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ABSTRACT

This thesis provides a general framework for the manual teleoperation of kinemat

ically redundant space-based manipulators. It is proposed to break down the task

of controlling the motion of a redundant manipulator into a sequence of manageahle

su~tasks of lower dimension by imposing constraints on the motion of intermedi

ate bodies of the manipulator. This implies that the manipulator then becomes a

non-redundant kinematic chain and the operator only controIs a reduced number of

degrees of freedom at any time. However, by appropriately changing the imposed

constraints, the operator can use the full capability of the manipulator throughout

the task.

Also, by not restricting the point of teleoperation to the end effector but effectively

allowing direct control of intermediate bodies of the robot, it is possible to teleoperate

a redundant robot of arbitrary kinematic architecture over its entire configuration

space in a predictable and natura! fashion.

It is rigourously proven that this approach will always work for any kinematica1ly

redundant seriai manipulator regardIess of its topology, geometry and of the number

of its excess degrees-of-freedom. fùrthermore, a methodology is provided for the

selection of task and constraint coordinates to ensure the absence of algorithmic

rank-deficiencies.

Two novel algorithms are provided for the symbolic determination of the rank

deficiency locus of rectangular Jacobian matrices: the Sïngular Vector Algorithm and

the Recursive Sub-Determinant Algorithm. These algorithms are complementary to
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each other: the former being more computationally efficient and the latter more

robust.

The application of the methodology to sample cases of varying complexity bas

demonstrated its power and limitations: It bas been shown to he powerful enough

to generate complete sets of t81iK/constraint coordinate pairs for realistic examples

sucb as the Space Station Remote Manipulator System and a simplified version of

the Special Purpose Dexterous Manipulator.

iv
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RESUME

Les travaux de recherche décrits dans cette thèse fournissent un cadre général pour

la téléopération de robots considérés cinématiquement redondants dans des condi

tions typiques des opérations spatiales. fi est proposé de séparer la tâche cons~

tant à déplacer le manipulateur d'une configuration à une autre en une séquence de

sou&-tâches de dimension moindre en imposant des contraintes cinématiques Sill' le

mouvement des corps intermédiaires de la chaine sérielle.

Le robot devient alors un manipulateur non-redondant dont l'opérateur ne contrôle

qu'un sous-ensemble des degrés de liberté. En changeant les coordonnées de con

traintes d'une sous-tâche à l'autre, l'opérateur peut utiliser le plein potentiel du ma

nipulateur redondant. De plus, en permettant à l'opérateur de dicter directement le

mouvement de corps autres que l'organe terminal, celui-ci peut contrôler la posture

d'un manipulateur, peu importe sa structure cinématique, de manière prévisible et

intuitive partout dans son espace articulaire.

n a été prouvé avec rigueur que l'approche proposée permet toujours de trouver

un ensemble de coordonnées complet pour n'importe quel robot sériel redondant peu

importe sa topologie, sa géometrie et son nombre de degrés de liberté. De plus, une

méthodologie est proposée permettant de déterminer les coordonnées de tâche et de

contraintes pour assurer l'absence de pertes de rang algorithmiques.

Deux nouveaux algorithmes de ca-lcul symbolique des lieux de perte de rang sont

décrits: l'algorithme des vecteurs singuliers et l'algorithme des sous-déterminants
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RÉSUMÉ

récursif. Ces deux algorithmes sont complémentaires: le premier étant plus efficace

et le second plus robuste.

L'application de la méthodologie à des cas de complexité croissante a permis de

démontrer à la fois la puissance et les limites de cette approche. Des ensembles de

coordonnées complets ont été générés pour le Télémanipulateur de la Station Spatiale

(SSRMS) et pour un modèle simplifié du Manipulateur Agile Spécialisé (SPDM).

vi
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CHAPTER 1

INTRODUCTION

1. Robotics in Space

Space is an environment where robotic applications are subjected to the strictest

operational constraints. Because of the potentially catastrophic consequences of

accidents on crew or asset survivaI, safety is of the utmost importance and col

lisions between the manipulator and its environment must be avoided at all cost

[44],[23],[3),[1].

For a while, the focus of space robotics projects was to increase the level of au

tonomy [19]. However, the current state of space-rated technologies precludes fully

autonomous operation of robotic systems in manned space flight: they do not have

appropriate obstacle sensors nor adequate computing power to maintain a complete

geometric model of the environment. Thus, manual teleoperation where the operator

controIs the motion of the robot directly and continuously using band controllers is

the preferred mode of operation. Task planning and execution are performed us

ing the synthesis capabilities of the human operator in conjonction with advanced

telcoperation technologies [32}.

Semi-autonomous operations are limited to playback of pre-generated trajectories

in cases where the environment is static and structured. This involves extensive

ground simulation before uploading command sequences to the manipulator for task

execution [23],[3J.
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FIGURE 1.1. Space Station Remote Manipulator System

•
In spite of the severe restrictions imposed by space operations, space-based ro

botic systems are becoming increasing1y common and severa! manipulators are slated

for launch in the short to medium terme Canada is providing two robots for the

International Space Station (ISS): the Space Station Remote Manipulator System

(SSRMS, shown on Figure 1.1), a seven-degree-of-fceedom (OOF) manipulator to he

used for assembly and docking tasks on the ISS, and the Special Purpose Dexterous

Manipulator (SPDM, shown on Figure 1.2), a robot with two 7-00F arms to be used

for on-orbit maintenance tasks. The European Space Agency is providing the Eu

ropean Robotic Arm (EM, shown on Figure 1.3) a 7-00F manipulator to be used

for extra-vehicular maintenance tasks on the Russian segment of the ISS. Japan is

developing the Japanese Experimental Module Remote Manipulator System (JEM

RMS) and the Small Fine Arm (SFA), two 6-DOF manipulators to he used on the

• Japanese Experimental Module of the ISS.

2
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1.1 ROBOTICS IN SPACE

FIGURE 1.2. Special Purpose Oextrous Manipulator mounted on the
tip of SSRMS

The Italian Space Agency along with its industrial panner Tecnospazio is devel

oping the SPIDER manipulator, a 7-00F arm to service payloacis on the EUROPA

external experimental platform to he mounted on the ISS. Finally, the University of

Maryland, under sponsorship of NASA, is deve10ping the Ranger Teleoperation Shut

tle Experiment (shown on Figure 1.4), a complex robot to be used as a technology

demonstrator with two 8-00F dexterous artnS, a 7-00F camera arm and a 7-00F

grapple arm for stabilisation.

A particularly interesting feature shared by many of these systems is the presence

of more degrees of freedom than an operator can control simultaneously in manual

teleoperation. Up to DOW, the redundancy resolution and control schemes employed

for kinematically redundant manipuIators have been developed on a case-by-case ba

sis with little or no thought given to the development of a generalised approach. The

3
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FIGURE 1.3. European Robotic Arm

•

FIGURE 1.4. Ranger Telerobotic Shuttle Experiment

redundancy resolution and control algorithm for SPDM and SSRMS imposes con

straints on the motion of the shoulder roll or shoulder yaw joint. The operator can

either constrain one of these two joints and control the motion of the end-effector or

constrain the end-effector pose and command a self motion of the manipulator. For

Rangert the redundancy resolution algorithm partitions the problem into two: it adds

• a constraint variable that defines the angle of the pitch plane of the arms with respect

4
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1.2 PROJECT OBJECTIVES

ta a line joining the shoulder joint cluster to the wrist joint eluster and it performs

an optimisation of the motion of the 4-DOF wrist to minimise instantaneous joint

ve10cities [8J.

AlI of the existing algorithms require specifie training, are Dot portable from

one manipulator ta another and would hardly be usable for robots with more than

one or two degrees of redundancy. There is a need to develop a general redundancy

resolution and control scheme to handIe the extra degrees of freedom while satisfying

the safety constraints imposed by space operations.

2. Project Objectives

The objective ofthis thesis is to develop a framework for the manual teleoperation

of kinematieally redundant seriaI manipulators of arbitrary kinec;.tic dCchitecture un

der conditions typical of space operations. A robot will be considered kinematically

redundant under manual teleoperation if it has more degrees of freedom than

an operator ean control simultaneously.

The stringent operational constraints imposed on space-based manipulators, cou

pied with the lack of obstacle sensors and of adequate computing power preclude

the automatie handling of kinematic redundancy. The approach developed should

provide full control of the manipulator to the operator who is in charge of generating

a safe, collision-free trajectory. Therefore, it should Dot only provide the operator

with an adequate redundancy resolution scheme but a1so with a redundancy control

scheme to aIlow him ta manipulate the entire kinematie structure of the robot.

Also, because the operator only has access to a limited number of non-optimal

camera views, he bas a poor sense of situational awareness1• For example, on the

International Space Station, the Robotic Work Station has only three monitors[45] on

which can be displayed views from olten ill-Iocated cameras. The operator must then

use a mental mode! of the robot and of the environment that he updates periodica1ly

from camera views. The robot motion resulting from operator inputs should therefore

1In this thesist the pronoun "he" is used in the gender-neutral sense to ease readability.

5
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be predictable. Finally, since the ve10cities associated with space robotie operations

are very slow, the implementation should be compatible with rate input devices.

3. Literature Review

Many approaches have been developed for the inverse kinematics of kinematically

redundant manipulators. The kinematic redundancy is generally used to satisfy addi

tional kinematic constraints imposed on the manipwator or to optimise a performance

index. The methods developect 50 far faIl into two broad categories: local methods

and global methods. Whereas the former only use instantaneous information about

the robot 's motion, global methods require information about the entire trajectory to

be executed by the manipwator. Because a priori knowledge about the trajectory to

be executed does not exist in the context of manuaI teleoperation, only local methods

are considered in this thesis.

The local approaches for redundancy resolution are generally based on resolved

rate motion control and use the differential formulation of the kinematic equations.

v=Jq (l.I)

•

where v = [rT wT r usuaIly describes the velocity of the end-effector. ci is

the vector of joint velocities and J is the manipulator Jacobian relating the velocities

in task space to those in joint space. For kinematical1y redundant manipulators, the

dimension of the task space is inferior to that of the joint space: there generally exist

an infinity of solutions q to eq. (1.1) and the Jacobian matrix cannot he inverted

because it is not square.

3.1. Optimisation and Genera1ised Inverses. The first solution of the in

verse kinematics for redundant manipulators is generally attributed to Whitney [67}.

He proposed using a weighted pseudo-inverse of the Jacobian to compute the joint

rates from desired end-effector rates.

6
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q = J*(q)V

1.3 LlTERATURE REVIEW

(1.2)

(1.3)

This is a particular solution of eq. (1.1) that rnjnirnjzes the following performance

criterion:

(1.4)

•
HAis selected as the manipulator's inertia matrix, this method mjnimjzes the

instantaneous kinetic energy of the manipulator. Modifications have been proposed to

the pseudo..inverse [64] [41] to operate near singularities by adding artificial damping.

To handle more general performance criteria, Liégeois [35] proposed to add a

homogeneous solution component to the particular solution round using generalised

inverses. He used a null spaœ projection matrix in an attempt to find an optimal

solution among all possible solutions of the inverse kinematic equation.

il = J*v + (J*J - I)z (1.5)

•

H z is set to Vh(q) then this method finds a gradient to mjnimise h(q) and then

projects it onto the null space of the Jacobian. The null space projection method bas

been used extensively [69) (17] [54] [38] (49] [15] [14] [22] with various performance

indices.

The principal weakness of the null space projection approach is that it generates

an optimal solution to the secondary criterion without reference to the primary task

and then projects it onto the null space of the manipulator Jacobian. There is no

7
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guarantee that this projection is itseIf an optimal solution on the self-motion manifold.

To overcome this problem, Nakamura et. al. [43) and Maciejewski and Klein [39]

independently introduced the concept of task priority through a constrained least

squares optimisation of a secondary task subject to constraints corresponding to the

primary task.

Minimise h(q)

snbject to V - J4 = 0

and to g(q) < 0

(1.6)

•
where h(q) is usually defined as a quadratic performance index to he optimised.

Many authors [13] [50] [11] are using this approach and the recent trend bas been to

formulate this problem in the context of optimal control to design torque controllaws

for redundant manipulators that will optimise a wide variety of performance indices.

3.2. Transformation into NOD-redundant Systems. As an alternative

to optimisation methods using generalised inverses, Oh, Orin and Bach [47] intro

duced the concept of the extended Jacobian. They proposed to adjoin to the forward

kinematics equation, constraint equations on the positions of links other than the

end-effector, thus making the Jacobian matrix invertible (square and full rank). This

determines a unique solution that can he simply computed from the equation.

(1.7)

•

The extended Jacobian provides more direct control over the configuration of the

manipulator: self motions can be controlled directIy by the constraint equations.

Bailleul [4] linked the extended Jacobian technique to the null space approach

developed by Liégeois and used it for sncb tasks as singularity and obstacle avoid

ance. One of bis important contributions is the derivation of a condition on the

8
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orthDgonaiity of the rows of the constraint Jacobian to the null spaœ of the task

Jacobian.

This condition was stated to deal with the main weakness of the extended Jaco

bian method: algorithmic singularities. These singularities occur when the constraint

Jacobian Je in eq. (1.7) is not linearly independent from the task Jacobian JT. They

have no physical significance and are thus diflicult to predict. The topic of algorith

mie singularities bas been thoroughly analysed in [65] and [48]. To overcome the

problems of algorithmic singularities, Egeland [18] applied a damped least squares

method similar to those of Wampler (64) and Nakamura [41) to the extended Jacobian

method.

Seraji [53] applied the work of Oh, Orin and Bach to space operations. He

provided useful insight on the selection of constraint coordinates by relating them to

the parameterisation of the self-motion manifolds. Unfortunately, this paper did not

result in practical conditions on the selection of the constraint equations to ensure

the avoidance of algorithmic singularities.

Tsuji [58) introduced the concept of virtual arIDS. His approach allows direct

control over the entire kinematic chain by defining sets of task coordinates attached

to intermediate bodies of the redundant manipulator. Each virtual arm bas its end

point located on the intermediate body to which it is attached and it has the same

kinematics as the portion of the manipulator between its base and the end-point of

the virtual arm. Depending on the location and number of virtual &rmS, the resu1ting

kinematic equations can be exactly detennined, under-detennined, over-detennined

or singular. His inverse kinematics a1gorithm considers aIl cases, reverting to gener

aliserl inverses when a unique solution does not exist. He has used this approach in

a teach-and-playback manner, all virtual arm trajectories being taught in a sequence

but played back simultaneously. The methodology is directIy portable ta manual

teleoperation if the operations on the virtual arms are considered to be executed se

quentially. In subsequent publications, varions techniques have been applied to solve

the inverse kinematics of redundant manipulators using virtual arms [59] [60].

9
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Recently, Schreiber [52] reused the method of virtual anns to teach trajectories

ta kinematically redundant manipulators for space operations.

Despite its limitations, the extended Jacobian approach bas been used exten

siwly [30] [25] [6] [57] and is still the preferred method for controlling kinematically

redundant manipulators in spaœ.

In addition to the rank-augmentation methods described above, rank-reduction

methods have also been developed to transfonn the kinematics of redundant mani~

uIators into non-redundant systems. Benhabib, Goldenberg and Fenton [5) proposed

a rank reduction method to solve the position inverse kinematics problem in a re

cursive fashion. They wrote the incremental kinematic equation in differential form,

partitioning the set of joint coordinates q into QA and QR sncb that J R, the reduced

Jacobian, is of full rank and can be inverted. The set of dependent coordinates 6QR

is computed as:

(1.8)

while the set of independent coordinates CU is used to optimize some arbitrary

performance index Z(q).

Lo~Nagy and Schilling [37J proposed a simplification of the above scheme

using (I)-inverses. The reduced Jacobian is selected such that JR is invertible and

the independent joint coordinates are simply fixed. In fact J R can be chosen to ensure

it is not ill-conditioned; for example roinjrojsing its condition number.

Lee and Bejczy [34) used a principle sirnilar to [5] but framed the problem directly

in the "position-based" kinematic equations. They proposed to parameterise the

forward kinematics of a redundant manipuIator using a set of joints (termed the

redundant joints). They used an off-lïne process to analyse the kinematic equations

and characterise the self-motion manifolds in terms of the motion of the redundant

joints. This approach, like that of the extended Jacobian, can suffer frOID algorithmic

10
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singularities when the motion of the manipulator along the self-motion manifold does

not involve motion of any one of the red.undant joints.

3.3. Application to Manual Teleoperation. Very few publications have

analysed the kinematics of red.undant manipulators in the context of manual teleop

eration. Most have only implemented simple redundancy control schemes. Jansen

and Kress [28) used a six-degree-of-freedom master augmented with an elbow sensor

placed on the operator to manipulate a seven-degree-of-freedom slave. A position

controller was used for the end-eff'ector and stiffness control was used for the elbow

to accommodate the fact that the master and the slave arms are not kinematically

identical. This approach is very pragmatic and only works for slave arms whose

configuration is relatively anthropomorphic.

Yae et. al. [68] also controlled a seven-degree-of-freedom manipulator using a

six-degree.of-freedom master but they ooly reported using a regular pseudo-inverse

algorithme Chan and Dubey [9] report using the same configuration but with an

impedance controllaw and an autonomous redundancy resolution algorithm to avoid

singularities and joint limits.

Hwang and Hannaford [26] have published one of the very few comparative stud

ies, if not the only one, investigating the human-factor aspects of teleoperation with

kinematically redundant manipulators. Unfortunately, their study was very limited:

they implemented only three variations of a weighted pseudo-inverse algorithm with

null space projection for joint limit avoidance. The pseudo-inverses were Whitney's

inertia weighted pseudo inverse, a regular pseudo inverse and an intermediate Methode

They performed. test operations on a real robot with force feedback and analysed op

erator performance using a set of metrics.

4. Proposed Approach in the Context of Space Operations

Despite the abundance of work in the area of redundant manipulator kinematics,

most of the existing approaches are not suitable for the teleoperation of arbitrary

redundant manipulators under conditions sncb as those found in space operations.
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Since the robot is being manually controlled by an operator, its trajectory is not

known a priori: global optimisation methods are therefore not appropriate. Local

optimisa.tion-based methods have been used in the past to resolve kinematic redun

dancy via obstacle avoidance but the lack of adequate representation of the environ

ment's geometry precludes their usage in space.

As a general rule, the inverse kinematics of current space robots is done using

constraint-based methods sncb as task space extension or reduction techniques but

there is yet no consistent scheme for selecting the constraint variables. Also, the

control of the redundancy resolution variables is done in an ad hoc manner and is

hardly conceivable on manipulators with more than one degree of redundancy.

To address the weaknesses of the algorithms currently used for space manipula

tors, a systematic method for selecting the task and constraint coordinates used in

constraint-based redundancy resolution methods was developed.

The criteria used to determine the nature of the task and constraint coordinates

used for the teleoperation of a space-based manipulator are dictated by the specifies

of robotic operations in space. The first criterion is imposed by the fact that the

operator must have control over the full configuration of the manipulator at aIl times.

Therefore, any task/constraint coordinate pair should be sucb that they yield a unique

solution to the inverse kinematics of the manipulator thus removing the necessity of

automatic redundancy resolution. Furthermore, they shouid allow the operator to

manoeuvre the robot from any initial configuration to any final configuration in a

finite sequence of moves. FinaIly, they shouid he meaningful to the operator and lead

to predictable motion of the manipulator.

In light of the above-mentioned criteria, it is proposed to break down the task

of controlling the motion of a redundant manipulator into a sequence of sub-tasks

of lower dimension by imposing constraints on the motion of the end-effector or of

intermediate bodies of the manipulator. These can be expressed with respect to, and

in any reference frame of the manipulator.

12
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This implies that the manipulator then becomes a non-redundant kinematic chain

and that the operator only controls a reduced number of degrees of freedom at any

time. However, by appropriately ebanging the imposed constraints, the operator can

use the full capability of the manipulator throughout the task.

Also, by not restricting the point of teleoperation to the end effector but effectively

allowing direct control of intermediate bodies of the robot, it is possible to te1eoperate

a redundant robot of arbitrary kinematic architecture over its entire configuration

space in a predictable and natura! fashion. The operator then has control over a set

of task coordinates that correspond to the motion of a given body of the robot which

is not necessarily the end-effector. This is an application in the context of manual

teleoperation of the virtual arms approach [58] where task coordinates are attached

to intennediate bodies in the kinematie chain. However, unlike the implementations

presented in [59] [60], aIl virtual arms are not manipulated simultaneously. Qnlyone

virtuaI arm is used to control the task coordinates. The other virtual arms are used

to impose constraints on the motion of the redundant manipulator.

The work reported in this thesis gives special consideration to the selection of

task and constraint variables to ensure that they suit the needs of space-based op

erations. In addition, an effort is made to investigate the reduction of the number

of task/constraint coordinate pairs neœssary to ensure coverage of the manipula

tor's configuration space. This avoids overwheJmjng the operator with a plethora of

unneœssary coordinate pair selections.

A set of task coordinates could, for example, be the coordinates that define the

position of a selected body in the kinematic chain or a subset of these coordinates.

Similarly, holonomie constraint equatioDS could constrain the position of another body

in the kinematic chain to a fixed location or to a surface or curve in space using a

constraint of the form:

•
f(x) = 0 (1.9)

13
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Sucb a constraint would be implemented as a velocity constraint:

Jc(q)q=O (1.10)

•

In a similar fashion, task coordinates could he used to specify the orientation

of the end-effector or some other intermediate body in the kinematic chain. Typi

cal constraints on orientation would either fix the orientation of a body in space or

specify its rotation about a given axis. This axis could either he fixed in the base

coordinate frame or attached to a body of the manipulator. As for the position con

straint equations, the constraint equations on orientation are implemented as velocity

constraints.

For generality, the motion of a set of individual joints QF cau aIso be selected as

constraint coordinates as was done by Lee and Bejczy [34]. In this case, the constraint

equation simply sets the velocity of a set of joints to zero.

4F=O (1.11)

Inequality constraints can also he added to enhance safety and support limitations

sucb as joint range Iimits. Sucb inequality constraints can he used to avoid rnnning

into crudely specified obstacles or joint limits. For example, a constraint on joint

range limits:

(1.12)

cau be implemented as an intermittent velocity constraint

•
(1.13)

14
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that gets triggered only when q = «Imaz and that is ignored otherwise. SUnilarly a

constraint on the position ofan intermediate body of the manipulator can be specified

as:

g(x} < 0

and implemented as an intermittent velocity constraint

Jc(q)q ~ 0

triggered when g(x) = o.

(1.14)

(l.IS)

•

•

5. Document Structure

The main focus of this thesis is the analysis of the conditions under which

ta.sk./constraint coordinate pairs provide coverage of the configuration space of a ma

nipulator and the determination of a reduced set of coordinate pairs.

Cbapter 2 fonnulates the proposed approach in a rigourous mathematical frame

work. A praof of generality of the proposed approach is given. In Chapter 3, a

method is developed to select a reduced number of ta.sk./constraint coordinate pairs

from all possible combinations. Two novel rank-deficiency locus computation algo

rithms for rectangular Jacobian matrices are described. The first is based on the

usage of the singu1ar vectOIS of the Jacobian matrix and the other is based on a

recursive implementation of the sub-determinant method.

Chapter 4 applies the methods developed in the previous cbapter to sample cases

ranging from simple configurations to more complex cases sucb as the Space Station

Remote Manipulator System and the Special Purpose Dextrous Manipulator.

Finally, Chapter 5 documents the implementation of the rank-deficiency locus

computation algorithms. It discusses the details of implementation of each procedure

and the special measures that were implemented to increase computational efficiency.
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• 6. Original Contributions

•

•

To the best of the author's knowledge, the elements of this thesis which constitute

original contributiona are the following:

• The concept of System Motion Manifold as presented in Chapter 2: The S~

tem Motion Manifold is the image of the joint manifold in a system motion

space generated by the concatenation of the Cartesian motion coordinates of

aIl bodies in the kinematic chain. This concept is extremely useful ta map the

joint space to a more intuitive representation. It is the central element of the

proof of generality, which is the second original contribution of this thesis.

• The proof of generality of the virtual arms approach: This method has been

used by many authors [58] [59] [60] [52] and, although the generality of the

method is intuitive, this had never been proven in a rigourous manner.

• A systematic method to select a reduced set of constraint coordinates based on

the rank-deficiency loci of the task Jacobian and augmented Jacobian matrices.

• The Sïngular Vector Algorithm for computing the rank-deficiency locus of non

square Jacobians: A novel a1gorithm was developed to compute the rank

deficiency locus of rectangular Jacobian matrices using singular vectors in

the Singular Value Decomposition sense. It generalises the algorithm of Pod

horodeski and Nokleby [46] to cases where the task space is not described

using screws and to cases where the Jacobian bas more rows than columns.

• The Recursive Sub-Determin 8nt Algorithm for computing the rank-deficiency

locus of non-square Jacobians: This other novel a1gorithm is based on the

sub-determinant method. The recursive implementation allows this a1gorithm

to find solutions where other methods sncb as the regular snb-detennin8nt

method and the Sïngular Vector Algorithm will fail because of algebraic com

plexity. It is a complement to the SinguIar Vector Algorithm as it is more

robust but less efficient.
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MathelDatical ForInulation

1. Definitions

The motion of any robotic manipulator is described by its forward kinematic

function A : Q -+ À'r. It is a nonlinear function mapping the joint space Q to

the task space À'r which usually describes the motion of the end effector. The joint

space Q is parameterised by an m-dimensional array of joint coordinates q and the

task space À'r is parameterised by an n-dimensional array of task coordinates XT. In

teleoperation, n, the dimension of the task space, is limited to the number of variables

an operator can control simultaneously.

The inverse kinematic relation A-1 : À'r -+ Q is of greater practica1 interest since

it generates the joint trajectory neœssary to achieve the desired motion.

Since redundant manipulators have more degrees of freedom than required to

perform the task (n < m), their inverse kinematic problem is under-determined and

the inverse kinematic equation bas an infinite number of solutions lying on a set of

finite, bounded and smooth manifolds of dimension T = m - n in the m-dimensional

joint space Q. These are termed the self-motion manifolds and they correspond to all

the solutions that satisfy the forward kinematic equation for a given task coordinate

XT [7).

To determine a unique solution to the inverse kinematics relation as described

in Section 4 of Chapter 1, it is proposed to augment the task coordinates with a
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set of kinematic constraints Ac : Q -+ Xe on the motion of selected bodies in the

kinematic chain snch that the Jacobian of the augmented forward kinematic function,

AA : Q -+ XA where XA = XT X Xc, is invertible.

In addition, to allow the operator to manually control the redundancy, the task

coordinates are not limited to those describing the motion of the end-effector. Task

coordinates, like constraint coordinates, can he attached to any body in the kinematic

chain.

To analyse the nature of the mapping between the joint space Q and the aug

mented task space XA , the concept of system motion coordinates and system motion

manifold will be introduced. First, let us define a motion space associated with an

arbitrary body in the kinematic chain t\i. This space is parameterised by the coordi

nates describing the motion of the given body in Cartesian space Xj.

DEFINITION 2.1. System Motion Space and System Motion Coonlinates: The

system motion space including the position and orientation coordinates ofail the bodies

composing the robot is defined as Xs = Ui t\i. It is of dimension p > m and it is

pammeterised by xs, the system motion coordinates. It is related to the robot joint

space by the system fonJJard kinematic function As : Q -+ Xs.

DEFINITION 2.2. System Motion Manifold: The set of ail possible joint configu

rations maps to a system motion manifold Ms = {xs 1Xs = As(q),Vq E Q} c Xs .

It will he demonstrated later that this manifold is of the sarne dimension as the joint

space.

Given these definitions, the operator controls the motion of the robot by con

trolling a subset of the system motion coordinates Xs of dimension n (or smaller)

attached to a p&rticular body of the kinematic chain, and by setting an appropriate

number of constraints a1so on Xs to ensure that a unique solution is found.

To illustrate the concept of joint space and system motion manifold, consider the

case of a planar manipulator consisting of a revolute joint followed by a prismatic

• joint as shown on Figure 2.1. The joint coordinates are the angle of the revolute

18
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FIGURE 2.1. RP planar manipulator

•
(a) (h)

•

FIGURE 2.2. Joint Space of a RP Planar Manipulator: (a) shade rep
resents ql, (h) shade represents Q2

joint, 0 :5 ql < 21r, and the elongation of the link, 0 < Q2 < 1. The link attached to

the revolute joint is of unit length. The joint space of this manipulator is the product

of the joint spaces QI and Q2. It is a topological cylinder as shown on Figure 2.2. On

this figure, Q is depicted using its true topology instead of a two-dimensional plane,

which is more traditiona1. This will Iater ease the comparison between the topology

of Q and that of Ms.

Let us now define the system motion coordinates as the position of the distal

extremity of each hody of the manipulator Xs = {Xl, Yh X2, Y2}. The coorclinates

(Xl, Yl) define the position in the x - y plane of the extremity of the link attached to

19
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•

(a)

..
(b)

•

FIGURE 2.3. System Motion Manifold of a RP Planar Manipulator:
(a) shade represents Yl, (b) shade represents Xl

the revolute joint and (X2' Y2) define the position of the extremity of the link attached

to the prismatic joint. Using this set of system motion coordinates, the system motion

manifold is depicted on Figure 2.3. Shade is used to represent the fourth dimension

of the system motion space Xs. The shape of the system motion manifold is that of

a distorted annulus.

2. Condition of Generality

To demonstrate the generality of the approach, it is necessary to prove that there

will always exist sets of task and constraint coordinates such that it is possible to

move any kinematically redundant seriai manipulator from any initial configuration

(Jo to any final configuration QI in a finite sequence of operations by controlling the

velocities associated with a subset of Xs. Throughout each operation, the Jacobian

of the augmented forward kinematic map must be invertible.

Since the augmented task coordinates are a subset of the system motion coordi

nates, XA ç Xs, then the augmented Jacobian matrix is always a submatrix of the

system Jacobian matrix JsCq). Given that there must always exist an augmented

Jacobian matrix of rank m, then the system Jacobian matrix must he of rank m for

• a1l values of q in Q.
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fi Vq E Q, 3[JA(q)]-1 then rank(Js(q» = dim(Q) Vq E Q (2.1)

H a locally non-singular representation of orientation, 'l, is used, then the tr~

lational and angular velocities associated with the system motion coordinates are

related to the time derivatives of the system motion coordinates themselves as fol

lows:

[ :: ] = [~ :] [ :: ] (2.2)

(2.3)•
where 1 is the identity matrix and H is a full-rank linear transformation. Js(q)

is therefore related to aA~(q) as follows:

[
(JS(q»T ] _ [1 0] [(8A~(q»)r ]
(JS(q»R - 0 H (8~(q»)R

where the subscripts (*}T and (*)R respectively refer to the translation and rota

tion components of matrix (*).

Let us define

H*=[~:] {2.4}

fi orientations are represented using unit quaternions, the linear transformation

matrix H· is orthonormal. Given that orthonormal matrices do not affect rank

through matrix multiplication, then

•
rank(Js(q» = rank (a~q») (2.5)
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From the condition on invertibility, it is then required that:

(2.6)

•

•

By definition, then As must be an immersion. Since embeddings are a special

c1ass of immersion, it is suflicient to demonstrate that As is an embedding of Q in

Xs. This can be proven by demonstrating that AM : Q -+ Ms, the mapping from

joint space to the surface of the system motion manifold, is a local diffeomorphism:

loca1ly bijective and differentiable.

Furthermore, it must be demonstrated that a path between any two configurations

can always be built from a finite sequence ofsegments on each of which the augmented

Jacobian always has full rank. The number of segments in the path will be equal to

the number of times a change in the selection of augmented coordinates is required to

move between any two configurations. Realising that the set of augmented coordinates

for which As is of rank m maps homeomorphical1y to the coordinate charts covering

Ms and that a coordinate change will only be necessary when crossing boundaries

between coordinate charts, then it is sufficient to demonstrate that the system motion

manifold can be covered by a finite number of coordinate charts if subsets of Xs are

used as coordinate functions as shown on Figures 2.4 and 2.5.

3. Proof of Generality

The first part of the proof of generalityl consists in proving that As is an embed

ding. This will be done by proving that AM : Q -+ Ms is a local diffeomorphism.

Therefore, it must be proven that AM is differentiable, surjective (onto) and injective

(one-t<rone).

PROOF. Differentiability of AM: The kinematic functions of the mechanisms used

to constitute joints of seriaI manipulators are built from compositions of functions that

l AIl background material neœssary to understand the proofof generality is provided in Appendix A
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~
~

FIGURE 2.4. Path Segments on Coordinate Charts

FIGURE 2.5. Path Segments on Projections used as Coordinate Charts

are continuously differentiable over their entire domain. Thus, from the chain ruie,

they are always continuously differentiable. QED

o

23



CHAPTER 2. MATHEMATICAL FORMULATION

•

FIGURE 2.6. Definition of Kinematic F\mctions

• PROOF. Surjectivity of AM: The workspace manifold is the image of the joint

space through the system forward kinematic function. Therefore, every point Xs E

Ms is the image of a point q E Q.

QED 0

3.1. Simplified Proof of Injectivity. A simplified proof of injectivity can

be performed taking into account only translation coordinates. This proof will be

genera1ised later and is only used to ease the understanding of the general proof.

PROOF. Injectivity of AM: From the rank theorem, if the tangent linear map

of As : Q ~ Xs has full rank everywhere, then 50 have AM : Q --+ Ms and

.M :Ms --+ Xs. Therefore, to prove that the mapping AM : Q ~ Ms is locally

one-to-one, ail that is needed is to prove that the mapping As : Q --+ Xs is one-to-one.

See Figure 2.6 for more details.

• Define the following:
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'2ï C Q is the jtIa body's joint space. It is a subset of the manipulator's joint

space and it contains the joint position information for aIl the joints from the base to

the current body. It is parameterised by Qi defined as follows:

qi = (2.7)

XSi ç Xs is a subset of the manipulator's augmented task space. It contains the

Cartesian position of a frame on every body from the base to the current body in a

reference frame fixed to the base and is parameterised by XSi .

• (2.8)

Qi and XSi are respectively the joint space and the system motion space asso

ciated with a manipulator that bas the same kinematics as the manipulator being

studied but truncated after its ith body. Figure 2.7 shows an example of sncb a

truncated manipulator for i = 2.

The system forward kinematic mapping for the ith body is defined as ASi : Qi -+

XSi •

The position of the i th body can be derived as follows:

i () i-l ( ) + i ( )xo qi = XO Qi-l lG-l qi (2.9)

•
It is assumed that the forward kinematic function of each individual joint Àï :

qi -+ ~-l is injective.
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• . .. .
.:,...i.....•.....

FIGURE 2.7. Sub-manipulator of a kinematically redundant manipu
Iator

•

Starting from the base of the manipulator and builùing it until reaching the 'l,-tI&

body.

As1 : QI -+ Xs1 is injective by definition since the mapping from À1 : ql -+ xl, is

injective from the basic assumption.

(2.10)

Moving on to the second body in the kinematic chain,

(2.11)

let us investigate the injectivity of AS2 : Q2 -+ XS2 • It has already been demon

strated that the mapping from ASI : QI -+ ;t'SI is injective. For seriaI kinematic

chains, it is impossible for the mapping AS2 : Q2 -+ XS2 to be one to many. This

stems from the basic assumption that Àï : qi -+ ~-1 is injective Vi. The only possi

bility for the mapping to be non-injective is then for it to be many to one. However,

since ASI : QI -+ XSl has been proven to be injective and Q2 has no effect on xA,
values of QI are uniquely identified by values of XÔ. The only condition under which

AS2 : '22 -+ XS2 could be non-injective would be that for a fixed value of QI, different

• values of '12 map to the same value of ~.
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Given that

(2.12)

•

if QI is fixed, then so is xâ(QI). Sînce the mapping À2 : tI2 -+ xi is assumed ta

be injective, then for a fixed CIl, different values of ll2 will map ta different values of

~(<J2). Therefore AS2 : Q2 -+ XS2 is injective.

Similarly, for the 1,-th body in the kinematic chain,

(2.13)

i-l( )xo qi-l

xf>(qi)

Again, it can he demonstrated that the mapping from qi-l to XSi-l is injective.

The only way for the mapping Asi : Qi --+ XSi not to he injective is for xb(qi) to he

many-to-one with qi-l fixed.

Given that

i () i-l ( ) + i ( )XO Qi = XO Qi-l Xi-l qi (2.14)

•

H Qi-l is fixed, then so is ~-l(qi_l). Since the mapping À.; : qi --+ ~-l is assumed

to he injective, then the mapping ASi : Qi --+ XS i for any body in the kinematic chain

is also injective. QED

o

Ta illustrate the bijectivity of AM : Q -+ Ms, let us again consider the RP

manipulator shown on Figure 2.1. Recall that the joint space of the manipulator is
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(a) (b)

•

•

FIGURE 2.8. System Forward Kinematics of a RP Planar l\'lanipulator:
(a) Shade represents ql, (b) Shade represents lb.

a cylinder as shawn on Figure 2.2 and that its system motion space is a distorted

annulus, which is topologically the ~e as a cylinder as shawn on Figure 2.3.

The system forward kinematic function As : Q -+ Xs is shown on Figure 2.8.

The shape of the plot provides information on the system motion coordinates Xs and

its shade identifies to which location in joint space every point on the system motion

manifold is mapped. Note that since Xs is four-dimensional, Figure 2.8 actually

shows a projection of Ms on a three-dimensional subset of Xs. This is possible only

because the topology of Ms is not affected by this projection operation.

The surjectivity of AM : Q -+ Ms is demonstrated by the fact that every point

on the system motion manifold is associated to a point in joint space. (Le. there does

not exist a point on the system motion manifold that is not associated to a shade

pair). FUrthermore, injectivity of AM : Q -+ Ms is obvions by reaJising that each

point on the surface of Ms is mapped to a unique shade pair, which corresponds to

a unique point (Ql, q2) E Q.

3.2. General Proofof Injectivity. An extension of the proofdone for trans

lations can be done to also incorporate rotations, a sirniJar analysis can be carried-out

using the following definitions.
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The pose of the ",-th body of the kinematic chain with respect to the base reference

frame can be expressed as:

. [x:a]G= Bi, (2.15)

where~ is a set of variables parameterising translation and 9~ is a set of variables

parameterising rotations without representation singularities.

The system motion coordinates XSi then become:

The pose of the jth body with respect to the ith body in the kinematic chain can

be expressed using homogeneous transformation matrices as follows:•
. [R.1 x1]Af= o 1

(2.16)

(2.17)

For a single joint the mapping Às : qi -+ ~-1 is injective.

The pose of the ith body with respect to the base reference frame can be computed

as follows:

~ =~-1~_1 (2.18)

•
The coordinates defining the position and orientation of the ith body with respect

to the base reference frame E~ can he extracted from the homogeneous transformation

matrix Ab as follows:
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(2.19)

•

Since there are no representation singularities in the variables chosen to express

translation and rotation, the fonction "e~) is injective. Each fessible At. is mapped

to a unique ~~.

PROOF. Injectivity of AM: As for the simplified praof, from the rank theorem,

if the tangent linear map of As : Q -+ Xs bas full rank everywhere, then 50 have

AM : Q --+ Ms and CtM : Ms -+ Xs. Therefore, to prove that the mapping

AM : Q -+ Ms is locally one-to-one, aIl that is needed is to prove that the mapping

As : Q --+ Xs is one-to-one.

So starting from the base of the manipulator and moving outwards one joint at

a time, we can investigate the injectivity of ASio

(2.20)

and

(2.21)

Sînce the mapping Àl : ql -+ Ac\ is injective and " : AA -+ (~ is also injective,

then the mapping from QI to (A is also injective. This means that ASl : QI -+ XS1 is

injective.

Moving on to the second body in the kinematic chain, the system motion coor

dinates are:

•
(2.22)
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where (~ can he extracted from the homogeneous transformation matrix as fol

lows:

(2.23)

It bas a1ready been proven that ASI : QI -+ KSI is injective. Tberefore, the only

way for the mapping AS2 : Q2 -+ KS2 to be non-injective is for E~(Q2) with QI fixed.

Given that

(2.24)

•

•

if QI is fixed then AA(qt) is constant. Furthermore since À2 : tl2 -+ A~ is injective

then for a fixed qt, diJferent tl2 will map to different ~(CI2) and to different E~ because

." :~ -+ (~ is also injective. Therefore, the mapping AS2 : Q2 -+ XS2 is injective.

Similarly for the i th body in the kinematic chain,

(2.25)

~i-l( )
~o Qi-I

G(Qi)

Again, it can be demonstrated that ASi - l : Qi-l -+ KSi- 1 is injective. The

coordinates defining the pose of the 1,~ body can be extracted from homogeneous

transformation matrices as follows:

(2.26)

where
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(2.27)

•

•

For the mapping ASi : ~ --. XSi not to he injective, different values of qi 'M>uld

bave to map to the same value of E~ with Qi-l fixed. However, if Qi-l is fixed then

50 is ~-I(Qi_l). Sînce ~ : qi --. A.:-l is injective as is ." : At» -+ ~~, then for a fixed

Qi-b different values of qi will map to different values of E~ and ASi : ~ --. QSi is

injective for any body in the kinematic chain.

QED

o

3.3. Finiteness of Coordinate Charts.

PaOOF. Finiteness of Coordinate Charts of Ms: Let us first notice that the

system forward kinematic function As : Q -. Xs is an embedding. Therefore, Ms is

a suhmanifold of .:rs with the same topological properties as Q.

The joint space associated with a revolute joint is of the fonn Si or a closed

connected subset of SI, which are both compact. The joint space associated with a

prismatic joint with finite travel is a closed subset of R I , which is also compact.

Assuming that the robot is composed of prismatic joints with finite travel and

of revolute joints, then by Tychonov's compactness theorem [36], (2, which is the

product of compact spaces, is itself compact. Since As preserves the topological

properties of Q, Ms is a compact submanifold of Xs .

Let us define the set of coordinate variables {X;} that are composed of all possible

combinations of the p components of Xs taken m at a time, where pis the dimension

of Xs and m is the dimension of Q. Each of the members of the set {xi} span a

suhmanifold of Xs denoted as;\J. The mapping.,pi : Ms --. Xi projects the system

motion manifold onto the submanifold X; as depicted on Figure 2.9.

The singularity locus of each 'f/J; on the surface of the system motion manifold

Ms is defined as follows: S; = {Xs E Ms l 't/J; is singular}. Removing the portions
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FIGURE 2.9. Usage of Projections as Coordinate Charts for the System
Motion Manifold

of Ms that belong to Sj cuts the system motion manifold into regions 'Ri which are

open sets of M S
2• Each of these open sets associated with a coordinate set {'R;,xi}

defines a coordinate chart that can be used to map a portion of the system motion

manifold. Figure 2.10 shows a system motion manifold Ms cut into regions 'Ri by

the singularity loci Si of the projectioDS ""j'

Consider 'R = Uj 'R;. By definition, a finite subcover can he extracted from any

open cover of a compact manifold. Therefore, it is sufficient to prove that 'R is an

open caver of Ms to guarantee that a finite subcover can be extracted from it and to

guarantee that Ms can be covered by a finite number of coordinate charts using {Xj}

as coordinate variables. To prove that 'R is an open cover, it will be demonstrated

that it is impossible for it not to be one.

2Jn the case of a manipulator with limited joint travel, the system motion manifold is a manifold
with a boundary. This means that some of the regions Ri will he closed sets. To address this
problem, the set can he extended slightly heyond its closu..re and made open. As, Aj and "'j are
still defined on this extended open set and this takes care of ensuring that the set of ail 'Tl; will he
an open caver.
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FIGURE 2.10. Singularity Loci of Projections of System Motion Man
ifold

H 'R, is Dot an open cover then 3 Xs E Ms such that Xs ft Ri Vj. In other words,

Xs belongs to the singularity locus of all tPj' Xs E Si Vi·
Let us define Ai : Q -. À.j as Ai = 1/Ji 0 As and the manipulator Jacobians

associated with As and Ai as J s and J j respectively.

Since As is an embeddïng, Xs being a singular point of aIl 1/Ji implies that it is

a singular point of ail Aj and, therefore, that aIl Jacobians Jj are singu1ar at xs.
Given that the system Jacobian Js is a concatenation of ail different rows of aIl

J j, then Js must also lose rank at xs. However, it was demonstrated that Js always

bas full column rank since As is an embedding. Therefore, Xs cannot exist, "R, must

be an open cover of Ms, a finite subcover of Ms can be found in 'R, and, therefore,

the system motion manifold can be mapped with a finite number of coordinate cbarts

{R;, X;} using m-dimensional subsets of Xs as coordinate variables.

QED 0
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4. SlImmary

This chapter demonstrates the generality of the proposed approach for the man

ua! teleoperation of kinematically redundant seriai manipulators. It bas been shown

that it will a1ways be possible to fully control the motion of snch a manipulator from

any initial configuration Qo to any final configuration (JI in a finite sequence of oper

ations by controlling the velocities associated with a subset of xs. Throughout each

operation, the Jacobian of the augmented forward kinematic map remains invertible.

To develop the proof of generality, the concept ofsystem motion space and system

motion manifold are introduced. The system motion space Xs is the space defined by

the variables defining the pose of every body in the kinematic chain. It is spanned by

xs, the system motion coordinates. The joint space Q is mapped through the system

forward kinematic function As : Q --.. Xs to a submanifold of the system motion

space Ms C Xs: the system motion m8nÜold.

The generality of the approach is proven by showing that As : Q --+ Xs is an

embedding and hence that AM : Q --.. Ms C Xs is a local diffeomorphism. This

guarantees that the differential application of As, which is related to the system

motion Jacobian, is a1ways of rank equal to the dimension of Q.

The finiteness of the sequence of moves necessary to bring the manipulator from

any initial configuration to any final configuration is proven using the topological

properties of the joint space and the fact that As : Q ..... Xs is an embedding. It is

shown that an open cover can he generated if projections of Ms onto subsets of Xs

are used as coordinate charts.
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Reduction of the Set of TaskjConstraint

Coordinate Pairs

Chapter 2 has proven that if task and constraint coordinates are selected from the

system motion coordinates describing the motion of the redundant manipulator in

Cartesian space, the operator will be able to control the manipulator over its entire

configuration space. However, Dot all system motion coordinate combinations can be

considered for the formation of task/constraint coordinate pairsl: some combinations

do not lead to full rank augmented Jacobian matrices. FUrthermore, the number of

possible choices of task/constraint coordinate pairs for a given manipulator increases

combinatorially with the number of degrees of freedom of the manipulator and the

number of DOF controlled by the operator.

For example, for the Space Station Remote Manipulator System (SSRMS), which

has seven degrees of freedom, the minimum number of system motion coordinates is

42. The operator of the SSRMS can only control six degrees of freedom at any time.

Presuming that the task coordinates are used to describe the motion of any one body

in the kinematic chain, the operator would then be left with the seemingly simple

task of selecting to which body he would attach the task coordinates and picking

appropriate constraint coordinates. H only one constraint is desired, then there exist

1Each set of task coordinates and its companion constraint coordinates form a task/constraint
coordinate pair.
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252 possible combinatioDS of task/constraint coordinate pairs and many of them will

resuIt in a singular augmented Jacobian2
• H two constraints are used, then the number

of possibilities increases to 4410.

From an operations perspective, this is unacceptable. Unless the set of task/

constraint coordinate pairs is drasticalIy reduced, the operator will he overwhelmed

with tao large a selection. Ideally, the operator should only have to pick from a few

choices that will al10w him to conduct anyoperation. However, the reduced set of

coordinate pairs must not lose its properties to allow the operator to control the ma

nipulator over its entire configuration space. To address this problem, a methodology

was developed to determine whether a reduced set of task/constraint coordinate pairs

still ensures an appropriate coverage of the configuration space.

1. Completeness of the Set of Task/Constraint Coordinate

Pairs

• The first step in determining whether a set of task/constraint coordinate pairs is

complete is to provide a proper definition of completeness.

DEFINITION 3.1 (Strict Definition of Completeness). A set oftasklconstraint co

orr1inate pairs is considered complete if, over aIl of the configuration space of the ma

nipulator, there always exista a coordinate pair such that the Tank of the augmented

Jacobian is equal to the number of degrees of freedom 0/ the manipulator.

This definition implies that singularities inherent to the configuration of the ma

nipulator, such as workspace bounclary singularities, must he alleviated by the addi

tion of constraints. For this reason, if such a strict definition of completeness is used,

the number of task/constraint coordinate pairs required to form a complete set will

like1y still he relatively large. H the operator is kept from operating the manipulator

2The operator can attaeh the task coordinates to aoy one of seven bodies. For each of these seven
sets of task coordinate selections, he cao pick constraint coordinates among the 36 remaining system
motion coordinates. If ODe constraint equatioD is used then he bas 252 possible selections (7 x 36).

• If two constraint equatioDS are used there are 4410 sucb possible selections (7 x (34Wl2i».
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in the vicinity of locations contajnjng rank-deficiencies of the task Jacobian, then the

following alternate definition of completeness can he used:

DEFINITION 3.2 (Loose Definition of Completeness). A set oftask/constraint 00

onlinate pairs is considered complete if, for ail configurations ofthe manipulator where

the task Jacobian is not rank-deficient, there always exists a coordinate pair such that

the mnk of the augmented Jacobian is equal to the number of degrees of freedom of

the manipulat0r3.

In this thesis, the second definition of completeness of the set of task/constraint

coordinate pairs is used since it greatly reduces the number ofcoordinate pairs that are

required to constitute a complete set. The methodology used to determine the com

pleteness of the set must therefore verify whether there always exists a task/constraint

coordinate pair in the set sucb that the constraint equations do not introduce algo

rithmic singularities in the augmented Jacobian matrix at alliocations where the task

Jacobian bas full rank.

2. Verification of Completeness using Rank-Deficiency Loci

Let us define a set P of task/constraint coordinate pairs as follows:

(3.1)

•

The method used to verify completeness of a set of task/constraint coordinate

pairs P makes use of the rank-deficiency loci of the task Jacobian and of the aug

mented J acobian JAi associated with every coordinate pair in P.

DEFINITION 3.3 (Rank-deficiency Locus). The mnk-deficiency locus of a Jaco

bian matrix J (q) is defined as the set of ail joint values q* such that J (q*) does not

have full mnk.

3Rank deficiencies induœd by the constraint equatioDS have traditionally been referred ta as aIgo
rithmic singularities.
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From Chapter 2, we remember that the task Jacobian JT is a rectangular matrix

with n rows and m columns, where n is the number of task coordinates, m is the

number of joint coordinates and n < m. The augmented Jacobian JAis a matrix

with n + r rows and m columns, where r is the number of constraint coordinates and

n+r>m.

The rank-deficiency locus of the task Jacobian JT is defined as:

Sr = {q 1 rank(JT(q) < n} (3.2)

and the rank-deficiency locus of the augmented Jacobian JAi associated with the

i
tA task/constraint coordinate pair [ : ] j E P as:

(3.3)

• From Definition 3.2 of completeness, there must always exist an augmented Ja-

cobian that does not introduce rank-deficiencies at locations where the task Jacobian

bas full rank. Therefore, the intersection of the rank-deficiency loci of all augmented

Jacobians obtained from l' must be a subset of the rank-deficiency locus of the task

Jacobian for a set of task coordinates typical1y describing the motion of the end

effector. P is then complete if nSAi ç Sr.

To provide an initial guess for the construction ofa complete set of task/constraint

coordinate pairs, let us define the reduced system motion space XR as the space

defined by the union of all task and constraint coordinates in P. XR is a subspace

of the system motion space Xs and it is parameterised by XR. The motion of the

redundant manipulator in KR is related to the motion in joint space by the reduced

system motion Jacobian as follows:

(3.4)

• 40



•
3.2 VERIFICATION OF COMPLETENESS USING RANK-DEFICIENCY LOCI

where VR is the set of variables describing the ve10cities associated with the

reduced system motion coordinates XR- It includes both transIational and angular

velocity components.

Assuming that XR includes all the task and constraint coordinates necessary to

fonn a complete set, then aIl augmented Jacobians resulting from coordinate pairs

extracted from XR can be built by selecting a subset of the rows of J R.

The rank-deficiency locus of the reduced system motion Jacobian J R is:

SR. = {q 1 rank(JR(q» < m} (3.5)

•

•

Realising that J R is built by the concatenation of all rows of the various J A, then

if a particular location in configuration space q* belongs to Stl, it must belong to

the rank-deficiency loci of all augmented Jacobians that can be built from J R. This

implies that the rank-deficiency locus of the reduced system motion Jacobian is the

intersection of the rank-deficiency loci of all augmented Jacobians that can be built

from JR, SR. = ni SAi· H, at a given location in configuration space, there exists a

taskfconstraint coordinate pair taken from XR sucb that its Jacobian bas full rank,

then this point does not belong to Stt.

Therefore, if SR. ç Sr, then there will always exist a taskfconstraint coordi

nate pair extracted from XR that will Dot induce a rank deficiency at manipulator

configurations where the task Jacobian JT is not aIready rank-deficient.

Note that the rank-deficiency locus method can as easily be used to verify whether

a set of taskfconstraint coordinate pairs is complete as per the strict definition of

completeness. In this case, the condition to be verified is that the rank-deficiency

locus of the reduced system motion Jacobian JR is the empty set.

The main advantage of the usage of rank-deficiency loci to analyse the complete

ness of a set of task./constraint coordinate pairs is that it provides a global solution

over the entire configuration space Q. Local methods sncb as the evaluation of the

rank of the augmented Jacobians or the determination of the null space and range
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space of the task and constraint Jacobians may he less computer-intensive per test

but they require that the testing be performed everywhere in the configuration space.

In practice, sucb a thing is impossible and the testing would have to be limited to a

grid of points in Q. However, the number of points in this test grid increases exp<>

nentially with the number of degrees of freedom of the manipulator and it is difficult

to guarantee that any grid fineness will ever be sufficient to ensure that no singular

configurations have been missed.

Numerical methods can aIso be used to compute the rank-deficiency locus of

Jacobian matrices using root-finding methods. These methods then involve a dis

cretisation of the solution instead of the joint space as is done for local rank-checking

methods.

In this thesis, it was decided to use symbolic computation to obtain a global

solution that can be expressed in term of the joint values and of the kinematic para

meters of the manipulator. This provides a solution that is more portable and that

can be used for further analyses but it certainly represents a limitation. There will

undoubtedly be a limit to the complexity of the kinematic equations beyond which

the computation of the rank-deficiency locus in symbolic form will not be practi

cally feasible. Different techniques can be used to simplify the computation of the

rank-deficiency locus of the Jacobian. For example, Walclron [63] bas shown that the

selection of an appropriate reference frame to express the kinematic equations can

greatly simplify the cost of computing the Jacobian. This operation is only a rotation

of the Jacobian matrix and therefore it does not change its rank-deficiency locus. It

can, however, reduce the computing cast of the Jacobian by an order of magnitude,

thus makjng the simplification of its determinant (or sub-detenninant) equation eas

ier. Further simplifications can be done by judiciously using trigonometric identities.

For example, identities for sums of angles can be used when the manipulator has con

secutive joints with parallel axes. These manipulations can further reduce the cast of

computing the Jacobian by half.
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These techniques can he used to push the limit of complexity beyond which the

methodology will become impractical but will never elimjnate it entirely. Fortunately,

this computation is performed off-line and must he done only once for a given ma

nipulator since it is only dependent on the kinematic architecture of the manipulator.

There is therefore no bard time limit for the computation of the rank-deficiency loci:

it is sufficient that their determination he fessible.

3. Existing Algorithms for Rank-Deficiency Locus Computa

tion

The simplest method to compute rank-deficiency loci is in the case of square

Jacobian matrices. For sncb matrices, loss of rank implies that the matrix becomes

singuiar and that its determinant is zero. The rank-deficiency locus can be computed

in symbolic form as follows:

• SlJtl = {q. 1det(J(q·» = O} (3.6)

•

For rectangular Jacobian matrices, the determinant method is not applicable

since the determinant is only defined for square matrices. DiHerent algorithms have

been developed to address this problem for kinematically redundant manipulators.

The mast simplistic method to study the rank-deficiency locus of the Jacobian

J(q) in snch a case is to compute that of the matrix product J(q)JT(q). For a

redundant manipulator, this produces a square matrix whose dimension is equal to

the lower dimension of the Jacobian J{q).

The joint values that make J (q.) rank-deficient will a1so make J (q.)JT(q.) rank

deficient. It is therefore possible to study the rank-deficiency locus of J(q) using the

determinant method on the matrix J (q)JT(q).

The main disadvantage of this method is that the algebraic complexity of the

determinant of J (q)JT(q) increases dramatically: each of the terms of this matrix

being the result of the product of two rows of J(q). The determinant equation thus
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obtained is a trigonometric equation typica1ly of order twice as high as any of the

sub-determinants of J(q). It can therefore be very diflicult to solve sncb an equation

in a symbolic manner.

For example, for a planar 3R manipulator, the sulHleterminant equations ofJ(q)

involve at Most 2 additions, 8 multiplications and 5 trigonometric function evalua

tions. The equations are of order 2 in terms of the trigonometric functions. In

comparison, the deterrninant equation of J(q)JT(q) for socb a manipulator contains

13 additions, 84 multiplications, 22 trigonometric function eva1uations and it is of

order 4 in the trigonometric functions. It is therefore quite a challenge to compute

the rank-deficiency locus for even sucb a simple case using this Methode

The sub-determinant algorithm is an alternative method that avoids having to

solve the determinant equation of J (q)JT(q). It takes advantage of the faet that

when a rectangular matrix loses rank, aIl square sub-matrices of the same dimension

as the lower dimension of the rectangular matrix aIso become singular. The deter

minant method is used to compute the singularity loci SMii of each of the square

sub-Jacobians J."i(q) resulting from all possible combinations of columns of J(q).

The rank-deficiency locus of the rectangular matrix is the intersection of the sin

gularity loci of aIl square submatrices S = (\ SMii. Unfortunately, this algorithm

proves unwieldy as the number of square submatrices increases combinatorially with

the number of degrees of freedom of the manipulator and the number of redundant

degrees of freedom.

To address the limitations of the sub-determinant algorithm, Nokleby and Pod

horodeski [46] proposed an aIternate approach based on screw theory. This algorithm

is based on the principle of virtual power and the fact that if a rank-deficiency exists

in a given configuration, then there is a direction in task space aIong which the ma

nipulator cannot moYe, and hence, cannot perform work. The algorithm first extracts

a square submatrix of dimension equal to the number of rows of the Jacobian. The

detenninant equation of this square submatrix is solved to find the set of joint values

for whicb this submatrix is singular. These conditions are substituted back into J(q)
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and the wrencb along whicb the Jacobian cannot generate motion in this singular con

figuration is found by taking its reciprocal product with each column of the square

snbmatnx4 and equating it to zero. After this wrench is found for the square sn~

matrix, its reciprocal product is then taken with each of the columns of the Jacobian

that were not part of the square submatrix. The reciprocal product equations are

then solved for the joint values that will lead to zero virtual power. The process is

repeated until all columns of the Jacobian have been used. What is then left is the set

of joint values for which the Jacobian of the redundant manipulator is rank-deficient.

This approach is more computationally efficient than the sub-detenninant algorithm

but it is limited to task spaces that can be represented by screws and to rectangular

Jacobians with more columns than rows.

4. Singular Vector Algoritbm

The singu1ar vector algorithm for determining rank-deficiency loci of rectan

gular Jacobian matrices is a generalisation of the algorithm of Nokleby and Pod

horodeski [46], but it uses linear algebra instead of screw algebra. The main advan

tage of the singular vector algorithm is that it can handle rectangular Jacobians of

any row and column dimension.

From the definition of rank-deficiency, a rectangular matrix with more columns

than rows becomes rank-deficient when its rows are linearly dependent5 . The exis

tence of a rank deficiency then implies that there exists a set of conditions for which a

set of singular vectors can he found sncb that the dot product of these singular vectors

with all columns of the Jacobian matrix is zero. These singular vectors are the left

singular vectors associated with zero singular values of the rectangular matrjx6. The

4Describing the task space using screw coordinates, the columns of the Jacobian matrix are joint
screws parameterising the motion of the task coordinates in terms of each individual joint.
SThe same reasoning can be applied to rectaDgular matrices with more rows than columns except
that then the columns become linearly dependent.
6From the Sïngular Value Decomposition theorem [86J, given a matrix J E Rnxm of rank r such
that r < n < m then 30'1 ~ 0'2 ~ ••• ~ Ur ~ 0 sucb that:
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singular vector algorithm for computing the rank-deficiency locus of a rectangular

Jacobian matrix determines the conditions for which sucb singuIar vectors exÎSt.

The methodology will he explained for the case when the Jacobian matrix bas

more columns than rows n < m. This corresponds to kinematically redundant ma

nipulators: there are more joint variables than kinematic equations to he solved.

The rank-deficiency locus then is the set of aIl values of q sncb that the rank of the

Jacobian matrix is lower than its number of rows. The methodology can easily he

generalised to the case when the Jacobian matrix bas more rows than columns, which

corresponds to an overdetermined system of equations. In this case, the columns of

J(q) are considered instead of its rows and the right singular vectors are used instead

of the left singular vectors.

The first step in the computation of the rank-deficiency locus of J (q) is to extract

n columns out of J(q) to form JMl{q). The remaining columns of J(q) are called tbe

redundant columns and fonn J r (q).

•

• J.,(q) = [Sl(q) S2(q) ... Sn(q)] (3.7)

(3.8)

•

The rank-deficiency (singuIarity) locus of the square sub-Jacobian is computed

symbolically byequating its detenninant to zero and solving for q:

JVi = CTiUi, i = 1, ,r

JVi = 0, i = r + 1, t m

JTUa =CTiVir i = 1, ,r
JTUt = 0, i = r + 1, ,n

where Vi are the eigenvectors of PJ, Ut are the eigenveetors of JJT and CTi are the Don-zero
eigenva1ues of JTJ and JIT. The vectors Ut are called the Ieft singular vectors of J and the vectors
Vi are called the right singular vectors of J. The Ieft singu1ar vectors of J that correspond to zero
singu1ar values aIso span the null spaœ of J'I' .
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The rank-deficiency locus of the square sub-Jacobian is then refined iteratively

by substituting each Qi E 8." and finding the conditions that further reduce the rank

of J.,(q;). This is done by triangularising the rank-deficient matrix J.,(qi) using

Gaussian elimination. The matrix thus obtained, J6 (q), is upper-triangular and its

last row is composed entirely of zeros. The conditions that further reduce the rank

of J.,(qi) are found by applying the Sïngular Vector Algorithm recursively to the

Iargest full row-rank submatrix of J 6 (q) and finding its rank-deficiency locus. AlI

sets of rank-deficiency conditions thus found are recorded in 8 sq as additional solution

branches.

For each individual branch of the solution q; E 8." the rank-deficiency conditions

are substituted back into J.,(q) and the left singular vectors associated to the zero

singular values of the singuJar square sub-Jacobian are computed as follows:•
snch that

and

U;O(q) = [Ui1(q) U;2(q) ... Um(q) r

(3.9)

(3.10)

(3.11)

(3.12)

•
The vectors ut(q) span the null space of [J.,(qi)]T. They are then arranged in

a matrix as follows:
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(3.13)

where k corresponds to the number of zero singular values of the matrix J.sq(q;).

The singularity conditions q; are then substituted into J r (q) and a new matrix is gen

erated by multiplying the matrix U· (q) with the redundant columns of the Jacobian

as follows:

(3.14)

•

•

The rank-deficiency locus S is refined by repeating the algorithm recursively to

find the conditions under which Jf(q) also loses rank. A tree of solution branches

is thus formed; each solution branch of the singularity locus of J .s'l(q) leading to

potentially Many sub-branches being rank-deficiency loci of Jt(q). The recursion

continues until one of three conditions is met.

(i) The rank-deficiency locus of Jt(q) is the empty set: In this case, the set of

solution branches of rank-deficiency loci being investigated are not part of the

rank-deficiency locus of the overa1l Jacobian matrix.

(ü) The number of singular vectors, k, in U·(q) is larger than the number of

columns of Jr(q): In this case, the set of solution branches followed up to this

point is obviously part of the rank-deficiency locus of the overall Jacobian ma

trix because the number of redundant columns is insufficient to cancel entirely

the null space of [J.,,(q)]T.

(ili) The last redundant column of the matrix J(q) has been used in J"'l(q): this

means that there are no more possible refinements of the rank-deficiency locus

S for the particular set of solutions branches that has been followed.

In each of these cases, the algorithm updates the rank deficiency locus of J (q)

accordingly. H a solution was found, then the intersection of the set of rank-deficiency
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loci {q*} E S." of the terminal branch and that of aIl of its parents is added to the

rank-deficiency locus S of the overall Jacobian. Otherwise, the branch is simply

ignored. The algorithm then backtracks in the solution tree until it encounters a

branch of the rank-deficiency locus that bas not yet been investigated.

Alter aIl branches of the solution tree have been investigated, S then contains

the entire rank-deficiency locus of the rectangular Jacobian7•

This algorithm is computationally very efficient since it applies to matrices of

rapidly decreasing dimension. It uses only once a square submatrix J.,,(q) whose

dimension is equal to the smallest dimension of J (q). The dimension of the matrices

at the next recursion decrea.ses to the dimension of the null space of J.tq(q;).

Furthermore, the algebraic complexity of the determinant equation of J.,,(q) can

be rniojrnised amongst aIl possible combinations of columns of J(q) at the cast of

computing the determinant equations of all square submatrices of J (q). The cast

of this operation is combinatorisl in the nomber of columns and rows of J (q) but it

only involves additions, multiplications and algebraic simplifications. In most cases,

this step is weIl worth the computational expense since it is shorter than solving the

determinant equation of an arbitrary J.tq(q).

5. Application of the Singular Vector Aigorithm to a Redun

dant Planar Manipulator

This case illustrates the application of the Singular Vector AIgorithm. The rank

deficiency loci thus obtained are used to find a reduced system motion space from

which can be extracted a complete set of task/constraint coordinate pairs in the sense

of Definition 3.2.

Consider a three-degree-of-freedom planar manipulator as shown on Figure 3.!.

It has three revolute joints with parallel axes whose range of motion is 0 < qi <

27rt i = 1... 3.

7For more details, refer to the fiowcbarts of the Sïngular Vector Algorithm provided in Appendix E.
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FleURE 3.1. 3R Planar Manipulator

Its joint space is a toros of dimension 3. Presuming that the operator can control

the velocity of any point on the manipulator in the plane, then the task space is~

dimensional and the manipulator is considered kinematically redundant. Suppose

that a set of task coordinates are defined as the position of the end-effector (X3, Y3)

• then the task Jacobian is defined as folloJ:

The rank-deficiency locus of the task Jacobian can be computed using the singular

vector algorithm. The first step is to select a square submatrix out of JT{q) and to

compute its singularity locus. For simplicity, the 1ast two columns of the task Jacobian

are selected.

(3.16)

•
and

8To reduce algebraic complexity, the Jacobian is expressed in the reference frame attached to the
proximal end of the third link
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•

The deterrninaDt equation of J.,,(q) is:

~!rJ sin(lf3) = 0

The singularity locus of the square submatrix is then

{

Q3 =0
Ssq =

fJ3 = 'Ir

Substituting q3 = 0 into JMl(q) and Jr(q), we obtain:

( .) [ LI sin(l/2) ]Jr q =
LI cos(lh) + ~ +~

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

The singu1ar vector of J Ml(q-) corresponding to its zero singular value is u =

[lof. Taking the product of uT with Jr(q·) giws a one-by-one matrix whose

singularity equation is:

(3.22)

•
and whose singularity locus is:
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{

([2=0
SIItl =

([2 = 'Ir

(3.23)

•

Similarly, setting fJ3 = 'Ir yields the following rank-deficiency loci for the task

Jacobian:

([2 = 0; 'l3 = 0

Sr=
fl2 = 0; fIJ = 'Ir

(3.24)
fl2 = 1r; q3 =0

tl2 = 1r; fIJ = 7r

Introducing constraint equations based on the position (X2m' 112",) of the mid

point of the second link, a reduced system motion space can be built as X'R =

{X3' Y3, X2m' Y2m}· The reduced system motion Jacobian then becomes:

LI sin(lJ2 + fl3) +~ sin(Q3)

LI cos(lJ2 + 'l3) + ~COS(q3) +~
LI sin(th + 'l3) + 4~ sin(fJ3)

LI cos(f12 + CJ3) + 4~ cos(CJ3)

~ sin('l3) 0

~ cos(l/3) L3

4~ sin('l3) 0

l~cos('l3) 0

(3.25)

To find the rank-deficiency locus of JR(q) the singular vector a1gorithm is once

again used. However, in this case, since JR(q) bas more rows than columns: right

singular vectors are used instead of the left ones. Selecting the 1ast three rows of

JR(q) to form J1Itl(q), we obtain the determinant equation whose algebraic complexity

is lowest:
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LI cos(fl2 + q3) +~ cos{fIJ) + L3 ~ cos(tI3) ~

J~(q) = LI sin(f12 + CJ3) + ~~ sin('l3) ~~ sin(Q3) 0

LI cos(t]2 + 'l3) + 4~ cos(tb) i~ cos(fl3) 0

(3.26)
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The determinant equation of the square submatrix is:

•

The singularity locus of the square submatrix is then

{

th =0
S.,,=

112 = 'Ir

Substituting (J2 = 0 into J.,,(q) and Jr(q), we obtain:

(LI + ~) cos(lJ3) + L3 ~ COS(Q3) L3

J.,,(q*) = (LI + 4~) sin{lJ3) !~ sin(Q3) 0

(LI + ~~) cos(lJ3) ~~ cos(lJ3) 0

(3.28)

(3.29)

(3.30)

(3.31)

The singular vector of J.,,(q*) corresponding to its zero singular value is v =
[ 1 2L~La LIL2cz:<l3'+2Lo r. Taking the product of J?(qO) with v gives a one-

hy-one matrix Jf(q) whose singularity equation is:

(3.32)

•
and whose singularity locus is:
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{

tl3 = 0
S.,=

tl3 = 1r

(3.33)

After having investigated the first branch of the rank-deficiency locus of Jsq(q),

the overall rank-deficiency locus of JR(q) is:

{

fl2 = 0; fJ3 = 0
8-R.=

fl2 = 0; tl3 = 1r

(3.34)

Repeating the algorithm for Q2 = 1r, the following rank-deficiency locus is obtained

for the reduced system motion Jacobian:

f/2 = 0; q3 =0

• 5rl.=
fh = 0; q3 = 7r

(3.35)
fh = 7r; q3 =0

fh = 7r; q3 = 1r

which is exactly the same as the rank-deficiency locus of the task Jacobian. There

fore, the coordinates defining the position of the end-effector and that of the middle

of the second 1ink constitute a complete set of task/constraint coordinates.

SR. ç Sr => X1l is complete. (3.36)

•

From this complete set, the following sets of task/constraint coordinate pairs can

be picked.
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(3.37)

(3.38)

(3.39)

•

•

Note that the coordinate pair shown in eq. (3.39) corresponds to a self-motion

of the manipulator: the end-effector position is fi.."Ced and the operator controls the

position of the mid-point on the second link. For this combination of task/constraint

coordinates, the system of equations is over-determined and it will generally be im

possible for the manipulator to follow exactly the commando In sncb a case, the

inverse kinematics algorithm described in Appendix B will command the manipula

tor to move in sncb a manner as to mjnimise the difference between the commanded

velocity and the manipulator response in task space while satisfying the constraint

equations.

6. Recursive Sub-Determinant Algorithm

In some cases, the Singular Vector Algorithm can fail to find a solution because

the algebraic complexity of the singular vectors Uï· (q) is sncb that the simplest su~

detenninant of Jt(q) is unwieldy or even intractable. To address this limitation

of the Sïngular Vector Algorithm, an alternate algorithm was developed to com

pute the rank-deficiency loci of rectangular Jacobian matrices. The Recursive Su~

Determinant Algorithm is computationally less efficient since it is applied recursively

to matrices of the same dimension as the Jacobian matrix under investigation. On the

other hand, it is mucb more robust and it can handle many cases where the singular

vector method fails to find a solution.
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The first step in the computation of the rank-deficiency locus of J (q) is to extract

out of it a square submatrix Jaq(q) of the same dimension as the smaller dimension

of J(q). This submatrix is selected amongst all possible combinations of columns

to provide the sub-Jacobian whose determinant equation is the easiest to solve yet

not trivially equal to zero. An empirica1 criterioD sucb as the sum of the number of

additions, multiplications and function evaluations in the determinant equation can

be used as a practical measure to select Jaq(q).

The rank-deficiency (singularity) locus of Jaq(q) is then computed symbolically

by equating its determinant to zero and solving for q:

StJq = {q* 1 det(Jaq(q·» = O} (3.40)

Each branch of the rank-deficiency locus is then substituted back into the original

Jacobian matrix and the algorithm is applied recursively to J(q.) until it reaches one

• of the following termination conditions:

(i) The rank-deficiency locus of Jaq(q.) is the empty set: It is impossible for

the square sub-Jacobian to be ranIc-deficient. In this case, the set of solution

branches of rank-deficiency loci being investigated is not part of the rank

deficiency locus of the overall Jacobian matrix.

(ü) J(q.) is rank-deficient: In this case, the set of solution branches being investi

gated is part of the rank-deficiency locus of the overall Jacobian matrix.

In each of these cases, the algorithm updates the rank deficiency locus of J {q}

accordingly. fi a solution was found, then the intersection of the rank-deficiency

locus S." of the terminal branch and that of all of its parents is added to the rank

deficiency locus S of the overall Jacobian. Otherwise, the branch is simply ignored.

The algorithm then climbs back up the solution tree until it encounters a branch of

the rank-deficiency locus that has Dot yet been investigated.
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Alter aIl branches of the solution tree have been investigated, S then contains

the entire rank-deficiency locus of the rectangular Jacobian9•

The main disadvantage of this method is that it is combinatorial in nature. At

every recursion step, the algebraic complexity of ail sub-detenninants of J (q) is evalu

ated to find the square sulrJacobian J.,(q) whose detenninant equation is the easiest

to solve. For example, if J (q) bas dimension n x m with n < m, then the deterrninant

equations of n!(:~n)! n x n square submatrices of J (q) must he evaluated. For a 6 x 7

Jacobian there are seven 6 x 6 square submatrices. H J (q) has dimension 6 x 8 then

there are 28 sucb square submatrices.

Fortunately, since the reduction of the system motion space is ta be performed

only once, off-lîne, for any manipulator, the time required to compute the rank

deficiency locus for a given set of reduced system motion coordinates is Dot an issue.

The most important advantage of this algorithm is its robustness: it is more likely

to find the rank-deficiency locus of manipulators whose kinematics is sucb that other

methods will fail. Although nothing guarantees that the algebraic complexity of the

sub-determinants of J(q.) will decrease as more rank-deficiency conditions are sub

stituted into it, this is generally the case for manipulators with mutually orthogonal

sequential joints. The singularity conditions q. for J.,(q) then often reduce to a joint

value being equal to zero or j. In sucb a case, the algebraic complexity of the overall

Jacobian reduces drastica1ly at each recursion level, thus increasing the odds that the

sub-determinant equations will become simpler.

7. Application of the Recursive Sub-Determinant Algorithm

to a Redondant Planar Manipulator

To demonstrate the recursive sub-determinant algorithm, let us apply it again ta

the case of the 3R planar manipulator that was used in Section 5. Recall that the

task Jacobian of this manipulator is:

9For more detaiIst refer ta the flowchart of the Recursive Su~Determinant Algorithm provided in
Appendix E.
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•
JT(q) = [ LI(sin(fl2) COS(lJ3) +COS(C/2) sin(lJ3» +~ sin('l3) ~ sin('l3) 0]

LI(COS(fl2) COS(lJ3) - sin(C/2) sin(lJ3» +~COS('l3) +~ Lz COS(lJ3) ~

(3.41)

The rank-deficiency locus of the task Jacobian can be computed using the re

cursive sub-determinant algorithm as follows. The first step is to select a square

submatrix out of JT(q) and to compute its singu1arity locus. Evaluating the deter

minants of the square submatrices of JT(q) , we obtain

LI~sin(Q2) - ~L3sin(Q3) = 0 (3.42)

~L3 sin(Q3) + L(L3(cos(lJ2) Sin(Q3) + sin('l2) cos(Q3» = 0 (3.43)

L,.L3 sin(l/3) = 0 (3.44)

• for columns combinations 1 - 2, 1 - 3 and 2 - 3 respectively. Obviously, from the

above three equatioDS, eq. (3.44) is the simplest to solve. J~(q) is then selected as:

(3.45)

and its singularity locus is:

(3.46)

Substituting q3 = 0 back into JT(q), we obtain:

(3.47)
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Again, eva1uating the determinants of the square submatrices, we obtain:

Lt~ sin('l2) = 0

L tL,sin(lJ2) = 0

0=0

(3.48)

(3.49)

(3.50)

for columns combinations 1 - 2, 1 - 3 and 2 - 3 respectively. We then build a

square submatrix from the first and third columns of JT(q) whose singularity locus

is:

Applying the algorithm once again, we substitute Ch = 0 into JT(q*) obtaining:

•
{

qz = 0
8." =

Ch = 1r

(3.51)

(3.52)

which is obviously a rank-deficient matrix. The rank-deficiency locus of JT(q) is

then updatOO to incorporate the set of joint values which 100 to this condition:

s = { 92 = 0; th = 0 (3.53)

•

Having reached a termination condition, we go back up a recursion Ievel and look

for a solution branch that bas not yet been tested. We then apply the algorithm

again with the condition q2 = 'Ir. As for the condition 112 = 0, this yields again a

rank-deficient task Jacobian. Therefore, the rank-deficiency locus of JT(q) is again

updated.
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{
'12 = 0; lJ3 = 0s=
fl2 = 'Ir; lJ3 = 0

(3.54)

Having once again reached a termination condition, we go back up a recursion

level. Since there are no branches that have Dot yet been investigated at this level we

go up one more level of recursion. The process is then repeated for q3 = 'Ir until all

solution branches have been investigated, at which point, the rank-deficiency locus of

the task Jacobian is then:

th = 0; lJ3 = 0

s= th = 0; lJ3 = 'Ir
(3.55)

th = 'Ir; Q3 =0

th = 'Ir; Q3 = 'Ir

• which is the same as the solution that was found using the singular vector alg~

rithm.

8. Summary

•

This chapter provides a methodology to extract out of Xs a reduced set of

task/constraint coordinate pairs. This is necessary to avoid overwhelming the 0Ir

erator with too large a number of coordinate choices.

The set of task/constraint coordinate pairs P is considered complete if amongst

ail coordinate pairs in P, there a1ways exists a pair sueb that, at every configuration

where the task Jacobian is not rank-deficient, the rank of the augmented Jacobian is

equal to the dimension of the joint space.

The completeness of P is analysed by ensuring that. the intersection of the rank

deficiency loci of the augmented Jacobians associated with each coordmate pair in P

is a subset of the rank-deficiency locus of the task Jacobian10.

IGThe pose of the end-effector is typically used as the set of task coordinates.
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3.8 SUMMARY

To provide a starting point for the construction of 1', the reduced system motion

spaœ Xx C Xs is defined. The rank-deficiency locus of the reduced system motion

Jacobian is the intersection of the rank-deficiency loci of all augmented Jacobians

that can be built from J R, SR. = ni SAi· Therefore, if SR. ç Sr, then there will

always exist a task/constraint coordinate pair extracted from XR that will not induce

a rank deficiency at manipulator configurations where the task Jacobian JT is not

already rank-deficient.

To analyse the rank-deficiency loci of rectangular Jacobian matrices, two novel

algorithms are introduced: the Singular Vector Algorithm and the Recursive Su~

Determinant Algorithm. These two algorithms are complementary to each other, the

former being computationally more efficient, the latter being more robuste A simple

kinematically redundant planar manipulator is used as a sample case to illustrate the

application of each algorithm and the generation of a reduced system motion space.
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CHAPTER 4

SaDlple Cases

The purpose of this chapter is to generate complete sets of task/constraint coordinate

pairs for redundant manipulators using the concepts introduced in Chapter 2 and the

aIgorithms developed in Chapter 3. Simple examples will first be used to illustrate

the application of the methodology in detail.

To demonstrate the applicability of the algorithms to existing space manipulators,

reduced system motion spaces will be generated for reaIistic examples sucb as the

Space Station Remote Manipulator System and a slightly simplified version of the

Special Purpose Dextrous Manipulator.

1. 4R Spherical-Shoulder Manipulator

Let us first consider the case of a 4R spherical shoulder manipulator with four

revolute joints arranged in a manner similar to the first four joints of SSRMS. The

joints are arranged in a cluster of three joints at the shoulder in a roIl-yaw-pitch

configuration followed by an elbow pitch joint as shown on Figure 4.1. Note that

unlike SSRMS, a spherica1 shoulder and an elbow joint with no offset are assumed.

Let us aIso assume that the operator is limited to controlling the velocity of a

point in three-dimensional space. This manipulator is then considered kinematica1ly

redundant under manual teleoperation since it has four degrees of freedom whereas

the operator can only control three simultaneously. Assuming that one of the sets of
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FIGURE 4.1. 4R Spherical-Shoulder Manipulator

task coordinates to be controlled by the operator is the position of the end-effector

(X4, Y4, Z4), the task Jacobian associated to this set of coordinates is1
:

• L3s2 S4 0 klS4 0

JT = L3C2 8 3 + L4C28 34 - L3C3 - L4C34 0 0 (4.1)

-L3s2 C4 0 -~C4 - L4 -L4

where Ci = COS{qi), Si =sin(qi), Ci; = COS{qi + q;) and Si; = sin(qi + Qi)·

Computing the rank-deficiency locus of JT using the singular vector method, one

obtains:

(4.2)

•

The first rank-deficiency locus q4 = 0, 1r corresponds to workspace boundary sin

gularities where the manipulator is either fully stretched or fully folded on itself. The

next set of rank-deficiency loci occur when the axes of the first and third joints are

ITo reduce the oost of computing the Jacobian, it is expressed in a reference frame attached to frame
F4.
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(a) (h)

•
FIGURE 4.2. Singular Configurations of a 4R Spherical-Shoulder Ma
nipulator: (a) q4 = 11" t (b) th = j and ~ cos(113) + L4 COS( 'l3 + q4) = 0

aligned and the end-effector is lying on the axis of the second joint. These configura

tions are shown on Figure 4.2.

ln an attempt to find a complete set of task/constraint coordinate pairs, con

straints on the position of the elbow of the manipulator can be added to the task

coordinates to construct a reduced system motion space X1l = {X3t 1/3, Z3, %4, Y4, Z4}.

The reduced system motion kinematic equations then take the following form:

X4 ~S2S4 0 L3s4 0

Y4 L3C2 S3 + L4C2S34 -L3C3 - L4C34 0 0 ql
Z4 -1rJS 2 e.t 0 -~c.a - L4 -L4 th

(4.3)-
X3 ~S2S4 0 ~S4 0 th

Y3 lJC2 S3 -L3C3 0 0 tl4

• Z3 -/r.iS2 Cs 0 -L3C4 0
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FIGURE 4.3. Algorithmic Rank-Deficiency Locus Configurations

The rank-deficiency locus of the reduced system motion Jacobian J R as expressed

in eq. (4.3) is

(4.4)

•
Obviously, SR. g; Sr. There is an additional set of rank-deficiencies at lJ2 = ±j:

th~ self-motion induced by the first and the third joint in the shoulder turning at the

same speed in opposite directions does not result in any motion of the elbow. This

configuration is shown on Figure 4.3

Interestingly, this rank-deficiency is one tbat is a1so present if the pitch plane

angle constraint is used: a constraint is set on the angular velocity of the pitch joints

of the arm around a line joining the centre of the shoulder joint cluster to the tip

of the manipuIator. The following rank-deficiency locus analysis demonstrates that

the self-motion of the manipulator at the configurations lJ2 = ±i does not affect the

pitch plane angle Q.

Let us define the vector rpp going from the origin of frame F3 to the origin of

frame Fs and express it in the reference frame attached to the third joint.

(4.5)

The Jacobian of rotation of the pitch plane about rpp is obtained by premulti-

• plying the Jacobian of rotation corresponding to the elbow frame by the directional
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4.1 4R SPHERICAIrSHOULDER MANIPULATOR

FIGURE 4.4. Definition of Alternate Coordinates for Constraint Equa
tions on a 4R Spherical Shoulder Manipulator

cosine associated with rpp" Figure 4.4 shows the geometric interpretation of the pitch

plane angular velocity and axis of rotation.

(4.6)

where

(4.7)

Conducting a rank-deficiency locus analysis on the reduced system motion Ja

cobian obtained by concatenating JT as per eq. (4.1) and Je as per eq. (4.6), the

following rank-deficiency locus is obtained:

• {

q.. = 0, 1r
8rl.=

Ch = ±~

(4.8)
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which is the sarDe as that of the augmented Jacobian using the elbow position as

constraint equations.

To remove the unwanted rank-deficiency at fI2 = ±I let us add a constraint on

the projection of the angular velocity of the second body in the pitch plane (See

Figure 4.4). Let us define this velocity as /J. The constraint equations then become:

(4.9)

Conducting a rank-deficiency locus analysis on J R, the following is obtained:

(4.10)

which is exactly the same as that of the task Jacobian. Similarly, if the constraint

• on /J is aclded to the reduced system motion space consisting of the position of the

end-effector and of the elbow, the rank-deficiency locus of the new reduced system

motion Jacobian becomes:

(4.11)

which is a subset of Sr. Complete sets of task/constraint coordinate pairs can

therefore he extracted from the reduced system motion spaces Xx = {X4' Y4, Z4, a,,8}

and Xx = {X3' Y3, Z3, X4, Y4, Z4, ,B}. One possible set of task/constraint coordinate

pairs based on the former reduced system motion space couId be:
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•
X4

XT= Y4

Z4

X4

XT= Y4

Z4

Xc=[a]

Xc=[o]

(4.12)

(4.13)

In most configurations, the pitch plane angle Cl leads to much more predictable

motion than the constraint on /J. The operator would then, in most cases, either

control the velocity of the end-effector and fix the pitch plane angle or fix the position

of the end-effector and control the rotation of the pitch plane. The other sets of

tasklconstraint coordinates should only be used when the pitch plane augmented

Jacobian is rank-deficient or ill-conditioned (th ~ ±~). In this configuration, the

constraint on /J leads to relatively predictable motion of the manipulator since the

instantaneous pitch plane angular velocity is close to zero during a self-motion of the

manipulator.

Alternatively, the operator could use the following sets of tasklconstraint coor

dinate pairs:

•

•

X4

xT = [ Cl ] ; Xc= Y4

Z4

X4

xT = [ IJ ] ; Xc= Y4

Z4

(4.14)

(4.15)
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Again, in most cases, constraints on elbow position result in more predictable

motion and would likely be used for most operations. Note that for the case where

XT = [X3 Y3 Z3]T and XC = [X4 Y4 Z4 r, the system is over-eonstrained and

cannot follow an arbitrary command given by the operator. In sncb conditions, an

inverse kinematics algorithm sucb as the one presented in Appendix B can be used to

mjnimise the error between the response and the command while ensuring that the

constraints are exactly met.
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•
X4

XT= Y4

Z4

X4

XT= Y4

z4

X3

XT= Y3

Z3

•

X4

xc= Y4

Z4

X4

xc= Y4

Z4

(4.16)

(4.17)

(4.18)

(4.19)

2. Simplified SSRMS without Joint Offsets

As a second simple example, let us consider adding a spherical wrist to the tip of

the manipulator used in Section 1. The manipulator thus obtained (See Figure 4.5)

has the same topology as the SSRMS except that the absence of offsets at every joint

greatly simplifies the algebra of the Jacobian. The coordinate frames used to define

• the kinematic equations of this manipulator are the same as those of SSRMS (shawn

70



•

•

4.2 SlMPLIFIED SSRMS

FIGURE 4.5. Simplified SSRMS

on Figure 4.7) except that the origins of frames FI, F2 and F3 are coinciding as are

those of frames Fs, F6 and F7 • The length of the two booms is equal and set to L4•

It is assumed that one set of coordinates to be controlled by the operator is

the pose of the end-effector, e. The recursive sub-determinant a1gorithm has been

used to analyse the rank-deficiency locus of the task Jacobian and to find a reduced

system motion space sncb that the reduced system motion Jacobian J R is not rank

deficient at locations where the task Jacobian is not itself aIready rank-deficient. The

rank-deficiency locus of the task Jacobian of this manipulator is as follows:

Sr=

q4 = 0, 'Ir

nn. - ±1r. n _ ±1r
"f~ - 2' "f6 - 2'

q2 = ±i; q4 = 'Ir - 2q3

q6 = ± ~; q4 = 'Ir - 2qs

(4.20)

•

The configurations at which the task Jacobian is rank-deficient are shown on

Figure 4.6. The configurations q4 = 0 and q4 = 1T are workspace boundary rank

deficiencies where the elbow is either fully extended or fully folded. Note that since aIl

joints are assumed to be without off'sets, the configuration at q4 = 'Ir is not physically

achievable. The rank-deficiency locus at Q2 = ±~ and q6 = ±j represents the case

when the axes of five out of seven joints of the manipulator are parallel. Both the
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wrist and the shoulder joint clusters can effect a self-motion as W8S already described

for the 4R Spherical Shoulder Manipulator: the seH-motion manifold is therefore

two-dimensional. Since the manipulator bas only one more degree of freedom than

is necessary to completely define the task coordinates, then the task Jacobian is

necessarily rank-deficient.

The rank-deficiency locus at fl2 = ±i and q4 = 'Ir - 2fl3 represents the case when

the shoulder roll and pitch joints are co-axial and the centre point of the wrist lies

on the axis of the shoulder yaw joint. In this configuration, the manipulator cannot

move its wrist centre point in a direction perpendicular to the pitch plane. Finally,

the rank-deficiency locus where q6 = ±i and q4 = 'Ir - 2qs is the symmetric equivalent

of the previous one except that, in this case, it is the centre point of the shoulder

joint cluster that is lying on the axis of the wrist yaw joint.

H the reduced system motion space is built by adding a constraint on the pitch

plane as was done for in Section 1, then the rank-deficiency locus of the reduced

system motion Jacobian becomes:

q4 = 0, 'Ir

SR. = fl2 = ±~

q6= ±i
(4.21)

•

Clearly SR. ~ Sr. The rank deficiency loci '12 = ±i and q6 = ±i allow self

motions of the manipulator that do not influence the pitch plane angle. The self

motion of the manipulator at Q2 = ±i is that of the shoulder joint cluster as was

aIready described for the 4R Spherical Shoulder Manipulator and the self-motion at

q6 = ±i is the equivalent in the wrist joint cluster.

In the same fashion as W8S done in Section 1, a reduced system motion space

can be built instead by augmenting the pose of the end-effector with the position

of & point on the elbow. For convenience, the origin of frame F4 is chosen. The

resulting rank-deficiency locus is exactly the same as for the case of the pitch plane

72



•

•

•

4.2 SIMPLIFIED SSRMS

(d)

FIGURE 4.6. Rank-Deficient Configurations of the Task Jacobian of
the Simplified SSRMS Model: (a) q4 = 0, (b) qs = ~, q4 = 'Ir - 2qs, (c)
fl2 = j, q4 = 'Ir - 2q3, (d) Q2 = qs = ~

constraint. This is not surprising as the seH-motions that do not influence the pitch

plane orientation also do not cause any motion of the elbow. Ta a1leviate this problem,

a reduced system motion space can he built by adding constraints on the projection

anto the pitch plane of the angular velocity of frames F2 and F6 (defined as /3 and '1
respectively) .
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The reduced system motion Jacobian is then a Il x 7 matrix. Applying the

recursive sub-determinant algorithm to it, we obtain the following rank-deficiency

locus for the reduced system motion spaœ:

q4 = 0, 1['; th = 0, 1['; 116 = 0, 'Ir

SR. =
q4 = 0, 1['; th = 0, 1['; qs = ±~

(4.22)
q4 = 0, 'Ir; fl3 - ±~. qs= ±i- 2'

q4 = 0, 1['; fl3 - ±~. q6 = 0, 'Ir- 2'

Clearly, SR. c Sr. The reduced system motion space KR consisting of the pose of

the end-effector, the position of the elbow and the projection of the angle of frames

F2 and F6 in the pitch plane is complete as per Definition 3.2 of Chapter 3. From

this XR, the following set of task.jconstraint coordinate pairs could he used:

• XT = [ ( J; Xc = [ %4 J or [Y4 J or [ Z4 J
XT = [ ( J; Xc = [ p J

XT = [ ( J; XC = [ 7 J

XT = [ X4 J; XC = [ ( J

XT = [ p J; XC = [ ( J

XT = [ 7 ] ; XC = [ ( J

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

•

where ( ([ x 9 r) describes the pose ofthe end-e1fector and X4 = [x4 Y4 Z4 r
is the position of the origin of reference frame F4 on the elbow. Again, in Most

cases, the constraints on elbow motion result in much more predictahle motion

than do the constraints on 13 and 7. In most situations, the operator would typi

cally add a constraint on elbow position and control the end-effector or fix the end

effector pose and control the elbow position. Only in configurations where this set of
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FIGURE 4.7. Frame Definition for SSRMS Kinematics

task./constraint coordinates leads to a rank-deficient or ill-conditioned augmented Ja

cobian (th or Q6 ~ ±j), should the operator use the alternate sets of task/constraint

coordinate pairs.

3. SSRMS

To demonstrate the applicability of the methodology to existing space manipu

lators with more complex kinematic equations, let us now consider the case of the

Space Station Remote Manipulator System. The SSRMS is a seven-degree-of-freedom

manipulator with three shoulder joints arranged in a roll-yaw-pitch configuration, an

elbow pitch joint and a wrist joint cluster identical to the shoulder cluster. Figure 4.7

shows the SSRMS in its zero configuration and the coordinate frames used to derive

the kinematic equations.

Sînce the SSRMS bas offsets at all of its joints, the algebraic complexity of its

kinematic equations can be much superior to that of the cases considered 50 far.

HoweverJ the computation of the rank-deficiency locus of the SSRMS can be greatly

simplified by carefully picking the reference frames used to express the kinematics in

a manner that mjnjmises the number of joint offsets and by expressing the Jacobian

in the appropriate reference frame.
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For example, using traditional frame placement, no trigonometric identities and

expressing the Jacobian in the base frame, the oost of computing the Jacobian asso

ciated with the motion of the end-effector is 317 additions, 1455 multiplications and

14 trigonometric function evaluations.

Selecting reference frames as shown on Figure 4.7, the oost of computing the

same Jacobian is reduced to 288 additions, 1346 multiplications and 14 trigonometric

function evaluations.

Expressing the Jacobian in a frame attached to the elbow of SSRMS further

reduces the cost to 76 additions, 232 multiplications and 14 trigonometric function

evaluations.

Finally, the cost of computing the Jacobian could be reduced to 73 additions, 91

multiplications and 18 trigonometric function evaluations by making use of trigon~

metric identities and the fact that SSRMS has three consecutive parallel joints. The

solution of sub-determinant equations would then require two additional constraint

equations, whose computing cost is only three additions, to take into account the two

variables introduced for the SUDlS of the angles of the parallel joints. However, the

rank-deficiency locus computation algorithms do not work as well if sncb trigonomet

rie identities are used. This is due to the fact that the sub-determinant equations can

be simplified much more if the trigonometric identities are not used.

Despite ail of these simplifications, the computation of the rank-deficiency locus

Sr of the SSRMS' task Jacobian JT is still unwieldy. Fortunately, it is also 00

necessary. To verify whether the rank deficiency locus of the reduced system motion

Jacobian SR. is a subset ofSr, the rank-deficiency conditions of SR. can be substituted

into JT, whose rank can then be checked to ensure that it is indeed rank-deficient.

This method has been used to verify the completeness of various reduced system mer

tion spaces. The results of this analysis are provided in Appendix C and summarised

below.

In the SSRMS flight control software, redoodancy resolution is done using con

straints on the motion of either the shoulder roll or the shoulder yaw joint. This
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can he implemented either using rank-augmentation or rank-reduction methods. For

example, constraining the motion of the shoulder roll joint can be done by adding the

following constl'aïnt to the task Jacobian:

Je = [1 0 0 0 0 0 0] (4.29)

or by removing the first column of the task Jacobian, thus yielding a 6 x 6 reduced

J acobian. Regardless of the method chosen, the singularity locus is the same. A rank

deficiency analysis was performed on the Jacobians obtained for the two constraints

used for resolving kinematic redundancy in the SSRAtIS flight software.

The rank-deficiency locus of the Jacobian obtained by imposing a constraint on

shoulder roll motion is:

•
q4 = 0, 7r

SR. = qs = ±j
n = -fl _ arctan(L.a(1+c4}+Ds~5)
..3 ..4 L.t..+Dscs

(4.30)

Similarly, the rank-deficiency locus of the Jacobian obtained by imposing a con

straint on shoulder yaw motion is:

(4.31)SR. =

q4 = 0, 7r

lJ2 = ±j

q6=±i
qs = -Q3 - q4 + arccos(L4(.3+~)+Ds )

where L4 is the length of the booms and Ds is the distance along the z-axïs

between frames F2 and F3 and between frames F6 and F7 - Substituting these rank

deficiency locus conditions into the task Jacobian, it is found that they are all algO

rithmic rank-deficiencies.
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Since the intersection of the two raok-deficiency loci in eq. (4.30) and eq. (4.31)

is not the empty set, then the set of task/constraint coordinate pairs used for the

resolution of redundancy in the SSRllIS flight software does not form a complete set.

In an attempt to find a complete set, let us once again use the pitch plane

constraint to augment the task coordinates describing the pose of the end-effector.

In this case, the pitch plane axis of rotation is the common normal to the shoulder

pitch joint and the wrist pitch joint. The task and constraint coordinates can be

interchanged to allow the operator to reconfigure the manipulator through a self

motion. The reduced system motion Jacobian is a square seven-by-seven matrix

whose determinant equation can be solved to obtain the rank-deficiency locus SR..

The conditions for which the reduced system motion Jacobian is rank-deficient are as

follows:

q.. = 0, 1r

• q2=±~
SR. = q6 =±j (4.32)

q4 = arctan2(-D6 (C3 + es)(2L4 + D6 (S3 + 85»,

D6Cs(-C3 + cs) + D6s3 (83 + 8s) + 2L4(L4 + Z&(S3 + 85»)

The rank-deficiency locus branches Q2 = ±i and q6 = ±~ are algorithmic rank

deficiencies similar to those that were found in Section 2. They are self motions

that do not induce any rotation of the pitch plane. Notice however, that because of

the offsets between the joints in the shoulder and wrist clusters these self-motions

generally do cause motion at the eibow. The branch q4 = 0, 1r represents the eibow

fully extended and fully foided conditions. Note that for q4 = 1r, the pitch plane

constraint has an additional problem due to the fact that the common normal to the

shoulder pitch and wrist pitch joints is undefined: the two joints are co-axial and

some of the terms in the constraint Jacobian tend towards infinity.
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Substituting the rank-deficiency conditions found in eq. (4.32) into the task Ja

cobian and verifying its rank, we find that for ail of the rank-deficiency loci in 8R"

JT (q) remajns of full rank: these are algorithmic rank-deficiencies and, therefore, not

acceptable.

Let us then attempt building a reduced system motion spaœ Xx using the pose

of the end-etfector, the position of the elbow and constraints on the projection onto

the pitch plane of the angular velocities of frames F2 and F6 as was done in Section 2.

Applying the recursive sub-deterrninant algorithm to the reduced system motion Ja

cobian thus obtained yields the following rank-deficiency locus:

SR. = { q4 = 0, 11'; q3 = ±i; Qs = ±~ (4.33)

•

•

These configurations correspond to the cases when the three pitch joints of the

SSRMS are either at full extension or folded up. Substituting these values back into

the task Jacobian JT, we find that at each of these configurations, the task Jacobian

is a1ready rank..deficient. Therefore, this reduced system motion space is complete in

the sense of Definition 3.2 of Chapter 3. It contains exactly the same coordinates as

that of the simplified SSRMS described in Section 2.

The same sets of task/constraint coordinate pairs as those that were proposed

for the simplified SSRMS could therefore he used for the real SSRMS. The same

limitations would apply for the selection of coordinate pairs: constraints on iJ and i'

being only used when the augmented Jacobian built using elbow position and end

effector pose is rank-deficient or ill-conditioned.

4. Simplified SPDM

To increase complexity again, let us now consider the case of the Special Purpose

Dextrous Manipulator. The SPDM has a tree topology: it is a dual arm manipulator

with & total of 15 joints. It is composed of two identical seven-degree-of-freedom

manipulators and & body joint. Figure 4.8 shows the SPDM in its zero configuration.
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FIGURE 4.8. Zero Configuration of SPDM

The arms have the same topology as the SSR.\fS in terms of the joint placement

but a very different geometry. Most of the symmetry properties that simplify the

kinematic equations of SSRMS are not round in SPDlvI. Figures 4.9 and 4.10 show

the reference frames used to express the kinematics of the SPDM body and artnS.

The two arms being identical, the same frame placement is used for both.

During SPDM operations, the operator will be limited to controlling only one

arm at any time, the other typically being used to brace the system. Similarly,

during body joint motion, both arms will be locked in place and their brakes will be

applied. Redundancy resolution for SPDM is done in a similar manner as SSRMS

using constraints on the motion of the shoulder roll or shoulder yaw joint.

The operator will use the same operator-interface to control the SPDM and the

SSR.M:S. He will therefore be limited to controlling at mast six degrees of freedom

simultaneously through a pair of hand-eontrollers.

The joint coordinates ofSPDM are arranged as follows: q = [CJsPDM' CJsPDM2 q6]T

where CJsPDMi are the seven joint coordinates of each SPDM arm and q" describes the
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FleURE 4.9. Frame Definition for SPDM Body

FleURE 4 .. 10.. Frame Definition for SPDM Arms

motion of the SPDM body joint. Given sets of task coordinates ESPDM, sssociated

to the pose of each end-efJector, the task Jacobian matrix then looks as follows:
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JT = [ JT1 0 JT61] (4.34)
o JT2 JT62

It is a 12 x 15 block matrix where JTl and JT2 are the task Jacobian of each arme

JT61 and JT62 are one-column matrices mapping body rotation to the motion of each

end-effector.

A reduced system motion space can be generated by adding a constraint on body

rotation and adding at least one constraint for each arm. In this case, the reduced

system motion Jacobian is a singly bordered block matrix:

JSPDMI and JSPDM2 are the augmented Jacobians of each arm and J 61 and J62

map the motion of the body joint to the task and constraint coordinates of each arm.

If exactly one constraint has been added for each arm, then J R is singly bordered

block-diagonal and its detenninant is the product of the determinants of each of

the blocks on its diagonal. Similarly, if more than one constraint bas been added

for either anD, then the matrix will only lose rank when the columns of JSPDMI or

JSPDM2 become linearly dependent.

In either case, the rank-deficiency locus of J R will be the union of the rank

deficiency loci of JSPDMI and JSPDM2. This means that the rank-deficiency locus of

the entire system can be found by studying the rank-deficiency locus of each arm indi

vidually. Furthermore, since bath arms are identical, it is only necessary to determine

the rank-deficiency locus of a single arm to define that of the entire SPDM.

The recursive sub-determînant algorithm was applied to the augmented Jacobian

of a single SPDl\f arm in an attempt to determine its rank-deficiency locus. Unfor

tunately, the complexity of the kinematic equations of even a single SPDM arm is

•

•

JSPDMI 0 J61

JR = 0 JSPDM2 J62

o 0 1

(4.35)
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beyond the capabilities of the symbolic equation solving software that was used to

implement the rank-deficiency locus computation algorithms. This is a recognised

limitation of the approach since it must deal with equations in symbolic forme

It might still be possible to find the rank-deficiency locus of this configuration but

this would require intensive human intervention. Sïnce this would not add anything

to the demonstration t it W8S decided instead to make a few simplifications to the

kinematics of the SPDM mode!.

The first simplification that bas been implemented is the cancelation of the ofrsets

in the y-direction between frames F2 and F3 and between frames F6 and F7 • A second

simplification has been to set the z-position of frame F6 to the same height as frame

FI- In reality there is a 7mm height difference between FI and F6 - Results have

been generated with and without this approximation but, for clarity, only the results

obtained using the approximation are presented. The results of the rank-deficiency

locus analysis for this simplified SPDM configuration are provided in Appendix D.

Performing a similar analysis as was performed for SSRMS, the following rank

deficiency locus is obtained for the Jacobian using the constraint on shoulder roll:

q4 = 0, 'Ir

SR. = q6 = ±j
n... = -n - arctan( L.t(l+c4)+D,Q)
"f.J "f4 ~.4-D2.5

(4.36)

Similarly, the rank-deficiency locus of the Jacobian obtained by imposing a con

straint on shoulder yaw motion is:

•
SR. =

q4 = 0, 'Ir

Ch = ±i
q6 = ±i
qs = -f/3 - q4 + arcsin( L.c("~"34) )

(4.37)
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where L4 is the length of the two main links and ~ is the offset along the x

axis between frames F2 and F3 and between frames Fs and F6 • Substituting these

rank-deficiency locus conditions into the task Jacobian, it is found that they are aIl

algorithmic rank-deficiencies.

Similarly to SSRMS, the intersection of the two rank-deficiency loci in eq. (4.36)

and eq. (4.37) is not the empty set. Therefore, the set of task/constraint coordinate

pairs used for the resolution of redundancy in the SPDM flight software does not form

a complete set.

In order to generate sncb a set, a constraint on the pitch plane angular velocity à

can be used to augment the task Jacobian of a single artn. The following constraint

was appended to the task Jacohian of the arm.

where IIrppll = I2L4 .jl - COS(Q4) is used to normalise the common normal to

the shoulder pitch and wrist pitch joints. The resulting augmented Jacobian matrix

was found to he rank-deficient at the following configurations:

Srt=

q4 = 0, 'Ir

lJ2 = ±i
Q6=±j
q4 = arctan2(2~ss(2L4 + ~cs), -(4L4(L4+ ~cs) + L~(~ - s~»)

(4.39)

•

These rank-deficiency loci are similar to the ones that have heen found for SSRMS.

In fact, the first three are identica1. This is due to the fset that the SPDM arms have

exactly the same topology as the SSRMS.
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Substituting these conditions into JT, it is found that ail of these rank-deficiency

conditions are actually algorithmic singularities of the pitch plane augmented Jaecr

bian: the task Jacobian bas full raok at each of these configurations.

An effort W8S then made to find an aIternate set of coordinates to constitute

a complete reduced motion space. Sînce this manipulator is much more compact

than SSRMS, constraints on e1bow position would likely not he as meaningful to an

operator as the pitch plane constraint.

It was therefore decided to attempt retaining the pitch plane constraint as much

as possible and to augment it with adequate sets of constraints to ensure that there

would always exist a task/constraint coordinate pair in Xll that does not induce

a1gorithmic rank-deficiencies where JT is not already rank-deficient.

To cancel the a1gorithmic rank-deficiencies at Q2 = ±i and q6 = ±j, constraints

on the motion of the shoulder roll and wrist roll have been added to XR giving the

following constraint Jacobian:

• Ct L&C2(QC4-.3.4+c3) L4C2(C3.4+.3c:.e+.3) 0 0 0 0 0IIrppll IIrppll

q1 - 1 0 0 0 0 0 0 q (4.40)

47 0 0 0 0 0 0 1

Applying the recursive sub-determinant aIgorithm to the resulting augmented

Jacobian, it W8S found that its rank-deficiency locus is:

SR = { q4 = 0, 1r (4.41)

•

Note that the fourth branch of the rank-deficiency locus of the pitch plane aug

mented Jacobian is also cancelled by the addition of the constraints on the shoulder

and wrist roll. The rank-deficiency at q4 = 1r can aIso be nùed out because it is

outside of the range of motion of the elbow joint. This leaves only one a1gorithmic

rank-deficiency at q4 = O. To address this, a set of constraint coordinates using the
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position x.a of the origin of frame F4 on the elbow was tested using the recursive sub

determinant algorithm at this particular rank-deficient configuration. It W8S then

found that the only cases where this set of coordinates is raok-deficient when q4 = 0

are as follows:

(4.42)

•

Substituting these into the task Jacobian, it was found that JT is also rank

deficient at these configurations. This set of constraint coordinates is then acceptable

since it only induces rank-deficiencies where JT is already rank-deficient.

Therefore, the reduced system motion space X1l = {(, Q, ql, th, X4} can be used

to generate a complete set of taskjconstraint coordinate pairs as per definition 3.2

for a single SPDM arme

An acceptable set oftaskjconstraint coordinates for the entire SPDM is therefore

as follows. To control either SPDM aml, the operator could use the following set of

coordinates,

XT = [ (SPDMI ]; XC =
XCt

(4.43)

•

where (SPDMI defines the pose of the end-effector and XCI is an additional con

straint coordinate for the SPDM arm being controlled.

In most cases, XCI would be selected as (a)sPDMl' the pitch plane angle of the

arme However, in the vicinity ofalgorithmic singularities of the pitch plane augmented

Jacobian other constraints should be used (XCI = (ql)SPDMl when ('l2)SPDMl ~ ±i,
XCI = (q-,)SPDMI when (Q6)SPDMl ~ ±j, XCI = (X4)SPDMl or (Y4)SPDMl or (Z4)SPDMl

when (q4)SPDMl ~ 0).
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The constraints on q" and qsPDM2 indicate that aIl joints other than those of the

arm being controlled are to be locked, only one arm being controlled at a time.

To perform a self-motion of the arIn, the operator would simply set ~SPDMI as

a constraint coordinate and define a task coordinate using the same set of rules as

when controlling the arm as per eq. (4.43).

While controlling the body joint, the operator could use the following set of

coordinates:

XT = [ q" ]; XC = [ (Xch ]
(Xch

(4.44)

•

•

where each set of constraints could either be (Xc)i = CJsPDM. if the arms are to be

loc1œd in place during body rotation or (XC). = [(SPDM. XC.]T with a constraint

XCi to be picked using the same rules defined for controlling one ann as per eq. (4.43)

to keep the end-effectors in a fixed location.

5. Simplified SPDM mounted on the tip of SSRMS

As a final sample application, let us consider the case when the simplified SPDM

described in Section 4 is being used at the tip of the SSRMS. In this configuration,

the system has 22 joints. Although operational constraints preclude the operation of

more than one arm at any time, this is still an interesting application to demonstrate

the power of our approach.

The coordinate frames used to model this system are as shown on Figures 4.7,4.9

and 4.10. Sïnce the SSRMS grapples the SPDM by its Power Data Grapple Fixture,

Frame FpDGF on the body of SPDM is coïncident with frame Fs at the tip of SSRMS.

The joint coordinates are defined as follows:
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•
q=

CJsSRMS

(4.45)

H the pose of bath SPDM end-effectors, ESPDM
i

, is used as a set of task coordi

nates, the task Jacobian then looks as Collows:

(4.46)

where J Ti are once again the task Jacobians for each SPDM arm. J X7j are

coupling terms between the motion of the SSRMS joints and the motion of each

SPDM end-effector. Notice that SPDM body rotation now has no effect on the pose

• of the SPDM end-effectors since, in this configuration, the body joint is located after

the point of attachment of the arms on the body.

A reduced system motion space can be generated by using the sets of coordinates

that were already found for SSRMS and for SPDM in Section 3 and 4.

ESPDMI

XCI

ESPDM2

XR= XC2 (4.47)

lib

ESSRMS

XcSSRMS

The reduced system motion Jacobian is then a singly bordered block matrix:
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•
JSPDMI 0 0 JXl

0 J S PDM2 0 JX2
JR= (4.48)

0 0 1 0

0 0 0 JSSRMS

where JSPDM, is the augmented Jacobian of each SPDM arm, JSSRMS is the

augmented Jacobian of the SSRMS and JXi are cross-coupling matrices relating the

motion of the SSRMS joints to the task and constraint coordinates of each SPDM

arme

o
become linearly dependent. The rank-deficiency locus of the entire

•

Considering that each of its blocks must have at least as many rows as it bas

columns, then J R is only rank-deficient when the columns of JSPDMl' JSPDM2 or

JXl

JX2

JSSRMS

system CM then he found once again by studying the rank-deficiency locus of its

submatrices.

Realjsjng that the rank-deficiency locus of must be a subset of that

•

JSSRMS

of JSSRMS, the analysis can be further simplified. The rank-deficiency locus of J R is

then a subset of the union of the rank-deficiency loci of JSPDMl' J S PDM2 and JSSRMS.

This impIies that the resu1ts found for SSRMS and SPDM individually in Sec

tions 3 and 4 are guaranteed to yield a complete set of task/constraint coordinates

for the overall system.

A complete set of taÈK/constraint coordinate pairs for this system could then be

as follows:
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To control either SPDM arm, the operator would use the same set of coordinates

as defined in eq. (4.43) using additional constraints on the joints of SSRMS to freeze

it in place. The SPDM body joint being a terminal joint on the kinematic chain, its

control would be effected while simply constrajning the motion of every other joint

of SPDM and SSRMS.

To control the motion of SSRMS, the operator could use the same set of task/

constraint coordinates as were chosen in Section 3 setting additional constraints on

the motion of SPDM. For each SPDM aIm, the operator could elect either to impose

constraints on joint motion, thus locking the arm in place, or to impose constraints

on the pose of the end-effector and some other internaI ann motion as per eq. (4.43).

The latter motion then is a self-motion of the entire kinematic chain from SSRMS

base to SPDM tip.

6. Summary

This chapter applies the theory developed in the previons chapters to sample

cases ranging from simple manipulators to more realistic ones snch as the SSRMS

and the SPDM. The Sïngular Vector Algorithm and the Recursive Sub-Determinant

Algorithm are used to analyse the rank-deficiency loci of the task Jacobians and the

reduced system motion Jacobians of these manipulators.

The application of the methodology to sample cases of varying complexity bas

demonstrated that it is powerful enough to generate complete sets of task/constraint

coordinate pairs for realistic examples sueb as the SSRMS and a simplified SPDM.

At the same time, these sample cases have demonstrated some of the limitations of

the approach: although it is possible to perform in a fully automatic manner the

rank-deficiency locus analyses for the simpler cases, the more complex cases do re

quire human intervention. Furthermore, the symbolic computation of rank-deficiency

loci for sorne kinematic configurations is very difficult and leads to unwieldy and

potentially intractable sets of equations.

90



•

•

•

4.6 SUMMARY

A complete set of task/constraint coordinate pairs as weil as a set of general

guidelines for their usage is provided for each sample application. However, these

sets do Dot meet any optimality criteriOD and should certainly not he considered as

the best sets of coordinates. Better sets could certainly he found using optimisation

criteria to minjmise cardinality, to maximise meaningfu1ness to a human operator or

to optimise sorne kinematic criterion.
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CHAPTER 5

IUlplelllentation of the Rank-Deficiency

Locus Computation AlgorithIllS

1. High-Level Design Issues

The purpose of this chapter is to document the implementation of the rank

deficiency locus computation algorithms and their usage to analyse rectangular Jac~

bian matrices.

As mentioned in Chapter 3, a1l rank-deficiency locus computations are impie

mented in symbolic fonn. The advantage of symbolic computation is that it provides

a global solution over all of the configuration space of the manipulator. Local meth

ods, although less computer-intensive per step, have the disadvantage of requiring

a number of test points that increases exponentially with the number of degrees of

freedom of the manipulator. Hence, a systematic verification of the condition number

of the Jacobian matrix quick1y becomes unmanageable as the number of joints of

the manipulator ïncreases. Furthermore, it is difficult to guarantee, regardless of the

fineness of the grid, that rank-deficiency loci would not he missed by such an algo

rithm. On the other hand, symbolic methods are limited in terms of the complexity

of the cases that can he analysed. However, as shown in Chapter 4, for most practical

purposes they are powerful enough to provide a solution.
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The algorithms are implemented using Maple V, release 5: a symbolic equa

tion manipulation software. For each rank-deficiency locus computation algorithm, a

Maple script and a set of procedures were generated. The source code of ail Maple

procedures and scripts is provided in Appendix E.

2. Kinematic Equation Generation

The generation of the kinematic models used for analysis is done using SYMO

FROS version 4. SYMOFROS is a multi-body dynamics simulation software: it

generates in Maple, a symbolic model of the system to be simuJated. The symbolic

model is then used to generate a numeric model for use in the Matlab/Simu1ink

environment.

Only the symbolic part of SYMOFROS is used to generate the kinematic models

of the manipulators to be analyse<!. Its recursivity option is disabled to ensure that

the Jacobian matrices are generated in closed forro for later analysis by the rank

deficiency locus computation algorithms. SYMOFROS bas the ability to generate

Jacobians describing the motion of any reference frame in the model with respect

to any other reference frame and to express those Jacobians in any of the frames

available in the mode!.

2.1. SimpleFormJacobians.p. A Maple procedure is used to interrogate

the SYMOFROS model to find the reference frame in which to express the Jacobians

50 that their computing cast is the lowest. AB mentioned in Chapter 3, this represents

only a rotation of the Jacobian matrix. It does not change its rank-deficiency locus

but makes algebraic simplifications much easier.

The "SimpleFormJacobians.p" procedure systematically computes the task and

constraint Jacobians in each reference frame of the model and evaluates the computing

cost of the augmented Jacobian. The empirical cast function used to select the

optimal frame is the SUIn of the number of additions, multiplications and function ca1ls

required to evaluate the Jacobian. As it proceeds, it remembers for which reference

frame this computing cast W8S lowest and in the end, it returns a data structure
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containing the identifier of the reference frame in which the Jacobians are expressed,

the task Jacobian, the constraint Jacobian and the associated augmented Jacobian.

3. Singular Vector Algorithm

The analysis of the completeness of a set of task/constraint coordinate pairs

using the Singular Vector AIgorithm is implemented in a Maple script. A print

out of this script, "ComputeRDLocus.mws" is provided in Appendix E. It uses the

"SimpleFonnJacobians.p" procedure to generate the task and constraint Jacobians

from the SYMOFROS mode!.

It then applies the Singular Vector Aigorithm to the task Jacobian and the aug

mented Jacobian and determines whether the rank-deficiency locus of the augmented

Jacobian is a subset of that of the task Jacobian.

3.1. RDLocusSVD.p. The Singular Vector Algorithm is implemented using

a recursive procedure called "RDLocusSVD.p". This procedure is invoked with two

arguments: the first is the Jacobian matrix J(q) whose rank-deficiency locus is to

be determined and the second is the set of independent variables used to express the

rank-deficiency locus: these are typically the joint coordinates of the manipulator q.

This procedure can process Jacobian matrices of any dimension. H J (q) is square,

then its rank-deficiency locus is computed using the deterrnioant method. Otherwise,

J (q) is brought to a standard form with fewer rows than columns, transposing it if

necessary, and the Sïngular Vector Algorithm is applied to it.

The selection of the square sub-Jacobian J.,(q) used as a starting point for the

SînguIar Vector Algorithm is done using the "PickSubJacobians.p" procedure. This

procedure extracts out of J (q), the square sub-Jacobian whose determinant equation

is the least expensive to compute. The remaining columns of J (q) are called the

redondant columns and stored as Jr ( q) for future use.

The rank-deficiency locus of J.tq(q) is then found by solving its determinant equa

tion for q. This provides a set ofrank-deficiency conditions q* that will typically cause

rank losses of one in Jaq(q).
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Because J",(q) will not be used again in the execution of the Sîngular Vector

Algorithm, it is important to find the worst-case conditions onder which its rank loss

is maximal. Its rank-deficiency locus is therefore refined using the "RefineLocus.p"

procedure to find additional sets of conditions that further reduce the rank of J",(q.).

The results of the "RefineLocus.p" procedure provide the set of solution branches

to be used as a starting point for the analysis using the redundant columns of the

Jacobian.

The rank-deficiency conditions q* of each branch are substituted back into J.tq(q)

and a set of left singular vectors {U;} 8SSOciated with the zero singular values of

Jsq(q.) are found. These singular vectors are expressed as functions of the joint

variables and robot parameters. Note that this step is equivalent to finding the null

space of J~(q.).

Two different methods can be used to compute {U;}. The linalg{kernelj function

in Maple is very efficient but sometimes fails to find some solutions because it does

not perform trigonometric simplifications. To address these cases, a procedure "Com

puteSingularVector.p" bas been developed. It is much less efficient than the kernel

function and it is used for the cases when linalgfkernelj fails to find a complete set of

singular vectors.

The singular vectors are then arranged in a matrix U = [ui ... uk ]. Jt(q),

the matrix product of tJT with J r ( q*) is eva1uated and the procedure then ca1ls itself

recursively to determine the conditions for which Jt(q) is also rank-deficient. The

rank-deficiency locus ofJ(q) is the set of conditions that make both J",(q) and Jt{q.)

rank-deficient.

3.2. PickSubJacobian.p. The "PickSubJacobians.p" procedure extracts

from a rectangular Jacobian J(q), the square su~Jacobian J",(q) whose determi

nant equation bas the lowest computing cast and yet is not trivially equal to zero.

The on1y argument required to call this procedure is a rectangular matrix with fewer

rows than columns.
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The optimal square sulrJacobian is found by systematica1ly 60ing through every

possible combination of columns to generate a square sulrmatrix and evaluating the

computing cost of its deterrninant equation after algebraic and trigonometric simpli

ficatioDS. The cœt function used to select the square sulrmatrix is the sum of the

number of additions, multiplications and function calls in the determinant equation.

The procedure returns a data structure whose first element is the square sulr

matrix J.tq(q) and whose second element is a matrix composed of the remaining

columns Jr(q).

3.3. RefineLocus.p. The "RefineLocus.p" procedure is used to refine a

known set of rank-deficiency loci {qi, q2, ... , qi} of a matrix J(q) with st

least as many columns as rows. It find the conditions that further reduce the rank of

J(q;). The arguments used to invoke the procedure are the Jacobian matrix itself,

the set of known rank-deficiency conditions and the set of variables used to refine the

rank-deficiency locus (again, typically the joint coordinates of the manipulator).

The procedure substitutes the rank-deficiency conditions q; passed in argument

into J (q) and triangularises it using Gaussian eJimination. Since the matrix is rank

deficient, the result of the Gaussian elimination is a triangular matrix J t1(qi) whose

1ast row is entirely composed. of zeros.

An upper-triangular submatrix, J~(q;), is then extracted out of Jt1 {qi) by

removing its last row. The conditions that further reduce the rank of J (Qi) are

those that make this submatrix rank-deficient. They are found by applying "RD~

cusSVD.p" to JL\.tu6(qi). The recursion stops when J t1 (qi) has only one row left or

when Jâ.sub(qi) cannot be made rank-deficient.

The "RefineLocus.p" procedure returns all possible sets of conditions for which

the original matrix J (q) has any positive number of zero singular values.

3.4. ComputeSinguiarVector.p. As mentioned earlier, the linalgfkernelJ

command of Maple can sometimes fail to find the null space of a matrix because

it does not perform trigonometric simplifications. The "ComputeSingularVector.p"
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procedure W8S deve10ped as a complement to the linalg{kernelj command to overcome

these limitations. It is invoked with only one argument, a matrix J (q) with fewer

rows than columns, and it returns a matrix U whose rows are the left singuJar vector

of J (q) associated with its zero singular values. These a1so fonn a basis for the null

space of JT(q).

The procedure starts by assuming an arbitrary singuIar vector u = [U\ ... Um r.
It ta1œs its dot product with each column of J (q) and salves for the values of !Ji that

make this dot product zero in an iterative fashion. After processing the last column of

J (q), the number of free variables Ut left in u indicates the dimension of the null-space

of JT (q) and hence the number of rows in U.

The first singular vector is found by setting all of the free variables Ut = 1 in

u. The remainder of the set of singular vectors is found by substituting one less

Cree variable at each pass and making use of the fact that all singular vectors are

orthogonal to each other.

4. Recursive Sub-Determinants Algorithm

The analysis of the completeness of a set of task/constraint coordinate pairs using

the Recursive SulrDeterrnin8nts Algorithm is implemented using the same Maple

script that is used for the Singular Vector Algorithm but calling "RecursiveSubD.p"

instead of "RDLocusSVD.p" .

4.1. RecursiveSubD.p. The arguments used when invoking the "Recur-

siveSubD.p" procedure are the Jacobian matrix J(q) whose rank-deficiency locus is

to he computed, a parent set of rank-deficiency loci { qi, q2, ... , qi} and the

set of variables used to express the rank-deficiency conditions. It returns the rank

deficiency locus of J(q). For the initial ca1l to the procedure, the parent locus is the

empty set.

The procedure analyses each element of the parent set of rank-deficiency loci indi

vidually. It stans by substituting individual rank-deficiency conditions q; into J{q).

• Next, it extracts out of J(qi), the square sulrJacobian Jaq(qi) whose determinant
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equation is the least expensive to compute using the "PickSubJacobians.p" procedure

that W8S developed for the Sîngular Vector Algorithm. It solves the determin 8n t equa

tion of J Ml(q;) giving a new set of rank deficiency conditions { qï, q;*, ... , qz*}.

The algorithm then calls itseH recursive1y using { <Ji n qi, q; n «12*, ... , q; n 'Ii- }
as the new parent set of rank-deficiency conditions.

To accelerate the process, the "RecursiveSubD.p" procedure uses the remember

option from Maple. Each time the procedure is called, the remember option stores

the values of the arguments used to invoke the procedure and the results it returns

in a table for future reference. The next time this procedure is called with the same

arguments, the results are simply read from the remember table instead of being

re-computed.

This subtlety is what prompts the usage of a parent locus argument when invok

ing the procedure. fi the procedure were implemented in a purel)· recursive manner,

the power of the remember option could not be fully exploited. The procedure would

not be able to recognise a priori that the Jacobian matrix in which some rank

deficiency conditions have already been substituted leads to a known case once the

new set of rank-deficiency conditions are substituted-in. Thus, each time the pro

cedure is invoked, it is called with the original Jacobian matrix and the full set of

rank-deficiency conditions that 100 to the terminal branch of the recursion tree that

is being investigated.

AIso for the sake ofefficiency, a rank verification is performed on the matrix before

calling the "PickSubJacobians.p" procedure. This is done to avoid unnecessarily

cal]jng this procedure, which is computationally very expensive to execute. For a

m x n matrix with m > n, the cost of "PickSubJacobians.p" is of order 2n2 ,.!(~n)!

without even considering the cost of simplifying the determinant equations whereas

a rank check is of order ~3. [51]
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5. Other Utilities

5.1. RemoveRedundantSolutioDS.p. Because of the recursive nature of

the "RDLocusSVD.p" and "RecursiveSubD.p" procedures, the recursions for any

solution branch of the rank-deficiency locus are not aware of the results from the

other solution branches. Different recursive calls to the procedure can therefore return

identical answers or answers that are subsets of each other. Using sets instead of lists

in Maple to express the rank-deficiency loci of the Jacobian ensures that duplicate

entries will not co-exist but it does not remove loci that are subsets of others.

The "RemoveRedundantSolutions.p" procedure is used to remove these redun

dant rank-deficiency loci that are already covered by other members of the solution

set. It is called with two arguments: the set of solution branches and the set of vari

ables used to express the solutions. It returns a cleaned-up set of solution branches

from which all the branches that were subsets of others have been removed.

To detect branches that are subsets of others, it considers every possible combi

nation of solution branches in pairs and solves them simultaneously. If the result of

this computation is identically equal to one of the solution branches, then this branch

is a subset of the other and it is removed from the set of solutions.

This procedure is used ta post-process the results of the "RDLocusSVD.p" and

"RecursiveSubD.p" procedures in the Maple scripts.

5.2. SolveAllInTwoPi.p. Finally, a utility procedure called "SolveAllIn-

TwoPi.p" bas been developed to allow Maple to find all solutions of trigonometric

equations in the range [-'Ir, 'Ir[. By default, the inverse trigonometric function arccos

retums a.nswers in the range [0,1r[ and arcsin returns a.nswers in the range [-l' j[.

It is possible ta force a.1l inverse transcendental functions ta return the full set of

solutions by setting the environmental variable ..EnvAllSolutions to true. Maple then

returns a. solution from which aIl solutions in the range] - 00, oc[ can be computed.

To find all solutions in the range [-1r, 1r[, it is therefore necessary to replace aIl

occurences of the solve function in the procedures by ca11s to "SolveAllInTwoPi.p" .
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This W8S done and used successfully for all procedures described in the previous

sections.

It should be noted, however, that this procedure should not he used blindly.

Using "SolveAllInTwoPi.p" instead of solve increases the computing time of "RDLo

cusSVD.p" and "RecursiveSubD.p" by an order of 2t , where t is the total number of

solution branches at all nodes of the recursion tree. For the more complex cases, it

is much more efficient to use the regular solve function and to find by inspection the

complementary solutions to those provided by the rank-deficiency locus computation

procedures.

6. Summary

This chapter describes the details of the Maple procedures used to implement

the SinguIar Vector Algorithm and the Recursive Sub-Determinant Algorithm. These

procedures have been used to perform the rank-deficiency analyses describes in Chap

ter 4. It specifical1y descrïbes the special measures that were implemented to increase

the computational efficiency of the Maple code.

Running on a Pentium 11300 MHz Computer, the "RecursiveSubD.p" procedure

took 937 seconds to compute the rank..deficiency locus of the reduced system motion

Jacobian of SSRMS and only 4 seconds for that of the 4R Spherical Shoulder Ma..

nipulator. In comparison, the "RDLocusSVD.p" procedure took 6.5 seconds for the

4R Spherical Shoulder Manipulator but never converged on the solution for the full

SSRMS. Given that this computation is performed only once, off..line, for any mani~

ulator, these performance figures are reasonable. Note from these results, that the

"RDLocusSVD.p" procedure took more time to execute than the "RecursiveSubD.p"

procedure. This is due to the fact that many special measures were implemented to

increase the computational efliciency of the latter, whereas none were implemented

for the Singular Vector Algorithm.

The main limitation that has been encountered is the fallure of either procedure

to determine the rank-deficiency locus for SPDM. This is due to Maple's incapacity
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to simp1ify determin&nt equations in the "PickSubJacobians.p" procedure. In its

search for the square sub-Jacobian with the simplest deterrninant equation, Maple

bas encountered cases where this equation is 50 complex that it gives up on the

simplification and exits the procedure. It should he noted, however, that although

this was the only identified cause of failure, nothing guarantees that other limitations

of Maple would not have been met had this problem been circumvented.

In the most complex cases, special measures have been taken to ease the com

putation of rank-deficiency loci. For SPDM, a partial analysis was done using the

deterrninant method on a square augmented Jacobian. The rank-deficiency conditions

thus found were substituted back into the reduced system motion Jacobian matrix

simplifying many of its terms. The Recursive Sub-Determinant Algorithm was then

used to analyse this simpler reduced system motion Jacobian over the rank-deficiency

locus of the previously analysed augmented Jacobian.

It should also be noted that the selection of the constraint equations used to build

the constraint Jacobian have a determining effect on the ability of the procedures to

successfully find rank-deficiency locus conditions. Adding constraints closer to the

base of the kinematic chain results in much simpler sub-deterrninant equations. This

was used advantageously for the more complex cases.
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Conclusions

The objective of this thesis was to develop a generaI framework for the manual tele

operation of kinematically redundant seriaI manipulators under conditions typical of

space operations. The avoidance of collisions between the manipulator and its envi

ronment is of the utmost importance in this contexte However, the current state of

space-rated technologies preciudes autonomous redundancy resolution for kinemati

cally redundant robotic systems in manned space flight. It is the responsibility of the

human operator to generate a collision-free path for the manipulator throughout its

task. In many cases, the operator will directIy control the motion of the manipulator

using hand controllers.

Up to now, the redundancy resolution and control schemes used for kinematically

redundant space-based manipulators have been developed on a case-by-ease basis.

AIl of them employ, to some extent, kinematic constraints to augment the Jacobian

matrix. This is reasonable in the context of space operations but little or no thought

bas been given to the development of a generalised approach.

This generalised approach should provide the operator with an intuitive way of

resolving and controlling the redundancy of any seriai manipulator with more degrees

of freedom than he can control at any time. Because the burden of generating a

collision-free path is imposed on the operator, the algorithm should result in pre

dictable motion of the manipulator.
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It is proposed to break down the task of controlling the motion of a redundant

manipulator into a sequence of IDanageable sub-tasks of lower dimension by imposing

constraints on the motion of the end-efrector or of intermediate bodies of the manip

ulator. This implies that the manipulator then becomes a non-redundant kinematic

chain. The operator only controls a reduced number of degrees of freedom at 30y

time. However, by appropriately changing the imposed constraints, he can still use

the full capability of the manipulator throughout the task.

Also, by not restricting the point of teleoperation to the end effector but eHectively

allowing direct control of intermediate bodies of the robot, it is possible to teleoperate

a redundant robot of arbitrary kinematic architecture over its entire configuration

space in a pred.ictable and natural fashion.

This approach has a1ready been proposed by some authors [58J and variations of

it have been studied in the context of space operations [52J. However, none of the

previous work on this subject has proven that the approach would always work nor

provided any guidelines for the selection of the constraint equations to he imposed

on the intermediate bodies.

1. Review of the Contributions

ln Chapter 2, the concept ofsystem motion space and system motion manifold are

introduced. The system motion space Xs is the space defined by the variables defining

the pose of every body in the kinematic chain. It is spanned by xs, the system motion

coordinates. The joint space Q is mapped through the system forward kinematic

function As : Q -+ Xs to a submanifold of the system motion space Ms C Xs. This

submanifold is called the system motion manifold and is of the same dimension as

the joint space.

Based on the concepts of system motion space and system motion manifold, a

proof of generality of the virtual arms approach is given. It demonstrates that if the

operator can control or constrain the velocities 8SSOciated with a subset of Xs J then

• there always exist sets of task and constraint coordinates sncb that any kinematically
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redundant seriai manipulator cau be moved from any initiai configuration qo to any

final configuration «b in a finite sequence of operations.

This is done by proving that As : Q --+ AS is an embedding and hence that

AM : Q --+ Ms c Xs is a local diffeomorphism. This guarantees that the differential

application of As, which is related to the system motion Jacobian, is always of rank

equal to the dimension of Q.

Furthermore, As : Q --+ Xs being an embedding, the system motion manifold

retains the topological properties of the joint space. Given that Q is compact the

proof on the finiteness of the sequence of operations required to move from any initial

configuration to any final configuration is made by demonstrating that an open cover

can be generated if projections of Ms onto subsets of Xs are used as coordinate

charts.

In Chapter 3, a methodology is given to extract out of Xs a reduced set of

task/constraint coordinate pairs P. This is necessary to avoid overwhelming the

operator with too large a number of coordinate choices. A criterion is proposed

to evaIuate the completeness of the set of task/constraint coordinate pairs: P is

considered complete if, for all of the configurations of the manipulator where the task

Jacobian is not rank-deficient, there a1ways exist a t8!d</constraint coordinate pair in

P sncb that the rank of its augmented Jacobian is equal to the number of degrees of

freedom of the manipulator.

The implementation of this criterion is based on the analysis of the rank-deficiency

loci of the augmented Jacobians 8SSOciated with each t8!d</constraint coordinate pair

in P. The set of task/constraint coordinates P is deemed complete if ni SAi ç Sr.

SAi is the rank-deficiency locus of the i eh coordinate pair in P and Sr is the rank

deficiency locus of the task Jacobian for a set of task coordinates defined by the

operator. This set of task coordinates typically describes the motion of the end

effector.

To provide a starting point for the construction of P, the reduced system motion

space XR C Xs is defined. The rank-deficiency locus of the reduced system motion
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Jacobian is the intersection of the rank-deficiency loci of aIl augmented Jacobians

that can be built from JR, Srt = (\ SAi. Therefore, if SR. ç Sr, then there will

always exist a task/constraint coordinate pair extracted from Xa that will not induce

a rank deficiency at manipulator configurations where the task Jacobian JT is not

already rank-deficient.

To analyse the rank-deficiency loci of rectangular matrices, two novel algorithms

are introduced. The singular vector algorithm for detennining rank-deficiency loci

of rectangular Jacobian matrices is a generalisation of the a1gorithm of Nokleby and

Podhorodeski [46] but it uses concepts from Singular Value Decomposition iDstead

of screw algebra. The main advantage of the singular vector algorithm is that it can

handle rectangular Jaoobians of any row and column dimension.

From the definition of rank-deficiency, a rectangular matrix with more columns

than rows becomes rank-deficient when its rows are linearly dependent1• The exis

tence of a rank deficiency then implies that there exists a set of conditions for which

a set of singular vectors can be found sncb that the dot product of these singuIar vec

tors with all columns of the Jacobian matrix is zero. The Singular Vector Algorithm

determines the conditions for which such a singular vector exists.

This algorithm is computationally very efficient since it is applied to matrices

of rapidly decreasing dimension. It uses onlyonce a square submatrix J.,,(q) whose

dimension is equal to the smallest dimension of the rectangular Jacobian matrix J (q).

The dimension of the matrices at the next recursion decreases to the dimension of

the null space of J*leq.). However, in some cases, the algebraic complexity of the

singular vectors tJa*(q) of J*l(q*) is sncb that even the simplest sub-determinant at

the next leve1 of recursion is unwieldy or intractable.

To address the limitations of the Singular Vector Algorithm, an alternate algcr

rithm was developed to compute the rank-deficiency locus of rectangular Jacobian

matrices. The Recursive Sub-Deterrninant Algorithm is a recursive implementation

IThe same reasoning can he applied to rectangular matrices with more rows than columns except
that then the columns become linearly dependent.
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of the sub-deterrninant method used to find rank-deficiency loci of rectangular ma

trices. It finds the square submatrix J.,,(q) of the rectangular matrix J (q) whose

deterrninant equation is the simplest to solve, yet not zero. The singuIarity condi

tions q* of J.,,(q) are then substituted back into J(q; and the process is repeated

recursively.

The main disadvantage of this method is that it is combinatorial in nature. At

every recursion step, the algebraic complexity of aIl sub-<ieterminants of J(q.) is

evaluated to find the square su~Jacobian J~(q.) whose deterrninant equation is the

easiest to solve. Fortunately, the time required to compute the rank-deficiency locus

for a given set ofreduced system motion coordinates is not an issue since the reduction

of the system motion space is to he performed only once, off-line, for any manipulator.

The most important advantage of this algorithm is its robustness: it is more likely

to find the rank-deficiency locus of manipulators whose kinematics is sncb that other

methods will fait Although nothing guarantees that the a1gebraic complexity of the

sub-determinants of J (q*) will decrease as more rank-deficiency conditions are sub

stituted into it, this is generally the case for manipulators with mutually orthogonal

sequential joints. The singularity conditions q. for J.,,(q) then often reduce to a joint

value being equal to zero or j. In such a case, the algebraic complexity of the overall

Jacobian reduces drastically at each recursion level thus increasing the odds that the

sub-determinant equations will become simpler.

In Chapter 4, the theory developed in the previous chapters is applied to sample

cases ranging from simple manipulators to more realistic ones sncb as the SSRMS and

the SPDM. The Sïngu1ar Vector Algorithm and the Recursive SulrDeterminant Algo

rithm are used to study the rank-deficiency loci of the task Jacobians and the reduced

system motion Jacobians of these manipulators. A complete set of task/constraint co

ordinate pairs as well as a set of general guidelines for their usage is provided for each

sample application. It has been found that the algorithms used for the redundancy

resolution of the SSRMS and the SPDM in the flight software contain algorithmic

rank-deficiencies.
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Chapter 5 describes the details of the Maple procedures used to implement the

Sïngular Vector Algorithm and the Recursive Sub-Determinant Algorithm.. These

procedures have been used to perform the rank-deficiency analyses described in Chap

ter 4. Special attention is dedicated to the measures that were implemented to in

cresse the computational efficiency of the Maple code. This chapter &Iso includes

a discussion on the cause of the failure to compute the rank-deficiency locus of the

SPDM in Chapter 4 and on some of the special tricks that can be used to ease the

work of the rank-deficiency locus computation procedures.

2. General Comments

In summary, this thesis provides a general framework for the manual teleoperation

of kinematically redundant space-based manipulators by controlling and constraining

the motion of intermediate bodies in the kinematic chain.

• Unlike related previons work [58] [59J [60] [52] [53], this thesis rigourously proves

that this approach will always work for any kinematically redundant seriai manip

ulator regardless of its topology, geometry and of the number of its excess degrees

of freedom. Furthermore, a methodology is provided for the selection of task and

constraint coordinates to ensure the absence of algorithmic rank-deficiencies.

The application of the methodology to sample cases of varying complexity bas

demonstrated its power and limitations: It bas been shown to be powerful enough to

generate complete sets of task/constraint coordinate pairs for realistic examples such

as the SSRMS and a simplified SPDM.

On the other hand, the sample cases aIso demonstrated that it is not a bullet-proof

algorithm that can be implemented blindly. Whereas it is possible to fully automate

the rank-deficiency locus anal}sis for the simpler examples, the more complex cases

do require human intervention: the symbolic computation of rank-deficiency loci for

some kinematic configurations is very difiicuIt and leads to unwieIdy and potentially

• intractable sets of equations.
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Furthermore, although it bas been demonstrated that there will always exist sets

of tMk/constraint coordinate pairs that do not induce algorithmic rank-deficiencies,

finding sncb an appropriate set can he quite a challenge. The sets that have been

found for the sample eues in Cbapter 4 are complete as per Definition 3.2 ofChapter 3

but the author does not daim that they are optimal in any manner.

Finally, the sample applications have confirmed that algorithmic rank-deficiencies,

induced by the augmentation of the task Jacobian with a set of kinematic constraints,

are a real problem that needs to be addressed. Any given pair of task/constraint co

ordinates will likely be snbject to algorithmic rank-deficiencies and these sometimes

appear in very unforseen configurations. It is therefore imperative that the algo

rithmic rank-deficiencies associated with each pair of task/constraint coordinates be

identified, tagged and that an aiternate coordinate pair he provided in their vicin

ity. The operator should then be provided with a clear set of instructions as to the

restrictions on the selection of each coordinate pair.

3. FUture Work

Although it is believed that this thesis lays a solid foundation for the deter

mination of task and constraint coordinates for the teleoperation of kinematically

redundant space manipulators, some work remains to be done in this area.

Since the methodology relies on the symbolic determination of the rank-deficiency

loci of rectangular Jacobian matrices, there is a limit to the complexity of the cases

that can he analysed using the algorithms described in this thesis. To analyse more

complex cases, alternate rank-deficiency locus analysis algorithms will likely need

to be developed. Hybrid numeric/symbolic algorithms might provide the key to

analysing these more complex manipulators.

Also, as acknowledged earlier, the task/constraint coordinate pairs found in Chap

ter 4 are complete but do not meet any optimality criteriOD. Sucb criteria could be

developed using metrics for kinematic redundancy sncb as proposed in [61] while min

imising the cardinality of the set of task/constraint coordinate pairs or maximising
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meaningfulness to a human operator. The usage of such an optimisation criterion

would then likely &Iso require the automation of the search of the reduced system

motion coordinates. This task bas tumed out to he quite a challenge and wollid

certainly he a prime candidate for automation as this would allow a more systematic

search throughout the system motion space.

FUrthermore, for some of th~ sample cases, the number of task/constraint c~

ordinate pairs necessary to form a complete set was still quite large: ten to twenty

pairs being necessary to ensure coverage of the entire configuration space. In snch

cases, it will likely he necessary to implement an operator-assistance tool to guide

the operator in the selection of an appropriate coordinate pair depending on the cur

rent posture of the manipulator. This could be implemented using a set of heuristic

rllies or by checking the condition number of the Jacobian for each coordinate pair,

recommending the one that is best conditioned.

Finally the human factor aspects of the proposed approach should probably be

investigated in more detail to study the meaningfuIness to an operator of constraints

on intermediate bodies and to determine whether there cau he any commonality in

the selection of coordinates for different manipulators. Other human factor issues

could a1so he investigated such as how to provide appropriate eues ta an operator 50

that he understands the optimisation process when controlling an over-determined

system.
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APPENDIX A

EleIllents of MathernaticaI AnaIysis,

Topology and Differentiai Geornetry

This section recalls some of the rudiments of mathematical analysis, topology and dif

ferential geometry. The following definitions, propositions and theorems are necessary

to fully understand the proof of generaIity presented in Chapter 2.

DEFINITION A.I. Open Set: A set A E Rn is an open set iffor every point p E A

there exists an open bail B.(P) C A. In other words, a set A is open if every point in

A is completely sufTOUnded hg points also belonging to A.

DEFINITION A.2. Closed Set: A set A E Rn is a closed set if every limit point

ofA 000 belongs to A.

PROPOSITION A.I. A set A E Rn is a closed set if and on/y if its complement

Rn - A is an open set.

DEFINITION A.3. Bounded Set: A set A E Rn is bounded if it is contained in

sorne ball of Rn.

DEFINITION A.4. Compact Set: A set is compact if it has a finite subcover.

PROPOSITION A.2. Compact Set: A set A E Rn is compact if it closed and

bounded.
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PROPosmON A.3. Compact Set: The one-dimensional sphere SI and closed

subsets of it are compact.

DEFINITION A.S. Topology: A topology on a set S is a collection of subsets such

that

• The union of any number of open sets is open.

• The intersection of any finite number of open sets is open.

• The set S and the empty set are open.

DEFINITION A.6. Topological Space: A set S wïth a topology is called a topolog

ical space.

DEFINITION A.7. Basis: A basis for a topology is a collection ofopen sets, called

basic open sets, with the following properties:

• S is the union of basic open sets.

• Any non-empty intersection of two basic open sets is a union of basic open

sets.

DEFINITION A.B. Continuous mapping: a mapping f : X --+ Y is continuous if

the inverse image of every open set of Y is an open set ofx.

DEFINITION A.9. Open mapping: a mapping f : X -+ y is open if the image

of every open set of X is an open set of Y. The inverse of an open mapping is a

continuous mapping.

DEFINITION A.IO. Injective mapping: A mapping 1: X -+ y is injective (one

to-one) if x :F :r! implies that I(x) :F I(:r!)·

DEFINITION A.II. Surjective mapping: A mapping 1 : X -+ y is surjective

(onto) if for each y E Y, there exists at least one x E X such that y = 1(x).

DEFINITION A.12. Bijective mapping: A mapping is called bijective if it is 60th

surjective and injective.

120



•

•

APPENDIX A. ELEMENTS OF MATHEMATICS

DEFINITION A.13. Homeomorphism: A mapping 1 : X ..... Y is a homeomor

phism if it is bijective, open and continuous.

DEFINITION A.14. Differentiability: Let U he an open subset 01Rn. A function

f : U -+ R is differentiable of class cr if all its partial derivatives 01 onler up to r

exist and are continuous. 1 is COO if and only if it is of class cr 'rIr. IIA is any subset

ofRn and 1 : A ..... R then 1 is differentiable of class cr if and only if1 extends to

a function whose domain is an open set containing A and which is differentiable of

class cr.

DEFINITION A.15. Diffeomorphism [27]: A mapping is a diffeomorphism if it is

bijective and 60th f and its inverse are differentiable.

PROPOSITION A.4. Every differentiablefunction is continuous and open. There

fore ail diffeomorphisms are homeomorphisms.

DEFINITION A.16. Jacobian: Let X E Rn and Y E am he open sets. Given a

function 1 :X -+ Y, the Jacobian matrix of1 at x is the matrix

J= (A.l)

•

THEOREM A.l. Inverse Function Theorem [27J: Let A he an open set of Rn and

f : A -+ Rn a COO mapping. If the Jacobian matrix of1 at Xo is non-singular at

sorne %0 E A, then there exists an open neighbourhood U{xo) E A such that V = I{U)

is open in Rn and the restriction of1 to U is a diffeomorphism onto V.

Alternatively, the inverse function theorem can be fonnulated as follows:

THEOREM A.2. Inverse Function Theorem [55]: Let f : an -t Rn be Cl at a. If

df(a) is invertible then f itself is locally invertible in the sense that there is a junction

if> which is defined in the neighbourhood ofb =1(a) 1 is differentiable at band satisfies
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• f 0 t/J = 1 and fi> 0 / = 1. If / is C· on a neighbourhood of a then fi> is Clona

neighbourhood of b.

THEOREM A.3. Rank Theorem [27]: Let A ç Rn and B ç Rm he open sets and

1 : A -+ B he a COO mapping. Suppose ~ has mnk k for ail x E A. For each point

Xo E A there exists a neighbourhood Ao(xo) C A and a neighbourhood Bo(/(xo)) C B,

two open sets U c Rn and V c Rm, and two diffeomorphisms 9 : U ~ Ao and

h: Bo -+ V such that h 01 0g(U) c V and such that for aIl (X17 ••• ,Xn) EU,

(A.2)

Interpretation: The mapping of 1 : A -+ B results in a k-dimensional manifold

in B.

DEFINITION A.17. Immersion: A function 1 : xm -+ yn is a cr immersion if

• and only if it is a cr function 01 Tank m $ n lor aIl x EX.

PROPOSITION A.5. If the differential f· {Jacobian} of asm00th map f : xm -+

yn is injective for ail x EX, then f is an immersion.

DEFINITION A.18. Embedding: If a function f : xm -+ yn is a cr immersion

that cames X onto I(X) homeomorphically, then it is a cr embedding.

PROPOSITION A.6. If a function 1 : xm -+ Y" is a cr embedding, then f' :

xm -+ 1(X) is a local diffeomorphism: it is surjective and injective, and f' and f,-l

are continuous and differentiable.

•
DEFINITION A.19. Local Diffeomorphism [20]: Given a Ck mapping f, {rom an

open set U ç Rn ta an open set V ç Rm, f is a local diJJeomorphism of class cie

in a neighbourhood U(xo) of Xo if f is invertible from U(xo) into a neighoourhood

V(F(xo» of the point f(xo) in V and il the inverse of / is also 01 class Cie .
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PROPOSITION A.7. A neœssary and sufficient condition for f to he a local dif

feomorphism in the neighbourhood of Xo is that its tangent linear mapping df(xo) is

injective [20J.

PROPOSITION A.S. If f : x m -+ yn is an embedding, then f(X) inherits a

naturaI diffe:rential stmcture /rom X making I(X) a differentiable manifold.

PROPOSITION A.9. A cr funetion with compact domain is an embedding if and

only if it is an injective immersion.

DEFINITION A.20. Locally Euclidean Space: a locally Euclidean space X of di

mension n is a topologieal space sueh that for every p EX, there exists a function f

mapping sorne open neighbourhood ofp ta an open set in Rn.

DEFINITION A.21. HatLfldorff condition: A set is Hausdorff if different points

have disjoint neighbourhoods. Most physical systems are Hausdorff.

DEFINITION A.22. Manifold [27]: A manifold M of dimension n is a topological

space whieh is locally Euelidean of dimension n, is Hausdorff and has a countable

basis.

Altematively, a manifold cau a1so be defined as follows:

DEFINITION A.23. Manifold: M is an m-dimensional differentiable manifold if

• Misa topological space

• M is provided with a family of pairs {CUi, tPi)}

• fUi} is a family of open sets which cover M, UUi = M and lPi is a homeo

morphinn /rom Ui onto an open subset t'i ç am.

• Given Ui and Uj sueh that Ui U Uj #: 0, the map tPij = tPitPj -1 /rom lPj (Ui nUj )

to lPi(Ui n Uj ) is COO

(Ui , lPi) is a chart and the entire family {(Ui, t/>i)} is called an atlas.

Ui is called the coonlinate neighbourhood.

tPi is called the coordinate funetions and is represented by m funetions {Xl(P), ... , Xm (P) }.

The set {Xi(P)} is called the coordinate.
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DEFINITION A.24. [40] Manifold with a boundary: If a topological space M is

covered by a family of open sets {Ui } each of which is homeomorphic to an open set

of um = {(Xl, ... ,x"') E Rm 1x'" > O} 1 then M is said to he a manifold with a

boundary.

PROPOSITION A.lO. [16J A subsd M ç Rm is an n-dimensional manifold

if for every x E M, there exist open subsets U and V of Rm with x E U and a

diffeomorphism f : U --+ V such that

PROPOSITION A.ll. A compact differentiable manifold can be covered by a finite

set of coordinate charts [21] .•

•

Therefore

f(UnM) = {y EV: Yn+b·· ·,Ym = O}

f(x E M) = {YI (x), ... ,Yn(x) , 0, ... ,O}

(A.3)

(A.4)

124



•

•

•

APPENDIX B

Inverse KinelDatics of KineD1atically

Redundant Manipulators in the Presence

of Linear Equality and Inequality

Constraints

This appendix describes an inverse kinematics algorithm for controlling a kinemati

cally redundant manipulator operating in conditions typical of space operations. It

is a constrained resolved rate algorithm where the operator controIs the motion of a

set of task coordinates associated with the motion of a given body and constraints

are added on the motion of other bodies in the kinematic chain.

The types of constraints that this algorithm can support are:

• Linear equality constraints on the velocity of selected bodies.

• Linear equality constraints on the position and orientation of selected bodies.

Those constraints are expressed as velocity constraints set to zero.

• Inequality constraints on the motion of selected bodies such as limits in Carte

sian space or joint limits. Thase constraints are expressed as inequality velocity

constraints set once the limit has been reached.
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Because of the strict restrictions imposed on robots during space operations, the

constraints must he met exactly. In the case where there are more constraints than

there are degrees of redundancy, the deviation of the robot 's task coordinates from

the operator command is to be optimised in some fashion.

1. Linearly Constrained Least Squares Algorithm

The kinematic equation of a manipulator subject to kinematic velocity constraints

are as follows:

•
and

[ VI ] - [ JI ] q $ 0

(B.1)

(B.2)

•

In eq. (B.1) and eq. (B.2), the set of task coorclinate velocities, VT, has dimension

n, the set ofequality constraints, vc, bas dimension p, the set of inequality constraints,

VI, bas dimension l and the set of joint velocities, q, has dimension m. The number of

kinematic equality constraints applied on the system is restricted to m - n $ p < m.

In the case where p = m - n, there exists a unique exact solution to the set of

kinematic equatiODS preslIroing that the augmented Jacobian JA = [ ~: ] has full

rank. However, in the case where m - n < p < m, there generally does Dot exist an

exact solution to the set of kinematic equations and sorne optimisation criterion must

be used to find an optimal solution.

Remembering that the constraint equations are to be met exactly, the joint ve

locities must be selected so as to mjnjmise the deviation of JTCt from VT.

The application ofp equaIity constraints on the system is equivalent to restricting

the number of independent components of Ct ta m - p.
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The kinematic equations can be re-written by partitioning the joint velocity vector

and the Jacobian matrices as follows:

(B.3)

and

(B.4)

•

where ql is the set of dependent joint coordinates (of dimension p) and tb is

the set of independent joint coordinates (of dimension m - p). The partitioning of ci
into ql and tb is done in sucb a ma.nner as to ensure appropriate conditioning of the

matrix Jel .

From the constraint equation the following equation can be derived:

(B.5)

Substituting into the task coordinate and the inequality constraint equations

yields:

(B.6)

and

(B.7)

•
eq. (B.6) 9.Ild eq. (B.7) can he reorganised as follows
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(B.8)

and

(B.9)

where

•
and

t J J -1VI = VI - /1 Cl Vc

(B.10)

(B.1l)

(8.12)

(8.13)

Presuming that one would want to mjnimise the norm of the error between that

velocity command and the resulting velocity, the following optimisation criterion

wouId he used:

(8.14)

•
Substituting the equality constraint conditions from eq. (B.5) into eq. (B.14), it

is obvions that the saIne optimisation criterion can also be written as:
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(B.15)

The solution that minimises Q and satisfies the inequality constraints set in

eq. (B.9) can be computed using the Kuhn-Thcker theorem1 as follows. The modified

Lagrangian is written as:

(B.21)

IThe Kuhn-Thcker theorem is an extension to Lagrange's multiplier theorem [42J to take into account
inequality constraints in addition to equality constraints. Let Xo he a local optimum ofJ(x) satisfying
the following equality and inequality constraints:

• and

[

91(X) ]
92{X)

g{x) = : =0 E RP

9p(X)

(B.16)

(B.17)
[

rl(x) ]
r2(x)

r(x) = : ~ 0 E 'R'

r,(x)

If XC) is a reguIar point of both constraint equations, then there exists vectors ~ E 'RP and 1.1 =
[#JI P.2 • •• P.l] T ~ 0 E 'R' that provide the stationary value of the modified Lagrangian at Xo

and that satisfy

c. = I(x) +~T g(x) + pTr(x) (B.18)

•

pTr(x) = 0 (B.19)

Note that sinœ 1" ~ 0 and r(x) ~ 0 eq. (B.19) implies that Jl.i(x) = 0 for r.(x) < 0 and that
Pi(x) ~ 0 for ri(x) = o. The solution to the optimisation problem is found by solving the set of
algebraic equations consisting of:

Be =0
lJx

).T g{x) = 0 (B.20)

pTr(x) = 0

Out of the multiple solution choices obtained, the valid solution is the one for which p ~ o.

129



•
APPENDIX B. LlNEARLY CONSTR..~ INVERSE KINEMATICS

Differentiating L- with respect to cb,we obtain:

aL, tT t . T tT t T t8tb = -2vT JT +Q2JT JT - P JI = 0

The Kuhn-Thcker theorem also imposes the following constraint:

(8.22)

(8.23)

•

The solution that minimises Q subject to eq. (B.9) is then found by solving

eq. (8.22) and eq. (8.23) for values of 42 sucb that 1.& ~ O.

Once ci2 is found, cb is computed using eq. (B.5) and tl is obtained by concate

nating ql and 42.
The main problem associated with this approach is that the least squares opti

misation of the criterion Q = IIvT - JTtlll2 is meaningless if the task coordinates VT

include translation and angular velocity commands. There is no physical meaning to

this mjnjmisation and different results would be obtained if different units were used.

2. Reconciliation of Rotational and Translational Velocities

To resolve the ambiguity associated with the optimisation of a criterion with

non-compatible units, it is proposed to characterise the motion of the task coordinate

frame by the position of three arbitrary non-collinear points [2]. For convenience,

points lying on the x, y and z axes of the task coordinate frame are selected.

Let us decompose the Jacobian of the task coordinates in a transIational part

and a rotational part:

• 130

[
VT ] = [ J

Tt
] tl

f.lJT JTr
(8.24)
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where VT and fAIT are respectively the translational and angular velocity com

mands and JTt and JTr are the transIational and rotational components of the task

Jacobian.

The velocity of an arbitrary point attached to the coordinate reference frame and

located at a distance ~ from the origin of the frame is given br:

(B.25)

The cross-product of ~ x WT can be written as the product of a matrix and a

vector as:

(B.26)

where Di is the cross product matrix of ~ defined as:

• 0 -~z ~1I

D i = ~z 0 -diz (B.27)

-~1I dwz 0

From eq. (B.24) and eq. (B.25), the velocity of a point attached to the task

coordinate frame can be computed as:

(B.28)

where the transIational velocity Jacobian of point i is defined as:

•
(B.29)
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Three points lying on the axes of the task coordinate frame as defined earlier can

he used to describe the motion of the frame. The velocity command entered by the

operator cau then be expressed as a concatenation of velocity comIDands for these

three points (vp% for the point lying on the x-axis, v Py for the point lying on the

y-axis, etc.).

(B.30)

where:

vpr

vp = v py

vpz

• and

J p %

J p = Jpy

Jpz

(8.31)

(B.32)

Replacing the task coordinate translational and angular velocities by the velocities

of three non-collinear points in the kinematic equations, eq. (B.l) can be re-written

as:

(B.33)

•
The linearly constrained least squares algorithm described in Section 1 of this

appendix can then be applied. In this case the result of the optimisation process used

to determine Ca2 has a physical meaning: it mjnjmises an optimisation criterion that is
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proportional to the diŒerence between the velocity command entered by the operator

and the resu1ting motion of three points attached to the task coordinate frame.
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M.plr worluplCe. The prucedur. '0 c.napul••b. ra.k-d.ReIlRC)' IocUI for ....
S)'molr.1 Dlodel Il a. 10110"':

1) Load che .)'nao-l.neraCe.nt'" m. I.co Maple lad Clecule 1',
Z) Ru.. lb. Ra..k-d.ftcl'lIc)' Locu. Compulado.. Serlp.. Wb.a rua.lallhe lerlp',
mlau" Ja••ne.doa Il rtflulrcd '0 ta.ure .ba••he J.cub for .h••pproprla••
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LOld librlrlel,let envlronDlen' vlrllblellnd deOne
procedures
l > In.tut,

[
• .,ltb(lJQa1g) •
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Sav. che lœlliOA of che modeI. Tbi. will lM UNd tel mtuII&be '''''CIII dirKlOf)' 10 lhc modtI
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Chan,. Ibo dirllàUl)' tu th. kM:alioa wbo.. 1hc rMk-dcftçlcnqo 1œuI.I.orithma ar. Iktnd
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fll •• \\".pl.\\Tb•••\\SinlUl.~ltyLocu.·J,
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