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ABSTRACT

This thesis provides a general framework for the manual teleoperation of kinemat-
ically redundant space-based manipulators. It is proposed to break down the task
of controlling the motion of a redundant manipulator into a sequence of manageable
sub-tasks of lower dimension by imposing constraints on the motion of intermedi-
ate bodies of the manipulator. This implies that the manipulator then becomes a
non-redundant kinematic chain and the operator only controls a reduced number of
degrees of freedom at any time. However, by appropriately changing the imposed
constraints, the operator can use the full capability of the manipulator throughout
the task.

Also, by not restricting the point of teleoperation to the end effector but effectively
allowing direct control of intermediate bodies of the robot, it is possible to teleoperate
a redundant robot of arbitrary kinematic architecture over its entire configuration
space in a predictable and natural fashion.

It is rigourously proven that this approach will always work for any kinematically
redundant serial manipulator regardless of its topology, geometry and of the number
of its excess degrees-of-freedom. Furthermore, a methodology is provided for the
selection of task and constraint coordinates to ensure the absence of algorithmic
rank-deficiencies.

Two novel algorithms are provided for the symbolic determination of the rank-
deficiency locus of rectangular Jacobian matrices: the Singular Vector Algorithm and
the Recursive Sub-Determinant Algorithm. These algorithms are complementary to
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each other: the former being more computationally efficient and the latter more
robust.

The application of the methodology to sample cases of varying complexity has
demonstrated its power and limitations: It has been shown to be powerful enough
to generate complete sets of task/constraint coordinate pairs for realistic examples
such as the Space Station Remote Manipulator System and a simplified version of
the Special Purpose Dexterous Manipulator.
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RESUME

Les travaux de recherche décrits dans cette thése fournissent un cadre général pour
la téléopération de robots considérés cinématiquement redondants dans des condi-
tions typiques des opérations spatiales. Il est proposé de séparer la tache consis-
tant a déplacer le manipulateur d’une configuration a4 une autre en une séquence de
sous-taches de dimension moindre en imposant des contraintes cinématiques sur le
mouvement des corps intermédiaires de la chaine sérielle.

Le robot devient alors un manipulateur non-redondant dont I’opérateur ne controle
qu'un sous-ensemble des degrés de liberté. En changeant les coordonnées de con-
traintes d’'une sous-tache a I'autre, 'opérateur peut utiliser le plein potentiel du ma-
nipulateur redondant. De plus, en permettant & ['opérateur de dicter directement le
mouvement de corps autres que l'organe terminal, celui-ci peut contréler la posture
d’un manipulateur, peu importe sa structure cinématique, de maniére prévisible et
intuitive partout dans son espace articulaire.

Il a été prouvé avec rigueur que 'approche proposée permet toujours de trouver
un ensemble de coordonnées complet pour n'importe quel robot sériel redondant peu
importe sa topologie, sa géometrie et son nombre de degrés de liberté. De plus, une
méthodologie est proposée permettant de déterminer les coordonnées de téche et de
contraintes pour assurer 1'absence de pertes de rang algorithmiques.

Deux nouveaux algorithmes de calcul symbolique des lieux de perte de rang sont
décrits: D’algorithme des vecteurs singuliers et I'algorithme des sous-déterminants
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récursif. Ces deux algorithmes sont complémentaires: le premier étant plus efficace
et le second plus robuste.

L’application de la méthodologie & des cas de complexité croissante a permis de
démontrer a la fois la puissance et les limites de cette approche. Des ensembles de
coordonnées complets ont été générés pour le Télémanipulateur de la Station Spatiale
(SSRMS) et pour un modéle simplifié du Manipulateur Agile Spécialisé (SPDM).
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CHAPTER 1

INTRODUCTION

1. Robotics in Space

Space is an environment where robotic applications are subjected to the strictest
operational constraints. Because of the potentially catastrophic consequences of
accidents on crew or asset survival, safety is of the utmost importance and col-
lisions between the manipulator and its environment must be avoided at all cost
[44],[23],(3],[1].

For a while, the focus of space robotics projects was to increase the level of au-
tonomy [19]. However, the current state of space-rated technologies precludes fully
autonomous operation of robotic systems in manned space flight: they do not have
appropriate obstacle sensors nor adequate computing power to maintain a complete
geometric model of the environment. Thus, manual teleoperation where the operator
controls the motion of the robot directly and continuously using hand controllers is
the preferred mode of operation. Task planning and execution are performed us-
ing the synthesis capabilities of the human operator in conjunction with advanced
teleoperation technologies [32].

Semi-autonomous operations are limited to playback of pre-generated trajectories
in cases where the environment is static and structured. This involves extensive
ground simulation before uploading command sequences to the manipulator for task
execution [23},(3].
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FIGURE 1.1. Space Station Remote Manipulator System

In spite of the severe restrictions imposed by space operations, space-based ro-
botic systems are becoming increasingly common and several manipulators are slated
for launch in the short to medium term. Canada is providing two robots for the
International Space Station (ISS): the Space Station Remote Manipulator System
(SSRMS, shown on Figure 1.1), a seven-degree-of-freedom (DOF) manipulator to be
used for assembly and docking tasks on the ISS, and the Special Purpose Dexterous
Manipulator (SPDM, shown on Figure 1.2), a robot with two 7-DOF arms to be used
for on-orbit maintenance tasks. The European Space Agency is providing the Eu-
ropean Robotic Arm (ERA, shown on Figure 1.3) a 7-DOF manipulator to be used
for extra-vehicular maintenance tasks on the Russian segment of the ISS. Japan is
developing the Japanese Experimental Module Remote Manipulator System (JEM
RMS) and the Small Fine Arm (SFA), two 6-DOF manipulators to be used on the
Japanese Experimental Module of the ISS.

2



1.1 ROBOTICS IN SPACE

FIGURE 1.2. Special Purpose Dextrous Manipulator mounted on the
tip of SSRMS

The Italian Space Agency along with its industrial partner Tecnospazio is devel-
oping the SPIDER manipulator, a 7-DOF arm to service payloads on the EUROPA
external experimental platform to be mounted on the ISS. Finally, the University of
Maryland, under sponsorship of NASA, is developing the Ranger Teleoperation Shut-
tle Experiment (shown on Figure 1.4), a complex robot to be used as a technology
demonstrator with two 8-DOF dexterous arms, a 7-DOF camera arm and a 7-DOF
grapple arm for stabilisation.

A particularly interesting feature shared by many of these systems is the presence
of more degrees of freedom than an operator can control simultaneously in manual
teleoperation. Up to now, the redundancy resolution and control schemes employed
for kinematically redundant manipulators have been developed on a case-by-case ba-

sis with little or no thought given to the development of a generalised approach. The

3
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FIGURE 1.3. European Robotic Arm

FIGURE 1.4. Ranger Telerobotic Shuttle Experiment

redundancy resolution and control algorithm for SPDM and SSRMS imposes con-
straints on the motion of the shoulder roll or shoulder yaw joint. The operator can
either constrain one of these two joints and control the motion of the end-effector or
constrain the end-effector pose and command a self motion of the manipulator. For
Ranger, the redundancy resolution algorithm partitions the problem into two: it adds
a constraint variable that defines the angle of the pitch plane of the arms with respect

4
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to a line joining the shoulder joint cluster to the wrist joint cluster and it performs
an optimisation of the motion of the 4-DOF wrist to minimise instantaneous joint
velocities [8].

All of the existing algorithms require specific training, are not portable from
one manipulator to another and would hardly be usable for robots with more than
one or two degrees of redundancy. There is a need to develop a general redundancy
resolution and control scheme to handle the extra degrees of freedom while satisfying
the safety constraints imposed by space operations.

2. Project Objectives

The objective of this thesis is to develop a framework for the manual teleoperation
of kinematically redundant serial manipulators of arbitrary kinemztic acchitecture un-
der conditions typical of space operations. A robot will be considered kinematically
redundant under manual teleoperation if it has more degrees of freedom than
an operator can control simultaneously.

The stringent operational constraints imposed on space-based manipulators, cou-
pled with the lack of obstacle sensors and of adequate computing power preclude
the automatic handling of kinematic redundancy. The approach developed should
provide full control of the manipulator to the operator who is in charge of generating
a safe, collision-free trajectory. Therefore, it should not only provide the operator
with an adequate redundancy resolution scheme but also with a redundancy control
scheme to allow him to manipulate the entire kinematic structure of the robot.

Also, because the operator only has access to a limited number of non-optimal
camera views, he has a poor sense of situational awareness!. For example, on the
International Space Station, the Robotic Work Station has only three monitors[45] on
which can be displayed views from often ill-located cameras. The operator must then
use a mental model of the robot and of the environment that he updates periodically

from camera views . The robot motion resulting from operator inputs should therefore

In this thesis, the pronoun “he” is used in the gender-neutral sense to ease readability.
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be predictable. Finally, since the velocities associated with space robotic operations

are very slow, the implementation should be compatible with rate input devices.

3. Literature Review

Many approaches have been developed for the inverse kinematics of kinematically
redundant manipulators. The kinematic redundancy is generally used to satisfy addi-
tional kinematic constraints imposed on the manipulator or to optimise a performance
index. The methods developed so far fall into two broad categories: local methods
and global methods. Whereas the former only use instantaneous information about
the robot’s motion, global methods require information about the entire trajectory to
be executed by the manipulator. Because a priori knowledge about the trajectory to
be executed does not exist in the context of manual teleoperation, only local methods
are considered in this thesis.

The local approaches for redundancy resolution are generally based on resolved

rate motion control and use the differential formulation of the kinematic equations.

v=Jq (1.1)

where v = [ i oWl ]T usually describes the velocity of the end-effector, q is
the vector of joint velocities and J is the manipulator Jacobian relating the velocities
in task space to those in joint space. For kinematically redundant manipulators, the
dimension of the task space is inferior to that of the joint space: there generally exist
an infinity of solutions q to eq. (1.1) and the Jacobian matrix cannot be inverted

because it is not square.

3.1. Optimisation and Generalised Inverses. The first solution of the in-
verse kinematics for redundant manipulators is generally attributed to Whitney [67].
He proposed using a weighted pseudo-inverse of the Jacobian to compute the joint

rates from desired end-effector rates.

6




1.3 LITERATURE REVIEW

q=J*q)v (1.2)

where

J#*(q) = A"TIT(IATIN)! (1.3)

This is a particular solution of eq. (1.1) that minimizes the following performance

criterion:

Q=4"Aq (1.4)

If A is selected as the manipulator’s inertia matrix, this method minimizes the
instantaneous kinetic energy of the manipulator. Modifications have been proposed to
the pseudo-inverse [64] [41] to operate near singularities by adding artificial damping.

To handle more general performance criteria, Liégeois [35] proposed to add a
homogeneous solution component to the particular solution found using generalised
inverses. He used a null space projection matrix in an attempt to find an optimal

solution among all possible solutions of the inverse kinematic equation.

q=Jv+J*¥J-Dz (1.5)

If z is set to Vh(q) then this method finds a gradient to minimise h(q) and then
projects it onto the null space of the Jacobian. The null space projection method has
been used extensively [69] [17] [54] (38] [49] [15] [14] [22] with various performance
indices.

The principal weakness of the null space projection approach is that it generates
an optimal solution to the secondary criterion without reference to the primary task

and then projects it onto the null space of the manipulator Jacobian. There is no
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guarantee that this projection is itself an optimal solution on the self-motion manifold.
To overcome this problem, Nakamura et. al. [43] and Maciejewski and Klein [39]
independently introduced the concept of task priority through a constrained least
squares optimisation of a secondary task subject to constraints corresponding to the
primary task.

Minimise h(q)
subject to v—-Jq=20 (1.6)

and to g(q) <0

where h(q) is usually defined as a quadratic performance index to be optimised.
Many authors [13] [50] [11] are using this approach and the recent trend has been to
formulate this problem in the context of optimal control to design torque control laws
for redundant manipulators that will optimise a wide variety of performance indices.

3.2. Transformation into Non-redundant Systems. As an alternative
to optimisation methods using generalised inverses, Oh, Orin and Bach [47] intro-
duced the concept of the extended Jacobian. They proposed to adjoin to the forward
kinematics equation, constraint equations on the positions of links other than the
end-effector, thus making the Jacobian matrix invertible (square and full rank). This

determines a unique solution that can be simply computed from the equation.

MEHL
Ve Jc

The extended Jacobian provides more direct control over the configuration of the
manipulator: self motions can be controlled directly by the constraint equations.

Bailleul [4] linked the extended Jacobian technique to the null space approach
developed by Liégeois and used it for such tasks as singularity and obstacle avoid-

ance. One of his important contributions is the derivation of a condition on the

8
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orthogonality of the rows of the constraint Jacobian to the null space of the task
Jacobian.

This condition was stated to deal with the main weakness of the extended Jaco-
bian method: algorithmic singularities. These singularities occur when the constraint
Jacobian Jc¢ in eq. (1.7) is not linearly independent from the task Jacobian Jr. They
have no physical significance and are thus difficult to predict. The topic of algorith-
mic singularities has been thoroughly analysed in [65] and [48]. To overcome the
problems of algorithmic singularities, Egeland [18] applied a damped least squares
method similar to those of Wampler [64] and Nakamura [41] to the extended Jacobian
method.

Seraji [53] applied the work of Oh, Orin and Bach to space operations. He
provided useful insight on the selection of constraint coordinates by relating them to
the parameterisation of the self-motion manifolds. Unfortunately, this paper did not
result in practical conditions on the selection of the constraint equations to ensure
the avoidance of algorithmic singularities.

Tsuji [58] introduced the concept of virtual arms. His approach allows direct
control over the entire kinematic chain by defining sets of task coordinates attached
to intermediate bodies of the redundant manipulator. Each virtual arm has its end-
point located on the intermediate body to which it is attached and it has the same
kinematics as the portion of the manipulator between its base and the end-point of
the virtual arm. Depending on the location and number of virtual arms, the resulting
kinematic equations can be exactly determined, under-determined, over-determined
or singular. His inverse kinematics algorithm considers all cases, reverting to gener-
alised inverses when a unique solution does not exist. He has used this approach in
a teach-and-playback manner, all virtual arm trajectories being taught in a sequence
but played back simultaneously. The methodology is directly portable to manual
teleoperation if the operations on the virtual arms are considered to be executed se-
quentially. In subsequent publications, various techniques have been applied to solve
the inverse kinematics of redundant manipulators using virtual arms [59] [60].
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Recently, Schreiber [52] reused the method of virtual arms to teach trajectories
to kinematically redundant manipulators for space operations.

Despite its limitations, the extended Jacobian approach has been used exten-
sively [30] {25] [6] [57] and is still the preferred method for controlling kinematically
redundant manipulators in space.

In addition to the rank-augmentation methods described above, rank-reduction
methods have also been developed to transform the kinematics of redundant manip-
ulators into non-redundant systems. Benhabib, Goldenberg and Fenton [5] proposed
a rank reduction method to solve the position inverse kinematics problem in a re-
cursive fashion. They wrote the incremental kinematic equation in differential form,
partitioning the set of joint coordinates q into q4 and qg such that Jp, the reduced
Jacobian, is of full rank and can be inverted. The set of dependent coordinates éqg

is computed as:

dqp = J5'(v — Jadq,) (1.8)

while the set of independent coordinates q4 is used to optimize some arbitrary
performance index Z(q).

Lovass-Nagy and Schilling [37] proposed a simplification of the above scheme
using (1)-inverses. The reduced Jacobian is selected such that Jz is invertible and
the independent joint coordinates are simply fixed. In fact Jr can be chosen to ensure
it is not ill-conditioned; for example minimising its condition number.

Lee and Bejczy [34] used a principle similar to [5] but framed the problem directly
in the ”"position-based” kinematic equations. They proposed to parameterise the
forward kinematics of a redundant manipulator using a set of joints (termed the
redundant joints). They used an off-line process to analyse the kinematic equations
and characterise the self-motion manifolds in terms of the motion of the redundant
joints. This approach, like that of the extended Jacobian, can suffer from algorithmic

10
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singularities when the motion of the manipulator along the self~-motion manifold does

not involve motion of any one of the redundant joints.

3.3. Application to Manual Teleoperation. Very few publications have
analysed the kinematics of redundant manipulators in the context of manual teleop-
eration. Most have only implemented simple redundancy control schemes. Jansen
and Kress [28] used a six-degree-of-freedom master augmented with an elbow sensor
placed on the operator to manipulate a seven-degree-of-freedom slave. A position
controller was used for the end-effector and stiffness control was used for the elbow
to accommodate the fact that the master and the slave arms are not kinematically
identical. This approach is very pragmatic and only works for slave arms whose
configuration is relatively anthropomorphic.

Yae et. al. [68] also controlled a seven-degree-of-freedom manipulator using a
six-degree-of-freedom master but they only reported using a regular pseudo-inverse
algorithm. Chan and Dubey [9] report using the same configuration but with an
impedance control law and an autonomous redundancy resolution algorithm to avoid
singularities and joint limits.

Hwang and Hannaford [26] have published one of the very few comparative stud-
ies, if not the only one, investigating the human-factor aspects of teleoperation with
kinematically redundant manipulators. Unfortunately, their study was very limited:
they implemented only three variations of a weighted pseudo-inverse algorithm with
null space projection for joint limit avoidance. The pseudo-inverses were Whitney's
inertia weighted pseudo inverse, a regular pseudo inverse and an intermediate method.
They performed test operations on a real robot with force feedback and analysed op-

erator performance using a set of metrics.

4. Proposed Approach in the Context of Space Operations

Despite the abundance of work in the area of redundant manipulator kinematics,
most of the existing approaches are not suitable for the teleoperation of arbitrary

redundant manipulators under conditions such as those found in space operations.

11
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Since the robot is being manually controlled by an operator, its trajectory is not
known a priori: global optimisation methods are therefore not appropriate. Local
optimisation-based methods have been used in the past to resolve kinematic redun-
dancy via obstacle avoidance but the lack of adequate representation of the environ-
ment’s geometry precludes their usage in space.

As a general rule, the inverse kinematics of current space robots is done using
constraint-based methods such as task space extension or reduction techniques but
there is yet no consistent scheme for selecting the constraint variables. Also, the
control of the redundancy resolution variables is done in an ad hoc manner and is
hardly conceivable on manipulators with more than one degree of redundancy.

To address the weaknesses of the algorithms currently used for space manipula-
tors, a systematic method for selecting the task and constraint coordinates used in
constraint-based redundancy resolution methods was developed.

The criteria used to determine the nature of the task and constraint coordinates
used for the teleoperation of a space-based manipulator are dictated by the specifics
of robotic operations in space. The first criterion is imposed by the fact that the
operator must have control over the full configuration of the manipulator at all times.
Therefore, any task/constraint coordinate pair should be such that they yield a unique
solution to the inverse kinematics of the manipulator thus removing the necessity of
automatic redundancy resolution. Furthermore, they should allow the operator to
manoeuvre the robot from any initial configuration to any final configuration in a
finite sequence of moves. Finally, they should be meaningful to the operator and lead
to predictable motion of the manipulator.

In light of the above-mentioned criteria, it is proposed to break down the task
of controlling the motion of a redundant manipulator into a sequence of sub-tasks
of lower dimension by imposing constraints on the motion of the end-effector or of
intermediate bodies of the manipulator. These can be expressed with respect to, and

in any reference frame of the manipulator.

12
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This implies that the manipulator then becomes a non-redundant kinematic chain
and that the operator only controls a reduced number of degrees of freedom at any
time. However, by appropriately changing the imposed constraints, the operator can
use the full capability of the manipulator throughout the task.

Also, by not restricting the point of teleoperation to the end effector but effectively
allowing direct control of intermediate bodies of the robot, it is possible to teleoperate
a redundant robot of arbitrary kinematic architecture over its entire configuration
space in a predictable and natural fashion. The operator then has control over a set
of task coordinates that correspond to the motion of a given body of the robot which
is not necessarily the end-effector. This is an application in the context of manual
teleoperation of the virtual arms approach [58] where task coordinates are attached
to intermediate bodies in the kinematic chain. However, unlike the implementations
presented in [59] [60], all virtual arms are not manipulated simultaneously. Only one
virtual arm is used to control the task coordinates. The other virtual arms are used
to impose constraints on the motion of the redundant manipulator.

The work reported in this thesis gives special consideration to the selection of
task and constraint variables to ensure that they suit the needs of space-based op-
erations. In addition, an effort is made to investigate the reduction of the number
of task/constraint coordinate pairs necessary to ensure coverage of the manipula-
tor’s configuration space. This avoids overwhelming the operator with a plethora of
unnecessary coordinate pair selections.

A set of task coordinates could, for example, be the coordinates that define the
position of a selected body in the kinematic chain or a subset of these coordinates.
Similarly, holonomic constraint equations could constrain the position of another body
in the kinematic chain to a fixed location or to a surface or curve in space using a

constraint of the form:

f(x)=0 (1.9)
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Such a constraint would be implemented as a velocity constraint:

Jc(q)q=0 (1.10)

In a similar fashion, task coordinates could be used to specify the orientation
of the end-effector or some other intermediate body in the kinematic chain. Typi-
cal constraints on orientation would either fix the orientation of a body in space or
specify its rotation about a given axis. This axis could either be fixed in the base
coordinate frame or attached to a body of the manipulator. As for the position con-
straint equations, the constraint equations on orientation are implemented as velocity
constraints.

For generality, the motion of a set of individual joints qr can also be selected as
constraint coordinates as was done by Lee and Bejczy (34). In this case, the constraint

equation simply sets the velocity of a set of joints to zero.

qr =0 (1.11)

Inequality constraints can also be added to enhance safety and support limitations
such as joint range limits. Such inequality constraints can be used to avoid running
into crudely specified obstacles or joint limits. For example, a constraint on joint
range limits:

q < Gmazx (1.12)

can be implemented as an intermittent velocity constraint

q<o0 (1.13)

14
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that gets triggered only when q = G, and that is ignored otherwise. Siinilarly a
constraint on the position of an intermediate body of the manipulator can be specified

g(x) <0 (1.14)

and implemented as an intermittent velocity constraint

Jc(q)g<o (1.15)

triggered when g(x) = 0.

5. Document Structure

The main focus of this thesis is the analysis of the conditions under which
task/constraint coordinate pairs provide coverage of the configuration space of a ma-
nipulator and the determination of a reduced set of coordinate pairs.

Chapter 2 formulates the proposed approach in a rigourous mathematical frame-
work. A proof of generality of the proposed approach is given. In Chapter 3, a
method is developed to select a reduced number of task/constraint coordinate pairs
from all possible combinations. Two novel rank-deficiency locus computation algo-
rithms for rectangular Jacobian matrices are described. The first is based on the
usage of the singular vectors of the Jacobian matrix and the other is based on a
recursive implementation of the sub-determinant method.

Chapter 4 applies the methods developed in the previous chapter to sample cases
ranging from simple configurations to more complex cases such as the Space Station
Remote Manipulator System and the Special Purpose Dextrous Manipulator.

Finally, Chapter 5 documents the implementation of the rank-deficiency locus
computation algorithms. It discusses the details of implementation of each procedure

and the special measures that were implemented to increase computational efficiency.
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Original Contributions

To the best of the author’s knowledge, the elements of this thesis which constitute

original contributions are the following:

16

e The concept of System Motion Manifold as presented in Chapter 2: The Sys-
tem Motion Manifold is the image of the joint manifold in a system motion
space generated by the concatenation of the Cartesian motion coordinates of
all bodies in the kinematic chain. This concept is extremely useful to map the
joint space to a more intuitive representation. It is the central element of the
proof of generality, which is the second original contribution of this thesis.

e The proof of generality of the virtual arms approach: This method has been
used by many authors [58] [59] [60] [52] and, although the generality of the
method is intuitive, this had never been proven in a rigourous manner.

e A systematic method to select a reduced set of constraint coordinates based on
the rank-deficiency loci of the task Jacobian and augmented Jacobian matrices.

e The Singular Vector Algorithm for computing the rank-deficiency locus of non-
square Jacobians: A novel algorithm was developed to compute the rank-
deficiency locus of rectangular Jacobian matrices using singular vectors in
the Singular Value Decomposition sense. It generalises the algorithm of Pod-
horodeski and Nokleby [46] to cases where the task space is not described
using screws and to cases where the Jacobian has more rows than columns.

e The Recursive Sub-Determinant Algorithm for computing the rank-deficiency
locus of non-square Jacobians: This other novel algorithm is based on the
sub-determinant method. The recursive implementation allows this algorithm
to find solutions where other methods such as the regular sub-determinant
method and the Singular Vector Algorithm will fail because of algebraic com-
plexity. It is a complement to the Singular Vector Algorithm as it is more
robust but less efficient.




CHAPTER 2

Mathematical Formulation

1. Definitions

The motion of any robotic manipulator is described by its forward kinematic
function A : Q — Xr. It is a nonlinear function mapping the joint space Q to
the task space A7 which usually describes the motion of the end effector. The joint
space @ is parameterised by an m-dimensional array of joint coordinates q and the
task space X7 is parameterised by an n-dimensional array of task coordinates xr. In
teleoperation, n, the dimension of the task space, is limited to the number of variables
an operator can control simultaneously.

The inverse kinematic relation A~ : X1 — Q is of greater practical interest since
it generates the joint trajectory necessary to achieve the desired motion.

Since redundant manipulators have more degrees of freedom than required to
perform the task (n < m), their inverse kinematic problem is under-determined and
the inverse kinematic equation has an infinite number of solutions lying on a set of
finite, bounded and smooth manifolds of dimension r = m — n in the m-dimensional
joint space Q. These are termed the self-motion manifolds and they correspond to all
the solutions that satisfy the forward kinematic equation for a given task coordinate
xr (7]

To determine a unique solution to the inverse kinematics relation as described
in Section 4 of Chapter 1, it is proposed to augment the task coordinates with a
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set of kinematic constraints A¢ : @ — A¢ on the motion of selected bodies in the
kinematic chain such that the Jacobian of the augmented forward kinematic function,
A, Q — X,y where X4 = X1 x Ap, is invertible.

In addition, to allow the operator to manually control the redundancy, the task
coordinates are not limited to those describing the motion of the end-effector. Task
coordinates, like constraint coordinates, can be attached to any body in the kinematic
chain.

To analyse the nature of the mapping between the joint space @ and the aug-
mented task space X4, the concept of system motion coordinates and system motion
manifold will be introduced. First, let us define a motion space associated with an
arbitrary body in the kinematic chain X;. This space is parameterised by the coordi-
nates describing the motion of the given body in Cartesian space x;.

DEFINITION 2.1. System Motion Space and System Motion Coordinates: The
system motion space including the position and orientation coordinates of all the bodies
composing the robot is defined as Xs = |J, &;. It is of dimension p > m and it is
parameterised by Xgs, the system motion coordinates. It is related to the robot joint
space by the system forward kinematic function As: Q@ — Xs.

DEFINITION 2.2. System Motion Manifold: The set of all possible joint confiqu-
rations maps to a system motion manifold Ms = {xs | xs = As(q),Vq € Q} C Xs.
It will be demonstrated later that this manifold is of the same dimension as the joint

space.

Given these definitions, the operator controls the motion of the robot by con-
trolling a subset of the system motion coordinates xs of dimension n (or smaller)
attached to a particular body of the kinematic chain, and by setting an appropriate
number of constraints also on xs to ensure that a unique solution is found.

To illustrate the concept of joint space and system motion manifold, consider the
case of a planar manipulator consisting of a revolute joint followed by a prismatic

joint as shown on Figure 2.1. The joint coordinates are the angle of the revolute
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(a)

(b)

FIGURE 2.2. Joint Space of a RP Planar Manipulator: (a) shade rep-

resents ¢y, (b) shade represents ¢,

joint, 0 < q; < 2w, and the elongation of the link, 0 < g < 1. The link attached to

the revolute joint is of unit length. The joint space of this manipulator is the product

of the joint spaces Q; and Q. It is a topological cylinder as shown on Figure 2.2. On
this figure, Q is depicted using its true topology instead of a two-dimensional plane,
which is more traditional. This will later ease the comparison between the topology

of Q and that of M.

Let us now define the system motion coordinates as the position of the distal

extremity of each body of the manipulator xs = {z;,¥1,Z2,%}. The coordinates
(z1, 1) define the position in the z — y plane of the extremity of the link attached to

19
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FIGURE 2.3. System Motion Manifold of a RP Planar Manipulator:
(a) shade represents y;, (b) shade represents z;

the revolute joint and (z, y2) define the position of the extremity of the link attached
to the prismatic joint. Using this set of system motion coordinates, the system motion
manifold is depicted on Figure 2.3. Shade is used to represent the fourth dimension
of the system motion space Xs. The shape of the system motion manifold is that of
a distorted annulus.

2. Condition of Generality

To demonstrate the generality of the approach, it is necessary to prove that there
will always exist sets of task and constraint coordinates such that it is possible to
move any kinematically redundant serial manipulator from any initial configuration
qo to any final eonfiguration q; in a finite sequence of operations by controlling the
velocities associated with a subset of xs. Throughout each operation, the Jacobian
of the augmented forward kinematic map must be invertible.

Since the augmented task coordinates are a subset of the system motion coordi-
nates, X4 C As, then the augmented Jacobian matrix is always a submatrix of the
system Jacobian matrix Jg(q). Given that there must always exist an augmented
Jacobian matrix of rank m, then the system Jacobian matrix must be of rank m for

all values of q in Q.
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If Vqe Q, 3[Ja(q)]™! then rank(Js(q)) = dim(Q) Vq € Q (2.1)

If a locally non-singular representation of orientation, 7, is used, then the trans-
lational and angular velocities associated with the system motion coordinates are

related to the time derivatives of the system motion coordinates themselves as fol-

MEIN
ws 0 H Ns

where I is the identity matrix and H is a full-rank linear transformation. Js(q)
aAs

lows:

is therefore related to as follows:

[ (Js(q))r] _ [ 1o } [ ("—‘%i%@)r] 23)

(Is(a)r 0 H (Q_!(SZ)R

dq
where the subscripts ()1 and (*)z respectively refer to the translation and rota-

tion components of matrix (*).
Let us define

H‘=[I 0} (2.4)
0 H

If orientations are represented using unit quaternions, the linear transformation
matrix H* is orthonormal. Given that orthonormal matrices do not affect rank

through matrix multiplication, then

rank(Js(q)) = rank (a“;q(")) (25)
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From the condition on invertibility, it is then required that:

dAs(q) — d
rank(———aq ) dim(Q)Vq € Q (2.6)

By definition, then As must be an immersion. Since embeddings are a special
class of immersion, it is sufficient to demonstrate that As is an embedding of Q in
Xs. This can be proven by demonstrating that Ay : @ — Mg, the mapping from
joint space to the surface of the system motion manifold, is a local diffeomorphism:
locally bijective and differentiable.

Furthermore, it must be demonstrated that a path between any two configurations
can always be built from a finite sequence of segments on each of which the augmented
Jacobian always has full rank. The number of segments in the path will be equal to
the number of times a change in the selection of augmented coordinates is required to
move between any two configurations. Realising that the set of augmented coordinates
for which Ag is of rank m maps homeomorphically to the coordinate charts covering
Mg and that a coordinate change will only be necessary when crossing boundaries
between coordinate charts, then it is sufficient to demonstrate that the system motion
manifold can be covered by a finite number of coordinate charts if subsets of xs are
used as coordinate functions as shown on Figures 2.4 and 2.5.

3. Proof of Generality

The first part of the proof of generality! consists in proving that As is an embed-
ding. This will be done by proving that Ay : Q@ — Mg is a local diffeomorphism.
Therefore, it must be proven that Ay is differentiable, surjective (onto) and injective

(one-to-one).

PROOF. Differentiability of Ays: The kinematic functions of the mechanisms used
to constitute joints of serial manipulators are built from compositions of functions that

L All background material necessary to understand the proof of generality is provided in Appendix A
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FIGURE 2.5. Path Segments on Projections used as Coordinate Charts

are continuously differentiable over their entire domain. Thus, from the chain rule,
they are always continuously differentiable. QED
O
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FIGURE 2.6. Definition of Kinematic Functions

PROOF. Surjectivity of Ay: The workspace manifold is the image of the joint
space through the system forward kinematic function. Therefore, every point xs €
Mg is the image of a point q € Q.

QED a

3.1. Simplified Proof of Injectivity. A simplified proof of injectivity can
be performed taking into account only translation coordinates. This proof will be
generalised later and is only used to ease the understanding of the general proof.

PROOF. Injectivity of Apy: From the rank theorem, if the tangent linear map
of As : @ — AXs has full rank everywhere, then so have Ay : @ — M and
Py : Ms — Xs. Therefore, to prove that the mapping Ay : @ — Mg is locally
one-to-one, all that is needed is to prove that the mapping Ags : @ — AX’s is one-to-one.
See Figure 2.6 for more details.

Define the following:
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Q; C Q is the i** body’s joint space. It is a subset of the manipulator’s joint
space and it contains the joint position information for all the joints from the base to
the current body. It is parameterised by q; defined as follows:

qQ

(2.7)

q;

| & |
Xs; C Xs is a subset of the manipulator’s augmented task space. It contains the

Cartesian position of a frame on every body from the base to the current body in a

reference frame fixed to the base and is parameterised by xg;.

- 1
xclu(fh)

2
xsi(@) = | °% (2.8)

i x5(qi) |

Q: and AXjs; are respectively the joint space and the system motion space asso-
ciated with a manipulator that has the same kinematics as the manipulator being
studied but truncated after its i** body. Figure 2.7 shows an example of such a

truncated manipulator for i = 2.
The system forward kinematic mapping for the i** body is defined as Ag; : Q; —

Xsi.
The position of the i*® body can be derived as follows:

Xo(qs) = X5 (Qi-1) + Xi_1 (&) (2.9)
It is assumed that the forward kinematic function of each individual joint A; :
@ — X_, is injective.
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/

FIGURE 2.7. Sub-manipulator of a kinematically redundant manipu-
lator

Starting from the base of the manipulator and building it until reaching the i*
body.
As) : @ — s, is injective by definition since the mapping from A, : ¢ — x§ is

injective from the basic assumption.

xsi{a1) = xg(a) = x¢(q1) (2.10)

Moving on to the second body in the kinematic chain,

Xs2(q2) =

x&(‘h) — xs1(qu) (2.11)
x5(qz) x3(a2)

let us investigate the injectivity of Ag, : @2 — X’s,. It has already been demon-
strated that the mapping from Ag, : @, — X, is injective. For serial kinematic
chains, it is impossible for the mapping Ag; : Q2 — A’s» to be one to many. This
stems from the basic assumption that \; : ¢; — x!_, is injective Vi. The only possi-
bility for the mapping to be non-injective is then for it to be many to one. However,
since Ag; : @ — Xs; has been proven to be injective and g» has no effect on x,
values of q; are uniquely identified by values of xj. The only condition under which
Asy : Q2 — Xso could be non-injective would be that for a fixed value of q,, different
values of g, map to the same value of x32.
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Given that

x3(q2) = xg(a1) + X7 (g2) (2.12)

if q; is fixed, then so is x}(q;). Since the mapping A2 : o — X3 is assumed to
be injective, then for a fixed q;, different values of ¢ will map to different values of
x2(q2). Therefore As, : Q; — Xs, is injective.

Similarly, for the i#** body in the kinematic chain,

x3(q1)
2
XO(.qz ) Xsi—1(qi-1)
xsi(q:) = : = {(a) (2.13)
x5 H(qi-1) ol
| xp(as) |

Again, it can be demonstrated that the mapping from q;_; to xs;_; is injective.
The only way for the mapping As; : Q; — Xs; not to be injective is for xi(q;) to be
many-to-one with q;_; fixed.

Given that

xb(q) = x5 H(qi-1) + Xi_, (@) (2.14)

If q;., is fixed, then so is x5 '(qi—;). Since the mapping \; : ¢; — x_, is assumed
to be injective, then the mapping As; : Q; — Xs; for any body in the kinematic chain
is also injective. QED

O

To illustrate the bijectivity of Ay : @ — Mg, let us again consider the RP
manipulator shown on Figure 2.1. Recall that the joint space of the manipulator is
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FIGURE 2.8. System Forward Kinematics of a RP Planar Manipulator:
(a) Shade represents q;, (b) Shade represents g,.

a cylinder as shown on Figure 2.2 and that its system motion space is a distorted
annulus, which is topologically thc same as a cylinder as shown on Figure 2.3.

The system forward kinematic function Ag : @ — Xs is shown on Figure 2.8.
The shape of the plot provides information on the system motion coordinates xs and
its shade identifies to which location in joint space every point on the system motion
manifold is mapped. Note that since Xs is four-dimensional, Figure 2.8 actually
shows a projection of Mg on a three-dimensional subset of Xs. This is possible only
because the topology of Mg is not affected by this projection operation.

The surjectivity of Ay : @ — Ms is demonstrated by the fact that every point
on the system motion manifold is associated to a point in joint space. (i.e. there does
not exist a point on the system motion manifold that is not associated to a shade
pair). Furthermore, injectivity of Ay : @ — Mg is obvious by realising that each
point on the surface of Mg is mapped to a unique shade pair, which corresponds to
a unique point (g, ¢2) € Q.

3.2. General Proof of Injectivity. An extension of the proof done for trans-
lations can be done to also incorporate rotations, a similar analysis can be carried-out

using the following definitions.
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The pose of the #** body of the kinematic chain with respect to the base reference
frame can be expressed as:

&= [ % ] (2.15)

where x}, is a set of variables parameterising translation and 8} is a set of variables
parameterising rotations without representation singularities.

The system motion coordinates xg; then become:

[ &olar)

2
xsi(a) = | O (2.16)

I €3(qa) ]
The pose of the 7** body with respect to the i#* body in the kinematic chain can

be expressed using homogeneous transformation matrices as follows:

M:[R{ "5] (2.17)
0 1

For a single joint the mapping \; : ¢; — Al_, is injective.
The pose of the i** body with respect to the base reference frame can be computed

as follows:

Ay=A7AL, (2.18)

The coordinates defining the position and orientation of the i*» body with respect
to the base reference frame &}, can be extracted from the homogeneous transformation

matrix A} as follows:
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&o = n(Ag) (2.19)

Since there are no representation singularities in the variables chosen to express
translation and rotation, the function n(A}) is injective. Each feasible A} is mapped

to a unique &;.

PROOF. Injectivity of Aas: As for the simplified proof, from the rank theorem,
if the tangent linear map of Ag : @ — X5 has full rank everywhere, then so have
Ay : @ - Ms and )y : Ms — As. Therefore, to prove that the mapping
Ay - Q = Mg is locally one-to-one, all that is needed is to prove that the mapping
As : @ — X5 is one-to-one.

So starting from the base of the manipulator and moving outwards one joint at

a time, we can investigate the injectivity of Ag;.

Xsy = [ £l ] (2.20)

and

& = n(Ad(a)) = n(As(q)) (2.21)

Since the mapping A, : ¢, — A} is injective and 1 : A} — & is also injective,
then the mapping from q, to &; is also injective. This means that Ag; : @; — Xs; is
injective.

Moving on to the second body in the kinematic chain, the system motion coor-
dinates are:

1
Xgg = & (2.22)
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where &2 can be extracted from the homogeneous transformation matrix as fol-

lows:

& =n(Aj()) (2.23)

It has already been proven that Ags; : @1 — X, is injective. Therefore, the only
way for the mapping As, : Q@3 — Xs, to be non-injective is for £2(q,) with q; fixed.
Given that

Al(qz2) = Ag(a)A%(g2) (2.24)

if q, is fixed then A}(q,) is constant. Furthermore since A : g — A? is injective
then for a fixed q;, different g, will map to different A2(q,) and to different £2 because
n : A2 — £2 is also injective. Therefore, the mapping As, : @2 — X, is injective.
Similarly for the i** body in the kinematic chain,

&o(au)
&(qe)
xsi(q:) = : = [ xs;l((:)_l) ] (2.25)
G °
| &) |

Again, it can be demonstrated that As; | : Qi—; — Xs;_; is injective. The
coordinates defining the pose of the #* body can be extracted from homogeneous

transformation matrices as follows:

& = n(Ag(a)) (2.26)

where
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Ao(w) = Ag (@-1)AL, (@) (2.27)

For the mapping Ag; : @; — X’s; not to be injective, different values of ¢; would
have to map to the same value of &}, with q;_; fixed. However, if q;_; is fixed then
so is A5 ~!(qi_;). Since ); : ¢; — Al_, is injective as is B : Aj — £, then for a fixed
Q;-, different values of ¢; will map to different values of &, and As; : X; — Qg; is
injective for any body in the kinematic chain.

QED

3.3. Finiteness of Coordinate Charts.

PROOF. Finiteness of Coordinate Charts of Ms: Let us first notice that the
system forward kinematic function Ags : @ — X5 is an embedding. Therefore, M is
a submanifold of Xs with the same topological properties as Q.

The joint space associated with a revolute joint is of the form S! or a closed
connected subset of S!, which are both compact. The joint space associated with a
prismatic joint with finite travel is a closed subset of R!, which is also compact.

Assuming that the robot is composed of prismatic joints with finite travel and
of revolute joints, then by Tychonov’s compactness theorem [36], Q, which is the
product of compact spaces, is itself compact. Since Ag preserves the topological
properties of @, M; is a compact submanifold of Xs.

Let us define the set of coordinate variables {x;} that are composed of all possible
combinations of the p components of X5 taken m at a time, where p is the dimension
of Xs and m is the dimension of Q. Each of the members of the set {x;} span a
submanifold of Xs denoted as &;. The mapping %; : Ms — &; projects the system
motion manifold onto the submanifold &; as depicted on Figure 2.9.

The singularity locus of each t; on the surface of the system motion manifold
M is defined as follows: S; = {xs € Ms | 9, is singular}. Removing the portions
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L]

A3

FIGURE 2.9. Usage of Projections as Coordinate Charts for the System
Motion Manifold

of M that belong to S; cuts the system motion manifold into regions R; which are
open sets of Ms2. Each of these open sets associated with a coordinate set {R;, x;}
defines a coordinate chart that can be used to map a portion of the system motion
manifold. Figure 2.10 shows a system motion manifold Mg cut into regions R; by
the singularity loci S; of the projections ;.

Consider R = J; R;. By definition, a finite subcover can be extracted from any
open cover of a compact manifold. Therefore, it is sufficient to prove that R is an
open cover of M to guarantee that a finite subcover can be extracted from it and to
guarantee that M can be covered by a finite number of coordinate charts using {x;}
as coordinate variables. To prove that R is an open cover, it will be demonstrated
that it is impossible for it not to be one.

Mf a manipulator with limited joint travel, the system motion manifold is a manifold
with a boundary. This means that some of the regions R; will be closed sets. To address this
problem, the set can be extended slightly beyond its closure and made open. As, A; and ¥; are

still defined on this extended open set and this takes care of ensuring that the set of all R; will be
an open cover.
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> AN 7

A3

FIGURE 2.10. Singularity Loci of Projections of System Motion Man-
ifold

If R is not an open cover then 3 x5 € Mg such that x5 € R; Vj. In other words,
x5 belongs to the singularity locus of all %, x5 € S; Vj.

Let us define A; : @ — X; as A; = 9, o Ag and the manipulator Jacobians
associated with Ag and A; as Js and J; respectively.

Since As is an embedding, x5 being a singular point of all ; implies that it is
a singular point of all A; and, therefore, that all Jacobians J; are singular at x3.

Given that the system Jacobian Js is a concatenation of all different rows of all
J;, then Js must also lose rank at x5. However, it was demonstrated that Js always
has full column rank since As is an embedding. Therefore, x3 cannot exist, R must
be an open cover of Mg, a finite subcover of Mg can be found in R and, therefore,
the system motion manifold can be mapped with a finite number of coordinate charts
{R;,x;} using m-dimensional subsets of xs as coordinate variables.

QED O




2.4 SUMMARY

4. Summary

This chapter demonstrates the generality of the proposed approach for the man-
ual teleoperation of kinematically redundant serial manipulators. It has been shown
that it will always be possible to fully control the motion of such a manipulator from
any initial configuration qo to any final configuration q, in a finite sequence of oper-
ations by controlling the velocities associated with a subset of xg. Throughout each
operation, the Jacobian of the augmented forward kinematic map remains invertible.

To develop the proof of generality, the concept of system motion space and system
motion manifold are introduced. The system motion space Xs is the space defined by
the variables defining the pose of every body in the kinematic chain. It is spanned by
Xg, the system motion coordinates. The joint space Q is mapped through the system
forward kinematic function As : @ — Xs to a submanifold of the system motion
space Ms C Xs: the system motion manifold.

The generality of the approach is proven by showing that As : @ — X5 is an
embedding and hence that Ay : @ - Ms C X5 is a local diffeomorphism. This
guarantees that the differential application of Ags, which is related to the system
motion Jacobian, is always of rank equal to the dimension of Q.

The finiteness of the sequence of moves necessary to bring the manipulator from
any initial configuration to any final configuration is proven using the topological
properties of the joint space and the fact that As : Q — Xs is an embedding. It is
shown that an open cover can be generated if projections of Ms onto subsets of Xs
are used as coordinate charts.
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CHAPTER 3

Reduction of the Set of Task/Constraint

Coordinate Pairs

Chapter 2 has proven that if task and constraint coordinates are selected from the
system motion coordinates describing the motion of the redundant manipulator in
Cartesian space, the operator will be able to control the manipulator over its entire
configuration space. However, not all system motion coordinate combinations can be
considered for the formation of task/constraint coordinate pairs®: some combinations
do not lead to full rank augmented Jacobian matrices. Furthermore, the number of
possible choices of task/constraint coordinate pairs for a given manipulator increases
combinatorially with the number of degrees of freedom of the manipulator and the
number of DOF controlled by the operator.

For example, for the Space Station Remote Manipulator System (SSRMS), which
has seven degrees of freedom, the minimum number of system motion coordinates is
42. The operator of the SSRMS can only control six degrees of freedom at any time.
Presuming that the task coordinates are used to describe the motion of any one body
in the kinematic chain, the operator would then be left with the seemingly simple
task of selecting to which body he would attach the task coordinates and picking
appropriate constraint coordinates. If only one constraint is desired, then there exist

!Each set of task coordinates and its companion constraint coordinates form a task/constraint
coordinate pair.
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252 possible combinations of task/constraint coordinate pairs and many of them will
result in a singular augmented Jacobian?. If two constraints are used, then the aumber
of possibilities increases to 4410.

From an operations perspective, this is unacceptable. Unless the set of task/
constraint coordinate pairs is drastically reduced, the operator will be overwhelmed
with too large a selection. Ideally, the operator should only have to pick from a few
choices that will allow him to conduct any operation. However, the reduced set of
coordinate pairs must not lose its properties to allow the operator to control the ma-
nipulator over its entire configuration space. To address this problem, a methodology
was developed to determine whether a reduced set of task/constraint coordinate pairs

still ensures an appropriate coverage of the configuration space.

1. Completeness of the Set of Task/Constraint Coordinate

Pairs

The first step in determining whether a set of task/constraint coordinate pairs is

complete is to provide a proper definition of completeness.

DEFINITION 3.1 (Strict Definition of Completeness). A set of task/constraint co-
ordinate pairs is considered complete if, over all of the configuration space of the ma-
nipulator, there always ezists a coordinate pair such that the rank of the augmented
Jacobian is equal to the number of degrees of freedom of the manipulator.

This definition implies that singularities inherent to the configuration of the ma-
nipulator, such as workspace boundary singularities, must be alleviated by the addi-
tion of constraints. For this reason, if such a strict definition of completeness is used,
the number of task/constraint coordinate pairs required to form a complete set will
likely still be relatively large. If the operator is kept from operating the manipulator

2The operator can attach the task coordinates to any one of seven bodies. For each of these seven
sets of task coordinate selections, he can pick constraint coordinates among the 36 remaining system
motion coordinates. If one constraint equation is used then he has 252 possible selections (7 x 36).
If two constraint equations are used there are 4410 such possible selections (7 x r5%ay)-
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in the vicinity of locations containing rank-deficiencies of the task Jacobian, then the
following alternate definition of completeness can be used:

DEFINITION 3.2 (Loose Definition of Completeness). A set of task/constraint co-
ordinate pairs is considered complete if, for all configurations of the manipulator where
the task Jacobian is not rank-deficient, there always erists a coordinate pair such that
the rank of the augmented Jacobian is equal to the number of degrees of freedom of
the manipulator>.

In this thesis, the second definition of completeness of the set of task/constraint
coordinate pairs is used since it greatly reduces the number of coordinate pairs that are
required to constitute a complete set. The methodology used to determine the com-
pleteness of the set must therefore verify whether there always exists a task/constraint
coordinate pair in the set such that the constraint equations do not introduce algo-
rithmic singularities in the augmented Jacobian matrix at all locations where the task
Jacobian has full rank.

2. Verification of Completeness using Rank-Deficiency Loci

Let us define a set P of task/constraint coordinate pairs as follows:

g e R

The method used to verify completeness of a set of task/constraint coordinate
pairs P makes use of the rank-deficiency loci of the task Jacobian and of the aug-
mented Jacobian J4; associated with every coordinate pair in P.

DEFINITION 3.3 (Rank-deficiency Locus). The rank-deficiency locus of a Jaco-
bian matriz J(q) is defined as the set of all joint values q* such that J(q*) does not

have full rank.

3Rank deficiencies induced by the constraint equations have traditionally been referred to as algo-
rithmic singularities.
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From Chapter 2, we remember that the task Jacobian Jr is a rectangular matrix
with n rows and m columns, where n is the number of task coordinates, m is the
number of joint coordinates and n < m. The augmented Jacobian J, is a matrix
with n 4 r rows and m columns, where r is the number of constraint coordinates and
n+r>m.

The rank-deficiency locus of the task Jacobian Jr is defined as:

St = {q| rank(Jr(q)) < n} (3.2)
and the rank-deficiency locus of the augmented Jacobian J 4; associated with the

. . . . Xr
it* task/constraint coordinate pair € P as:
Xc

Sai = {q| rank(J4i(q)) < m} (3.3)

From Definition 3.2 of completeness, there must always exist an augmented Ja-
cobian that does not introduce rank-deficiencies at locations where the task Jacobian
has full rank. Therefore, the intersection of the rank-deficiency loci of all augmented
Jacobians obtained from P must be a subset of the rank-deficiency locus of the task
Jacobian for a set of task coordinates typically describing the motion of the end-
effector. P is then complete if (), S4; C St-

To provide an initial guess for the construction of a complete set of task/constraint
coordinate pairs, let us define the reduced system motion space X as the space
defined by the union of all task and constraint coordinates in P. X is a subspace
of the system motion space Xs and it is parameterised by xz. The motion of the
redundant manipulator in A% is related to the motion in joint space by the reduced

system motion Jacobian as follows:

vr=Jrq (3.4)
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where vg is the set of variables describing the velocities associated with the
reduced system motion coordinates xg. It includes both translational and angular
velocity components.

Assuming that xp includes all the task and constraint coordinates necessary to
form a complete set, then all augmented Jacobians resulting from coordinate pairs
extracted from xp can be built by selecting a subset of the rows of Jg.

The rank-deficiency locus of the reduced system motion Jacobian Jp is:

Sz = {q| rank(Jr(q)) < m} (3.5)

Realising that J g is built by the concatenation of all rows of the various J 4, then
if a particular location in configuration space q* belongs to Sz, it must belong to
the rank-deficiency loci of all augmented Jacobians that can be built from Jz. This
implies that the rank-deficiency locus of the reduced system motion Jacobian is the
intersection of the rank-deficiency loci of all augmented Jacobians that can be built
from Jg, Sr =();Sai- If, at a given location in configuration space, there exists a
task/constraint coordinate pair taken from Xz such that its Jacobian has full rank,
then this point does not belong to Sg.

Therefore, if Sg C Sr, then there will always exist a task/constraint coordi-
nate pair extracted from xp that will not induce a rank deficiency at manipulator
configurations where the task Jacobian Jr is not already rank-deficient.

Note that the rank-deficiency locus method can as easily be used to verify whether
a set of task/constraint coordinate pairs is complete as per the strict definition of
completeness. In this case, the condition to be verified is that the rank-deficiency
locus of the reduced system motion Jacobian Jp is the empty set.

The main advantage of the usage of rank-deficiency loci to analyse the complete-
ness of a set of task/constraint coordinate pairs is that it provides a global solution
over the entire configuration space Q. Local methods such as the evaluation of the
rank of the augmented Jacobians or the determination of the null space and range
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space of the task and constraint Jacobians may be less computer-intensive per test
but they require that the testing be performed everywhere in the configuration space.
In practice, such a thing is impossible and the testing would have to be limited to a
grid of points in Q. However, the number of points in this test grid increases expo-
nentially with the number of degrees of freedom of the manipulator and it is difficult
to guarantee that any grid fineness will ever be sufficient to ensure that no singular
configurations have been missed.

Numerical methods can also be used to compute the rank-deficiency locus of
Jacobian matrices using root-finding methods. These methods then involve a dis-
cretisation of the solution instead of the joint space as is done for local rank-checking
methods.

In this thesis, it was decided to use symbolic computation to obtain a global
solution that can be expressed in term of the joint values and of the kinematic para-
meters of the manipulator. This provides a solution that is more portable and that
can be used for further analyses but it certainly represents a limitation. There will
undoubtedly be a limit to the complexity of the kinematic equations beyond which
the computation of the rank-deficiency locus in symbolic form will not be practi-
cally feasible. Different techniques can be used to simplify the computation of the
rank-deficiency locus of the Jacobian. For example, Waldron [63] has shown that the
selection of an appropriate reference frame to express the kinematic equations can
greatly simplify the cost of computing the Jacobian. This operation is only a rotation
of the Jacobian matrix and therefore it does not change its rank-deficiency locus. It
can, however, reduce the computing cost of the Jacobian by an order of magnitude,
thus making the simplification of its determinant (or sub-determinant) equation eas-
ier. Further simplifications can be done by judiciously using trigonometric identities.
For example, identities for sums of angles can be used when the manipulator has con-
secutive joints with parallel axes. These manipulations can further reduce the cost of

computing the Jacobian by half.
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These techniques can be used to push the limit of complexity beyond which the
methodology will become impractical but will never eliminate it entirely. Fortunately,
this computation is performed off-line and must be done only once for a given ma-
nipulator since it is only dependent on the kinematic architecture of the manipulator.
There is therefore no hard time limit for the computation of the rank-deficiency loci:
it is sufficient that their determination be feasible.

3. Existing Algorithms for Rank-Deficiency Locus Computa-
tion
The simplest method to compute rank-deficiency loci is in the case of square
Jacobian matrices. For such matrices, loss of rank implies that the matrix becomes

singular and that its determinant is zero. The rank-deficiency locus can be computed

in symbolic form as follows:

Ssq = {q° | det(J(q*)) = 0} (3.6)

For rectangular Jacobian matrices, the determinant method is not applicable
since the determinant is only defined for square matrices. Different algorithms have
been developed to address this problem for kinematically redundant manipulators.

The most simplistic method to study the rank-deficiency locus of the Jacobian
J(q) in such a case is to compute that of the matrix product J(q)J7(q). For a
redundant manipulator, this produces a square matrix whose dimension is equal to
the lower dimension of the Jacobian J(q).

The joint values that make J(q*) rank-deficient will also make J(q*)J”(q*) rank-
deficient. It is therefore possible to study the rank-deficiency locus of J(q) using the
determinant method on the matrix J(q)J7(q).

The main disadvantage of this method is that the algebraic complexity of the
determinant of J(q)J7(q) increases dramatically: each of the terms of this matrix
being the result of the product of two rows of J(q). The determinant equation thus
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obtained is a trigonometric equation typically of order twice as high as any of the
sub-determinants of J(q). It can therefore be very difficult to solve such an equation
in a symbolic manner.

For example, for a planar 3R manipulator, the sub-determinant equations of J(q)
involve at most 2 additions, 8 multiplications and 5 trigonometric function evalua-
tions. The equations are of order 2 in terms of the trigonometric functions. In
comparison, the determinant equation of J(q)J7(q) for such a manipulator contains
13 additions, 84 multiplications, 22 trigonometric function evaluations and it is of
order 4 in the trigonometric functions. It is therefore quite a challenge to compute
the rank-deficiency locus for even such a simple case using this method.

The sub-determinant algorithm is an alternative method that avoids having to
solve the determinant equation of J(q)J”(q). It takes advantage of the fact that
when a rectangular matrix loses rank, all square sub-matrices of the same dimension
as the lower dimension of the rectangular matrix also become singular. The deter-
minant method is used to compute the singularity loci S,q; of each of the square
sub-Jacobians J,4,(q) resulting from all possible combinations of columns of J(q).
The rank-deficiency locus of the rectangular matrix is the intersection of the sin-
gularity loci of all square submatrices S = (); S,q;. Unfortunately, this algorithm
proves unwieldy as the number of square submatrices increases combinatorially with
the number of degrees of freedom of the manipulator and the number of redundant
degrees of freedom.

To address the limitations of the sub-determinant algorithm, Nokleby and Pod-
horodeski [46] proposed an alternate approach based on screw theory. This algorithm
is based on the principle of virtual power and the fact that if a rank-deficiency exists
in a given configuration, then there is a direction in task space along which the ma-
nipulator cannot move, and hence, cannot perform work. The algorithm first extracts
a square submatrix of dimension equal to the number of rows of the Jacobian. The
determinant equation of this square submatrix is solved to find the set of joint values
for which this submatrix is singular. These conditions are substituted back into J(q)
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and the wrench along which the Jacobian cannot generate motion in this singular con-
figuration is found by taking its reciprocal product with each column of the square
submatrix? and equating it to zero. After this wrench is found for the square sub-
matrix, its reciprocal product is then taken with each of the columns of the Jacobian
that were not part of the square submatrix. The reciprocal product equations are
then solved for the joint values that will lead to zero virtual power. The process is
repeated until all columns of the Jacobian have been used. What is then left is the set
of joint values for which the Jacobian of the redundant manipulator is rank-deficient.
This approach is more computationally efficient than the sub-determinant algorithm
but it is limited to task spaces that can be represented by screws and to rectangular

Jacobians with more columns than rows.

4. Singular Vector Algorithm

The singular vector algorithm for determining rank-deficiency loci of rectan-
gular Jacobian matrices is a generalisation of the algorithm of Nokleby and Pod-
horodeski [46], but it uses linear algebra instead of screw algebra. The main advan-
tage of the singular vector algorithm is that it can handle rectangular Jacobians of
any row and column dimension.

From the definition of rank-deficiency, a rectangular matrix with more columns
than rows becomes rank-deficient when its rows are linearly dependent®. The exis-
tence of a rank deficiency then implies that there exists a set of conditions for which a
set of singular vectors can be found such that the dot product of these singular vectors
with all columns of the Jacobian matrix is zero. These singular vectors are the left
singular vectors associated with zero singular values of the rectangular matrix®. The

4Describing the task space using screw coordinates, the columns of the Jacobian matrix are joint
screws parameterising the motion of the task coordinates in terms of each individual joint.

5The same reasoning can be applied to rectangular matrices with more rows than columns except
that then the columns become linearly dependent.

®From the Singular Value Decomposition theorem {68}, given a matrix J € R"*™ of rank r such
that r<n<mthenda; > 02 > ... > o, > 0 such that:
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singular vector algorithm for computing the rank-deficiency locus of a rectangular
Jacobian matrix determines the conditions for which such singular vectors exist.

The methodology will be explained for the case when the Jacobian matrix has
more columns than rows n < m. This corresponds to kinematically redundant ma-
nipulators: there are more joint variables than kinematic equations to be solved.
The rank-deficiency locus then is the set of all values of q such that the rank of the
Jacobian matrix is lower than its number of rows. The methodology can easily be
generalised to the case when the Jacobian matrix has more rows than columns, which
corresponds to an overdetermined system of equations. In this case, the columns of
J(q) are considered instead of its rows and the right singular vectors are used instead
of the left singular vectors.

The first step in the computation of the rank-deficiency locus of J(q) is to extract
n columns out of J(q) to form J,,(q). The remaining columns of J(q) are called the

redundant columns and form J.(q).

Jo@ = [ 51(@) %@ - s@ ] (37)

3@ = 1@ @ - fna@ | (38)

The rank-deficiency (singularity) locus of the square sub-Jacobian is computed
symbolically by equating its determinant to zero and solving for q:

Jv, =0o5u;, i=1,...,r
Jv; =0, i=r+1l,....m
JTII.'=U.'V,', i=1,...,r
JTu; =0, i=r+1,...,n
where v; are the eigenvectors of JTJ, u; are the eigenvectors of JJ7 and o; are the non-zero

eigenvalues of JTJ and JJT. The vectors u; are called the left singular vectors of J and the vectors
v; are called the right singular vectors of J. The left singular vectors of J that correspond to zero

singular values also span the null space of JT.
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S =8, ={q"| det(J,,(q")) =0} (3.9)

The rank-deficiency locus of the square sub-Jacobian is then refined iteratively
by substituting each q} € S,, and finding the conditions that further reduce the rank
of J,,(qf). This is done by triangularising the rank-deficient matrix J,,(q;) using
Gaussian elimination. The matrix thus obtained, JA(q), is upper-triangular and its
last row is composed entirely of zeros. The conditions that further reduce the rank
of J.,(q;) are found by applying the Singular Vector Algorithm recursively to the
largest full row-rank submatrix of Ja(q) and finding its rank-deficiency locus. All
sets of rank-deficiency conditions thus found are recorded in S,, as additional solution
branches.

For each individual branch of the solution q; € S,,, the rank-deficiency conditions
are substituted back into J,,(q) and the left singular vectors associated to the zero

singular values of the singular square sub-Jacobian are computed as follows:

m‘(q)=[w1(q) u2(q) .. in(q) ]T (3.10)
such that
[w'(q)]Tqu(q,?)=[0 0 ... 0] (3.11)
and
w*(q)-u;*(q) =0 fori#j (3.12)

The vectors u;*(q) span the null space of [J4(q)]7- They are then arranged in

a matrix as follows:
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U@={uw@ w@ - wa] (3.13)

where k corresponds to the number of zero singular values of the matrix J,.{(q}).
The singularity conditions q; are then substituted into J,(q) and a new matrix is gen-
erated by multiplying the matrix U*(q) with the redundant columns of the Jacobian

as follows:

I(q) = (U (@]"3-(a) (3.14)

The rank-deficiency locus S is refined by repeating the algorithm recursively to
find the conditions under which J¥(q) also loses rank. A tree of solution branches
is thus formed; each solution branch of the singularity locus of J.,(q) leading to
potentially many sub-branches being rank-deficiency loci of J(q). The recursion

continues until one of three conditions is met.

(i) The rank-deficiency locus of J¥(q) is the empty set: In this case, the set of
solution branches of rank-deficiency loci being investigated are not part of the
rank-deficiency locus of the overall Jacobian matrix.

(ii) The number of singular vectors, k, in U*(q) is larger than the number of
columns of J,(q): In this case, the set of solution branches followed up to this
point is obviously part of the rank-deficiency locus of the overall Jacobian ma-
trix because the number of redundant columns is insufficient to cancel entirely
the null space of [J,q(q)]T.

(iii) The last redundant column of the matrix J(q) has been used in J,(q): this
means that there are no more possible refinements of the rank-deficiency locus
S for the particular set of solutions branches that has been followed.

In each of these cases, the algorithm updates the rank deficiency locus of J(q)
accordingly. If a solution was found, then the intersection of the set of rank-deficiency
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loci {q*} € S, of the terminal branch and that of all of its parents is added to the
rank-deficiency locus S of the overall Jacobian. Otherwise, the branch is simply
ignored. The algorithm then backtracks in the solution tree until it encounters a
branch of the rank-deficiency locus that has not yet been investigated.

After all branches of the solution tree have been investigated, S then contains
the entire rank-deficiency locus of the rectangular Jacobian’.

This algorithm is computationally very efficient since it applies to matrices of
rapidly decreasing dimension. It uses only once a square submatrix J,,(q) whose
dimension is equal to the smallest dimension of J(q). The dimension of the matrices
at the next recursion decreases to the dimension of the null space of J,,(q;).

Furthermore, the algebraic complexity of the determinant equation of J,,(q) can
be minimised amongst all possible combinations of columns of J(q) at the cost of
computing the determinant equations of all square submatrices of J(q). The cost
of this operation is combinatorial in the number of columns and rows of J(q) but it
only involves additions, multiplications and algebraic simplifications. In most cases,
this step is well worth the computational expense since it is shorter than solving the

determinant equation of an arbitrary J,(q).

5. Application of the Singular Vector Algorithm to a Redun-
dant Planar Manipulator

This case illustrates the application of the Singular Vector Algorithm. The rank-
deficiency loci thus obtained are used to find a reduced system motion space from
which can be extracted a complete set of task/constraint coordinate pairs in the sense
of Definition 3.2.

Consider a three-degree-of-freedom planar manipulator as shown on Figure 3.1.
It has three revolutc; joints with parallel axes whose range of motion is 0 < ¢; <
2r, 1 =1...3.

TFor more details, refer to the flowcharts of the Singular Vector Algorithm provided in Appendix E.
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FIGURE 3.1. 3R Planar Manipulator

Its joint space is a torus of dimension 3. Presuming that the operator can control
the velocity of any point on the manipulator in the plane, then the task space is two-
dimensional and the manipulator is considered kinematically redundant. Suppose
that a set of task coordinates are defined as the position of the end-effector (z3, y3)
then the task Jacobian is defined as follows®:

Lysin(gz +gs) + Losin(gs)  Lasin(gs) O } (3.15)

Jr(q) =
L, cos(gz + g3) + Lacos(gs) + Ls  Lacos(gs) L3

The rank-deficiency locus of the task Jacobian can be computed using the singular
vector algorithm. The first step is to select a square submatrix out of J7(q) and to
compute its singularity locus. For simplicity, the last two columns of the task Jacobian

are selected.

(3.16)

Lysin(gs) 0
Lycos(gs) Ls

Jaq(‘l) = [
and

8To reduce algebraic complexity, the Jacobian is expressed in the reference frame attached to the
proximal end of the third link
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Q) = Ly sin(ge + ¢3) + Lasin(gs) (3.17)
Ly cos(q + @3) + Lacos{gs) + Ls

The determinant equation of J,,(q) is:

LyL3sin(gs) =0 (3.18)

The singularity locus of the square submatrix is then

=0
S,.,={ & (3.19)
G=7

Substituting g3 = 0 into J,(q) and J.(q), we obtain:

Jsu(a®) = [ 1(,), LO ] (3.20)
1.(q") = Lsin(er) (3.21)
Lycos(g) + L + L3

The singular vector of J,,(q*) corresponding to its zero singular value is u =
T
[ 10 ] . Taking the product of u” with J,.(q*) gives a one-by-one matrix whose

singularity equation is:

Lysin(g) =0 (3.22)

and whose singularity locus is:
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=0
.s.,,:{"2
@=T

(3.23)

Similarly, setting ¢z = 7 yields the following rank-deficiency loci for the task

Jacobian:
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(3.24)

Introducing constraint equations based on the position (z2,,Y2,,) of the mid-

point of the second link, a reduced system motion space can be built as Az =

{Z3,¥3, Z2m> Y2,n }- The reduced system motion Jacobian then becomes:

Jr(q) =

R

L, sin(g + ¢3) + L7 sin(gs)
Ly cos(g2 + g3) + L2 cos(ga) + L3
Lysin(g: + ¢3) + § Lo sin(gs)
L; cos(qz + g3) + 3L2cos(gs)

Lysin(gs) O |
Lycos(gs) L
3L2sin(gs) 0

3Lzcos(gs) 0 |

(3.25)

To find the rank-deficiency locus of Jp(q) the singular vector algorithm is once

again used. However, in this case, since Jz(q) has more rows than columns: right
singular vectors are used instead of the left ones. Selecting the last three rows of
Jr(q) to form J,,(q), we obtain the determinant equation whose algebraic complexity

is lowest:

Jaq(‘l) =

52

Ly cos(ga + ¢3) + Lacos{(gs) + L3
L, sin(gz + gs) + 3 L2 sin(gs)
L; cos(gz + ¢s) + 5Lz cos(gs)

Lycos(gs) Ls
3Lsin(gs) 0
3Lacos(gs) 0

(3.26)
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3@ = | Lisin(gs + as) + Lysin(as) Lysin(as) O | (3.27)

The determinant equation of the square submatrix is:

> LiLyLssin(gs) = 0 (3:28)

The singularity locus of the square submatrix is then

=0
Suq = { % (3.29)
=7

Substituting ¢» = 0 into J,(q) and J,.(q), we obtain:

(Ly + Ly)cos(qs) + Ls  Lacos(qs) Ls
Ju(q’) = (Ly + jL2)sin{gs)  $L,sin(gs) O (3.30)
(L1 + 3Lo)cos(gs)  3Lacos(gs) O

3.(@) = [ (L + Lo)sin(gs) Losin(gs) 0 | (3.31)

The singular vector of J,,(q®) corresponding to its zero singular value is v =
T
[ 1 -2utlz -’"—L’—%&lﬂé’- ] . Taking the product of J,(q*) with v gives a one-
by-one matrix Jt(q) whose singularity equation is:

L,sin(g3) =0 (3.32)

and whose singularity locus is:
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=0
Suq = { = (3.33)
B=7

After having investigated the first branch of the rank-deficiency locus of J,.(q),
the overall rank-deficiency locus of Jg(q) is:

=0; =0
Se=4 ® b (3.34)
@2=0, gg=m

Repeating the algorithm for ¢ = 7, the following rank-deficiency locus is obtained
for the reduced system motion Jacobian:

rq2=0; g3=0
=0; =7
Se={ % % (3.35)
@=m g=0
({ 2=T, @G3=T7

which is exactly the same as the rank-deficiency locus of the task Jacobian. There-
fore, the coordinates defining the position of the end-effector and that of the middle
of the second link constitute a complete set of task/constraint coordinates.

Sr C St = AR is complete. (3.36)

From this complete set, the following sets of task/constraint coordinate pairs can
be picked.



3.6 RECURSIVE SUB-DETERMINANT ALGORITHM

[ ]
z - -
xr=| " | x¢=| zm | (3.37)
| U3 | )
R
T3 [ T
Xr = Xc = i Yom (338)
= y3 - ]
Tom T
xr=|""| xe=|"° (3-39)
Yom | ¥s

Note that the coordinate pair shown in eq. (3.39) corresponds to a self-motion
of the manipulator: the end-effector position is fixed and the operator controls the
position of the mid-point on the second link. For this combination of task/constraint
coordinates, the system of equations is over-determined and it will generally be im-
possible for the manipulator to follow exactly the command. In such a case, the
inverse kinematics algorithm described in Appendix B will command the manipula-
tor to move in such a manner as to minimise the difference between the commanded
velocity and the manipulator response in task space while satisfying the constraint

equations.

6. Recursive Sub-Determinant Algorithm

In some cases, the Singular Vector Algorithm can fail to find a solution because
the algebraic complexity of the singular vectors u;*(q) is such that the simplest sub-
determinant of Jt(q) is unwieldy or even intractable. To address this limitation
of the Singular Vector Algorithm, an alternate algorithm was developed to com-
pute the rank-deficiency loci of rectangular Jacobian matrices. The Recursive Sub-
Determinant Algorithm is computationally less efficient since it is applied recursively
to matrices of the same dimension as the Jacobian matrix under investigation. On the
other hand, it is much more robust and it can handle many cases where the singular

vector method fails to find a solution.
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The first step in the computation of the rank-deficiency locus of J(q) is to extract
out of it a square submatrix J,(q) of the same dimension as the smaller dimension
of J(q). This submatrix is selected amongst all possible combinations of columns
to provide the sub-Jacobian whose determinant equation is the easiest to solve yet
not trivially equal to zero. An empirical criterion such as the sum of the number of
additions, multiplications and function evaluations in the determinant equation can
be used as a practical measure to select J,,(q).

The rank-deficiency (singularity) locus of J,,(q) is then computed symbolically
by equating its determinant to zero and solving for q:

Siq ={q" | det(J.4(q")) = 0} (3.40)

Each branch of the rank-deficiency locus is then substituted back into the original
Jacobian matrix and the algorithm is applied recursively to J(q*) until it reaches one

of the following termination conditions:

(i) The rank-deficiency locus of J,,(q®) is the empty set: It is impossible for
the square sub-Jacobian to be rank-deficient. In this case, the set of solution
branches of rank-deficiency loci being investigated is not part of the rank-
deficiency locus of the overall Jacobian matrix.

(ii) J(q*) is rank-deficient: In this case, the set of solution branches being investi-
gated is part of the rank-deficiency locus of the overall Jacobian matrix.

In each of these cases, the algorithm updates the rank deficiency locus of J(q)
accordingly. If a solution was found, then the intersection of the rank-deficiency
locus S,, of the terminal branch and that of all of its parents is added to the rank-
deficiency locus S of the overall Jacobian. Otherwise, the branch is simply ignored.
The algorithm then climbs back up the solution tree until it encounters a branch of
the rank-deficiency locus that has not yet been investigated.
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After all branches of the solution tree have been investigated, S then contains
the entire rank-deficiency locus of the rectangular Jacobian®.

The main disadvantage of this method is that it is combinatorial in nature. At
every recursion step, the algebraic complexity of all sub-determinants of J(q) is evalu-
ated to find the square sub-Jacobian J,,(q) whose determinant equation is the easiest
to solve. For example if J(q) has dimension n x m with n < m, then the determinant

equations of = n x n square submatrices of J(q) must be evaluated. Fora 6 x 7

'm -1
Jacobian there( are )seven 6 x 6 square submatrices. If J(q) has dimension 6 x 8 then
there are 28 such square submatrices.

Fortunately, since the reduction of the system motion space is to be performed
only once, off-line, for any manipulator, the time required to compute the rank-
deficiency locus for a given set of reduced system motion coordinates is not an issue.

The most important advantage of this algorithm is its robustness: it is more likely
to find the rank-deficiency locus of manipulators whose kinematics is such that other
methods will fail. Although nothing guarantees that the algebraic complexity of the
sub-determinants of J(q®) will decrease as more rank-deficiency conditions are sub-
stituted into it, this is generally the case for manipulators with mutually orthogonal
sequential joints. The singularity conditions q* for J,,(q) then often reduce to a joint
value being equal to zero or §. In such a case, the algebraic complexity of the overall
Jacobian reduces drastically at each recursion level, thus increasing the odds that the

sub-determinant equations will become simpler.

7. Application of the Recursive Sub-Determinant Algorithm

to a Redundant Planar Manipulator

To demonstrate the recursive sub-determinant algorithm, let us apply it again to
the case of the 3R planar manipulator that was used in Section 5. Recall that the
task Jacobian of this manipulator is:

9For more details, refer to the flowchart of the Recursive Sub-Determinant Algorithm provided in
Appendix E.

57



CHAPTER 3. COORDINATE REDUCTION

L\ (sin(qo) cos(gs) + cos(gz) sin(qs)) + L2sin(gs)  Lgsin(gs) 0
Ly(cos(gs) cos(gs) — sin(gz) sin(gs)) + L2 cos(gs) + Lz Lacos(gs) L
(3.41)

Jr(q) =

The rank-deficiency locus of the task Jacobian can be computed using the re-
cursive sub-determinant algorithm as follows. The first step is to select a square
submatrix out of Jr{q) and to compute its singularity locus. Evaluating the deter-

minants of the square submatrices of J7(q), we obtain

L, L, sin(qp) — L2 Lssin(gs) =0 (3.42)
LyLs3sin(gs) + Ly La(cos(ge) sin(gs) + sin(gz) cos(gs)) =0 (3.43)
LyLysin(gs) =0 (3.44)

for columns combinations 1 —2, 1 — 3 and 2 — 3 respectively. Obviously, from the
above three equations, eq. (3.44) is the simplest to solve. J,,(q) is then selected as:

Lysin(e) 0 ] 3.45)

J =
=@ [ Lycos(q) La

and its singularity locus is:

=0
Suq = { k (3.46)
B3=7

Substituting g3 = 0 back into J7(q), we obtain:

Lysin(gs) 0 0 ] .

Jr(q*) =
() [Llcos(qz)+Lz+Ls Lo Ly
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Again, evaluating the determinants of the square submatrices, we obtain:

L,L;sin(ge) =0 (3.48)
LyLysin(g;) =0 (3.49)
0=0 (3.50)

for columns combinations 1 — 2, 1 — 3 and 2 — 3 respectively. We then build a
square submatrix from the first and third columns of J7(q) whose singularity locus

is:

=0
s,.,={ ® (3.51)
@p=r

Applying the algorithm once again, we substitute ¢, = 0 into J7(q*) obtaining:

Jr(q’) = 0 09 (3.52)
Ly+Ly+Ls L, L3

which is obviously a rank-deficient matrix. The rank-deficiency locus of Jr(q) is
then updated to incorporate the set of joint values which led to this condition:

S:{q2=0; =0 (3'53)

Having reached a termination condition, we go back up a recursion level and look
for a solution branch that has not yet been tested. We then apply the algorithm
again with the condition go = w. As for the condition g» = 0, this yields again a
rank-deficient task Jacobian. Therefore, the rank-deficiency locus of J7(q) is again
updated.
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S= (3.54)

@2=0 ¢=0
=7 @=0
Having once again reached a termination condition, we go back up a recursion
level. Since there are no branches that have not yet been investigated at this level we
go up one more level of recursion. The process is then repeated for ¢z = 7 until all
solution branches have been investigated, at which point, the rank-deficiency locus of

the task Jacobian is then:

(qa=0; =0
@2=0 @=m=
@=7 qg=0
| 2=7;, @z=7

%)
[

(3.55)

which is the same as the solution that was found using the singular vector algo-
rithm.

8. Summary

This chapter provides a methodology to extract out of xg a reduced set of
task/constraint coordinate pairs. This is necessary to avoid overwhelming the op-
erator with too large a number of coordinate choices.

The set of task/constraint coordinate pairs P is considered complete if amongst
all coordinate pairs in P, there always exists a pair such that, at every configuration
where the task Jacobian is not rank-deficient, the rank of the augmented Jacobian is
equal to the dimension of the joint space.

The completeness of P is analysed by ensuring that. the intersection of the rank-
deficiency loci of the augmented Jacobians associated with each coordinate pair in P
is a subset of the rank-deficiency locus of the task Jacobian!®.

10The pose of the end-effector is typically used as the set of task coordinates.
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3.8 SUMMARY

To provide a starting point for the construction of P, the reduced system motion
space Xr C As is defined. The rank-deficiency locus of the reduced system motion
Jacobian is the intersection of the rank-deficiency loci of all augmented Jacobians
that can be built from Jg, Sk = [);Sa;. Therefore, if Sg C Sr, then there will
always exist a task/constraint coordinate pair extracted from xp that will not induce
a rank deficiency at manipulator configurations where the task Jacobian Jr is not
already rank-deficient.

To analyse the rank-deficiency loci of rectangular Jacobian matrices, two novel
algorithms are introduced: the Singular Vector Algorithm and the Recursive Sub-
Determinant Algorithm. These two algorithms are complementary to each other, the
former being computationally more efficient, the latter being more robust. A simple
kinematically redundant planar manipulator is used as a sample case to illustrate the
application of each algorithm and the generation of a reduced system motion space.
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CHAPTER 4

Sample Cases

The purpose of this chapter is to generate complete sets of task/constraint coordinate
pairs for redundant manipulators using the concepts introduced in Chapter 2 and the
algorithms developed in Chapter 3. Simple examples will first be used to illustrate
the application of the methodology in detail.

To demonstrate the applicability of the algorithms to existing space manipulators,
reduced system motion spaces will be generated for realistic examples such as the
Space Station Remote Manipulator System and a slightly simplified version of the
Special Purpose Dextrous Manipulator.

1. 4R Spherical-Shoulder Manipulator

Let us first consider the case of a 4R spherical shoulder manipulator with four
revolute joints arranged in a manner similar to the first four joints of SSRMS. The
joints are arranged in a cluster of three joints at the shoulder in a roll-yaw-pitch
configuration followed by an elbow pitch joint as shown on Figure 4.1. Note that
unlike SSRMS, a spherical shoulder and an elbow joint with no offset are assumed.

Let us also assume that the operator is limited to controlling the velocity of a
point in three-dimensional space. This manipulator is then considered kinematically
redundant under manual teleoperation since it has four degrees of freedom whereas

the operator can only control three simultaneously. Assuming that one of the sets of
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FIGURE 4.1. 4R Spherical-Shoulder Manipulator

task coordinates to be controlled by the operator is the position of the end-effector

(z4, ¥4, 24), the task Jacobian associated to this set of coordinates is!:

L382 S84 0 L384 0
JT = L3C2 83 + L402834 —L3C3 - L4Ca4 0 0 (41)
—L3sycq 0 —Licy — Ly —Ly4

where ¢; = cos(g;), s; = sin(g;), ¢;; = cos(q; + ¢;) and s;; = sin(g; + ¢;)-
Computing the rank-deficiency locus of Jr using the singular vector method, one
obtains:

Sp={ #=0" 4.2)
g2 = +£5; Lscos(gs) + Lycos(gz +q) =0
The first rank-deficiency locus g4 = 0, 7 corresponds to workspace boundary sin-
gularities where the manipulator is either fully stretched or fully folded on itself. The
next set of rank-deficiency loci occur when the axes of the first and third joints are
We cost of computing the Jacobian, it is expressed in a reference frame attached to frame
%
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(a)

(b)

FIGURE 4.2. Singular Configurations of a 4R Spherical-Shoulder Ma-
nipulator: (a) ¢4 = =, (b) ¢2 = 5 and Lz cos(gs) + L4 cos(gs + g4) = 0

aligned and the end-effector is lying on the axis of the second joint. These configura-

tions are shown on Figure 4.2.

In an attempt to find a complete set of task/constraint coordinate pairs, con-

straints on the position of the elbow of the manipulator can be added to the task

coordinates to construct a reduced system motion space Xr = {3, y3, 23, Z4, Y4, 24}-

The reduced system motion kinematic equations then take the following form:

T4
Ya
24
I3
U3

Z3

L3ss s4 0
L3cy 83+ Lycasas —Lacy — Lacay
—L3s5¢4 0
L339 84 0
Lacs 33 —L3es
—L3sacq 0

Las,
0
~Lzcy — Ly
L3s,

0
0
~L,

@

da

(4.3)
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FIGURE 4.3. Algorithmic Rank-Deficiency Locus Configurations

The rank-deficiency locus of the reduced system motion Jacobian J g as expressed
in eq. (4.3) is

sn={"‘=°"’ (44)
g =%3

Obviously, Sr  St. There is an additional set of rank-deficiencies at g; = +£3:
the self-motion induced by the first and the third joint in the shoulder turning at the
same speed in opposite directions does not result in any motion of the elbow. This
configuration is shown on Figure 4.3

Interestingly, this rank-deficiency is one that is also present if the pitch plane
angle constraint is used: a constraint is set on the angular velocity of the pitch joints
of the arm around a line joining the centre of the shoulder joint cluster to the tip
of the manipulator. The following rank-deficiency locus analysis demonstrates that
the self-motion of the manipulator at the configurations g2 = +5 does not affect the
pitch plane angle a.

Let us define the vector r,, going from the origin of frame F3 to the origin of
frame Fj and express it in the reference frame attached to the third joint.

Ipp = [ L3+ Lycos(gqs) O —Lgsin(qa) ]T (4.5)

The Jacobian of rotation of the pitch plane about rp, is obtained by premulti-
plying the Jacobian of rotation corresponding to the elbow frame by the directional
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FIGURE 4.4. Definition of Alternate Coordinates for Constraint Equa-
tions on a 4R Spherical Shoulder Manipulator

cosine associated with r,,. Figure 4.4 shows the geometric interpretation of the pitch

plane angular velocity and axis of rotation.

— Lica+La Las3y+Lysaq
J““[ﬁ%jyﬂ - OO] (4.6)
where
liegpll = VLa? + Lg® + 2L3Lgeq (4.7)

Conducting a rank-deficiency locus analysis on the reduced system motion Ja-
cobian obtained by concatenating Jr as per eq. (4.1) and Jc as per eq. (4.6), the
following rank-deficiency locus is obtained:

SR={Q4=01” (4.8)
g ==%3
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which is the same as that of the augmented Jacobian using the elbow position as
constraint equations.

To remove the unwanted rank-deficiency at go = +3 let us add a constraint on
the projection of the angular velocity of the second body in the pitch plane (See
Figure 4.4). Let us define this velocity as 8. The constraint equations then become:

& (Laca+Lecza)ea  Lasz+Lysy 00
| = firppll lresll q (4.9)
B8

S2 0 00
Conducting a rank-deficiency locus analysis on Jg, the following is obtained:

q4 = 0) T
S, o (4.10)
g = +%; Lscos(qs) + Lycos(gs +q4) =0

which is exactly the same as that of the task Jacobian. Similarly, if the constraint
on 3 is added to the reduced system motion space consisting of the position of the
end-effector and of the elbow, the rank-deficiency locus of the new reduced system

motion Jacobian becomes:

=0, m; =0,
Sp = /2] m ¢ T (4.11)
=0 m g==3

which is a subset of Sy. Complete sets of task/constraint coordinate pairs can
therefore be extracted from the reduced system motion spaces Xz = {z4, ¥s, 24, @, B}
and Xr = {z3,¥3, 23, T4, Ys, 24, B}. One possible set of task/constraint coordinate
pairs based on the former reduced system motion space could be:




4.1 4R SPHERICAL-SHOULDER MANIPULATOR

3 T
T4
Xr=1vys | xc=[a]
24
7
Xr= 1|y |; xC=[6]
4 |
- h
7
]
XT=[a i Xe= | Vs
%
Z4
xT:[ﬂ]v Xc=| u
24

(4.12)

(4.13)

(4.14)

(4.15)

In most configurations, the pitch plane angle a leads to much more predictable

motion than the constraint on 3. The operator would then, in most cases, either
control the velocity of the end-effector and fix the pitch plane angle or fix the position
of the end-effector and control the rotation of the pitch plane. The other sets of

task/constraint coordinates should only be used when the pitch plane augmented
Jacobian is rank-deficient or ill-conditioned (¢ =~ *%). In this configuration, the
constraint on J leads to relatively predictable motion of the manipulator since the

instantaneous pitch plane angular velocity is close to zero during a self-motion of the

manipulator.

Alternatively, the operator could use the following sets of task/constraint coor-

dinate pairs:
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T4
xr=| | xe=[z|or[w]or|a] (4.16)
-34
I4
xr=|u|; xc=| 8] (4.17)
-24-
-.I:;T -.1.74-
Xr=\|ys | XC=| s (4.18)
.23.1 .Z4~
o
xT=[ﬂ]; Xc=| U (4.19)
[ %]

Again, in most cases, constraints on elbow position result in more predictable
motion and would likely be used for most operations. Note that for the case where
X = [ Tz Y3 23 ]T and x¢c = [ Ty Ys 24 ]T, the system is over-constrained and
cannot follow an arbitrary command given by the operator. In such conditions, an
inverse kinematics algorithm such as the one presented in Appendix B can be used to
minimise the error between the response and the command while ensuring that the

constraints are exactly met.

2. Simplified SSRMS without Joint Offsets

As a second simple example, let us consider adding a spherical wrist to the tip of
the manipulator used in Section 1. The manipulator thus obtained (See Figure 4.5)
has the same topology as the SSRMS except that the absence of offsets at every joint
greatly simplifies the algebra of the Jacobian. The coordinate frames used to define
the kinematic equations of this manipulator are the same as those of SSRMS (shown
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FIGURE 4.5. Simplified SSRMS

on Figure 4.7) except that the origins of frames Fj, F> and F; are coinciding as are
those of frames Fs, Fg and F;. The length of the two booms is equal and set to L,.
It is assumed that one set of coordinates to be controlled by the operator is
the pose of the end-effector, £. The recursive sub-determinant algorithm has been
used to analyse the rank-deficiency locus of the task Jacobian and to find a reduced
system motion space such that the reduced system motion Jacobian Jz is not rank-
deficient at locations where the task Jacobian is not itself already rank-deficient. The

rank-deficiency locus of the task Jacobian of this manipulator is as follows:

(‘I4=077"

=+Z. =4z
Sp =1 G2 21 96 2 (4.20)

@=%5 q@=7-2g

[ e =%F @u=7—2g

The configurations at which the task Jacobian is rank-deficient are shown on
Figure 4.6. The configurations ¢4 = 0 and g = 7 are workspace boundary rank-
deficiencies where the elbow is either fully extended or fully folded. Note that since all
joints are assumed to be without offsets, the configuration at g; = 7 is not physically
achievable. The rank-deficiency locus at g2 = 3 and g¢ = +7 represents the case

when the axes of five out of seven joints of the manipulator are parallel. Both the
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wrist and the shoulder joint clusters can effect a self-motion as was already described
for the 4R Spherical Shoulder Manipulator: the self-motion manifold is therefore
two-dimensional. Since the manipulator has only one more degree of freedom than
is necessary to completely define the task coordinates, then the task Jacobian is
necessarily rank-deficient.

The rank-deficiency locus at ¢, = +5 and g4 = T — 2¢; represents the case when
the shoulder roll and pitch joints are co-axial and the centre point of the wrist lies
on the axis of the shoulder yaw joint. In this configuration, the manipulator cannot
move its wrist centre point in a direction perpendicular to the pitch plane. Finally,
the rank-deficiency locus where g¢ = £ and ¢4 = 7 — 2¢s is the symmetric equivalent
of the previous one except that, in this case, it is the centre point of the shoulder
joint cluster that is lying on the axis of the wrist yaw joint.

If the reduced system motion space is built by adding a constraint on the pitch
plane as was done for in Section 1, then the rank-deficiency locus of the reduced

system motion Jacobian becomes:

q = Ov T
SR=¢ @= +Z (4.21)
g% = %3

Clearly Sg  Sr. The rank deficiency loci ¢z = £% and g = +5 allow self-
motions of the manipulator that do not influence the pitch plane angle. The self-
motion of the manipulator at go = 7 is that of the shoulder joint cluster as was
already described for the 4R Spherical Shoulder Manipulator and the self-motion at
ge = %73 is the equivalent in the wrist joint cluster.

In the same fashion as was done in Section 1, a reduced system motion space
can be built instead by augmenting the pose of the end-effector with the position
of a point on the elbow. For convenience, the origin of frame Fy is chosen. The

resulting rank-deficiency locus is exactly the same as for the case of the pitch plane
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(d)

(c)

FIGURE 4.6. Rank-Deficient Configurations of the Task Jacobian of
the Simplified SSRMS Model: (a) g4 =0, (b) g6 = 3, 4 = 7 — 2gs, (c)
R=5u=7-2q¢,(d)p=0¢6=3

constraint. This is not surprising as the self-motions that do not influence the pitch
plane orientation also do not cause any motion of the elbow. To alleviate this problem,
a reduced system motion space can be built by adding constraints on the projection
onto the pitch plane of the angular velocity of frames F; and Fg (defined as 8 and 4
respectively).
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The reduced system motion Jacobian is then a 11 x 7 matrix. Applying the
recursive sub-determinant algorithm to it, we obtain the following rank-deficiency
locus for the reduced system motion space:

'Q4=0,1r; ©2=0rm ¢g=0r7r

=0,m g=0,m ¢==x3
) Q4 ] ) s : (4.22)
@u=0,m @==3 ¢g==3

{ 9a=0,m @a==%3; ¢=07

Clearly, S C Sr. The reduced system motion space A consisting of the pose of
the end-effector, the position of the elbow and the projection of the angle of frames
F; and Fg in the pitch plane is complete as per Definition 3.2 of Chapter 3. From
this Az, the following set of task/constraint coordinate pairs could be used:

xT=T£:;xC=[z4]°r:y4]°r[Z4] (4.23)
xr=:£:; xC=:ﬂj (4-24)
x-r=:$]; xC=:‘}'; (4-25)
XT=[x4:; xC=:£ﬂ (4.26)
xr=[p]; xc=¢] (4.27)
xr=[~]; xo=[¢ (4.28)

where £ ([ x 6 ]T) describes the pose of the end-effector and x4 = [ Ty Ya 24 ]T
is the position of the origin of reference frame F; on the elbow. Again, in most
cases, the constraints on elbow motion result in much more predictable motion
than do the constraints on $ and . In most situations, the operator would typi-
cally add a constraint on elbow position and control the end-effector or fix the end-
effector pose and control the elbow position. Only in configurations where this set of
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FIGURE 4.7. Frame Definition for SSRMS Kinematics

task/constraint coordinates leads to a rank-deficient or ill-conditioned augmented Ja-
cobian (¢, or g6 =~ £75), should the operator use the alternate sets of task/constraint

coordinate pairs.

3. SSRMS

To demonstrate the applicability of the methodology to existing space manipu-
lators with more complex kinematic equations, let us now consider the case of the
Space Station Remote Manipulator System. The SSRMS is a seven-degree-of-freedom
manipulator with three shoulder joints arranged in a roll-yaw-pitch configuration, an
elbow pitch joint and a wrist joint cluster identical to the shoulder cluster. Figure 4.7
shows the SSRMS in its zero configuration and the coordinate frames used to derive
the kinematic equations.

Since the SSRMS has offsets at all of its joints, the algebraic complexity of its
kinematic equations can be much superior to that of the cases considered so far.
However, the computation of the rank-deficiency locus of the SSRMS can be greatly
simplified by carefully picking the reference frames used to express the kinematics in
a manner that minimises the number of joint offsets and by expressing the Jacobian

in the appropriate reference frame.
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For example, using traditional frame placement, no trigonometric identities and
expressing the Jacobian in the base frame, the cost of computing the Jacobian asso-
ciated with the motion of the end-effector is 317 additions, 1455 multiplications and
14 trigonometric function evaluations.

Selecting reference frames as shown on Figure 4.7, the cost of computing the
same Jacobian is reduced to 288 additions, 1346 multiplications and 14 trigonometric
function evaluations.

Expressing the Jacobian in a frame attached to the elbow of SSRMS further
reduces the cost to 76 additions, 232 multiplications and 14 trigonometric function
evaluations.

Finally, the cost of computing the Jacobian could be reduced to 73 additions, 91
multiplications and 18 trigonometric function evaluations by making use of trigono-
metric identities and the fact that SSRMS has three consecutive parallel joints. The
solution of sub-determinant equations would then require two additional constraint
equations, whose computing cost is only three additions, to take into account the two
variables introduced for the sums of the angles of the parallel joints. However, the
rank-deficiency locus computation algorithms do not work as well if such trigonomet-
ric identities are used. This is due to the fact that the sub-determinant equations can
be simplified much more if the trigonometric identities are not used.

Despite all of these simplifications, the computation of the rank-deficiency locus
Sr of the SSRMS’ task Jacobian Jr is still unwieldy. Fortunately, it is also un-
necessary. To verify whether the rank deficiency locus of the reduced system motion
Jacobian S is a subset of St, the rank-deficiency conditions of Sk can be substituted
into Jr, whose rank can then be checked to ensure that it is indeed rank-deficient.
This method has been used to verify the completeness of various reduced system mo-
tion spaces. The results of this analysis are provided in Appendix C and summarised
below.

In the SSRMS flight control software, redundancy resolution is done using con-
straints on the motion of either the shoulder roll or the shoulder yaw joint. This
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can be implemented either using rank-augmentation or rank-reduction methods. For
example, constraining the motion of the shoulder roll joint can be done by adding the
following constraint to the task Jacobian:

Jc=[1oooooo] (4.29)

or by removing the first column of the task Jacobian, thus yielding a 6 x 6 reduced
Jacobian. Regardless of the method chosen, the singularity locus is the same. A rank-
deficiency analysis was performed on the Jacobians obtained for the two constraints
used for resolving kinematic redundancy in the SSRMS flight software.

The rank-deficiency locus of the Jacobian obtained by imposing a constraint on

shoulder roll motion is:

Qs = 0, T
Sr=1{ gs==+2 (4.30)
gs = —qq — arctan(ZefitsDess)

Similarly, the rank-deficiency locus of the Jacobian obtained by imposing a con-

straint on shoulder yaw motion is:

f @ga=0, 7
=4I
Se={ 2 ; (4.31)
ge = £3
| g5 = —gs — g + arccos(Llats)tDe)

where L, is the length of the booms and Ds is the distance along the z-axis
between frames F, and F3 and between frames Fg and F7. Substituting these rank-
deficiency locus conditions into the task Jacobian, it is found that they are all algo-
rithmic rank-deficiencies.
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Since the intersection of the two rank-deficiency loci in eq. (4.30) and eq. (4.31)
is not the empty set, then the set of task/constraint coordinate pairs used for the
resolution of redundancy in the SSRMS flight software does not form a complete set.

In an attempt to find a complete set, let us once again use the pitch plane
constraint to augment the task coordinates describing the pose of the end-effector.
In this case, the pitch plane axis of rotation is the common normal to the shoulder
pitch joint and the wrist pitch joint. The task and constraint coordinates can be
interchanged to allow the operator to reconfigure the manipulator through a self-
motion. The reduced system motion Jacobian is a square seven-by-seven matrix
whose determinant equation can be solved to obtain the rank-deficiency locus Sg.
The conditions for which the reduced system motion Jacobian is rank-deficient are as

follows:
( =0,
g2 =+35
Sr=1{ gs==%% (4.32)
g4 = arctan2(—Dg(cs + ¢5)(2L4 + Dg(33 + 35)),
L Dgcs(—c3 + ¢s5) + Des3(s3 + ss) + 2L4(Lg + z6(83 + 35)))

The rank-deficiency locus branches ¢ = +7 and ¢¢ = +7 are algorithmic rank-
deficiencies similar to those that were found in Section 2. They are self motions
that do not induce any rotation of the pitch plane. Notice however, that because of
the offsets between the joints in the shoulder and wrist clusters these self-motions
generally do cause motion at the elbow. The branch ¢; = 0, 7 represents the elbow
fully extended and fully folded conditions. Note that for gs = =, the pitch plane
constraint has an additional problem due to the fact that the common normal to the
shoulder pitch and wrist pitch joints is undefined: the two joints are co-axial and

some of the terms in the constraint Jacobian tend towards infinity.
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Substituting the rank-deficiency conditions found in eq. (4.32) into the task Ja-
cobian and verifying its rank, we find that for all of the rank-deficiency loci in Sg,
Jr(q) remains of full rank: these are algorithmic rank-deficiencies and, therefore, not
acceptable.

Let us then attempt building a reduced system motion space Xz using the pose
of the end-effector, the position of the elbow and constraints on the projection onto
the pitch plane of the angular velocities of frames F; and Fg as was done in Section 2.
Applying the recursive sub-determinant algorithm to the reduced system motion Ja-
cobian thus obtained yields the following rank-deficiency locus:

SR={Q4=0, T q:!=i§; q5=i% (4.33)

These configurations correspond to the cases when the three pitch joints of the
SSRMS are either at full extension or folded up. Substituting these values back into
the task Jacobian Jr, we find that at each of these configurations, the task Jacobian
is already rank-deficient. Therefore, this reduced system motion space is complete in
the sense of Definition 3.2 of Chapter 3. It contains exactly the same coordinates as
that of the simplified SSRMS described in Section 2.

The same sets of task/constraint coordinate pairs as those that were proposed
for the simplified SSRMS could therefore be used for the real SSRMS. The same
limitations would apply for the selection of coordinate pairs: constraints on 3 and ¥
being only used when the augmented Jacobian built using elbow position and end-
effector pose is rank-deficient or ill-conditioned.

4. Simplified SPDM

To increase complexity again, let us now consider the case of the Special Purpose
Dextrous Manipulator. The SPDM has a tree topology: it is a dual arm manipulator
with a total of 15 joints. It is composed of two identical seven-degree-of-freedom
manipulators and a body joint. Figure 4.8 shows the SPDM in its zero configuration.
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FIGURE 4.8. Zero Configuration of SPDM

. The arms have the same topology as the SSRMS in terms of the joint placement
but a very different geometry. Most of the symmetry properties that simplify the
kinematic equations of SSRMS are not found in SPDM. Figures 4.9 and 4.10 show
the reference frames used to express the kinematics of the SPDM body and arms.
The two arms being identical, the same frame placement is used for both.

During SPDM operations, the operator will be limited to controlling only one
arm at any time, the other typically being used to brace the system. Similarly,
during body joint motion, both arms will be locked in place and their brakes will be
applied. Redundancy resolution for SPDM is done in a similar manner as SSRMS
using constraints on the motion of the shoulder roll or shoulder yaw joint.

The operator will use the same operator-interface to control the SPDM and the
SSRMS. He will therefore be limited to controlling at most six degrees of freedom
simultaneously through a pair of hand-controllers.

The joint coordinates of SPDM are arranged as follows: q = [ AspoM, QsPDM; O ]T

. where qsppu, are the seven joint coordinates of each SPDM arm and g, describes the
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FIGURE 4.10. Frame Definition for SPDM Arms

motion of the SPDM body joint. Given sets of task coordinates £spp,yy, associated
. to the pose of each end-effector, the task Jacobian matrix then looks as follows:
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J 0o J
JT — 71 Tl (4.34)
0 Jr: Jrwe

It is a 12 x 15 block matrix where Jr, and Jr, are the task Jacobian of each arm.
Jr1 and J74, are one-column matrices mapping body rotation to the motion of each
end-effector.

A reduced system motion space can be generated by adding a constraint on body
rotation and adding at least one constraint for each arm. In this case, the reduced

system motion Jacobian is a singly bordered block matrix:

Jspom, 0 Ju
Jr= 0 Jspom, Ji2 (4.35)
0 0 1

Jsppm, and Jsppas, are the augmented Jacobians of each arm and J,; and Js»
map the motion of the body joint to the task and constraint coordinates of each arm.

If exactly one constraint has been added for each arm, then Jp is singly bordered
block-diagonal and its determinant is the product of the determinants of each of
the blocks on its diagonal. Similarly, if more than one constraint has been added
for either arm, then the matrix will only lose rank when the columns of Jsppas, or
Jsppum, become linearly dependent.

In either case, the rank-deficiency locus of Jg will be the union of the rank-
deficiency loci of Jsppas, and Jsppay,. This means that the rank-deficiency locus of
the entire system can be found by studying the rank-deficiency locus of each arm indi-
vidually. Furthermore, since both arms are identical, it is only necessary to determine
the rank-deficiency locus of a single arm to define that of the entire SPDM.

The recursive sub-determinant algorithm was applied to the augmented Jacobian
of a single SPDM arm in an attempt to determine its rank-deficiency locus. Unfor-

tunately, the complexity of the kinematic equations of even a single SPDM arm is

82



4.4 SIMPLIFIED SPDM

beyond the capabilities of the symbolic equation solving software that was used to
implement the rank-deficiency locus computation algorithms. This is a recognised
limitation of the approach since it must deal with equations in symbolic form.

It might still be possible to find the rank-deficiency locus of this configuration but
this would require intensive human intervention. Since this would not add anything
to the demonstration, it was decided instead to make a few simplifications to the
kinematics of the SPDM model.

The first simplification that has been implemented is the cancelation of the offsets
in the y-direction between frames F> and F3 and between frames Fg and F. A second
simplification has been to set the z-position of frame Fg to the same height as frame
F;. In reality there is a 7mm height difference between F; and Fg. Results have
been generated with and without this approximation but, for clarity, only the results
obtained using the approximation are presented. The results of the rank-deficiency
locus analysis for this simplified SPDM configuration are provided in Appendix D.

Performing a similar analysis as was performed for SSRMS, the following rank
deficiency locus is obtained for the Jacobian using the constraint on shoulder roll:

qQ = 0, T
Sr=1{ gs==%% (4.36)
gs = —qq — arctan( =D,

Similarly, the rank-deficiency locus of the Jacobian obtained by imposing a con-

straint on shoulder yaw motion is:

( q4 = 01 T
g2 =3
%6 = LT3
{ QS=—%—Q4+W(&B%Z)
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where L, is the length of the two main links and L, is the offset along the x-
axis between frames F, and F3 and between frames F; and Fg. Substituting these
rank-deficiency locus conditions into the task Jacobian, it is found that they are all
algorithmic rank-deficiencies.

Similarly to SSRMS, the intersection of the two rank-deficiency loci in eq. (4.36)
and eq. (4.37) is not the empty set. Therefore, the set of task/constraint coordinate
pairs used for the resolution of redundancy in the SPDM flight software does not form
a complete set.

In order to generate such a set, a constraint on the pitch plane angular velocity &
can be used to augment the task Jacobian of a single arm. The following constraint
was appended to the task Jacobian of the arm.

[ & ] = [ Leca{cacq—s3sq+c3  Leca(case+saca+sa 0000 O ]q (4-38)

llepell Irepll

where [lrpp| = \/§L4\/1 — cos(qq) is used to normalise the common normal to
the shoulder pitch and wrist pitch joints. The resulting augmented Jacobian matrix
was found to be rank-deficient at the following configurations:

( Q= oa T
Se={ %~ 2
g = £3
| g4 = arctan2(2L,35(2L4 + Lacs), —(4L4(Ls + Locs) +L 3(c3 - s2)))

(4.39)

These rank-deficiency loci are similar to the ones that have been found for SSRMS.
In fact, the first three are identical. This is due to the fact that the SPDM arms have
exactly the same topology as the SSRMS.
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Substituting these conditions into Jr, it is found that all of these rank-deficiency
conditions are actually algorithmic singularities of the pitch plane augmented Jaco-
bian: the task Jacobian has full rank at each of these configurations.

An effort was then made to find an alternate set of coordinates to constitute
a complete reduced motion space. Since this manipulator is much more compact
than SSRMS, constraints on elbow position would likely not be as meaningful to an
operator as the pitch plane constraint.

It was therefore decided to attempt retaining the pitch plane constraint as much
as possible and to augment it with adequate sets of constraints to ensure that there
would always exist a task/constraint coordinate pair in Xz that does not induce
algorithmic rank-deficiencies where J7 is not already rank-deficient.

To cancel the algorithmic rank-deficiencies at g2 = £ and ¢gs = £3, constraints
on the motion of the shoulder roll and wrist roll have been added to X% giving the

following constraint Jacobian:

Lica(caca—s3s4tca) Laca(casa+sacetss) 00000

&

leepll lleepll
G | = 1 0 00000|}q (4.40)
gr 0 0 00001

Applying the recursive sub-determinant algorithm to the resulting augmented
Jacobian, it was found that its rank-deficiency locus is:

Se={a=0r (4.41)

Note that the fourth branch of the rank-deficiency locus of the pitch plane aug-
mented Jacobian is also cancelled by the addition of the constraints on the shoulder
and wrist roll. The rank-deficiency at g, = 7 can also be ruled out because it is
outside of the range of motion of the elbow joint. This leaves only one algorithmic
rank-deficiency at g; = 0. To address this, a set of constraint coordinates using the
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position x4 of the origin of frame F; on the elbow was tested using the recursive sub-
determinant algorithm at this particular rank-deficient configuration. It was then
found that the only cases where this set of coordinates is rank-deficient when ¢4 = 0

are as follows:

x

= 0; =X
Se={ ¥ B=2 (4.42)
=0 ¢gs=0, =

Substituting these into the task Jacobian, it was found that Jr is also rank-
deficient at these configurations. This set of constraint coordinates is then acceptable
since it only induces rank-deficiencies where Jr is already rank-deficient.

Therefore, the reduced system motion space Xg = {£,a,q1, g7, X4} can be used
to generate a complete set of task/constraint coordinate pairs as per definition 3.2
for a single SPDM arm.

An acceptable set of task/constraint coordinates for the entire SPDM is therefore

as follows. To control either SPDM arm, the operator could use the following set of

coordinates,

Ic
XT = [ €spom, ] i X = ® (4.43)
4sPDM,

where €5ppyy, defines the pose of the end-effector and z¢, is an additional con-
straint coordinate for the SPDM arm being controlled.

In most cases, z¢; would be selected as (a)sppas,, the pitch plane angle of the
arm. However, in the vicinity of algorithmic singularities of the pitch plane augmented
Jacobian other constraints should be used (z¢; = (q1)spposm, When (g)spou, = 5,
zc1 = (gr)spom, When (ge)sppa, = 15, Te1 = (Z4)sppm, or (Ys)spoa, or (za)spoa

when (g4)sppm, = 0).
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The constraints on ¢, and gsppa, indicate that all joints other than those of the
arm being controlled are to be locked, only one arm being controlled at a time.

To perform a self-motion of the arm, the operator would simply set £sppay, as
a constraint coordinate and define a task coordinate using the same set of rules as
when controlling the arm as per eq. (4.43).

While controlling the body joint, the operator could use the following set of
coordinates:

xr=[a]: xc=[("°)‘] (4.44)

(xc)2

where each set of constraints could either be (xc); = qsppa, if the arms are to be
locked in place during body rotation or (x¢); = [ &sppM, Zci ]T with a constraint
Zc; to be picked using the same rules defined for controlling one arm as per eq. (4.43)
to keep the end-effectors in a fixed location.

5. Simplified SPDM mounted on the tip of SSRMS

As a final sample application, let us consider the case when the simplified SPDM
described in Section 4 is being used at the tip of the SSRMS. In this configuration,
the system has 22 joints. Although operational constraints preclude the operation of
more than one arm at any time, this is still an interesting application to demonstrate
the power of our approach.

The coordinate frames used to model this system are as shown on Figures 4.7, 4.9
and 4.10. Since the SSRMS grapples the SPDM by its Power Data Grapple Fixture,
Frame Fppcr on the body of SPDM is coincident with frame Fj at the tip of SSRMS.

The joint coordinates are defined as follows:
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[ qQsPDM, ]
q= qsPDM; ( 4.45)
/3

| ASSRMS J

If the pose of both SPDM end-effectors, £sppay,. is used as a set of task coordi-

nates, the task Jacobian then looks as follows:

Jy 0 013
=" X1y (4.46)
0 Jr, O JXT,

where Jr; are once again the task Jacobians for each SPDM arm. Jxr, are
coupling terms between the motion of the SSRMS joints and the motion of each
SPDM end-effector. Notice that SPDM body rotation now has no effect on the pose
of the SPDM end-effectors since, in this configuration, the body joint is located after
the point of attachment of the arms on the body.

A reduced system motion space can be generated by using the sets of coordinates
that were already found for SSRMS and for SPDM in Section 3 and 4.

§sPoy
Xc1
§sppm,
Xp = Xc2 (4.47)
(3

&ssrus

| XCSSRMS |

The reduced system motion Jacobian is then a singly bordered block matrix:
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F JSPDMl 0 0 JXI
o J o J

Jp= SPDM; X2 ( 4. 48)
0 0 1 0

0 0 0 Jssrus

where Jsppyy, is the augmented Jacobian of each SPDM arm, Jsspys is the
augmented Jacobian of the SSRMS and Jx; are cross-coupling matrices relating the
motion of the SSRMS joints to the task and constraint coordinates of each SPDM
arm.

Considering that each of its blocks must have at least as many rows as it has

columns, then Jg is only rank-deficient when the columns of Jsppar,, Jsppas, or

[ Jx,
J
X2 become linearly dependent. The rank-deficiency locus of the entire
0
| Jssrums |
system can then be found once again by studying the rank-deficiency locus of its
submatrices.
r 1
Jxi
J
Realising that the rank-deficiency locus of ;2 must be a subset of that
| Issrms |

of Jssrums, the analysis can be further simplified. The rank-deficiency locus of Jp is
then a subset of the union of the rank-deficiency loci of Jsppas,, Jsppar, and Jssrus-

This implies that the results found for SSRMS and SPDM individually in Sec-
tions 3 and 4 are guaranteed to yield a complete set of task/constraint coordinates

for the overall system.
A complete set of task/constraint coordinate pairs for this system could then be

as follows:
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To control either SPDM arm, the operator would use the same set of coordinates
as defined in eq. (4.43) using additional constraints on the joints of SSRMS to freeze
it in place. The SPDM body joint being a terminal joint on the kinematic chain, its
control would be effected while simply constraining the motion of every other joint
of SPDM and SSRMS.

To control the motion of SSRMS, the operator could use the same set of task/
constraint coordinates as were chosen in Section 3 setting additional constraints on
the motion of SPDM. For each SPDM arm, the operator could elect either to impose
constraints on joint motion, thus locking the arm in place, or to impose constraints
on the pose of the end-effector and some other internal arm motion as per eq. (4.43).
The latter motion then is a self-motion of the entire kinematic chain from SSRMS
base to SPDM tip.

6. Summary

This chapter applies the theory developed in the previous chapters to sample
cases ranging from simple manipulators to more realistic ones such as the SSRMS
and the SPDM. The Singular Vector Algorithm and the Recursive Sub-Determinant
Algorithm are used to analyse the rank-deficiency loci of the task Jacobians and the
reduced system motion Jacobians of these manipulators.

The application of the methodology to sample cases of varying complexity has
demonstrated that it is powerful enough to generate complete sets of task/constraint
coordinate pairs for realistic examples such as the SSRMS and a simplified SPDM.
At the same time, these sample cases have demonstrated some of the limitations of
the approach: although it is possible to perform in a fully automatic manner the
rank-deficiency locus analyses for the simpler cases, the more complex cases do re-
quire human intervention. Furthermore, the symbolic computation of rank-deficiency
loci for some kinematic configurations is very difficult and leads to unwieldy and

potentially intractable sets of equations.
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4.6 SUMMARY

A complete set of task/constraint coordinate pairs as well as a set of general
guidelines for their usage is provided for each sample application. However, these
sets do not meet any optimality criterion and should certainly not be considered as
the best sets of coordinates. Better sets could certainly be found using optimisation
criteria to minimise cardinality, to maximise meaningfulness to a human operator or

to optimise some kinematic criterion.

91



92

CHAPTER 4. SAMPLE CASES




CHAPTER 5

Implementation of the Rank-Deficiency
Locus Computation Algorithms

1. High-Level Design Issues

The purpose of this chapter is to document the implementation of the rank-
deficiency locus computation algorithms and their usage to analyse rectangular Jaco-
bian matrices.

As mentioned in Chapter 3, all rank-deficiency locus computations are imple-
mented in symbolic form. The advantage of symbolic computation is that it provides
a global solution over all of the configuration space of the manipulator. Local meth-
ods, although less computer-intensive per step, have the disadvantage of requiring
a number of test points that increases exponentially with the number of degrees of
freedom of the manipulator. Hence, a systematic verification of the condition number
of the Jacobian matrix quickly becomes unmanageable as the number of joints of
the manipulator increases. Furthermore, it is difficult to guarantee, regardless of the
fineness of the grid, that rank-deficiency loci would not be missed by such an algo-
rithm. On the other hand, symbolic methods are limited in terms of the complexity
of the cases that can be analysed. However, as shown in Chapter 4, for most practical
purposes they are powerful enough to provide a solution.
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The algorithms are implemented using Maple V, release 5: a symbolic equa-
tion manipulation software. For each rank-deficiency locus computation algorithm, a
Maple script and a set of procedures were generated. The source code of all Maple
procedures and scripts is provided in Appendix E.

2. Kinematic Equation Generation

The generation of the kinematic models used for analysis is done using SYMO-
FROS version 4. SYMOFROS is a multi-body dynamics simulation software: it
generates in Maple, a symbolic model of the system to be simulated. The symbolic
model is then used to generate a numeric model for use in the Matlab/Simulink
environment.

Only the symbolic part of SYMOFROS is used to generate the kinematic models
of the manipulators to be analysed. Its recursivity option is disabled to ensure that
the Jacobian matrices are generated in closed form for later analysis by the rank-
deficiency locus computation algorithms. SYMOFROS has the ability to generate
Jacobians describing the motion of any reference frame in the model with respect
to any other reference frame and to express those Jacobians in any of the frames
available in the model.

2.1. SimpleFormJacobians.p. A Maple procedure is used to interrogate
the SYMOFROS model to find the reference frame in which to express the Jacobians
so that their computing cost is the lowest. As mentioned in Chapter 3, this represents
only a rotation of the Jacobian matrix. It does not change its rank-deficiency locus
but makes algebraic simplifications much easier.

The “SimpleFormJacobians.p” procedure systematically computes the task and
constraint Jacobians in each reference frame of the model and evaluates the computing
cost of the augmented Jacobian. The empirical cost function used to select the
optimal frame is the sum of the number of additions, multiplications and function calls
required to evaluate the Jacobian. As it proceeds, it remembers for which reference

frame this computing cost was lowest and in the end, it returns a data structure
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containing the identifier of the reference frame in which the Jacobians are expressed,
the task Jacobian, the constraint Jacobian and the associated augmented Jacobian.

3. Singular Vector Algorithm

The analysis of the completeness of a set of task/constraint coordinate pairs
using the Singular Vector Algorithm is implemented in a Maple script. A print-
out of this script, “ComputeRDLocus.mws” is provided in Appendix E. It uses the
“SimpleFormJacobians.p” procedure to generate the task and constraint Jacobians
from the SYMOFROS model.

It then applies the Singular Vector Algorithm to the task Jacobian and the aug-
mented Jacobian and determines whether the rank-deficiency locus of the augmented

Jacobian is a subset of that of the task Jacobian.

3.1. RDLocusSVD.p. The Singular Vector Algorithm is implemented using
a recursive procedure called “RDLocusSVD.p”. This procedure is invoked with two
arguments: the first is the Jacobian matrix J(q) whose rank-deficiency locus is to
be determined and the second is the set of independent variables used to express the
rank-deficiency locus: these are typically the joint coordinates of the manipulator q.

This procedure can process Jacobian matrices of any dimension. If J(q) is square,
then its rank-deficiency locus is computed using the determinant method. Otherwise,
J(q) is brought to a standard form with fewer rows than columns, transposing it if
necessary, and the Singular Vector Algorithm is applied to it.

The selection of the square sub-Jacobian J,(q) used as a starting point for the
Singular Vector Algorithm is done using the “PickSubJacobians.p” procedure. This
procedure extracts out of J(q), the square sub-Jacobian whose determinant equation
is the least expensive to compute. The remaining columns of J(q) are called the
redundant columns and stored as J,.(q) for future use.

The rank-deficiency locus of J,,(q) is then found by solving its determinant equa-
tion for q. This provides a set of rank-deficiency conditions q* that will typically cause
rank losses of one in J,,(q).
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Because J,,(q) will not be used again in the execution of the Singular Vector
Algorithm, it is important to find the worst-case conditions under which its rank loss
is maximal. Its rank-deficiency locus is therefore refined using the “RefineLocus.p”
procedure to find additional sets of conditions that further reduce the rank of J,,(q*).

The results of the “RefineLocus.p” procedure provide the set of solution branches
to be used as a starting point for the analysis using the redundant columns of the
Jacobian.

The rank-deficiency conditions q* of each branch are substituted back into J,4(q)
and a set of left singular vectors {u}} associated with the zero singular values of
Jsq(q®) are found. These singular vectors are expressed as functions of the joint
variables and robot parameters. Note that this step is equivalent to finding the null
space of JT (q°).

Two different methods can be used to compute {u?}. The linalg/kernel/ function
in Maple is very efficient but sometimes fails to find some solutions because it does
not perform trigonometric simplifications. To address these cases, a procedure “Com-
puteSingularVector.p” has been developed. It is much less efficient than the kernel
function and it is used for the cases when linalgfkernel/ fails to find a complete set of
singular vectors.

The singular vectors are then arranged in a matrix U = [ u ... uj ] Ji(q),
the matrix product of UT with J,(q") is evaluated and the procedure then calls itself
recursively to determine the conditions for which Jt(q) is also rank-deficient. The
rank-deficiency locus of J(q) is the set of conditions that make both J,,(q) and Jt{q*)
rank-deficient.

3.2. PickSubJacobian.p. The “PickSubJacobians.p” procedure extracts
from a rectangular Jacobian J(q), the square sub-Jacobian J,,(q) whose determi-
nant equation has the lowest computing cost and yet is not trivially equal to zero.
The only argument required to call this procedure is a rectangular matrix with fewer

rows than columns.
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The optimal square sub-Jacobian is found by systematically going through every
possible combination of columns to generate a square sub-matrix and evaluating the
computing cost of its determinant equation after algebraic and trigonometric simpli-
fications. The cost function used to select the square sub-matrix is the sum of the
number of additions, multiplications and function calls in the determinant equation.

The procedure returns a data structure whose first element is the square sub-
matrix J.,(q) and whose second element is a matrix composed of the remaining

columns J,.(q).

3.3. RefineLocus.p. The “RefineLocus.p” procedure is used to refine a
known set of rank-deficiency loci { qf, q3, ..., q} } of a matrix J(q) with at
least as many columns as rows. It find the conditions that further reduce the rank of
J(q;). The arguments used to invoke the procedure are the Jacobian matrix itself,
the set of known rank-deficiency conditions and the set of variables used to refine the
rank-deficiency locus (again, typically the joint coordinates of the manipulator).

The procedure substitutes the rank-deficiency conditions q; passed in argument
into J(q) and triangularises it using Gaussian elimination. Since the matrix is rank-
deficient, the result of the Gaussian elimination is a triangular matrix Ja(q}) whose
last row is entirely composed of zeros.

An upper-triangular submatrix, Jaus(q?), is then extracted out of Ja(q}) by
removing its last row. The conditions that further reduce the rank of J(q) are
those that make this submatrix rank-deficient. They are found by applying “RDLo-
cusSVD.p” to Jasus(q?). The recursion stops when Ja(q}) has only one row left or
when Ja..s(q}) cannot be made rank-deficient.

The “RefineLocus.p” procedure returns all possible sets of conditions for which
the original matrix J(q) has any positive number of zero singular values.

3.4. ComputeSingularVector.p.  As mentioned earlier, the lnalgfkernelf
command of Maple can sometimes fail to find the null space of a matrix because

it does not perform trigonometric simplifications. The “ComputeSingularVector.p”
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procedure was developed as a complement to the linalgfkernel/ command to overcome
these limitations. It is invoked with only one argument, a matrix J(q) with fewer
rows than columns, and it returns a matrix U whose rows are the left singular vector
of J(q) associated with its zero singular values. These also form a basis for the null
space of J7(q).

The procedure starts by assuming an arbitrary singular vector u = [ Uy ... Um ]T.
It takes its dot product with each column of J(q) and solves for the values of u; that
make this dot product zero in an iterative fashion. After processing the last column of
J(q), the number of free variables u; left in u indicates the dimension of the null-space
of J7(q) and hence the number of rows in U.

The first singular vector is found by setting all of the free variables u; = 1 in
u. The remainder of the set of singular vectors is found by substituting one less
free variable at each pass and making use of the fact that all singular vectors are
orthogonal to each other.

4. Recursive Sub-Determinants Algorithm

The analysis of the completeness of a set of task/constraint coordinate pairs using
the Recursive Sub-Determinants Algorithm is implemented using the same Maple
script that is used for the Singular Vector Algorithm but calling “RecursiveSubD.p”
instead of “RDLocusSVD.p”.

4.1. RecursiveSubD.p. The arguments used when invoking the “Recur-
siveSubD.p” procedure are the Jacobian matrix J(q) whose rank-deficiency locus is
to be computed, a parent set of rank-deficiency loci { qf, q3, ..., q} } and the
set of variables used to express the rank-deficiency conditions. It returns the rank-
deficiency locus of J(q). For the initial call to the procedure, the parent locus is the
empty set.

The procedure analyses each element of the parent set of rank-deficiency loci indi-
vidually. It starts by substituting individual rank-deficiency conditions q; into J(q).
Next, it extracts out of J(q}), the square sub-Jacobian J,(qf) whose determinant
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equation is the least expensive to compute using the “PickSubJacobians.p” procedure
that was developed for the Singular Vector Algorithm. It solves the determinant equa-
tion of J,,(q}) giving a new set of rank deficiency conditions { qi*, q3*, ..., q* }-
The algorithm then calls itself recursively using { gt Nq}*, q'Nqs*, ..., g Nq }
as the new parent set of rank-deficiency conditions.

To accelerate the process, the “RecursiveSubD.p” procedure uses the remember
option from Maple. Each time the procedure is called, the remember option stores
the values of the arguments used to invoke the procedure and the results it returns
in a table for future reference. The next time this procedure is called with the same
arguments, the results are simply read from the remember table instead of being
re-computed.

This subtlety is what prompts the usage of a parent locus argument when invok-
ing the procedure. If the procedure were implemented in a purely recursive manner,
the power of the remember option could not be fully exploited. The procedure would
not be able to recognise a priori that the Jacobian matrix in which some rank-
deficiency conditions have already been substituted leads to a known case once the
new set of rank-deficiency conditions are substituted-in. Thus, each time the pro-
cedure is invoked, it is called with the original Jacobian matrix and the full set of
rank-deficiency conditions that led to the terminal branch of the recursion tree that
is being investigated.

Also for the sake of efficiency, a rank verification is performed on the matrix before
calling the “PickSubJacobians.p” procedure. This is done to avoid unnecessarily
calling this procedure, which is computationally very expensive to execute. For a

m!
n!(m~-n)!

m X n matrix with m > n, the cost of “PickSubJacobians.p” is of order 2n?
without even considering the cost of simplifying the determinant equations whereas
a rank check is of order ﬂ;— [51]
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5. Other Utilities

5.1. RemoveRedundantSolutions.p. Because of the recursive nature of
the “RDLocusSVD.p” and “RecursiveSubD.p” procedures, the recursions for any
solution branch of the rank-deficiency locus are not aware of the results from the
other solution branches. Different recursive calls to the procedure can therefore return
identical answers or answers that are subsets of each other. Using sets instead of lists
in Maple to express the rank-deficiency loci of the Jacobian ensures that duplicate
entries will not co-exist but it does not remove loci that are subsets of others.

The “RemoveRedundantSolutions.p” procedure is used to remove these redun-
dant rank-deficiency loci that are already covered by other members of the solution
set. It is called with two arguments: the set of solution branches and the set of vari-
ables used to express the solutions. It returns a cleaned-up set of solution branches
from which all the branches that were subsets of others have been removed.

To detect branches that are subsets of others, it considers every possible combi-
nation of solution branches in pairs and solves them simultaneously. If the result of
this computation is identically equal to one of the solution branches, then this branch
is a subset of the other and it is removed from the set of solutions.

This procedure is used to post-process the results of the “RDLocusSVD.p” and
“RecursiveSubD.p” procedures in the Maple scripts.

5.2. SolveAllInTwoPi.p. Finally, a utility procedure called “SolveAllln-
TwoPi.p” has been developed to allow Maple to find all solutions of trigonometric
equations in the range [—m, 7[. By default, the inverse trigonometric function arccos
returns answers in the range [0, [ and arcsin returns answers in the range [—3, 3[.
It is possible to force all inverse transcendental functions to return the full set of
solutions by setting the environmental variable _EnvAllSolutions to true. Maple then
returns a solution from which all solutions in the range ] — 00, 0o[ can be computed.

To find all solutions in the range [—,«[, it is therefore necessary to replace all
occurences of the solve function in the procedures by calls to “SolveAlllnTwoPi.p”.
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This was done and used successfully for all procedures described in the previous
sections.

It should be noted, however, that this procedure should not be used blindly.
Using “SolveAllInTwoPi.p” instead of solve increases the computing time of “RDLo-
cusSVD.p” and “RecursiveSubD.p” by an order of 2¢, where ¢ is the total number of
solution branches at all nodes of the recursion tree. For the more complex cases, it
is much more efficient to use the regular solve function and to find by inspection the
complementary solutions to those provided by the rank-deficiency locus computation

procedures.

6. Summary

This chapter describes the details of the Maple procedures used to implement
the Singular Vector Algorithm and the Recursive Sub-Determinant Algorithm. These
procedures have been used to perform the rank-deficiency analyses describes in Chap-
ter 4. It specifically describes the special measures that were implemented to increase
the computational efficiency of the Maple code.

Running on a Pentium II 300 MHz Computer, the “RecursiveSubD.p” procedure
took 937 seconds to compute the rank-deficiency locus of the reduced system motion
Jacobian of SSRMS and only 4 seconds for that of the 4R Spherical Shoulder Ma-
nipulator. In comparison, the “RDLocusSVD.p” procedure took 6.5 seconds for the
4R Spherical Shoulder Manipulator but never converged on the solution for the fuill
SSRMS. Given that this computation is performed only once, off-line, for any manip-
ulator, these performance figures are reasonable. Note from these results, that the
“RDLocusSVD.p"” procedure took more time to execute than the “RecursiveSubD.p”
procedure. This is due to the fact that many special measures were implemented to
increase the computational efficiency of the latter, whereas none were implemented
for the Singular Vector Algorithm.

The main limitation that has been encountered is the failure of either procedure
to determine the rank-deficiency locus for SPDM. This is due to Maple’s incapacity
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to simplify determinant equations in the “PickSubJacobians.p” procedure. In its
search for the square sub-Jacobian with the simplest determinant equation, Maple
has encountered cases where this equation is so complex that it gives up on the
simplification and exits the procedure. It should be noted, however, that although
this was the only identified cause of failure, nothing guarantees that other limitations
of Maple would not have been met had this problem been circumvented.

In the most complex cases, special measures have been taken to ease the com-
putation of rank-deficiency loci. For SPDM, a partial analysis was done using the
determinant method on a square augmented Jacobian. The rank-deficiency conditions
thus found were substituted back into the reduced system motion Jacobian matrix
simplifying many of its terms. The Recursive Sub-Determinant Algorithm was then
used to analyse this simpler reduced system motion Jacobian over the rank-deficiency
locus of the previously analysed augmented Jacobian.

It should also be noted that the selection of the constraint equations used to build
the constraint Jacobian have a determining effect on the ability of the procedures to
successfully find rank-deficiency locus conditions. Adding constraints closer to the
base of the kinematic chain results in much simpler sub-determinant equations. This

was used advantageously for the more complex cases.
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CHAPTER 6

Conclusions

The objective of this thesis was to develop a general framework for the manual tele-
operation of kinematically redundant serial manipulators under conditions typical of
space operations. The avoidance of collisions between the manipulator and its envi-
ronment is of the utmost importance in this context. However, the current state of
space-rated technologies precludes autonomous redundancy resolution for kinemati-
cally redundant robotic systems in manned space flight. It is the responsibility of the
human operator to generate a collision-free path for the manipulator throughout its
task. In many cases, the operator will directly control the motion of the manipulator
using hand controllers.

Up to now, the redundancy resolution and control schemes used for kinematically
redundant space-based manipulators have been developed on a case-by-case basis.
All of them employ, to some extent, kinematic constraints to augment the Jacobian
matrix. This is reasonable in the context of space operations but little or no thought
has been given to the development of a generalised approach.

This generalised approach should provide the operator with an intuitive way of
resolving and controlling the redundancy of any serial manipulator with more degrees
of freedom than he can control at any time. Because the burden of generating a
collision-free path is imposed on the operator, the algorithm should result in pre-

dictable motion of the manipulator.
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It is proposed to break down the task of controlling the motion of a redundant
manipulator into a sequence of manageable sub-tasks of lower dimension by imposing
constraints on the motion of the end-effector or of intermediate bodies of the manip-
ulator. This implies that the manipulator then becomes a non-redundant kinematic
chain. The operator only controls a reduced number of degrees of freedom at any
time. However, by appropriately changing the imposed constraints, he can still use
the full capability of the manipulator throughout the task.

Also, by not restricting the point of teleoperation to the end effector but effectively
allowing direct control of intermediate bodies of the robot, it is possible to teleoperate
a redundant robot of arbitrary kinematic architecture over its entire configuration
space in a predictable and natural fashion.

This approach has already been proposed by some authors [58] and variations of
it have been studied in the context of space operations [52]. However, none of the
previous work on this subject has proven that the approach would always work nor
provided any guidelines for the selection of the constraint equations to be imposed

on the intermediate bodies.

1. Review of the Contributions

In Chapter 2, the concept of system motion space and system motion manifold are
introduced. The system motion space X's is the space defined by the variables defining
the pose of every body in the kinematic chain. It is spanned by xg, the system motion
coordinates. The joint space Q is mapped through the system forward kinematic
function Ag : @ — &’s to a submanifold of the system motion space Ms C Xs. This
submanifold is called the system motion manifold and is of the same dimension as
the joint space.

Based on the concepts of system motion space and system motion manifold, a
proof of generality of the virtual arms approach is given. It demonstrates that if the
operator can control or constrain the velocities associated with a subset of xg, then

there always exist sets of task and constraint coordinates such that any kinematically
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redundant serial manipulator can be moved from any initial configuration qop to any
final configuration q, in a finite sequence of operations.

This is done by proving that Ag : @ — X5 is an embedding and hence that
Ay : @ —» Ms C Xs is a local diffeomorphism. This guarantees that the differential
application of Ag, which is related to the system motion Jacobian, is always of rank
equal to the dimension of Q.

Furthermore, As : @ — Xs being an embedding, the system motion manifold
retains the topological properties of the joint space. Given that Q is compact the
proof on the finiteness of the sequence of operations required to move from any initial
configuration to any final configuration is made by demonstrating that an open cover
can be generated if projections of Mg onto subsets of Xs are used as coordinate
charts.

In Chapter 3, a methodology is given to extract out of xs a reduced set of
task/constraint coordinate pairs P. This is necessary to avoid overwhelming the
operator with too large a number of coordinate choices. A criterion is proposed
to evaluate the completeness of the set of task/constraint coordinate pairs: P is
considered complete if, for all of the configurations of the manipulator where the task
Jacobian is not rank-deficient, there always exist a task/constraint coordinate pair in
P such that the rank of its augmented Jacobian is equal to the number of degrees of
freedom of the manipulator.

The implementation of this criterion is based on the analysis of the rank-deficiency
loci of the augmented Jacobians associated with each task/constraint coordinate pair
in P. The set of task/constraint coordinates P is deemed complete if (), S4; € Sr.
S.4; is the rank-deficiency locus of the i* coordinate pair in P and St is the rank-
deficiency locus of the task Jacobian for a set of task coordinates defined by the
operator. This set of task coordinates typically describes the motion of the end-
effector.

To provide a starting point for the construction of P, the reduced system motion
space Ar C Xs is defined. The rank-deficiency locus of the reduced system motion

105



CHAPTER 6. CONCLUSIONS

Jacobian is the intersection of the rank-deficiency loci of all augmented Jacobians
that can be built from Jg, Sg = (); Sa;- Therefore, if Sg C St, then there will
always exist a task/constraint coordinate pair extracted from xg that will not induce
a rank deficiency at manipulator configurations where the task Jacobian Jr is not
already rank-deficient.

To analyse the rank-deficiency loci of rectangular matrices, two novel algorithms
are introduced. The singular vector algorithm for determining rank-deficiency loci
of rectangular Jacobian matrices is a generalisation of the algorithm of Nokleby and
Podhorodeski [46] but it uses concepts from Singular Value Decomposition instead
of screw algebra. The main advantage of the singular vector algorithm is that it can
handle rectangular Jacobians of any row and column dimension.

From the definition of rank-deficiency, a rectangular matrix with more columns
than rows becomes rank-deficient when its rows are linearly dependent!. The exis-
tence of a rank deficiency then implies that there exists a set of conditions for which
a set of singular vectors can be found such that the dot product of these singular vec-
tors with all columns of the Jacobian matrix is zero. The Singular Vector Algorithm
determines the conditions for which such a singular vector exists.

This algorithm is computationally very efficient since it is applied to matrices
of rapidly decreasing dimension. It uses only once a square submatrix J,,(q) whose
dimension is equal to the smallest dimension of the rectangular Jacobian matrix J(q).
The dimension of the matrices at the next recursion decreases to the dimension of
the null space of J,,(q*). However, in some cases, the algebraic complexity of the
singular vectors u;*(q) of J,,(q*) is such that even the simplest sub-determinant at
the next level of recursion is unwieldy or intractable.

To address the limitations of the Singular Vector Algorithm, an alternate algo-
rithm was developed to compute the rank-deficiency locus of rectangular Jacobian

matrices. The Recursive Sub-Determinant Algorithm is a recursive implementation

1The same reasoning can be applied to rectangular matrices with more rows than columns except
that then the columns become linearly dependent.

106



6.1 REVIEW OF THE CONTRIBUTIONS

of the sub-determinant method used to find rank-deficiency loci of rectangular ma-
trices. It finds the square submatrix J,,(q) of the rectangular matrix J(q) whose
determinant equation is the simplest to solve, yet not zero. The singularity condi-
tions q* of J,,(q) are then substituted back into J(q; and the process is repeated
recursively.

The main disadvantage of this method is that it is combinatorial in nature. At
every recursion step, the algebraic complexity of all sub-determinants of J(q*) is
evaluated to find the square sub-Jacobian J,,(q*) whose determinant equation is the
easiest to solve. Fortunately, the time required to compute the rank-deficiency locus
for a given set of reduced system motion coordinates is not an issue since the reduction
of the system motion space is to be performed only once, off-line, for any manipulator.

The most important advantage of this algorithm is its robustness: it is more likely
to find the rank-deficiency locus of manipulators whose kinematics is such that other
methods will fail. Although nothing guarantees that the algebraic complexity of the
sub-determinants of J(q°*) will decrease as more rank-deficiency conditions are sub-
stituted into it, this is generally the case for manipulators with mutually orthogonal
sequential joints. The singularity conditions q* for J,,(q) then often reduce to a joint
value being equal to zero or §. In such a case, the algebraic complexity of the overall
Jacobian reduces drastically at each recursion level thus increasing the odds that the
sub-determinant equations will become simpler.

In Chapter 4, the theory developed in the previous chapters is applied to sample
cases ranging from simple manipulators to more realistic ones such as the SSRMS and
the SPDM. The Singular Vector Algorithm and the Recursive Sub-Determinant Algo-
rithm are used to study the rank-deficiency loci of the task Jacobians and the reduced
system motion Jacobians of these manipulators. A complete set of task/constraint co-
ordinate pairs as well as a set of general guidelines for their usage is provided for each
sample application. It has been found that the algorithms used for the redundancy
resolution of the SSRMS and the SPDM in the flight software contain algorithmic

rank-deficiencies.
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Chapter 5 describes the details of the Maple procedures used to implement the
Singular Vector Algorithm and the Recursive Sub-Determinant Algorithm. These
procedures have been used to perform the rank-deficiency analyses described in Chap-
ter 4. Special attention is dedicated to the measures that were implemented to in-
crease the computational efficiency of the Maple code. This chapter also includes
a discussion on the cause of the failure to compute the rank-deficiency locus of the
SPDM in Chapter 4 and on some of the special tricks that can be used to ease the

work of the rank-deficiency locus computation procedures.

2. General Comments

In summary, this thesis provides a general framework for the manual teleoperation
of kinematically redundant space-based manipulators by controlling and constraining
the motion of intermediate bodies in the kinematic chain.

Unlike related previous work [58] [59] [60] [52] [53], this thesis rigourously proves
that this approach will always work for any kinematically redundant serial manip-
ulator regardless of its topology, geometry and of the number of its excess degrees
of freedom. Furthermore, a methodology is provided for the selection of task and
constraint coordinates to ensure the absence of algorithmic rank-deficiencies.

The application of the methodology to sample cases of varying complexity has
demonstrated its power and limitations: It has been shown to be powerful enough to
generate complete sets of task/constraint coordinate pairs for realistic examples such
as the SSRMS and a simplified SPDM.

On the other hand, the sample cases also demonstrated that it is not a bullet-proof
algorithm that can be implemented blindly. Whereas it is possible to fully automate
the rank-deficiency locus analysis for the simpler examples, the more complex cases
do require human intervention: the symbolic computation of rank-deficiency loci for
some kinematic configurations is very difficult and leads to unwieldy and potentially

intractable sets of equations.
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Furthermore, although it has been demonstrated that there will always exist sets
of task/constraint coordinate pairs that do not induce algorithmic rank-deficiencies,
finding such an appropriate set can be quite a challenge. The sets that have been
found for the sample cases in Chapter 4 are complete as per Definition 3.2 of Chapter 3
but the author does not claim that they are optimal in any manner.

Finally, the sample applications have confirmed that algorithmic rank-deficiencies,
induced by the augmentation of the task Jacobian with a set of kinematic constraints,
are a real problem that needs to be addressed. Any given pair of task/constraint co-
ordinates will likely be subject to algorithmic rank-deficiencies and these sometimes
appear in very unforseen configurations. It is therefore imperative that the algo-
rithmic rank-deficiencies associated with each pair of task/constraint coordinates be
identified, tagged and that an aiternate coordinate pair be provided in their vicin-
ity. The operator should then be provided with a clear set of instructions as to the
restrictions on the selection of each coordinate pair.

3. Future Work

Although it is believed that this thesis lays a solid foundation for the deter-
mination of task and constraint coordinates for the teleoperation of kinematically
redundant space manipulators, some work remains to be done in this area.

Since the methodology relies on the symbolic determination of the rank-deficiency
loci of rectangular Jacobian matrices, there is a limit to the complexity of the cases
that can be analysed using the algorithms described in this thesis. To analyse more
complex cases, alternate rank-deficiency locus analysis algorithms will likely need
to be developed. Hybrid numeric/symbolic algorithms might provide the key to
analysing these more complex manipulators.

Also, as acknowledged earlier, the task/constraint coordinate pairs found in Chap-
ter 4 are complete but do not meet any optimality criterion. Such criteria could be
developed using metrics for kinematic redundancy such as proposed in [61] while min-
imising the cardinality of the set of task/constraint coordinate pairs or maximising
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meaningfulness to a human operator. The usage of such an optimisation criterion
would then likely also require the automation of the search of the reduced system
motion coordinates. This task has turned out to be quite a challenge and would
certainly be a prime candidate for automation as this would allow a more systematic
search throughout the system motion space.

Furthermore, for some of thic sample cases, the number of task/constraint co-
ordinate pairs necessary to form a complete set was still quite large: ten to twenty
pairs being necessary to ensure coverage of the entire configuration space. In such
cases, it will likely be necessary to implement an operator-assistance tool to guide
the operator in the selection of an appropriate coordinate pair depending on the cur-
rent posture of the manipulator. This could be implemented using a set of heuristic
rules or by checking the condition number of the Jacobian for each coordinate pair,
recommending the one that is best conditioned.

Finally the human factor aspects of the proposed approach should probably be
investigated in more detail to study the meaningfulness to an operator of constraints
on intermediate bodies and to determine whether there can be any commonality in
the selection of coordinates for different manipulators. Other human factor issues
could also be investigated such as how to provide appropriate cues to an operator so

that he understands the optimisation process when controlling an over-determined

system.
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APPENDIX A

Elements of Mathematical Analysis,
Topology and Differential Geometry

This section recalls some of the rudiments of mathematical analysis, topology and dif-
ferential geometry. The following definitions, propositions and theorems are necessary
to fully understand the proof of generality presented in Chapter 2.

DEFINITION A.l. Open Set: A set A € R" is an open set if for every pointp € A
there exists an open ball B.(p) C A. In other words, a set A is open if every point in
A is completely surrounded by points also belonging to A.

DEFINITION A.2. Closed Set: A set A € R is a closed set if every limit point
of A also belongs to A.

PROPOSITION A.1. A set A € R" is a closed set if and only if its complement
R" — A is an open set.

DEFINITION A.3. Bounded Set: A set A € R" is bounded if it is contained in
some ball of R™.

DEFINITION A.4. Compact Set: A set is compact if it has a finite subcover.

PROPOSITION A.2. Compact Set: A set A € R™ is compact if it closed and
bounded.
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PROPOSITION A.3. Compact Set: The one-dimensional sphere S' and closed

subsets of it are compact.

DEFINITION A.5. Topology: A topology on a set S is a collection of subsets such
that

o The union of any number of open sets is open.
e The intersection of any finite number of open sets is open.
o The set S and the empty set are open.

DEFINITION A.6. Topological Space: A set S with a topology is called a topolog-
ical space.

DEFINITION A.7. Basis: A basis for a topology is a collection of open sets, called
basic open sets, with the following properties:

e S is the union of basic open sets.
e Any non-empty intersection of two basic open sets is a union of basic open
sets.

DEFINITION A.8. Continuous mapping: a mapping f : X — Y is continuous if

the inverse image of every open set of Y is an open set of X.

DEFINITION A.9. Open mapping: a mapping f : X — Y is open if the image
of every open set of X is an open set of Y. The inverse of an open mapping is a

continuous mapping.

DEFINITION A.10. Injective mapping: A mapping f : X — Y is injective (one-
to-one) if z # x’ implies that f(z) # f(z').

DEFINITION A.l1l. Surjective mapping: A mapping f : X — Y is surjective
(onto) if for each y € Y, there ezists at least one z € X such that y = f(z).

DEFINITION A.12. Bijective mapping: A mapping is called bijective if it is both

surjective and injective.
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DEFINITION A.13. Homeomorphism: A mapping f : X — Y is a homeomor-
phism if it is bijective, open and continuous.

DEFINITION A.14. Differentiability: Let U be an open subset of R*. A function
f : U — R is differentiable of class C™ if all its partial derivatives of order up to r
exist and are continuoﬁs. f isC™ if and only if it is of class C" Vr. If A is any subset
of R* and f : A — R then f is differentiable of class C™ if and only if f extends to
a function whose domain is an open set containing A and which is differentiable of

class C".

DEFINITION A.15. Diffeomorphism [27]: A mapping is a diffeomorphism if it is

bijective and both f and its inverse are differentiable.

PROPOSITION A.4. Every differentiable function is continuous and open. There-

fore all diffeomorphisms are homeomorphisms.

DEFINITION A.16. Jacobian: Let X € R™ and Y € R™ be open sets. Given a
function f : X — Y, the Jacobian matriz of f at x is the matriz

a a

J=| + - (A.1)
fm ... Ofm
[ Oz

THEOREM A.l. Inverse Function Theorem [27]: Let A be an open set of R® and
f: A — R" a C*™ mapping. If the Jacobian matriz of f at zo ts non-singular at
some To € A, then there exists an open neighbourhood U(zo) € A such that V = f(U)
is open in R™ and the restriction of f to U is a diffeomorphism onto V.

Alternatively, the inverse function theorem can be formulated as follows:

THEOREM A.2. Inverse Function Theorem [55]: Let f : R® — R" be C! ata. If
df (@) is invertible then f itself is locally invertible in the sense that there is a function
@ which is defined in the neighbourhood of b = f(a), is differentiable at b and satisfies
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foo=Tand pof =1 If fisC' on a neighbourhood of a then ¢ is C' on a
neighbourhood of b.

THEOREM A.3. Rank Theorem [27]: Let AC R" and B C R™ be open sets and
f:A— B be a C* mapping. Suppose & has rank k for all z € A. For each point
Zg € A there ezists a neighbourhood Ag(zo) C A and a neighbourhood Bo( f(zo)) C B,
two open sets U C R™ and V C R™, and two diffeomorphisms g : U — Ay and
h: By — V such that ho fog(U) C V and such that for all (z,,...,z,) €U,

ho fog(zy,...za) = (Y1,-- -+ Y&, 0,...,0) (A.2)

Interpretation: The mapping of f : A — B results in a k-dimensional manifold
in B.

DEFINITION A.17. Immersion: A function f : X™ — Y™ ts a C” immersion if
and only if it is a C” function of rankm < n forallz € X.

PROPOSITION A.5. If the differential f* (Jacobian) of a smooth map f: X™ —

Y™ is injective for all £ € X, then f is an immersion.

DEFINITION A.18. Embedding: If a function f : X™ — Y™ is a C” immersion
that carries X onto f(X) homeomorphically, then it is a C™ embedding.

PROPOSITION A.6. If a function f : X™ — Y™ is a C" embedding, then f’ :
X™ — f(X) is a local diffeomorphism: it is surjective and injective, and f' and f'~"

are continuous and differentiable.

DEFINITION A.19. Local Diffeomorphism [20]: Given a C* mapping f, from an
open set U C R™ to an open set V C R™, f is a local diffeomorphism of class C*
in a neighbourhood U(zy) of zo if f is invertible from U(zy) into a neighbourhood
V(F(zo)) of the point f(zo) in V and if the inverse of f is also of class C*.
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PROPOSITION A.7. A necessary and sufficient condition for f to be a local dif-
feomorphism in the neighbourhood of zo is that its tangent linear mapping df(zo) is
injective [20).

PROPOSITION A.8. If f : X™ — Y™ is an embedding, then f(X) inkerits a
natural differential structure from X making f(X) a differentiable manifold.

PROPOSITION A.9. A C" function with compact domain is an embedding if and
only if it is an injective tmmersion.

DEFINITION A.20. Locally Euclidean Space: a locally Euclidean space X of di-
mension n is a topological space such that for every p € X, there exists a function f
mapping some open neighbourhood of p to an open set in R".

DEFINITION A.21. Hausdorff condition: A set is Hausdorff if different points
have disjoint neighbourhoods. Most physical systems are Hausdorff.

DEFINITION A.22. Manifold [27]: A manifold M of dimension n is a topological
space which is locally Euclidean of dimension n, is Hausdorff and has a countable
basis.

Alternatively, a manifold can also be defined as follows:

DEFINITION A.23. Manifold: M is an m-dimensional differentiable manifold if

o M is a topological space

e M is provided with a family of pairs {(U;, ¢:)}

o {U:} is a family of open sets which cover M, | JU; = M and ¢; is a homeo-
morphism from U; onto an open subset V; C R™.

o Given U; and U; such that U;UU; # 0, the map vi; = ;" from ¢;(UiNU;)
to ¢;(U; NU;) is C*™

(Ui, ¢:) is a chart and the entire family {(U;, ¢:)} is called an atlas.

U; is called the coordinate neighbourhood.

&; 1s called the coordinate functions and is represented by m functions {z\(p), .. .,Zn(p)}-

The set {zi(p)} is called the coordinate.
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DEFINITION A.24. [40] Manifold with a boundary: If a topological space M is
covered by a family of open sets {U;} each of which is homeomorphic to an open set
of H® = {(z!,... ,z™) € R™ | z™ > 0}, then M is said to be a manifold with a

boundary.
PROPOSITION A.10. [16] A subset M C R™ is an n-dimensional manifold
if for every x € M, there ezist open subsets U and V of R™ with x € U and a

diffeomorphism f : U — V such that

fUNM)={y €V :ynsy,...,ym =0} (A-3)

Therefore

f(z € M) ={w(z),...,ya(2),0,...,0} (A.4)

PROPOSITION A.11. A compact differentiable manifold can be covered by a finite
set of coordinate charts [21].
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APPENDIX B

Inverse Kinematics of Kinematically
Redundant Manipulators in the Presence
of Linear Equality and Inequality

Constraints

This appendix describes an inverse kinematics algorithm for controlling a kinemati-
cally redundant manipulator operating in conditions typical of space operations. It
is a constrained resolved rate algorithm where the operator controls the motion of a
set of task coordinates associated with the motion of a given body and constraints
are added on the motion of other bodies in the kinematic chain.

The types of constraints that this algorithm can support are:

e Linear equality constraints on the velocity of selected bodies.

e Linear equality constraints on the position and orientation of selected bodies.
Those constraints are expressed as velocity constraints set to zero.

e Inequality constraints on the motion of selected bodies such as limits in Carte-
sian space or joint limits. Those constraints are expressed as inequality velocity
constraints set once the limit has been reached.
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Because of the strict restrictions imposed on robots during space operations, the
constraints must be met exactly. In the case where there are more constraints than
there are degrees of redundancy, the deviation of the robot’s task coordinates from
the operator command is to be optimised in some fashion.

1. Linearly Constrained Least Squares Algorithm

The kinematic equation of a manipulator subject to kinematic velocity constraints

are as follows:

=l B.)
and
[vi]-[a]aso (B2)

In eq. (B.1) and eq. (B.2), the set of task coordinate velocities, vz, has dimension
n, the set of equality constraints, v¢, has dimension p, the set of inequality constraints,
v, has dimension { and the set of joint velocities, q, has dimension m. The number of
kinematic equality constraints applied on the system is restricted tom —n <p <m.
In the case where p = m — n, there exists a unique exact solution to the set of

J
kinematic equations presuming that the augmented Jacobian J4 = JT has full
c

rank. However, in the case where m — n < p < m, there generally does not exist an
exact solution to the set of kinematic equations and some optimisation criterion must
be used to find an optimal solution.

Remembering that the constraint equations are to be met exactly, the joint ve-
locities must be selected so as to minimise the deviation of Jrq from vr.

The application of p equality constraints on the system is equivalent to restricting

the number of independent components of q to m — p.
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The kinematic equations can be re-written by partitioning the joint velocity vector

and the Jacobian matrices as follows:

vr - Jr1 Jre Q (B 3)
ve Je1 Je2 G

and

q2

]~ [ on J,z][‘jh]so o

where q; is the set of dependent joint coordinates (of dimension p) and q, is
the set of independent joint coordinates (of dimension m — p). The partitioning of q
into q; and q, is done in such a manner as to ensure appropriate conditioning of the
matrix J¢;.

From the constraint equation the following equation can be derived:

@ =Jo17 (ve - Jea) (B.5)

Substituting into the task coordinate and the inequality constraint equations
yields:

vr = JInider” (Ve — Joade) + ITage (B.6)

and

vi—=JInde™! (ve = JcaGe) + J1242 <0 (B.7)

eq. (B.6) and eq. (B.7) can be reorganised as follows
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vrl = Jrlg, (B-8)

and
vit-Jla <0 (B.9)

where

vel = vp = Jp e tve (B.10)
Izt =TIy = Irder e, (B.11)
vit=v;=Jndei"'ve (B.12)

and
It =J1 = Indcr e, (B.13)

Presuming that one would want to minimise the norm of the error between that
velocity command and the resulting velocity, the following optimisation criterion
would be used:

Q = |lvr = Irql® = (vr — Jr@)T(vr — Irq) (B.14)

Substituting the equality constraint conditions from eq. (B.5) into eq. (B.14), it

is obvious that the same optimisation criterion can also be written as:
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Q= (vr' - Ir'@) (vr! - Ir'q) (B.15)

The solution that minimises Q and satisfies the inequality constraints set in
eq. (B.9) can be computed using the Kuhn-Tucker theorem! as follows. The modified

Lagrangian is written as:

L=Q+pT(v/' -I/q) (B.21)

1The Kuhn-Tucker theorem is an extension to Lagrange’s multiplier theorem [42] to take into account
inequality constraints in addition to equality constraints. Let xo be a local optimum of f(x) satisfying
the following equality and inequality constraints:

g1(x)
g2(x)
gx)=| . |[=0eRF (B.16)
gp(x)
and
ri(x)
r2(x) .
r(x) = . <0eR (B.17)
ri(x)
If xo is a regular point of both constraint equations, then there exists vectors A € RP and u =
(m w2 ... m ]T > 0 € R! that provide the stationary value of the modified Lagrangian at xo
L = f(x) + ATg(x) + u"r(x) (B.18)
and that satisfy
T =
pr(x)=0 (B.19)

Note that since 4 > 0 and r(x) < 0 eq. (B.19) implies that pu;(x) = 0 for r;(x) < 0 and that
pi(x) = 0 for ri(x) = 0. The solution to the optimisation problem is found by solving the set of
algebraic equations consisting of:

ac

_=0

ax
ATg(x) =0 (B.20)
uTr(x) =0
Out of the multiple solution choices obtained, the valid solution is the one for which u > 0.
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Differentiating £ with respect to q2,we obtain:

aﬂé = —2vrTIrt + ZIrt It — w73t =0 (B.22)

The Kuhn-Tucker theorem also imposes the following constraint:

pT(vi! =Jiq) =0 (B.23)

The solution that minimises Q subject to eq. (B.9) is then found by solving
eq. (B.22) and eq. (B.23) for values of 4, suck that g > 0.

Once q, is found, q; is computed using eq. (B.5) and q is obtained by concate-
nating q; and Go.

The main problem associated with this approach is that the least squares opti-
misation of the criterion Q = ||vy — J7q||® is meaningless if the task coordinates vr
include translation and angular velocity commands. There is no physical meaning to
this minimisation and different results would be obtained if different units were used.

2. Reconciliation of Rotational and Translational Velocities

To resolve the ambiguity associated with the optimisation of a criterion with
non-compatible units, it is proposed to characterise the motion of the task coordinate
frame by the position of three arbitrary non-collinear points [2]. For convenience,
points lying on the x, y and z axes of the task coordinate frame are selected.

Let us decompose the Jacobian of the task coordinates in a translational part

and a rotational part:
J
wTr Jr,
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where vy and wr are respectively the translational and angular velocity com-
mands and Jr, and Jr, are the translational and rotational components of the task

Jacobian.
The velocity of an arbitrary point attached to the coordinate reference frame and

located at a distance d; from the origin of the frame is given by:

Vi=Vp— d, X W (B.25)

The cross-product of d; x wr can be written as the product of a matrix and a

vector as:

d; Xwr= Diwr (826)

where D; is the cross product matrix of d; defined as:

0 -d‘iz diy
D; = d;, 0 —d"z (B27)
—diy diz 0

From eq. (B.24) and eq. (B.25), the velocity of a point attached to the task

coordinate frame can be computed as:

vi =J,q (B.28)

where the translational velocity Jacobian of point  is defined as:

1, = Jr, ~ D7, (B.29)
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Three points lying on the axes of the task coordinate frame as defined earlier can
be used to describe the motion of the frame. The velocity command entered by the
operator can then be expressed as a concatenation of velocity commands for these
three points (v,, for the point lying on the x-axis, v,, for the point lying on the

y-axis, etc.).

vy = Jpq (B.30)

where:

V, = vp (B.31)
and

JP:
J=11, (B.32)
JP:

Replacing the task coordinate translational and angular velocities by the velocities

of three non-collinear points in the kinematic equations, eq. (B.1) can be re-written

el
Ve Jc

The linearly constrained least squares algorithm described in Section 1 of this
appendix can then be applied. In this case the result of the optimisation process used

as:

to determine ¢, has a physical meaning: it minimises an optimisation criterion that is
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. proportional to the difference between the velocity command entered by the operator
and the resulting motion of three points attached to the task coordinate frame.
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Analysis for SSRMS
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This script must be Joaded in the same Maple session that is used to generate the
symbolic model in Symofros. Both worksheets share the same variables In the

Maple workspace. The procedure to compute the rank-deflciency locus for the
Symofros model is as follows:

1) Load the symo_gencrate.mws file Into Maple, execute it making sure to comment
out the last two lines In the script (these erase the symbolic model otherwise).

2) Run the Rank-Deflciency Locus Computation Script, When running the script,
manual intervention is required to cnsure that the Jacoblans for the appropriatc
frames are assigned to the Task and Constralnt Jacoblans,

@ Load libraries, set environment variables and define
procedures

[ » #xestaze,
[ > with(linalg):

Waraing, new detinition for fibonacci
Save the location of the model. This will be used to restore the cwivent diroctory to the model
location aftcr computing the rank-deficicucy loci. This operstion will ensure that the
symo_generaie sceipt can be run agaln with modifying it to add a line in it to changs dircctory.
> ModelDirsctoryiscurxentdirc(),

MadelDirectory = "c:\Working Filea\\Symoffos\\ Thesc\SSRMS_Symmetric™
[ Change the disectory to the kocation where the mak-deficiancy locus algorithms are storod
> currsntdir(*c:\\working
files\\Naple\\These\\SingularityLocua®),
“¢:\Working Files\\Symofros\\Thesc\SSRMS_Symmetric*

[ > read "RecursiveBSubD,p*;
This procedure file contains a procedurs to remove from a set of solution loci those thas are
subscis of other loci in the set.
> raad "R Redund Solutions.p®;
[ > read "SimpleFormlacobians.p®:
[ The _EavAllSolutions cavironment variable detenmines whether transcendental oquations yield
only one sulution or all possible solutions. The defaull is false (one solution). Setting it to true
solves the problems with asrcsin sad arccos not giviag ail solutions on the range J-Pi, Pi).
> _EnvAllfclutions ;= false;

L _EnvAllSulutiony .= false
@ Kinematics of the manipulator

ﬁ Extract the list of Joint variables from the Symofros Modcl. These will be
Page 3

used to capress the singularity locl of ihe various Sacobians
| » #8yavacx{),
> JointVeriableLiat:=8ysVariqr),
Joim¥ariableLisi = [q,(0), ¢)(1), (1), 44D, 45(1), 4,(1), ¢k 1))
> JointVariables:s{sag(JointVariableList(i),
iel..nops(JointVariableList))},
| JoiniVariables = (g2}, @l 1) ¢, (O, ¢300), g0 ¢ (1) gy(8) )

Build Jacoblan Matrices

{8 14enipy frames and rows 10 b extracted 10 form Jucobians
The Topulugy structure containg the information relevant t the wpology of the system. It
ientifics cxtremitics and frames 1o which Jucobians are stached.
> #Topology())
Quesy the Topology siucture tu identily exiremity frame names
» Topology [ExtremityVrames))
(7,43}

laterrogaic the Topulogy Structure to find the indices atiached 1o frame names
> aval (Topology [PraneNamedNumber) )
tabley|

Ja=6

Jin}

JI=?

Jiud

buse=0

Jla|

-”‘ =l

Jias

J2=2

J3,=9

"

Numetical 10 of the frame W which are sitached the lask coondinates
> TaskFramelndexi=(8},

TaskFraomelwbex = [ K )
[ » TaskBaseFramelndexi={0);
TuskBaselyamelindes .= |0)
[ > TaskExpressPrameis[{)),
|

TaskExprexsbrame = [| |]
Numerical 1D of the framae W which arc atiached the constraint coondinates
bage 2
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((2)'B )05 ((1)*bYe03 17X - * 212 ((1)"BYs ()5 )03 ((1)5 803 ((1)°5Ynys ~

(1) )05 £y ((1)"B )03 ((1)'5)s0 (1) 1803 ((1 'L )uns +

2r 2 (1’8 )03 ((1)'h )00 ((1)*h)s05 ((1) b )t0a +
25.3305\1&:33!-:353.:.13.32;.35- -

((1)°6)800 27X ((1Y'BYuys ((2)'h 1800 ((1)B Y805 ((1)B)s00 +
((1)°0200 (17 x ((1)'B)%05 ()b )urs ((1)'h)903 ((1)°B)s00 +

Iz ((1)'b)oa ((1)'B)ns ((1)'b)03 ((+¥b)ms -




v~ (=26 corq,(1)) cos(qy(1)) - 2.J6" + 2_J6" sindgy(1)) + Z_J6" sin{g,(1)) sinkgy(1))
+2XI8 + 2_J6 sin(gy (1)) + 2 2_J6sinkq,()) X +2 2_J6 sinka e ) X M) / ¢
Z_J6" + 2_J6" cos{qy(1)} cos(g,(1)) + Z_J6" sinlq,(1)) sinlg,(1)) + 2 2_J6 sin{¢,(1)) X_ 14
+22 J63inigy (1)) N +2 X I8 )))

Substitute all solutions found for singularities of J_sugmented inlo

[

"
[
|
[
|
[’
I
[
N
[
i
[

J_augmented and J_task and verify their rank.

> JAugCheck:smap (ainmplify, map2(subs, {q(2] (t)aPi/2)},
J_augmented) ,symbolic);
RankAugCheck: arank {JAugCheck) ;
RonkAugCheck ;= 6
JTaskCheck:smap (simplify, mapi(subs, {ql2) (t)sP1/3),
J_task),sywbolic)
» RankTaskCheck;=rank {JTaskCheck);

RankTaskCheck ;= 6
» JAugChecki=map (simplify, mapl(subs, {ql6)(t)=Pi/2},
J_sugmented),eymbolio);
RankAugCheck:=rank (FJAugCheck) ;

RunkAugCheck := 6
JTaskChecki:=map (simplify, map2(subs, {ql6) ({t)ePi/2},
J_task),symbolic):
> RankTaskCheck: =rank (JTaskCheck)

RankTaskCheck = 6
JhugCheckismap (8implity, map3(subs, {q(4](t)=0},
J_sugmented},symbolic)s
RankAugCheck: «rank (JaugCheck) ;

RankAugChech == 6
JTaskChucki=map(simplify, mapi(subs, {(ql4e} (t)=0},
J_task),symbolic)

> RankTaskCheck;=zank {(JTaskCheok) )

RankTaskCheck == 6

At g[4K0)=Pi, the common normal between the shoulder pitch and the wrist pitch axes is
uadcfined as the two sre co-axial,
> JhugChecki=map(simplify, wapl{subs, {qlé) (t)aPi},

J_augmented} ,syabolic);
Ero0i, {4n mimplody/encutoal diviaton by uzarn
> JAugChecki=map (aimplity, map2(suba, SL(3)],

J_augmented) ,symholic)
Mapls seems (o indicate that the augmented Jacobian has full rank st this unt-deﬂchncy
focus condition. This is oaly due to th’ fac) l&n it does not do tri metric

L4 v

[>
L

[»
[a
[a

>

>

l':

while evaluating rank. The following command performs Gaussian elimination on the
rank-deficicnt Jacobisn, docs trigonometric simplifications aad then exiracts the Jasi row of
the triangular matrix. It is all zeros and hence the matrix is rank-doflcient,

RankAugChecki=rank (JAugCheck) »

RamkAugCheck =7
submstrix(map(simplity, gausselim(JaugCheck), symbolig),
71.1..7h

00000 0 0}
JTaskCheck =map(simplify, mapl{subs, BL{3}, J_task),
symbolia)
RankTaskChack:=rank {JTaskCheck) ),

RankTaskCheuh = 6

[ﬂSSRMS rank-deficiency locus analysis for Flight Software
(8 Constraint on shoulder rolt Joint

J_conatraintiematrin(l,?,{1,0,0,0.0,0,0));

J_comitraim =l 0 0 0 0 0 0]
J_augmented;stranspase (sugment (tTanspose (J_task),
transposes (J_constraint)) )
J_sugmentedismap(wimplity,mapd (subs, {X_JdeX_J4, &_J2--2_Jé),
J_augmsnted), symbolic):
8ESubliecollect (factor(simplify (det (J_augmented))=0}, (X J¢,5_
36},

SESubt :--co.(q.(m(shw,m)co«(c.(m' +eos (1)) cos( g N ) sinly (41}

~ S L0)) + 5in{g,(1)) cosig,01))) A_J4" ~ caslg (1)) (
cos{g,(1)) cus{ql1)) sinlgy(4)) 8in{q,(1)) + cor(¢,(1)) coa( g, (1)} sinq 1)) si gyl 1))
= in(¢,(4)) 8k 1))+ 8in(¢, (1)) cosl¢ (1))’ Mgy 1)) + cus{g,( 1)) comg A1)

- con{4,(1) cun( (1)) cosly (1)) 216 X 14 = 0
B8ESubliealgauba(can{qld) (t))“2-l=-sin(q(4) (L)) "2,8R8ub)),

SESubl ;= —cus{q,(1)) X_J¥'

(sin(0)(1)) Sin{g (1)) + con(g,(7)) cos(q,(1)) 8in(y, (1)) + 8 9,( 1)} cos(gy(1))) ~
cus{q{1)) 2_J6 X_I4
(sin(g(1))aindq (1)) coslg,(1)) + cosl g, 1)) 8in(¢,(1)) sin{ g,(1))) cosy (7))

= sin{q\(1))ain(g,(1)) Wl(q.(m' +cos(gy(1)) con{y,(1)) lin(«.(l))')- 0
8EBubli=collect (factor (BREubl), (X_J4,8_36)),

Page 46




0= X 8 23T B0 (1B )03 ((1)'8 10> =
Ry (I hYap (1) Bhns 4 ) + (0B (1Y 8105 ((1)D)ugs +
CCB I ()% nm ((2)5hYe0) ((1)'A)ons ()P Yeo>
(0)BYend = 477 (((1)Amys 4 ((1)Bhns ((2)"B 1803 4 ((1) BY803 ((1)°AJns)
(' hns ((1)°h o3 ((1thw0r— o' zgns s
ti{sr 2 o™}’ (zansus) 2010w3) 10011001 qnpRg <
0 u.ﬂ:z:.!_:: YAy ((1)*B)r0n - ((1)*B)uts - .::.3.._. ((2)'8)uss ((1)'A)s03 %
(D)0 (L) BYns ((1)AYure (11 H s — ((2)tAIv0a (205 Jugs (1) BYs0)
YU 02 prx (Vo3 9777
HLLOPOINL LY D03~ (1Y BYurs (1A )urm ~ (€218 Jurs ((1)PB D03 (1)1 B Ys)
Ny (11)°h Y503 ((2 ¥ P03 < 2gacys
flzansas ‘e, ((2) [v)1D)ugmer, ((3) [#]b)eoo-1 sansBrv) cdwme:zqnEag < _
0= N2
..::::s..:;5!.:;.3.31.;:.!..::513-:;53.::.;8-
.::.;.....::.a!,:::.;a + 0 R ({200 )1 (2P o> ({1 Hyms —
()P Yuge = (1) Fyusm (1B 190a ((1)'B Y03 ((1)'Bw03) (1) Isers
()P0 4 pr7x (((1) s ((9)*B st — ((4)"8 Juys ((1)*BYe0s ({ 1) )upn —
JOBP0a (180 4 ((1)'5)003-) ((1)°B )03 (11)B )0 - 2gnsas
t{{or

L9072} (0= ((PerUwmBne p) 30p) A3 TTdETe) 203593) 30T 10D 1 ZqNBEG <
t (oytoquie ‘ (pearuswfine
*{9r72-%2r"2 ‘o0 x=gr x) ‘oqne) pdvaA371dwrs) dvwe rpeiusadnep <
t (({3u3vzasuco p)esodsuesy
* (qswa " p)esodsunil) Jusubne) snodsuvaje ipesusubne p < _
0o oo 0 o0 olewumsws
1(10'0°0°0°0°1°0) 'L’ 1) xFXIWW~1JUTRIIOUOD £ < _
1ujof muk 1apInoys o JujnIsuo

9
t (Butpnenir) yuex «
tU(nee3 p ' {0=(3) [#)D) ‘sqne) pdew’ A3t tdwte) dews 1 Burgyenyp <
ne=g
t(ortoquis’ (1qnEES ‘0= (1) [v)D)sanw) A3Tdure <
9
<

|
|
|

t {Butgxeeir) yues

=

Ly ofied
titxeea o {g/14=(3) (9]D) ‘eqne) zdww A3} {duye) deme 1 Burgnserr
9

t (BuggyseLr) yuva
1{{x9e1" 0 1qne-1g ‘ eqne) gdem A3 T 1duty) deme t Buspyowyp
((1)B)03 9772 47X ((1)P s
OYMYas oz 4 05X (BI04 917y
C{1{(3) (€1D) *tangms) eAtos) AFFduse=t tqnpls
0= (972 (108 4 L0)'8 4 (1)'h)um + ((1)'BY903 p£7N 4 ((1)*B 4 (1) 5303 1 y)
(1D s ((2)°D )s0> Y-
! {1qNBEH) 20303 <
0= (VL4 U+ ()Y (1)B)ys pr "X 9777 ((1)*B 00 ~
(3800 4 ()P 4 (1)'BYs02) ((1)°BYuss pr x ((1Y'BI000= u: rqus s
t(1aneas’ ({3} {8104 (3) (v)Ds{2) (C)D)urm={(3) (C}D)#OO. () (S])D+
3) (91D)uTee ((3) (€ID)UTEe ((I) (S}D+ () [¥)D) BOD) BqneBrest 1qNBEE <
0o
= 00D+ (B Jure ((1)B)0a 4+ ((1)°B + (1)'h )03 (1) BYure) (1Y 017X 9777
((1)'5)003 - (((3)'B 003 + ({1 & (1)'8)505) ((11*BYNS 4/ "X ((1)B)s05— =: [qnsgy

t(rangns’ ((3) [s) D4 (3) (c)b) woo=((3) (»
1B uree ((7) (c)B)upe- ((3) (+)1D)wo2e ({2) {¢)D)woD) BqneBtest Tangay <

0= (C02)D 4 (1)BYis (1) B)903 + ({2)%B + (1)B )50 (1) B8 ) { (1)*B )uys MX
9 Z (LYB)03 — 477y (((1)B)503 + ((7)'B )80 ((1)*B 1803 + ({2)'B)urs ((1)'BUne-)
(YA ({14 )02 =2 pqngys

t{rqnaag’ ((3) (s1Be (1) (p)D)ure=( (3} [§
I1b)woDe ({3) [P)D)uges (({3) {S)D)ULes((3) [9)D)woD) sqneBSre=11anyns <

0= (((2)D 4 (1)'B)s03 (1) B)ms +
((1)'BYs03 (1) B )03 ((1)'B)uts + ((1)B 3900 ((+)"BYuys (1) b }80) ((1)'Byens pr X
or Z ((19°h)803 ~ #r7x (((1)'5)803 4 ((1)th )03 ((1)'h )05 + ((1)Eh s ((1)*B)ys-)
(1Y B)ms ((1)°h)e03- =: rgnsys
t(rangas’ ((3) (S)D+ (3) (v)D)wooe ((3) (s
1b)ugee ((3) [91D)uge-((3) (5)D)#0De { (3) (#)D) #00) sqneBieeitqnase <
0= AX O Z (1) B0 ((1)h )80 ((1)BYugs + ((1)05)rs (1Y h)uns ()50 s ~
(1) B )03 ((1)*h)uys ((1)'8)503 + ((1)'B)aps ((1)*5 805 ((1)*5)803) ((1)*h)uis
(2183805 - pr X (((1)'B)s00 + ((1)'5)s03 ((1)"5 Y800 + ((1)'h)uys ((1)*h )ns-)
((2)'b s ((1)°b 03~ w: JqnS TS

et N e

A A

i M - (1B = (1)'B) < rgnsTs

A




os efBvs

<]
JSropfirnBingseay L nodepnisay Sumpomy:s,
t {{z03D@33GTOPON) 2TPIAUSLIIND <
A1013301 1U3LND 3t 38 PIr3O] 81 (OPO SaLOWAS 9 S23YM KINIONP Sy ar0nay
n=90 717

t (zangug ssqneRy) 103083 <
‘suopunba om) o tasmsaq sftueya ulls ¥ Lju
0= (((1) Ay (1B hns 0r 72 ("B W03 ((1) b )ns —
LUPD P03 (1) BYnn gr™2 ((1)B)%03 4 (1) urs 97”7 (1) B s> -
.:;...73:;;13 HOX 4 U ((1) B )od (1) BYos py -
((1)h )03 pf7x: — ((2)'B)ars 977 ((2)'B 1803 ((1)th 0 ((5) 10 +
(L BYus (L1 P)ure pf - .::.3.3 or 2 ((1)'h )y ((1*hwo3 +
OF72 ()M )ns ({11803 — ((2)'B)um o2 ) ((1)°B)end pr7x (0102~ ot pons3S

t{o=( (peonpeaTp) aep) L3 31dure) 2030w e teqnEss <
1UIL'9°S 9 C 1] ' "1 ewy ) xFIIveqnse1peOnpes P < )

0= (((2)A s (1) By ((1)'8)s03 ((1)Brod 9/ 2 4+
(C0B s ()8 Jurs 97 - (1) B Yups JOYeno () husgrz +
P hYns (1) B yurs (1B 0d ((1)'B Y03 9 7 +
(YA (1) )s0d (111510 47y &
:;;.z_:sv.,_.,.::.»x...,:;;z_. X
(CBYns ((1YBYsos pr7y + (1 h K0 ((1)*A )0 of 77

(VB R03 (1) B )0d (1) B 103 07 7= ) (UIFB)0S pr7X= = FeMSES

t (0= { (poonpeaTr)Iep) A1 1dwiN) 103093t CanpRg <
LNYARE AE ARESE TLENNSRA L] o T INTTE LTI Y R R |
t (oyroquis ° (yew3 o _

‘{9072-=2r73 ‘90 X €L X) 'uqne) gdew A T rdute) dewat sy P
uoj1anpas 2suds yswy Bujsn 51jnsIs NIy aqnoq

9 1

o fIqNENB-caAnsAe < —
g

¢» oBuy

1 (Buygysver) yuez < |
t (dytoqels’ (yevd 0 ’eang1s ' wane) pdve K3 prdute) dvae s Bupgywelr < }

{ oz Tuiici..?-.?n:v.z
9z + WD a X + ()B4 (1)'B)ms o7y
= 29SS

t({{3) [5)D) ‘gansug) eAtOR=t zqng18 <

o
-.ac;,..-.pn::oun ~
1 {oytoquie’ (xeed £’ 2qngs’ eqne) zdve’ A3 s tdute) dewe 1 Butgysegp < |

:.ml:.z = QS8

t({(3) 191D} ‘zangae) satoe=12qna1g <

9
t (Bupgyewip) yuvs < ~
1 (oFToquAe’ (Y9eY P’ zanets ‘eqne) gdwm ' K3 Tt dure) dvee Butgyeir < |

:.mu:.f - LSS
t{{t2) (z)D) 'zangug) wATOR=1LqQnETIg <
0
= (9 Z (0D 4.(1)'D 4 (1)BYe0d w9/ 7 4 (GFPINS 27N + ()D& (1) BYns p17x)
(P RYoe (1B )02 (1) Yson " x-
! {gangag) 203093 <
0= (0D 4 (1) + (1)BI0s— ) ({1 ks ((1)%B)m03 7% ((1Y'h )0 9f 7 -
CCFEYam o (141D + (1) BJuys) ((+)BIuts o/ "% ((1)°B)303 ((1)b Y03~ =: syngs
1(2angas ‘' ((3) [$1B+ (3) (#1D+(3) (C)D) o2 ((2) (SID)uTEs( () [p]De
(2) (€1b)use- ({1) (S)B)woo. { {3) (#)D+{3) [C1D) @0d) vaneBye=tzqnENg <
0= U184 ()b Jum ((1)'B)ogs 4 (1) 4 (1) bod ((1)DB0r = 1) ]
(()B)us ((1)°B )03 #r7x (13D 03977
= LB+ ()B4 (1)5 31D Jurs 2r7x ((11°B )00 ((1) B Y05 -: rqns3s
t(zqneas’ ((1) (9] D (3) e1b)wod=((3) (¢
1b1use, {{2) {9)D)uge-((3) (¢)D) 0. ((2) (»]}D)wOd) sqneByvw=tzqngug <«
0 =(((1)"8)805 ((£)'5)303 (181800 - 1 + ((1)'B + (1) )ms ((1)°B)ms +
(Y by ()58 ((1)*b)w0) ((1)*BYrs ((1)"BYs03 2y K ((1)B)800 9r 7
= (((YBYo1s + (0B 5 (1)'BYns) ((1)Bns #r7x ((2)°h )03 ((1)5)s00- w: 2gn5yS

t{zangas’ ((3) (9)R+(3) [¢)D)ugw=((3) (¢
1B} uge. ((3) (#}D) w00+ { {3} [£)D) 00 ({3) [9)D) ure) sqneBiee: zangag <







APPENDIX D

Results of Rank-Deficiency Locus
Analysis for A Simplified SPDM Arm



APPENDIX D. RANK-DEFICIENCY LOCUS OF SPDM

164



This script must be loaded In the same Maple sesslon that is used to generate the
symbolic model in Symofros. Both worksheets share the same variables in the
Maple workspace. The procedure to compite the rank-deflciency locus for the
Symofros model is as follows:

1) Load the symo_gencrate.mws filc into Maple, making sure to remove the lines In
the script that erase the symbolic model,

2) Run the Rank-Deficlency Locus Computation Script, When runaing the script,
manual intervention Is required to ensure that the Jacobisas for the appropriate
frames are assigned to the Task and Constraint Jacobians,

Load libraries, set environment variables and define
procedures

[ » #xentart;
» with(linalg):

Warning, new detinicion for norm
Warning, new detinition for trace

Save the location of the model. This will be used 1o restors the curreat direciony 1o the modet

location after computing the rank-deficicacy loci. This uperation will casure that the

symo_genersie script can be run again with modifyiag it 1o add a line in it t chaage diroctory.

> ModelDirectory;scurreatdir();

ModelDireciory = "C:\Working Files\MapleWThesc\WRank-deficiency Loci - Results for Col
mplcx Cascs\RecursiveSubleicrminam®”

Change the dircctory 10 the lucation where the rank-deficiency locus algorithms are stored

> ourrsntdir(*oi\\working
f1ilea\\Maple\\Thess\\8ingularityLocua®);

"C:\Working Files\Maple\\Thesc\\Rank-delicicacy Loci - Results for Complea Casest\Recun\

L siveSubbcienninant*

[ » raad *RecurejiveSubD.p*;

This procedure file containg a procedure 1o remove from a sci of solution Joci those that are
subscts of other loci in the set,

> read "RemoveRedundantSolutions.p®:

{ > Tead *8implaForaJacobians.p®;

The _EnvAliSolutions caviroament variable detcrmines whethers tascendental equations yield
only one solution or all possible solutions. The default is falsc (one salutiun). Setting it to true
solves tho problems with arcsin sad arccos not giving all solutions on the mage |-Pi, Pi). If
_EnvAliSolutions is set (0 true, then all Maple procedures used and called by this script should be
changed o use SolveAlllnTwoP; instcad of the solve command.

> _EnvAllSolutions ;= falss;

fage )

Ll

_EnvAllSolutions = fulse

(@ Kinematics of the manipulator

Extract the list of joint variables from the Symefros Model. Those will be
used (o express the rank-deficiency locl of the various Jacobians
[ » #8yavaz{),
> JointVariahleListi=8ysVariqgr],
l JuumVariubleList == [g,(1), ¢i(4). 4)(1). 1), 45(1). gL 1) @A D)}
» JointVariables:s{seq(JointVariableList (1],
[ i=1..nope{JointVariableList)}});

JoiniVoriables = { (1), Ik 4,000 g0 0D g4(0), gL 1) g 1))

Build Jacebian Matrices

ﬁlw/rum and rows io be extracted 10 form Jacoblans
The Topology siructure containg the information relevant t the topolugy of the sysiem. Ut
ilentifios cxtremities and frames to which Jacobians are attached.
> #Topology();
Query the Topology 1o identify ity frame names
» Topology (RxtremityPrames) )
{412, 413,)

Interrugate the Topology Struceure 1o find the indices atlached 10 frame names
> aval (Topolagy (Framedame2Wumber));

table(
Jil =)
Jid=2
Ji, =9
Jid=4
J13=3
Ji6=6
buse =0
Ji=)
41}, =8
Ji?=1
b

Numerical 1D of the frame o which are hod the task bi
> TaskPramelndexi=(8),

TaskFramelndes = | 8]

[> 1.-&8---?:.:«1::40:5-("."-. 2
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SESubl = ~cosg(4)) NI 5l g (1)) (—~cos(4,(1)) = corl g, (1) + (1))
+ COI(Q.‘I”X_JJ.’ X_Jll’ “‘“04“))“”(43(‘) + q‘(” + «',(l)) =0
> faator(SBSubl);
N1 coly{ )} sin{g (1))
(.\’_Jllcos(q,(u)+4\'_Jld'cnn(q,(r)¢v.(m+coo(q,(l)fq.(u)*q,(l)).\'_,ll))-0
> BLSubli=sinplify (solve(8E8ubl, (q(3){t)) ),
cos{g (1)) X_I14+ X_I14+ X_112 coslg(1))
sin(q N XN 14 = X_J12 sifq 1))
JTask8ingi=map (8implity,mep2 (suba, BL8ubY,J_task)}
rank (JTask8ing) )

SLSubl ;= lq,(n-—q.(l)-mm{

v Vv

6
JITaskfingismap (simplify ,mapd (subs, {qI6] (t)uPi/2),J_task) ),
rank (JTask8ing) ¢

v Vv

6
aimplity (aubs (q(4]) (t)=0,8K8ubl),symbolic),
0=0
JTaskBing:=map(simplity,map2 (subs, (q(4) (t)=0},J _task)),
Page 33

v

v

[ > rank (JTaskS8ing) s

|

[ﬂ Constraint on shoulder yaw joint
[ > J_constraiatiematrix{},?,(0,1,0,0,0,0,0)),;

J constraini:=(0 ) 0 0 0 0 0]
> J_ tedi=tranap (aug t{tranap (J_task),
[ transpose(J_constraint)});
> J_augmentadie=map (simplity.map2{aube, {X_J13sX_J14,
E_J16a-2 _J12, 2_J15e-2_J12, ¥ _J12=0, V_J16=0, X_J1S«X_Ji12},
J_augwmented), symbolioc):
> 3R8ubZiecollect (factor(simplify (det (J_augmented))=0), {X_J14,X
Ji2)n

SESub2 := ~cas(qy(1)) cor{ gy (1)) (—8in(g (1)) sin{ g, 1)) ~ cus(g,(1))

+ cong,(1)) 0@ 1)) = sinl g (1)) con g, 1)) sinkq (1)) X4 = conlyl 1))

cus{ ¢y (1)} (=coulyy(1)) sin(gy(1)) cuslq(s)) sin(g (1)) + sin g (1)) sin{g,(¢))

=~ oM gt 1)) conly (1)) sinl ¢ (1)) sis( gyt 1)) + con(gy(1)) cuslg,(1)) cosg {11’

— oM 9,4 1)) con(4,(1)) = siti g (4)) {9, ) cox( 9,(1)) Y NI X )14 = 0
> 8RSubli=mapl(algsubs,l-coa(qlé] (t)) “2eain(q(e) (t))"2,888ub2),
SESub2 ;= ~cos{g( 1)) cost ¢ (1)) X_JI4*

(-tinw.(rnw-(c.(v))-ln(v.u))-sin(q.(l))uimq,u))-couq,u)mu(u.m)')-
cos{q,(1)) cosl g N X_JI2 X JIf
(-sin(y,(1)) sin{q(7)) cas( 9,(1)) = cusl 9,0 1)) nin{ g,{ 1)) sin{9,{1))) cus{g (1))
L ooy ) sustg (1)) win(g (1)) + sin(q,(0)) sin(gy() sin(g (1)) = 0
» 8RSublie=collect (factor (BREubl), (x_.ru.x_.n:)) F]
SESub2 := cos{ 1)) cos(gy(1)) sin{4,(1))
(8in(q (1)) comt g (4)) + coslq (1)) singg, (1)) + sint @, D)) N1 + cus{g (1))
cun(¢y(1)) sin(g (1)) eas{yy( 1)) con(@,(¢)) sig,(1))
+eo(¢y(4)) v g (1)) can{ug) (1)) - sin{q,(1)) sin(y (71) win @ (1))

+ 5 gy(1)) cor{ (1)) cos( gy (1)) X2 X_J14 =0
> BRIublisalgeubs (ain(qld) (t))*con(q(l) (t))ercom{qle) {t) ) miniql
3)(c})=aini(ql3) (t)eql4) (v)),8RBEuD2),

SESub ;~ couq,uncm(q,u))x_,ll(' (g ()8, (1) + ¢ (1)) + sin(gyte)) +

corlq (1)) coslg (1)) NI K14 sindq (1)) (s g361)) cusl g0 1) cos(g,(4))
Page Js
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ExvactJ _(@).J,4Q

So={a' /om0 _(@M=0}

I——VGS n>1

Refine (S _ J Q)

S={q"/deNNq =0} U=nultspacel? _"(q,")

J=UT 4000
-

4
Addq S q==SVAW ™)

I

Add intersect(q¢’. qT)©0S

(  edFr }—H

FIGURE E.1. Flowchart of the Singular Vector Algorithm
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9" =SVAW o (@)

Add intersect(q ‘q")0 S

FIGURE E.2. Flowchart of the Rank-Deficiency Locus Refinement Pro-
cedure
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ExractJ (@
8_ ={q" /o) .(q'»-ﬂ}

q~=RSD T "D

Adig S Add intersaciq '.q)0S

FIGURE E.3. Flowchart of the Recursive Sub-Determinant Algorithm

187




APPENDIX E. MAPLE SOURCE CODE

188



t{dwstir)uyPane  yeeLy f {ago0) gt tpess

ueyy ((}=xevir)3y tpy seqegerBngep oe(e {tt)eBavatBngep usys (tresBieu) 3¢

aseLr preng 9 ! {ot) sB2we: xopulurINIEIISUO)

{ (g} sBru=1xepuriprInivrIsvo)

'1) (dueLLr’. uvigeoer wewl Y. °()aug2d usys fenzaeBeqep) 3t t {e)8Bave rxOpUINrYSVL

t (L) sBavsixspulLryenL

! {woputuentod ‘| { { [[)reputyrevs) sdou: ‘tay ' _x_h_onovc-u:- 1 {9]) #B1v=t swerseenrdugitiesieuo)

virbes’ | ((()wspurirases)edou "oy’ () [{)usputsruses)bes) ‘dusstir) ¥rsavugneet LLr ! (S)eBIvaiNopU IWEI4ONEGIVFVIIGUOD
1 (p) sBawetnspuloweIsIVIvLISUO)

113 (Lt (6) wopuzuryonL)ndou: * ten e (x) (()nopuTNrRee {c) oBave: swnzgunodugyses

L1bee’ (([()xopuiirunvs) edot “ tey’ () (()nopuriryees)dee))1utad veys (enzieBnqep) 5y ! (2] wB1ve i xoputswrisesegyivy
te) (deellir’.owel) Y2, ' [[)xspurswersnsel . 3O URIqOOer.) AUL1ID UYL (enI1eBngep) 3t 1{t]sB3e=1 xsputoues sy
! {1 (duetusr) seodeueiy’ (dwsrisir) seod 1" Sne) ssod 1=tdwertr tdwerydr ‘deetidr ‘desiwir *

Guoilll ‘109 ‘pejtewnBayr ‘IUIRIIU0OLS ‘REULL ‘Peuinieypsivsebnyr ‘psutnisyiuiviisuvodp

X7 pouanioyyeell ‘dueidr ‘GESLLP ‘NOPUISWERSEOUDISINY ‘RIPUILNATOD ‘sunsuny ‘sdoung ‘eatnm

wnpt ‘edoatni ‘sppveni ‘wdoppv ‘x ‘f 'Y ‘3s03dodess ‘180040 'Bnqep ‘wepuRNCIUTELISHO) ‘X
1 (G0eLuL0« 720y ) uLwASe 1 dBSLRLl SPULLLIVTRIISN0D 'MSPUTYCAREL 'NSPUILLNIRL ‘oww3sueeidygiuiesisno) ‘suvigsserdxgirel ‘X

t (GWaLLLl Y10} WTPASS t duaLLLr SPUISRTISIEERINIVIICUOD *APUTBNEILOSUNTEL 'HIPUTSWIIJIVFVIINUC) ‘HOPUISWPIANSEL (90T
! { (2opronos] Butaasg’ (AagAajeanaey]jButiieg’ 1’ (t] [()vaviguesidugysvl) et 0¥

{)0038 =1 suetqosv(wrosetdutsg

usyl ([) <> {(()owergewnsdugyeng)t tedes3 votado ()201d =1 muvigqosermrogetdurgd

(1)ownaz ut weel oy3 Bugewssdwe snorIY OSTYL # BugBfngep 103 pesn ‘uopiviIndwod [ ]

‘ouesjesssdugysel 3o suctideztp 43 § Sutanp senfea sivipsmisut Jo Bupiurad syy 30881323 03 Bers !Bnqep N

BUOLY NSPUIMPNSTL DU NOPUILIYEUL Uf PST3TItep] iusucdess sya @ EISBOOL JO UOTITROAEOS Sd U PESN 9q O3 HOLIRIOL 3O (]
1D0LOR O3 NJ2IVW UNIQOONL, Y1 810302 ¢y) ‘|[)xeputewwrsyevy § HPTQOOUL Y1 JO EMOL syl Butdtiuepy ALy tNSPUINLIVFULINUG) #

U] ESINWIPIOOD YEEL N3 seeadue O3 POIDNLSE Sen Puvil ¥ JT & WPRLIBVODL JO HojIteodeco ey tf pesn Bq O) UOTIT{EHERI JO [ ]
ueiqoIve SY1 30 Ao oy) Buldzriuept Avriy wepurlriugesisuc) §

F (1 [§) xopuivanisosngnees’ ([ ) xoputowwasyses) Wi | dusgulis youLl 3O vorIteodmod eyl Up PeEn eq 03 UOTINIOX []

1e (C)xopuronesgeseanses’ ([ ) nepusouegnaet) Lre  dearter 30 tviqosep sy JO smor syl Bujdyriuspy Awizy ixepupneuEes

sevLr 30 wOpItEodwod OY) U] pesn 8q O3 HOTIW[SuUer) ]

fop (neputswesgyser)edov 03 t wosp [ 30f jo tesqode, Syl JO sAor oyl Bupijrivepy Aviiy i(xepuplpyens @

[

poutiep sav g xeptif swwIfeotes oy U passeidxe wepuisweiseseg §

283VULPICOY XBEI YITYA 20) ESIPOQ JO 1equny 1 yBnasys doot ‘et @ 03 130dses 1IN XepUISWELINEEL JO UOTI0W ) eIndeos ‘Asewwns up #
SS1PUTPI00 SWEI) YOI JO BLGEI I ] FS1SIUe TP YBnOsYy doot # [ ]
(pousnIag) uerqoder XEeL o41 sweadxs ¥

1ts ©3 PISN SIV SRV SFOUR VIS YD JO df WYL !NFPUIGWTIEsUSIEISY @

(93817 YPeI U} S972IUS JO I9QEUnY 1092205U1.) Jutsd poNd1d e3e sitetodwod yotta A3poede @

usyy ((txeputiryses)sdou > (xspuiirysviiedon) 2o {(wepuiiryses)edon « ues 103wtedo syl Uy ‘USECYD 81V SUOTIINILIP Y1 JO eNQNE v B
s (nopuiswerseswgyees)sdou) 10 ((weputewerissegnset)edov «> (xspurewerayser)edoul) Pt Atuo )t Iey3 SRINEUS BIYL ‘POCILINPUN Bq O3 SIV NSPULYLIUTELIEHO)  #
ROPUILLIUTRIIBVG) HOIYA UT Swel) Syl O Of eyL -!hl.l.&guﬂd.hug [ ]

set1Ius jo seqend swes § posseIdns #1 XSDUISEEILIUTEIINUOY JO UHOTICW B YITYR B

Y3 PARY ¥STIIUS SIUEIPIOOD XEWI JO SIFTT FYI LIV IVYL AJpreA 8 01 3198dser YItA swel) Y3 JO A1 SYL !XEPUIIEVIISSVEIUTVYIINUOY B
suwvly @

(ATERL 1 TY S3US20)81 EEIGUTPIOOD TUJRIISVOY (F UL ! NSPHISWELIIUTEIISVOD @

HotIvssst snotanid v o3 Bujpusdde pioav oy A3des 03 NeeLr 1988y § pexatd sie mimatoduod yatum Azgoede
ued 20191040 O3 HEY3 ‘USEOYD elv FUOFIIGIIP O3 JO INEQNE ¥ [ ]

[ Atwo 31 1wyd 14t ‘p PUn g 03 e1v weputeraNel #

veydooer yevs 8 ASPULLINERS YOTYM U SWeI] QI 30 O UL tswuvijsserdvmysel §

) posssidne @7 NOPUISWRISNPEL JO UOTIOW BYI YITYR B

03 1>edees YItA swel) Y1 JO OT Sl tXepuIswYIsSSEEYSRL #

113 (3°. = Nopujswesgestsingey tdooy mey.) 3uiid ueyl (entiefnqep) )t WP BUNISIBL ESIUIPICOD NREL OF YL !NSPUIGwwIsNEeL #

op {(sswvnswe1g)iBotodos)sdou 01 T wory t 103 (]

INROTIO] 6V 93¥ HOTIOUNS SYI JO ONLYA UINIeL pue PiuswnBiv syl §

1 0% t ¥OPUISWSLJ05US2S JOy ‘A11€00 @80t ®} SuviqQUoRl 3 JO uotIRANdwod Y3 YItYA #

193 (NMOPUIHENTOD ‘. = NSPUILWNTOD, ) I12d Ueyl (enaieBnqep) 3t YT SWE1) 23USI0JEL SLI JO (A1 M1 SUINIST LOTIUNS SYL B
t{t11ad) supsdg)sdou’ ‘a1’ )hae) = xepuirentoy ‘40139UNs eyl 01 pessed aq 10U PESU ENYYI Puv PELUIAvA B

19Qot8 01v tPOW FOMAOMAR Y1 YItA PRIeLSOESE SUOTIOUN] §

1Aatuggute: avondo pue Esfguiteas oYL ‘weyd Sufindwod 3O 1900 SY) SFtwjulw O3 B

Alpurut av jeoddo tetatut 31eig 0 peaserdxe 8q pinoys 2019 (ndfuee UsATS ¥ JO SUTIGOINL By Swer) #

934820302 YITYA U SUTWLSINP O3 POSN BF sanpedosd efuL #

He.v LTl 0 dteoSiubogddeys T

Em e




Al

fpesjuswBnyret peitsnisyperusuinge

1 109 3FUOI e I POUIN PP AN P2 ITHOIL

faseLre 1 pouInIogERLL

1= 1xopti] RTIS0OUBLI S 0Y

1 38cododusyet 1903d0

t13 (1°. = punog wspht tvwiido mew.)autad usyy (snr3eBnqep) 3t

usyy (3s03dor Isoydodent) 3t
SWERL] 2US10303 Y AV BWEL) IUSIIND BLY O8N UeYI [ ]
‘sz030q puncy Bajyifue HEI IBAOT 61 100D UOTIVNIEAS oyl I &

119 (3s03dpdwe ‘s = BNEEA 390D (POTIsENN.) 10124 usyd (eniieBnasp) )t

1o BUNZONNS T+ ITRNUNNS { « SPPVERN« ! 3800800uaL
1 (svotaouny’ dodeel) 33800t
! {suotavastdratrm ‘ 3800d0dwet) 3 3905« 1 83 Treeen
! tsuet11ppe ‘ anoddodusl) j Jecde | SppywnN
t33 (1vopdpdusy ', cuotIUN(VAR I80D.) Jurd usyl (eni3eBaqep)3s
t {perusmBnygr) 39ose! 38cododusy

SUOTIEN{PAS ¥OT10UN] puv suogiestidiitre §
‘euofiTppe JO suzed Ut peltsalnyr BuyIndwss 30 1800 O3 BINNYVAN §

»
VOTITNICAR 280D @

13 (o NE ‘s = Pe Nre)8t3d usys (en23«Bnaep) 3t
114 tIutwsIeuo)r) sRodenes )’ (NeNll) d 3 ) deuetie

| J )
IUIRIIGUCHS puv  wog) pervsebnyr pring &

vetqoder peaiuswbnyg

1373 (IWIELITUOIL ‘.o IVIRLISVOI(, ) 2uTEd Uy (ensdebngep) )y
'po

133 {IVIVIIBUADL ‘.= (HOFIINIIBUOD IOPUN} JUTEIINUAIN. ) JUTIS oYy (entiraBaqep) 3t
! {augesasuodr ‘A1 tdele) dews t 3uteLasuOL

1
1(( tdussop) swod 1°'(ues 1 esodeuwsa) ) swod, 3=t anpeaIsodr

uetqodep, WTRIINNGY AtINQ »ﬂ.-uﬂu_"

431 03 UNLQOIEr HOTITIOD BYI 3O 803 sivrsdordde syr pusdde ‘emrAlyiIo #
! {Auat)p) weAse t JUTRI INNOIS

ust3 {{)euyesIsveor 3t

MWIeLISHODC PLING #

113 (dweldr’. URIQORL AUTEIIEUDD Y. ()Iuted usys tenaieBnqep) )y

! (xoputtentod’ [ {{{§) RepulyrIttesieucd) sdou: 1oy ts (¥) (L] xepurNCIvTesIOUOD) Des’ (( {[)

H . - deibqodufubiogodung

HIPUILLIVIRI IBUOI) Bdotr” " T’ (%) (| xopuririvges 1su0)) bew) ' dweisr) x13ivegne«: dwetyr

'Y (L1 [§1xeputycInyesasuc)) sdou  “tex ¢ (%) (€) ¥eputyrIvtesisvor)bes’ ((([()x

sputiratiesasued) edou’  tex’ (%) (£) *epUlirIutesasvol) Des) ) 1ured usyl {ent1=Bnqep) 3t

133 (d

WaLOM . BWeI] Ul ' (f)Neputewesiuiesisuc]’, 3O uRtqoser.) Jutad syl (enxjefnaep) 3t

1 {({dwerydr)esodsuray’ (dwaLidr) seodsuels) Bne) seodeuetier dustdp

1]

¢ (SuotuIC e YI0W) WLvADe ! danguIp
! {dwetidfe 7101} wLRASS duoLidr
t([20p20uqR) But1teg’ [A3tateancey)Butizes s’ (1) ({) swergoneadugrugerisncy) = 108

usyl {[) *> ({)jswessevnidxgingvsisuod) s

(1] owess up yew1 sy Buyssszdxe smottY stuL #
‘owexgeeerduyiuteriIvucd Jo suvorloertp sy Buote §

AOPUIYLIUTEIINIOD DUE YSPUILLINELIIGHOD U POTIFILSPT FIusHOAWOD oY §
I8THNE O3 N1IINW URLIQGODEL SYI 810102 SY1  [{)¥epUIsERILIUTRIINNOD §
U EPIRUTPIOOD IUTRIINUOD SYI SESIdNS O) PEIIGLEE BPA Wi} v 3T B

P{1’ (] noputowvIsonegau]esIeu0)’ [[] XODUISEPI11UT92I0UCY) H= 1 dwOLNOL
Fi3* (£]xeputsunsseseniniesasuod’ ({| Xepulewr 1l Jute1I0U0 ) L0~ t ANOLIOP

top (nspupsm¥rfiutesisuc))sdou o3 t wory [ 10y

poutyep sre ¢
S8IULIPIOOS M IVLIFUO) YIPA 203 SeTpO] JO sqguny ) wbnorys &8& ‘'t N
FRINUIPIOOD PUEIF IUTEIISUOT JO StRI SY3I U Se12IUe T1¥ yBnoayd doot ¥

tes
{«#ANI] ULOIIFUCT HE #813IUS 30 ISqUNU 3ID82100UL. ) Wtd

ueyl (({xspuryriute
219103) 840U <> (XSPUILLINTE1I0U0T) #don) 10 ({XSPUILLIUTERIISUOI) #dOU <> (NopuIsweL oerg)

uje239v0d)adou) 20 {(¥Spur gauges 3)9dou <> (xspUTeNRIZIutRLISUCD) Rdott) ) 3

esgritte JO tecunt swes §
YT SARY S81119 SIURIPIOOD INIVIISHAD JO SI8PT SYI TP eyl AJrasA #

t()=13upvrasuoyp
©013191011 Bnotassd v 01 Butpusdde ptoav o3 Aidwe 01 uEINUCOP 19WeN B

yeiqoOvr IURIINV0) u
sescnncecsssssscavcanvevenj)
PT3 (NORLL ‘.exsOLr.) Iutid veyd (Sn23eBnqsp) 3t
tpo
1 (xoesr A3y 1dute) dewe 1 ysesr
37}
! { { {GeeLLr) saodetie1d’ (yeulr) evodsueey) Snw) esodetreaie 1 yeeLp

sete

tetqooer YEwy 31Inq Apeerte syl o3 #
HeIQOsE, HOTINIOT Sy1 JO saox 8ivtidordde syi puedde ‘esimreyio #

H Cotr demaodvruuo8idiung




tpus

! [{pousnionp

03uuBnr) HIRAS ' (POUINISNIUTYIINUOOL] MIVAS * (DEUINISHNSIPLLINIRAS *XEPUTSWY.I40DUSISION)
#SD133%8 POINIOONET [TV DUT BWEI) SIURININE teWEIdO Oyl JO SNLYA SYy3 tisnaew N

H T T dsuwgoowquilo g9 idung




This seript must be loaded in the same Maple sesslon (hat Is used to generate the
symbolic model in Symofros. Both warksheets share the same variables In the

Maplc workspace. The procedurc ta compute the rank-deflciency locus for the
Symofros modet is as follows:

1) Load the symo_generate.mws file Into Maple and execute it

) Run the Rank-deficiency Locus Computation Script. Whea runaing the script,
manual intervention Is required to ensure that the Jacoblaas for the appropriate
frames are assigned to the ‘Task and Constraint Jacoblans,

E Load libraries, set environment variables and define
procedures

{ » #restare;
[ > with(linalg):

Warning, new definition for fibonacci
[ Save the location of the model. This will be used ta resiore the cumvent directory 10 the model
location afier computing the rank-deficiency loci. This opesation will snsuro thas the
symo_generute script can be run again with modifying it (o sdd a line in It 1o change direciory.
» ModelDirectoryiscurrentdiz(})

ModelDirectory = “c:\working files\Maplc\ Thesc\\SingularityLocus*
Change the diroctory 10 the location where the rank-deficiency locus algorithms are stored
> currentdir(*c;\\working
tilas\\Weple\\These\\8ingularityLocus®),
“e:\working (les\\Msple\i TheseWSingularitylocus®

[ This procedure computes the rnk-deficiency locus of a Jacobian matrix using the singular vevior
approach derived from the papes of Noklchy sad Podhorodeski. This approach is lexs
computationally intensive (han the subdeterminant sppruach uscd for the
CompuicSiagularityl.ocus provedure, It is bettsr suited for cases where the degroe of redundancy
i mwre than ons and fur robots with many degrees of freedom since the number of operations
docs not 4o up combinatorially, The previous Maple code line in the xcript should be commented
out when using this procedure in replacement of the subdetsnminant approach.
> resd *RDLocus8VD.p*:
This procoduse file ing a procedurs 10 remove from a sel of solution buci those that are
subscis of other loci in the set,
> read "RemoveRedundantfiolutions.p®;
> vead "lIsLocusASubsst.p®:
» read *SimpleFormtacobisns.p®
>
>

read "AllfolutionsInTwobPi.p”:
read *folveAlllInTwoPi.p*;

— = —

Pagse 1

Tho _EnvAllSoluiions eavirvament variable determines whether imascendental cquations yiek)
oaly one solution or all possible solutions. The default is false (one solution). Sstting it v rue
solves the problems with arcsin and arccos not giving all salutions on the range -Pi, Pi).

> _EnvhAllSclutiona is false;

| _EnvAliSolutions ;= false
[ Compute the kinematics of the manipulator

Extract the list of joint variables from the Symofros Model. Those will be
used to express the rank-deficiency Joc) of the various Jacobians

» JointVariablsListie8ysVariqr);
[ JoimiVarlableList = [g,(1), 4,00, ¢,(1))

> JointVariablasis{saq(JotntVariableLiat (1), a1, .aaps(JointVari
l ableList))):

JuintVariables == (q1), 4\ (1), ¢,(1))

Bulld Jacobian Matrices

l?lawyﬁ-m-unuuuamnmulm

Query the Topology struciure to identify extcemity frume names
> Topology (BxtremityPrames)

(3,42,

[ interragaie the Topulogy Structurs 1o find the indices attachod 1o fiame names
» aval (Topology {FrameNane2Number));

wble({
VIS
Ji=2
Jis])
J2 =4
Jial}
bute = 0
)]

Numerical D of the frams to which ars attached the task courdinates
» Task¥FramelIndex:=([5),

Tushiramelindes =[5
l > TaskBasePramelndex:s=(0))
TuskBaveFramelndax := [0}
[ » TaskBxpresslramais|()];
|

TuskEspressFrame = [{ }]
Numerical 1D of the frame t0 whic:a .?”n lauuhod the cunsirmint courdinates
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its rank.
> JTaskCheck:eseq(map (simplify, map2 (subds,TSL{1),J_task),symboll
@) ,4=1,.n0ps (T8L) ),
- 0 0 0
STaskCheck : [L_.II L2 L3 LRVLS LSS

[ > RankChackieseq(rank (JTaskCheck) i1, .nopa(J_task_check));

KankCheck = |

Find Singularity Locus of the Augmented Jacobian

> ASLi=RDLocus (J _augmented,JointVariables,false);
Warning, new definition for tibonacct
warning, new definition for fikonacci
Warning, new definition tor fibonacct
wairning, new detinition fe: fibonaccl

“SLRefined=", { {401} = g (1), 9,(1) = ¢, (1) g () =0} }
"SLRefined-", { {¢)(¢) = g1), q (1) =g (1), q)f1)=0))

ASL = (g (1) = q(1). (1) =0, 4, 1) =0} )
> ASL:sRemoveRedundantBolutions (ASL,JointVariables))

ASL = 1 (g N =g 1), q(1)=0,q1)=0})

Substitute all solutlons found for rank-deficicncles of J_sugmented Into

J_augmented and verify iis rank,
> JAugCheckianeq (map(simplify,mapl (subs,ABL (1) ,J_augwented), sym
bolic),.i=1..nops(ASL)};

0 0 0
LALI24L I3 L2l D) LSS
JAugCheck ;= ] 0 '}

1
{ LizL %L_Jz 0

[ » AugRankCheck:=seq(rank (JAugCheck),is1..nops (JAugCheck) ),
AugRankCheck .= 2
» JTaskChecki«aeq(map{simplity,map2 (subs,ABL(4],J_tank),symboli
c},i=1,.nops (ABL))

1] 0 [
”“"C"“"'“[L_JHL_,IHLJJ LI L_JJ]
[ > TaskRankCheckieseq(rank (JTaskCheck),isl..nops (JAugChack)))
L TwskRunkChock - |

Verify that the constraint Jacoblan did not add algorithmic
rank-deficiencles. Done by ensuring that the rank-deficiency locus of the

augmentcd Jacobian is a subsct g ghag of the task Jacobian,

[ l [ » CoordinateSelectionOKis=IsLlocusASubset (ASL,TSL,JointVariables)
)

CoordinaieSelectionOK = irue
lxcmmmmm.un*', fros mudel is located as the Sirectory

» currentdir (NodelDizrectory);
“c\tworking fles\\MapleWThesc\\SingularityLocus™
[>
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