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ABSTRACT

The system under study is that of a two-dimensional, two-degree-of-freedom

airfoil (NACA 0012) in a steady subsonic airstream with extemal forcing. This airfoil is

flexibly rnounted in both degrees-of-freedom, and thus, describes an aeroelastic system.

Non-linearities arising from the aerodynamics are responsible for the phenomenon of

dynamic stall when the airfoil oscillates past the static-stall angle of attack. These non­

linearities also cause the system to produce non-linear classes of motion, the most

important of which is chaotic motion. Aeroelastic instabilities are also present in the

system. This thesis explores the instabilities present in this system as weil as its non­

linear behaviour.

A semi-empirical numerical model revolving around the concept of an indiciaJ

response is used to model the non-linear aerodynamics in both degrees-of-freedom. The

structural components of the system are modeled using simple linear elements such as

translational and torsional springs. Structural damping is ignored. Simple force and

moment balancing equations allow for the derivation of the pertinent aeroelastic

equations, which are then solved using nwnerical techniques.

Self-excited oscillations, examples of aeroelastic instability, were found in the

one-degree-of -freedom system for oscillations about the statie-stall angle. Binary flutter,

another fonn of aeroelastic instability, was found in the two-degree-of-freedom system.

Every cIass of non-linear motion (equilibrium, periodic, quasi-periodic and chaotic) was

discovered in the non-linear analysis, and several routes to ehaos were discovered. These

routes included the quasi-periodic route, Period-doubling route and intermittency route.

Sorne of the routes discovered compared weIl with classical examples.
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SOMMAIRE

Le système à l'étude est celui d'une aile bidimensionnelle (NACA 00 (2), de deux

degrés de liberté, dans un écoulement subsonique stationnaire, soumis à des oscillations

forcées. Cette aile est montée avec flexibilité dans les deux degrés de liberté, et ainsi,

décrit un système aéroélastique. Les non-linéarités résultant de l'aérodynamique sont

responsables du phénomène de décrochage dynamique quand l'aile oscillante dépasse

l'angle d'attaque du décrochage stationnaire. Ces non-linéarités font également produire

des réponses de classes non-linéaires, le plus important étant la réponse chaotique. Les

instabilités aéroélastiques sont également présentes dans le système. Cette thèse explore

les instabilités dans ce système aussi bien que sa portée non-linéaire.

Un modèle numérique, semi-empirique utilisant le concept d'une réponse

indicielle est employé pour modéliser l'aérodynamique non-linéaire dans les deux degrés

de liberté. Les composantes structurelles du système sont modélisées en utilisant des

éléments linéaires tels que les ressorts de translation et de rotation. L'amortissement dû à

la structure est ignoré. Les équations d'équilibrage permettent la dérivation d'équations

aéroélastiques convenables, qui sont alors résolues en utilisant des techniques

numériques.

Les auto-oscillations, exemples d'instabilité aéroélastique, ont été trouvées dans le

système d'un degré de liberté pour des oscillations autour de l'angle du décrochage

stationnaire. Le flottement, une autre forme d'instabilité aéroélastique, a été trouvé dans

le système de deux degrés de liberté. Toutes les classes de réponse non-linéaire

(équilibre, périodique, quasi-périodique et chaotique) ont été découvertes dans l'analyse

non-linéaire et plusieures routes au chaos ont été découvertes. Certaines de ces routes

étaient comparables aux exemples classiques.
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Chapter 1

Introduction

1.1 Introduction to Aeroelasticity

Aeroelasticity refers to the statie and dynamie response of flexible stn1etures~

whieh interact with aerodynamie forces. When an airstream interaets with a flexible

surface~ the aerodynamic forces dramatically change the dynamic behaviour of that

surface. If structures remained rigid when exposed ta an airstream~ aeroelastic analysis

would not be necessary. Many aeroelastic phenomena are undesirable; sorne May even

lead to the catastrophic failure of the structure involved. Accurate predictions of

aeroelastic instabilities are therefore necessary.

There are Many types of aeroelastic systems. From very large structures~ such as

bridges or buildings, to aIl kinds of cylindrical structures, such as oil pipelines,

smokestacks and nuclear reactor cooling rods. The systems that will be the focus of this

thesis are those which involve lifting surfaces, sueh as airplane wings, helicopter rotors

and turbines. More specifically, the aeroelastie response of a two-dimensional, two­

degree-of-freedom airfoil (NACA 0012) in a steady subsonic airstream, and with external

forcing will be studied.

Aeroelastic instabilities are of primary importance, due to the possibility of

structural failure. There are two general categories of instabilities: statie and dYnamic.

Static aeroelasticity refers to the study of aeroelastie systems, while ignoring the effects
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of inertia. This eategory therefore cannot iDclude any types of oscillations, and only

includes airfoil motion at zero frequency. Instabilities arising under these conditions are

known as static instabilities. An example of this is known as divergence. This occurs

when aerodynamic effects create negative stiffitess in the pitch direction. If the structural

stiffness is insufficient, the total effective stiftiless of the airfoil May be zero, causing the

airfoil ta be unstable and the pitch to diverge. Early monoplanes needed to overcome this

problem.

Dynamic aeroelasticity includes interaction between ail of the aeroelastic effects:

aerodynamic, structural, and inertial. Instabilities arising under these conditions are

known as dynamic instabilities. A major problem of aeroelastic systems is flutter. This is

an example ofa dynamic instability. Flutter is a special case of a self-excited oscillatio~

in which the airfoil absorbs energy from the airstream in such a way that that the added

energy overpowers the naturai damping of the structure and causes the amplitude of the

oscillations to diverge. This extraction of energy may come from negative damping

supplied by the nature of the aerodynamics. This scenario aIlows for one-degree-of­

freedom flutter. Another scenario involves the coupling oftwo degrees offreedom, and is

called binary flutter. For the airfoil under study this situation occurs when the plunge

motion acts to add energy in unison with the pitch. This happens at a particular phase

difference between the two types of motion. For this situation to cause flutter, this phase

difference must persist. This happens when the frequencies of these two types of motion

are close to one another; it is known as "frequency coalescence", and is necessary fOf

binary flutter ta OCCUf. Certain combinations of system parameters, the most important of

which being airflow velocity, May cause the airfoil to experience instabilities. Linear

2
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analysis a1lows for instability boundaries to be found. These boundaries are crucial 50 as

to avoid instabilities that May lead to divergent oscillations. Linear analysis ofaeroelastic

systems is often sufficient. There are cases, however, where non-linearities in the system

may DO longer he ignored. Such is the case in helicopter rotors, high perfonnance aircraft

and turbomachinery.

There are POtentially many sources of Don-linearities in aeroelastic systems. The

most commonly encouotered ones, however, are those arising from the structural or

aerodynamic elements of the system. The system under study in this thesis assumes no

structural non-linearities. This assumption is not made for the aerodynamics. Airfoils

with structural non-linearities have been studied by many: (Hauenstein, Zar~ Eversman

and Qumei, 1992; Lee and TroD, 1989; Priee and Alighanbari, 1995). Airfoils with

aerodynamic non-linearities have al50 been studied by many: (Lee and leBlanc, 1986;

Tang and Dowell, 1992; Priee and Keleris, 1995).

The aeroelastic model adopted in this thesis cornes from the work of Lee and

LeBlanc (1986). Because of the complexity of the non-linear behaviour of the

aerodynamics, a purely theoretical analysis is impossible. Numerical methods are

therefore a necessity. Lee and LeBlanc suggest the use of HouboIt's numerical scheme

(Houbolt, 1950) in their work. This choice was therefore also adopted in this thesis. This

thesis does not, however, adopt the aerodynamic analysis used by Lee and LeBlanc

(1986). Lee and LeBlanc based their aerodynamic model on the work of Bielawa et al.

(1983). They used that particular aerodynamic model to study the unsteady, non-linear

aerodynamic loads for the one-degree-of-freedom airfoil, and used linear superposition to

add plunge into the system. In this thesis an attempt is made to model the non-linearities

3
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in both degrees of freedom. The treatment of the aerodynamics comes from the works of

Leishman and Beddoes (1986), for the one-degree-of-freedom airfoil, and Leishman and

Tyler (1992) for the two-degree-of-fteedom airfoil.

1.2 Introduction to Dyoamic StaIl

One source of non-linearities in the aerodynamies is due to separation of the flow

over the airfoil at large angles of attack. When separation occurs., the airfoiI loses its lift

and is said to stail. For a steady airfoil (constant angle of attaek) this is referred to as

statie stail, and the angle al which this occurs al is known as the statie stail angle. For

large unsteadiness in the airfoil, the stalling process is delayed to larger values of pitch,

and there is aIso hysteresis in the reattachment of the tlow over the airfoiI when the pitch

cornes back below the statie stail angle. This is a simplified explanation for a complex

series of events that occurs in this dynamic situation, and is referred to, appropriately, as

dynamic stail. Large excursions in lift and pitching moment also occur during dynamic

stail. These effects are caused mainly by vortex flow over the airfoil.

Although the non-linear differential equations, which describe the tlow over the

airfoil, may be solved numerically., this would require enonnous computational power. A

semi-empiricaI model for dynamic stail is therefore necessary. Many different semi­

empirical models for dynamic stail exist: (Bielawa et al.., 1983; Leishman and Beddoes,

1986; Tran and Petot., 1981). The one adopted in this thesis is the model of Leishman and

Beddoes, as mentioned before. Their model involves the indiciaI response of the airfoil

(i.e.: response of the airfoil to a step input). This fonnulation is very versatile because., by

simple superposition, the response of the airfoil to arbitrary forcing May he found. Also,

4
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according to Leishman and Tyler (1992), the plunge degree-of-freedom may be added

easily, with only minor modifications to the model to account for non-linear plunge

effects.

The aeroelastic model described above allows for the creation of a computer

prograrD, which will output the approximate non-linear response of the airfoil to a given

input. The next step is to interpret this response. Non-linear dynamics is a relatively new

science and revolves around the mathematical concept of chaos. The possible existence

of chaos in the system described in this thesis is a major focus.

1.3 Introduction to Non-Linear Dyoamies and Chaos

Chaos is a relatively new concept in mathematics, although scientists such as

Henri Poincaré (1854-1912) have postulated its existence in earlier centuries. It took the

breakthrough of digital computing, which allowed the solutions to Many non-linear

problems to be found, to shed light on this phenomenon. Chaos is a misnomer,

traditionally used to describe complete disorder; this is not the case in the mathematical

definition. Simply put, a chaotic response is a response whose long-tenn behaviour can

not be predicted because of its extreme sensitivity to initial conditions. A small error in

the measurement of the input means a large error in the output, thus destroying the

chance of predictability. Chaos has been observed in Many physical systems including

turbulence in fluid mechanics, various chemical reactions, weather systems, the bouncing

of billiard balls etc... (Moon, 1987). The amazing thing about chaotic solutions is that

they arise from deterministic systems, for which there are no unpredictable or random

inputs.

5
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In linear Systems, solutions are easily defined; non-linear sYStems, however,

display a more complex behaviour. The state of dynamical motion is called an attraetor.

This name bas been adopted because, under the influence of dissipation, dynamical

systems are attracted to these states after the traDsient motion has decayed. Non-linear

systems can display the same type of motion as linear systems, but they may also display

motion peculiar only to non-linear sYStems. The general categories of attraetors are as

follows: 1) equilibrium 2), periodic motion, called a limit cycle 3), quasiperiodic motio~

and 4) chaotic motion, sometimes called a strange attractor. Attractors are best identified

in the phase plane, where state variables are plotted against each other (i.e.: pitch rate

versus pitch, plunge rate versus plunge). Equilibrium points show up as a single point in

the phase plane, limit cycles show up as closed loops, quasi-periodic motion shows up as

an open loop, and chaotic motion fills up a portion of the phase plane. Chaotic motion has

very distinct characteristics. Sorne of these charaeteristics are: 1) sensitivity to initial

conditions, measured with Lyapunov exPOnents; 2) strange attractors in the phase plane

of the system, measured by Poincaré maps; 3) fractal geometry in the phase plane,

measured by Poincaré maps and fractal dimension; 4) broad band character in frequency

spectrum of the output, measured by the fast Fourier transfonn.

Using various tools, sorne of which a1ready have been mentioned briefly, the

nature of the motion May be identified. The motion May also be compared ta classical

examples of chaos, to examine for similarities, and hence, POssibly have a better

understanding of the origin of the chaos. Also, through the use of bifurcation plots, the

routes to the various states of motion, as a system parameter is altered, May he analyzed.

6
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Figure 1.1, shows a summary of aIl the classes of motion that a non-linear system cao

produce.

The aeroelastic model being used in this thesis is derived from fundamental

differential equations yet because it is semi·empirical in nature Many of the tools used to

analyze non·linear motion cao not be used here. This is because, ofte~ the tools used to

analyze non·linear response take advantage of the differential equation. Therefore the

tools used in this thesis are restricted to ones that do not require the differential equation

as a reference.

1.3.1 Useful Tools

Time History

The time history of the response of the airfoil is a useful plot. Its usefulness lies in

the fact that one May visualize the motion of the airfoil from this plot and relate it to

physical reality. Other plots tend to be more abstracto From this plot one sees the way that

the airfoil eoters and exits stail, and may compare it to other examples with different

system parameters (i.e.: stiffness, initial conditions etc...). This type of plot gives a lot of

qualitative infonnation about the response. From the time history one may identify the

following qualities of the response: 1) the response May be identified as being of high or

low frequency; 2) the resPQnse may be identified as being periodic; 3) if the response is

period two or greater, one May see the relative amplitudes of the constituent periodic

responses; 4) if the resPQnse is chaotic this plot will seem. to be random, aIthough it May

aiso be quasi·periodic or in its traDsient state; 5) if the response is not a1ways chaotic, one

May examine the region between chaos and regular motion and see how they interact. To

7
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get the MOst infonnation from this plot the following rule will he followed. The plot

should he examined after many cycles, 50 that there is no transient motion.

Fast Fourier Transform (FFI)

The fast Fourier transfonn is a technique which can further help to distinguish

between periodic, quasiperiodic and chaotic motion. The frequency spectrum plot

produced using this technique reveals the constituent frequencies that can be used to

reproduce the response using the superposition of periodic solutions. It also reveals the

relative amplitude of these constituents. Non-chaotic solutions are equilibrium points,

periodic solutions or quasi-periodic solutions. They are characterized by pronounced

pea.ks, without a broad-band character, and are distinguished in the following way. An

equilibrium point has no constituent frequencies, a periodic solution has a finite number

of frequencies, depending on the number of periods, and these frequencies are whole

nurnber multiples of each other, a quasi-periodic solution has the same general character

as a periodic solution except for the faet that the constituent frequencies are not whole

nurnber multiples ofeach other; they are incommensurate. Chaotic solutions, on the other

hand, have a broad-band character made up of infinitely many frequencies, they appear to

have random noise surrounding the main frequencies.

The accuracy of the FFT is important. It is therefore necessary to define an error.

The error of the FFT is simply the resolution of the FFT plot, which May be found as

follows. The airfoil response is sampled at a rate of J: = 11~. This is the maximum

frequency possible for the response. The resolution of the FIT is therefore the sample

8
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rate divided by the total number of points or iterations that are sampled:

tif, = fs /#i/er. = (lI ~)/(#iter.) Converting to rads/sec yields: Aco, = (27t / ~)/(#iter)..

In the program used in this thesis the lime step size is defined by the number of iteration

that the program runs per cycle of the pitch forcing function:

9

!Y =(21t 1CO forcille) /(#i/er.l cycle of pi/ch forcing) .

simplifying gives the foUowing FFT error definition:

Combining expressions and

•

FFT En-or = Am,. =coforrille 1(#of pitch forcing cycles sampled)

or converting to non - dimensiona/ parameters

FFT En-or =~, =k forci. /(# of pitch forcing cycles sampled)

Note, subscript s refers to sampling, and subscript r refers to resolution.

Phase Plane Plots

The phase plane plots are the plots that are first examined for the topological

behaviour of the response of the airfoil. By plotting the velocity versus the displacement

(angular or translational), one may examine the non-linear response of an airfoil in tenns

of the geometry of the attractor in phase-space. These plots offer infonnation similar to

the rime history plots, but in a more condensed fonn. Periodic solutions fonn closed

loops, equilibrium points show up as a single dot, chaotic solutions fill up a region in this

space, are open loops and fonn "strange" attractors. These plots are used as a further

indication of chaos, which May not be obvious from looking al the lime history.

The trajectory of the system in phase space is called a tlow. In dissipative systems

these flows are attracted to a geometrical shaPe called an attractor. The region

surrounding the attractor, which defines the set of initial conditions whose steady state
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lies within the attractor is called the basin of attraction. One of the characteristics of an

attractor is the contraction of areas 3SSOCiated with the attraction of the initial conditions

to their final state. For example, in a periodic response, areas containing a set of initial

conditions contract ioto a single curve called the limit cycle. This means that there is a

loss of infonnation concerning initial conditions. Strange attractors, which are the

hallmarks of chaos, have certain additional characteristics. The most important being

sensitivity to initial conditions. This means that tlows starting very close to each other

will diverge quickly from each other. This may seem contradictory to the idea of

attraction but it is not, the paths MaY diverge but they will still dwell within the same

attractor, meaning that the maximum distance between neighboring trajectories will he

the maximum length of the attractor. Another characteristic of a strange attractor is that

its dimension is fractal, which will he discussed later.

Poincaré Maps

Poincaré mapping is a technique which samples the phase-space stroboscopocaly

at intervals of T =27t / IDf' where the denominatoT is the frequency of the forcing

function or another characteristic frequency. It is a condensed fonn of the phase-plane,

which aHows more cycles to be examined, while extracting only the useful infonnation

from them. The Poincaré map cao be used as another tool to distinguish between the

various types of motion, and cao also provide sorne additiona} infonnation. Periodic

solutions appear as single dots on the Poincaré map, the number of dots represents the

number of periods. Quasi-Periodic solutions apPear as c10sed loops because the sampling

frequency is not a whole number multiple of the constituent frequencies. Chaotic

10
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solutions appear as elaborate designs in this map and often have fractal geometry. This is

where the greatest contribution lies: this map cao be used to identify chaos, it is like a

chaotic fingerprint. This is a profound finding, although chaotic solutions cannot he

predicted because of the extreme sensitivity to initial conditions, similarities may he

found in chaos. This means that even though non-linear systems are modeled using

various degrees of accuracy, depending on which programming scheme is used, the

chaotic solutions should display similar fonns on the Poincaré maps. This justifies the

whole premise ofusing approximations to model non-linear systems.

ReturnMaps

Poincaré maps are two-dimensional maps, retum maps are one-dimensional.

There are two types of return maps that are of interest: the tirst and second retum maps.

In retum mapping the infonnation contained in a Poincaré map is condensed by removing

the rate terms. This is accomplished by plotting the pitch tenn versus either the pitch tenn

immediately preceding or that preceding it by two samples on the Poincaré map. The

usefulness of these maps lies in their comparison to famous maps that are known to

exhibit particular behaviour. These maps include the Hénon map and the Logistic map.

Lyapunov Exponents and Fractal Dimension

Lyapunov exponents and fractal dimension are used as ways to quantify chaos. A

positive Lyapunov exponent implies a chaotic solution, and fractal dimension in the

phase-space implies the existence of a strange attractor, which is the elaborate structure

underlying chaos.

11
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The Lyapunov exponent measures the sensitivity of the system to changes in

initial conditions. It measures the degree of separation between solutions, starting at

points near each other. Ifwe imagine a smaIl sphere in phase...space ofdiameter do, which

represents a collection of ail possible initial conditions, then as the system evolves this

sphere deforms ioto an irregular ellipse with maximum diameter d. The Lyapunov

exponent measures the deformation through the following equation.

d = d 2;'(1-1,,>
o

where Â, is the Lyapunovexponent.

To find the true exponent one must do this calculation over different regions of

the phase space and average the Lyapunov exponent. This task is beyond the scope of this

thesis; however, a plot showing the divergence between solutions, with initial conditions

separated by a minute amount, cao demonstrate a sensitivity to initial conditions and will

be done for certain examples as an indication of chaos. In fael, this plot cao he used as a

rough estimate of the Lyapunov exponent.

Ali attractors leave gaps in the phase space; fractal dimension is a measure of the

space that a response occupies in the phase...space. More specifically it measures the

extent to which an orbit fills up a subspace in the phase-plane. Strange attractors have a

non-integer fractal dimension, and strange attractors almost always indicate chaos. This

measurement is aIso beyond the scope of this thesis. Rather, as a further indication of

chaos, fractal geometry will be looked for in the chaotic attractors. Fractal geometry

simply implies complex patterns at many magnification levels, often having self-similar

structure.

12
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Bifurcation Plot

Bifurcation plots are very important plots; they a1low one to examine the way a

system's steady state response changes as a sYStem parameter is varied. They a1so allow

the route that a system takes ftom one type of motion to another to he identified, and

more imPOrtantly, the way a system goes into and out ofchaos. A bifurcation is a sudden

change in behaviour in the response of a system. Bifurcations are characterized by the

changing of a resPOnse ftom equilibrium to a periodic, or quasi-periodic, or chaotic

vibration (in any order), and they may also be characterized by a change in period of the

response (i.e.: period 1,2,3... ).

1.3.2 Identification of Routes to Chaos

The identification of routes to chaos requires the use of the bifurcation plot. It is

in this plot that the transition from one type of motion to another can be observed.

Unfortunately bifurcation diagrams cannot distinguish between quasi-periodic and

chaotic vibrations; it is therefore necessary to cross-reference this plot with the other

plots mentioned before to make that detennination.

There are many ways that the response of a system may become chaotic; the only

way to classify the route is to compare it to a weil established one. Three general

categories of routes sha11 be examined; it is important ta note however that the route

taken by the system under study May be a combination, and may not be as clearly defined

as the classical examples. They do however serve as a handy framework.

13
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Period-Doubling

In the period doubling scenario, the system starts off as a periodic response and

the~ as a system parameter is varied. the response undergoes a bifurcation whereby the

period of the Periodic response doubles. As the system parameter is further varied the

response experiences another period doubling, and this behaviour continues until the

solution becomes chaotic. This route has been discovered in a difference equation of the

fol1owing foon:

When the parameter, Â., is varied, period doublings occur, and the values at which they

occur follow this scaling rule:

À -À
" ~I ~ 4.6692016 (FeigenbalDt number)

ÀIf+I- "

Note, in the cases that are going to he studied it will be impossible to verify this rule

because there will be an insufficient number of bifurcations, and the route to chaos will

not be govemed exclusively by perlod-doubling.
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Quasi-Periodic Route

This route to chaos comes about when there is a transition from a quasi-periodic

motion to a chaotic motion. It is characterized by the breakup of a closed loop on the

Poincaré map. This breakup can be in the form of folding, development of \\Tinldes, or

unraveling. There are more specific theories on the transition between quasi-periodic and

chaotic motion, but because of the difficulty involved in identifying them they will not be

used as comparison tools. Some examples include the Ruelle-Takens Scenario, torus

breakdown and torus doubling (Nayfeh and Balachandran, (995). Therefore, quasi­

periodic routes will be identified as such, when a quasi-periodic motion turns into a

chaotic motion by distortion of the toros structure (closed loop on the Poincaré map).

Intermitteney Route

The intermittency route to chaos describes a situation where regular periodic

motion is interrupted by bursts of chaotic motion. This situation becomes more prominent

as a system parameter is varied; meaning that the period of chaotic motion becomes

longer and longer until the motion is completely chaotic.

There are three types of intennittency, appropriately named type 1, type II and

type III. The distinction between these three types of intermittency depends on definitions

of Floquet theory, which describes the stability oflimit cycles. Other important tools used

to identify intennittency are the retum maps. Comparison of the tirst and second retum

maps with classical examples can be used to give an educated guess as to whether the

motion is oftype 1or III intennittency (type II is very unconunon). To he more certain of
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the choice would require the use of the goveming ditferential equatio~ on which Floquet

theory depends.

1.4 Thesis Objectives and Summary

The main objective ofthis thesis is to identify and classify as Many ditferent types

ofmotion that the aeroelastic system under study can produce in a broad range of system

parameters. Another objective is to determine the route &om which the motion changes

from one type to another (i.e.: periodic, quasi-Periodic, chaotic) as a system parameter is

varied. The focus, of course, being chaotic motio~ and the route thereto. Comparisons

with classical cases will be used as much as possible, and physical explanations will he

used to explain sorne of the phenomena whenever possible. A secondary objective of this

thesis is to explore aeroelastic instabilities, whenever they are encount~ to see how

these instabilities are manifested in the non-linear system. Comparisons to instabilities

found in the Iinearized system May be used to further this objective. The tirst part of the

thesis will deal with the design and testing of the aeroelastic model, while the latter part

will deal with the interpretation of the results obtained from the model.

The second chapter presents a very detailed derivation of the aerodynamic model.

This is necessary because the aerod}11amic model is pieced together from severa!

different papers written by Leishman and/or Beddoes. These papers include misprints,

and do not explain every detail of the Leishman and Beddoes model. It is therefore

necessary to derive each portion of the model from tirst principles using aerodYQamic

theory, so as to justify the modifications and extrapolations that were made. This chapter

also discusses in detail the numerical methods that were used in the aerodynamic Madel.
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This facilitates the integration of the aerodynamic portion of the model into the overall

aeroelastic model, which was based on the work of Lee and leBlanc. The third chapter

tests the aerodynamic model. This is done by comparing its results to experimentaI data

for airfoils subject to well-detined inputs (Le.: hannonic or ramp) obtained from the

relevant papers and by comparing qualitative trends to aerodynamic theory.

The fourth chapter deals with the derivation of the final aeroelastic model. Once

again it is derived in detail to assure that it is correct. This chapter is basically a

reiteration of Lee and LeBlanc's wode, with the main difference being that a different

aerodynamic model is used. Special attention is therefore paid to the integration of the

Leishman and Beddoes dynamic stail model into the numerical framework of Lee and

LeBlanc's work. The fifth chapter tests the overall aeroelastic model. This is done by

defining numerical errer tenns and their resPective tolerances, and assuring that the

model faIls within these tolerances.

The sixth chapter focuses on the one-degree-of-freedom system. It begins with a

description of the system, and the simplifications that were made in order to obtain a one­

degree-of -freedom system. The non-linear analysis techniques, discussed in section 1.3,

are then used to analyze four different cases, which were defined by bifurcation plots.

Many different types ofmotion are identified, including chaos. Severa! different routes to

chaos are also identified. Aeroelastic instability is explored in the fonn of negative

damping supplied from the aerodynamics when oscillating around the stail angle. This

allows for a self-excited oscillation, which was discovered in one of the cases.

The seventh chapter explores the two-degree of freedom system. Once again the

chapter starts with a description of the system and the simplifications that were made.
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Binary flutter is shown to exist in the non-linear system. A linear flutter boundary is

derived, and is shown to correspond weil with that of the non-linear system. One case is

studied, which is defined by a bifurcation plot. The presence of chaos is found near the

flutter boundary, and the significance of this is discussed.

The final chapter summarizes the main conclusions that were made throughout

the thesis. It also suggests some ways of improving the model, and discusses sorne of the

other capabilities that were built into the model but not explored. It is therefore meant as

an evaluation on how weil the thesis accomplished its objectives, and perhaps to suggest

avenues for future research for those readers who are 50 inclined.
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a'nes of Motion in Non1inev Detenninjstjc Systems

Regular MotioD-Predic:table: Periodic: osa1latioDS, quasipe:'iodic: motion; not sen­
sitive to chaDges in parameters or initial conditions

Regular MotioD-Uapredic:table: Multiple rqular attrae:tors (e.g.y more than one
periodic: motioD possible); IODg-time motion sensitive to initial conditions

Transient Chaos: Motions tbat look c:haotic: and appear to have cl1aracteristics of a
strange attraetor (as evidenc:ed by Poincaré maps) but mal eventuaUy seule iDto a
regular motion

Intermittct Chaos: Periods of reguIar motion with transient bursts of chaotic
motion; duration of reguIar motion ïnterVal UDpredietable

Limited or Narrow-Band Chaos: Cbaotic: motions whose phase space orbits remain
close to some periodic: or reguIar motion orbit; specua often show narrow. or
Iimited broadeniDg of certain frequenc:y spiUs

Large-Scale or Broad-Band Chaos-Weak: DyDamics an be descnèed by orbits in
a low-dimensioDal phase space 3 ~ ft < 7 (1-3 modes in mecl1anica1 systems)
and usuaDy one c:aD measure fractal dimensions < 7; chaotic orbits traverse a
broad region of phase space; spectra show broad range of frequencies especially
below the driviDg frequenc:y (ü one is present)

Large-Scale Chaos-Strong: DyDamics must be desaibed in a high-dimensional
phase space; large number of essential degrees of freedom present; difficult to
measure reliable fractal dimension; dynamiC3l theories c:JITendy unavailable

Figure 1.1: Classes of Motion in Non-Linear Deterministic
Systems; Reproduced from Moon (1987).
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Chapter 2

The Aerodynamic Model for

Dynamic StaIl

2.1 Introduction

The motion ofan airfoil in pitch and heave is explored in and out ofdynamic staIl.

This investigation is then expanded to include an aeroelastic analysis of the airfoil. An

indicial fonnulation is used for the attached flow regime. This method is implemented

because it lends itself to arbitrary forcing, which is usually found in aeroelastic analyses.

Vortex lift, a phenomenon in dynamic stail, is represented empirically. The corresponding

vortex induced moment is modeled by allowing the center of pressure to displace itself

during dynamic stail. The problem at hand is highly non-linear, mainly due to the moving

separation point which travels from the trailing edge to the leading edge as the airfoil

proceeds from lower to higher angles of attack. The separation point travel is modeled

independently from the other phenomena and can be considered as an additional degree

of freedom. Adjustments are made to the linear attached flow solution to account for the

non-linearities. The onset of leading edge separation introduces the airfoil into the

dynamic stail region. This leading edge separation is abrupt, unlike the trailing edge
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separation, which is progressive. A criterion is used to introduce leading edge separation

based on the attainment ofa critical leading edge pressure.

The model used to study the dynamic stail ofa NACA 0012 airfoil was presented

by Leishman and Beddoes (1986). The objective of this model was to synthesize unsteady

aerodYDamic data, 50 as to he able to predict the resuIting unsteady loading. Although the

model is approximate and semi-empirical in nature, it represents the key physical events

of dynamic stail. To understand the features of the model one must tirst understand the

main events of the dynamic stail process.

Dynamic stail is not a single event. It is a complex series of events whereby an

airfoil experiencing unsteady motion stalls at an angle ofattack greater than the static stail

angle. The resuIt of this excursion past the static stall angle also results in excursions

from the static lift and pitching moment quantities as weil as, in the case of oscillating

airfoils, hysteresis in the reattachment process. The physical events of dynamic staIl can

be seen in Figure 2.1. The main events are as follows: 1) the statie stail angle is exceeded;

2) flow reversal within the boundary layer causes the formation of a vortex at the leading

edge of the airfoil; 3) the vortex detaches from the leading edge and convects downstream

over the airfoil, meanwhile moment stail occurs whereby the pitching moment diverges

towards a relatively large negative value; 4) the vortex reaches the trailing edge, signaling

the beginning of lift stail as weil as the maximum negative moment; 5) the f10w becomes

fully separated; 6) the boundary layer reattaehes, initially at the leading edge of the airfoil

and then progressing ta the rcar. The main features of the analytical model directly

correlate to these events. The model is separated iDto sub-systems and describes, in an
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open loop sense, a simplified model of the dynamic stail process of an airfoil. The

non-linear parts of the model are manged in an open-loop chain, where the output from

one sub-system of the model feeds ioto the next sub-system. The systems, their

significance with respect to the dynamic stail events, and the resulting equations are

discussed next.

2.2 Derivation of the Semi-Empirical Aerodynamic Model

2.2.1 Objective

The purpose of this section is: 1) to derive the analYtical portion of the

aerodynamic model, showing ail the key features of its derivation; 2) to list ail of the

pertinent assumptions; 3) to justify the empirical portion of the model; and 4) to comment

on the approach being used with respect to the main objectives of this thesis. These

objectives being to maximize the accuracy of the unsteady aerodYDamic loads whilst

minimizing the use of computer resources, and to create a model which is physically

representative of the phenomenon ofdynamic stail.

2.2.2 Preliminaries

The most exact derivation for the tlow around a three-dimensional body executing

unsteady motion without any restrictions, taking ioto account ail of the features of the

flow (including separation) was discovered independently by M. Navier and G. Stokes.
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The resulting set of partial differential equations is known as the Navier-Stokes

equations. These equations are highly non...linear, and cao ooly be solved using numerical

techniques, which require a large amount of computer resources. Strategic assumptions

cao be made, however, to simplify the analysis. The approach that will be used here is

adopted from a paper written by Leishman and Beddoes which was presented at the 42nd

annual forum of the American Helicopter Society (Leishman and Beddoes, (986). The

approach used by Leishman and Beddoes splits the problem into sections: 1) the main

section of the problem involves the attached flow solution, which is linear; 2) the second

section involves the extension of the model to the non...linear regime, by taking ioto

account trailing edge separation; 3) the third section detennines a criterion for leading

edge separation; and 4) the final section incorporates the effects of vortex f10w and the

dynamic staIl event. AIl four sections are linked and fonn an open loop chain. In this

manner the problem has been dissected ioto manageable parts of physical significance.

The strategy used MaY be summarized as follows. Make enough assumptions to simplify

the problem and then, through the use of empirical tools, aCCOUtlt for these assurnptions.

2.3 Attached Flow, Linear Regime Solution

The first step of the strategy requires making assumptions in order to obtain a

linearized solution. Linearized solutions offer many advantages. One such advantage is

the use of a transfer fonction, which aIlows the explicit solution to a well-described input

to he found. If an arbitrary input is used, which is the case for aeroelastic responses, a
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solution May aIso be found by the linear superposition of idealized inputs, which are used

to approximate the arbitrary input. The most convenient input for such an approximation

is that of a step (or ramp) change of input. This class of input produces what is known as

the indicial response. The derivation of the iDdiciai respoDse is the main objective ofthis

section.

2.3.1 Fundamental Equations and Boundary Conditions

To fully appreciate the techniques employed to linearize such a highly non-linear

problem, one must start from the beggining. In the case ofa fluid flowing over a body one

must tirst derive the equation{s) goveming the dynamics of the surrounding fluid. The

tirst set of assumptions that are made to simplify the model are as follows: 1) the f10w is

ÏDVÎscid; 2) the fluid is a frictioDless perfect gas; 3) the thermodynamic processes are

isentropic; 4) aU processes are reversible.

When the flow is still attached over the airfoil, viscous effects are localized within

a thin boundary layer, and therefore, for the most part the flow May be considered

inviscid. The effects of the boundary layer which are non-linear May then be studied

separately and subsequently added into the model. The other assumptions also degrade

within the boundary layer.

When studying the flow of a perfect gas., the state of the flow May be described

completely by specifying the pressure, density, temperature and all three components of

velocity in mutually orthogonal directions as a function of position in three-dimensional

space. There are therefore six variables that need to be solved for. The tirst equation,
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called the continuity equation, is round by applYing the condition of conservation of mass

through a control volume. Three more equations may be derived by rea1izing that the

change of momentum of a tlow in a given direction with respect to time is given by the

change of pressure of that fluid in that direction in addition to external forces. These

equations are a result of the conservation of momentum. Two more equations are needed

to solve for all six variables. These last two equations come from the perfect gas law and

the isentropic relation. These six equations which May be found in any fluids textbook

create a detemùDate set of equations for which the state of the fluid flow May be found.

To do 50, however, one must integrate the non-linear partial differential equations, which

is impossible except by numerical methods. Simplifications need to he made to achieve a

linearized solution.

An excellent way to simplify the problem is to reduce the number of unknowns.

This May be done through the definition ofpotential functions for velocity or acceleration

(related to pressure). The potential function for velocity reduces the number ofunknowns

by two through the relationship

25

v=V<I> (2-1)

The existence of the velocity potential for the flow, however, requires that S) the

Dow is irrotational, implYing that the tluid particles have zero angular momentum. This

is Dot an assumption however; it May be proven through the use of Kelvin's Theorem:

• Dr =jdp

Dt c: P
(2-2)
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where D{ )/Ot is the substantial derivative, i.e.: the time rate of change of a quantity for

an individual fluid element and not for a control volume which is denoted by d( )/dt.

The quantity r is known as the circulation and is related to the curl of the

velocity vector as follows:

26

(2-3)

Equation (2-2) turns out to he equal 10 zero because of the perleet gas assumption. This

implies that the rate of change of circulation with time is zero. Since the circulation is

initially zero in the problem under study, this implies that the circulation is aIways zero

around a closed curve of the same particles. This proves the irrotational nature of the tlow

and allows for the use ofa velocity potential function.

The velocity potential aIlows the problem at band to he simplified greatly, yet the

fluid pressure is of more importance in the detennination of the lift and moment

coefficients, hence, an expression relating pressure to the velocity potential is required.

Using the momentum equation and the velocity potential such a relationship can be

found, and is known as Bemoulli's Equation:

i)cI) il. il fdp
V[-+-+ -]=0

dt 2 P
(2-4)

After sorne manipulation a single differential equation may be obtained related

only to the velocity pltential

•
(2-5)
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~ -where a= VdP is the speed ofsound and V =V4> .

Finally, we have a single differential equation describing the tlow. However, this

equation is often too difficult to solve. We must therefore simplify our approach once

again. This leads to our next significant assumption. The sixth assumption is: 6) the

assumption of small disturbuces. This means that the variables over the disturbed

region (the region near the airfoil) have ooly a small difference compared to the free-

stream value, or ail variables are equal to their free-stream value plus a small

perturbation. This allows us to linearize the differential equation given in (2-5) using a

perturbation velocity potential ( CZ-' ):
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CI» =cft '+U_ . x (2-6)

Using the small disturbances assumption, and also assuming: 7) the speed of

sound remains constaDt over the disturbed region the final differential equation is

obtained

(2-7)

•

It is worth noting that assuming the speed of sound to be constant is not correct

for high Mach numbers. However, only subsonic flow is examined in this thesis. The next

assumption is therefore: 8) the flow is subsonic. This assumption aIso validates the

isentropic assumption, since only weak shock waves may develop over the airfoil.

Another fact, which is worth noting, is that the small perturbation assumption is no longer

correct at a stagnation point. These regions however do not occupy a significant
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percentage of the chord length ofan airfoil, which means that the linearized equation still

holds for the MOst part when examining the flow over an airfoil.

We now have a usable linearized differential equation for the velocity potential,

which may be used in conjunction with Bemoulli's equation to detennine the lift and

moment coefficients. (For a more in depth derivation see Bisplinghoff, Ashley and

Halfinan (1955).

Boundary Conditions

Now that we have a usable equation for the surrounding fluid tIow, we must fully

define our problem; this is done through the boundary conditions. The problem we wish

to examine is that of the tIow around an airfoil which is bath pitching and plunging. In

particular, we wish to determine the lift and moment coefficients. Boundary conditions

must be found and then simplified so that the problem remains linear.

The boundary condition of a body submerged in a fluid is that the normal

velocity of the ftuid with respect to the body surface be equal to the normal velocity

of the body. A function of the fOnIl j{x,y,z,t)=O may be used to define the surface of a

body. Note that it is not ooly a function of spatial variables but of time as weIl, which

incorporates the motion of the body as weil as its shape. The boundary condition reads as

follows in mathematical tenns:
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•
Df àf df àf df
-=-+u-+v-+w-=O
Dt dt àx ày dz

where u,v,w are the components of V=ut+ vJ + wk;

(2-8)
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In simpler tenns we see that the rate of change of the surface function.f=O with

respect to time does not change when following a fluid element, meaning that the element

is continually in contact with the surface and therefore has no perpendicular component

ofvelocity relative to the airfoil.

Equation (2-8) may now be applied to the problem at a hand. The problem is that

of a thin csmberless sirfoU (NACA 0011) pitching and plunging iD an airflow with a

ftuid velocity of U_ iD the s-cUrectfon. Once the velocity potentia. is found, the

pressure field may be foUD~ tbas aUoWÎDg the moment and lift coefficients to be

determined.

The surface of a wing may be defined by a function FuI1(x~y,z~t)=z-fu/l(~y,t)=O (u

and 1 denoting the upper and lower surfaces~ respectively). Plugging this function into

equation (2-8) we get
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~' al' al' af. '- =w =.f:!..1!!.!.. + u.!:L!!!.L +v~ for Z=Zu/l
dz dt dX dy

(2-9)

Another assumption which needs to be made in order to obtain linear boundary

conditions is: 9) the sirfoU is thin. Using this assumption~ along with the fact the u«U_~

the boundary condition May he changed so that il is defined at z=O since Zuf[== 0+/.. This

can be done using a Taylor series expansion about z=O, and ignoring tenns higher than

first order. The linear and homogeneous boundary conditions are thus obtained:

•
èJf..JI U àf..!1 &'; 0

w=at+ - dX lor z= +/-

where +/- denotes approaching zero from the positive or negative side, respectively.

(2-10)
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Finally, the last asswnption is tbat: 10) we bave a two-dimeDsioDai airfoU wbicb

is camberless aad symmetric. In this case the function defining the surface of the airfoil

is due exclusively to its motion and angle of attack. If the airfoil did have camber this

couId easily he superimposed. The boundary condition May then easily he introduced in

tenns of quantities such as pitch, pitch rate and plunge rate. This is done as per Figure 2.2

using the small perturbation assumption in a manner consistent with the previous

equations. The equation of the surface of the airfoil is then
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z.(x,t)=-h(t)-a (t)[x-(clla)/2] for -cl2 S x S cl2 (2-11)

where a is the non-dimensional distance from the mid-chord to where h is measured.

Hence, equation (2-10) gives:

• •
wa(x,t)=-h (t)-a (t)[x-(clla)/2]-U""u (t) for -cl2 ~ x S cl2 (2-12)

•

where the subscript a indicates on the airfoil and the other quantities are as defined in

Figure 2.2.

Equation (2-12) expresses the boundary condition on the airfoil surface and

therefore represents the input to he used to solve the problem. The boundary condition is

not merely a mathematical tool, it also has a physical meaning, W a is the normal

perturbation velocity of the airfoil. In equation (2-12) we see that there are two types of

terms, those that are a function oftime ooly, and those which also vary along the chord of

the airfoil.
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Boundary Conditions due to Angle of Attack or Plunge Rate

In equation (2-12) we see that the terms which contain either plunge rate or angle

of attack are functions of time only. In other words at any given time they are constant

along the chord. In the context of linear boundary conditions, these two tenns may be

.
used interchangeably by introducing an equivalent angle of attack of hl U 00 for the plunge

motion. The geometrical interpretatioD of this can be seen in Figure 2.3. In physical

terms, a change of angle of attack or plunge rate causes the airfoil to have a constant

nonnaI velocity across the chord. Sïnce the free-stream flow has no Donnai component of

velocity, a nonnaI perturbation velocity at the airfoil surface must be induced which is

equal to the normal velocity of the surface, such that the tlow remains tangential to the

surface. A sketch of the nonnal perturbation velocity, with respect to distance along the

airfoil, cao be seen in Figure 2.3.

Boundary Condition due to Pitch Rate

When there is a change in angle of attack it implies a pitch rate tenn. (This tenn is

absent from pure plunging motion.) Pitch rate differs from the previous tyPe of boundary

condition because its effect varies along the chord. The best way to describe the

perturbation velocity due to pitch rate is through a diagram, as in Figure 2.4. In equation

(2-12) we see, however, that the pitch rate tenn itself also has a component which does

not vary along the chord. This is caused by the choice of axes. This term may also he
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transfonned into an equivalent angle ofattack tenn. This will later he shown to be useful

in simplifying the results.

Along with the boundary conditions given above, there is a1so another condition

that needs to be addressed. When the above equations are solved for a potential flow

many solutions are possible, yet only one of them is correct. The Kutta condition must

then be implemented to get this solution. The Kutta condition in its simplest fonn states

that the flow must leave the trailing edge of an airfoil smoothly.

This coDcludes all of the necessary components required to obtain a linear

solution for the attached tlow case.

SolviDg the Unsteady Partial Differentiai Equation

The mathematical problem may he surnmarized as follows

Partial DifferentiaI Equation:

32

Boundary Conditions:

ë)«I)' ••- = wa(x,t)=-h (t)-« (t)[x-(cxa)/2]-U""Œ (t) for -c/2 ~ x ~ c/2
dZ

and the Kutta condition.

(2-13)

(2-14)

•
A usable linearized differential equation with the accompanying linearized

boundary conditions bave heen obtained. Once this bas been done there are many
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•

different methods which may be used to solve this problem. If: for example, an arbitrary

motion is imposed on the airfoil many different avenues may be taken to solve this

problem. The tirst approach would he to solve the differential equation directly using the

boundary conditions imposed by this motion. This approach however can be very tedious,

if not impossible, and does not take advantage of the tools that May be used in linear

analyses. A second approach involves obtaining solutions to this problem due to a

hannonically oscillating input, and then through the use of Fourier or Laplace transfonns

to construct the appropriate solution. A third avenue, which is of greatest interest to this

investigation, is to determine the solution to a step change in input, i.e. an indicial

response, then by using linear sUPerpOsition in the fonn of Duhamel's integral to

detennine the solution. The arbitrary input may be considered as the sum of many step

inputs, and therefore, due to the linear relation, the output to the corresponding arbitrary

input May be found by summing the step input responses (indicial responses). The

advantages of the last two approaches are obvious. First, there is no need to redefine the

problem every time a new input is introduced. Second, a basic architecture can be created

which May be manipulated by simple mathematical tool5 to produce the final result. One

must emphasize that, since this is a linear analysis, the particular choice of method lies in

convenience only, since, theoretically, all the above procedures will produce equivalent

results provided that the appropriate boundary conditions are satisfied. The indicial

response is the approach of choice in this investigation; however, the other methods are

used to CToss-reference the results, and are therefore also of great importance, as will he

seen in the following sections.
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2.3.2 Solution to Ineompressible Flow

A famous solution (Theodorsen, 1935) to the unsteady problem involves making a

further assumption about the tlow, this being that the tlow is incompressible. Theodorsen

solved this problem for a harmonically oscillating airfoil. The solutions obtained for the

incompressible case, are very attractive due to their simplicity. There is no such closed­

fonn solution for the compressible case. The approach adopted in this thesis is to include

the effects of compressibility semi-empirically. It is therefore very important to examine

the incompressible version ofthe problem.

The derivation of the solution for the incompressible case, for either a

harmonically oscillating airfoil or for an airfoil experiencing a step change in input, is

tedious. It would serve no purpose in deriving it in its entirety. Therefore ooly the key

features of Theodorsen's solution will be discussed. For the entire derivation many

sources may he consulted: (Bisplinghoff, Ashley and Halfinan, 1955; Theodorsen, 1935;

Thwaits, 1961). It is important to note that the solutions to the step change and

hannonically oscillating input are equivalent, in as much as one May he derived from the

other through the use of mathematical tools such as the reciprocal relation (Lomax, 1952

and 1968; Mazelsky and Drishler, 1952), or through transfer functions in the Laplace

domain (Beddoes, 1983). The hannonically oscillating airfoil will be discussed first,

because it is less abstract and more physically realistic than an airfoil experiencing a step

change in input.
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HarmoDie RespoDIe

When the tlow is incompressible equation (2-13) reduces to the Laplace equation:

35

V~'=o (2-15)

•

In physical tenns, in an incompressible tluid the speed of sound is infinite. This means

that every particle in the field uknows" what every other particle is doing and reacts

instantaneously. This fact also makes the rest of the tenns of equation (2-13) vanish. For

an oscillating airfoil the boundary conditions may be found by using equation (2-14) and

replacing a (t) and h(t) by hannonic functions, and finding their derivatives accordingly.

With the aid of Kutta's hypothesis a solution May be found. The exact linear solution for

a two-dimensional, hannonically oscillating airfoil in inviscid incompressible tlow is:

Input Motion

Output Loads

. .., _. -
L=21tpU_(c/2)C(k)[h+U_Œ+(c/2)(1/2-a)a.] + 1t pc-/4[h+U_a.-(c/2)aa.]

• •
M=21tpU,.,,<c2

/ 4)(a+ 1/ 2)C(k)[h+U_ a+(c / 2)(1/ 2-a)a]+

- . -
1t P c2/4[(c/2)ah- U_(c / 2)(1 / 2 - a)a - (Cl /4)(1/8 +a 2 )a ]

(2-16)

where k= 2; is the reduced frequency and L and M are the lift and moment.-
The first important feature of Theodorsen's solution is that it has been split iDto

two parts. One part is circulatory in nature, and the other part is impulsive or noo-
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•

circulatory. The tirst part of the solution is the circulatory part, it is recognizable by the

function C(k) which is made up of Bessel functions and is called Theodorsen's function

C(k)=F(k)+iG(k) (Bisplinghott: Ashley and Halfinan, 1955). These fonctions introduce a

phase lag in tinte between the input and the output, which is introduced by the unsteady

nature of the movement of the airfoil. As the airfoil is oscillating, the circulation around

the airfoil is changing. If Kelvin's circulation theory is to hold, counter vortices must he

shed into the wake, 50 that the total circulation is zero. Each counter-vortex has an effect

on the airfoil's lift and moment quantities, and their influence diminishes as they convect

downstream. If the airfoil is brought to rest these counter-vortices (or starting vortex) are

convected far downstream, and after a time will have no effect on the flow around the

airfoil. Ignoring these vortices in unsteady motion is part of the quasi-steady

assumption. Theodorsen's solution does not ignore them, it does assume, however, that

they ail lie on the same plane. This leads to our next assumption: II) the plaDar wake

assumption. Therefore, the function C(k) is a measure of the circulatory lag, if it were

equal to unity the solution would he the quasi-steady solution.

The next part of the solution is impulsive or non-circulatory in nature and stems

from the fact that the airfoil is displacing fluid when it is oscillating. In incompressible

flow any change in the field cao be accounted for instantaneously, and therefore, there is

no time lag between the input motion and the output quantities. It can therefore be

regarded as an added mass or moment of inertia, and is sometimes referred to as a virtual

or apparent mass tenn, it also accounts for the damping associated with the displacernent

ofair.
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Other interesting facts appear from further examination ofTheodorsen's solution:

1) the plonge motion may he used interchangeably with the angle of attack tenn, which

means that the only thing that distinguishes pitch and plonge is a pitch rate tenn; 2) oDly

the induced velocity aboat the 3/4 chord point Deed be specified to determiDe the

. .
circulatory lift and moment coDtribations WJ/4c=[h+U_ Cl + (c / 2)(1/2 - a)a ]; 3) the

circulatory lift acts at the quarter chord, meaning that if the moment is taken about the

quarter chard there will he no circulatory contribution in the moment tenn; 4) the

impulsive lift aets at the 3/4 chord. Ali these faets are important, and will he utilized ta

simplify the final results.

Indicial RespoDle

The next step is ta find the resPOnse ta a step change in motion, which can then he

used in conjunction with Duhamel's superposition integral to detennine the desired

solution to an arbitrary input. Two such solutions are of importance to this thesis. These

are the solution to a step change in motion (Wagner's solution), as weil as the solution for

entry of the airfoil into a sharp edged gust (Kussner's solution); see BisplinghotI: Ashley

and Halfinan (1955). Once again the solutions have two parts, the impulsive part and the

circulatory part. In incompressible flow the impulsive tenn reacts immediately ta changes

in motion. In the case of a step change in motion (pitch or plunge), during the tirst instant

of time, the rates of change of pitch and plunge are intinite; any time later they are zero.

This implies that the impulsive term must do the same according to equation (2-16),
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•
resulting in a singularity al t=O. Using Piston theory (Thwaits, 1961) one cao detennine

the impulsive tenns at t=O, which wouId include a Kronecker delta, but in the end they

are of no importance and are therefore ignored. They will be discussed in the subsequent

compressible regime section. The circulatory tenn, however, may he expressed as

follows.

Input Motion

Output Loads

M=O

(2-17)

where cf> (s) is Wagner's function , s=2U_ tic (non-dimensional time) and w3f4cl (1: step

input) is a step change ofinduced velocity at the 3/4 chord.

Wagner's function can be expressed in tenns of Theodorsen's function in the

following way, using the reciprocal relation
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21- F(k) 21DD G(k),(s)=- --sïn(ks)dk=I+- --cos(ks)dkx 0 k x 0 k
(2-18)

Wagner's function is not expressible in terms of well-known functions, however an

•
approximation, in terms ofexponential functions, is:

• (s) = 1-0. 165exp(-O.0455s)-0.335exp(-0.3s) (2-19)



(2-20)•

•

Kussner's function 'II{s)replaces Wagner's function when the input is a sharp

edged gust (see Figure 2.5).

'II{s) = 1-0.5exp(-O.13s)-0.5exp{-s)

For a more in depth treatment ofexponential approximatior.s refer to Peterson and

Crawley (1988).

2.3.3 Empirieal Extension to Compressible Regime

Ideally, a general closed fonn solution is desired for the compressible regime.

Unfortunately, the incompressible solution can only be used for low Mach numbers (i.e.:

M<O.3), and there is no such c10sed fonn solution in the compressible regime that worles

for any Mach number and for ail modes of input. Solutions have been found for various

Mach numbers (Mazelsky and Drischler, 1952), yet there is no easy correction factor that

can be added (as is the case for steady tlow) ta convert from the incompressible to the

compressible regime. The strategy taken by Leishman & Beddoes (1986) is ta do just

that, however. In other words they add a Prandtl-Glauert type correction factor into the

solution empirically.

In the same spirit as for the incompressible solution, Leishman and Beddoes

(1986) separate the problem into two parts. One part involves circulation and the other

does not. Besides the new correction factor for compressibility, added to generalize the

solution, there are a few more differences in the approach that is taken compared with the

approach taken to solve the incompressible case. In the incompressible regime there is a
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singularity at t=O when a step change in motion is made. This singularity is caused by the

impulsive term. Compressible tlow CUShiODS this singularity. This is due to the fact that

since the sPee(i of sound is now finite, there is an added lag in the response to any input.

The circulatory solution a1so has this new lag. This new lag tenn is the essence of the new

correction factor. Piston theory a1lows for a solution for the impulsive lift at t=O. Another

major difference is that it is no longer sufficient to simply specify the downwash velocity

at the 3/4 chord. The modes ofmotion must be separated. Two modes are involved in the

solution: 1) angle of attack and equivalent angle of attack, and 2) pitch rate tenn. This

means that iDStead ofhaving one Wagner function there must he two.

Many references give solutions for the indicial response for the compressible case

(Mazelsky and Drischler, 1952; Lom~ 1968). They have even separated the

contributions from circulation and non-circulatory terms (Reissner, 1951; Mazelsky,

1952). In this investigation two different approaches are used simultaneously to find the

indicial response. One approach is used to find the initial loading, which is impulsive in

nature, and another is used ta find the circulatory loading, which starts from zero and then

tends towards the steady state value.

Approacb #1: CircuJatory Loading

Lomax (1968) has shown that the circulatory loading is proportional to the

loading caused by the penetration of a sharp edged gust. For the incompressible case this

is given by Kussner, equation (2-20). The solution to the compressible case is given by

Beddoes (1980), and is shown in Figure 2.6 for severa! Mach numbers. The steady state
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•
solution is the same as the incompressible case scaled by the Prandtl-Glauert correction

factor l/.JI- M 2
• It is shown by Beddoes (l980) that by scaling lime by (l-Ar) the

compressible solution collapses almost perfectIy 10 a single solution (sec Figure 2.6):
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where s'=s(I-Ar).

'l'c(s) = lI.JI- M 2 (I-O.5exp(-O.13s')-O.5exp(-s'» (2-21)

The lift curve slope 27C/.Jl- M 2 for the compressible case is replaced by the

value Caa(M) which is a function of Mach number and is found experimentaIJy for greater

accuracy. Therefore the compressible version of the solution to a sharp edged gust is:

Incompressible

w
CI=21t [U ]'l'(s)-

Compressible

W
Cl= CIa(M)[U_ ]'Ifc (s)

(2-22)

It is shown in Figure 2.6 that the approximate compressible solution matches the

theoretical ones quite nicely, which justifies the simplification. Similarly, it cao he shown

that a modified version of equation (2-22) can be used to match the circulatory

component for a step change in angle of attack for compressible t1ow, i.e. a compressible

Wagner fonction:

CP: (s,M) = I.O-03exp(-o.l4(I- M 2 )s)-O.7exp(-053(1- M 2 )s) (2-23)

•

where subscript a denotes a step change in angle of attack, and superscript c denotes

circulatory contribution. The constants were detennined by Beddoes through a

combination ofexperiments, theoretical analysis and CFD models.



•
Equation (2-23) is only one of the admittance functions, which are necessary to

detennine the entire circulatory loading. Other similar functions must he found for a step-

change in pitch-rate and for the moment terms. For a complete explanation refer to

(Bisplinghoft: Ashley and Halfinan, 1955). This is unlike the incompressible case where

only one admittance fonction (Wagner's Function) was necessary.

The choice of axes is very important in compressible flow, as was also the case

for incompressible flow. With a strategic choice of axes, the number of admittance

functions necessary may be reduced. Once again by choosing the moment axis about the

quarter chord there is no circulatory contribution in the moment tenn. Also, if the pitch

axis is taken about the 3/4 chard the circulatory tenn resulting from pitch rate is

incorporated in the angle of attack and equivalent tenn. With this choice of axis the only

other circulatory term is the moment due to the pitch rate. The indicial function for this is

equal to:
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.;"'(s,M) = I.O-exp(-o.5(l- M 2 )s) (2-24)

where subscripts m and q denote moment and a step change in pitch rate, respectively,

while superscript c denotes circulatory contribution.

Therefore the circulatory contributions for compressible tlow are:.
hCna (s,M)=Cra(M).; (s,M)(a 3i4c + U

oo

)

CIIIq(s,M)=-(CIa(M)116).;m(s, M)(q)

(2-25)

(2-26)

•
•

where n and m denote Donnai force and moment coefficient and q=a cl Uoo • Note that

nonnaI force and Donnai force coefficient shaH be used interchangeably with lift and lift



•
coefficient. They are considered equal for small angles. The transition has been made here

because nonnal forces are used in the aeroelastic analysis found in Chapter 4.

If the piteh axis is not at the 3/4 chord, a 3/4c also includes a pitch rate tenn

according to the following relationship:
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a 3/ 4c = aotr-am + q(l / 2 - a) (2-27)

•

where a is defined in Figure 2.2 and off-axis refers to an arbitrary chord position. This

transfonnation is analogous to the transformation seen in Figure 2.4. The only difference

here is that the ~ chard point is the position of relevance and not the mid-chord.

We see that using this strategy, there is no increased complexity in the solution

compared with the incompressible case, except for the fact that there are two admittance

functions replacing the one Wagner function in the incompressible case.

Approach #2: Impulsive LoadiDg

The initial loading due to a step change in motion can he shown to he entirely

non-circulatory. Piston theory cao he used to detennine the initial value. Purely impulsive

loading occurs when the air is not flowing, i.e.: U_ =0. Using equation (2-13) with

U_ =0, and also assuming that for the first instant in time aIl the elements of the airfoil

act as small pistons moving in the z-direction only, we get the acoustic differential

equation:



•
with the foUowing boundary condition

ê)cI)'- =K(t =0, x) ./Or z = O. t > 0 (ie: step change)
dz

(2-28)
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Without further explanation this equation, in conjunction with the linearized

version of Bemoulli's equation (equation (2-4», gives the following relationship, refer to

Appendix I-C for a complete derïvation):

(2-29)

where wa(x) is the downwash along the chord. For each mode of input as shown in

Figures 2.3 and 2.4, the following values ofw.(x) are obtained. For a step change of angle

ofattack the downwash is

•
wa(x) =-(a 3/4cU_ + hl·

For a step change ofpitch rate at the 3/4 chord the downwash is

wa (x)=qU..,(3/4-x/c ).

(2-30)

(2-31)

Substitution of (2-30) and (2-31) into (2-29), and integration along the chord using the

expressions

•

IleC (/=0)=- /1C (X,I=O)~
" c 0 p

gives the following expression for the impulsive loading:

(2-32)

(2-33)

(2-34)



• -1
Cl (t =O)=-(q),., M

-1
C~@1I4C(t= 0) = 12M (q)

(2-36)

(2-37)
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It is known from the solutions offered by various references (Mazelsky, 1952;

Beddoes, 1980; Leishman and Beddoes, 1986) that the initial impulsive loading decays to

zero in an exponential manner. The ooly thing that need be addressed now is how Many

exponential functions need he used, and what are their time constants. Fortunately there is

an explicit solution for the indicial response for the first few semi-chords of airfoil travel.

ft was presented by Lomax (1952) whereby an analogy was made between the three-

dimensional steady-state problem and the two-dimensional unsteady problem. In its

simplest fonn it involved considering the time variable as a third spatial variable. The

2M
indicial response was evaluated explicitly from 0 S s S M + 1. The explicit solutions now

allow us to evaluate the time constants for the impulsive loading by realizing the

following:

dCcirculDtOry dC;nrpuls;\'~
ds + ds (at t=O) (2-38)

•
For the most part one exponential function was used for the impulsive part. Refer

to Appendix l-A for the derivation of the time constants. Finally we are able to write the

total linear indicial response for an airfoil:
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Angle ofAttack and Equivalent

(2-39)
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(240)

Pitch Rate al the 3/4 chord

(241)

(242)

•

2.3.4 Numerical Procedure

After a usahle indicial response has heen fonnulated~ it must he used in

conjunction with Duhamel's integral to tind a solution to an arbitrary input. A finite

difference approximation to Duhamel's întegral can he used to detennine the cumulative

effect from an arbitrary lime history of input. To he able to determine the accuracy of the

numerical approximation it must be cross-referenced with both experimental and

theoretical results. Sînce it is physica11y impossible to create an idealized step input, it is

more advantages to examine hannonic oscillations. There must be a way, however, to

relate any errors back to the indicial response. The easiest way to do this is by

detennining the transfer function.



• The Transfer FuudioD

If we take the circulatory coefficient of lift for a step change of angle of attack,

and transform it to the Laplace domain we get:

Step change ofangle ofattack a drtP)= 1/p;

Output
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Time Domain :

Laplace Domain: (2-43)

where p=Laplace variable, AI=O.3, A2=O.7,T.=cI(2*O.14*(l-M2)*Uoa )

T2= cI(2*O.53*(l-M2)*Uoa ) and the time domain output comes from equations (2-24) and

(2-25).

From (2-43) the transfer function May be easily found by realizing that (l-A.-A2)=O and

dividing (2-43) by l/p to give:

(2-44)

Now we need only replace a etJW) by the desired input and then transfonn back from the

Laplace domain to the lime domain to detennine the response. Sorne of the other transfer

•
functions are:

C/
1fU (p) 4 1;p

a(p) =M[l+1;p]
(2-45)



•
where TI is given in Appendix I-A, and

C11lq(p) -1 T"p
q(p) = M[l+ ~p]

where Tq =TI.

(2-46)
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•

If: for example, the response to a harmonic input is desired where a (t)=sin(wt) ,

w being the ftequency of the osciUatio~ one would simply replace a (p) by

1 1 k
-[ 2 1 2]' or for the response to a ramp input a (t)=kat, one would use a(p)=-1-.
w l+p w p

In this manner mistakes found in one type of input cao be used to improve the solution to

another type of input. Hence, we see one of the great advantages of linear solutions. In

fact it is through this metbod that Beddoes detennined the time constants for the

circulatory lift functions. Using a more rigorous program (LTRAN 2) and experiments

using both oscillatory and ramp inputs Beddoes was able to detennine accurate

coefficients for the circulatory functions see Beddoes (1982).

Derivation of Numerical Algorithm For Attached Flow

Now that the techniques of verification have been established, the derivation of

the numerical algorithm can be better understood. The purpose of the algorithm is to

detennine the response to an arbitrary input. This arbitrary input can he reconstructed as

the SUffi of step inputs applied al equal lime intervals; therefore, the response will he

equal to the SUIn of the step responses. This concept is explained in Appendix (1-8),

where it is shown how a single exponential function of the indicial output may be used to



•
derive the nwnerical algorithm for an arbitraJy input Since aIl of the functions used are

approximated by exponential funetions this is critical. Therefore in a similar fashion to that

presented in Appendix (1-8) the numerical solution due to a step change in motion is:

Time Domain Indicial Response:

cSS
C lU (1) =C/Q (M)[I- Al exp(--) - A2 exp(--»)1

~ T2

Corresponding Numerical Algorithm:

C~ (n) = CIcJ(M)[a (n)- X(n) - yen)]

X(n) = X(n-I)exp(-&/ ~)+At(a(n)-a (n-I»

Y(n) =Y(n-l)exp(-& /1;)+ A2 (a (n)-a(n-I»

(2-47)

where n denotes the sample onder examination (i.e.: t=O ~ n=O ~ t=ÂJ ~n=l ,

t=2ÂJ =>n=2 etc). Note, X(n) and yen) are deficiency functions, and are a measure of the

circulatory Iag and the compressibility Iag introduced in the correction factor. If

X(n)=Y(n)=O equation (2-47) would give the quasi-steady solution.

4
Cn'a (n) = M [en)
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Note~ I(n) and Q(n) are also deficiency fonctions which arise from the fact that the flow is•

l(n) =l(n-I)exp(-&/T,)+(a(n)-a(n-l»

-1
C~(n)= MQ(n)

Q(n) =Q(n -1)exp(-As / ~ ) + (a(n) -n(n -1»

compressible.

(2-48)

(2-49)
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The solutions given by equations (2-47) - (2-49) serve as a starting point .After

being used to approximate the solution to a hannonic input, and being compared to the

explicit solution for a hannonic input, several problems in accuracy arose which required

that the solution he modified. It was found that a ramp aIgorithm gave better results for the

impulsive loading. The derivation of the ramp a1gorithm is very similar to that of the step

function, therefore, only the solution shaH he given (Beddoes, 1982):

4Tc:.o (n)=-I (Da(n)-DI(n»
M
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DI(n) =DI(n -1)exp(-& / TI) + (Da(n) - Da(n -1»

where Da(n) = (a(n) -a(n -1»/~ & Tr=cIa;

-T
C~(n)= ~ (Dq(n)-DQ(n»

DQ(n) = DQ(n -1) exp(-As / ~)+ (Dq(n) - Dq(n -1»

where Dq(n)=(q(n)-q(n-I»/~.

(2-50)

(2-51)

•

One last modification was made to improve the accuracy of the solution. Using the

step or ramp resPOnse at the beginning of each sample (or interval) was inaccurate; it

introduced an unnecessary phase lag. To help eliminate this phase lag a half-step lead was

incorporated in the forcing functions. This means that the forcing fonction starts half an

interval before the beginning of the sample. This half-step lead is incorporated into the

deficiency functions in the following manner:

Deficiency without half-sten lead

DEFFICIENCY(n) = DEFFICIENCY(n-l)exp(-& / T )+(/NPUT(n)-INPUT(n-l»



•
Deficiency with half-step lead

DEFFICIENCY(n) =DEFFlCIENCY(n-I)exp(-& / T)+(INPUF(n)-INPur(n-I»exp(-& / 2n

(2-52)

Simply put, the output bas been alIowed to decay by half a tinte step at each interval, hence,

the addition of the exponentiaJ function with halfa time step lead.

In the end, a "hybrid" aIgorithm is used, incorporating the best features of each

numerical method. The moment tenns are found in an anaJogous fashion. Therefore, the

numerical algorithm used to solve for the attached linear flow is

C~ (n)= C1d (M)[a(n)-X(n)- yen)]

1 41;
Cna (n) = M (Da (n) - DI(n»

-T
C~(n)= ~ (Dq(n)-DQ(n»

5t

•

C~(n) = -C~(n) 14-(7;,2 / 3M)(Dq(n)- DQM(n»

where:

X(n) = X(n-l)exp(-As /7;)+ AI (a (n)-a(n-I»exp(-& /21;)

yen) = Y(n-I)exp(-As /1;)+ A2(a (n)-a (n-I»exp(-& 121;)

Dl(n) = DI(n - 1) exp(- As / ~ ) + (Da (n) - Da (n - 1» exp(- As / 2~ }

Dn(n) = (a(n) -a(n -1» 1tJ

DQCn) = DQ(n -1)exp(-ÂS" 11;,) + (Dq(n) - Dq(n - 1» exp(- As 121;,)

DQM(n) = DQM(n-l)exp(-As/ 1;,2 )+(Dq(n)-Dq(n-l»exp(-As/21;,2)

Dq(n)=(q(n)-q(n-I»I tJ

(2-53)
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Note, the numerical model does not include a circu1atory contribution in the moment tenn

for pitch-rate (i.e.: equation (2-26». It was ignored by Leishman & Beddoes (1986).

2.4 Semi-Empirieal Extension to the Non-Linear Regime

Now that a solution bas been found for when the tlow is attached, it is necessary to

account for non-linearities, which are introduced by viscous flow within the boundary layer

as weil as vortex tlow when the airfoil enters dynamic staIl. Viscous effects become more

prominent as the tlow over the airfoil separates. The tirst order of business is to determine

the mode of separation. One mode of separation is progressive trailing edge separation,

which stans from the trailing edge, and as the angle of attack increases, b'avels towards the

leading edge. This bas an adverse effect on the circulation around the airfoil. Although

trailing-edge separation is important in both static and dynamic conditions, it bas been

shown that it is suppressed under moderate pitch-rates (Carr, 1977). This suppression is

caused by the time lags in both the pressure response and the boundary layer response

relative to the static case. Another type of stail is leading edge stall, which starts abruptly at

the leading edge and is severe. It is caused by an adverse pressure gradient near the leading

edge, which is strong enough to cause flow reversai. At low Mach numbers, unless the

airfoil has a sharp leading edge, separation will be dominated by trailing edge separation.

However, at higher Mach numbers, supercritical tlow develops over the top of the airfoil,

near the leading edge, causing the creation ofa shock wave, which creates the right pressure

conditions for separation. Therefore, the dominant mode of separation is leading edge or

shock-induced separation at relatively low pitcb..rates and Mach numbers larger than 0.3.

This fonn of separation is much more abrupt and has different effects than that of trailing
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edge separation. Although the primary source of separation is at the leading edge, it has

been shown that sorne trailing edge separation is also present. It is tberefore necessary to

consider both modes.

2.4.1 Leading Edge Separation

As previously mentioned, leading edge separation is abrupt. It is therefore necessary

to define a criterion to signal leading edge separation. During this event there are two

possible scenarios. At lower Mach nwnbers it is sufficient to specifY a critical pressure and

pressure gradient to identify the onset of leading edge stail. At higher Mach numbers the

process of separation is more complex, a region ofsupersonic flow develops over the airfoil

which is tenninated bya shock wave. As the angle of incidence is increased this shock wave

strengthens and moves towards the trailing edge. At sorne point the pressure gradient right

after the shock wave becomes positive and causes separation that reattaches further

downstream fonning a bubble. As the severity of separation increases there is a point at

which the motion of the shock reverses and heads back towards the leading edge. There are

only minor deviations in the manner in which the lift and moment change with respect to

angle of attack until the point when the shock wave reverses its motion. In the case of

higher Mach numbers it is therefore necessary to determine a criterion for shock reversai.

Fortunately, in the steady case a simple criterion May be used for both leading edge and

shock induced separation. A critical normal force coefficient Cnl May he defined as a

criterion for the above-mentioned events, this is possible because the pressure distribution

directIy correlates 10 the nonnal force on the airfoil. The separation boundary for a NACA

0012 airfoil cao he seen in Figure 2.7.
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•
Now that a criterion bas been established it must he expanded to include the

unsteady nature of the problem. Fortunately there is an easy way to do this. At low Mach

numbers it can he shown ftom a hannonic response that there is a phase lag between the

unsteady value of the leading edge pressure and the steady value. This phase lag is linear

with respect to frequency. For the indicial response this behaviour may he represented by

adding a first-order tinte Iag to the nonnal force coefficient This means that for the

unsteady case, although the normal force coefficient bas surpassed the critical value the

accompanying pressure at the leading edge bas not. There is a time lag between the pressure

and nonnal force response. Introducing a modified nonnal force coefficient, which

represents the equivalent steady pressure resplnse, represents this. [t is defined as follows:
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C,,(P)

C,,(P)

1 .
l+J;,p ~CII(n)=C,,(n)-DP(n) (2-54)

•

where DP(n) =DP(n-l)exp(-&/ ~)+(Cn(n)-Cn(n-l»exp(-&/2T;,> is the

pressure deficiency function, and Tp is the pressure response rime constant.

Although for higher Mach numbers the lag is no longer linear it May still be

represented by a tirst order tenn. Therefore, when the modified unsteady Donnai force

coefficient surpasses the critical (steady) value, leading edge separation or shock induced

separation OCCUl'S. This point defines the transition between the linear attached tlow

behaviour and the non-linear separated flow behaviour. It also initiates the process of

dynamic staD (Beddoes, 1982).
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2.4.2 TraDing Edge Separation

Although the primary source of separation is either at the leading edge or at the

shock wave, trailing edge separation is also present. To detennine the non-linear effects of

separation the theory of Kirchhoff is used (Thwaits, 1961). According to Kirchhoff the

static nonnal force coefficient is given by
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(2-55)

wherefis the separation point xlc (see Figure 2.8).

An empirical relation is used for the variation offas a function of lX

f ={O.04- O.66exp«a -al) / S2)} ifa >al

where Cl 1 is the static stall angle.

(2-56)

•

A value of/=(J.7 has been established by Leishman and Beddoes (1986) as the

critica1 point dividing light dynamic stan and deep dynamic stail, therefore the first relation

describes separation in the light dynamic stail regime (/<0.7), while the second relation

describes the deep stail regime (/>0.7). The effects of leading edge separation are small in

the light stail region, and therefore, trailing edge separation dominates and the travel offis

graduai towards the leading edge. In deep staIl, however, leading edge separation plays a

role in accelerating the travel ofthe separation point towards the learling edge, and the travel

is more abrupt. Trailing edge separation is, of course, also caused by an adverse pressure

gradient sufficient to cause flow reversaI within the boundary layer. In the unsteady case it

is therefore affected by the pressure lag, described by equation (2-54). A modification

therefore needs ta he made ta equation (2-55) to account for this. Other effects which are
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discussed by Ericsson and Reding (1988), cause a further lag in the boundary layer

response. These etfects are very complieated, yet they May he incorporated in the same

manner as the pressure lag. Using the modified nonnal force coefficient for the pressme

response, equation (2-54), an effective angle of attack cao. he used for the analogous static

case. This angle is defined as
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(2-57)

where Cta(M) is the compressible lift curve slope. Using this angle ofattack and substituting

it into equation (2-51) the modified separation point is obtained to account for the leading

edge pressure lag and is denoted by f. The next step is to add a lag term to the boundary

layer resPQnse, this is done anaIogously to the pressure response. The unsteady separation

point is found thus:

f"= f'-DF(n)

where DF(n) =DF(n-l)exp(-ArI Tr)+(f'{n)- f'(n-l»exp(-&/ 2Tf ).

(2-58)

Now that the separation point bas been found, it is used to modify the linear solution

to account for trailing edge separation non-linearities. As mentioned before, trailing edge

separation only affects the circulatory tenn, therefore the new circulatory nonnal force is

Cc (n) ={(1+~f" (n) ) / 2)2 Cne (n) (2-59)

•

In the linear response there is no circulatory contribution in the moment tenn. This

is because the center of pressure of the circulatory nonnal force is at the quarter chord. For

the non-linear case, however, there exists a modified non-linear center ofpressure, which is

found empirically and is:

(2-60)
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where COP(n) is the non-dimensional distance of the center of pressure away from the

quarter chord. This term accounts for the non-linear effects on the center of pressure of the

circulatory normal force. Each constant serves in the curve fitting to better match the

unsteady response. The constant ko is a Mean offset of the center of pressure from the statie

value, the k. term is the main contributor to the non-linear offset and shows that the offset

increases linearly with increasing separatio~ finally the k2 term causes the moment curve to

have the correct curvature when it goes into stall (f=O.7). Therefore, the new non-linear

contribution to the moment term is
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C':<n) = COP{n)· C:c(n) (2-61)

•

2.4.3 Vortex Flow and Dynamic StaD

The onset of leading edge separation starts the process of dynamic stail. The fust

non-linear effect is seen with the progressive trailing edge separatio~ whieh aets

simultaneously with leading edge separation. Another non-linear effect that accompanies

the dynamic stail process is the creation of a leading edge vortex, which subsequently is

convected toward the trailing edge. The vortex is created from the discontinuous change in

circulation of the airfoil when the abrupt leading edge stail occurs. The loss of circulation,

due to leading edge stail, is counteracted by the creation of this vortex, this means that the

linear region is extended. It is the rate of change of circulation, which is important in the

creation of this vortex. This means that vorticity is continually shed from the trailing edge

separation point throughout the airfoil's travel, yet because this change is graduai these

vortices have littIe effect. Along the same lines the lower the unsteadiness, the lower the



•
rate of change of circuJation near the leading edge, and the weaker the vortex is, which

means that for the statie case this effect is absent.

The dominant vortex created near the leading edge is called the d)11amic stail

vortex. This vortex bas manyeffects on the aerodynamic behaviour of the airfoil. Modeling

this phenomenon must he consistent with physical rea1ity, and the following points must he

incorporated in the model: 1) the shedding process commences when leading edge stall

oœurs, and the vortex convects downstream at an aImost constant speed irregardless of

airfoil motion; 2) the strel18tb of the vortex must revert to zero when the motion reverts to

steady motion; 3) if stail continues for a sufficiently long time, secondary vortices are

created and shed. Staying consistent with the model being used, the increment ofbuildup of

circulatory lift due to the vortex May he related to the loss ofcirculation due to trailing edge

separation. This means that the separation is nullified in the PreSence of this vortex, thus,

extending the linear region. This increment is defined as
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(2-62)

•

At the same time that the circulatory increments help to build up the vortex, they

aIso decay. This means that for small pitch-rates the vortex lift decays faster than it builds

up, thus reverting to the steady case and making trailing edge separation the dominant mode

of separation. These two facts are consistent with physical reality. Therefore the total vortex

lift is

CNV(n) =CNV(n-l)exp(-&1 I:,)+(CV(n)- CV(n-I»exp(-âfl 2I:) (2-63)

When leading edge separation commences the vortex is shed downstream. The

vortex lift continues ta build-up according to equation (2-58). The center of pressure of the



vortex lift starts to deviate from the quarter chord positio~ causing an abrupt and large nose

• down pitching moment The center ofpressure and associated moment are

CPV(n) = 0.2(1- cos(1t't v / Tv/»

c: (n) =CPV(n)' CNV(n)
(2-64)
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The largest deviation in the center of pressure of the vortex lift is when the vortex

reaches the trailing edge. When the vortex detaches ftom the leading edge a vortex time

variable 't \. is initialized as zero, when the vortex reaches the trailing edge 't v =Tvi. At this

point the build up of vortex lift is tenninated and the center of pressure reverts back to the

quarter chord position.

Vortex lift is the main culprit in the delay of reattachment on the airfoil, in

conjunction with the time lags due to unsteadiness. The reason for the added bysterisis due

ta vortex travel is its relative independence of airfoil motion. This means that aIthough the

airfoil has passed the angle for reattachment the vortex still affects the airloads. Leishman

and Beddoes use the critical nonnaI force coefficient Cn! ta tenninate the effects of the

vortex and to start the reattachment. To summarize, only when Cn> Cru , does the vortex

travel have an effect.

As for secondary vortices the following time constant is used to replace T\II when the

first vortex bas traveled past the airfoil

Ts=(1-/,)/0.2 (2-65)

•
In other words, the secondary vortices are shed after the previous vortex is shed into the

wake for a time period ofTs (Leishman and Beddoes, 1986).
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2.S Modificadons to the Model

2.5.1 Addition of Plunge Degree of Freedom

Thus far plunge bas been used interchangeably with angle ofattack. Its effects have

•
been accounted for simply by adding an equivalent angle ofattack of hlUua • As far as linear

analysis is concemed this method of accounting for plunge is correct. The question now is

how to account for the non-linear effects of plunge. The entire fonnulation of the

aerodynamic model bas been based on the work ofLeishman and Beddoes (1986), it would

be beyond the scope of this thesis to fonnulate a new empirical Madel to account for

plunge. This is especially tnle without more infonnation on the experiments used by the

Leishman and Beddoes ftom which their work is based. Fortunately Leishman and Tyler

(1992) explored this very same avenue. Their conclusions are as follows; 1) There are no

major physical differences between a pitching or plunging airfo~ either in attached

flow or dynamic staD; 2) The unsteady airfoil behaviour in attached tlow can be weil

predicted using linear theory. The main differences that exist in the unsteaclyairloads are a

result of a pitch-rate "induced camber" effect, which contributes significantly to the

unsteady lift , pitching moment and aerodynamic damping during pitching motion. This

contribution is absent during plunge forcing. 3) The effects of WlsteadinesS contribute to

detennining the leading edge pressure distribution on the airfoil, and the effects of this must

properly he accounted for in the modeling. These "inviscid" effects have been found ta he

the primary influence in detennining the onset point of staIl. 4) For "equivalent forcing"

conditions any differences in the unsteady airloads between pitching and plunging motions
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arise because the critical conditions for leading edge separation are met at different

equivalent angles of attaek. GeneraUy, for equivalent forcin& airfoils undergoing pitch

oscillations will exhibit stail onset before airfoils undergoing plunge forcing. 5) The

duration of vortex shedding during dynamic stail was found to take place at approximately

the same rate during either pitch or plunge motion. This has been modeled using a common

non-dimensional time constant 6) Airfoils undergoing plunge into dynamic staIl generally

exhibited a loss of aerodynamic damping al a lower Mean angle of attack than for the

equivalent pitching case (l..eishman and Tyler, (992). Thus, although a pitching airfoil will

staIl at a lower "equivalent" angle ofattack, the increased damping due to pitch-rate means

that conditions for stail flutter will be met at higher Mean angles ofattack.

Leishman refers to the same empirical model as the one used in this thesis. The

only difference suggested was a change in the pressure lag lime constant Tp to account for

the differences in angle of attack (including plunge) and pitch-rate. Unfortunately new

experimentation was used to calculate these constants and to change them would mean that

sorne accuracy would be lost in the purely pitch motion. It was therefore decided not to

change the constants, especially when one realizes that underestimating the time constants is

as dangerous as overestimating them. Fortunately there were no changes to the main

structure of the program, meaning that to increase the accuracy one need ooly detennine

new time constants from new experiments. It was therefore concluded that the model

previously descnDed, has already sufficiently accounted for plunge by separating its effects

with its lack ofa pitch-rate tenn.
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2.5.2 Modification ofTiDle Constants

According to Leishman and Beddoes (1986), tbere are two reasons why the time

constants needed to he modified. The first reason is the physical coupling between the

elements of the model, and the second involved an underestimation in the hysterisis of the

reattachment process.

The separation ofthe various sub-systems completely ignores the physical coupling

of these elements. The way Leisbman and Beddoes corrected for this was to modify two of

the tirne constants. These were the trailing edge separation time constant Tf, and the vortex

shedding time constant Tv. The following modifications were made: 1) the rate of

movement toward the leading edge of the trailing edge separation point is aceelerated

during vortex presence, under this scenario Tf is halved; 2) if the direction of pitching

motion changes during vortex travel the separation point moves more quicldy towards the

leading edge and the vortex diffuses faster, under this scenario both Tfand T v are haIved; 3)

when the vortex reaches the trailing edge it diffuses mto the wake faster than it does on the

airfoil, Tv is halved.

Another phenomenon which is not sufficiently well modeled is the hysteresis in the

reattachment process. The hysteresis loops were found to be too small when compared

against experiments. The addition of an empirically derived d}llamic offset angle added to

the trailing edge separation point sub-system, as modeled byequations (2-56), during the

reattachrnent process was sufficient and modeled the reattachment process nicely. This

offset was added as an additional angle ofattack:

00.1 = (f"(n _1»°.25&a. (where ~a. is Mach number dependant) (2-66)
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2.5.3 Erron Diseovered iD Refereneed Papen

Errors were discovered in the paper used to derive this model (Leishman and

Beddoes, 1986). The first error was that the circulatory tenn in the moment expression due

to pitch-rate was ignored, nonetheless the impulsive loading used was comprised of two

exponential functions and accurately portrays the behaviour for the reduced frequency range

of interest, (this fault is discussed in leishman (1988». The other errors that were found

were in the table ofconstants (Leishman and Beddoes, 1986); it seems that the constants 8 1

and 82 should he reversed with respect to the constants used to define the separation point.

Justification for this was found in two ways, first, in an earlier paper by Beddoes (1982) a

sunilar table of constants is presented, which more c10sely resembles the reverse situation.

Also the output from the pro~ especially the output to a camp input, suggests the

constants to he reversed. Another constant which seems to he in error is the k2 constant at

Mach 0.7. This was discovered because it seems anomalous, compared to the trend among

the other Mach numbers, and also the output supports a different value. It was changed from

0.15 to 0.05, which is supported by the output, the trend among the Mach numbers, and also

suggests a simple typographical error. The following flow-chart represents a summary ofthe

numerical algorithm with all of the corrections, accompanied by Table 2.1 which provides

the nwnerical values for all the constants used in the dynamic stall model.
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2.6 Flow-Cbart Summarizing tbe Dynamie Stail Process

Inputs & 1
Previous Deficiency

Tenns

64

2
Attached Flow

Aigorithm

Modif)r Constants 4
Tf, Tv

Progressive Trailing 5
Edge Separation &
Vortex Buildup

3
Pressure Lag

Correction

Vortex TraveI

r---------
1
1
1
1
1
1
1
1
1
1,
1- _

-----------.
1

:8
1
1
1
1
1
1
1
1_ .'

Yes

9
Tenninate Vortex

Travel

No

•
Dynamic Stail

10
Beginning of Reattachment

Il

System Response

Nominally Attached Flow
12



•
Vortex Travel Sub-System (#8) from Previous Page in More Detail

~------------ ----------------------------------------------------------------------------
No Initialize Vortex

Travel tv=O

No Tenninate Primary
Vortex Initialize

Secondary Vortex

Yes

6S

Vortex Travel Stop Vortex Buildup
Continue Travel

•

~ • ----------_._-- 1

• •
1: Inputs: a(n), a(n), h(n), Deficiencies(n -1)

2: Attached Flow Aigorithm: equation (2-53)

3: Pressure Lag Correction: equation (2-54)

4: Modification ofTime Constants: (See Section 2.S.2)

5: Progressive Trailing Edge Separation: (2-59,2-61), Vortex Buildup: (2-63)

6: Test for Leading Edge Separation:C~(n) > C", (2-54).
7: Test for Reanachment: a < 0 C· (n) < C (2-54), n ni

8: Vortex Travel: (2-63,2-64)

9: Tenninate Vortex Travel: (2-64)=0

10: Dynamic StaIl: C =C f +Cl +Cl +Cv C =C f (n)+C I +Cl +Cv
" fIC na nq Il'. lffC .a MIl •

Il: Beginning of Reattachment: CV = CV = 0
n ",

12: Nominally Attached Flow: C :::: C + Cl + Cl C :::: Cl + Cl (Trailing edge separation is
small in this region, it is still incorparated in the"algoritfi'~ h:nce th:approx"'3nately equal signs)
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Table of Mach Number Dependant Constants

Mach # 0.3 0.4 1 0.5 0.6 0.7 0.8
Cla 0.108 0.113 0.117 0.127 0.154 0.215
al 15.25 12.5 10.5 8.S 5.6 0.7
6al

2.1 2 1.45 1 0.8 0.1
SI .. .. .,- 3.5 4 4.5 0.7~ ~._.")

S2 ., .. 1.6 1.2 0.7 O.S 0.18_.~

KO 0.0025 0.006 0.02 0.038 0.03 -0.01
Kt -0.135 -0.135 -0.125 -0.12 -0.09 0.02
K2 0.04 0.05 0.04 0.04 0.05 -0.01
Cnl 1.45 1.2 1.05 0.68 0.68 0.18
Tp 1.7 1.8 2 .. .. 4.3~ ~

Tf 3 ., - 2.2 2 2 2_..")

Tv 6 6 6 6 6 4
Tvl 7 9 9 9 9 9

Table 2.1
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1) The static stall
angle is exceeded.

2) Flow reversaIs in
the boundary layer
causes the
fonnation ofa
vortex at the leading
edge.

3) Vorrex detaches
from the leading
edge and convects
downstream,
moment stail
occurs.

4) Vortex reaches
trailing edge. lift
staIl and maximum
negative moment
occur.

5) Flow becomes
fully separated.
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6) Boundarj' layer
reattaches from
front to re:lI'.

Angle of Attack

Figure 2.1: Scbematic Showing the Main Events of Dynamic StaIl.
Reproduced from Leishman and Beddoes (1989).
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Equation of Airfoil

C
Za(-~,t) =-h(t)-a(t)[x-a(-)]for-c/2 <X < c /2

2

Figure 2.2: Schematic Showing Location of Airfoil Surface.
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Angle Of Attack

Ua:

Plunee

Ua:

Perturbation Velocitv

w
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Piteh: lVQ = - U cr. a 0 r Plu nge : lVa =- h

• Figure 2.3: Schematic Showing Equivalence Between Pitch and Plunge-Rate.
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Figure 2.4 : Schematic Showing Equivalence Between Pitch-Rate and Pitch
• c • cPlus Equivalent Angle ofAttack. a) "'" =-a[x-a(-)], b) "'II =-ax, c) w" =a(-).
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Kussner's and Wagners Functions
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Figure 2.S: Kussner's and Wagner's Functions.
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Figure 2.6: Comparison Between Kussner's Function and
Beddoes' Semi-Empirical Approximation (Dotted Line) for
Varions Mach Numbers. Reproduced from Beddoes (1980).
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Figure 2.7: Critical Normal Force Separation Onset Boundary.
Reproduced from Leishman and Beddoes (1989).
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separation point (f=x/c)

c

Figure 2.8: Trailing Edge Separation Point.
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Chapter3

Justification of the Aerodynamic

Model

3.1 Introduction

To justify the aerodynamic model two approaches will be used. The tirst approach

involves comparing the model to the physical situatio~ and the second approach involves

comparing the output of the program with data from Leishman and Beddoes (1986). The

first approach verifies the qualitative trends, while the second approach verifies the

model against quantitative data acquired by Leishman and Beddoes (1986).

3.2 Comparison with Physical Reality

The physics associated with dynamic staIl was explored in the previous chapter.

In its essence it involves the dynamic overshoot in lift and angle of attack of the stalling

process. There are two categories of overshoot. The first involves a shift in the time

damain, which translates to a shift in the pitch angle at which stail occurs. This shift can

be modeled using quasi-steady aerodynamics. The second category is transient in nature

and involves the non-linear modeling. This category is responsible for the overshoot in

lift.
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Time-Lags

The first tinte lag is the circulatory lag and is introduced by the unsteady nature of

the movement of the airfoil. As the airfoil oscillates, the circulation around the airfoil

changes. If Kelvin's circulation theory is to hold, counter vortices must be shed into the

wake so that the total circulation is equal to zero. Each counter vortex has a negative

effect on the airfoil nonnal force and moment quantities. Their influence diminishes as

they travel further and further into the wake. If the airfoil stops its unsteady motion, and

reverts to a steady configuration, these counter-vortices, after a period of time, will have

no effect. In Figure 3. 1(a) we see the circulatory contribution, due to pitch, to the Donnal

force coefficient, which is obtained ftom the tenn described by equation (2-25) and

described numerically by equation (2-47). This is the response to a hannonic oscillation

of the airfoil about the quarter chord described by the following equation:

U lf4c = 10° sin(h) (the quarter chord is chosen in accordance with Leishman and

Beddoes (1986». As the frequency is increased, two effects are apparent, the amplitude

of the DonnaI force resPOnse is decreased and there is a shift to the right as compared to

the steady pitch case. As the frequency increases to a very large value, the circulatory

nonnal force becomes very small; this is consistent with aerodynamic theory, which

indicates that the large quantity ofshed counter-vortices will have a negative effect on the

airfoil lift. As the frequency goes to a very small value, the circulatory nonnal force

matches the steady pitch case, which makes sense because steady implies zero ftequency.

Therefore, the behaviour in Figure 3.1 is in accordance to aerodynamic theory.

To get the total circulatory nonnal force coefficient, the circulatory contribution

due to pitch-rate must he included. If the axis were at the 3/4 chord, the pitch-rate
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contribution would he zero as discussed in Chapter 2. Figure 3.1(b) shows the circulatory

contribution to the nonnal force coefficient caused by the pitch-rate. This tenn is derived

from adding the equivalent angle of attack due to pitch-rate~ as per equation (2-27). For

oscillations about the quarter chord tbis pitch-rate equivaJent angle is q/2. This figure

demonstrates that the pitch-rate contribution exhibits a lime lead with respect to the

steady pitch case, which bas no pitch-rate contribution. Is this to say that the larger the

pitch-rate the greater the time lead on the total circulatory nonnal force coefficient? The

answer is no, in fact the opposite is true. Although the pitch and pitch-rate contributions

to the circulatory Donnai force coefficient are treated separately in the analysis, theyare

linked. A larger pitch-rate is the consequence of a larger unsteadiness (higher value of k)

in the pitch oscillation, wbich implies a larger lag with respect to the steady case in the

pitch contribution. The pitch-rate contribution cornes exclusively trom the choice of axis.

If the pitch axis were taken at the 3/4 chord~ the pitch-rate contribution would not exist, in

fact if the axis were moved further to the rear the pitch-rate contribution would even

serve to increase the total circulatory time lag. Therefore the pitch-rate term simply

implies that the net circulatory time lag varies depending on the cboice of axis. Three

conclusions May be drawn from the circulatory subsystem. The tirst is that the bigher the

frequency of oscillation the larger the time lag is in the nonnaI force response with

respect to the steady pitch case and therefore the greater the delay in time until stail. The

second is that increasing the frequeDcy diminishes the effect of circulation on the normal

force and the third is that moving the axis ofoscillation towards the rcar will increase the

total circulatory time lag in the normal force response. Carr (1987) discusses ail of these

facts in greater detail.
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A second category of time lags exists in the Madel. Not only does the unsteady lift

response lag behind the steady case, so do the pressure and boundary layer responses

relative to the unsteady DormaI force response. These time lags do not shift the DonnaI

force coefficient curve; they do however extend the linear region of Donnai force

response and delay the transient effects, which depend on the pressure distribution and

boundary layer response. This delay increases with increasing frequency. This lag

combines Many physica1 effects iDto one usable lime lag; these effects include: boundary

layer effects, accelerated tlow effects, the moving waIl effect etc. (Ericsson and Reding,

1988). It is for these reasons that time constant modifications were required in the

aerodYQamic model depending on the specific situation. The physicaI justification for the

choice of constants was given in Chapter 2.

Another time lag cornes from the compressibility of the flow. At a given Mach

number it simply creates a general empirically derived time lag of I-M2
. This makes

physical sense, as the speed of sound is finite, implyjng that disturbances at one location

in the flow take time to affect the entire flow.

Another contributor to nonnaI force coefficient is the impulsive loading. This

10ading is less signjficant than the circulatory loading in the frequency range of interest,

yet it must be included. In Figure 3.2(a) we see the impulsive loading due to the pitch

contribution, which is described by equation (2-50). As the frequency of oscillation is

increased, the amplitude of the DonnaI force coefficient response increases. Figure 3.2(b)

presents the impulsive contribution due to pitch-rate (described by equation (2-51». The

pitch-rate tenn, once again, is due to the choice of axis. In this case, if the mid-chord is

used this contribution would disappear. The effect of increasing the frequency for the
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pitch-rate contribution is to increase the amplitude. Therefore, the only conclusion for the

impulsive loading is that as frequency increases the impulsive loading becomes greater.

The converse is that as the frequency decreases the effect of the impulsive loading

becomes less. This is also consistent with aerodynamic theory since for the steady case

there is no impulsive loading.

Transient Effeets

The transient effects include the vortex flow and the trailing edge separation

point. Their fonnulation was discussed thoroughly in the previous chapter. These effects

are complex and depend largely on the exact input, and are therefore better verified

against experimental data through a large range of variables. The only trend that may he

verified is that their effects become more pronounced as the frequency (unsteadiness)

increases. This means that in any given situation as the frequency is increased the lift

overshoot should also increase~ and the hysteresis loops should also become larger. These

effects are shown in Figure 3.3, which uses the following hannonic input:

(<X 1I4C = 10° +8° sin{h». In the steady case there is no hysteresis and the normal force at

stail is at its lowest level. As the frequency is increased the amount ofhysteresis increases

and the lift overshoot also increases, thus justifying the general trend.

In conclusion~ the aerodynamic model displays trends in accordance to

aerodynamic theory as the frequency of oscillation is changed. ft is therefore qualitatively

correct. Note that only the nonnal force curves were verified. The moment curves are

directly related to the nonnal force curves and involve only the addition of empirica11y

derived center of pressure formulae. They are therefore better verified against

experimental data.
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3.3 Comparison witb Experimental Results

No experiments were undertaken to prove the validity of the mode!. The only

experimental data available was the data presented by Leishman and Beddoes (1986),

when comparing their own model. Therefore the best way to justify the model used in

this thesis is to compare it to ail of the plots generated by Leishman and Beddoes in their

paper. Figures 3.4 to 3.8 presents a comparison between the model used in this thesis and

the results obtained from the model used by Leishman and Beddoes, which is in tum

compared to experimental data for a large range of inputs. The two sets of plots are

almost identical, thus justifying the model. The ooly discrepancy that was found was

corrected by the addition of a third hannonic, which was said to be present in the

experimental apparatus used by Leishman and Beddoes. This third hannonic was

incorporated in the modeI for ail the results shown in Figures 3.4 t03.8 and was given an

amplitude of 0.5 deg.

80



81

•
A)

Circulatcr, CClntnèuticn: Fitc:."

0.2-

-0.2

-0.4-

.0.6O]--;:t1-;::;:;--7;----;;~·;----;:-:-;:----;:~.:----=~----::~-~---.J
O., 0.2 0.3 0.4 0.5 0.6 0.7 O.S 0.5

Frac::icn cf Cyc!e

Figure 3.1: Circulatory Normal Foree Response to a Harmonie
Input;al, ..c = l00sin(ks) , M=O.4: a) Piteh Contribution: k=O, k=O.2,
k=O.4 b) Piteh-Rate Contribution: k=O.2,k=O.4.

0.4-

.Q.2-

Circ:ufatcry Centnbuticn: Fitc."I-Rate
0.6I--:----:-----:------::---:----:-----;-----:---~-

.0.4-

-<I.60~~'~.~~l
0.1 0.2 0.3 O.. 0.5 0.6 0.7 o.a 0.9

Froac:icn Qf Cyce

c:
U

B)

•



82

rmpulsive Contribution: F:tc!'l

Steaé'1

-0.1 1

-0.2, k=O.2 l
-o.3

r
l

-o.4
r

1

-o'~r . . . i
o,...----;:o~.,:----;:f0.2:;-----;;O~.3;--~0.74--:::0~.5~-:O:-=-:.6~--::-O.==ï--O~.S---.:Q.-S_..J

Fracticn of Cye!e

A)

•

Impuls:ve Ccntnèuticn: Fitc."1-"ate
0.1:;-----:---"""":""""-~---:~-_:__-~-__;_-~----

k:O.4

Figure 3.2: Impulsive Normal Force Response to a Harmonie
Input; a = lOOsin(ks), M 0.4: a) Piteh Contribution: k=O, k=O.2,

l/ok

k=O.4 h) Pitch·Rate Contribution: k=O.2,k=O.4.

•

B)

0.1-

O.OS ;.
k=O.2

Steady

0.2 0.3
. .

0.4 O.S 0.6 0.7 O.B O.S
Fradcn of Cyce



83

•
Hysterisis Loop

1.81--'-~---'--~--~--'--""-----'---~-

1.2 ....
1

c
u

0.8

0.6
]

0.4 Steady
-k=O.2

0.2
+ k=O.4

00
, 1 . , , 1

2 4 6 8 10 12 14 16 18 20
Angfe{deg)

•
Figure 3.3: Normal Force Coefficient vs Angle of Attack
(Hysterisis Loops); a

1/k
=10° + 8°sin(ks) , M=O.4, k=O, k=O.2, k=O.4.



84

1.5
(A) (C)

1.5

1

• 'f 8J
o.! .. alc

al
(J

~~1
-w 0 f 10

.0.5

o.o!l

-:'0 Ote ==-4-! 0 c 10w
~.a~f

S a·~1
S -0.1

:;>
j

-O.1! f
c: .o.2{

.lJ.2! 1
-0.1

0-, -~ 0 ~ 10 ·5 0 ! 10
Angle cf Attaek (de-;) Ar.;!e of An.ck (ce;)

(D) (D)

1~ a-2.1-.8.2-.rn""of
U CI·S..2·+I.~·at"1Wf

W=0.38.3. k=O.C114 "=O-UI. Ir=O.07.

20

--WCCE!.

--EXPDJWEHT

-o..s "l-~"""'''--­•

- "ODEt.
•• • •• EXPER1WENT

a

-t +-...-r-....,....-..,...--.......-l'.-....
-10 -! C ! '0 .!

-.!

• (clet.) 20

Figure 3.4: Comparison of Model with Results Obtained by
Leisbman and Beddoes (1989);all~= 2.10 +8.2°sin(O.074s), M=O.4:
a) l\'lodel b) Results,a

llotc
= 5.20 +8.4osin(O.074s), M=O.4: c) Model

d) Results.

•



85

• (A) (B)

2~-------

2..0
a= 1O.3°+e.1·sint.rl

M=0.379. k=O.075

1.5

8 1

0.5

1.0

°o~---------I10 20

0.1 r---------......

0.0+---...,-.-------o ! 10 15 2Q
Cl (d.g.)

0.1

o

-0.1
E

C,.)

-0.2

-0.3

0.0

-0-1

C..
-0.2

-- WODEL
-0..'3 - - WOOEL (NO VORTEX)

- EXPER1WENT (2 CYCLES)

2010 15
Cl (de;.)

-0."+---.--------
Cl-O.40~---10------120

Angle of Attack (deg)

•
Figure 3.5: Comparison of Model with Results Obtained by
Leisbman and Beddoes (1989); al/ole = 10.30 + 8.10 sin(O.075s), M-O.4:

a) Model b) Results.



86

•
2

0.05

1.5 a

A) ~
-0.05

c: 1 c3 -0.1U

-0.15

0.5 -0.2

00

-0.25 [

5 10 15 20 0 5 10 15 20
Angre of Attack (deg) Angle of Attack (deg)

/
SECONDAlY VORTEX

10 15 20 25
a (de;.)

sa

j c=1 S.3.+s.~.slngt. k=O.07E

--~_._ ....- \-~..""'----_.
~~

PRI~RY VeRTEX

SECONDARY VORTEX
PRJauRY VORTEX /

-- woon
- - - woon (NO VORTEX)
-- EXPEIJWDIT

Q.O:-~~--.--...,....~:;":':"-o s 10 15 2D 25

B) c.

•
Figure 3.6: Comparison of Model with Results Obtained by
Leishman and Beddoes (1989);al/"c = 15.3° +5.2°sin(O.076s),

M 0.4: a) Model b) Results.



87

%
(A) (C)

,)
z

• 'o!l
c ,1

C 'VVJ-~ r '"0)c.s·
1 1

0g 10 20 30 0g"0 10 2(l ~C .0

01

~~.:~ .(l.t
E

(,J -0.2. (J

-0)
.c.2j

-0)
.03-

1
0 10 2~ 30 .0 -0'''0

Angle cf Ae-dc (de;)
tO 20 ~O 40

An;fe cf A::,e;t cee;;

(B) (D)

.
!O

.
c: (de;.)

---- STÂTlC EX;:'T
- MOOEl
- [XFERIMENT

Q
c. .

Cw Cwl

-O.~ 0 1 •• i' i -0.•1- • • • l

Cl (ceg.) .!O 0 Cl (d.g.) .!o

Figure 3.7: Comparison of Model with Results ObtaÎned by

Leishman and Beddoes (1989) for a Ramp Input; a= 802
0 1s,

M 0.5: a) Model b) Results; a= 14930 1s, M-O.S: c) Model d)

Results;

•



88

(A) (D) (Cl

1.5 1.5 1.5

• 1 1

/
1 /c:

ü
0.5 0.5 0.5

0
0 °0 0010 20 10 20 10 20

o~
E
u

-0.1

o~
-0.1

o~
-0.1

-0.2 02 0o 10 20 - . 0 10 20 • .20 10 20
Angle of Attack (deg) Angle of Attack (deg) Angle of Attack (deg)

(D)

1.5,..---------,

c:3 1 /
0.5.

10

o~
E
u

-0.1

20

•

-0.20 10 20
Angle of Attack (deg)

Figure 3.8: Comparison of Model with Results Obtained by
Leishman and Beddoes (1989) for Various harmonie Inputs and
Maeh Numbers; a),b),c),d): Model, e),t),g),h): Results.



89

(E) (F) (G)

a=5.8·+-'.S·sin~f

"'=0.692. k=O.101

•
1.5 a =6.0-+4.S-.rnc.1f

W=O.~8S. k=O.099

0 0
0 a (des.) 20 0 a (d_g.) 2Q 0 a (deg.) 20

o.t O.t. 0.1

~ ~Cw CI'
e--o.277 Cw=O.328 e.=o.!l1

20a (deg.)
-0.2 ..................................."""""""'................. -O..2,..,.'P"PI.,...,.........."r"P"'I,..,...~_ -0..2 -11-'-r"'li'~i"""",."'''''''''2''''...",,..,,....,~,,-,-,1

o a (deg.) 20 0 a (deg.) 20 0

(B)

,.5

c:. /
Cl

Cl • Cd...) 2G

•.!

t:::::>
e. e.-&1117

••$.,-T".3-.'nColf
..=0.... k=O.I'.

--lIoon
-- bPElfW[N'r

-c..z -1----ro-.. _

o • (ct...) 2G

•



•
Chapter4

The Aeroelastic Model

4.1 Introduction

The aerodynamic model is used to determine the moment coefficient and nonnal

force coefficient of an airfoil at a specific point in tïme. These values may then be added

to the aeroelastic model as forcing tenns. The non-linearities in the aeroelastic response,

provided that the airfoil does not have any structural non-linearities, reside in the

aerodynamic part. Using Figure 4.1 as a guide, one can use the Lagrangjan method to

detennine the resulting differential equations. Once this bas been done, a finite difference

scheme may be used to solve the equations numerically. The procedure used is identical

to that given by Lee and LeBlanc (1986).

4.2 Derivation of Aeroelastic Equations

The following are the energy tenns to he used in conjunction with the Lagrangian

equation ta detennine the aeroelastic differential equations:
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•

1 .2 1. 2 C ••
T=-mh +-/a. +mx (-)ha.2 2 Q 2

1 2 1 2
V=-k a. +-k h

2 a 2"

1 .2 1 .2
D=-C h +-C a.

2" 2 a

(Kinetic Energy, 4-1)

(Potential Energy, 4-2)

(Energy Dissipation, 4-3)



• • 1 1 •P =(-N(t) + P(t»h+[M(t) + N(tX 2 cX"2+ a,.)+Q(t)]a

(power Input, 4-4)

(Refer to the Nomenclature for the definition ofvariables.)

Using the Lagrangian equation
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(4-5)

where x is the generalized coordinate (h or a) yields the following coupled aeroelastic

differential equations

- c - •mh+lIIXa ('2)a+C,. h+k"h =-N(t)+ pet) (4-6)

The uncoupled natural frequencies and damping ratios are thus defined:

Heave:

Pitch:

C"
ç" = 2.Jk"m

2 kIrroh =-
m

2 karo =­
a 1

(4-8)

(4-9)

(4-10)

(4-11)

•
NOD-DimensionaUsatioD

To simplify the problem the following non-dimensional groups were fonned:



•
heave:

where the denominator is a semichord length

(4-12)
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mass:
m

Jl=---~

1tp(c / 2)2
(4-13)

where the denominator is the mass of the air that occupies the space the airfoil can rotale

in, i.e. the mass ofair in a cylinder ofunit thickness with the radius equal ta a semi-chord

time: (4-14)

where the reference time is the time it takes the airfoil ta travel one semi-chord

normal force:

moment:

N
Cil = 1

(-pU_ 2)C
2

(4-15)

(4-16)

where the denominators are the dYnamic pressure of the free stream multiplied by a

reference length or area.

Using the above non-dimensional quantities the aeroelastic equations can be

reduced ta non-dimensional fonn as follows,

m m2 1ç"+xa a"+2<;,,-ç'+--2ç =--Cn(s)+Po(s)
U· U· 1tJl

(4-17)

•
., a' r. 2 2 1 a

xCIç"+ra*a."+ra 22<;a -+~o:=-(Cm(s)+(-+2.)Cn(s»+ra 2QO (S) (4-1S)
U· U· 7tJl 4 2

where li] =CIl•• U*= ( /~~ • P"(s) =p(s) 2 ~ 2 ' Q.(s) = ~)2 12 and ' denotes
Cl)a C a m_ m ... r

Cl

differentiation with respect to non-dimensional time.
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4.3 Numerical Procedure

4.3.1 Houbolt's Finite Difference Scheme

Once the differential equations have been found~ it is necessary to devise a

numerical scheme to solve the problem. Houbolt's finite difference scheme (Houbol~

1950) is used in this analysis and is written as follows:
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1
a"(s)= &2 (2a(s)-!n(s-&)+4a(s-2&-)-a(s-3&»

1
a '(s) = 6& (lla(s)-I8a(s-&)+9a(s-2&)-2a(s-3&»

(The same fonnula applies to heave.)

(4-19)

(4-20)

If the above two formulas, (4-19) and (4-20), are plugged into the aeroelastic

equations, (4-17) and (4-18), then once the values of pitch and heave are known for the

previous three time steps the only unknowns are the current values of heave and pitch.

Since there are two equations, these two quantities May be solved for. The following

fonn is used to ultimately solve the aeroelastic problem:

Aç(s)+Ba(s)=C

Dç(s)+Ea(s)= F

(4-21)

(4-22)

•

(4-21) cornes from (4-17), while (4-22) cornes from (4-18). The coefficients of (4-21) and

(4-22) are known quantities and depend on previous values ofpitch and heave, as weIl as

the forcing terms and aerodynamic tenns, which are also known. For a full definition of

these coefficients see Lee and leBlanc (1986).



• 4.3.2 Startiog Scheme

The scheme that is being used requires the values of heave and pitch at three time

steps, before the current one, to solve the equations. This means that a starting procedure

must be implemented to acquire solutions to two more rime steps consecutive to the

initial conditions, which are aIready known quantities. Using the differential equations,

(4-17) and (4-18), at s=O the values of pitch and heave acceleration (a"(O)andh"(O»

May he solved for provided the initial conditions are Imown: C,.(O), Po(O), C",(O), Qo(O),

a(O),a'(O),ç(O),ç '(0), (see Lee and LeBlanc (1986) for solution). Once this has been

done the values for the quantities of pitch and heave for times +& and -& can he found

using a Taylor series expansion:
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(4-23)

(4-24)

•

(The same cao be used for heave.)

Therefore, equations (4-23) and (4-24), in conjunction with the initial conditions

allows for the solution of heave and pitch at rimes, - &,0,+&. This means that the

solution may DOW he found for + 2& , using the numerical scheme described before. This

means that the Taylor series expansion is used to find the solution for the fust time step

after and hefore the initial conditions (s=O). This is more desirable than using the Taylor

series expansion to detennine the solutions for two time steps before the initial condition

(i.e.: - As, - 2& ). This is because the error in the Taylor approximation is compounded

when it is used on consecutive time steps.



• 4.3.3 Interaction Between Aerodynamic and Structural

Components

The largest difficulty in ereating the aeroelastic model is the interface between the

aerodynamic portion, which was modelled from Leishman and Beddoes' (1986) worle,

and the aeroelastic portion derived from the work of Lee and leBlanc (1986), who used

another aerodynamic model (Bielawa et al., 1983).

The first problem is the conversion of units of the variables. The following

conversions were made 50 that the two portions are consistent.

Model Aeroclynamfc Aeroelastic CODvenioD

Pitch-rate q =ci.c/U_ a '=ci.c / (2U..J q=2a'

Heave equivalent angle Œ-., =h/U_ ç'=h/ U_ ŒMq =ç'

(4-25)

Another conversion problem arises in the choice of axis. The aerodynamic model

has been created to find the moment about the quarter chord, while the aeroelastic model

needs the moment about the elastic axis. A change of axis bas been discussed in the

aerodynamic section. In the context of the new variables the change of axis contribution

may be added as an additional angle ofattack:
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a ettir ='2(2 -a,.)q =(2 -all)a'

where ah is the non-dimensional distance from the mid·chord to the elastic axis.

(4-26)
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•

Yet another problem arises ftom the choice of zero deflection angle. In the

aeroelastic model ail angles and the heave deflection are measured from where the

springs are undeflected. Although the vertical location (heave) is arbitrary and makes no

difference to the aerodynamics, the zero detlection or Mean angle of attack needs to he

added to the aerodynamics as an additional angle ofattack.

A fourth problem cornes from the starting procedure. The starting procedure used

in the aeroelastic model does not apply to the aerodynamic model. The aerodynamics

depend on the time history of the airfoil. Since it is impossible to know the time history

before the program is run, it is assumed that the airfoil is steady for ail time hefore - &-.

Static theory is then used to detennine aIl of the aerodynamic quantities (including

separation) at - ÂS, thus creating an assumed time history, which is the easiest to handle.

The final problem that needs to be tackled is the fact that the aerodynamic

forcing, which is an input to the system, depends on the current values of the output. A

unique numerical scheme needs to he implemented to solve this problem. The numerical

technique used is the predictor-corrector scheme, which is described in the foLlowing

section.

4.3.4 The Predictor-Corrector Scheme

The predictor-corrector scheme works in the following way. ft starts by assuming

the aerodynamic input, i.e. the normal force and moment coefficients, to he equal to their

values at the previous time-step. They are then used in conjunction with the aeroelastic

algorithm to calculate the output (i.e. pitch, pitch-rate, heave and heave rate), these are

the predictor values. This new output is then used to calculate the aerodynamic input,
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which is reintroduced into the algorithm to find a new output, these values are known as

the corrector values. Once this is done, the corrector values are compared to the predictor

values, if they are within a specified tolerance the scheme stops and keeps the corrector

values for that particular time-step. The tolerance used in this thesis was set at 0.0001%

difference between the predictor and corrector value relative to the predictor.
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Chapter 5

Justification of the Aeroelastic Model

5.1 Residuals of the Aeroelastic Equations

The aeroelastic model is a combination of Leishman and Beddoes' (1986)

aerodynamic work and Lee and LeBlanc's (1986) aeroelastic work, and is unique to this

thesis. There is therefore no data against which to verify the results, unlike the

aerodynamic model, which had data. A different approach must be used to accomplish

this task. Knowing that the aerodynamic portion of the model is correc~ as proven in

Chapter 3, the only thing that may be erroneous with the model is the newly added

aeroelastic portion. This newly added portion consists of the aeroelastic equations, (4-18)

and (4-19), whicb are solved numerically according to the procedures presented in

Chapter 4. The following equations may he used as a measure of the numerical error in

the aeroelastic equations:
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where velocities and accelerations are calculated according to Houbolt's finite difference

scheme, equations (4-19) and (4-20). Equations (5-1) and (5-2) are simply the right-hand

side of the aeroelastic equations, (4-17) and (4-18), minus the left-band side, and may he
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referred to as the residuals or remainders of these equations. Theoretically these residuals

should be equal to zero. The fact that they are not equal ta zero is due to the predictor­

corrector scheme. In other words the response (pitch and plunge) of the airfoil depends

on the effect of the aerodynamic loads on the aeroelastic system, but the aerodynamic

loads depend on the response of the airfoil. Bearing this in mind, a choice bas to be made

as to where the numerical error sbould lie. If the aeroelastic equations are to have no error

then there must he error in the aerodYnamic loads. The values of pitch and plunge, which

are the corrector values found from solving the aeroelastic equations are obviously not

the ones used to calculate the aerodYnamic loads. The predictor values were used to

calculate the aerodynamic loads. In this case the above residual fonnulae would he

exactly zero and another error must he defined for the aerodynamic loads, which does not

correspond to the corrector values for the response of the airfoil. Ifon the other hand the

aerodynamic loads are recalculated, with the corrector values found from the aeroelastic

equations then, as they are a part of the aeroelastic equations, they will cause a slight

error or residual in these equations. Sïnce it is easier to calculate the error in the

aeroelastic equations, and since the non-linear component arises fram the aerodynamic

loads, it is wiser to recalculate the aerodynamic loads so that they match the corrector

response.

The residuals were calculated for the following case: Pitch: M=O.4, a m<!an = 10°,

Qo=O.0007, k=O.04, U· =21; Plunge: m=9, while ail other inputs are zero. This case was

chosen because the airfoil response seemed to be chaotic, and thus it represented a very

severe test for the numerical solution. Figure 5.1 shows the residual for the two equations

calculated for a period of 20 cycles of the pitch forcing. As can be seen they are of the
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arder of 10-8 or less. When it is realized that the other tenns in equations (5-1) and (5-2),

which are in fact the tenns in the aeroelastic differential equations, are of the order of 10-4

or greater, it indicates that the residuals are sufficiently small. In Figures S.2 and 5.3 it

cao be seen that the residuals, which appear to be straight lines, are essentially zero

compared to the rest ofthe tenns of equations (5-1) and (5-2), which are the oscillations.

5.2 Predictor-Corrector Error

The residual calculations showed that the aeroelastic equations are solved

accurately. This does not, however, prove the convergence of the predictor-corrector

scheme. In other words, showing that the predictor and corrector values are solved

accurately, since they are solutions to the aeroelastic equations, does not show that they

have converged. An error analysis must now he done to verify the convergence of the

predictor-corrector scheme. The difference between this error and the one discussed in

the previous section is that the bounds of this error are pre-defined. Ultimately,

sufficiently small residuals in the aeroelastic equations aIlow the accurate calculation of

the predictor-corrector error, which is a measure of the convergence of the numerical

scheme.

As mentioned in section 5.1, the aerodynamic loads are recalculated after a

solution to the aeroelastic equations has been found. This means that the predictor values

(defined in section 4.3.4) are the ones that are kept as a final solution. The corrector

values, which are the values obtained when the aeroelastic equations are solved with the

new aerodynamic loads, cao now he used to verify the convergence of the predictor­

corrector scherne. The error in titis scheme may he defined as follows:
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' C E Predictor Value - Corrector Value
Ictor - orrector rror =------------

Predictor Value

(or P.C.E. for short)

(S-3)
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The tolerance for the predietor-corrector scheme was set to P.C.E.=lxl0-6, which gave an

accuracy of at least five significant digits (for the justification of this value, see section

5.3). The P.C.E. for both plonge and pitch variables are shown as a function of time in

Figure 5.4 for the same case as that used in the previous figures. As cao be see~ the error

is indeed within the assigned tolerance, which means that the predictor-corrector scheme

converged for ail time steps for the example given.

S.2.1 Non-Convergence due to Feed-Back Loops

There are cases when the scheme is not capable of converging. This occurs in the

fonn of a feed-back loop. This means that the predictor values of pitch and plunge

produce corrector values that reproduce the predictor values, and the cycle continues.

This phenomenon can be seen in Figure 5.5. There are severa! ways to counteract this

problem. One way is to implement a relaxation scheme. This, however, is too complex

because there are upwards of thirty variables, which depend on their time-histories in the

program (for example, aIl the deficiency tenns). Only approaches that cao be dynamically

implemented shall be considered. Another, easier way, is to perturb the predictor values

when a feed-back loop has been identified, causing the scheme to pursue a different route

to the solution which will not cause a feed-back loop. This has a good success rate, but it

does not always work. In those cases when this does not work the program is restarted

with a finer time-step, and the program then almost always converges.
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[t MaY seem improbable that a feed...back loop should occur, as there are so many

inputs into the program (i.e.: pitch, plunge and their respective velocities and

accelerations and the aerodynamic loads) which must all coincide to produce this

phenomenon. Under further inspection, however, one realizes that all of these values at a

given time step depend oDly on the pitch and plunge values at that time step, the time

histories from which the rest of the inputs are calculated are already set. This, coupled

with the large amount of iterations required makes these loops a problem, but one which

is solved using the procedure discussed above.

5.3 Time-Step Size and P.C.E. Tolerance

Two factors affect the accuracy of the final solution: 1) the size of the time...step

used, and 2) the tolerance for the predictor...corrector error (or P.C.E.). Bath a smaller

time-step size and smaller P.C.E. tolerance will increase the accuracy of the final

solution. They will als~ increase the number of iterations required, which will use up

computer time and also increase the chances of feed-back loops wmch requires even

more computer rime ta rectify. A balance must therefore be struck between accuracy and

computer resources.

Setting the number of iterations per cycle of forcing contraIs the size of the time­

step. The greater this value, the flner the time-step. This value is used instead of setting

the time-step directIy because, more often than not, the airfoil's response frequency is in

the region of the forcing frequency, and the time-step should be adjusted according ta

this. In Figure 5.6, a convergence analysis is done on the predictor-corrector scheme.

More specifically, the mean number of iterations before the scheme converges (the
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average is taken over 5 cycles of the program) is plotted against the size of the time-step.

Globally the number of iterations until convergence decreases as a finer time step is used

(Iocally it is more erratic). This justifies using a finer time-step to rectify feed-back loops

because faster convergence rates implies less chance of encountering these loops. It is

aIso cleac that the convergence rate of the scheme increases rapidly up to approximately

256 iter.lcycle and then begins to platea~ meaning that the number of iterations per

cycle should he at least in the hundreds to most effectively avoid feed-back loops.

According to Lee and leBlanc (1986) a value of 128 iterations per cycle is acceptable; a

value of256 iterations per cycle bas been adopted in this thesis.

The second factor, which affects the accuracy of the solution, is the tolerance set

for the P.C.E. Of the two parameters, the size of the time step is more important than the

tolerance of the P.C.E. This is seen clearly in Figures 5.7 and 5.8, which are the phase

plots for the case under study. We see that in this case doubling the iterations/cycle

(starting from the suggested value by Lee and LeBlanc) significantly alters the output

(Figure 5.7), whereas altering the tolerance for the P.C.E. has significantly less of an

influence (Figure 5.8). The values, which best seem to balance computer resources and

accuracy are those of 256 iteration per cycle of forcing and 1x10-6 for the predictor-

corrector error.
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Chapter 6

Non-Linear Analysis: The One-Degree

-of-Freedom System

6.1 Introduction

Now that the model being used has been explained and scrutinized, it is necessary

to analyze the output from this non-linear system. The most important aspect of the

output is the possibility of chaos. This shaH be the focus of the remainder ofthe thesis.

This chapter will study the one-degree of freedom system. Bifurcation plots using

the amplitude of forcing Qo as the control parameter will allow the examination of pre­

chaotic and post-chaotic changes of this system as the control parameter is varied. Once

chaos is identified it will be verified through the use of the tools described in the tirst

Chapter. The routes to and from each chaotic response will also be identified.

The ultimate objective of the latter part of the thesis is to identify and classify as

many different types of motion that this system cao produce in a broad range of system

parameters. Another objective is to determine the route from which the motion changes

from one type to another, as a system parameter is varied. The focus, of course, being

chaotic motion and the route thereto. Comparisons with classical cases will be used as

much as possible, and physical explanations will he used to explain some of the

phenomena whenever possible.
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6.2 Choice and Range of System Parameters

The choice and range of system parameters depends on Many factors, which

include accuracy, faithful representation of physical reality and constraints in computing

power. Each choice was made according to experience, and does not necessarily follow a

strict pattern.

The first variable that needs to be fixed is the Mach number. A Mach number of

0.4 is used throughout because the majority of data given by Leishrnan and Beddoes

(1986, 1989) are al this Mach number; furthermore, it was this data that was used most

extensively to verify the model developed for this thesis (Chapter 3). The elastic axis is

chosen at the quarter chord, the center of mass is positioned at one-eighth of the chord in

front of the mid point, the non-dimensional radius of gyration was given a value of 0.5,

while the airfoil air-mass ratio was set at 100. These values were chosen in accordance

with Lee and LeBlanc (1986). The structural damping was set to zero because the

aerodynamic damping has been shown to be much larger than the structural damping in

real situations; at least for cases below the tlutter boundary. Three variables are chosen to

be varied; these are: the amplitude of forcing (Qo), the frequency of forcing (k) and the

non-dimensional velocity (U·). Their respective ranges were detennined through

experience, and by comparing their magnitude with the aerodynamic forcing. The non­

dimensional aerodynamic forcing tenn never surpasses 10.2; therefore the amplitude of

forcing was varied in this range. Qo is therefore varied between 0-0.002. The non­

dimensional velocity tenn bas no restrictions other than not being able to be equal to

zero, however, non-dimensional velocities greater than 35 do not significantly change the

response. U· is therefore varied between 0 and 35. The forcing frequency was chosen to
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be varied between 0.04 and 0.2, which is no more than double, and no less than haif the

frequencies used by Leishman and Beddoes (1989).

Once the main variables are chosen the mean angle of attack is set at a value such

tItat throughout the range onder study the airfoil al" ays enters the d}namic stail regime.

If this is not done the airfoil is aIlowed to oscillate in its linear regjon, which defeats the

purpose of a non-linear analysis. The last restriction made is that the angle of attack

should oot exceed 30 degrees and should not he less than -12.5 degrees. The minimum

bound is chosen at the static stail angle in the negative direction for a Mach number of

0.4. This is done because the airfoil is not modeled to enter stail in the negative direction.

The upper bound is chosen at 30 degrees because, in the model, assumptions were made

that the sine of the pitch angle is approximately equai to its value in radians, while the

cosine is equal to one. At 30 degrees there is an error of approximately 5% in the sine

assumption and 13% in the cosine assumption, and sv to maximize accuracy no more

error than this should be allowed.

Therefore, the aforementioned ranges shaii be used save when the angle

restrictions have been surpassed or when there is no useful information past a particular

value. The above choice ofvariables May be summarized as follows:

M =0.4, ait =-0.5, xa = 0.25, ra =0.5, Jl =100'<;(1 =0, 0 ~Qo ~ 0.002,0 < U· ~ 35

0.04 ~ k ~ 0.2, -12.50
~a ~ 300

U sing these values and ignoring the plunge degree of freedom the aeroelastic equations

(4-17) and (4-18) reduce to a single aeroelastic equation:
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(1"+--2a = 2 CIII(s) + Qo(s)
U· 1tJlra

where Qo(s)=Qo sin(lcs)

(6-1)
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Equation (6-1) describes the non-linear one-degree of freedom system that will he studied

in this chapter.

6.3 Procedure

The following procedure will be used to accomplish the objectives previously

discussed

1- A bifurcation plot will be used to describe7 in a general way, the behaviour of the

system as the amplitude of forcing, Qo, is varied. This plot will use the maximum and

minimum values of pitch.

2- The bifurcation plot will be dissected into regions of similar behaviour. Bifurcation

points will separate these regions.

3- Each region will be classified according to its attractor on the Poincaré map and

identified as periodic, quasi-periodic or chaotic.

4- If the region appears ta be chaotic, tools will be used to funher indicate whether or

not the region is truly chaotic.

5- Once chaos bas heen established7 the route to chaos will he established.

6.4 Physical Analysis Using Preliminary Examples

The analysis of the non-linear response of the system, using the analysis tools

explored in the fust Chapter, serves to identify the different types of motion that the

system can produce (i.e.: periodic, quasi-periodic or chaotic). It does no~ however7 gjve

any insight into the physical causes of the motion. An examination of the physical reality

will shed light on the phenomena al work.
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The oscillating airfoil enters different regimes ofmotion aeeording to the range of

angles it is oscillating in and its pitch rate. The most important angles are the statie stall

angle (for M=O.4 stail occurs at Œ = 12.5 deg) and the zero spring deflection angle

(mean angle of attack). These angles are important because they detennine the regions

where each category of moment (i.e.: structural, inertial, aerodynamic and extemally

applied) works for or against one another.

Figure 6.1 shows the pitch response of the airfoil for two cycles (k=O.075, U*=20,

Qo=O.OOûS, ŒIftaII =10 deg), the vectors correspond to the relative magnitude of the

moments due to each category as described by equation (4-7) (i.e.: structural, inertial,

aerodynamic and extemally applied). These vectors are overlaid onto the pitch response

of the airfoil. Figure 6.1 (a) illustrates the aerodynamic moment at each point in the

airfoil's motion. Most of the contribution of the aerodynamic moment in the linear region

(i.e.: a few degrees below the static stall angle) comes from the impulsive loading. When

the pitch rate is positive a compression wave is created on the upper surface of the airfoil,

while a rarefaction wave is created on the lower. This means that in the linear regime

when the pitch rate is positive (the slope of the pitch response is positive) the

aerodynamic mon~ent is negative and vice versa. Therefore, when the slope is positive in

the linear region the aerodynamic moment is negative and vice versa as may he

confinned in Figure 6.1(a). The largest contribution of the aerodynamic moment cornes

during dynamic staIl, (Le.: a few degrees above the static stall angle) when the

aerodynamic moment is non-linear and has its greatest influence over the other forces. In

this regime the moment is negative. It is a1so important to note that in the linear regime

the aerodynamic moment is working against the motion of the airfoil, while in the non-
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linear regime it is working with the motion of the airfoil. This means~ that when the

airfoil is oscillating about the static stall angle~ for part of the cycle, the airstream is doing

positive work and therefore supplying energy into the system. It is therefore possible to

sustain a self-excited oscillation around the static-staIl angle; this May be a precursor to

flutter. Note that in Figure 6.1 a1l of the vectors originating from the pitch curve in the

non-linear region represent non-linear moments, whiIe those originating from the linear

region represent Iinear moments.

Figure 6.1(b) illustrates the variation of structural moment with pitch angle. The

structural moments work in a simpler fashion than the aerodynamic ones; when the angle

is above the Mean angle of attack (the line in Figure 6.1 (b» ilS influence is positive and

vice versa. Figure 6.1(c) illustrates the variation of inertial moments~ which work as time

delays. They simply resist abrupt changes when the airfoil enters different regimes. More

specifically, when the pitch acceleration is positive (the pitch response is concave up) this

moment is negative, and vice versa. Therefore, when the curve is concave up the inertial

moment is negative and vice versa; this may be confirmed in Figure 6.1(c). The inertial

moment is at its highest value during dynamic staU, which characterizes the most abrupt

change in the airfoil's motion. Figure 6.1(d) illustrates the extemally applied mo~ent.

The extemally applied moment works at its own pre-defined configuration (i.e.: a sine

wave).

The above figures illustrate that once the response is known the various

components of the system act in predictable ways. However, it is the coupling of the

various forces with regards to the response and the non-linear nature of the aerodynamics

when oscillating in stail that makes any qualitative attempts at predicting the response
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impossible. In other words there is a circular relation between the various components of

the system and the response; the response of the system depends on the moments

supplied from each component which depends on the response and so on. This was the

entire reason for the predictor-corrector algorithm discussed in Chapter 5.

One way to try to create sorne kind of qualitative framework is to study each

component separately, thus eliminating the coupling effect. For example, if the airfoil had

only structural influences it would oscillate at its natura! frequency k= 1/U*. If only the

extemally applied moment influenced il, it would oscillate at the extemally applied

frequency (k). The next example, illustrated in Figure 6.3, shows the system without the

influence of structuraI or external forces (structural forces are very weak). This means

that the system is simply a balance between inertial and aerodynamic forces. It May he

described by the following equation:
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As can be seen in Figure 6.3, in this configuration the system is periodic of period two,

with the main frequencies being 0.049 and 0.098 with a super-hannonic of 0.147, which

is the addition of the tirst two frequencies. The most important conclusion from this

example is that it is a self-excited oscillation. TI:~ possibility of this was examined

earlier. Now, since there is no extemally applied moment, the energy is supplied

exclusively by the aerodynamics. Once agai~ the fact that it is oscillating in and out of

staIl, is necessary. Examples, with no extemal forcing, not oscillating about the statie stail

angle, cannot sustain a self-excited oscillation. Figure 6.2 shows a bifurcation plot with

the non-dimensional velocity U· as the control parameter. No extemal forcing is used.

As can be seen, by not aIlowing the airfoil to oscillate in and out of stail (this is done by
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increasing the structural stiffness, which is accomplished by lowering the value of U*),

the aerodynamics supplies positive damping and the airfoiI reaches an equilibrium point.

By weakening the structural stiffness (increasing the value of U*) the airfoil is allowed to

oscillate at greater angles of attaek, and, as can be seen, only when it is allowed to

oscillate about the statie staIl angle can a self-excited oscillation take place. The reasons

for this were discussed previously with Figure 6.I(a).

Dividing the system into its component forces gives insight ioto frequencies that

are characteristic of the system. Although the various elements are highly coupled, the

natural frequency of the system, the extemally applied frequency and the frequencies

discovered in Figure 6.3(c) recur many times as large peaks in the frequency spectrum in

the responses that will be studied in this chapter. If these frequencies are not present, the

frequencies of the response are a1ways at least in proximity. This means that although it is

impossible to predict the frequencies of the responses by sorne linear combination of the

frequencies of the separate components, it is possible to determine a bound in which the

frequencies will be found.

6.5 Case 1

The tirst case that will be studied is characterized by the following parameters,

k=O.088, U*=23, ŒIIIftIII = 5 deg, O<Qo<O.OO1. The structural natural frequency of this

system is k=0.043, and the ratio of forcing to naturaI frequency is 2.0. This case

represents a case of low structural stiffness relative to the other cases that will be studied.

The bifurcation plot, seen in Figure 6.4(a), can be separated into five regions according to

the qualitative features of the plot. A conceptual drawing of these five regions is given in
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Figure 6.4(b), and the bifurcation points separating these regions are: 1) separ3ting

regions 1 and 2, Qo=1.7xlO~, 2) separating regions 2 and 3, Qo=3.83xl0-4, 3) separating

regions 3 and 4, Qo=6.23xl0-4, 4) separating regions 4 and 5, Qo=7.4xl0-4. Each region

has its own characteristic attractor. The time history and frequency spectrum are

computed using 50 cycles of forcing after 200 initial cycles, which are ignored so that

there is no effect from transients. According to the frequency spectrum error defined in

the fust chapter (forcing frequency (k) / (# ofcycles sarn~!ed», the error in the frequency

is +/-0.00176. When exact values of frequency are required, 200 cycles are sampled, thus

reducing the error to +/-0.00044.

Region 1

This region is characterized by a quasi-periodic attractor, which has a1ready

undergone a breakdown towards a chaotic attractor. The first example (Qo=5x 10-5
),

which lies very near the beginning of this region, shows an almost periodic solution,

whose amplitude is not constant throughout the airfoil's motion. The airfoil's motion

does, however, reside within a region in the phase space with well-defined boundaries

(Figure 6.5(a». Limited or narrow-band chaos is present. This can be seen as limited

broadening of the main frequencies in the spectrum (Figure 6.5(b»; the two main

frequencies are k=O.088 and k=O.099. The Poincaré map shows a quasi-Periodic attractor,

which has a1ready exPerienced some breakdown towards a chaotic attractor, via the

quasi-periodic route (Figure 6.S(c». This route is similar to the toros breakdown in the

peroxidase-oxidase reaction illustrated in Figure 6.6, which is an example of a system

that reaches chaos via the quasi-periodic route. Figure 6.5(c) resembles Figure 6.6(d),
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meaning that it is near the end of the quasi-periodic route towards chaos. In fact the next

example studied in this region is chaotic.

Figure 6.7 shows the airfoil motion near the end of the first region

(Qo=1.2333xI04
). As can be se~ there are two main frequencies, k=O.042 and k=O.088,

and make the motion aImost period two (Figure 6.7(b». Although, within the error of the

frequency spectrum, this May primarily he a periodic solution, the Poincaré map shows a

"losed loop, which proves that the main frequencies are indeed incomensurate. The

frequency spectrum of Figure 6.7(b) shows that a broad band of frequencies around

k=0.04, (near the natura! frequency) dominates the spectrum. The attractor, shown in

Figure 6.7(c) indicates chaos.

To further test whether or not this is tn11y chaos a measure of the Lyapunov

exponent, as seen in Figure 6.8(a), is calculated. This figure shows the separation of two

initially neighbouring plots on the phase-plane as a function of non-dimensional time.

The variable d is defined in the tirst chapter where the Lyapunov exponent is explained.

As cao he seen hy this figure, a separation of initial conditions, do, of ooly 10-6 on the

phase plane, separates within 1500 units of time to a difference, d, of 10+1
, which is the

size of the attractor in the phase plane. The slope of this graph (Figure 6.8(a» is an

approximation of the Lyapunov exponent. For a more accurate measure of the Lyapunov

exponent, the slope would have to be found starting from Many different points on the

phase-plane and averaged. This divergence hetween neighbouring plots can he seen more

clearly in Figure 6.8(b). These plots show that the response is extremely sensitive to

initial conditions and suggests a positive Lyapunov exponent. The final suggestion of

chaos is the presence of fractal geometry in the Poincaré map, this is demonstrated in
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Figure 6.9. In this figure one clearly sees complex patterns at two levels of

magnitication.This response therefore satisfies ail of the aforementioned criteria ofchaos,

and is the tirst example ofa response where chaos dominates.

Finally al the end of this region there is a periodic window (Qo= 1.7x 10-4). Figure

6.10 shows an almost perfect periodic solution of period one and frequency k=O.088 (the

extemally applied frequency). This same frequency resides in the previous examples.

This c·:ent has interrupted the route towards chaos.

Region 2

Region 2 seems to continue where Region 1 left off. The tirst example, which lies

near the beginning of region 2 (Qo=2x 10-4), seems to be continuing the trend of quasi­

periodic breakdown of Region 1. The attractor on the Poincaré map of Figure 6.11 (b),

looks aImost identical to that of Figure 6.7(c). There is, however, a very distinct

difference. Upon inspection of the long tenn behaviour (Figure 6.ll(c» one sees that for

the tirst 5000 cycles of forcing the airfoil is in a periodic regime, which suddenly changes

to a seemingly chaotic regime. This suggests that, on route to chaos, the second

mechanism of intennittent transition, may be dominating the second region.

Figure 6.12 seerns to show the first example of strong chaos. There is no

repeatable pattern in the time history (6.12 (a», the phase plane is filling (6.12 (b», there

is a broadband character in the frequency spectrum (Figure 6.12(c», the attractor on the

Poincaré map (Figure 6.12(d» looks like a strange attractor, and there are no prolonged

horsts of a stable periodic motion (Figure 6.12(e». Once again, to try to show that chaos

is present the same procedure of detennining the sensitivity to initial conditions is
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undertaken, as for the response of Figure 6.7. This can he seen in Figure 6.13.0nce again

a positive slope in Figure 6.13(a) suggests a Positive Lyapunov exponent, and fractal

geometry is present at two levels of magnitication (Figure 6.14). This response therefore

satisties ail ofthe aforementioned criteria of chaos.

The last example in this region (Qo=3.8333x 10-4) shows how the chaotic attractor

changes to an almost periodic attractor of period two (k=O.044, 0.088). Aga~ as can he

seen in the time history of Figure 6. 15(a), there are intermittent bursts of chaos from a

period two oscillation, once again suggesting an intermittent transition. The attractor

shown in Figure 6.1 S(c) shows vestiges of the chaotic attractor of the previous example

(Figure 6.12(d», but as cao be seen in the long tenn behaviour (Figure 6.1S(d» the

scatter has become more concentrated around two darker bands, which confinns a period

two oscillation with intennittent bursts of chaos. This intennittent behaviour, however,

varies from the previous case of intermittent behaviour (Figure 6.11 (d», because in this

case there is no significant time period for which the period two oscillation is stable,

whereas in the previous case the periodic oscillation was stable for 5000 cycles of

forcing.

Region 3

This region is characterized by a period-2 oscillation with narrow-band chaos,

which begins to destabilize and culminates in the creation of an almost stable period-4

oscillation in region four.

The tirst example (Qo=4.3667xl0~) presented in Figure 6.16 shows an almost

stable period·2 oscillation (k=O.044, 0.088), the frequency spectrum of Figure 6.16(b)
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confinns this. The Poincaré map of Figure 6.16(c) does show sorne chaotic behaviour,

where, rather than showing two distinct points, which characterîze a period-2 oscillation~

it shows two distinct curves. This simply confirms the presence ofnarrow-band chaos.

The last two examples (Qo=5.4xI0-4 (not shown), Qo=6.2333xl0-4) in this region

simply continue this trend. Figure 6.17 (the last example), once again~ shows an almost

stable Period two oscillation. However the variability in the amplitude has increased.

Figure 6.17(c) shows even larger curves with more interesting fractal geometry. The last

examples in this region show the growing emergence of two new frequencies. Along with

the two main frequencies of k=O.044 and k=O.088~ frequencies of k=0.022 and k=O.066

(Figure 6.17(b» are emerging which will culminate in a period doubling bifurcation in

region 4.

Note, Examples that are not shown were examples that were explored but that were too

similar to a neighbouring example to be shown. They are mentioned because they are

often used to detennine a trend (e.g.: growing emergence ofnew frequencies).

Region 4

In Region 4 the system exPeriences a period-doubling bifurcation. The first two

examples (Q0=6.5xlO"', Qo=7.0333xl0-4), the second ofwhich is shown in Figure 6.18,

show the creation of an almost Per"fect period four oscillation at the frequencies, k=O.022,

0.044, 0.066, 0.088 (k=O.088 is the forcing frequency). The Poincaré map of 6.18(c),

shows how the two fractal curves on the Poincaré map, of the period two oscillations~

breakup into four fractal curves. Again narrow-band chaos is present.
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The last example from this region (Q0=7 .3667x 10-4) shows how the period four

oscillation starts to degrade back to a period two oscillation very similar to that for region

2. The frequencies ofk=O.022 and k=O.066 begin to disappear (Fig 6.19(b», and the four

curves on the Poincaré map merge once again to create two fractal curves (Fig 6.19(c».

This is an example of an incomplete period-doubling route to chaos. An example of

incomplete period-doubling are the Feigenbaum trees, which are illustrated in Figure

6.20.

Region S

This last region creates an aImost perfect period two oscillation. The two curves

of the Poincaré map shrink towards two distinct points, to make a period two oscillation

of the same frequencies of that in region 2 (Figures 6.21, 6.22). This change cao be seen

on the Poincaré maps of three examples (Qo=7.7333xl0-4, Qo=9.0333xl0-4,

Qo=7.3667xI0-4) (Figure 6.21,6.22(c». As Qo is increased past that shown on the

bifurcation plot, no new bifurcations occur and the system remains at this configuration.

The final response cao be seen in Figure 6.22. The main frequencies, once again, are

k=0.044, 0.088 (Figure 6.22(b».

Summary

For Case 1, more than one route towards and away from chaos is present as the

control parameter Qo is varied. The first region represents an example of the quasi­

periodic route. The second represents an intermittence route, while the third, fourth and

fi fth represent incomplete period-doubling. There were no typical routes, it was often a
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combination. Chaos is almost always present in a narrow-band fonn. There were ooly a

few cases of strong chaos, and it was for these cases that further tests were used to

indicate chaos. Frequencies that appeared in the frequency spectra were always near the

naturaI frequency or the forcing frequency. Coincidentally the natura! frequency and

forcing frequency were very close in value to the frequencies found when the airfoil was

oscillating under the influence of aerodynamic and inertial forces ooly, as discussed in

section 6.4.

6.6 Case n
The second case is characterized by the following system parameters: k=O.15,

U*= 13.5, a llWGII = 5 deg , O<Qo<O.OOl. The structural natural frequency ofthis system

is k=O.074, and the ratio of forcing to natura! frequency is 2.0. This is the same ratio as

the tirst case. Although the tirst case has a higher value of u* it has a lower value of k,

thus maintaining the same ratio. This case represents a case of high structural stiffness

relative to the other cases (i.e.: U· is low relative to the other cases). The bifurcation plot,

seen in Figure 6.23(a), cao be separated into four regions, according to the qualitative

features of the plot. These four regions cao be seen in the conceptual drawing of Figure

6.23(b), and the bifurcation points separating these regions are: 1) separating regions 1

and 2, Qo=2.5xlO~" 2) separating regions 2 and 3, Qo=4.3xl0-4, 3) separating regjons 3

and 4, Qo=6.7xlO~. The frequency spectrum error in this case is +/-0.003. Once again

when exact values of frequencies are required 200 cycles were sampled to reduce the

error to +/-0.00075.
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Region 1

The tirst region is characterized by a quasi-periodic attractor, which unravels via a

quasi-periodic route towards a chaotic attractor. Figure 6.24 shows the time history and

the phase-plane of the response at Qo=O. As cao he seen, for the mostp~ the solution is

periodic, and since there is no forcing term it is an example of a self-excited oscillation.

There is aIso a single borst of non-periodic motion. As mentioned in the discussion of

self-excited oscillations in section 6.4, the oscillation should be about the stail angle.

Looking at the time history confirms this facto Upon inspection of the frequency spectrum

of Figure 6.24(c), besides the large spike at k=O.l there are other spikes, most of which

lie near zero. This simply retlects the fact that the burst is seen ooly once among the

Many cycles that are sampled in the time-history plot, the frequency of this burst is

therefore naturally near zero. When looking at the Poincaré map of Figure 6.24(d), one

sees that it resembles the phase-plane. This underlies the problem of using a Poincaré

map when the forcing amplitude is zero. The Poincaré map uses the forcing frequency to

sample the data. When forcing is present (i.e.: non-zero amplitude) this frequency is also

present in the frequency spectrum of the response. When forcing is not present, chances

are that the forcing frequency (which is technically meaningless with zero forcing

amplitude) is not present in the response. This makes the Poincaré map meaningless. It

resembles the phase-plane because the map encounters every different point that makes

up the cycle of the response. The long-tenn behaviour (Figure 6.24(e» shows that the

burst that is seen in the time history does not last past a few thousand cycles and may

therefore be considered transient chaos. This means that the response becomes periodic

after a few thousand cycles. The Poincaré map, indicates quasi-periodicity (closed loop),
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in contrast to the other plots. This result is meaningless for the reasons mentioned before.

The case ofQo=O will therefore not be studied for the remainder of the cases.

The second example in this regjon (Qo=7x 1O-s) is much easier to classify. We see

that in this case, the misleading conclusion of quasi-periodicity of the previous example

is no longer misleading. This is because the forcing ti"equency of /c=O.lS is a comronent

of the resPOose, as can be seen from the small spike at this frequency in the frequency

spectrum of Figure 6.2S(b). As can be seen by the Poinc~émap of Figure 6.2S(c), it is a

quasi-periodic attractor whicb has already undergone unraveling towards a chaotic

attractor. Looking at the Fourier Spectrum of Figure 6.2S(b), the forcing frequency is

present, and the low frequency end bas a broad-band character introducing chaos via the

quasi..periodic route. This quasi-periodic route is qualitatively different from the previous

case: it is not like the peroxidase-oxidase reaction, illustrated in Figure 6.6, it is more like

the quasi-periodic transition of the Rayleigh..Bénard thennal convection system,

illustrated in Figure 6.26.

The last two examples (Qo=1.4xl04 (nût shown), Qo=2.1x!04) continue the

trend towards a chaotic attraetor, whicb culminates in the attractor seen in Figure 6.27(c).

The last example in this region (Figure 6.27) may be considered chaotic, and must he

further studied. The attractor (Figure 6.27(c» shows the same type offolding at the top of

the broken toros as in Figure 6.26(b), which further points out the similarities between

this case and the Rayleigh-Bénard thennal convection system. Figure 6.27 shows that this

is indeed chaotic. Again, the time history is unpredictable, the frequency spectnun has a

broad..band character, the Poincaré plot reveals a strange attractor, there is a sensitivity ta
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initial conditions and hence indications of a positive Lyapunov exponent (Figure 6.28) as

weIl as fractal geometry (Figure 6.29).

Region 2

The second regjon has been differentiated from the tirst region because, instead of

continuing the trend established in the tirst region, a window of more stable, aImost

periodic, motion appears, and a new intennittence route to chaos is introduced.

The tirst example in this region (Qo=2.8x 10-4) is very interesting because it

represents a stable periodic solution with nine individual frequencies in the frequency

spectrum (Figure 6.30)! The Poincaré section and long tenn behaviour (Figure 6.30 (d),

and (e» show that this period nine oscillation is stable for almost the entire 30 000 cycles.

Intennittent borsts ofchaos are present.

The second and third Oast) examples (Qo=3.5xlO"·" Q0=4.2xI0-4) show how

through an intennittence route, the respoose becomes chaotic Figure (6.31). The last

example shows ail of the characteristics of chaos. It does, however, have a window of

stability in the long tenn behaviour (Figure 6.31(c». The tirst example of the third region

shows the fully chaotic response.

The intennittence behaviour in this region show relaminarization channels in the

tirst and second retum maps. These channels in the retum maps are indicators of

intennittency in Many classical examples. Figure 6.32 shows the tirst and second retum

maps of the pitch responses in this region, relaminarization channels in these maps cao

clearly be seen below the identity line.
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Region 3

This region begins with an excellent example of chaos (Qo=4.9xI0-4), which was

created through the intemrittence route described in region 2. This example is illustrated

in Figure 6.33 Further investigation of this chaos is done, as in the previous case, seen in

Figures 6.34 and 6.35. AIl the criteria ofchaos are satisfied.

The last two examples in this region (Qo=5.6xI0-4, Qo=6.3xI0-4) show the

unraveling of the chaotic attractor via an intennittence route. This intennittence nature is

best identified in the long-tenn behaviour of Figures 6.36(c) and 6.37(c). The effects of

this intennittenee transition away from chaos on the Fourier spectnJm may be seen in

Figure 6.38. The broad-band of frequencies near zero become less strong as Qo is

increased.

Region 4

The unraveling continues in the tirst example of this region (Qo=7x10-4), as can

be seen by the Poincaré map of Figure 6.39{b). The stable oscillation now dominates the

long-tenn behaviour, seen in Figure 6.39(c).

The second example (Qo=7.7x10-4) shows a stable oscillation of period three.

Figure 6.40 shows the most perfeet example of a stable periodic solution thus far. It is

unusual to find sueh a stable solution surrounded by chaos. It is stable for ail 30000

cycles (Figure 6.40(e» and represents three concise dots on the Poincaré map (Figure

6.40(d». The route taken to this periodie solution is difficult to identify, it seems to be a

periodic window.
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Sunilar periodic windows appear uotil the end of this region. Three more

examples are studied in this region (Qo=8.4xl0-4, Qo=9.1xIO··t, Qo=9.8xI0-4). Either a

perfeet period three oscillation (Qo=7.7xI0-4, 9.1xl0-4: Figures 6.40, 6.41(b» or an

attractor with intennittent chaos (Qo=7xI0-4, 8.4xIO"', 9.8xl0-4: Figures

6.39,6.4I(a),6.41(c» characterizes this region.

Summary

This case, unlike the previous one, shows no clear period-doubling bifurcations. It

is dominat~ for the most Part by an intennittence mechanism, which can he compared

to classical cases due to the presence of a relaminarization channel in the retum maps.

Besides this, a quasi-periodic route is taken in the tirst region sunilar to that observed in

the tirst case. This quasi-Periodic route is qualitatively different from the quasi-periodic

route in the tirst case and resembles the Rayleigh-Bénard system. Another interesting

feature of this case is the appearance of stable periodic oscillations with many constituent

frequencies. As many as nine individual frequencies were found in one example.

6.7 Case III

The third case was chosen with similar parameters to the tirst case. It will

therefore be compared and contrasted with that case. This case is eharaeterized by the

following system parameters, k=O.l, U·=20, ŒItWQJI = S deg, O<Qo<O.OO 1. The natural

frequency of this system is k=O.OS and the ratio of forcing to natural frequency is 2.0. The

bifurcation plot, seen in Figure 6.42 can be separated into five regions according to the

qualitative features of the plot. A conceptual drawing of these tive regjons can be seen in
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Figure 6.42(b), and the bifurcation points separating these regions are: 1) separating

regions 1 and 2, Qo=4xIO"', 2) separating regions 2 and 3, Qo=6xI04
, 3} separating

regions 3 and 4, Qo=6.933xI0"', 4) separating regions 4 and 5, Qo=8.233xI04
. The

frequency spectrum error is +/-0.002 or +/-0.0005 when 200 cycles are sampled.

Region 1

As in the other cases the first region is characterized by a quasi-periodic attractor,

which has already undergone a breakdown towards a chaotic attractor. Figure 6.43 lies

near the beginning of this region (Qo= 1x 104
) and shows what seems to be a chaotic

resPOnse. The Fourier spectnun of Figure 6.43(b) further indicates chaos by its broad­

band nature. The Poincaré map (Figure 6.43(c» shows a chaotic attractor, which is

similar ta the chaotic attractor found in the second example of the tirst region of the tirst

case (Figure 6.7). In other words it is a quasi-periodic attractor that has undergone

substantiaI breakdown towards a chaotic attractor. It is reasonable that the tirst region of

the third case be sunHar to the tirst region of the first case. This is because the effects of

the extemaIly applied moment are low in this region (low amplitude in Region 1) and the

remaining pararr.eters such as the naturaI frequencics in both cases are near ta each other

(Case l, k=0.043; Case III, k=O.OS).

The second example in this region (Qo= 1.9x104
) continues the quasi-periodic

route ta chaos, very much like in the tirst case. In this region, however, the chaos that is

present is intennittent in nature. This cm be seen clearly in the long-term behaviour of

Figure 6.44(cl. Similar to the previous example there is a broad-band of frequencies near

k=O.OS, and a strong peak at k=O.1 (Figure 6.44(a». This example is very similar to the
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first example of the second region of the tirst case (Figures 6.11). Again~ it makes sense

that the two examples are similar, as they have similar parameters. The similarities

between the responses in the two cases decrease as the forcing amplitude is increased.

The last example in this region (Qo=3.7xIO"') is the first good example of chaos.

The time history is unpredictable~ the frequency spectrum is broad-band in nature~ while

the Poincaré section reveals a chaotic attractor (Figure 6.45). The extra tests were

perfonned similarly to the other cases and further indicated chaos (not shown).

Region 2

This region begins approximately where the third region of the first case begins.

The reason why the boundaries of the regjons in this case do not coincide to those of the

tirst case is due to the lack of a periodic window in the tirst region in this case. The fust

region was therefore not split ioto two separate ones as in the fust case. Once again there

are similarities between the cases. This region, as for the third region of the tirst case, is

characterized by a period two oscillation with narro\\'-band chaos, which begins to

disappear and culminates in the creation of an aImost stable period four oscillation.

Three examples are studied in this region: (Q0=4.3xlO"', Qo=5.3xI0-4,

Qo=5.77xI 0-4). The narrow-band chaos present in the first example slowly disappears to

create a more stable, mainly period-two oscillation~ as can be seen on the phase plots in

this region (Figure 6.46). The narrow-band of frequencies around k=O.05 become less

pronounced (Figure 6.47). The Poincaré sections transfonn ioto two solid curves attached

by a dashed curve (Figure 6.48). These are the same eveots that characterize region 3 of

the first case. However the two curves, which indicate a period-2 oscillation with narrow
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band chaos, look different in this case. In this region these two fractal curves are

connected by less pronounced curves, indicating that the narrow-band chaos in this

region is stronger than in its counterpart of the tirst case. The differences between the

cases are starting to become more significant.

Region 3

In Region 3 the system experiences two incomplete period-doubling bifurcations.

Its counterparl in region 4 of the first case only experiences one. The tirst example

(Qo=6.3xI0-4) ofFigure 6.49 shows the creation of an aImost perfect period 4 oscillation

at the frequencies, k=O.025, 0.05, 0.075, 0.1. This is double the number of frequencies

than for the previous example. This example is very similar to the second example of

Region 4 in the tirst case, which has an aImost perfect period four oscillation at the

frequencies k=O.022, 0.044, 0.066, 0.088 (Figure 6.18). In both cases these frequencies

are multiples of the forcing and natura! frequeneies of the respective cases. The Poincaré

map of 6.49(c) shows how the two fractal curves of the period two oscillation, present in

the previous region, breakup ioto four curves. Agam narrow-band chaos is present and

more so than its counterpart in case 1.

In the first case the four curves become smaller, aImost forming four points for

the almost perfeet period four oscillation of Figure 6.18. The last example from this

region (Q0=6.7x10-4) shows how the period four oscillation begjns another period­

doubling bifurcation. This bifurcation is incomplete, however. The incomplete period­

doubling cao be seen in the third region of the bifurcation plot and conceptual drawing of

Figure 6.42. The phase-plane shows the beginning of a period-doubling bifurcation
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(Figure 6.50(a», the Poincaré map of Figure 6.s0(c) shows the creation oftwice as many

fractal curves as the previous example. The frequency spectrum shows new peaks at

k=O.O 125, 0.0375, 0.0625, 0.0875, which is in addition to the frequencies of k=O.025,

0.05, 0.075, 0.1, the frequencies of the period four oscillation (Figure 6.50(b». These

new frequencies appear symmetrically around the frequencies of k=O.025 and 0.075 at

+/- 0.0125 ofthese frequencies (ail the frequencies are multiples of 0.00125).

Region 4

Two examples are studied in this region (Qo=7.3xI0-4, Qo=7.7xI04
). This region

returns to the period four oscillation of region 3 but has weaker narrow-band chaos and

the four curvess~ creating an aImost perfect period four oscillation. This trend can

he seen in Figure 6.51.

Region 5

Two examples are studied in this region (Qo=8.8x 104
, Qo=9.9xl04

). This region,

similar to region 5 of case l, returns to an aImost stable period-two oscillation. This trend

can he seen in Figure 6.52. The last example of this region is a very interesting example

ofa periodic solution with narrow-band chaos. Upon inspection of the fractal geometry of

the attractor, one May find in this example a great complexity as seen in Figure 6.53. This

type of intricate fractal geometry is Rot present in the first case.
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Summary

More than one route towards and away from chaos is present. The tirst region

represents an example of the quasi-periodic route. The second represents an intennittence

route, while the third represents incomplete period doubling. There were no typical

routes, it was often a combination. This case was very similar to the tirst case, having

similar routes to and from chaos and similar attractors on the Poincaré map. Some

notable differences were present, however. No periodic windows were present in this

case. On the bifurcation plot (Figure 6.42(a» there i5 apparently a periodic window at the

end of Region 2 at (Qo=O.OOOS77), but this is simply an example of the bifurcation plot

sampling the solution in the stable region of an intennittently chaotic response. The

incomplete period-doubling cascade took an extra period-doubling bifurcation, ending up

with a period-8 oscillation before retuming back to the final period two oscillation. The

attractors were sunilar for the two cases but become more dissimilar as Qo was increased.

The difference was most pronounced in the last example, which showed very complex

fractal geometry not present in the tirst case.

6.8 Case IV

The fourth and last case studied is similar to the second case, and is characterized

by the following system parameters, FO.IS, U*=15, (XtIWIZIf = 6 deg, O<Qo<O.OOl. The

naturaI frequency ofthis system is k=O.067 and the ratio of forcing to naturaI frequency is

2.25. In faet the only difference between case IV and case II is that U*=15 not 13.5. The

bifurcation plot, seen in Figure 6.54, can be separated into six distinct regions according

to the qualitative features of the plot. These six regions cao be seen in figure 6.54(b), and
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the bifurcation points separating these regions are: 1) separating regions l and 2,

Qo=3.4xlO~, 2) separating regions 2 and 3, Qo=6.466xlO~, 3) separating regions 3 and

4, Q0=9.33xl0-42) separating regions 4 and 5, Qo=1.346xlO~, 3) separating regions 5

and 6, Qo=l.64xlO~. More regions are chosen in titis case than in any other because the

bifurcations continue past Qo=O.OO l, which does not happen in the other cases. The

frequency spectrum error is +/-0.003 or +/-0.00075 when 200 cycles are sampled.

Region 1

Once again the fust region is characterlzed by a quasi-periodic attractor, which

unravels itself via the quasi-periodic route towards a chaotic attractor. The first example

in this region (Qo=lxlO-4) lies near the same point as the second example of the tirst

region in the second case. The attraetors on the Poincaré map are very similar, this can he

seen by comparing Figure 6.25 and Figure 6.55. The attractor reveals a quasi-periodic

response, already unraveling towards a chaotic attractor (Figure 6.55).

The second example (Qo=2.5x 10-4) shows a continuation of the quasi-periodic

route towards chaos (Figure 6.56). The ooly major difference between this and the tirst

example is that, among the broad-band of frequencies in the frequency spectrum, two

frequencies stand out more, these are k=O.045 and k=O.15 (Figure 6.56(b».

The last example (Qo=3.3xl0-4) in this region reveals exactly the same event

which caused the separation of the tirst two regions of the second case (Figure 6.57), this

being a periodic window. This periodic window is very similar to that of the second case

(Figure 6.30). The attractors of Figures 6.30(d) and Figure 6.57(d) are similar. The main

difference being that instead of having nine main frequencies, in this case there are only
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four (Figure 6.57(b». Once again this periodic window introduces an intennittence route

towards the chaotic attractor, that will be found in the second region

Region 2

As in the second case, the second region has been differentiated from the first

region because, instead of continuing the trend established in the tirst region, a window

of more stable, almost periodic, motion appears and a new intennittence route to chaos is

introduced. This intennittence route continues until the end of the bifurcation plot but is

interrupted by periodic windows. Once again the similarities between this case and the

second one become less as Qo is increased. In the second case relaminarization channels

were revealed in the tirst and second retum maps (Figure 6.32). In this case

relaminarization channels are a1so present, however, in this case theyare present onIy in

the first retum maps and bear a remarkable resemblance to a c1assical case of a type 1

intermittence transition towards chaos. This will be shown later.

The tirst example in this regjon (Qo=3.3xl04
) is the first example, for this case,

of strong chaos. The top right portion of its attractor in Figure 6.58(c) resembles the

attractor of the first example of the third region of the second case (Figure 6.33). Once

again the extra tests further indicate chaos (not shown).

The last example in this region (Qo=6.4x 104
) shows another similar chaotic

attractor, (Figure 6.59). This case is less chaotic than the previous one. As can be seen

from the frequency spectrum (Figure 6.59(a», three main frequencies have emerged,

which are revealed in the long term behaviour as three darker bands (Figure 6.59(c». The

intermittence behaviour in this region reveals relaminarization channels in the tirst maps.
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These channels, a10ng with others in this case, will later be shown to resemble a classical

example oftyp~ 1 intennittency.

Region 3

This region begins with one of the few examples of a perfectly stable periodic

response (Qo=7 .3x1O~) with a period three oscillation of frequencies k=0.05,0.1, 0.15

(Figure 6.60(b». This oscillation is stable for all 30 000 cycles and appears as three

distinct points on the Poincaré map (Figure 6.60(c».

The last example of this region (Qo=8.5xI04
) reveals another chaotic attractor,

sunilar to the ones in region 2 (Figure 6.60(e». Once again a relaminarization channel is

revealed in the first retum map, which williater he compared to a classical example.

Region 4

The similarities between this case and the second case end in this region. This

region actually coincides with the end of the bifurcation plot of the second case.

The example from this region (Qo=lxIO·J) reveals a periodic solution as shown

by the time history and frequency plot (Figure 6J~ l(a». However, the amplitude of this

period one oscillation is not constant throughout ail 30000 cycles. A myriad of points on

the Poincaré map further indicates this (Figure 6.61(c».

Region 5

This region begins with a chaotic attractor shown in Figure 6.62 (Qo=I.35xI0·3) •

There are two main frequencies: k=0.075 and k=O.15, on the frequency spectrum (Figure
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6.62(b». This implies a period-doubling bifurcation, since the previous example from the

previous region had ooly one main frequency. In fac~ there is also the emergence of two

new frequencies: k==O.03 and O.04S, which are present as smaller spikes on the Fourier

spectrum, implying the heginning of another period doubling bifurcation. As can be seen

by the Poincaré map (Figure 6.62(c», this chaotic attractor is simply two fractal curves,

which implies that the chaos is narrow-band.

The last example of this region shows the emergence of an almost stable period

four oscillation, and is shown in Figure 6.63 (Qo=1.5xl 0-3
). The Poincaré map (Figure

6.63(c» shows four small curves. This period-doubling route is incomplete, because the

next region reveals an almast stable period two oscillation with narrow-band chaos.

Region 6

The last example of this case (Qo=I.88xI0-3
) reveals a period-two oscillation at

frequencies k=O.075 and k=O.15 (Figure 6.64(b», which are the two main frequencies of

the chaotic attractor of region five.

Comparison to Type 1 Intermittent Transition

Figure 6.65 shows the tirst retum maps of the chaotic attractors found starting in

region two and ending in region five (Region 2, Example 3: Qo=6.4xlO-4, Region 3,

Example 2: Qo=8.5xI0"', Region S, Example 1: Qo=1.35xl0-3
). These are compared to

the c1assical example of the tyPe 1 transition shown in Figure 6.65(a),(b),(c). As can he

seen the trend is identical except for the fact that the curves lie above the identity line in

the classical example rather than below. This fact has no bearing on the theory behind
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relaminarization channels, and is a compelling proof that the intennittence route to chaos

in this case is ofType I.

Summary

This case is very similar ta the second case, regardless of the fact that the

bifurcation plots are dissimilar. The first three region~ followed the identical route as in

case II. The attractors even resembled each other. As in case II, a quasi-periodic route

began for low Qo, was interrupted by a periodic window which then introduced an

intennittence route. The difference in case IV, compared with cae II, was the appearance

of an incomplete period-doubling route for Qo>O.OO1. Relaminarization channels were

present, but ooly the tirst retum map. These channels indicated an intennittent transition

of type I.

6.9 Effects of Changing Initial Conditions and Basins of

Attraction

A basin of attraction is the range of initial conditions for which the motion of a

system, in this case the airfoil, tends towards an attractor. Every response that was

studied in this thesis had the initial conditions of Œa =aml!an,a~ = 0 . Hence, it is possible

that there exist competing attractors that will attract other responses beginning with

different initial conditions. It is therefore necessary ta detennine the size and boundaries

of the basins of attraction of chaotic attractors found in each case. One example of chaos

was chosen from each case. Figures 6.66 revea1s the attractors found when starting from

severa! different initial conditions. A grid of initial conditions was studied. A total of
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1600 different initial conditions were explored. The attractors shawn in Figure 6.66

describe the Poincaré maps sampled for 20 cycles after 200 cycles have passed, for each

response starting from its respective initial condition. This means that 20 cycles for each

of the 1600 resPOnses gives a total of32000 points on each Poincaré map. As can be seen

in these figures the resulting attractors are identical to the Poincaré maps, which were

sampled for 29 000 cycles after 1000 cycles starting from a single initial condition. These

attractors maybe found in Figures 6.12(d), 6.33(b), 6.48(b), 6.58(c). Hence, for the basin

of attraction sampled there are no competing attractors. Figure 6.67 reveais the path of a

response starting from one ofthe initial conditions for one of the examples. It also reveals

the entire grid of initial conditions that were used for all the examples of Figure 6.66.
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• Figure 6.17: Case 1, Region 3, Example 3; a) Phase Plot b) Fourier
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• Figure 6.21: Case l, Region S, Example 1 & 2; a) Example 1;
Poincaré Section b) Example 2;Poincaré Section: k=O.088,
a

mean
=5 deg. U*=23. a) Qo=7.7333xlO.... b)Qo=9.0333xlO....
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• Figure 6.22: Case 1, Region S, Example 3; a) Time History h)
Fourier Spectrum c) Poincaré Section: k=O.088, a mean =5 deg,
U*=23, Qo=9.9xlO-&.
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• Figure 6.25: Case II, Region l, Example 2; a) Phase Plot b)
Fourier Spectrum c) Poincaré Section: k=O.1S,a mean =6 deg,
U*=13.5, Qo=7xI0-4.
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• Figure 6.28: Case II, Region 1, Example 4; a) Sensitivity to Initial
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• Figure 6.30: Case II, Region 2, Example 1; a) Time History h)
Phase Plot c) Fourier Spectrum d) Poincaré Section e) Long Term
Behaviour: k=O.15,amean =6 deg, U*=13.5, Qo=2.8xl0-4.
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Chapter 7

Non-Linear Analysis: The Two-Degree

-of-Freedom System

7.1 Introduction

The previous chapter used ail of the various tools discussed in the first chapter to

examine the one-degree-of-freedom system. The purpose of this chapter will be to

examine the two-degree-of-freedom system. The addition of the plunge degree-of­

freedom will introduce the possibility ofbinary flutter. This will he the main focus of this

chapter.

Bifurcation plots will be used in conjonction with time-histories, phase-plots and

frequency spectra to see how the behaviour of the system changes as the plunge degree­

of-freedom is introduced into the system. The variable of interest in this section is the

ratio of natura! frequencies, discussed in ChalJter 5. As this variable is increased the

effect ofplunge diminishes. Therefore, the lower the value ofthis variable, the greater the

effect of this new degree-of-freedom as this variable approaches infinity the system

reverts to the one-degree-of-freedom scenario.

Flutter is an instability whereby an airfoil oscillates without any external forcing.

It is therefore extracting energy from the steady airstream. Under certain conditions this

self-excited oscillation May be violent. This condition is possible in the one-degree of
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•
freedom case because of unsteady or non-linear effects (stail flutter). In these cases

negative damping arises due to the nature of the aerodynamics. These types of flutter

were not encountered in the one-degree-of-freedom case, although case Il of chapter 6

did show how oscillations near the stail angle can have enough negative damping to

sustain a self-exeited harmonie oscillation. The negative damping does not last

throughout the entire cycle of the oscillation, however, and flutter does not occur. Flutter

was encountered, however, in the two-degree-of freedom case; this is categorized as

binary flutter (other forms of flutter are also possible). Binary refers to the fact that the

flutter is caused by the coupling of two degrees-of-freedom; in this case, pitch and

plunge. This type of flutter is also referred to as classical flutter. Once again, energy is

being extracted ftom the airstream, but this time it is caused by the way the two modes of

motion interact. This binary flutter occurs when the plunge motion acts to add energy in

unison with the pitch, they therefore reinforce each other and cause the airfoil to oscillate

violently.

The system parameters Perlaining to the pitch degree-of-freedom will take the

same values as defined in Section 6.2. The remaining system parameters, pertaining to

the newly added il1unge degree-of-freedom must therefore be set. The plunge damping

ratio is assumed to be zero, just like the pitch damping ratio (ç Ir = 0), and no plonge

degree-of-freedom forcing is used (Po(s)=O). Under these circumstances the aeroelastic

equations (4-17) and (4-18) reduce to the following equations:
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m2 -1ç"+x a"+-ç =-C (s)

cx U.2 JtJl Il

x 1 2
~J:"-+<x"+--a = C (s)+Qo(s)

2 '" U. 2 ttllr 2 '"
Tcx ""'cx

(7-1)

(7-2)



•
where Qo(s)=Qosin(ks)

Equations (7-1) and (7-2) are the non-linear equations that will he studied in this

chapter.

7.2 Flutter

The analytical detennination of the non-linear flutter boundary is beyond the

scope of this thesis; however, a linear analysis can be done and will be shown to be quite

accurate nonetheless. The non-dimensional two-degree-of-freedom equations (Equations

(7-1) and (7-2» cao be rewritten in matrix fonn in the following way:

222

[M]z' '+(C]z'+(E]z = [Q]z + [F] (7-3)

"'.

where z =[; a]T , [Q] is the aerodynamic matnx, [F] is the forcing matrix and the prime

denotes differentiation with respect to non-dimensional time.

AIl of the structural damping tenns are considered to be zero, and therefore

(C]=(O]. The next step is to choose a solution. A simple hannonic solution of the

following fonn is assumed:

z = z eik.s
o

where kr refers to the reduced frequency of the hamonic response.

(7-4)

•

Now that the fonn of the solution is known, the linear aerodynamic solution must

be found. This solution May he found through the use of the reciprocal relation. This

relation will allow the linear solution for a hannonically oscillating airfoil to he found

from the indicial response that was used in this thesi3. AlI of the indicial responses to the

various step inputs were approximated with exponential functions, and had the following

fonn:



indicial response and s is non-dimensional tirne.

where cp is the indicial function, which when multiplied by the step input gives the•
,(s,M) = A(B + Cexp(-as) + Dexp(-bs»

The response to a hannonic input takes the following fonn:

H(k"M) =F+iG

(7-5)

(7-6)
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where H is the hannonic fimction, which when multiplied by the hannonic input of

equation (7-4) will give the hannonic response.

In chapter two the reciprocal relation of equation (2-18) was used to convert the

hannonic response ofTheodorsen to the indicial response of Wagner. An alternative fonn

of the reciproca1 relation will allow the indicial response of the linear portion of the

model to be converted to the linear hannonic response. The reciprocal relation and its

solution are:

H(k"M) =F +iG = ikrep(s,M)exp(-ik"s)ds- (7-7)

Using the indicial function ofequation (7-5), the solution for the harmonie response is:

(7-8)

•
Using the above relations the (inear indicial response of equations (2.39)-(2.42) cao be

converted to the linear hannonic response, whieh takes the following fonn:

Hannonic Pitch Response Function

Ctta (k, ,M) =[(Re C"a.) + i(lm C"a.)]



• Harmonie Fitch Rate Resoonse Function

C"'Œ (k,.,M) =[(Re Cilla ) + i(Im Cma )]

C""l (k"M) =[(ReClllq ) + i(lm Cmq)]

where "Re" refers to the real part, "lm" refers to the imaginary part.

(7-9)
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When these harmonie functions are multiplied by the appropriate hannonic inputs

the linear harmonic solution is obtained. These functions must DOW be incorporated into

the complex aerodynamic matrix [Q]. The following inputs are used:

Pitch Input (lncludes Pitch Eguivalent>

•
a + fI + l!.-- =a + 2a'~ '=:: a - 2ik a - ik j:2 U_ ~ ,.,.~

Fitch Rate Input

q =2a '= -2ik,a (7-10)

•---'

where the fust equality converts the variables used in the aerodynamie model to those

used in the aeroelastic model via Table (4-25), and the second equality converts the

variables when the response is known to he hannonic.

Using the above inputs with the hannonic funetions, the complex aerodynamic

matrix May now he found:

1 [{[(lnCIIi)k,l-tlk,{ReClIi)J}, {[2(ImC/Itl)k,. -(ReC/U)]-lI(InC/U)+2(ReC"q)k,]) J
Q=1tJ.1 2{[f-ImCIlli )k,.l +tlk,.(ReClIIi )]}, 2{[-2(lmC1IIq)k, + (ReC.,)]+(InCIII1 ) + 2(ReCmq)k,]}

(7.. 11)
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A method using artificial damping is then used for the flutter analysis. This

method commences by adding an artificial damping in complex fonn as follows:

(1+· )
[M]z"+ u;~ [E]z=[Q]z (7-12)

The theory is that when g is negative the system is stable because extemal forcing is

required to maintain simple hannonic motion. Therefore when g is positive, the opposite

is true and the system is unstable. The flutter boundary i::; when g=0. When applied to the

model used in this thesis the matrices take the following fonn:
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M=[ (7-13)

and [Q] is defined above.

Inputting the solution ofequation (7-4) into equation (7-12) yields

{-k/[M]-[Q] + (~;~) [Enzo = [0]

This equation is an eigenvalue problem, whose eigenvalue is equal to (1 + i~) .
U·

(7-14)

•

The following procedure is taken to detennine the flutter boundaries: 1) the value

of kr is set; 2) aIl of the matrices are calculated; 3) eigenvalue analysis reveals two

eigenvalues; 4) the reaI portion of each eigenvalue allows U· to be obtained while the

imaginary portion allows the detennination of g. By setting the value of kr at many

different values, two curves of g versus U· May be obtained. When one of the curves

gives g greater than zero the airfoil experiences linear flutter. Many pertinent flutter

boundary graphs May he found.

The first graph that may he obtained is the variation of artificiaI damping (g) with

the non-dimensional velocity (U·). An example ofthis is shown in Figure 7.1(a) (00=0,
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•

•

0.04< kr <0.2, Œ__ =Odeg,m =3). Two curves are obtained because of the two

eigenvalues. One of those curves always has negative values of g, white the other

changes between negative and positive values. This latter curve is the one that detennines

the flutter boundary (Figure 7.1 (b». These curves are found for a constant value of the

ratio of natura! frequencies (le), whj~h for the above example was 3. The non­

dimensional frequency of the hannonic resPOnse (kr ) is varied from 0.04 to 0.2, in

accordance with the boundaries set in Chapter 6.

By varying the ratio of natural frequencies between 0 and 6 a family of curves of

g versus v* May be generated. Sorne of the curves from this family cao be seen in Figure

7.2(a). The lengilis ofthese curves vary because of the boundaries set for kr and V· (V·

should be less than 3S according to chapter 6). By detennining the value of non­

dimensional velocity (U*) at which the artificial damping (g) is equal to zero, which is

the value of v· where the curves of Figure 7.2(a) cross the dotted identity line, a flutter

boundary May be created between the ratio of natural frequencies and non-dimensional

velocity. This can be seen in Figure 7.2(b), and is the curve labeled L, to denote that it

corresponds to the linear system. To verify the usefulness of the flutter boundary plot,

which was derived trom linear analysis, it must be compared to the non-lïnear system.

The non-linear flutter boundary May be found by studying the non-linear response

of the airfoil with the following values for the airfoil parameters: a.~ =0 deg, Qo=O,

the ratio of natural frequencies is varied between 0 and 6 incremented by 0.2, while the

value of the non-dimensional velocity is increment by 0.1 staltîng below the linear flutter

boundary (Figure 7.2(b» until such a point where the non-linear system exPeriences

divergent oscillations, corresponding to flutter. The presence of flutter May be verified by
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examining the time-histories of the responses. Plotting the points where tlutter first

occurs produces the non-linear boundary as approximated by the model. The non-linear

curve, labeled N-L, is shown in comparison to the linear curve in Figure 7.2(b). Figure

7.2(b) shows that the linear prediction is close, but always under-estimates, the value of

U· at which tlutter occurs. This under-estimation increases as U· increases. Another

interesting feature of the plot is that the value of U· at which flutter occurs increases as

the ratio of natural ftequencies decreases below the point where bath frequencies are

equal. If the airfoil is experiencing flutter, it May possibly he avoided by decreasing the

non-dimensional velocity or by increasing the ratio of natural frequencies to greater than

one or in some cases by decreasing the ratio of natmal frequencies to less than one. The

non-dimensional velocity May he decreased by increasing the torsional stiftbess or by

decreasing the airspeed.

One example of tlutter will be studied (Qo=O, a."'~QII =0, U· = 17.5,m=3 ).

According to Figure 7.2(b) this airfoil is experiencing flutter. The time histories of both

the pitch and plunge motions (Figure 7.3) show that the airfoil is indeed experiencing

flutter. The ftequency spectra of the two degrees-of-freedom show one main frequency at

kr=O.127 for both degrees-of-freedom. The difference between the pitch and plunge

motion is in their phase. The plunge oscillation is aImost 90 degrees out-of-phase with

the pitch oscillation. This means that the plunge rate is almost in phase with the pitch.

Under this scenario the airfoil is extracting the maximum energy from the airstream, and

because of the fact that the frequencies for both degrees of freedom are identical, this

phase difference between pitch and plunge is maintained; thus, causing the oscillations to

continue growing in amplitude. This fact is described as "frequency coalescence", and
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was assumed for the linear flutter analysis. Note: The reduced frequency kr in this section

refers to the frequency of the hannonic response~ and should not be confused with the

reduced frequency in every other section, k, which refers to the pitch forcing frequency.

7.3 Introduction of Chaos by the Addition of the Plunge Degree

-of-Freedom

A reasonable range for the ratio of natural frequencies is between 0.5 and 4 (Lee

and LeBlanc (1986) do not surpass a value of 10 in their analysis). According to the

flutter boundary graph of Figure 7.2(b)~ however~ the airfoil experiences flutter in the

10wer end of this range for values of U· greater than 4.8. The non-dimensional velocity

may be 10wered below this value in two ways. One way is to increase the torsionaI

stiffitess UDtil U· goes below this threshold. The other way is to decrease the airspeed

( Uoo) to achieve the same goal. If the airspeed is decreased, however, the model no

longer falls within the range of system parameters that were used in the paper by

Leishman and Beddoes (1989), on which this thesis is based. The torsional stiffness is

therefore increased. Figure 7.4 shows a bifurcation plot for the following airfoil

parameters: Qo=O.OOl, k=0.1, ŒIWGII =lOdeg, U· =S, 0.5 <Ci1 < 4. Because of the fact

that the torsionaI stiflhess is 50 high there is ooly a particular range of Ci] where non­

periodic oscillations are present. This is around where the ratio of natural frequencies is

equal to one. Around this value, the airstream supplies sufficient energy to the system to

overcome the strong structural stiffiless and allows for larger oscillations and thus larger

excursions into staIl, a region dominated by non-linear forces. This can be seen in Figure

7.4. The one-degree-of-freedom scenario, which is the situation for large vaIues of the

ratio of natural frequencies, shows small non-chaotic oscillations around the Mean angle
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of attack. This May he seen in Figure 7.5. The situation shown in Figure 7.5 prevails for

values of the ratio of natura! frequencies greater than 2.4 as can be ~een in the bifurcation

plot of Figure 7.4(a). Chaotic oscillations May be found in the range of 1.2 <Cil < 2.3.

This range cao he seen in Figure 7.4(b). An example of a seemingly chaotic oscillation

May be seen in Figure 7.6 (pitch response) and 7.7 (plunge response) for airfoil

parameters: (Qo=O.OOl,a~ = 10deg,U*= 5,m =1.41). Existing within the same range

( 1.2 < CI] < 2.3) are examples of non-chaotic oscillations, an example of which, May he

seen in Figure 7.8 (pitch response) and 7.9 (plunge response) for the following airfoil

parameters: Qo=O.OO 1,QIWQIJ =1Odeg,U* =5,m=2.285. The time-histories and phase

plots of both examples resemble responses that were studied in Chapter 6. Similarities lie

between the two degrees-of-freedom, however. When chaos is present in one degree of

freedom it is also present in the other and when the pitch oscillation is periodic so is the

plunge. This is because the two degrees of freedom are coupled. This is the reason why

Figure 7.6 and 7.7 are both chaotic (seemingly), while Figure 7.8 and 7.9 are both

periodic. Another interesting comparison is in the frequency spectra. They are very

similar for both degrees of freedom. The main peaks align perfectly. This May be

described as frequency coalescence and is a necessary condition for binary flutter.

7.4 Summary

Although the determination of the theoretical non-linear flutter boundary was not

done, the linear analysis correlated weil with the approximate non-linear flutter boundary

obtained from the model used in this thesis. When flutter was shown to occur il couId he

avoided by: 1) increasing the torsional (pitch) stiffness; 2) lowering the airspeed; 3)
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increasing the ratio of natural frequencies; and, 4) decreasing the ratio of natura!

frequencies below one (in sorne cases). When chaos occurs in the two-degree-of­

freedom system, it occurs in both degrees-of-freedom; and conversely when chaos is not

present it is not present in both degrees-of-freedom. This makes sense because the two

degrees of freedom are both structurally and aerodynamically coupled. Finally, the

frequency spectra for both degrees-of-freedom were very similar during flutter and near

the flutter boundary, having the same frequencies. This phenomenon is known as

frequency coalescence and it is a necessary condition for binary flutter.

Ali of these conclusions are consistent with both theoretical and experimental

studies offlutter from Many different sources (e.g.: Fung (1993» .
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Chapter 8

Conclusions and Recommendations

8.1 Introduction

The non-linear response and instabilities of a two-degree·of-freedom airfoil

oscillating in dynamic stail was examined in this thesis. Many conclusions were drawn

referring to the limitations of the semi-empirical model used, while others referred to the

classes of motion produced by the non-linear system, and to the existence of instabilities.

The main focus was the possibility of chaos and the route thereto. In this chapter, the

main conclusions of this thesis are summarized and recommendations are given towards

improving the model.

8.2 Conclusions

The Dynamic StaD Model

1) The dYDamic staIl model used in this thesis correlated weil with the model derived

by Leishman and Beddoes, which was presented at the 42nd Annual Forum of the

American Helicopter Society (Leishman and Beddoes, 1986). When comparing the data

obtained by Leishman and Beddoes for both harmonic and ramp inputs with the results

obtained from the model used in this thesis, they were found to he aImost identical.
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2) The plunge degree-of-freedom was incorporated into the model, taking mto

account non-linear plunge effects. This was done in accordance with the work of

Leishman and Tyler (1992). The ooly thing that was done differently was the aItering of

the pressure lag time constant (Tp). This constant was not aItered because the experiments

used to determine the altered time constant, did Dot match the experiments used by

Leishman and Beddoes.

3) Errors were discovered in the paper by Leishman and Beddoes (1986). They

ignored the circulatory contribution due to pitch-rate in the moment coefficient. There

were aIso typographical errors in some of the constants used in their model. These errors

were discovered while cross-checking the paper with other papers written by Leishman

and/or Beddoes.

The Aeroelastic Model

4) The aeroelastic model was based on the work of Lee and leBlanc (1986) and was

easily implemented ïnto the overall model. The only difficulty arase with the possibility

of feed-back loops. Perturbing the response during such a loop solved this problem.

The One-Degree-of-Freedom System

5) Instability was discovered when the airfoil oscillated about the static stail angle.

Under this condition the airfoil was able to sustain a self-excited oscillation.

6) Every class of motion was produced by the non-linear system. Periodic, quasi­

periodic and chaotic responses were found in every case studied, while equilibrium points
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were found when the airfoil had no extemal forcing and was not oscillating around the

statie-staIl angle. Limited or narrow-band chaos was very often present.

7) Severa! routes to chaos were discovered. The quasi-periodic route, period­

doubling route and intermittence route were ail discovered and almost always worked in

combination. Sorne of these routes were compared to classical examples. Quasi-periodic

routes similar to those taken by the Peroxidase'{}xidase Reaction and the Rayleigh­

Bénard Thermal Convection System were found, while a type 1 intennittency route very

similar to a classical example was also found.

The Two-Degree-of-Freedom-8ystem

8) Binary flutter was discovered in the two-degree-of-freedom system. A Iinear

analysis was done, which correlated weil with the non-lïnear model.

9) The frequency spectrum around the flutter boundary was found to have almost the

sarne frequencies for both degrees-of-freedom. This is known as frequency coalescence.

10) When flutter was encountered it could be avoided by increasing the torsional

stiffuess, decreasing the airspeed, increasing the ratio of natural frequencies or, in sorne

cases, by decreasing the ratio ofnatural frequencies below one.
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8.3 Recommendations

In light of the conclusions summarized above there are ways in which the model

may he improved. There are a1so capabilities that were incorporated into model that were

not explored, which may he possible avenues for future research.

To improve the aerodynamic model one must Perfoon a new set of experiments

incorporating both degrees-of-freedom using weIl defined inputs. Once this is done,

curve-fitting techniques May be used to re-detennine all of the time constants used in the

model. The circulatory contribution due to pitch-rate to the moment coefficient should he

added before the re-evaluation of the time constants 50 that the aerodynamic model is

complete. Doing this would maximize the accuracy of the aerodynamic model. To

improve the numerical scheme used for the aeroelastic model one May wish to

incorporate a relaxation scheme so as to avoid feed-back loops. To improve the non­

linear analysis would require the use of more complex tools. The detennination of the

Lyapunov exponents is one such too1. The application of such tools on the resPOnse

produced by the model used in this thesis could be the basis of further research.

The capabiJ :ties of the model used were not aIl explored. Mach number and Many

of the structural parameters were not varied. The Mach number could have been varied

between 0.3 and 0.8. An interpolation algorithm, which was incorporated ioto the

computer program, assured that ail of the Mach-number-dependent constants could he

evaluated throughout the entire range between 0.3 and 0.8. By varying the Mach number

and the structural parameters (e.g.: position of the center of gravity), new conditions

where instabilities occur, and new routes to chaos May he discovered.
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Appendix l-A: Determination of Time Constants

This appendi.'C demonstrates, through an example, how the time constants are

determined for the impulsive loading terms, for a complete explanation refer to

(Leishman, 1987).

249

Lomax'5 exact solution (Lomax, 1968):
4 I-M

C fla = - [1- s]
M 2M

Solution adopted by this thesis: CIra = [.i.p;(s,M) +C1a(M)p; (s,M)]
M

where ,;(s,M) =l-Alexp(-blp2s)-A2exp(-b2p2s),

Al=O.3, A2=O.7, bl=O.14, b2=O.53, p2 =(1- Ml).

t/J~(s,M)= exp(-~)
TI

and

•

At s=o the slope of Lomax's solution should be exactly equal to the slope of the Solution

adopted by this thesis. The sIope of Lomax's solution is therefore equal to the slope of

the circulatory contribution added to the slope of the impulsive contribution. Since

everything besides the impulsive time constant T[ is known, the following equation

allows for the solution ofTt:

dC"a(s =O,M) dC"a C (s = O,Al) dClla
l
(s = O,J'd)-...;.;..;;;;..---- = + -~~---.;..

fis fis fis



·' Lomax :

Circulatory:

Impulsive:

Left Rand Side

dCna (s = O,M) = 2(1- M)
ds }vII

Right Rand Side

tiC...c~=O,M) = C,. (M)P' (Alhl + A2h2)

dCnal(s=O,M) =-~T
ds MI
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If we combine equations and solve for TI:

•

According to experiments, however, it was found that TI approached 1.5 as M approached

0, therefore the time constant was aItered to the following fonn (Leishman and Beddoes,

1989):

It was round that ail of the other impulsive time coastants, iacluding moment terms,

were almost equal and thererore ooly one uoiversa. impulsive time constant was

chosen .
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Appendix I-B: Linear Superposition

Input 1 )

Input 2
)

Input 3) a..- __

Output
) ---

Input 1 l'TI
-~>!.L~
Input 2 l'TI 1L'1Output--"')!.L ) )
Input 3 ) II]~

Where L is a Iinear operator and l is the superposition ofoutputs.

Arbitra", Input Approximated as The Sum of Step Inputs

Input
I(s)

•
Non-Dimensional Time
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Approximated Total Input
Total Input=lnput1+lnput2+lnput3+... or

les) ~[I(so )]l(so) +[l(s}) - I(so )]l(s} -so) +[I(s2) -l(s} )]1(s2 -s})
-t{/(S3) - /(s2)]1(s3 -S2)+...-t{/(s) - I(s- ~)]l(s-(s-LtY))

where 1(s) is a step input

Output to a Step Input

-s
O(s) =[A exp(T )]l(s)

Total Output Using Linear Superposition
Total Output=Output1+Output2+Output3...

TImc(Non Outpull OulpUt2 0u1pUt3 OutpUl4 Lîne3r Superposition
-Dun.)
0 [A]l(so) 0 0 0 qso) =(A)/(s,,)
L1s -Lt [AXI(oii)-I(.s;,) 0 0 .::t

[Aeq:(T )Veso q~)=a:~)Clf{?+fAXI(.\i)-I(so)

2L1S' -2tt -d' [AlI(~-I(~) 0 .::t
[A~T)Y(-t (Âeq:(T)XI(.\i)-I(~) a~)=q.\i)Clf{T)-+{ÂXl(~)-I(.\i)

3L1s -~ ~ -d (~I(~)-I(~ .::t
[A~T)Y(-t (~T )II(.5i)-I(.s;,) [~T)II(~)-I(Jj) ajj) =a:~)eq:(T)-+{AXI(jj)-I(~)

Since LIs is a constant, the value of a variable at a specifie lime may be considered to be at the nth sarnple. This
means that that the output to an arbitrary input whieh is sampled at equally spaeed time intervals is

Lts
Input: I(n) => Output: O(n) =O(n-l)exp(-T)+A(/(n)-I(n-l»
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Appendi~ l-C: Explanation of Piston Theory

For the mathematicaJ derivation refer to (BisplinghotT, Ashley and Halfman7 1955). When the airfoil

experiences a step change in motion (pitch7 plunge or pitch rate) il causes a step change ir. the boundary condition

defined by equation {2-12)7 which means a step change in nonnal velocity. Al the first instant in time during the step

change each element of the airfoiJ MaY he considered as an infinitesimaJly small piston moving impulsively in a gas

at rest. This means mat if the induced vertical velocity is in the positive z-direction7 il will create a compression wave

on the top surface whiJe creating a rarefaction wave on the bouom. The mathematical problem is summarized as

follows

Acoustic Equation:

Boundary Condition:
ô<I>' ••
- ...- = wa(x7t)=-[h(t)-a(t)[x-(c*a)I2]-U""a (t)]} for-cl2 :s; x ~ cJ2
oz

Let us consider a single elemental piston as detined in the following figure:

dy

__.... Rarefaction wave
1

• Wr
e_

• Wc

l
~ Compression wave

Zc

.twa

Zr1
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This figure shows the travel of the t'No waves after an infinitesimal time period dt staning at t=O. The

following may be said of the above scenario:

Velocity of compression wave: Wc = Oc + w"

Velocityofrarefaction wave:w, = w" -ac

Distance travelled by compression wave: ze = (a~ + w,,)dr

Distance travelled by rarefaction wave :z, =(w
Q

- am )dt

Mass of compression wave :mc =Pc {[(wQ +a.Jdr]drdy}

Mass of rarefaction wave :m, =Pc {[(w" -a.,Jdt]dt-dy}

Acceleration of compression wave :acc =(w" ) 1dt

Acceleration of rarefaction wave: aCe =(wa)1 dt

Using the above, Newton's second law may be applied to detennine the forces required to generate these

waves and hence the pressures on the upper and lower surfaces.

F,.PIN' meacr: () (o. hi h dO::!)PUPIN' - Pc = -- = = p'6J w<I +oz wei = pzaz wa 19nonng g eror er tenns le: w~
dxdy dxdy

F,QW, m,ac, () . 0 hi h d 0 2
Plo_, - Pz = dt-dy = dxdy = Pc w" -ac W Q =-pcac W" (lgnonng g eror er tennsle: w 1 )

Coefficient ofChange in Pressure:

Combining everything:

liC = P,OW' - P."IN'
P 1 2

-pU2 c

4 w,,(x)
~C (xr=O)=----

P , M U
c

•
Once the coefficient of change in pressure has been found the lift and moment may be found by simple integration

using the following formulas which may be found in any aerodynamic text book:

CII(t =0) =.!.rACp(x,t =O)dx
C


