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Abstract

We present methods for the efficient simulation of various types of deformable bodies by

using non‑deformation as a measure for model reduction. Our algorithm identifies non‑

deforming elements as those with low strain rates over multiple frames. We use adaptive

rigidification as a tool to create approximation methods for the simulation of deformable

bodies. We first use the method in the context of soft bodies, yielding simulations often

orders of magnitude faster than the elastic simulations. Moreover, we present an oracle

that allows rigidified elements to become elastic again as needed. Then, we adapt our

method to thin shell models and tackle their respective challenges. Namely, we present

how to handle rigidifying bending elements and an edge filter to improve the elastification

oracle on contacts that cause bending deformation. Additionally, we measure the impact

of numerical scaling on the conditioning of our system. We also present a fundamentally

different view of rigidification, where we generate a sequence of resolutions with rigid

patterns for an iterative multi‑layer method in constraint‑based approaches. In this last

contribution, we aim to find the ground truth solution through a fast solver, rather than

only generating visually consistent simulations. We demonstrate our results on various

examples in 2D or 3D. We also dive into the implementation of the algorithms.

x



Abrégé

Nous présentons des méthodes pour la simulation efficace des corps déformables, en

utilisant la non‑déformation comme critère de réduction. Les éléments non déformables

sont identifiés comme ceux ayant des taux de tension faibles sur plusieurs pas dans le

temps. Nous utilisons la rigidification adaptative comme un outil pour créer des méthodes

d’approximation pour la simulation d’objets déformables, ce qui produit des simulations

souvent plusieurs ordres de magnitude plus rapides que les simulations élastiques. Nous

présentons aussi un oracle qui permet aux éléments rigidifiés de redevenir élastiques

lorsque nécessaire. Ensuite, nous adaptons notre méthode aux modèles de maillages trian‑

gulaires minces et relevons leurs défis respectifs. Plus précisément, nous présentons com‑

ment gérer la rigidification des éléments lors de la flexion et un filtre d’arc pour améliorer

l’oracle d’élastification sur les contacts qui provoquent une déformation par flexion. De

plus, nous mesurons l’impact de l’échelle numérique sur le conditionnement de notre

système. Nous présentons également une approche fondamentalement différente de la

rigidification, où nous générons une séquence de résolutions avec des motifs rigides pour

une méthode itérative multigrille dans des approches de résolution de systèmes sous con‑

traintes. Dans cette dernière contribution, nous visons à trouver la solution de référence

grâce à un solveur rapide, plutôt que de simplement générer des simulations visuellement

cohérentes. Nous démontrons nos résultats sur une variété d’exemples en 2D ou 3D et

explorons la mise en oeuvre des différentes parties de la thèse.
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Chapter 1

Introduction

In any standard elastodynamic simulation, interactions between models are governed by

physical laws for realistic simulations. Time integration often requires expensive iterative

solvers that terminate before convergence or introduce significant numerical damping.

Scaling large simulations with many degrees of freedom (DOFs) is typically a challenging

task. Many approximations are set a priori, such as discretizing time according to a fixed

step size and discretizing models into elements. The process of creating well‑shaped

elements is often time consuming. However, precomputing the initial discretization of

models can help alleviate some of the computational stress and adaptive techniques can

then refine or coarsen the objects as needed. As the number of vertices in a scene grows,

reducing the size of the system becomes increasingly important for achieving efficient

simulations.

A well‑known approach for quasi‑static objects is to simulate them as rigid bodies [54],

effectively reducing the numbers of DOFs from three times the number of vertices to

exactly six DOFs: three for linear velocity and three for angular velocity of the entire

rigid body. This drastic reduction allows for faster computations and more efficient sim‑

ulations, making rigid body dynamics particularly suitable for applications where defor‑

mation is negligible or unnecessary. We see an opportunity to extend the use of rigid

bodies to other types of bodies that allow more deformation. Instead of treating the entire

body as fully deformable or fully rigid, our method introduces an adaptive approach by

monitoring deformation and letting collections of elements become rigid as needed. In

regions where the deformation is minimal or falls below a threshold, soft elements can

be simulated as rigid, reducing the computational overhead. The challenge lies in iden‑

tifying these regions in real‑time, determining appropriate thresholds for rigidification,

1



and ensuring smooth transitions between rigid and elastic elements to avoid numerical

artifacts or stability issues.

The goal of this thesis is to use non‑deformation as an indicator for model reduction.

With our methods for adaptive reduction, we aim to achieve fast and accurate simulation

of deformables. This includes not only elastic solids, but also thin shells, and potentially

other deformables such as dirt or snow in future contributions. With our methods for on

demand elastification, physics simulation of solid geometry becomes appropriately input‑

sensitive; the rigid and deformable modelling decision becomes a function of physical

parameters and environmental interactions rather than a guess made prior to runtime.

Through our methods for on‑demand elastification, the decision to model parts of the

geometry as rigid or deformable is no longer a static choice made at the beginning of a

simulation. By transitioning between rigid and elastic states based on active deformation

metrics, our method optimizes computational resources and ensures accurate physical

representation, significantly improving performance and scalability while preserving vi‑

sual consistency. This is the main goal of this thesis, we strive to reach optimal efficiency

for the simulation, while preserving faithfulness to the ground truth simulation.

This thesis brings together novel methods for the simulation of deformable bodies.

Each chapter features a contribution peer‑reviewed and published in either conference

proceedings or scientific journals. All methods show speedups with respect to the ground

truth simulation by approximating motions or using approximations to improve conver‑

gence. In the published work, we provide algorithms for visually consistent and fast

simulations for deformable bodies.

The contributions of this thesis are threefold. First, we investigate the adaptive rigid‑

ification of elastic solids, focusing on how selective rigidification can enhance the per‑

formance of physics‑based simulations while maintaining accuracy. Second, we extend

adaptive rigidification to discrete shell structures, addressing the unique challenges posed

by materials such as cloth and membranes. Using a contact filter, we improve the detection

of elastic deformation for rigidified bodies on first contact. Finally, we introduce a multi‑

layer solver for XPBD that uses hierarchies of rigid patterns to improve convergence of

the solvers instead of generating fast approximations of the scenes.
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3 based on the first paper: A. Mercier‑Aubin, A. Winter, D. I. W. Levin, and P. G. Kry.

Adaptive Rigidification of Elastic Solids. ACM Transactions on Graphics, 41(4):1–11, July

2022. DOI: 10.1145/3528223.3530124. Chapter 4 is based on a second paper: A. Mercier‑

Aubin and P. G. Kry. Adaptive Rigidification of Discrete Shells. Proc. ACM Comput.

Graph. Interact. Tech., 6(3):1–17, Aug. 2023. DOI: 10.1145/3606932. In this contribution,

Paul G. Kry acted as an astounding mentor throughout the whole process of design and

publication of the work. He helped to improve the ideas and provided coaching on how

to better communicate them in a comprehensive way. The same roles and distribution of

contributions were taken by the authors for the Chapter 5 based on the third paper: A.

Mercier‑Aubin and P. G. Kry. A Multi‑layer Solver for XPBD. Computer Graphics Forum,

43(8), 2024. DOI: 10.1111/cgf.15186.

The thesis is structured as follows. In Chapter 2, we provide a detailed review of the lit‑

erature on physics‑based simulation methods. In Chapter 3, we introduce our method for

adaptive rigidification of elastic solids and evaluate its performance in various simulation

contexts. Chapter 4 extends this method to discrete shells, highlighting the unique chal‑

lenges and solutions involved in simulating thin, flexible structures. Chapter 5 presents

our multi‑layer solver for XPBD, detailing its implementation and comparing its perfor‑

mance to traditional XPBD methods. Finally, in Chapter 6, we summarize the key findings

of this work and discuss future directions for research in physics‑based simulation.
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Figure 1.1: Our first two contribution focus on improving speed at the cost of some
accuracy much like remeshing or freezing methods. Our latest contribution lives at the
edge of both speed and accuracy, not allowing performance as fast as rigidification, but
preserving the accuracy of the underlying simulation method.

To illustrate the scope of each of our contributions in relation to other research in the

field, Figure 1.1 features a Venn diagram comparing the focus of each contribution to

the work of others. In this thesis, we present evidence to support that adaptive rigid‑

ification methods hold great promise, particularly for simulations involving localized

deformations. Our assertion is substantiated by our own published results. Furthermore,

our methods can be used to encompass a broader range of models, such as the ones

featured in a surgery simulator where deformation primarily occurs in the regions near

the operation.
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Chapter 2

Background

In the realm of physics‑based animation, objects follow the fundamental principles of

physics to achieve lifelike movements and deformations. To create believable animations,

we must begin by formulating the equations of motion for our materials, which are de‑

rived from their unique properties such as infinitesimal energy formulations.

These formulations can encompass a wide variety of objects. For instance, both a

compressed spring and a squashed cube exhibit valid deformed shapes, though the spe‑

cific calculations for their internal stresses and strains will naturally differ. Similarly, a

rigid body does not need to include elastic deformation to produce valid motions, saving

computation time by only using a center of mass position and body rotation. What unifies

all these formulations is the underlying relationship between energy, deformation, and

forces, as described by Lagrangian mechanics [40].

This thesis introduces a series of advancements in adaptive methods, focusing on im‑

proving computational efficiency while maintaining accuracy of physical systems. The

first major contribution is the development of adaptive rigidification for elastic solids,

which reduces computational costs by treating low‑strain regions as rigid while dynami‑

cally preserving accuracy in actively deforming areas. The method is extended to discrete

shells, addressing the unique challenges of triangular meshes by introducing a discrete‑

curvature‑based oracle for transitioning between rigid and elastic states. Finally, the thesis

proposes a novel multigrid‑like solver that eliminates the need for an external oracle,

instead using hierarchical layers to progressively refine simulations from coarse, rigid

approximations to fully elastic solutions.
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2.1 Elastic Solids

In this context, we present a particular representation of elastic solids, recognizing that

alternative models exist. While Lagrangian mechanics are just one among several physical

models available, it is widely adopted for its capacity to generate highly accurate simula‑

tions that faithfully replicate a broad spectrum of real‑world interactions.

2.1.1 Finite Element Method

The finite element method (FEM) is a numerical method to solve partial differential equa‑

tions, typically found in complex engineering and mathematical problems [21]. FEM finds

applications in various fields such as structural analysis, heat transfer, fluid dynamics,

electromagnetism, and physics‑based animation.

When faced with a challenging problem, employing divide‑and‑conquer strategies

is often wise. To apply the FEM, the first step involves dividing the complex problem

domain into smaller interconnected subdomains or elements. Within each element, an

approximation function, often called a shape function or basis function, is used to repre‑

sent the solution of the problem. These approximation functions are chosen to be simple

and well‑behaved mathematical functions based on the element type and desired accuracy

level. In the case of triangles and tetrahedra, these shape functions take on a piecewise lin‑

ear form, while quadrilaterals are described by bilinear functions, and hexahedra exhibit

trilinear functions [106].

The governing equations are transformed into a set of algebraic equations for the entire

domain by combining contributions from individual elements. The resulting system of

algebraic equations is typically solved numerically, using techniques like direct solvers,

iterative methods, or matrix factorization methods. It is often the case in physics‑based

animation that problems become nonlinear. Nonlinear problems may require iterative

techniques and convergence criteria to stop in a reasonable time.

Once the system of equations is solved, the approximate solution is obtained. Post‑

processing involves extracting useful information from the solution, like displacements,
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Figure 2.1: Voxelized (yellow), tetrahedralized (blue), and surface (red) meshes.

stresses, temperatures, or other relevant quantities, often represented graphically using

visualization tools such as Blender [27].

The finite element method offers versatility, adaptability, and tunable accuracy, mak‑

ing it applicable to a wide range of engineering problems. The accuracy and efficiency of

FEM solutions depend on factors like the choice of elements, mesh refinement, and the

numerical methods.

2.1.2 Discretizing and Embedding

To enhance the performance of a simulator, a reasonable approach is to limit the size of

the inputs. Embedding consists of displaying a high resolution (fine) triangular mesh by

interpolating positions from low‑resolution (coarse) tetrahedral or hexahedral elements.

As stable time integration is expensive, we use the coarse cage to compute the motions of

the models. We encode the mapping x′ = Wx from the reduced coordinates x (coarse

mesh vertices) to the surface vertices x′ in a weight matrix W which is computed at rest

pose like Jacobson et al. [51]. Subsequently, we carry out collision detection on the fine

display mesh, and interpolate the forces back into the cage.

There are two main approaches to discretize and embed a model: tetrahedralization

and voxelization, both of which will be briefly elucidated. In Figure 2.1, we illustrate the

various types of meshes that we present in this section.
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Tetrahedralization This method entails the creation of a tetrahedral mesh (cage) that

surrounds the surface’s triangular mesh. Artists create the cage manually or through

a tetrahedralization software. The software generates a volumetric tetrahedral cage re‑

sembling the surface mesh by inserting new vertices within the surface mesh [49]. These

points serve as the vertices of tetrahedra in the 3D mesh. The exact placement of these

points depends on the specific tetrahedralization algorithm used. In conforming meshes,

the first layer of tetrahedra will have faces exactly matching the surface mesh, but for

typical application the surface mesh need not perfectly match the cage.

Tetrahedral elements are connected to their neighbouring tetrahedra through shared

faces and edges. Establishing these connectivity relationships is crucial for performing

computations in 3D simulations, such as finite element analysis. We use such connectivity

for our adaptive algorithms later in the thesis. Likewise, we use tetrahedralization to

generate the models for our various examples.

Depending on the application, additional steps may be taken to improve the quality

of the tetrahedral mesh. Quality improvement aims to ensure that the tetrahedra are well

shaped and do not exhibit extreme aspect ratios or volume distortions. Techniques like

mesh smoothing or optimization algorithms may be applied for this purpose. For every

vertex of the display mesh, we compute the barycentric coordinates with respect to the

nearest tetrahedron in the surface mesh. Time integration deforms the cage, and vertices

on the surface mesh move to preserve barycentric coordinates. It is worth noting that this

approach can lead to visual artefacts, especially along the boundaries of each element in

the cage, particularly when employing coarse resolutions.

Voxelization The process of voxelization on a mesh is to create a grid‑shaped cage made

out of hexahedra called voxels, which stands for volume elements. The hexahedra are

usually of equal sizes and cover the full mesh. We create the cage from the rest pose of

the display mesh to fit it as tightly as possible [88]. Compared to tetrahedralization, it

only requires an argument to select the number of subdivisions. For every point of the

display mesh, we compute the barycentric coordinates of its vertices within the nearest
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ϕ(X⃗)

X⃗

x

Figure 2.2: A 2D continuous model is discretized and embedded in squares, then de‑
formed, and interpolated within the elements.

hexahedron in the cage. We illustrate this process of discretization and deformation in

Figure 2.2.

Tetrahedralization can create a more accurate and potentially smoother representa‑

tion of the object’s surface that allows conforming meshes unlike voxelization. However

voxelization can be faster and more efficient than tetrahedralization, especially for large

objects. Tetrahedralization is commonly used in finite element analysis and animations

softwares, while voxelization is commonly used in medical imaging, computer‑aided de‑

sign, and ray marching algorithms.

2.1.3 Deformation Gradient

From a discretized mesh, we compute individual element energies with the assumption of

continuum. Using the energies, we can derive the per element equations of motions. The

energy density we utilize for formulating the equations of motion in elastic simulations

only requires local information about the deformation. This is captured by the deforma‑

tion gradient, which provides a description of how material points are displaced within a

small region, i.e., an element.

The elastic potential energy depends on the mesh deformation [99]. Each element has

deformation functions ϕ : R3 → R3 that map the rest‑state positions X⃗ ∈ R3 in material

frame to the deformed‑state positions x⃗ ∈ R3 in the world coordinate frame as shown in
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Figure 2.3: Deformation function for a 3D tetrahedron element from Sifakis et al. [99]

Figure 2.3. The vector X contains all of the rest‑state vertex positions X⃗ of an elements.

Likewise, the vector x contains all of the deformed‑state vertex positions x⃗ for the same

element. Inside the elements, the deformation function ϕ interpolates the position from

vertex displacements, i.e., barycentric coordinates for triangles and tetrahedra. For each

element, we compute a deformation gradient

F =
∂ϕ(X⃗)

∂X⃗
, (2.1)

which is useful to define strain measures. In our papers, we describe the deformation

gradient for volumetric elements as F = Bx where B is a constant kinematic mapping

and reuse that throughout our research as a step to cheaply compute deformation. As a

reminder, here x is the vector containing all of the world space positions for the vertices

of an element.

To precompute the B matrix, we first determine the per‑element material frame [99]

Dm =
[
X⃗1 − X⃗0, X⃗2 − X⃗0, X⃗3 − X⃗0

]
, (2.2)

also called the reference shape matrix. We then find the constant component of our map‑

ping

D =
[
−1D−1

m , D−1
m

]T
, (2.3)
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where bold 1 is a row vector of ones. This extra row allow us to have equal and opposite

contributions

ϕ0(X⃗) = 1− ϕ1(X⃗)− ϕ2(X⃗)− ϕ3(X⃗), (2.4)

for the particle at the center of the frame when mapping the forces or stiffness later. For

convenience, we assemble

B =



D00 0 0 D10 0 0 D20 0 0 D30 0 0

D01 0 0 D11 0 0 D21 0 0 D31 0 0

D02 0 0 D12 0 0 D22 0 0 D32 0 0

0 D00 0 0 D10 0 0 D20 0 0 D30 0

0 D01 0 0 D11 0 0 D21 0 0 D31 0

0 D02 0 0 D12 0 0 D22 0 0 D32 0

0 0 D00 0 0 D10 0 0 D20 0 0 D30

0 0 D01 0 0 D11 0 0 D21 0 0 D31

0 0 D02 0 0 D12 0 0 D22 0 0 D32


, (2.5)

such that F = Bx gives us a flattened vector representation of the deformation gradient.

Notice that while we use the flattened representation in the manuscript chapters, the fol‑

lowing section will consider F to be the matrix form of the deformation gradient F = ∂ϕ
∂X

.

2.1.3.1 Strain

We need to define the strain to formulate various types of energies. Strain is a dimen‑

sionless measure of displacement, i.e., how the shape changes. There exists two variants

of the strain commonly used in physics‑based animation [9], the Green‑Lagrange and the

Cauchy strains.

Using the right Cauchy‑Green deformation tensor F TF , we obtain a rotation invariant

measure of deformation. To keep the strain constant on a mesh at rest, the Green‑Lagrange

strain subtracts the identity to the right Cauchy‑Green deformation tensor. As such the

Green‑Lagrange strain formula

E =
1

2
(F TF − I), (2.6)
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is a nonlinear strain formulation that is invariant under translations, rotation and reflec‑

tions. In a virtual world, a good strain formulation that allows larger time steps must be

invariant to rigid body motions, i.e., movement without deformations. This is why we

prefer to use the Green‑Lagrange strain throughout the manuscripts of this thesis.

When speed is more important than accuracy, linearizing the Green‑Lagrange strain

leads to a faster computation of a strain measure. The Cauchy strain

ϵ =
1

2
(F + F T )− I, (2.7)

also called small strain tensor, remains invariant under translations and reflections. This

in turn ignores nonlinearities such as rotational motions which can generate significant

artefacts on large rotations.

2.1.4 Lagrangian Mechanics

To formulate the equations of motions, we use the Lagrangian mechanics which require ki‑

netic and potential energies. By balancing these two energy components, the Lagrangian

method allows us to derive the equations that govern the motion and deformation of

elastic materials. This formulation is useful to handle complex interactions by enabling

realistic simulations of dynamic systems under various physical constraints.

2.1.4.1 Kinetic Energy

The kinetic energy which accounts for the motion of the system follows the conventional

formula

T =
1

2

∫
Ω

ρ∥v∥22dΩ, (2.8)

integrated over the domain Ω, with density ρ times the velocity v magnitude squared.

Note that we are working with a discrete environment with volumetric elements and as
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such, we discretize this equation

T =
1

2
ẋTM ẋ, (2.9)

that now multiplies the discrete velocities ẋ squared by the mass matrixM for the discrete

element. The mass matrix

M =

∫
Ω

ρNTNdΩ, (2.10)

integrates the shape functions N over the domain of the element [117]. In the case of a

linear tetrahedral element with 4 nodes, the shape function matrix takes the form

N = [ϕ0I, ϕ1I, ϕ2I, ϕ3I, ], (2.11)

with shape functions ϕ evaluated at the quadrature points.

To save on computation time, the density is often approximated as a lumped mass

matrix containing only per particle masses on the diagonal. The mass of a particle becomes

the sum of the masses of neighbouring elements divided by the number of particles per

element. This misses some of the inertial components, but trivializes the inversion of the

matrix, requires less storage, and eliminates spurious oscillations in the acceleration [14].

This is what we use in all of our contributions.

2.1.4.2 Potential Energy

The potential energy represents the stored energy within the system due to deformation

or external forces. We find the potential energy

V =

∫
Ω

Ψ(x)dΩ, (2.12)

by integrating the infinitesimal energies Ψ over the domain Ω. The infinitesimal energy

measures the strain energy per unit of the volume at rest. We note that here Ψ takes in as
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argument the nodal positions, which we assume are converted to the relevant measures

for the chosen energy formulation like the deformation gradient, strain, or stretches.

We explore three common infinitesimal energy Ψ formulations available in most elas‑

tic solid simulators. Different models will generate different physical behaviours. We

note that there exists many more formulations for the strain energy density, but we limit

ourselves to some variations that are overly popular in physics‑based animation.

The Saint‑Venant Kirchoff (StVK) material [58] energy

ΨStVK = µ∥E∥2fro +
λ

2
Tr2(E), (2.13)

has two parts. It first computes the Frobenius norm of the strain ∥E∥2F multiplied by the

shear modulus µ to model how much the element will resist shearing. The second part

Tr2(E) represents compression of the mesh. By adding both terms, we can model a wide

range of deformations, all applicable to elastic solids.

The neo‑Hookean material [89] energy

ΨNeo =
µ

2
(IC − 3− log(IC + 1)) +

λ

2

(
det(F )− 1− µ

λ
+

µ

4λ

)2
, (2.14)

uses the same principle of splitting the strain’s shearing and compression components.

The shearing component is instead the sum of diagonal entries IC = Tr(F TF ) of the right

Cauchy strain deformation tensor. This sets the strain value of zero back to the rest state

by subtracting the sum of the identity diagonal entries. Then the second part takes into

account the volume in comparison to the rest state and its behaviour according to the Lamé

parameters. This technique has the nice property of being resistant to element inversion

because it introduces a barrier function log(IC + 1) that peaks at F = 0, where there is no

deformation [100]. This also means that this formulation is not rest stable.

The corotational [37] approach separates the deformation of a material into a rotational

component and a purely deformational component. This is done by rotating the deformed

configuration back into a reference frame, where the rotational effects are removed, and

only the planar strain is considered. It takes the principal stretches s as argument instead

of the deformation gradient F directly, which we can cheaply obtain from a singular value
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decomposition [95] of the 3 by 3 deformation gradient. The corotational energy

ΨCR = µ

3∑
i=1

(si − 1)2 +
λ

2

(
3∑

i=1

si − 3

)2

, (2.15)

considers only the deformations due to stretching. This negates the effect of rotational

motions on the energy.

2.1.4.3 Lagrangian

This system leads us to the core idea of Lagrangian mechanics; the relationship between

forces and energies. We define the Lagrangian

L = T − V, (2.16)

as the difference between the kinetic energy and potential energy. We wish to respect the

principle of least action, which states that a particle follows the most efficient path in space‑

time. This also leads to conservation of the energy. By applying the Euler‑Lagrange [41]

equation

d

dt

∂L

∂ẋ
= −∂L

∂x
, (2.17)

d

dt
M ẋ = −∂V

∂x
, (2.18)

M ẍ = −∂V
∂x

, (2.19)

we obtain an equation that we must satisfy to get valid physical motions by minimizing

the action through this coupled system. That final equation is essentially Newton’s second

law: the mass times the acceleration equals the forces. We note that we instead use the

letter V as the volume of a tetrahedral element in the later chapters, but temporarily

consider V to be the potential energy for the background section to match the standard

literature.
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2.1.5 Time Integration

The choice of a good time integrator is important when setting up a simulator. In this pro‑

cess, we discretize space and time; we simulate only at specific intervals with a time step

h. This approximation can cause non‑physical phenomena. There is also a compromise

between stability and efficiency. Explicit methods such as forward Euler

xt+1 = xt + hẋt, (2.20)

ẋt+1 = ẋt + hM−1f(xt), (2.21)

are quick, but unstable. The energy of the mesh will often increase until it explodes. In this

equation, x are the nodal positions of a mesh, f are the forces from the potential energy

derivatives or external interactions, and ẋ are the velocities. The subscript t indicates

values at the current time step while t+ 1 are values at the next time step.

Symplectic Euler time integration

xt+1 = xt + hẋt+1, (2.22)

ẋt+1 = ẋt + hM−1f(xt), (2.23)

has a similar cost as forward Euler. It uses the velocities at the next time step to update the

positions, which slightly hinders parallelization. It is more stable as it tends to conserve

energy, yet still requires small time steps to properly simulate without explosions. We

consider a simulation to be stable when the energy is not subject to unbounded growth.

We want our simulations to remain stable, even at the cost of higher computational

time per step. The typical approach is to use the backward Euler implicit time integration

xt+1 = xt + hẋt+1, (2.24)

ẋt+1 = ẋt + hM−1f(xt+1), (2.25)

which is more stable, but features numerical damping. We use nonlinear solvers to find

the positions and velocities at the next time step.
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2.1.6 Nonlinear Solvers for Backward Euler

We describe two types of solvers that we can use for the implicit time integration in

physics‑based animation simulators. We aim to find the unknown variables like the ve‑

locities at the next step

ẋt+1 = argmin
ẋt+1∈Rn

Q(ẋt, ẋt+1), (2.26)

by minimizing an objective functionQ. For the purpose of this work, we use the optimiza‑

tion function [3]

Q(ẋt, ẋt+1) =
1

2
(ẋt+1 − ẋt)

T M (ẋt+1 − ẋt) + V, (2.27)

where M is the mass matrix and V is the potential energy. The closer the initial iterate is

to the final solution, the faster the algorithms will converge to the optimal value. Hence,

we start solvers start with an initial iterate ẋt+1 = ẋt, assuming that velocities will remain

similar between steps.

Gradient descent While solving nonlinear systems, the gradient descent [16] approach

iteratively steps

ẋt+1 ← ẋt+1 − α∇Q(ẋt, ẋt+1), (2.28)

in the opposite direction of the gradient of the objective function with step size α. Using a

good step size can greatly impact convergence, and one way to find it is to use line search.

The gradient descent direction points towards a locally minimal solution. Eventually, this

technique will converge to one of the local minima. There is no guarantee of ever reaching

the global minimum for the problem. This is typically acceptable because one is mainly

interested in a physically plausible result.

Newton’s method We can use more sophisticated approaches. Newton’s method [56]

steers the solution

ẋt+1 ← ẋt+1 − αH−1∇Q(ẋt, ẋt+1), (2.29)
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towards the optimal value by creating a local quadratic approximationH = ∇2Q(ẋt, ẋt+1)

of the function and finds the next point in its path by minimizing this approximation.

Hence, this method does not only take into account the local steepness of the function,

but also its curvature. Likewise, a step size of one is usually good in this context, but line

search can still be useful to reduce the step size as needed. This often results in better

convergence towards a local optimum. This is the method that we use in the first two

papers constituting this thesis.

We can improve the convergence of these methods by using line searches, which is

a technique commonly used to find an optimal step size that maximizes the progress of

an iterative method. Essentially, line search transforms the multidimensional problem

into a 1D optimization problem, where we optimize for a step size α that improves the

objective the most along the search direction. Instead of solving for the best possible step,

it is reasonable to employ a stop criterion.

A popular stopping criterion is Armijo’s rule [4]. , which ensures sufficient decrease in

the objective function relative to the step size and search direction. By checking whether

the objective improves sufficiently at each candidate step size, Armijo’s rule helps to pre‑

vent overstepping, which could lead to divergence or inefficient progress. In practice,

when the solution does not improve beyond a specified threshold, we iteratively reduce

the step size, typically by halving it, until the solution satisfies the required improvement

criterion. This ensures a more controlled descent towards the solution.

2.1.7 Semi‑Implicit Backward Euler

In physics‑based animation, some motions cause nonlinearities, i.e., rotational motions,

and large deformation of some material types like the neo‑Hookean energy. Solving for

backward Euler using Newton’s method can be slow, we often want to simplify it. With

a small enough time step and relatively small deformation, the nonlinearities become

negligible. With small time steps, a single iteration of the Newton solve can lead to stable

simulations. We linearize the backward Euler formula using a Taylor expansion. By

developing the equation using the definition of x1 and ẋ1 successively, we obtain the
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common semi‑implicit backward Euler formula

(M − hD − h2K)︸ ︷︷ ︸
A

∆ẋ = h(Dẋt + f(xt) + hKẋt + fext), (2.30)

which we use in a single fast and efficient Newton iteration [6]. Consider stiffness as a

material property that measures how resistant is an element to deformations. Here, the

stiffness matrix

K =
∂2V

∂x2
, (2.31)

is the Hessian of the potential energy. The Rayleigh damping matrix

D = α0M + α1K, (2.32)

comes from predetermined terms where α0 is the mass damping coefficient, and α1 is the

stiffness damping coefficient.

The size of A directly correlates to the number of degrees of freedom for our system.

Notice that Equation 2.30 is of the form Ax = b. There exists many linear solvers for this

type of problem. As the matrix A is sparse and usually symmetric positive definite (SPD),

we can make use of methods such as the preconditioned conjugate gradient or a direct

solve with permutations that minimizes non‑zero fill.

Typically, a direct solve for a linear system involves performing Cholesky decompo‑

sition, where the matrix Amatrix is factored as A = LLT , such that L is a lower triangular

matrix. This decomposition allows us to solve the linear system Ax = b in two stages

through forward‑backward substitution. First, we solve the intermediate system Ly = b

by forward substitution. Because L is lower triangular, each row introduces only one new

unknown variable. We then proceed with backward substitution to solve LTx = y, which

yields the solution vector x.

For poorly conditioned systems, the method’s numerical accuracy can greatly improve

by using various decompositions useful for direct solves. For instance, LDL decomposi‑

tion factorizesA = LDLT , whereL is a lower triangular matrix andD is a diagonal matrix.

With this factorization, we can sequentially solve three easier systems Ly = b, Dz = y,
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LTx = z instead of the full system Ax = b. Note that the A matrix of the system is still

sparse, because it represents the topology of the mesh. There is an opportunity to reorder

the entries which may speed up convergence. We can apply a permutations matrix P on

the full system (P TAP )(P Tx) = P Tb to further reduce the number of non‑zero entries in

the decomposed matrices. With fewer values in the system, using this technique in sparse

matrices is storage and operation efficient.

Simulations of poorly shaped or sliver elements, may generate ill‑conditioned A ma‑

trices [111], which are problematic for iterative solvers. Preconditioning can greatly help

convergence by creating a better conditioned system. We can apply a left precondition

matrix P1

P−1
1 Ax = P−1

1 b, (2.33)

a right precondition matrix P2

AP−1
2 (P2x) = b, (2.34)

or both

P−1
1 AP−1

2 (P2x) = P−1
1 b, (2.35)

to the linear system in order to reduce the condition number, i.e., how large of a change

in output will a small change in input cause. In other terms the condition number is a

ratio of the largest and smallest eigenvalues of the system, which is a good indicator of

the quality of the system.

Having a good approximation of the inverse matrix A−1 for the precondition matrices

P1 and P2 leads to faster convergence in iterative solvers like conjugate gradient. There

is a trade‑off in the choice of a preconditioner. On one end, preconditioners can be as

simple and inexpensive as the inverse of the diagonal elements of A, which is named

the Jacobi preconditioner. While computationally efficient, this approach provides only a

rough approximation. On the other end, preconditioners that closely resemble the inverse
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matrix A−1 can significantly improve convergence but are nearly as difficult to compute

as solving the original system itself. The choice of the preconditioner is hence dependent

on the application and often picked based on the properties of the problem to solve or

according to resource limitations.

One popular preconditioner is the incomplete Cholesky that relaxes the requirement

of exact factorization for a Cholesky decomposition by partially factoring the matrix. It

only computes the non‑zero elements in the positions corresponding to the non‑zero ele‑

ments of the original matrix A, while ignoring the new non‑zero elements that would be

introduced in the factorization process. In our work, we use incomplete Cholesky as our

preconditioner because it strikes a good balance between speed of computation and the

quality of the approximation.

2.1.7.1 Multigrid

An efficient and scalable approach to solve linear systems of equations is to use multigrid

algorithms. These methods iterate through a hierarchy of resolutions. The method re‑

quires the definition of restriction and prolongation operations, which respectively reduce

the size of the system or interpolates a reduced system back to a finer resolution. The user

must determine how the solver will move through the resolutions a priori.

A standard v‑cycle pattern starts from the original system representation, e.g.,Ax = b,

does a series of restrictions followed by prolongations back to the original resolution. Be‑

tween each of the prolongation and restriction operations, the residual error is smoothed

using Jacobi or Gauss‑Seidel iterations. While we just described the multigrid solver’s

steps using a standard v‑cycle pattern, it is often the case that users will select different

patterns like a w‑cycle. In this type of pattern, another v‑cycle follows the first, sometimes

before completely prolonging the system back to the original resolution.

Multigrid methods, while approximate at coarse levels, scales much better than other

techniques on larger systems as coarser resolutions greatly reduce the system to solve,

yet efficiently propagate information on prolongation. With a good approximate solution

interpolated to the original resolution, a few full resolution smoothing iterations can often
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Restriction Restriction Prolongation Prolongation

Figure 2.4: Visual representation of the different resolutions used in a v‑cycle for a bunny
model in a geometric multigrid solver [65].

correct the leftover residual error. Multigrid methods can define prolongation and restric‑

tion on an algebraic level, changing a linear system to solve [42]. Likewise, the operations

can be at a geometric level [116, 113], discretizing the problem for each grid resolution

with varying coarseness and generating a mapping between resolutions for restriction and

prolongation. Later in this thesis, we will present a novel algorithm inspired by multigrid

methods that is not geometric nor algebraic. In Figure 2.4 we show a visual representation

of restriction and interpolation on a 3D model.

2.1.8 Position Based Dynamics

Real‑time simulators often use iterative methods for efficient time integration. A popu‑

lar model for both video games and training simulators is the position‑based dynamics

(PBD) Müller et al. [83]. This type of simulation is easy to parallelize, making it a fast

alternative to methods such as the matrix factorization from Section 2.1.1. Position‑based

dynamics employs a Gauss‑Seidel‑like solver to compute the motions of constrained par‑

ticles within the simulation. Elasticity in PBD is represented as a set of per‑element con‑

straints, which allows for straightforward integration of new constraints. It first computes

positions using symplectic Euler time integration while ignoring internal forces. Then,

it updates positions by projecting the explicit integration results onto each constraint.

Finally, it updates velocities using finite differences relative to the previous time step.

It accommodates various types of geometries, including cloth, rods, shells, and solids, all

within a single simulator. While PBD aims to produce fast, stable, and robust simulations,
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it does not have a rigorous foundation in continuum mechanics, which can lead to unsatis‑

fiable constraints, or completely stiff models. The constraint solve has a dissipative effect

on the energies, damping the elastic system. This can lead to nearly rigid motions with

enough iterations. As such, PBD does not use any physical quantities or units to define

deformables, but instead deformation is iteration and time‑step dependent. Likewise, the

constraint solver struggles to converge compared to other appropriate methods such as

the Newton solve mentioned previously. Aside, the constraint solve is order dependent,

changing the solution based on which constraint is solved first.

Later, extended position based dynamics (XPBD) [70] enhances PBD to alleviate its

major issue; excessive stiffness upon convergence. A new compliance term lets the models

stay elastic independently of the number of Gauss‑Seidel iterations. One of the major

improvements in XPBD is that it is time‑step independent, meaning the constraints and

compliance are better integrated with the time step. This allows this method to produce

stable results even when using larger time steps. These modifications enable XPBD to

simulate soft, elastic materials with much greater accuracy while still benefiting from the

efficiency of PBD’s iterative approach. While XPBD iterations can be parallelized, com‑

munication of information is only local. Instead of assembling the Hessian of the energy,

the stiffness matrixK ≈M is approximated as the mass matrixM to save on computation

time per iteration at the cost of convergence. Even if the convergence is slow, only a

few iterations lead to stable simulations, making such method attractive for applications

where speed is more important than accuracy. Some previous work has made efforts to

speed up convergence by providing constraints for exchanging information between dis‑

tant locations with long‑range attachments [59] or long‑range constraints [82]. Our final

contribution will improve convergence similar to long‑range constraints and attachments

by efficiently creating coupling to distant elements in order to improve propagation.

2.2 Adaptivity

Removing DOFs from our system at runtime can drastically enhance performance. Like‑

wise, algorithms also benefit from increasing the DOFs to accurately capture the intricate
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details of deformation, particularly in cases demanding accuracy, albeit at the expense of

increased computational costs. Adaptive algorithms strive to infuse details selectively, re‑

sponding to the simulation’s specific requirements. In this section, we review some state‑

of‑the‑art algorithms in physics‑based animation, some of which are originally designed

for specific object types such as clothes or rigid bodies.

2.2.1 Subspace Condensation

In physics‑based animation, model reduction involves simplifying the underlying math‑

ematical and computational models while still preserving the essential dynamics and

characteristics of the simulated systems. By reducing the complexity of these models,

simulations become more efficient, making it possible to achieve real‑time or interactive

animations, albeit losing some level of accuracy.

Model reduction techniques in physics‑based animation simplify the geometrical rep‑

resentation of large models. These approaches strike a delicate balance between accuracy

and computational efficiency, allowing animators, engineers, and researchers to create

captivating simulations without overwhelming computational demands.

Simulating a full mesh is costly, perhaps we only need to simulate part of the mesh to

produce plausible motions. Condensation reduces the degrees of freedom of theAmatrix

to a subspace of the mesh [104]. Static condensation has a subspace that involves only the

surface nodes [18]. Assuming a quasistatic model, i.e., a model with small displacements

and no rotations, we can formulate f = Kx, a simple version of the equations of motions.

For linear material formulations [7], internal forces are modelled by cubic polynomials.

The coefficients of these polynomials can be precomputed, and as such, the stiffness matrix

K and its inverse can be cached for the simulations. We can generate a blocked matrix

Kss Ksi

Kis Kii

xs

xi

 =

fs

fi

 , (2.36)
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by reordering the entries to separate the surface vertices xs and the internal vertices xi.

Using the Schur complement of Kss, we obtain

K∗
ss = Kss −KsiK

−1
ii Kis, (2.37)

f ∗
s = fs −KsiK

−1
ii fi, (2.38)

a decomposition of the domain. The Schur complement allows us to isolate part of the

system, namely the surface vertices. As the inverse stiffness is precomputed, this whole

process is efficient, allowing us to account for the static deformation of internal vertices

without computing their positions. We now have a condensed form

K∗
ssxs = f ∗

s , (2.39)

where internal vertices are no longer needed. This process requires the inversion of the

Kii block of the stiffness matrix, which is precomputed. The displacement of the internal

nodes

xi = K−1
ii (fi −Kisxs), (2.40)

can still be recovered. However, using a fixed stiffness matrix can lead to poor handling of

rotational motions. Another drawback of static condensation is that it cannot handle con‑

tacts without leaving major artefacts. Adaptive subspace condensation [104] uses static

condensation and improves it by adaptively adding and removing internal vertices near

contact points to the set of subspace vertices [104]. In a way, this is similar to adaptive

rigidification, where degrees of freedoms of the full space are reintroduced where needed.

2.2.2 Multi‑Resolution

In video games, object resolutions change depending of the distance between the cam‑

era and the props in order to accelerate the renders. Objects closer to the camera are

rendered with more detail, while distant ones are simplified. This concept of adaptive

resolution extends beyond rendering and can also be applied to physics‑based simula‑
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tions. In simulators, it is feasible to switch between different levels of detail depending

on the requirements of the scene, conserving computational resources while maintaining

necessary accuracy.

From a geometric perspective, this involves computing mappings between meshes to

enable force interpolation between resolutions as needed. This is seen as a hierarchy of

resolutions or mesh discretizations [88]. The generation of a hierarchy can make use of

Voronoï regions to locally control resolutions [30, 31]. These regions are a partition of

space with respect to the control points. Each region is delimited by the midsection, be‑

tween the control points. In this case, the control points are vertices of the parent (coarse)

resolution. The vertices of the finer resolution mesh within the Voronoï region are child

vertices of a parent vertex. Using these regions to define a bottom up hierarchy allows

local coarsening and refinement of different regions of a mesh. While this technique is

efficient in terms of computation time, it requires the user to generate different version

of the same mesh. This process is ultimately time consuming. Careful manual tuning of

regions is required to avoid scenarios where the simulator would benefit from a resolution

in between those initially designed by the artist, or to avoid poorly shaped elements.

Instead of relying on elements like FEM, some methods use different control coor‑

dinate frames spread through the mesh in a hierarchy with interpolation of nearby ver‑

tices [19, 44, 109]. The surface vertices have weights corresponding to the frames, enabling

smooth interpolation of vertex positions. The interpolation is linearly weighted based on

proximity with the closest control points. This is called linear blend skinning. If the num‑

ber of control point is too small, this can lead to significant artefacts near the bent regions,

and it generally does not account for self‑collision without extra basis functions. The

frames activate and deactivate according to a deformation rate threshold. The hierarchical

structure allows frames to depend on their parent frame’s position and state, facilitating

independent behavior for components like the branches of a tree while maintaining a

shared dependency on the trunk.

Closer examples to our work can be found in the special cases of soft bodies with rigid

transforms [22, 105]. In this approach, motions are solved rigidly first, while a secondary

hexahedral mesh simulation handles the internal deformations. This approach, like ours,
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uses rigid and elastic representations for efficient simulation while balancing flexibility

and computational performance. This can be seen like a two‑layer version of our multi‑

layer solver, but always starting from a fully rigid model.

2.2.3 Remeshing

Adaptive remeshing [87, 90, 97] addresses the challenges of efficiently simulating de‑

formable objects by dynamically adjusting the mesh geometry of the object. For instance,

a piece of cloth is represented using triangles within a 3D environment. When simulating

the deformation of a tablecloth resting on a table, only a couple of triangles may be re‑

quired to produce reasonable behavior. When the tablecloth is pulled off the table, more

triangles become necessary to accurately depict the changing curvature and to ensure

visual consistency.

Large triangles are no longer ideal in such cases, because they can lead to noticeable

artefacts, conversely small triangles require additional work with their added DOFs. To

address these challenges, adaptive remeshing techniques dynamically update the models

using operations such as splitting, collapsing, and flipping triangles at runtime to optimize

the simulation as discussed in Narain et al. [87]. This approach captures finer details in the

high curvature regions, while omitting some details in other regions to gain performance.

In turn, these methods greatly improve the performance of shells, especially in flatter

regions [86].

For cloth, the technique must anticipate buckling and wrinkling. To do so, measures

like relative edge size or careful monitoring of dihedral angles can be used to compare the

current discretization with the expected curvature of the cloth model. By comparing these

measurements, the simulation can dynamically adjust the mesh to ensure that it accurately

reflects the material’s deformations and preserves realistic behavior. Global bounds are

set on the change in vertex normals and material compression. This affects the resmeshing

operators like these three types of manipulations shown in Figure 2.5. The manipulations

to the mesh triangulation go as follows:
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Figure 2.5: Three remeshing applied on triangle A and B. From left to right: split, flip,
collapse [87].

• On split, add a new vertex that minimizes the quadric error with the surface curva‑

ture and the strain of adjacent elements.

• On flip, the edge between two triangles is disconnected and reconnected to the two

other vertices in the square that contains the initial triangles.

• On collapse, vertices are removed arbitrarily. The vertices must satisfy three condi‑

tions before collapsing an edge: it does not change the boundaries of the pieces of

cloth in material space, it does not produce any inverted face, and it does not create

invalid sized edges.

While this adaptive approach works well for cloth, adaptively remeshing an elastic solid

can prove to be challenging [72, 112] as poorly shaped elements can render the problem ill‑

conditioned. While recent development led to improved implementations [35] that better

handles remeshing of tetrahedral elements in contact scenarios, we consider such work as

orthogonal to our own efforts. Therefore, we have opted not to incorporate these methods

into our framework, but look forward to future work merging the different approaches.

2.2.4 Homogenization

We can use homogenization [57, 88] to preserve a certain quality of the material for a

heterogeneous mesh during coarsening. For instance, a thin slice of soft material within

a stiff mesh could be ignored completely if not accounted for in the coarsened elements.

Homogenization approximates multiple heterogeneous elements inside a coarse homo‑

geneous element (similar to a cage) using a weighted average. It leaves out fine details

that we might want to simulate in some circumstances.
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In the methods that we developed for this thesis, we will not require such weighted

average as we will fully preserve the original elements and their materials, unlike methods

like remeshing.

2.2.5 Freezing

In physics‑based animation, freezing methods are techniques used to mitigate the compu‑

tational complexity of simulations by temporarily removing certain parts of the simulation

that exhibit minimal or no motion. At any point in time, scenes typically encompass

both static and dynamic elements. This enables a substantial reduction in computational

overhead. To identify these motion‑insignificant regions or objects within the simulation,

freezing techniques monitor attributes like kinetic energies or velocities across multiple

time steps. This monitoring allows for the selective exclusion or simplification of identi‑

fied regions.

Static elements, such as environmental features, rigid structures, or immobile objects,

make ideal candidates for freezing. This is because they remain stationary and do not

necessitate continuous simulation updates. By sparing computational resources from

the integration of static vertices, more focus and capacity can be directed towards other

dynamic aspects of the simulation.

Frozen regions are reintegrated into the dynamic simulation when their motion sur‑

passes the predefined threshold or when they become involved in interactions. For rigid

bodies, freezing techniques involve treating certain objects as fixed or immovable during

parts of the simulation [96, 33]. This is achieved by temporarily disabling certain physics

calculations, such as collision detection and response, with the assumption that these

frozen objects maintain their positions and orientations.

In the context of elastic bodies, freezing typically targets individual vertices or el‑

ements within a volumetric mesh. The adaptively restrained particle system (ARPS),

represents a form of freezing [5, 73]. The particles with kinetic energy below a threshold

Er are static, those with energies above a thresholdEf are fully simulated with thresholds

set such thatEr < Ef . Each degree of freedom can be independently restrained, effectively
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removing these degrees of freedom from the time integration process. Trajectories of the

particles between both thresholds smoothly transition between the restrained state and

fully simulated state. Over time, particles may experience multiple cycles of restraint and

release. Adjusting the values of Er and Ef can influence simulation speed at the expense

of fine‑grained details.

While freezing can significantly reduce computational costs, it comes with trade‑offs.

Overly aggressive freezing leads to loss of detail and realism in the simulation. There‑

fore, careful tuning of freezing parameters and thresholds is essential to strike a balance

between performance and fidelity. This is a common thread amongst freezing methods,

including the following approach.

2.2.5.1 Merging

Adaptive merging, as introduced by Coevoet et al. [26], is a type of freezing which en‑

hances time integration efficiency by reducing system size. However, what sets this tech‑

nique apart is the ability to dynamically gather moving meshes based on environmental

inputs. The process begins by establishing a threshold. When two rigid bodies come into

contact and exhibit low relative motions below this threshold, they merge to form a single

rigid body. This consolidation leads to a substantial reduction of the system’s degrees of

freedom, six for each merge, encompassing translational and rotational motions.

The technique also incorporates unmerging capabilities. Meshes that have merged will

unmerge when contact is broken or when sliding occurs. To achieve this, a single iteration

of projected Gauss‑Seidel (PGS) is performed to compute approximate velocities. In turn,

this oracle yields approximate relative motions. An additional threshold, applied to the

approximate relative motion, triggers the unmerging of bodies.

To further optimize system efficiency, adaptive merging can be combined with sleep‑

ing mechanisms, diminishing the degrees of freedom within the system and those sub‑

jected to the single iteration of the contact solver. Although merging has primarily been

explored for rigid bodies, there is a promising opportunity to extend this approach to

elastic solids, which we explore in this thesis. While this work aims at speeding up rigid

bodies moving in similar directions, it brought us an important adjacent question: can we
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simplify elastic elements that behave similar to one another? This is the question that we

explore in the next chapter.
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Chapter 3

Adaptive Rigidification of Elastic Solids

This chapter is a from a published paper: A. Mercier‑Aubin, A. Winter, D. I. W. Levin,

and P. G. Kry. Adaptive Rigidification of Elastic Solids. ACM Transactions on Graphics,

41(4):1–11, July 2022. DOI: 10.1145/3528223.3530124. It is provided as is with only

minimal editorial modifications. Section 3.7 is added at the end to transition to the next

work. We also provide videos in the supplemental materials.

Elastic
60

Rigid

FEM

Ours

Deformation

Sp
ee

du
p 

Fa
ct

or

10

Rigidified

Figure 3.1: Our algorithm can identify and adaptively rigidify undeforming portions
of simulated elastic objects in order to improve performance without sacrificing visual
fidelity. Per‑step computation time for this tire simulation, with rubber tread and steel
hub, shows a mean performance improvement of 10×, resulting in a 5× reduction in
total simulation time.

3.1 Introduction

Physics‑based animation produces complex emergent behavior and motion from rela‑

tively compact physical laws. Prescribing a handful of physical properties to an object

can generate animations of phenomena as wide ranging as realistic dripping honey, to an

immense castle collapsing, to the delightful bounciness of a cartoon character.
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In solid mechanics, parameters such as the Young’s modulus and Poisson’s ratio de‑

termine the effective compliance of an object relative to its environment. For any finite,

realistic choice of these parameters, there are scenarios during which an object will dras‑

tically deform, and others during which it will move rigidly through the world. Imagine

squishing a sponge in your hand. During compression the sponge changes shape drasti‑

cally, but if you swing your clenched fist, the sponge moves rigidly in its new deformed

state. Complicating things further is the spatially varying nature of this effect. For large

objects, local external forces cause deformation that quickly decays to rigid motion as

distance from the loading point increases. Despite these effects being well‑known, for the

past 40 years, physics‑based animation algorithms have forced practitioners to decide a‑

priori if an object should be modeled as a rigid body or a deformable one – regardless of

the applied loads it may experience. The goal of this work is to free users from this forced

choice.

Simulating large deformations requires a suitably expressive kinematic map with suf‑

ficient degrees‑of‑freedom to model shape change. This comes with an unavoidable per‑

formance overhead. In contrast, purely rigid deformation can be represented compactly

by an isometric transformation. This enables fast simulation, meaning large complicated

scenes are often simulated using rigid bodies due to performance considerations. In doing

so, they give up on potentially interesting behavior due to deformations. Ideally, simula‑

tion algorithms should apply the appropriate mapping based on the physical properties

of the system and its underlying interactions, not based on user intuition. Rigid sections

of objects should be simulated using the compact, performant, rigid body mapping while

parts of the scene undergoing deformation should be upgraded to a deformable model.

We should be able to have our simulated cake and eat it too.

In this chapter we present the first hierarchy‑free algorithm for the elastodynamic

simulation of deformable objects that can dynamically transition between rigid and de‑

formable kinematic models at runtime. Our method maintains two dynamically evolv‑

ing, spatially varying kinematic maps, one rigid and one deformable. We introduce a

deformation velocity metric that predicts which parts of an object can be represented as

rigid bodies, and therefore integrated efficiently using geometric methods, leading to fast
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aggregate simulation times for complex scenes. Additionally, we devise an inexpensive

method for estimating which parts of an object should transition between rigid and de‑

formable states in the presence of transient forces such as contact and friction. Crucially

we accomplish this without requiring predefined hierarchies or introducing additional

constraints on the geometry or physical parameters of the simulation.

With our method for on‑demand elastification, physics simulation of solid geometry

becomes properly input‑sensitive. The rigid/deformable modeling decision becomes a

function of physical parameters and environmental interactions rather than a guess made

prior to runtime. By putting the physics first, our algorithm reduces user burden, avoids

filtering away salient emergent behavior and expedites computation of results. In what

follows we detail our adaptive approach to the modeling and simulation of elastic, de‑

formable objects and show that under a number of commonly encountered scenarios our

method yields significant speed‑ups over purely deformable finite element simulations.

3.2 Related Work

Degree‑of‑freedom reduction is a common technique for accelerating physics‑based ani‑

mation. Modal analysis [7] projects the equations of motion into a reduced linear space

while frame‑based approaches [38] replace dense volumetric discretizations with sparse

skinning handles. Finally, numerical coarsening [88, 57, 22] allows simulations to produce

results, using a low resolution volumetric discretization to produce results commensurate

with a more expensive, high resolution one. While these methods can produce signifi‑

cant speed‑ups, they have two fundamental limitations. First, they are applied during

the modeling phase, meaning they do not and cannot take into account environmental

stimulus, only the geometry and material properties of the model, in isolation. Second

they do not naturally progress to the completely rigid case, rather they approach it, but

remain deformable, always including a few additional, potentially unnecessary degrees

of freedom.

Runtime approaches attempt to modify the number of degrees‑of‑freedom as the sim‑

ulation progresses. The simplest of such approaches are freezing methods, so named
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because they deactivate, or freeze, degrees‑of‑freedom when they are deemed unneces‑

sary to evolve the system in time [5, 73]. In contrast to these methods, which freeze in

the inertial frame, our approach permits rigid motion of components with degrees‑of‑

freedom freezing only relative to one another. Freezing is also popular in rigid body sim‑

ulations [96, 33], and more robust sleeping approaches have been developed for contacting

rigid bodies [26], but these do not directly apply to the deformable bodies we study here.

Rather than deactivate degrees‑of‑freedom entirely, they can instead be adaptively

down sampled. Early variants of this approach actually worked in reverse – they assume a

coarse simulation mesh which was refined as a pre‑process to create a fixed hierarchy [44].

At runtime this hierarchy could be traversed to locally enhance detail [31]. However

the availability of a coarse mesh should not be assumed, and it is not always possible

to refine back to the input high‑resolution geometry. To address this problem, fixed

hierarchy approaches have evolved to act on embedded mesh [88] and frame‑based [109]

simulations. These approaches use relatively coarse discretizations for even the finest

levels of their hierarchies, meaning that the full motion of an object can never be resolved.

Additionally, fixed hierarchies limit the location and amount of refinement that can take

place.

D. Chen et al. [22] presents a special case of the hierarchical approach, using a two‑level

hierarchy where the root is a rigid transform [105] and the second level is a hexahedral sim‑

ulation mesh. They transition to using the rigid transformation only when elastic potential

energy goes to zero, which misses the opportunity for rigidification in other equilibrium

states (e.g., resting contact). Modal hierarchies have also been explored [60, 104]. These

are close in spirit to our approach but require the precomputation of a modal basis and can

have trouble using the reduced basis in the presence of large rotational motions. Adaptive

remeshing [87, 97] combats this issue by using geometric operations to add and remove

degrees‑of‑freedom from the simulation mesh. However mesh operations are complex,

difficult to implement and are not typically capable of reducing to pure rigid motion as

our method does.

Our approach is not based on a hierarchy, but on connected components. Lack of a

fixed hierarchy gives us maximum flexibility in terms of when to treat parts of an object
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Algorithm 1: Main loop
Jc, Φ← Find contacts // §3.3.3
λ←WarmStart, approximate for new contacts // §3.3.3
∆ẋapprox, Ėapprox← QuickSolve // §3.3.5
Ė ← Compute strain rates // §3.3.4
BFS to identify rigid components // §3.3.4
MR ← Compute rigid properties // §3.3.4
∆ẋA← LDLT Solve // Eq. 3.11
∆ẋc← Contact Solve // Eqs. 3.14-3.15
Update velocities and positions

as rigid or deformable. This means our algorithm can collapse an arbitrarily complex

deformable object to a rigid body if permitted. While methods for mixing simulations of

rigid and elastic parts have been previously proposed [52, 61, 114], we introduce a relative

deformation metric which allows rigidification of regions of an object that are deformed

but moving rigidly, as well as an efficient way to elastify local parts of rigid sections in

response to deformation caused by external loads including contact and friction. These

contributions, taken together result in an adaptive scheme for on‑demand input‑sensitive

elasticity that is both more flexible, and more performant than prior art.

3.3 Elastic and Rigid Simulation

We will start with a brief review, describing how we set up our elastic finite element model

simulation. We use tetrahedral meshes with linear shape functions and the standard semi‑

implicit backward Euler approach for numerical integration [6]. Following this, we will

introduce how the formulation changes when portions of the elastic solid are rigid, and

how we handle contact. This will lead us to the problem of identifying what parts of the

mesh should be rigid, and when rigid parts should become elastic again, which we will

describe in Sections 3.3.4 and 3.3.5. An overview of the main loop of our method is shown

in Algorithm 1.

36



3.3.1 Simulating Finite Elements

We define matrix B such that the deformation gradient may be computed as F = B x,

where x ∈ R3nv contains the positions of the nv vertices of the finite element model. While

the deformation gradient of each element is a matrix, we pack column vector F ∈ R9ne by

stacking vertically the deformation gradients of all ne elements in column order. Using

tetrahedral elements and barycentric interpolation as a shape function, the deformation

gradient is constant across each element (otherwise, B can be seen as computing F at

quadrature points). We compute the infinitesimal elastic energy ψ as a function of the

deformation gradient F . For a given element i with rest volume Vi and deformation

gradient Fi we compute element‑integrated PK1 stress and stiffness

Pi = −Vi
∂ψ

∂Fi

T

, (3.1)

Ci = −Vi
∂2ψ

∂F 2
i

T

. (3.2)

We assemble the vector P ∈ R9ne containing the element‑integrated stress of all ne ele‑

ments in column order, and the sparse block matrix C with the 9‑by‑9 blocks Ci, which

permits us to write the nodal forces and sparse stiffness matrix,

f = BTP , (3.3)

K = BTCB, (3.4)

where f ∈ R3nv and K ∈ R3nv×3nv .

Thus, the system we solve for semi‑implicit backward Euler integration is

(M − hD − h2K)︸ ︷︷ ︸
A

∆ẋ = h(Dẋ+ f + hKẋ+ fext), (3.5)

where we use a lumped mass matrixM , Rayleigh dampingD = α0M + α1K, and fext are

external forces such as gravity and user interaction forces (contact forces are discussed

in Section 3.3.3). We use an LDLT factorization of matrix A to solve for the change in
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velocities ∆ẋ and then update the velocities and subsequently the positions with the

updated velocities.

For heterogeneous materials, we build the damping matrix D as a sum of a mass

damping matrix Md and stiffness damping matrix Kd. We build the stiffness damping

matrix with α1 weighted diagonal blocks, that is, Kd = BTCdB with each block of Cd

being α1iCi. For the Rayleigh mass damping matrix we lump the mass damping property

in the same way that we lump the mass. That is, for element iwith density ρi we distribute

1/4α0i Vi ρi to each vertex making up the tetrahedral element.

3.3.2 Mixing Rigid and Elastic DOFs

During the simulation of an elastic solid, there may be extended periods of time where

portions of the model are moving rigidly. This occurs trivially when an object is at rest in

static equilibrium, but can also happen with non‑zero linear and rotational velocity during

flight or sliding contact. We can treat as rigid the regions of a model that have a zero strain

rate for a period of time. While we discuss the rigidification process and related issues in

Section 3.3.4, we will first present how we set up the equations of motion for a mixed

elastic and rigid simulation.

For simplicity, let us consider the case with a single rigid body. Let R be the set of

vertex indices that make up the rigid body. The simulation state of the body will consist

of a position p and an orientation R ∈ SO(3) along with a linear and angular velocity

ϕ = (vTωT )T . Following the form of Equation 3.5 we can write the rigid body equation of

motion as

MR∆ϕ = h(c(ϕ) + wext), (3.6)

where MR is the 6‑by‑6 mass matrix with rotational inertia sub‑matrix rotated into the

world aligned frame given the body’s current orientation, c(ϕ) are the velocity‑depended

rigid body torques, and wext are external forces such as gravity and user interaction.

When a portion of the elastic mesh is made rigid, we store the positions of vertices

making up the rigid body in the rigid body frame. Letting ri for i ∈ R be the rigid
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vertex positions in coordinates of the rigid body frame, we can compute the positions

and velocities of these vertices in the world frame as xi = Rri+p and ẋi = −(Rri)×ω+v.

This second expression can be written instead as a matrix product,

ẋi =
[
I −(Rri)×

]
︸ ︷︷ ︸

Γi

v
ω

 , (3.7)

where (·)× denotes construction of the 3‑by‑3 cross product operator. Furthermore, we

can now write the velocity of all vertices in the finite element model as a product of a

matrix G with velocities of our active (elastic and rigid) degrees of freedom, ẋA,

ẋ =

I 0

0 Γ


︸ ︷︷ ︸

G

ẋA

ϕ


︸ ︷︷ ︸

ẋA

. (3.8)

Here, xA are the active elastic vertices (i.e., those which are not part of a rigid body), and

for simplicity we assume that these vertices have lower indices and are copied by the

identity block of G, while the Γ block is a stack of all Γi for i ∈ R. When there are many

rigid bodies, the lower part of matrix G and vector ẋA grow accordingly.

With some of the elements being simulated as a rigid body, we only need to do the

elastic solve for the set of elements which are still elastic. Let E be the set of elastic element

degrees of freedom indices, and notice that we can compute the deformation gradient of

only these elements as the product FE = BEGxA, where matrix BE consists of only those

rows of B that correspond to the elastic elements. The elastic force and stiffness for active

degrees of freedom can therefore be written

fA = GTBT
E PE , (3.9)

KA = GTBT
E CEBEG, (3.10)

where we only need to use the elastic element subset E of element‑integrated stress and

stiffness. Notice that the force fA and stiffnessKA include the rigid degrees of freedom be‑
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causeG provides the kinematic mapping for velocities of vertices that are on the boundary

between a rigid body and the elastic elements.

With careful bookkeeping, the Γ block in G need only deal with those rigid nodes that

are on the boundary of an elastic element. In practice, we find it simpler to compute the

product BE Gwithout removing those rigid vertices that are not on the boundary with an

elastic element.

Before we assemble the mixed elastic and rigid equations of motion, observe that the

mass term in the Rayleigh damping must be included as a damping force on the rigid

degrees of freedom. The rigid body damping force is computed as ΓTMdRΓϕ, and we

note that this will damp both linear and rotational motion of the rigid body. The Rayleigh

damping on both elastic and rigid degrees of freedom will therefore have a mass damping

componentMdA = GTMdG. Rigid motions are in the null space of the stiffness matrix, thus

the stiffness term in Rayleigh damping does not contribute to damping of the rigid degrees

of freedom. The active elastic degrees of freedom will be damped with the stiffness damp‑

ing matrixKdA = GTKdG. This allows the application of stiffness damping specifically to

the deformable elements.

Thus, the system we solve for semi‑implicit backward Euler integration of the mixed

elastic rigid system is

AA∆ẋA = h

DAẋA + fA + hKAẋA +

 fAext

c(ϕ) + wext

 , (3.11)

where AA = MA − hDA − h2KA, with MA being block diagonal containing MA and MR.

Just as before, we use LDLT factorization of AA to solve ∆ẋA. However, this system can

be much smaller than the original fully elastic system and consequently much faster to

solve. Furthermore, in the case of a system in elastic static equilibrium (whether the solid

is stationary or moving rigidly), it all reduces to solving Equation 3.6 for the rigid body

motion alone.

Once we have a solution for ∆ẋA, we update the elastic and rigid position level vari‑

ables with the updated velocities, where we use Rodrigues’s formula [85] to turn angular
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velocities over a time step into an incremental rotation matrix R to update rigid body

positions.

3.3.3 Contact Handling

Contacts are regions on surfaces where objects collide. We detect the contacts through

collision detection, finding discrete contact pairs where there is interpenetration between

the models. We wish to correct this interpenetration so the simulation remains physical.

We use signed distance computations for collision detection and generate a contact at

every boundary vertex of one mesh that ends up inside another mesh (we do not process

self‑contact). The contact is defined by the interpenetrating vertex and the location of

the closest point on the surface of the other mesh. We consider contacts to be discrete

point‑triangle collisions with position, contact normal, and interpenetration properties.

Using the barycentric coordinates of the closest point, we create three rows in the contact

Jacobian matrix Jc for each contact (one for the contact normal and two tangent directions).

We use projected Gauss‑Seidel (PGS) to solve for contact impulses λ, and in turn, a

velocity update due to contact forces to compute the velocity at the next time step. Let us

consider the update for a fully elastic system:

ẋ+ = ẋ+∆ẋ+ A−1JT
c λ︸ ︷︷ ︸

∆ẋc

. (3.12)

We multiply by Jc to compute the slip and separation of contacts at the next time step, and

rearrange to form the system

JcA
−1JT

c︸ ︷︷ ︸
H

λ = − Jc(ẋ+∆ẋ)︸ ︷︷ ︸
b

. (3.13)

Solving this system with PGS, clamping the normal and tangential components of λ to

their respective bounds at each iteration, provides a solution to the frictional contact prob‑
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lem:

λ+i ← λi − (b+Hi λ)/Hii, (3.14)

λ+i ← max
(
min

(
λ+i , λiMAX

)
, λiMIN

)
, (3.15)

Bounds λiMIN and λiMAX are zero and positive infinity for normal direction constraints,

while for tangent directions the bounds are set based on the current normal force and

Coulomb coefficient of friction. While the PGS inner loop is fast, and depends only on the

number of contacts, there is a cost to assembling H . We use the LDLT factorization of A

to assemble H , and that cost is greatly reduced as larger portions of the elastic solid get

mapped to rigid bodies. In a mixed elastic and rigid system, the velocity update ∆ẋAc for

active degrees of freedom due to frictional contact uses the smaller system matrix AA and

a smaller Jacobian JAc = JcG relating contact velocities with only the active degrees of

freedom. As such, the contact solve greatly benefits from the smaller matrices that arise

when large portions of the elastic solid are rigidified.

We use Baumgarte stabilization [10] to deal with interpenetration that arises on colli‑

sion and at resting contacts. We do this by setting b = Jc(ẋ +∆ẋ) + kbΦ in Equation 3.13

where kb is the Baumgarte feedback coefficient and Φ contains the constraint violations

(penetration at each contact). We include a small amount of compliance to maintain an

invisible amount of interpenetration, which is helpful for warm startsing the PGS solve.

We do this by modifying the Lagrange multiplier solve in Equation 3.14 to be λ+i ←

(λiHii− b+ Jci ∆ẋc)/(Hii + γ), for compliance γ. We typically set γ = 10−3 and kb = 0.2/h

for rapid convergence of interpenetration values (see also [101]).

We always warm‑start the PGS solve with λ values of contacts that existed at the pre‑

vious time step. This is important for more than PGS convergence because it plays an im‑

portant role in the elastification process. When an elastic object is in static resting contact,

we require the contact solve on the rigid system to produce the same forces as the contact

solve with elastic elements. While many different contact solutions are feasible for a rigid

body, most of these, if applied to the elastic system, would lead to a dynamic deformation

and confuse our elastification oracle (see Section 3.3.5). At rest, the compliant contact

42



will have normal interpenetration proportional to the normal contact force, λi = kb
γ
Φi for

constraint i in the normal direction, regardless if solving for a fully elastic or fully rigid

object.

Other contact solvers can also be used, for instance, penalty based methods would also

respect our requirement of matching rigid and elastic contact forces. We also note that

other constraint stabilization approaches can be used, for instance the post‑step of Cline

et al. [25], provided compliance is still included as a regularization to ensure that the

interpenetration records the force distribution desired by the full elastic solve.

3.3.4 Rigidification

Identifying the portions of an elastic solid that can be simulated as a rigid body is relatively

easy. If the rotationally invariant Green strain tensor E = 1
2
(F TF − I) remains constant

for a period of time, then we allow the element to become rigid. In our method, we set a

threshold τR based on the squared Frobenius norm of the strain rate, which is much like

setting a speed limit on the slowest elastic deformation that we will simulate. The thresh‑

old is meaningful, easy to set, and works well for lively elastic systems, but may require

low values for highly overdamped systems that only move slowly to static equilibrium.

We flag elements as ready to become rigid if the norm is less than the set threshold for a

given number of simulation steps (3 to 5 in our examples). Requiring the strain rate to stay

below for a number of simulation steps prevents premature rigidification (for example, at

the moment of maximum deformation in a vibrating cantilever).

While we could use F = B x and Ḟ = B ẋ to compute

Ė =
1

2

(
Ḟ TF + F T Ḟ

)
, (3.16)

this does not produce zero strain rate for rotational motion. The velocity used to step elas‑

tic node positions to a rotated position does not correspond to an instantaneous rigid ro‑

tational velocity, and Ė will contain non‑zero eigenvalues indicating instantaneous com‑
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A B

Figure 3.2: Orange regions show rigid bodies. If the red triangle is a rigid candidate, it
must not become part of body B as the red adjacent vertex already belongs to body A.
Otherwise, bodies A and B would share the red vertex and require a hinge constraint for
correct motion.

pression. Instead, for time step k, we compute the finite difference

Ėk =
Ek − Ek−1

h
, (3.17)

ignoring rotation by comparing strain in material space for the purpose of evaluating

rigidification and elastification heuristics only.

Each element of the mesh has a Boolean rigid property that we set when it is flagged for

possible rigidification, that is, based on having ∥Ėk∥2fro below threshold for several time

steps. Likewise, elements that are already rigid will also have the rigid property set (unless

it is flagged for elastification, see Section 3.3.5). If the rigid properties are unchanged from

the previous time step (and none have been identified for elastification), then the current

set of rigid bodies is left unchanged. Otherwise, we must recompute the set of rigid bodies

from connected components of elements flagged rigid.

Computing connected components and rigid bodies has linear time complexity. Each

element and each vertex has a rigidID property to identify which rigid body it is part of (if

any), and all are initially assigned ‑1 (i.e., none). We then use a breadth first search (BFS)

to construct a connected rigid component for every element which is flagged for rigidi‑

fication. We use an adjacency graph for tetrahedral elements with shared faces (or with

shared edges for triangle elements in 2D simulations). While each connected component

forms a rigid body in our simulation, we must be careful that different components do not

share vertices. A shared vertex between two rigid components require a spherical joint

constraint (similarly a shared edge would require a hinge constraint). Figure 3.2 shows an

example of this in a 2D simulation, where a shared vertex would require a hinge constraint
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Algorithm 2: Identify a new rigid body by greedy connected component BFS.
Called for all elements flagged as rigid.
Data: element e flagged rigid, rigid body index j to assign.
Result: number of elements in the new rigid component connected to e, or zero if

no rigid body can be formed.
if e.visited then

return 0 // already in a rigid body
end
Q.enqueue(e)
c← 0 // initialize count
while |Q| > 0 do

e← Q.dequeue
e.visited← true
if any vertex of e already assigned to a body then

continue // avoid hinges
end
e.rigidID← j // assign element to rigid body
c← c+ 1
for vertex v in element e do

v.rigidID← j // assign vertex to rigid body
end
S ← unvisited & flagged‑rigid face‑neighbors of e
Q.enqueue(S)

end
return c

to keep the shared vertex at the same location. Thus, the BFS in Algorithm 2 includes a

greedy vertex assignment and a vertex check to avoid hinge creation. As such the traversal

order has an impact on the rigid pattern at hinges.

Once we have identified the connected components and the total number of rigid

bodies, we then do a final linear pass over all vertices to compute the properties and state

of each rigid body: center of mass p, linear and rotational mass matrix MR, linear and

angular velocity ϕ. The orientationR of the bodies are set to be the identity, and the linear

and angular velocity are computed such that the linear and angular momentum about the

center of mass, MRϕ, matches that of elastic degrees of freedom. If an object is moving

rigidly, rigidification exactly preserves momentum. We lose momentum associated with

non‑rigid motion below the rigidification threshold, but this is small due to our thresholds

being low to preserve visual consistency with the elastic simulation.
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3.3.5 Elastification

The rigid parts of an elastic solid must be able to become elastic again when necessary.

Tractions on the surfaces of the rigid regions may hold the elastic material within a rigid

region in static equilibrium, or may not change enough (be large enough) to produce a

noticeable deformation in the case of a very stiff elastic region. However, tractions can

change, for instance, with the arrival of a traveling elastic wave, and this should cause

rigid elements to become elastic again. Similarly, changing contact forces or new collisions

should also cause elastification.

Ideally we would like to have an oracle that has low computational cost and can exactly

identify only those elements that need to become elastic. However, the true solution re‑

quires a full solve to compute the strain rate of the full elastic system given the current state

(position, velocity, contacts). Instead we propose a quick solve to inexpensively compute an

approximate change in the velocities of all vertices, ∆ẋapprox, from which we can identify

elements to make elastic before solving the system at a given time step. The key observation

here is that the quick solve does not need to provide an accurate solution; it only needs to

identify when rigid elements should become elastic.

We choose conjugate gradient for the quick solve. While the residual does not decrease

monotonically, every iteration of conjugate gradient does reduce the error, and we can

avoid the costly step of assembling the matrixA for the full elastic system. Preconditioning

is essential, otherwise each iteration only propagates information between neighbours fol‑

lowing the sparsity structure of A (for instance, an impulse at one vertex will only be able

to influence the ∆ẋapprox of that vertex and adjacent vertices with only one multiplication

byA). Diagonal Jacobi conditioning, while meeting our requirement of low computational

cost, does not alleviate this problem. In contrast, an incomplete Cholesky factorization

is a good choice because the forward and backward substitution provides an excellent

opportunity for an impulse at one vertex to influence ∆ẋapprox at distant vertices, even

with only one iteration of conjugate gradient (see Figure 3.7 in Section 3.4).

The system matrix in Equation 3.5 changes on each time step because the stiffness is

dependent on the current state. Recomputing the preconditioner, even periodically [28],
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is costly. We neither want to incur the cost of the incomplete factorization on each quick

solve, nor the cost to assemble the system matrix for just one multiplication. Instead we

precompute the incomplete factorization of the constant Hessian approximation based on

the mesh Laplacian as proposed by Liu et al. [66]. With a suitable drop tolerance, we

find that the incomplete factorization is both inexpensive, having a number of non‑zeros

similar toA, and performs very well in our quick solve (i.e., predicting elastification), even

with only one iteration of conjugate gradient. Furthermore, we do not observe any notice‑

able difference in the predictive power when using the full Cholesky decomposition of the

fixed preconditioner. In contrast, while similar in cost to using a drop tolerance, we do not

see the same performance with no‑fill incomplete Cholesky or no‑fill modified incomplete

Cholesky, regardless the permutation of variables (alternative minimum degree, reverse

Cuthill‑McKee, or nested dissection).

The quick solve in all our examples uses a drop tolerance of 10−6, a nested dissection

permutation, and a single iteration of conjugate gradient without assembly of A to solve

the full system in Equation 3.5. The quick solve is done independently on each distinct

elastic objects, irrespective of contacts. For gravity forces, We note that splitting is gen‑

erally beneficial, especially in scenarios involving contact. That is, we update velocities

based on gravity prior to the quick solve, rather than asking our single step preconditioned

conjugate gradient to deal with these forces on the right hand side of the equation.

We have considered alternatives for the quick solve oracle. For instance, Gauss‑Seidel

iteration is effective for merging and splitting rigid bodies [26], and a careful ordering

provides good propagation of information for correct treatment of impacts. But Gauss‑

Seidel is a poor choice for elastic material without additional mechanisms for long range

information exchange [59]. While other alternatives may be an interesting avenue for

future work, we believe we have found a good balance of simplicity and speed with our

current solution.

3.3.5.1 Contacts

We take contact forces into account in the quick solve by using the contact forces from the

previous time step. Recall that we use a warm start for the contact solve in Section 3.3.3.
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We include these warm start contact forces as explicit external forces in the quick solve by

adding JT
c λ as a known quantity to the right hand side of Equation 3.5.

New contacts pose a slightly harder problem. We handle new contacts by conserva‑

tively approximating the forces necessary to resolve these contacts. Just like warm started

contacts, we include approximate contact forces for these new contacts on the right hand

side of Equation 3.5. We treat new contacts as bilateral constraints, thus, with the new‑

contact Jacobian Jcn, we can write the KKT system

 A JT
cn

Jcn 0

∆ẋapprox

λn

 =

 z

−Jcnẋ

 , (3.18)

where z is the right hand size of Equation 3.5 along with explicit warm started contacts.

Forming the Schur complement gives

JcnA
−1JT

cnλn = JcnA
−1z + Jcnẋ, (3.19)

which will be a small system for a small number of contacts. The complication here is

A−1, and recall that the main simulation loop will only compute the LDLT factorization

of the elastic‑rigid system matrix AA, as opposed to the full elastic A. In the interest of

having the fastest possible conservative solution, we assume the new vertices are isolated

and uncoupled, and solve for their contact forces independently using an approximation

of A−1 consisting of precomputed diagonal blocks (i.e., we disregard the implicit stiffness

coupling), computed for the rest configuration. When many new contacts form simul‑

taneously, for instance, a large contact patch forming on impact, we will overestimate

the contact force due to missing coupling terms. But this will simply leads to a larger

quick solve∆ẋapprox solution, and in turn a larger region of elements will be conservatively

converted to elastic for solving the next time step. In contrast, when new contacts form in

isolation, for instance when a contact patch grows to include a new vertex, we will obtain

an accurate estimate of the contact force.

Finally, with old warm‑started and new approximate contact forces in account, a single

iteration preconditioned conjugate gradient solve provides ∆ẋapprox, which we combine
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with the current state x to compute F = B x and Ḟ = B (ẋ + ∆ẋapprox), and in turn, the

approximate strain rate Ėapprox using Equation 3.17. Every element that has ∥Ėapprox∥2fro
exceeding a elastification threshold τE is flagged for elastification. During the BFS de‑

scribed in Section 3.3.4, this can cause the outer layers of a rigid body to become elastic

again, or can even break a rigid body into multiple components. It is the difficulty of

tracking fragmentation of rigid bodies during elastification that motivates our strategy

of recomputing the rigid bodies when there is a change. We briefly discuss incremental

approaches in future work (see Section 3.5).

3.4 Results

Table 3.1 shows parameters and performance measurements for all examples in this chap‑

ter. Simulations were carried out on a Windows 10 PC using an Intel Core I7‑6700K

processor, with 64 GB of DDR3 RAM. Both the adaptive and non‑adaptive simulations are

primarily implemented in MATLAB, with performance critical components implemented

in C++. We use GPToolbox [50] for some geometry processing and simulation specific

functionality.

Our adaptive method is faster than its non‑adaptive counterpart in all cases, both in

terms of total simulation time and mean improvement in per‑timestep computation time.

The maximum performance improvement is approximately one order of magnitude in

both cases (Table 3.1). Figure 3.8 shows detailed per‑timestep speedups for many of our

simulations which demonstrates that even in the worst‑case, the adaptive code offers

equivalent performance to the non‑adaptive setup, and is often many times faster.

Our method is compatible with standard hyperelastic material models. We use Saint‑

Venant Kirchoff, neo‑Hookean, and corotational energies in our simulator. The examples

we show in this chapter use StVK for 2D scenes and neo‑Hookean for 3D scenes. While

all of our examples use semi‑implicit backward Euler integration (i.e., backward Euler on

the linearized system), it is straightforward to use a full Newton solve with line search.
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Table 3.1: Speedup for different examples, and the parameters used: rigidification and
elastification thresholds τR and τE , time step h, Rayleigh parameters α0 and α1, Young’s
modulus E, Poisson’s ratio ν, and number of tetrahedra #T . All material energies in these
specific scenes are neo‑Hookean. Comparing the mean of per‑frame speedup to the total
speedup, we can see if the improvement in computation time is localized to specific frames
or distributed over the full scene. For instance, the blob has big speedups at the start and
end of the simulation, while the forest has a constant speedup. No‑contact (NC) total
and mean speedups show values computed without counting the contact solve time and
demonstrate that our choice of contact solver does not exaggerate the benefit of adaptive
rigidification. In all examples, we see a significant increase in performances, even in highly
deforming scenes with non‑localized deformations.

Sim Adaptive
Time (s)

Default
Time (s)

Speedup
Total

Speedup
Mean

Speedup
NC Total

Speedup
NC Mean

τR τE h Objects α0 α1 ν E #T

octopus 175.57 754.03 4.30 5.81 4.29 7.00 1e‑5 1e‑4 1e‑2 octopus 1e‑4 1e‑1 0.30 5e3 6170
blob 1876.40 3915.30 2.09 9.10 1.81 5.74 1e‑5 1e‑4 1e‑2 blob 1e‑3 1e‑2 0.22 5e3 6386

tire 1e‑5 5e‑2 0.30 3e3wheel 258.21 2966.80 11.49 16.43 9.74 12.39 5e‑4 5e‑3 1e‑3
rim 1e‑5 2e‑1 0.40 1e6

15797

pine tree 1e‑5 1e‑2 0.37 2e5
other tree 1e‑5 7e‑2 0.37 7e5
baseball bat 1e‑4 1e‑1 0.37 5e4

forest 96.56 800.82 8.29 9.24 8.27 9.21 5e‑3 5e‑2 5e‑3

leaves 1e‑4 1e‑4 0.37 7e5

56818

red pills 1e‑5 5e‑2 0.35 5e4pachinko 347.18 3803.20 10.96 13.24 5.23 5.63 7e‑3 7e‑2 1e‑2
white pills 1e‑5 1e‑1 0.35 5e3

39808

3.4.1 Threshold Selection

Selecting a threshold for rigidification is not difficult, and is largely a question of choosing

a trade‑off between error and speed. However, a large threshold will lead to large errors;

a good choice is crucial so as not to generate visual artifacts.

The square of the Frobenius norm provides an upper bound on the sum of squared

eigenvalues of the strain rate. The eigenvalues correspond to stretch rates, which provides

intuition. For example, a rigidification threshold of τR =1e‑4, can be thought of as letting

material become rigid if it is deforming at slower than 1% per second. This can be a good

threshold for many scenes involving damped oscillations, and recall that making a portion

of the mesh rigid does not prevent it from quickly become elastic again.

Figure 3.3 shows a clear relationship between between error and speed in the simu‑

lation of a 2D cantilever for different choices of τE with τR = 10−1τE . The test scenario

involves the under damped cantilever falling under gravity, visually coming to rest after

a period of damped oscillation, and then reacting to a scripted force applied to its free
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Figure 3.3: Cantilever max vertex error (measured relative to cantilever length), and
inverse speedup factor (lower is better), for a varying range of elastification thresholds
and τR = 10−1τE .

end (see video). The error is computed as the magnitude of the maximum displacement

of any vertex at any time from the fully elastic simulated trajectory, and is normalized

by the length of the cantilever. We consider the elastic trajectory to be the ground‑truth

simulation while neglecting the possibility that our simulation is potentially more accurate

numerically in some cases, e.g., on purely rigid motions. While this underestimates the

strengths of our method, it provides a fair evaluation of the accuracy. We observe a

maximum speedup with 10% max error above τE equal to 1, but this threshold setting is a

poor choice because the cantilever simply remains rigid for the full simulation. In contrast,

setting τE = 10−5 leads to a maximum error of approximately 0.1% in the simulation

trajectory with a speedup of 1.7 times. This modest speedup comes from the fact that this

is a simple 2D example with only 2739 triangular elements, while fine meshes in 3D lead

to the more impressive speedups seen with other examples in this chapter. A relationship

between error and speedup is also observable in richer scenes. Such a relationship is likely

due to both the complexity of the solver and the distribution of the strain rates in the given

scene. Figure 3.4 shows that the wheels using more conservative thresholds fall on the

same side at approximately the same time while featuring good rigidification behavior.

While the rigidification threshold needs to be high enough to let elastic elements be‑

come rigid, it is ultimately the elastification threshold that determines the behavior. If

the elastification threshold τE is set too low then it will prevent the formation of any

rigid bodies, while if it is set too high then the mesh can lock in a state far from a static
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5e‑25e‑35e‑45e‑5elastic
Figure 3.4: Rolling wheels with different elastification thresholds τE fall at approximately
the same time matching the fully elastic simulation in the provided video. Lower thresh‑
olds lead to more accurate simulations while higher thresholds lead to faster simula‑
tions. Here, all of the adaptive simulations share a common rigidification threshold,
τR = 10−1τE .
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Figure 3.5: Animated histograms (see video) of elastic element strain rate (left) and rigid
element approximate strain rate from the quick solve (middle) provide intuition about
simulation behavior for given thresholds.

equilibrium. This can be seen at top left of Figure 3.6 for the cantilever with τR =1e‑3

which stops oscillating too early (see also the supplementary video).

Recall that the quick solve provides only an approximate prediction of the strain rate,

and in our experience the solutions are always an overestimate. Intuition can come from

observing the evolution of Ė and Ėapprox histograms during a simulation (see Figure 3.5).

To account for the quick solve error, we typically set the elastification threshold to be one

or two orders of magnitude higher than the rigidification threshold.

Figure 3.6a shows effect of different elastification thresholds with τR = 10−2τE . High

thresholds give premature rigidification and a large error, while τE = 10−5 and lower

match the fully elastic simulation. Our method accounts for varying material parameters

because rigidification only depends on the strain rate (it is agnostic to the selection of

parameters, as well as the choice of elastic energy and damping model). Increasing the
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(a) Elastification threshold (b) Damping α1 (c) Resolution vertices (d) Young’s modulus
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Figure 3.6: (a) The rigidification threshold decides when rigid bodies are created, but
it is the elastification threshold which is critical for deciding what regions will stay
rigid. Lower values provide simulations that more faithfully reproduce the fully elastic
behaviour, but at greater cost. (b) Rigidification takes place faster when there is higher
damping in the simulation scenario, leading to greater speedups. (c) We observe very
similar rigidification patters independent of the resolution of the mesh, while very coarse
meshes rigidify more quickly because of resolution dependent stiffness and numerical
damping. (d) Lower stiffness leads to larger and longer lived oscillations, while the
damping in stiffer examples has them come to rest and rigidify earlier.

damping (Figure 3.6b) or stiffness (Figure 3.6d), causes the simulated beam to rigidify

more quickly. Finally, notice that similar rigidification regions form in meshes at dif‑

ferent resolutions (Figure 3.6c), while an extremely low resolution mesh undergo rapid

rigidification due to discretization‑based numerical stiffening.

We observe that geometry can influence our threshold selection. For instance, geom‑

etry with long thin parts may benefit from a lower threshold to better capture global

behavior (e.g., octopus, τR = 5e‑7). Likewise, we may choose a lower threshold when

small local details are important (e.g., forest, τR = 5e‑5).

3.4.2 Example Simulations and Features

Our method supports local elastification and rigidification in response to external forces

such as those arising from contact. Figure 3.7 shows two bowling balls dropped onto a

mattress from different heights. Each impact elastifies a different local patch of the mat‑

tress mesh, with size proportional to the total force at impact. This conservative estimate

of which elements need elastification is thanks to the approximation of a contact response

in combination with the single iteration preconditioned conjugate gradients solve.

Taken together, the expressivity of the elastification threshold parameter, along with

the spatially varying behavior of the adaptive scheme allow us to find suitable settings
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Figure 3.7: The higher ball drop elastifies a larger region.

which yield both a performance improvement and good visual agreement with non‑adap‑

tive simulations. For example, the elastic blobs (seen at left in Figure 3.8) are 2.6 times

faster in terms of wall clock time, but visually indistinguishable from the standard finite

element result.

This performance advantage persists even in more complicated scenes involving ob‑

jects undergoing frictional contact. For instance, in the pachinko example in Figure 3.8,

objects both become partially elastic and rigid as they navigate their way down multiple

platforms. This ability for sliding and rotating objects to be rigid while in a deformed

state is an important feature that improves runtime performance, in contrast to previous

approaches which require the object to be in an undeformed state to be simulated as

rigid [22].

In this scene, the high number of contacts make it harder to compute. The meshes

are very coarse, but due to the optimization of the time integration on contact and the

high number of meshes, our technique still outperforms the default mesh. Due to how

coarse the meshes are, the overhead of our technique is more visible. The complexity of

rigidification is much lower than the time integration, making it very scalable.

Local elastification and rigidication also extend to more involved geometries and in‑

teractions. This can be seen in several of our examples, but the octopus scene provides a

good example. As various parts of the octopus come to rest they rigidify while allowing

other pieces to keep moving. Pulling on a tentacle causes only a small local portion of the

mesh to become elastic, while the rest is simulated as a single rigid body.

A key contribution of our method is that adaptivity is material‑independent and so

objects with heterogeneous material properties behave accordingly. Equivalent forces
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Figure 3.8: Per‑frame speedup factors for blob, wheel, forest, octopus, and pachinko.
Using conservative elastification and rigidification thresholds, we can obtain very accurate
simulations in reduced computation time. Adaptive rigidification works for collision,
rotation, frictional contact, and proves a large benefit in big scenes with local deforma‑
tions, such as forest, where it is possible to elastify individual trees as needed. The green
line in each plot shows mean speedup. Each rendered image shows one frame of the
corresponding simulation to visually identify the scene.
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cause less strain on stiffer materials, which correctly leads to more aggressive rigidifica‑

tion. Our method is likewise compatible with arbitrary hyperelastic material models. This

is a significant advantage over requiring a user to apriori intuit how an object will interact

with a scene. Figure 3.1 demonstrates this with a rolling wheel that has a rubber tire and

steel hub. The hub remains rigid for much of the simulation, simulated as a single rigid

body, while the tire can elastify and rigidify on demand. The adaptive simulation retains

excellent agreement with the non‑adaptive simulation and is 5 times faster to simulate

overall.

Finally, the forest example shows a particularly compelling use case of our method.

In this scene, every tree is a finite element object and we move an axe through the scene,

chopping at the trees. Our method correctly activates only parts of the trees required to

capture the deformation, the rest are quickly simulated as rigid bodies. This leads to a 10

times performance improvement over a standard FEM simulation. Such scenes, in which

interaction in a large world is focused on a single hero character, are common in video

games and movies.

All our examples feature objects which partially rigidify while in motion, and while

deformed, and unfreeze (elastify) correctly in response to contact, avoiding common ar‑

tifacts such as erroneous floating bodies. To our knowledge none of these examples are

compatible with previous freezing approaches. Our method yields significant, often or‑

der of magnitude, speedups and is also compatible with other approaches to accelerate

deformable object simulation. For instance, we could leverage updated sparse Cholesky

factors [48] to reduce factorization costs. Our method is complementary to subspace

condensation [104], which lists as its limitations a difficulty in handling scenarios where

contacts can cause large changes in global motions, something our method excels at. We

avoid the stated limitation of requiring careful construction of a reduced basis.

3.5 Discussion and Limitations

We currently recompute rigid body properties on each step only when there is a change in

the elements making up the rigid bodies. However, if there is minimal change, such as just
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a small number of elements added or removed from a rigid body, there is an opportunity

to do inexpensive incremental updates to the mass properties and rigid state. Currently

the main challenge is when a rigid collection of elements splits apart into multiple rigid

bodies, and designing efficient algorithms for this case is an interesting direction for future

work. Likewise, it would be interesting to explore efficient ways to adapt the graph to

topological changes like cutting or fracture. While the current linear algorithm to generate

connected component is not a bottleneck, an incremental approach could further improve

the efficiency of adaptive rigidification.

It would be interesting to consider how to make rigidification work for hexahedra with

trilinear shape functions, or likewise any model with higher order shape functions. We

currently monitor a single strain rate Ė for each element to identify if it should be rigid or

not, but it could be possible to identify collections of vertices (control points) that could

move rigidly based on monitoring their motion rather than the strain rate of quadrature

points.

We currently only merge adjacent elements to form rigid bodies, while it could be

interesting to also merge elements that are in contact. Our example simulations include

cases where multiple elastic bodies stack and become rigid, and these examples could be

further speed by following an approach similar to that of Coevoet et al. [26], which merges

rigid bodies and thus reduces the cost of collision detection and contact force computation.

3.6 Conclusions

Our method limits the size of the instances by reducing and increasing the degrees‑of‑

freedom as needed. Our hierarchy free algorithm outperforms the standard FEM in every

scene tested due to its cost efficiency. With this new approach we show that the simulation

of elastic solids can be not only easy and fast, but accurate in comparison to the ground

truth elastic simulation. Without the need for a coarse grid or down sampled meshes, we

can achieve increasingly big speedup factors as elements settle within the scene. We can

finally, simulate the cake and eat it. The code and data will remain available on the first

author’s website.
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We have presented a new adaptive method that uses on‑the‑fly rigidification to ac‑

celerate deformable object simulation. Our method is faster than standard, non‑adaptive

methods in all the examples presented and in many cases dramatically so (up to an order

of magnitude wall clock time improvement). This is accomplished without sacrificing

visual agreement with fully deformable methods. We believe our method to be a first and

significant step in the grand unification of rigid body and deformable simulations. Up

until now, whether to simulate rigidly or with deformation was a high‑level modelling

choice, made prior to ever running the simulation – a decision made for the purposes

of improving performance. We imagine a world where users are free from this choice.

Rather, algorithms will correctly adapt their chosen model based on the emergent physics

of the simulated system. Our work shows that, not only is this possible, but such a strategy

could be of immense practical value. In order to spur future work in this important

direction, code and data will be made available. We look forward to the more flexible

future that awaits.

3.7 From 3D to 2D

In the previous sections, we explored the concept of adaptive rigidification within the con‑

text of elastic solids. By selectively rigidifying regions of low deformation, we achieved

significant computational efficiencies without sacrificing the physical accuracy of the sim‑

ulations. This technique proved particularly effective in scenarios where the material

exhibited varying stiffness, allowing for the efficient resolution of large‑scale deformations

while maintaining the ability to capture intricate details in regions of higher elasticity.

However, extending this approach to other model types like shells, snow, or dirt is

not necessarily trivial. Not all physical systems can be adequately modeled as volumetric

solids. In many real‑world applications, the objects of interest are better represented as

thin structures, such as plates, membranes, or shells. These systems, characterized by

their two‑dimensional surface geometry and reduced thickness, pose unique challenges

for simulation. Unlike volumetric solids, where deformation can occur in all three spatial

dimensions, shells primarily deform in‑plane (stretching and shearing) and out‑of‑plane
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(bending) directions. The thin nature of these structures means that even small out‑of‑

plane deformations can result in significant changes to the overall shape, necessitating a

different approach to modeling and simulation.

This is where the concept of adaptive rigidification must be revisited and tailored to the

specific needs of discrete shell models. The principles underlying adaptive rigidification

remain applicable, but the implementation must account for the unique geometric and

physical properties of shells. For example, in shell simulations, the balance between in‑

plane stiffness and out‑of‑plane flexibility is critical. Rigidifying a region of a shell too

aggressively can lead to unrealistic constraints on bending, while insufficient rigidification

may fail to capture the global structural stability.

To address these challenges, we must adapt the methodology of adaptive rigidification

to the discrete shells formulation. This involves developing new criteria for selecting

regions to be rigidified, which take into account both the geometric curvature and the local

strain rates. Additionally, the interaction between the shell’s thickness and its mechanical

response requires careful consideration, as the thin‑walled nature of shells can lead to

different failure modes and stability issues compared to volumetric solids.

By transitioning from elastic solids to discrete shells, we expand the applicability of

adaptive rigidification, demonstrating its versatility across a broader range of physical

systems. This not only enhances the efficiency of the simulation models but also opens up

new avenues for visually accurate simulations of complex structures in various engineer‑

ing and scientific domains. This is why we address such a model in the next chapter. We

will explore the adaptive rigidification of discrete shells, present how to handle the tricky

bending cases, and properly handle contact elastification by using an edge filter for fast

diffusion.
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Chapter 4

Adaptive Rigidification of Discrete Shells

This chapter is a from a published paper: A. Mercier‑Aubin and P. G. Kry. Adaptive

Rigidification of Discrete Shells. Proc. ACM Comput. Graph. Interact. Tech., 6(3):1–17,

Aug. 2023. DOI: 10 . 1145 / 3606932. It is provided as is with only minimal editorial

modifications. Section 4.7 is added at the end to transition to the next work. We also

provide videos in the supplemental materials.
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Figure 4.1: Local deformations at the elbow require elastic deformation during bending,
while the rest of the sleeve simulates as a rigid body, providing an order of magnitude
faster computation in comparison to a fully elastic simulation. A bending arm tends to
only generate local deformation on a sleeve near the elbow with otherwise rigidly moving
wrinkles. This allows the coarsening of fine detailed wrinkles through adaptive rigidifica‑
tion. In this example, our implementation achieves a nearly constant improvement with
performances more than an order of magnitude faster than the elastic simulation.

4.1 Introduction

In any standard elastodynamic simulation, interactions between models are governed

by physical laws for realistic simulations. Integrating in time the degrees of freedom
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often requires expensive iterative solvers that terminate before convergence or introduce

significant numerical damping. Scaling these simulations to large scenes without approx‑

imations can be challenging, as many approximations are set a priori, such as discretizing

time according to a fixed step size and discretizing models into elements. However,

precomputing the initial discretization of models can help alleviate some of the computa‑

tional stress, and adaptive techniques can refine or coarsen the objects as needed. As the

number of elements in a scene grows, reducing the size of the system becomes increasingly

important for achieving efficient and accurate simulations.

The simulation of thin tetrahedral meshes is subject to even more problems, as it often

leads to poorly conditioned system due to sliver shaped elements, or extremely high res‑

olution models necessary for the deformation of very thin models. Instead of volumetric

meshes, 2D models with a thickness parameter and assumption of non‑deformation in the

normal directions can be used to create plausible simulations with a potentially coarser

mesh while achieving similar results. However, thin shells using 2D elements poses its

own set of challenges. The bending energies introduce non‑linearity, necessitating smaller

step sizes or an higher number of iterations for time integration. Nevertheless, bending

energies are necessary to create dynamic, cloth‑like wrinkles with rich wavy motions.

In this chapter, wepropose a method to adaptively coarsen and refine thin shells at run‑

time. This builds upon the rigidification method introduced by Mercier‑Aubin et al. [78].

In all large scale simulations, some elements will inevitably be static or moving rigidly,

and therefore wasting computational resources on the deformation of non‑deforming de‑

grees of freedom. In Figure 4.1, a horizontally oriented sleeve has large undeforming

regions when it bends, but also features dynamic deformation near the elbow. Adap‑

tive rigidification is efficient even on highly wrinkled models. On‑demand elastification

makes dynamic scenes properly dependent on their environment, allowing elements to

alternate between a fast rigid representation and the accurate elastic counterpart.

Direct application of the previous adaptive rigidification method in the case of shells

introduces new challenges. The bending deformation occurs over edges, making it im‑

possible to evaluate using only the per triangle strain rate from membrane deformation.

Additionally, bending along the discretized edges is unrelated to stretching. For example,
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a flat hanging piece of cloth experiences only stretching in the planar directions due to

gravity and does not express any bending deformation. Likewise, making each triangle

an independent rigid body capable of bending would require more degrees of freedom

per element, which defeats the purpose of adaptive rigidification. Because bending and

membrane deformation are two independent types of deformation, we must consider

both in our rigidification process as opposed to the previous work. Shells also require a

new threshold for the bending motions to prevent premature rigidification, which would

prevent elements from bending.

Collisions are a common mechanism for elastification, and for good performance we

need an oracle that can identify a small local region of the mesh to elastify based on a

threshold. The previous work uses a single iteration of preconditioned conjugate gradient,

which can be problematic for shells, in particular, those with high membrane stiffness. If

only a small number of contacts are active, the single iteration of preconditioned conjugate

gradient is not enough to properly propagate the elastification and cause the bending

component to wake up. We present different approaches, including a fast contact filter

that approximate the behaviour of the impact on the nodes adjacent to the contact location.

In the following sections, we present a new adaptive simulation method for thin shells,

which can produce results that closely resemble a fully elastic simulation while often

having computation times more than an order of magnitude faster. We test our improve‑

ment to the oracle’s contact handling by comparing our filter with the previous method

for handling contacts as well as slower, but more accurate approaches to solve for the

approximate contact velocities. We also discuss the difference between the curvature

rate and the dihedral angle rate as well as some of their potential applications in the

rigidification process.

4.2 Related Work

Remeshing [2] is often used to adaptively coarsen shells on the fly. This generates new

positions using either subdivision rules [12, 63, 67, 24] or splitting coupled with edge

flipping to improve the conditioning elements [53]. This type of technique generally
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must handle the buckling or instabilities that can arise when remeshing curved surfaces

with coarser triangles. One way to handle this is to use a measure the quality of the

new elements to determine when to remesh them [87, 112]. These techniques are good

for surfaces that are developable or that have large nearly flat regions, because these

regions will remain indistinguishable from fine to coarse. Another approach refines basis

functions [44, 47] to allow deformation in the coarse models by adding new degrees of

freedom. In contrast, our method is orthogonal to these approaches and reduces the size of

the system by simulating those regions of a mesh without dynamic deformations as rigid

bodies, regardless if the region is flat or consisting of a dense collection of triangulated

folds.

In contrast to mesh refinement, via remeshing, with the goal of simulating a mesh with

the appropriate resolution, other approaches separate the problem into two distinct parts,

i.e., a coarse simulation and a second mechanism for adding details. For instance, the

approach of Rohmer et al. [93] first simulates a coarse models, and then refines the coarse

mesh in a post‑process refinement to add wrinkle details. A different strategy is taken

by Müller et al. [81], where fine mesh vertices permit wrinkles via approximate constraints

to a coarse simulation. There likewise exists other strategies and heuristics for upscaling

simulations. The formation of wrinkles can be data‑driven [79, 91], and machine learning

techniques can predict physically plausible coarse‑to‑fine mappings of vertices [55]. Our

approach instead starts with a high‑resolution model and lets the simulation choose which

parts need the degrees of freedom, and which regions can be evolved with only rigid

motion.

While not directly related to adaptive simulation, we note that the simulation of stiff

shells can be challenging because large stiffness ratios can lead to poorly conditioned sys‑

tems. Physical fabrics typically have a non‑linear stress‑strain relationship that increase

the stiffness rapidly as it deforms. One way to reduce the conditioning issue is to add

strain limits. This can be done with correction strain constraints or projections after each

integration step [92, 39]. In the case of inextensible cloth [32], constraints provide this

strain limit in a quadrilateral mesh which avoids locking artifacts due to discretization. In

contrast to these other techniques, our method makes strain limited regions rigid when

67



they maintain the limit (and have zero deformation rate in the orthogonal direction). This

addresses the conditioning problems, i.e., when these strain limited regions are simulated

as rigid.

Freezing and sleeping techniques are well known approaches to save computation

during static periods of dynamic simulations. For instance, using an adaptive Hamilto‑

nian can reduce the size of the simulations at run‑time by disabling positional degrees of

freedom of a system in regions where there is low momentum [5, 73]. Freezing can like‑

wise be implemented in a hierarchy to dynamically tune the complexity of a viscoelastic

body [109]. Different metrics can be used to initiate freezing, for example, by analyzing

kinetic energies or velocities in simulations of rigid body contact [96, 33]. In the context

of rigid bodies, another approach is to merge [26] collections of contacting bodies when

they have zero relative velocity. This is similar to our work in that it reduces the degrees

of freedom of the system, simplifies collision detection cost, while still permitting the

collection to move as a rigid body.

Merging degrees of freedom into rigid bodies is likewise a key idea in adaptive rigidifi‑

cation of elastic solids [78], i.e., that it is valuable to permit regions of an elastic simulation

to continue moving rigidly, as opposed to freezing degrees of freedom in the inertial

frame.

4.3 Methods

We first extend adaptive rigidification to support triangular elements in a 3D setting. Thin

shells feature two major hindrances that require a different approach for rigidification; the

bending component cannot be analyzed from the deformation gradient, and the constant

thickness of shells requires the definition of the deformation gradient to be changed for

rigid rotations so as to yield a zero strain.
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4.3.1 Simulation of Shells

For standard volumetric meshes, we define the deformation gradient F = Bx from a

kinematic mapping B and the generalized coordinates x of our element’s vertices [18].

However, shells are not inherently volumetric. We use an approximation of the thickness

by projecting out any deformation in the normal directions n of the faces [62]. This is akin

to simulating a fake prismatic element. We do this projection by adding a new term η to

the definition of the deformation gradient

F = Bx+ ηn, (4.1)

which then gives us the deformation gradient for shells. This η ∈ R9×3 term

η =


n0 0 0

0 n0 0

0 0 n0

 (4.2)

is a block matrix where each zero 0 is a 3 by 1 column vector of zeros andn0 is the reference

space normal of the element. This gives us contributions of the change in face normal

from reference to world space for the deformation gradient. The B and η matrices are

pre‑computed at the start of the simulation with the fully elastic mesh and cached.

Baraff et al. [6] separate the potential energy into three energies. Both the shear and

stretch energies use a function that maps a 2D projection of thin shells to their 3D world

positions, effectively computing the energies as 2D problems, these are named membrane

energies and only affect the planar deformations. Grinspun et al. [43] introduces a bend‑

ing energy using the angle between two face normals, which is coupled with a stiffness

parameter and creates resistance to bending. We use a similar approach by separating

the membrane energies from the bending energies while they still remain coupled and

interact with each other during the solve.
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4.3.1.1 Membrane Energy

To help ensure stability we use implicit time integration [34], so for the membrane energy

density Ψe we must compute the gradient ∂Ψe

∂F
and Hessian ∂2Ψe

∂F 2 . To get the internal forces

fe = −V ∂Ψe

∂F
we multiply the gradient by the negative volume. In the case of a shell, the

volume is the area of the triangle multiplied by a thickness parameter. In our examples,

we tried various membrane energy formulations including neoHookean, Saint‑Venant

Kirchoff, and more. We note that we use the Grinspun et al. [43] membrane energy in

our time comparisons because in our experience it allows a bigger step size with fewer

Newton iterations.

4.3.1.2 Bending Energy

We compute the dihedral angle

θ = π − tan−1 e · (n1 × n2)

n1 · n2

, (4.3)

Ψb =
∑
e

(θe − θ̄e)∥ē∥/he, (4.4)

for each edge, where n1, and n2 are the adjacent face normals, and e is the edge vec‑

tor (see Figure 4.2). We then use the resulting angles to compute the bending energies

from Tamstorf et al. [102]. Here θ̄e is the dihedral angle at rest he is the length of the dual

edge connecting the barycenters of two triangles at rest, and ē is the edge at rest.

We sum the bending energy to the membrane energy Ψ = Ψb + VΨe locally for each

element and edge. Then, we find their gradient and Hessian to allow implicit time inte‑

gration.
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4.3.2 Simulating Coupled Rigid Bodies

In our mixed simulations, the elastic portions of the shell can have dynamic deformations

while other portions replaced with rigid bodies do not allow for bending, with each con‑

nected component acting as a single thin rigid body. The adaptive model reduction uses

the matrix

G =

I 0

0 Γ

 , (4.5)

to map degrees of freedom from the mixed rigid‑elastic system to the fully elastic model.

Each vertex inside the rigidified body has a vector r that points to it from the center of

mass in rigid body frame. From this we can build a matrix

Γi =
[
I −(R ri)

×
]

(4.6)

that maps the rigid body velocities to each individual vertex of the rigid body.

For every mesh, we group rigid elements using an adjacency graph of elements with

shared edges for shells. We compute this graph prior to the simulation. Using a breadth

first search algorithm, we navigate the graph to find the rigid connected component. Each

connected component is a new rigid body in our simulation. When building the bodies,

we compute properties like the center of mass p, the rotation R ∈ SO(3), the angular

velocity ω, the linear velocity v. These are set according to the state of the degrees of

freedom rigidified to exactly preserve momentum under rigid motions.

On rigidification, we replace the elastic degrees of freedom in our system with the ap‑

propriate rigid degrees of freedom using the current step’sGmapping from Equation 4.5.

Lumping elements together has an impact on the mass ratio of the system which can

lead to a higher condition number. We scale the per Newton‑step linear system to get the

condition number down to a similar or better range as the fully elastic system. We use the

sparse matrix scaling of Curtis et al. [29], which iteratively solves a least‑square problem

for the row and columns scaling factors. The inclusion of a scaling matrix therefore makes

adaptive rigidification easier to integrate with iterative solvers.
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4.3.3 Time Integration

Shells are subject to tricky scenarios like buckling that require more than one Newton

iteration. Instead of a single linearized Newton step, we simulate shells by using the

common optimization function

Q(ẋt, ẋt+1) = ẋT
t+1M

(
1

2
ẋt+1 − ẋt

)
+Ψ− h ẋT

t+1 fext, (4.7)

where M is the mass matrix, fext are the external forces such as gravity, and h is the step

size. Here ẋt is the velocity vector at time t. For each time step we use a Newton‑Raphson

algorithm to solve for the next step velocities

ẋt+1 = argmin
ẋt+1∈Rn

Q(ẋt, ẋt+1). (4.8)

We use a line search based on Armijo’s rule where we simply reduce the Newton itera‑

tion’s step length until we get an improved solution. We modify the optimization function

to instead take as input the reduced system using the G matrix from Equation 4.5, as

shown in Algorithm 3.

In the previous adaptive rigidification work [78], speedups were significant for a semi‑

implicit backward Euler integration method. Increasing the number of Newton iterations

further increases the speedup as adaptive rigidification enhances the speed of each itera‑

tion, but has a linear overhead only prior to the solve.

4.3.4 Rigidification

If the membrane strain of an element and the bending deformation with its adjacent el‑

ements are constant over a period of time, we allow the element to become rigid. We

monitor the change in deformations over several time steps to prevent momentary rigid‑

ification such as when a pendulum hits its highest point of swing, or when a cantilever

plate hits its potential energy peak. Groups of adjacent elements are concatenated into a
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Algorithm 3: Adaptively rigidifying Newton’s method
input : Velocities ẋt at the start of the step

Function Q to minimize
Kinematic elastic‑adaptive mapping G
Predicted reduction σ stop parameter
Scaling matrix S

output: Velocities ẋt+1 after stepping
ẋt+1 ← ẋt
for i < Newton iterations do

A← SGT (∇2Q(ẋt, ẋt+1))G
b← −SGT (∇Q(ẋt, ẋt+1))
∆ẋ← A−1b
α← 1
while Q(ẋt, ẋt+1)−Q(ẋt, ẋt+1 + α∆ẋ) < σαQ(ẋt, ẋt+1) do

α← 1
2
α

end
∆ẋc ← Contact Solve
ẋt+1 ← ẋt+1 +GT (α(∆ẋ) + ∆ẋc)

end

single rigid body using a connected component detection algorithm which is equivalent

to the adaptive rigidification of 2D meshes.

We must monitor all deformation changes. For the membrane deformations, we com‑

pute the membrane strain rate

Ėt+1 =
Et+1 − Et

h
, (4.9)

using finite differences of the Green strain E = 1
2
(F TF − I). At the beginning of a sim‑

ulation, we initialize the cached strain of the previous step to be the identity matrix. We

monitor Ė, and rigidify the elements of a mesh when they satisfy a threshold over a set of

frames. This is enough for two dimensional simulations or for tetrahedral meshes.

For the bending deformations, we could monitor the dihedral angle for every edge

with two adjacent elements. But to make the thresholds discretization independent, we

instead monitor the discrete curvature

κe = 2
θe

he
. (4.10)
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Figure 4.3: A tiny upward impulse applied to the tip of the hat elastifies regions according
to the oracle’s contact handler and different thresholds on a log scale.

Because we already need the dihedral angles for the bending energies, computing the

discrete curvature is simply an element‑wise multiplication by a constant value for each

edge. We then approximate the discrete curvature rates with finite differences

κ̇e,t =
κe,t+1 − κe,t

h
. (4.11)

For an element to rigidify, it must satisfy both the threshold on the maximum of the per

edge discrete curvature rates κ̇e,t, and the threshold on the membrane strain rate Ė.

4.3.5 Elastification

Rigidified parts of the models must become elastic again on visually significant deforma‑

tion due to elastic waves, changing contact forces or new contact forces. Within a rigid

body, because the elastic degrees of freedom are replaced, we do not have information

about the deformation rate of the elastic model when it is solved as rigid. We must predict

the parts of a rigidified model that will have a deformation velocity in the next time step.

We can approximate the change in velocities due to elastic motions with a single pre‑

conditioned conjugate gradient iteration on the first Newton step with a fully elastic sys‑

tem

∆ẋ = A−1(b− JT
c λ) + hẍg, (4.12)
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where JT
c λ are contact forces, A and b are the derivatives of the reduced system as shown

in Algorithm 3, and where fext in Q does not include forces due to gravity. Instead, the

gravity velocities ẍg are injected into b (i.e., ẋt modified to be ẋt + hẍg) and also added to

the change in velocities after the solve, because this helps the approximate solve produce

a better solution.

New or moving contacts can also create elastification. In the oracle, we handle pre‑

viously existing contacts, and new contacts differently. We concatenate the two types of

constraints in JT
c λ, and add them to the system to solve. For existing contacts, we reuse

the previous adaptive step impulses as contacts for the oracle. Like the original adaptive

rigidification, we approximate only the new contacts for the oracle using a cheap bilateral

constraint solve

JcnÃ
−1
0 JT

cnλn = Jcn(Ã
−1
0 b+ ẋ), (4.13)

where the constraint Jacobian Jcn contains only the new contact constraints, and Ã−1
0 is the

precomputed 3‑by‑3 block diagonal inverse matrix at rest (i.e., an approximation of A−1

with zero coupling between vertices).

We use a preconditioner following that of Liu et al. [66] and used by Mercier‑Aubin

et al. [78], which is computed as Ap = M + h2L were L = BTWB is the Laplacian of

the mesh with a block‑diagonal weight matrix W , where each block entry contains the

per‑element Young’s modulus. We use a single iteration of a preconditioned conjugate

gradient using an incomplete Cholesky factorization of Ap to approximate the velocities

due to elastic motions. With the approximated velocities we can use the same formula

for the membrane strain rate Ė from Equation 4.9 and pick a threshold for elastification.

Compared to the original adaptive rigidification we also use the approximate velocities to

compute the approximate discrete curvature rate κ̇e.

The original adaptive rigidification oracle, however, does not always produce a change

in velocities significant enough to allow elastification for small localized impulses. This

appears to be due to a lack of local propagation, and we speculate that this may stem from
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Figure 4.4: Contact filter at a degree 4 vertex.

how the Laplacian‑based preconditioner propagates information globally and changes

convergence behaviour during the first iterations of PCG.

We suggest a few cheap heuristics to warm‑start the oracle with approximate contact

velocities from the impulses of the bilateral solve in Equation 4.13. We evaluate these

approaches only for new contacts and assume the old contacts were solved adequately

during the time integration.

An intuitive solution for local propagation is to do a single conjugate gradient iteration

without preconditioning, and then use the resulting approximate change in velocities due

to contacts as an initial iterate ∆ẋ0 for the PCG solve. This only costs an extra linear pass

over all the vertices. In a similar train of thought, we can use the precomputed Ã−1
0 block

diagonal matrix used for the bilateral solve and obtain approximate contact change in

velocities,

∆ẋ0 = ∆ẋc + hfext, (4.14)

∆ẋc = Ã−1
0 JT

c λ, (4.15)

where fext is the precomputed external force vector. This option comes at the cost of sparse

matrix multiplications with only the new contact constraints, and Lagrange multipliers.

This leads us to yet another strategy. While a single iteration of unpreconditioned con‑

jugate gradient provides information about a local response, we can design an approach

with a similar local propagation effect, without the need to iterate through all the vertices.

We propose to warm‑start the preconditioned conjugate gradient solve using approximate

new contact velocities

∆ẋc = JT
cl λl, (4.16)
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with impulses λl obtained with a discrete Laplacian operator for local diffusion of the

impulse over edges of the mesh with neighbouring non‑colliding vertices. Figure 4.4

shows an example with a contact force at a center vertex, and the filter weights applied

to the patch. We avoid applying the filter on neighbouring elements that are already in

contact to avoid cancellation of the impulses for the warm‑start when multiple neighbours

are in contact. We add rows to the Jacobian Jc that contain the corresponding impulse

normals aligned with the degrees of freedom of neighbouring vertices to obtain Jcl. This

is the cheapest approach, with the cost being a simple sparse matrix multiplication of the

Lagrange multipliers with the constraint Jacobian of new contacts.

While none of these approaches fundamentally alter the system to solve, they can

significantly improve the accuracy of the approximate one iteration solve. Our warm‑

start techniques create initial solutions that mimic the mesh’s behaviour under compres‑

sion caused by a new contact with respect to the impact magnitude; a new contact will

compress the mesh proportionally to how hard it hits a surface.

For existing contacts, we reuse the previous adaptive step impulses as contacts for the

oracle, ensuring good continuity of the oracle’s prediction with respect to the solve for the

time integration.

4.3.6 Threshold Selection

Selecting the appropriate threshold for a simulation is akin to determining the acceptable

level of error. In general, smaller thresholds result in a more conservative simulation.

To optimize this process, we propose an approach that selects both thresholds simulta‑

neously, using the concept of speed limits to establish a relationship between bending

deformations and membrane stretches. However, for inextensible shells and other non‑

typical materials, decoupling the thresholds may be necessary and advantageous.

To form a heuristic relationship between discrete curvature rate and membrane strain

rate thresholds we consider stretching and bending an initially straight vertical line seg‑

ment as shown in Figure 4.5. A small membrane stretch increases the length by ds as

measured in the vertical direction from the top and bottom of the original line segment.
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Figure 4.5: A green line segment of length y is shown wrapped around a circle with radius
r, and stretched in the vertical direction. Equating displacements db and ds leads us to
equivalent thresholds for discrete curvature rate and membrane strain rate. While bend‑
ing and membrane deformations can be independent, this makes the threshold selection
easier.

A small bend from flat to a curvature κ = 1/r can be seen as creating a horizontal dis‑

placement of db at the top and bottom of the line segment when it wraps around a circle

of radius r. This horizontal distance db = r − r cos(θ).

Because the line wraps around the circle, we have

rθ =
y

2
, (4.17)

or θ = κy/2. If we approximate db with a Maclaurin expansion for the cos function up to

and including the quadratic term, we have

db = r − r
(
1− θ2

2
+O(θ4)

)
. (4.18)

Ignoring higher order terms and substituting the angle in Equation 4.18 using Equa‑

tion 4.17 we obtain

db ≈
y2

8r
, (4.19)
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or db ≈ κy2/8. Thus, we know how displacement db grows as the discrete curvature is

increased from zero. We can likewise see this as the displacement observed for a discrete

curvature rate change of κ̇ over a small time step h, i.e., db ≈ hκ̇y2/8.

Now, considering a stretch rate of ṡ in the vertical direction over a small time step h

we have ds = hṡy/2. Equating db and ds and cancelling terms gives κ̇ = 4
y
ṡ. Here, for

simulating arbitrary models, we interpret y as the diameter of the mesh at rest. Finally,

because the membrane thresholds are for the squared Frobenius norm of the Green strain

rate (i.e., see τm = ṡ2 if we choose the stretch rate above to be at the threshold for a mesh

at rest), we can compute the discrete curvature rate threshold τb in terms of the membrane

strain rate threshold τm using the formula

τb =
4

y

√
τm. (4.20)

The concept of discrete curvature, while resolution independent, can lead to large rates

for highly bent elements. This is because the 2D curvature is derived from the inverse

radius of the osculating circle, which becomes small for a large bend, producing large

curvatures. When dealing with large curvatures, even a slight change in angle on a highly

bent edge can generate significant curvature rates. While the resolution‑independence is

a benefit for measuring curvature rates in meshes with different discretizations, the high

rates in areas of high curvature can make the threshold selection challenging. Discrete

curvature rates are better suited for fine models where per‑edge angles are flatter. In

contrast, for a coarse model with elements of roughly consistent size, monitoring dihedral

angles is a reasonable alternative, but it is much harder to choose a dihedral angle rate

threshold for meshes with different element sizes. An interesting possibility to explore in

the future would be not to measure bending at the edges, but instead as a property of the

surface.
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Figure 4.6: Set of comparisons all using seconds as the unit for wall clock times.
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Figure 4.7: From left to right: elastic, adaptive with contact filters, adaptive with a CG
iteration before the PCG iteration, and the original adaptive rigidification algorithm.

4.4 Results

Our oracle will produce elastification due to a new contact at a single vertex, and efficiently

propagate the impact without expensive extra computation. In Figure 4.7, for instance,

once the brim of the hat hits the floor, we obtain appropriate elastification of the deforming

elements near the initial contact. The elements adequately elastify as the elastic wave

propagates through the hat, while preserving rigidly moving parts at the opposite side of

the model.

Our method allows locally bending or deforming regions to remain elastic while rest‑

ing contacts and rigidly moving chunks of elements rigidify. For instance, a cloth hanging

on a sphere in Figure 4.6‑A has elastic regions where its edges are dangling and has a large

central rigidified region where the cloth is in static equilibrium.

We believe our method is the first adaptive technique to completely coarsen densely

wrinkled regions while preserving the fine definition of the cloth’s curvature. Figure 4.1

and Figure 4.6‑D show excellent examples of this. These examples feature sleeves with

different cloth stiffness parameters, and we observe rigid motion of rigidified wrinkles

during arm motions. We note that care is necessary when setting aggressive (higher)

thresholds because this can lead to visual artifacts. For example, there appears to be a

small bump on the sleeve caused by an increase in velocity near the end of the vertical

sleeve simulation partially due to our threshold selection, but also due to the choice of

energies pushing the wrinkles downwards back to rest as the arm unbends.
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Because our shell implementation natively works with tetrahedra (it uses the same

3 by 3 deformation gradient thanks to the normal projection), we can easily mix elastic

solids and shells. In Figure 4.6‑B we present a tablecloth modelled as a shell and wine

bottle modelled as a tetrahedral mesh. The tablecloth has a large moving region that

remains rigidified while pulled, and likewise demonstrates local deformation near the

region stretched due to frictional contacts from both the table and the bottle.

Figure 4.6‑E shows a cloth on a high friction spinning sphere which is inspired by an

example of Bridson et al. [17]. The floor and an adjacent obstacle are frictionless. While

large portions of the mesh rigidify as the cloth spins on the sphere, the cloth also continues

to exhibit significant dynamics because there is no self contact in the simulation. We be‑

lieve that adaptive rigidification would work well with both penalty [17] and barrier [64]

based contacts.

4.4.1 Speed

Table 4.1 shows performance measurements for the examples from the figures in this

chapter. The simulations were timed including and excluding contacts to give a fair as‑

sessment of the wall clock times. We note some improvements between 2x and 13x on

scenes that were especially designed to generate elastification and dynamic motions. We

ran the simulations on a Windows 10 PC with an Intel Core i7‑6700K processor, and 64 GB

of DDR3 RAM. The simulator is a fork of the publicly available github from the adaptive

rigidification project, with the core system in Matlab, and critical snippets implemented

in Mex C++.

Adaptive rigidification allows performance improvements more than an order of mag‑

nitude faster than the non‑adaptive meshes at various steps of the simulations. We also

note that in any scene, the overhead of the single PCG iteration and rigid body building

remains negligible, even when fully elastic. We present our time comparisons using log

scales for fairness. In Figure 4.1 we see that rigidification can accurately detect local

deformation and maintain steady improvements in computation time that is more than

an order of magnitude faster than a fully elastic model. The region of deformation is local
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near the elbow, where wrinkles form and rigidify, hence creating a coarser model of the

mesh under rigid motions while preserving the fine details of the wrinkles.

4.4.2 Conditioning

Mixing rigid bodies with elastic elements increases the mass ratio, leading to poorly condi‑

tioned systems during time implicit integration. However, we show that a simple scaling

technique [29] can effectively reduce the condition number of our system, resulting in

faster simulations. This scaling SAx = S bmakes the condition number more competitive

with the fully elastic system, while also benefiting from the reduced number of degrees

of freedom inherent to adaptive rigidification.

While conditioning is generally not a problem for direct solvers, it is beneficial for

iterative solvers. Likewise, while Jacobi preconditioning can easily resolve mass ratios,

it is not as beneficial for stiffness ratios. Nonlinear elastic materials undergoing large

deformations can also exhibit poor conditioning, as demonstrated by the streched cross

model in Figure 4.8‑A. Scaling will benefit many iterative solvers, and such solvers may be

preferred or needed for bigger scenes. Figure 4.8‑A shows that the Curtis et al. [29] scaling

(CS) outperforms Jacobi scaling (JS) when it comes to reducing the condition number of

the adaptive system. See that the condition number also sharply drops as the rigid chunks

increase in size. This suggests that there is significant potential for optimization when

using adaptive rigidification in conjunction with larger rigid chunks, and poorly shaped

elements.

In Figure 4.8‑B we compare the time for each step of the stretched cross simulation

example using a direct solve via LDL decomposition and scaling to that of a PCG solve

with scaling and tolerance of 1e − 4. For efficiency, our PCG solve reuses the oracle’s

preconditioner with kinematic mapping to the coupled rigid‑elastic system, i.e., SGTApG.

As expected, stopping the iterative solver before full convergence provides big savings

in the computation time. Nevertheless, while large systems can benefit from an iterative

solver, it can be beneficial to switch to a direct solver for the small systems that arise when

there is extensive rigidification.
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Figure 4.8: A: comparing condition numbers with or without scaling. B: comparing a
direct solver to an iterative solver.

4.4.3 Strain Limiting

Strain limiting prevents deformation above or below a strain limit. This models physical

behaviour of deformable objects acting almost rigidly when under heavy loads. This has

the added benefit of reducing the change in deformation, further increasing the rate of

rigidification, and the speed of the simulation. We implement strain limiting with the

singular value decomposition of F = USV T and clamp the principal stretches s ∈ S

like Wang et al. [111]. This formulation of strain limiting is particularly elegant as it

allows us to reuse the singular value decomposition when computing materials like the

corotational energies. Moreover, we can save on the SVD computation for the strain

limiting of rigidified elements as they are non‑deforming.

By limiting the strain, we also limit the rates of deformations, hence increasing the

rate of rigidification. Figure 4.6‑A shows a piece of cloth with strain limiting where

singular values are clamped between 0.90 and 1.1. A large patch of stretched cloth quickly

rigidifies in the middle of the spheres, while motion is allowed where needed. The final

result is visually indistinguishable from the fully elastic simulation as we present it in the

supplemental video.

In Figure 4.6‑C, we chose a crinolette type of dress for the dancer to show that rigid‑

ification natively handles stiff cloth/plastic even when the strain limits are reached. The

adaptive approach is also significantly faster than the elastic simulation at almost any

point in time. The mannequin model and dress are from Narain et al. [87].
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Figure 4.9: A: The rigidification patterns are consistent across resolutions. We show the
total number of elements in the shell cantilevers next to them. B: The simulation retains
its quality regardless of the material properties like the thickness. We list the respective
thickness of each shell cantilever next to them.

4.4.4 Oracle

In Figure 4.9‑A, we see that using our bending threshold correspondence yields similar

rigidification patterns independent of the resolutions of our meshes. This holds across all

of our scenes. We can also pick custom bending thresholds for incompressible materials

or if fine tuning is needed. The rigidification process is material independent as it relies on

the speed of deformation. Therefore, choosing the thresholds for the membrane stretches,

and then using our equivalence for the bending thresholds yield a consistent quality of

simulation regardless of the material used. In Figure 4.9‑B, we compare different material

thicknesses and note that the regions of elastification intuitively match their regions of

deformation.

We compare various approaches to improve the new contact elastification regions

in Figure 4.3. Using the inverse matrix A−1 to find the contact velocities from the bilat‑

eral solve’s impulses yields the closest elastification region to the ground truth of elastic

propagation. However such approach is overly costly. The contacts from the bilateral

solve are already approximations, and the oracle’s contact velocities need not be accurate.

We only require a solution that generates enough elastification to preserve momentum

under contact. A reasonable alternative is to instead use the precomputed block diagonal

inverse matrix Ã−1
0 which has a notion of the geometry of our system at rest. Using this

method yields an elastification region equivalent to doing a single CG iteration prior to
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Table 4.1: We generated and simulated scenes with varying numbers of elements, and
provide the full simulation times, as well as the simulation times without contacts (NC).

Scene Vertices Elements
NC Time
Adaptive(s)

NC Time
Elastic(s)

Time
Adaptive(s)

Time
Elastic(s)

Speedup
Factor

Dancer 2000 3861 289.32 977.24 815.51 3318.06 3.37x
Multi‑Spheres 8437 16493 222.13 682.05 3653.78 14230.15 3.07x
Tablecloth 9896 20440 483.23 2433.54 10629.65 34496.75 5.04x
Horizontal Sleeve 2450 4830 79.66 1060.95 10322.95 43116.48 13.31x
Hat 1412 2760 12.98 18.49 28.20 42.04 1.42x
Vertical Sleeve 7777 15488 916.96 5524.75 5722.66 41937.27 6.03x
Rotating Sphere 4602 8932 707.48 1546.10 21398.00 47070.00 2.19x

the PCG iteration. Using two PCG iterations gives slightly worse local propagation, but

better overall distant elastification.

In practice, most of the momentum loss on contact comes from simulating a con‑

tact as rigid when it should be deforming. The fast contact filter generates just enough

elastification to handle typical simulations well, while the precomputed diagonal matrix

multiplication is more appealing for fine contact handling like the soft touch of a feather.

In Figure 4.7 the contact filter allows visually consistent simulation of the hat even with a

small impact, and only requires the diffusion of an impulse over a few vertices as opposed

to a CG iteration over all degrees of freedom or a sparse matrix multiplication withA. We

see that using only a single PCG iteration without any of our contact handling approaches

does not allow elastification of the hat on first contact, which leads to a loss in momentum.

Our approach is designed to work with any standard collision detection and handling

technique. We have implemented bounding volumes, signed distance functions, and use

projected Gauss‑Seidel to solve for contact impulses. We can see from Table 4.1 that the

rigidification has an impact on collision handling times as it speeds up the assembly of

the Delassus operator for a PGS solver. Other approaches such as that of Verschoor et al.

[110] would likely retain similar collision handling speeds regardless of rigidification.
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4.5 Discussion and Limitations

Although our approach is currently efficient for wrinkled, non‑deforming parts, our ap‑

proach lacks the ability to remesh actively deforming regions. Nonetheless, we believe

that adaptive rigidification of shells could complement remeshing, resulting in an even

more efficient oracle by reducing the size of our linear pass over elements, as well as the

coarsening of actively deforming elements in wrinkle‑free areas. Speedups are depen‑

dent on the thresholds (level of accuracy), and the dynamics of the scenes, as opposed to

remeshing where the speedups are dependant on the quality of the coarsening, and the

continuous shape of the model. While adaptive rigidification cannot coarsen a flat actively

stretching piece of cloth, remeshing would be able to simulate this deformation with a low

number of degrees of freedom. Likewise, remeshing cannot coarsen dense triangle folds

to a constant number of degrees of freedom as we do when the folds are moving rigidly.

Our approach to handle new contact reduces the likelihood of missing elastification,

but some motions can still be problematic. A slow constant creep type of motion that

accumulates over time while remaining below the elastification threshold would cause

deformation on a fully elastic model, but could not deform a rigidified body. However,

such cases are perhaps rare and can otherwise be addressed by adjusting thresholds or

designing new custom solutions.

While not directly related to rigidification, our contact handling is slow for large num‑

ber of contacts because the assembly of the Delassus operator creates a bottleneck. Us‑

ing a contact handling method like that of Verschoor et al. [110] does not require this

assembly and would greatly speed up the simulations. There is also an opportunity to

prune contacts on rigid bodies by considering only 3 contacts per body, and diffusing

the impulses on the rigid body for the oracle’s elastic contacts to reduce the number of

constraints during the time integration. Likewise, the internal forces of rigidified elements

could be cached on rigidification, and rotated with the rigid body properties to save on

the computation of the energy derivatives.

The BFS algorithm to build rigid bodies is the same as the original adaptive rigidifi‑

cation with a minor modification to sequentially iterate through mixed geometry. Using
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parallel algorithms like the ones described by Zhang et al. [115] to find connected compo‑

nents would further reduce the overhead of adaptive rigidification.

Finally, we note that poorly conditioned elements will likely create large approximate

changes in velocity. Thus, an adaptive threshold that considers conditioning could be

created to uniformly set the tolerance across the meshes.

4.6 Conclusions

In this chapter, we present an extension of adaptive rigidification to target thin shells.

By adding a second rigidification criterion based on the curvature rate, we achieve the

benefits of rigidification with minimal overhead, similar to the tetrahedral version. Our

approach leverages computations from different parts of the simulation, such as the dihe‑

dral angles of the bending energy, so as to reduce redundant work and improve efficiency.

To further enhance the performance of the elastification oracle in the presence of small

contact patches, we incorporate a fast contact filter, and explore other valuable approaches

for diffusing contact information during the oracle solve. Finally, we demonstrate that

scaling the per‑Newton step system can significantly reduce the condition number, mak‑

ing it competitive with that of the fully elastic scaled system while also benefiting from its

reduced size.

4.7 From Approximations to Ground Truth

The preceding two chapters were centered on generating reliable approximations of phys‑

ical motions. Both methods relied on an oracle to identify regions of deformation within

the reduced parts of deformable bodies. However, this oracle necessitates careful thresh‑

old tuning, often requiring a significant degree of intuition. This led us to a fundamental

and pivotal question: What if we could eliminate the need for this oracle altogether?

Achieving this goal requires solutions that are not mere approximations but are instead

accurate representations of physical behavior. Without such accuracy, regions with low

strain rates could potentially remain undeformed indefinitely. This challenge has driven
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us to develop a fundamentally different approach to solving motion, inspired by both

geometric and algebraic multigrid methods.

To align our work with practical applications, we considered how to inject ideas of

rigidification into extended position‑based dynamics (XPBD), which is favored by our

industrial partner for their simulations. XPBD is widely used in real‑time applications

due to its ease of parallelization, making it a fast alternative to methods like the matrix

factorization discussed in subsection 2.1.1. This is especially important for our industrial

partner working on surgery simulators connected to a haptic feedback device. For these

applications, the physical simulation must be not only realistic but also computationally

efficient, capable of delivering hundreds of frames per second. Likewise, it is unclear how

the oracle could be implemented in XPBD as the hessian matrix needed for the oracle is

not computed during the simulations. We speculate that using a few initial Gauss‑Seidel

iterations could lead to a reasonable oracle, but such a system would require even more

parameter tuning.

We developed a hierarchical solver that leverages a sequence of progressively refined

resolutions to accelerate convergence. In this context, the resolutions correspond to dif‑

ferent rigidification patterns. Initially, we experimented with v‑cycle methods, but the

results were not ideal. We found that starting with rigid components and gradually intro‑

ducing elasticity proved to be highly effective. Because of this, our solver deviates from

traditional multigrid methods, as the prolongation (or refinement) operator is seldom

used. The goal with this hierarchical solver is to iteratively solve the full system, enabling

a more efficient and accurate simulation process. Our approach solves some of the param‑

eter tuning issues from adaptive rigidification while also providing accurate solutions. In

the following chapter, we present how to automatically and efficiently generate the layers

for this new type of solver and we introduce the novel concept of residual velocities to

preserve vibrations within rigidified patterns.
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Chapter 5

A Multi‑layer Solver for XPBD

This chapter is a from a published paper: A. Mercier‑Aubin and P. G. Kry. A Multi‑layer

Solver for XPBD. Computer Graphics Forum, 43(8), 2024. DOI: 10.1111/cgf.15186. It is

provided as is with only minimal editorial modifications. We also provide videos in the

supplemental materials.

Figure 5.1: The pills have green parts are stiff and white parts that are soft. Due to
independent rigid motions of different sliding pills, and mixed rigid‑elastic contacts, we
obtain an efficient and stable simulation of this contact heavy scene.

5.1 Introduction

Real‑time simulations of soft bodies is an important component in many interactive appli‑

cations, such as training simulators and videos games. In these applications, the compute

resources are often limited, and must be shared between rendering, application logic, and

the computation of physics. Real‑time applications typically requires steady frame rates

for the rendering of intricate geometry often leaving tight budgets for the computation
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of physics. In this setting, deformation computations must be interactive, stable, and

accurate for optimal immersion.

Step and project methods like XPBD are popular for the simulation of soft or rigid

bodies as they allow fast stable simulations. However, the convergence of the solver is

slow due to local propagation of information through Jacobi or Gauss‑Seidel iterations.

Hence, while these methods offer fast computation for time stepping, the slow conver‑

gence can lead to results that poorly approximate the expected physical behaviors of a

system. To improve propagation, long‑range attachments create additional constraints

to couple distant elements. For instance, coupling the ends of a chain with a distance

constraint can locally propagate information between the two ends and therefore improve

convergence. Identifying where extra constraints are needed can be challenging or specific

to a given scenario, and overall, the extra constraints increase the complexity of the system

and the cost of the solve.

We introduce a multi‑layer method for soft body simulation. Drawing inspiration from

multigrid methods, the concepts of long‑range constraints, and adaptive rigidification,

we automatically generate various resolutions as mixes of rigid and elastic components

with varying degrees of freedom. Our work derives from an opportunity to reduce mod‑

els based on the current simulation state rather than the geometry or representation of

our models. Through a coarse‑to‑fine sequence of solver iterations using these reduced

models, the different couplings of elastic and rigid parts propagate distant information,

improving the convergence of the XPBD solve. We handle contacts as both rigid and elastic

throughout a time step, allowing efficient propagation of impulses. Our method has been

tested across a range of scenarios, including contact‑rich scenarios, purely rigid motions,

and global deformation challenges. The results demonstrate improved convergence in

all of our examples. We further explore the performance of different input parameters

such as rigid patterns, number of iterations per layer, and the number of layers to provide

deeper insights into the behavior of our method.
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5.2 Related Work

One of the most important contributions to physics‑based animation with respect to effi‑

cient time integration is unequivocally position‑based dynamics (PBD) [83]. The method

proposes a Gauss‑Seidel‑like solve for the motions of constrained particles by projecting

linearized constraints one at a time. Bender et al. [13] demonstrate the applicability of PBD

continuum elasticity simulation by modeling constraints as per‑element elastic potentials.

The extended position based dynamics (XPBD) [70] framework addresses one of the early,

yet major shortcomings of traditional PBD. Without the compliance term, elastic models

are infinitely stiff and too many iterations causes them to behave as rigid bodies. In

contrast, when rigid bodies are desired, XPBD can still be applied, noting that most of the

displacement occurs in the fast symplectic stepping prior to the constraint solve, which

instead deals with environmental interactions, such as integration of joints, mixed bodies

and more [84].

Multigrid solvers find solutions to systems of equations by first eliminating, i.e., smoo‑

thing, high‑frequency errors in the solution iterates. The remaining low‑frequency error

is then eliminated by solving a reduced version of the original problem, where such low

frequencies become high frequencies, revealing its recursive structure. Applied to linear

systems, a multigrid solver typically features multiple resolutions, i.e., levels, of the full

space problem (e.g., constructed by simplification [65]), with the intention of doing a few

Jacobi or Gauss‑Seidel iterations at each level as error smoothing agents. The exponential

reduction in problem size between the hierarchy’s levels yields fast convergence to the

solution.

Xian et al. [113] present a linear multigrid solver for physics‑based animation based on

projective dynamics [15] using Newton‑Raphson iterations, where resolutions are created

from furthest point samplings of the high‑resolution simulated mesh. Coarser level point

samples act as linear blend skinning (LBS) handles for the immediate finer level points,

with simulation mesh vertices as the finest level. By clamping the LBS weights to discrete

binary values, they obtain restriction and prolongation operators which encourage linear

system sparsity at coarser levels, yielding impressive computational efficiency. Unlike
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PBD and XPBD [68], the projected dynamics approach is tailored to the primal formula‑

tion.

In contrast, Müller [80] proposes a non‑linear multigrid solver for PBD where each

layer is similarly a coarse point sampling of the original particle system. Here, the pro‑

longation operator consists of weighted averaging of coarse grid solutions, with weights

inversely proportional to approximate geodesic distance between coarse parent particles

and their fine children particles. This multigrid solver goes solely from coarse to fine,

approximately solving a reduced set of constraints at each level. The proposed scheme

lends itself well to mass spring PBD deformable models, where coarsening occurs via

edge collapses. Unfortunately, it remains unclear how to generalize the approach to the

preferred continuum constraints [107].

While XPBD is a fast method for real time simulation, the local nature of the constraint

solve prevents efficient global propagation of deformation computations, which hinders

convergence. To address this issue, long range attachements [59] and long‑range con‑

straints [82] have been proposed. Such approaches successfully create constraints between

distant elements to explicitly enforce the desired propagation of local elastic effects, at

the cost of added constraints. Nonetheless, the improved convergence dominates the

additional per‑iteration overhead. We take inspiration from this approach by using rigid

bodies to improve propagation of information across long distances. The new constraints,

while helping propagation, change the original optimization problem, impacting the final

solution. Hence, these constraints need to be removed during the solve to obtain a ground

truth simulation and ensure correct convergence. Unlike the previous work, the rigid

bodies in our approach serve as approximate long range constraints that accelerate the

convergence across solver iterations on a sequence of approximate systems, and these

rigid bodies are absent in the final fully elastic solve. In contrast, long range attachments

and constraints [59, 82] create additional constraints that must be solved in addition to

those of the fully elastic system.

We are also inspired by the concept of adaptive rigidification [78], which proposes that

non‑deforming parts of the simulation can be automatically discovered and adaptively

transformed into rigid bodies on the fly. This technique is specifically tailored to Newton‑
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Raphson solvers for standard finite element simulation, where the involved global linear

systems of equations are significantly reduced by substituting elastic degrees of freedom

with low‑dimensional rigid motions. Unfortunately, the original adaptive rigidification

algorithm is unsuitable to the XPBD framework, which explicitly ignores the problem’s

Hessian matrix needed for the oracle. As the assembly of such a matrix is costly, we

instead propose an assembly‑less method benefiting from many advantages of adaptive

rigidification, without the need for an oracle.

Instead of approximating a simulation using coarsening methods likeDelaunay remesh‑

ing [1], our proposed method is more similar to the work of Müller [80]. Our resolutions

are based on the current state of the simulation and its interactions with the environment,

which is likewise similar to adaptive rigidification [78] but without the need of an oracle.

This allows us to use a single unified model for all of our resolutions without resorting

to the more involved geometric, algebraic, and functional hierarchical constructions of

existing multigrid methodologies [75, 45, 94]. Because we propose a fully‑fledged iterative

solver instead of approximating motions as rigid, we avoid contact handling problems

like those described by Mercier‑Aubin et al. [77] that would otherwise surface from the

use of an oracle. Our approach instead speeds up the XPBD method without the need for

domain knowledge, and by efficiently creating long‑range propagation through a variety

of temporary rigid patterns efficiently coupling distant elements. Layers of rigid patterns,

much like the resolutions of a multigrid method, are built from increasing percentages of

rigidification. Similar to the work of Barbié et al. [8], our systems of different resolutions

will be generated automatically. Rather than using refinement, our layers are simplifica‑

tions of a fine model without any change to the geometry. As such, our method is not

subject to the problems that would otherwise surface in subdivision methods.

5.3 Standard XPBD

We briefly review the original XPBD method for the relevant information and refer to the

original paper for the details. Following Macklin et al. [70], we start from the discretized
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formulation of Newton’s equations of motion

M

(
xt+1 − 2xt + xt−1

h2

)
= −∇UT (xt+1), (5.1)

where U(x) is an energy potential, x is a vector of positions with superscript denoting

the time step, M is the lumped mass matrix, and h a time step size. From a vector of

constraints C and compliance block diagonal matrix α, we obtain the forces

−∇x U
T (x) = −∇CT (x)α−1C(x), (5.2)

of our system. In typical XPBD fashion, this is solved using the approximate linearized

constraint formulation of the system.

In XPBD, we first step the vertices in time using the symplectic Euler method. We start

by updating the velocities, and then the positions

ẋ← ẋ+ hM−1f , (5.3)

x← x+ hẋ, (5.4)

of each elastic particle due to force f . The solver uses the standard XPBD Gauss‑Seidel‑

like updates, which includes a compliance term α = α
h2 . With the Lagrange multipliers λ

first initialized to zero, we iteratively solve for incremental updates

∆λj =
−Cj(x)− αjλj

∇Cj(x)M−1∇CT
j (x) + αj

, (5.5)

for constraint j. We then convert the ∆λj impulse updates into position updates

∆x =M−1∇C(x)T∆λj. (5.6)

We use the Saint Venant‑Kirchoff constitutive model expressed with Voigt notation

[20, 98] as our elastic potential. As such, our constraints are the lower triangular entries

of the strain tensor E = 1
2
(F TF − I), thus, a vector of 6 constraints in 3D (or a vector of 3
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constraints in 2D). We define the per‑element blocks of the compliance matrix as

αe =



ζ + 2µ ζ ζ 0 0 0

ζ ζ + 2µ ζ 0 0 0

ζ ζ ζ + 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ



−1

, (5.7)

where ζ and µ are the first and second Lamé parameters. We must preserve the coupling

of constraints due to the off diagonals of the upper‑left of αe. This requires a solve such

that the denominator of Equation 5.5 forms the left‑hand side matrix and the numerator

becomes the right‑hand side vector. For each element, we solve the set s of coupled

constraints as a 3‑by‑3 system (or 2‑by‑2 for 2D elements),

(
∇Cs(x)M

−1∇CT
s (x) + αss

)
∆λs = −Cs(x)− αssλs. (5.8)

For the uncoupled constraints, i.e., corresponding to the lower right block of coefficients

of Equation 5.7, we simply use the standard XPBD update from Equation 5.5.

For rigid bodies, the steps are similar [84]. We use symplectic Euler to step each rigid

body’s linear velocities and center of mass with Equation 5.3 and Equation 5.4. We also

need to update each rigid body’s torques τ , angular velocities ω ∈ R3, and rigid body

rotation R ∈ SO(3) as

τ ←r × f, (5.9)

ω ←ω + hI−1(τ − ω × Iω), (5.10)

R←ehω̂R, (5.11)

where I ∈ R3×3 is the inertia tensor and ω̂ is the skew‑symmetric cross product matrix.

The matrix exponential provides the rotation update from the angular velocity vector and

time step size, and is computed using the Rodrigues’ formula [85].
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Figure 5.2: Graph coloring example.

Thus, the position of each vertex xi making up rigid body r has position

xi = Rr ri + xr, (5.12)

that is, they can be computed from the properties of rigid body r, with rotation Rr, center

of mass xr, where ri specifies the location of vertex xi in the local frame of the rigid body.

5.3.1 Graph Coloring

We find independent constraints using graph coloring. While minimal graph coloring is

a difficult problem, it is often reasonable to precompute a greedy graph coloring [36] by

simply assigning each element a color unassigned to shared degrees of freedom from a set

of colors. In Figure 5.2, we show an example of mesh graph coloring. We run constraints

of the same color in parallel as constraints of the same color are independent. This allows

for a fast parallel Gauss‑Seidel‑like solve of constraints.

We model the resolutions of our multigrid‑like solver in terms of rigidification patterns

instead of discretizations. When using partially rigid layers, the rigid bodies create distant

coupling, hindering parallelization. However we note that each rigid body is independent

from the others, otherwise they would be merged together. Therefore, it is reasonable

to solve the rigid body constraints in parallel for the different rigid bodies. Because the

constraints on a single rigid body are coupled, we solve them in a Jacobi style [71], while

the rest of the constraints are solved in a Gauss‑Seidel‑like fashion similar to standard

XPBD.
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5.3.2 XPBD Elastic and Rigid Coupling

In our rigid‑elastic XPBD implementation, the coupling is not implicit. The elastic element

update does not take into account the rigid bodies within the mesh. This creates a discrep‑

ancy between the rigid body and elastic body views of the position of vertices that are on

the boundaries between rigid and elastic regions. We couple both views via an equality

constraint similar to that of Müller et al. [84], that is, for vertex xi on the boundary with

rigid body r we have

Ci(x) = ∥xi − (Rr ri + xr)∥2, (5.13)

∆λi =
−Ci(x)− αiλi
wi +

1
mi

+ αi

, (5.14)

where mi is the mass of the elastic vertex, wi is the generalized inverse mass of the vertex

in the rigid body, and ᾱi = 0 to specify a hard constraint and preserve the rigid body

boundary. We compute the generalized inverse mass as

wi =
nC

mr

+ (r
g
i × d)T I−1(r

g
i × d), (5.15)

where the numerator of the first term accounts for mass splitting [108] with nC being the

number of constraints affecting the rigid body. Here, the vector rg
i = Rr ri points from

the rigid body center of mass to the constrained vertex in the global frame, and d is the

normalized direction of vectorxi−(Rr ri+xr), i.e., the correction direction for the equality

constraint.

We get a valid coupling when the boundary vertices match the rigid body surface. We

use a modified position update similar to that of Müller et al. [84] except that instead of
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working with two rigid bodies we update the elastic particle and a rigid body,

p = ∆λd, (5.16)

∆xi =
p

mi

, (5.17)

∆xr = −
p

mr

, (5.18)

∆ωr = −
1

h
I−1(r

g
i × p). (5.19)

Some iterations feature strongly coupled constraints, but quaternion multiplications are

not commutative, hindering constraint parallelization. So typical XPBD simulations ap‑

proximate quaternion multiplications as commutative sums with the assumption of in‑

finitesimal time steps (e.g., as done in Kalman filters [74]). Larger time steps can lead to

wrong orientations causing non‑physical behaviour. In Equation 5.19, we instead use

a Jacobi style parallel accumulation of angular velocities for dependent constraints on

rigid bodies [11], which offers the same benefits. Commutativity simplifies our constraint

solves by allowing the computation of all rigid body boundary constraints simultane‑

ously.

After solving all the boundary constraints of a rigid body in parallel, we update the

rotation using Equation 5.11 from the accumulated change of angular velocity. We then

update the relevant particle positions of a rigid body with respect to the new rotation and

center of mass. We solve the rigid body constraints last, therefore we only update their

vertex positions once per iteration.

For instance, if the face of an elastic element is part of a rigid body, we add three equal‑

ity constraints, each solved sequentially. After correcting the second vertex’s equality

constraint, the rigid body is potentially no longer satisfying the first vertex’s constraint.

Having a notion of the full constrained coupling would potentially reduce the number

of constraints and improve convergence by allowing a more accurate correction of the

iterates.
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5.3.3 Multi‑Layer Method For XPBD

Our method has the nice property of allowing natural generation of multiple resolutions

on the fly without remeshing by using adaptive rigidification concepts. Because the adap‑

tive layers preserve the mesh vertices, the coarsening and refinement operations are in‑

tuitive. In the context of this multi‑layer solver, we define coarse as a geometric model

with more elements simulated as rigid, and fine as a model with more elastic elements.

We first need a sorting process to determine the priority of element rigidification, e.g.,

sorting elements by strain rate. Then we gather elements into rigid bodies incrementally

by inserting elements in the given order.

5.3.3.1 Rigidification

In the work of Mercier‑Aubin et al. [78], the rigidification process consists of monitoring

the strain rate computed as a finite difference

Ė =
Et − Et−1

h
, (5.20)

to detect non‑deforming elements at each time step. This is compatible with any per‑

element strain measure E like the Green strain. While the adaptive rigidification method

uses the strain rate to determine non‑deformation, we use it to generate problems of

different sizes to approximate the solution of the fully elastic model.

5.3.3.2 Hierarchy generation

We create the resolutions of a multi‑layer solver using strain‑rate dependent rigidification

patterns. We build the hierarchies prior to the solve, from fine to coarse, by inserting the

elements to be treated as rigid, increasing in strain‑rate order, into a disjoint set. This is

efficient due to path compression and the use of contiguous memory [103]. Construction

of each coarser layer includes the previously rigid elements from the past layer (continuing

with the same disjoint set) as shown in Figure 5.3.
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Algorithm 4: INCREMENTALMERGING
input : Sorted elements grouped by layer, fine to coarse
output: Connectivity of layers
Initialize union‑find structure u[e] = −1 for all elements e
Initialize claimed vertices v.claimed = −1 for all vertices v
foreach layer l do

foreach uninserted element e of layer l do
u[e]← e
foreach vertex v of element e do

// find returns -1 when the input has no root
s← u.find(v.claimed) // with path compression
if e ̸= s ∧ s ̸= −1 then

u[e]← s
end
v.claimed← e

end
end
L[l]← u // snapshot of u provides connectivity of layer l

end

A ⊇ B ⊇ C

CB
A

Figure 5.3: Different incremental rigid patterns created from strain‑rate insertion.

Initially the vector containing our disjoint set is initialized with all entries set to ‑1.

This vector has a size equivalent to the number of elements. On element insertion, a new

set is created at the index of the inserted element, pointing to itself as its root. We then

verify if the vertices of the element are already part of a set. When a rigidifying element is

vertex‑adjacent to existing rigid sets, we merge the sets. We do path compression when the

disjoint‑set function find is called. Because we are only ever inserting one new element

at a time, the computation time to find the connectivity remains linear. Therefore the

algorithm has a computation upper bound tied to the sorting algorithm rather than the

creation of components. We do a single pass over the elements to generate the hierarchies

as shown in Algorithm 4. Unlike adaptive rigidification, we do not need to handle hinges
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refinementrefinement

coarseningcoarsening

Figure 5.4: Example of a sequence of layers with precomputed rigidification patterns.
The solver iterates through the different layered resolutions using refinement operations
to add elasticity during the solve.

as the partially rigid layers only serve as useful intermediate models. As such, at a given

layer, if two rigid bodies share a single vertex we merge them into a single rigid body.

This type of insertion allows us to incrementally update the connected components

that will form rigid bodies in each resolution. While inserting elements, we keep a copy

of the connected components for each slice of a predetermined percentage of all elements.

After building these models of the system at different resolutions, we can switch layers

freely, using refinement and coarsening operations (see Figure 5.4). Here, coarsening con‑

sists of removing the elastic constraints of the elements that are rigid in the coarse layer,

and adding extra coupling constraints on the new rigid boundary. In contrast, refinement

queries all the current vertex positions from rigid body properties, updates boundary

constraints, handles residual velocities, and reintroduces elasticity constraints to newly

elastic elements. We introduce residual velocities in Subsection 5.3.4.

5.3.4 Iterating Through Layers

Doing a symplectic step before projecting the constraints would lead to inflated elements

because the particles of an element move on straight lines before the first rigid layer on

rotational motions. This would lead to inaccurate shapes for rigid bodies and hinder

convergence. Instead we progressively step the velocities by depleting them over many

layers using residual velocities.

Residual velocities are leftover internal elastic velocities inside of rigid bodies. Initially

the residual velocities replace the velocity update for the entire system. Rigid body an‑

gular and linear velocities are computed from the per‑particle residual velocities vi. On

layer switch, we must compute the new rigid body properties from the vertices of rigid
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body r,

mr =
∑
i∈r

mi, (5.21)

xr =
1

mr

∑
i∈r

mixi, (5.22)

ẋr =
1

mr

∑
i∈r

mivi, (5.23)

ri = xi − xr, (5.24)

Ir =
∑
i∈r

mir̂
T
ir̂i, (5.25)

ωr = I−1
r

∑
i∈r

miri × (vi − ẋr). (5.26)

These values remain fixed throughout the solver iterations of the layer. Hence, we com‑

pute the relative positions ri once per layer. Throughout the solve, We let xt+1
i be the

current approximation of the position vertex i at the next time step (it is initialized to

xt
i), and xi we use to denote the position of the vertex at the beginning of the solve of the

current layer. For vertices that are part of rigid bodies, the layer solve steps their positions

with rigid motion. That is, we obtain a rotation update Rr by stepping the rigid bodies,

and vertices that are part of the body have their positions computed based on the rigid

body state (Equation 5.12). At this point, the vertex velocities for this rigid motion can be

computed as 1
h
(xt+1

i −xi), but there can still be non rigid velocities in the residual velocity

vi. Thus, we rotate the current residual and subtract the current velocity to update the

residuals, i.e.,

vi ← Rrvi −
1

h
(xt+1

i − xi). (5.27)

The process of updating residuals throughout the layers continues until the elements are

solved as elastic in the final iterations. Thus each layer has less residual velocities to rigidly

step as they are depleted through rigid body motions. To be clear, it is only vertices that

are part of rigid bodies that have residual velocities, while residual velocities are zero

(depleted) for vertices that are stepped elastically.
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Note that the residual velocities must be rotated in Equation 5.27 because they are

unstepped velocities at time t while the finite difference of particle positions are rigidly

stepped velocities at time t + 1. In the case of a purely rigid motion of a spinning elastic

body in equilibrium, these velocities exactly cancel out. This is because the initial residual

velocities are exactly a rigid motion (the previous step velocities, which are computed

using finite differences at the end of each simulation step in XPBD).

Because rigid bodies move during the symplectic steps, we rotate the residual veloci‑

ties to match the rigid body frames and preserve the inner elastic velocities. The constraint

solves also change the rigid body positions and orientations, which requires a rotation

update to the residual velocities before changing layers where∆ωr is the change in angular

velocities due to constraint solves.

This modification to XPBD requires only minor changes around the solver, making it

compatible with most existing frameworks. This can be seen in Algorithm 5.

5.3.5 Contact Handling

To handle contacts, we use penalty constraints

Cc(x) = min(0,dc · (pc − xc)), (5.28)

for each vertex xc in contact, and correct the interpenetration at contact pc with normal

dc. We set the compliance parameter α to 10−4, which is the value recommended in the

original XPBD work. The constraint is treated in a consistent way, regardless if the vertex

xc is part of a rigid body or an elastic element.

For a given layer, all contacts on elastic vertices are independent and solved in parallel.

We find the constraint Lagrangian update using Equation 5.5. All contacts on rigid vertices

are solved using the same procedure as Subection 5.3.2, but with the elastic particle in this

case being replaced with an infinite mass contact position pc, and the constraint direction

being the contact normal. This means that contacts are often solved as both rigid and

elastic, during a single time step.
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Algorithm 5: MULTI‑LAYERXPBD
input : Position vector xt

Velocity vector ẋt

Step size h
External forces vector fext

output: Positions xt+1 and velocities ẋt+1 after stepping
1 xt+1 = xt

2 v ← ẋt + hM−1fext // residual velocity initialization
3 L← INCREMENTALMERGING // Algorithm 4
4 foreach layer l ∈ L do
5 foreach newly elastic vertex i of layer l do
6 xi ← xt+1

i // vertex at the start of the layer
7 xt+1

i ← xt+1
i + hvi // step with residual velocity

8 end
9 foreach rigid body r in layer l do
10 ωr, ẋr, Ir,Mr ←RIGIDPROPERTIES(l,v) // Subsection 5.3.4
11 Rr,xr ←STEPRIGIDBODIES(ωr, ẋr) // Section 5.3
12 foreach vertex i of each rigid body r do
13 xt+1

i ← Rr ri + xr // Equation 5.12
14 vi ← Rrvi − 1

h
(xt+1

i − xi) // Equation 5.27
15 end
16 end
17 foreach iteration for layer l do
18 ∆ωr,x

t+1 ←SOLVECONSTRAINTS
19 end
20 foreach rigid vertex i of layer l do
21 vi ← eh∆ω̂r vi // rotate residual velocities
22 end
23 end
24 ẋt+1 ← 1

h
(xt+1 − xt)

25 ẋt+1 ←RESTITUTIONUPDATE(ẋt+1) // Equation 5.29

As proposed by Müller et al. [84], we handle restitution after the solve with a velocity

update

∆ẋc = nc(min(−ϵnc · ẋc, 0)− nc · ẋc), (5.29)

where ϵ is a restitution parameter, and nc is the contact normal. As this is a post‑solve

operation, we consider the soft body contacts as fully elastic and run this operation in

parallel as independent contacts.
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5.3.6 Layer‑Stop Criterion

Solving constraints in a partially rigidified mesh can lead to stagnation if the remaining

error is located inside of rigidified elements. Implementing a stop criterion based on error

improvement can enhance speed, at the cost of the constant‑time property of our solver.

Because the first few steps of XPBD solvers often lead to an increase in residual error, we

activate this feature only after observing the first decrease in constraint residual error

∥C + αλ∥. (5.30)

When the change in constraint residual is near zero (below 1e‑8) for an iteration, we switch

directly to the next layer in the sequence. This allows the solver to quickly switch to the

fully elastic layer.

5.4 Results

We evaluate our method on different fronts to develop the intuition on how to tune the

parameters of our multi‑layer solver and to validate our various hypotheses on the be‑

haviour of the solver.

5.4.1 Choice of Pattern

The choice of an adequate rigid pattern is critical to efficiently propagate motions. In

Figure 5.5 we compare orders of insertion into the disjoint set, leading to different rigid

patterns. Our tests include insertions in random order, strain‑rate based, stretch‑based,

and vertical or horizontal stripes. We note that the stretch‑based ordering using the eigen‑

values ofM−1K is simply here for comparison purposes as it is an expensive measure due

to the assembly of the stiffness matrix and eigenvalue decomposition. The strain‑based

approach provides similar convergence rates to the stretch‑based approach, albeit at a

much cheaper cost. The random patterns sometimes lead to good convergence, but are

unreliable and just as often lead to worse performance. The stripe patterns correspond to
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Figure 5.5: Comparison of convergence per coarsening pattern: On the left the plot shows
convergence including the reduced iterations, while on the right, we see the convergence
on the fully elastic layer. The vertical lines represent layer switches.

cases where an animator has domain knowledge for how a complex mesh would deform.

That is, prior specification of layers may potentially be useful in niche applications. Hence,

we suggest using strain‑rate based ordering for the insertion of elements in the disjoint set

to generate the layers. We note that the error sometimes increases on layer switch, which

is not unexpected because of the stepping of residual velocities in the system on layer

switch.

5.4.2 Choice of Layer Group Sizes

Because large deformations are more likely to impact global simulation than tiny elastic

vibrations, we suggest that starting with more aggressively rigidified layers first is more

likely to lead to faster convergence than coarsening after spending iterations on a fine

resolution solve. Hence, we always start our test from rigid to elastic. Likewise, there are

different ways to select the change in rigidification group sizes per layer. In Figure 5.6

we compare different types of layer selection for a standard cantilever example. We break

the elements into groups with an equal number of elements in each such that the number
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Figure 5.6: Linear or logarithmic: choosing linear changes between the size of layer groups
lead to better convergence compared to logarithmic halving group size for this cantilever
example.

of rigid elements across the different layers changes linearly. We try starting rigid and

increasingly elastifying elements with constant size jumps of 25% rigidification. We also

test halving the number of elements rigid for each layer, starting at 100% rigidification and

ending at around 12% before going fully elastic. The logarithmic approach underperforms

due to the change in group sizes being too steep initially, missing the opportunity to

propagate important rigid motions.

We note that steps with purely rigid motions can instantly terminate early as the sym‑

plectic stepping of rigid bodies generate low error solutions before solving the elastic

constraints. We show this phenomenon in Figure 5.9a.

5.4.3 Number of Layers

For each layer we must build the current rigid body and compute the properties like the

rotation and center of mass. As such, there is a small linear overhead over rigid bodies on

layer switch. Switching between many small rigid layer group sizes with a low number
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Figure 5.7: Test of the impact of the layer size in the cantilever scene for linearly distributed
layers. The cross markers show the iterations where layer switches happen.

of iterations could hinder performance. Hence, choosing an appropriate number of layers

is important.

A case‑by‑case selection can allow optimal performance. For instance, if we know

that 30% of the elements are stiffer, like the rim of a wheel, then that proportion could be

included in the layers. A single initial 100% layer is only a good start for scenes without

pinned vertices to instantly propagate global rigid motions (otherwise, with pinned ver‑

tices, the fully rigid layer does not move and provides no benefit). In Figure 5.7 we show

the cantilever test with different numbers of layers. Because the cantilever is pinned, we

start after the first reduction in percentages. We also double the number of iterations done

per layer. For instance, the 50% plot does one iteration in the layer 50%, while the 33%

plot does 1 iteration in the layer 66% and 2 in the layer with 33% rigidification. Because

the plot for the 10% decrease in group size has too many layers to double the iteration

count, we evenly distribute the computation using 2 iterations per layer.
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Figure 5.8: For the cantilever example, increasing the number of iterations as we elastify
the model yields the best performance. The cross markers show layer switches.

5.4.4 Number of Iterations per Layers

For more aggressively rigidified layers, it is reasonable to assume that fewer iterations are

needed, because the problem is effectively smaller. Likewise, doing too many iterations in

any partially rigidified layer can lead to convergence plateaus. In Figure 5.8, we explore

different iteration numbers per layer to validate our hypothesis. In our test, we use equal

number of iterations (6 per rigid layer), increasing iterations by doubling the number of

iterations per layer, and decreasing iterations by halving the number of iterations per

layer. We notice how the doubling approach outperforms the other by doing less iterations

in aggressive layers, while spending more time in finer layers.

5.4.5 Example Simulations

We designed challenging test scenes to evaluate the performance of our method, featuring

varying degrees of deformations and contacts. Figure 5.9 shows our example models

and compares the run times of our approach to XPBD with histograms of the solve times
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Figure 5.9: Histograms of wall clock time to simulate a frame with a stop criterion of 90%
improvement in residual error for the frame compared to the initial residual of the elastic
simulation. In all these various examples, we see improvements in performance.
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necessary to achieve a desired amount of error for each time step in a typical simulation

trajectory.

We run our experiments on CPU, with efforts made for parallelization of the code

using vectorized MATLAB code. Our tests use relative measures so as to provide a fair

evaluation of the performance. While our current implementation could be ported to

GPU, modifications are necessary to adapt the dynamic nature (e.g., problem sizes) of the

method. A compiled language could also provide performance improvement especially

for the computation of constraint gradients.

While our solver offers ground truth solutions, the difference in convergence and con‑

straint error distribution can lead to different behaviors when compared to a standard

XPBD solve. We note that the standard XPBD method can introduce error due to the

linear discretization of impulses, leading to inflation during rigid motions. This is not the

case in our solver when using a fully rigid first layer, as demonstrated by the spinning

box shown in Figure 5.9a. The simulation of a spinning box instantly terminates because

the rigid motions are solved accurately in the symplectic step of the first layer.

In Figure 5.9b we notice two different distributions due to the fast solve of purely rigid

motions. Because of the imprecision of elastic simulations, we can see a divergence in the

simulations. Our solver preserves the purely rigid motions in this wheel example much

like it does in the spinning box example.

Our solver can speed up contact heavy scenes like the pills machine of Figure 5.9c.

Due to improved propagation, our method consistently yield better performance even in

a contact heavy scene. We note that performance could be further improved by analyzing

the residual error locally instead of globally, allowing early stop for various independent

regions like individual pills.

Even in active scenes like Figure 5.9d, motions can often be represented as a set of rigid

body motions, leading to a handful of nearly free time steps and overall cheaper solves. A

simpler example with global deformation is shown in Figure 5.9e where a box is stretched

and released, providing no undeforming region. Even in this fully deforming scene,

the residual velocity solver outperforms the elastic simulation at all time. Likewise, in

Figure 5.9f, global deformation in wildly diverging directions lead to adequate rigid body
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Table 5.1: Comparison across resolutions. For the simulation of a box stretched horizon‑
tally by 10%, the proportion of time taken sorting and computing connected components
is minimal, while the overall performance improvement in comparison to the full elastic
solve becomes large at higher resolution.

Elements 651 1550 3304
Sort and connected components 0.01% 0.017% 0.02%
Performance improvement 0.1% 5.8% 11.93%

formation, and ultimately an enhancement in performance. In both cases, the simulation

benefits from the rigid motions of the first layers, propagating information to distant

elements similar to long‑range constraints.

Much like adaptive rigidification, our algorithm shows increased benefits when used

with finer meshes. For instance, while simulating a 3 by 1 box stretch horizontally by 10%

before being released, we see that refining the model increases the proportion of compu‑

tation time saved. In Table 5.1, we show the percentages of improvement for different

resolutions of this scene. We also monitor the proportion of time that the sort and the

connected components occupy in the solve. We note that while it is not currently a bottle‑

neck, scenes featuring very large numbers of elements would benefit from parallelization

of this algorithm.

Using the octopus, we also evaluate scalability across stop criteria in Figure 5.10. We

see that the benefits of using the multi‑layer method becomes more apparent for higher

residual‑reduction stop thresholds. Obviously solving the system more precisely requires

more time, but we note that the performance gain increases as we raise the improvement

percentage threshold.

5.5 Discussion and Limitations

Our implementation comes with the same drawbacks as its overarching method. Based

on XPBD, it suffers from some of the same convergence issues. While our method does

improve convergence throughout our examples, the worst case scenario remains in the

same order of magnitude as the original XPBD method. This happens when the solver

hits a plateau for many iterations without using an early stop for the layer. However, our
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Figure 5.10: In the octopus scene, the gap between the multi‑layer and XPBD solvers in
terms of computation time increases proportionally to precision.

method also makes the generation of long range constraints trivial by not requiring any

domain knowledge, and adapting itself to the current environmental inputs. Likewise,

our method can propagate contacts efficiently by treating them as both elastic and rigid

while we iterate through the layers. For rigid motions, our solver instantly reduces the

error up to relevant numerical accuracy making the simulations efficient, while retaining

ground truth accuracy.

Our method uses concepts similar to adaptive rigidification for the choice of layers, but

without an oracle. As such the last layer must always be elastic to generate good strain

rates at the next time step. Future work could create an oracle for XPBD simulations that

would render this method compatible with the approximate simulations of adaptive rigid‑

ification, further improving the speedups when accuracy is not critical. Because XPBD

benefits from not assembling the system’s Hessian matrix, the original oracle of adaptive

rigidification is incompatible with such a framework. We theorize that an alternative

oracle could be to do elastic iterations first, then proceed with rigidified parts, but this

would likely be subject to localized propagation issues.
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Likewise, the current implementation does not include co‑dimensional shell simula‑

tions. Such simulation requires extra care for the bending components [77]. It is not

obvious that locking bending angles would yield good first steps in the partially rigid

layers. A potential alternative could be to only use multi‑layers on the 2D projection of

the shells, leaving the bending components fully simulated.

There are potential opportunities to parallelize the union‑find [46, 23] connected com‑

ponent builder. Likewise, we use a standard sorting algorithm, which could be paral‑

lelized using forms of radix parallel sorts. Furthermore, we do not need a full sort. That is,

the grouped elements at a fine layer do not need to be sorted and are only expected to have

lower strain rate than those elements in the group at the next coarser layer. Nevertheless,

the sort and union‑find are not the current bottlenecks of our implementation.

While early stops allow fast simulations of deformables, setting a constant number

of layers and iterations can have potential uses for real time applications where constant

time solves are important. With our simulator, it is easy to allocate a constant amount of

resources for elasticity and still benefit from improved convergence. This is an important

feature for real‑time application as resources are often limited.

Our method shares similarities with multigrid methods, which would make the intro‑

duction of a v‑cycle pattern intuitive, starting elastic to rigid and back to elastic. However,

such pattern lose the benefits of residual velocity layers, and the possibility to instantly

terminate on rigid motions during the first iteration.

While we use strain‑based energies for our elasticity, the overarching multi‑layer sol‑

ver is independent of such constraint and could be used with other popular formulations

like the stable Neo‑Hookean from Macklin et al. [69].

5.6 Conclusions

We present a multi‑layer approach for the simulation of soft bodies with XPBD. Our meth‑

od converges faster than standard XPBD by automatically generating cheap coupling
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similar to long‑range constraints through the use of rigid bodies. Without using a stop cri‑

terion for layers, our solver provides an iterative solution that offers steady performance

across frames.

While iterating through coarse layers, the solver provides an efficient propagation

of information to distant elements with a significantly reduced number of constraints

to solve. We hope that this new method will inspire the community to build upon our

work and generate novel multi‑layer solvers working outside of the typical algebraic or

geometric multigrid approaches.
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Chapter 6

Discussion

Physics‑based animations have seen significant advancements over the past few years,

frequently due to the demand for realistic and computationally efficient models in a wide

range of applications, from computer graphics to engineering simulations. Among these

advancements, adaptive rigidification has emerged as a powerful technique for optimiz‑

ing the simulation of deformable bodies, offering a means to balance computational load

with physical accuracy. Adaptive rigidification is especially valuable in scenarios where

certain regions of a model undergo minimal deformation and can be treated as rigid

without sacrificing the overall realism of the simulation.

Tangentially, extended position‑based dynamics (XPBD) is a popular framework for

real‑time simulation of soft bodies. It is favored for its stability and ease of integration

with constraint‑based methods. XPBD is particularly well suited for applications that re‑

quire high‑speed computations, like real‑time interactive simulations and virtual reality.

However, as the complexity of simulations increases the need for improved convergence

becomes apparent. This is the case in systems with numerous constraints or detailed in‑

teractions. Such speed and stability are requirements for the simulations of our industrial

partner.

This discussion digs into the evolution of adaptive rigidification as a research idea,

exploring our application of the concept to elastic solids and discrete shells, and culmi‑

nating in the development of a multi‑layer solver for XPBD. We compare the contribu‑

tions to highlight their noteworthy differences. Next, we discuss the applications of our

methods as well as their limitations. From there, we suggest potential improvements to

the implementations. Following this, we address the methodology challenges, focusing

on the reasoning behind our choices during the development and implementation of the
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algorithms. Finally, we outline the steps taken to ensure that our methodology can be

consistently replicated in other simulations.

6.1 Research Insights

The research that we present in this work traces the evolution of adaptive simulation

techniques through a series of methodologies designed to balance computational effi‑

ciency and accuracy in physics‑based simulations. Adaptive rigidification of elastic solids

improves simulation performance by identifying low‑strain regions within a deformable

body and treating them as rigid. In a way, this is similar to adaptive merging, where rigid

bodies with similar motions are merged to save on computation time. This allows the sim‑

ulation to focus resources on actively deforming areas, thus reducing the computational

load without sacrificing realism. The method involves using an oracle to guide when

elements should switch from rigid back to elastic. A primary challenge lies in setting the

correct criteria for rigidification, as over‑rigidifying can lead to unnatural stiffness, while

under‑rigidifying negates performance benefits. Although there is some computational

overhead in maintaining the oracle and strain‑rate calculations, this overhead is negligi‑

ble compared to the overall performance gains from reducing the number of degrees of

freedom by treating parts of the mesh as rigid. However, adaptive rigidification of elastic

solids only features the model reduction on soft bodies. To show the versatility of our

work, we explore alternative types of models.

Building on the success of adaptive rigidification for elastic solids, the method now

extends to discrete shells, which introduces unique challenges due to the distinct de‑

formation characteristics of thin‑walled structures like clothes or membranes. Unlike

volumetric solids, discrete shells present no deformation in the normal direction and are

prone to bending. Shells necessitate careful handling of geometric properties as they

exacerbate the drawbacks of the oracle. This is why we use an edge filter inspired by

image kernels common to computer vision in order to quickly diffuse contact information

along neighbouring vertices. An innovation in this extension is the adaptation of our

oracle to account for curvature, which allows for a smooth transition between rigid and
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elastic regions, avoiding artefacts like unnaturally rigid creases. We prefer to minimize

the amount of parameter tuning, hence we set the bending thresholds automatically from

bending equivalences. However, adaptive rigidification still relies on an oracle that intro‑

duces complexity and the potential for errors, motivating exploration of fundamentally

different approaches based on the concept of rigidification.

We then introduce the multi‑layer solver, inspired by geometric and algebraic multi‑

grid methods, as a way to eliminate the need for an oracle. Because we do not have

predictions for elastification, we need the solution to be accurate. Likewise, our industrial

partner uses XPBD for their simulations. In such framework, the preconditioner that we

use for the oracle does not make sense as part of its appeal is the lack of the Hessian matrix

assembly. As such, our multi‑layer method solves two major issues at once. Unlike tradi‑

tional adaptive rigidification, which selectively rigidifies regions based on strain rates, the

multi‑layer solver operates across hierarchical layers. This new solver quickly addresses

large‑scale dynamics in the early rigid layers and progressively adds new degrees of

freedom for more detailed modelling. This approach eliminates the reliance on an external

oracle because the refinement process is handled internally and the last layer is fully

elastic. This leads to accurate solutions.

6.2 Comparing Approaches

There are several key differences and advantages that emerge when comparing the adap‑

tive rigidification methods for elastic solids and discrete shells with the multi‑layer solver

for XPBD. Adaptive rigidification, while effective in reducing computational overhead,

is heavily reliant on the oracle’s ability to accurately predict regions of low deformation.

This reliance introduces a level of complexity and potential inaccuracy that can limit the

method’s applicability, particularly in scenarios where deformation patterns are unpre‑

dictable or highly variable. However, because of these approximations, the performance

can be pushed to levels beyond the ability of the multi‑layer solver.

While rigidification improves computational performance, it can lead to a loss of detail

in regions that are simplified into rigid bodies. This is particularly problematic if those
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regions undergo unexpected deformation, which the rigid model might not be able to

accurately capture. The potential locking artefacts for bending angles were concrete ex‑

amples of such a problem, which we fixed in the second contribution by using an adequate

contact filter. Special care might be required for other types of materials that we have not

implemented in our work, such as snow, dirt, or fluids.

The multi‑layer solver, on the other hand, offers a more generalized approach that does

not depend on an external oracle. By leveraging a hierarchical refinement process, the

multi‑layer solver can dynamically adjust the level of detail in the simulation, ensuring

that computational resources are focused where they are most needed. This method

cheaply improves the initial elastic solution, similar to a warmstart heuristic. It also en‑

hances the solver’s ability to handle complex, dynamic interactions, such as contacts and

collisions. We note, that performance is bounded by the fully elastic layer, preventing it

from reaching the same levels of improvement as adaptive rigidification. If we instead

opted to use an oracle for approximate solutions, then we could terminate at lower reso‑

lutions, but that is not the case here. 

Tuning the adaptive rigidification threshold usually requires some level of intuition

built over many simulations, even if we provide information on how to set reasonable

threshold values. The multi‑layer solver does not require such tuning, but does add

the selection of layers and iteration count per layer. Regardless of the method, extra

parameters are needed for the adaptive algorithms to work. In terms of ease of use, the

multi‑layer solver shows a clear advantage, particularly in large‑scale simulations where

the complexity of the system can vary significantly across different regions. By starting

with a coarse, rigid approximation and gradually refining the model, the solver reduces

the overall computational burden, allowing for faster and more accurate simulations.

Because the layers are generated based on rigidification percentages, it is usually easier to

tune.

Moreover, the hierarchical approach of the multi‑layer solver could be extended to

other types of simulations beyond XPBD. For example, it could be applied to finite ele‑

ment methods for physics‑based animation or other constraint‑based systems, potentially

improving convergence and performance across a wide range of applications.
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6.3 Applications

The introduction of the multi‑layer solver is an innovative contribution to physics‑based

animation. The solver has the capacity to efficiently manage large, complex systems with

varying degrees of rigidity and elasticity. It unlocks new opportunities for real‑time ap‑

plications, particularly in domains such as virtual reality and interactive simulations such

as surgical training simulations. This innovation is valuable for our industrial partner,

who specializes in surgery simulations integrated with haptic feedback devices. Their

simulations must rapidly generate hundreds of frames per second to ensure precise syn‑

chronization with the haptic devices. Equally important is the need for stability in these

simulations, as it is essential for providing accurate and plausible feedback through the de‑

vice. Instabilities could lead to serious issues, such as the machine reacting unpredictably

and potentially causing harm, like striking the surgeon due to poorly managed contact

feedback. Moreover, the simulations must maintain a high degree of realism to fully

immerse the user, as this is critical for effective learning and training. In such a context,

there is no room for compromise, every aspect of the simulation, from performance to

stability and realism, must be meticulously balanced. Fortunately, our multi‑layer solver

method is particularly well‑suited to this application, it enables optimal performance,

stability, and realism in localized regions like where the surgery happens.

6.4 Limitations

In the current adaptive rigidification implementations, we recompute rigid body proper‑

ties only when elements are added or removed, but for small changes, there is potential

to apply inexpensive incremental updates to mass properties and the rigid state. The

main challenge arises when a rigid body splits into multiple components, and developing

efficient algorithms for this remains a promising area of future work. Although the linear

algorithm for generating connected components is not a bottleneck, incremental updates

could further improve adaptive rigidification’s efficiency. We currently only merge adja‑

cent elements to form rigid bodies, but merging elements in contact could also enhance
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performance. This approach, similar to Coevoet et al. [26], which merges rigid bodies

to reduce the cost of collision detection and contact force computations, could speed up

simulations involving stacked elastic bodies becoming rigid.

While adaptive rigidification of discrete shells is effective for simulating wrinkled,

non‑deforming regions, it lacks the capability to remesh actively deforming areas. How‑

ever, adaptive rigidification could complement remeshing by efficiently reducing the size

of the linear pass over elements and coarsening wrinkle‑free areas. Unlike remeshing,

which depends on the quality of coarsening, adaptive rigidification speedups are deter‑

mined by thresholds and scene dynamics. While remeshing can efficiently handle flat,

actively stretching areas, adaptive rigidification excels in rigidly moving dense folds.

Handling new contacts reduces the likelihood of missing elastification of slow and

constant motions that still present challenges. Our contact handling, however, suffers

from performance bottlenecks with large numbers of contacts, which could be improved

by employing contact handling methods like that of Verschoor et al. [110] or pruning

contacts on rigid bodies. Additionally, caching internal forces for rigidified elements

could reduce computational costs.

Our multi‑layer solver, built on XPBD, inherits some of its limitations, including sim‑

ilar convergence issues. While our method improves convergence in many cases, in the

worst‑case scenarios, it performs similarly to XPBD, particularly when the solver hits a

plateau without early stopping.

Shells simulations are not yet designed for the multi‑layer solver, as handling bend‑

ing components with partial rigid layers is uncertain. It is likely that this method may

encounter challenges in co‑dimensional cases, such as in XPBD cloth simulations, where

the material exhibits both stiff stretching constraints and very soft bending constraints.

A possible solution could involve using rigidification layers only in the 2D projection of

the shells while fully simulating bending. This would potentially be at the cost of larger

bending energy computation time.

There exist opportunities to parallelize certain algorithms, like the union‑find con‑

nected component builder. We could use approximate parallel sorting methods to opti‑

mize performance, noting that the elements need to be sorted with respect to the previous
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set, but not within themselves. However, sorting and union‑find are not the main bot‑

tlenecks in our implementation. Early stopping enhances simulation speed, but setting

a fixed number of layers and iterations could be beneficial for real‑time applications that

require constant solve times.

While our multi‑layer solver has similarities to multigrid methods, we did not see

significant improvements to the performance while using a v‑cycle pattern compared to

to the more straightforward coarse‑to‑fine patterns. The v‑cycle pattern, which involves

transitioning from elastic to rigid states and back to elastic, sacrifices some of the advan‑

tages inherent in our current approach. More specifically, it loses the benefits of the resid‑

ual velocity layers, which retain important velocity information as the solver transitions

between layers and benefits from the ability to quickly terminate on rigid motions during

the early layers, significantly reducing the computational load by addressing large‑scale

dynamics efficiently.

While this challenge is not unique to our approaches, the use of cutting techniques

that require remeshing would also introduce significant complications in graph coloring

as well as the adjacency graph. Dynamically updating the graph coloring at runtime is

computationally expensive, which can constrain the practicality of implementing finite el‑

ement methods, particularly in scenarios involving frequent cuts and topological changes.

There are opportunities to improve graph coloring methods in the context of physical

simulations, which are outside of the focus of this thesis.

6.5 Implementation Limitations

All of our contributions were developed within a unified codebase written in MATLAB.

The MATLAB programming language offers an excellent environment for rapid prototyp‑

ing. However, it lacks the compilation optimizations necessary for high‑performance sim‑

ulations, resulting in slower execution times. This performance gap shows the potential

benefits of transitioning to a more optimized programming language. Julia, for instance,

offers a compelling alternative. It combines the ease of prototyping found in MATLAB

with the execution speed of more traditional compiled languages. One of Julia’s core
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strengths is that it allows you to write high‑level code that is compiled to fast machine

code with Just‑In‑Time compilation. Julia can approach or match the speed of C++ for

many numerical tasks, without requiring the programmer to manage low‑level details

like memory allocation. Transitioning the codebase to a more open‑source language like

Julia could potentially yield even more impressive simulations with the possibility of truly

achieving real‑time performance, while not impeding development time. Likewise, it

would also make the code more accessible to non‑academic communities that may not

have access to Matlab for free like we do in an academic setting.

Moreover, our current parallel processing is confined to CPU threads, which, while

effective, is not optimal for achieving maximum performance. A proper GPU implemen‑

tation could substantially accelerate the computations. During our preliminary explo‑

ration of GPU acceleration, we encountered a bottleneck due to the high number of kernel

calls in the automatically generated CUDA code. This issue is likely resolvable with a

manually optimized CUDA implementation, which would involve fine‑tuning the GPU

code to minimize kernel overhead and maximize parallel efficiency. Addressing this will

require further work, but it represents a promising avenue for future optimization that

could significantly enhance the speed and scalability of our simulations, but this is work

for another time in potential future contributions.

We note that our implementations of adaptive rigidification feature standard collision

detection and handling, but are not necessarily state‑of‑the‑art. For instance, we use a

one‑level bounding volume hierarchy coupled with signed distance functions to generate

collision points. We then handle contacts using projected Gauss‑Seidel. Because our

methods are compatible with other forms of collision detection and contact handling, we

remove their computation time from our benchmarks and compare only the performance

of the relevant pieces of the simulations. This is to ensure a fair comparison of only the

relevant part of the simulation, independent of the collision handling and collision detec‑

tion methods. Likewise, we also outsource the renders to Blender instead of considering

them as a part of the simulation.
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6.6 Evaluation Methodology Challenges

Throughout the entirety of our contributions, we consistently strive to provide a compre‑

hensive and fair measure of performance by evaluating relative speeds. For example, the

initial two papers feature speedup factors to highlight improvements. In a similar vein, the

final paper takes a slightly different approach by evaluating the wall clock time required

to improve the residual error by a specified percentage, rather than simply making them

relative in terms of error reduction per step. This approach essentially serves to negate

some of the potential impacts of our choice of programming language and the specific

implementation strategies we employed.

In our results, we compare the adaptive solutions to the fully elastic simulations, re‑

ferring to it as the ground truth. However, we note that this is an overstatement of the

quality of the elastic simulations. In reality, we are undermining the performance of our

algorithms for fairness of comparison. Because implicit time integrations are burdened

by numerical damping, the fully elastic simulations are not all that accurate. Likewise,

for XPBD, the constraint solve dissipates energy. However, the adaptive simulations are

not as affected by these phenomena, making our simulations potentially more accurate

than the standard elastic simulations in some scenarios. This is likely to be the case for

most stiff simulations where models tend to act as rigid bodies throughout the animations.

It is unclear how to properly assess the relevance of our adaptive simulations without

downplaying their performance.

6.7 Reproducibility

Snapshots of the codebase are available online for all the papers. We hope that open‑

source access to the code will speed up adoption and inspire new ideas for research

projects or future collaborative work. Likewise, we keep recordings of the full conference

presentations to improve the quality of our research archives. Open‑source research code

plays an important role in ensuring the replicability of scientific discoveries. Researchers

enable others to verify results and build upon existing work by making code publicly
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available. This transparency cultivates trust in the scientific community and accelerates

innovation by compelling researchers to collaborate. Moreover, open‑source code helps

to identify and correct bugs or errors, improving the overall quality and reliability of

research. While we offer the code for our papers as is, we would be thrilled to see how

the computer graphics community makes it evolve in time for their own contributions.
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Chapter 7

Conclusion

The journey from adaptive rigidification to the development of a multi‑layer solver for

XPBD represents an interesting evolution in the field of physics‑based simulation. Each

step in this progression has addressed key challenges associated with balancing compu‑

tational efficiency and simulation accuracy, leading to the creation of more robust and

versatile simulation tools.

Adaptive rigidification provided a powerful method for reducing the computational

load in simulations of elastic solids and discrete shells, allowing for more efficient simu‑

lations without sacrificing visual consistency. However, the reliance on an oracle to guide

the rigidification process poses limitations, particularly in scenarios where deformation

patterns are complex or consistently below the rigidification threshold over multiple steps.

The multi‑layer solver for XPBD represents a novel approach to address these limita‑

tions. The multi‑layer solver achieves faster convergence and greater accuracy, without

the need for an external oracle. This is achieved by adopting a hierarchical approach that

dynamically adjusts the level of rigidity with multiple rigid patterns evolving throughout

the simulation. This approach not only improves performance in traditional XPBD simu‑

lations but also opens the door to new types of multigrid methods, generating resolutions

based on environmental inputs rather than a predetermined set of geometrical models.

All the contributions of this thesis successfully achieve their goal of enhancing the

simulation performances through adaptive reduction with rigidification. The adaptive

rigidification and adjacent methods offer promising approaches to enhance the efficiency

and stability of physics‑based simulations, particularly in complex scenarios involving

deformables. By dynamically identifying and leveraging rigid regions within deformable

objects, this technique significantly reduces the computational burden without sacrific‑
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ing accuracy in capturing essential deformations. The ability to adaptively switch be‑

tween rigid and elastic representations allows for more efficient simulations, particularly

in scenes with an initially high degree of complexity or frequent interactions. Our methods

improve the computation time often by orders of magnitude, while being relatively simple

to implement and compatible with most existing frameworks. These approaches are intu‑

itive at their core, focusing the attention only where needed the most in the simulations.

7.1 Future Work

Looking forward, there are numerous opportunities to expand upon the work presented

here. Future work could include explore the applicability of our methods to other simula‑

tions models. Good candidates would be snow and dirt, which are subject to plasticity but

quickly stop deforming after external interactions. These materials present an ideal use

case for adaptive rigidification, as the ability to dynamically switch between deformable

and rigid states could further optimize computational efficiency.

Additionally, integrating fast remeshing techniques within the adaptive rigidification

framework could yield even more impressive speedups. This would be especially impact‑

ful for shell simulations, where remeshing excels at coarsening nearly flat regions, while

rigidification allows coarsening in the bent regions.

Another promising direction is the development of a GPU‑compatible version of our

methods. Given the parallel nature of GPU architectures, this could substantially acceler‑

ate our simulations, improving scalability and making our approach even more suitable

for large‑scale applications. Such advancements would not only greatly increase simula‑

tion speed but also enable the handling of more complex physical interactions and higher‑

resolution models.

Future work could also explore an oracle for XPBD, making it compatible with adap‑

tive rigidification for faster simulations when precision is less critical.

By continuing to refine and optimize the techniques presented in this thesis, we can

push the boundaries of real‑time physics‑based simulations and open up new opportuni‑

ties for both academic and industrial applications. The methods developed here could see
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wide‑ranging applications across fields such as interactive virtual environments, video

games, movies, and training simulators. As the demands for both realism and perfor‑

mance continue to grow in these areas, the approaches outlined in this thesis have the

opportunity to play a role in advancing the state of the art, making simulations more

accessible and more powerful than ever before.

In conclusion, this thesis has laid the foundation for more efficient, scalable, and accu‑

rate simulations for deformable bodies. Our methods have the potential to significantly

impact the field of physics‑based simulation. By developing adaptive rigidification and

the multi‑layer solver approach, we have demonstrated that it is possible to achieve dra‑

matic reductions in computational cost without sacrificing the accuracy and realism that

are at the heart of modern simulations. The future of this field is bright, with countless

opportunities for further innovation and exploration.
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