
Multimedia Tools and Applications manuscript No.
(will be inserted by the editor)

Distributed Tools for Interactive Design of Heterogeneous
Signal Networks

Joseph Malloch · Stephen Sinclair ·
Marcelo M. Wanderley

Received: date / Accepted: date

Abstract We introduce libmapper, an open source, cross-platform software
library for flexibly connecting disparate interactive media control systems at
run-time. This library implements a minimal, openly-documented protocol
meant to replace and improve on existing schemes for connecting digital mu-
sical instruments and other interactive systems, bringing clarified, strong se-
mantics to system messaging and description. We use automated discovery and
message translation instead of imposed system-representation standards to ap-
proach “plug-and-play” usability without sacrificing design flexibility. System
modularity is encouraged, and data are transported between peers without
centralized servers.

Keywords Media Mapping · Networking

1 Introduction

One focus of research in our lab is the development and evaluation of novel
“Digital Musical Instruments” (DMI)—using a variety of sensing technologies
to provide real-time control over sound synthesis for the purposes of live music
performance. In this case, a device may have hundreds of different parameters
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available for input or output, and the difficult questions arise: which of these
parameters should control which? How should they be connected? How can
technology and aesthetics help us decide? Especially in collaborative under-
takings, who makes these decisions?

These questions are just as applicable to the design of any interactive sys-
tem for which the precise use-cases are not well defined (here, “... for making
music” is not considered a complete specification!). In addition to professional
artists and researchers exploring this space, there is also a large and growing
community of individuals creating interactive systems with readily-available,
low-cost sensors and microcontroller platforms such as Arduino 1. Mobile tele-
phones now commonly contain a substantial collection of sensors for which real-
time data are available: accelerometers, gyroscopes, magnetometers, satellite
navigation system receivers, microphones, cameras, and ambient light sensors.
The “App” ecosystems surrounding various mobile phone platforms (e.g., iOS,
Android) also provide exciting opportunities for developers to experiment with
creative, real-time control of media synthesis.

In the field of interactive music, a connection or collection of connections
between real-time sensor or gesture data and the inputs of media control is
commonly referred to by the noun mapping [11]. We also use the term as a
verb to refer to the activity or process of designing these relationships, as in
“... a tool for mapping of digital musical instruments.”

A mapping may be as simple as a single connection, or it may consist of
an arbitrary number of complex connections limited only by the constraints
of computation, communications bandwidth, or the designer’s imagination;
it may be explicitly designed or implicitly learned by a machine learning al-
gorithm, which might be guided (supervised) by the preferences of a human
designer or might represent structure found in the data alone. In typologies
of mapping we also commonly distinguish between convergent mapping, in
which multiple source parameters are combined to control a single destina-
tion parameter, and divergent mapping, in which a single source is mapped
to control multiple destination parameters. The system designer may wish for
an instrument mapping to be different for different pieces of music, different
performances, or indeed within a single piece. Studies have provided evidence
that complex mappings may be preferred by performers [10]—this seems to
indicate that simple one-to-one mappings, such as the assignment of a single
knob to control a particular sound parameter, can be perceived as less in-
teresting to play as compared to mappings which include mixing of controls
signals. It follows that a certain amount of iterative experimentation during
interaction design is necessary to achieve a balance that is sensible but does
not quickly become boring to play.

1 http://www.arduino.cc/
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Fig. 1 Examples of some of the types of devices we wish to flexibly connect to media
synthesizers. Clockwise from top–left: commercial computer input devices such as joysticks,
“novel” musical instruments such as the T-Stick [18] (photo: Vanessa Yaremchuk), force-
feedback/haptic devices, and systems for modelling virtual physical dynamics such as DIM-
PLE [28].

1.1 The Problem

The design of the mapping layer profoundly affects the behavior and percep-
tion of the instrument and the experience of both performer and audience;
the creation of mappings is an essential part of the design process for a new
digital instrument, and is often revisited when composing a new piece of music
for a DMI. Crucially, a mapping designer needs to be able to quickly experi-
ment with different mapping configurations while either playing the interface
themselves or working closely with collaborating performers.

There is, however, an a priori lack of compatibility between systems: there
is no “natural” mapping between a sensor voltage level and a sound parameter.
After digitization, one must deal with different data types and rates, different
units and ranges, and different approaches to system representation. In prac-
tice this usually means that some fairly extensive programming is necessary
in order to make different systems and environments intercommunicate. The
mapping designer must consider the control space of both source and destina-
tion devices, and explicitly devise a scheme for bridging the two. This takes
valuable time that could be spent more creatively on the mapping design it-
self, and restricts the activity of mapping to the relatively smaller group of
artist/programmers.

There are a number of established systems and approaches for representing
interactive systems, and for communicating control data; some examples are
described below in section 1.3. All of these approaches are valid for some sys-
tems or scenarios, useful for some users, but does their incompatibility demand
further standardization? We argue instead that adding another standard is not
helpful, since even if it is deemed successful, not everyone will accept it—thus,
further fragmentation will result. Worse, there is artistic interest and novelty
in building systems that cannot be easily represented within existing standards
and established schemas. Since our goal is to support intercommunication of
experimental interactive systems, imposing further standardization will likely
not be helpful.

We argue that what is needed in the research and artistic communities are
tools that,
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1. allow free reconfiguration and experimentation with the mapping layer dur-
ing development;

2. provide compatibility between the differing standards (and systems that
eschew any standard);

3. and allow the free use of interesting mapping layers between controller
and synthesizer (e.g., machine learning, high-dimensional transformations,
implicit mapping, dynamic systems, etc.).

Mapping interactive systems is often a time-consuming and difficult part of
the design process, and it is appropriate to demand tools and approaches that
focus squarely on the mapping task.

1.2 Terminology

Here we define some terminology that will aid in describing existing solutions
as well as discussing our proposed solution.

Signal
Data organized into a time series. Conceptually a signal is continuous,
however our use of the term signal will refer to discretized signals, without
assumptions regarding sampling intervals.

Data representation
How a signal’s discretized samples are serialized for the purpose of stor-
age or transmission. This could include the data type (e.g., floating point,
integer), its bit depth, endianess, and vector length if applicable. It might
also include an identifier or a name used to refer to the data, whether
it is included with the stored/transmitted data or defined elsewhere in a
specification document.

System representation
Further information needed to interpret the data, such as its range, unit,
coordinate system (e.g., Cartesian, polar, spherical, etc.), and any com-
pression applied to the data values (e.g., logarithmic scaling). At a still
higher level, the system representation also includes any assumptions or
abstractions applied to the control space for the given system. This might
include the level of control a parameter addresses, e.g. directly controlling
output media vs. controlling a property of a higher-level model, or even
whether a given parameter is exposed at all.
As an example, the MIDI standard includes specification of low-level data
transport (7– and 14–bit little-endian integers), and a mid-level stream in-
terpretation (e.g., pitch values represent tempered tuning semitone incre-
ments with 69 = A4 = 440Hz). It also includes a high-level control abstrac-
tion using the concept of a “note” to represent sounds as temporal objects,
each with an explicitly defined pitch, beginning and end—something that
is often more ambiguous in acoustic systems.
Another familiar example in audio synthesis is the “ADSR” (attack–decay–
sustain–release) control model for the evolution of temporal “envelopes” on
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analog synthesizers. This is not the only way to control envelopes, or even
the “correct” way, but it has proven useful enough that it is still used
on many hardware and software synths. The very use of envelopes is an
abstraction of low-level control to a higher-level (i.e. lower-dimensioned or
temporally-compressed) control space, and an important detail to consider
when describing the system.

1.3 Existing Solutions

Since the early 1980s, the Musical Instrument Digital Interface (MIDI) pro-
tocol [20] has been the de facto standard for connecting commercial digital
musical instruments. Although it is extremely widespread, it has been argued
that MIDI has many failings from the perspective of designers of “alternate”
music controllers. To cite some examples, MIDI’s bandwidth and data reso-
lution are insufficient [21], messaging semantics are confused [33], its bias to
percussive instruments is constraining [19], and it is unsuited for represen-
tation of complex control spaces. Although the bandwidth concerns are not
strictly tied to the protocol, and extensions such as SKINI have dealt with the
limited data types and resolution [5], the protocol’s lack of metadata, reliance
on normalization, and inability to well-represent control systems substantially
different from piano keyboards make it a bad fit for more generalized mapping
needs.

In the academic community, Open Sound Control (OSC) [34] has largely
supplanted MIDI as the protocol of choice. Unlike MIDI, however, the OSC
specification describes only how to properly format and package bytes to
form a named OSC message; although this formatting is transport-agnostic,
OSC is almost exclusively transported over packet-switching networks as UDP
datagrams. OSC is vastly more flexible than MIDI: it includes support for
single- and double-precision floating-point numbers, integers, and 64-bit NTP-
formatted absolute timestamps. Most importantly, OSC messages are tagged
with a user-specifiable, human-readable string instead of a predetermined con-
troller ID number; thus, simultaneously an advantage and disadvantage, OSC
messages are not forced into any higher-level hierarchy or schema.

This lack of standardization for specific OSC message names, the so-called
OSC namespace, means that while OSC-capable hardware or software can de-
cipher the contents of a message originating elsewhere, there is no guarantee
that it will be able to make use of it on a semantic level. The result is that
most OSC-capable devices use their own custom protocol running on top of
OSC designed by individual device developers. Intercommunication between
two OSC-capable devices must typically be provided by consulting the doc-
umentation for the receiving device, and specifying the IP address, receiving
port, OSC path string, and argument format to the sending device.

Although this can be seen as a disadvantage for reasons of inter-device
compatibility, it has nonetheless become evident in our experience, (and to
the credit of the designers of the OSC protocol) that device-custom naming



6 Joseph Malloch et al.

schemas allow a level of expression that is far easier to understand for hu-
mans. To resolve compatibility problems, two approaches are possible: firstly,
normalization of namespaces and control-space representation to allow auto-
matic interpretation of a set of “known messages”; or secondly, translation of
messages from one representation to another.

We argue in this work that the latter is a better choice, and translation of
representations is the approach adopted by libmapper. Numerous systems for
OSC namespace standardization have been proposed [34,24,13,4,26,2,14], but
none has yet been widely adopted. We believe that this is symptomatic of the
idea that a one-size-fits-all semantic layer is not the right solution. Not only
do representation standards risk leaving semantic gaps that force designers to
“shoehorn” their data, as is common with MIDI, but we also argue that nor-
malization, while convenient, discards valuable information about the signal
being represented. In fact, we believe that this lack of imposed representation
standards is the greatest strength of Open Sound Control over other solutions,
and that translation is ultimately a better path to improving compatibility.

1.4 Solutions from Other Domains

The (slow) transition from MIDI to OSC mentioned above can be seen as part
of a trend in many domains to move legacy dedicated-wire protocols to IP-
based systems. In non-musical media control, the legacy DMX512 system for
lighting control [7] is gradually being replaced by systems such as the Archi-
tecture for Control Networks (ACN) [8]. Meta-data standards for describing
the capabilities of devices are often paired with the communication protocol
specifications: Device Description Language for ACN; Transducer Electronic
Datasheet for IEEE 1451 [12] and Transducer Markup Language [23] for sen-
sor and actuator description. The Virtual Reality Peripheral Network (VRPN)
[32] functions to allow network-transparent access to control data from various
input devices, and also requires a standardized (albeit extensible) representa-
tion of devices.

2 Translating representations with libmapper

Our approach to solving the problems of standardization and intercommunica-
tion is different than previously proposed standardization/normalization-based
approaches. Rather than enforcing conventions in the representation of signals
(names, ranges, vector lengths, etc.) we simply provide a minimal layer to
help devices describe themselves and their capabilities. One reason we prefer
description over standardized representation is that our goal is not precisely
automatic connectivity but rather flexible connectivity. Although libmapper
can certainly be used to load previously-designed connections in a production-
oriented scenario, we wish to emphasize that libmapper is designed for use in
the space of mapping design and exploration, not simply connectivity.
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While OSC is currently used by libmapper for transporting data, auto-
matic translation is provided to the namespace expected by the destination.
Crucially, this means that the sending application need not know the destina-
tion’s expected OSC namespace—the destination is responsible for announcing
this information, and libmapper takes care of translating the sender’s messages
into a form expected at the destination. This includes both translation of the
OSC path2 as well as transformation of the data according to some mathe-
matical expression; typically, this is simply a linear scaling, but can be much
more complex if desired.

We do not enforce a particular range convention, and in fact explicitly
encourage users to avoid arbitrary normalization. This is further encouraged
by providing automatic scaling and type coercion between sources and desti-
nations of data. Thus, the endpoints can be represented in the most logical
or intuitive way without worrying about compatibility when it comes time to
make mapping connections.

Most importantly, we do not presume to tell the user what this “most
logical or intuitive way” might be; instead, we simply try to make it easy
for the user to represent their systems modularly and with strong semantics.
Further, our position is that redundant representations of the signals from
different perspectives are often useful (though perhaps for different people or
at different times) [13]; by managing connections, libmapper makes it easy to
expose large numbers of parameters for mapping without flooding the network
with unused data.

Our approach aims to make the mapping task work transparently across
programming languages, operating systems, and computers—the user can choose
the language or programming environment best suited for the task at hand.
From the instrument designer or programmer’s point of view, libmapper pro-
vides the following services:

– Decentralized resource allocation and discovery
– Description of entities, including extensible metadata
– Flexible, run-time connectivity between nodes
– Interaction with a semantic abstraction of the network (e.g. connecting

devices by name rather than setting network parameters)

The first iterations of these tools were developed to meet the needs of a
collaborative instrument development project [16]; since then, we have refined
the concepts and functionality, reimplemented parts of the system that were
written in other languages in transportable C, added bindings for other popu-
lar languages, and added utilities for session management, data visualization,
recording and playback. We have offered demonstrations and workshops to
test our documentation and solicit feedback (e.g. [17]), and used the system
for further projects with other universities and industry.

2 The OSC path refers to the text string identifying the semantics of an OSC message.



8 Joseph Malloch et al.

3 libmapper concepts

In this section we describe the main features of libmapper, and give our rea-
soning behind choices made during its conception. The libmapper library itself
is used by disparate programs running on a local network, but the collection of
these devices can be characterized as a distributed, peer-to-peer communica-
tions system based on a representation oriented around named signal streams.
It is effectively a metadata, routing and translation protocol built on top of
OSC that includes extensive means for describing signals and specifying con-
nections between them over a network.

While the distributed aspect adds complexity as compared to centralized
models, this is well-mitigated by a common communications bus and extensive
description of signal properties. These make it possible for libmapper programs
to find each other automatically, resolve naming conflicts, and make intelligent
default decisions during mapping.

3.1 Peer to peer communication

As mentioned, for libmapper we have chosen a distributed approach instead of
a more centralized network topology. This is not the only choice, and therefore
it is necessary to explain our decision.

One possibility for distributing sensor data on a network is the “black-
board” approach: a central server receives data from client nodes, and re-
publishes it to receiving clients that request particular signals. This approach
is often taken by online media services such as multiplayer online video games,
in which a large number of clients must stay synchronized to a common world
state. A multi-layer database back-end used to track and synchronize real-time
state updates with an “eventual consistency” approach is often employed to-
day for such applications, with a mirrored-server architecture to distribute the
load [6]. This has proven to work well, but is a complex solution made nec-
essary by a strong synchronization requirement. Often, ensuring consistency
relies on optimistic updates with roll-back to provide perceived fast response
times.

Such a centralized method lends itself well to shared environments, however
a real-time musical network more typically requires fast, unsynchronized flow
of independent signals from sensors to musical parameters, for which several
instances may be present at once—multiple controllers, multiple synthesiz-
ers, and multiple performers may share a common studio environment with
a single network. MIDI handles this scenario by supporting multiple chan-
nels multiplexed over a single serial bus, and, more and more, by providing
several MIDI buses and devices in a studio setting, unaware of each other so
that they do not interfere. Today, MIDI devices which connect over USB ap-
pear to the operating system as their own MIDI device, or even as multiple
devices, rather than taking advantage of MIDI’s daisy-chaining ability. This
means that the user must keep track of which combination of device and chan-
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nel number represents which physical controller, relying on device drivers to
provide meaningful identifiers which are often composed of a concatenation of
the product vendor and number. If data from a MIDI device connected to one
computer is needed on another, some 3rd-party transport is required, usually
specific to the software in use, if such a service is provided at all.

However, an IP-based network actually lends itself well to a peer-to-peer
approach, which we have extensively leveraged in the design of libmapper.
That is to say, each node on the network can be instructed to send messages
to any other node, and any node can issue such an instruction. Additionally,
establishment of connections is performed in a stateless manner, and when
data transformation is needed, the system is agnostic to where the computation
actually takes place.

In our system, data transformation is currently handled by the source node,
but since the details of the connection are worked out between the nodes the
potential for an alternative agreement is left as a possibility. For example,
the receiver could perform all or part of the calculations, or a third-party
node could be instructed to process the signal. Computational cost may be
considered against hardware capabilities in order to make this decision. This
also lends the possibility of agreeing on alternative data transports, such as
TCP/IP, or shared memory if the source and destination are on the same host;
this latter scenario would be useful for controllers that embed their own audio
synthesizer.

3.2 A communication bus for “administrative” messages

To enable discovery, it is of course necessary to have a means of communica-
tion between all nodes. This is accomplished by having the peer-to-peer data
communications run in parallel with a separate bus-oriented architecture for
the low-traffic control protocol. Since our target scenario is several computers
cooperating on a single subnet, we have found that multicast UDP/IP technol-
ogy is ideally suited for this purpose. Multicast is used for example by Apple’s
Bonjour protocol for tasks such as locating printers on the network [1].

It works by network nodes registering themselves as listeners of a special
IP address called the multicast group. IP packets sent to this group address
are reflected by the Rendezvous Point via the Designated Routers to all in-
terested parties [29]. A small multicast network therefore takes the form of a
star configuration, however multicast also allows for more complex multi-hop
delivery by means of a Time-To-Live (TTL) value attached to each packet.
In the case of libmapper, all nodes listen on a standard multicast group and
port, and the TTL is set to 1 by default in order to keep traffic local.

We refer to this multicast port as the “admin bus”, since it is used as a
channel for “administrative communication”: publishing metadata, and send-
ing and acknowledging connection requests. The admin bus is used for re-
solving name collisions, discovering devices and their namespaces, specifying
the initial properties of connections, and making modifications to connection
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properties. It is important to note that no signal data is communicated on the
admin bus; signals consist of OSC messages transmitted (most commonly) by
unicast UDP/IP directly between device hosts.

3.2.1 Comparison between multicast and other options

The choice of multicast UDP/IP was not the only possible carrier for this
information. Other possibilities include:

1. broadcast UDP messages;
2. a centralized message rebroadcaster;
3. or rebroadcasting of instructions within a mesh network, where each node

communicates with a subset of other nodes, and messages are propagated
throughout the mesh after several hops.

We chose multicast since, as mentioned, we targeted the use case of a LAN
subnet where support for multicast could be guaranteed. Broadcast would
also have worked, but we consider multicast to be more “friendly” on a large
network, since only interested nodes will receive administrative packets.

The idea of using a mesh is tempting for networks where multicast or
broadcast is not available, but the complexity of such an approach was pro-
hibitive and not needed for our applications. However, it is reserved as a future
possibility if the need arises. Mesh networks would require the address of a
pre-existing node at initialization time, whereas standardizing a multicast port
makes it “just work” from the user’s point of view. One advantage of mesh
networking is to allow the ad-hoc creation of disjoint networks without requir-
ing any special tracking of which multicast ports are available, but use cases
for this scenario are, we believe, quite rare.

Another possibility lies between these two extremes: using multicast or
broadcast solely for discovery, as in the case of OSCBonjour [22], while sending
commands and metadata through a mesh network of reliable TCP connections.
Indeed, recent work inclines us towards this solution since we have observed
problems of dropped packets when large numbers of signals and devices are
present.

The use of multicast has brought to light a distinct lack of support for this
useful protocol in OSC-compatible tools. Before developing libmapper as a C
library, we added multicast ability to PureData’s OSC objects, found bugs
in Max/MSP’s net.multi.send object, and also added multicast to the li-
blo OSC library, which is used internally by libmapper. With libmapper these
improvements were not needed, since libmapper uses liblo directly, and as we
provide bindings to libmapper, multicast OSC is handled by the library for
all supported bindings. It was nonetheless a useful exercise to provide multi-
cast support in these various environments, and we would like to encourage
developers of future audio applications to support the use of multicast.

Finally, since the information carried by the admin bus is essentially a
distributed database, we considered the use of decentralized database tech-
nologies such as a distributed hash table (DHT) as used by the BitTorrent
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protocol [31]. This is certainly an interesting option, but a DHT is best suited
for information that is evenly and redundantly distributed throughout a set of
nodes. In the case of libmapper, each node maintains its own information, and
ostensibly this information is useless if the device is unavailable—the expiry of
device information is conveniently automatic when a device goes offline. Con-
versely, deleting expired data from a DHT is a less common operation, and,
due to their traditionally public nature, is complicated by trust and security
implications which do not apply to local media control networks with which
we are concerned here.

3.3 Comparison with centralized topology

Of course, a centralized organization facilitates or enables certain actions. For
example, recording several data sources to a centralized database requires
access to all signals at a single point. Likewise, drawing realtime correlations
or other statistical analyses on the set or a subset of signals, useful for gesture
recognition or trend identification, similarly requires a global view on the data
and therefore a centralized approach is best-suited.3 In our experience, most
systems designed for mapping use this client-server approach (e.g., [2]).

However, the use of a central hub is a subset of the possible connection
topologies using libmapper’s peer-to-peer approach—it is trivial to model such
a topology by simply routing all signals through a central libmapper device.
This can be done automatically by a program which monitors the network for
new connections and re-routes them through itself. It can then record, analyze,
or modify any signals before passing them on to the intended destination. As
a proof of concept, we make available a small C program called greedyMapper
that “steals” existing and future network connections and routes them through
itself. When the program exits, it returns the mapping network to its previous
peer-to-peer topology. This program is not intended for real use, since we find
it preferable to simply create a duplicate of each interesting connection, so
that the source device sends the signal once to its mapped destination and
once to the recording or data-processing device (Figure 2).

Extending in this manner by doubling the connections, instead of modifying
the network to provide a hub, is a less intrusive means to the same end, and
results in the same amount of overall network traffic. In particular, when the
central device disconnects, it is not necessary to re-route signals back to their
original configuration, creating a potential drop-out period, but is enough to
simply disconnect the recording pathways. For the same reason, the sudden
disappearance of the central device has far less drastic consequences, in the
case of a computer crash or power disruption.

3 Note that there do exist many decentralized statistical analysis approaches, such as
graph-based techniques that can distribute successive reduction steps throughout several
computational nodes [15]. Application of such techniques to libmapper may be possible,
and is the subject of future work.



12 Joseph Malloch et al.

This connection-doubling technique is used by mapperRec, a program that
automatically duplicates any connections from a device matching a given spec-
ification. Ignoring the connection properties, it maps the data untransformed,
and records them directly either to a text file, binary file, or to a PostgreSQL
database via OSCStreamDB [27]. This can be used for later playback, or to
convert to formats appropriate to analysis tools.
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Fig. 2 A comparison of network topologies: on the left, data recording or analysis is per-
formed at a central location; on the right, most such scenarios can be handled with lower
latency by duplicating the existing connections instead.

4 Implementation

Conceptually, libmapper is organized into several components and subcompo-
nents that function together to represent network nodes and their functionality.
Most of these components are exposed as user-facing interfaces, however not
all components are required by all libmapper programs.

Device

Admin

Signals

Device

Admin

SignalsReceiverRouter

ADMIN BUS

LINK

Fig. 3 libmapper system components: devices, signals, routers, and links. Connections are
contained within links
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4.0.1 Devices, signals, routers

Firstly, a network node that can send or receive data is called a device. This
terminology stems from the original usage scenario where a hardware device
is controlled by a single libmapper application, however a device may just
as easily be a software synthesizer, a data transformation service, a bridge
to another bus system, or anything else that may send or receive realtime
data. Every device has a name as well as an ordinal which is automatically
determined to uniquely identify it if other devices with the same name are
found on the network.

A libmapper device must declare its signals, which are named value streams
available for connecting. Signals have a distinct data direction, i.e. they may
either be an input or output, but not both. It is possible in a given device to
have one input and one output signal with the same name, however, so this is
not a limiting factor. Properties of signals include its name, data type, vector
length (see section 4.1), optional data range, and optional units.

We also conceive of an entity known as a router. Conceptually, a router is
an object to which the device sends all of its signal messages, and it handles
transforming these messages into the form specified by existing connections,
and sends them as required to their destinations. This decouples the device
from connection management, with the router maintaining a list of destination
addresses and transformation rules for each signal. The reason for this distinc-
tion is to allow data processing and translation to potentially take place on
other network nodes, either alone or shared with the sending node. A device
contains a list of routers, one for each destination device it is linked to, and
this is purely an internal concept—application code never needs to interact
with a router directly.

4.0.2 Links and Connections

In practise, a router corresponds to a link—a network connection created
between two devices. Each router contains the address information (IP address
and port) required to send data to its destination device, as negotiated by the
link-creation protocol.

The router also keeps a list of connections associated with each of the
device’s output signals mapped to the link’s destination device. There is no
limit to the number of times a signal may be connected. Connections are
specified with information about the source and destination signal names, and
any desired data transformation behavior. In addition to linear scaling, data
transformation may include user-defined mathematical expressions, automatic
calibration, muting, and clipping (See section 5).

Default connection properties: The following steps are used to determine
initial connection properties, which have been designed to allow fast experi-
mentation provided the data ranges are well-specified:

1. Any properties that are specified as part of the connection will take prece-
dence.
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2. Otherwise, any connection preferences specified by the signals involved
will be added. Some signals may have default clipping behavior to prevent
damage to equipment, for example.

3. If the connection processing is still unspecified and the ranges of the source
and destination have been provided, processing will default to linear scaling
between the input and output ranges.

4. Otherwise no data transformation is provided; data is “passed through”
unaffected. (So-called “bypass” mode.)

In all cases, if the types do not match and type coercion is possible, then
data types will be automatically transformed. Type coercion follows the rules
of the C language: integers are automatically promoted to floating-point num-
bers, and conversely floating-point numbers are truncated to integers if neces-
sary.

4.0.3 Monitors

We also support network nodes called monitors which can send and receive
administrative messages, but do not have any signals of their own. These
nodes are used for observing and managing the network of libmapper-enabled
devices, typically in the form of a graphical user interface (see section 6). Due
to the fact that libmapper administration is performed on a shared bus, an
arbitrary number of monitors can be used simultaneously on a given mapping
network, and they can be used from any computer in the local network.

A libmapper device can also use the monitor functionality, for example
responding to remote activity on the network by dynamically adding or re-
moving from its collection of signals, or by automatically creating links and
connections to remote devices when they appear on the network.

4.1 Data types

Signals are associated with a particular data type, which must be a homoge-
neous vector of one or more values. Values may be 32- or 64-bit integers, or
32- or 64-bit floating-point numbers, for example.

The choice to support only homogeneous vector types may be seen as in-
flexible. Indeed, many aspects of libmapper could be adapted to support het-
erogeneous vectors, however we chose to support only homogeneous vectors
because signals are not intended to represent data structures, but rather val-
ues associated with properties of a system. The reason for introducing vectors
is that certain values are vectors from a semantic point of view, but heteroge-
neous types imply something that can be broken up into pieces. We wanted to
encourage as much as possible the use of short vectors, limited to, for example,
2- or 3D position data, but not used to organize an entire system state vector.
Rather, such a structure representing a system state should be split up into
its components, each as a separate signal (Figure 4).
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/tuio/2Dobj set s i x y a X Y A m r

/session/object/id/position x y

/session/object/id/angle a

/session/object/id/velocity X Y

/session/object/id/angular_velocity A

/session/object/id/acceleration m

/session/object/id/angular_acceleration r

Fig. 4 Top: example data encoding specification from the TUIO protocol [14] using a large
heterogeneous vector to carry the entire state of an object. Below: the same data exposed
as separate “signals” with semantically strong labels and only short, homogenous vectors
where appropriate.

To enable flexible mapping design, it is necessary to access as much as
possible individual pieces of information that can be mixed and matched by
the user on the fly. Specifying large amounts of data at particular indexes of
a large state vector is comparable to “hiding” the natural-language semantic
specification enabled by Open Sound Control, and we feel such a choice sac-
rifices one of the main advantages of OSC over MIDI. Being able to assume
homogeneous vector types also allows more succinct expression of element-wise
mathematic functions.

Even 3D position data may be usefully represented as separate (x, y, z)
components, but some values such as quaternions have terms that are rarely
referred to individually. At this point the reader may be asking, why not also
support a matrix type? Indeed, why not types for multidimensional tensors?
There is certainly a case to be made for higher-dimensioned arrays, such as
transmission of pixel data for example, or handling of rotation matrices. How-
ever, from a practical standpoint we felt that it was necessary to draw the line
somewhere, as libmapper—intended as a lightweight library—cannot provide a
full scientific programming language for data processing. Moreover, it is often
inefficient to transmit large bundles of data in real-time, and it is preferable
to extract properties of this data and expose these as signals.

As an example, a video feed could be transmitted as a 2D matrix signal,
but a bare video feed has little use for audio control. It is far more efficient and
useful to extract video features such as body or face position using computer
vision techniques, and to transmit signals such as “/eye/left/position” as 2-
valued vectors.

We believe these arguments are sound, but support for high-dimensioned
data is not entirely out of the question, and could perhaps be added in the fu-
ture if the need arises. In the meantime, matrices can of course be transmitted
as flattened vectors, which scalar support alone would not have allowed.

4.2 Metadata

Several properties of connections were mentioned in section 4.0.2. These in-
cluded the data transformation expression, the connection mode, and the
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boundary behavior. Devices and signals also have properties, such as their
name, type, length, and range.

In libmapper, this metadata can be extended by the user to include any
extra information that may be useful for visualization or analysis of the net-
work. Devices and signals may be extended with named values that can be of
any data type supported by OSC.

For example, the user may wish to assign position information to each
device in order to identify its physical location in the room. This may aid in
the development of a visualization tool for the design of an art installation.
Key-value pairs x=x and y=y may be used for this purpose. In other cases
perhaps location is more meaningfully communicated by indicating the name
of the room in which a device is situated, or perhaps the name of the person
to which a wearable device is attached.

Another example might be to mark certain connections as special, for ex-
ample because they are related to a recording device. When displaying the
connected network topology, it may be desirable to avoid including such con-
nections in order to simplify the visual display. Alternatively names could be
used to semantically group certain collections of devices as belonging to a par-
ticular user, or being components in a particular subsystem. Since the admin
bus is shared by all devices, identification of who made which connection could
be important for collaborative scenarios.

4.3 Queries

In addition to explicit connections between source and destination signals, an
entirely different mapping context is possible: statistical learning of desired
mappings based on examples (supervised learning), or based on data analysis
(unsupervised learning). Although implementation details and usage of this
“implicit” approach to mapping are outside the scope of this article, its basic
requirements should be supported by a mapping system.

In particular, for the supervised approach, it is necessary to learn the value
of the destination signals in order to train the system—information that is not
available through unidirectional mapping connections. Often, the value of the
destination would have been set by the connection in question, but the value
could also have been changed by another libmapper peer or locally by a user
or by some automated process (as in the case of play-along learning [9]).

Two facilities are provided by libmapper for this purpose. Firstly, it is
possible to query the value of remote signals. A monitor can query remote
signals directly, since it has access to information about the mapping network
(the existence and network location of the remote signal, for example), but
a device has knowledge only of its own signals. In the libmapper application
programming interface (API), remote values can still be retrieved by calling
a remote query function on a local output signal; libmapper will query the
remote ends of any mapping connections originating from the specified local
output signal and return the number of queries sent out on the network.
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In order to process the responses to value queries, the local device must
register a query response handler function for the local output signal. The
query protocol can also handle the case in which a queried signal does not yet
have a value.

Secondly, libmapper also provides the ability to reverse the flow of data on
a mapped connection. When this behaviour is enabled, every update of the
destination signal, whether updated locally or remotely by another connection,
causes the updated value to be sent “upstream” to the connection source. In
this case no signal processing is performed other than coercing the data type
if necessary. The sampled destination values can then be used to establish
interpolation schemes or to calculate errors for supervised training (Figure 5).

Input Device Artificial 

Neural 

Network

Synthesizer
1

2

Fig. 5 Example “supervised” implicit mapping scenario: connections from an input device
are routed through an intermediate device rather than directly to the synthesizer. During
training, the values of connected destination input signals are sent upstream to the interme-
diate device (1) using either individual value queries or “reverse”-mode connections. After
training, the connections from intermediate to destination devices are reset to “bypass”
mode (2). Note that the arrows marked (1) and (2) actually represent the same data struc-
tures; only the dataflow direction changes. A typical implicit mapping scenario might use
many such connections rather than the simplification shown here.

5 Signal Processing

The first two connection modes (“linear” and “bypass”) have already been
described in the context of determining default behaviors for new connections.
For simple use, the “linear” mode may suffice if the signal ranges have been
well defined; for more advanced usage two other options are provided.

The third connection mode is called calibrate, and it can only be enabled
if the destination range has been defined. While a connection is in this mode,
libmapper will keep track of the source signal extrema (minimum and maxi-
mum values) and use them to dynamically adjust the linear scaling between
source and destination. Re-entering linear mode has the effect of ceasing cal-
ibration while keeping the recorded extrema as the source range. Ranges are
stored independently for each connection, and can be added or edited as part
of the connection metadata; different connections can thus map to different
sub-ranges of the destination, for example.

The final connection mode is expression, in which the updated source val-
ues are evaluated using a user-defined mathematical expression in the form
“y=x”. This expression can contain arithmetic, comparison, logical, or bitwise
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Fig. 6 Processing pipeline used by libmapper.

operators. The linear and calibrate modes automatically populate the expres-
sion metadata, so that when switching into expression mode the user can start
by editing the expression defining the previous mapping.

In addition to the active modes mentioned, each connection can be in-
dependently muted, allowing users to temporarily prevent data transmission
without losing the connection state.

5.1 Indexing delayed samples

Past samples of both input and output are also available for use in expressions,
allowing the construction of FIR and IIR digital filters (Figure 6). These values
are accessed using a special syntax; some examples are shown in Table 5.1. We
currently limit addressing to a maximum of 100 samples in the past.

Function Expression Syntax
Differentiator y = x - x{-1}
Integrator y = x + y{-1}
Exponential moving average y = x * 0.01 + y{-1} * 0.99

Counter y = y{-1} + 1

Table 1 Some example expressions using indexing of delayed samples.

5.2 Boundary Actions

A separate “boundary” stage is provided for constraining the output range
after the expressions are evaluated. Actions can be controlled separately at
the minimum and maximum boundaries provided, and can take one of five
different modes:

none – values outside of the bound are passed through unchanged.
clamp – values outside the bound are constrained to the bound.
mute – values outside the bound are not passed to the output.
wrap – values outside the bound are “wrapped” around to the other bound.
fold – values outside the bound are reflected back towards the other bound
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6 Mapping Session Management

When designing mappings between libmapper devices it is necessary to interact
somehow with the network (via the admin bus); typically this is done using
one of the graphical user interfaces (GUI) we have developed in parallel with
the library itself. These interfaces are also used to save and load pre-prepared
mappings, for example when performing a piece in concert.

6.1 Graphical User Interfaces

Currently our working GUIs use a bipartite graph representation of the connec-
tions, in which sources of data appear on the left-hand side of the visualization
and destinations or sinks for data appear on the right (Figure 7). Lines repre-
senting inter-device links and inter-signal connections may be drawn between
the entities on each side, and properties are set by first selecting the connec-
tion(s) to work on and then setting properties in a separate “edit bar”. They
use a multi-tab interface in which the leftmost tab always displays the net-
work overview (links between devices) and subsequent tabs provide sub-graph
representations of the connections belonging to a specific linked device.

Fig. 7 Two different graphical user interfaces for managing the mapping network.

We have also explored alternative visualization and interaction techniques,
which allow more informed and flexible interaction with the mapping network.
Crucially, we believe that there is no need for a single “correct” user interface;
rather, different network representations and interaction approaches may be
useful to different users, for different mapping tasks, or at different times.

All libmapper GUIs function as “dumb terminals”—no handling of map-
ping connection commands takes place in the GUI, but rather they are only
responsible for representing the current state of the network links and con-
nections, and issuing commands on behalf of the user. This means that an
arbitrary number of GUIs can be open simultaneously supporting both re-
mote network management and collaborative creation and editing during the
mapping task. This approach has brought our attention to interesting research
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into other collaboratively-edited systems (e.g. [25]); our approach to undo/redo
functionality is based on this work.

6.2 Automatic Session Recovery

Apart from explicit saving and loading, for specific projects we commonly im-
plement small session-recovery programs to save time during working sessions.
Sometimes while programming a particular device it is necessary to frequently
recompile and relaunch the device, and recreating the mapping links and con-
nections would be tedious. Using the monitor API, it only takes a few min-
utes to write a small program that watches for specific relaunched devices and
recreates the desired mapping.

Eventually, we plan to create a general-purpose session logging and recov-
ery system based on libmapper, backed by a version control database allowing
the recovery of any previous configuration of the mapping network.

7 Mapping scenarios—libmapper use cases

In this section we briefly describe some examples of use cases for which libmap-
per has been designed.

7.1 Explicit Mapping Scenario

Imagine that Bob has an interesting synthesizer, and that Sally has been
working on a novel physical input device. Since they both used libmapper
bindings, collaboration is simple—they use a GUI to view the mapping network
and create a link between the two devices. Over the course of their session,
they experiment with different mappings by creating and editing connections
between the outputs of Sally’s controller and the inputs of Bob’s synthesizer.

7.2 Implicit Mapping Scenario

Sally and Bob decide to try a different approach: they are happy with some of
the results from the explicit mapping approach but they want to jump quickly
to controlling more parameters. They remove the direct link between their
devices in the mapper network and instead link them through an intermediate
machine-learning module/device and connect the signals they want to include
in the mapping. Sally clicks on the button labeled “snapshot” on the inter-
mediate device each time she wants to indicate that the current combination
of gestural data and synthesizer configuration should be associated. Lastly,
she clicks on a button labeled “process”, and the device begins performing
N-to-M-dimensional mapping from the controller signals to the synth signals.
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Finally, Sally and Bob might decide to use a combination of the approaches
outlined above, in which many “integral” parameters of the synth affecting the
timbre of the resulting sound are mapped implicitly using machine learning,
but the articulation of sounds (attacks, releases) and their overall volume
are controlled using explicitly chosen mapping connections. They decide that
for this particular project this approach provides the best balance between
complex control and deterministic playability.

8 Support for Programming Languages and Environments

libmapper is written in the programming language C, making it usable as-is
in C-like languages such as C++ and Objective-C, and by users of media pro-
gramming platforms such as openFrameworks4 and cinder5. Bindings for the
Python and Java programming languages are also provided, the latter intended
principally for compatibility with the Processing programming language which
is popular in the visual digital arts community.

We have made every effort to ensure that the libmapper API is simple and
easy to integrate into existing software. In most programs, the user-code must
make only four calls to the libmapper API:

1. Declare a device (optionally with some metadata)
2. Add one or more signals (inputs and/or outputs, again with some optional

metadata)
3. Update the outputs with new values
4. Call a polling function, which processes inputs and calls handlers when

updates are received.

Figure 8 shows a simple (but complete) program using the libmapper C
API. For simplicity here we will not show the monitor functionality, since
for the most part only GUIs and other session managers need to instantiate
monitors. Full API documentation is available online.

8.1 Max/MSP and Pure Data

Max/MSP and PureData—two graphical patching environments for music
programming—are supported via a mapper external object. This object in-
stantiates a libmapper device with the name of the object’s argument, and
allows input and output signals to be added or removed using messages sent
to the object. Output signals are updated by simply routing the new value into
the object’s inlet, and received inputs emerge from the object’s left outlet. The
object’s metadata (IP, port, unique name, etc) are reported from the object’s
right outlet (Figure 9).

4 http://www.openframeworks.cc/
5 http://libcinder.org/



22 Joseph Malloch et al.

#include "mapper/mapper.h"

void handler (mapper_signal msig, mapper_db_signal props, int instance_id,

void *value, int count, mapper_timetag_t *tt ) {

// do something

}

void main() {

mapper_device dev = mdev_new("my_device", 0, 0);

mapper_signal in = mdev_add_input(dev, "/out", 1, ’i’, 0, 0, 0, handler);

mapper_signal out = mdev_add_output(dev, "/out", 1, ’i’, 0, 0, 0);

int my_value = 0;

while(my_value < 1000) {

msig_update_int(out, my_value++);

mdev_poll(dev, 100);

}

mdev_free(dev);

}

Fig. 8 Simple program using the libmapper C API to declare one input and one output
signal.

Fig. 9 Screenshots of the mapper object for Max/MSP (left) and PureData (right).

The mapper external object also provides an opportunity to provide pa-
rameter bindings for the popular music sequencing and production software
Ableton Live6, since it is possible to load Max/MSP patches as plugins in
Ableton. Using the provided support for parameter discovery, one can quickly
scan the open project and declare all the Ableton parameters as mappable
signals on the network.

We also provide the implicitmap external object as a reference implemen-
tation for support of implicit mapping techniques with libmapper, and was
built specifically for bridging libmapper and the MnM mapping tools from
IRCAM [3]. This object instantiates both a libmapper device and a monitor,
which it uses to observe its own connections and dynamically adjust its number
of inputs and outputs as necessary.

6 https://www.ableton.com/
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9 Device and Software Support for libmapper

The most complex devices we use for mapping are invariably the ones devel-
oped in our lab—complex in terms of numbers of signals available for mapping,
and also in terms of their departure from standard input devices such as pi-
ano keyboards. There are relatively few commercial offerings in the “alternate
music controller” space. In addition to the lab-developed prototypes and re-
search instruments, we also use a number of commercial input devices such as
joysticks, depth-sensing camera systems, and various optical, magnetic, and
inertial motion capture systems. We maintain a public collection of device
drivers and utilities for working with libmapper that we hope will grow along-
side the community making use of the library.

9.1 Protocol Bridges

In the interests of compatibility with other communication standards and with
legacy hardware, we are developing a series of software daemons that function
as protocol bridges to the libmapper mapping network. The MIDI protocol
in particular is of interest to us, since almost all music hardware built since
the 1980s is compatible with MIDI, and it remains the standard for most
commercial music software today. Our MIDI bridge makes use of libmapper
and the open-source cross-platform MIDI library RtMidi7 to expose MIDI
signals to the mapping network. If the software is running as a daemon, any
MIDI devices recognized by the operating system will be dynamically added
to the available pool of mappable devices without any user intervention.

Popular computer peripheral input devices such as gaming joysticks and
graphics tablets are also commonly used for multidimensional control of music
software. For this reason, we are also developing a software daemon for auto-
matically exposing the parameters of peripherals using the Human Interface
Device (HID) standard for mapping.

Finally, the Arduino microcontroller platform8 is immensely popular for
creating DIY electronics in general, and new control interfaces for music in
particular. Students in our lab frequently use Arduino circuit boards for sam-
pling sensors and communicating with a computer running audio synthesis in
PureData or Max/MSP; usually custom firmware is written to enable the mi-
crocontroller to efficiently perform specific tasks, however a generic firmware
— “Firmata” — is sometimes used instead to allow dynamic reconfiguration
of the Arduino at run-time [30]. For users of Firmata, we make available an
adaptation of the application “firmata test” 9 that exposes the configured pins
for mapping 10.

7 http://www.music.mcgill.ca/∼gary/rtmidi/
8 http://www.arduino.cc/
9 http://firmata.org/wiki/Main Page

10 https://github.com/IDMIL/firmata-mapper
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9.1.1 Sending and Receiving Open Sound Control from libmapper

Although we argue that calling libmapper from your application is the best
route towards intercommunication, libmapper-enabled devices/applications can
be used to send and receive Open Sound Control messages for compatibility
with tools lacking libmapper bindings but including OSC support. Sending
OSC messages from a libmapper-enabled application to an OSC-only applica-
tion simply involves manually providing enough routing information (receiving
IP and port and the expected OSC message path) to create a dummy libmap-
per connection. Sending messages from an OSC-only application to libmapper
is also simple; since libmapper uses OSC internally for message passing one
can simply send properly-formatted OSC messages to the destination device.
The routing information, OSC paths, data types and vector lengths for the
destination signals can be easily inspected using any mapper GUI on the net-
work.

Naturally, these tricks only work for fairly simple scenarios, and will not
support device discovery, value queries, or much of the session management
features of libmapper. However, in the libmapper-to-OSC scenario the spoofed
connection will support signal processing and session management.

10 Conclusions and Future Work

In conclusion, we believe that designers of interactive systems should use the
most suitable, interesting representations of their systems, and that transla-
tion should be used for providing compatibility rather than standardization
and normalization of signals. We offer libmapper to the community as tools
for accomplishing this goal: a cross-platform, open-source software library with
bindings for an increasing number of popular programming languages, plat-
forms, and environments. The future of libmapper includes lots of exciting
work for anybody interested in aiding or guiding development—a few of the
items on our roadmap are described in the next section.

Our own experience using libmapper for system interconnections on a va-
riety of large and small projects has been largely positive. While libmapper
does not miraculously make mapping easy (of course!), it greatly streamlines
our work. Systems are now much less tedious to set up and interconnect, even
when working with student projects that were not conceived to be compatible
in any way. The use of libmapper and surrounding tools also acts to democ-
ratize collaborative mapping sessions, since participants can experiment with
mappings between systems written in unfamiliar programming languages, and
often even while the devices themselves are being modified. Most importantly,
we find that the time we save means that we can try more ideas in the available
workshop time, easily compare and contrast them, iterate and refine them. We
use libmapper in workshops, demos, concert performances, and daily in our
lab.
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10.1 Future Work

Current work on libmapper focuses on finalizing the function and programming
interfaces for dealing with instances of signals, for the handling of polyphony in
synthesizers as well as “blob tracking” and other methods that involve virtual
entities that pop in and out of existence. This work will be treated in a future
publication.

In tandem with the instances functionality, we are progressing on the full
integration of absolute time-tagging of mapped data. Once the groundwork
is finished, this functionality will enable automatic jitter-mitigation in data
streams since libmapper will be able to dynamically determine the amount of
latency in a given link or connection. Perhaps more interestingly, connection
processing will be extended to allow arbitrary processing of the message time-
tags, enabling flexible delays, debouncing, resampling, or ramping to be part
of the designed mapping connections.

Finally, we are continuously working on adding support for new program-
ming languages and input devices, including progress on interfacing libmapper
with embedded systems.

11 More Information

More information on libmapper and related projects can be found on the
project website libmapper.org or by subscribing to one of the mailing lists
(developer or user). The website includes online documentation of the libmap-
per application programming interface, pre-built binary versions of the library
for various platforms, and links to projects and utilities using libmapper. All
libmapper development is performed in open consultation with the commu-
nity mailing list, and anyone interested can join to participate in defining and
implementing the future of the library and its surrounding ecosystem.
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