapter 5) included 200 samples analyzed as 

groups of 40 samples randomized across five different analysis days to distribute technical 

variation randomly across all samples and use data normalization to remove batch effects 

between days. During this experiment, within-run signal drift was observed that could not be 

removed as a batch effect, so a different strategy was used for the next experiment. The triclosan 

and methyl-triclosan study had 120 samples analyzed as complete replicates of the experiment 

(10 groups of 12 samples) randomized over three analysis days, with four replicates (48 samples) 

on day 1 and three replicates (36 samples) on days 2 and 3. This allowed technical variation 

between replicates during the run to be quantified and removed during normalization as 

described in the next section. 
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Figure 2.2. Summary of sample processing steps compared between the three earthworm 
exposure experiments presented in Chapters 3, 4, and 5. 
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Figure 2.3. Summary of methods for sample analysis compared between the three earthworm 
exposure experiments presented in Chapters 3, 4, and 5. 
 

2.4.	Information	about	data	analysis	

 The chromatograms were obtained in the Agilent Chemstation format, which was not 

compatible with the software used for data extraction and had to be converted to Network 

Common Data Form (*.CDF) using OpenChrom, a free chromatography-mass spectrometry data 

processing software (Wenig and Odermatt 2010). They were then loaded into MZMine 2 for data 

extraction, which includes raw data filtering, peak detection, and peak alignment (Pluskal et al. 
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2010). Baseline correction was used for the Chapter 3 data, but no benefit was observed for the 

data in Chapters 4 and 5 so it was not used. In all cases, peak detection was targeted based on 

m/z and retention time combinations previously established by running analytical standards of 

each metabolite. As shown in Chapter 1, Fig. 1.2, the retention time shifted between runs due to 

trimming of the GC column, which became contaminated over time. For the metformin study 

(Chapter 5) analyzed on five separate days, the retention time difference was too large to process 

all samples together due to overlapping peaks that prevented the correct peak from being 

identified by the program during alignment. Each analysis day was instead processed separately 

using narrow retention time tolerances for detection and alignment calibrated to the dataset, then 

each day was combined. For the triclosan and methyl-triclosan experiment (Chapter 4), the 

retention time differences were not large enough to prevent correct peak identification and all 

samples were processed together with wider retention time tolerances calibrated to all three days 

together.  

 In Chapter 3, the method used did not specify an internal standard, so the only 

normalization was scaling each sample to the dry tissue weight of extracted earthworm. Internal 

standards (leucine-d3 and U-13C-glucose) were analyzed with each sample for Chapters 4 and 5, 

but normalization based on the internal standard did not improve all metabolites, and in some 

cases introduced unwanted errors. For this reason, internal standard normalization was not used 

for either dataset. The metformin experiment was randomized across all days, and assuming the 

measurement errors are randomly distributed throughout the batch, the mean of each group 

should be equal to the overall mean of all samples if there was no batch effect. To correct for 

this, each batch was scaled based on the ratio of the batch mean to the overall mean, reducing all 

samples in a high batch and increasing all samples in a low batch. This eliminated a large amount 
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of the batch variability in the metformin dataset, although there was still within-run signal drift 

as shown in Chapter 1. In the TCS-MTCS study, assuming measurement errors are randomly 

distributed, the mean of each replicate should be equal to the overall mean if there are no batch 

effects, so samples were scaled based on the mean of each replicate to the overall mean. Scaling 

based on tissue weight improved normalization for the metformin and TCS-MTCS datasets and 

was used for both datasets. For univariate statistical analysis, metabolite datasets were 

transformed using power transformations from the 2nd to 5th root and removal of outliers as 

necessary to achieve normality and constant variance for ANOVA and regression. Multivariate 

outliers were detected using scatterplot matrices in JMP to identify potentially influential 

samples consistently outside of the confidence region for multiple metabolite pairs. For all 

datasets, univariate ANOVA was performed in SAS, principal components analysis, correlation, 

and regression analysis were performed in Minitab or JMP, and discriminant analysis was 

performed in JMP. More specific details for each specific experiment are included in the 

Materials and Methods section of each chapter. 
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Figure 2.4. Summary of data processing and statistical analysis techniques compared between the 
three earthworm exposure experiments presented in Chapters 4, 5, and 6. 
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Preface	to	Chapter	3	

 This chapter presents results from a 48 hour filter paper earthworm acute toxicity test 

with triclosan, an antibacterial ingredient in personal care products and ubiquitous biosolids 

contaminant. Metabolomics is applied to probe deeper into the toxic response of earthworms to 

triclosan, and to characterize changes that occur to earthworms after death. The methodology 

used in this chapter is outlined in Chapter 2. This chapter has been published in the Journal of 

Hazardous Materials (Gillis et al. 2017, J. Haz. Mat. 323A, 203-211, IF: 6.065). The format and 

numbering has been modified from the published version to be consistent with this thesis, and 

the reference list has been combined into a single reference list at the end of this document. I am 

the corresponding author and first author of the manuscript, and I performed all experimental 

work, analyzed all data, produced all tables and figures, wrote all text in the manuscript, made all 

required changes to address reviewer comments, and wrote all responses to reviewer comments. 

Editorial comments on the original submission and on Revision 1 with regards to improving 

clarity were provided by G.W. Price and S.O Prasher. The work was designed by the three 

authors J.D. Gillis, G.W. Price, and S.O. Prasher, and was executed in the laboratory of G.W. 

Price. The manuscript required two revisions before it was accepted for publication.  
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Chapter	3:	Lethal	and	sub-lethal	effects	of	triclosan	toxicity	to	the	

earthworm	Eisenia	fetida	assessed	through	GC-MS	metabolomics	
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Highlights: 

1) Lethal and sub-lethal effects of triclosan toxicity were examined on earthworms 

2) Biochemical evidence of tissue decomposition was observed in mortalities after 24 hr. 

3) Individual metabolites were minimally affected by sub-lethal concentrations. 

4) Reversed correlations between val vs. ino, man vs. ino indicated sub-lethal exposure. 
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3.1.	Abstract	

Triclosan (TCS) is a ubiquitous contaminant in municipal biosolids, which has also been 

detected in soils and earthworms sampled from agricultural fields amended with biosolids. The 

goal of this study was to evaluate the toxicity of TCS to earthworms using a metabolomics-based 

approach for an improved interpretation of toxicity. Toxicity of TCS was assessed using the 

OECD Method 207 filter paper contact test measuring the endpoints of weight loss, mortality, 

and ten metabolites determined by GC-MS. Eight earthworms were exposed as individual 

replicates to six concentrations of triclosan (0, 0.0001, 0.001, 0.01, 0.1, and 1 mg TCS cm-2) on 

filter paper, with mortality assessed after 6, 24 and 48 hours. Mortalities were first observed at 

24 hours, with 100% mortality in the 1 and 0.1 mg cm-2 treatments. Worms at 1 mg cm-2 lost 

most of their coelomic fluid before they could be sampled. The 48 hr LC50 for triclosan was 

estimated to be 0.006 and 0.008 mg cm-2 by a linear and logistic model, respectively. Based on 

the LC50, triclosan is relatively more toxic to earthworms than a number of other emerging 

contaminants, but is less toxic than other chlorophenols and many pesticides. Alanine, valine, 

leucine, serine, phenylalanine, putrescine, spermidine, mannitol, and inositol were significantly 

different between treatments, although changes were most often associated with mortality rather 

than triclosan exposure. An increase in putrescine and decreases in amino acids, polyols, and 

spermidine were associated with mortality, suggesting decomposition had begun. Principal 

components analysis did not reveal evidence of metabolic impacts at sub-lethal concentrations. 

However, there were changes in the pattern of correlations between pairs of metabolite in 

surviving worms at both 0.0001 and 0.001 mg cm-2 exposure compared to the control.   
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3.2.	Introduction	

Triclosan, also called 2,4,4'-trichloro-2'-hydroxydiphenyl ether or the trade names Irgasan 

or Microban (CAS Reg. No. 3380-34-5), is a widely used antimicrobial compound in many 

household and industrial products that are disposed of in the municipal wastewater stream 

(Bedoux et al. 2012). Triclosan exhibits effective control against many bacteria and some fungi, 

blocking bacterial fatty acid synthesis through enzyme inhibition and leading to cell death 

(McMurry et al. 1998; Dann and Hontela 2011). Approximately 1600 cosmetic products, 13 

natural health products, and 130 drug products in Canada contain triclosan (Environment Canada 

2012). The recent preliminary environmental risk assessment on triclosan by Environment 

Canada and Health Canada determined that triclosan was bioaccumulative but not persistent, and 

highly toxic to a variety of aquatic organisms (Environment Canada 2012). In Canada, triclosan 

concentration as an ingredient must be less than 0.03% w/w in mouthwashes, and less than 0.3% 

w/w in topical and dentifrice agents (Health Canada 2015). Consequently, the primary routes for 

human exposure are through ingestion and dermal absorption, although it is rapidly excreted in 

urine (Wang and Tian 2015). Triclosan has been measured in Wastewater Treatment Plant 

(WWTP) influent and effluent water from a number of countries (Waltman et al. 2006; Ying and 

Kookana 2007; Ricart et al. 2010). It is among the most frequently detected compounds in 

biosolids across North America, measured in the range of 1000 to 39,000 ng g-1 in Canada and 

430 to 133,000 ng g-1 in the United States (USEPA 2009a; Monteith et al. 2010). Triclosan has 

been detected in soils following the land application of biosolids (Kinney et al. 2008; Xia et al. 

2010; Gillis et al. 2014), in surface and sub-surface drainage water (Lapen et al. 2008; Topp et 

al. 2008; Sabourin et al. 2009), and in the tissues of plants and soil biota after greenhouse or 
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field-based exposures (Kinney et al. 2008; Wu et al. 2010b; Karnjanapiboonwong et al. 2011; 

Macherius et al. 2014). 

Although triclosan is frequently detected in soil, effects-based biological assays with 

model organisms are necessary to determine toxicity (Spurgeon et al. 2003). Under the Canadian 

Environmental Protection Act, “the ability of the substance to cause a reduction in metabolic 

functions of an organism” is included among other factors in assessing the toxicity of substances 

for regulatory purposes (Government of Canada 1999). Earthworms are frequently chosen due to 

their high abundance and biological relevance in soils, as well as the low cost and ease of 

maintaining laboratory populations (Spurgeon et al. 2003; Chalew and Halden 2009b; Guo et al. 

2009; Dann and Hontela 2011). Typical methods of exposure can be in artificial media, natural 

soil, or on filter paper. Artificial media or natural soils better represent toxicity and variability in 

an environmentally relevant matrix, and effect concentrations can be used in combination with 

measured or predicted environmental concentrations to assess risk (OECD 1984; Spurgeon et al. 

2003). Filter paper tests ensure earthworm contact with the toxin for determining toxicity and 

reduce variability due to interferences from the soil matrix, but the measured effect 

concentrations are not applicable to soil (OECD 1984; Spurgeon et al. 2003). Mortality, weight 

change, reproduction, antioxidative enzyme activities, genotoxicity, and bioaccumulation have 

all been used to evaluate triclosan toxicity in earthworms (Simpson and McKelvie 2009; Pannu 

et al. 2012; Schnug et al. 2013; Schnug et al. 2014). Mortality is a crude all-or-none endpoint to 

reveal toxic effects from exposure to a compound, and while weight loss and reproduction are 

graded endpoints yielding more accurate responses, they do not yield information on the mode of 

action which can be applied more generally to other organisms with similar biochemical 

pathways (Timbrell 2008; Lankadurai et al. 2011a).  
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Metabolomics, or metabolite profiling, is an emerging field of science that studies the 

phenotypic response (metabolite profile) of organisms exposed to a variety of stimuli (Bundy et 

al. 2009). Metabolomics has benefitted from rapid advances in analytical instrumentation, for 

which standard methodologies for sample processing and analysis, data processing, and reporting 

are still being developed (Fiehn et al. 2007; Morrison et al. 2007; Sumner et al. 2007; Dunn et al. 

2013; Salek et al. 2013). Metabolomics is the study of small molecules and metabolites within an 

organism, including tissue or biofluids, with the comprehensive dataset of metabolites termed the 

metabolome (Viant 2008). While the underlying genetic code is the same in all cells of an 

organism, the metabolome will likely vary between tissues or biofluids of the same organism 

(Goodacre 2007; Viant 2008; Yuk et al. 2012). The microbiome of an organism has also been 

linked to the observed metabolic profile, and may be the primary driver of the dynamics of 

certain metabolites (McHardy et al. 2013). Metabolomics offers a unique approach to assessing 

contaminant toxicity in model organisms by revealing detailed information on changes to their 

physiological status. Exposure of an organism to compounds with bioactive properties causes 

alterations in their metabolism that may or may not be reversible, depending on the chemical's 

mode of action (the biochemical interaction that leads to its activity), exposure dose, exposure 

time, environmental variables, and the condition of the organism (Aliferis and Jabaji 2011). 

Metabolomics now complements traditional ecotoxicology endpoints, often yielding valuable 

information at sub-lethal concentrations, with the potential to elucidate the chemical mode of 

action (Bundy et al. 2002; Guo et al. 2009; McKelvie et al. 2009; Aliferis and Jabaji 2011; 

Lankadurai et al. 2011a). There is growing evidence that exposure of earthworms to certain 

compounds can lead to metabolic alterations within an individual that can be measured using 

GC-MS (Jones et al. 2008; McKelvie et al. 2009; Baylay et al. 2012; Liebeke and Bundy 2012; 
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Mudiam et al. 2013; Givaudan et al. 2014). Triclosan is a prevalent contaminant in biosolids 

destined for land application, where there is documented exposure through bioaccumulation from 

soil to earthworms. The objectives of this study were to determine the acute toxicity of triclosan 

to the earthworm (Eisenia fetida), and to investigate additional lethal or sub-lethal impacts from 

triclosan exposure using GC-MS metabolomics. 

  

3.3.	Materials	and	methods	

3.3.1.	Earthworm	acute	toxicity	test	

Eisenia fetida earthworms were originally purchased from a local supplier and 

maintained on a diet of milled corn in a large plastic tub with stabilized horse bedding compost 

substrate (maintained at 67% moisture) that was changed every three months. Mature 

earthworms, defined as having a visible clitellum and weighing between 300 to 600 mg wet 

(OECD 1984), were randomly chosen for use in chemical exposure experiments. A 48-hour 

acute toxicity test was established to estimate the LC50 of triclosan concentration and assess 

impacts on the earthworm metabolic profile. Triclosan was chosen after being previously 

detected and quantified in agricultural soil receiving biosolids (Gillis 2011). Exposure tests were 

conducted in 120 mL amber glass jars with 5.5 cm diameter glass wool placed in the bottom. 

Solutions of triclosan in acetone were spiked onto the glass wool to achieve concentrations of 0, 

1, 0.1, 0.01, 0.001, and 0.0001 mg cm-2 and allowed to evaporate overnight. Glass wool was 

moistened with 0.5 mL distilled H2O and a single worm was placed in each jar. Earthworms 

were checked for mortality after 6, 24 and 48 hours by applying a gentle mechanical stimulus to 

the anterior end with a 5 mm metal micro-spatula. Worms not responding to stimulus before the 

end of the test were immediately flash-frozen in liquid nitrogen in an attempt to limit sample 
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degradation due to cell lysis and enzymatic activity that occurs after death (Liebeke and Bundy 

2012). 

 

3.3.2.	Metabolite	extraction	and	analysis	

 A method based on McKelvie et al. (2009) was used to extract and analyze a suite of 

metabolites in earthworms using GC-MS. Metabolites included were alanine, valine, leucine, 

serine, phenylalanine, lysine, putrescine, spermidine, mannitol, glucose, and myo-inositol. 

Metabolism was immediately quenched after sampling and earthworms were stored in liquid 

nitrogen until they were freeze-dried for 24 hr and stored at -18 to -20°C until analysis. 

Individual dried earthworms were homogenized manually in 1.5 mL centrifuge tubes using 

individual 5 mm micro-spatulas, and extracted using 1 mL of a 0.2 M phosphate buffer in 

distilled water adjusted to pH 7.4, containing 1 g L-1 of sodium azide as a preservative. 

Extraction was assisted by vortex mixing for 60 s and sonication for 15 min at ambient 

temperature before centrifuging at 12,000 rpm for 2 minutes. The supernatant was transferred to 

a new 1.5 mL centrifuge tube and centrifuged again for 2 minutes, then 500 µL of supernatant 

was transferred to a 2 mL GC vial. Samples were evaporated to dryness and residues freeze-dried 

again to remove all traces of water. Samples were then derivatized by adding 800 µL of 25 g L-1 

hydroxylamine in pyridine, vortexed for 60 seconds, and incubated at 70°C for 30 minutes. After 

cooling, 500 µl of hexamethyldisilazane and 50 µL of trifluoroacetic acid was added and 

incubated at 100°C for 60 minutes. Samples were centrifuged again after cooling at 12,000 rpm 

for 2 minutes before analysis by GC-MS. 

Analysis was performed on an Agilent 5975 series quadrupole GC-MS equipped with a 

HP-5MS capillary column (30 m × 0.25 mm × 0.5 µm). A 1 µL aliquot was injected in splitless 
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mode into a deactivated glass wool liner at an injection port temperature of 290°C. The injection 

port pressure was 8.6138 psi, with a septum purge flow of 6.1 mL min-1 and total flow of 57.1 

mL min-1. The temperature program was 65°C hold 2 min., ramp 6°C min.-1 to 230°C, ramp 

10°C min.-1 to 310°C, hold 20 min., for a total run time of 57.5 minutes. The transfer line, ion 

source, and quadrupole temperatures were 300°C, 230°C, and 150°C respectively. The MS was 

operated in full scan mode (45 to 650 m/z) at a sampling rate of 3, with a 4.5 minute solvent 

delay. Metabolite identification in earthworm samples was based on comparison of the retention 

time and three mass fragment ions determined for analytical standards (Table 3.1).  

3.3.3.	Data	processing	and	statistical	methods	

 Agilent GC-MS chromatograms were converted into .netCDF format using OpenChrom 

(Wenig and Odermatt 2010). Chromatograms in .netCDF format were further processed using 

the MZmine 2 metabolomics software (Pluskal et al. 2010). Baseline correction was first 

performed on the raw data files with a slope of 10-5. Peak detection was targeted using the 

retention times in combination with the quantifying and qualifying ions for each metabolite. 

Retention times varied between runs for each metabolite, so metabolites were processed 

individually and appropriate retention time windows and other parameters were determined for 

peak detection and peak alignment algorithms. Chromatograms were smoothed prior to 

alignment using the join aligner. Peaks were visually inspected to ensure the selected peaks had 

the right retention time and that there were no missing values. The final peak list was then 

exported as a .csv file, and metabolite abundances for the quantifying ion were normalized by 

tissue weight prior to statistical analysis. 

 The effect of exposure concentration on each metabolite was tested using the PROC 

MIXED procedure in SAS 9.4, totalling 11 tests. The ANOVA assumption of normal distribution  
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Table 3.1. Metabolite identification and quantification m/z ions, retention times, and peak 

identification and alignment parameters for data processing in MZMine 2. 

Metabolite Quant. 
Ion 
(m/z) 

Qual. 
Ion 1 
(m/z) 

Qual. 
Ion 2 
(m/z) 

Ret. 
Time 
(min.) 

Ret. Time 
Tolerance, 
ID (min.) 

Ret. Time 
Tolerance, 
Align (min.) 

Peak Shape 
Deviation 
(%) 

Alanine 207 151 85 10.63 0.1 0.3 60 
Valine 270 226 55 13.10 0.08 0.3 90 
Leucine 129 284 171 15.70 0.3 0.5 90 
Serine 147 240 315 16.37 0.1 0.3 60 
Putrescine 167 126 154 18.50 0.3 0.4 60 
Phenylalanine 205 318 104 22.18 0.1 0.3 60 
Lysine 212 367 395 24.36 0.1 0.3 60 
Spermidine 126 437 297 28.63 0.1 0.3 60 
Mannitol 319 147 205 29.75 0.15 0.4 90 
Glucose 147 319 205 30.20 0.06 0.2 60 
Inositol 305 147 217 31.12 0.1 0.3 60 
 

 

of the error terms was assessed using normal probability plots of the residuals and the Anderson-

Darling test. Constant variance of the error terms was assessed through scatter plots of the 

residuals vs. fits to confirm the absence of structure in the residuals, and formally checked using 

Levene’s test (Montgomery 2005). Square root or cube root transformations were performed on 

all metabolites except spermidine, and outliers were removed for alanine (n=1), leucine (n=1), 

serine (n=1), and putrescine (n=5), to induce normality in all response variables. Constant 

variance was not met for valine, leucine, serine, phenylalanine, or mannitol based on Levene’s 

test (up to 4-fold difference in absolute deviation between least and most variable treatments 

within a metabolite), but the F-test is generally robust to moderate violations of this assumption 

for balanced designs with fixed effects (Montgomery 2005). False discoveries were controlled by 

the Benjamini-Hochberg procedure, with the false discovery rate controlled at 0.05 (Glickman et 
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al. 2014). Letter groupings were assigned by LSMEANS for metabolites identified as significant 

after controlling the false discovery rate.  

Principal components analysis (PCA) was used for dimension reduction on the 

significantly altered metabolites (using complete, untransformed data) followed by ANOVA on 

the first four principal components. PCs were plotted according to both exposure concentration 

and mortality status, since PCA is unsupervised and PCs can be more strongly influenced by 

underlying factors rather than the experimental treatments (Steuer et al. 2007; Ren et al. 2015). 

To examine the effect of mortality on metabolite concentrations, earthworms were grouped 

according to their mortality after 48 hours and were compared using two sample t-tests assuming 

unequal variances and controlling the false discovery rate at 0.05.  

Correlation analysis for metabolites in surviving worms at 0, 0.0001, and 0.001 µg cm-2, 

was performed in Minitab 16 (Minitab Inc., State College, PA). Correlation maps were generated 

using MetaboAnalyst 3.0 (Xia et al. 2015). Significant differences between the slope and 

intercept for exposed worms vs. the control were tested using nested models with incremental 

parameters (Bates and Watts 1988) with the PROC-NLIN procedure in SAS 9.4 (SAS Institute 

Inc, Cary, NC). In this procedure, data for two metabolites from the control and test 

concentration were stacked into two data columns. A dummy variable was generated in a new 

column with 0 for the control and 1 for the test concentration. The expectation function in PROC 

NLIN was entered as follows: y1 = (m1 + m2*x1)*y2 + (b1 + b2*x1), where y1 and y2 are the 

metabolites, x1 is the dummy variable, and m2 and b2 are the difference in parameters m1 and b1 

respectively between the control and test concentration. Initial parameters were estimated by 

linear regression in Minitab 16. After fitting the model and verifying model adequacy, if m2 or 
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b2 were significantly different from zero for either parameter, then differences between the test 

concentration and control were deemed to be significant at a 95% confidence level.  

 

3.4.	Results	and	discussion	

3.4.1.	Earthworm	weight	loss	and	mortality		

 The tested concentration range of triclosan (0.0001 to 1 mg cm-2) induced an earthworm 

mortality rate ranging from 0 to 100% (Fig. 3.1A). There were no mortalities or visible effects of 

exposure after six hours, but the two highest exposure concentrations led to 100% mortality after 

only 24 hours. Earthworms in the 0.001 mg cm-2 group also lost significantly less weight after 48  

 

 

Figure 3.1. Earthworm mortality (A) and 
weight loss (B) following exposure to 
increasing concentrations of triclosan. All 
earthworms died within 24 hr. at 
concentrations of 0.1 and 1 mg cm-2, and were 
sampled at 24 hr. to minimize degradation. 
Treatments with the same letter are not 
significantly different. 
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hours than worms at concentrations of 0.01 mg cm-2 and higher (Fig. 3.1B). Earthworms exposed 

to 1 mg cm2 were severely degraded even after 24 hours and had lost a significant amount of 

coelomic fluid that could not be recovered, likely leading to the high weight loss. These 

earthworms were severely discoloured (pale flesh with red to orange fluid leakage) and tissues 

had lost rigidity. Earthworms at 0.1 mg cm2 were less degraded, but still had pale discolouration 

with blistering or ulcerations apparent on most samples. Tissue rigidity was still present although 

less than living worms, and smaller amounts of coelomic fluid loss were visible.  

Using a linear interpolation between the concentrations leading to 0% and 75% mortality 

(0.001 to 0.01 mg cm-2), the lethal concentration in 50% of the exposed population (LC50) was 

estimated to be 0.006 mg cm-2. The LC50 calculated using a three parameter logistic model fitted 

to the mortality data was estimated to be 0.008 mg cm-2. These estimates correspond well with 

the triclosan LC50 of 0.0039 mg cm-2 reported by Lin et al. (Lin et al. 2012) using the OECD 

acute filter paper toxicity test with E. fetida. While the filter paper test does not translate well 

into effective concentrations in soil, LC50 values can be used to compare relative toxicities of 

different chemicals tested on the same species, as long as the test conditions are equivalent. A 

lower LC50 indicates a higher toxicity, so relative toxicity was calculated as the triclosan LC50 

divided by the LC50 of each compound for comparison. Phenol is approximately 180 times as 

toxic as triclosan, while the mono- to tetrachlorophenols are between 1800 to 6000 times as 

toxic, increasing with the degree of chlorination (Miyazaki et al. 2002). Based on the mean 

reported LC50 values for a selection of different classes of agricultural insecticides tested by 

Wang et al. (Wang et al. 2012), antibiotic, pyrethroid, carbamate, and organophosphate 

insecticides are approximately 4 to 7 times as toxic as triclosan. Insect growth regulator 

insecticides are only 0.2 times as toxic, while the neonicotinoids are on average almost 2000 
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times as toxic. Compared to other emerging contaminants, carbamazepine, estrone, PBDE-209, 

dimethyl phthalate, caffeine, and nonylphenol, are respectively <0.006, <0.006, <0.006, 0.03, 

0.1, and 0.6 times as toxic as triclosan (McKelvie et al. 2011).  

While triclosan is more toxic to earthworms than some emerging contaminants, it is less 

toxic than several commonly used pesticides. In 2012, there were over 72,000 Mg of agricultural 

pesticides sold in Canada (Health Canada 2012), including 100 Mg of chlorpyrifos active 

ingredient products which has similar earthworm LC50 values as triclosan (McKelvie et al. 

2011). In comparison, land applying all of the biosolids generated annually in Canada, 

approximately 660,000 Mg dry weight of biosolids, would only contribute 4 Mg of triclosan to 

soil, assuming an average triclosan concentration of approximately 6 g per Mg dry biosolid 

(Monteith et al. 2010). It should be reinforced that the filter paper test does not reflect the 

toxicity in soil, where bioavailability of contaminants determines exposure dose, and where 

sorption and physical exclusion processes reduce bioavailability of contaminants (Alexander 

2000; Chefetz 2003; Huang et al. 2003). The metabolic response of earthworms exposed to 

contaminants is dampened by high organic matter substrates, with the metabolic profile of 

exposed worms becoming more similar to the control as organic matter content increases 

(McKelvie et al. 2013).  

3.4.2.	Earthworm	metabolite	profiles	

All metabolites exhibited generally high variability across all exposure concentrations, 

although metabolite abundances at 0.1 mg cm-2 were consistently lower than other treatments. 

Significant differences in metabolite concentrations were observed in at least one exposure 

concentration for five amino acids, one polyol, and both polyamines (Fig. 3.2). Significant 

alterations were observed at 1 and 0.1 µg cm-2 where mortality was 100% after 24 hours. Alanine  
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Figure 3.2. Concentrations of amino acids, polyols, and polyamines in earthworms following 
exposure to triclosan. Error bars show the 95% CI back-calculated from transformed values. 
Metabolites with letter groupings had a significant treatment effect based on ANOVA (α = 0.05) 
corrected with the Benjamini-Hochberg procedure with a false detection rate of 0.05. Within 
each metabolite, treatments with the same letter are not significantly different.  
 

and valine behaved similarly, both increasing at 1 mg cm-2 where much of the coelomic fluid had 

leaked. Yuk et al. (2012) showed that the earthworm metabolite profile can differ between the 

coelomic fluid and whole tissue, and the significant effects observed in the 1 mg cm-2 exposure 
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in our study may have been due to disproportionate representation of those metabolites in the 

tissue versus coelomic fluid, rather than an alteration induced by triclosan. Serine and inositol 

concentrations both decreased relative to the control at 0.1 and 1 mg cm-2, but there were no 

significant differences between the control and concentrations of 0.01 mg cm-2 and below for 

either metabolite. Inositol concentrations at 1 and 0.1 mg cm-2 were lower than the control, and 

mannitol was lower than the control at 0.1 mg cm-2. Changes in carbohydrate concentrations 

have been observed in earthworms in response to sub-lethal exposure to a number of 

contaminants and are reported biomarkers of toxin exposure, although the direction of change 

(increase or decrease) in the limited number of datasets appears to be both compound- and 

species-dependent (Simpson and McKelvie 2009). 

The polyamines exhibited similar but opposing effects, with putrescine increasing and 

spermidine decreasing at the two highest exposure concentrations (with 100% mortality at 24 

hours). In animals, putrescine is normally converted into spermidine in a tightly regulated 

pathway, which is then used in cellular processes such as growth, proliferation, stability of DNA, 

cell death, and for the production of other polyamines and amino acids (Heby 1981; Minois 

2014). In general, all prokaryotic and eukaryotic cells are able to synthesize putrescine and 

spermidine (Tabor and Tabor 1976). Polyamines are thought to stimulate the production of 

protein and nucleic acids (Heby 1981), and as such, respond to a variety of mechanical and 

environmental stressors in earthworms and other invertebrates (Hamana et al. 1995). Increases in 

polyamines (especially putrescine) are often observed in animal tissue in the early stages of 

decomposition, as protein hydrolysis leads to free amino acids, which are then degraded by 

anaerobic microorganisms (Lakritz et al. 1975; Tamim and Doerr 2003). The marked increase in 

tissue putrescine concentration in earthworm mortalities, and consequent decrease in spermidine, 
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polyols, and some amino acids, suggests that decomposition of the earthworm tissues may have 

started before the worms were sampled, despite efforts to reduce sample degradation. All worms 

were alive six hours after exposure began, so earthworms had died less than 18 hours before 

sampling. 

Principal components analysis using significantly altered metabolites did not reveal any 

effects at sub-lethal concentrations. Principal Components 1, 2, and 3 explained 39.6, 28.9, and 

10.5% of the respective variability in metabolite abundances. However, as observed with 

univariate analysis, the only significant differences were in treatments with 100% mortality after 

24 hrs (Fig. 3.3, top). The control, 0.0001, 0.001, and 0.01 mg cm-2 were grouped closely along 

both the PC 1 and PC 2 axis, although there was some separation along PC 3. Exposure 

concentrations of 0.1 and 1 mg cm-2 were separated from the rest along the PC 1 axis. There was 

a significant separation between 1 and 0.1 mg cm-2 along the PC 2 axis, perhaps reflecting the 

loss of coelomic fluid in the 1 mg cm-2 treatment. The separation along the PC 1 axis was 

highlighted when samples were grouped based on mortality status (Fig. 3.3, bottom). Since PCA 

is unstructured, metabolic effects due to mortality appear to influence PC 1 more strongly than 

the effects caused by triclosan exposure at the tested concentrations. Surviving worms were 

clearly higher along the PC 1 axis than worms that died after 24 hours (which had generally 

negative PC 1 scores), with earthworms dead at 48 hours clustering in between these two groups. 

To more closely examine mortality impacts on the metabolome, earthworm samples were 

grouped according to their mortality status (alive or dead) after 48 hours and compared using a t-

test (Fig. 3.4). Putrescine was higher in mortalities, while mannitol, glucose, inositol, spermidine, 

putrescine, and serine were lower. 
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Figure 3.3. Principal components (PC) analysis scores plots of PC 1 vs. PC 2 and PC 2 vs. PC 3 
grouped by triclosan exposure concentration (top) and by survival or mortality after either 24 or 
48 hours (bottom). Error bars show the 95% CI. 
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Figure 3.4. Fold change in metabolite 
abundance between alive and dead 
worms. Metabolites indicated with a * 
are significantly different based on a t-
test (α = 0.05) corrected with the 
Benjamini-Hochberg procedure with a 
false detection rate of 0.05. 
 

 

 

Figure 3.5. Correlation maps for metabolites in the control, 0.0001, and 0.001 mg TCS cm-2 
treatments. Coloured boxes highlight correlations between the amino acids (purple), polyamines 
(yellow), carbohydrates (green), and amino acids vs. polyols (pink). The numbered squares 1 and 
2 indicate metabolite pairs for which there was a large change in correlation coefficient and 
correspond to plots 1 and 2 in Fig. 6. 

	

3.4.3.	Correlations	between	metabolite	pairs	in	surviving	control	vs.	exposed	worms	

Correlation and regression analysis on metabolite profiles of surviving worms grouped by 

exposure concentration (Control: n = 7, 0.0001 mg cm-2: n = 7, and 0.001 mg cm-2: n = 8) are 

summarized in Figs. 3.5 and 3.6. Correlation maps are shown in Fig. 3.5, with coloured boxes 
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highlighting correlations within the amino acids, polyamines, and carbohydrates, and between 

amino acids vs carbohydrates. There were 9, 11, and 1 significantly correlated metabolites in the 

control, 0.0001, and 0.001 mg cm-2 exposure concentrations, respectively based on a=0.05. Two 

correlations were conserved between the control and 0.0001 mg cm-2, one between 0.0001 and 

0.001 mg cm-2, and no correlations conserved across all three treatments. Using the Benjamini-

Hochberg procedure with 55 independent tests and false positive rate of 0.05, only one 

metabolite pair is significantly correlated in the control, and none in either TCS concentration. 

The correlations are discussed further based on a=0.05, with the understanding that the potential 

for false discoveries is present in multiple testing scenarios. 

 

 

Figure 3.6. Relationships between metabolite pairs in surviving worms at the triclosan exposures 
indicated. Points represent individual earthworms. Plots 1 and 2 correspond to numbered squares 
in correlation maps (Fig. 3.5), and a dashed line indicates a significant difference in the slope and 
intercept of the regression line in treatments vs. the control. 
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Only one amino acid pair (phe vs. lys) was significantly correlated in the control group, 

while there were 5 and 1 correlated amino acid pairs at 0.0001 and 0.001 mg cm-2 respectively 

(Fig. 3.5, purple box). Whitfield Åslund et al. (2011a) found a large degree of correlation 

between amino acids measured on 24 control earthworm tissue extracts using NMR. There were 

five amino acids overlapping with our study, but only phe vs. lys was highly  

correlated in our control group. This may reflect the lower number of samples in our study (7 vs. 

24) or a higher precision in NMR measurements compared to mass spectrometry-based 

metabolomics (Whitfield Åslund et al. 2011a). Putrescine and spermidine were strongly 

correlated in the control and 0.0001 mg cm-2 treatment, but not 0.001 mg cm-2 (Fig. 3.5, yellow 

box). There were strong positive correlations among all three carbohydrates in the control group 

that change to negative or no significant correlation in the exposed groups (Fig. 3.5, green box). 

The slope and intercept for man vs. ino were significantly different between the control and 

0.0001 but not the 0.001 mg cm-2 treatment (Fig. 3.6). Moderate negative correlations were 

found between carbohydrates and a number of amino acids in the control group (pink box), 

which switch to positive correlations for some metabolite pairs in the two exposures. The slope 

and intercept for val vs. ino were significantly different from the control for both exposure 

concentrations (Fig. 3.6). A similar regression-based approach has been used to detect sub-lethal 

effects of endosulfan and DDT on earthworms by GC-MS metabolomics (McKelvie et al. 2009). 

The alanine to glycine ratio increased following exposure, and was identified as a potentially 

sensitive biomarker of DDT exposure. 

An altered pattern in the distribution of correlations between metabolite pairs indicates a 

perturbation in the underlying physiological status of the organism (Camacho et al. 2005; Steuer 

2006). The reversal of correlations (as seen for man vs. ino and val vs. ino) is characteristic of 
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metabolic switching and may suggest the existence of more than one steady state for the system 

(Steuer 2006). Since triclosan is an antimicrobial compound, potential impacts on the native 

earthworm microbiome may play a role in the observed changes in metabolite profiles. Targeted 

mechanistic studies are necessary to identify the physiological basis of any biomarkers identified 

in exploratory work (Johnson et al. 2016), but the relationships between man vs. ino and val vs. 

ino in Fig. 3.6 are potentially sensitive indicators of sub-lethal earthworm exposure to TCS.  

3.5.	Conclusions		

Triclosan exposure to earthworms (Eisenia fetida) at concentrations of 0, 0.0001, 0.001, 

0.01, 0.1, and 1 mg cm-2 led to mortality ranging from 0 to 100%, yielding an estimated LC50 of 

0.006 and 0.008 mg cm-2 based on regression with a linear and three parameter logistic model 

respectively. There were no significant differences in the abundance of individual metabolites at 

any of the sub-lethal concentrations of triclosan. Lethal concentrations exhibited changes in the 

metabolite profile that was indicative of tissue decomposition, and which also varied between 

mortalities that either retained or lost their coelomic fluid prior to sampling. Principal 

components analysis did not reveal any additional sub-lethal effects, but confirmed the effects of 

decomposition and loss of coelomic fluid. There was evidence of perturbation in the 

physiological status based on dissimilar patterns in the pairs of significantly correlated 

metabolites and reversal of correlations in earthworms at both 0.0001 and 0.001 mg cm-2 

concentrations compared to the control. This study highlights both the ability of metabolomics to 

improve interpretation and knowledge gained from standard ecotoxicological testing methods, 

and the necessity of multiple avenues of data analysis required for metabolomics datasets. 
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Preface	to	Chapter	4	

 The previous chapter examined triclosan toxicity to the earthworm on filter paper, an 

artificial test that provides a consistent exposure for identification of toxic effects, but does not 

reflect a real-world scenario. This was desirable for the initial study, but the decision was made 

for Chapters 5 and 6 to use earthworm bedding as the test substrate. Although triclosan is a 

prevalent contaminant in biosolids, it is readily degraded in soil into methyltriclosan, a more 

stable and potentially more toxic transformation product that is poorly understood. Chapter 4 

uses metabolomics to investigate the difference in toxicity between the parent compound 

triclosan and its methylated transformation product at environmentally relevant concentrations.  	
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Highlights: 

1) Effects of TCS and MTCS on E. fetida metabolome were examined 

2) There were no discernible effects from TCS, only MTCS 

3) MTCS affected tricarboxylic acid cycle metabolites 

4) Disruption of energy metabolism is a potential mode of action for MTCS toxicity  
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4.1.	Abstract	

The effects of the antimicrobial triclosan (TCS) and its transformation product methyl-triclosan 

(MTCS) on the earthworm Eisenia fetida were investigated using GC-MS metabolomics. TCS is 

ubiquitous in sewage sludge, but a large proportion is transformed into MTCS during wastewater 

treatment and in soil when sewage sludge is applied to land. Our objective was to determine if 

earthworms exposed to ng g-1 to µg g-1 concentrations of TCS or MTCS exhibit toxic effects, and 

to identify the toxic mode of action of each compound. Ten individual earthworm replicates in 

10 g worm bedding were exposed to 0, 0.25, 1, 4, 16, or 64 µg g-1 of either TCS or MTCS (120 

experimental units) for 14 days. No mortalities were observed. All MTCS exposed worms had an 

instantaneous growth rate (IGR) over two times higher than the control during the study, but 

there was no effect of increasing concentration. Succinic acid was elevated relative to the control 

at concentrations ≥ 0.25 µg g-1 and glucose was elevated at 1 µg g-1. There was separation from 

the control at all concentrations except 4 µg g-1 using Principal Components Analysis. Glucose, 

palmitic acid, and IGR contributed most strongly to the separation. Discriminant analysis with 

succinic acid, glucose, and IGR as variables showed a clear separation at all concentrations from 

the control along Canonical 1. Disruption of energy metabolism was hypothesized as a possible 

mode of action for MTCS.   
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4.2.	Introduction	

Triclosan (TCS) is an antimicrobial compound first introduced into consumer products in 

the 1970s, and has become a common biocide for use in many domestic, commercial, and health 

care applications (Fiss et al. 2007; Dann and Hontela 2011; Chen et al. 2015). Triclosan is 

frequently detected in the influent and effluent water of wastewater treatment plants (WWTPs), 

as well as in sewage sludge and treated biosolids (Lozano et al. 2013). Wastewater treatment 

removal rates for triclosan can be >95% from water, although most of the compound 

accumulates in the residual solids (McAvoy et al. 2002; Heidler et al. 2006; Heidler and Halden 

2007; Lozano et al. 2013). Treatment processes for production of biosolids for land application 

from residual sewage solids can have variable removal rates (-91% to 99%) for TCS (Monteith et 

al. 2010). Triclosan concentrations in biosolid products across Canada are generally in the range 

of 0.1 – 20 µg g-1 (Monteith et al. 2010), and approximately 50% of the over 660,000 Mg of 

biosolids produced annually in Canada are applied to land (Canadian Water and Wastewater 

Association 2012; CCME 2012). Triclosan toxicity has been demonstrated in an array of 

mammalian and non-mammalian species, and there is evidence of endocrine disruption 

(estrogenic, androgenic, and thyroid hormone activity), narcosis, mitochondrial toxicity, 

oxidative stress, and metabolic perturbations (Villalaín et al. 2001; Russell 2004; Lin et al. 2010; 

Dann and Hontela 2011; Ajao et al. 2015; Kovacevic et al. 2016; Vincent et al. 2016; Gillis et al. 

2017).  

Several biotic transformation products of TCS have been identified, including 

hydroxylation, methylation, conjugation, glucuronidation, and cleavage products (Chen et al. 

2015; Ashrap et al. 2017; Tohidi and Cai 2017). Of these, the methylated transformation product 

methyl-triclosan (MTCS) is more persistent and bioaccumulative than TCS (Dann and Hontela 
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2011). Methyl-triclosan increases in concentration over time in triclosan-contaminated soils 

(Lozano et al. 2012) and can accumulate to equal or higher concentrations than TCS in both soil 

and earthworms (Macherius et al. 2014). In soils of varying textures that had TCS incorporated 

into the top 10 cm, decreases in soil TCS were linked to increases in MTCS, with the amount of 

accumulated MTCS generally lower in soils with lower soil clay content (Butler et al. 2012). 

There is limited information available describing the toxic mode of action of MTCS in many 

organisms. Methyl-triclosan was toxic in both whole organism (tadpole) and cellular (tadpole 

and rat) assays, whereas triclosan only affected organism assays, suggesting MTCS may have a 

different mode of action than TCS and may act at a cellular level (Hinther et al. 2011).  

 Metabolomics has become an important technique in the field of toxicology over the last 

two decades, using NMR and/or MS technologies to identify potential biomarkers of exposure to 

different toxins and to hypothesize a mode of action based on biological roles of metabolites 

(Bundy et al. 2004; Guo et al. 2009; Simpson and McKelvie 2009; Aliferis and Jabaji 2011; 

McKelvie et al. 2011; Kovacevic et al. 2016). In this study, changes to the metabolite profile in 

E. fetida caused by TCS and its methylated transformation product MTCS are assessed using 

targeted gas chromatography-mass spectrometry (GC-MS) metabolomics. The transformation of 

TCS into MTCS in sewage treatment and in soil has been well documented, but the toxicity of 

MTCS to soil-dwelling organisms is poorly understood. The primary objective of this study was 

to investigate effects on the metabolite profile of E. fetida exposed to TCS and MTCS at 

environmentally relevant concentrations, and to hypothesize the toxic mode of action based on 

metabolites affected by exposure. 
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4.3.	Materials	and	Methods	

4.3.1.	Chemicals	and	Materials	

Analytical standards of TCS and MTCS used for spiking, internal standards glucose-13C6 

and leucine-d3, as well as the derivatizing agents pyridine, methoxamine HCl, and N-Methyl-N-

(trimethylsilyl)trifluoroacetamide (MSTFA) were purchased from Sigma Aldrich (Oakville, 

ON). Standards used for identification of metabolites by GC-MS were purchased from BioShop 

Canada Inc. (Burlington, ON). Methanol (99.9%), acetonitrile (99.9%), HPLC-grade water, and 

2 mL microcentrifuge tubes with caps were purchased from Fisher Scientific (Ottawa, ON). GC 

vials (2 mL) with caps, and 250 µL GC vial inserts with polymer feet were purchased from 

Agilent Technologies (Mississauga, ON).  

 

 

Table 4.1. Nutrient content of earthworm bedding used in toxicity test (n=3) 

 
 Nutrient mean SE 
Nitrogen (g kg-1) 9.050 0.581 
Calcium (g kg-1) 33.240 0.653 
Potassium (g kg-1) 0.765 0.100 
Phosphorus (g kg-1) 0.465 0.009 
Magnesium (g kg-1) 1.020 0.033 
Sodium (g kg-1) 2.438 0.238 
Boron (mg kg-1) <0.010 - 
Copper (mg kg-1) <0.005 - 
Iron (mg kg-1) 2.838 0.118 
Manganese (mg kg-1) 0.140 0.007 
Zinc (mg kg-1) 0.016 0.0003 
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4.3.2.	Maintenance	of	earthworm	populations	

The earthworms (E. fetida) were sampled from a population maintained in a plastic 1.2 m 

× 1.2 m × 1 m bin, containing 0.2 m to 0.3 m of stabilized horse bedding compost adjusted to pH 

6 with lime. Commercially available Magic® worm bedding (Magic Products Inc., Amherst 

Junction, WI) was used for the experiments. Earthworms were fed weekly on a diet of milled 

corn to supplement the compost, and the bin was misted with non-chlorinated well water at 

regular intervals. Adult earthworms between 0.4 to 0.6 g wet weight and with a visible clitellum 

were sampled from the bulk population immediately prior to the experiment.  

 

4.3.3.	Experimental	Design		

A 2×6 factorial design with 10 replicates was established for the study. A single E. fetida 

earthworm was placed in a 100 mL vial with 10 g d.w. Magic® Worm Bedding (Magic Products 

Inc., Amherst Junction, WI) spiked with 0, 0.25, 1, 4, 16, or 64 µg g-1 d.w. of either TCS or 

MTCS. Nutrient content of the worm bedding is shown in Table S.1. The spiking rate of 0.25 µg 

g-1 represents an initial soil concentration resulting from a high rate of biosolids application (40 

Mg ha-1), incorporated into the top 20 cm of soil with a bulk density of 1500 kg m-3, and 

concentrations in biosolids of 20 µg g-1 d.w (typical TCS range is 1-20 µg g-1). The 1, 4, and 16 

µg g-1 treatments reflect the typical range of TCS concentrations in biosolids. Prior to 

introduction of the earthworms, compounds dissolved in 1 mL of acetone were spiked into 10 g 

of worm bedding on aluminum dishes, stirred to mix thoroughly, and evaporated to dryness in a 

fume hood. The spiked worm bedding was transferred to the vial, moistened with 20 mL of 

distilled water, and equilibrated for 24 hr. Earthworms were collected from the maintained 

population, gently rinsed with distilled water and dried to remove extraneous organic matter, 
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weighed, and randomly assigned to an experimental vessel. The earthworms were removed after 

14 days, gently rinsed to remove organic matter, weighed, and subsequently immersed in liquid 

N2 to quench further metabolic activity and preserve the samples. Several authors have evacuated 

earthworm gut contents (depuration) prior to metabolomics analysis (Brown et al. 2008; Jones et 

al. 2008; Brown et al. 2009; Givaudan et al. 2014), while other authors have not (Bundy et al. 

2002; Guo et al. 2009; Baylay et al. 2012; Liebeke and Bundy 2012). Earthworm gut contents 

were not evacuated in this study to prevent any potential starvation effects or other artifacts of 

depuration on the metabolome, while recognizing that the presence of gut contents may also 

include measurements of the microbiome metabolome or other interferences from the bedding 

substrate.  

 
Figure 4.1. Metabolomics work flow from sample processing to data analysis 
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4.3.4.	Sample	Preparation	and	Analysis	

Flash frozen earthworm samples were stored in liquid N2 until freeze-drying over a 24 hr 

period, followed by storage at -20°C until extraction and analysis. The workflow for preparation 

of extracts from stored samples to the processing of data for analysis is outlined in Fig. 4.1. 

Sample preparation was based on methods described in Liebeke and Bundy (2012) with some 

modifications. Freeze-dried samples were manually broken into small particles in a 2 mL 

microcentrifuge tube with a 5 mm metal spatula followed by a two part extraction (1 mL of 1:1 

acetonitrile:methanol followed by 1 mL of 4.5:4.5:1 acetonitrile:methanol:water) with the 

supernatants collected and combined in a new 2 mL centrifuge tube. Each extraction consisted of 

vortexing for 1 min, ultrasonic extraction for 10 min at 55°C, and centrifugation for 2 min at 

12,000 × g. Combined extracts were vortexed for 1 min and centrifuged for 2 min at 12,000 × g 

before transferring a 500 µL aliquot to a new 2 mL tube and adding 20 µL each of 1 mM 

glucose-13C6 and leucine-d3 internal standard prior to evaporation to dryness. A second aliquot of 

100 µL was taken from each sample and added to a 30 mL glass vial to prepare a pooled quality 

control sample for each batch (GC-MS run) of samples. From the pooled sample for each batch, 

six QC samples were prepared in the same manner as real samples to monitor instrument 

performance within each GC-MS run. Three blanks with internal standard added were also 

prepared with each batch. Dried samples were methoximated by adding 60 µL of 20 mg mL-1 

methoxamine HCl in pyridine, vortexing for 1 min., and incubating in a water bath for 90 min at 

37°C. The samples were then trimethylsilylated using 120 µL of MSTFA, vortexed for 1 min, 

and incubated at 37°C for 20 min. The derivatized samples were vortexed for 30 s and 

centrifuged for 2 min at 12,000 × g. A 120 µL aliquot was transferred to a 2 mL GC vial with 

250 µL micro-insert for analysis by GC-MS.  
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A 1 µL aliquot of the derivatized sample was analyzed on an Agilent 5795 GC-MS 

containing a deactivated glass wool liner followed by a 30 m × 0.25 mm i.d. × 0.25 µm film 5% 

phenyl 95% methylpolysiloxane DB-5 MS column with 10 m Duraguard. Samples were 

extracted and analyzed in 10 groups of 12 samples composed of a complete replicate of the 

experiment, with four reps processed on day 1 (48 samples) and three reps on days 2 and 3 (36 

samples each). Samples were established in a sequence consisting of 3 blanks and 6 QC samples 

before the reps of experimental samples (with 1 QC sample analyzed after each rep), followed by 

the six QC samples and 3 blanks. Method parameters for GC-MS were based on Kind et al. 

(2009). The GC was operated at a constant flow of 1 mL min-1 of helium, with a temperature 

program of 60°C hold 1 min, ramp 10 °C min-1 to 325°C, hold 10 min, for a total run time of 

37.5 min. The transfer line, ion source, and quadrupole temperatures were 290°C, 230°C, and 

150°C respectively. The scan range was 50-600 amu, with a 5.9 minute solvent delay, threshold 

of 0, and a scan rate of 2.66 scans s-1 at 2 samples per scan.  

 

4.3.5.	Data	Processing	and	Statistical	Analysis	

Mass spectra were converted to *.CDF format using OpenChrom (Wenig and Odermatt 

2010) followed by peak detection, integration, and alignment using MZMine 2 (Pluskal et al. 

2010). The sample *.CDF files have been uploaded to the MetaboLights database (Haug et al. 

2013), with a study identifier number of MTBLS532 and release date of September 1, 2018. 

Representative total and extracted ion chromatograms are shown in Figs. 4.2 and 4.3. Parameters 

used for extraction of metabolite data from chromatograms in MZMine 2 are shown in Table 4.2. 

Analytical standards for each metabolite were analyzed using the same instrument and method 

prior to the experiment to determine retention times and characteristic ions used for identification 
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of peaks in unknown samples. All metabolites were therefore classified as Level 1 identified 

compounds according the Metabolomics Standards Initiative guidelines (Sumner et al. 2007).  

Aligned peak lists were normalized by scaling metabolite abundances for the 12 samples 

within each of the 10 analysis groups based on the ratio of the group mean to the overall mean 

for each metabolite to remove technical variation caused by changes in instrument performance 

over time (e.g. decreases due to instrument contamination and increases due to ion source 

cleaning and column trimming). Univariate and Multivariate ANOVA, correlation analysis, 

Principal Components Analysis (PCA), and Discriminant Analysis (DA) were employed to 

assess differences between experimental treatments. Multivariate ANOVA was performed in 

Minitab 14 (Minitab Inc., State College, PA). Each metabolite was analyzed by ANOVA within 

each separate compound using PROC MIXED in SAS 9.4 (SAS Institute Inc., Cary, NC). A 

significance level of a=0.01 for univariate ANOVA was chosen to reduce the number of false 

positives due to multiple hypothesis testing (Broadhurst and Kell 2006). Normal distribution of 

the error terms was tested using normal probability plots of the residuals, and constant variance 

was assessed using scatterplots of the residuals versus fitted values. Data were transformed 

where necessary to achieve normality and constant variance. Correlation analysis, PCA, and DA 

were performed in JMP 13.2.0 (SAS Institute Inc., Cary, NC) on the transformed data. The DA 

model was evaluated based on the number of misclassifications (Szymańska et al. 2012). All 

figures were generated in Sigma Plot 12 (Systat Software Inc., San Jose, CA). 
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Table 4.2. Parameters for metabolite identification, peak detection, and alignment in MZMine2. 

Metabolite Abbr. PubChem 
CID1 

MW1  
(g mol-1) 

RT 
(min.) 

Characteristic Ions RT 
Tol., 
det. 

RT 
Tol., 
align. 

Valine val 6287 117.146 9.55 144, 218, 145 0.5 0.5 
Leucine leu 6106 131.172 10.28 158, 159, 232 0.5 0.5 
Leucine-d3 (IS) leu-d3 11073472 134.191 10.30 161, 162, 150, 163 0.4 0.5 
Proline pro 145742 115.130 10.68 142, 143, 216 0.4 0.5 
Glycine gly 750 75.066 10.79 174, 147, 248, 276 0.4 0.5 
Succinic acid suc 1110 118.088 10.84 147, 148, 247 0.3 0.6 
Serine ser 5951 105.092 11.47 204, 218, 147 0.4 0.5 
Lactic acid lac 612 90.077 11.80 147, 117, 191, 219 0.4 0.5 
Malic acid malic 525 134.087 13.13 147, 233, 245, 335 0.6 0.6 
Phenylalanine phen 6140 165.189 14.83 218, 192, 147 0.3 0.6 
Putrescine put 1045 88.151 16.11 174, 175, 214 0.3 1.2 
Tyrosine tyr 6057 181.188 18.21 218, 219, 280 0.6 0.6 
Glucose gluc 5793 180.155 18.31 319, 205, 147, 218 0.1 0.6 
Palmitic acid palm 985 256.424 19.25 313, 117, 129, 328 0.6 0.6 
myo-Inositol inos 892 180.155 19.70 305, 217, 147, 318 0.6 0.6 
Margaric acid  marg 10465 270.450 20.19 117, 327, 132, 145 0.6 0.6 
Adenosine aden 60961 267.241 24.25 230, 236, 245, 540 0.4 0.6 
Maltose malt 6255 342.296 25.80 204, 191, 361, 271 0.5 0.6 

Notes: 1 Values from PubChem Compound Search 
Abbreviations: CID = Chemical Identifier; MW = Molecular Weight; RT = Retention Time; IS = 
Internal Standard; RT Tol., det. = Retention Time Tolerance for Peak Detection; RT Tol., align. 
= Retention Time Tolerance for Peak Alignment. 
 

 

 
Figure 4.2. Representative total ion chromatogram from GC-MS analysis of earthworm extract. 
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Figure 4.3. Representative extracted ion chromatogram of the target metabolites in earthworm 
extract analyzed by GC-MS. 
 

 

 

 

4.4.	Results	

 There were no earthworm mortalities observed over the 14-day experiment for TCS or 

MTCS. All MTCS exposed worms gained >2 times as much weight as the control worms during 

the experiment (Fig. 4.4), but there were no significant changes in worm mass for TCS. One 

outlier was removed from the control group, which had the highest overall weight gain (+48% 

vs. next closest sample at +36%) and was more than 3 times higher than the other samples in the 

control group. There were no significant concentration effects from TCS based on MANOVA 

(Wilks’ lambda = 0.955) or within any individual metabolite using ANOVA (Table 4.3). A 

significant concentration effect was observed for MTCS based on MANOVA (Wilks’ lambda = 

0.011), while succinic acid and glucose differed between concentrations using ANOVA at α = 
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0.01. Succinic acid was elevated relative to the control at concentrations ≥ 1 µg g-1, while 

glucose was only elevated at 1 µg g-1 (Fig. 4.5). Multivariate analysis using PCA for dimension 

reduction is shown in Fig. 4.6. Principal components (PCs) 2 and 5 differed by concentration 

(Fig. 4.6A), explaining 16.5% and 5.9% of the variance respectively. There was significant 

separation from the control for 1 µg g-1 along the PC 2 axis, and the PC 2 standardized 

coefficients were largest for glucose, succinic acid, myo-inositol, and malic acid (Fig. 4.6B), 

overlapping with the two metabolites identified through univariate analysis. Discriminant 

Analysis (DA) also found a significant separation between concentrations along the first two 

discriminant axes (Wilks’ Lambda = 0.0003 and 0.0258) for MTCS samples with succinic acid, 

glucose, and weight change as predictors (Fig. 4.7A). The first two canonicals in DA described 

59.8% and 35.9% of the variance in the dataset. There was clear separation from the control at all 

concentrations along canonical 1, while 1 µg g-1 clustered away from other treatments along 

canonical 2 but had high variability. There was a high degree of correlation between Canonical 1 

vs. PC 2 and PC 5 (p<0.0001) and Canonical 2 vs. PC 2 (p=0.0005). Malic acid and succinic acid 

were significantly correlated with Canonical 1, Canonical 2, and PC 2, indicating these 

metabolites were closely associated with the multivariate separation that is reflected in the PCA 

scores. 
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Table 4.3. P-values for tests of significance between different exposure concentrations based on 

ANOVA. Significant concentration effects based on α = 0.01 are listed in bold.  

Variable MTCS TCS 
Instantaneous Growth Rate 0.0016 0.4772 
Valine 0.1867 0.4805 
Leucine 0.3081 0.4384 
Proline 0.6741 0.3320 
Glycine 0.8754 0.3874 
Serine 0.7726 0.8203 
Tyrosine 0.4191 0.4451 
Phenylalanine 0.3986 0.5494 
Putrescine 0.7626 0.6742 
Malic Acid 0.1461 0.8632 
Lactic Acid 0.2729 0.2923 
Succinic Acid 0.0038 0.5753 
Margaric Acid 0.0412 0.5820 
Palmitic Acid 0.1225 0.9545 
Glucose 0.0068 0.9683 
Maltose 0.0334 0.7034 
myo-Inositol 0.5860 0.6064 
Adenosine 0.8148 0.4875 

 
 
 
 
 
 
Table 4.4. Percent of variance explained by each canonical and Wilks’ Lambda test statistic from 

discriminant analysis on MTCS data. 

 

Canonical Percent Cumulative 
Percent 

Wilks’ 
Lambda 

Canonical 1 59.8 59.8 0.0003 
Canonical 2 35.9 95.7 0.0258 
Canonical 3 4.2 100 0.5615 
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Table 4.5. P-values from correlation analysis between metabolites versus the first two canonicals 

from discriminant analysis and the two principal components (PC 2 and PC 5) that varied 

significantly with concentration using MTCS data. Bold p-values are less than α = 0.01. 

 
Variable Canonical 1 Canonical 2 PC 2 PC 5 
Instantaneous Growth Rate <0.0001 0.0451 0.3225 <0.0001 
Valine 0.0257 0.1808 0.2734 0.9493 
Leucine 0.0112 0.2207 0.2427 0.8181 
Proline 0.0572 0.2729 0.3326 0.6502 
Glycine 0.2888 0.0013 0.0410 0.9680 
Serine 0.3540 0.1246 0.3876 0.4312 
Tyrosine 0.1067 0.9656 0.0223 0.9511 
Phenylalanine 0.0496 0.7394 0.0089 0.7281 
Putrescine 0.2509 0.1736 0.0132 0.8176 
Malic Acid 0.0084 0.0002 <0.0001 0.8048 
Lactic Acid 0.1263 0.1258 0.4203 0.5485 
Succinic Acid <0.0001 <0.0001 <0.0001 0.6291 
Margaric Acid 0.4714 0.5983 0.0585 <0.0001 
Palmitic Acid 0.9609 0.0034 0.0001 0.3720 
Glucose 0.9013 <0.0001 <0.0001 0.1643 
Maltose 0.3888 <0.0001 <0.0001 0.1296 
myo-Inositol 0.0559 0.4105 0.7998 0.7913 
Adenosine 0.2657 0.0837 <0.0001 0.1470 
Canonical 1 <0.0001 1 0.0064 0.0005 
Canonical 2 1 <0.0001 <0.0001 0.0311 
PC2 0.0064 <0.0001 <0.0001 1 
PC5 0.0005 0.0311 1 <0.0001 
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Figure 4.4. Group mean and 95% confidence interval (n=10) of earthworm weight change after 
14 day exposure to MTCS.  
 

 

 

 

Figure 4.5. Succinic acid and glucose abundance in earthworms exposed to MTCS at the 
concentrations indicated. Concentrations with the same letter are not significantly different based 
on ANOVA (α = 0.01).  
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Figure 4.6. Group mean and 95% confidence interval (n=10) of Principal Components Analysis 
(PCA) scores for earthworms exposed to methyltriclosan (A) and scatterplot of standardized 
coefficients (B) for the contribution of each metabolite to the separation along PC axis 2 and 5.  
 
 
 

 

Figure 4.7. Group mean and 95% confidence interval (n=10) of Discriminant Analysis (DA) 
scores for earthworms exposed to methyltriclosan (A), and scatterplot of standardized canonical 
coefficients (B) for the contribution of glucose, succinic acid, and instantaneous growth rate 
(IGR) to the separation along canonical axis 1 and 2. 
 
 



 100 

4.5.	Discussion	

 The potential for contamination of soils with trace levels of organic contaminants from 

land application of biosolids a is a contemporary environmental issue. Several risk assessments 

for organic contaminants in biosolids have been published in recent years to determine if 

environmental concentrations of different trace organics exceed toxicity thresholds leading to 

adverse effects on soil organisms (Fuchsman et al. 2010; Langdon et al. 2010; McClellan and 

Halden 2010; Prosser and Sibley 2015; García-Santiago et al. 2016). Triclosan has been 

identified as a moderate to high-risk compound in various exposure pathways affecting human 

and environmental health, although many other frequently detected contaminants in biosolids 

have not been thoroughly assessed. Datasets for transformation products of known contaminants 

are lacking, and the risks they might pose are not as well assessed (Arnold et al. 2014; Malchi et 

al. 2015; Wu et al. 2015b). In our study, only the transformation product MTCS induced any 

measurable effects on the profile of metabolites in E. fetida examined, highlighting the need to 

assess transformation product toxicity.  

 We did not observe any weight loss following exposure to TCS or MTCS, and MTCS 

exposed worms actually gained more weight than the control. Some toxins can reduce appetite 

and feeding which can exhibit metabolic effects due to reduced food intake (Connor et al. 2004), 

but the evidence did not suggest reduced feeding for either compound in this study. There were 

concentration-dependent effects on succinic acid and glucose from MTCS exposure (Fig. 2), 

both had large standardized coefficients in PCA (Fig. 3). Although malic acid was not included 

as a predictor in discriminant analysis, it was strongly correlated with both canonicals. Despite 

succinic and malic acid being identified as biomarkers of TCS in human embryonic stem cells 

(Kleinstreuer et al. 2011), there were no effects of TCS on the earthworms in our study. 
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Increases in succinic acid have been observed in earthworms exposed to 3-trifluoromethylanaline 

(Warne et al. 2000) and 3-fluoro-4-nitrophenol (Bundy et al. 2001). Succinic and malic acid are 

intermediates in the tricarboxylic acid (TCA) cycle, where energy as ATP is generated within the 

mitochondria of eukaryotic cells from Acetyl-CoA produced from glucose, fatty acids, or amino 

acids (Nelson and Cox 2005). Altered levels of TCA cycle metabolites can be attributed to 

disruptions in pathways related to energy metabolism. Succinyl-CoA is converted to succinate, 

which is oxidized to fumarate, then hydrated to malate, the final step before oxidation to 

oxaloacetate to start the cycle again. Succinate dehydrogenase, which oxidizes succinate and is 

also involved in the electron transport chain, is the only membrane-bound TCA cycle enzyme 

(Nelson and Cox 2005). Therefore, its proper functioning may be sensitive to membrane 

instability (Villalaín et al. 2001). Methyl-triclosan was shown to be toxic in both whole organism 

and individual cell assays while TCS did not affect individual cells (Hinther et al. 2011), which 

may explain the increased toxicity of MTCS to this fundamental cellular process. 

The disturbance of membrane function by accumulated pollutants in lipid tissues is called 

narcosis, which can lead to reduced efficiency of cellular processes and eventual death (van 

Wezel and Opperhuizen 1995). Many essential proteins for cellular signalling, ion channeling, 

electron transport systems (i.e. succinate dehydrogenase), and other processes are located in 

cellular membranes and are dependent on the lipid bilayer structure and function (Sandermann 

1993). This effect is reversible and depends on the elimination rate of the compound (Escher et 

al. 2011). Narcosis in mitochondrial membranes is a potential mode of action for MTCS, which 

has also been reported for the parent compound TCS (Villalaín et al. 2001; Russell 2004; 

Vincent et al. 2016). Significant metabolite responses in E. fetida to MTCS exposure but not to 

TCS suggests MTCS is effective at a lower environmental concentration. This may reflect the 
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increased lipophilicity of MTCS, leading to greater protein binding or dissolution in lipids within 

the organism, or a reduced potential for elimination by either preventing metabolism to soluble 

excretion products or by evading recognition by efflux transporters of unmodified substances 

(Epel et al. 2008; Wu et al. 2010c; Tembe et al. 2017).  

    

4.6.	Conclusions	

 Triclosan exposure in the range of 0.25 to 64 µg g-1 did not lead to changes in the profile 

of metabolites measured in this study. Exposure to MTCS at ³0.25 µg g-1 led to over two times 

faster growth than the control. MTCS exposure at ³1 µg g-1 and 1 µg g-1 caused increases in 

succinic acid and glucose respectively, indicating disruptions to pathways related to energy 

metabolism. There was separation from the control using PCA (at 1 µg g-1) and DA (at ³0.25 µg 

g-1). Phenylalanine, margaric acid, succinic acid, malic acid, inositol, adenosine, and glucose 

were significantly correlated with PC 2 (weight change and palmitic acid with PC 5), indicating 

that these metabolites were most closely associated with the multivariate separation reflected in 

PCA scores. Disruption of succinic acid metabolism through membrane destabilization in 

mitochondria was hypothesized as a potential mode of action for MTCS.  
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Preface	to	Chapter	5	

 The previous chapter investigated the toxicity of a prevalent biosolids contaminant 

(triclosan) and its transformation product (methyltriclosan) to earthworms using metabolomics. 

The transformation product is many times more toxic, and appears to disrupt energy metabolism 

by affecting the membrane-bound citric acid cycle enzyme succinate dehydrogenase. Chapter 6 

moves in a different direction and investigates the toxicity to earthworms of metformin, one of 

the most prescribed pharmaceuticals worldwide and an emerging contaminant detected in 

biosolids. As opposed to methyltriclosan, the mode of action for metformin in humans is well 

established since it is a commonly prescribed drug for diabetes. In this work, the objective was to 

confirm if a similar mode of action (reduced gluconeogenesis and increased oxidation/reduced 

synthesis of fatty acids) exists in earthworms. In addition, the effect of time was studied to 

characterize shifts in the metabolite profile with an increasing length of exposure, a factor often 

neglected in metabolomics studies with earthworms but which can have a large effect on the 

metabolome measured at a given point in time.  	
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Chapter	5:	Perturbations	in	the	earthworm	metabolite	profile	during	a	

two	week	exposure	to	metformin	assessed	using	GC-MS	metabolomics	
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Highlights: 

1) Metformin exposure in soil at 160 and 640 µg g-1 led to weight gain relative to control 

2) Time had a strong influence on the metabolite profile 

3) The largest responses to metformin relative to the control were observed on day 7 

4) Metabolites involved with gluconeogenesis and fatty acid metabolism were reduced   
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5.1.	Abstract	

Metformin is among the most prescribed pharmaceuticals in many countries, and as a 

result has shown up in biosolids derived from municipal wastewater treatment that are destined 

for land application. In humans taking metformin, the effects include a reduction in 

gluconeogenesis, increased oxidation of fatty acids, and reduced fatty acid synthesis. The effects 

of metformin on soil-dwelling organisms are not well understood. This study tested the effects of 

metformin exposure (0, 10, 40, 160, 640 µg g-1) on the earthworm (E. fetida) at four time points 

(6 h, 2 d, 7 d, and 14 d) using GC-MS metabolomics to reveal sub-lethal effects and elucidate a 

mode of action for metformin. There were no mortalities observed, and earthworms exposed to 

the highest concentrations (160 and 640 µg g-1) gained weight relative to the control on days 7 

and 14. Significant reductions on day 7 were observed for glucose and malic acid (consistent 

with a reduction in gluconeogenesis), and for palmitic and margaric acid (consistent with 

increased oxidation and reduced synthesis of fatty acids). Metabolite levels increased to equal or 

greater than the control on day 14, likely caused by reduced exposure as metformin is reported to 

be readily transformed by microorganisms under aerobic conditions. The observations were 

consistent with the known effects of metformin in humans, and suggests that a similar mode of 

action exists in earthworms.  
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5.2.	Introduction	

Pharmaceuticals are emerging worldwide as prevalent environmental contaminants of 

soil and water, in large part through release into water bodies following wastewater treatment 

and into soil by land application of biosolids or irrigation with reclaimed wastewater (Metcalfe et 

al. 2004; Chefetz et al. 2008). Once present in these environmental matrices, there is potential for 

bioaccumulation in organisms and adverse toxic effects depending on exposure levels and 

species sensitivity (Hernando et al. 2006; Kinney et al. 2008; Wu et al. 2010b). Metformin is one 

of the most prescribed pharmaceuticals worldwide, beginning in the 1950s in Europe and 1970s 

in Canada for the treatment of type 2 diabetes (Pernicova and Korbonits 2014). Recently it has 

also shown promise in the treatment of certain cancers (Martin-Castillo et al. 2010). In 2008-

2009, there were approximately 2.2 million people in Canada with type 2 diabetes and projected 

to top 3.3 million by 2018-2019 (Butler-Jones 2011; Government of Canada 2015). The dosage 

for metformin ranges from 0.5 to 2.5 g daily (Hirst et al. 2012), which is excreted unchanged 

with a half-life of approximately 5 hours (Gong et al. 2012). Based on the daily dosage range and 

projected 2018-2019 type-2 diabetes incidence, the emission of metformin to the wastewater 

stream could be estimated in the range of 1 to 8 Mg day-1 in Canada if all potential candidates 

were taking it.  

As a result of its increasing popularity, metformin is among the most common 

contaminants measured in surface water bodies impacted by wastewater (Blair et al. 2013; 

Bradley et al. 2016). Concentrations in wastewater influent are typically in the µg L-1 to mg L-1 

range, with removal rates between influent and effluent water ranging from 68-98% (Scheurer et 

al. 2009; Scheurer et al. 2012; Oosterhuis et al. 2013; Trautwein et al. 2014; Kleywegt et al. 

2016). A large proportion of the metformin is transformed into guanylurea (Scheurer et al. 2012; 
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Oosterhuis et al. 2013; Trautwein et al. 2014), while a log KOC ranging between 1.1-2.6 

depending on the soil suggests a significant fraction of metformin is expected to be sorbed to 

organic matter (Scheurer et al. 2012; Mrozik and Stefańska 2014; Briones et al. 2016). 

Metformin has been measured in sewage sludges from several countries, generally in the 10-

1000 ng g-1 range (USEPA 2009b; Kim et al. 2014; Gago-Ferrero et al. 2015; Klabunde 2016; 

Thomaidi et al. 2016). When biosolids are applied to land, residual metformin represents a 

potential source of contamination in soil that may impact exposed organisms. 

Metformin toxicity has been measured with a variety of growth and development 

endpoints in aquatic organisms including fish (Pimephales promelas), algae (Desmodesmus 

subspicatus), plants (Lemna minor), and the crustacean Daphnia magna, with EC50 ranging from 

as low as 1 µg L-1 exhibiting estrogenic activity in fathead minnows while up to >320 mg L-1 

showed no effect on algal growth (Cleuvers 2003; Niemuth and Klaper 2015; Crago et al. 2016). 

Dietary exposure in crickets at 1.78 mg g-1 food resulted in a longer life span, lower growth rate, 

and delayed maturation relative to the control (Hans et al. 2015). Similarly, metformin exposure 

as low as 25 mM in agar slowed the rate of aging and extended lifespan in Caenorhabditis 

elegans nematodes co-cultured with the bacteria Escherechia coli, by altering the metabolism of 

folate and methionine in the bacteria (Cabreiro et al. 2013). Metformin spiked in soil at 10 µg g-1 

reduces growth of carrots and wheat seeds (Eggen et al. 2011), but not tomato, squash, beans, 

rapeseed, wheat, oats, barley, or potatoes (Eggen and Lillo 2012). In soil animals such as 

earthworms, metformin toxicity is not well understood.  

Metabolomics has emerged as a powerful tool in the study of contaminant toxicology, 

and the effects of exposure to organic and inorganic substances on the earthworm metabolome 

have been demonstrated repeatedly (Simpson and McKelvie 2009). In many cases, a mode of 



 109 

action for the toxin can be hypothesized based on the metabolites affected by the exposure and 

the biochemical pathways in which they are involved. Examples include disruption of energy 

metabolism by possible inhibition of the enzyme succinate dehydrogenase by phenanthrene 

(Lankadurai et al. 2011b) and methyltriclosan (Chapter 5), reduction of ATP synthesis and 

increase in fatty acid oxidation for perfluorooctanoic acid and perfluorooctane sulfonate 

(Lankadurai et al. 2012; Lankadurai et al. 2013a), starvation effects due to reduced food intake 

for pyrene (Jones et al. 2008), and oxidative stress for titanium dioxide nanoparticles (Whitfield 

Åslund et al. 2011b). Metabolomics has also been used to characterize time-dependent responses 

in the metabolite profile due to toxic stress that can differ based on the length of exposure to the 

toxin, although this is less common (McKelvie et al. 2010; Lankadurai et al. 2011b). In this 

study, our objective was to assess the toxicity of metformin to the earthworm Eisenia fetida 

using metabolomics, to evaluate metabolic perturbations in response to increasing metformin 

concentrations and to characterize the changes in metabolic profiles over time. Since metformin 

is known to affect glucose and fatty acid metabolism in other animals (Pernicova and Korbonits 

2014), it was expected that changes in these metabolites would be observed in exposed 

earthworms.  

 

5.3.	Materials	and	methods	

5.3.1.	Experimental	design		

The experiment was a single factor (metformin concentration) with five levels (0, 10, 40, 

160, 640 µg g-1) and ten replicates repeated over time (6 h, 2 d, 7 d, and 14 d), totalling 200 

experimental units. The experimental unit was a single E. fetida earthworm in a 100 mL plastic 

vial with 10 g d.w. Magic® Worm Bedding spiked at the appropriate metformin concentration. 
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Chemicals and materials for the experiment, maintenance of the earthworm population, and 

composition of the worm bedding used for testing are described in Chapter 5. Since the toxicity 

of metformin in earthworms was not known, the exposure concentrations in worm bedding were 

estimated to deliver a dose ranging from the daily therapeutic dose (5-25 mg kg-1 body weight) to 

the no observable adverse effect level in rats (200 mg kg-1 body weight) calculated for 

earthworms on a body weight basis, and assuming worms consume half their body weight in 

worm bedding (on dry weight basis) each day (Quaile et al. 2010; Hirst et al. 2012). Metformin 

was dissolved in deionized water at half of the desired soil concentrations, then 20 mL of the 

solution was added to the 10 g d.w. of worm bedding and equilibrated for 24 hr. Adult 

earthworms (0.5 g ± 0.1) were sampled from the laboratory population and randomly assigned to 

treatments. The earthworms were removed from the bedding after 6 h, 2 d, 7 d, and 14 d, gently 

rinsed to remove organic matter, weighed, and quenched in liquid N2. Samples were stored 

frozen at -80°C until extraction and analysis. 

 

5.3.2.	Sample	preparation	and	analysis	

The workflow for preparation of extracts from stored samples to the processing of data 

for analysis is as described in Chapter 5, except that samples were stored at -80°C and not freeze-

dried prior to analysis. Samples were manually ground in a 2 mL microcentrifuge tube with a 5 

mm metal spatula then extracted with 1 mL of 1:1 acetonitrile:methanol followed by 1 mL of 

4.5:4.5:1 acetonitrile:methanol:water. Collected supernatants were combined in a new 2 mL 

centrifuge tube. Samples were extracted by vortexing for 1 min, ultrasonic extraction for 10 min 

at 55°C, and centrifugation for 2 min at 12 × g. Final extracts were vortexed again for 1 min and 

centrifuged for 2 min at 12 × g. A 500 µL aliquot was transferred to a new 2 mL tube, 20 µL 
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each of 1 mM glucose-13C6 and leucine-d3 internal standard, were added, and samples were 

evaporated to dryness. Four internal standard blanks were also prepared with each batch. 

Samples were derivatized with 60 µL of 20 mg mL-1 methoxamine HCl in pyridine for 90 min at 

37°C, followed by 120 µL of MSTFA at 37°C for 20 min and centrifugation for 2 min at 12 × g. 

A 120 µL aliquot was transferred to a 250 µL micro-insert in a 2 mL GC vial for GC-MS 

analysis. Parameters for GC-MS analysis were based on Kind et al. (2009). 

 

5.3.3.	Data	processing	and	statistical	analysis	

Agilent mass spectra files were converted to *.CDF format using OpenChrom (Wenig 

and Odermatt 2010) to be read by MZMine 2 (Pluskal et al. 2010) for peak detection, integration, 

and alignment. Retention time, characteristic ions, and tolerances used for data extraction are 

shown in Table 6.1. Aligned peak lists were exported to *.csv format for data correction based 

on the weight of earthworm tissue extracted. Changes in instrument performance over time 

caused by instrument contamination and maintenance activities (ion source cleaning and column 

trimming) were controlled by randomizing the analysis order of samples across the 5 separate 

runs, and mean-centering each run to the overall mean for each metabolite.  

Earthworm weight change was expressed as the instantaneous growth rate (IGR), 

calculated as follows: 

𝐼𝐺𝑅 =
ln	(𝑌* 𝑦,⁄ )
𝑇 − 𝑡  

Where T is the final time (d), t is initial time (d), YT is the final mass (g), yt is the initial mass (g), 

YT / yt  is the growth ratio, and T – t is the growth interval (Whalen and Parmelee 1999). The IGR 

is strongly influenced by the growth interval (Whalen and Parmelee 1999), so the effect of 

metformin concentration on earthworm IGRs were analyzed within each time point. 
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Table 5.1. Parameters for metabolite identification, peak detection, and peak alignment in 

MZMine 2. 

Metabolite Abbr. PubChem 
CID1 

MW1  
(g mol-1) 

RT 
(min.) 

Characteristic Ions RT 
Tol., 
det. 

RT 
Tol., 
align. 

Valine val 6287 117.146 8.90 144, 218, 145 0.5 0.5 
Leucine leu 6106 131.172 9.60 158, 159, 232 0.5 0.5 
Succinic acid suc 1110 118.088 9.75 147, 148, 247 0.3 0.6 
Proline pro 145742 115.130 10.00 142, 143, 216 0.4 0.5 
Glycine gly 750 75.066 10.15 174, 147, 248, 276 0.4 0.5 
Serine ser 5951 105.092 10.95 204, 218, 147 0.4 0.5 
Lactic acid lac 612 90.077 11.28 147, 117, 191, 219 0.4 0.5 
Malic acid malic 525 134.087 12.61 147, 233, 245, 335 0.6 0.6 
Lysine lys 5962 146.190 17.50 174, 317, 156 0.6 0.6 
Tyrosine tyr 6057 181.188 17.65 218, 219, 280 0.6 0.6 
Glucose gluc 5793 180.156 18.31 319, 205, 147, 218 0.1 0.6 
Palmitic acid palm 985 256.424 18.70 313, 117, 129, 328 0.6 0.6 
Margaric acid  marg 10465 270.450 19.15 117, 327, 132, 145 0.6 0.6 

Notes: 1 Values from PubChem Compound Search 
Abbreviations: CID = Chemical Identifier; MW = Molecular Weight; RT = Retention Time; IS = 
Internal Standard; RT Tol., det. = Retention Time Tolerance for Peak Detection; RT Tol., align. 
= Retention Time Tolerance for Peak Alignment. 
 
 

 

Univariate ANOVA and Discriminant Analysis (DA) were used to analyze the metabolite 

data. Each metabolite was analyzed by ANOVA as a concentration×time repeated measures 

analysis using PROC MIXED in SAS 9.4 (SAS Institute Inc., Cary, NC). Data was transformed 

using square, cube, or fourth root to achieve normality and constant variance of the error terms 

where necessary. Normality was tested using normal probability plots of the residuals, and 

constant variance evaluated using scatterplots of the residuals vs. fits. To reduce the potential for 

false positives in multiple hypothesis testing, a lower a-level of 0.01 was used to determine 

significance. Linear discriminant analysis was performed in JMP 13.2.0 (SAS Institute Inc., 

Cary, NC) using 20 groups corresponding to the treatment combinations. The DA model 
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significance was assessed using Wilks’ Lambda, and accuracy was evaluated using the number 

of misclassifications (Szymańska et al. 2012). Canonicals 1 and 2 were subsequently analyzed by 

ANOVA with the same design as the individual metabolites to determine if concentration or time 

influenced the metabolite profile in a multivariate sense as reflected in the canonical scores. 

 

5.4.	Results	and	discussion	

5.4.1.	Earthworm	weight	change	in	response	to	metformin		

 Earthworm weights pre- (YT) and post-exposure (yt) did not vary by concentration or 

time, but there was a significant concentration by time interaction effect on the growth ratio 

expressed as YT / yt (Table 5.2). With the exception of 640 µg g-1 after 6 hours, earthworms 

treated with metformin maintained growth similar to the control worms up until day 7, when the 

160 and 640 µg g-1 treatments continued to gain weight and the remaining treatments lost weight 

(Fig. 5.1). Weight loss was most pronounced in the control. By day 14, the control, 10, and 40 µg 

g-1 treatments regained the lost weight and were similar to day 0, but the 160 and 640 µg g-1 

treatments maintained an increase in weight of 10 to 15%. The instantaneous growth rate was 

heavily dependent on the growth interval (Fig. 5.2), consistent with results reported by Whalen 

and Parmelee (1999), so growth rates were compared within each interval (6 hr, 2 d, 7 d, 14 d). 

When expressed as instantaneous growth rate, earthworms in the 10 µg g-1 group grew 

significantly faster than all other exposed groups after 6 hours, but were not different from the 

control (Fig. 5.3). Earthworms in the 640 µg g-1 group grew significantly slower than the control 

after 6 hours. However, this was reversed by day 7 where 0 to 40 µg g-1 had negative growth 

rates and 160 to 640 µg g-1 were positive and significantly higher than the other treatments. After 
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14 days, earthworms exposed to 160 to 640 µg g-1 metformin maintained a higher growth rate 

which was not significant, while the remaining treatments had growth rates near zero. 

Weight change can result from gain or loss in tissue, or an increase or decrease in feeding 

activity and retention of liquids or solids since gut contents were not voided prior to extraction. 

Weight loss can also occur if energy is limited in the diet, and stored energy in the form of 

glycogen is catabolized to cover maintenance energy costs in an organism (Johnston et al. 2014). 

An alternative mechanism involved in the reduction of blood glucose levels by metformin in 

humans is a decrease in glycogenolysis, the production of glucose from glycogen (de Souza 

Silva et al. 2010). In earthworms, glucose is absorbed from the blood stream by individual cells 

and stored as glycogen until needed (Prentø 1987). Glycogen content in earthworms can range 

from 2-5% (Prentø 1987), so it is unlikely that observed weight loss is primarily due to 

utilization of glycogen even if glycogen stores were entirely depleted. The slow growth rate at 6 

hours in higher concentrations of metformin (Figure 5.3) may indicate an initial avoidance 

response to the contaminated worm bedding. The weight loss and negative growth rates in the 

control and low exposure treatments on day 7 (Figs. 5.1 and 5.3) may indicate that the 

earthworms avoided feeding on the experimental worm bedding over time and it may have been 

less desirable than the compost from which they originated. The weight increase in worms 

exposed to 160 and 640 µg g-1 is unexpected since metformin is frequently associated with 

weight loss in humans due to a reduced appetite and decreased fat storage in tissues (Malin and 

Kashyap 2014). However, in tadpoles exposed to metformin in combination with two lipid 

lowering drugs (Benzafibrate and Atorvastatin), weight gain was observed in the highest 

exposure of 500 µg L-1 relative to the control, tadpoles were more developed, and in generally 

better condition (Melvin et al. 2017). Blood glucose and appetite are inversely related in humans 
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(Mellinkoff et al. 1997), and it is possible that glucose-lowering effect of metformin led to an 

increased appetite in earthworms resulting in higher feeding activity than the control. 

 

5.4.2.	Metabolite	responses	to	metformin	

In general, the results show a non-linear metabolic response in earthworms to metformin, 

as indicated by the non-monotonic shifts in metabolite abundance over time relative to the 

control (Fig. 5.4). Metabolite abundances in exposed worms were consistently lower than the 

control on day 7 and higher on day 14, especially in the 40-640 µg g-1 treatments (Fig. 5.4). 

Leucine and tyrosine were both elevated relative to the control on day 14 in worms exposed to 

10 and 40 µg g-1, while tyrosine was also elevated at 640 µg g-1. Malic acid showed a significant 

decrease relative to the control on day 7 at all metformin concentrations, while succinic acid was 

elevated on day 14 at 10 and 40 µg g-1 treatments. Palmitic and margaric acid behaved similarly, 

with 40, 160, and 640 µg g-1 treatments decreasing relative to the control on day 7, and 

rebounded to levels higher than the control by day 14. Glucose levels decreased sharply on day 

7, which was most pronounced at 160, and 640 µg g-1. In most cases, metabolite decreases on 

day 7 rebounded to levels equal to or higher than the control by day 14. This may indicate that 

the dose of metformin received by the earthworm was reduced over time since it is readily 

degraded in soil (up to 80% loss after 14 days) under aerobic conditions (Mrozik and Stefańska 

2014). We were not able to measure metformin concentration in the earthworms, since methods 

for analysis of metformin in tissues by GC-MS have only recently been published and are not yet 

standardized (Ucakturk 2013; Goedecke et al. 2017). 
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Figure 5.1. Earthworm weight change during the experiment as a percentage of the initial weight. 
Within each sampling time, concentrations with the same letter are not significantly different 
based on pairwise comparisons using LSMEANS (LSD, a=0.05). 
 
 

 

Figure 5.2. Effect of growth interval on the relationship between the instantaneous growth rate of 
earthworms versus the growth ratio. The relationship is strongly influenced by growth interval, 
so growth rates within each interval were examined separately. 
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Figure 5.3. Earthworm instantaneous growth rates during the experiment, separated by growth 
interval. Within each growth interval, concentrations with the same letter are not significantly 
different based on pairwise comparisons using LSMEANS (LSD, a=0.05). 
 

 

Table 5.2. P-values for metabolites and canonicals based on repeated measures ANOVA. 

Significant effects based on α = 0.01 are listed in bold.  

Metabolite conc time conc×time 
Growth Ratio 0.0405 0.0329 0.0014 
Valine 0.9267 0.0208 0.8218 
Proline 0.9148 0.0043 0.9311 
Leucine 0.3386 <0.0001 0.5165 
Glycine 0.9877 0.1749 0.7104 
Serine 0.9672 0.0100 0.7027 
Lysine 0.8443 0.1732 0.1576 
Tyrosine 0.3671 <0.0001 0.2581 
Malic Acid 0.5409 0.0284 0.2358 
Lactic Acid 0.9230 0.0334 0.6088 
Succinic Acid 0.0682 0.0010 0.2016 
Palmitic Acid 0.5294 0.0434 0.2468 
Margaric Acid 0.4884 0.0222 0.2494 
Glucose 0.1583 <0.0001 0.0326 
Canonical 1 0.2468 <0.0001 0.6409 
Canonical 2 0.1504 0.0001 0.0481 
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Figure 5.4. Changes over time in abundance (control subtracted) of significantly affected 
metabolites (a=0.01) in earthworms exposed to metformin. A * indicates a significant difference 
from the control at that time point based on pairwise comparisons using LSMEANS (LSD, 
a=0.05). 
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Table 5.3. Repeated measures ANOVA p-values for canonicals 1 and 2 sliced by concentration 

to test for differences between time points. Numbers in bold indicate p-value is ≤0.01. 

Concentration (ng g-1) Canonical 1 Canonical 2 
0 0.0086 <0.0001 
10 0.0053 0.1906 
40 <0.0001 0.1229 

160 <0.0001 0.8522 
640 0.0013 0.5020 

 

Table 5.4. Repeated measures ANOVA p-values for canonicals 1 and 2 sliced by time to test for 

differences between concentrations. Numbers in bold indicate p-value is ≤0.01. 

Time (days) Canonical 1 Canonical 2 
0 0.2420 0.9942 
2 0.3192 0.8938 
7 0.6701 0.0005 
14 0.6355 0.1691 

 

Metformin is an inhibitor of mitochondrial complex I, reducing adenosine triphosphate 

(ATP) and increasing adenosine monophosphate (AMP) within the cell. This change in the 

cellular energy state causes the activation of 5’-AMP-activated protein kinase (AMPK), which 

coordinates a large network of biochemical pathways that sense and control the cellular energy 

state (Pernicova and Korbonits 2014). Metformin decreases hepatic gluconeogenesis (glucose 

generation from non-carbohydrate sources such as amino acids) through the activation of 

AMPK, which inhibits several transcription factors controlling the expression of gluconeogenic 

enzymes (Martin-Castillo et al. 2010; Jeon 2016). Activation of AMPK also stimulates glucose 

uptake and glycolysis in muscles, inhibits fatty acid synthesis, and increases the uptake and b-

oxidation of fatty acids (Jeon 2016). We observed a decrease in glucose and margaric acid on 

day 7 in metformin exposed worms (Fig. 5.4), consistent with the mode of action of metformin. 
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Metformin toxicity can result from lactic acidosis due to an increase in lactate production 

combined with a reduced lactate metabolism or clearance of lactate from serum by 

gluconeogenesis (DeFronzo et al. 2016). Lactic acid levels did not differ from the control over 

the course of the experiment (Fig. 5.4), suggesting that toxicity due to lactic acidosis did not 

occur at the exposure levels tested. Malic acid levels showed a clear decrease on day 7 in 

exposed worms (Fig. 5.4). The TCA cycle is inhibited at several points by ATP and stimulated 

by ADP and AMP (Briggs 1995). This TCA cycle stimulation resulting from the ATP-lowering 

and ADP/AMP-increasing effects of metformin, combined with a reduced supply of fumarate 

from gluconeogenesis, could explain the depletion of malate relative to the control.  

Discriminant analysis across all groups revealed at least one group differed from the 

others (Wilks’ Lambda = 0.0143), so univariate ANOVA was used to investigate treatment 

effects within the first two canonicals (Table 5.3, Figs. 5.5 and 5.6). There was a clear trajectory 

over time in all groups, with the later time points generally further from the control in a negative 

direction within each concentration (Fig. 5.5). Glucose, lactic acid, and tyrosine had the largest 

standardized canonical coefficients along canonical 1, providing the largest contribution to group 

separation (Fig. 5.7). Glucose is the end product of gluconeogenesis (Wu 2013) which is reduced 

by metformin exposure, while tyrosine and lactic acid are glucogenic metabolites (Pernicova and 

Korbonits 2014). The multivariate trajectory (expressed as canonical scores) tracing the time 

course of a metabolic response to stress is often a sensitive indicator of chemical and 

environmental stressors in earthworms and other organisms (Malmendal et al. 2006; McKelvie et 

al. 2010; Lankadurai et al. 2011b). McKelvie et al. (2010) monitored the 1H-NMR metabolite 

profile over time for earthworms exposed to sub-lethal phenanthrene in soil (250 µg g-1) over 30 

days and found that early and late time points could be clearly distinguished from each other  
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Figure 6.5. Discriminant analysis mean plots showing changes over time within each 
concentration. Error bars show 95% Confidence Interval of the canonical scores along canonical 
axis 1 and 2 at each sampling time. Letters along a canonical indicate a significant effect based 
on ANOVA (a=0.01). Time points with the same letter are not significantly different based on 
pairwise comparisons using LSMEANS (LSD, a=0.05).   
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Figure 6.6. Discriminant analysis mean plots showing the effect of metformin concentration on 
discriminant scores for earthworms sampled over time. Error bars show 95% Confidence Interval 
of the canonical scores along canonical axis 1 and 2. Letters along a canonical indicate a 
significant effect at a=0.01. Time points with the same letter are not significantly different based 
on pairwise comparisons using LSMEANS (LSD, a=0.05). 
 
 

 
Figure 6.7. Standardized scoring coefficients for each variable in the first two canonicals from 
discriminant analysis.  
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using Principal Components Analysis (PCA). Lankadurai et al. (2011b) also found a strong 

dependence of the earthworm metabolite profile on the length of exposure (1-4 days) to 

phenanthrene (25 µg cm-2 on filter paper) using PCA. In their study, several metabolites 

fluctuated greatly within this time frame, shifting over time in their direction of change relative 

to control. Some metabolites had transient effects where an increase or decrease was only 

observed early in the exposure, while others required time to develop and differed from the 

control in later time points.  

Since there was a strong effect of time on the metabolite profile, the dataset was sliced by 

time to determine if there were any concentration effects on each sampling day (Fig. 5.6). A 

significant difference between concentrations was only detected on day 7. There was separation 

from the control along canonical 2 at all exposure concentrations, showing a clear trajectory with 

higher concentrations generally further from the control in a negative direction (Fig. 5.6). 

Tyrosine, lactic acid, and palmitic acid had the largest standardized coefficients in canonical 2 

(Fig. 5.7). The multivariate response takes more than 48 hours to emerge, suggesting a delayed 

onset of effects in earthworms and a period of acclimatization may be necessary for the system to 

reach a new equilibrium point. The response is also transient, and we suspect that the cause may 

be a reduced availability of metformin by the end of the experiment due to microbial 

degradation.  

Metformin as low as 10 µg g-1 led to perturbations in some metabolites (leucine, tyrosine, 

malic acid, and succinic acid) and a significant difference from the control along canonical 2, 

suggesting that the equivalent of a human low therapeutic dose we estimated to be delivered by 

that treatment led to an observable effect. However, a significant reduction in glucose was only 

observed at concentrations of 160 µg g-1 and higher. The glucose-lowering mode of action of 
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metformin is believed to differ based on concentration (He and Wondisford 2015; Song 2016). 

At pharmacologic concentrations, metformin activates AMPK, but at high concentrations it 

inhibits complex 1 in mitochondria (He and Wondisford 2015). This may explain the low dose 

effects not observed at high doses. In addition, metformin has been shown to accumulate in the 

gut mucosa, influencing metabolism in gut microbiota and causing systemic effects on the 

organism, but this microbiome effect is poorly understood even in humans (Song 2016).  

 

5.5.	Conclusions	

 This study evaluated the effects of the antidiabetic drug and environmental contaminant 

metformin on the metabolite profile of the earthworm (E. fetida) using GC-MS metabolomics. 

Earthworms were exposed to metformin at 0, 10, 40, 160, 640 µg g-1 in worm bedding and 

measured at 6 h, 2 d, 7 d, and 14 d. No mortalities were observed during the experiment. After 6 

hours, worms in the 640 µg g-1 group had the slowest growth rate which may reflect initial 

feeding avoidance. After 7 days, worms exposed to 160 and 640 µg g-1 grew significant faster 

than the remaining treatments, which could reflect an increased appetite due to lower blood 

glucose levels. Metabolites characteristic of the metformin mode of action in humans (reduction 

in gluconeogenesis, increased fatty acid oxidation, and reduced fatty acid synthesis) were 

affected by metformin exposure in the earthworm. On day 7, a decrease in glucose and malic 

acid was observed, pointing to a reduction in gluconeogenesis. Decreased palmitic and margaric 

acid on day 7 are indicative of a reduction in fatty acid synthesis and increased oxidation of fatty 

acids. Discriminant analysis (DA) revealed a consistent influence of time on the metabolite 

profile, but the only significant differences between concentrations occurred on day 7. The 

metabolites glucose, lactic acid, and tyrosine were large contributors to the separation between 
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treatments, which are all involved in gluconeogenesis. No evidence of metformin toxicity from 

lactic acidosis was observed at the tested concentrations. Reductions in metabolite levels on day 

7 rebounded to equal or greater than the control on day 14, possibly resulting from metformin 

degradation over time. Overall, metformin led to physiological changes as measured by growth 

rate, and caused metabolic perturbations consistent with the mode of action of metformin in 

humans. 
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Preface	to	Chapter	6	

 This chapter summarizes the important lessons from Chapters 3, 4, and 5, with a 

discussion of the results in a broader sense than was provided in each chapter. Specific 

contributions to knowledge are listed, and it provides opportunities for improvement and 

recommendations for future work based in the information learned in this thesis.  	
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Chapter	6:	Contributions	to	knowledge	and	recommendations	for	future	

research	

 

6.1.	 Hypotheses	and	outcomes	

 

As a whole, the work tested four hypotheses, with the following outcomes:  

 

(1) There will be metabolic effects in earthworms caused by exposure to these three 

contaminants, and that the effects will be concentration-dependent. 

Triclosan: True using filter paper test, False using artificial soil 

Methyltriclosan: True using artificial soil 

Metformin: True using artificial soil 

 

(2) The transformation product methyltriclosan will be more toxic than its parent compound 

triclosan. 

True - Methyltriclosan caused metabolic effects at >64 times lower concentrations than 

triclosan, affecting growth rate, abundances of succinate and glucose, as well as 

multivariate representations of the data. 

 

(3) A concentration dependent pattern in metabolite profiles will emerge as a function of time. 

True – Using metformin, time had a strong effect on metabolite profile in control and 

exposed worms, significantly affecting multiple individual metabolites and multivariate 
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representations of the data. A concentration-dependent but transient response was 

observed after seven days. 

 

(4) Significant changes in the metabolome will point towards a mode of action for the three 

contaminants tested. 

Triclosan: False, only minor sub-lethal effects which did not point towards a mode of 

action 

Methyltriclosan: True, effects were consistent with nonpolar narcosis affecting the 

activity of the membrane-bound succinate dehydrogenase enzyme 

Metformin: True, effects were consistent with reduction of gluconeogenesis and 

increased oxidation of fatty acids 

 

6.2.	Contributions	to	knowledge	

 This thesis has generated one peer reviewed manuscript published in a high-quality 

journal (Chapter 3) and two chapters to be submitted (Chapters 4 and 5). Chapter 3 was 

published in the Journal of Hazardous Materials under a special issue titled “Special Issue on 

Emerging Contaminants in Engineered and Natural Environments”. The study established a LC50 

for TCS based on a 2-day filter paper contact test, which can be used to assess TCS toxicity 

relative to other substances. The study analyzed both the living and dead earthworms, identifying 

significant metabolic effects in survivors and decomposition products in dead worms. The 

analysis of decomposition products in dead worms was novel and may aid in the interpretation of 

future toxicology studies using metabolomics where there are fatal toxic effects. 
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 Chapters 4 and 5 describe two different 14-day exposure toxicity experiments using 

earthworm bedding, to better represent the natural habitat of the earthworm species (Eisenia 

fetida) used in the experiments. Chapter 4 compares TCS to its environmental transformation 

product MTCS, and shows that after 14 days, the methylated product is toxic at much lower 

concentrations (1 µg g-1 for MTCS vs. >64 µg g-1 for TCS). No effects were detected for TCS. 

This is a significant finding since contaminant transformation products are often neglected in 

environmental monitoring and risk assessment, but are potentially more persistent and toxic than 

the parent compound. Based on the metabolites affected by MTCS, we hypothesized that the 

mode of action is related to MTCS accumulation in membranes of the mitochondria, affecting 

the function of succinate dehydrogenase, a membrane-bound enzyme in the TCA cycle. This 

provides a testable hypothesis, which will provide a better understanding of the mode of action 

with potential broader applications to methylated transformation products in general. 

Chapter 5 describes the shifting metabolite profile in response to MET exposure across 

the range from estimated therapeutic dose to maximum safe dose over a 14-day period. Time 

played a significant role in individual metabolite levels and on the discriminant scores in 

canonicals 1 and 2. A significant concentration effect in the discriminant scores was only 

observed on day 7. This indicates that the effect has a slow onset, and is transient, which may 

reflect sorption or degradation processes reducing bioavailable MET. Metformin caused a 

reduction in glucose, malic acid, and margaric acid, which are characteristic of the MET mode of 

action in humans, including reduced gluconeogenesis, reduced fatty acid synthesis, and increased 

fatty acid oxidation caused by activation of the enzyme AMPK. This suggests the mode of action 

is conserved between humans and earthworms.  



 130 

The major contributions from this work to the field of environmental metabolomics also 

include strengthening its position as an emerging tool in toxicology. The added depth of 

information allowed toxic effects to be investigated at the molecular level, and provided insights 

into the mode of action of several emerging contaminants. This work also puts a small but 

meaningful dent in the necessary work to assess the environmental toxicity of the more than 

100,000 synthetic chemicals in use worldwide (Timbrell 2008). This work falls on researchers 

who must find novel ways to measure these substances, determine the extent of their occurrence 

and eventual fate in the environment, and establish if their presence poses a risk to the health of 

environmental organisms. The experiments in this thesis provide effect concentrations that can 

be used in environmental risk assessments for these substances in the soil compartment. 

The work also had a number of limitations that need to be considered, which provide 

opportunities for improvement in the future. The targeted approach that was designed to provide 

confidence in identification and quantification came at the cost of a drastic reduction in the scope 

of work compared to what is achievable using the GC-MS platform. As can be seen in the 

chromatograms in Chapter 4, only a small fraction of the peaks in each sample were included 

here, and there is additional information to be gleaned from these datasets. Another factor that 

limits the general applicability of the work is that only a single bedding type was tested. While 

using a soil medium is an improvement over filter paper tests, the soil medium is known to 

influence the earthworm metabolic response to toxins, especially variations in soil organic 

matter. It would have been useful to also test a low organic matter soil such as the 80% sand 

OECD soil, which may have allowed triclosan to have an effect. The drawback is a doubling in 

the number of samples, which can quickly become unmanageable when sample processing and 

analysis times are considered. Dropping the number of tested concentrations to 2 plus a control 
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would reduce sample requirements. This work also suffered from a change in methods which 

prevented a direct comparison of the effects of triclosan in filter paper and soil between Chapters 

3 and 4. This reduces the continuity of the thesis in some respects, but in response the scope of 

metabolites was increased. Furthermore, running the samples from Chapters 4 and 5 with a 

standardized method associated with mass spectral libraries enhanced the amount of additional 

information that can potentially be gained from these datasets in the future. 

 

6.3.	Recommendations	for	future	research	

 Metabolomics data is most useful when placed in the context of known biochemical 

pathways to interpret the biological significance of the results. In targeted metabolomics, the 

choice of metabolites to include is a critical decision that limits the interpretation of treatment 

effects to this selection. However, when the expected effects are not known, it is difficult to 

predict which metabolites should be included. In this thesis, a shotgun approach was applied to 

all experiments, where metabolites were included that represent different classes of biomolecules 

and which have been responsive to toxic exposure in the past, but it lacked comprehensive 

coverage of whole biochemical pathways (e.g. TCA cycle metabolites). Future work may benefit 

from a more focused selection of metabolites, including more compounds within specific 

biochemical pathways. This information would provide corroborating evidence for an effect 

based on the results from upstream and downstream metabolites if they can be measured.  

Even within the datasets generated in this thesis there exists additional information in the 

unidentified peaks that were not analyzed and interpreted within each run. There is an 

opportunity for additional work extracting unknown peaks from the chromatograms in each 

experiment, and annotating the peaks where possible with a metabolite identification based on 
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mass spectral library searches. This type of work is called non-targeted metabolomics where both 

known and unknown metabolites (identified and unidentified peaks) are used to distinguish 

between two or more groups of samples using multivariate analysis and visualization techniques. 

The automated peak extraction and mass spectral library querying necessary to process hundreds 

of peaks in the >360 experimental samples included in this thesis is outside of my current 

skillset, but it will provide a good opportunity to collaborate in the future with other scientists 

knowledgeable in this area. I have manually searched through the chromatographic peaks and 

queried the library with their mass spectrum, yielding some high percent matches, so I expect 

there will be new discoveries revealed if a deeper view of the data can be obtained. 

There is an overall need within the field of environmental metabolomics using 

earthworms as the test species to generate baseline datasets and establish ‘normal’ ranges for 

metabolites across varying environmental properties such as temperature, moisture, soil organic 

matter, pH, conductivity, as well as earthworm species, age, developmental stage, and diet. 

Understanding the normal stress response in earthworms as reflected in the metabolome will 

improve interpretation of the kind of experiments presented in this thesis and summarized in 

Table 1.1. Understanding the normal variability in metabolite levels across many samples may 

provide context when discussing the size of a significant effect and whether the result is truly 

outside the expected range of observations. Ultimately, if the knowledge base for earthworms 

becomes comparable to medical or veterinary science, we will be able to diagnose certain 

conditions in earthworms based on their growth rates and metabolite biomarkers. This may 

require tissue or biofluid-specific metabolome analysis rather than the whole-organism extracts 

typical of experiments in this field. 
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