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ABSTRACT

The main objective of this research is to develop new unbiased plotting position
formulas for two general probability distributions which are widely used in hydroiogic
frequency analyses: the Pearson type III (P3) and the Ceneral Extreme Value (GEV)
distributions. The research study is divided into three parts. First, using the Prob-
ability Weighted Moment (PWM) theory, an analytical method is proposed to derive
the exact plotting positions for systematic flood records (i.e., complete flood samples
which occurred during the period of systematic gauging). Second, for the convenience
of practical application, simple unbiased plotting position formulas representing a very
reliable app.oximadic. to the exact plotting positions are developed. Third, new unbi-
nsed plotting position formulas for P3 and GEV distributions are proposed for historical
flood records (i.e., data on very large floods which occurred cutside or within the sys-
tematic gauging period). The incorporation of historical flood information in plotting
positicn formulas would significantly improve the estimation of flood quantiles.

The analytical method and plotting position formulas proposed in the present
study are verified and compared with various existing techniques and formulas, The
suggested analytical method was found to be preferable to the conventional direct r1-
merical integration and the Monte Carlo simulation procedure in the estimation of
expected values of P3 and GEV order statistics. Results of the numerical and graphi-
cal comparisons have also demonstrated that the plotting position formulas developed
in this study provided a better agreement to the exact plotting positions than several
existing formulas. In particular, the suggested formulas are more flexible because they
can take explicitly into account the skewness coefficient of the underlying distribution.
Moreover, for illustration purposes, the proposed formulas were applied to observed
flow data of various rivers. It was found that the propused formulas provided bet-

ter estimates of flood quantiles than many existing formulas including the well-known




Weibull formula. Finally, special probability papers for various skewness values are
developed for the P3 and GEV distributions. It can be concluded that the develop-
ment of new plotting position formulas and probability papers for the 3 and GEV
distributions in the present study has provided a convenient and practical tool for the

application of these distributions in engineering practice.
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RESUME

La présente étude a pour objet de développer de nouvelles formules non-biaisées de
probabilité empirique pour les deux lois de probabilité qui sont couramment utilisées
dans ’analyse fréquentielle en hydrologie: la loi de Pearson type III (P3) et la loi
générale des valeurs extrémes (GVE). Cette étude se divise en trois parties.
Premierement, en se basant sur la théorie des moments pondérés de probabilité (MPP)
une méthode analytique est sugyérée pour calculer les valeurs exactes de probabilité
empirique pour des séries de données systématiques de crue (i.e., enregistrements conti
nus des données de crue durant la péricde de jaugeage systématique). Deuxiémement,
pour les applications pratiques, de nouvelles formules plus simples sont développées
qui permettent toutefois d’obtenir une bonne approximation des valeurs exactes de
probabilité empirique. Troisiemement, de nouvelles formules non-biaisées pour les
deux lois P3 et GVE sont proposées pour des séries de données hitstoriques de crue
(i.e., données sur les crues extrémement grandes qui apparaissent avant ou durant
la période de jaugeage systématique). L’introduction de P'information historique des
crues dans le développement des formules de probabilité empirique pourrait améliorer
considérablement 1’estimation des quantiles de crue.

La méthode analytique et les formules de probabilité empirique développées dans la
présente étude sont vérifiées et comparées aux diverses techniques et formules
présentement disponibles. On a trouvé que la méthode analytique proposée est
préférable a la technique traditionnelle d’intégration numérique et i la procédure de
simulation de Monte Carlo dans le calcul de I’espérance mathématique des statistiques
d’ordre pour les deux lois P3 et GVE. Les résultats des comparaisons numérique et
graphique ont également démontré que les formules développées dans la présente étude
permettent une meilleure estimation de la probabilité empirique que celle donnée par

plusieurs formules existantes. En particulier, les formules suggérées sont plus flexibles
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parce qu’elles peuvent tenir compte, d’une fagon explicite, du coefficient d’asymétrie de
la distribution considérée. De plus, afin d’illustrer 'utilisation des nouvelles formules
dans la pratique, ces formules sont appliquées aux donnecs réelles de crue de diverses
rivieres. On a trouvé que les formules proposées donnent une meilleure estimation des
quantiles de crue que celle obtenue par plusieurs formules existantes, incluant la fameuse
formule de Weibull. Finalement, des nouveaux papiers de probabilité pour différentes
valeurs d’asymétrie sont developpés pour les deux lois P3 et GVE. On peut conclure
que I’élaboration des nouvelles formules de probabilité empirigue et le développement
des nouveaux papiers de probabilité dans la présente étude pour les deux los '3 et
GVE fournissent un outil simple et pratique qui ‘acilite l'utilisation de ces deux lois

dans les applications pratiques en ingénierie.
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CHAPTER 1
INTRODUCTION

1.1 General

Information on flood magnitudes and their associated probabilities of occur-
rence is important for planning and design of many hydraulics structures. In prac-
tice, hydrologists use flood data collected at a river gauging station to establish a
flood-frequency relationship which applies at that location. Given a series of flood
events, it is necessary to assign to each event an empirical probability or recurrence
interval. These empirical probabilities are often estimated based on “plotting po-
sition” formulas. The subject of plotting positions or probability plots has been
discussed for several decades by hydrologists and statisticians (c.g., Hazen, 1914;
Blom, 1958; Kimball, 1960; Benson, 1962; Barnett, 1975; Cunnane, 1978; Harter,
1984; Xuewu et al., 1984; Arnell et al., 1986; Hirsch and Stedinger, 1987; Nguyen ot
al., 1989; In-na and Nguyen, 1989). In particular, plotting positions have heen used
widely in hydrologic frequency analysis in a variety of ways, e.g., to estimate the
magnitude of hydrologic events and their corresponding probability of occurrence,
to detect outliers, to fit distributions to data, and to evaluate the adequacy of the fit.
Recently, some analytical procedures for estimating distribution parameters (such
as probability weighted moments and maximum likelihood) have been considered,

in theory, more efficient than the graphical fitting methods. The use f probability
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plots in engineering practice, however, is not diminished. Many hydrologists would
not make engineering decisions without the use of graphical displays.

Probability plots were recently recommended as a means for extrapolation of
flood frequency curves in dam safety evaluations (U.S. National Research Council,
1085). The use of probability plots was also suggested in the determination of the
probability distribution of annual maximum flood elevations which oc:ur due to the
combined effects of ice jam and storm-induced flooding (U.S. Federal Emergency
Management Agency, 1982). Although the U.S. Water Resources Research Council
(Interagency Advisory Committee on Water Data, 1982) recommended the use of
method of moments to fit the Log-Pearson type III distribution to floodflow data,
their recommendations included also the use of probability plots. Probability plots,
therefore, are still playing an important role in engineering practice.

A probability plot is defined as a graphical representation of the ordered obser-
vations of a hydrologic event (e.g., flood magnitudes) versus their associated empir-
ical probabilities which are estimated using a plotting position formula. Hence, it
is necessary to select an appropriate plotting formula in order to provide a reliable
estimation of hydrologic event magnitudes for a given exceedance probability. How-
ever, in practice, given a large number of various plotting positions available, the
choice of a suitable formula is not an easy task. Detailed reviews and discussion on
this subject have been provided by Cunnane (1978) and Harter (1984). It is clear
from the review of the existing literature that the optimum choice of a plotting po-
sition formula should be based on the purpose of the investigation or should depend
on the use which is to be made of the results. For example, Kimball (1960) inves-
tigated the choice of plotting positions for the normal and extreme-value (Gumbel)

distributions using various statistical criteria (test of fit, estimation of parameters,
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extrapolation at one of the extremes). Benson (1962) studied the effects of a selec-
tion of plotting position method on the determination of the economic feasibility of
some engineering works (bridge design, reservoir design and flood insurance).
Much of the confusion and disagreement concerning the choice of plotting posi-
tions is probably due to the fact that the cumulative distribution function ¥|F(y,, )]
of the expected value of the reduced variate mth order statistic y,, is not equal to
the expected value of the cumulative distribution function at y,,. That is, except

in the case of the uniform distribution,

m

FlE(ym)] # E[F(yn)l = 57
in which the expression m /(N +1) is the familiar Weibull (1939) formula. The plot-
ting positions defined by F|[E(y,. )] provide unbiased quantile estimates (Cunnane,
1978), while those based on E[F(y,. )] give unbiased estimates of the cumulative
probabilities associated with particular values of y,,. llence, if the objective of the
probability plot is to obtain an unbiased estimate of the prebability corresponding
to a particular value of the variable under consideration hydrologists have usually
favored the familiar Weibull (1939) formula. However, if the purpose of the plot
is to test whether a set of data conforms to a hypothetical distribution, or to es-
timate either quantiles or distribution parameters the unbiased plotting positions
were considered to be preferable as shown by Kimball (1960) and Cunnane (1978).
Given the attractive features of unbiased plotting positions in hydrologic fre-
quency analyses (sce, e.g., NERC, 1975a; Harter, 1984; Arnell et al., 1986), the
present study was undertaken to develop exact and approximate unbiased plotting

positions for two widely known distributions in hydrology: the Pearson type 111

(P3) and the General Extreme Value (GEV) distributions. The overall objective
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of this study is to propose new plotting formulas which would be more suitable for
assessing the adequacy of the hypothetical distributions and, especially, can provide

better estimates of flood quantiles than those given by existing formulas.

1.2 Statement of Problem

In hydrology four main distributions for flood frequency analysis are most often
used : Log Pearson type IIT (LP3) distribution, Pearson type III (P3) distribution,
General Extreme Value (GEV) distribution, and Generalized Gamma (GG) distri-
bution. The LP3 distribution has been selected for use in flood frequency analysis in
North America by the U. S. Water Resources Council (1967). The P3 distribution
which contains the exponential distribution (skewness coeflicient v = 2) and normal
distribution (v = 0) as special cases, has also been frequently used in the U.S.A.
and many other countries (e.g., Canada, Japan, and Thailand). The GEV distri-
bution, which has Extreme value type I distribution (EV1, with shape parameter
A = 0), Extreme value type II distribution (EV2, A < 0) and Extreme value type III
distribution (EV3, A > 0) as special cases, was recommended for use in Britain by
NERC (1975a) and has recently been selected as a model in regional flood frequency
analysis tests (Hosking et al., 1985). In the U.S.S.R., the GG distribution is still
the most popular distribution used in flood frequency analysis (UNESCO, 1987).

For practical applications, it would be preferable to have a specific plotting
position formula for each distribution mentioned above. Since the GG, P3 and LP3
distributions are all members of the gamma distribution family, a plotting position
formula derived for the P3 can also be used for the other two distributions. The
GEYV distribution which represents a family of probability distributions for extreme

values, does not however belong to the gamma group. Therefore, in the present
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study it is necessary to develop plotting formulas for two distinct distribution fam-
ilies represented respectively by the P3 and the GEV.

As mentioned above, several plotting position formulas have been proposed
in the hydrological and statistical literature but very few were derived for three-
parameter distributions, especially for the P3 and GEV distributions. Recent stud-
ies have provided some solutions to the problems, but these solutions are incomplete
and have limited practical applications. For example, in the case of GEEV and P3 dis-
tributions (Xuewu et al., 1984; Arnell et al., 1986), the parameters in the suggested
plotting position formulas were shown to vary with the sample size, the skewness co-
efficient and the order number of the arranged sample. These parameters, however,
were estimated only for some particular sample sizes and for some particular values
of the skewness coeflicient. The use of these formulas in practice is thus somewhat,
limited depending on the availability of the parameter values computed by Xuewu
et al. (1984) and Arnell et al. (1986). No explicit relations between the parameters
of the proposed formulas and the ¢ raracteristics of the data sample were given.

Furthermore, most of the existing formulas are concerned wih systematic flood
records (i.e., complete flood samples which occurred during the period of systematie
gauging), but little has been reported on the plotting position formulas for histor-
ical or non-systematic flood records (i.e., data on very large floods which occurred
either outside or within the systematic gauging period). HHowever, as shown by
many recent investigations (see, e.g., Condie and Lee, 1982; Stedinger and Cohn,
1986; Hirsch and Stedinger, 1987; Sutcliffe, 1987) the incorporation of historical
information about some extraordinary floods into formal frequency analysis would
significantly improve the estimates of flood quantiles, especially for the quantiles

with return periods of 50 years, 100 years or even 1000 years, which are often of




greatest interest for purposes of design of various hydraulic structures (spillways,
bridges, ...) or for purposes of flood plain zoning or insurance.

In view of the important role of the P3 and GEV distributions in engineering
practice, and due to various limitations and problems concerning their application
as described above, the present study is thus undertaken to develop new plotting
position formulas for systematic and non-systematic flood records for these two
distributions. The study consists of three parts. First, based on the Probability
Weighted Moment (PWM) theory introduced by Greenwood et al. (1979) an analyt-
ical method will be proposed to derive the exact plotting positions for systematic
flood records. Second, for the convenience of practical application, simmple unbi-
ased plotting formulas representing a very good approximation will be developed.
Third, new unbiased plotting positions con..dering historical flood information will
be proposed. The plotting formulas developed in this study can provide a better
agreement to the exact plotting positions than several existing formulas, and they
are, furthermore, conceptually more flexible and computationally more convenient,
as will be shown in the following chapters.

Chapter 2 presents a literature review of existing plotting position formulas.
Chapter 3 gives the theoretical consideration of P3, LP3, GG and GEV distribu-
tions. Chapter 4 describes the methodology used to develop new plotting position
formulas. Chapter 5 presents the verification and comparison of various plotting
positions. Chapter 6 contains some applications of the new formulas to observed

flood data. Chapter 7 provides the conclusions of the present study.




1.3 Objectives of Study

The main objectives of this research are :

1. To develop new plotting position formulas for systematic flood records for
the P3 and GEV distributions.

2. To develop new plotting position formulas for historical flood records for
the above distributions.

3. To develop new probability papers for various skewness values for the two
distributions considered.

The new plotting formulas and the special probability papers developed in the
present study would provide a convenient and practical tool for the application of

the P3 and GEV distributions in practice.




CHAPTER 2
LITERATURE REVIEW

The plotting position problem has been discussed in numerous research studies
during the past 50 years. In the following, a brief review of the previous works
concerning the plotting formulas for both systematic and historical flood records

are presented.

2.1 Plotting Position Formulas for Systematic Flood Records

The first reference to “probability paper” is found in an article by Galton
(1899). Galton compressed together or stretched apart, laterally, the ordinates on
a sheet of ordinary graph paper so as to transform a normal ogive into a straight
line. He termed the process by which a proper transformation of one variable
enables us to represent a given curve by a straight line, anamorphic geometry.
Probability paper was also used by hydrologists as early as 1896, but apparetly
was not mentioned in the literature on hydrology until 1914, in the papers by Fuller
and Hazen and in the discussion on those papers. Hazen (1914) wrote (pp. 626-628)
abouat the contribution to the discussion of the paper by Fuller (1914) “ This is a
most important paper, because, as far as the writer knows, it is the first attempt to
apply the principles of probabilities to the flood problem.” Probability paper was
mentioned in the literature more than 30 times before 1950, mainly by hydrologists.

The cumulative probability or cumulative distribution function (CDF) of a

sample of size N was usually defined as a step function which jumped from (m—1)/N
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to m/N at the mth order statistic of the sample. If the plotting position m/N
was used, the largest value could not be plotted, while if (m - 1)/N was used,
the smallest value could not be plotted, since the probabilities 1 and 0 were off
the scale of probability papers constructed for the normal distribution or for any
other distributions unlimited in both extreme ends (- coto t oo0). Hazen (1914)
therefore suggested the compromise plotting position (2m-- 1)/2N -~ (m - 1/2)/N,
as an alternative means of including all values on the graph. Most hydrologists
and other users during the next quarter century followed Hazen’s suggestion. Some
(e.g., Gerson, 1975 and Mage, 1982), however, persisted in using /N, the so-called
California method, because of its use by the California Department of Public Works
(1923). Gumbel (1943) disagreed with Hazen’s formula because the largest value of
plotting position was plotted at (1 — 1/2)/N which corresponded to a return penod
of 2N, i.e., an artificial lengthening of the period of record. This statement was
again pointed out by Benson (1962).

Kimball (1946) chose the only case for which m/(N + 1) was unbiased, the
uniform distribution, to support a general inference that it was unbiased for all
distributions. He recommended the plotting position m/(N + 1) for general use
but noted that if F(E(z,,)), the population CDF at the expected value of the mih
order statistic of the sample, could be estimated independently of the unknown
parameters, such point might prove more desirable for graphical fitting near the
extremes. After discussion by Gumbel (Kimball, 1947), he showea more favor to
F(E(y.)) as plotting position in which y,, was the reduced variatey,,  (z.. u)/o;
where z,, was the mth order statistic of the sample and p and ¢ were mean and
standard deviation, respectively. In 1960, he tried to clarify the problem of choosing
plotting positions using the normal and extreme value type I (KEV1) papers. He

considered several plotting positions, including (i) m/(N +1); (ii) (m —3/8)/(N 4
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1/4j; (iii) (m — 1/2)/N; (iv) F(Elyn]); (v) F(median of y,); and (vi) F(mode
of yn ). After examination of the plotting positions in question, he showed that
method (iv) was preferable for testing the fit of the hypothetical distribution to
data and for estimating either quantiles or distribution parameters.

Gumbel (1947) stated four postulates to be satisfied by any plotting formula
but did not offer any proofs as to their necessity. They were: {1} The plotting
positions must be such that all members may be plotted. (2) The return period of
a value equal to or larger than the largest observation and that of a value equal to
or smaller than the smallest observation should converge towards N, the number
of observations. lle noted that this condition was not fulfilled in Hazen’s method.
(3) The observations should be equally placed on the frequency scale; that is the
difference between the plotting positions of the (r. + 1)th and r7th observation
should be independent of m. (4) The plotting position ought to be simple and have
an intuitive meaning. Gumbel (1958) repeated these postulates and added a fifth:
(5) The plotting position should lie between the observed frequencies (m — 1)/N
and m/N ard should be universally applicable, i.c., it should be distribution-fréee
and this excluded the probabilities at the mean, median and modal values of y,, .

The above postulates have been cited in support of the Weibull formula
(m/(N + 1)) by many papers (e.g., Singh and Sinclair, 1972; Yevjevich, 1972).
Cunnane (1978) wrote (pp. 217-218) about these postulates : “No exception can be
taken to postulate (1); in fact it is necessary. Postulate (2) is not in keeping with
statistical fact. As already noted this postulate is most misleading and also appears
to have played a major part in the adoption of the Weibull formula. Kimball (1947)
questioned both the necessity and desirability of postulate (3), and one would tend
to agree with him. Postulate (4), although desirable is not reconcilable with any

mathematical derivation, as simplicity cannot be used in the same way as can, for
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instance, a boundary or initial condition, and consequently can play no part in the
rational development of a formula. The simplicity and distribution-free postulates
have obviously been rated highly in the opinion of many users.”

Johnson (1951) tabulaied the median plotting positions, which he called “me-
dian ranks”, for N < 20, and gave an approximate formula for N > 20. Bernard
and Bos-Levenbach (1953) showed that the median rank was closely approximated
by the plotting position (m —0.30)/(N 4-0.4). At about the same time, this plotting
position was also advocated in Russian publications by Lebedev (1952), Chegodayev
(1953), and others.

Chernoff and Lieberman (1956) used optimization methods, namely Lagrange
multipliers, to estimate the standard deviation and the percentile. They concluded
that estimates of standard deviation based on the plotting position m/(N | 1) were
much less efficient than those based on the position (m — 1/2)/N. This conclusion
was advocated by Barnett (1975) but it was argued by Cunnane (1978). He wrote
(pp. 218) : “This work was a fresh start to an old problem, and was novel in that it
approached the problem from a statistical point of view setting out to find a formula
not from probability arguments but rather from desirable statistical properties of
the. plot. They did, however, lose sight of the original problem and in fact derived
coefficients for use with regression analysis rather than true plotting positions.”

Blom (1958) introduced the «, o/-correction to the generelized mean value for-
mula and applied these corrections to normal, EV1, and Weibull distributions, He
proposed P, = (m—a)/{N — ¢' — a+1) as the general formula. If, for symmetry,
one took a = o', this became (m—a)/(N —2a+1). Many previously suggested plot-
ting positions were special cases of this general formula, e.g., @ = 0 gave the mean
position m/(N + 1), = 1 gave the modal position (m - 1)/(N — 1),a = 0.5 gave

Hazen’s compromise position (m — 1/2)/N and o = 0.3 gave a good approximation
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to the median position. Finally, he proposed P, = (m — 3/8)/(N + 1/4) as the
plotting formula for the normal distribution. Gringorten (1963) modified also the
general Blom’s formula to obtain a formula for the double exponential distribution,
P =(m-0.44)/(N + 0.12).

Chow (1964) summarized some plotting position formulas and demonstrated
theoretically that the California method was suitable for plotting annual exceedance
series or partial-duration series. Since this method could not be plotted on a prob-
ability paper for a probability of 100 percent thus, it was gradually replaced by
the Hazen formula, which plotted data at the centers of group intervals. He found
that all methods of determining plotting positions gave practically the same results
in the middle of a distribution but produced different positions near the “tail” of
the distribution. He came to the conclusion that the choice of a plotting position
formula had become important in engineering practice.

Stipp and Young (1971) selected 20-year samples from 37 U.S. Geological Sur-
vey pauging stations providing regional coverage of the United States. Using these
data, they computed the mean, standard deviation, and skewness coefficient, and
then fitted the LP3 curve to data at each station. The frequencies of the highest and
lowest discharges were determined from the curve, and the corresponding values of
the constant « in the formula P, = (m — «)/(N — 2a + 1) were computed. He
found that the best expression for the data used was P,, = (m — 0.4)/(N +0.2).
This formula is very subjective in the sense that it is derived from the assumption
of the symmetrical parent distribution (see Blom, 1958) but it was used to fit LP3
distribution which is not symmetric.

Cunnane (1978) pointed out that any quantile estimate made from the plot
should be unbiased and should have smallest mean square error among all such

estimates. He suggested (m—a)/(N ~2a+1) as the general form of plotting position

12




formulas with a = 0 for the Weibul! case, a = 3/8 for the normal, and a = 0.44
for the EV1 and exponential distributions. He concluded that: (1) The expected
value of the reduced variate order statistic, E|y,, |, depended on the form of the
distribution being considered. (2) The Weibull formula was the exact probabilily
corresponding to E[y,,] when the distribution was uniform. (3) If the reduced
variate depended on a shape parameter then the unbiased plotting position Ely,, |
depended on that parameter. Finally, he proposed a = 2/5 as the best compromise
for a single simple distribution free formula. This formula was adopted by Reich
and Renard (1981) and Srikanthan and McMahon (1981) among many others.

Adamowski (1981) proposed the form of plotting formula as P,, = (m—a)/(N-+
b) in which P,, were ordered plotting probability values, m was the rank of the mth
value in an ordered sample of size N, and a and b were constants. The values
of the constants a and b were derived by mean square error criterion. He found
that ¢ = 0.25 ard b = 0.50 were the constants for his plotting position formula.
This formula gave quite good result for EV1 distribution, especially for exceedance
probabilities at high values. He recommended this {formula for use in case of P3
distribution but the results might not be reliable for high floods.

King (1981) found that as data samples increased above a size of 20, the dif-
ferences among the plotting positions determined by any method of estimation
decrease to the point where they were practically unimportant. To evaliate the cri-
teria for optimum choice of plotting positions proposed by Cunnane (1978) he has
conducted a series of Monte Carlo experiments using also, for comparison purposes,
Weibull formula, m/(N +1), and Hazen formula (m-—0.5)/N. Test results indicated
that there is no practical difference in the estimates of the mean obtained by any
of the three methods, but there is a highly significant difference among the sev-

eral estimates of the sample standard deviation. The Weibull formula consistently
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overestimates the standard deviation; this represents, for some purposes, a conser-
vative error. On the other hand, the Hazen formula consistently underestimates the
standard deviation which results in unconservative errors. The Cunnane formula
give estimates which average 1 % to 2 % high for the standard deviation. These
estimates are, therefore, slightly conservative and practically irrelevant. Cunnane
estimates are also consistently closer to the true population parameters than either
of the other formulas.

Xuewu et al. (1984) showed that, for P3 distribution, the parameter « inside
Blom’s formula was mainly dependent on the order number m and the values of
skewness coeflicient v of the parent distribution. They employed the Monte Carlo
mecthod to develop a plotting position formula for the P3 distribution for v in
the range of between 0 and 2. It was found that the formula could be applied to
both symmetricel and unsymmetrical distributions and would also provide unbiased
estimations of quantiles. Nevertheless, as mentioned in section 1.2, the convenience
in the use of this formula in practice is somewhat limited because it cannot take
explicitly into account the skewness coeflicient of the underlying distribution, and
cannot be applied for skewness values outside the range from 0 to 2. Further, the
use of Monte Carlo simulation procedure could provide results less accurate than
those given by the analytical method proposed in the present study.

Arnell et al. (1986) presented exact plotting positions for the GEV distribution,
and a simple plotting formula such as would be suitable for a scientific calculator
but yet which provided good approximation to the exact values. They used the
PWM theory to derive the exact plotting positions. However, probably due to
some errors in the mathematical derivation, the proposed approximate formulas
did not give very good results, as will be shown in the present study. Moreover, the

plotting relation suggested by Arnell et al. (1986) had limited practical applications
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as did Xuewu’s formula, because it was also developed for some limited values of
parameters and skewness coefficient.

Sinclair and Ahmad (1988) attempted to improve Arnell formula and proposed
a new plotting relation for the GEV distribution based on the location-invariant
concept. The new formula appears to be more covenient than the Arnell formula.
The results given by this formula, however, are biased at both extreme ends of the
probability plot, as will be shown in the present study.

From the review of the existing literature, it is clear that the optimum choice
of a plotting position formula should be based on the purpose of the investigation
and should also depend upon the distribution of the variable under consideration.
It would be therefore preferable to have a specific plotting position formula for
each particular distribution considered. In addition. the unbiased plotting positions
advocated by Cunnane (1978) have been found to be suitable for various purposes

of hydrologic frequency analyses.

2.2 Plotting Position Formulas for Historical Flood Records

As described in the previous section, a variety of plotting position formulas
have been proposed for systematic flood records. However, very few papers have
been reported on the subject of plotting formulas for historical flood data. Major
citations on this subject include Benson (1950), World Meteorological Organization
(1969), U.S. Water Resources Council (1977), Gerard and Karpuk (1979), Zhang
(1982), Hirsch and Stedinger (1987), and Hirsch (1987).

Benson (1950) proposed a Weibull type plotting formula for floods above a
threshold which was assumed to be known precisely. He recognized frem his ap-
proach the possibility of a substantial discontinuity in the probabilities assigned to

floods above and below the threshold. He wrote “ In order to arrive at consistent,
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results, it necessary to obtain an array of peaks properly representative of the sin-
gle long period. The known peaks, historical and recent, must be combined in the
proper proportions in order to obtain such an array.”

NERC (1975a) proposed a formula based on Gringorten (1963) plotting posi-
tions. There were at least two problems with this formula. One was non-monotoni-
city, i.e., a large flood may be assigned a higher exceedance probability than a
smaller flood. Another problem was that large gaps could occur between the prob-
abilities assigned to the largest floods and the floods below a threshold level. This
formula was used by Beable and McKerchar (1982) for some particular cases. There-
fore, more guidances were nceded in order to evaluate the proposed formula.

Gerard and Karpuk (1979) described a situation in which all floods greater
than a threshold over a period of N years were known. Their method allowed a
systematic analysis of all historical data available, but did not present a universally
applicable formula.

Zhang (1982) derived a generalized plotting position formula based on order
statistic theory. His formula could account for both large and small historical floods.
The assumption involved in the derivation was that if the k largest historical floods
were observed, they were observed because they were the k& largest. Bernier et al.
(1986) proposed a similar plotting position formula for partial duration series. The
assumption given by Zhang was later on disagreed by Hirsch and Stedinger (1987),
and Hirsch (1987). [t was argued that historical and paleoflood discharges were
often observed because they were large enough to exceed some perception threshold
and hence to be recorded, but they were not necessarily the largest.

Hirsch and Stedinger (1987), and Hirsch (1987) proposed a general model for
plotting position formulas which can combire both systematic and historical in-

formation in a consistent and statistically efficient manner. More specifically, the
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plotting formulas proposed can account for the rank of observation, the number of
historical observed floods, and the lengths of the historical period and the system-
atic record. These formulas have been tested for bias in terms of discharges. It was
found that none of the above formulas were highly accurate. Hirsch (1987) wrote
“The exact magnitude of the bias depends, of course, on the family of distribution,
the skewness coefficient and the expected number of largest floods, and consequently
one could develop special, optimal plotting positions for each situation.” It is clear
from this study that an optimal plotting position formula should be able to take
into account the skewness coefficient. Moreover, it would be preferable to have a
specific plotting position formula for each particular distribution considered.

In summary, some plotting positions for historical or extraordinary {ioods have
been proposed, but no consensus has been reached. It is noted from the literature
review that several such formulas did not provide very accurate estimates of the
largest floods because they were based on biased plotting positions (e.g., Hazen and
Weibull formulas) developed for systematic flood records. It will be shown in the
present study that new plotting positions proposed could give flood estimates much

better than those estimated by several existing formulas.
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CHAPTER 3
THEORETICAL CONSIDERATIONS

3.1 Fundamental Equations

The fundamental equations involved in the present study will be summarized in
this chapter. The main distributions that will be described are P3, LP3, GG and GEV
distributions. The most important parameters for these distributions (mean, variance,
skewness coeflicient) will be presented. The expected values of P3 and GEV order
statistics will also be shown. Finally, the exact plotting positions for both P3 and

GEV distributions are analytically derived using the PWM method.

3.1.1 P3 distribution

The P3 distribution involves three parameters. It can adopt every shape from the
extremely skewed reverse-J shape to the symmetrical normal shape depending on the
value of the shape parameter. The probability density function (PDF) of a random

variable @ which follows a P3 distribution may be expressed as follows :

Gt 1)) _
F(z) = mc 7o (z—a9)*Y, forazg <z< oo (3-1)
‘ 0, for z < zy

i which »ry (=00 < 2 < 00) is the location parameter, 8 (8 > 0) is the scale

parameter, and A (A > 0) is the shape parameter. Its cumulative distribution function
(C'DF) is then given by :
I
Fo) = [ s (3:2)
Zo
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where f(-) is defined by eqn. (3-1) above. The distribution parameters are related to
the mean, u, variance, o2, and skewness coefficient, 7, of the random variable . by the

following relations :

p= o+ A (3-3)

ol = B2\ (3-+4)
2

1= 5 (3-5)

The linear transformation y = (z—¢)/8 reduces the P3 distribution to a standard

form with z¢9 = 0 and # = 1. That is,

F(y) = F(I/\)

y
/ e~ Yy ldy = P(\,y) for 0 <y < oo (3 6)
0

where P(,y) is the incomplete gamma function. Hence, the standardized variate y

has the PDF :

1
fly)= m)e‘”y*" (3-7)

If A =1, the P3 distribution reduces to the exponential. As A = oo or v — 0 the
distribution tends to the normal distribution.
3.1.2 LP3 distribution

A random variable Z follows a LP3 distribution if its PDF is :

1 an-—ZQ!
f(Z)zﬂT-TTBIT“(T)E“( 7 (InZ — 2y (3-8)

where Zy, B, and A are respectively location, scale, and shape parameters for the LP3
distribution.

The population moments of the LP3 distribution are given by :
ty. = exp(rZy)(1—rp)~2, 1—7f>0,r =123, . (39)

where p', . is the rth moment about the origin.
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The mean, coefficient of variation, and skewness coefficient are expressed as :

p=exp(Zo)(1 — )" (3-10)
C,=A"%/B (3-11)
v =C/A**? (3-12)

where
A=(1-28)"~(1-p)" (3-13)
B=(1-p)"" (3-14)
C=(1-38)""-3[(1-B)1—-28)]"+201-p)"" (3-15)

Note that except for the mean, any normalized higher statistics of the LP3 dis-
triibution such as coeflicients of variation and skewness coefficient are independent of

the location parameter, Zg.

3.1.3 GG distribution

If it 15 supposed that (W — Wy)/B]° = y (with ¢ > 0) has the standard gamma
distribution, then the PDF of a random variable W which follows a GG distribution

1h

STV 1 cA—1 .
T LA LY e [_ (W Wo

BeAT(X) B

where Wy, B, and X are location, scale, and shape parameters for the GG distribution

)] wewm e

respectively.

This was defined (with 1V, = 0) by Stacy (1962) as one family of generalized
gamma distribution. It includes Weibull distribution (A = 1), half-normal distribution
(\ = %( = 2, W, = 0), and of course, P3 distribution (¢ = 1).

Stacy and Mihram (1965) proposed a method of estimation based on the moments

of In ' W. The results of the mean, coefficient of variation and skewness coefficient are

20




expressed as :

w(InW) = ¢~ 1p(\) + Ing (3-17)
Cy = c7*)'(A) (3-18)
y = P"(A)/P'(A)* (3-19)
where
PN = (-1)548 = 1)\ - %)“3 (S>1) (3-20)

3.1.4 GEYV distribution

The GEV distribution involves 3 parameters and includes the Extreme Value type
[ (EV1) or Gumbel distribution as a special case (Jenkinson, 1955). A random variable

x has a GEV distribution if its PDF has the following form :

1 i
1 /\(.7:——.1'0)} R P R
flo =—[1————— ¢ 7 (3-21
(z) 3 3 )
The CDF is N
[ /\(-‘B—Io)] \
expy— |1 - =5+ , A#0
F(z) = (3 22)

exp {—ea:p [——(I——HI—")} } , A=0

where z¢, #,and A are respectively location, scale and shape parameters.
As ) tends to zero, the extreme value type 1 (EV1) distribution is obtained, and

its reduced variate y; is related to the type 1 variate x; by
y1 = (&) —z0)/p (3-23)

for which the CDF is
Fy = F(y1) = cxp{—cap(~y1)} (3-24)

The mean, variance, and skewness cocfficient of y; are expressed as :

Hy, = 0.0772 (3-25)
2

2 _ T of:

(J'yl = 6—[; (32())

vy, = 1.139 (3-27)
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Whereas, the mean, and variance of z; are :

fiz, = To + 0.57723

2 _ T2
90 = g

The skewness coefficient of z; is the same as that of ;.

(3-28)
(3-29)

If A <0, the distribution becomes the Extreme Value type II (EV2) distribution,

the reduced variable yp is yp = 1 — i(-x—%_ﬂl, and the CDF is

i = Pl = exn {3}

The mean, variance, and skewness coefficient of y; are expressed as :

fy, =T(1 + A)
ol =T(142))-T%1+))

Y2

3/2
Ty = K3 /I'LLZ/

whete jrp = 02 and pg = T(1 4+ 3X) — 3T(1 4+ 20T (1 4+ X) +2T3(1 + A)

Consequently, the mean, and variance of z, are :

BB
ey, = Tg + X - X”yQ
' 4
ot =2y,

The skewness cocfficient of @3 is the same as that of y,.

(3-30)

(3-31)
(3-32)
(3-33)

(3-34)

(3-35)

If A > 0, the distribution becomes the Extreme Value type III (EV3) distribution,

the teduced vatiable yy is yy = —{1 — &x—“ﬁ;x—")}, and the CDF is :

Fy = F(y3) = exp {,_(_ys)l/,\}

The mean, variance, and skewness coefficient of y3 are expressed as :

fys = —T(1 4+ A)
ol =T(1+2A) =TH1 4+ 1))
Yoo = pa/py
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where p2 = 02 and p3 = —T(1 4 3)) + 3T(1 + 2\)I(1 + A\) - 2I3(1 + \)

According to eqns. (3-37) and (3-38) the mean, and variance of .3 can be written

as :
Pzy = Tg + ﬁj— + —g/tya (3 10)
05, = (f- oy (3-41)

The skewness coefficient of z; is independent of the location and scale parameters and
equals the skewness of the y; variate.

It can be seen from eqns. (3-1), (3-8) and (3-16) that the LP3 and GG distributions
are related to the P3 by means of a transformation of variable. The LP3 distribution
can be transformed to the P3 by taking the logarithm of the variable. For the GG
distribution, its random variable W is related to the P3 random variable y by the
relation y = (W — Wy)/B. The GEV distribution, however, does not belong to the
gamma distribution family. Hence, in the present study it is necessary to develop new
plotting position formulas for the P3 and GEV distiibutions only. The development,

of these formulas will be illustrated in the next chapter.

3.2 Expected Values of P3 Order Statistics

Consider an ordered random sample of N obscrvations, y; >y, > ... > yn. The
probability density function ¢(yn, ) of the mth element of the ordered sample is then

given by :
N!

FFN = P ) (3 42)

where F(y) and f(y) are respectively the cumulative distribution function and tie
density function of the random variate y. The expectation of the mth order statistic,

Ym, 18 therefore :

o0
E[?/m] = / y9(ym )dy (343)
0
or from eqn. (3-42) :
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1
Blum] = =y ), WF@N L= FOImTRG) (340

Substitute eqns. (3-6) and (3-7) into (3-42) :

_ NI 1 y N - N—m
9Um) = TN [F(/\)./o y* e ydy}

1 y A—-1 ml 1 A-=1 y (3 )
1 — = y e Vd —y e -45
[ ) Jo 7 ’] I()

and substitute eqn. (3-45) into (3-43) :

; _ N! > 1 A~y 1 /y A=-1 -y e
M"’"‘)_(m—l)!(N—m)!/o Y e [P(,\) [y e dy

1 il m—1
[1 y’\_le_ydy] dy (3-46)

T Jo

Note that eqn. (3-46) produces the exact plotting positions for the P3 distribution.
However, it can be observed that it is impossible to integrate explicitly the integral
mvolved m the equation, and it is a formidable task to evaluate numerically this
expression. By means of numerical integration, Harter (1964) provided tables for the
expected value of the mth-order statistic y,, for m = 1,2,...,N;N = 1,2,...,140;
aund for A = 0.5,1,...,4.0. It was noted that, probably due to the formidability of
the numerieal mtegravion task, the results for E(y,,) were given for sample sizes not
greater than 40. More recently, using the Monte Carlo method, values of E(y,, ) for
lnmger samples, N = 50 and N = 100, have been computed by Xuewu et al.(1984)
but only for some particular values of the skewness coefficient 4 (y was limited to
values below 2). Nevertheless, the Monte Carlo method could consume considerable
computer resources and could provide less accurate results. Therefore, in section 3.4,
it will be shown that a simpler procedure for evaluating E(y,,) for the P3 distribution

can be achieved using the PWM theory.
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3.3 Expected Values of GEV Order Statistics

From eqn. (3-24), the reduced variate y; of the EV1 distribution can be expressed

as :
Y1 = —In[—In(F)] (3-47)
Hence, according to eqn. (3-44) the expected value of the mth order statistic for the

EV1 distribution can be written as :

N!

1
N—m m—1 gy »
_m)!/o =In(—InF)Fy (1 = Fy)" T dF, (3-48)

Similarly, on the basis of eqns. (3-30), (3-36), and (3-44), the corresponding
expressions for the EV2 and EV3 distributions are :

E[UZm]=( /( ) EN"™(1 - Fy)" " F, (3-49)

)N m)!

E[US m] -

(m — 1-)— Tn)'/ ( lnFs)«\FN m(l :)m—-l(th (3-50)

Equations (3-48), (3-49) and (3-50) provide the exact plotting positions for the
GEV distribution. However, it is not possible to integrate analytically the above
equations, and consequently numerical integration techniques must be employed. The
numerical integration requires normally a very substantial amount of computer time,

In the following section we will present a simpler procedure for evaluating E(y,, ) for

the GEV distribution using the PWM theory.

3.4 Exact Plotting Positions from Probability Weighted Moments

The probability weighted moments are defined as (Greenwood et al., 1979) :

1
M., =/ y' F(y)'[L — F(y))dF(y) (3-51)
0
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where 1,4, and j are real numbers, and F(y) = P(Y <y). Ifi = j =0 and [ is
a nonnegative integer, then M) is the conventional lth moment about the origin.
In particular, if 1,2 and ) arc nonnegative integers, My,,, is proportional to the lth
moment about the origin of the (j + 1)th order statistic for a sample of size (2 + 7+ 1)
(Greenwood et al., 1979). That is,

ilg!
My,, = m—!E(%H,le) (3-52)
Suppose N =i+ 7 + 1 and m = j + 1, then from eqn. (3-52):
N!
E(yrln,N) = (m _ 1)’(N _ 7n)!Ml,N—m,m——1 (3'53)
For the first moment [ = 1, eqn. (3-53) becomes
N!

Furthermore, M) N —m,m-1 can be expressed as a sum of simpler moments as follows

(Greenwood et al., 1979) :

m—1
m — 1\
Ml,N—m,m—l = ZO ( S )(_1)3MI,N——m+s,O (3'55)
which is substituted into eqn. (3-54) to give :
m—1
m-1 s
E[Um] 1)' N m)' Z ( s )(“1) Ml,N~m+s,0 (3'56)

In the case of P3 dlstributlon, given the expressions in (3-6), (3-7) and (3-52), the
probability weighted moments M; ny _m+s,0 can be expressed as :

M Nomisp = f—l— / OO[P(/\,y)]N “mtsyreddy (3-57)
(A) Jo
e whieh P(A, y) is the incomplete gamma function.

By comparing cqn. (3-56) with eqn. (3-46), it is noted that the relation (3-56) hasa
simpler analytical structure and thus requires a simpler computation scheme because
it involves a finite summation. More specifically, eqns. (3-56) and (3-57) are finite
series and thus can be evaluated without difficulty to provide exact plotting positions
for the P3 distribution. The computations of the expected values of yn, eqn. (3-
56), were performed in double precision on the mainframe IBM 4381 computer for

m=12...,N; N =5,10,...,100; and for skewness coeficients v = 0,0.1,...,3.0.
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For purposes of illustration, Table 3.1 shows a comparison cf expected values es-
timated by the direct numerical integration procedure (Harter, 1964), by the Monte
Carlo technique (Xuewu et al., 1984), and by the PWM theory, eqn. (3-56), for N = 30
and vy = 1.265 (or A = 2.5). It can be observed that the results obtained by the random
sampling technique are less accurate than those given by the direct numerical integra-
tion and PWM methods, even though a very large number of random samples (30,000

samples of size N = 30) have been generated (Xuewu et al., 1984). Furthermore, as

Table 3.1: Comparison of expected values of P3 order statistics, E(y,, ), for skewness
coefficient v = 1.265, N = 30.

Rank (m)  Harter Xuewu PWM ¢, (%) ez (%)
1 6.76301 6.75855 6.76309 0.0012 0.067
2 5.51268 5.51051 5.51269 0.0002 0.040
3 4.85972 4.85204 4.85968 0.0008 0.157
4 4.41026 4.40302 4.41022 0.0009 0.163
5 4.06379 4.05732 4.06375 0.0010 0.158
10 2.96017 2.96097 2.96017 0.0000 0.027
i5 2.25378 2.25263 2.25378 0.0000 0.051
20 1.68273 1.68547 1.68274  0.0006 0.162
25 1.14056 1.13869 1.14056 0.0000 0.164
30 0.42069 0.42097 0.42069 0.n000 0.067
e; = relative difference between estimations by Harter and PWM
e, = relative difference between estimations by Xuewu and PWM
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compared with the numerical integration technique, the PWM procedure produced
comparable results, and its simpler computational scheme permitted to evaluate the
expected values of P3 order statistics for large sample sizes without any difficulty. This
suggests that the PWM procedure is preferable to the direct numerical integration
and Monte Carlo methods in the computation of exact plotting positions for the P3
distribution. Therefore, the PWM method will be used in this study to develop an
approximate and unbizsed plotting position formula for the P3 distribution.

In the case of GEV distribution, the expected values of the order statistics yym,

Y2 and gy, can be computed more simply using the PWM theory (Arnell et al.,

1986) :

m-—1

Elyim] = (m = 1)],}7‘;\, ey (m;— 1)(—1)s [6+In(N —m+s+1)

s=0
(N-m+s+1)7"! (3-58)
N! = m-1 .
Elyn] = (m—-1){(N - m)!F(1 +) ; ( s )(_1)
(N —=m+4s+1)"0+2 (3-59)
E[y.‘lm] = —E[:‘/Zm] (3-60)

where T'(+) and & are complete gamma function and Euler’s constant (6§ = 0.5772)
respectively.

By comparing with eqns. (3-48), (3-49) and (3-50), eqns. (3-58), (3-59) and (3-60)
are finite series and thus can be evaluated without difficulty to provide exact plotting
positions for the GEV distribution. The computations of the expected values of Yms
equs. (3-58), (3-59) and (3-60), were performed in double precision on the mainframe
IBM 4381 computer for m =1,2,...,N; N = 5,10,...,100; and for shape parameter
A =-0.2,-01,...,1.5 (skewness coeflicient v = 3.535,1.903, ..., —3.802).




CHAPTER 4
METHODOLOGY

4.1 Development of New Plotting Position Formulas for P3 and GEV

Distributions for Systematic Flood Records

This chapter is intended to illustrate the development of new plotting position
formulas and probability papers for P3 and GEV distributions. In this study the

plotting position, P,, is defined as :
Pn = FIE(ym)) (4-1)

where F[E(y,,)] is the cumulative distribution function of the expected value of
Ym - If E(y,. ) is computed using eqns. (3-56) and (3-57), t"« resulting values of P,
represent the exact plotting positions for the P3 distribution. Similarly, if %(y,,)
is estimated using eqns. (3-58), (3-59), and (3-60), the exact plotting positions for
EV1, EV2, and EV3 are respectively obtained. However, this method is cumber-
some in engineering practice because it requires evaluation of the summation and
the complete and incomplete gamma functions in those equations. Consequently, for
the convenience of practical applications, it is desirable to develop simpler plotting
position formulas which will be derived using the exact plotting positions calculated

by the PWM method.

Blom (1958) proposed a general form for plotting position formulas as :

P, =(m—-a)/(N—-a —-a+1), a,o <1 (4-2)
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in which P’ is the probability of mth order statistic; and a, o' are coefficients
depending on parent distribution and sample size N. If the parent distribution is

symmetric, Blom (1958) proved also that o' = . Hence, eqn. (4-2) becomes :
P,=(m-a)/(N-2a+1) (4-3)

Note that the condition of symmetry imposed by eqn. (4-3) is not a theoretical
requirement. The expression given by eqn. (4-3) can also be used, by a proper choice
of a, for non-symmetric distributions. More specifically, if the form of the parent
distribution is characterized by a shape parameter, the value of a also depends on
that parameter (see, e.g., Cunnane, 1978; Xuewu et al., 1984; Harter, 1984; Nguyen
et al., 1989; In-na and Nguyen, 1989).

In this study, an approximation to the exact P3 and GEV plotting positions

can be achieved by restating the general formula, eqn. (4-3), as :

m+b
= -4
Fn N -—a (44)

where a and b are parameters which vary with the sample size N and the skewness
coefficient v of the parent distribution. From Table 4.1 it is noted that most plotting
position formulas used by hydrologists can be expressed as special cases of this
general expression. The values of the coefficients @ and b will be estimated in this
study using the least-squares technique and based on the exact plotting positions
previously computed by the PWM method, as will be shown in the following.

Equation (4-4) can be written as :

NP, -m=aP, + b (4-5)
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Table 4.1: Plotting position formulas (after Cunnane, 1978; Harter, 1984; Xuewu
et al., 1084).

Method Formula  aand bin P, = ntb

N-a
Hazen(1914) m=g4 a=0,b=-0.5
California(1923) = a=0,b=0
Foster(1936) 2l a=0,b=-1/2
Weibull(1939) AT a=-1.0,=0
Beard(1943) mo2a a=-0.38,b=-0.31
Benard and Bos-Levenbach(1953) ﬁ_’;gg a=-02,b=-0.3
Chegodayev(1955) m—2d a=-0.4,b=-0.3
Blom(1958) Frin a=—1/4,b=—3/3
Tukey(1962) 1—’3—;—:—}% a=-1/3b=-1/3
Gringorten(1963) S eaT a=-0.12,b = ~0.44
Cunnane(1978) ol =-0.2,b=-04
Adamowski(1981) m=0.25 a=-0.5,b=-0.25

It can be observed that the right hand side of eqn. (4-5) is a linear function
of P, with a and b considered as unknown coefficients. Hence, for known vialues
of m(m = 1,2,...,N); N(N = 5,10,...,100); and P, (computed by the PWM
method) for different values of skewness coefficient v (or shape parameter A), a
regression of (NP,, —m) on P,, yields the least-squares solution for « and b Some
values of these coefﬁcient; are shown in Tables 4.2 and 4.3 for the P3 and the GV
distributions, respectively. It can be observed that a and b vary systematically

and, in particular, are more sensitive to the sample size N than to the skewne:s
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Table 4.2: Example of some values of coefficients a and b for P3 distribution.

N 0} a b
3.00 10.987 -6.428

2.80 10.898 -6.332

2.50 10.756 -6.202

2.20 10.641 -6.087

2.00 10.574 -6.018

1.80 10.515 -5.957

5 1.50 10.441 -5.878
1.20 10.384 -5.812

1.00 10.354 -5.774

0.80 10.331 -5.741

0.50 10.380 -5.723

0.00 10.288 -5.644

3.00 101.024 -51.499

2.80 100.952 -51.414

2.50 100.772 -51.243

2.20 100.606 -51.089

2.00 100.519 -51.006

1.80 100.447 -50.934

50 1.50 100.361 -50.845
1.20 100.298 -50.773

1.00 100.268 -50.734

0.80 100.243 -50.699

0.50 100.407 -50.716

0.00 100.213 -50.606

3.00 200.738 -101.318

2.80 200.898 -101.384

2.50 200.795 -101.262

2.20 200.608 -101.094

2.00 200.513 -101.005

1.80 200.438 -100.931

100 1.50 200.351 ~-100.840
1.20 200.287 -100.768

1.00 200.256 -100.728

0.80 200.231 -100.693

0.50 200.575 -100.762

0.00 200.149 -100.575
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Table 4.3: Example of some values of coefficients a and b for GEV distribution.

N A ~ a b
-0.2 3.535 10.254 -5.769

-0.1 1.903 10.288 -5.758

0.0 1.139 10.321 -5.746

5 0.1 0.638 10.384 -5.744
0.5 -0.631 10.478 -5.682

1.0 -2.000 10.600 -5.600

1.1 -2.309 10.625 -5.683

1.5 -3.802 10.728 -5.515

-0.2 3.535 100.119 -50.720

-0.1 1.903 100.152 -50.703

0.0 1.139 100.185 -50 686

50 0.1 0.638 100.213 -50.667
0.5 -0.631 100.347 -50.600

1.0 -2.000 100.515 -50.514

1.1 -2.309 100.548 -50.497

1.5 -3.802 100.683 -50.428

-0.2 3.635 200.099 -100.713

-0.1 1.903 200.133 -100.696

0.0 1.139 200.167 -100.678

100 0.1 0.638 200.199 -100.661
0.5 -0.631 200.335 -100.592

1.0 -2.000 200.507 -100.600

1.1 -2.309 200.542 -100.490

1.5 -3.802 200.680 -100.422

coefficient 4. Therefore, for a given value of the skewness 7, it can be assumed that
a=C,N +C, (4-6)
and
b= C3N+C, (4-7)

where C,,C,,C; and C, are parameters.
Since a, b and N are known (Tables 4.2 and 4.3), the least-squares method can

be applied to eqns. (4-6) and (4-7) to evaluate C,,C,,Cs, and C,. Tables 4.4 and
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4.5 show for selected values of the skewness coefficient ~ the estimated values of

these coefficients for P3 and GEV distributions. It is found that only C; and C,

vary with 5, while C, and C, are approximately constant (C, = 2 and C5 ~ —1).

Therefore, the least-squares method again can be used to derive linear relations

between v and the paramecters C, and C,. Results are shown in the following

equations for the P3 distribution :

and for the GEYV distribution :

C; = 0.30y + 0.05

Cs = —0.30y — 0.47

C, = —0.08+ + 0.38

C, = —0.05y — 0.65

(4-8)

(4-9)

(4-10)

(4-11)

Table 4.4: Example of some values of constants C;,C;,C5, and C4 for P3 distribu-

tion.

v C, C, C, C,
3.00 1.997 1.112 -0.999 -1.527
2.80 2.000 0.929 -1.000 -1.377
2.50 2.000 0.748 -1.000 -1.212
2.20 2.000 0.620 -1.000 -1.086
2.00 2.000 0.547 -1.000 -1.012
1.80 2.000 0.482 -1.000 -0.946
1.50 1.999 0.403 -1.000 -0.862
1.20 1.999 0.343 -1.000 -0.793
1.00 1.999 0.313 -1.000 -0.755
0.80 1.999 0.289 -1.000 -0.722
0.50 2.002 0.314 -1.001 -0.696
0.00 1.999 0.251 -1.000 -0.625
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Table 4.5: Example of some values of constants C,,C;,Cs, and C; for GEV distri-

bution.

A v Cl Cg Cg C4
-0.2 3.535 1.9988 0.1998 -0.9995 -0.7490
-0.1 1.903 1.9988 0.2309 -0.9995 -0.7340

0.0 1.139 1.9988 0.2618 -0.9995 -0.7188
0.1 0.638 1.9988 0.2936 -0.9995 -0.7036
0.2 0.254 1.9989 0.3221 -0.9994 -0.6874
0.3 -0.069 1.9989 0.3505 -0.9994 -0.6709
0.4 -0.359 1.9990 0.3791 -0.9994 -0.6544
0.5 -0.631 1.9991 0.4078 -0.9994 -0.6378
0.6 -0.896 1.9991 0.4367 -0.9994 -0.6211
0.7 -1.160 1.9992 0.4657 -0.9994 -0.6039
0.8 -1.430 1.9993 0.4949 -0.9994 -0.5875
0.9 -1.708 1.9993 0.5240 -0.9994 -0.5705
1.0 -2.000 1.9994 0.5536 -0.9994 -0.5536
1.1 -2.309 1.9994 0.5831 -0.9994 -0.5365
1.2 -2.640 1.9995 0.6128 -0.9994 -0.5193
1.3 -2.996 1.9995 0.6427 -0.9994 -0.5021
1.4 -3.382 1.9996 0.6727 -1.0002 -0.4595
1.5 -3.802 1.9997 0.7029 -0.9994 -0.4673

Given the results obtained by the least-squares method, the parameters a and

b for the P3 distribution can be expressed as functions of the skewness coefficient ~y

and the sample size N as follows :

a = 2N + 0.30v + 0.05

b= —N — 0.30y — 0.47

(4-12)

(4-13)

Similarly, for the GEV distribution expressions for the parameters a and b are :

@ = 2N — 0.08v + 0.38

b= —

N — 0.05v — 0.65

(4-14)

(4-15)

Hence, by substituting eqns. {4-12) and (4-13) into egn. (4-4) the unbiased
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plotting position formula for the P3 distribution (called P$ formula in this study)

has the following form :

_N-m+0.37+0.47
N +0.37+0.05

P, (4-18)

Similarly, on the basis of eqns. (4-14), (4-15), and (4-4), a new unbiased plotting
formuia for the GEV distribution {hereafter referred to as GEV formula) can be

written as :

p - N-m+0.057+065

4-17
™ N — 0.08+ + 0.38 (4-17)

It can be seen that the new plotting position formulas proposed here can take
explicitly into account the skewness coefficient of the parent distribution, and in
addition, they have a simple structure as do most existing formulas. In particular,
the simple expressions given by eqns. (4-16) and (4-17) appear to be preferable to
the ones suggested by Xuewu et al. (1984) for the P3 distribution, and by Arnell
et al. (1986) for the GEV distribution because, to use Xuewu and Arnell formulas,
the parameter a and b in eqn. (4-4) for a given set of v, N and m must be estimated,
and the values of these parameters were tabulated only for some selected values of
v, N and m. No explicit relation between « and the set v, N and m was given.
The convenience in the application of Xuewu and Arnell formulas in practice is
thus somewhat limited, depending on the availability of the estimated values of
the parameters a and . The formulas suggested in this study, however, can be
readily used for various sample sizes N(5 < N < 100) and for a wide range of
skewness values v(—3.0 < v < +3.0). Noted is the validity of the proposed P3
formula for negat‘ve skewness values because of the symmetrical property of P3

orde~ statistics for positive and negative skewness coefficients (Bobee and Morin,
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1973). Note also that the limitations on the values of N and 5 were selected to
represent most conditions frequently encountered in hydrologic frequency analyses.
The exact plotting positions given by the PWM theory however should be, in theory,
valid for any sample size or skewness value.

The new plotting position formulas developed in this section can be used only
for the case of systematic flood records. More general formulas which can take into
account the historical information of very large floods will be developed in the next

section.

4.2 Development of New Plotting Position Formulas for P3 and GEV

Distributions for Historical Flood Records

As mentioned previously, most hydrometric records are available only for a
relatively short period of time. The probability estimates of rare events are therefore
unreliable. Obviously, any historic information which effectively enlarges the sample
size would significantly improve the frequency analysis of such avents. Therefore,
the objective of this section is to develop new plotting position formulas which can
take into account the historic information of extraordinary floods

In this study, to describe plotting positions for historical flood records, some
standard notations are introduced. Let N (in years) be the length of the historical
period (need not be continuous). This N-year period contains some systemadtic
flood record period of s years (s < N). Let g be the number of observed floods in
complete flood records where s -I ¢ < N. Among these floods, &k of themn are known
to be the k largest in a period of N years. Some of these k largest floods, €, may
have occurred during the systematic flood records (e < k and e < s). Note that
g=s+k—e.

The assumption involved in this study is that there is a perception threshold
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or base level Q, such that the k largest floods are larger than or equal to it and
the remainder are smaller than it (Hirsch, 1987). In addition, we have records of
k floods because they were large, but not because they were the k largest. On the
basis of this as.umption Hirsch and Stedinger (1987) proposed a general form for

plotting formulas with historical information as :

N :{kjr"l'_‘;a - P, m=1...,k (4-18)
i P.+(1-P.) ;2252 m=k+1,...,9

in which P,, is the probability of mth order statistic; e is a coefficient depending on
the parent distribution and the sample size N; and P, is the probability that flood
will equal or exceed the base level @),. The maximum likelihood (and the method
of moments) estimator of P. is k/N. This formula is applicable only for symmetric
parent distribution. If the parent distribution is not symmetric, then eqn. (4-18)

may be rewritten (Blom, 1958) as :

m-—« k —_
5 :{m'ﬁ m=1,....k (4-19)
m k N -k m—k—a —
F—*— N 'a-e+1k—a’—a m—_k+1""’g

Note that ' is a coefficient depending on the parent distribution, and note also that
if the parent distribution is symmetric (¢/ = ), eqn. (4-19) will become eqn. (4-18).
The condition of symmetry imposed by eqn. (4-18) is not a theoretical requirement,
as indicated in section 4.1. Therefore, the expression given by eqn. (4-18) can also
be used, by a proper choice of a, for non-symmetric distributions. Hence, if the
form of the parent distribution is characterized by a shape parameter, the value of
« also depends on that parameter.

In this research, approximation to the exact P3 and GEV plotting positions
with historical information can be achieved by restating the general

formula, eqn. (4-19), as :
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b2 4

. mib Lk m=1,...,k
i ={ boo N (4-20)

£ Mok moktb ok t1.,g
where a and b are paramcters. We call this the F formula (for exceedances). From
this general relation, one can form an Exceedance-Weibull (E-W) formula by setting
a = -1,b = 0, an Exceedance-Blom (E-B) formula with a = -0.25,b = ~0.375,
an Exceedance-Cunnane (E-C) formula with ¢ = —0.20,b = —0.40, an Exceedance
Adamowski formula (E-A) with ¢ = ~0.50,b = —0.25, and an Exceedance-Grn
gorien (E-G) formula with a = —0.22,b = —0.44. Since an objective of this 1escarch
is to develop unbiased (in terms of discharges) plotting position formulas when flood
data follow P3 and GEV distributions, the parameters a and b, therefore, must be
selected in such a way that the above formula yields a very good estimates of these
floods.

The P3 and GEV formulas (eqns. (4-16) and (4-17)) introduced in the previous
section for systematic tiood records will be used to develop new plotting position for-

mulas for historical floods. These formulas can be re-written in term of exceedance

probability as follows :

R m — 0.42
m =1~ Py =
P Pm= 03, 1005

for the P3 distribution, and

- m — 0.13vy - 0.27
m = — m = ’1»22
Pm=1=Pn=5— 0.08v + 0.38 (1-22)

for the GEV distribution. It can be seen that the formulas given by eqns (4-21)
and (4-22) can take explicitly into account the skewness coeflicicnt of the parent
distribution. Note from eqn. (4-21) that a = —0.3y — 0.05, and b = —0.42" and
from eqn. (4-22) that a = 0.08y — 0.38, and b = —0.137 — 0.27. Substituting thesc

expressions for @ and b into eqn. (4-20) to obtain for the P3 ditribution :
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—042 k _
k+'337+o 06 N m=1,...,k
FPo =93 4 | n-w m-k—0 42 —k+1 (4-23)
¥ T°% "3Tet0 3vt0.06 M= +1,...,9
and for the GEV:
m—0137-0 27 &k _
13 _{ k-0 08:+0 38 N m=1,...,k (4_24)
m ) N-—k m=k-0137-027 _
¥yt ow o 5—3—00871-0-038 m=k+1,..,9

Equations (4-23) and (4-24) represent plotting position formulas for historical flood
records for the P3 and GEV distributions. These equations are respectively called

Exceedance P3 (E-P3) formula and Exceedance GEV (E-GEV) formula.

4.3 Probability Papers

As mentioned previously, an important advantage in the use of plotting posi-
tion formulas is the possibility of plotting and visual comparison of the cumulative
frequency curve of the data and the assumed probability law. This plot permits an
immediate assessment of the closeness of the observed frequency distribution and
the assurned theoretical model. Practically, both the plotting and the comparison
of cumulative curves can be conveniently simplified by using special plotting paper
called probability paper. This special paper provides properly scaled axes such that
the CDF of the probability law plots as a straight line. With such paper, compari-
son between the assumed model and the data is reduced to a comparison between
the cumulative frequency plot of the data and a straight line. Further, the straight
line plot would make the extrapolation task easier and safer.

However, no single probability paper for the P3 distribution is available be-
cause the graduation of the probability scale depends on the skewness coefficient
(or the shape parameter) of the distribution. For example, Cunnane (1978) recom-
mended the use of normal- or exponential-probability paper for the P3 distribution

when the skewness coefficient v is either close to O or 2. In addition, if  is very
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different from these two particular values, the plotting procedure proposed by Wilk
et al. (1962) was suggested because there were no appropriate probability papers
available. Similarly, in the case of GEV distribution, only probability paper for the
EV1 (y = 1.139) distribution is available in the commercial market but not for EV2
and EV3 distributions (GEV distribution with v # 1.139). Therefore, for practical
applications, it would be preferable to deveiop probability papers for the P3 and
GEV distributions for a wide range of skewness values.

Recent advent of microcomputer drafting capability provides new possibilities
in the development of probability papers. In particular, for the P3 and GEV dis-
tributions, with the ease of computing exact plotting positions by PWM method
as shown above, and the availability of simple drafting software packages such as
Prodesign II (Webster, 1985), it could be possible, in theory, to plot probability
papers for any skewness value. However, for purposes of comparison, probability
papers for the P3 and GEV distributions have been developed in the present study
for a number of selected values of the skewness coefficient «y (v = 0,0.1,0.2,...,3.0).
These skewness values are chosen because most of the flood data normally have the
skewness coeflicient between 0 and 3.0 (NERC, 1975a; Matalas et al., 1975; Be-
able and McKerchar, 1982). It has been observed that a difference of less than
10% between two skewness values produced no significant difference in the resulting
probability papers. Hence, the probability papers developed in this study might be
used for any skewness value in the range from 0 to 3 (see Appendix A for P3 papers,
and Appendix B for GEV papers). An illustrative application of these papers will

be presented in the following chapter.
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CHAPTER 5
VERIFICATION AND COMPARISON OF
PLOTTING POSITION FORMULAS

5.1 Systematic Flood Records

It is possible to verify and compare various plotting position formulas for sys-
tematic flood records by graphical and numerical methods. According to the graph-
ical procedure (Cunnane, 1978), a plotting position formula can be judged by plot-
ting the expected value, By, ], m = 1,2,..., N, as ordinates against the plotting
positions P, under consideration. Because E[y,,] depends on the form of the par-
ent distribution, this type of judgment on a particular plotting position must be
performed separately for cach underlying distribution. If the formula is correct a
linear plot (or straight line) will be obtained on an appropriate probability paper.
The graphical technique provides therefore a simple tool to verify and compare
mmmediately the adequacy of the plotting formulas considered. Moreover, to ob-
tain a more objective judgment on the performance of various formulas a numerical
comparison should be carried out using as comparing criteria the root mean square
crror (RMSE) and the absolute maximum difference between exact and approximate
plotting positions.

Vertfieation and comparison of the new plotting position formulas for P3 and

GEV distributions are shown in the following sections.
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5.1.1 P3 Distribution

For purposes of illustration, comparisons will be performed for two sample
sizes N = 10 and IV = 30 which represent the data samples commonly available
in practice. Further, only those formulas that were recommended for use with the
P3 distribution are chosen. Since the symmetrical normal (v = 0) and skewed
exponential (v = 2) distributions are special cases of the P3 distribution and, in
particular, there exist special probability papers and plotting formulas specifically
derived for these distributions, the normal and exponential distributions are selected
for the graphical and numerical comparisons.

More specifically, for the skewness coeflicient v = 0 the formulas proposed by
Blom (1958), Adamowski (1981), and Xuewu et al.(1984) are considered. Note
that Blom formula was selected because it was derived specifically for the normal
distribution. For v = 2, it is preferable to replace Blom formula by the formula
suggested especially for the P3 distribution by Cunnane (1978). Moreover, due
to its popularity in engineering practice the Weibull formula will be considered in
these comparisons, although this formula was not specifically derived for the P3
distribution as indicated above.

Results of the verification of the P3 formula are shown in Figs. 5.1 and 5.2 for
the normal distribution (y = 0, N = 10 and N = 30); and in Figs. 5.3 and 5.4 for
the exponential distribution (v = 2, N = 10 and N = 30). It can be scen that
the plots of E[y,,] against the plotting positions P,, from the proposed formula are
straight lines in both exponential and normal distributions and for both small and
large samples. This indicates that the new plotting position formula performs very

well for symmetric and skewed distributions.
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Figures 5.1-5.2 and Tables 5.1-5.2 show respectively graphical and numerical
comparisons between different plotting formulas in the normal case (y = 0). As
expected, 1t can be scen that Blom formula performs very well, especially for the
simall sample considered, N = 10 (Fig. 5 1, Table 5.1), because it was specifically
detived for the normal distribution. Moreover, as compared with Blom formula, P3
and Xuewu formulas perform equally well. Results obtained by these three formulas
are better than those given by Adamowski formula which is biased at both extreme
ends. The Weibull formula was found to be the most biased as compared with the
other formulas.

In the exponential case (v = 2), the proposed P3 formula gives the best per-
formance as clearly indicated in Figs. 5.3-5.4 and Tables 5.3-5.4. Further, it is
noted that, although Xuewu and Cunnane formulas were specifically recommended
for the P3 distiibution, tesults given by these two formulas were found to be as
hiased as those provided by the Weibull formula in terms of the RMSE and the
maximum absolute difference (Tables 5.3 and 5.4). The bias is most pronounced at
the upper end of the plot for Werbull formula, and at the lower end for Xuewu and
Cunnane formmlas. The formula proposed by Adamowski performs slightly better
than Xuewu, Weibull, and Cunnane formulas in this case.

In summary, for the symmetrical normal distribution the proposed P3 formula
pgave a comparable perfoomance as the well-known Blom formula. However, for
a skewed distiibution the P3 formula performs much better than other existing
formulas. Thetefore, it can be concluded that the proposed P3 formula developed
m this study is the most appropriate for the P3 distribution, and for both small

and large data samples.
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Table 5.1: Comparison of plotting position formulas for the Normal distribution
- (v =0.0,N =10).

Plotting Position Formulas

m  E(ym) PWM P3 Xuewu Weibull Blom Adamowski
1 -1.53875 0.056 0.047  0.055 0.090 0.061 0.071
2 -1.00136 0.155 0.146 0.152 0.182 0.158 0.166
3 -0.65606 0.254 0.246 0.250 0.272  0.256 0.262
4 -0.37576 0.351 0.345 0.350 0.363 0.353 0.357
5 -0.12267 0.450 0.445 0.450 0.454 0.451 0.452
6 0.12267 0.546 0.544 0.550 0.545 0.548 0.547
7 0.37576 0.646 0.644  0.650 0.636 0.646 0.643
8 0.65606 0.745 0.743 0.750 0.727 0.743 0.738
9 1.00136 0.842 0.843 0.850 0.818 0.841 0.833

10 1.33875 0.938 0.942 0.950 0.909 0.939 0.928

; RMSE 0.006  0.005 0.021 0.002 0.008

Max|Pum(ezact) = Pm(formuia)] 0-009  0.012  0.034 0.005 0.015
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Table 5.2: Comparnson of plotting position formulas for the Normal distribution

(v =0.0,N = 30).

Plotting Position Formulas

m E(ym) PWM P3 Xuewu Weibull Blom Adamowski
1 -204276 0.019 0.016 0.021 0.032 0.021 0.025
2  -1.61560 0.052 0.049 0.053 0.065 0.054 0.057
3 -1.36481 0.084 0.082 0.086 0.097 0.087 0.090
4 -1.17885 0.117 0.115 0.119 0.129 0.120 0.123
5 -1.02609 0.151 0.149 0.152 0.161 0.153 0.156
6 -0.89439 0.183 0.182 0.185 0.194 0.185 0.189
7 -0.77666 0.217 0.215 0.219 0.226 0.219 0.221
8 -0.66885 0.250 0.249 0.252 0.258 0.252 0.254
9 -0.56834 0.283 0.282 0.285 0.290 0.285 0.287
10 -0.47320 0.317 0.315 0.318 0.323 0.318 0.320
11 -0.38235 0.350 0.348 0.351 0.355 0.351 0.352
12 -0.29449 0.382 0.382 0.354 0.387 0.384 0.385
13 -0.20885 0.416 0.415 0.417 0.419 0.417 0.418
14 -0.12473 0.449 0.448 0.450 0.452 0.450 0.451
15 -0.04148 0.482 0.482 0.483 0.484 0.483 0.484
16 0.04148 0.515 0.515 0.517 0.516 0.517 0.516
17 0.12473 0.548  0.548 0.550 0.548  0.550 0.549
18 0.20885 0.582 0.581 0.583 0.581 0.583 0.582
19 0.29449 0.615 0.615 0.616 0.613 0.616 0.615
20 0.38235 0.648 0.648 0.649 0.645 0.649 0.648
21 0.47329 0.681 0.681 0.682 0.677 0.682 0.680
22 0.56834 0.715 0.715 0.715 0.710 0.715 0.713
23 0.66885 0.748 0.748 0.748 0.742 0.748 0.748
24 0.77666 0.781 0.781 0.781 0.77¢ 0.781 0.779
25 0.89439 0.814 0.814 0.815 0.806 0.814 0.811
26 1.02609 0.848 0.848 0.848 0.839 0.847 0.844
27 1.17855 0.881 0.8S1 0 881 0.871 0.880 0.877
28 1.36481 0.914 0.914 0.914 0.003 0.913 0.910
29 1.61560 0.047 0.947 0.947 0.935 0.946 0.943
30 204276 0.080 0.981 0.980 0.968 0.979 0.975
RMSE 0.001 0.001 0.008 0.002 0.004
Max|Poy(ezacty = Pm(formutay] 0003 0.002  0.013 0.003 0.006
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Table 5.3: Comparison of plotting position formulas for the Exponential distribution

--

(y =2.0,N = 10).

Plotting Position Formulas

mw  E(ym) PWM P3 Xuewu Weibull Cunnane Adamowsk:
1 0.10004 0.096 0.100 0.055  0.090 0.058 0.071
2 0.21111 0.100 0.194 0.152  0.182 0.156 0.166
3 0.33611 0.285 0.288 0.250  0.272 0.255 0.262
4 0.47897 0.381 0.382 0.350  0.363 0.353 0.357
5 0.64564 0.476 0.476  0.450  0.454 0.451 0.452

| 6 0.84564 0.571 0.570  0.550  0.545 0.549 0.547
7 1.09564 0.666 0.664 0.650  0.636 0.647 0.643
8 1.42897 0.760 0.758 0.750  0.727 0.745 0.738
9 1.92897 0.855 0.852 0.850  0.818 0.843 0.833
10 2.92896 0.947 0.046  0.950  0.909 0.041 0.928
RMSE 0.003 0.026  0.026 0.025 0.023
Max|Pr(ezact) = Pm(formuta)] 0.004  0.041  0.038 0.038 0.025

-
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Table 5.4: Comparison of plotting position formulas for the Exponential distribution
(v =2.0,N = 30}.

Plotting Position Formulas

m  Elyn) PWM P3  Xuewu Weibull Cunnane Adamowski
1 0.03346 0.033 0.033  0.019 0.032 0.020 0.025
2 0.06782 0.066 0.068  0.051 0.065 0.053 0.057
3 0.10353 0.008 0.100  0.083 0.097 0.086 0.090
4 0.14057 0.131 0.133  0.117 0.129 0.119 0.123
5 0.17903 0.164 0.165 0150 0.161 0.152 0.156
6 0.21903 0.197 0.198  0.183 0.194 0.185 0.189
7 0.26070 0.229 0.231  0.217 0.226 0.219 0.221
8 0.30417 0.262 0.263  0.250 0.258 0.252 0.254
9 0.34963 0.205 0.2906  0.283 0.290 0.285 0.287
10 0.39725 0.328 0.329  0.317 0.323 0.318 0.320
11 0.44725 0.361 0.361  0.350 0.355 0.351 0.352
12 0.49988 0.393 (.394  0.383 0.387 0.384 0.385
13 0.55543 0.426 0.426 0.417 0.419 0.417 0.418
14 0.61426 0.459 0.459  0.450 0.452 0.450 0.451
15 0.67676 0.492 0.492  0.483 0.484 0.483 0.484
16 0.74343 0.525 0.524  0.517 0.516 0.517 0.516
17 0.81485 0.557 0.556  0.541 0.548 0.550 0.549
18  0.89178 0.590 0.590  0.583 0.581 0.583 0.582
19 0.97511 0.623 0.622  0.617 0.613 0.616 0.615
20 1.06602 0.656 0.655  0.630 0.645 0.649 0.648
21  1.16602 0.688 0.687 0.683 0.677 0.682 0.680
22 1.27713 0.721 0.720  0.717 0.710 0.715 0.713
23 1.40213 0.754 0.753  0.750 0.742 0.748 0.746
24 1.54499 0.787 0.785  0.783 0.774 0.781 0.779
25 1.71165 0.819 0.818  0.817 0.806 0.815 0.811
26 1.91165 0.852 0.851  0.850 0.839 0.848 0.844
27 2.16165 0.885 0.883  0.883 0.871 0.881 0.877
28 2.49498 0.918 0.916  0.917 0.903 0.914 0.910
29 2.99497 0.950 0.949  0.950 0.935 0.947 0.943
30 3.99497 0.982 0.981  0.983 0.968 0.980 0.975
RMSE 0.003  0.026 0.026 0.025 0.023
Max| Pin(ezacty — Pu(formula)]  0.002  0.015 0.015 0.013 0.009




5.1.2 GEV Distribution

For the GEV distribution, comparisons between plotting formulas will be per-
formed for the sample size NV = 30. Further, only those formulas that were recom-
mended for use with the GEV distribution are chosen. Since the EV1 (3 = 1.139),
EV2 (v = 2), and EV3 (y = 1) distributions are special cases of the GEV distn-
bution and, in particular, there exist appropriate formulas devived for them, these
distributions are theiefore sclected for graphical and numerical comparisons.

More specifically, for skewness coefficient v = 1.139 the formmulas proposed by
Gringorten (1963), Arnell et al. (1986), and Sinclair and Ahmad (1988) are con-
sidered. Note that Gringorten formula was selected because it was derived specif-
ically for the EV1 distribution. For v = 2 and v = 1 it is preferable to replace
Gringorten formula by the compromise Cunnane fornnila (Cunnane, 1978) beeanse
there are no specific formulas for the EV2 and EV3 distributions. Morcover, dne
to its popularity in engineering practice the Weibull formula will be considered in
these comparisons, although this formula was not specially derived for the GEV
distribution as indicated above.

Results of the verification of the GEV formula are shown in Fig. 5.5 for V1
distribution (y = 1.139, N = 30); in Fig. 5.6 for EV2 distiibution (y = 2, N = 30);
and in Fig. 5.7 for EV3 distribution (v = 1, N = 30). It can be scen that the plots
of Elym] against the plotting positions P, fromn the proposed formula are straight
lines in all cases. This indicates that the new plotting position formmla performs

very well for the GEV distribution
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Figure 5.5 and Table 5.5 illustrate respectively graphical and numerical com-
parisons between different plotting formulas in the EV1 case. Tt can be seen that
the GEV formula yields the least bias in tetms of the RMSE and the maxinum ab-
solute difference (Table 5.5). As expected, the Giingorten formmla perforims equally
well, because it was specially derived for the EV1 distribution. Results obtained
by these two formulas are better than those given by Sinelair, Arnell, and Weibull
formulas which aie biased at the upper end of the plot (Fip. 5.5).

For the EV2 and EVJ distributions, the proposed GEV formula gives the best
performance as clearly indicated in Figs. 5.6-5.7 and Tables 5.6-5.7. Cunnane and
Sinclair formulas scem to perform equally well in these cases. However, 1t 1s noted
that, although Arnell foimula was specifically recommended for the GEV distuibu
tion, results given by this formula was found to be as biased as those provided by
the Weibull formula in terms of the RMSE and the maximum absolnte differenee
(Tables 5.6-5.7).

In summary, for the EV1 disttibution the Gringotten formmla gave a com
parable performance as the proposed GEV formula. However, for EV2 and EV3
distributions the GEV formula petforms better thanother existing fornmlas There
fore, it can be concluded that the proposed GEV foumula developed m thns study
is the most appropriate for the GEV distribution.

The above veaiification and comparison of P3 and GEV formulas were caned
out for the case of systematic Hood data. In the following section we will focus on

the formulas for historical food 1ecords.




Table 5.5: Comparison of plotting position formulas for the EV1 distribution
(+=1.139,N = 30).

Plotting Position Formulas

m Elym) PWM GEV Arnell Weibull Gringorten Sinclair
1 -1.33845 0.022 0.023 0023  0.032 0.019 0.016
2 -106410 0.055 0056 0.057  0.065 0 052 0.050
3 -0.88585 0.088 0.089 0.000  0.097 0.085 0.083
4 -0.74442 0.122 0122 0.124  0.129 0.118  0.116
5 -0.62239 0.155 0155 0.138  0.161 0.151 0.150
6 -0.51229 0.188 0.188 0.101 0.194 0.185 0.183
7 -0.40959 0.222 0221 0225  0.226 0.218 0.217
8§ -0.31262 0.255 0.254  0.258 0258 0.251 0.250
9  -0.21859 0.288 0.287  0.202 0.290 0.284  0.283
10 -0.12730 0.321 0320 0326  0.323 0.317  0.317
11 -003653 0.35¢ 0.353  0.359 0355 0.351 0.350
12 0.05359 0.388 0.387 0.393  0.387 0.38¢  0.383
13 014456 0.421 0420 0.426  0.419 0.417  0.417
14 0.23599 0454 0.433 0.460  0.452 0.450  0.450
15 0.32039 0.457 0.486 0.404  0.184 0.483 0.483
16 0.42523 0.520 0.519 0.527 0516 0.517  0.517
17 0.52457 0.553 0.552  0.561 0.548 0.550  0.550
18 0.62789 0.586 0.585 0.504¢  0.581 0.583 0.583
19  0.73643 0.620 0.618  0.628 0.613 0.616 0.617
20 0.85148 0.653 0.651 0.662  0.645 0.649 0.650
21 097462 0.686 0.684 0695 0.67T 0.683 0.683
22 1.10797 0.719  0.717  0.720 0.710 0.716 0.717
23 1.25438 0.752  0.750 0.762  0.742 0.749  0.750
24 141787 0.785 0.783  0.796 0.774 0.782  0.783
25 1.60447 0.818 0816 0.830 0.806 0.815  0.817
26 1.82374 0.851 0.849 0.863  0.839 0.849 0.850
27 2.09240 0.884 0.882 0.807  0.871 0.882  0.884
28 244382 0917 0915 0.930  0.903 0.915  0.917
2 2.96137 0.950 0948 0964  0.935 0.948 0.950
30 3.07841 0.981 0.981 0.998 0.968 0.981 0.984
RMSE 0.001 0.008  0.008 0.003  0.004
Max| Poeracty = Pu( formutay|  0.002  0.017 0.015 0.004 0.006
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Table 5.6: Comparison of plotting position formulas for the EV?2 distribution

(7 =2.0,N = 30).

Plotting Position Formulas

m  E(ym) PWM GEV  Arnell Weibull Cunnane Sinclair
1 0.86522 0.022 0.025 0024 0.032 0.020  0.016
2 0.89124 0.056 0.058 0038 0.065 0.053  0.050
3 0.90861 0.089 0.091  0.001 0.007 0.086 0.083
4 0.92264 0.123 0.12¢ 0125 0.129 0.119  0.116
5 0.93494 0.156  0.157 0139 0.161 0.152 0.150
6 0.94619 0.189  0.190 0.192 0.194 0.185 0.183
7 0.95680 0.223 0.223  0.226 0.226 0219 0.217
8 0.96676 0.255 0.256  0.289 0.258 0.252 0.250
9 0.97674 0.280 0.200 0293 0.290 0.285  0.283
10  0.98643 0322 0323 0.327 0.323 0318  0.317
11 0.99631 0.355 0356  0.360 0.355 0.351 0 350
12 1.00631 0.389 0.380 0394 0.387 0.384¢ 0383
13 1.01586 0.421 0422 0427 0.419 0.417% 0.417
14 1.02652 04356 0455 0.461 0.432 0450  0.450
15 1.03680 0.488 0.4388  0.494 0 484 0.483  0.483
16 1.04773 0.521 0521 0.538 0.516 0.517 0.517
17 1.05906 0.555 0554 0.562 0.548 0.550  0.550
18  1.07106 0.588 0.587  0.595 0.581 0.583  0.383
19 1.08380 0.621 0.620 0629 0.613 0616  0.617
20 1.09748 0.65¢ 0.654 0.662 0.645 0.649 0 650
21 1.11231 0.687 0.637  0.696 0677 0.682 0 683
22 1.12862 0.720 0.720  0.730 0.710 0715  0.717
23 1.14681 0.753 0.733  0.763 0.742 0.748 0.750
24 1.16749 0.786 0.786  0.797 0.774 0781 0.783
25 1.19157 0.820 0.819 0.830 0.806 0.815  0.817
26 1.220567 0.853 0852 0.364 0.839 0.848 0.850
27 1.25717 0.886 0885  0.898 0871 0 831 0.884
28 1.30694 0.919 0.918 0.931 0.903 0914+ 0917
29 1.38489 0.951 0951 0.965 0.935 0047 0.950
30 1.55610 0.983 0.984 0998 0.968 0930  0.084
RMSE 0.001 0008 0000 0004 0 005
Max|P(ezact) = P(formuta)] 0.003  0.015 0.016 0006 0007




Table 5.7: Comparison of plotting position formulas for the EV3 distribution
(v =1.0,N = 30).

Plotting Position Formulas

m  E(ym) PWM GEV Arnell Weibull Cunnane Sinclair
1 -1.03433 0.022 0.023 0.023 0.032 0.020 0.016
2 -1.02720 0.055 0.056 0.057  0.065 0.053 0.056
3 -1.02259 0.088 0.089 0.090 0.097 0.086 0.831
4 -1.0189%6 0.122 0.122 0.124 0.129 0.119 0.116
5 -1.01584 0.155 0.155 0.158 0.161 0.152 0.150
6 -1.01301 0.188 0.188 0.191 0.194 0.185 0.183
7 -1.01043 0.221 0.221 0.225 0.226 0.219 0.217
8 -1.00793 0.255 0.254 0.258 0.258 0.252 0.250
9 -1.00536 0.200 0.287 0.292 0.290 0.285 0.283
10 -1.00293 0.325 0.320 0326 0.323 0.318 0.317
11 -1.00112 0.352 0.353 0.359 0.355 0.351 0.350
12 -0.99863 0.388 0.386 0.393  0.387 0.384 0.383
13 -0.99617 0.424 0.419 0.426 0.419 0.417 0.417
14 -0.99405 0.454 0.452 0.4G0 0.452 0.450 0.450
15 -0.09171 0.487 0.485 0.454 0.4384 0.483 0.483
16 -0.98938 0.520 0.518 0.527  0.516 0.517 0.517
17 -0.98689 0.583 0.551 0.561 0.548 0.550 0.550
18 -0.98433 0.586 0.584 0.504  0.581 0.583 0.583
19 -0.98164 0.619 0.617 0.628  0.613 0.616 0.617
20 -0.97880 0.652 06350 0.662  0.645 0.649 0.650
21 -0.97577 0.685 0.683 0.695  0.677 0.682 0.683
22 -0.97250 0.718 0.716 0.729  0.710 0.715 0.717
23 -0.96893 0.751 0.749 0.762  0.742 0.748 0.750
24 -0.96495 0.785 0.782 0.796  0.774 0.781 0.783
25 -0.96043 0.818 0.815 0.830  0.806 0.815 0.817
26 -095515 0.851 0.848 0.863  0.839 0.848 0.850
27 -0.94872 0.884 0.881 0.807  0.871 0.881 0.884
28 -0.94039 0.916 0914 0.930  0.903 0.914 0.917
29 -0 92828 0.049 0.947 0964  0.935 0.947 0.950
30 -0.90507 0.081 0980 0.998  0.968 0.980 0.984
RMSE 0.002 0.009  0.008 0.003 0.004

Max|Po(eract) = P formuta)] 0.005  0.017  0.014 0.007  0.006
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5.2 Historical Flood Records

Cunnane (1978) found that a plotting position should be relatively unbiased in
terms of discharges rather than in terms of probabilitics. Bias in discharge is defined
as the difference between the expected values of the mth largest tlood, E[Q,,] and
the expected value of the flood evaluated at the exceedance probability plotting
position P, for a given distribution F(-), E[F~}(1 — 13,,,)]. Henee, the bias in
discharge is dependent on the distribution of floods (Hirsch, 1987).

In the present study, the bias in discharge is cstimated only for & > m. The
expectation of the magnitude of the mth largest flood, Q,,, for given values of P, N

and m, is thus given by :

N
E[Qu)= Y EQu/P.K|Probk/k > ] (5 1)
h=m
where
N Mo/N
Problk/k > m] = ( >Pp‘(1 —-PP)N“/ > < )Pg(l — PN~ (H-2)
k Jj=m J

Note that E[Q,,, /P., k] depends on the distribution of 2,,,, while on the other hand
Problk/k > m] is distribution free  E[Q,,/P., k] was estimated by Monte Carlo
simulation using a total of 20,000 repetitions over the set of & values whnel have
non-negligible probabilities. The expected value of the discharge for the given 12,

values is found by :

N
E[FT(1=P) =Y F7'1-Pu(MProb[k/l = m)] (5 3)

k=m

where F7![1 - ﬁn,(k)] is the discharge with exceedunee probability of P, } whichs

is estimated using a plotting position formula.
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In the following, comparison of various plotting position formulas for P3 and
GEV distributions is performed by comparing the bias in the estimation of the
largest flood discharge from a sample of size N = 150, a historical flood sample

commenly available in practice.

5.2.1 P3 Distribution

For P3 distribution, only those formulas that were recommended for use with
that distribution are chosen. As indicated in section 5.1.1, the symmetrical normal
(v = 0) and skewed exponential (v = 2) distributions are special cases of the P3
istuibution and, in particular, there exist probability papers and plotting formulas
speafically derived for these distributions, the normal and exponential distributions
are also selected for the comparison.

More specifically, the E-type plotting positions considered for the case of skew-
ness coefficient 4 = 0 1nclude (see section 4-2) the E-B based on Blom (1958) for-
mula, the E-A given by Adamowski (1981) formula, the E-W suggested by Hirsch
and Stedinger (1987), and the E-P3 proposed 1in this study. For v = 2, it is more
appropriate to replace the E-B formula by the E-C derived from Cunnane (1978)
formula for the P3 distiibution. The Weibull formula for systematic flood records
will also be considered in this comparison because of its popularity in engineering
practice,

Results of the comparison of plotting position formulas are shown in Figs. 5.8,
59, and 5.10, respectively, for normal distribution (4 = 0), for exponential distribu-
tion () = 2), and for the case of 4 = 1. In all cases the coeflicient of variation is C, =
05 Note that Figs. 5.8-5.10 present E[@;] as a function of E[k] where E[k] = NP,.

Note also that the expected value of the largest flood discharge. E'(Q), estimated
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Figure 5.8 Bias in discharge for Normal distribution, v = 0
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Figure 5.9 Bias in discharge for Exponential distribution, v = 2.
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by the Monte Carlo simulation procedure is represented by the curve marked “true”
in the above figures.

From Fig. 5.8 for the normal distribution (y = 0), as expected, it can be seen
that the E-B formula performs very well, especially for low values of E[k], because
Blom formnula was specifically derived for the normal distribution. Further, as
compared with the E-B, the proposed E-P3 formula performs equally well. Results
obtained by these two formulas are better than those given by the E-A; E-W, and
Weibull formulas. The well-known Weibull formula was found to be the most biased
as compared with the other formulas.

In the exponential case (v = 2), Fig. 5.9 indicates clearly the best performance
of the E-P3 formula. Moreover, it is noted that, although E-C formula was especially
recommended for the P3 distribution, this formula performs slightly better than the
- A, E-W, and Weibull formulas, especially for low value of E[k]. Finally, results
for the P3 distribution with 4 = 1 are similar to those for the exponential case as
imdicated in Fig. 5.10.

In summary, for a symunctrical normal distribution the E-P3 formula gave
comparable perforimance as the E-B formula. However, for a skewed distribution
the E-P3 formula performs much better than other existing formulas. Therefore,
it can be concluded that the E-P3 formula developed in this study is the most
appropriate for the P3 distribution for the analysis of historical flood data.

The same technique is used to verify and compare the developed E-GEV for-

mula for the case of GEV distribution. Results are shown in the following section.
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5.2.2 GEV Distribution

Similar to the P3 case, the proposed E-GEV formula is compared only with
those formulas that were recommended for use with the GEV distribution. In
particular, the EV1 (v = 1.139), EV2 (v = 2), and EV3 (v = 1) distributions which
are special cases of the GEV, are selected because there exist appropriate formulas
especially derived for these distributions. More specifically, the E-AR and E-S
formulas are considered because they are derived respectively from the formulas
proposed by Arnell et al. (1986), and Sinclair and Ahmad (1988) for the GEV
distribution. For the case of EV1 distribution, the E-G formula which is obtained
from the plotting positions developed by Gringorten (1963) for this distribution
is selected. For the EV2 and EV3 distributions, it is preferable to replace the E-
G formula by the compromise E-C formula (Cunnane, 1978) as indicated in the
previous section. For the same reason mentioned earlier, the Weibull formula will
also be considered in the present comparison.

Results of couiparison among selected plotting position formulas are shown in
Fig. 5.11 for EV1 distribution (y = 1.139), in Fig. 5.12 for EV2 distribution (v = 2),
and in Fig. 5.13 for EV3 distribution (y = 1). In all cases the population mean is
p =1.0. Asin previous section, Figs. 5.11-5.13 present E[Q,] as a function of E[k]
where E[k] = N P,. The results indicate clearly that the E-GEV formula developed
in the present study gives the best estimate of the true value of E[Q,] than all
other formulas. Moreover, it is noted that, although E-AR and E-S formulas were
also recommended for the GEV distribution, results given by these formulas are
not as good as those provided by the E-GEV formula. As expected, it can be scen
from Fig. 5.11 that the E-G formula performs well, especially for high values of

E[k], because it was specially derived for the EV1 distribution. The E-C formula
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has also a good performance for the EV3 distribution (Fig. 5.13). The E-W and
Weibull formulas were found to be the most biased as compared with other formulas,
especially for large values of E[k].

In summary, results of the comparison have indicated that the E-GEV formula
developed in this study performs much better than other existing formulas. There
fore, it can be concluded that the proposed E-GEV formula is the most appropriate
for the GEV distribution for the analysis of flood 1ecords considering histotical

information.
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CHAPTER 8

APPLICATION OF PLOTTING POSITION FORMULAS

6.1 Systematic Flood Records

As described in section 1.1, an advantage in the use of unbiased plotting po-
sitions involves the possibility of providing the best estimates of flood quantiles,
which are unbiased. In the previous chapter, it has been demonstrated that the
proposed P3 and GEV formulas are the mest suitable for the P3 and GEV distri-
butions as compared with several existing formulas. The present section therefore
will present results involving the estimation of flood quantiles by the P3, GEV, and
Weibull formulas as compared to those given by some theoretical distribution fit-
ting methods. Note that the Weibull formula is also considered in this comparison
because of its popularity in engineering practice as mentioned previously.

The comparison is performed using graphical and numerical methods, and us-
ing observed flood records from various geographical regions. The graphical method
is carried out by plotting as ordinates the flood quantiles estimated by plotting posi-
tion formulas against the flood quantiles which are computed by fitting a theoretical
distribution to the observed flood data. Th=~ graphical technique, “quantile-quantile
plot” (Q-Q plot), provides therefore a graphical assessment of the adequacy of the
plotting position formulas considered as compared with the fitted theoretical dis-
tribution. If the plotting formulas provide the same flood estimates as the fitted

distribution, the tlood quantiles obtained should fall on the 45°-line on the Q-Q
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plot. Moreover, to obtain a more objective judgment on the performance of plot-
ting formulas a numerical comparison is also carried out using as criteria the root
mean square error (RMSE) and the absolute maximum difference between the flood
estimates from plotting formulas and fitted distribution.

The application of the proposed formulas to the observed flood data lies in the
determination of the skewness cocfficient 4 of the parent cistribution. Problems in-
volved in the estimation of this parameter have been exiuinined in several previous
studies, especially by Bobee and Robitaille (1975, 1977). Concernirg the P3 distri-
bution an unbiased estimate of ~, denoted C,,,, for 0.5 < 4 < 2.0 and 20 < N <90

can be computed from the following equation (Bobee and Robitaille, 1977):

NV = 8

Cau:
N—z Uty

)C. (6.1)

where C, is a biased estimate of the population skewness coefficient and is usually
computed by the ratio of the unbiased estimates of the third central moment and
standard deviation. The above formula has been also recommended for use with
the GEV distribution (World Meteorological Organization, 1969).

The application of the plotting positions considered will be illustrated by three
examples using flood data of Madawaska River at Madawaska and Missinaibi River
at Mattice in Ontario (Canada) (Environment Canada, 1983}, and Dee River at
Cairnton (U.K.) (NERC, 1975b). For Madawaska River, the continuous record of
annual maximum floods for the 1916-1942 period (N = 27) is considered. In the
case of Missinaibi River, the flood record from 1930 to 1979 (N 50) is used
Finally, for Dee River, the flood record considered is from 1930 to 1953 (N 24).
These three rivers were selected to represent the sample sizes commonly available

in practice.
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In order to fit the P3 distribution to the observed flood data, the method of
morments has been frequently recommended for use in the estimation of the param-
cters of this distribution (Bobee and Robitaille, 1977; UNESCO, 1987). For GEV
distribution, the probability weighted moments is used as suggested by Hosking et
al. (1985). Results of the graphical comparison (Q-Q plots) between P3, GEV,
Weibull formulas and the fitted P3 and GEV distributions are shown in Figs. 6.1,
6.2, and 6.3, respectively, for Madawaska River (C,, = 1.0, N = 27); Missinaibi
River (C,, = 1.4,N = 50); and Dec River (C,, = 0.7, N = 24). Further, Tables
6.1, 6.2, and 6.3 present results of the numerical comparison in terms of the RMSE
and the maximum absolute difference of estimated flood quantiles, respectively for
the three rivers considered.

In gencral, it can be seen from Figs. 6.1-6.3 and Tables 6.1-6.3 that the P3
and GEV formulas perform much better than the Weibull formula in terms of
flood quantile estimates. The fiood estimates given by P3 and GE™~ formulas are
closer to those computed by the fitted P3 and GEV distributions as compared with
the values provided by the Weibull formula. In particular, for Madawaska and
Missinaibi rivers, results shown in Figs. 6.1-6.2 and Tables 6.1-6.2 demonstrate
clearly the best performance of the P3 formula. However, for Dee River the GEV
formula is the most suitable as indicated by Fig. 6.3 and Table 6.3. In summary, it
was lound that the P3 and GEV formulas proposed in this study gave a comparable
performance as the conventional distribution fitting techniques. The well-known

Weibull formula, however, is the most biased in the estimation of floo.. quantiles.
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Table 6 1 Numerical companson of P3, GEV, and Weibull formulas (C,, = 1.0, N = 27).

Madawaska River

P3 distribution

GEV distribution

m Qpuea P3 GEV Weibull Q(P3) Q@ (Webull) | @ (GEV) @ (Weibull)
(m*/s)
1272 0028 002 0036 26.0 380 330 38.0
2 413 0065 0062 0071 440 450 43.0 45.0
3501 0101 0099 0107 500 510 49.0 51.0
1 580 0138 0136  0.143 54.0 55.0 540 56 0
5 583 0174 0172 0.179 58.0 59.0 58.0 60.0
6597 0211 0209 0214 62.0 62.0 62.0 63 0
7620 0248 0245 0250 65.0 66 0 66.0 67.0
5 702 0281 0282 0286 690 69 0 69.0 70.0
9 711 0321 0319 0321 720 72.0 73.0 730
10 776 0357 0355 0357 760 76 0 760 76 0
11 833 0394 0392 0393 790 790 79.0 80.0
12 844 0430 0420 0429 83.0 820 830 83.0
3903 0467 0465 0464 850 850 86.0 86.0
4 932 0503 0502 0500 89.0 890 89.0 890
15 940 0540 0538 0536 94.0 93.0 930 93.0
16 960 0577 0575 0571 980 98 0 96.0 96 0
I7 963 0613 0612 0607 102.0 102 0 100.0 100.0
I8 1010 0650 0648 0643 1070 106.0 104.0 104.0
19 1060 0686 0685  0.679 111.0 111.0 108.0 108.0
20 1080 0723 072 074 115.0 115.0 113.0 112.0
21 1200 0759 0758 0750 1210 120 0 118.0 117.0
22 1270 0796 0705 0786 126.0 124 0 124.0 123.0
23 1330 0833 0832 082 1340 131.0 1310 129.0
20 1340 0869 0868 0857 140 0 1390 1390 1370
25 1550 0906 0905  0.893 1520 148.0 1490 147.0
260 1770 0942 0941 0929 170.0 163 0 164.0 160.0
2T 1980 0970 0978 0964 198 0 182 0 1910 1810
RMSE 3.6 58 4.3 60
Max|Q(fitted) — Q(formula) 70 16 0 130 17.0

()

v

() = Flood estimated from plottiag position formula for the same non-exceedance probability
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‘l'uble 6 2. Numerical companson of P3, GEV, and Weibull formulas (C,y = 1.4, N = 50)

Missinaibi River

P3 distribution

GEYV distribution

o Qpuw: P3 GEV Webull | Q(P3) Q (Webul) | Q(GEV) @ (Weibull)
(m*/s)
[ 5100 008 0014 0020 6550 5630 6290 8190
9 600 0037 0034 0039 670.0 673.0 667.0 677.0
3 6740 0057 0054  0.05 687 0 687.0 689.0 697.0
A 6990 0077 0074 0078 697 0 698.0 707.0 712.0
5 7050 0097 0.094  0.098 709 0 710.0 7210 726.0
6 7110 0117 0114 0.118 719.0 7200 734.0 7380
7 7110 0137 0134 0137 798.0 798 0 746 0 749.0
§ 7280 0156 0154 0157 737.0 738 0 757.0 760.0
4] 7320 0176 0173 0176 7470 747 0 767.0 770.0
10 7530 0.196 0193 0196 756.0 756.0 7770 779.0
11 7530 0216 0213 0.216 765.0 765.0 786 0 789.0
1 7700 0236 0233 0235 775.0 7740 795.0 797.0
5 7790 0255 0253 0255 783.0 783.0 804 0 806.0
(1 7790 0275 0273 0275 793.0 793.0 813 0 815.0
5 8040 0295 0293  0.294 802.0 8010 821.0 8930
16 8070 0315 0313 0314 811.0 810.0 829.0 832.0
17 8070 0.335 0333 0333 820.0 819 0 838 0 840.0
IS 8240 0354 0353 0353 830.0 828.0 846.0 848 0
10 8300 0374 0372 0373 838.0 8370 855 0 856 0
20 8400 0394 0392 0392 846 0 845 0 863.0 864.0
31 8600 04ld 0412 0412 856 0 855 0 872.0 873.0
% 8600 0434 0432 0431 866 0 864 0 880.0 8810
93 8300 0454 0452 0451 875.0 873 0 889.0 890 0
21 8800 0473 0472 0471 884.0 882 0 897.0 808 0
5% 8000 0493 0492 0490 893.0 891.0 906.0 9070
% 0000 0513 0512 0510 9070 903.0 9150 916.0
%7 0120 0533 0532 0520 9190 916.0 924.0 925.0
% 0300 0553 0551 0549 953.0 930.0 934.0 934.0
5% 9430 0572 0571  0.569 947.0 944.0 943.0 9440
5 9560 0592 0591  0.588 €610 958.0 953 0 9530
31 9700 0612 0611 0608 975.0 973.0 964 0 964.0
52 0850 0632 0631 0627 989 0 986 0 974 0 9740
43 9980 0652 0651 0647 1003.0 999.0 085.0 985.0
31 10150 067l 0671 0667 10160 1010.0 997.0 997.0
35 10200 0691 0691 0686 1030.0  1026.0 1009 0 1008.0
% 10300 © 711 0711 0.706 1044.0 10410 1021.0 1020 0
5 10550 0731 0730 0725 10580 10540 1035 0 1034.0
38 10700 0750 0750 0745 10730 1068.0 1050.0 1048.0
Yoo 10800 077l 0770 0765 1087.0 10830 1065.0 1064.0
0 11100 0790 0790 0784 11000 1096.0 1082.0 1079.0
0 11100 0810 0810 0804 11190 11070 11000 1097.0
2 11450 0830 0830 0824 11500  1141.0 11200 117.0
13 11700 0850 0850 0 343 11790 11690 1141.0 1138.0
4 11900 0870 0870 0863 12070 11970 1166 0 1162.0
B 12100 088 0890 0882 12350 12250 1196 0 1189.0
o 12600 0909 0910 0902 12770 12500 1230.0 1223.0
713300 092 0929 0922 13370 1316.0 12730 1263.0
813900 0919 0949 0941 1397.0 13730 13290 1313.0
0 1800 0969 0969 0961 14890 14370 1413 0 1388.0
50 17000 0939 0989 0950 1678.0 15620 15750 1509.0
RMSE 9 03 22.15 31.07 40.42
Max|Q(fatted) — O formula)l 9220 138 0 125 0 1910

Q) = Flood estimated from plotting position formula for the same non-exceedance probability
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Table 6.3 Numerical comparison of P}, GEV, and Weibull formulas (C,y = 0.7, N = 24).

Dee River P3 distribution GEV distribution

m  Qpuea P3  GEV  Weibull Q (P3) Q@ (Weibull) | @ (GEV) Q (Weibull)

(m?/s)

1 165.0 0028 0028  0.040 181.0 189.0 165.0 181.0
2 191.0 0069 0069  0.080 203.0 207.0 195.0 203.0
3 2100 0110 0.110 0120 217.0 219.0 214.0 218.0
4 2250 0152 0151  0.160 228.0 230.0 228.0 231.0
5 2400 0193 0.193 0200 239.0 241.0 240.0 242.0
6 2510 0234 0234  0.240 248 0 250.0 2500 252.0
7 9260.0 0275 0275  0.280 257.0 259.0 260.0 262.0
8§ 268.0 0317 0316 0320 267.0 268.0 270.0 271.0
9 2800 0358 0.357 0360 276 0 277 0 279.0 280.0
10 2000 0399 0.398 0400 285.0 286.0 288.0 289.0
I 2990 0440 0439 0440 294 0 294.0 2970 298.0
12 3080 0481 0480 0480 303.0 303.0 3070 307.0
13 3200 0523 0522 0520 314.0 313.0 316.0 316.0
14 3300 0564 0563  0.560 327.0 326.0 326.0 326.0
15 3350 0605 0604  0.600 339.0 337.0 336.0 336.0
16 3490 0646 0.645  0.640 351.0 349.0 347.0 346.0
17 360.0 0688 0686 0680 364.0 361.0 358.0 357.0
I8 3700 0729 0727 0720 376 0 373.0 371.0 369.0
19 3850 0770 0768  0.760 388.0 385.0 385.0 383.0
20 4020 0811 0809  0.800 403.0 397.0 401.0 398.0
20 421.0 0852 0850  0.840 427.0 420.0 420.0 416.0
22 4530 0894 0.892  0.880 450.0 442.0 454.0 437.0
23 4850 0935 0933 0920 493.0 476.0 480.0 466.0
24 545.0 0976 0974 0960 561.0 522.0 5450 513.0
RMSE 6.7 8.9 2.3 9.7
Max|Q(fitted) — Q(formula) 16.0 24.0 5.0 32.0

()( ) = Flood estimated from plotting position formula for the same non-exceedance probability
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6.2 Historical Flood Records

This section involves the application of plotting position formulas developed
in the present study to actual flood records which contain some extraordinary
floods. The application is divided into three parts. First, the P3 and GEV formulas
[egns. (4-16) and (4-17)] which have been developed for systematic flood records ae
applied to historical flood data, and their performances are assessed. Second, effects
of the uncertainty in the identification of flood base level (denoted here as Qg) are
examined. Third, the plotting position formulas for systematic and historical flood
records are compared in terms of the bias in flood quantile estimation. In addition,
the E-W formula based on the well-known Weibull concept (Hirsch, 1987) is also
considered in this numerical application.

Similar to the comparison approach used in the previous section for systematic
flood samples, the floods quantiles estimated by plotting position formulas are also
compared with those computed by somne conventional distribution fitting methods
For historical flood records, the method of historically weighted moments, which has
been widely used in practice (see, e.g., Condie and Lee, 1082), is employed in this
study for estimating the parameters of fitted distributions. In the case of systematic
flood records, the method of moments (for P3 distribution) and the PWM methaod
(for GEV distribution) will be used for parameters estimation, as described in the
previous section.

The application of the plotting position formulas proposed to actual flood sam
ples with historical information will be 1llustrated by two examples using flood data
at two sites: the Huangbizhuang River at Huangbizhuang, China (UNESCO, 1957),
and the Boyne River near Carman, U.I\. (Pil(.)n et al., 1983). These two station,

give two disparate examples representing two 1egions with different hydiologie con
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ditions. The record of annual maximum floods for the Huangbizhuang River is
available from 1794 to 1974, and there exist two very large floods that occurred
during the period of systematic gauging (1949-1974). In the case of Boyne River,
there are three extreme floods which were observed during the period of continuous
systematic gauging (1956-1982), and one extraordinary flood which was recorded

in 1893. Results of the comparison are illustrated in the following.

6.2.1 Application of P3 and GEV Plotting Formulas to Historical Flood

Data

As mentioned above, there exist very large floods in the systematic flood records
for the Huangbizhuang and Boyne rivers. The purpose of the present graphical and
numerical comparisons is to assess the perfermance of the P3, GEV and Weibull
formulas when they are applied to these two particular sets of flood data. Fig. 6.4
and Table 6.4 show respectively results of the graphical and numerical comparisons
for the Huangbizhuang River. As compared to the GEV and Weibull formulas, it is
found that the P3 formula gives flood estimates closest to the values computed from
the fitted P3 distribution. Similarly, the GEV formula give the best flood estimates
as compared to those computed from the GEV distribution which is fitted to Boyne
River flood data (Fig. 6.5, Table 6.5).

However, the results shown in Figs. 6.4-6.5 and Tables 6.4-6.5 indicate that,
without censoring the flood records to consider some extreme floods above a given
base level as historical floods, the P3 and GEV distributions did not give a good fit
to the observed data. The bias was found to be largest at the upper end of the plots
(Figs. 6.4-6.5). Hence, the P3 and GEV formulas which have been recommended for

systematic flood records are not appropriate for cases where there exist historical
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Table 6.4- Numerical comparnison of P3, GEV, and Weibull formulas {Cy, = 3 0, N = 25)

Huangbizhinang River

P3 distribution

GEV disttibution

m  Qpuea '3 GEV  Weibull Q (P3) @ (Weibull) | @ (GEV) Q (Weibull)
(m*/s)
1 200 0061 0033 0038 100 50 50 100
2 398 0.100 0073 0077 150 120 350 500
3 550 0.138 0113 0119 200 180 600 G20
4 750 0176 0.153  0.154 300 250 700 700
5 760 0.214 0193 0.192 400 350 800 800
6 920 0.252 0233 0.231 550 480 900 880
7 950  0.291 0273  0.269 600 580 1000 980
8 950 0329 0313 0.308 650 620 1200 1100
9 980 0.367 0353  0.346 700 680 1300 1250
10 1100 0.405 0392 0 385 750 720 1460 13350
11 1160 0.443 0432 0423 780 760 1500 1450
12 1260 0.481 0472 0 462 800 790 1600 1550
13 1300 0.520 0512 0500 850 830 1800 1700
14 1330 0558 0552 0538 900 880 2000 1900
15 1370 0596 0592 0577 1000 970 2300 2200
16 1800 0634 0632 0615 1500 1450 2400 2350
17 1850 0672 0672 00654 1750 1700 2600 2500
18 2080 0711 0711 0 692 2000 1750 2700 2800
19 2450 0749 0.751 0 731 2300 2100 3000 3000
20 2550 0787 0791 0769 3000 2700 3500 3100
21 3350 0.825 0831 0 808 3500 3200 3800 3400
22 3700 0.863 0871 0.846 4500 4000 4200 4000
23 3820 0901 0911 083 5800 5000 5000 4500
24 12000 0940 0951 0923 7500 6500 6300 5200
25 13100 0978 0.991 0962 11500 9300 10500 7000
RMSE 1090 1398 1351 1870
Max|Q(fitted) — Q(formula) 4500 5500 5700 0800

Q() == Flood estimated from plotting position formula for the same non-excecdance probability
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Table 6.5: Numerical comparison of P3, GEV, and Weibull formulas (Cyy =19, N = 27)

Boyne Ruver

P3 distribution

GLEV distribution

m  Quuea P3  GEV  Weibull Q (P3) Q@ (Webull) | Q (GEV) Q (Weibull)
(m®/s)
1 1.2 0038 0027 0036 2 2 1 2
2 55 0074 0064 0.071 4 4 5 6
3 61 0110 0101  0.107 5 5 8 9
4 65 0146 0138  0.143 6 6 10 1
5 74 0182 0174  0.179 8 7 12 14
6 107 0219 0211 0214 10 9 16 17
7 108 0255 0248 0250 11 11 18 19
8§ 114 0291 0284 0286 12 12 20 20
9 139 0327 0321  0.321 14 13 21 21
10 145 0364 0358  0.357 16 15 23 22
11 149 0400 0395  0.393 8 17 25 24
12 193 0436 0431 0429 20 19 26 26
13 194 0472 0468 0464 22 21 29 27
14 238 0508 0.505 0500 25 23 31 30
15 3486 0545 0542 0536 28 26 34 32
16 357 0581 0578  0.571 30 29 36 35
17 3719 0617 0615  0.607 32 31 38 36
18 388  0.650 0652  0.643 35 33 40 39
19 430 0689 0688  0.679 38 36 13 11
20 541 0726 0725 0714 40 39 50 46
21 552 0762 0762  0.750 42 a1 54 52
22 561 0798 0799 0786 50 49 56 55
23 595 083 083 082l 56 54 62 61
24 697 0870 0872 0857 64 62 67 63
25 105.0 0907 0909 0893 73 70 77 72
26 1190 0943 0946  0.929 90 80 95 85
27 1320 0979 0982 0964 119 95 125 105
RMSE 10 14 9 12
Max|Q(fitted) — Q(formula) 32 35 28 33
-
Q( ) = Flood estimated from plotting position formula for the samne non-exceedance probabihty
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floods in the data samples. The use of exceedance-based formulas (Section 4.2)
would significantly improve the fitting of theoretical distributions to the observed

historical flood data, as will be shown in the following sections.

6.2.2 Effects of the Uncertainty in Flood Base Level

One of th difficulties in the analysis of historical flood records involves the
accurate determination of a base level Q, above which all flocds are considered
as historical floods. In practice @, is frequently established as being equal to the
smallest known historical flood. In the following, an objective method for selecting
an optimum value of @, will be proposed using as selection criterion the best-fit
of the assumed theoretical distribution to the observed data. More specifically,
the best-fit condition is assessed using the graphical comparison between empiri-
cal (plotting position) and fitted probabilities, as well as the numerical comparison
between flood estimates from plotting position formulas and fitted theoretical dis-
tributions (in terms of the minimum RMSE and the smallest absolute difference).
To illustrate the use of the proposed method for identifying an optimum value of
Qo, the effects of various base levels on the performance of fitted theoretical dis-
tribution are examined. The sensitivity analysis is performed using historical flood
data of the two rivers considered in the previous section.

For Huangbizhuang River, a close examination of the flood record suggests
some different base leveiz (9000 m® /s, 10006 m®/s and 13000 m®/s) which could
be selected for the sensitivity analysis. Results of graphical and numerical com-
parisons for the E-P3 formula and the fitted P3 distribution are shown in Fig 6.6
and Table 6.6, respectively; and in Fig. 6.7 and Table 6.7 for the E-GEV formula

and the fitted GEV distribution . It can be seen that, with a base level selected

87




Q (r?/l)

30000

27000

24000

21000

18000

15000

Q (o /3)

12000

ouoo

4000

agoo

30000

27000

24000

21000

18000

16000

12000

Q (e 73)

8060

a000

3000

30000
l pl H{EHM
fPs 27000 B
1AL FipTED
24000 -1 S //
21000 - — =
' L
o B Qo = 9000 m3/s
18000 -+
i'd
12000 - —
9000 -1 /jf
L
8000 -
/J/‘ o
3000 Iz
o @0
A8

PEARSON TYPE 3 PROBABILITY PAPER, SKEWNKESS COLFFICIENT =3 ¢

R\

AN

av

PEAR3ON TYPE 3 PROBADILITY PAPER, SKEWNESS COEFFICIENT =23 0

Bl ol d|Els
mONEr 1cAL FiRTHD /
R a//
T v
P4 Qo = 10000 ma/s

T - /D
. - . 'V
R H-1- 1 —
Hhl '
A0 =

raki

)

N

'S

PEARSON TYPE 3 PRODABILITY PAPER, SKEWNEIS COEFFICIENT =3 0

-1 =1 rHIa
i . 1Al FIPTED /
st o YV
I pd
1 I
15l Qo = 13000 1n3/.'s
g
-l ._.7z/
s
L ) -
ﬁ: i1

3

o4,

-

Figure 6.6 Sensitivity of P3 distribution for different base levels

(Huangbizhuang River)

88



ﬁa’\

PN

g
E |
‘Table 6 6 Sensitivity of P3 distribution for different base levels (ITuangbizhuang Raver). :
3
Huanghizhuang River ;
3
Qpatred Qg = 9000 m*/s Qo = 10600 m®/s Qo = 13000 m3/s g
(m*]3) i-P3 Qs — P3) L-P3 QE-P3) E-P3 Q(E - P3) ;
(m3/s) (m?/s) (m3/s) j
R b
200 0077 100 0077 100 0078 100 3
308 0 116 400 0116 400 0117 400
550 0 155 500 0115 500 0156 500 ;
750 0193 600 0195 610 0196 610 3
760 0 232 700 0234 710 0.235 710
920 0271 800 0273 810 0.275 810
vhH 0310 850 0312 860 0314 860
950 0 349 9500 0 351 910 0 353 910
980 () 388 950 () 390 960 0393 960
1100 0427 980 0 430 990 0.432 990
1160 0166 1000 0469 1050 0471 1060
1260 0 505 1200 0508 1210 0511 1220
1300 0 544 1250 0 547 1260 0 550 1260
1330 0 H&3 1300 0 586 1350 0590 1360
1370 0 622 1400 0 625 1450 N 629 1500
1800 0 661 18J0 0 665 1700 0 668 1750
1850 0700 1850 0 704 2000 0708 2100
2080 0739 2000 0 743 2500 0 747 2600
2150 0777 3000 0 782 3100 0 786 3200
2550 {) 816 3200 ) 821 3900 0 826 4000
3350 ) 855 1100 0 860 4900 0 865 5000
3700 0 894 5500 0 899 6000 0 905 6100
3820 ) 933 7000 0938 8000 0.944 8500
9630 ) 965 10000 - - - -
11500 0 970 11200 0 970 11200 - -
12000 0 974 12000 0 975 12000 0975 12000
13100 0979 12900 0979 12900 0 980 12900
13500 0 983 13000 0 984 13000 0 984 13000
14750 0 988 15100 0 938 15100 0989 15100
17150 0 993 17000 0 993 17600 0993 17000
23750 0 907 21900 0997 21900 0 997 21900
RMSE 7Y 1027 1135
Max|Q ruieed = Qformuta J180 4180 4680

Q() = Flood estumated from plotting posttion formula for the same non-exceedance probability
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'an

‘Lable 6 7 Sensitivity of GEV distribution for different base levels (Huangbizhuang River)

Huanghizhuang Raver

Qputted Qn = 9000 m"’/.s Qo = 10000 m?/s Qo = 13000 m3/s
(m?/s) E-GEV QE-GEV) E-GEV Q(E-GEV) E-GEV Q(E - GEYV)
i (m?/s) (m3/s) (m3/s)
A 0133 100 0033 150 0033 100
08 0074 600 0075 400 0075 450
Hh0) 0116 800 0116 500 0117 700
750 0157 1000 0158 800 0.159 850
760 0 198 1100 0199 900 0 201 990
920 0 240 1200 0241 1000 0.242 1100
950 () 281 1400 0.282 1100 0284 1200
950 (0322 1800 (324 1200 0326 1300
980) 0 363 1900 0 366 1300 0 368 1500
1100 0 405 2000 0407 1500 0409 1600
1160 0 446 2100 0 449 1700 0451 1800
1260 0 487 2200 0190 1800 0193 2000
1300 (0 Hh29 2500 0532 2000 0535 2200
1330 0 H70 2800 0573 2300 0577 2500
1370 0611 3000 0615 2600 0618 2800
1800 0653 3100 0 656 2900 0 660 3000
1850 () 691 3400 0 698 3100 0702 3200
2080) 0735 3600 0739 3500 0744 3600
245() 07T 4000 0781 3600 0786 4000
255() 0 RI8 4300 0 823 4000 0 827 4300
3350 0 859 5000 0 864 5000 0 869 5000
3700 0 900 6200 0 906 5700 0911 6000
3820 0942 7000 (0 947 7000 0 953 7400
9650 ) 960 8000 - - - -
11500 0 966 8600 0 966 83300 - -
12000 0971 9200 0971 9000 0971 8900
13100 0 976 9500 0976 9300 0977 9200
13500 0982 10000 0 982 10000 0 982 9900
11750 () O87 11000 0987 10500 0.987 10400
17150 0993 13000 0 993 12500 0993 12400
23750 0998 18000 0 998 17500 0998 17000
RMSE 2203 2263 2369
5750 6250 6750

May Qj,urd - (v)jurmulu

() = Flood estimated from plotting position formula for the same non-exceedance probability
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at 9000 m?® /s, the theoretical P3 distribution shows the best fit to the observed data
(Fig. 6.6). Moreover, at this base level, the RMSE and maximum absolute difference
of flood quantiles estimated from the E-P3 formula and the fitted P3 distribution
were found to be smallest (Table 6.6). Hence, the E-P3 formmula performs much
better than the E-GEV in this case. Therefore, the P3 distribution is the most
appropriate distribution for the Huangbizhuang River, and a flood base level at
9000 m®/s should be selected to obtain the best fit of this distribution vo the
observed historical flood data.

A similar sensitivity analysis procedure can be applied to the historical flood
record of Boyne River. After examining the data, base levels at 100 m’ /s, 120
m® /s, and 150 m® /s can be chosen. Figure 6.8 and Table 6.8 show results of the
sensitivity analysis for the E-P3 formula and the fitted P3 distribution. Results
for the E-GEV formula and the fitted GEV distribution are presented in Fig. 6.9
and Table 6.9. It is found that, at a base level of 100 m’® /s, the GEV distribution
provides a best fit to the data (Fig. 6.8). Further, at this base level, the RMSE and
maximum absolute deviation of flood quantiles estimated from the E-GEV formula
and the fitted GEV distribution were found to be minimum (Table 6.8). Therefore,
the GEV distribution is more suitable than the P3 for this river; and the base level
should be selected at 100 m?®/s to obtain the best fit of the GEV to the observed

data.
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Table 6.8: Sensitivity of I'3 distribution for different base levels (Boyne River).

Boyne River

Qystted Qo = 100 m3/s Qo = 120 m¥/s Qo = 150 m¥/s
(m3/s) E-P3 Q(F — P3) E-P3 QE - P3) E-P3 Q(E - P3)
_ (m3/s) (m3/s) (m*/s)
1.2 0047 1 0039 05 0 036 2
5.5 0.086 2 0.076 1 0072 5
6.1 0.124 3 0113 2 0.108 6
6.5 0163 4 0149 3 0144 8
74 0.201 5 0.186 5 0 180 10
10.7 0.240 6 0 223 6 0215 12
10.8 0278 9 0 259 9 0 251 16
114 0.317 10 0.296 10 0.287 1
139 0 355 11 0.333 12 0323 20
14.5 0.394 12 0.369 15 0.359 22
14.9 0.432 15 0 406 18 6 395 24
19.3 0471 16 0 143 20 0430 26
194 0 509 17 0 480 24 0 166 30
238 0.548 18 0516 20 0 502 32
34.8 0.586 22 0 553 30 0538 35
357 0.625 28 0 590 32 0571 40
379 0.663 32 0 626 36 0.610 44
38.8 0702 35 0 663 40 0 646 16
43.0 0.741 40 0 700 14 0.681 52
54.1 0779 45 0.736 5 0717 56
55 2 818 52 0.773 55 0 753 62
56.1 0.856 62 0810 64 0.789 68
59.5 0.895 65 0 846 73 0.825 8
69.7 0933 90 0 883 84 () 861 88
1050 0.967 124 0 920 110 0 896 100
119.0 0976 140 0.956 120 0932 116
132.0 0.985 154 0.987 190 0 968 150
187.0 0.995 200 0.995 210 0 996 225
RMSE 9 13 11
Max|Q itted ~ Qformua 220 58 0 380

O() = Flood estimated from plotting position formula for the same non-exceedance probability
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Table 6.9: Sensitivity of GEV distribution for different base levels (Boyne River).

Boyne Raver

Qfittea Qo = 100 m3/s Qo = 120 m3/s Qo = 150 m?/s
(m¥]s) | EGEV | O —GEV) | EGEV | Q(E —GEV) | EGEV | O(F = GEV)
(m?/5) (/) (n* /)
1.2 0.031 1 0.028 1 0.027 2
b.b 0.070 5 0.065 4 0.063 7
6.1 0.110 6 0.103 7 0099 10
6.5 0.149 7 0.140 9 0.136 15
7.4 0189 10 0177 12 0.172 13
10.7 0228 11 0.214 15 0.208 20
10.8 0.268 13 0 252 17 0245 21
114 0.307 15 0.289 19 0.281 23
139 0.347 18 0326 21 0.317 25
14.5 0.386 20 0.364 22 0.354 20
149 0426 21 0401 25 0.390 28
19.3 0.465 24 0.438 28 0426 30
19.4 0.505 27 0475 30 0463 32
23.8 0544 30 0513 32 0499 35
348 0.584 34 0 550 35 0535 38
35.7 0.623 36 0587 38 0571 40)
379 0.663 38 0625 410 0608 12
388 0.702 41 0.662 44 0 644 45
43.0 0.742 46 0 699 18 0.680 18
54.1 0.781 54 0737 52 0717 H2
55.2 0.821 56 0.774 5H 0.753 H5
56.1 0 861 62 0.811 60 0789 H8
59.5 0.900 72 0 848 66 0 826 65
69.7 0.940 87 0.886 73 0.862 73
105.0 0.964 106 0.923 86 0.808 79
119.5 0.974 121 0 960 103 0935 88
132.0 0.985 134 0.985 135 0.971 115
1870 0.996 187 0995 172 0.996 170)
RMSE 5 8 12
Max Qflttcd - Qformula 16 3 190 310

Q(-) = Flood estimated from plotting position formula for the same non-exceedance probability
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6.2.3 Comparison Between Plotting Formulas for Sysiematic and Histor-

ical Flood Records

In Section 6.2.1, it has been shown that it was not appropriate to analyze
historical flood records using plotting position formulas (e.g., P3 and GEV formulas)
which were derived for systematic data. In the following, graphical and numerical
comparisons of flood estimates from formulas recommended for systematic records,
and from those suggested for combined historical and systematic data are carried
out in order to give a general impression of the magnitude of the differences between
results. The performances of P3 and E-P3 formulas are assessed nsing flood data of
the Huangbizhuang River since the P3 distribution has been shown to be the most
suitable for this river (Section 6.2.1). Similarly, results of flood estimates from GEV
and E-GEV formulas are compared using Boyne River flood record. Further, the
optimum base levels determined in the previous section for Huangbizhuang and
Boyne Rivers are used in the analysis of historical flood records in the present
comparisons. Finally, the E-W formula is also considered in this comparative study
because of its popularity in practice, as mentioned above.

For the Huangbizhuang River, results of the graphical and numerical com-
parisons between P3 and E-P3 formulas are shown in Fig. 6.10 and Table 6.10,
respectively. It can be seen that the use of the E-P3 for historical flood data pro-
vides the minimum RMSE and the smallest bias in flood estimates as compared to
those given by the P3 and the E-W (Table 6.10). Results shown in Fig. 6.10 indi-
cate also that the E-P3 formula appears to be preferable to the E-W. Similarly, for
Boyne River, it was found that the E-GEV formula provides the best performance

as compared with the GEV and E-W lormulas (Fig. 6.11 and Table 6.11).
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Table 6 10: Comparison of E-P3 and E-W formulas.

& Huangbizhuang River
Systematic Systermatic + Historic
leltrd QO = 9000 m3/s
(1n3d/s) P3 Q(P3) E-P3 Q(E - P3) E-wW QE-W)
(m?/s) (m®/s) (m?/s)
200 0 061 100 0.077 100 0 040 50
308 0.100 150 0.116 400 0080 150
550 0138 200 0.155 500 0.119 420
750 0.176 300 0.193 600 0.159 550
760 0.214 400 0232 700 0.199 650
920 0.252 550 0.271 800 0.239 750
950 0.291 600 0310 850 0.279 820
950 0.329 650 0.349 900 0.319 880
9380 0 367 700 0 388 950 0.358 930
1100 0 405 750 0427 980 0398 970
1160 0.443 780 0.466 1000 0.438 990
1260 0 481 800 0 505 1200 0.478 1100
1300 0.520 850 0.544 1250 0518 1220
1330 0.558 900 0583 1300 0 558 1280
1370 0.596 1000 0.622 1400 0.597 1350
1800 0.634 1500 0661 1800 0.637 1500
1850 0.672 1750 0.700 1850 0.677 1820
2080 c.711 2000 0.739 2000 0.717 1900
2450 0 749 2300 0777 3000 0.757 2900
2550 0.787 3000 0816 3200 0.797 3100
3350 0 825 3500 0.855 4100 0836 4000
3700 0.863 4500 0894 5500 0.876 5000
3820 0.901 5800 0.933 7000 0.916 6600
9650 - - 0.965 10000 0.961 9800
11500 - - 0970 11200 0.966 10000
12000 0.940 7500 0.974 12000 0.971 11200
13100 0.978 11500 0.979 12900 0.975 12100
13500 - - 0.983 13000 0.980 12900
750 - -~ 0.988 15100 0985 14000
17150 - - 0993 17000 0.990 15600
23750 - - 0997 21900 0.995 18500
RMSE 1090 779 1212
Max|Q itced = Qformuta 4500 3180 5250

Q( ) = Flood estimated from plotting position formula for the same non-exceedance probability

g
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Table 6.11° Comparison of E-GEV and E-W formuias.

Boyne River

Systematic Systematic + Historic
Q]t“ed QO = 100 ma/s
(mn3/s) GEV Q(GEYV) E-GEV QH{E - GEV) E-W NUE — W)
(m3/s) (m3/s) (m/s)
1.2 0.027 1 0031 1 0.038 2
55 0064 5 0.070 5 0.076 5
61 0101 8 0.110 6 0.115 6
65 0.138 10 0.149 7 0153 8
74 0174 12 0.189 10 0.191 10
107 D211 16 0.228 11 0.229 12
108 0 248 18 0 268 13 0.268 13
114 0 284 20 0 307 15 0.306 16
139 0.321 21 0 347 18 0.344 17
14 5 0358 23 0.386 20 0.382 19
14.9 0.395 25 0426 21 0.420 22
19.3 0.431 26 0.465 24 0.459 23
19.4 0.468 29 0.505 27 0.497 26
238 0505 31 0.544 30 0.535 28
348 0 542 34 0.584 34 0.573 32
357 0.578 36 0.623 36 0.612 35
379 0.615 38 (G.663 38 0.650 37
388 0652 40 0 702 41 0.688 39
43.0 0 688 43 0 742 46 0.726 42
54 1 0.725 50 0.781 54 0 764 50
55 2 0.762 54 0.821 56 0.803 55
561 0.799 56 0.861 62 0.841 60
595 0.835 62 0900 72 0879 66
097 0.872 67 0 940 87 0.917 78
1050 0.909 77 0.964 106 0.964 106
1190 0 946 95 0.974 121 0.973 115
132.0 0 982 125 0.985 134 0.982 128
1870 - - 0.996 187 0.991 155
RMSE 9 5 7
Man{Qpuer=2 = Qormula 28 16.3 32

t2( ) = Flood estumated from plotting position formula for the same non-exceedance probability
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In summary, it is important to recognize the fundamental difference between
a flood record with historical and systematic data and a record which is entirely
systematic. Depending on the nature of the data sample, the choice of exceedance
plotting formulas (E-P3, E-GEV) rather than their traditional counterparts (I3,
GEV) could significantly improve the estimation of floods. Further, the proposed
objective method for identifying the base level for historical flood data analysis
using the special P3 and GEV probability papers developed in the present study

demonstrate the convenience in the use of these papers in practice.
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CHAPTER 7
CONCLUSIONS

The following conclusions can be drawn from this study :

(1) The PWM method was found to be suitable for the analytical derivation of
exact plotting positions for P3 and GEV distributions. Further, it was shown that
the estimation of exact plotting positions using the PWM procedure was preferable
to both the direct numerical integration method and the Monte Carlo simulation
technique.

(2) For practical applications, simple unbiased plotting position formulas have
been developed for P3 and GEV distributions, and for both systematic and historic
flood records. It was found that the proposed formulas provided a better approxi-
mation to the exact plotting positions than several existing formulas. In particular,
the formulas developed in this study for historical flood data can provide less bias
in discharge estimation than several existing formulas.

(3) As compared with existing plotting positions, the formulas suggested in this
study are conceptually more flexible and computational more convenient because
they can take explicitly into account the skewness coefficient of the underlying
distributions, and thus can be used for both symmetrical and non-symmetrical
distributions.

(4) The well-known Weibull and E-W formulas were shown to be biased for both

P3 and GEV distributions. Therefore, they should be used only for the uniform
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distribution for which they were specifically derived. Further, it was noted that,
although Arnell formula was especially recommended for the GEV distribution,
results given by this formula were found to be as biased as those obtained from the
Weibull formula.

(5) Results of numerical examples using actual flood data have iudicated the
adequacy of the new plotting position formulas developed in this study. Therefore,
it can be concluded that the proposed plotting position formulas are the most
appropriate for ithe P3 and GEV distributions.

(6) Finally, the development of special probability papers for the P3 and GEV
distributions as suggested in this study would provide a convenient and practical

tool for the application of these distributions in engineering practice.
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STATEMENT OF ORIGINALITY

To the best of the author’s knowledge, this investigation represents the follow-
ing original contributions to the development of new plotting position formulas for
some well-known distributions in engineering hydrology :

(1) The Probability Weighted Moment (PWM) theory was first used to find
the exact plotting positions for P3 distribution.

(2) New Plotting Position formulas for P3 and GEV distributions are developed
for use with systematic flood records.

(3) New Plotting Position formulas for P3 and GEV distributions are developed
for use with historical flood records.

(4) The probability papers for P3 and GEV distributions are first developed

for use in engineering application.
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Probability Papers for Pearson Type III Distribution.

113



1448

PEARSON TYPE 3 PROBABILITY PAPER, SKEWNESS COEFFICIENT = 0.0

S R — — N -
—{~ e —— - — —=t— —
L S —t~-HHH — _
— ]
PO O I . | -
—— +—F- —t F-—1

G001 001 .01 1 .2 .3 4 .5 .8 .7 .8 g 98 89 998 899 .8888




SII

PEARSON TYPE 3 PROBABILITY PAPER, SKEWNESS COEFFICIENT = 0.1

.0001 .

001

o1

.88

.98

.298 .999 .9998




911

PEARSON TYPE 3 PROBABILITY PAPER,

SKEWNESS COEFFICIENT = 0.2

A s S AN Y O O O O A I
) - i
1
{ !
0001 .001 D1 .05 1 .2 .3 4 35 g .7 ] g8 29 008 99H 9998




st

8866 "

666" 866"

88°

868"

[ch)

[1¢]

10°

100°'1000°

€°0

= INIHIDIJJAHOD SSHNMIMS

"¥HdVd ALITTIEVEHOUYd € HAJAL NOSuvid

117




811

PEARSON TYPE 3 PROBABILITY PAPER, SKEWNESS COEFFICIENT = 0.4
SN O § (D N N 7 I N
1 ___[_1_ I _ -
0001 00t 01t g8 98 998 988 29898

R ot




611

P

.0001 001

.01

.98

.99

.088 .9989

.0098



s T

021

PEARSON TYPE 3 PROBABILITY

PAPER, SKEWNESS COEFFICIENT

@,

001

01

[y

[]]

28

o9

288 998

998




8686886 ° 666" BB6" 66° g8° 6" 8- g- T° 10" 100°
| |
R HARRRHRRHAIAN it
4°0 = INIIDIAAH0D SSINMEMS ‘¥ddVd ALITIEVHOMd € AdAL NOSHUVAJ
et

121

-

Ll




(AA

PEARSON TYPE 3 PROBABILITY PAPER., SKEWNESS COEFFICIENT

0.8

.98

.89

.898 .899

.99008




A

PEARSON TYPE 3 PROBABILITY PAPER,

SKEWNESS COEFFICIENT = 0.9

— =

.001.01 1 .5 .8 .9

.98

.99

.98 .999

.9998




68686  B6686

668 B66 56° 88"

G . 10 100

0'1 =

INEIDIAAHOD SSHNMIMS ‘¥dddvVd

ALIIIEVHOdd €

ddAL NOS3VHd

124




N %
PEARSON TYPE 3 PROBABILITY PAPER, SKEWNESS COEFFICIENT = 1.1
ot o J——-‘ ——
25 — JUG R U A - ==t
"t:; 41 — —— U
[%4]
- - »—_.—_.—I—L.—_H__L_
L - - —— — —
.001.01 .1 .5 .8 .9 .98 .99 .988 . 899 .9998.8989




Ty

PEARSON TYPE 3 PROBABILITY PAPER, SKEWNESS COEFFICIENT = 1.2

921

.98 a9 998 098 9998 .0988

[94]
o
w

co1 01 .1




6666° 8666° 686" 868" 66"’ 88" 6" 8’ G’ 1" 10°

]
I
T
|
|
| - HiHH 8
SEmilinie
€1 = INHIDIJAH0D SSHNMEMS ‘¥ddVd ALITIEVEOMd € ddAJ NOSYVHd
e’ gt




821

PEARSON TYPE 3 PROBABILITY PAPER, SKEWNESS COEFFICIENT = 1.4
M- -

REEE

-
o1 1t 5 B 9 98 .89 .998 .899 9998 .9999




6¢I

PEARSON TYPE 3 PROBABILITY PAPER, SKEWNESS COEFFICIENT = 1.5
H—1H-
44
WS S N O O U A N N S U QU S — '
.01.1 .5 .8 .9 .98 .99 .998 .998 .9908 .9999




66866° B668 686" 888

66"

86"

9'7T = INHIDIJJHOD SSHNMIMS ‘dAIVd ALITIEVHOUd € HAJdAL NOSuvAd

K

130




1€

PEARSON TYPE 3 PROBABILITY PAPER, SKEWNESS COEFFICIENT

=1.7

.01,

.98

.99

.998

.909

.0998 .9998



A

6666 °

88866 ° ges’ gee’ 68 98 8 8] c 1

10

g

1

INHIDIHAH0D SSHUNMIDIS ‘dAdVd ALITIAVEHQYd € HJAJL NOSMvidd

132




6666 8666

666 °

866 °

66° 86° 6° g’ g’

e

6°1T = INHIDIAAHOD SSHANMIDIS

‘MAAVd ALITIEVEHOUd € ddAL NOSuvid

133

il




868668 88868° 866 ° 868 ° 868" 86° 6° 8 ]

1

134

0°2 = INHIDILAHOD SSHNMINS ‘dUdvd ALITIEVAOYd €d HJXL NOSUVid




ael

PEARSON TYPE 3 PROBABILITY PAPER, SKEWNESS COEFFICIENT = 2.1

#0

.5 .8 -9 .98 .98 .998 . 999 .9098 .9999




9¢1

o>

PEARSON TYPE 3 PROBABILITY PAPER, SKEWNESS COEF.ICIENT = 2.2

.98 .99 .998 .999 .9998 .9989

[44]
m
(o]




6668°

8666 ° 866" 868"

68° 86" 6’ 8’ g

R—

‘e

ANUIDTAAT0D SSIANMANS

‘YIdVd ALITIEVEHOdd € AdJAL NOS¥vid

137




PEARSON TYPE 3 PROBABILITY PAPER, SKEWNESS COEFFICIENT = 2.4

8¢l

A 5 .8 g 98 .88 998 .989 .0088 .9989




6666 "

8666 "

666" 866 °

68’ 88° 6° 8° g’

G-

(4

INHIODIdAHOD SSHNMIDIS

‘WHAdVd ALITIEVEHOYd € ddAL NOS¥VEd

139




0] 41

PEARSON TYPE 3 PROBABILITY PAPER, SKEWNESS COEFFICIENT = 2.

6

986

98

.998

999

.9898

.89888

<«




66668° BB66°

868"

g66

66°

g8°

L2 =

INHTOTAHAHOD

SSUNMENS 'UEJVd ALITIdvVHONd €

ddAL NOSIVid

141




6668° 8666° 868 866 66 86" 6 g S

142

8°2 = INMIDIJJHOD SSHNMIDNIS 'dAdVd ALITIEVEOMd € HdAL NOSuVviad




Pl

PEARSON TYPE 3 PROBABILITY PAPER, SKEWNESS COEFFICIENT

= 2.

e

9

.5 .8 .2 .98 .89 .9588 .989 .9908

.9998




6666 °

86686 666" 866 °

66° B6 " 8 g

0"

£ =

INHIDIAAH0D SSHNMHEMS

‘yddvd

ALI'TIHVHOdd €& ddAL NOSUVEd

144




APPENDIX B

Probability Papers for General Extreme Values Distribution.
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