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ABSTRACT-

The present work deals with the mechanism with which a
neuron encodeei current produced by an input stiu;ulus into an output :series
of spikes(pulses). We have formulated a lumped model of the encoding
mechanism by considering the experimentally observed properties of{ the
neuronal membrane. The model consists of a forwar;i pa‘th and two nega-
tive feedback paths. In the forward path, there is the well-known R-C
model in series with a block which emits a spike whenever the membrane
potential exceeds a threshold level. The two feedback paths model two
processes present in] the membrane: the incfeaae in the potassium condu-
ctance triggered by the emitted spikes and the increased activity of
. the electrogenic sodium pump. The model has been studied by simulation
on the digital computer and analyzed mathematically. The ;esults show
that many of the observed prOperties’ of the encoding mechafiism are due

to éither the potassium conductance process or the electrogenic sodium

pump process.

In addition to, increasing our understanding of the encoding .
mechanism of the individual neuron, he model can be used for studying
neural systems t;ecauae of the following features: (i) The paramete;:s
of the model are expressed as a function of the "size" of the neuron
since ne;.nrons in some neural systems are of various sizes, (ii) Only
the properties which are significant in the encoding are incorporated
in the model and as 2 result, a neural system can be represented
realistically by many neurons “and the cost of simulations remains accepF-
able, (iii) The model appears to be applicable to vario!m types of
neurons such as the cat motoneuron and the crayfish stretch receptor

neuron.



SOMMAIRE

Le present travail porte sur le mécanisme par lequel un neurone

.

vconvertic un stimulua d'entre en une série de potentiels d'actions (impulsjions)

é la sortie. Noug avons formulé un modéle global du mécanisma de codage
du stigulus e;x tenant compte des propriétés observées expérimentalement des
membranes de reurones. Le modéle consiste d'une branche de transmission
directe et de deux boucles de rétroaction. Dans la branche directe se trouve
le modéle R-C bien connu en série avec un bloc émettant une impulsion lorsque
le potentiel membranaire dépasse un seuil donné. Les deux boucles de ré-
troaction représentent deux processus preésent c}ans la membrane: 1'augmentation
de l1a conduct;nce du potassium déclenchée par les mpulsions émises et
1'augmentation de l'act:lvit}:é de la pompe électrogénique du sodium. Le
modéle a été étudié par simulation sur ordinateur digital et -par analyse
mathématique. Les résultats démontrent que plusieurs des propriétés observées
du mécanisme de eodage sont dus au processus responsable de la conductance
du potassium ou de la pompe électrogénique du sodium.

En plus d'accroftre notre connaissance du mécanisme de codage
du neurone, 'le modéle peut-etre utilisé pour 1'étude des systémes mneuraux
d cause des propriétés suivantes: (i) les paramétres du modéle sont exprimés .
en fonction des dimensions du neurone étant donné que ceux-ci peuvent varier ‘
a l'intérieur de cert:ains systemes, (1ii) Seulement les prOprietes qui so{t \
importantes dans le processus de codage du signal d'entré sont incl;ses dans-
le modéle, ce qui fait qu'un systéme neural peut-etre représenté d'une
fagon téaliste par plusieurs neurones.avec un coit de simulation demeurant

acceptable, ({ii) Le modéle paraft appliquable & différents types de neurones

tels les motoneurones du chat et les récepteurs d'extension des écrevisses.
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CHAPTER 1

INTRODUCTION

~

1.1 Motivation and objective ‘ a

- a

In the nervous system there a're many subsystems which perform
gpecific functions. As an example, a subsystem (or simply, a system) of
about three hundred motoneurons operate more or less in p;rallel to con-
trol the contraction of the cat gastrocnemius muscle".

In order to investigate how the neurons funct'ion together as a,
system, it is necessary to observe and analyze their simultaneous activi-
ties. We could attempt to study experimentally the responses of as many
neurons as possib}e, but it: is diff_“icult to record simultaneously from
more than s;veral intei'acting neurons and very bdifficult: to’resolve their
it;d:]:vidual activities. Alternatively, we may approach the problem by a
simulation study of a model of the system together with experimental ob-
servations from Qne neuron during the operation of the system. An initial
model can be developed by .Integrating available in'gormation on the operation
of the individual neuron and on the interconnections of the neurons. I

[y

can then be improved continually by'using the experimental data in con-
S Q9 -

junction with results from the simulation study of the model. An ade-

N

quate model should then explain how the neurons operate as a system and
¢ ' N ¢
\y .
predict possib}?e functional properties which in turn may clarify the ex-
.

perimental observations from the individual neuron in the system. - Using

this approach we have begun tc; investigate the functional significance of

v

]

)



the Renshaw cell feedback in the gpinal motoneuron pool (56).

In order to model a neural system, we require a model of the
individual neuron in the system. We have not found in the literature a
physiologically meaningful mo’del suitable for this purpose. In the pre-

sent thesis,‘ we shall develop a model of the neuronal encoding mechanism

1
!

vhich can be extended, as we shall do for the motoneuron, to give a com-
plete neuron model (see Figure 1-1). By "neuronal encoding mechanism"
we refer to the mechanism with which a neuron encodes gurrent produced

>
by an input stimulus, such as excitatory spikes (pulses) from other neurons,
into an output series of spikes. Reported experimental observations,
cited in' the thesis, indicate that the maln properties of the operation
of certain neurons can be attributed to the encoding mechanism.

Although a model can('be formulated by only considering the ob-
served input-output relations and the subthreshold changes; \of the membrane
potent{.al without regard to the processes present in the neuronal membrane,
it is desirable to make the modei more physiologically meaningful by cor;-
sidering these processes. Extensive experimental tésts on thg motoneuron
and the crayfish stretch receptor neuron indicate- that changes in a
p'otass:ium conductan::e process and in an electrogenic sodium pump process due
‘to the occurrence of spikes pnlay an important role in regulating the out-
put spike frequency (12, 22, 34, 45). However, we have not fo;md a
mathematical model nor any verbal description that would reveal how both
of these processes are inyolved simultaneously in the encoé.ing meéhanism.
The model of the encoding mechanism that we shall formulate and analyse

will include both of these ptrocesses. The applicability of the model to?!

various types of neurons, including the motoneuron and the crayfish stretch



receptor neuron, shall be digcussed.
The model must also meet the following requirements in order
that it can be useful for studying neural systems:

(1) The parameters of the model must be expressed as a function of
the si,ze of the neuron. Neurons in some neural ’systems such as the
spinal motoneuron pool are of various sizes. The size affects both the
operation of the neuron and the system. For example, motoneurons in a
spinal motoneuron pool are recruited into action in order of increas-
ing size (55).

(1i) The model must bc;, "simple". By "simple" we mean that the
model incorporates only those properties which are significant in the
encoding. For example, it 1s not necessary that’ the m:del reproduces
the shape of the spike in the action potential but;' on the other hand,
it 1s essential that the model emits the ;pikes atv‘lg:he correct times.,
This requirement is necessary because the cost of simulations of a m?ﬁel
of a system is proportional to the complex:l,ty of the neuron model and
_ the number of neurons in the model. Thus, in order that the system can

be represented realistically by many neurons and its simulations be

economically acceptable, the neuron model must be simple.

1.2 Previous work

An extensive review of neural modelling prior to 1966 has been
reported by Harmon and Lewis (1). In the following, we review again
some of the relevant models, as well as others which have been reported

. more recently. First we describe each model and then, in the last para-

o



graph, we discuss the general limitation; of these models.

(a) The cornerstone éf neural modelling has been the Hodgkin-
Huxley model for a patch of membrane of the squid axon (2). The model
describes the underlying changes that occur in the membrane during one
action potential. The properties of other neuronal membranes have been
generally discussed in terms of this model, We will review this model
in detaii in Chapter II.

(b) L;wis (3, 4) constructed an electronic analogue of an ex-
ten&ed version of the Hodgkig-ﬂuxley model and he explored various modes of
operation, including its subthreshold behaviour. One finding was that,
under certain conditions, there can be spontaneous subthreshold oscilla-
tions of the membrane pgteptial and these oscillations can lead to the
emisgion of a series of action potentials. Synaptic conductance
changes were included and the analogue was used to explore simple neuro-
electric Interactions between spatially distributed regions of a single
neuron,,aﬂd neuroelectric activities in very small groups of neuromns.

(c) Harmon (1, 53) designed an electronic model which accounted
for spatial and temporal summation, absolute and relative refractoriness,
and graded inhibition. This model had three primitive input-output pro-
perties: a single input spike elicited a single spike; a step input pro-
duced a train of splkes; and spatial or tempor;i summation of the effect
of suﬁthreshold input spikes elicited a spike: By appending circuits to
this primitive model, a variety of other properties could be produced such
as, accommodation, adaptation, ;elf-égstained discharge, and post-spike

hyperpolarization. The model was used to study neural systems in the

retina and cochlea, and to investigate the possible neurological origin

4




of flicker- fusion phenomena.

13

(d) Hiltz (6) proposed a model with a transfer function 13¥%
forward path that transformed input potentials into an equivalent trans-
membrane potential. This transmembrane potential was applied to a feed-
back path with a transfer function (which accounted for accommodation) in
series with a comparato;sand a single shot muitiyibrator whose output
was summed with the input potentials. The model was 1mp1eﬁented with
electropié circuits, and it reproduced lhe following ﬁ&operties: tﬁe
;ubthr%shold step response, the strength-latency curve, accomm&&ation of

the threshold to ramp inputs with low rate of rise, refractoriness after

a spike, the after—hypefpolarization, repetitive firing, and adaptation

-

of firing frequency.
~J

(e) Roberge (5) prgpoﬁed a description of the neuronal mem-
o

brane at the ionic level and then he modelled the motoneuron by fitting
relations between the observed subthreshold step response,

the excitatory postsynaptic potential, and the action potential.

The model was implemented with electronic circuits and it was used

to study the motoneuron—Renshaw cell system.

(f) Pavlidis (51) proposed a model with a forward path and a
negative feedback path. The forward path wﬁa designated a I-pulse
\
frequency modulator and it consisted of a leaky integrator to model the

membrane dynamics in seriles with a spike emitter. The output of the

bR
o

integrator was reset to zero whenever a splke was emitted. The negaiive
E'L‘

feedback path was included in order to account for relative refractoriﬂgss

u.,‘
and the time constants in both paths were taken to be equal. The model



was used to study possible neural netsa such as an osgcillating neural net.
(g) Perkel [from (1)] proposed a model in which the membrane
potential was hyperpolarized after a spike but it returned towards an
input level, If the threshold was set below the input level, a spike
was emitted whenever the membrane potential reached the threshold. If the thres-
hold was set above the input level, no spikes were emitted. For each
presynaptic input, a potential was instantaneously added to the membrane
potential and the membrane potential then returned from this new value
towards the input level with the same rate constant as that of the de-
cline of the polarization after a spike. Simulations of the model pre-
dicted accurately how a regular inhibitory synaptic infﬁt affects the
output firing frequency in Aplysia pacemaker cells and ih the crayfish
- stretch receptors. X
(h)' Jenik and Kupfumuller (1, 52) designed‘an eleétronic analog
to simulate a simplified form of the Hodgkin-Huxley model. They in-
cluded synaptically induced currents and the parameters were chosen fo
simulate mammalian mqsoneurons. The model exhibited aﬁ EPSE, IPSP
and action potentialj';imilar to those observed in motoneurons. The
model was used to investigate the procéssing of input spike trains.
One finding was that when two noncsherent, periodic, spike trains wére'
simultaneously appliéd to the model, the average output firing'frequeﬁéy -
was proportional to the product of the two input frequencies.
(1) French and Stein (54). designed a yodel which was impie—
mented with integrated circuits. A leaky integrator summed the inputs

from a number of sources over a period determined by its time coanstant

T1 . The integrated subthreshold voltage yas continually compared to a



threshold voltage, and when this was exceeded, a pulae was generated at
the output. The subthreghold voltage was fed forward to increase the
threshold level with a time constant T2 , 80 that the analog showed ac-
commodation. Each output pulse reset the integrator and also incremented
the threshold voltage by a fixed amount which decayed with the time con-

stant T 1f T, was short compared to the 'normal intervals between

2’ 2
pulses;‘it produced relative refractorinessi However 1if Iz was long
compared to the intervals between pulses, the increments %n tbgeshold
accumulated and produced an adaptation of the firing fre;uency. The
model showed that noise disrupted the phase-locked patterns produced by
sinusoidal ;timuli and the average response became a smooth sinusoidal

. . ‘ ¢

function in the presence of added noise.

(j) Connor and Stevens (28) analyzed the behaviour of the
molluscan soma mambrane in terms of three conductance mechanisms. Two
conductances corresponded to the sodium and potassium conductances in the
analysis by Hodgkin and Huxley and exhibited qualitatively similar be-
haviour. The taird conductance was also a potassium conductance but it
had no counterpart in the Hodgkin-Huxley model. Its time constants
were intermediate between those for the other two conductances. This
third conductance tended to dominate tﬂe behaviour in the interval bet-
veen spikes. ’

(k) Pertile and Harth (7) proposed a model in which the mem-
brane potential was a linear superposition of voltages from different
gsources: the resting potential, the post-spike hyperpolarization, and

the input voltage. Two distinct processes contributed to the post-




spike hyperpolarization. Each of thege processes independently added

an increment to the membrane potential. These increments had fixed
values at the end of the absolute refractory period and decaye o-
nentially, each with a different time constant. The nature of the two
Processes was not specified but rather, two processes were postulated
because a single process could not account for adaptati;m. The parameters
were found by fitting the solution of the model equations to certain ex- .
perimental data. The model had adaptation of firing frequency and post- !
stimulus inhibition.

(1) Kernell (8, 9) modelled the motoneuron and investigated a

few properties of the model. In the first paper (8), he propbsed a
mathematical expression which related firing frequency to the input
current. The expression was based on the ‘behaviour of the increase in
the potassium conductance &fter a spike. If d?d not include summation
of the increases after man); spikes. The model could apparently account
for the experimentally observed primary and secondary ranges of firing.
In his second paper (9)‘, he presented a compartmental model in which each
compartment was modelled with a circuit containing: the conventional
resistance-capacitance model of the membrane, a branch to account for

the increase in the potassium conductance after a spike, and two branches
to account for excitatory and inhibitory synaptic conductance changes.
Tl*model wvas used to investigate how the firing frequency is affected

by synapses and by post-spike conductance increases in the dendrites or
»

o

soma.

(m) Sokolove (1Q0) proposed a model in which the effective in-

put was equal to the stin\glating current minus a postulated inhibitory

e



.

current produced by the electrogenic sodium pump. This inhibiéory current ’
was incremented by each spike with an amount iﬁat’decayed exponentf&lly
with a time constant that was long compared to the interspike intervals.
The effective input was applied to an ideal integyator and a spike was

A

emitted whenever the output of the integrator reached a threshold value.
The spikes reset ghe oi&puq of the integrator to zero. The integration
was arbitrarily stoppea during the time that the effective input was
negative. The model reproduced the following properties observed for

. :
the crayfish stretch receptor neuron: the gradual adaptation of the firing
frequency, the final phase of the hyperpolarization after a tetanic train
of spikes, and~the two segments in the curve relating the posttrain
interval to the number of spikes in the train.

. " Some of these prévious models (c, d, e, £, g, 1, k)were deve-
loped by considering the subthreshold changes of the membrane potential
and input-output relations. However, the processes present in the neuro-
nal membrane that are significantly involved in the encoding mechanism
were not considered. The other,models (b, h, j, 1, m) were deyeloped
by considéring to some ;xtent these processes. However, these models
do not provide a complete understanding of the encoding mechanism in the
sense that these models include only one.of the two processes which will
be considered in this thegis. We shall compare in deéail our model
with these latter models in Chapter VIII. The Hodgkin-Huxley model
considered' the processes underlying the generation of one action potential
wﬁile we ;re’interested in how an input 18 encoded into a series of

action potentials. In essence, we have to modify the Hodgkin-Huxley

model. Thus, we begin our work by reviewing this model and then we

»

ﬁ

[N

“



10

develop our model in the context of this model. Finally, none of thesge
models has its parameters expresged as a-function of the size of the

neuron.

1.3 Outline of the thesls .
’ a

s The block diagram of the model of the neuronal encoding

a8
mechanism proposed in this thesis is shown in Figure 1-1.

synaptic ' .
currents subthreshoid change of
membyrane potential
' Mumwm
e e Ly
chemul.e{'c. - .
stmul generator
u ‘ current POTASSIUM CONDUCTANCE
PROCESS
intracellularly ELECTROGENIC SODIUM
| apphed current . PUMP PROCESS -

«— ENCODING MECHANISM OUTPUT SERIES OF SPIKES —=

*— INPUT

d .

pe

FIGURE 1-1 BLOCK DIAGRAM OF THE NEURON MODEL PROPOSED IN THIS THESIS.
THE ENCODING MECHANISM IS DEVELOPED IN DETAIL.

The model will be formulated and then amalyzed mathematically and by
simulations in two stages. Firstly, in Chapter II, we describe‘the

‘ relevant electrophysiological properties of the neuronal membrane. In



* ’
Chapters III - VI, the forward path and the inner feedback path are for-
mulated and analyzed. These paths include the well-known R-C Jmo,del, a
spike emitter, and a potassium conductance process activated bi the
emitted spikes. The presence of this process is based on experimental
results reported for the motoneuron. The combination of these paths is
called the basic model, Seconcily, in Chapter VII, the outer. feedback
path is added to the b\asic model 1in order to include the electrogenic
sodium pump process activated by the emitted Jspikes. The presence of
this process 1s basedon experimental results reported for the crayfish
stretch re;eptor neuron, The entire model is called the general model
and it 1s analyzed by extending the analysis of the basic model. Finally,
in Chapter VIII, various aspects of the general model are discussed, our
model is gompared to some previous models, and areas for further research

»

are suggested. .

@
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‘ CHAPTER II

RELEVANT ELECTROPHYSIOLOGICAL PROPERTIES OF THE NEURONAL MEMBRANE

£ I

In this Chapter, we provide some essential background information

for the presentation of our model of the neuronal encoding mechanism (2,
-

-
£

lla, 11b, 12).

1

2.1 Excitability property

The membrane of excitable cells separates two electrolytic
solutions with very different é.ompositions. Two, laye’rs of charges exist *
immediately across the membrane, negative on the inside, positive on the
outside. These two layers conslt:it:ute a charged capacitor which exhibits
a transmembrane potexitial difference, known ‘simply as the membrane poten-
N tial e If a stimulating current, 1, is passed through the membrane
from inside to the outside, the membrane will be depolarized, that is,
the}'e is a change in the membrane potential Aem >0. Suppose that at

time t = 0 a,quantity of charge is transferred to the membrane ,capacitor

by applying a very brief pulse of current so that the membrane is de-

polarized by an amount Aem (t =0). Then, depending on whether Aem (t =0)
is greater than or less than a threshold voltage, the time courses of the
membrane potential will be- drémtically different as \illustrated in Figure
2-1 (The values are for the squid axom). 1f Aem (t =0) is less than\
the threshold voltage, the response is subthreshold and Aem (t) will decay
té zero with an "exponential" time course lasting several msec (curve (a)).

3
. On the other hand, -if Aelll (t =0) is greater than or equal to the threshold
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voltagé, then as shown b}; curve (b), Aem (t) will rise to ahout 100 mv
and return to zero in about 1 msec, undershoot below zero (the resting
<

potential) and gradually return to zero ifi several milliseconds. This

latter response is called the action potential (AP). The 100 mv pulse

of 1 msec duration in the AP is called a spike or a pulse.

T}

-

2.2 The Hodgkin-Huxley model

1

The underlying changes in the membrane that govern these responses
were clarified by A. L. Hodgkin and A. F. Huxley for the squid axon in 1952.
A modified version of the model that they proposed (2) is shown in Figure

2-2, We have explicitly shown the two branches containing tq\e Na and K

¢ \

° pumps which they lumped in the branch containing gy, [13] because recent

experimental evidence shows that these pumps are involved in the encoding
mechanism. This model i1s strictly valid for a patch of membrane of the

squid axon but the properties of other neuronal membranes have been generally

discussed in terms of this model.

According to this model, Ms permeable to Na, K, and

other ions which are referréd to as leakage ions f. The movement of these

o~

ions across the membrane is assunied to satisfy Ohm's law,.

1, 0= gy (B +e) T ' (2-1)

where subscript j represents Na, K‘?, or L.

i j is the current per unit areg car‘ried by ion j
A

g j is the conductance of the membrane per ‘unit area for

fon j§

Ej is the equilibrium potential for ion 3.




¢

ot
3 ¢ ¢ t+
\ » ! ‘-f
| ]
Ve !
¢ r
. A'- '
(mv)
100T ﬂ
’ 804 | |(t) the action potential (aP)
. s0¢ ‘ -
zo%.:.mmu _____ ‘
subthreshold response
o o--—%—‘_
0 6 8 10 maec
° FIGURE 2-1 ILLUSTRATION OF THE EXCITABILITY
‘ \
, . PROPERTY OF THE MEMBRANE
V
]
)
o INSIDE
e ] ~
o \ N <
.‘ 9
Oz, D R
pump \L/pump l

- . - 'J]._-’-‘u. L =LY

| /\“ \ ° ' ull . B ’
o /\\ ? o . $OUTSIDE ~
d FIGURE 2-2 MODEL OF A PATCH OF NEURONAL MEMBRANE (2)

°



@

15

_!‘o‘\

At the regting potential, Na ions move into the c;ell and K ions move out
of the cell under the influence of the forces (E 4 + em). It is generally
accepted that the concé:entration differences are maintained in a steady
state by a Na pump and a K pump which actively transport an equal quantity
of the ifons in the opposite direction. |

Using the voltage—clamp metﬁod (step changes in the membrane
potential) Hodgkin and Huxley found téhat 8Na and 8y were time-variant and
voltage—-dependent as shown in Figure 2-~3 whex:eas 8 wag constant. In
all curves for Bya® there 1s a rapid increase followed by a gradual de;
cline even though the voltage step was maintained. For 8y» there is a
somewhat exponen‘tial growth towards a st;eady-state value. These experi-
mental results weré formulated into an empirical set of equations. The
solution of these equations predicted quite accurately the observed
behaviour of the squid axon. A calculated AP with th°e und‘berlying changes

in BNa and gx is shown in Figure 2-4.
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According to the Hodgkin-Hux]ley model, the threshold phenomenon
and the AP are the result of the antagoniatic action of the Na current
which tends to depolarize the membrane and the K current which tends to
hyperpolarize the membrane. When the membrane is initially depolarized
by a brief pulse of current, 8na and gy increase. Consequently, both the
Na current and the K current Iincrease. However, most of the brief tran-
sient increase in Bya OCCUrS before the lag increase in By Tflus an
unbalance arises between the Na current and the K cﬁr,_i:ent. This un-
balance is directly proportional to the magnitude of the initial depolari-
zation. At a definite threshold level, which is not evident from the
characterigtics in Figure 2-3, this unbalance is sufficiently large for
the AP to be generated. The larger Na current depolarizes the membrane
which in turn :anreases)gNa and further increases the Na current. The
membrane becomes rapidly dei)olarized aloné the rising portion of the AP.
However, increéases in SNa are not sustained. - Meanwhile, gx increases
since it follows changes in the membrane potential with a time ]‘.)ag. The
K current overtakes the Na current and the membrane potential returns to
zero. But after the 1l msec spike, B slowly returns to its value at the

resting potential and the K current produces the after-hyperpolarization

(AHP) . N - 0
|

2.3 Illustrating certain properties with- gsimple transfer functions

In order to establish a sufficiently large unbalance between the
Na current and the K current which results in an AP, at least three factors
need to be considered:

(1) the rate at which the membrane is depolarized by the external
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gtimulus

(i1) the state of the Na con:luctance process'

(i11) the state of the K conductance process
We shall illustrate these factors with the simple transfer functions shown
in Figure 2-5. The experimentally observed increases in BNa and 8 from
their resting. values when voltage steps in the membr{me potential are
applied were shown in Figure 2-3. These changes can be considered to be
originating from unknown systems whose unit-step responses are knowg\and
they are the simple exponential curves shown in Figure 2-5(b). The trans-
fer functions for such systems a¥e shown in (c).

If the membrane is depolarized slowly in the manner of a ramp
function shown in (d) for example, then the outputs of the transfer functions
for this ramp input are shown in (e). It is evident that AgNa 18 never
gsubstantially greater than AgK as it is the case in (b) for a bst:ep de-
polarization. Consequently, if the membrane is depolarized slowly, the
AP may not be initiat/ga%ven though the stimulus may rise gradually to an
intensity many times greater than that at which a square pulse is effective,
This property has been observed experimentally for nerve fibers (14).

) The states of the Na and t;le K conductance processes are dif;-
ferent before and after the gpike in the AP even though the membrane “
'potential is close to the resting level at both times. First, let us
congsider the Na process. During voltage steps, BNa rapidly incfreases and
then gradually declines or, as termed by Hodgkin and Huxley, BNa is in-
activated. If the inactivation is considered to be the result of negative

forces "setting in", it would be of interest to know how quickly these

forces are removed when the membrane potential is returnmed to the resting

-
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level. In the case gshown in (f) and (g), a unit voltage step is applied

at t = Q and it is returned to resting potential when AgNa is approximately
zero at t = 8 msec. It is of interest to know what is the peak of BBy,
when the unit step is re—épplied at t = 8+ At., Hodgkin and Huxley pre-
sented experimental evidence (15) which showed that the peak of AgNa at

t =8+ At is less than the peak of AgNa at t =0, It was founq that

the BNa protess returns to normal after the membrane potential i3 returned
to the resting level with a time constant equal to the time constant of

the decline of AgNa when the voltage step is applied at t = 0. In the
1llustration, the curves in (g) are the outputs of the transfer function

of the 8yq PrOCess for the inputs shown in (f). There is a gradual re-
covery of the peak AgNa at t = 8 + At just as experimentally observed.
However, in the illustration AgNa attains negative values which would

mean that 8Na becomes negative because the resting value is a small

positive number compared to the large degative AgNa' In reality, the
conductance for Na lons can only have a minitmum of zero. The transformation,
though, serves its purpose to 1llustrate the after-effect caused by the
inactivation of BNa® ‘

'In Figure 2-5(h), a splke has been idealized as a rectangular
pulse and the outputs of‘tﬁe transfer functions for suchnan inpuﬁ/ére
shown in (1). After a gpike, there remains a temporary inactivation of
8Na vhich means that then it is more difficult to establish an increase
in the Na current. Moreover, there is aﬂtemporary increase AgK which
means that then there is an additional potassium current to be overcomed

by the Na current.As a result, after a spike, it is temporarily more dif-

ficult to establish the unbalance between the Na amd the K currents.

[
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During this period,qkno;m as the relative refractory period, the magnitude

21

of a current pulaghheceaaary to trigger a second spike is ‘larger than the

magnitude necessary to trigger a first gpike.

o
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CHAPTER II1 .

MODELLING ‘A POTASSIUM CONDUCTANCE PROCESS AND

OTHER PROPERTIES OF THE MOTONEURON - BASIC MODEL

3.1 Introduction (12, 16)

We begin to model the‘ neuronal encoding mechanism by consider-
ing a parti~ular type of neuron, the mto;leumn in the spinalh cord of the
cat, which has been studied exi)erimentally in considerable detail. The
main morphological features of the motoneuron(MN) are illustrated in Figure
3-1. An extensive dendritic tree radiates from the soma. The initial
segment of the axon has a diameter which is significantly smaller than the
diameter of the axon itself. Thousands of exci<tatory and inhibitory fibers
converge on the MN with synapses on the dendrites and the soma.

Each spike converging on the MN causes a brief pulse of current
to flow across the membrane), and this current in turn produces a pogi'tive
(for an excitatory spike)or negative (for an inhibitory spike) transient
pertubation of the membrane potential called a minfature postsynaptic
potential (mPSP). The spatial summation of the mPSPs due to spikes con- ‘
verging along parallel fibers; and the temporal summation of the wmPSPs
due to consecutive gpikes converging along-an individual fiber produce
an effective change of the membrane potential at the initial segment of
the axon. Whenever this change of the membrane potential reaches a
threshold value, a spike is generated which propagates along the axon

and also invades the soma and dendrites.
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FIGURE 3-1 MORPHOLOGY OF THE MOTONEURON

A .fundamental problem is: How d;;e.s the HN encode the numerous
input spike trains into the output spike train ? The output spike train
can be recorded along the axon or with a ni:croele"cl:trode inserted into the
MN, but it is difficult to control and quantitate the input spike trains.
As an alternative approach, the MN ig stimulated by a controlled current

passed through the microelectrode. By studying how this current is en-
/

7
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;oded into the output spike train, the regsulting informatiofn can be used
to invesgtigate how the input spike trains are encoded.

A single action potential (AP) observed f;r the MN has a spike
and a prolonged after-hyperpolarization (AHP). Reported experimental
obsérvafions which will be described during the development of our merl
in this‘and subsequent chapters, show that the AHP is8 of primary impor-
tance in the encoding mechanism. Since the AHP of the MN lasts much
longer than the AHP of the squid axon, at least the parameters of the
Hodgkin-Huxley model for the squid axon would have to be modified in
order that this model could reproduce the AHP of the MN. In this chapter,
we develop a model, in the context of the Hodgkin-Huxley model, which
will reproduce the AHP of the MN. Since it is believed éﬁét the AHP is
caused by a prolonged increase in a potassium conductance, we will be
modelling mainly a potassium conductance -process. We will refer) to the
resultant model as the basic modél. }he spike will not be reproduced
because it is generally agreed that the shape of the spike carries no
information in the encoding. Furthermore, a model which could repro-

duce the spike would be unnecessarily complex for studying neural systems.

3.2 M delling,the spike emission .

When a MN is depolarized by applying current with a micro-
electrode, a spike is generated if the bhange of Fhe membrane exceeds a
threshold voltage (TH) (17, 18). For a motoneuron with a resting poten-
tial of -70 mv, TH is about 15 mv [in{17) TH = 14 mv for a MN with a

resting potential of -69 mv, in (18) TH = 10 mv for a MN already ge-

/
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polarized with a resting potential of -64 mv]. It is generally accepted
thAf the spike originates at the initial gegment of the axon and then it
propagates out along the axon and back towards the soma and dendrites
(12). The threshold of 15 mv is the equivalent threshold of the initial
hsegment as it appears from the soma. The threshold fc;r MNs is not sig-
nificantly dependent on the rate at which the MN is’ depolarized (19),
unlike for nerve fibers (see section 2.3).
In our model, the emission of spikes will be performed by the

block shown in Figure 3-2. The input to the block is the change of dthe

membrane potential at the soma, Aem(t), given by,

J

be (t). = e (t) +E_ . G-

where, em(t) is the membrane potential at the soma

and E is the magnitude of the resting potential -

-

}‘he output of the block are unit impulses that represent spikes:emitted

Impulse emitted
‘ \é

Ae
v at t=t1+1 if

Be, (ty4y) 2TH

and 1if (ti+1_ti)>1 msec

FIGURE 3-2 SPIKE EMITTER
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at times t,, 1 =1, 2,3 ...0c0nnnne An impulse is emitted whenever

thz criterion given in the block is satisfied., The first conaition 8atisfies
the threshold phenomenon. The period between two spikes (t:1 +1°t i) must
satisfy the second con;iition‘ because of the absolute refractoriness

during a splke. Incorporation of the relative refractoriness will be
described in the next two sections.

—

3.3 Modelling mainly the potassium conductange process which produces

the after-hyperpolarization

The basic features of an action potential observed at the soma
of a MN are 8hown in Figure 3-3. The parameter values shown are those
of a large MN-with a "d&é?meter" of :19 um (12, 40, and see Chapter VI).
The action potential has a 1 msec splke and a prolonged period of hyper-
polarization called the after-hyperpolarization (AHP), The AHP reaches
a maximum magnitude (A}{Pm) of 5 mv at t = 10 msec and gradually declines
towards t*ist_if potential. Near its termination, the AHP reverses
into a small after= zation. The. duration of the AHP which is
denoted AHPd is 45 msec.

In order to develgp a model which will reproduce the AHP of.

patch of membrane of the squid axon, whereas the MN is a complex structure.
Nevertheless, the MN could be represented with a large number of circuits
of the type shown in Figure 2-2 (H-H modpl Iin parallel. Each section
of the model would represent a portion of the MN. Howeyer, we shall

ugse the circuit in Figure 2-2as a lumped model of the entire MN for two
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reasons. Firstly, the properties of the various portions of the MN are

e

——

presently not well understood. Secondly, a model with many sectionms

would be too complex for initial studies of neural systems. The elements
in the circuit now represent the effective load presented ‘to the 1np‘ut
current source (the ﬁcroelectrode in the somac).

According to the H—H[ model described in Chapter 'II, the AHP of
the squid axon is due to a temporary increase of the potassium conductance
of ::he mémbrane. Exper?ne’iﬁ:al results (8, 12, 18, 21, 22) indicate that
the AHP of the MN is also due to a temporary increase of the potassium
conductance triggered by the spike, Thus, t;he potassium conductance By
is given by 8 "= 8 + AgK » Where, AsK is the temporary increase of
glg triggered by the spike, and g describes the behaviour of 8 when no

aplkes are emitted. Hence, the potassium conductance branch in Figure

' 2-2 can be subdivided into two parallel branches as shown in Figure 3-4(a).

The current pumps have been tt;moved for the B,,resent development but they

will be considered in Chapter VII. Now, by usiné this new representation,

H
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the circuyit in Figure 2-2 can be simplified into the circuit shown in
Figure 3~4(b). The br;nches contain:lng 3Na: gy and gLu have bgen lumped
into ‘the branch with constant resistance R in series with a constant
voltage; source’ Er which is equal to the resting potential. The circuit
in Fﬁlgf;re 3-ﬁ(b)" has also been used by Kernell (9)Q as we described in
Section 1.2. If the AgK branch 1s removed, we are left with the well-
known R-C model of the passive membraneé which has been used, for example,
to investigate various effects of the dendritic°tree and to derive the'
strength-duration rélation (20, 11b).

< The latter simpl)fication is contrary to the Hodgkin-Huxley
w:')del v‘:hich gtates that BNa and B, 3re time-varying voltage-dependent
conductances. Howé;er, the H-H model is based on experimental data
for the sqLuid axon and, while it may be qualitatively applicable to any
neuronal membrane, Ehe va],.ues of the parameters for different membranes
ghould §e different. For the MN, there exists no quantitativ; analysis’//
ofg BNa and B * During'ti;e splke these conductances certainly vary -
considerably, . but we are mainly int;erested i their subthreshold be-
haviour. An indica'tion .‘of their combined subthreshold effect can be

LY

found by stimulating the MN with dteps of current and then _.observing

* the subthreshold chapge of the membrane potential. . The subthreshold

o .7 o
. step response reaches a maximum at about 15 msgec after the onset of the.

current step and thereafter it declines gradually,within 100 msec to a-

.

steady level that is about 70% of the maximum value (23). The over= **

shoot of this observed response cannot be reproduced by the R-C circuit

o 0 S

of Figure 3-4(b) ( ag, = O beforg a spike). However, as shown later,

a model based on this circuit reproduces several properties observed when

-

the MN emits spikes. Although a .2nd order transfer function could be

s ?

T



29

4

" fitted to the subthreshold step response(5), such a tran;fer function m’ay not
be valid when spikes are emitted because the spikes change the behaviour of
na by inactivation so that the combined effect would be modified.  Fur-
thermore, an advantage of the R~C circuit is that it is based on a
physiological substratum. "
The behaviour of AgK has been inferred (8, 22) from measure-
ments of the change of the input resistance R of the MN at various times
after a gspike. The increase AgK decays from an initial value AGKO

immediately after the spike to zero approximately exponentially with a

tlme constant TK , that 1is,

= 't/TK -
AgK(t) AGKo e o (3-2)

:I'hus, AgK(t) declines to about 5% of its initial value in three time

constants TK .

duration of the AHP, AHP d°’ is appro;imately given by,
) ‘ =

The resultant AHP declines concurrently so that the

, AHP . (3-3)

The complete basic model is shown in Figure 3-5. G The forward
pa\tl: includes tt\e' transfer ~fut{f'ction l(m/(s + Am) for the R-C branches of
the circuit in Figure 3-4(b), and the spike emitter in Figure 3-2. » The
feedback path corresponds to the AgK branch of the circuit in Figure
3-4(b). The increase and subsequent exponential‘decay of AgK triggered
by a sp}ke’ is the impulseresponse of the block GKO/ (s + AK) .

Aﬁsimulat'ion of the basic model reproduces the after-hyper-
polarization as shown in Figure 3-6. The parameters of the model were

those of a large MN and were chosen according to experimenf:al observations:

. " "diameter" of 79 im
- (see Chapter VI)

. R = .75 M@
4
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TK = 14.2 ngec
TH = 15 mv
Tm = 5 msec
EK = 90 mv
E" . 70 mv

31

(see Chapter VI)
(asee Section 3.2)
(24)

(12)

12)

AGKO was chosen equal to .68/R in order that the resultant maximum mag-

nitude of the AHP be equal to the observed 5 mv.

i}
However , the observed

percentage change of the MN conductance immediately after a splke with

S

i : timenct
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respect to the conductatice before a spike is8 also about 702 (22). All
simulations in the thesis were done on the digital computer by using
Euler's method of solving a first-order differential equation and a time
increment of 0.25 msec. A spike (drawn) has been elicited by applying
a pulse of current until Aem reaches TH and then Aem returns to zero
autonomously due to the negative feedback current Aig(t). Similar to
the experimental observation, the AHP of the model reaches a maximum
magnitude of Smv at llmsec and thereafter it declines to approximately
zéro in about 45msec. It sho;ld be pointed out, however, that the AHP ”

of the MN ends abruptdy with a hump of after-depolarization at about 45

mgec whereas the AHP of the model decays as&mptotigally.
4

3.4 Refractory periods

In this section we show that the basic model incorporates the
absolute and ;elative refractoriness. The refractoriness of the basic
model at various times after a spike is shown in Figure 3-7(b) with pub-
lished experimental data shown in Figure 3-7(a) (25). A measure of re-
ftactotiness is the relative stimulus‘strength 12/11 , where I1 and 12
are the minimum intensities of current pulses that are necessary to
trigger the first and second spikes respectively. The abscissa is the

time inlgsyal between the two stimulating pulses. It is shown mathe-

matically in the Appendix that 12/11 for the basic model is-.given by,
- = ® t <1 msec

1
\\‘ . 15 -~ nﬁ(t) t > 1 msec (A-5)

15
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vhere, Aem(t) is the change in the membrane potential in mv after a

sptke. This change 1s shown fn Figure 3-6 and it includes mostly the
AHP

!
3
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" During the first spike, it is not poasible experimentally to .
trigger a second splke and this perfod is known as the absolute refrac-
tory period. In the model, the spike is represented by the ideal unit
impulse and the absolute refractory period is satisfied with the condition

(t - ti) 2 1 msec. After the spike, during the so-called relative

i1+1
, refractory period, & second splke can be elicited both experimentally

and in the model only if 12/11 is greater than or equal to the values
given by the curves. For intervals from 4 to 8 msec, the experimental
and theoretical values agree, so that during this period the relative
refractorinegs is accounted for by the fact that the ;;mbrane potential

is hyperpolarized by the AHP. Experimental values for intervals greater
than 8 msec have not been reported. However, we can expect that they
also agree with the tﬂe&?etical values for the following reason. The
magnitude of the monosynaptic r?flex discharge of a M& pool stimulated

by a pulse applied to the dorsal root is directly proportional to the
number of MNs which emit a spike (lle). For each MN which emits a spilke,
there 1is a temporary refractoriness, As a result, some of these MNs
cannot emit a second spike if a second consecutive ﬂdlse is applied to
the Ho;aal root, Thus, the magnitude of a second consecutive discharge
of the pool would be less than the magnitude of a first discharge as ex-
perimentally observed (26). Furthermore, the discharge is reduced‘by an
amount which is directly proportional to the magnitude of the AHP (26).
Consequently, the relative refractoriness of a MN is directly proportional
e? the magnitude of the AHP. Finally, for intervals from 1 to é/msec,

the theoretical and experimental values do not agree. This disagreement

is not significant because, for normal conditions, the inter-spike inter-

“re
-
49
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val is ugually greater than 4 msec (i.e. firing frequency less than 250 pulses
per a;cond) and, at the time of emission of any spike, the refractoriness

from a previous gpike is accounted for by the model.

i

3.5 Comparison' with the aid of the model between the potassium

conductance which produces the aftet—hyperpolariz’htion for the motoneuron

and the one for the squid axon

The AHP observed for a MN lasts much longer than the AHP ob-
served for the squid axon. It is revealing to compare the underlying
increase agy for the MN and the gquid axon. From Figure 2-4, we note
that Bg for the squid axon increases fro? a resting value less than 1 mmho/
8q. cm to a maximum of 10 mmho/sq. cm immediately after a spike. This is

\\\an increase of more than’ 1000 percent. The value of 8k for the MN before
a spike has been emitted ma§ be assumed to be at least 50X of the MN con-
ductance 1/R (16). Therefore, for the MN, the percentage increase in
g 1s only equal to ( AG. /g, ) x 100 = [(.68/R)/(.5/R)] x 100 = 136%
which 18 substantially less than the 1000X for the squid axon. Further-
more, the increase AgK(t) for the squid axon is over in 3 msec while

AgK(t) for the MN is much more prolonged because it declines exponentially
viFh a time constant of 14 msec.

Such substantial differences in the magnitude as well as in the
time course of AgK(t) for the squid axon and the MN suggests the possi-
bility that two different mechanisms might be involved. The Hodgkiﬁ—

i

Huxley model states that for the squid axon the declining portion of the
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spike is caused by the increase in the potassium conductance. Since
the percentage increase of the potassium conductance for the MN is much
less than for the squid axon, we should investigate whether or not the
increase 08x for the MN is sufficientlf large in order to c?use the
spike to' decline in less than 1 msec as experimentally observed. We

can investigate this theoretica}ly by using the circuit in Figure 3-4(b).
Altho;gh the circuit is applicable only to subthreshold operation, it

can also serve our present purpose for the following reason:

Let us consider as the initial time the instant when the spike
is at its peak so that, the initial condition of the voltage across-the
capacitor is about +10 mv. We are interested in determining the time
that it takes for the voltage to be reduced to the threshold potential
of -55 mv, because it has been observed experimentally (12) that the spike
declines in less than 1 msec up to about this point, and thereafter it
. continues as a declining depolarization for several milliseconds beforg
crossing over to become the AHP, The voltage is partially reduced by
the increase in the potassium current through the Agx branch in the cir--
cuit in Figure 3-4(b). The current through the:branch contai;ing R aléo
reduces the voltage across.the capacitor. Since this branch lumps the
BNa * & ° and g, branches and since Bxa increases considerably during
the splke, then R is not constant during the decline of the spike. How-
ever, the increase in BNa produces a current that depolarizes the capaci-
tor (increases its voltage). Thus, in fact, the total current through
BNa * Skp ° and 8, does not reduce the voltage as quickly as the cu¥rent
through the fixed resistance R. Consequently, the time that it takes
for the spike to decline, which will be calculated with this simplified

circuit, is an underestimate.



The differential equation for the circuit ip Figure 3-4(b) is

, dem (em + Er) "
C 3t + (eIll + El() AgK(t) + R = Q (3-4)

Substituting in (3-4),

S

Aem - e + Er , Tm = RC, EK - Er = 20 mv (12)

Also, although during the decline of the spike AgK(t) varies (see Figure 2-4),
we set it equal tqvits average value which is approximately equal to

AGKO , the value of AgK at the end of the spilke. We get,

Tm d Aem A/ -20 AGKOR
+ Ae = (3-5)
TS ET: m " TAGRH

/
The solution of equation (3-5) with the initial condition eqyal to the

spike height, that is, Aem(t-O) - em(t-O) + Er = 10 + 70 = 80 mv is

!

se = 80 e -t/(Tm/ AGK0R+1)_ (1 . -t/('l"m/AGKoR+l)) ZOAGKOR
m

AGKOR-I-I

I

(3-6) ~
The time that it takes for the spike to decline to Aem = -55+ 70 = 15 mv

is found by solving equation (3-6) for t, .

t
Q

T
€= o wr o (Ts): 221( o::i; : z: 2Gm:) (3-7)
KO KO GKO

Substituting in (3~7), Tm = 5 msec and AGibR = .68 (see Section 3.3) we get
t = 3.7 msec which is significantly larger than the experimental value of
less than 1 mseé. . Thus, it appears éhat the prolonged increase AgK(t)
which p}oduces~the AHP for the MN is not sufficiently large in order to

cause the spike to decline in less than 1 msec. There should be an ad-

NQ R
9
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ditional hrief increase during the spike. If we substitute AGKO = 5/R
in equation (3-6) we find that, theoretically, the spike would decline
in 0.93 msec. This repr;sents an Iincrease of IOOOZitn the potassium
v_,wconductance and it is the same value as for the squid axon. Thus,
theoretically it appears that, for the MN, in addition to the prolonged
incre;sé AgK|which produces the after-hyperpolarization, there may be
a brief transient increase of By similar to that for the squid axon.
The basic model includes the component of gy which produces the AHP,
whereas the other component is not included because the model does not
have to reproduce the shape of the spike.

This %ﬂeoretical conclusion agrees with the experimenta%}ob-
servation (27) that for some MNs there is a distinct rapid tepolaﬁization
at the end of the spike and the AHP occurs, thereafter. More interest—a
ingly, this conclusion is also supported b;ithe exper{mental results And
conclusions of Connor and Stevens for the molluscan soma membrane (28).
They concluded that, in addition to possessing conductances analogous to
the BNa and B of the Hodgkin-Huxley model, the soma of that neuron also
has an operationally distinct potassium conductance mechanism which tends
to dominate the neuron's behaviour in the interval between spikes.

It is also posgible that the time constant of th; 8y dynamics
in the Hodgkin-Huxley model may be inversely related to the dimensions
of the structure of the particular portion of the neuron. This possi-
bility 1s suggested by‘two experimental observations. The duration of
the AHP is inversely related to the size of the MN (see Chapter VI) so that
TK is inversely related to the size of the cell. If the same correlétion

exists for ‘the different parts of the cell, then,'TK for the membrane of

the dendrites would be larger than TK for the membrane of the soma since

©
-~ ~




the ‘cross-sectional diameter of dendrites is much smaller than that of
the soma. As 2 result, the long AHP observed in the MN would be due to
a prolonged Agx in the dendrites. Also, according to the analysis
above, the spike in the dendrites would decline much slower than the
spilke in the soma because the prolonged Agx that p}'oduce,s the AHP is
not a large increase. It has been observed experimentally (12) that .

there is such a difference in the time course of the spike as observed

in the soma and dendrite.

3.6  Summary
It} this chapter, we have developed a basic model of the encoding

mechanism of the motoneuron in the context of the Hodgkin-Huxley model.

It consists of a forward path and a negative feedback path. The forward -
path includes the ;:ransfer function for the R-C model of the membranme and
a splke emitter which emitsa ‘unit impulse whenever the change in the mem-
bta;\e potential exceeds a thr;ahold value. The negative feedback path
accounts for the inhibitory current produced by the prolonged increase in
a potassium conductance triggered by the emitted spike. We have made two
major simplifications in modelling: (i) the motoneuron is represented by
a lumped model, and (ii) the time-varying voltage-dependent conductances
are replaced by a fixed resistance for subthreshold operation. The
Irmod‘tl reproduces the experimentally-observedoafter-hyperpolarization and
the significant po;:tion of the relative refractory period, although it

does not reproduce the overshoot in the subthreshold step response. The
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< B
theoretical anaiysis based on the model and publighed experimental ob=
gervat;l.ons indicate that the potagsium conductance proces;a wvhich causes
the loﬂg aft:er-hyperpdiariz_ation for éhe motoneuron may be different from
the potaasium\ conductance process ‘which causes the decli;_le of the spike
in Ehe Hodgkin-Huxley model.

In the next chapter, we shall compare other properties of the

- model with those of the motoneuron.

w‘"-s,
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CHAPTER IV -~

-

RESPONSE OF THE BASIC MODEL TO STIMULATION BX.

STEPS, RAMPS, AND SINUSOIDS OF CURRENT

In the previous chapter, a brief pulse was applied to the basic
N :
model and a single spike was emitted. In this chapter, step, ramp, and
sinusoidal waveforms are applied to the basic model and a series of spikes
are emitted, All simulation results presébfed in this chapter are for a
large MN with a “diameter"of 79 um whose pa;ameters have been specified ’
in Section~3.3. The simulatfon results for" MNs of differ?nt size will

be presented in Chapter VI.

4.1 Response to .stimulation by steps of current

¥

44.1.1 Threshold current and minimum firing frequency
When a MN is stimlated with a step of current through a micro-
electrode, there is a threshgld intensity above which the MN fires.(enits
a spike} repetitively [29]. A typical recording of the trajectory of the
mambrane potential during repetitive firing is shown in Figure 4~1(a).
The basic model also fires repetitively for an input step above‘ the .

threshold current I given by

14

Ty = m - om o ’ 4ty

vhere, TH is the threshold voltage (see Figure 3-5)
and R is the resistance of the MN (see Figure 3—4(b))\“.
The responses of the basic model for input steps jyst below and above I th

are shown in Figure 4-1(b) and (c) respectivély. There-is either
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FIGURE 4-](a) EXPERIMENTALLY OBSERVED TRAJECTORY OF THE MEMBRANE
POTENTIAL DURING REPETITIVE FIRING (31)

[

.

However, for the real MN, with input current steps less than the
threshold curr;nt but greatér than the so-called rheobase current, the MI;
can emit only a few s\pikés af ter the onset of the steP. The threshold
;:p"r:rent is on the average ‘1.5 times the rheobase current ‘(29).

: The operation’of the encoding mechanism in the basic model is
illustrated in Figure 4-1(c). Curve S tc;.presents the depolarigétiop due
to the input current i(t). Curve A represents the aftet—hyperpol'ariza_tion
iAHP) due to the neﬂgative feedback current AiK. Since the change in the:
membrane potential, Aem’ is the output )of a linear t‘ransfer function
(see Figure 3-5), curve e which represents Aem is the differen‘ce betwegn
curve S and ct;rve A. The second and subsequent spikes are.emitted when-
ever th'e AHP has decayed sufficiently to allow Aém to réggt; th; threshold

\ ¢

voltage. - " .

During repetitive firhg in Figu-te 4-1(c), the maximum magnitude

a
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FIGURE 4-1 (c) REPETITIVE FIRING OF THE BASIC MODEL FOR A STEP INPUT
JUST ABOVE THE'THRESHOLD CURRENT




of the AHP 18 about 10 mv, whereas after the single qpike in Pigure 3-6
it wag only 5 mv. Thia apparent contradiction can be explained as
follows (18): ¢

From the basic model in Figure 3-5,‘
ML (E) = Age(t) [ te (£) + (B -E) ] (4-2)

As shown In Figure 4-1(c), 'Aem(t) varies from 5 to 15 mv during the AHP.
Substituting these values and Eg - E_= 20 wv (12) into (4-2), we find
that Ail((t) is between 25AgK(t) and 35AgK(t). By similaxx analysis
for the single spike in Figure 3-6, ALK(t) is between 15Ag,K(t and
20Agx(t) . Since AgK(t) is the same for both cases (at the same time
after the first spike), ALK(t) and the resultant AHP during repetitive
firing are about two times their va%ues for the single spike case. This
effect has been observed experimentally (18, 3i).

When repetitive flir:ing 18 established in a MN by appiy—
ing a step of current just above the threshold current, the MN fires with
a definite minimum firing frequency (also known as pulse or spik: fre- o

quency) (30). For example, a large MN either fir;.s with a firing fre-

quency greater than about 20 pulses per second (pps) or it does not fire

~
@

repetitively at all (see Chapter VI). The minimum firing frequency fm

is equal to the inverse of the duration of the after-hyperpolarization

(AHP;) (30), that 1s, ’

u

& 100Q
fn AHP , -3
d u
where, AHP, is in msec and f is in pulses per second (pps) .

This property is possibly due to the fact that the AHP ends with a hump

1
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of after-depolarization which causes Ae to abruptly cross the threshoid
voltage (30). In the model, the firing frequency approaches zero vhen

the depolarization due to I minus the thresholg voltage is .infinitesmally
small because Agx(t) decays to zero exponentially. However, as it will
be evident in section 4.1.3, the range of the input I for which the firing
frequency is less than ful is quite small so that this discrepat;ci in the

t
behaviour of the model is not signiéicant .

a

4.,1.2 Summation of the potassium conductance process and adaptation of

firing frequency ‘ .

During repetitiw}e firing in the basic model, the output AgK(t)

of the transfer function AGKO/ (8+AK) exhibits a temporal summation of

the form,
Ag (t) = 25 a6, e teVTR sy ’ (4-4)
By ) » 2N
=0 o
where, j=0,1, 2 ...... are the times of occurrence of spikes '

ti—j ’ -

14

prior to tj'.me t. It has been shown experimentally that a summation of

the' potaas}um conductance process does in fact occur. Baldigsera and
Gustafsson (Z2) observed that the percentage increase of the MN conduc-
tance, “which is believed to be due to AgK, after two immediately con-
secutive splkes was twice as large as the increase after only one spike.
This observation also indicates that Ag, summates linearly as in the .
model. On the other hand, Ito and Oshima (21) observed that the resultant

v

AHP summates’ nonlinearly as shown in Figure 4-2 curves (a) = (d). The

AHP after two spikes in (b) is larger than the AHP after a single spike
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FIGURE 4-2 SUMMATION,OF THE AFTER-HYPERPOLARIZATION

in (a). The ABP after three sbikes in (d) is not much larger than ‘the
AHP after two spikes in (c). Although nAgK sumates linearly, a non-
linear summation of ;:he AHP is also observed in the simulation results of
the model as shown in Figure 4-2 curves (e) - (g). ;Ihié effect is‘ clari-
fied by considering the following hypothetical case which is amenable to
a mathematical analysis: ’

In the basic model, let 1(t) = Q and Agx(t) = congtant X

Then, Aeu is constant and it is found from,
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1]

a

e, = -% Ay (4-5)

and, Mg = X[ den+ (Bg - E) ] (4-6)

Substituting (4-6) into (4-5) and solving for Ade,,

° ~

n &

Kn
-— X(g - E;)

[ bey = o ' O D) c
, , ‘n L
. Am
The plot for (‘4-7) with (Ex - Er) = 20 mv as in the simulation in shown
in Figure 4-3. .
¢
de
(mv) 2 3 4 5 s KX
v | J A v
. A
- m
-5
_10<b
"15‘.
” -204 b
s . FIGURE 4-3 PLOT OF EQUATION (4-7) WITH (EK-Er) = 20 mv

<

It is evident that .Aem is not linearly dependent on X (Km/Am is a constant).

. The nonlinearity is pronounced for Aeml< =10 mv and Aem is limited at

»
-




~2Q mv. Likewise, for the actual cage in Piihre 4-2, the nonlinearity
is clearly evident at about -10 mv.
Based on some experimental resﬁlté, several workers (22, 29, 32)

have suggested that summation of the potassium conductance process pro-

duces an adaptation\ofﬂthe firing frequency. Figureva—b(a) shows the

firing of a MN at the onset of two stimulating current steps of diffetgq;n,

magnitude (32). It isNevident that in both cases the instantaneous firPng

frequency fog the first interval, that is, the inverse of the:first inter-
val, is larger than the adapted (steady state) firing frequencyt_ The
same effect 1s observed in the simulations with the basic modelﬁghown in
Figure 4-4 (b) and (c). The AHP clearly summates and, as a result, the
adapted firing frequency is less than the instantaneous firing frequency
for ihe first two intervals. In Figure 4-4(c), the instantaneous firing
frequency for the first interval is 1000 pﬁé wvhile, in reality, 1n1tial~
firing frequencies are gs?erally only a few hundred pulaés per Fecond (33).
This discrepancy arises because the modelidoes not correctly.account for
the relative refractoriness from 1 to 4 msec after a spike (see section
3.4). i

In addition to the adaptation of the firing frequency(within a
few initial intefvals, Kernell (29) observed in some MNs a late‘Rhase of

adaptation which was evident gradually over a time span of severai seconds.

. However, the degree of this late phase of adaptation was small coQSpted .

7/ °

to the marked initial adaptation. We shall neglect it for the present
discussion, but we shall propose a gemeral model in Chapter VII which will
include a late phase of adaptation due to the electrogenic sodiu?\pump

process. - ¥ \\\

\/
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21.3 Relationship between adapted firing frequency versus intensity

of the current step . :

A plot of the adapted firing frequency {SK versus the intensity
of the step of stimulating current is shown in ﬁigure 4-5: curve (a) is
for the model while curve (b) is from the experimental data obtained by
Rernell (33). We can reasonably compare the experin;ntal data with the
simulation results because the minimum firing ftequ;ncy, f-, and the

threshold current I for the real MN indicate that this particular MN

th’
has a size which is similar to the model MN, as we shall explain in
O

Chapter VI. p

+
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'mer experimental curve can be approximated by two atraight-line
segments which were denoted by Kernell as follt;wa: , the p'rimary range for
input cux;rents from the threshold current o about 2.5 times the threshold
current (i.e. from 20 nA to 50 nA in this case); the secondary range for

input currents above 50 nA. The curve for the model is mostly a single

straiéht line whose equation is -~
fSK = 2(I - 20) + 20 1> 20 nA‘
= 0 o I< 20 nA (4-8)
where, f_ "is in pps and I 1is in nA.

SK
There is adequate agreement in the primary range between the experimental

values of fSK and those predic&ad by the model. We note that the model
fires with a frequency much less than the actual minimum frequency only
for ‘:I.nputs in a small range from 20 nA to 22 nA so that, in view of the
entire range of op;eration, the fact that. the model does not have: a defi-
nite minimum firing frequency 1s not sigﬁificant. Unlike t.he experi-
mental curve, the curve for the model does not have a secondkry tange of
firing. It is not known what °causes the relatively larger »incteasé of
the firing frequency in the second{ary range. In fact, in 502 of the MNs
tested by Kernell, firing stopped aitogether 1nsteald of firing in the
secondary range. The maximum firing frequency within the primary range
can ;:ause the motor unit to develop 857 of its maximum tetanic tension

(34), so that it is likely that under normal conditions the MN operates

within the primary range.
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4.2 Regponse to atimulation by ramps of current .

Frank and Fuortes (19) stimulated MNs with rampa‘of current of
different slobes. Théir obgervations for one MN are reproduced in the
insets of Figure 4~6 (a) - (c). The linearly-rising curve 1is the
stimulating current and the other curve is the trajectory of the membrane
potential. The spikes were not recorded because the sweep was too slow.
The responses of the basic model to the same inputs are also shown in
Figure 4-6 (a) ~ (c). It i8 clearly evident that the model and the real

MN operate very similarly for qﬁese'ramp inputs. g

N
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EXPERIMENTAL (19)
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FIGURE 4-6(a) RESPONSE TO RAMP INPUT i=.33t

&4
3y

53



Y

)

EXPERIMENTAL (19)

s

<

FIGURE 4-6(b) RESPONSE TO RAMP INPUT i=,75t
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4.3 Responge to stimulation by sinusoids of current

We shall first investigate how the ‘basic model responds to
sinusoidal inputs of different amplitudes but of one particular frequency
(2 Hz). The simulation results are shown in Figure 4-7 (a) - (d) for
four differentx"-, inputs. The lower printc;ug, dencoted by *, shows the in-

put i(t) and the dashed line is the level of the threshold current. The

top printout shows the instantaneous f_iring frequency f(ti) which is de-

fined as the inverse of the interval between the spike emission times
t’i—l and ti' The time of occurrence of the first spike after t = 0 is
indicated by [] while the other spike occurrence times are indicated by

+ Because of the discrete nature of the printout, the precise emission

tilmes cannot be indicated and instead the f] and + are placed at the
forthcr;ming time shown on the printout. ~=The instantaneous firing fre-
quency is evaluated only at the spiice emission times and thus we have
digcrete data points, However, if there is a sufficient number of data
points to enoable us to specify an appropriate continuous function that'
fii;s these data points, we can describe the instantaneous firing frequency
response by a continuous function E(t):

In the first three cases in Figure 4-7 (a) - (c), the imput
magnitude varies fxem a minimum just above the thresholc} current to a

variable maximum. In the fourth case im (d), the input magnitude varies

e
about the threshold current. For the response in (a), it is evident that

" f(t) is a sinusqid in phase with {(t). When the input amplitude is in-

a

creased in (b) and (c), .f(t) remains essentially sinusoidal. When the

input is such that during one portion of the cycle it is less than the
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threshold current as in (d), the spikea occur in groups or bursts followed
by a period of no firing. The response at 2 Hz, then, is given by the
expression,

f£(t) = 2(L(t) - 20) + 20 i(t) > 20 nA

= 0 i(t) <20 nA (4-9).

where, f(t) is in pps and 1(t) 1s in nA. It is interesting to note
that this expression is the same as expression (4-8) for the aIlapted or
static relationship in Figure 4-5. ‘

Now we vary the input freq’v’.xency and keep the input amplitude -
constant. The simulation regults are shown in Figure 4-8 (a) - (4) for
the input frequencies .2, 5, 10, and 15 Hz, an& in Figure 4-7(c) for the

frequency 2 Hz. At .2 and 2 Hz, f(t) is a sinusoid and in phase with

i(tj. At the higher input frequencies, burst activity occurs and the

. trend is for the spikes to occur during the rising portion of the input.

At 5 Hz, 4 spi!ces occur during the declining portion of the sinusoid com-
pared to 6 spikes during the rising portion of the sinusoid. At 10 Hz,
only one splke clearly occurs during the declining portion. At 15 Hz,
all the pulses occur during the rising portion of the sinusoid. Ve
particularly point out that,. at the higher input frequencies, the "mi:ddle"

N

of each burst of spikes does not occur at the time when the input is maxi-

\

joum, rather it is leading. We shall refer to this leading as a phase lead.

By examining the "internal" variables of the model, we can see
why the burst of spikes occur with a phage lead at the input frequency of
15 Hz. The responses of these variables for two input amplitudes are

shown in Figure 4-9 (a) and.(b). Curve * represents the input current

v oy

-
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FIGURE 4-8(a) 1(t)=35-l4cos(20..2.t/1000)
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FIGURE 4-8 RESPONSE ,OF THE BASIC MODEL TO SIN‘USOI'DAL IN'PUTS
WITH DIFFERENT FREQUENCY AND CONSTANT AHPLITUDB
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Pl

Curve S represents tﬁh depolarization due to 1(t). Curve A

back c;r ent AiK. Curve ¢ which represents Aem is the difference
between curye rve A. Clearltéﬁphe summated AHP holds Aem below
the thr¢shold dutring ?ost'of the falling portion of the input and, as a
result, no spikes are emitted then. We note that the phaée lead 1is pre-
sent for both inputs of different amplitude, . .
These simulation results suggest that the response is determined
not only by the magnitude of the ipput but also by ;he rate of change of
the magnitude éf the input. This property of the medel will be confirmed
through a mathemat%cal analysis in the next cHapter. s
- It would be de;irable that the response of .the model described
above could be compared with experimental data., ° Unfortu%ately, no ex:
périmental work has been reported where MNs were stimulated 1ntracéllular1y
with sinusoidal currents. However, there are indications in experimental
) data obtained by synaptic stimulation of MNs that the response of the ,
( model for sinusoidal inputs 1is similé;azo that of the real MN. By chang-
ing a muscle length 1(t) sinusoidally, Rosenthal et al. (35) found that
the firing frequency of MNs was in general sinusoidally modulated for smgil
a;plitudes of 1{t), but burst activity did occur for either of the follow-
ing conditio;s:
! (1) The frequency of 1(t) was higher than about 6 Hz. Then, the
" bursts occurred with a phase le;d vith respect to the time when
1(t) was maximum and this phase lead w;s more than the amount
introduced by the muscle gpindles. - -

-~

(11) The amplitude of 1(t) wqe_}arge.

5
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Rogenthal et al. postulated in essence that, under conditions
'(i) and (11), the sinusoidal 1(t) is étranafomd into a distorted i(t) of
such a form that burs-t activity would occur, assuming the response of “the
MN 1s linearly proportional to the (_amplitm;e of 1(t). However, based on
_our gimulation regul;s, it appears that the experimental results could
occur even if 1(t) remz:x:lns sinusoidal: The response under condition (i)
could be explained by the hypothesis that the response of the MN is deter-
mined by the magnitude i(t) and the rate of change of the magnitude
di(t)/de. For the response under condition (ii), the minimum i(t) during
; large amplitude variation of 1(t) could drop below the threshold current
during %ich time the MN does not emit spikes. Westbu'ry (36) has also
observed that, at the higher frequencies of stretch (2-15 Hz), splkes are
emitted by the MN in advance of the peak depolarization produced by synap-
tic stimulation. The input frequencies for which a phase lead has been
observed experimentally are in the same range as those for our model.
In the simulations, the phase lead is dependent on the size of the MN.
For a large MN (results in this c'i;apter), the phase lead is evident for
input frequencies above 5 Hz, while for a small MN (results in ChapterVl),

. the phase lead is evident for input frequencies as low as 1 Hz.

4.4 Summary

-

In this chapter, we have tested the basic model (for a large
.- motoneuron) with step, ramp, and sinusoidal current stimuli and'conp;red
its responses with reported e.x}erinental results. The basic model re-
produ'ces the following primary properties which have been observed for

>

<
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step inpﬁts: (1) there is a fixed threshold current éor repeti-
tive firing, (ii) an initial adaptation of the firing {requency, (111)
the characteristic trajeétory of the membrane potential between spikes,
and (iv) similar values of the adapted firing frequency for the signi-
ficant ;ange of the input amplitude. Thg,mndel,“hnueger,.doesfnot re=
produce the following secondary properties which have’been observed for
step inputs: }n the mgdel, (1) there is no secondary range of firing,
(i1) a few spikes are not emitted at .the onset of input steps greater

‘
than the rhecobase current but less‘than the threshold current, and ﬂiii)

the firing frequencies during the initial adaptation are larger than ex-

perimentally observed. For ramp inputs, the model and tH"motoneuron

behave very similarly for ramps of different slope. For sinusoidal in- -

1
puts, the model predicts that, for high input frequencies, the spikes
occur ‘'with a phase lead relative to the input. Some efgerimentLl ob-

servations indicate that this prediction will be valid.

7%
o
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- CHAPTER V

MATHEMATICAL ANALYSIS OF THE BASIC MODEL

__ During the simulation study of the model, it became evident to us =

i 4

that a mathematical analygis of the model could clarify the simulation

. regults, ‘Furthermore, we simulated the model only for a limited set of
parameter values but the response’of the model could be determined from a
mathematical relation for a continuous range of parameter values. For

these purposes, we performed the following mathematical analysis. -

’

~

W& ' )
‘ .5.1 Sfmplification of the model .

In order to be able to perform a2 mathematical analysis of the
.model, it is siTplified in Figure 5-1 (a) -~(d). The model in (b) 1is
obtained from the model in (a) by replacing Km/(s + Am) with Km/Am.
° This simplification 1s justified thus:. If most of spectral content of
the input to Km/(s + Am) is below the cutoff frequency A, th;n we could A Ve
replace Km/(s + Am) by Km/Am. For most of spectral content of the input
to Km/(s T Am) to be below Am’ most of the spectral content of i(t) and
¢ - AiK(t) must be below Am. We can'requirg that 1(t) satisfy this condition.
The spectral content of AiKL;B dffficult to find analytically. However,
we do have some qualitative information about it. Frqm the model, AiK(t)
Y . is directly dependent on AgK(t) and it is dependent on Aem(é) through
the multiplicative term (EK - Er + Aem). Since when the model is

. ) .- emittinLg a gseries of spikes, Aem varies by at most 10 mv (e.g. see

Figures 4-1(c), 4-4(b)-(c), 4~6, and 4-9) whereas (EK_Er)

4
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plus the steady change of Ae‘n is more than 25 mv, therefore A:l.K

.is predominantly dependent on AgK(t). We can have an indication

-

of the spectral content of Agx(t) and consequently of ALK(t) by

5.

“considering the case when only one sgilée 1s emitted so that
Agy (t) = AGKoe-t/TK.

waveform declines above the frequency AK. We also know that the

.
v
5

!

The spectral content of this exponential %

frequency Am is substantially larger than the frequency AK: for a

large MN, A is thrée times Ay, and for a small MY, A_ is more than

ten -times AK (see Chapter VI). Therefore, most of the spectral ) /

content of Ag.(t) = AéKoe-t’ T 15 below A . For the cdse vhen a ’//‘/‘/
e

e
serles of spikes are emitted, we can expect that the spect'r/al content

of Agx(t) below Am remains large because,“’li’étveen the spike emission

times, Agx(t) still declines exponentially with the time constant T,

e e

and the temporal summation of Agx(t) produces a large DC component. "
The main condition for an impulse to be emitted at rt=t1+l 0
is, . ‘
‘ he_(t,..) > TH .. (5=1) :

vhere, Aem(t ) is the value of Aem(tl at i.=t1+1 o

i+l

From Figure 5-1(b),

he (E.0) = (A(t.o) - AL(E,. L) B G-z - -
et 1)~ Mgl A ,

vhere, 1(t ,,) and AL (t, ) are the values of 1(t) w/

at gt . L /,/ - F
141 - '




_the same as for the model in (b) because they are found for both -
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Substituting (5-1) into (5-2) we ohtain,

CL0t,) = Bt ) ) > nm (5-3)
tipr) " AMgltyy) ) 2 N -

4

Substituting (4-1) into (5-3), the main condition for a spike

to be lemitted f‘t t=t1+1 becomes, R
Cilyyy) - dplegy) ) 21y (5-4)
" The-voltage across AgK(t) at the instant when a spike is emitted D,
at t=t ., is equal to (TH + F‘K - Er)' Therefore,
™ ’ = - ' po - o
Mpltiyy) = (TH + Ep - E ) dgg(tyy)) (5-5) il
The multiplier can be removed by modifying the transfer function ®
in the feedback path as shown in (c) where, T T
Ez = Tﬂ + EK - Er o . ot (5-6)4

o

In so doing, the”spﬂ{e emission times for the model in (c) remain - .

-
cases from the same equations (5-4), (5-5), and (4-4). The relatidn~

b4

ship between the adapted .firing freqvjxency versus the intensity of. an
input current step for the model in (c) is shown in Figure 5-2 curve (c)

and ethgt for the ;:rigfnal basic model is shown in ,JFigure 5-2 curve(a).

° 0
o

<

f
8 ) &
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4 4

The dynamics due to the membrane capacitanc? can be re—igtroduced as
ghown 1in Figure 5-1(d) and the fSK;I curve generated l?y this mc)del‘ is
shown in Figure 5-2 curve (d).

When only the multiplier is remo?(red in (d), the AHP between‘r
gplkes is ethanced as shown in Figure 5-3 in comparison with the response

shown in Figure 4-4 (b) of the original basic model. However, the

DEPOLARIZATION DUE T0 U=l

M0 ,"“_n_

FIGURE 5-3 RESPONSE OF THE SIMPLER MODEL IN FIGURE 5-1(d) TO BE
COMPARED TO THE RESPONSE IN FIGURE 4-4(b) OF THE
ORIGINAL BASIC MODEL -

! .
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firing frequencies shown in Figure 5-2 curve (d) of this simpler model are
only slightly less than those shown in Figure 5-2 curve (a) “of the origi- "
nal basic model. When the dynamics due to the-membrane capacitance are
also removed in (c), the firing frequencies are only increasedrby about

15%Z as shown in Figure 5-2 curve (c). The benefit of removing the
\ : ;

’ .
multiplier is that, except for the spike emitter, the ondel is a linear
model. When the dynamics due to the membrane capacitance are also

neglected, it is easier to do asmathematical analysis of the model: The

basic model in (a) compares the change in the membrane potential to a

threshold voltage. However, since (5-4) gives approximately the con-

Ny

dition for spike emission, thé basic model operates approximately as a

current comparator: The externally applied current minus the Increased

t

potassium current due to previous spikes is instdntaneously_ compared to

[

a threshold current. -

5.2 ' Mathematical relation bétween the firing frequency and the.input

Brmaery
¢ > °

o, .
We now proceed to derive d mathematical relation between the °
5 - . §
firing frequency and the input for the simpler model in Figure 5-1 (c).

L4

For convenience of presentation we shall first obtain the static relation
and ‘ then include the effect of th{_dyuamics. After the 1 th spike at

t=t, the current ALK(t) is givgn by,

il

4 .

() = ¥ E, 86 e’("ti-J)/:rK|, : (5-7)
—— . jw
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into (5-7),

§ubstituting t= t“_l ;
<€ ‘X. o0 ‘ 'l
- -(t -ty 1)/Tx (5-8)
LIS O p E, G, e 11l 3
. =0
Substituting {5-8) into (5-4) we have, ' ' d ,
’ ~ -(tyq — ty /T -
1(t 1_+1) - Eo E, 8Gp, e "1+l 3 21, (5-9)

°

- I3

When the input 1is a étep of current I > Ith’ the steady-state or adapted -
firing frequency fo can be found from (5-9) by substituting i(t 1+1) =1

and the value 1/ fsK for the interval between two consecutive spikes thus,

o ° » @ - .

w n
ot - f TK - e - X
I - ngl E, 06y, e SK T (5‘10)

SN c

The inequality from (5-9) has heen omitted because, in the steady-state,

. . ' “ ’ . k]

the equalit'y is alvays satisfied (e.g. in Figure 4-4(c) Aen = TH at the
- . . A ~

spike emission times in ghe steady-state). Using the geometric series

expansion (5-10) reduces to, . ‘L '

. - | /
~ 1-E, AG -1} =1
Z Ko (01 - e~V EsgTx ) , th

-

. ‘ .
2 _ (5-11)




‘~Substit9tipg (5-14) into ¢5-12),°

The values of fSK and I that satisfy (5-11) are shown as curve (c) in

Figure 5-2. When the curve‘is,gxtended as a straight line, it crosses '

}

-1 = I;h approximately at f__ = fln where fm is given by (4-3). This .

SK
linear static relation is given by, 5
fsK - fm = S (1 - Ith) " (5-12)

A

The slope S, = deK/dI of curve (c) can be found by differentiating

(5-11) with respect to f5g and inverting, L
: NS °
(e fsxk -1) Tifsxz
Sy - T (5-13)
By Ay e fsxr

The slope of the linear part of curve (c) can be found by evaluating
(5-13) at ‘any point 6n the linear part of the curve which, for convenience,

we choose f " 1/TK . Thus,

S ’ .
S -J (e—l)z . — . ° . )
d \'4\. EZ AGKO e TK . , 1 ¢
. ';‘ Y ,
or, -
o - e R
54 0.91 Bz AGg, T T

- 8 (B‘
¥ 1. -
£, = (r-1,)+f¢ I >1 (5-15)
@b§kan input below the’ threshold cufrent there is mo firing so tﬁat N

i ’ N ‘ ' v '
O.E sz = 0 I < Ith v (5-16)

] o

1 4 ’
' sy o ! .Gf«'
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o

Equationg (5-15) and (5-16) give the srtatic relation. i
ﬂ ‘We now proceed to Include in the mathematical relation the

effeet of the dynamics. Since in the model of Figure 5-1(c) there is

dynamics only iniche feedback path, we have to understand how this feed-

back path behaves. To do go, we can first consider the h}pothetical case

wl?;n the model emits a train of spilkes with constant frequency starting

at time zero. Figure 5-4 ghows that the regultant summation of the feed-

back current AiK(t) summates with a time lag. Just before the emission

time of the 1 th spike, the value of A:LK is given by,

o T X ST .6 .
1 e T f o T T T 44—— spikes 5
'rsvf ’ ) v '

[
i

FIGURE 5-4 ILLUSTRATION OF THE DYNAMICS OF THE FEEDBACK PATH
IN THE MODEL SHOWN IN FIGURE 5-1(c)
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sy [ (4-DT 1 =0 ’ 1=1 (5-17)
1-1
-mT/T ‘
) = E, 8G, El e K 1>2 (5-18)

-

wvhere, T = 1/f and £ 1s a constant firing frequency.

The curve M‘KC(t) in Figure 5~4 which passes through these points is

given by,
" Eg 8Gyo _ i .
M () = —ge—— 1 - e /TR (5-19)
e’ K -1 .
. because, ’
Blyc@® = 0 .
which corresponds to (5-17) and,
' Ez4 Gro (1-1)T/1
- - -ea V77 K -
oy [(-DT) R €1 -e ) (5-20)

cc;rresponds to (5-18) as it ‘will be gshown next. We have to show that’

the RHS of (5-18) is equal to the RHS of (5-20), or,’

N ) <1 . '
(E e-nr/'r,() (e'r/'rx _ 1) - 1o e-(-LT/TK (5-21)
=1 ’
Now, * ’
-1 ‘ ' IS I ~ 1-1 '
( t e—-'r/'rg) (eT/Tx _ 1) a 2; LT/ Ty _ 2{ BT/ Tg
=l « o . omE = .
Faandd '
<
1-1 : (i 1-2 - .
-3 LT/ TR - »> S,ET/Tg L SU-DT/Tg (5-22)
=2 =l .

Y
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v

Rewriting'" (5-22) by substituting n=m—1 into the first term of the N& we have,

!

Lo, 1-1 1-2 i-2 1o
‘;.e—m'r/'rK e'1‘/'1‘K -1 - 2 e-—u'l.‘/'l‘K +1 - Zle-mT/TK - e (1 1)'1‘/TK
1 1 n=

-
4

-1 - e-(i—l)T/TK

°

Thus, equation'(S—Zl) is valid.

°

Substituting (5-11) into (5-15) and f for the dummy variable fSK we have,

v’

; Ep 8Gyy

; . - + (5=23
T 0.91 E, AGKO T, (f fm) £ > fm ( )
Ty,
e K -1 ) )
Substituting (5-23) into (5-19), .
' -t/ Tg 5-24
8 () 0.91 E, AGy ) T (f - £)(1-e ) (5-24)

Equation (5-24) gives the response AiKC(t) for an input which can be con-
sidered to be a step of frequency (f - fm.). The response of a system

with such a step response to an input (f(t)‘ - fm) is given by, {“(

o
. ) '

. . S o 27 i }
M. (1) fo.91 E, g © K [£(T) - £ ] dT (5-25)

KC

1 in (5-25) we obtain approxin.mtely'
AN

the value of Ai.K(ti) for a spike train with time-varying firing frequency

We assume that by substituting t = t

f(t). Furthermore, since for the simulation results the instantaneous

. . -
firing frequency is evaluated at the spike emission times (data points),
' 'P L] Iy .
there must be a sufficient number ofv data points in order to specify an

§

appropriate continuous“ function f(t) that fits these data points (e.g. see
¢ ’ . x - ’

Figure 4-g(a) versus.Figure 4-8(d) ). Nevetthelesos, in the gubsequent

’ ’
. .
.
» *
2 . . .
. 1]

5.



analysis we use (5-25) without any restrictions because, in the next

section, it will be possible to make a meanihgful comparison between thg

s
-~
resultant mathematical expression and the simulatioh results even when

ket

it is not possible to specify an appropriate continuous function f(t).
We have described the dynamics of.the feedback path and now

we investigate how these dynamics affect the input-output relation..
. - b
. ) Let us consider again the case when the model emits a train of spikes //

with constant frequency as illustrated in Figure 5-4. To gemerate this

output, the input can be any member of the class of inputs specified by:

-~

(i. The values of the input 1(t) at the spike emission tiné§d
1(ti)’ must satisfy the condition 1(%1) - AiK(ti) = Ith

from (5-4). (The inequality condition in (5-4) may be

‘ ) satisfied during large abrupt changes of the input (e.g. - 2

2 o
'see Figure 4-3(c) ). However, we have‘already restricted

, our mathematical analysis to inputs with low-frequency

)

- , spectral content.
ii. Between the spike emission times, the input is constrained

only by the inequality 1(t) - AiK(t) < It from (5-4).

h
By restricting our analysis to inputs yith low-frequency spectral content,

we are limiting the class of inputs further: ¢
1ii. Between iany two consecutive splke emission times L and ti+l’
the input does not deviate significantly from the straight

1+1). Otherw%se, 1(t) would have

large-amplitude high-frequency fluctuations. 1In Figure

”  line joining i(ti) and 1(t

5-4, we gee that the admissable i(t) is similar in shape to

Atgcgt)' T?us, 1(t) aéd AiKc(t) are related approximately

@ 3
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" Equations (5—30) and (5-31) include the effect of dynamics.

7
S , '
.+ by, ' c

1(6) - M (8) = 'ith ’ " (5-26)

Since requirements (1), (11), and (iii) above are applicable in general,
we can use (5-25) and (5-26) to obtain a general relation. .

Substituting (5-25) into (5-26), )

t ha
1(t) - fo.mzz 86y e T [g(m-g 1 aT =1, (5-2D)
0 L. .

Differentiating (5-27) wifh respect to t we have,

. —t/T t/T, . -8/T, t T/T
di K Kef(e)-f )+ & Kf Kit(0-£ )at =0
qt- e 0'91EZAGK0e (£(t) qm)+ Tgé 00.9lEzAG-K0e (£(0) m)dr
. ' Y
} (5-28)
. .
By using (5-27) and (5-285 we get, I,
di(t)_ 1 - - -
TS 0.91E, Mo [f(t)-fm] + TK[:l(t) Ith] 0 (5-29)
Rearranging (5-29), ; )
- 1 1 _ di(t) ' -
£ 6.9—137&;;;(1-[([ U L) * 5 )*f. 12 Iy, 5-30)
For an input below the threshold current there is no firing so that K 4
f(t) = 0O i(e) < Ln e (5-31)

‘ﬁ‘.
These equations reduce to the static eqnatiqﬂs (5-15) and (5-16) when

A}

i(t) =11s substitgted.
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»5.3 Coﬁparison between the mathematical relation and the simulation
resuLts '

. The mathematical relation (5-3Q) reveals that.f(t) is p;opor—
tional to the magqitude i(t) and the rate of change -of the magnitude
di(t)/dt of the inpufi In view of this result, we can now have a better
understanding of the simulation results. ) - -

nFor step inputs, the steady-state f found from (5—30)"13 linear-

ly related to the magnitude of the step as in the simulation -results.

;headeriQative term in (5-30) introduces an impulse in f(t) at the onset

of the step. Although we restricted our mathematical analysis to 1inputs

" with low-frequency .spectral content which is not the case at the onset of

a step, this impulse in f(t) that we nevertheless find from (5-30) could
be cogiidered as the high instantaneous;firing frequency during the quick
initial adaptation in the simulation results. For ramp inputs, f(t)

found from (5-30) is dependent on the slope of the ramp. This effect is

0
-~

also observed in the simulation results since, in Figure 4-5(c), when 1(t)

= 48 nA a spilke 1s emitted and the previous instantaneous firing frequency
is 140 pps, while in Figure 4-5(b) where the input has a smaller slope,
when i(t) = 48 nA, the frequency is only about 90 pps.

” In order to illustrate the effect of the derivative term for

sinusoidal inputs, equation (5-30) can be reérranged as follows, }

1

i(e) - I . ’ )
th - 1 di(t) )
£(t) = (o SIEBG. T +fm)+ 0.9IEAC,, dr: (5-32).
. 2

Q

Z KO'K

;

We denote the first term in (5-32) as fa arnd the second term as fv s0

that f = fa +‘fv . Plots of fa' fv' and € are shown in Figure 5-5 (a) -

<
(c) for three sinusoidal inputs that were used in the simulations.

'S -
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For the low input frequency in (a), f is determined chiefly by the mag: o

nitude of the input. As the imput frequency is increased in (b) and (c),

“the derivative term becomes significant, and f occurs with a phase lead

_with respect to the input i(t)‘or the fa curve. N
The effect can be analyzed more easily with a Bode plot. The
Laplace transform * of Equation (5-30) is shown as 'a block diagram in
i

Figure ?—ﬁ(a). This transfer function is valid when the input current
is above the threshold current at all times. The input is transformed
only by HK(s) which is defined in the figure. The magnftude and phase

curves of the Bode piot of (0.91EZA(3 }HK(S)’are shown in Figure 5-6 (b).

KOTK

' In this Figure, the data marked (X) are calculated from the simulation re-
sults of the basic model which were shown in Figure 4-~7(c) and Figuré 4-8.
We_recall that, for low-input freﬁuencies, the instantaneous firing fre-
quency varied sin&goidally. However, for high input frequencies, the
spilkes occurred in bursts so that the instantaneous firing frequency did
not vary sinusoidally. Consequentfy, the standard method of calculating
lthé gain andthe‘;hase is not applicable for high input frequenciés.
Neverthele:s, we can establish a reasonable melhod of calcg%ating the n
data. Let us reconsider the simulation result shown in Figure 4-8(d) b
for which the burst effect is most pronounced. As discussed in Section
4.3, the output spikes occur with a phase 1ead~rela;ive to ihe input.

A mé;sgre’of this phase lead can be found by locating the centre of the
splkes in each cycle and the phase lead of ;his centre with reréct to

the input maximum. The gain can be found by using the maximum and mini-

mum firing frequenly. We define for one complete cycle in the steady -

)

state: M
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t 1n msec = the average of the emisgion times of the spikes

in the cycle (location of the centre)

t. in msec = time when the input is maximum ~—~—
tp in 'rilsec = period of th;a cycle
Ipp in nA = twice the amplitude of the inpdt
fmax in pps = ma}fimum instantaneous firing frequency
t fmin in pps = minimum instantaneous firing frequency

Then, the gain and the phase are found from,

£ - £ - f
gain = 20 log (_ﬂé{f_ﬂ) - 20 log (_nla;_g_l___gl_i;r_x) in db (5-33)
pP PP w0
tm -t . .
. Pphase .= 360 x -——t*———g in degrees ) . (5+34)
p

We chose (5-33) and (5:—34) because these equations comprise the standard
method of calculating the gain and pha.;‘.e whén the response f(t) is a sinu-
soid.o In this\'_way, for low inpp.t: frequencies the method is the same as
the standard method since the response is a sinusoid and Ec is equivalent
to the time when the sinusoid is maximum. The data calculated with this
method is shown in Fyi”gu;e 5—6(b)'. It is evident from this figure that
the curve for the mathematical felation agrees with the data. Thus, in

’

v order to clarify the phase lead for high input frequencies ‘ob‘s’ervea\i;l_’
the simulations ;)f the model we can examiner the mathematical relation (‘5;30).
The phase lead found from the mathematical relation is due to its deriva- -
tive term which arose when the dynamics in 'the feedback path of the basie

model were included in the analysis. Consequently, the p se lead is due

to the dynamics in the feedback path.

.

The mathem:fical analysis has been uséd to clarify the simulation



regults presented thus far.
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) CHAPTER VI v

‘e
v

RESPONSE QF THE BASIC MODEL FOR NEURONS OF

~ DIFFERENT SIZE AND TO SYNAPTIC STIMULATION

:

In the previous chapters, we have studied thé encoding mechanigm

of the basic model by using the parameter values of a large motoneuron

9

and by comparing its response mainly to experimental results reported for

stimulation with an intracellular microelectrode. Since motoneurons in

.

the spinal cord are of different.size and since the model is to be used-
- .

for studying the codperation of motoneurons as Q.S&Stem, in this chapter

3

we shall express the parameters of the basic model a{Lszunction of the
o+ o ‘ \

size of the motoneuron and investigate how the size affects its response
Fur thermore, since in the real system, the motoneuron is stimulated by a

spatio—%emporal pattern of spikes converging at the synapéps, we shall

include this synaptic stimulus in the model.

6.1 Response -£0r negurons of different size

v

6.1.1 Expressions for the parameters as a function of cell size

Although the MN is a very complex sttucturé, the overall size
can be specified by only one variable. The extent of the dend;itic tree
is directly related to the size of the soma which can be specified by
) ggasurini an average diaéeter d (38). Spinal MNs are known to have d

varying from 25 ym for the smallest to 90 ym for the largest (38). There
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has been a sufficient number of experimental observations to enable us to
express indirectly the parameters of the model, R, C, TK’ and AGKO as a

function of d. The ,other parameters 'E Er’ and TH are independent of

K’
d (26 and read below).
Kerneii (38) has measured the total effective resistance R of

the MN as a function of the conduction velocity Va of 1ts axon. The .

resistance R is defined as the ratio of the steady-state subthreshold

’

change of the membrane potential to the intensity of the stimulating

current step. The data is shown in Figure 6-1 and a straight line was
fitted through the data points which were measured by two different
techniques. The resistance R is linearly prOporfional to the reciprocal

of the square of the conduction velocity, 1/Vaz. The equation of this

straight line is,

, 1
R = 3.74 x 10° x”(;’;) - 2.54 ‘ (b-1)
a ,
" where R is in MQ and v, is in m/sec. )

The samples are representative of a-MNs of all sizes besause the values
of ba cover the entire range of the conductid:'velocity of the oa-MN
axons '(39). Since Va is direct1§ proportional to d, the resistance
R is inversely proportional to d (38). Only two data points were ob-
tained from a small MN because it Jds difficu&% to do experiments on small
MNs with an Intracellular microele;trode.

The surface area of the soma is'propott4qnal to d2 and the sur-
face area of the dendritic tree is proportional éo the surface area of |
the soma (38) so that the total surface area of the MN is proportional to

dz. The resistance R presented by the MN to the flow of current from

e
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an intracellular electrode -to an ext;.'élcellular reference electrode should -
be inversely propottional to” the available surface area through which the

current may pass. Thus we assume the simple relation,.

L3 B 1
Ty

R = constant/ d2 ) ‘ (6-2)

»

Given that the range of d is from 25 to 9¢ um, according to Equation (6-2),
the value of R for the smallest MN would be 13 times ‘larger than the value

of R for the largest MN. The rm;ge of R shown in Figure 6-1 is from

s

" OF SIZE; EXP. DATA FROM (38) .

9
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.5 M2 to 8 MQ s so'that the smallest MN has a resistanqe 16 times larger
than the largest MN. Since there is good agreement betweeh the theore-
tical ardd experimental limits, we assume that expression (6-2) is valid
for the entire range of d. In)order to evaluate the constant in (6-2),
we set for convenience R = .58 M for the largest MN with d = 90 um, so

that the constant equals .58 x 902 = 4700. Consequently,

R = 4700/d° ( . (6-3)

where R 1is in M and d 1is in um.‘

For the smallest MN with d = 25 um, R = 4700/252 = 7.5 M . Thus, the

f

theoretical range of R will be from .58 M0 to 7.5 MR and it is within

the experimental range which is from .5 MQ to 8 MR .
We now turn to the next parameter, the capacitance C. Sdnce

in general the capacitance of a capacitor is proportional to the area of

LY

the capacitor, we assumé that,
) .
C = constant - d (6.4)

The time constant of the membrane Tm is given byc
v

T - = RC - (6-5)
m

Substituting (6-2) and (6-4) into (6-5) we find that“ Eheoretically, Tm
is a‘constant independent of size, which has also been observed experi-

mentally (24). Substituting = 5 msec (24) and R from'(6—3) into (6-5),

&

we have,
c = 1.06 x 107° x 42 - (6-6)

where C is in yuf and d is in um.
, )

’ : ’ ‘ )
°
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The threshold current for MNs of different size as, measured t‘)'y

%nell (38) is shown in Figure 6-2. The threshold current varies in-

. versely with the resistance but the data pointsxare too few and too widely

scattered to enable a precise determination of the relationship (38).
)

I‘ieverthelgss,' 1f we assume that the.threshold voltage TH is independent

of size, the threshold current I, in the model as given by (4-1) varies

1

according to the curve shown I{n Figure 6-2. This curve provides an

v ’
acceptable fit to the data and we do not have Wss the parameter

-

TH as a function of size. .

’ 7 1

Eccles et al. (40) observed that the duratiqn of the after-

. » .
hyperpolarization AHPd varies 1nversely with the size of the MN. Their
. ) : .

. \
ddta is shown in Figure 6-3 where AHP, was plotfed versus the inverse of

d
the conduction velocity, I/Va . A straight line was fitted by Eccles

et al., in order to describe the general trend. The equation of this

straight line is, p ,
mp, = 2220 4y (6-7)
% - a

where AHPC; is in msec and Va is in m/sec.

- n
Substituting (3-3) into (6-7), we have

T, = 8400 _ .5, (6-8)
) K v, . .
- ; - Sy

where TK is in msec and Va is ign m/sec.

Solving (6-1) for Va ’ ' ' -

3
i

H
¢

-193 s .
vV = —333 _ (6-9).
B N ETE . ‘ .

By aubsucutmg' (6-9) into (6-8),

~
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y .
T, = 33 VR*2.35 - 45.7 (6-10

- t
where RYs in Ml and T, is in msec.

K
Finally substituting (6-3) into (6-10), e
- ‘ . - » P
Moo= 33f B9 L ash - 457 . (6-11)
I < K 52 ! )
- ‘ \
where TK is 'in mgec and d is in yum. Lt

Now the onl¥ remaining parameter that is to be correlated to

the size is AGKO" We shall find this relation by using the experimen-
tal observation that the maximum magnitude of the after-hyperpolarization

is 5 mv and independent of the MN size (2&). During the AHP, the equa-

o -

tion for the basic eircuit in Figure 3-4(b) is,

~ d Aem Ae

m
Cdt+R

-t/TK _ _
+ ( Aem-l'KK—Er) AGKOe = 0 (6-12)

~ Let toax be the time when the magnitude of the AHP is maximum. Then, we

have . e = -5 mv and d. bey . 0. Substitutin‘g these constraints and
’ dt
Eg~ E. = 20 mv, we have (

o

y =5

= + (-5 + 26) 5G; e—t‘“ax/TK = 0 . (6-13)
R KO
Rearranging ‘(6-13) we obtain, °
‘ ‘ g o Y o
6. R = L etmax/Tk . 7 (6-14)

* KO 3

K

The variabie tmax can be expressed as a "f;.mction of T.. To do so, the
mdél' was simulated .for four MNs of different size. In the aimulations ’
AGKOR was varied until the resultant maximwm magnitude of the AHP w;s
equal to 5:mv. The values o‘f AGI(OR and tnax found from the simulations

are given in Table 6-1.. It is a'pparent that t is inversely related

3

~



T ® to the size'and this result agrees with the experimental observation by Kuno

(26). ;An expression for tmax which approximately fits the §imu1ation ,

results-is the following,-
/ < v Tp~ -
thax .133 TK + 8.34 * (6-15)

where t and T, are in msec.
max K

L4

Substiguting (6-15) into (6-14) we have;' .
N
- . ‘ v '
. AGKO - . .333 'e(.133TK A+ 8.34)/TK (6-16)

R

< The values of t ax and ( AGKOR) calculated from (6-15) and (6~16) res-
pectively are approximately equal to the values found from the simglations

as shown in Table -6=1.
In éummary,-the parameters of the model which are dependent on

" Given the diameter d, these

the MN size are R, C, T, , and AGK

K o'
parameters can be calculated from (6-3), (6-6), (6-11), and (6-16). All

the other -parameters of thé modél are-independent of the MN size and

——

these gre: TH = 15 mv, Ey = 90 mv, and Er = 70 mv. -“In the next two =

sections, the response of the model for MNs of different size will be
M

described.
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‘ ) TABLE 6-1
MN size - - d(um) R(M2) T, (msec) (AGKOR) ' é:max(msec) th(msec) (AG’KOR) (A(_;KQR)'I.‘K i
R ¥ (6-3) (6-11) (in simulation. (in simulation (6-15) €6-16) (6-16) and (5-14)
. 5 of AHP) - of AHP) (6-11) - .
smallgst 25- 7,52 61.3 L4 ©o15.8. 16.1 . | .44 27.0 8.75
‘1{ {
medium 60 1.31  19.0 .61 . 1L.5 1049 .59 11,2 3.65
¢ C
exemplary MN ' \ , ", e
used in the _ 79 0.75  14.2 .68 10.4 - 10.2 o .68 9.7. 2.43
previous sections . s
. . . - :
largest 90 0.58 12.5 .72 . 10.0 10.0 .74 9.3, 1.96
. 3 -

€6
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6.1.2 Resgponse to stimulation by steps of curreat

The relationship between the adapted firing frequené¢y versus

o

- r ,:
the Intensity of the current step fq{ MNs' of different size are shown in
Figure 6-4. The curves marked with e ?re'obtained from, computer

‘gimulations_of the basic model, while the curves marked with o are '

-

A 22 s
Yeported experimental results. In the following, we describe how the

threshold current, the minimum firing frequency, the range of firing

frequencies, and the slope of the curves are corrglated to the size of
- .

v
o A

the MN both for thée model and the real MN.

The threshold current Ith is given by Equ;tion (4-1) and it 1is
dﬂrectly proportional to‘the size. ~This\resu1t agrees with Kanell's
‘experimental result (38). The minimum ﬁiring frequency fm found by ex-
tending_ the linear portion of the simulatio& curves up to the threshold
éurrent)is given %y Eqﬁation (4-3) and it 1; directly:proportional to
the size, This result agrees with the real case, sin;e Kernell has ob-~
served that fm is inversely proportional to t?e'duragion of”the AHP (30) °
which is inversely proportional to the size (40) so that fm is directly
proportional to tbe size, The firing frequency of a MN for - a current

_intensity I = PI where P is a constant, can be “meaningfully compared
. 2

th’
to the firing frequency of another MN for the current intensity I = PIth

.

when P is the same for both MNs wherels Ith 1s dependent on the MN size.

Substituting I, = TH/R and I = PIth into (5-15) we obtain,

th

TH

Sk~ 0.91 E, ( 8GgRIT,

- £ (P-1) + £ N ) I

The term ( AGKDR)TK in the denominator of (6-17) is inversely propor-
tional to the size as shown in Table 6-1. Therefore, both terms in

-
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(6-17) are directiy proportional to the size so that the frequency fox

fj/¢?T€Ctly proportional to the size for any value of P, Few experi-

a

mehtal Etrves have been reported and three of these are included in

Figure 634 for comparison with ®he simulation results. The experimental

o

results and the simulation results agree in the sense that the firing

x Y
frequencies are directly proportional to ‘the size, but the firing fre-
quencies of the model for any particular MN are larger than the experi-

mgntal values.

We can extract from Figure 6-4 more in{ormation about the firing
frequencies by ;omparing the slopes of the curves of the model toj&he 7
slopes of the experimental curvés: For the curves of the model, the
slope 1is inversely proportional to the4size. The $16pes calculatéa,from O
Equatlon (5-14) also show the same correlation (see fable 6-1). Kernell
concluded from his experimental.data that the slope was not correlated
to the size\(29) and, in a subsequént paper, he cqQncluded from a smaller
number of tests that the slope was directly proportional to the size (Bé).-
His latter conclusion is the opposite of the correlation found from the
simulations. To clarify this contradiction, we compare the simulation
results with the range of\sye slopes obegrved by Granit et al. (41, Fidure
8) shown in the inset of Figure 6-4. hThe largest slope- observed 1is 3.59,
and the curvé for the MN is located in Figure 6-4 nex; to the m;del for a
MN with d = 25 ym.  Unfortunatefy, the data obtaine& Ly Granit et al.

t

was not correlated to the size because this was not thelr reason for‘ob-‘

- &

taining the data. However, we can asgume that the real MN with slope
¥ ¢

3.59 is one Sf the smallest for three reasons:

i. 1its threshold current is small

-
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ii. its minimum firing frequency is small
iii. only one MN was tested with such a comparatively
" " large slope presumably because of the'difficuity

of experimenting on small MNs with an intracellular o

.’;;,L--—ma__

microelectrode. .
The ratio of the slope of the model for the smallest MN (8.30) and the

largest experimentalgslope (3.59) is 2.3. The ratio of thé slope of

-

the model for the largest MN (1.70) and the sméklest experimental‘slope

(0.7) is 2.4 . Thus, although the slopes predicted by the model are

o

larger than the experimental slopes, it 1s significant that they are

larger by about the same factor 2.3 at both ends of the range, From

Q

these observations, it appears that the slope is inversely proportional

to the MN size. In view of this conclusion, it would be worthwhile to

i

clarify the contradiction with Kernell's conclusion by further experi-

mental work. o

3 ’ . “
6.1.3 Response to stimulatfon by sinusoids of current

3

It'was shown in section 5.3 that -the response of the model is

¢ ~

proportional to the magnitude and the rate of change of the magnitude of

. the input.  The latter factor begins to become significaﬁt when the fre-

quency of a sinusoidal inpuﬁlia approtﬁﬁately equal to thé cut-off fre-
quency 1/T of the transfer function HK(S) Since T is inversely pro—

portional to the size as iddiveated by (6—11), the frquency at which the

N,
rate factor becomes evident is directly proportional to the size. For - -

I

exaéplé, Figure 6-5° showsa the tesponse of the model for the smallest MN
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for an input with a frequency of 4 Hz. ) .

r

....................................... <<n
* N -..NCQU.N "N BYEN ..ﬂ '.N had
OUOGN,"J “8:,\.&3 ::: :ousszgn nwhsga-— ﬂ;gzzig §.—un Ng~ ‘.

woeevevew
.

FIGURE 6~5 RESPONSE OF THE BASIC MODEL (d=25um) T0 THE INPUT
1(t)=3.5~1.4cos(211.4.t/1000) ~

o ? 3 -
Most of the spikes occur during the rising portion of the input. This

behaviour was observed in the model for a large HN for higher input fre-

quencies of 10 15 Hz (see Sectieon 4.3). ' In Figure 6-6 are shown the

3

Bode plot of the mathematical relation (0.91 Ez AGKO K

is defined in Figure 5-6(a), and the data (X) calculated according to

)Hx(s) where H.K(a)

(5-33) and (5-34) by using the simulation results of the model for the
smallest MN. " By comparing the results in Figure 6-6, it ig evident that

the mathematical relation describes well the general trend in the simula-
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1

FIGURE 6-6 BODE PLOT OF O.QIEZAGKOTKBK(S) AND DATA(X) FROM

SIMULATIONS OF BASIC MODEL WITH d=25um

~
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tion results. The responses of the model for sinusoidal inputs have been
N .

compared to experimental observqi}ons in section 4.3 .

1

6.2 Synaptic stimulation

In the natural state, the motoneuron is stimulated by trains
of spiki;_;é‘ arriving at the synapses. In order to represent the motoneuron
in this natural state, in this section we shall include synaptic inputs
in the basic model.

Briefly, the trains of spikes travel along many parallel ex- ‘
citatory and inhibitory fibers. Each spike arriving at the synapses of
an excitatory fiber causes a very brief pulse of current to flow. across
the membrane, and this current ‘;n tur™ produces a transient depolarizationm
of the membrane at the soma called the miniature excitatory postsynaptic
potential (mEPSF). When a spike is elicited simultaneously in many
parallel excitatory fibers, the mﬁPSP summate and the summated depolari-
zation is called the excitatory postsynaptic potential(EPSPl). The time
course of both the mEPSPs and the EPSP ciepend on the location of the
synapses over the surface of the MN. On the average, the mEPSPs and the
EPSP reach a peak in 1 msec and decline with a time constant of 5 msec
(42), which 1s the recently measured value of the time constant Tm of
the Eembrane ('-24). Lqikewise, the spikes in the inhibitory fibers pro-
duce an inhibitory postsynaptic potential (IPSP) which has a time course
. similar to the EPSP (16). In Figure 6-7 we lgave included the synaptic
inputs. The spikes in each fiber and the very brief synap;:ic currents

are represented by impulses. The mEPSP and mIPSP are the impulse res-

'
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ponge of the transfer function Km/(s+Am).

spike(unit impulse)

1y
| l(exl
o
excitatory . © e SZL‘?E::
fibers in I I m . .
parallel =1 TexJ|
[ ]
@ ’
. +
. ‘ R
intracellularly 1(t) 3 e ——p Be
applied current - s + A
T . e
11 _ =
inl .
inhibitory : . Aix(t) )
fibers in I I ’
parallel —t Kinj

FIGURE 6-~7 SYNAPTIC INP]UTS ARE INCLUDED

© 4

The magnitude of the mEPSP and mIPSP can f;e’ varied fog each fiber but,
unlike the biological case, the time cog;rse of the mEPSP and the mIPSP
cannot be varied. However, the time constant of the decline of_mEPSP
and mIPSP 1is equal to the experimentally observed average value Tm .

When the 'gaiwns Kex and I(in are set, we have to take into account
the fact that the magnitude of the IPSP is dependen't' on the membrane

-

potential: The magnitude of the IPSP when the membrane potential is
biased at the threshold level 1s 2.5 ti.mels the magnitude at the resting
potential (16). On the other hand, the EPSP rema:l.ng the same. In o{d;r
for the IPSP to be dependent on Aem ,» we must va;'y Kin as a functiom of

pe . However, for the purpose of determining how the inhibition affects

1n constant at the value that pro-
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duces the magnitude of the IPSP at the threshold level for the following
reason: ‘

.

Under natural conditions, the mEPSPs and mIPSPs cccur asyn-
chronously and summate to produce a smooth change of the membrane

potential (34). Since a smooth change can also be produced by a con-

tinuous intracellular current f£(t), we can think of the summated synap-
tic current as being equivalent to an intracellular current i(t)." Thus,

we have an excitatory input iex(t), and an inhibitory input iin(t) which

3

is given by, ,

L, = ¢ e ()] i, (1) o (6-%8)

where, C is a variable dependent on Aem

-

and, ii

From thf mathematical analysis in Chapter V, we know that the spike emission

times t i=1, 2 ....., can be found approximately from,

i ’
ex(ty) — Lgp(ty) - A(e) = L, (6-19)
where Ai.K(t) is given by (4-4).
Substituting (6-18) into (6-19) we have, o

iex(ti? = Clde (e My (e)) - BAL(ey) = I,  (6-20)

Substituting Aeméxi) = TH into (6-20), we obtain
. iex(ti) - C(Tu)iinr(ti) - AiK(ti) = Ith (6-21) -

Now suppose that instead of the inhibitory input iin(t) = C[ Aem(t)]i1nr
ve have the iuhibitory imput 1 (t) = C(TH)1> (£). Then we can write
directly (6-21) as the equation from which the spike emission times for

the latter input can be found. Consequently, given the same iex(t) gnd

nr(t) is the equivalent inhibitory input at the resting potential.
N

(),

A
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iinr(t), the spike emissi mes found from (6-21) are the safie for

both inhibitory inputs. Efquivalent to having iin(t) eﬁual to C(TH)iinr(t)

, we set K

instead of C[ Ae_(t)]i (t constant at the value that pro-
m inr n

i

duces the magnitude of the IPSP at the threshold level..
Our model of the eqcoding mechanism has been based on experi-

mental data obtained by stimulaking the MN with a microelectrode. During

synaptic stimulation, the trajectyries of the membrane potential between

spikes are simiiar to those observed during intracellular stimulation (27).
Furthermore, the firing fréquencies for synaptic stimulation are similar

to those for intracellular stimulation since small MNs fire with fre-
quencies generally below 25 pps‘while large MN? fire with'fr?quendies
above 25 pps (43). Because of the similar trajectories andhfiring fre-
quenéies, 3@ expect that intracellular current and synaptic currents are

both encoded essentially in the manner described by the basic model.

However, we can also expect some differences. In the stretch reflex,

the firing frequency of a small MN saturates, instead o6f increasing, as

the stretch is increased (44). On the other hand, for the' model, the
firing frqugncy increases linearly‘;s the stimulating current 1s in-
dreased. Granit postulated in his &ook (44) that this saturation may
be caused, in part, by Kernell's observation that the slope of the
fog = 1 curve for intracellular stimulation is small for small MNs .
The analysis in Section 6.1.2 qf this thesis indicated that the slope

may actually be large, so that this factor may not account for saturation.

Granit also p&étulated that the inhibition from the Renshaw cells in ,
the system may be another factor that limits the firing frequency.

Preliminary simulations of our model of the motoneuron-Renshaw cell

o

-
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system (56) indicate that this factor may not be‘significant. -

- énother possibility is -suggested by Kernell's observation that syflaptic
stimulation, depending on 1ts source, modifies the time ‘ of the
after~hypéfpola:ization‘and also ‘the slope of the‘fsx‘ I curve determined
by adding syqaptidﬁand intracellular stimulation. Thus, the synaptic

\ B Y

puts may interact with themselves or with the encoding mechanism by

o
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.0 ‘ CHAPTER VII

.
N
. ] /

EXTENDING THE BASIC MODEL BY MODELLING THE ELECTROGENIC

SODIUM PUMP PROCESS - GENERAL MODEL AND ITS ANALYSIS

¥

7.1 ' Introduction

, . _ The electrogenic Na and K pumps of the membrane shown in
" "Figure 2-2 are belie;;d to be involved in the maintenance of equilibrium
in a neuron at rest (lla, 12, 45). Thése pumps h;ve been referred to
simply as the electrogenic Na pump (ZS), presumably because the operation A
of'each pump is dependent on the operation of the other $12). During
an action potential,  Na ions enter the cell and K ions leave the cell so
that there is change in the concdentrations of the iqps acrgss’fg; membrane_
and the equilibrium is unbalanced. It is believed that the .
electrogenic Na pump re7establishes the equilibrium, and while doing
so, the membrane potentﬁal is hyperpolarized(llc). ., It has bezim
suggested that, in the cfayfish stretch receptor and in the pyramidal
tract cell, both th increased potassium conductance and the electrogenic
Na pump are involved in producing the after-hyperpolarization (46, 47).
Powever, it appears that the importance of both processes in determining
oth?r pispertiea of the encodihg mechanism has got been recognizgd.
The propertles for the motoneuron have been discussed solely in terms of
the increased potassium conductance (8, 12,(22, and previous chapters of
this thesis). On the other hand, Sokolove has recently attempted to
. ~  explain all his expitimental ;'ésults for the crayfish stretch ‘receptor
\

q
neuron in terms of the effect of the electrogenic Na pump (10, 45). In

a
+



/ . 106

this chabter, we extend the basic model, which included the potassium

conductance process, by modelling .also the electrogenic Na pump process.

N
The analysis of the entire model (called the general model) and- the pre-''

vious analysis _of the basic model together show which properties of the

<Y
encoding® mechanism are due to each précess. These properties will be

classified in the next chapter.

7.2 Formulation of the general model.

[N .
M Sokolové and Cookar (45) found that certain experimeqpal results

for the crayfish stretch receptor neuron were modified considerably when

I

the activity of the electrogénic Na pump was depressed by several methods.

-

For.exaﬁple, normally when the neuron was stimulated by current steps,
the firing frequency declined exp&ﬂentially with a time tonstant

of about 5 seconds to a gteady-state value equial to one-half of the inftial
z ;-

-

value. ' However, when the pump was depressed, thé firing frequency re-

mained constant at the initial value. Tﬁéy postulgted that, when spikes
are emitted, the increased activity of the pump produces an inhibitory

current which counteracts the stimulating current. Sokolove has proposed
a model (1b, see Section 1.2 of this thesi;) in which he assumed that the
inhibitory current 18 a tempora} summation of compoment currents, eacﬂ of

~

which is produced by a spike and declines from a maximum at the time of
the spilke exponentially with a time comstant of 10 seconds. His model
reprbduces some experimental observations but it has limitations which will

be described after we propose our general model (see Section 8.6). Our '’

i
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general model is “shown.in Figure 7-1.

Impulse emitted , \
he at t=t if
-— + )--
1(t 1+1 —p
, Aem(t'i+l) >
and 1f (t1+1—tj)>1 msec
o AC . .
= KO
K 1/C — — ™ P ,.
. A =1/RC =1/T B '
m m
- Ay .—-1/1',t
= + «
Aem em Er K *w
. AP =1/'1'2 : s+ AP

FIGURE 7-1 GENERAL MODEL OF THE NEURONAL ENCODING MECHANISM

;

We}have added to our basic model another feedback path in order to in-

-

clude the electrogenic Na pump pr;cess. In modelling this process with
a negative feedback path containing the transfer function Kp/(s+Ap), we

have adopted the same assumptions made by Sokolove and Cooke (stated

above). ‘
~ 7
' v .

N
e

™ -
¢

- o
.

7.3 ‘Response ‘to stimulation by steps of current .

In this gnd the following sections, we shall compare ‘ the response
of our mc;del with the experimental results obtained by Sokolove et al.'
Thus, u;xless othgtl'wise stated, the simulation reaults‘hnve been obtained
Wi,bil 'tb:eJ p'arameters of the model set equal to'thosg of .the smallest MN

because the crayfish neurons tested by Sokolove et al. had firing fre-



| , ..
quencies and current intensities in the range of those for the smallest

-]
N 1 —
MN (&ee data in (45) and in this ‘thesis). The new parameter AP in the

outer fe_edback pat.h was set as TP = l/A? = 10 sec, while KP was found
from Equation (7-11). . -

y When a step’ input equal to two times \th_e threshoid current is
applied to the general model, the instantaneous firding fre-quency‘f(t) is
's.hown in Figure 7-2. This response of the general model is equal to the
response of’ the basic model with 't:he input equal to [I - iP(t) 1, wher; 1

is the magnitude of the step input and 1P(t) is the inhibitory current

&

due to the electrogenic Na pump process. As shown in the figure, during

the first few hundred m\tllisecohds, ip(t) is approximately zero and the

E

general model reduces appr%ximately to the basic model. Therefore, as

© 14

explained in the previous chapters, the instantaneous firing frequency

. ¢

-

adapts within the first few spikes to the value f_,, due to the summation
r

SK?

of the potassium conductance ( AgK) procéss. ' As time jncreases, iP(t)

“summates tempbrally,, with small deviations from the continuous curve

shown in the figurel Meanwhile f(t) declines expon\entiall'y‘with a time
' .- constant of 5 sec to a steady-state value fSP equal to .about one-half

of fSK'. The gradual adaptation of the firin.g frequency wi’th a time .con—

stant of 5 sec due to the electrogenic Na pump process is in agreement
L = - .

‘with .the experiméntal observgltion of Sokolove et ’al. The response of ° >
‘the model has, iin addition, an initial adaptation within the first few
spikes du:e to the gummation of the AgK process,'wher‘eas S'o'kolove et al.
did not report if "any initial adaptation of the firing frequency was pre-
sent in the crayfish sensory neuron. However, it is reasonable to ex- -

. ' "pect that there is an initial adaptation because another of their experi-
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mental. observations can only be explained by the summation of the AgK
process as we shall show in the next section. The adapted firing fre-

quency f__ is equal to about one-half of f_, for all values of the input

SP SK

I'greater than 2.5 nA as shown in Figure 7.3 This latter property has
also been observed experimentaly by Sc;kolove et al,

_a Let us e;ci:end the mathematical analySis of Chapter V for the
same purposes which we discussed at the beginning of that chapter. if

a spike train with 4 constant spilke frequency f is applied to- KP/(s + AP)
at t = 0, then, analagous to the behaviour of the transfer function

EZ AGKO/( s+ AK) shown in Figure 5-4 and the derivation of Equation (5-19),

—

the curve passing through the minimum values of iP(t) is described by the

, equation, , . -

3

el / fTP

. -C/TP -
iPC(t) ] (1 -e ) . (7-1)

¢

Sincé the values of 1/f are of the order of 50 msec, they are much less

than TP which equals 10 sec. Therefore, 1/f'I‘P <<]1 and approximately,

. rd

pct®. = KTEQ - ¢ t/Tpy v (7-2)
r .
The value of i (t) is approximately equal to 1 (t) because the increment-

-

K'P added by éach spike is much less than the summated iPC(t) (except

x
.

initially when only a few spikes have been emitted) Thus approximately, .

P )

) - - —t/Tp , . _
i.P(t) I%Tpf(l e ) (7-3)

Equation (7-3) gives the response of KP/( gP—,AP) for an input which can

be considered to be a step of frequency f. For a system with such a

[}

step response, the Laplace transform of the response for a time-varying

input* f(t) is related to the Laplﬁce transform of the input by,

>

S
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¥

f(t) roR THE PIRST INTERVAL
IS 1000 PPS AND FOR SUBSEQUENT

INTERVALS IT IS 1 t, (H-o7/3)

8 10 12 14 16

FIGURE 7-2 RESPONSE OF THE GENERAL MODEL TO A STEP INPUT

_3

0 =1
FIGURE 7-3

&

7w

—— e, -

ADAPTED FIRING FREQUENCY OF THE GENERAL MODEL WITH
AND WITHOUT THE EFFECT OF THE ELECTROGENIC "SODIUM BUMP

I8
t{sec)

&
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, {11
i?(s) = ‘:;q:gq;‘ £(s) (7-4)
Substituting [i(t)-iP(t)] for i(t) in Equation (5-30) we obtain,
. 1 di(t)-1,(t)]
f(t) = m——[ I([:l.(t:) -1 (t)~I ] + qc + fm] (7-5)
3 LIS sl
. ° "
Taking the Laplace transform &f (7-5) and substituting (7-4),
a [} ' i
f(s) 1 . sKPf(s)' f
. 1 1 l(P th m
f(s) = ————————[ (1(3)- - ——)+ si(s) - + — (7-6) -
0 91EZAGKO TK s + AP s s + Al s

£}

Solving (7-6) for f(s), .

<

R KMP,V{ ot (1- __)+ ] - _..} (1-75
f(s) = —
- 0.91E,AG, T A, + K;
‘ Ko K
_‘ (0‘91%1‘& * KPTK)( 0.91E,AG_T + KPTK)

Z KO K

/
n

_For a. step ‘input 1(t)=I qr i(s)=1/s, the steédy-stgte value of £(t),

denoced fSP’ is
£ = ln sf(s) ° .
se " , ‘
0.91EJAG, T (L Ten) , -
#" ko K“r 0. 9lzzncm T, m : .
ILEAGy Tehp + Ky

/ (0 1B G, x”' Ke¥i Ao STEAC T * KPTK) C . LT

. .

I-1 . .

~ 9mzacm( T, th) tia
S . ” R U
: 9 Xp 0

. 0.91EAG, T A .
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(el

Substituting fSK (from (5-15) fer the numerator ff (7-8) we get,

fSK
i fop "= . ‘ (7-9)
~ 1+ »
0.91EZ AGKOTKAP .
L
]
Solving for KP ’
4 fSK
= (22 . A S (7=
KP <f 1) 0 91EZ GKOTKAP (7-10)
SP )
In the simu}ationS,fSP = .S‘fsK becausg we chose KP as
K = 0.91Ez AGKOTKAP . . (7-11)
Since AGKO and TK have been expressed as a function of size, then KP also
depends on the size. In general,
- o '
ek ‘ |
if the maximum ?——--“10 and since TKAPhIIIOO,
SP

then, ‘ %w//

9 -
= — A {
‘ maximum KP 100 (0.91Ez GKO) .

so that,

KP << ‘0.91Ez AGKO - €7-12)

Thus, the parameters of the two feedback paths in the general model are
substantially different. The gain KP of the electtogenic,Na pump process
is much less than the gain E A G of the AgK process. The time constant

T is more than 100 times larger than T

By substituting (7-10) ianto (7-7),

~ ) o !
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1 f
1 th m
0. 91EZAGKOTK(3+A.P) {m—[ ri( )- Y ]+ si(s)]+ .

Z KO
< f(g) = (7-13}%
0. 01E G T ; 0.91EZAGKOTKAPESK/ fop :
Z KO K 0.9lEZAGKOTK + KPTK
Utilizing (7-12) we have,
(s + AP) ¢ I f '
1 th m
= -—] +8 8 =
SK Z KO
(s fay - )
-
where, SK/ is related to the parameters of the model by Equation (7-9).

Thus, the additional feedback path introducéd in order to account Yor the
electro‘genic Na pump simply introduces a term that multiplies th& ex-

press'ion for the basic model. The block diagram for Equation (7-14) lis
shown in Figure 7-4, - As shown in Figure 7-5, when the input is a.step

“
i(t) = I, the output of the‘transfer function due to the Agy Process is

P’
u(t) + 6_%1%(_9—— . The unit-step response of the transfer function
AG N .
Z” KO A
- fSK
(s + /(s + - .
) ’ Ap Ar ¥ Sp ' 7
is . q ’
£ £ fax
[___fsp + (1 Sp)e‘AP;t] u(t)
‘SK SK
and the impulse response is .
f
SK
fsk | T Mg,
s(e) + Ay -F_)e SP u(t)
SP

s 3 »

Therefore, the step response of the transfer function for the general model

. 1 is given by, ) ' ’
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| transfer funtfon due

. } to the electrogenic
transfer, function due Na pump process
to the potassium
conductance process

FIGURE 7-4 TRANSFER FUNCTION FOR THE GENERAL MODEL VALID
FOR OPERATION ABUVE THRESHOLD

»

-

transfer function due transfer function du
{(¢t)y—— to the potassium to the electrogenic
conductance process T Na pump proceas -

T iwpulse 18(t)
0.91E,AG

1 27 KO 4
fox I
. fs
t

FIGURE 7-5 OUTPUTS OF THE TRANSFER® FUNCTIONS IN FIGURE 7-4
™ FOR A STEP INPUT

\ fSI(

(a4

»

0. 91EZAGK0 0. 9lEzAGK0

(7-15)

g Since,

. I <(3 L,-3x 15 m.r/R), AGKO > .45/R, A, - 1/10 gec, and

. E, = 35 mv,
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| - »
' H,K(s) 0. 9IEZAGKOTKS I . Hp(s),
) O N S . + | '“Pf > £ (s)
(09860 T , [T s+Afsk
£

f
- SK
- I A SK |
£(t) =-[f prEgg feple AP LJ (t) + —=8€8) o (1 fsxs:)e APfSP
SP

u(t)



Therefore,
T4 (1 ) fSK)<{ 3 x 15 (1 _ fSK)___ 31(1 _ f_g_lg) ops
0.91EZAGKO fSP 0.91 x 35 x /45 x 10 fsx fSP
“ (7-16)
Since, fSP >> .31 pp?
Therefore, ’
I AP £ L. £
SK SK
1 - )<< (1 - -——) = ~(f., - £.)) 7-17)
CO. ?lEzAGKO ( fSP {fSP ESP SK SP C(

Because .Of the inequality in (7-17), the last term in (7-15) can be neg-

lected, so that,

B3l

a S °
- - TUPE 1 8(t)
£ty = [fsp + (Egy - fgp) € SP ]“(t) + 0.91E, 55, (7-18)

-~

The first term in (7-18) corresponds to the gradual adaptation of the firing
frequency due to the electrogenic Na pump process, anl the second term'
corresponds to the quick initial adaptation of the firing frequency due

hd %

to the potassium conductance process (see Section 5.3).

~

v

7.4 Resetting of repetitive firing by inserting spikes R

In the previous section we have shown that the feedback path due

to the electrogenic Na pump process must be present in order to accglnt for
the gré&ual adaptation of the firing frequency as observed in the crayfish
stretch receptor neuron by Sokolove et al. We now show that the feedback

path due to the potassium conductance-procéss must also be present in order
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to account for another experimental observation made by Sokolove et al.

Sokolove et al(45) reset the repetitive firing of a crayfish

stretch receptor neuron by artificially inserting one or two spikes as

illustrated in Figure 7-6. The neuroﬁ under study had a relatively

stable interspike period T0 of about 79 msec (Figure 7-6(a)). In

experiment 1 (Figure 7-6(b)), a spike was artificially initiated Tl msec

after a spontaneous spike and the time T2
&

that elapsed unti]l the next

spontaneous spike occurred was measured. In experiment 2 (Figure 7-6(c)),

a spike was artificially initiated Tl msec after a spontaneous spilke, and

a second spike was artificially initiated 18 msec later. The time Tzwas

again measured.
shown in Figure 7-7.

for a few data .points og experiment 1.

u

T  —trm TO"""

0 repetitivefiring
(a) TO = 79 msec

T ~ot¢— T ~—> )

- 1 2 N
experiment 1
(b)
> T rom-— T 2-—5
experiment 2
() o
- ’ ‘
-+ -P t
T

b -
FIGURE 7-6 RESETTING OF REPETITIVE
FIRING BY INSERTING ONE OR TWO SPIKES

'd

In: both experiments, '1‘2

Plots of the data Tz versus T1 for both experiments are ° - //’

was greater than T, except

~— exp. data ’
% R ~ *
N‘(7-315‘\\1 FXP. 2
. (7-29)~
‘ S EXP. 1
exXp. ¢

'L- . ) dasa -

—to ‘tl(msec)

FIGURE 7-7 DATA(45) FROM EXPERI- .
MENTS IN FIG. 7-6 AND RESULTS OF
MATHEMATICAL ANALYSIS
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’ First we shall show mathematically that the negative feedback

~

current due tothe electrogenic Na pump process is not the cause of T2

being greater than TO. The value of iP(t) immediately after the spike

Y

at t =nTb is given by, , N
. N —_
£ Ky .
& 1p(T) = K;'I':— t K (7-19)
s 0 "

where, the first term 18 the accumulated iP due to the .spikes prior-to

t = T, found by substituting f = 1/T; and t = T, >T, in (7-2)

and, the second term is the increment added by the spike at t = Tb .
S

In experiment 1, iP(Tb + Tl) is given-by,

-T,/T,
# i (Ty +T) = 1,(T) e + Ky (7-20)

where, Ehé first term is the output of KP/(s + AP) for .zero input and

initial gondition iP(Tb),, \
and, the second term is the increment added by the spike at t = Tb + Tl.

By substituting (7-19) into (7-20),

- 1\ T/
i (T, +T,) = [(———- + 1) e +1] (7-21)
1? b ) o KP APTO ¢ 3
.Since the maximum value of Tl is 79 msec,
1 —Tll'l‘P 10000 ~79/10000
—_— e > —— e >» 1
APTO 79
Also, . 7
1. 10000 ., - P
APTO 79 '
Therefore, (7421) reducea to
? -T. /T, :
RS LT
- 0
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Thus, KP in (7-19) and (7-2Q) is negligible, so that two spikes.increase
the ihhibitory currgnt'ﬁ; a negligihle amount compared to the accumulated
amount. Since the inhibitory current iP(t) tends to inhibit the emission
of a spike , the interval T2 is directly related to the value of'

iP(Tb+ Tl)’ For the present purpose, let us assume the simple

relation, ‘

L
T2 = constant x iP(Tb + Tl) €7-22)

If the spike 1is artificially initfated at the instant when a spontaneous splke

%
would have occurred so that Tl = To, then the repetitive firing is not dis-

turbed and T2 = TO . Substituting this condition into (7-22) we have,

—TO/TP

. T. = constant x (7-23)

e
0 . APTO
Solving for the constant in (7-23) and substituting in (7-22) we have,

-(T, - TH/T, ,

T2 = Tod? (7-24)

For Tl in the range of interest 0< Tl< TO ’ 12 is approximately equal to

w

TO . For example, substituting T1 = 20 msec in (7-25) we have,
T, = 79 x{1+ _23) . 79.47 msec
2 10000 ' .
L 4

§imilar1y, it can be shown mathematically that, in exper}ment 2, Tz would
be approximately equal to TO . Howéver, the experimental values of T2
are significantly larger than TO as shown 1in Figure 7-7. For example, in
experiment 1, for T1 = 20 msec, T2 = 85 msec. Consequently, the electro-
genic Na'pump process cannot cause T2 to be larger than-To‘as much as ex-
périmentally observed.

Next we show mathematically that the experimental results can be

. .
" accounted for by the negative feedback current-due to the potassium.conductance

«
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( Agl() process. We expect that'\ihe AgK process is involved because
- the trajectories of the membrane potential between spikes for the cray-
' fish stretch receptor aré similar to those for the motoneuron (11d
Figure 14). From the above analysis, we know that a few spikes increase 4

iP‘by a negligible amount compared to the accumulated amount. Thus,

%

during the period when the firing is reéet, the variable iP(t) is approxi-
mately constant and equal to iP(Tb). Since the general model is equi-
valent to the basic model with inpﬁt [L(t) - iP(t)], the condition for

spike emission becomes,from (5-4) and the statement after (5-10),

- Al (¢t ) = I

1( p{ti41) k' Ci41

) -1 (7-25)

ti+1 th

Thué, for the repetitive firing in Figure 7-6(a), the condition for the

emission of the spike at t =T, + 2 TO is given by,

b .
-T./T, -2T,./T -2T. /T
0' 'K R i ¢ e i O
(I - iP(Tb?] E, AGy,e - EZAGKOe_ - AiK(Tb)e = Ith

. 2k ~ (7-26)

where, (I - 1P(Tb)] is the value of [i(ti+l) - iP(t1+1)]’

-~

the second term is the component of AiK(ti+1) due to the i

spike at t = T}; + TO >

the third term is the component of Ail((tiﬂ) due to the spike

att =T ,
) and, ALK(Tb) is the value of AiK(:é.at t = Tb due to all the spikes
) , prior to t = T and it is givem by,
‘ g: . ~0To /Ty ‘
AiK(Tb)- - Ez AGKO e i (7-27)
< R —

. vhere, N is a large ‘integer greater than T llovev;er,pthe sum

. : ) 0

L
~
¢
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-

can be found approximately by summing only for the first few

4

values of n. N .

Similarly, for experiment 1, the condition for the emission of “the spike

at-t = 'I‘b+'I'1 +'1‘2 is, p

-

- -T./T, ~T,/T
[1 - 1,(1)] -[EZAGKO +E,8G, 1 (T )]e

17k 2k
, ith

{ . (7-23)

Substituting (7-26) and (7-27) into (7-28) and solving for T, we have,

) N -nT./T -T. /T v
1 +(1 + ;e 0 K)e 1K
n= .
T, =’ T 1 S - (7-29)
-'rO/TK & -2'1'0/TK . N -(n+2)T0/TK
T
=1 v

. r
As for, experiment 2, the condition for the emission of the spike at t =

(beT + 18 msec+T2) is,

1

1+18)/TK e-TZ/'rK oy
th

(7-30)

‘ 18/TK -(T

(I-1,(T )] [EZAGKO + E0G, e +[EAG H1 (T, )]e

Substituting (7-27) and (7-28) into (7-36) and solving for TZ we have,
-18/1, N mTy/Tey =(THIB)/T
l+e. +(1+ Ye ) :
=

T, = T, L i J (7-31)

2 K » N (n+2)T /‘1‘

~T./T, 2'1'/
e0K+e +ze

d
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a

s
q .
The plots of T, versus T, for (7-29) and (7-31)- are shown in Figure 7-7,

The constants T0 and TK were ch%éen as follows in order to compare the

@

mathematical results with experimental data: .

(1) T, was set equal to 79 msec as experimentally observed.

0
(1) The faet that the neuron studied was firing spontaneously

» v

indicates that the input is not much larger than the threshold
current and the neuron is firing approximately wiqh the mini-
mum frequency. As a result, TK was found to be T0/3 =25 msec —
from (3-3) and (4-3).
There is.reassnably good agreement between the experimental curves and
the curves predicted by these equations. Consequently, the exp%rimental
results can be aécpunted for by the negative feedback current due to the

v

potassium conductance process.

P

I N
* The experiments were simulated with the genéral model and the

simulation results agree with those of the mathematical analysis. The
parameters were chosen equal to those of a MN with TK = 25 msec or d =
48 um, and the applied current was set at I = 10.5 nA so that the regultant

TO was equal to 79 msec. The results are shown in Figure 7-8. The data:

are the results when the complete general model was

points denoted by

simulated. The data points denoted by O are the results when, inlthe
13

general model, /the inhibitory current Aip produced by the artificial '

sftkes was not added to the accumulated iP(Tb). Thus, the values of T2

-

given by the curves 00, for which AiP = Q, aI; due to the increased
Ky

v

potassium current AiK . The Qaluea of T2 given by the curves o , for
vhich 'Aip was added, are slightly larger thad the values of T2 given by

the curves O . Consequently, both the simulations and the mathematicqﬂ

Ll

- o
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1)

analyais show that thé resetting of repetitive firing, is mainiy caused by ‘the

potagsium conductance process. ) _ . .

mlﬂ fﬂ iﬂ ﬁﬁ 33 éo oo fo N (nsEC)
f * -
An .

FIGURE 7-8 SIMULATION' RESULTS OF THE EXPERIMENTS IN WHICH
REPETITIVE FIRING IS RESET )

<

il
+

?.5 Response to stimulation by a tetanic train of pulses~ e~

In this section, we shall compare the response of the model to

’

B P
e e L o S
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" posttcain interval t d is dependent on f
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two related experimental obervations.

Case (1

Sokolove et al. (45) disturbed the repetitive firing of a crayfish
stretch ,receptor neuron as illustrated in Figure 7-9(a) by inserting a
>

high-frequency train of spikes initiated by applying pulses of current.

The interval between the end of the train and the first spike after the train
(posttrain interval) was measured. The high-frequency train is called a tetanic

train and is described in Figure 7-9(a) by the duration D,r and the spike

frequency fT » much larger than the constant. firing frequency fb . The

b-° D_T and fT . For example,

Figure 7-10 shows data obtained by Sokolove e_tl al. (45) from a crayfish

stretch receptor by varying fb a{x;\d D'I‘ and keeping fT constant at 100 pps.
' ’ & '

Thé posttrain 1interval t, was plotted versus the number of spikes in

d
the train, NT » where NT is given )y,
n NT = fTD’I' ) : it (7-32) :

.Sokolove et al. pointed out that in Figure 7-10:

(1) For a given fb' » the curve relating t d to NT is composed

of two straight-line segments with a breakpoint at a

threshold number of spikes Npp - * ,
. o ,

(11) N'l'l‘ is cljirectly proportional to fb , and t 4 is ':I.nv@rsely
ptoportilénalj to fb . " & .

We have simulated the experiments with the general model. The ‘results

from the simulations are shown in Figure 7-11. Although the‘ numerical

values in Figure 7-11 ai'e not identical to the experimental data in Figure

7-10, it is evident that the curves in the two figures are similar.

3
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tetanic train with
spike fresquency f,r.
duration D, and

- nusber of *.piken N,r
TR ‘ |
. ‘ + . + - t
| —p e -,
T T ! ‘ po-ttru:idin;\«n Ta*ta

repetitive firing .o «Q ;o .
with frequency fb

(a). )
1
’ 84 (1) .
. a \’:“’
L] Im )
(1) . ,1,(:)
. ;c
Toe o
(®)
. - 3
!
FIGURE 7-9 DISTURBING REPETITIVE FIRING BY INSERTING A °
- ' TETANIC TRAXN OF SPIKE$
‘i" o
r -
' |
14
S}
4
-3
8w ‘
&
R ’ [
P Ny number of spikes

o in the train.

SDRIEN. e e

FIGURE 7-10 POSTTRAIN INTERVAL OBSERVED FOR THE CRAYFISH
GTRETCH RECEPTOR NEURON (45) o

o W
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The featurea of the curves can be clarified'by analyzing the
experiment mathematically with tile aid of Figure 7-9(b). In order to
find ty » Ve must relate iP(Ta), AiK(Ta)\and (r - Ith) to fb’ f’l" an

p'T’ . ' The output 11>,,(Ta)° of K,/ (8 + A,) equals to the output due to th

initial condition 1P(Tb) pPlus th?xtput due to theé train as input.

‘ -D_/T f -D_/T
1,(T,) = 1,(T,) e TP, -:—:’;(1 -e. T P) (7-3

Since DT< 2 sec and is significantly less than TP =10 sec, Equation

(7-33) can be approximated by,

J
) Kpfy D, .
1p(T) = T‘—P— (1 - T;) + f:rKPDT D ” (7+3

The relation for A:LK(’I‘;) is, “

125

d
e

Thus,

3)

< D
e = - —!- * -
1,(T) 1P('rl>( TP) +£K D, (7-34)
By finding'the steady-state value in (7-4),
. ~ . - < . i -
1 (1) = ———Kpfb | ' - ) (7-35) -

I 2 - AB ) .

Substituting (7-35) into (7-34) we have,
g ’ i g

Aj_K(Ta)_ = EZA GKO + 0.9IEZ AGKOTK (f,r - fm.) . (7-37)
where, the first 'tqm is the increment added by the last spaik.e in the
B * g 7

-

tetanfc train, and the second term is the steady—e;taté residual

from the other spilkes in the tetanic train found from (5-24).

The residual from spikes prior to the tefanic train, ;
- £ e ™K pag be ‘

O‘9IBZAGKDTK(fb £)e }ma béen neglected hecause

£, <<fp and D.>>T, . ° | ';

2

.
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By substituting the constant fb for the adapted firing frequency fSP .

in (7-8), o )
Kpfp .
- fm) + —;:;— (7-38)

By using-(7-25) we have at the ‘spike emission time t = Ta + ti
\ ’

I - Ith - 0'91EZ A.GKOTK (fb

o
-

a

th (7-39)

v

I—iP(Ta+td) - AiK (Ta+td) = I

Since, during the posttrain interval :I.P(t) and Aix(t) declind with time

constant T_ and T, respectively, (7-39) becomes,

P K
-t /T -t /T
d P d 'K
I - iP(Ta) e - AiK(Ta) e = Ith . (7-40)
" ¢
Substituting iP(Ta), AiK(Ta), and (I - Ith) found from (7-36), (7-37), )
and (7-38) respe tively', t, can be found from (7-40) by using the digital

computer, In E¥gure 7-12 we compare the solution [curves (b)] with the,

o

simulation rdsults [curves (a)] for the same conditions. The solutions'

of (7-40) are wimilar to the simulation results and thus, we shall
A ; .
analyze this equation in order to ¢larify the features of the curves. )

. .
We shall derive from (7-40) .two equations whose solution yield
‘ 3

the two line segments of the curves in Figure 7-12. Rearranging (7-40) ~

¥

we have,
-t,/T -t /T
) d P d” 'K
a - Ich) - \iP(Ta) e = MK*(Ta) e (7-41)
If (I - Ith) - iP(Ta)i < 0 (7-42)
or, by substituting (7-32) and (7-36) into (7-42), ‘
If r-1.,) £ D . ’
th b( T)
; N, > ———— = —] == (7-43)
‘ T Kp Ap Tp




‘127

fp= 7.5

L

fy=100 prs

——

% ) n T i 20 Ny

FIGURE 7-11 POSTTRAIN INTERVAL IN SIMULATIONS

OF THE GENERAL MODEL
) b

bl

. —y e
. !h«-7.5m

N
+

64

a4 L]
3¢+
24 "'5-0"' .,

1+

J P . VN VU »
S T T R TR T

[y

FIGURE 7-12 COMPARISON OF THE SIMULATION RESULTS (CURVES(a)=FIG.7-11)
AND THE SOLUTION OF EQUATION 7-40 (CURVES(b)) ¢ .
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tixatelyésati.sfied wxxen the LHS crosses the time axis. Thus t 4 can be

found from,

~-t,/T

: d"r 7-44
‘X‘{\"Ith)'iP(Ta)e 0 (‘ )
On the other hand,
: 7-45
if a - Ith) - iP(Ta) > 0 ‘ _ ( “)
- £ D,
orif, U -Tw % (1__T) (7-46)
. T KP A? Tp

Then, as illuastrated in Figure 7-13(b), since TK << 'I.‘P and since
-1, - - oximately satisfied when
AiK(Ta) > I It:h i.P(Ta), (7-41) 1a appr y
the :RHS is equal to (I - Ith) - LP(Ta) “ Thus ty can be found‘from,
-t

a/Tx
-1, - 1P(T;5’ = AL (T) e (7-47)

Let us define the RHS of (7-43) and (7-46) as

«

(r-1_) £ D :
. th b T - _
2 5 w(i-g) tm =
For NT > NTT » ty is found from (7-43), whereas for NT < NTT , td is

found from (7-46). The plot of the solution of these two equations is
in fact the same as the plot of the solution of the siqgle equatton

(7-40).

Case (11) ° -

When a train of spikes is artificially initiated in a crayfish -

stretch receptor neuron which is initially at ‘rest, after the train
there is a temporary hyperpolarization of the membrane potential (47).

A hyperpolarization is also observed in simulations of the genér;ll model

.
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as shown in Figure 7-14. The number of spikes {n the train ”“NT was

varied, but the spikésfrequency in the trainm, f,r, was set at 100 pps,

H

and the parameters of the model are those for the smallest MN (d=25um)
(Although the cases when the number of spikes 1s one or a few are not

traing of spikes, we also consider these cases). The hyperpolarization

declines to zero in two phases: a rapid decline in the first 300 msec,

L

and afterwards, a slow decline with a time constant of 10 sec. The

initial rapid decline is due to the fact that M.K(t) declines with a
7/

4 ~
small time constant, whereas the final gradual decline is due to the
fact that 1P(t) declines with a large time constant. These two phases of

the after-hyperpolarization have been observed experimentally for ‘the

°

crayfish stretch receptor neuron and for the spfnocerebellar tract neuron

(46,47) . . -
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, : (a) .
\ + .
RHS (7~41)
By (T) 1

(I-1,)-1,(T,)

(®) *

FIGURE 7-13 THE TWO CONDITIONS FOR THE SOLUTION OF EQUATION (7-41)

Aay,

mv)

l,-morm:zs 1IN THE TRASN

‘

FIGURE 7-14 HYPERPOLARIZATION AFTER A YETANIC TRAIN OF SPIKES
‘ IS INTTIATED IN THE GENERAL MODEL

&
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7.6 Response to stimulation by sinusoids of current

We Investigate first the behaviour of the general model when
the input amplitude is kgpt constant but the input frequency is varied. ‘
The responses are shown in Figures 7-15 (a) - (j) in order' of increasing\
input frequency from .002 Hz to 15 Hz. The iﬂput 1(t) is denoted by *,
the inhibitory current iP(t) is denoted by P, and Fhe instantaneous firing
frequency f(ti) is denoted by + (see Section 4.3 for a detailed descriptiqﬁ).
The responses shown in Figures 7-15 (a) - (j) for t > 25 sec are the steady-
state responses to sinusoidal inputs,\since the time constant of the de-
cline of the step response is equal to 5 sec and the tranéient is over in
25 sec. The input magnitude 1s always above the threshold current and
it varies from 1.5 to 2.5 times the threshold current.

The responses can be classified into two classes: cases (a) -
(e) for which the input frequency 1is less ;han or equal to 0.2 Hz, and
cases (f) - (j) for yhich the input frequency is greater than 0.2 Hz.
In section 6.1.3 it was shown that for the input frequencies of cases
(a) - (e), the response of the basic model was in 'phase with the input
i(t). THus, for the general model, the response is in phase with
[1(t) - i?(t)]. As shown in Figures 7-15 (a) - (e), iP(t) follows 1(t)
with a phase lag, and therefore the response occurs with a phase lead
with respect to 1(t). 1In section 6.1.3 it was shown that for the-input
frequencies of cases (f) - (j), the respo&se of the basic model occurred
w}tb a phase lead (in the sense defined there) with respect to the 1np?t
i(t). Since for cases (f) - (J), iP(t) is essentially constant with
néélisible ripple,ythe response of the genefal model dEill occurs with a

o
. A o



132

Frd

phage lead with respect to 1(t).

Now we investigate the behaviour of the general model for
another input ﬁaéﬁitude which re;ﬁils a certain feature of the general
" model. The case is shown In Figure 7-16 for which the input magnitude
varies from the threshold current up to 2.5 times the threshold current.
We point out that, during the portion of the cycle when the input i(t)
is close to the threshold current, [1(t) - ip(t)] is less than the thres-
hdld current and, as a result, no spikes are emitted. ~ This result is
to be compared with the result shown in Figure 7-15(c), where the input
has the same frequency, but the minimum magnitude of the input is well
above the threshold current. In that case, the response f(t) is a sinu-
soild with no silent period. Thus, the input magnitude affects the be-
haviour. However, for both cases, the response occurs with a phase lead
with respect ﬁoffhe input by the same amount. °

“

The gain and phase. versus input frequency characteristics for
the general model are shown in Figure 7-17. _The data (mhrked by X) are
calcu}ated from the simulati?n results in Figure 7-15 by using the methodo
described in section 5.3 The curves are the Bode plot of the transfer
function 0.91EZ AGKOTK(fSK/fSP)HK(s)HP(s), where HK(s) and HP(s) were de-
fined in Pigure 7-4 and derived by a math;:;tical andlysis in ggction 7.3.
In order to interpret these results, we can compare them with the Bode
plot of only 0.91E, AGKOTKH.K(s) which was shown in Figure 6-6. Although
the phdase curve is the same as before for w >1.0 rad/gsec, the phase curve

for w <1.0 rad/sec 18 modified by the'effecg of the electrogenic Na pump.

Thus, the pofassium eonductance process 4nd the electrogenic Na, pump pro-

~

“
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. . cess introduce a phase lead for different ranges of tl}ﬁ/ input f:requency.
Lo A : ‘
“ : It would be desirable to compare the response of the general

¢

model for sinusoidal inputs with reported experimental data, but ‘un-

fortunately we have not found such data.

~ J

s '

7.7 Stimulation bL stretch

v

Up to this ‘poin;, we have compared the response .of téhe model
to experimental results obtained -by stimulating the crayfish stretch re-
ceptor neuron intracellularly. However, in the naf:ural state, this K
neuron is stimulated by the stretch of the muscle. Thus, we shall ;ow

. L 4
- Compare the response of the model to observed properties in the natural

8 tate, R
' It is believed (39) lhat stretch causes a nongselective increase
in the ionic permeability of the dei;dritic endings which createsl the so-
called generator currt;nt. As a result, the membrane potential is de-
-polarizec’l and, 1if the stretch is sufficientlyolarge, the neuron fires

o

repetitively. The observed trajectories (11d) of the membrane potential
bgtwee}: e;pikqs are similar t@ those reproduced by the model (E:Om;)fare '
Figures 14 (a) - (c) in 11d to Figure 4-1(c) and Figures 4-4- (I-:.)"; (c)

- in this thesis). Also, thé observed firing frequency adapts gradually

(11d) as in the model. The former observation indicates that the

*

potassium conductance process is involved 1n' the encoding wmechanism and
’ the latter observation indicates that the electrogenic sodium pump pro- -
cess is also involved in the encoding mechanism in the manner described
by the general model. However, it should be noted that the input to ¢
‘ ) ‘the model 1s to be set proporfional to the measured generator -potential

which 1s the luymped manifestation of the generator current.

3

9

*

|4

v
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7.8 Su;rmhi'arz .
. _In this chapter, we have proposéd and analy_zed a model of the -
éncoding mechanism of the crayfish ;tretch receptoyf neuron. The model

is composed of the basic model plus a negative eedback path which ac- /
counts for a postulated inhibitory current produced by the increased
activ\ity of the electrogenic sodium pump activated by the emitted syikes._

g

It was assumed that this inhibitory current is a temporal summation of com-
ponent currents, each of which 1is produced by a s'pike and decays exponen-
tially from a maximum at the time of the spike. The model reproduces
t:he. following properties which have been observed by Sokolove et al. when
they ;stim\ilated the crayfish stretch receptor neuron intracellularly:

(1) There is a-gradual ‘adaptation'of the firing frequency with a

‘time constant of several seconds when a step input is app‘lied.

(i) Repetitivc; firing is reset by inserting one or two spikes.

(1i1) If repetitive firing is disturbed by inserting a tetanic train of
splkes, the curve reiating the posttrain interval to the m}mber of
spikes in the tetanic train is composed of4 two line segment:;.

. (ibv) The hyperpolarization,observed after a tetanic train of spikes
is applied to\s neuron at rest, is composed of an initial
rapidly-declining phase and a final gradually-declining phase.

The model predicts that for sinusoidal inputs with low frequencies, the
response is in phase with the input. For inputs with intermediate fre-
quencies, the respo.nse occurs with a phase lead similar to that of a lead
network. For inputs with high frequencies, the response occurs with a phasg

lead similar to that of a diffe;'entiatot.

The model was called the general model because in the next:

~

o . .
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chapter ve ligt other neurons which may be modelled with this model.
Furthermore, in the next chapter, we shall classify all .the properties
of the general model into tigo groups: those due to the potassium con-

ductance process and those due to the elecvturogenic godium pump process.

Fipebuindh
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CHAPTER VIII

CONCLUSION AND DISCUSSION

>

In this concluding chapter, we discuss various aspects of our
model, compare our model with some prevfbus models and suggest areas for

further research.

8.1 Properties of the encoding mechanism of the general model

In our general model, we have incorporated -two signific;nt
physiologicél processes present in the neuronal membrane: the inner
feedback path models the potassium cogductance process and the outer
feedback path models the electrogenic sodium pump process. The inner
feedback path is based on expefimental results reported for the motoneuron.
It is believed because of experimental evidence (8, 12, 18, 21, 22) that ,

the hyperpolarization observed after a single spike is produced by a pro-

flonged increase in a potassium conductance. It has been measured (8,

22) that this increase declines‘to zero exponentially from an initial
value immediately after a spike. This has been considered as the impulse

regponse of this process. For two or more pulses, summation of the re-

©

sponses has been assumed to be linear, with some experimental support for

this assumption (22). . (/

The outer feedback path is based on experimental results re-

4

ported for the crayfish stretch receptor neuron. The experimental re-

-
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sultg (4§, 47) show that the electrogenic sodium pump produces inhibitory

effects,‘since these effects disappeared when the activity of the pump

wag depressed by several methods. We can consider the pump as a current

generator s&“pe it agtively transports lons across the membrane. Thus,

it has been assumed that the inhibitory effects are produced by an in-

hibitory current which is a linear temporal summation of component cur-

tents, each of which is produced by a spike and decays exponentially from

a maximum at the time of the spike. However, there is no direct experi-

mental evidence which shows that the impulse response of this process is

in fact an exponential decay from an initial value, nor is there any .

direct evidence which shows that the summation occurs linearly. How-

ever, the observed experimental effects were reproduced by the model by

; -

assuming only this simple description of the process.

The properties of the encoding mechanism of the general model

can be subdivided into two groups corresponding to the two feedback paths.

This subdivigsion is possible because theegain and the time constant of

the two feedback paths are considerably different.

\

]

1. Properties produced by the feedback path which models the potassium

conductance process

la.

lb'

lc.

. 1d.

The after-hyperpolarization-observed after a single spike.
In part, the initial phase of the hyperpolarization observed'
after a te;anic train of spikes.

The characteristic trajectory of the membrane potential bet-
ween Qpikes during fépetitive firing.

The adaptation of the firing frequency within the first few
A}



spikes at the onset of stimulation by a step current.

le. The resetting of repetitive firing by inserting one or two

»

spikes.

L

1f. The phase lead of the response with respect to the -ipnput for -

sinusoidal inputs with high frequency above about 1/TK’ where

Ty is the time constant in this feedback path.

2. Properties produced by the feedback path which models the electrogenic

sodium pump process

2a. In part, the initial phasé of the hyperpolarization observed
after a tetanic train of spikes and, completely, the long final
phase of this hypefpolariéation.'

2b. The gradual adaptation of the firing frequency with a time con-.
stant of several seconds at the onset of stimulation byba step
of current.

2c. The phase lead of the response with réspecg to the input for

sinusoidal inputs with intermediate frequency about 1/TP, where

T, 1s the time constant in this feedback path.

P
2d. The long interval before the first spike is emitted after repetitive

firing is disturbed by a tetanic train with many spikes.

b

8.2 Applicability of the model -~ W

In the previous chapter, the general model was shown to be ap-

I
plicable to the crayfish stretch receptor neuron. It should also be J

e

‘ applicable to the motoneuron becagy{h; pota:saium conductance piocess

4
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is present in the MN (gee Ch;pter III), and it is believed that thq\
electrogenic Na pump process is also present in the MN since it is be-
lieved to be involved in maintaining the ionic équilibrium (12). Fur-
thermore, Kernell (29) has observed in some MNs a gradual adaptation of
the/firigg frequency, and, in the context of the general model, this
gradual adaptation is due to the-electrogenic Na pump process. However,
the degree of this gradual ;;;ESatioa is apparently small compared to
the initial adaptation in the MN,.and compared to the gradual adaptation
in the crayfish stretch receptor neuron, Congequently, for the MN, the
feedback path which accounts for the electrogenic Na pump brocess may ;;
removed, and we cdn use the basic model as a model for the MN (see
Chapters III - QI). .

In addition to the two types of neurons just discussea, the
general model appears to be applicable to other types of,neqrons: For
example, the muscle spindles (48) possess properties lc, le, 2b, and 2d
of the list in Section 8.1. Pyramidal tract cells (46) possess proper-
ties 1b, and 2a. Sympathetic preganglionic neurons (49) possess pro-
perty 2d. Interneurons possess property lc and they fire with large‘
spike frequencies possibly because the repolarization between spikes, or
in terms of the model, the gain of the feedback path due to the potassium
conductance process is smaller than in MNs (27). Sokolove and Cooke (45)
have listed otherxneurons which possess property le, or property 2d.

We should point out that one property of each group has to be experi- -
mentally observed in order to indicate the presence of the correap02§ing

process in a particular neuron and the corresponding feedback path in the

model. Thus, got some of these neurons, the presence of only one of the

4
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two processes has been indicated by a cifed property, but we are not
familiar with .all the information which Nas been reported.
r
Some neurons fire repetitively with property lc, apparently

in the complete absence of external inputs (3). If a constant input

> ©

larger than the threshold current is applied to the model, it behaves,

in effect; as a neuron with simbie spontaneous firing. Nevertheless,

atd

v C
the model is not strictly applicable to these neurons.

©

8.3 Features of the model suited for studying neural systems

.

Since the model appears to be applicable to various éypes of

neurons, it can be used for studying various neural systems. Further-
more, for this purpose, the model possesses the following feqtures (see
discussion in Section 1.1).

(i) The parameters of the model have been expressed as a
function of the size of the neuron. The expressions are strictly valid
for the motoneuron becauée they are based on'fxperimental data obtained
from the motoneuron. However, it_gf& be expeéted that similar expres-
sions are valid for other neurons., Thé variables AGKO ’ KP , 1/R, and
C are directly proportional to the size simply because these variables
are proportional to the surface area of the neuron. The time constant
TK for the MN is inversely proportional to the size, and we suggested
the possibility that Ty is inversgely related to the dimensions of the
structure of the membrane. Although the precise expressions may be dif-
ferent for other neurons, the parameters of the model can be expreésed

as a function of size as in section 6.1.1 ., ?

«

X

,
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- (11) The model consists of four blocks each of which contains )
only the egsentials. The spike is not’ reproduced and this avoids con-

L
siderable complexit%s. The model is "simple" enough that it asas pos-

sible for us to analyze it mathematically.

8.4 Predictions of the model

’

-

The model predictg several properties which require e;(perimental

verification: !

(1) The two distinct groups of properties which are [;rod\_xqed ..... ST
by the potassi.um conductance process and the electrogenic ‘Na .pump process T

were listed in Section 8.1 . To our knowledge,_ pbt all of these pro-

( .
perties have been observed in any particular neuron. We expect that if

LAt TN
)

one property of one group has been observed, ‘then the other properties

of the same.group will also be present in\uhat neuron. For example, ac- .

cording to the model, we can infer from the exfriment in which repetitive”

firing is reset %y spikes that the potassium conﬁqqtance‘“ﬁ'zzd‘(:ess is pre-
sent in the crayfish stretch receptor neuron. Consequently, it is fairly
certain that there is also an initial adaptation o§ the firing frequency

within the first few spikes at the onset of stimulation by a step of cur-~»

rent because this préperty is also produced by the potassium conductance

process.
(11) The theoretical analysis in Section 3.5 indicated that

the prolonged 1ncréase in the potassium conductance which produces the

after~hyperpolarization occurs in ‘addition to the increase in the potassium

~
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condvictance vhich causes the spike to decline as in ‘the Hodgkin-Huxley
(111) As di'scussed in Section 6.1,2, the model predicts that
the slope of the straight-lilpe relationship between the adapted firing
frequency and the current intensity is inversely proportional to the '
size ¥ the moﬂtoneuron. However, Kernell has concluded from some ex-
perimental results that the slope is directly'proportional to the size.
On the other hand, Granit, Kernell,' and Lama}re obtained experimental
data from whichL we have inferred (see Section 6.1.2) that the slgpe is
inversely proportional to the size as predicted by the model. Further-
more, the prediction was obtained by varying the parameterg as a function
of size according to reported experimental data. Consequently, thjis
apparent contradiction between the prediction of the model and Kernell's
conclusion rema-ins to be clarified by further experimental work.
(i:) As shown in _Sections 4.3 and 7.6, the model prgdicts that

for sinusoidal inputs with low frequencies, the response is in phase with

- ~
the input,. For mmputs with intermediate frequencies, t?i‘response oc-

curs with a phase lead which is produced by the electrogenic Na pump pro-

L \
cess, For inpu“with high frequencies, the response occurs with a phase

lead which is produced by the potassium conductance process. We pointed
out in Section 4.3 that, for an input with high frequency, a phase lead
has been observed in the motoneuron. Further, for inputs with inter-

. S
mediate frequencies, a phase lead has been observed for the cle

spindle (5Q). However, in these experiments, the stimulus ig a change in

the muscle length which is not the same as the input to the neuron be-

cause of the synaptic and mechanical transformations. Experiments
3 )




should be performed in which neurons are atimulated directly with sinu-
solds of current. -
j -
(v) The model reproduces geveral experimental observations

for step and ramp inputs. Furthermore, the model has been formulated

@

-

by considering the significant processes present in the neuronal membrane ,
rather than using a "black~box" approach in formulating a model. For
these two reasons, we can expect that the model will reproduce some

observations for inputs of any form. |

\ o
L)

8.5 Comparison of our model with previous models .

Brfh(ly, our model possesses the following two essential

features. . ’ ‘.-':C- ’

i
(Q It includes two processes, namely, the potasmsium conductance
process and the electrogenic sodium pump process. The mod:hshows that
each process produces a distinct group of properties of the encoding.

(i1) The parameters of the model are expressed as a function of
the size of the neuron. The model shows that the size affects the pro-
perties. of the encoding. .

To the best of the author's knoyledge, there :!.s'no other model
which possesses these features. It should be pointed out that our model
is not only useful for studying ne-u.x'al gsystems but, in our opinzion, it
also con::ributes to the understanding of the encoding mechanism of the
individual neuron. In the following, we compare in detail our model

with previous modeis (see Section 1.2) which were formulated by consider-~
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ing the processes present in the neuronal membrane which are‘significantly
0involved in the encoding mechanism.

Kernell's model did not i;clude the electrogenic sodium pump
process. We have modelled the potassium conductan;e process with the
same circuit which was used by Kernell. However, we formilated this

. circuilt in the context of the Hodgkin-Huxley model. Then, we trans-
X *

formed the circuit into a transfer-function representation and we in-

’

cluded tempoyal summation of the potassium conductance process. This

summation limits the firing frequency in the‘high range, so that, in our

model, the curve relating thg—%iring frequency tonthe intensity of the
‘input step is a straight line. The curve does not exhibit afﬁ}imary and

LS
a secondary range as Kernell's work had indicated. We have done a de-

tailed systematic analysis of the consedhences of the\{ii:ij:dm conductance

process. For example, when we varied the parameters a fynction of ' o

size, the model predicted that the slope of the cur&e relating the. firing
frequency to the intensi;< of the input step is inversely‘relatgd to the

size. As discussed in Section 6.1.2, this prediction contradicts some

of Kernell's experimental}results.

We have modelled the electrogenic sodium pump process in the
‘ N {
same manner as Sokolove. The input current minus the inhibitory current

produced by the electrogenic Bodium p process is the effecti;e ;nput.
In Sokolove's model, the effective input was applied to an- integrator and
a spike was emitted when the output of the integraéor reached a threshold
value. The spikes reset the output of the integrator to zero. The h
iptegratign was arbitrarily stobped"during the time that the effective

~

input was negative. This l;st assumption permitted his model to repro-

k]
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.

duce the two segments in the curve lé.e.lating the Apost.tta{n interval to
the number of a;:lkes in the tetanic tfain. i‘urthermore, Sokolove and
Cook;;. (45) attributed to: the el&ctro,genic Na pihlp process the ::esettix“xg
of repetitail.ve; fliring b‘y inserting spikes. In our model, the effective
input is encoded by the basic model which we formulated by considering
the potassium conductance process. This process produces t’he two‘ ex-
perimental observations just mentioned. T
The models of Lewis, Connor and Stevens, gJenik and Kupfmuller
do not include t.he electrogenic sodium pump procesz;. ‘Furthermore,
these models are unnecessarily complex for rst:udyipg neural gystems be-

E \ y
cauSe, for this purpose, it is not necessary to reproduce the spike.

Lewis' ‘model is an electronic analogue of the Hodgkin-Huxley model

and we have discussed in Sectiom 3.5 the possibility that the potassium
conductance process in our basic model may be diffci‘;ent from the potas-
sium (:onductance process which causes the decline of the spike in the
Hodgkin—Huxle;' model. The theoretical work of Lewis revealed how spon-
taneous activity can arise in a patch 'of membrane.  ,In the membranes
where this activity is clearly evident, there may be subthreshold oscil-

~

1
lations of the membrane potential or spikes may be emitted (3). Our

model does not account for spontaneous activity. The model of .Connor
/ . ‘ )

and Stevens is based on experimental data obtained for _ihe molluscan
goma, whex:eas in Section 3.5 we suggested the possibility that the

potassium conductance process for the motoneuron must include the effect

of the dendrites. .

N\
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8.6 Digcrepancieg between the behaviour of the modél and some

k)

. \
a. ’ experimental observations
< A q

In formulating the model in Sections 3.3 and- 7.2: the t‘éllow—

ing major simplifications have been made:

i. The neuron, which has a distributed structure, was ré-

presenyhy a lumped model. .
i1, Therti ~varylng voltage-dependent sodium and potassium .

conductances for subthreshold operation were replaced
with a constant resistance,

~11i1.., The postulated inhibitory current produced _by the electro-
genic Na pump was assumed; to be, simply, a linear temporal
summation of component currents ,_‘each <;f ‘which is prc;duced

‘ by a spilke and decays exponentially from a maximum at the . -

time of the spike. . . .

These simplifications may be the cause ‘of the fact that the model repro-

e {

) —_ 4 duces some experimental obsérvations only.qualitatively or to a first- _
T T e T I e e e - e

e e e m b e e
= ~

order approximation ‘and that some experimental %serva’f’i“ﬁ;“a’t’&“"noc ‘re- . e

produced at all. = In the following, we list these ﬂiscrepancies which

‘ one should consider when using the model. | The seriousness of che;e

- discrepancies would depend on the particular application of the model.
In spizte qf these discrepancies, the model has cleariy shown in the
thesis that many of the obsel"ved properties of the encoding mechanism

9

can be classified into two groups, the properfies in one group being pro-

duced by"the potassium conductance proceas, and the properties of thé
other group being produced by the electrogenic Na pump process. urther-

. , o more, in the next section ve shall propose an improvement for the model

4
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which will remove gome of these discrepancies. ) ‘
Ir the model the firing frequencies dur'ing the initial adap-
tation within the first few spilfes may q_be as large as 1000 pps whereas,

. in the experimental case for the motoneuron, they are generally only a
few hundred pps (see Section 4.1.2) .r This quantitative discrepancy
arises because the model does not accc;unt for the relative refractoriness
from 1 to 4 mset after a spike.

- For both the theoretical and experimental cases, the threshold

‘curi'e“nt, the min‘imum firing frequency, and 't:he firing frequencles are
directly proportional to the size (see Section 6.1.2). However, the
),firing frequencies of the model for any particular motoneu?dg are.ap- N
parently larger than the experimental values and the slope of the theoreti- '
cal curve was found to be consistently about 2.I3 r:imezs larger than the
slope of' the experimental curve. This quantitati“ve discrepancy may be
due, in part, to the first assumpti:on. The lumped model doéq not take
into account the fact that the soma and dendrites are stimulated asym-
metricdlly since the microelectrode is probablyinserted into the soma.

It may be that c’a larger stimulating current causes a larger d;’.polarﬁization
of the disti‘* dendrites which would permit the spike to invade a larger °
dendritic area. In such a case AG., would be directly related to the
intensity of tile stimulating curreant, dince this conductance 1ncteas\e
(triggered by the spike) is proportional to the surface area, similar to
the fact that the conductance AGKO for a large MN is larger than that

for a small MN. Thus, in the model, A\GKO would increase with the input
intensity thereby limiting the firing frequency further. p

¢ In addition to the quantitative discrepancies just mentioned, .

¢
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the model does not reproduce the following experimental obgervations:

(1) In the motoneuron, when‘a subthreshold depolarizing or
hyperi;olarizing current step 1s applied, the resultant c;}}ange ig‘ the )
membrane potential reaches a maximum at about 15 msec after cheuonset
‘of the step, and thereafter it declines gradually within 100 msec to a’
sgead}; level that is about 70% of the ma;cimum,value (23). In the model,
the overshoot 1s not reproduced and a steady state 18 rapidly attained
[see Figure 4-1(b)]. |

(11) 1In thg motgneuron, there exists a definite threshold
current for repetitive firing and this effect is reproduced by the
model. However, for input current steps less ;:han this thxfeshold cur-~
rent and greater than a so~called rheobase current, the motoneuron can
emit'only a few spikes at the onset of the step (29). In the model, .
for a step input there is either repetitive firix;g or no firing at all
(see Section 4.1.1). , . ~ .

(1i1) 1In the crayfish stretch receptor, 1if repetitive firing {3 :
is stopped by) épplying a hyperpolarizing current, then afat:erwremoving
the hyper‘i)olarizing current, there ig a transient increase of the firing
rate in proportion to the intensity of the hyperpolarizing cur;ent (10).
In the model, there is also a transient increase of. the firing rate be-
cause the inhibition from the electrogenic Na pump pzl'opess declines dur-

{

ing the period that ‘the firirig is stopped. Howe'{ver,flthe inhibition de-
b

E

clines by an amount which is dependent only on ‘the faqt that the firing
is 'stopped and not on the intensity of the hyperpolarizing current. Thus,
in the model, the increase in the firing rate is ;ndeﬁéndent of the in-

tensity of the hyperpolarizing current, contrary to thL experim"p,tital

| /
.
~ :r, *»
1 , . '
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n

ohservation (these simulation regults have not been included in the

and this rangé is not reproduced by the model (see Sectiox% 4.1.3).

oscillations of the membrane potential or for spontaneous emission of

spikes (3). ) '

8.7

Improvement for the model

LN

(4v) In ﬁie‘i'otaﬁéuia‘n,”’chére 18 a secondary range of firing = _ |

{v) Our model does not account for spontaneous subthreshold

4

A

In the previous section we have listed several experimental :

ol;servations which are not reproduced by the model. During the final

stages in the preparation of this thesis, it became evident to us how the '

model could be improved in order to account for three of these experimental

{

observations. In this section we shall propose this improvement fhor the

model.

1

In Section .:5.3 we formulated the basic model (see Figure 3-5) ' .

in the context of the Hodgkin-Huxley model (see Figure 2-2). The 8x

branch’in the H-H model was subdivided into two branches containing Zx

and AgK as shown in Figure 3-4(a). Then a simplification was made by

lumping the branches contéining 8, and theé time-varying voltage-dependent

8xa and gl(b into a constant resistance R [see Figure 3-4(b)]. Ve now

modify this formulation:

In Chapter II, we suggested a simple description for the be-

haviour of the potassium conductance of the squid axon. " The transfer

2 . - ~ .
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function corresponding to this degcription is, ]

: s Sk
- (e LT A degled + & @®&L

~i '

whereé, gK(s) and Aem(s) are the Laplace transforms of gK(t) ar;d Aem(t),
KS is a consiant, Al( is the fhiverse of the timé constant and GKx‘- is the
potassiun; conductance at the resting potential. We now assume that the
same description is valid for the potassium conductance pro;:ess which pro- .
duces the after\-hyperpolarization observed in the motoneuron, except that
that parameters are different. The rationale for this assx_mption'is

the following: In the motoneuron, the spike triggeré a temporary in-
Ccrease AgK(t) which declines to zero exponentially from an initial value
immediately after the spike. This response can be regarded as the im-

pulse response of the 8¢ process and such a response happens to be the

impulse response of the transfer function given by Equation (8~1). The

<

input Aem(t) in Equation (8-1) is composed essentially of two super-

imposed inputs, the spikes and the subthreshold change which we also de-

-

note Aem(t). Consequently, gK(t) is given by

gg(t) = G+ agg(t) + g . (t) (8-2)

where, GKr is the potassium conductanee at the resting potential, AgK(t:)
is the change caused by the splke and is found by applying the spike
waveform to Kslo(s + AK), ng(t) is the change caused by the subthreshold
A&(t) and is found by applying Aem(t) to KS/(s + AK). Thus the
potass’ium conductance branch {n the Hodgkin-Huxley model car be subdivid:ad
intao three separate branches containing GKr , Agx(t),i.and ng(t) Es shown

in Pigure 8-1(a).

e




R E L

Al anll At AR

B
zm

—
-+l

llwrsm}:
(a) \0 ‘ ,
"¢ INSIDE S /\ '
3 - - ' l[ - — -7
e N U™ b ai X
\
>

$ ~

The current, pumps’ have been removed for the moment and they will be con-
sidered below. We now make a simplification by lumping ‘the branches
containing 8, » By, and gl(r into a branch contéining a conatant résistance
Rr is series with the resting potential E as shown in Figure 8—1(b)
Again, we are not cons:ldering the time-varying voltage-dependent aspects

of the sodium conductance for subthreshold operation.

L T
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The circuit shown in Figure 8-1(b) can be represented in terms

of transfer functiot-;s as shown in Figure B-2, The spike emitter and the
"effect of the current pumps have also bedn included ‘as in Section 3-3

and Chapter VII.

.ﬁN =
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FIGURE 8-2 IMPROVED GENERAL MODEL OF THE NEURONAL ENCODING ’
. MECHANISM (cf. FIG. 7-1) .
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Since the spike is represented by an ideal unit impulee witereas de is

. . v
not modified, we must use two different gains KSI and KSZ instead of Ks

Q



in the feedback paths which produce By and a8y - As compared to the
general model shown in Figure( 7-1, an additional feedback path (contain-
;lng KSl/ (s + AK) is present in this imﬁroved model. 7 7

We have conducted trial simulations of this improved model and
the results show that the addiC:Lona]: negative feedback path produces
three of the experimental observations which were not accounte& for by
the géneral model. The three obs€rvations are listed as (1), (ii) and
(iii) in Section 8.6. Firstly, the overshoot in the subthreshold
step response 1is due to-the slow increase of iKS with a time constant
TK » which gradually counteracts the input step. This subthreshold step
regponse reached a peak at 15 msec and it declined gradually to a steady-
state level within 100 msec as experimentally observed. In the simu-
}ations, TK was set as 33 msec,!which is equal to one-~third of the ex-
perimentally observed duration of the AHP and the other parameters were
chosen equél to those of a neuron w:tth'TK = 33 msec (for the present
purpose/l(S"2 was .chosen equal to AGKO). The parameter KSl was adjusted
so that the steady-state level of the step response was equal to 70% of
thd peak in the o:yershoot'. Secondly, for input steps less than the
tll-u;eshold current and greater than the rheobase current, the mc;del emitted

a fey spikes at the onset of the step. This property 1is relat‘ to the

fact that, for the subthreshold step response, the input current is less

effective in depolarizing the membr during the steady-state than dur-
3

3

ing the overshoot. With the values of the par ters chosen above, the
threshold current was 1.5 times larger than the fheobase curremt, and
the peak value of the overshoot was also 1.5 tymes larger than the

steady—state level as observed experimentally. Thirdly, if reéetitive

:
8 * '\?
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firing by the model was stopped by applying a hyperpolarizing current,
then after removing the hyperpolarizing current, there was a transient

increase of the firing in proportion to the intensity of the hyper- N

a .

polarizing current. This property 1s related to the experimental and
slmulated observation that,.1f a hyperpolarizing current is applied to

a neuron at rest, on terminating the current there is a rebound de-

~polarization in proportion to the‘intensity of the hyperpolgrizinz cur-

rent, In the simulations, the transient increase of the firing was
apparent within the first few spikes. We cannot compare quantitatively
this‘result with the experimental observation because it was not re-
ported in detail.

This improved model does not account for the two e;perimental
observations which were listed‘és (iv) and (v) in ;herprevious section.
However, the model accounts for thirteén experimentaly observed pro-
?erties of the neuronal encoding mechanism. According to the model,
slx properties are produced by the increase in the potassium conductance
triggered by’the spikes, four proﬁerties a;;\;roduced'by the 1ncreas§d
activity ;f the electrogenic sodium pump activatea by the spikes, andz/

three properties are produced by the increase in the potassium conductance
|

triggered by the subthreshol ‘ e megbgane potential.

8.8 Areas for further réefeafch
A\

As a regult of the present work, several problems of an experi-

mental and theoretical nature require further research.

,'/ .
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Experimental _ )
7~ The properties-predicted by thefmdel- vwhich are listed in

Section 8.4 'require experimental verification. One valuable set of
experiments would be' E;) stimulate intracellularly many motoneurons of
various sizes with steps of cu&'rent. The results would clarify pre- .,
diction (1i1) au:d the firing fr.:equencies of the' model-can be compared

to more experim;antal values, Predi:tion (iv) can be tested by stimula-
ting” motoneurons and crayfigh stretchﬂ‘ rédceptor neurons intracellularly

ﬁgh ;31ngoidal current. For prediction (1i), we suggested in Section

3.5 the possibili%y that the prolonged increase in the potassium con-\

- -

ductance that produces the after-hyperpolarization occurs in the den-
drites™ It would be of interest to determine the conditions that affect
the extent to which the spike invades the dendrites. Prediction (i) can
be verified by'observiné all the propertiles of the eqcodiné mechanism
listed in the two éroups in Section 8:1 for any particular neuron. i
Prediction (v) can be verified by stimulating neurons vith inputs of
Jvarious forms. s

‘
Theoretical

It would be desirablg to remove t'ixe major simplification t“hat

we have made in formulating the basic modeli We have used a lumped’
model for the dendrites, soma, and the initial segment, A distributed VY
modél would be more appropri:;ut:e egpecially wt;en the input 'is synaptic
stimulation or stretch instead of intracellularly applied currenat.
With such a model, one should examine if the spike invades»mor‘e dendr'itic

area when the stimulating current -is increased. If so, then the nega-

tive feedback current due to the potassium conductance process would corres-

', .
. . o %
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pondingly increase.. .In addition, one should examine if synaptic activity
“modiffes the extent that the spike invades the dendrites. Both factors
may alter the relationship between’firihg frequency and current intensity.
Kernell has aiready done some work in this direction (9).

“Al;hough the 1mprov@men§’for the model wﬁich we ﬂ;ve prqposed
1nﬂthe previous section can remove some of the discrepan;ies of the model,
this improved modél still cannot ;acount for a few experimental .obser-
vations. Thus it may be possible to improve the model further; as‘for
example, by considering the time-varying voltage~dependent aipecls of
the sodium coﬂductance: as yeii as itg 1nactiv§ti;n. Furthermore, the

improved model proposed in the previous section will have to be analyzed

.in detail.
4 - -

™~
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MATHEMATICAL EXPRESSION FOR THE EXCITABILITY

OF THE BASIC MODEL AFTER A SPIKE

The basic model is shown in Figure 3-5.

Let, I1 = 1intensity of first rectangular stimul'atinég pulse
I2 = 1intensity of second rectangular stimulating pulse
&tp £ duration of stimulating pulses which was equal to .25 msec

. in the experiments (25)

The values of the parameters of the model are given in section 3.3 .

'.'Atp << 'I‘m . . -

.'. the minimum value of I1 necessary to trigger a first spike is

s
-

given by,

TH - N
h = e (A-1)
P m 0
Suppose a first spike has been emitted at t = 0 and ’Aem(t) after this
spike is shown in -Figure 3-6. If -the second stimulating pulse is ap-

plied at time t, then the output of the transfer functidn Km/(s + Am) at

time t + oty is given by

2

3 [Aem(t) + EK - Er) +( Aem(t+ AtP)+ EK - E

T s 1 -
Aem(t + AtP) IZA tPKm 5

Bgp(t) At Ky +\[Aem(t) - A Ae (t) AtP]

vhere, the first term in the RHS of (A-2) is the outpué due to the second

L

stimliitin_g pulse,

the second term is the output due ‘to the a\;erage Ail( in the

]

(A-2)

‘?'
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" interval from t to t + ‘AtP » and

| the third term 1s the zero-input output of. the tranafer function. . .

Subsﬁituting in (A-2) Ae {t +Aty) = TH which is the~sondition for a" -

second spike to be emitted, and solving (A-1) and (A-2) for IZ/Il we get’, -

[ .

_1—2_ ) TH - de_(t) . [Aem(t).,.zgl(. ZEr+TH]AgK(t)AtPKm . Ade (t)aey (A=3)
1 TH = ./ ZTH TH
1 v ) |

Substituting in (A-3) AgK(t) from (3-2) and the values of the parameters‘

we get,

1 15 - Be (t) [Ae (t) + 55] ..68 e /142 aq ()

2 . 2 4 L + —n (A-4)

I, 15 = 600 : 300 -
o

where | Aem(t) is in mv and t 1s in msec. -

. A
The exact values: of 12/11 in (A-4) and approximate values of 12/1l found

by néglecting the ;sec;and and third term in (A-4) for four different times

t are given below,

»

t 4 Aem(t) exact 12/11 ., approximate IZ/Il
1.0 5.0 0.75 0.67
2.5 0 ' 1.00 ' 1.06 -
10;0 -5‘.0 1-34 - 1-33 o
. . Snaetiche "
. 30,0 r =2.5 1.17 1.17
Thus IZ/ Il' is given approximately by . . P
12 15 - Aem(t) . \
£ a - t > 1 msec (A-5)
Il 15 - .
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