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Abstract

The analysis of tumour tissues with modern analytic technologies has shown that most 

cancer types are composed of multiple subpopulations with distinct molecular signatures, and 

that correct identification of molecular subtypes can predict response to a particular drug. As a 

result, targeted treatments have emerged as an important tool for disease management, resulting 

in some striking successes. The phosphatidylinositol-3-kinase (PI3K) pathway is one of the most 

commonly dysregulated pathways in cancer and the target of many new drugs. One of these, 

capivasertib, is a potent and selective inhibitor of AKT. In Phase I trials of capivasertib, patients 

in some arms were screened for activating PIK3CA mutations expected to render them sensitive. 

However, even among this genetically pre-selected cohort, the overall response rate was limited 

to approximately 30%. Alternative mass spectrometry (MS)-based approaches to quantify 

proteins and metabolites can offer a “real-time” portrait of the cellular processes that are active 

in a specific cancer. The purpose of our project is to link MS analyses with genetic and clinical 

information to create more comprehensive molecular profiles, and to assess whether these may 

be useful for patient selection and treatment planning. 

Results Chapter 1 describes the development and validation of a new proteomics workflow 

encompassing both targeted and global proteomics approaches. The methods were applied to 

comprehensively analyze volume-limited stored tumour slices from PIK3CA-mutated tumours of 

patients in a Phase II clinical trial of capivasertib. Patients were coded as “clinical benefit” or 

“no clinical benefit” based on their time to progression after starting the drug. AKT expression 

was not associated with capivasertib treatment benefit in this cohort. However, the global 

proteomic analysis revealed significant protein expression differences, leading to the hypothesis 

that increased activation of translational control pathways may be associated with capivasertib 

resistance in tumours with activating PI3K mutations.   

In Results Chapter 2, to verify the association between the observed proteomic profile and 

capivasertib response, we developed targeted quantitative proteomic assays for 50 proteins. 

Assay performance was fully characterized according to the guidelines of the Clinical 

Proteomics Tumor Analysis Consortium (CPTAC). The multiplexed panel was then applied to 

reproducibly determine the concentration of the proteins of interest in samples of 6 hormone 

receptor-positive PI3K pathway-altered breast cancer cell lines, with varying levels of sensitivity 

to capivasertib. As compared to the profile originally observed in the “No Clinical Benefit” 
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patient samples, the capivasertib-resistant cell lines showed a similar pattern of increased 

expression of proteins associated with translational control. The detection of a similar profile of 

capivasertib-resistance in two independent models using orthogonal methods provides much 

stronger evidence of an association. The validated assays were adapted for future use in patient 

samples. 

In Results Chapter 3, we take a different approach to treatment optimization, assessing the 

feasibility of the Geneva cocktail approach for characterizing patient-specific differences in 

Cytochrome P450 activity that can alter the metabolism of cancer drugs. The results confirm that 

diet-associated differences in CYP450 activity can be measured using the assay. The ultimate 

aim is to enable regular monitoring of drug metabolism and strategic tailoring of medication 

doses to maximize effectiveness while mitigating adverse effects.  

As a whole, the thesis demonstrates the utility of protein-focused MS-based approaches in 

combination with genetic and phenotypic data to more fully characterize the system of pathway 

alterations that drive oncogenesis, to inform the strategic design of combination therapies, and to 

contribute to more rational patient selection and dosing of drugs.    
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Résumé 
La voie biochimique de la phosphatidylinositol-3-kinase (PI3K) est l'une des voies les plus 

souvent dérégulées dans le cancer et la cible de nombreux nouveaux médicaments. Le 

capivasertib est un inhibiteur puissant et sélectif de l'AKT. Dans les essais de phase I, les patients 

ont été dépistés pour les mutations PIK3CA provoquant une activation qui pourrait les rendre 

sensibles au capivasertib; mais le taux de réponse était limité à environ 30 % même parmi les 

patients génétiquement présélectionnés. Des approches alternatives basées sur la spectrométrie 

de masse (MS) pour quantifier les protéines et les métabolites peuvent offrir un portrait temporal 

des processus cellulaires qui sont actifs dans un cancer spécifique. Le but de notre projet est donc 

d'évaluer si les analyses basées sur la MS, liées aux informations génétiques et cliniques, peuvent 

fournir des profils moléculaires plus complets pour la planification du traitement. 

Le chapitre 1 décrit le développement d'un modèle d'analyse protéomique englobant à la 

fois des approches protéomiques ciblées et globales. Les méthodes ont été appliquées pour 

analyser de manière exhaustive des tranches de tumeurs à volume limité de patients qui ont des 

mutations de PIK3CA. Ils ont tous reçu du capivasertib dans un essai clinique de phase II. Les 

patients ont été codés comme « bénéfice clinique » ou « aucun bénéfice clinique » en fonction de 

leur délai de progression après le début du traitement. L'expression de l'AKT n'était pas associée 

au bénéfice du traitement par capivasertib dans cette cohorte. Cependant, l'analyse protéomique 

globale a révélé des différences significatives dans l'expression des protéines, ce qui a conduit à 

l'hypothèse qu'une activation accrue des voies biochimique de contrôle de la translation pourrait 

être associée à une résistance au capivasertib dans les tumeurs présentant des mutations 

activatrices de PI3K. 

Dans le chapitre 2, pour vérifier l'association entre le profil protéomique observé et la 

réponse capivasertib, nous avons développé 53 tests quantitatifs ciblés pour déterminer de 

manière reproductible la concentration des protéines d'intérêt. Les tests ont été caractérisés selon 

les directives du Clinical Proteomics Tumor Analysis Consortium (CPTAC), avant d’application 

à 6 lignées cellulaires de cancer du sein positives pour les récepteurs hormonaux, avec différents 

niveaux de sensibilité au capivasertib. Les lignées cellulaires résistantes au capivasertib ont 

montré un motif similaire d'expression accrue des protéines associées au contrôle de la 

translation. La détection d'un profil similaire de résistance au capivasertib dans deux modèles 

indépendants utilisant des méthodes orthogonales fournit une crédibilité beaucoup plus solide 



 vi 

d'une association. Les tests validés ont été adaptés pour une utilisation future dans des 

échantillons de patients. 

Dans le chapitre 3, nous adoptons une approche différente de l'optimisation du traitement, 

en évaluant la faisabilité de l'approche « Geneva cocktail » pour caractériser les différences 

spécifiques au patient dans l'activité du cytochrome P450 qui peuvent modifier le métabolisme et 

la dose efficace des médicaments anticancéreux. Les résultats confirment que les différences 

associées au régime alimentaire dans l'activité du CYP450 peuvent être mesurées. L'objectif est 

de permettre une surveillance régulière du métabolisme des médicaments et une adaptation 

stratégique des doses de médicaments afin de maximiser l'efficacité tout en atténuant les effets 

indésirables. 

Ensemble, la thèse démontre l'utilité des approches basées sur la MS pour proteomics et 

metabolomics en combinaison avec des données génétiques et phénotypiques pour caractériser 

plus complètement le système d'altérations des voies biochimique qui conduisent à l'oncogenèse, 

pour éclairer la conception stratégique des thérapies combinées et pour contribuer à choix de 

traitement plus rationnel. 
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catalytic subunit alpha isoform 
PIK3CB PIK3C-Beta P42338 Phosphatidylinositol 4,5-bisphosphate 3-kinase 

catalytic subunit beta isoform 
PSMA6 PSMA6 P60900 Proteasome subunit alpha type-6 
PTEN PTEN P60484 Phosphatidylinositol 3,4,5-trisphosphate 3-

phosphatase and dual-specificity protein 
phosphatase PTEN 

RICTOR Rictor Q6R327 Rapamycin-insensitive companion of mTOR 
RPS6KB1 (p)S6K1 P23443 Ribosomal protein S6 kinase beta-1 
SDHA SDHA P31040 Succinate dehydrogenase [ubiquinone] 

flavoprotein subunit, mitochondrial 
SEPTIN2 Septin-2 Q15019 Septin-2 
SGK1 SGK1 O00141 Serine/threonine-protein kinase Sgk1 
SLC25A3 PTP Q00325 Phosphate carrier protein, mitochondrial 
TNF TNFα P01375 Tumour necrosis factor alpha 
TSC1 Hamartin Q92574 Tuberous sclerosis 1 protein 
TSC2 Tuberin P49815 Tuberous sclerosis 2 protein 
TSTA3 TSTA3 Q13630  GDP-L-fucose synthase 
TUFM EF-Tu, P43 P49411  Elongation factor Tu, mitochondrial 
XRCC5 XRCC5 P13010 X-ray repair cross-complementing protein 5 
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Introduction 

The emergence of targeted therapies & precision medicine in oncology 

The impetus for new treatment approaches 

While cancer rates and deaths have declined over recent decades, cancer is still the cause 

of death for 1 in 4 Canadians (10). Even as treatments improve, cancer remains a heterogenous 

disease and patients with “rare” cancer subtypes are seeing a smaller share of the gains. This 

represents a major concern because, in spite of their name, “rare” subtypes collectively account 

for >20% of all cancers (11). Prognosis is dramatically worse; in a European study, patients 

diagnosed with low-incidence cancer subtypes were almost 40% more likely to die of their 

disease within 5 years than their counterparts with more common ones (11). Remarkably, 

survival differences were much smaller in the first year after diagnosis, which is consistent with 

the idea that the available treatments are simply less effective for these patients (11). Improving 

treatments and outcomes for patients with rare cancers will require new treatment strategies and 

individualized insights into disease (12). 

While chemotherapy and radiation continue to be the mainstays of treatment, these have 

left a pool of patients with ‘hard-to-treat’ disease (13). These approaches are also well known for 

their serious adverse effects including the potential for severe toxicity. In addition, patients spend 

extended time in hospital receiving treatments, which must be carefully monitored with 

additional weekly visits and are often followed by acute discomfort, resulting in important “time 

toxicity” (14). Chemotherapy commonly induces acquired resistance and the resulting tumour 

heterogeneity makes any active or recurring disease more difficult to target with any new 

treatment (15).  Radiation is suitable only for localized tumours that are positioned to enable 

anatomical access without unacceptable collateral damage to adjacent structures. While 

additional therapeutic benefit can, in some cases, be derived by adding radiation to 

chemotherapy (e.g., cisplatin, gemcitabine), overall toxicity is typically increased.  

Endocrine therapies have become a pillar of treatment for breast and gynecological 

cancers. However, these are only appropriate for hormone receptor-positive (HR+) cancers that 

are dependent on estrogen receptor (ER) or progesterone receptor (PR) for growth signalling. 

While these agents have dramatically improved cancer care overall, combination therapies are 

still needed to improve effectiveness, particularly in cases of cancer recurrence (16). The 
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example of prostate cancer, where treatment with androgen deprivation therapy sometimes 

reprograms the malignancy into a more aggressive subtype, clearly demonstrates the need for 

strategic combination therapies as a first-line approach before standard monotherapies render the 

disease harder-to-treat (17,18). This need as well as the limitations in existing standard-of-care 

treatments have both contributed to an increasing emphasis on the development of targeted 

therapies.  

History and significance of targeted therapies  

New drug development is now heavily focused on targeted cancer therapies including 

immunotherapies (19). As with chemotherapies, targeted therapies seek to block proliferation 

and metastasis, and ideally, to induce the death of cancer cells. However, targeted treatments do 

so by directly interfering with the proteins responsible for driving tumour oncogenicity (19).  

Whereas patient-specific immunotherapies require engineering of individual treatments based on 

unique tumour- exclusive neoantigens (20), most targeted therapies (including monoclonal 

antibodies and immune checkpoint inhibitors) are directed at shared pathways that are commonly 

exploited by cancer to drive uncontrolled proliferation and survival. This allows for their broad 

application to treat a group of patients, who are most often identified based on a shared 

biomarker.  

The most salient example of this is the discovery of imatinib in the late 1990s, which 

revolutionized the treatment of chronic myelogenous leukemia (CML). It had been previously 

discovered that up to 99% of CML patients express some form of the BCR-ABL fusion protein 

(21). Oncogenic BCR-ABL promotes leukemogenesis by driving activation of the RAS/RAF, 

PI3K/AKT and other downstream pathways (22). Its inhibition with imatinib halts disease with 

minimal effects on normal cells (23). Though imatinib could not cure CML, its approval in 2001 

radically transformed the prognosis. What was once a grim diagnosis became an indolent disease 

with survival exceeding 25 years (23,24). This incredible impact in turn intensified oncology’s 

focus on the hunt for “silver bullets”, accelerating the development of tyrosine kinase inhibitors 

(TKIs) and other targeted treatments (24,25). 

Imatinib’s success was followed by a stream of other small molecule drugs with 

exceptional clinical impact (26). Another tyrosine kinase inhibitor (TKI), erlotinib was approved 

for non-small cell lung cancer (NSCLC) in mid-2002 when it was shown to improve survival 

(27).  The overall response rate (ORR) exceeded 75% for EGFR mutation-positive NSCLC (27).  
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The breakthrough ALK inhibitor, crizontinib was approved in 2011; together with its successors, 

it has since extended median survival of Stage 4 NSCLC from less than 1 year to more than 6 

years for the 2.5% of patients with EML4-ALK fusions (28,29).  Vemurafenib, the first inhibitor 

of the mutated serine/threonine kinase BRAF, was similarly approved for metastatic melanomas, 

on the basis of a landmark Phase I clinical trial that demonstrated an ORR of >80% in this large 

subset of patients with BRAFV600E mutations (30,31). These examples each demonstrated how a 

unique genomic change could render a specific tumour type highly responsive to single-target 

inhibitors.  

Idelalisib followed in 2014 as the first approved Phosphoinositide 3-kinase (PI3K) 

inhibitor, with applications in chronic lymphocytic leukemia (CLL) (26). The number of FDA-

approved targeted small molecule drugs has since proliferated to include the use of CDK4/6 

inhibitors, PARP inhibitors, and several others for breast cancer (26). Multi-targeted kinase 

inhibitors emerged as an new tool for managing resistance to targeted inhibitors (32). In parallel, 

many targeted immunotherapies demonstrated strong clinical efficacy. Monoclonal antibodies 

targeting HER2+ in breast cancer (trastuzumab), CD20 in B-cell non-Hodgkin’s lymphoma 

(rituximab), and PD-1 in lung cancer, melanoma and kidney cancer (immune checkpoint 

inhibitors like pembrolizumab) were all moved into standard-of-care (33). The effective use of 

each of these targeted therapies depends on identifying the specific molecular changes that are 

responsible for driving survival, growth, and metastasis in a given tumour.  

Approaches to molecular subtyping  

Molecular subtyping of tumours 

The analysis of tumor tissues with modern analytic technologies has shown that multiple 

subpopulations can be identified by molecular signatures, with breast cancer subtypes as the 

archetype for this model. Around the same time that imatinib was introduced, the sequencing of 

the human genome and the advent of platforms like microarray began to enable more routine 

analyses of genetics and gene expression with better coverage and higher throughput (34). 

Pioneering studies conducted in 2000 by Sørlie et al. reported that analysis with 456 cDNA 

clones could generate a ‘molecular portrait’ distinctive of a given breast cancer, from which 

tumors could be classified into subtypes with distinct clinical outcomes (e.g., luminal A, luminal 

B, HER2+, and basal subtypes) (35,36).  
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Applying genomics-based subtypes ultimately confirmed that response to breast cancer 

treatment was determined by intrinsic molecular characteristics (37). Further research efforts 

initially aimed at identifying patients with sufficiently good prognosis to allow the safe omission 

of adjuvant chemotherapy (38). Since then, countless additional studies have worked to confirm, 

further subtype, or even converge the observed genomics-based groups (34) at both the gene and 

transcript level. However, molecular signatures still mostly belong to research settings. The most 

impactful molecular signatures so far identified generally map to subtypes that can defined by 

conventional immunohistochemistry (IHC). These include the analysis of estrogen receptor (ER), 

progesterone receptor (PR), and HER-2 in breast cancer, as well as p63 in prostate cancer and c-

Kit in gastrointestinal tumours (39). Therefore, to date, treatment decisions continue to be guided 

largely by traditional pathology including tumor stage, tumor grade, and IHC markers (34).  

Genomics technologies in current use 

Most of the markers in current clinical use for patient selection are gene-based (mutations, 

rearrangements, amplifications, deletions) (25).  By producing oncogenic fusion proteins or 

mutations not found in normal cells, gene rearrangements can, in some cases, act as both an 

extraordinarily powerful biomarker and a target of treatment. Since their development, 

polymerase chain reaction (PCR) assays have offered the speed, affordability, and reliability 

needed for clinical testing of known targeted gene mutations. Most companion diagnostics 

currently FDA-approved to guide NSCLC treatment (i.e., testing for mutations of EGFR, ALK, 

and PD-L1 in NSCLC) are based on either real-time PCR or fluorescence in situ hybridization 

(FISH) technologies. These assays now collectively earmark ~50% of new NSCLC patients for 

treatment with targeted therapies instead of standard chemotherapy (25).   

However, recent improvements in next generation sequencing (NGS) have made it faster, 

more economical, and compatible with formalin-fixed paraffin-embedded (FFPE) tissue (25). 

While both NGS and PCR technologies are well-suited for assessing somatic mutations (e.g.,  

pathogenic variants) and indels (e.g., insertions, deletions) that can alter the function of the 

expressed protein, NGS is better suited for the assessment of copy number variants (CNVs) and 

gene amplifications or deletions (25).  

NGS is mostly implemented as hotspot testing, which simultaneously targets a few dozen 

to a few hundred genes by specifically sequencing the genomic regions (e.g,. exons) associated 

with their highest-frequency alterations (25). The depth of coverage of this technique is sufficient 

to measure alterations with low allele frequency or that are heavily diluted by tumour 
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heterogeneity or signal from non-tumour tissue (25). Observed genetic variants are interpreted 

through the use of public resources such as the heavily-curated COSMIC database (40). 

Nevertheless, variants of unknown significance are an increasingly common occurrence due to 

greater use of NGS. Broader genomic sequencing, including whole exome sequencing, is also 

possible but is rarely used (other than for research purposes) due to cost and the exponential 

challenges in the clinical interpretation of the data.  

There are currently a handful of commercially-available clinical tools using genomics 

panels to supplement existing clinical tools for predicting prognosis (see Appendix 1 for detailed 

examples). These panels apply microarray to fresh-frozen tumour tissue or PCR assays to 

formalin-fixed paraffin-embedded (FFPE) tissue to generate signatures consisting of 2 to 97 

genes that are correlated to recurrence, metastasis, and/or survival. Of those reviewed, only 1 – 

MammaPrint – was FDA-approved at the time of writing for clinical use (41). MammaPrint uses 

a 70-gene signature to predict the risk of recurrence (low or high) for Stage I and II breast 

cancers to help inform decisions on adjuvant systemic treatment. The remainder of genetic 

panels function as laboratory-developed tests (LDTs). While working groups continue to tousle 

with the challenge of establishing federal regulations suitable for assuring the technical and 

clinical validity of NGS, there is strong demand for these approaches from both patients and 

oncologists (42). 

Transcriptomics technologies on the horizon 

Epigenetic modifications that alter gene expression without DNA mutations contribute to 

the pathogenesis and molecular heterogeneity of cancers by regulating the transcriptional 

program (43). These can include DNA and histone modifications. For instance, abnormal 

methylation of CpG islands in gene promoters has been identified as a common mechanism by 

which cancer cells suppress expression of tumour suppressor genes (44). Epigenetics has also 

been tied to treatment response and resistance (45). Quantitation of mRNA therefore stands to 

serve as an important tool for assessing changes in gene expression in cancer. However, the 

complex signatures derived from the clustering of gene expression data have proven difficult to 

interpret and even more difficult to implement for clinical use (46). Fortunately, this is far from 

the only application for transcriptomic data.  

RNA analysis has opened a treasure trove of additional markers not reachable by gene-

based approaches. These include microRNAs (miRNAs), which have recently been shown to 

regulate the expression of up to 60% of all human protein-coding genes (47). miRNA expression 
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profiles are unique for a wide range of human diseases including different stages of tumor 

progression and metastasis (48). Circulating miRNAs are extremely stable in blood and serum, 

creating a perfect pairing with cutting-edge advancements in the use of liquid biopsies (49). 

Long non-coding RNAs (lncRNA), which perform signalling, regulatory, and chaperoning 

functions, can also be exclusively assessed at the transcriptomic level. A number of lncRNAs 

have been investigated as prognostic and predictive markers in breast, prostate, bladder, and 

kidney tumors (50-52).  

PCR technology is applicable to analyze each of these types of RNA (25). However, in a 

clinical setting, RNA sequencing offers more extensive gene expression information with the 

potential to improve on NGS for the characterization of large-scale genomic rearrangements, 

fusion proteins, and other splice variants (25). A handful of prospective trials have now 

demonstrated an incremental benefit for treatment selection guided by gene expression analysis 

(either alone or in combination with genomics) (53-55). Although no RNA biomarkers have yet 

arrived in clinical practice, some recent oncology trials have begun to incorporate them (56). 

Nonetheless, implementation of transcriptomic biomarkers remains largely on the horizon, in 

part because they remain expensive and time-consuming to analyze (57).  

Proteomics assays in the clinic – a rarity 

While genomics defines the potential universe of gene products, transcriptomics reflects 

and regulates their expression. However, in the context of the central dogma, only proteomics 

provides direct real-time phenotypic information about the protein targets of small molecule 

inhibitors and immunotherapies (1,58). Protein biomarkers have been used for decades to guide 

cancer diagnosis, subtyping and treatment decisions in the form of single-protein antibody-based 

tests (e.g, HER2 in breast cancer, cytokeratin staining in melanoma, etc) (59,60).  

Yet examples of true “proteomics” assays – multiplexed panels akin to the NGS 

approaches now common in genomics – are virtually non-existent in a clinical setting. Approved 

in 2009, the Multivariate Index Assay (MIA OVA1) test for ovarian cancer risk consists of 5 

serum protein biomarkers, initially quantified with mass spectrometry and later with 

immunoassay, together with a scoring algorithm (39,61). The resulting score enables 

preoperative classification of an ovarian tumour as high- or low-risk of malignancy, with 

numerical cut-offs specific to the patient’s pre- or post-menopausal status (61). This panel 

provides better predictive power than imaging or CA125 alone, and has proven to be a safe and 
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effective tool for avoiding unnecessary intervention for patients with low risk of malignancy (62-

64).  

MIA OVA1 remains the first and only panel of proteomic biomarkers to ever receive FDA 

clearance to guide cancer therapy. The extreme dearth of proteomics panels in clinical use 

presents a stark contrast with the essential role that individual protein markers play in the tumour 

pathology that routinely dominates treatment decisions. It is also at odds with the abundance of 

proteomic cancer biomarkers currently being published (65).  

Opportunities to optimize the use of targeted therapies 

Limited success of targeted therapies  

In light of the promise of targeted therapies, intensive research focus has yielded a 

continuous stream of biological insights, targets, and agents. But aside from a few blazingly 

positive successes, molecularly targeted treatments have overall been plagued by a high failure 

rate, modest benefits, and the development of resistance (32,66,67). The ORR to new targeted 

treatments in unselected patient populations is generally <20%, meaning any impact is restricted 

to a small segment of the clinical population (32). Among responders, clinical benefit rarely 

exceeds 12 months (32). Significant benefits are needed to justify the associated costs (68).   

Despite initial excitement about the dramatic overall response rates to TKIs and ALK 

inhibitors in genetically pre-selected patients, it has since become clear that the enduring 

responses achieved with imatinib are exceptional among targeted therapies (24). The 

performance of virtually any new targeted therapy is limited by tumour heterogeneity (32,69,70). 

In so far as inhibitor monotherapy does not cure solid tumours, eventual relapse is inevitable. 

Clonal evolution under pressure from the drug creates resistance, commonly through reactivation 

of the addictive pathway through mutations to the target or other proteins (69,70). For instance, 

in the case of erlotinib, 50% of treated patients eventually present with the T790M mutation that 

prevents the drug from binding to EGFR. Cells may also develop the capacity to transport out or 

degrade the drug.  

 Discrepancies between genomic information and the cancer phenotype also limit the 

utility of many existing biomarkers (69,70). For instance, despite the extraordinary response 

rates originally leading to erlotinib’s approval in EGFR+ NSCLC, outcomes were found to vary 

widely and many responders quickly progressed diminishing the impact on overall survival 
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(24,71). Even more confusing, erlotinib was demonstrated to have a survival benefit in some 

EGFR wild-type patients (24,72). Osimertinib has since demonstrated higher overall response 

rates (up to 80%) including among T790M mutated tumours; it is now standard of care for 

EGFR+ NSCLC (73-75). However, erlotinib and other examples show how further research is 

needed to deconvolute the reasons for unexpected behaviour of some existing molecular 

subtypes, including the important role of intra- and inter- tumour heterogeneity (32).  

Enhanced molecular subtyping with better biomarker panels & tools 

Several studies have suggested that success rates of targeted therapies can be ameliorated 

by using panels of biomarkers to stratify patients in order to maximize predictive power 

(32,69,70).  The application of these tools must similarly be expanded. While studies suggest that 

>80% of patient tumours carry “clinically actionable” genomic alterations (76), few patients 

receive targeted therapies outside of clinical trials (25). Molecular subtyping is similarly rarely 

used outside of research, except in dire clinical scenarios.  There is therefore still a need for new 

and improved tools for molecular subtyping whose enhanced performance would justify more 

widespread use. 

Commercially-available multiplexed panels are increasingly available, but selection of 

the appropriate lab-developed test among panels with few overlapping targets requires an 

understanding of both technical considerations and biological insights (25). The assays 

themselves consume large amounts of tumour material. Between the cost and the need to 

dedicate 10-20 slides with high tumour cellularity, genomic testing can usually only be 

conducted once (25). The test selection and potential for timely benefits must be therefore be 

clearly indicated. This is even more critical if re-biopsy is required, given the potential for 

associated morbidity.  

Multiplexed panels must be paired with the necessary tools to empower oncologists to 

interpret and action results. Even at academic centres, many oncologists still feel that they lack 

the expertise to make treatment recommendations based on multiplexed genomic testing (77). 

This is partially due to widespread challenges interpreting uncommon variants (77). Some 

oncologists also report that they struggle with communicating the significance of genomics 

findings to patients (77). In fact, many oncology clinics now rely on specialty consulting services 

employing molecular biologists to review, analyze, and generate concise summaries of relevant 

clinical evidence from genomics results (78).  
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Early intervention with combination therapies 

As described above, the use of molecularly-targeted agents is inherently limited by 

tumour heterogeneity and the latent potential for resistance that it implies. It has been argued that 

the success of imatinib in treating CML only prior to blastic transformation is analogous to the 

challenges faced in applying targeted therapies for advanced solid tumours (24). Essentially, 

turning to targeted drugs after a patient fails standard-of-care treatments is a recipe for failure. In 

spite of this, most clinical practices apply panels only when patients present with recurring or 

hard-to-treat disease (25) . It is imperative to identify tumour drivers and introduce targeted 

treatments, in the form of strategic combination therapies, at an early stage of treatment to see 

their full impact on disease and to achieve an enduring response.  

Overcoming side effects and maximizing efficacy with precision dosing 

Despite their reputation as less harmful alternatives to chemotherapy, many targeted 

therapies address pathways required by normal cells and therefore demonstrate a narrow 

therapeutic index (NTI). This is not unique, in that many medical specialties, including 

cardiology and psychiatry, make heavy use of essential NTI drugs. Dose optimization is 

generally accomplished through traditional dose titration with vigilant monitoring. This approach 

can be practical in such settings; if someone feels faint, it is easy enough to recognize 

hypotension and reduce their statin, whereas continued high blood pressure might require an 

increase. Cancer treatment, on the other hand, often involves a delay of many months between 

introducing an intervention and measuring its results. In the case of preventative agents like 

tamoxifen, severe consequences -- like tumour development resulting from an inadequate dose -- 

may not be apparent for years. Adverse effects often yield irreversible outcomes in medical 

oncology: a treatment “holiday” or dose reduction due to poorly-tolerated therapy can result in 

significant disease progression. Based on personal observations during the course of an oncology 

clinic observership, it appears that hospitalization as a result of adverse events is often associated 

with a cascade of deterioration. Even for patients presenting with treatable disease, some report 

that experience with or fear of side effects leads some patients to refuse further intervention.   

Opportunities to optimize targeted treatments 

Notwithstanding the remarkable outcomes achieved by some with excellent biomarkers, 

the overall success rate of newly developed targeted therapies and associated biomarkers in 

routine clinical applications is modest (32). Given the promise and substantial investment so far 
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dedicated to these agents, it is imperative to optimize their use. Improving our knowledge, not 

only of molecular cancer subtypes, but also of cancer biology and individual physiology can help 

to guide strategic use of targeted therapies in terms of who (patient selection), what (combination 

therapies), when (timely intervention), and how much (precision dosing).  

Use case: Targeting the PI3K/AKT/mTOR pathway 

Role of the PI3K/AKT/mTOR pathway in oncogenesis 

The PI3K/AKT/mTOR signaling pathway is one of the most frequently dysregulated 

pathways in human cancers (79). As shown in Figure 1, when activated by growth factors (e.g., 

insulin, EGFR, VEGFR), receptor tyrosine kinases (RTKs) initiate PI3K signalling via PIK3CA, 

which phosphorylates phosphatidylinositol lipids in the cell membrane to generate 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3) (80-82). If not converted back to PIP2 through 

negative regulation by PTEN (80), PIP3 then recruits a specific set of signaling proteins to the 

membrane (83). The recruited proteins are those with pleckstrin homology (PH) domains, 

including AKT and PI3K-dependent kinase-1 (PDK1) (83). Once translocated to the membrane, 

AKT is activated by phosphorylation at Thr308 (by PDK1) and Ser473 (by PDK2) (84). 

Activated AKT modulates multiple downstream oncogenic functions, in large part through 

activation of mammalian target of rapamycin (mTOR), a critical regulator of protein synthesis, 

cell growth, and metabolism (80,81,84,85). This is accomplished as activated AKT 

phosphorylates TSC2, which then ceases to inhibit mTOR (83). Upregulation of mTOR activity 

resulting from release of TSC and PTEN inhibition subsequently promotes cell proliferation and 

suppresses apoptosis (80-83,85).  

Activation of the PI3K pathway stimulates cell cycle progression, stimulates protein 

synthesis, and inhibits apoptotic pathways, ultimately promoting proliferation and survival (79-

81,85). The PI3K pathway also alters cellular metabolism through changes in glucose uptake, 

glycolysis, and mitochondrial function (81). This increased nutrient uptake and utilization 

supports the increased energy demands of cancer cells.  More recently, the PI3K pathway has 

been shown to modulate the activity of many, if not most, immune cells to create an 

immunosuppressive tumor microenvironment (86). Taken together, this implicates PI3K 

pathway functions in almost all the hallmarks of cancer (87,88). The PI3K pathway also sits at 

the nexus of many other oncogenic pathways demonstrating substantial cross talk with signalling 

in the MAPK/ERK, JAK/STAT, and Wnt/b-catenin pathways (89-91). 
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PI3K pathway activation has been linked to a long list of solid tumours including 

gynecological, breast, bladder, head and neck, colorectal, gastric, squamous lung, esophageal, 

pancreatic, glioblastoma, glioma), as well as to certain melanomas and lymphomas (80,92). 

Genetic pathway alterations are widespread, being detected in at least 50% of breast cancers 

(93). Common oncogenic mutations include activating mutations in PI3K genes (e.g., PIK3CA), 

loss of function mutations in PTEN (a negative regulator of the pathway), and amplification of 

growth factor receptors, all of which result in constitutive activation (80,81). 

 

 

Figure 1. Targeting the PI3K/AKT/mTOR pathway in oncogenesis.  
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Treatment targets in the PI3K pathway  

Given its central role in oncogenesis and treatment resistance, the PI3K pathway is now the 

target of a wide range of therapeutic agents (79,80,94,95). A plethora of literature addresses the 

idea that the pathway is druggable and >40 targeted agents had reached clinical development as 

of 2020 (80,95). Several PI3K inhibitors have now received FDA approval (96). Therapeutic 

strategies are directed to several different targets including RTK inhibitors, PI3K inhibitors, 

AKT inhibitors, and mTOR inhibitors (96). Many approved monoclonal antibody therapies 

target upstream growth factor receptors (96).  

PI3K inhibitors 

PI3K represents a large family of related isoforms, of which Class I PI3Ks are the most 

well-known (97). Class IA PI3Ks consist of a catalytic subunit (p110α, p110β, or p110δ) that 

converts PIP2 into PIP3 and a regulatory subunit (p85α, p55α, or p50α) (97) (98). Class IA 

PI3Ks are primarily activated by receptor tyrosine kinases (RTKs) and G-protein-coupled 

receptors (GPCRs) (97). The most common isoform in this class is p110α (97). Treatment 

strategies targeting PI3K include both pan- and selective PI3K inhibitors (80,96).  

Idelalisib was the first-in-class treatment targeting the PI3K pathway, receiving FDA 

approval in 2014 for the treatment of chronic lymphocytic leukemia (CLL) (99). This PI3Kδ 

kinase inhibitor is now used in combination with rituximab for relapsed CLL and in combination 

with rituximab or ofatumumab for relapsed follicular B-cell non-Hodgkin lymphoma or small 

lymphocytic lymphoma (99). Copanlisib, a pan-PI3K inhibitor with activity against PI3K-α and 

PI3K-δ isoforms, received accelerated FDA approval in 2017 for treating  patients with relapsed 

follicular lymphoma (100). Most recently, in 2019, alpelisib became the first selective PIK3CA-

p110α inhibitor available for use in solid tumours. The FDA approval was based on the use of a 

companion diagnostic to select patients with HR+, HER2-, PIK3CA-mutated advanced or 

metastatic breast cancer who previously progressed on endocrine therapy (101). Alpelisib plus 

fulvestrant in this cohort showed a significantly improved progression-free survival (PFS) of 

11.0 months versus only 7.4 months in the mutation negative cohort (as compared to ~5.7 

months PFS in the placebo arm of either cohort) (101).  

Despite initial excitement about PI3K inhibitors as a therapeutic strategy, their use has been 

limited by a broad range of serious toxicities (102), including unexpected autoimmune toxicity 

which can be serious and even fatal (103).  
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mTOR inhibitors 

mTORC1 promotes cancer growth and proliferation by stimulating protein synthesis and 

ribosome biogenesis downstream from AKT activation (96). It regulates the translation of 

specific messenger RNA (mRNA) into proteins involved in cell cycle progression, cell growth, 

and metabolism (96,104). Interactions of mTORC1 and mTORC2 also compose a feedback loop 

that regulates AKT activity. mTORC1 and mTORC2 are both druggable targets (96,104); in fact, 

mTOR was the first protein in the pathway to be targeted with inhibitors (96). Multiple mTOR 

inhibitors have been developed with different mechanisms of action (96,104). Competitive ATP 

inhibitors bind to both mTORC1 and mTORC2, enabling dual inhibition, whereas rapologs and 

allosteric ATP inhibitors target mTORC1 exclusively (104). Two mTORC1 inhibitors have now 

received FDA approval: temsirolimus and everolimus (96).  

Temsirolimus received FDA approval in 2007 after it demonstrated a survival benefit of 

3.5 months for naïve patients with metastatic renal cell carcinoma as compared to a standard 

treatment (105). However, only a small minority (8.6%) of patients demonstrated objective 

responses according to RECIST criteria (105). It is delivered intravenously and is typically used 

only in patients with poor prognosis or with advanced disease (96). Everolimus was approved in 

2016 for the treatment of various cancers, including advanced renal cell carcinoma (RCC) after 

failure of treatment with other agents, selected neuroendocrine tumours, and HR+, HER2- breast 

cancer in post-menopausal women (96). In RCC, everolimus treatment was associated with a 2-

month PFS benefit over placebo (106). However, this did not translate into better overall survival 

in multiple cohorts (106,107). Overall response rates are typically very low (1-5%) though some 

responders benefit significantly (106,108). Poor response rates to everolimus in metastatic breast 

cancer were significantly improved when everolimus was used in combination therapies (109).  

AKT inhibitors 

In response to PI3K pathway activation, AKT is the effector responsible for transducing 

signals to promote cell growth, inhibit cell death, and regulate metabolism (89). Although direct 

mutations of AKT are comparatively rare in the mutational landscape, overexpression and 

overactivation of AKT is a key factor in cancer progression (89). Gain of function mutations are 

found in 2-6% of breast, esophageal, and bladder cancers, with the most common being AKT1 

E17K (110-112). Amplifications appear to occur with a higher frequency of 5 to 21%, and are 
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detected in a number of human cancers, including gastric carcinoma, glioblastoma, head and 

neck squamous carcinoma, pancreatic, ovarian, prostate and breast cancer (92,111).  

AKT has three isoforms, which share high sequence identity and each consist of 3 

conserved domains: an N‐terminal pleckstrin homology (PH) domain, a kinase domain 

containing the catalytic site involved in binding ATP, and a C-terminal regulatory hydrophobic 

motif. The kinase domain is very similar to that found in other protein kinases (e.g., PKA, PKC, 

p70 S6K) (87). Activation is achieved through phosphorylation at specific sites during transient 

localization to the cell membrane (113). Despite their similarity, each AKT isoform has a 

distinct, non-redundant functional characteristics and a unique role in oncogenesis (87,114-116). 

Increased AKT1 activity is typically associated with local proliferation, while increased AKT2 

activity is associated with metastatic potential and worse prognosis (87). AKT3 has been 

specifically linked to particularly aggressive breast cancer subtypes (116). The functional 

specificity of AKT isoforms results from differing cytoskeleton interactions and cellular 

localization (114,117). This altered localization regulates AKT’s binding partners to induce 

different downstream signaling cascades (114,117). 

Though no AKT inhibitors have yet been approved by the FDA as standalone therapies, 

several have been developed and studied in preclinical and clinical trials for the treatment of 

solid tumours. Most of these drugs bind competitively in the ATP pocket (118). This approach 

targets all active forms of AKT, but also results in poor selectivity against PKA, PKB and PKC 

kinases (119). Some examples are listed in Table 1. At the time of writing, clinicaltrials.gov 

listed >100 active clinical trials related to the targeting or analysis of AKT. 

Table 1. Selected examples of AKT inhibitors and their current phase of development. 
 

Inhibitor Mechanism of Action Stage of Development 
Ipatasertib Selective ATP competitive  Phase III/IV 

Capivasertib (AZD5363) Pan-AKT ATP competitive Phase III 
MK2206 Allosteric Phase II 

Uprosertib ATP competitive Phase II 
Afuresertib (GSK-2110183) ATP competitive Phase II 

TAS-117 Allosteric Phase II basket trial 
Vevorisertib (ARQ 751) Allosteric Phase I 

MSC2363318A ATP competitive Phase I 
BAY 1125976 Allosteric Phase I 

Miransertib Allosteric Preclinical for cancer 
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AKT as a common mechanism of resistance to cancer therapies  

The scope of use for AKT inhibitors may be wider than initially surmised. AKT lies 

downstream of several notable drug targets and is implicated in resistance to a wide variety of 

treatments. Activation of AKT is induced by treatment with traditional chemotherapy and 

pathway activation evades cytotoxic effects by restoring essential functions for proliferation and 

survival (92). In HR+ breast cancer, activation of AKT phosphorylates and inactivates estrogen 

receptor or decreases expression of progesterone receptor, rendering tumours less responsive to 

endocrine therapies (e.g., tamoxifen, aromatase inhibitors) (120). 

Similar effects are observed for targeted treatments directed at proteins upstream of AKT 

and in adjacent pathways. In HER2-positive breast cancer, reactivation of the pathway by AKT 

causes resistance to upstream HER2 inhibition with trastuzumab (120). Up to 23% of HER2+ 

and triple-negative breast cancers harbour detectable mutations in the PI3K pathway (121). 

Similar reactivation mechanisms are observed in NSCLC resulting in resistance to EGFR 

inhibitors (122). In the case of PI3K inhibitors, AKT is the protein that is commonly reactivated 

to restore pathway function (123). In melanoma, AKT mediates resistance to BRAF inhibitors 

(e.g., vemurafenib) or MEK inhibitors (e.g., trametinib) in PTEN-wildtype tumours (124). The 

same is true for sorafenib in kidney cancer, where resistance to the dual MEK/ERK and VEGFR 

inhibitor is reversed by PI3K pathway inhibition (125).  Combination therapy with AKT 

inhibitors also restores sensitivity to CDK4/6 inhibition (126). In each scenario, the genetic 

alterations that promote resistance converge on compensatory PI3K signalling by AKT.  

Challenges in using PI3K pathway inhibitors effectively 

Despite their promise, there are several issues still to be addressed in agents targeting this 

pathway.  None of the currently developed inhibitors are specific to activating mutations. Since 

the PI3K pathway is also required by healthy cells for essential functions, like glucose transport, 

a limited therapeutic window inevitably applies; important drug-related toxicity, including 

hyperglycemia, limits doses (127). Mechanisms of treatment resistance are still not fully 

characterized, though reactivation of the PI3K pathway through alternative pathway members is 

one possibility (127). Most significantly, although clinical activity has been observed for single-

agent AKT inhibitors, existing approaches to patient selection are sub-optimal (96,127). Studies 

have not yet consistently confirmed an incremental treatment benefit for these agents associated 

with the currently used markers (e.g., selecting for PIK3CA, AKT1 or PTEN mutations)  (96). 

This may be in part due to an overly narrow focus on the genome to provide patient selection 
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markers. To help these targeted treatments reach their enormous potential benefit, we must (i) 

introduce, test, and validate new patient selection markers of response, (ii) identify and screen 

for markers of resistance, (iii) design strategic combination therapies to limit adaptive response, 

and (iv) optimize dose schedules or modify target specificity to prevent toxicities (127).  

Approach: proteomics for translational biomarker research  

Rationale - The central dogma & the genetic biomarker challenge 

Genomics approaches have yielded important advancements and currently dominate the 

molecular subtyping landscape in terms of their adoption in clinical settings. However, genome-

only approaches do come with some caveats that limit their utility for biomarker discovery and 

validation. First, cancer cells rapidly accumulate a multitude of mutations, of which only a 

portion act as central drivers of cancer progression (128,129). Even in germline cells, where 

mutations are much better controlled, individual genetic variations such as single nucleotide 

polymorphisms typically account for a modest proportion of phenotypic variability (<10%) and 

relatively small increments in disease risk (<1.5 fold) (130,131).  

Secondly, there is limited concordance between genetics, mRNA abundance, and the 

expression of proteins targeted by small molecule drugs (70). The level of discordance can be 

substantial. Across organisms and cell types, gene expression measured by mRNA transcripts 

only explains approximately 30-65% of protein expression; the remainder is largely attributable 

to post-transcriptional and translational regulation as well as protein degradation (70).  This 

phenomenon manifests even more dramatically in cancer cells, where regulation of cancer-

driving proteins without detectable DNA mutations also occurs through epigenetic modification 

of expression (132,133), and the products of mutated genes may go unexpressed or be quickly 

degraded (134). Regulatory interactions are also modified; in a study to identify co-regulated 

protein networks in cancer, there was only an 8% overlap between the associations identified at 

the mRNA level and those seen at the protein level (135). Evaluation determined that co-

regulation analyses performed on proteome profiles had substantially higher power for 

identifying functional protein–protein associations than the same analysis applied on 

transcriptome profiles (135). 

Substantial research evidence demonstrates that direct measurement of the proteome has 

special potential for identifying and verifying active cancer-driving alterations in tumours that 

closely correspond to treatment sensitivity or resistance. A large-scale multi-omics study used 
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Reverse Phase Protein Array (RPPA) to measure expression of 230 cancer-related proteins from 

>650 cancer cell lines (136). Relative protein expression data was then analyzed in the context of 

previously-published genomic, transcriptomic, and drug-screening data (136). The overall 

correlation between protein expression and mRNA transcript abundance was surprisingly limited 

(R2 <0.15) (136). It also varied significantly from protein to protein, with signalling 

phosphoproteins, including kinases, showing a greater-than-average degree of discordance 

between mRNA levels and protein expression (136). In cases where significant discordance was 

observed, protein-level data predicted drug response better than mRNA data (136). 

A similar multi-omics study characterized patient NSCLC tumours in terms of their DNA 

(by copy number variation - CNV, SNP array), RNA (by gene expression Illumina array), and 

protein expression (LC-MS/MS Orbitrap-based label-free quantitation) (137). In this instance, 

there was little correspondence between CNV and mRNA expression (rs <0.2) and even less to 

tie CNV to protein expression (rs <0.1). Once again, proteomic signatures offered the highest 

impact for predicting disease course among this cohort (137).  

Clinical validation studies have further confirmed that transcriptomics and proteomics have 

the ability to enrich molecular profiles and augment existing clinical information to guide better 

treatment decisions than NGS alone (53-55,138). Several examples have demonstrated that 

proteomics and genomics offer more predictive power together than they do apart. When used in 

liquid biopsies, combining data from circulating tumor DNA and protein biomarker analysis 

enabled earlier detection of pancreatic ductal carcinoma with higher specificity and sensitivity 

than either alone (139).  

The reason that protein markers have such strong diagnostic and prognostic value is 

intuitive. Proteins are the machinery and substrates involved in performing day-to-day cellular 

activities. The proteome is dynamic; it varies dramatically from tissue to tissue and changes over 

time, reflecting the interplay of biology and the environment. Changes in protein activity are 

where the mechanisms of disease pathology play out. Moreover, proteins are the direct target of 

most drugs, particularly small molecule inhibitors.  

Antibody-based protein quantitation in a clinical setting 

In a clinical setting, and particularly in oncology, the vast majority of all protein 

quantitation is still performed using antibody-based immunoassays (1). Immunohistochemistry 

(IHC) is applied to generate protein expression data from tissues (59,60). While IHC is generally 
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qualitative or semi-quantitative, it offers valuable spatially-resolved information about protein 

expression in the tumour and adjacent tissue, and is a mainstay of tumour pathology for all solid 

tumours (60). FDA-approved companion diagnostics for cancer treatment selection employ IHC 

to quantify PD-L1, ALK, and HER2 protein expression in tumour tissues (25).  

Enzyme-linked immunosorbent assay (ELISA) has been the “gold standard” clinical 

approach for quantitation of circulating protein biomarkers from body fluids for >50 years (140). 

A miniaturized version called reverse phase protein array (RPPA) permits large-scale 

multiplexing (141). Important ELISA-based assays in oncology include those for prostate-

specific antigen (PSA) and carcinoembryonic antigen (CEA), which are both used for monitoring 

cancer treatment response. In total, fewer than 25 protein biomarkers spanning all medical 

applications received FDA approval between 1995 and 2010 (65). 

The quantitative performance of ELISA and IHC assays varies from platform-to-platform, 

depending on reporters, detectors, and methodology. However, all antibody-dependent assays 

face the same fundamental challenges related to the quality, kinetics, and specificity of 

antibodies (142). Cross-reactivity is major challenge, particularly in tissue. Most antibody-based 

methods struggle with the discrimination of disease-related isoforms and variants that bear high 

similarity to the wildtype or other proteins. Together, these factors limit the accuracy and 

reproducibility of quantitation, with the potential to undermine clinical performance (143).  

Large-scale efforts are currently underway to improve antibody availability (144). 

However, to date, the time, cost, and risk associated with developing new antibodies (or more 

often, antibody pairs) for new assays still limits the scope of proteins to which such assays can be 

applied (145). The limited availability of high-quality antibodies has biased scientific 

investigation toward heavily investigated targets: more than 75% of proteomic research still 

focuses on the 10% of proteins that were known before the genome was mapped (146). The 

expansive “neglected proteome” is a direct result of scientific concentration on proteins for 

which antibody-based assays were already available (146).  

Mass spectrometry-based proteomics in clinical and translational research 

Mass spectrometry (MS) is a relatively new technology for protein analysis in a clinical 

context. While clinical MS is well-established for small molecules, its application for both 

absolute and relative quantitation of proteins is more recent (147). Unlike antibody-based 

methods, MS-based proteomics offers high analytical specificity, the ability to distinguish 
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protein isoforms, and is well-suited for the discovery, verification, and validation of new 

biomarkers in the "neglected proteome” (1). Over the past few decades, its significance in life-

science research has grown significantly, aided by advancements such as the identification of 

peptide fragment ion spectra through database searches and the introduction of high sensitivity 

analysis using nano-LC–MS/MS (148). 

MS-based proteomics can be broadly classified into two types of approaches: untargeted 

proteomics (also known as global or discovery proteomics) and targeted proteomics. The aim of 

global proteomics is to maximize proteome coverage for biomarker discovery and biological 

insight (1,149). Inter-laboratory studies have shown that diligent standardization is critical for 

this type of workflow (150). However, even with the implementation of careful and deliberate 

quality control measures, these approaches are typically limited to research use only since they 

can only achieve relative quantitation (149). This limits comparison over time, across 

instruments, and across research groups, and inherently prohibits the development of meaningful 

references ranges for standardized clinical applications.  

Targeted proteomics, on the other hand, is recognized as well-suited for biomarker 

validation and clinical applications thanks to its potential for reproducible quantitation (151,152). 

Direct multiple/selected reaction monitoring MS (MRM/SRM-MS) assays also offer shorter 

development times than other technologies, enabling extensive multiplexing and delivering 

notable advancements in speed, sensitivity, and quantitative precision (152-154). Reliable 

identification of a proteotypic peptide representing the protein target is confirmed by concurrent 

analysis of a stable isotope-labeled standard (SIS) peptide (155). The SIS peptide typically 

consists of a purified synthetic peptide that differs from the endogenous analyte only by the 

inclusion of stable isotope-labeled amino acid (R+10, K+8) and can be easily discriminated by 

mass-to-charge ratio. Normalization to this co-eluting internal standard compensates for ion 

suppression to ensure that protein concentration values can be definitively calculated for 

unknown samples by using a response curve of characterized reference standard (purified 

synthetic NAT peptide) spiked at varying concentration in samples of digested matrix (156).  

Recent advancements in high mass accuracy parallel reaction monitoring (PRM)-MS 

exhibit similar or improved performance characteristics versus MRM-MS, with the added benefit 

of post-acquisition filtering of high-resolution fragment ion spectra to obtain specific ion traces 

with minimal noise (157-159). Targeted assays can be multiplexed to simultaneously quantify a 
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large number of proteins. Highly-multiplexed panels can, in some cases, quantify hundreds of 

targets from a single volume-limited sample with high dynamic range (154).  

New technologies including ion mobility MS, MALDI-MS imaging, top-down 

proteomics, mass cytometry, SWATH-MS, iMALDI-MS and many others continue to extend the 

capabilities and applications of MS proteomics, with well-characterized benefits (1,6,59,160). 

However, despite these promising technological advances, successful validation and translation 

of proteins into clinical biomarkers remains extraordinarily rare (59). The reasons cited for this 

disparity include researchers’ limited knowledge of analytical, diagnostic, and regulatory 

requirements for a clinical assay, inadequate assay performance, the need for standardization of 

methodology, the need for better data analysis pipelines, and the need for sufficient study 

samples to power meaningful conclusions (39,59). 

The need for validation & fit-for-purpose assays in translational research 

Years prior to OVA1’s 2009 FDA clearance, a separate proteomics-based panel was 

developed in an attempt to improve ovarian cancer screening for patients with pelvic masses. 

The OvaCheck proteomics panel consisted of a computational model that analyzed mass spectra 

to discriminate malignancies from benign tumours (161). This widely-publicized test was 

marketed to gynecologists prematurely, prior to the publication of validation studies (161,162). 

This led to immediate intervention by the FDA, which prohibited its commercial implementation 

on the basis that the algorithm constituted a medical device and was subject to premarket review 

(161,162). Within just a couple of years of its introduction, significant scientific criticisms of the 

published data led to the stalling of clinical implementation and eventually to its abandonment 

(163). OvaCheck suffered from many serious pitfalls, including not publishing its original data, 

the use of “black-box” algorithms, overfitting, failure to identify the molecules corresponding to 

the peaks proposed to have predictive value, lack of verification/validation, and numerous other 

flaws in its experimental design (59,161,164,165). In spite of this, OvaCheck’s discoverers claim 

that some of the ions originally identified as part of the proteomic signature may have 

subsequently been re-identified in independent studies (166). 

Since then, proteomics standards have changed significantly – in no small part due to the 

OvaCheck debacle. In 2005, the NCI repurposed $89 million in funding earmarked for 

proteomics discovery work in favour of an allocation for the new Clinical Proteomic Tumor 

Analysis Consortium (CPTAC) (165). CPTAC was born to tackle the observed problems with 

standardization, validation, and translation of proteomics assays (165). Their developed 
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recommendations pertain to all areas of proteomic biomarker translation, including addressing 

variability within and across technical platforms, improved sample handling and experimental 

design, better strategies for biomarker candidate prioritization, better interfaces between 

proteomics and regulatory science, and the need for better data analysis tools (65). CPTAC has 

developed a clear set of guidelines to enable thorough assay characterization and validation, 

launching public databases to house this key information (167,168). They have also endorsed a 

new biomarker pipeline that emphasizes the use of biomarker verification together with fit-for-

purpose assays to facilitate translation. (65) 

As shown in Figure 2, the fit-for-purpose approach emphasizes selecting analytical 

methods and techniques based on the specific goals and requirements of each stage in the 

biomarker discovery and development process (1,149,156). For example, in the early stages of 

biomarker discovery, the emphasis may be on screening a large number of potential targets, even 

if the measurements are less precise or accurate (1,149). As the biomarkers progress towards 

clinical qualification, the focus shifts towards more targeted and quantitative methods with 

superior analytical performance to guarantee precise quantitation, reproducibility, and suitability 

for clinical applications (1,149). By recognizing that different stages of biomarker development 

have varying needs in terms of target coverage, precision, accuracy, sensitivity, dynamic range, 

and throughput, this approach aims to maximize the likelihood of successful biomarker 

identification, validation, and clinical utility (149). In the case of proteomics, the need for precise 

quantitation and reproducibility in the later stages of biomarker development favors targeted 

approaches such as MRM/PRM-MS, which offer more exact, more sensitive, and faster 

quantitation over a wider dynamic range, particularly when used with internal standards (1,149). 
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Figure 2. Fit-for-purpose proteomics technologies in the biomarker development 
pipeline.  

 

Hypothesis, Objectives & Approach 

Objectives. The objective of our work is to improve patient selection in precision oncology and 

optimize use of emerging targeted therapies with the use of more comprehensive, enriched 

molecular profiles. Secondly, we aim to use the insights generated by a multi-omics approach to 

improve our understanding of and ability to treat disease. The overarching premise is that 

proteomics-focused approaches are essential to supplement genetics-heavy molecular profiles 

and to advance precision oncology. Fit-for-purpose proteomics approaches will render the 

technologies suitable for translational research and eventual clinical implementation. 
 

Hypotheses. To this end, we will test the core hypotheses that: 

1. There are proteomic markers associated with treatment response to capivasertib that can be 

identified in the stored tumour samples of patients enrolled in a clinical trial (Results Chapter 

1); 
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2. Any identified markers that are truly predictive of capivasertib treatment response will be 

verified when reproducibly quantified with targeted methods in orthogonal models and 

sample sets (Results Chapter 2); 

3. Beyond patient selection, it is feasible to routinely measure variations in drug metabolism in 

a clinical setting to enable precision dosing of cancer drugs (Results Chapter 3). 

 

Approach. To test the hypotheses, we will take the following approach: 

1. Identify relevant technologies, implement & optimize them, validate their analytical 

performance, and assess fit-for-purpose. 

2. Apply assays to quantify analytes of interest in carefully chosen well-characterized models 

and samples.  

3. Apply rigorous statistical approaches to test the hypothesis that any of the measured analytes 

can be correlated to clinical variables such as treatment response or drug metabolism. 

4. Wherever possible, verify markers in additional sample sets or models. 

The specific experimental methodology used to test the hypotheses is described in the next 

chapter, titled Materials & Methods. 
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Materials & Methods 

Phase II Clinical Trial Study (Results Chapter 1) 

Patients & samples 

Patient cohort. Research ethics approval for this study was granted by the Research Ethics 

Committee at the Jewish General Hospital in Montreal, Quebec, Canada (Project #2018-663, 17-

004). Anonymized patient tumour samples were obtained from AstraZeneca’s multi-centre 

clinical trial of AZD5363 (NCT01226316) (169). The sample set for the current study was drawn 

from the Part C dose-expansion cohort, which included patients with breast cancer whose tumour 

pathology was either estrogen-receptor positive (ER+) or human epidermal growth factor 

receptor 2-positive (HER2+) breast cancer, as well as patients with gynecological (ovarian, 

cervical, or endometrial) cancers for whom no standard therapy was effective.  

For this cohort, eligibility was restricted to patients whose tumours contained known 

activating PIK3CA mutation(s), as detected by PCR-based approaches during screening (local 

testing). As described in Banerji et al. (169), exclusion criteria included prior treatment with 

PI3K inhibitors or glucose metabolism abnormalities. The enrolled patients received capivasertib 

480 mg twice-daily for 4 days followed by 3 days off, repeated in 21-day cycles. Tumour volume 

was measured according to RECIST v1.1 criteria within 28 days of the start of treatment and at 

specified timepoints after the start of treatment (i.e., weeks 6, 12, 18, 24, etc.). RECIST v1.1 

criteria were used to categorize target lesion response into complete response (CR), partial 

response (PR, ≥30% decrease in volume), stable disease (SD, volume ±<30%), or progressive 

disease (PD, ≥30% increase in volume) (169). Treatment was continued as tolerated, until either 

withdrawal of consent or evidence of disease progression.  

Samples. Patient tumour samples obtained at the time of screening for genetic/histological 

assessment were stored at room temperature as 4 µm-thick FFPE tumour tissue slices mounted to 

glass slides. A subset of 2 slides per tumour for each of 24 tumour samples was selected for our 

study. Of these, 23 slides, representing 16 tumours, yielded sufficient material (≥25 μg total 

protein/slide) for the planned analyses.  

Treatment response coding.  For each tumour, standardized, anonymized response data 

were used to classify patient drug response based on progression-free survival (PFS). PFS was 

defined as event-free survival from the date of first capivasertib dose until the date of observed 
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PD (or death by any cause in the absence of progression), regardless of withdrawal from study 

therapy or protocol. PFS was censored at the time of latest evaluable RECIST v1.1 assessment 

for patients with two or more missed visits. “Clinical Benefit” (CB) was defined as PFS for a 

minimum of 12 weeks. “No Clinical Benefit” (NCB) was defined as less than 12 weeks of 

observed PFS while receiving capivasertib. 

Protein extraction, digestion, & immuno-MALDI-MS 

Reagents & materials. Solutions were prepared using LC-MS grade water and solvents, 

and analytical grade reagents.  

Protein extraction.  Slide-mounted slices were extracted using xylene deparaffinization 

followed by stepwise ethanol rehydration, high-temperature incubation in sample extraction 

buffer (2% sodium deoxycholate in 50 mMol Tris-HCl, pH 8, 20 minutes, 99°C) to break 

formalin crosslinks, sonication (25% power, 15 sec, 2 rounds), and an additional incubation (2 

hours, 80°C). The concentration of total protein in each sample was then quantified using a 

Pierce bicinchoninic acid (BCA) protein assay kit (Thermo Scientific, Cat # 23225) with a 

ThermoFisher MultiSkan Go spectrophotometer. 

Sample preparation for iMALDI-MS of AKT. A published workflow for quantitation of 

AKT by immuno-MALDI-MS was implemented with automation, as previously described 

(170,171). The assay is compatible with fresh frozen or formalin-fixed paraffin-embedded 

(FFPE) tissue samples and can be performed on as little as 100-200 ug of tissue (~10 ug of total 

protein per analyte). Briefly, aliquots of 40 µg of total protein were diluted to 0.1 µg/µL total 

protein and prepared in an automated fashion on an Agilent Bravo Liquid Handling Robot. As 

shown in Figure 3, the samples were further divided into aliquots of 100 µL (10 µg total protein) 

each for independent quantitation of surrogate peptides for AKT1 and AKT2 with and without 

phosphatase treatment, as in Domanski et al (172). A standard calibration curve was prepared by 

spiking known quantities (20, 10, 5, 2.5, 1.25, 0.63, 0.32, 0 fmol) of unlabeled standard peptide 

(AKT1: 466RPHFPQFSYSASGTA480, AKT2: 468THFPQFSYSASIRE481) into 10 ug of bovine 

serum albumin at 0.1 µg/µL.  
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Sample Analysis Workflow 

 
 

Figure 3. Proteomics workflow for slide-mounted FFPE tumour clinical trial samples.  
(i) Proteins extracted from samples were digested with trypsin. Phosphorylation 
stoichiometry was assessed via phosphatase-based phosphopeptide quantitation (PPQ). 
After addition of stable isotope labeled standard (SIS) peptides, AKT1/AKT2 were 
enriched together with their internal standards and quantified by iMALDI-MS against an 
external calibration curve. (ii) Using a novel sample analysis workflow, supernatants from 
the AKT enrichment step were retained for subsequent analyses. (iii) PTEN + PI3K p110⍺ 
were quantified from sequential iMALDI-MS of the supernatants. (iv) An aliquot of 
supernatant was reserved for label-free quantitation (LFQ) of the global proteome.  
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Tryptic digestion & dephosphorylation. Each sample or calibration standard was then 

denatured and reduced with 10 µL sodium deoxycholate denaturing mix (20 mM TrisHCl, pH 

8.4, 0.74 mM TCEP, 10% DOC) at 60ºC for 30 minutes. Samples were then brought to room 

temperature before alkylation with 10 µL 0.74 mM iodoacetamide (IAA) for 30 minutes while 

protected from light, followed by quenching of any remaining IAA with 10 µL 0.74 mM 

dithiothreitol (DTT). Digestion was performed with trypsin (Worthington, TPCK Treated, 97% 

purity) dissolved in 1mM HCl, added at a substrate-to-enzyme ratio of 2:1, and allowed to 

incubate for 1 hour at 37°C. The digest was then chilled on ice and quenched with Nα-Tosyl-L-

lysine chloromethyl ketone hydrochloride (TLCK) in a 2-fold molar ratio over trypsin. The 

dephospohorylation step was performed on selected samples by incubating with or without 

alkaline phosphatase (1U/µg total protein) for 2 hours at 37°C. The relevant stable isotope-

labeled internal standard peptide (AKT1:466RPHFPQFSYSASGTA480, AKT2: 
468THFPQFSYSASIRE481) was then added to each aliquot prior to immunoenrichment. 

Immunoenrichment & spotting.  Immunoenrichment was achieved by tumbling samples 

overnight at 4ºC with anti-peptide antibodies (Signatope GmbH) coupled to magnetic beads 

(ThermoFisher Protein G Dynabeads).  Beads were washed with ammonium bicarbonate (5 

mM), 15% ACN/phosphate-buffered saline, and 15% ACN/ammonium bicarbonate (4.25 mM), 

prior to spotting on a MALDI target. HCCA MALDI matrix consisting of 3 mg/mL cyano-4-

hydroxycinnamic acid, 7 mM ammonium citrate, 70% ACN, 0.15% TFA was applied to the 

dried spot, which was then washed with 7 mM ammonium citrate. The spotted plate was stored 

at room temperature until analysis. 

AKT MALDI-MS Acquisition & Data Analysis. Mass spectra were acquired on a Bruker 

MicroflexTM LRF benchtop MALDI-TOF-MS. Instrument settings were optimized in the linear 

mode to maximize signal intensity. Data analysis was performed in Flexanalysis 3.4 using 

Savitsky-Golay smoothing, baseline subtraction, and automated peak picking. Concatenation of 

peak intensity measurements from spectra was performed with MS-VIS (mass-spectrum.com) 

(173). Linear range and precision were evaluated using a calibration curve of synthetic peptides 

spiked. The calibration curve was generated using a linear regression with a 1/x2 weighting. The 

performance of the optimized iMALDI-MS assays was confirmed with quality control samples 

(QCs) prior to analysis of the clinical samples. 
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Supernatant Analysis. As shown in Figure 3, the AKT-depleted supernatant from this step 

was retained; a portion was reserved for global proteome analysis by nano-LC-Orbitrap MS, and 

the remainder was enriched for PTEN and PI3K p110α using anti- PTEN and PI3K p110α anti-

peptide antibodies. The PTEN and PI3K p110α antibody-coupled beads were spotted on the 

MALDI target and quantitated using our previously validated iMALDI method (19). The peptide 

used for PI3K p110α quantitation (503EAGFSYSHAGLSNR516) did not overlap with the 

sequences affected by the PIK3CA mutations that were detected in this patient group. 

Nano-LC-Orbitrap MS analysis, protein identification and quantification 

Sample preparation for Nano-LC-Orbitrap MS analysis. A 2-µL aliquot of the AKT-

depleted supernatant from each sample digest’s immunoenrichment, corresponding to 117.5 ng 

of total protein digest, was reserved from the iMALDI workflow for label-free quantitation of 

non-targeted peptides. Samples were prepared for LC-MS using custom StageTips, consisting of 

a 200 µL pipette tip loaded with Oligo R3 material and C18 disk, for desalting. Tips were 

activated with 100 % ACN and equilibrated with 0.1 % trifluoroacetic acid (TFA), prior to 

loading the supernatant samples (with flow-through reloaded 2x), which were washed with 0.1 % 

TFA and eluted with 70 % ACN, 0.1 % TFA. Samples were then dried under vacuum and 

resuspended in 6 µL of 0.1% formic acid (batch 1) or 10 µL of 0.1% formic acid (batch 2). Five 

(5) µL of each sample was injected in Batch 1, resulting in 107 ng of total protein digest injected 

on-column. Ten (10) µL of each sample was injected in Batch 2, resulting in ~117 ng of total 

protein digest injected on-column. 

Online nano-LC. Online liquid chromatography was performed on an Easy-nLC 1200 

coupled to a ThermoFisher Scientific Q-Exactive Plus MS that was operated with a Nanospray 

Flex ion source (all from Thermo Fisher Scientific, Waltham, MA, USA). The LC system was 

equipped with an AcclaimPepMap 100 C18 pre-column (Thermo Fisher Scientific, 3 µm particle 

size, 75 µm inner diameter × 2 cm length) and a nanoscale analytical column (Thermo Fisher 

Scientific, AcclaimPepMap 100 C18 main column, 2 µm particle size, 75 µm inner diameter x 

25 cm length). Chromatography was performed with mobile phase A: 0.1% formic acid and 

mobile phase B: 84% acetonitrile, 0.1% formic acid. The 78-minute method, optimized for 

complex samples, uses a 300 nL/minute flow rate at 20 ºC and incorporates a 50-minute gradient 

(3 to 17% B for 30 minutes, 17 to 40% B for 20 minutes).  
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Orbitrap-MS data acquisition. Mass spectra were acquired on the Q-Exactive using a data-

dependent acquisition (DDA) method, where the 15 most abundant precursor ions (charge states: 

2+ to 4+) were selected for MS/MS fragmentation. Full MS scans were acquired over the mass 

range from m/z 350 to m/z 1500 at 70,000 resolution using automatic gain control (AGC) target 

value of 1 x 106 and a maximum injection time of 50 ms. MS2 spectra were acquired with an 

isolation width of m/z 1.2, an AGC target value of 2 x 104, and a maximum injection time of 64 

ms, at a resolution of 17,500. Fragmentation was performed using higher energy collisional 

dissociation (HCD) with a normalized collision energy of 28. Dynamic exclusion was set at 40 

seconds.  

Data processing. MS raw data were processed using Proteome DiscovererTM 2.4 (PD, 

Thermo Scientific). Database searches were performed using SequestHT and a human Swissprot 

database (January 2019; 20,414 target entries), with trypsin as the enzyme and a maximum of 1 

missed cleavage. Carbamidomethylation of cysteine (+57.021 Da) was set as a fixed 

modification and oxidation of methionine (+15.995 Da) as a variable modification. Mass 

tolerances were set to 10 ppm for precursor ions and 0.02 Da for product ions. Percolator 

algorithm was used to calculate posterior error probabilities and the data was filtered to a false 

discovery rate (FDR) of <1% on the peptide and protein levels. Label-free quantitation (LFQ) 

was performed using the Minora feature-detector node and applying low-abundance resampling 

imputation which replaces missing values randomly with values from the lower 5% of detected 

values.  

Data normalization, filtering & batch concatenation. Samples were normalized based on the 

total summed protein intensities to correct for differences in sample loading. For each protein, 

the obtained abundances were also scaled to reach a fixed total value when summed by feature 

while maintaining the ratio observed in the samples -- this facilitates comparisons by 

representing different features on the same scale. Where applicable, scaled abundances of the 

two technical replicate measurements were averaged. Scaled abundances for proteins quantified 

in datasets SN1 and SN2 were then combined. Only proteins that were quantified with at least 

one peptide unique to that protein were included for the quantitative comparison. The scaled, 

normalized abundances were exported to Microsoft Excel, and further filtered by selecting 

protein IDs with “high” confidence (i.e., <1% chance of FDR) and at least 2 peptides unique to 

that protein. Features with >35% missing values across all samples were excluded in order to 

obtain the set of proteins with complete LFQ data for statistical analysis. 
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Statistical analysis & bioinformatics 

Basic statistical analysis. Descriptive statistics and protein concentration data was analyzed 

in Microsoft Excel. Group differences were assessed using both the common t-test as well as 

non-parametric tests to address the possibility of non-normal distributions in the protein 

concentration data. Boxplots were generated with the BoxPlotR webserver 

(http://shiny.chemgrid.org/boxplotr/) (174).  

Multivariate statistical analysis. Multivariate statistical analysis was performed using the 

MetaboAnalyst webserver (www.metaboanalyst.ca) (175). Features with >35% missing values 

across all samples were excluded from statistical analysis. Samples were re-normalized by sum 

following removal of incomplete variables. “Auto” data scaling, which expresses each variable 

measurement as the standard deviation from the variable’s mean, was used to ensure equal 

weighting of features. Quality control (QC) analyses were performed to check the integrity of the 

resulting data MetaboAnalyst generated volcano plots, Principle Component Analysis, Partial 

Least Squares Discriminant Analysis, Variable Importance in the Projection (VIP) scores, 

heatmaps, and hierarchical clustering based on the normalized data.  

Network & pathway mapping. StringDB was applied for network analysis, to identify 

clusters of related proteins, and to identify relevant publications that reference similar clusters of 

proteins (176). Cytoscape was used to visualize the regulation of proteins within the network 

(177). QIAGEN Ingenuity Pathway Analysis (QIAGEN IPA) software was used to perform 

pathway mapping of the remaining proteins based on the scaled LFQ data from Proteome 

Discoverer.  

Assay development & marker verification studies (Results Chapter 2) 

LC-MRM-MS assay development & validation 

Peptide Selection & Synthesis. For each target protein, one or more proteotypic tryptic 

peptides were selected conforming to standard criteria used by Dr. Borchers’ lab (178) . The 

initial list of candidate peptides (n=107) was refined based on: (i)  the availability of previously-

synthesized peptides at the Segal Cancer Proteomics Centre, (ii) peptides with published 

validated assays listed in the CPTAC portal that did not require enrichment or depletion steps 

(168), or (iii) peptides with a large number of previous observations or a high predicted 

suitability score in SRMAtlas (179), either of which would support the feasibility of direct 

http://shiny.chemgrid.org/boxplotr/
http://www.metaboanalyst.ca/
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detection in our workflow. A final list of 58 peptides representing 53 proteins was chosen for 

assay development. Selected peptides not already available through the Segal Cancer Proteomic 

Centre were synthesized and purified by a commercial supplier (SynPeptide Co Ltd, Shanghai, 

China). Solubilized peptides were analyzed using amino acid analysis (AAA) and capillary zone 

electrophoresis (CZE) to confirm their concentrations and purity respectively.  

Optimization. Unlabelled “NAT” peptides matching the endogenous were optimized (in 

batches not exceeding 50 analytes) on the Agilent 6495B triple quadrupole MS using a standard 

UPLC method optimized for highly-multiplexed MRM assays (more details in the sample 

analysis section below). Retention times were determined to create a scheduled MRM-MS 

method. The parameters optimized for each peptide included determining retention time, 

selecting the single highest-signal parent ion charge state, selecting the 5 highest-signal 

transitions, and identifying the optimal collision energy for each selected transition to improve 

signal as shown in Figure 4. Skyline software is used to facilitate the MRM assay development.  

 

Figure 4. Transition optimization for peptide DSEDVPMVLVGNK, visualized with 
Skyline.  

 

Assay performance characterization. The optimized assays were applied to 6 different 

breast and colorectal cancer cell lysates available in the lab to confirm detectability of the 

endogenous analyte prior to purchasing stable isotope-labeled peptides to develop quantitative 

assays. Detectable optimized peptides were further developed into validated assays through the 

experiments described in the CPTAC Assay Characterization Guidelines, according to a ‘fit-for-

purpose’ approach (149,167).  
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Figure 5. Overview of MRM-MS assay characterization experiments.  
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CPTAC validation experiments. An overview of all validation experiments is shown in 

Figure 5. We first determined the response curve and linearity (“CPTAC Exp. 1”) by analyzing a 

calibration curve of synthetic peptide standards spiked into digested BSA as background matrix 

with internal standards for quantitation. To verify repeatability of the assays (Exp. 2), 4 quality 

control (QC) samples were prepared using synthetic peptide in digested matrix, at concentrations 

distinct from the standard curve, spanning the linear range (low:1x-15x, med low:5-300x, med: 

10-600x, high: 20-1200x LLOQ). Three replicates of each QC were processed and analyzed on 

each of 5 different days. Stability (Exp. 4) was confirmed by assessing peak variability at 

timepoints under varying storage conditions (4ºC, -80ºC), as well as after freeze-thaw cycles. 

Reproducible quantitation of the endogenous analytes (Exp. 5) was verified by performing the 

complete workflow, including digestion, on 5 aliquots of a pooled cell line sample analyzed on 

different days. The selectivity experiment (Exp. 3) proposed by CPTAC to demonstrate 

parallelism in a set of biological samples (e.g., 6 tissue or cell lines of different types) was not 

performed due to limited availability of suitable test material at the time of assay validation. 

However, a basic screening for interferences was performed by comparing transition ratios in 

each of the cell lines tested.  

Public data deposition. Assay characterization data from these experiments was publicly 

deposited in the CPTAC Assay Portal (https://proteomics.cancer.gov/assay-portal). 

Cell lines & tissue culture 

Materials & cell lines. Six (6) well-characterized HR+ positive breast cancer cell lines were 

selected for analysis, as shown in Table 2. Cell lines were obtained from the American Type 

Culture Collection (ATCC, via Cedarlane), the German Collection of Microorganisms and Cell 

Cultures GmbH (DSMZ), and as a gift from Dr. Mark Basik’s lab at the Segal Cancer 

Proteomics Centre. Information about mutational status and expression of AKT1, AKT2, AKT3, 

PIK3CA, PIK3CB, PTEN, ERBB2 was obtained exclusively from the Cosmic Cell Lines Project 

(v97, released 29 Nov 2022, https://cancer.sanger.ac.uk/cell_lines) (40). Capivasertib 

(MedChemExpress, South Brunswick, USA) and ISRIB (Selleck Chemicals LLC, Houston, US) 

were dissolved in DMSO at concentrations of 30 mM and 10 mM respectively. Drugs were 

stored at -20ºC for a maximum of 3 months. 

https://proteomics.cancer.gov/assay-portal
https://cancer.sanger.ac.uk/cell_lines
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Table 2. Hormone receptor-positive breast cancer cell lines & culture conditions 
 

Cell line 
(COSMIC Acc.#) 

Source 

Medium 
 
 

Mutations & Gene Expression Changes 
(OE = overexpressing) (40) 

IHC Expression 
(180,181) 

Capivasertib 
sensitivity 

(182) 

Doubling 
time 
(183) ERBB2 PIK3CA AKT PTEN ER  PR HER2 

EFM-19 
(COSS906851) 

DSMZ: ACC231 

RPMI-1640  
+ 15% h.i. FBS  

+ 1% P/S 

OE 
(2.15  

z-score) 

mutation 
(H1047L) 

wt wt + + - GI50: >8 μM 
(resistant) 

50-80 
hours 

MCF-7 
(COSS905946) 

Basik lab 

RPMI-1640  
+10% h.i. FBS  

+ 1% P/S 
wt mutation 

(E545K) 
wt wt ++ +/- - 

GI50: 1.3-1.6 
μM 

(sensitive) 

25-80 
hours 

HCC-1428 
(COSS1290905) 

ATCC: CRL-2327 

RPMI-1640  
+10% h.i. FBS  

+ 1% P/S 
wt wt 

AKT1 OE 
(2.56  

z-score) 
wt ++ - +/- GI50: 0.15 μM 

(sensitive) 
88 hours 

ZR-75-30 
(COSS909907) 

Basik lab 

RPMI-1640  
+10% h.i. FBS  

+ 1% P/S 

OE 
(3.05  

z-score) 
wt 

AKT1 OE 
(2.34  

z-score) 
wt +/- - +++ GI50: >8 μM 

(resistant) 
80 hours 

CAMA-1 
(COSS946382) 
ATCC: HTB-21 

EMEM  
+ 10% h.i. FBS 

+ 1% P/S 

OE 
(2.17  

z-score) 
wt 

AKT2 OE 
(2.83  

z-score) 

mutation 
(D92H 

+fs del.) 
+ +/- + 

GI50: 0.04-1 
μM 

(sensitive) 
73 hours 

ZR-75-1 
(not listed) 
Basik lab 

RPMI-1640  
+10% h.i. FBS  

+ 1% P/S 
wt wt wt Mutation 

(L108R) +/- +/- +/- 
GI50: 0.1-1.5 

μM 
(sensitive) 

54-80 
hours 
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Cell culture maintenance. Cryopreserved cell lines were tested for mycoplasma 

contamination and/or treated prophylactically after long-term storage with 14-day incubation 

with 0.1% ciprofloxacin (Bioworld ciprofloxacin hydrochloride, 10 mg/mL, 1000X) prior to 

expansion (184). All cell lines were cultured in the manufacturer-recommended medium with 

10% or 15% fetal bovine serum (FBS), with 1% penicillin and streptomycin (10,000 U/mL, 

ThermoFisher Scientific). Each cell line was maintained at 37°C in a 5% CO2 humidified 

incubator. The medium was exchanged every 2-5 days, as required. Cell cultures were 

maintained at less than 85% confluency and passaged as needed using 0.25 % trypsin + EDTA to 

liberate adherent cells, for no more than 8 passages. Cryopreserved samples were stored after 

expansion to enable subsequent rounds of analysis. 

Baseline sampling for proteomics. Cell line samples were collected prior to capivasertib 

exposure, in at least triplicate, with replicates for a given cell line taken from at least 2 different 

passages. For collection, adhered cells were gently lysed using 0.25 % trypsin + EDTA, washed 

with sterile PBS, then pelleted and immediately stored at -80ºC until extraction. 

Single-drug cytotoxicity assays. A standard cell viability assay was used to assess cell 

lines’ sensitivity to capivasertib. Cells were seeded onto 96-well plates at least 24 hours prior to 

treatment. The number of cells seeded for cytotoxicity assays (~2000-10,000 cells per well) was 

optimized based on the observed doubling time of each individual cell line to maximize signal 

without reaching confluency. Drugs were prepared at varying dilutions in DMSO. On Day 0, 

medium was exchanged for medium with capivasertib (AZD5363) at a final concentration of 0 to 

30 uM drug (0.3% DMSO).  

After 72 hours of incubation with treatment, medium was replaced with 100 uL 

alamarBlue™ (Invitrogen) and incubated for ~30 minutes. AlamarBlue® reagent binds to redox 

indicators to provide a measure of proliferative activity and viability. An EnSpire® Multimode 

Plate Reader (PerkinElmer) was used to measure fluorescence with an excitation wavelength at 

530–560 nm and an emission wavelength at 590 nm in the interior 60 wells of the plate. Single-

drug cytotoxicity data was analyzed in Excel. Net growth inhibition for each drug level was 

calculated as: (mean DMSO reading - mean experimental reading)/(mean DMSO reading). 

Inhibitory concentrations (IC50 and IC15) were determined on the basis of at least 3 fully 

independent replicates.  
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Combination cytotoxicity assays. As shown in Figure 6, a concentration matrix was used to 

testing combination treatment for synergistic effects. The matrix was replicated on each of 5 

plates. After 72 hours of incubation with treatment, medium was replaced with 100 uL 

alamarBlue™ (Invitrogen) and incubated for ~30 minutes, as described above. An EnSpire® 

Multimode Plate Reader (PerkinElmer) was used to measure fluorescence with an excitation 

wavelength at 530–560 nm and an emission wavelength at 590 nm in the interior 60 wells of the 

plate. Multi-drug data was analyzed using SynergyFinder to compute synergy scores (185). 

 

 

Figure 6. Concentration matrix of 96-well plates used in cytotoxicity assays to test for 
synergistic effects of combination treatments 

 

Time-course studies. Cell culture plates were seeded a minimum of 24 hours prior to 

treatment. The number of cells seeded for time-course studies (~1.0 to 2.5 M cells per 10 cm 

plate) was adjusted to maximize yield without reaching confluency based on the observed 

doubling time of each cell line. Capivasertib-containing medium was prepared for each cell line 

at the dose corresponding to its IC15 as established in the cytotoxicity assay. As shown in Figure 

7, plates were incubated with the capivasertib-containing medium for 2, 4, 8, 24, 48, and where 

feasible, 72 hrs. Time-matched vehicle controls consisted of 0.1-0.3% DMSO, concentration-

matched to the treated samples. Double-blank control plates were also included, consisting of 

medium alone, plated and incubated in parallel for 72 hours. Timecourse experiments were 
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performed for each cell line in triplicate. To account for inter-passage variability, data was 

analyzed as the fold-change in concentration from the double-blank plate cultured in parallel.   

 

 

 

Figure 7. Experimental design of capivasertib timecourse experiments in cell lines 
 

MRM-MS analysis of cell line samples 

Protein extraction & total protein quantitation. Solutions were prepared using LC-MS grade 

water and solvents, and analytical grade reagents. Cell line samples were lysed, extracted, 

denatured, and reduced using high-temperature incubation in sample extraction buffer (2% w:v 

sodium deoxycholate in 50 mM Tris-HCl, pH 8.1, 10 mM TCEP, 20 minutes, 99°C), followed 

by sonication (20% amplitude; 30 sec; pulse, 1s/1s) and an additional incubation (2 hours, 80°C). 

The concentration of total protein in each sample was then quantified using a Reducing Agent 

Compatible Pierce bicinchoninic acid (RAC-BCA) protein assay kit (Thermo Scientific, Cat 

#23250) with a ThermoFisher MultiSkan Go spectrophotometer. 

Tryptic digestion of cell line samples for multiplexed MRM-MS. Aliquots of 80 µg of 

denatured, reduced total protein were diluted to 0.4 µg/µL total protein for in-solution digestion 

in 25 mM ammonium bicarbonate (AmBic, pH 8). Each sample was then alkylated with 25 µL 
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90 mM iodoacetamide (IAA, in 25 mM AmBic) for 30 minutes while protected from light. Any 

remaining IAA was quenched with 20 µL 100 mM dithiothreitol (DTT, in 25 mM AmBic). 

Samples were diluted with 175 µL of 25 mM AmBic prior to digestion to ensure deoxycholate 

was not present at >1% w:v. Digestion was performed with trypsin (Worthington, TPCK 

Treated, 95% purity) dissolved in H2O, added at a substrate-to-enzyme ratio of 20:1, and 

allowed to incubate for 17±1 hours at 37°C. The digest was then chilled on ice, spiked with an 

equimolar mixture of 54 SIS peptides (400 fmol on-column), and quenched with acidification 

using formic acid at a final concentration of 1%.  

Solid Phase Extraction. Samples were centrifuged to pellet precipitated deoxycholate. The 

supernatant was collected for Solid Phase Extraction (Oasis SPE HLB 1cc cartridges, 10 mg 

sorbent), which was performed according to manufacturer directions on a vacuum manifold, as 

follows: (i) priming with 2 x 600 µL methanol rinse, (ii) equilibration with 2 x 600 µL H2O, 

0.1% FA, (iii) sample loading in 600 µL H2O, 0.1% FA, (iv) washing with 3 x 600 µL H2O, 

0.1% FA, (v) elution with 400 µL 55% ACN, 0.1% FA. Eluates were then dried under vacuum 

(LabConco CentriVap, 4°C) and reconstituted in 40 µL H2O, 0.1% FA.  

Calibration curve & quality controls. The calibration curve was prepared by spiking an 

equimolar mix of unlabeled standard peptides in H2O, 0.1% FA at known quantities (0, 0.41, 

1.02, 2.56, 6.40, 16.0, 40.0, 100, 250, 1000 fmol on-column) into previously digested BSA (0.01 

ug on-column) spiked with the SIS peptide mixture (400 fmol on-column). A previously 

quantified pool cell lysate sample was digested and re-quantified in parallel with each batch as a 

quality control.  

Liquid chromatography. Samples and calibration standards were held at 4ºC in an 

autosampler until analysis via 10 μL injections (20 µg total protein digest on-column) on an 

Agilent 1290 Infinity liquid chromatography system fitted with a Zorbax Eclipse plus C18 

column (RRHD, 2.1x15mm, 1.8um) at 50ºC with a flow rate of 0.4mL/min. Elution was 

performed over a 48-minute method including a 46-minute gradient consisting of 2% to 7% B at 

2 min, to 27% B at 44 min, to 45% B at 45 min, to 80% B at 45.5 min, followed by a wash at 

80% B for 2 min, and then returning to 2% B at 48 min for a 2-minute equilibration (mobile 

phase A: H2O, 0.1% FA, mobile phase B: ACN, 0.1% FA). 

Agilent 6495-QQQ-MS data acquisition. MRM-MS analyses were performed on an in-line 

Agilent 6495B triple quadrupole mass spectrometer (Agilent Technologies, Santa Clara, CA).  
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Mass spectra were acquired in positive ion mode (ESI capillary ion spray voltage, 3500 V; 

source gas temperature, 150°C; sheath gas temperature, 250°C; sheath gas flow, 11 L/min). The 

scheduled MRM method used a cycle time of 1100 ms and a 240 sec detection window. The 

monitored MRM-MS transitions (5 per peptide, 1 peptide per protein), together with their 

optimized collision energies are provided in the Appendix 2. 

Data & statistical analysis. Data from the LC-MRM-MS assays were processed in Skyline-

daily software (http://skyline.ms, Ver 4.1, MacCoss Lab, University of Washington, USA) (186), 

which was used for peak integration, linear range determination, and quantitation against the 

calibration curves to yield reproducible concentration data.  Multivariate statistical analysis was 

performed using the MetaboAnalyst webserver (www.metaboanalyst.ca) (175). Values below the 

LLOQ were imputed as 1/5 of the minimum value. “Auto” data scaling, which expresses each 

variable measurement as the standard deviation from the variable’s mean, was used to ensure 

equal weighting of features. MetaboAnalyst generated volcano plots, Principle Component 

Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), Variable Importance in 

the Projection (VIP) scores, heatmaps, and hierarchical clustering based on the normalized data.  

FFPE tumour samples from patients screened for the trial at the JGH 

FFPE samples. Previously-stored solid tumour blocks (n=22) were obtained with consent 

from patients under Research Ethics Board approval at the Jewish General Hospital (Project 

#2018-663, 17-004). This set was drawn from patients of the Segal Cancer Centre at the JGH, 

whose tumours underwent previous genetic screening in relation to the Phase II clinical trial of 

capivasertib. FFPE samples were selected according to the following criteria: minimum 50% 

tumour content, tissue volume ≥75mm3, screened for mutations in AKT, PI3K and/or PTEN (by 

either real-time PCR or NGS approaches), and (for breast tumours) accompanied by a pathology 

report indicating hormone-receptor status. Each FFPE block was sampled as 2 x 5 µm slices 

from the entire block. Adjacent slices were slide-mounted and stained with hematoxylin and 

eosin (H&E) to enable identification of the tumour area and guide the positioning of cores.  For a 

subset of 8 HR+ breast cancer samples, each FFPE tissue block was also sampled as ≥2 x 1 mm 

core punches from the tumour area and ≥1 punch from the tumour-adjacent stroma. Intra-tumour 

variability and inter-tumour variability for different proteins will be compared. 

Patient cohort & clinical annotation. This cohort included patients with mutation-positive as 

well as mutation-negative tumours. A database was developed to capture key demographic and 
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clinical information relevant for these patients. Important variables include: sex, age, cancer 

type, mutations identified, hormone receptor status (breast cancers), site of screened tissue 

(primary tumour/metastasis), treatments received and treatment response.  

PRM-MS analysis of patient FFPE tumour samples 

Method adaptation to EvoSep-Q-Exactive. The developed assays were adapted for use on 

an EvoSep One LC system coupled to a Q-Exactive Orbitrap-MS. The EvoSep 30-SPD (30 

samples per day) standard method was selected for chromatography, offering a 44-minute 

gradient for better separation and coverage of proteins in highly complex samples. Retention 

times were determined for this chromatography method by injecting synthetic peptide standards 

in buffer and using a “top 15” data-dependent acquisition (DDA) method with inclusion list to 

selectively sample and fragment the most abundant ions from the full-scan data. The method was 

repeated with as needed until all peptides were scheduled. Collision energies were optimized per 

peptide (see Appendix 2).  

Protein extraction & total protein quantitation. Cores and unmounted slices (n=42) of FFPE 

tumour samples were extracted using a non-hazardous hot water-based deparaffinization protocol 

recently developed in Borchers lab (187).  Samples were then homogenized and lysed by high-

temperature incubation in sample extraction buffer (2% sodium deoxycholate in 50 mMol Tris-

HCl, pH 8, 20 minutes, 99°C) to break formalin crosslinks, manual homogenization with 

disposable pestles, and an additional incubation step (2 hours, 80°C). Following centrifugation 

(21k x g, 4ºC, 15 minutes), the protein-containing supernatant was collected. Samples were 

diluted 1:1 with H2O prior to total protein quantitation using an RAC-BCA protein assay kit as 

described above. 

Protein Aggregate Capture digestion of extracted FFPE samples. Extracted samples were 

incubated with IAA (final concentration of 30 mM. 30 min, RT). Aliquots corresponding to 5 µg 

of denatured, reduced, alkylated total protein were then digested in an on-bead Protein 

Aggregation Capture (PAC) protocol suitable for robust and sensitive preparation of low-yield 

samples, as previously published (188). Briefly, MagReSyn® Hydroxyl magnetic beads (ReSyn 

Bioscience) were aliquoted at a 1:20 protein:bead ratio, and equilibrated before loading the 5 µg 

protein sample in 70% ACN. After 10 minutes of incubation at room temperature, the 

precipitated aggregated proteins immobilized to the beads were washed successively with 95% 

ACN (x2) and 70% ACN. Sequencing grade Trypsin (Promega, Madison, WI, USA) was then 



 

 41 

diluted in 50 mM ammonium bicarbonate (AmBic, pH 8) at a ratio of 1:20 trypsin:protein for on-

bead digestion overnight at 37ºC. The digest was then spiked with the SIS peptide mix as and 

acidified to 2% TFA. The supernatant containing unbound peptides was transferred to a new tube 

and pooled with a second wash of the beads with 1%TFA.  

Calibration curve. The calibration curve was prepared by preparing a dilution series from 

the equimolar mix of unlabeled standard peptides in H2O, 1% FA at known quantities 

corresponding to 0, 0.07, 0.16, 0.41, 1.02, 2.56, 6.40, 16.0, 40.0, 200 fmol on-column) and 

spiking the samples into previously digested BSA (150 fmol on-column) spiked with the SIS 

peptide mixture (50 fmol on-column). Calibrants were also loaded onto EvoTips for injection. 

Liquid chromatography. From each sample, aliquots of 1 µg digest were loaded, washed, 

and preserved on conditioned, equilibrated Evotips (EvoSep, Odense, Denmark) according to 

manufacturer directions.  Evotips were stored at 4ºC until transferred to the EvoSep platform for 

injection. The system was fitted with an EvoSep EV1137 Performance Column (ReproSil-Pur 

C18, 1.5 µm beads, 15 cm X 150 µm, 1.5 µm) enclosed by an envelope-style column heater 

(40ºC). Separation was achieved via the EvoSep One 30 SPD standard LC method (mobile phase 

A: H2O, 0.1% FA, mobile phase B: ACN, 0.1% FA).  

Data acquisition on the Q-Exactive Orbitrap MS. MRM-MS analyses were performed on a 

Q-Exactive Hybrid Quadrupole-Orbitrap-MS (Thermo Fisher Scientific).  Full scan MS were 

acquired in positive ion mode (over the mass range from m/z 240 to m/z 1000 at 17,500 

resolution using automatic gain control (AGC) target value of 1 x 106 and a maximum injection 

time of 50 ms. For PRM, MS2 spectra were acquired with an isolation width of 1.0 m/z, an AGC 

target value of 1 x 106, and a maximum injection time of 110 ms, at a resolution of 35,000. 

Fragmentation of targets in the inclusion list was performed using HCD with the normalized 

collision energy specified for each target. 

Data & statistical analysis. Spectra were processed in Skyline software (http://skyline.ms, 

version 22.2, MacCoss Lab, University of Washington, USA) (186), which was used for peak 

integration, linear range determination, and quantitation of endogenous concentration values 

based on the calibration curves. Statistical analysis was performed using Microsoft Excel and 

BoxPlotR (174).  
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Geneva cocktail study (Results Chapter 3) 

Samples & clinical variables. 

Sample collection. Ethics, participant recruitment, drug administration, sample collection. 

The study protocol was approved by the Ethics board at the Jewish General Hospital in Montreal, 

Canada (Study number: CODIM-MBM-16-235). Ten (10) free-living adult participants with no 

acute illness were recruited to the study. Subjects with known allergies or intolerance to either 

caffeine or midazolam, with active cancer or on cancer treatment, suffering an acute illness in the 

prior 2 weeks or who started a new prescription medication in the prior 6 weeks were excluded. 

Participants were instructed to fast overnight for a minimum of 8 hours prior to testing. Upon 

arrival at the test centre, a single venous blood sample was taken from the arm at “baseline” 

(t=0), immediately prior to ingestion of a fixed oral dose of caffeine (100 mg) and midazolam (2 

mg) to act as probes for CYP1A2 and CYP3A4 respectively. A second venous blood sample was 

taken 60 minutes following caffeine and midazolam dosing (t=1 hr). Collected blood samples 

were immediately centrifuged to obtain serum, which was frozen in cryovials (Corning 

Incorporated, Corning, NY) and stored at -80ºC until analysis.  

Clinical data, dietary questionnaire & scoring. Participants’ height and weight were 

measured during the visit. Biological sex and age were also recorded. Participants were further 

asked to complete a dietary and medical history questionnaire, as shown in Appendix 3 (189). 

Items in the dietary questionnaire were identified as inducers or inhibitors of CYP3A4 or 

CYP1A2 based on reported effects (189). Medications identified by participants were also 

assessed for likely inducing or inhibiting effects (189). Each predicted inducer (↑) or inhibitor (↓) 

of a given enzyme was assigned a “strength” (STR, low = 1, high = 2) based on the reported 

effects on enzyme activity. To create a weighted inducing or inhibiting score for each inventory 

item, the strength of a given effect was multiplied by a score assigned for “frequency of 

exposure” (FoE, low = 0, medium = 1, high=2, see Table 3).  
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Table 3. Frequency scoring of dietary, herbal and medical substance use 
 

Frequency Reported on 
Questionnaire Associated Exposure level Score Assigned 

“never or rarely” 
“1-3 times per month” 

Low 0 

“1-3 times per week” 
“4-6 times per week” 

Medium 1 

“1-2 times per day” 
“3 or more times per day” 

High 2 

 
 

As shown in Equation 1, for each CYP enzyme, the sum of the weighted scores for all 

inhibiting inventory items was deducted from the sum of the weighted scores for all inducing 

inventory items to generate an aggregate score reflecting total predicted activity. For example, 

for CYP3A4, if the subject consumed one strongly inducing drug (score 2) daily (score 2) and 

one mildly inducing food item (score 1) 4 times a week (score 1) as well as daily consumption of 

a mildly inhibiting food (score 1), their net Diet and Medication Questionnaire score was: 

DiMQu3A4 = ((2x2)+(1x1)) – (2x1) = 3. 

 

Equation 1. Example calculation of DiMQu score for a given patient for CYP3A4 
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MRM assays for selected Geneva cocktail drugs & drug metabolites 

LC-MS/MS phenotyping. Phenotyping was performed as previously described using liquid 

chromatography tandem mass spectrometry (LC-MS/MS) to quantify caffeine and paraxanthine 

as markers of CYP3A4 and midazolam and OH-midazolam as metabolic markers of CYP1A2 

activity (190). Briefly, we obtained high-purity commercially available standards for all 4 

analytes [Midazolam, 1-OH-Midazolam, Caffeine, Paraxanthine] together with their 

corresponding deuterium-labeled analogues for use as internal standards [Midazolam-D4 

maleate, α-Hydroxymidazolam-D4, Caffeine-(trimethyl-d9) and 1,7-Dimethylxanthine-

(dimethyl-d6)] (Sigma Aldrich, St. Louis, MO). Standards were dissolved in 60% methanol and 

added to pooled charcoal-stripped human serum from healthy donors (BioIVT, Westbury, NY) to 

establish response curves to enable quantitation from participant serum.  

Sample preparation. Participant serum samples were prepared by thawing on ice. Internal 

standards of a known concentration were added to 50 µL aliquots of each sample, following 

which the samples were pre-treated with 500 units of β-glucuronidase (Sigma, Cat# G7017)  for 

16-hr incubation at 37°C to ensure full recovery of the glucuronidated metabolic intermediate of 

OH-midazolam, as required for a more accurate metabolic ratio (191). Proteins were then 

precipitated from the sample with 150 µL methanol containing stable isotope labeled internal 

standards (SIS) and centrifugation. Supernatants were diluted 1:1 in LC-MS grade H2O with 

0.1% formic acid. Samples were then analyzed via 2 µL injections (for midazolam/OH-

midazolam) or 18 µL injections (caffeine/paraxanthine) on an Agilent 1290 Infinity liquid 

chromatography system fitted with a Zorbax Eclipse plus column (RRHD C18, 2.1x15mm, 

1.8um) at 50ºC with a flow rate of 0.6mL/min. The LC system was coupled in line to an Agilent 

6495B triple quadrupole mass spectrometer (Agilent Technologies, Santa Clara, CA). Gradient-

elution was performed over a 5-minute gradient from 2% - 100 % acetonitrile (Mobile phase A: 

H2O, 0.1% FA, mobile phase B: ACN, 0.1% FA). MS settings and MRM transitions are shown 

in Appendix 4.  Blanks, double-blanks, and QC samples were prepared and injected in parallel 

with the patient samples.  

Data & statistical analysis. Data from the LC-MRM-MS assays were processed in Skyline 

software (http://skyline.ms) (192).  Peak integration and quantitation against the calibration 

curves was applied by Skyline to yield absolute concentration data for OH-midazolam, 

midazolam, paraxanthine and caffeine in ng/mL. The metabolic ratio (MR) for each pair of 

metabolites was determined by dividing the measured concentration of the drug metabolite (OH-
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midazolam or paraxanthine) by the concentration of the associated drug (midazolam or caffeine 

respectively) for each sample. Descriptive statistics were applied to patient characteristics. R 

statistical programming language was used to create scatterplots of   DiMQu3A4 scores versus 

Hydroxymidazolam:Midazolam metabolic ratios (MRs) and DiMQu1A2 scores versus 

Paraxanthine:Caffeine MRs. Correlations between the variables were assessed using Spearman's 

rank-order correlation. Correlations were reported as rs values with a two-tailed p-value for 

determining statistical significance.   

Dried blood spot analysis. Dried blood spot (DBS) analysis was performed to assess the 

feasibility of applying the protocol with this sample type. Both Whatman 903 and HemaSpot HF 

devices were tested to compare the assay’s performance on these two substrates. Whatman 903 is 

one of the most common DBS cards currently in use and is typically sampled with a standardized 

punch. The HemaSpot HF device is designed to offer simplified sampling of pre-cut ‘petals’, 

reduce hematocrit effects on sample distribution, and to irreversibly seal after collection for 

secure shipping and storage.  

Test samples were prepared from pooled participant serum samples diluted 1:1 with 

pooled red blood cells from anonymized specimens, which was volumetrically spotted (50 µL 

per spot) onto WhatmanTM 903 Proteinsaver cards (Cytiva Life Sciences, Marlborough, MA) or 

Hemaspot HF collection devices (SpotOn Sciences, Austin, TX). For extraction, entire DBS 

spots were excised from Whatman 903 cards, or 2 petals were used for Hemaspot HF.  

For deconjugation of hydroxymidazolam glucuronide, two workflows were tested using 

either: (i) on-spot deconjugation or (ii) an initial aqueous extraction followed by β-glucuronidase 

treatment. Briefly, for on-spot deconjugation, 500 units of β-glucuronidase in water (50 µL) was 

added directly to the DBS specimens and incubated for 16 hours at 37°C. Metabolites were then 

extracted from the DBS by addition of 200 µL of 80% methanol containing SIS and shaking with 

an Eppendorf Thermomixer at 2000 rpm at 37°C for 10 minutes. Samples were briefly 

centrifuged (2000 x g for 5 minutes), following which the supernatant was processed using the 

protocol described for serum samples above. For sequential extraction and deconjugation, DBS 

specimens were first extracted with 500 µL of water for 10 minutes using an Eppendorf 

Thermomixer (2000 rpm, 37°C), vacuum concentrated, and rehydrated in 50 µL of water prior to 

protein precipitation and processing as described above. The same MRM-MS assay was used to 

quantify analytes after extraction from DBS samples. 
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Results Chapter 1:  
Analysis of PIK3CA-altered tumours reveals a proteomic profile 

associated with capivasertib response in Phase II clinical trial patients 

 

Chapter Summary 

Capivasertib is a potent, selective inhibitor of AKT, currently in Phase III development as 

a combination therapy for breast and prostate cancers. To investigate whether the proteomic 

profile can be used to predict treatment response to capivasertib, we analyzed baseline samples 

from 16 PIK3CA-mutated tumours of patients in a Phase I trial. We used two rounds of immuno-

MALDI-MS to determine the concentrations of AKT1, AKT2, PTEN, and PI3K-p110⍺, with 

subsequent global proteomic analysis on the supernatants from the immuno-enrichment steps. 

Proteomic data were compared between patients classified as belonging to the “clinical benefit 

(CB)” group (≥12 weeks without progressive disease, n=7) or belonging to the “no clinical 

benefit (NCB)” group (progressive disease in <12 weeks, n=9) after starting capivasertib 

treatment as single agent.  

The measured concentrations of AKT1 and AKT2 varied among PIK3CA-mutated 

tumours but did not differ between the CB and NCB groups. Analysis of the global proteome 

data, however, suggests that tumours in the CB group had lower activity of translational control 

pathways and associated protein networks prior to treatment with capivasertib as compared to 

tumours in the NCB group. Direct measurement of selected proteins may offer valuable insights 

for patient selection for agents targeting the PI3K-AKT-mTOR pathway, even among genetically 

pre-selected patients. 
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Context 

Pre-clinical characterization of capivasertib (AZD5363) 

Capivasertib is a potent and selective inhibitor of AKT with promising preclinical anti-cancer 

activity 

The PI3K/AKT/mTOR signaling pathway has an established role in tumour cell 

proliferation, is mutated in more than 50% of breast cancers (93), and is the target of many new 

therapeutic agents (79,80,95). Although direct mutations of AKT are comparatively rare, 

overexpression and overactivation of AKT are key factors in cancer progression. In response to 

PI3K pathway activation, phospho-AKT promotes downstream oncogenic functions including 

cell growth, inhibition of cell death, and regulation of metabolism (89). Capivasertib (AZD5363) 

competitively interacts with the ATP binding site and inhibits AKT’s catalytic activity with high 

potency and higher selectivity than previously developed compounds, resulting in the arrest of 

tumour cell growth (193). It has similar activity against all three AKT isoforms (AKT1, AKT2, 

AKT3) with an IC50 of less than 10 nmol/L in preclinical studies (194). Treatment with 

capivasertib was found to quickly reduce the level of phosphorylation of AKT’s downstream 

targets. Immunoblots of GSKβ,	pS6,	PRAS40, and proliferation marker ki67 are frequently used 

as markers of capivasertib response, including in clinical studies (169,195-197). Despite its 

higher selectivity than previously-developed compounds, preclinical studies also showed 

significant inhibitory activity of capivasertib against P70S6K, PKA, ROCK2, MKK1, MSK1, 

MSK2, PKCγ, PKGα, PKGβ, PRKX, RSK2, and RSK3 (194). 

Preclinical studies revealed promising anti-cancer activity for capivasertib, with the highest 

frequency of response observed in HR+ breast cancer models as compared to other cancer types 

tested (e.g., colorectal, lung) (194). In ER+ breast cancer cell lines, combining capivasertib with 

fulvestrant, anastrozole, or tamoxifen yielded results superior to any of the drugs used as 

monotherapy (198). This effect was even stronger in PIK3CA-mutated or PTEN-deficient ER+ 

cells (198).  Similar results were obtained for capivasertib + fulvestrant in ER+ PIK3CA-mutated 

breast cancer xenografts (199). HER2+/PIK3CA-mutated breast cancer xenografts were also 

found to be capivasertib-sensitive and synergistic effects were observed when capivasertib was 

combined with HER2-targeted therapies (trastuzumab, lapatinib) or taxanes (docetaxel) in this 

setting (194). Combining capivasertib with other treatments also showed improved activity for 
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several other solid tumours including prostate cancer, gastric cancer, and non-small cell lung 

cancer in the pre-clinical setting (200-203).  

Despite these promising results, sensitivity to AKT inhibition was not universal and a 

number of pathways were soon identified that could confer non-response or resistance in cell 

lines, including increased activation of BRD4/FOXO3a/CDK6 or activation of AKT’s upstream 

receptor tyrosine kinases (RTKs) (199,204). 

Existing biomarkers of capivasertib response 

Early biomarkers of capivasertib activity were mostly genetics-based, except for SGK1 

Biomarkers evaluated to predict capivasertib sensitivity or non-response in the preclinical 

setting were mostly depended on assessing tumour genetics. For instance, enhanced responses to 

capivasertib monotherapy were observed for: (i) breast cancer cells with PIK3CA or AKT 

mutations (but not MTOR mutations or TSC2 loss) (205); (ii) cell lines and xenografts with 

PIK3CA mutations, PTEN deficiency, or HER2 amplification (194); and (iii) patients whose 

AKT1-mutated solid tumours also contained either PIK3CA or MTOR mutations vs. AKT1 

mutations alone, (112). Mutations of RAS, on the other hand, were associated with poor response 

to capivasertib (194).  

Few non-genetic markers have received much attention, with the exception of SGK1 

expression. Serum- and glucocorticoid-regulated kinases (SGKs) are closely-related to AKT; 

SGKs are members of the same family of serine/threonine kinases, share significant sequence 

homology, and are similarly activated by mTORC2 in the PI3K pathway (206). Despite the 

heavy analogies between SGK1 and AKT’s regulators, functions, and substrates, further study 

has revealed that SGK1 is likely responsible for independent oncogenic signalling (206,207). 

Moreover, capivasertib does not significantly inhibit SGK1 (194).  

In the context of the positive feedback loop causing activation of RTKs (upstream of AKT 

and SGK1) in capivasertib resistance, SGK expression – in particular SGK1 – has  proven to be a 

plausible mechanism of this resistance by activating downstream mTORC1 signalling 

independent of AKT (182,208). The significance of SGK1 as a predictive marker is uniquely 

supported by the observation that many breast cancer cell lines express high SGK1 levels, which 

are strongly correlated to capivasertib resistance (182). Knockdown of SGK1 levels restores 
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sensitivity (182). Blockade of PDK1 upstream of SGK1 similarly re-sensitizes cells and 

xenografts to PI3K inhibitors (209).   

Clinical context – capivasertib trials & patient selection 

Clinical trials using capivasertib as a monotherapy for PI3K-activated tumours 

Pharmakokinetic studies found that capivasertib yields dose-dependent increases in plasma 

concentrations in the range of 80-800 mg. (169). The drug’s half life was found to be 7-15 hours 

(169). It is mainly metabolized by the liver and is minimally excreted in urine (119). Dose-

finding studies have proposed a dose of 480 mg, administered orally twice per day (b.i.d.) on an 

empty stomach, in either capsule or tablet form (197). At this dosage, therapeutic levels were 

achieved in <5 days of treatment (197,210).  

The first Phase I study of capivasertib was conducted in patients with metastatic breast 

cancer, gynecological cancer, or other solid tumours (169). Eligibility for enrollment required, 

among other things, the presence of an AKT1, PIK3CA, or PTEN mutation, predicted to activate 

the PI3K pathway (169). Pharmacokinetics, tolerability, and downstream markers of response  

were analyzed to yield a non-continuous dosing schedule of 480 mg bid administered in a 7-day 

cycle of 4 days “on”, followed by 3 days “off” (169). Subsequent Phase II expansion cohorts of 

the study enrolled patients specifically with PIK3CA-mutated breast and gynecological tumours 

(169), or with solid tumours with AKT1E17K mutations (112,196). When evaluated according to 

RECIST v1.1 criteria, the ORR in these trials was limited to 4% in PIKCAmut and 20 to 28.6% in 

the AKT1E17K tumours (112,169,196). Patients with multiple concurrent activating mutations of 

PI3K were found to achieve longer PFS (112). 

The safety profile was also assessed. Serious adverse events (AEs, Grade ≥3) were 

common, most often hyperglycemia (~20-25%), diarrhea (~15-20%), and maculopapular rash 

(~10-15%) (112,169). Dose reductions due to AEs were required for 23% and 34% for patients 

with PIK3CAmut and AKT1E17K tumours, respectively (112,169). Overall, capivasertib was well-

tolerated and both the rash and diarrhea were typically self-limiting. Hyperglycemia was treated 

with and responded to standard agents (e.g., metformin). However, up to 23% of patients did 

permanently discontinue capivasertib in these trials due to AEs (169).  



 

 50 

Evolution of clinical trials applying capivasertib in a variety of settings 

Phase I/II trial results indicated that capivasertib monotherapy shows promising clinical 

activity and is sufficiently well-tolerated at the selected doses. An ORR of 4-29% was observed 

in patients with tumours selected for specific activating PI3K pathway mutations, (169,196,211). 

This represents a clinically significant response rate in a population of heavily pre-treated 

patients with advanced solid tumours for whom no standard treatment was is effective. Since 

then, the number of trials applying capivasertib has multiplied. An overview of these is given in 

Table 4. Phase III trials are now in progress to evaluate capivasertib for activity when used in 

combination therapies for prostate cancer (212,213), TNBC (214,215), and HR+ breast cancer 

(195,216,217), while exploratory investigations continue for a range of other oncology 

indications. Recent results of a Phase III trial combining capivasertib and fulvestrant in HR+, 

HER2-, aromatase inhibitor-resistant breast cancer show a significant benefit over fulvestrant 

alone in patients with and without detectable PI3K pathway alterations(218).  

Combination therapy is likely required to optimize efficacy for both agents, particularly in 

cancers with acquired resistance to hormone or HER2-directed therapies (219). In trials of 

patients with breast tumours with AKT1 or other pathway alterations, combining capivasertib 

with fulvestrant achieved ORRs of 29-47% vs. 20% with fulvestrant alone (211,216,217). In the 

FAKTION trial, this combination applied in ER+, HER2- tumours of postmenopausal women 

who had previously progressed on an aromatase inhibitor were striking; fulvestrant + 

capivasertib achieved a doubling of median progression-free survival -- 10.3 months versus 4.8 

months for fulvestrant alone (HR 0.58, p<0.01) (216). The ORR was also increased dramatically 

from 8% (fulvestrant group) to 29% (fulvestrant + capivasertib) (216). Patients with fulvestrant-

resistant AKT-mutated tumours have also shown a higher clinical benefit rate than fulvestrant-

naïve patients (211). There is also some evidence that combination therapy could improve 

tolerability in these patients (211).  

While few of these trials include PI3K alterations as an eligibility criterion, many continue 

to analyze associations between capivasertib response and genetic markers. For instance, the 

plasmaMATCH trial found a 22% confirmed response rate to capivasertib monotherapy in 

patients with AKT mutations identified from circulating tumour DNA (ctDNA) (220). The 

PAKT trial found substantially increased median OS (19.1 months vs. 13.5 months, HR 0.70) 

when capivasertib was added to paclitaxel in TNBC in all comers, but median PFS was greater 

for patients with PI3K alterations (9.3 months vs. 3.7 months, HR 0.30) (214,221). However, the 
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Phase II BEECH trial (n=148) did not show a benefit for capivasertib combined with paclitaxel 

compared with paclitaxel alone in ER+, HER2- breast cancer, even in the subgroup with 

PIK3CA mutations (195).  

Current challenges in optimizing capivasertib use 

Despite promising early results leading to many and varied clinical trials of capivasertib, 

the path ahead is not so straight forward. While acknowledging that capivasertib has mostly been 

applied in significantly pre-treated patients, higher clinical activity might be expected for a 

population carefully selected for a targeted agent. Overall response rates to targeted capivasertib 

treatment have been somewhat disappointing, with the majority of pre-selected patients showing 

no confirmed response.  

This may be in part due to challenges associated with the existing gene-based selection 

strategy. Recent studies have identified the potential for an uncoupling of AKT activity from 

PIK3CA mutations in some cancers (222,223). This includes the observation that protein levels 

of typical markers of pathway activity, such as pAKT, pS6, and p4EBP1, were not elevated in 

Luminal A (ER+) breast cancers with activating PIK3CA mutations (n=101) compared to those 

without (n=124) (224). In preclinical studies, capivasertib also inhibited the growth of cancer cell 

lines without PI3K pathway alterations (194). Understanding the potential reasons for this 

disconnect, and validating patient-selection strategies, are ongoing efforts in the therapeutic use 

of inhibitors of the PI3K pathway (225). Moreover, it is well known that PI3K-activation is 

present in most cancers, so the genetic strategy may exclude patients who could benefit. All of 

the genetic screening approaches in use are invariably limited by our ability to identify and 

characterize all possible mutations that could induce pathway activation. Additional complexity 

arises in interpreting genetic results in the context of other signals. For instance, preclinical 

studies suggested that HER2+, PIK3CAmut breast cancer cells were selectively addicted to AKT 

signalling, but in HER2+, PTENmut cells, pathway addiction varied in an EGFR-dependent 

manner (226).  
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Table 4. Clinical trials of capivasertib 
 

Cancer setting 
(subtype) 

Phase 
(study size, status) 

Treatment(s) tested Eligibility Key results Registration # 
(Trial name) 

 
 

Breast cancer 
(HR+ /HER2-) 

 

III 
(n=628, recruiting) 

palbociclib + 
fulvestrant 

+/- capivasertib 

HR+/HER2- 
advanced/metastatic - NCT04862663 

(CAPItello-292) 

III 
(n=834, 

active/closed) 

fulvestrant 
+/- capivasertib 

HR+/HER2- 
advanced/metastatic 

↑ mdnPFS (HR 0.6) 
↑ mdnOS (HR 0.6) 

ORR: 24-28% 

NCT04305496 
(CAPItello-291) 

I/II 
(n=148, 

active/closed) 

Paclitaxel +/- 
capivasertib 

ER+/HER2- 
advanced/metastatic 

↑ mdnPFS (HR 0.80) 
(PIK3CAmut HR 1.1) 

NCT01625286 
(BEECH) 

I 
(n=340, recruiting) 

SERD +/- capivasertib 
(or other agents) 

ER+/HER2- 
advanced/metastatic 

- NCT03616587 
(SERENA-1) 

I/II 
(n=149, 

active/closed) 

Fulvestrant +/- 
capivasertib 

ER+/HER2- 
advanced/metastatic 

post-menopausal 

↑ mdnPFS (HR 0.58) 
↑ mdnOS (HR 0.59) 

↑ mdnORR (29% vs.8%) 
 

Breast cancer 
(HR+) 

II 
(n=48, complete) 

Capivasertib ER+ 
invasive 

Dose of 480 mg 
effective in reducing 

downstream 
phosphorylation 

NCT02077569 
(STAKT) 

Breast cancer 
(HER2-low) 

I 
(n=185, recruiting) 

Trastuzumab 
deruxtecan +/- 

capivasertib (or others) 

HER2- / HER2-low 
advanced/metastatic 

- 
NCT04556773 

(DESTINY Breast 
08) 

 
 

Breast cancer 
(TNBC) 

 

III 
(n=924, recruiting) 

Paclitaxel +/- 
capivasertib advanced/metastatic - NCT03997123 

(CAPItello-290) 
II 

(n=140, 
active/closed) 

Paclitaxel +/- 
capivasertib advanced/metastatic 

↑ mdnPFS (HR 0.74) 
↑ mdnOS (HR 0.70) 

NCT02423603 
(PAKT) 
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Cancer setting 
(subtype) 

Phase 
(study size, status) Treatment(s) tested Eligibility Key results 

Registration # 
(Trial name) 

 
Breast cancer 

(TNBC) 
 

I/II 
(n=200, recruiting) 

Durvalumab + 
paclitaxel vs. 
Capivasertib 
+/- paclitaxel 

metastatic - 
NCT03742102 
(BEGONIA) 

Breast cancer II 
(n=1150, recruiting) 

A: fulvestrant vs. 
C: capivasertib vs. 
D: capivasertib + 

fulvestrant 

advanced 
AKTmut or PTENmut 

By ctDNA 

ORR: 22% (C: AKTmut) 
ORR: 11% (D: AKTmut) 
ORR: 0% (D: PTENmut) 

NCT03182634 
(plasmaMATCH) 

Prostate cancer 

III 
(n=790, recruiting) 

ADT + docetaxel + 
steroids  +/- 
capivasertib 

metastatic 
castration-resistant 

- NCT05348577 
(CAPItello-280) 

III 
(n=1000, recruiting) 

ADT + abiraterone 
+/- capivasertib 

metastatic PTEN-
deficient hormone-

sensitive 
- NCT04493853 

(CAPItello-281) 

Solid tumours 
(TNBC or 

Gynecologic or 
Peritoneal 

cancer) 

I/II 
(n=159, active, 

closed) 

Capivasertib + 
Olaparib recurrent ORR: 19% NCT02208375 

Solid tumours 
(ER+ Breast 

cancer or 
Prostate cancer) 

I 
(n=12, active/closed) 

Capivasertib + 
(fulvestrant or 
enzalutamide) 

advanced 
AKT1/2/3mut 

 
- 

NCT03310541 
 

Solid tumours, 
lymphomas, 

multiple 
myeloma 

II 
(n=6452, recruiting) 

Targeted therapies 
matched to genetic 

mutations 

advanced refractory 
AKTmut - NCT02465060 

(MATCH) 
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Cancer setting 
(subtype) 

Phase 
(study size, status) Treatment(s) tested Eligibility Key results 

Registration # 
(Trial name) 

 
 
 
 

Solid tumours 
 
 
 

I 
(n=41, completed) 

Capivasertib 
(dosing schedules) advanced ORR: 5% 

Tolerable safety profile NCT01353781 

I 
(n=64, completed) 

Capivasertib 
(dosing schedules) +/- 

Olaparib 
advanced 

ORR: 33% 
CB: 44% 

mdnDOR: 38.2 mo. 

NCT02338622 
(ComPAKT) 

I 
(n=33, completed) 

Capivasertib 
(tablet or capsule) 

advanced Better absorption with 
tablet, fasted state 

NCT01895946 
(OAK) 

I 
(n=285, 

active/closed) 

Capivasertib 
(dosing schedules) advanced 

ORR: 20% (AKTE17K 

b.c.) 
ORR: 4% (PIK3CAmut 

b.c.) 
↑ mdnPFS for 2x PI3K 

mut 

NCT01226316 

I 
(n=23, recruiting) 

Capivasertib 
+ midazolam 

advanced 
PI3Kmut , AKTmut, or 

PTENmut 
- NCT04958226 

II 
(n=64, active/closed) 

Olaparib + 
capivasertib 

PI3Kmut - NCT02576444 
(OLAPCO) 

I 
(n=40, recruiting) 

Capivasertib + 
Olaparib + durvalumab advanced/metastatic 

Tolerated well, some 
excellent responses 

NCT03772561 
(MEDIPAC) 

Cancer II 
(n=35, active/closed) Capivasertib advanced 

mdnPFS: 5.5 mo. 
mdnOS: 14.5 mo. 

ORR: 28.6% 

NCT04439123 
(MATCH, sub Y) 
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The most recent results of the CAPItello-291 Phase III trial (NCT04305496) demonstrate 

that treatment with capivasertib + fulvestrant extends PFS in patients with HR+/HER2- breast 

cancers with inadequate response to endocrine therapy (218,227). Across the overall study 

population, the addition of capivasertib demonstrated a 40% reduction in the risk of progression 

or death (218). These effects are statistically significant irrespective of tumour PIK3CA, AKT1 

or PTEN status (218). In both groups, there remains a need to elucidate why some of those 

patients respond and others do not. The complexity of answering this question continues to 

grow, as do the number and sophistication of the associated trials. As capivasertib moves into 

earlier stages of treatment and is prescribed to a broader group of patients, enhanced patient 

selection approaches will be needed to identify both patients who derive even more meaningful 

benefits, as well as those who do not stand to benefit and should be treated otherwise. 

Sub-Hypothesis, Objectives & Approach 

Our hypothesis is that proteomics may offer additional insights to inform patient selection 

for capivasertib. In particular, we theorize that the expression or phosphorylation of AKT -- the 

key sentinel and effector of pathway activity -- in tumor tissues will predict sensitivity to 

capivasertib. We further expect that assessment of the wider global proteome will identify 

additional protein-based markers that are associated with capivasertib sensitivity. The ultimate 

objective is to use these direct measurements of the proteome (either in concert with or instead of 

genetic screening) to generate new biological insights and achieve better predictive power than the 

existing genetic selection strategies.  

As shown in Figure 8, this will be accomplished through direct proteomic measurement of 

proteins potentially associated with capivasertib response in tumours of patients previously 

treated with the drug. Specifically, we aim to: 

1. Implement methods to enable comprehensive characterization of the protein 

expression profile from volume-limited clinical samples 

2. Analyze stored tumour samples from cancer patients who received capivasertib  

3. Identify proteins of interest for predicting capivasertib sensitivity 
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Figure 8. A simplified schematic of experimental design for Phase I of the study. 

Clinical samples 

Direct measurement of the proteome has shown unique potential for identifying and 

verifying active cancer-driving alterations that closely correspond to tumours’ treatment 

sensitivity or resistance (137,228). To evaluate the utility of proteomics for predicting treatment 

response to capivasertib, we utilized modern mass spectrometry-based methods to directly 

analyse the protein content of previously-stored formalin-fixed paraffin-embedded (FFPE) 

tumour tissues from patients with PIK3CAmut with ER+ or HER2+ breast or gynecological 

cancers, who received capivasertib in a Phase I study of capivasertib’s anti-tumour activity 

(169). Their clinical response to capivasertib is systematically documented. 

Targeted protein quantitation by iMALDI-MS  

We then used an iMALDI assay to evaluate whether AKT1 or AKT2 protein 

concentrations in these two groups of patients could offer additional predictive power to the 

existing genomic strategy. Dr. Borchers’ lab at University of Victoria originally developed an 

immuno-MALDI-MS (iMALDI) assay for precisely quantifying AKT1 and AKT2 proteins using 

stable isotope-labeled peptides (170). The assay is compatible with fresh frozen or formalin-fixed 

paraffin-embedded (FFPE) tissue samples and can be performed on as little as 100-200 µg of tissue 

(~10 µg of total protein per analyte).  The iMALDI method involves tryptic digestion of the target 

protein, followed by addition of a stable isotope-labeled (SIS) peptide as an internal standard. Anti-

peptide antibodies conjugated to magnetic beads are then used to affinity capture both the natural 

peptide and its isotopically-labeled reference standard. Beads are washed, spotted onto a MALDI 

plate, after which the enriched peptides are eluted from the antibodies. Peptides are then quantified 

with MALDI mass spectrometric analysis.  
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This approach to protein quantitation is compatible with automation to enhance 

reproducibility, throughput, and ease-of-use (171). The method does not require liquid 

chromatography, which was traditionally considered too complex and insufficiently robust for 

implementation in clinical labs (229). In fact, the mass spectrometer used in this method (Bruker 

Biotyper) is commonly found in hospital facilities, as they are FDA-cleared for use in microbial 

identification. Unlike Western Blots and IHC, the quantitative iMALDI method is not prone to 

inter-observer variability. The data obtained represents a real concentration value observed in the 

sample and can be reproduced across operators, labs, and over time. The method is also capable 

of better isoform discrimination than existing methods that depend exclusively on antibodies for 

their specificity. Given the distinct biological roles of AKT1 and AKT2, we expect that obtaining 

discrete data on their expression will strengthen our hypothesis testing.  

To enable quantitation of the phosphorylated isoforms of AKT1 and AKT2, the method 

has been adapted to use a phosphatase-based phosphorylation quantitation (PPQ) approach (172). 

When the quantitation is performed directly, the measured quantity corresponds only to the non-

phosphorylated peptide in the sample, whereas when pre-treated with phosphatase, then total 

AKT1 and total AKT2 concentrations can be measured. The no-phosphatase-treatment 

measurement is subtracted from the total AKT measurement to calculate the concentration of the 

phosphorylated peptide. Stoichiometry can then be estimated by dividing the calculated pAKT 

concentration by the corresponding total AKT concentration in a given sample.  

Global proteome analysis by nano-LC-MS/MS  

The supernatants from enrichment with anti-peptide antibodies will undergo subsequent 

global proteome analysis by nano-LC-MS/MS on the Thermo Q-Exactive. Comparison of the 

broader protein expression patterns between capivasertib treatment response groups will enable 

identification of proteins of interest that may discriminate between the groups. Extensive review 

of published literature has shown that while both targeted and untargeted proteomic technologies 

are commonly used in biomarker development, most researchers do not combine these 

approaches (1).  Untargeted proteomic approaches are typically applied for early stages of 

biomarker discovery, while targeted approaches are preferred for validation and implementation 

using a “fit-for-purpose” approach (149). The use of both targeted and untargeted methods 

together in this project therefore represents a noteworthy technical approach. 
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Results 

iMALDI-MS assay implementation  

Assay optimization  

The iMALDI assay for quantitation of AKT1 and AKT2 was successfully implemented at 

the Segal Cancer Proteomics Centre and optimized, as published  (6). Signal suppression was 

initially observed in samples treated with 2U/ug of phosphatase. However, it was shown that 

1U/ug of phosphatase did not cause signal suppression and was sufficient to fully 

dephosphorylate 10 fmol of synthetic pAKT1 peptide and 10 fmol of synthetic pAKT2 peptide in 

quality control samples. The antibody-bead conjugation protocol was modified from the 

published protocol to extend the incubation period to 12 hours at 4ºC, which improved signal-to-

noise by 30% (t-test, p=0.008). Other minor improvements included altering the concentration of 

HCCA matrix applied to the samples to increase signal, and acquiring data in triplicate (3 mass 

spectra per spot) to improve reproducibility.  

Many other modifications were tested but did not yield any significant performance 

improvements. Others -- including adaptation to the Bruker Ultraflex MS instrument and testing 

of a ReadyPrep E. coli digest as an alternative matrix – caused substantial deterioration of assay 

performance. Alternative anti-AKT1 and anti-AKT2 monoclonal antibodies were tested for use 

in the assay, in hopes that implementing the assays with mAbs would facilitate later translation 

for clinical use. However, the AKT1 and AKT2 mAbs tested (Signatope GmbH, Germany) all 

resulted in a signal reduction of >10x, making them unsuitable for use in this workflow.  

Assay performance validation 

Following optimization, the lower limit of quantitation (LLOQ) for AKT1 and AKT2 were 

found to be <0.5 fmol on-spot (28 pg/10 µg total protein), which is equal to published values 

(170). Intra-run coefficients of variation (CVs) between replicates at the LLOQ were <20%. The 

linearity of the assay was consistently high (R2>0.95). Phosphorylation quality controls 

consisting of different levels of synthetic AKT1 peptide:phospho-AKT1 peptides (1:3, 1:1, 3:1) 

generated AKT1 and pAKT1 values within +/-20% of the known concentration. Typical 

calibration curves are presented in Figure 9. 
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Quality controls 

The quantitative performance of the standards and assay was further validated through the 

re-analysis of known samples. FFPE samples of mouse xenograft of colorectal cancer 580 

(Jewish General Hospital, Montreal, QC, Canada) that had been previously measured at the 

University of Victoria during assay development were remeasured. The values obtained at 

McGill were similar to those previously obtained during assay validation at the University of 

Victoria for both AKT1 (sample 1: 5.1 vs. 5.9 fmol, sample 2: 6.4 vs. 6.2 fmol) and AKT2 

(sample 1: 0.8 vs. 1.2 fmol, sample 2: 1.1 vs. 1.6 fmol). Greater variability was observed in 

AKT2 concentrations due to the lower signal-to-noise ratio for this peptide. Phosphorylation 

quality controls, consisting of synthetic AKT:pAKT peptides at different ratios (1:3, 1:1, 3:1) 

spiked into E. coli lysate, all generated AKT values within +/-20% of the known concentration.    

Clinical samples & treatment response  

Slide-mounted FFPE baseline tumour samples were obtained from female patients treated 

in a multi-centre Phase II clinical trial of capivasertib (NCT01226316). Patients were selected for 

inclusion in in two expansion cohorts based on the presence of activating PIK3CA, AKT or 

PTEN mutations (by local testing) in their ER+ or HER+ breast or gynecological cancers, 

respectively (169). A total of 23 4-μm slides, representing 16 tumours with PIK3CA mutations, 

yielded sufficient material (≥25 μg total protein/slide) for the planned analyses. Each patient’s 

response to capivasertib monotherapy was coded based on standardized, anonymized tumour 

response data. “Clinical benefit” (CB) was defined as ≥12 weeks of progression-free survival 

attained after starting capivasertib. “No clinical benefit“ (NCB) was defined as progressive 

disease, as determined by RECIST v 1.1 criteria (169), observed within <12 weeks of starting 

capivasertib. Both groups had similar overall clinical characteristics (see Table 5). However, in 

the CB group, a greater proportion of samples were derived from metastatic sites, as compared to 

the NCB group where most samples were from primary sites.  
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Figure 9. iMALDI-MS assay validation data.  
Top: Calibration curves demonstrate the linear range of the assay based on the ratio of 
signal intensity between known quantities of unlabeled synthetic peptide (calibrants) 
versus a fixed quantity of SIS peptide (internal standard), each immuno-enriched from E. 
coli lysate digest. Three (3) samples per concentration level are plotted individually with a 
weighting of 1/x2. Bottom: Quantitation of AKT in quality control samples. 
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Table 5. Descriptive statistics for the clinical trial samples analyzed.  
 

 Clinical Benefit (CB) 
Group (n=7) 

No Clinical Benefit 
(NCB) Group (n=9) 

Clinical Information   
Cancer Type 

Breast (n=__) 
Gynecological (n=__) 

 
3 
4 

 
4 
5 

Patient weight (kg) 69.9 ± 18.8 58.9 ± 10.2 
Patient age (years) 63.0 ± 10.9 56.7 ± 9.4 
WHO Performance Status   

PS 0 (n=__) 
PS 1 (n=__) 

3 
4 

5 
4 

Metastatic sites at enrollment 2.7 ± 1.0 3.4 ± 1.6 
Previous lines of treatment 

≤2 
≥3 

Not specified 

 
1 
4 
2 

 
3 
5 
1 

   
Capivasertib Response   
Adjusted progression-free  
survival (weeks)* 

median: 21.1  
(95% CI: 13.0 to 32.3) 

5.6 
(95% CI: 5.3 to 6.1) 

Best change in tumour volume from 
baseline (RECIST %)** 

median: -11.9 
(95% CI: -52.2 to -8.1) 

median: 28.6 
(95% CI: 2.3 to 35.9) 

   
   
Sample Characteristics   
Sample site* 

Metastatic (n=__) 
 
5 

 
1 

Primary (n=__) 2 8 
Storage time (years) 7.3 ± 0.7 7.6 ± 1.4 
Tissue area (mm2) 330.7 ± 116.8 339.5 ± 151.3 
Cellularity  

Tumour cells (%) 
Necrosis (%) 

 
62.9 ± 11.6 
3.9 ± 3.2 

 
65.9 ± 22.4 
5.0 ± 2.7 

Values are given as mean ± standard deviation unless otherwise specified.  
*denotes statistical significance at p<0.05 (t-test unequal variance, two-tailed), ** p<0.01 
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Targeted quantitation of AKT1, AKT2, PTEN and by iMALDI-MS in clinical samples 

Assay performance is sufficient for clinical applications 

 Twenty-two slides representing 16 patient tumours were analysed by iMALDI-MS. 

Among the PIK3CAmut tumour samples that had associated AKT data (CB n=7, NCB n=5), the 

amount of AKT present per 10 µg total protein ranged from 0.6 to 4.5 fmol for AKT1 and 0.5 to 

2.0 fmol for AKT2 (Figure 10). For tumours from which multiple slides were analyzed, the AKT 

concentrations showed good agreement across biological replicates, even among non-adjacent 

slices (R2>0.95). Most samples did not show sufficient phosphorylation (>30%) of AKT1-

Ser473 or AKT2-Ser474 to be quantified by the PPQ assay, with measurable phosphorylation 

observed in only 3 tumours (Figure 10). As shown in Figure 11, Sequential enrichment enabled 

iMALDI of quantitation of PTEN and PIK3CA p110α from limited sample quantities in 14 

patient tumours (CB n=7, NCB n=7) (230). Within the patient sample set, the PTEN 

concentration values quantified by iMALDI correlated well with the PTEN H-score for the 

tumour previously determined by immunohistochemistry (R2=0.86) (Figure 12).   

Tumour concentrations of targeted proteins do not differ between CB and NCB groups 

Concentrations of AKT1, AKT2, and PTEN did not differ significantly between the 

PIK3CAmut tumours in the CB versus the NCB groups (t-test, Wilcoxon rank test, p>0.05) 

(Figure 13). For PI3K p110α, the large number of samples with concentrations below the lower 

limit of quantitation of the assay prevented a meaningful comparison between the groups. To 

evaluate whether our results could be related to the small patient cohort or to the age of the 

samples, we analyzed published proteomic datasets of luminal breast cancer cell lines according 

to their known sensitivity or resistance to capivasertib; no relationship between AKT expression 

and capivasertib sensitivity was observed (Appendix 5) (135). 
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Figure 10. AKT1 and AKT2 concentrations measured in patient samples.  
Top: AKT1 (blue) and AKT2 (purple) concentrations measured in AstraZeneca patient 
samples. Lower two panels: non-phosphorylated AKT is measured before and after 
phosphatase treatment. Observed phosphorylation >30% is identified with a yellow 
highlight. 
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Figure 11. PTEN and PIK3CA p110α concentrations measured in patient samples.  
Where applicable, the average of two tumour slices, analyzed as separate replicates is 
plotted. No correction is made to the iMALDI-measured protein concentrations to account 
for tumour cellularity. Figure is reproduced with permission, without modification, from 
the thesis of Bjoern Froelich. 

 

 

Figure 12. PTEN concentrations measured using iMALDI-MS assays vs. PTEN IHC 
PTEN concentration measured by iMALDI-MS assay is plotted vs. IHC H-score for the 
same tumour. Figure is reproduced with permission, without modification, from the thesis 
of Bjoern Froelich. 
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Figure 13. Results of targeted quantitation of AKT1, AKT2 and PTEN by iMALDI-MS. 
Results of targeted quantitation by iMALDI-MS. Boxplots of protein concentrations in the 
CB (solid green) vs NCB (striped red) groups. Each point represents one patient tumour, 
averaged for multiple slides. p-values are given for a two-tailed t-test. 

 

Global proteome analysis  

Using a new serialized workflow, we acquired global proteomic data using nano-LC-

MS/MS for 23 distinct tumour slides from 15 patient tumours (CB n=6, NCB n=9). The 

workflow permitted further analysis of the previously-analyzed samples from small aliquots of 

AKT-depleted supernatant, each containing approximately 107 ng of digested protein. We were 

able to achieve label-free quantification (LFQ) of up to 1455 proteins at a false discovery rate of 

<1%, with a minimum of 2 specific peptides per protein. A total of 578 proteins were quantified 

across all samples, and were considered for further statistical analysis. 

Quality control: biological relationships are preserved following data processing steps 

We performed specific statistical analyses to assess the quality of our complete global 

proteomics workflow and data processing. First, to assess the reproducibility of the experimental 

workflow, we compared data from 5 tumour samples for which we analyzed multiple replicates. 

The replicates consisted of 2 slides per tumour, extracted and analysed separately, but in the 

same analytical batch. For each slide, there were 2 technical replicates corresponding to 

supernatant samples from the AKT1 and AKT2 immunoenrichment steps.  
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As shown in Figure 14 (left), related samples for tumours #2-5 cluster closely together, 

indicating that the data is highly reproducible, irrespective of the tumour slice used or the 

antibody used for enrichment. There is a greater difference between the slides from tumour #1; 

this may point to a difference in the original tumour material captured on the slide or a difference 

in what could be extracted from each slide.  Since normalization, scaling, and batch integration 

steps were performed on the label-free quantitation data as described in the methods section, we 

also assessed the global proteome data for the possibility of batch effects. As shown in Figure 14 

(right), no significant differences between batches were observed in PCA following data 

normalization. Overall, quality control (QC) analyses confirmed the integrity of the data after 

batch integration, normalization, and scaling of features. 

 

 

Figure 14. Quality control of global proteome data processing steps. 
Using PCA to assess clustering of related replicates (left, each dot represents a separate 
replicate and each color signifies a separate patient) and (b) clustering of samples based on 
batch assignment (right, Batch 1 in red, Batch 2 in green). Figures generated with 
MetaboAnalyst webserver. 

Quality control: profile of metastatic vs. primary tumours reflects known biology of metastasis 

In light of the higher proportion of samples from metastatic sites in the CB group, the 

proteome profile of samples from metastatic versus primary origin was compared. No difference 

in total AKT1 concentration is observed between the groups. AKT2 was slightly higher in the 

metastatic tumours as compared to primary tumours, but the difference did not reach statistical 

significance (p=0.057, t-test, two-tailed, unequal variance) (Figure 15). As shown in Figure 16, 

differences in proteomic profile of the metastatic vs. primary tumours identified by PLS-DA 
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could be tied to known markers of metastasis, indicating that biological relationships represented 

in the data were preserved following batch integration and data normalization. The identified 

proteins are consistent with the known biology of metastasis, and do not significantly overlap the 

proteins of interest in the current study. 

 

 

Figure 15. AKT concentrations compared in tumour samples of primary (red) vs. 
metastatic (green) origin.  

 

 
 

Figure 16. Proteome profile of samples of primary (red) vs. metastatic (green) origin. 
When separated by PLSDA (left), the proteins that best differentiate between patient 
tumours of primary (red) vs. metastatic (green) origin based on VIP score (right).    
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Proteomic profiles differ between the CB vs. NCB groups  

Similar to the results of the quality control analyses, unsupervised statistical analysis with 

PCA (Figure 17) showed proximity of related sample replicates (originating from the same 

tumours), as indicated with a dashed yellow line. A heatmap of protein expression (Figure 18) 

revealed a trend toward unsupervised clustering of the CB vs. NCB groups. Supervised statistical 

analysis with partial least squares-discriminant analysis (PLS-DA; Figure 19) enabled a clear 

separation of the CB and NCB groups, with little overlap.  

To identify features that correlated with clinical benefit from capivsertib treatment, we 

examined proteins whose abundances differed between the CB and the NCB groups. A total of 

53 proteins showed fold-changes of ≥1.5 and Wilcoxon rank test p-values of ≤0.05 (Figure 20). 

Of these 53 proteins (listed in Table 6), the 5 proteins that were upregulated in the clinical 

benefit group included 4 immunoglobulins and serum albumin. Interestingly, 13 of the 48 

proteins that were downregulated in the CB group were ribosomal subunit proteins. GTP-binding 

protein SAR1a was the only one of the 53 differentially-expressed proteins between the CB and 

NCB groups that overlapped with the proteins differentiating metastatic vs. primary tumours. 

 

 

Figure 17. Principal Components Analysis (PCA) of CB (green) and NCB (red) groups. 
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Figure 18. Heatmap of 50 proteins with highest differential expression between groups. 
50 selected proteins with highest differential expression between groups showing their 
normalized LFQ abundances across both analysed batches. n=23. Arbitrary identifiers are 
included for the purpose of identifying replicates from the same tumour. (right) Principal 
Components Analysis (PCA). Proximity of sample replicates originating from the same 
patients is indicated with a dashed yellow line.    
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Figure 19. Supervised statistical analysis of targeted and global proteome comparing 
protein expression in CB (green) vs. NCB (red) tumour tissues. 
(left) Partial Least Squares – Discriminant Analysis (PLS-DA) plot. (right) Features ranked 
by Variable Importance in the Projection (VIP) based on their contribution to the 
discrimination between the CB & NCB groups in the Partial Least Squares – Discriminant 
Analysis (PLS-DA). The arrows on the right of the VIP Feature list show relative 
expression of that protein in the NCB group vs. the CB group  

 

 

Figure 20. Volcano plot showing the fold change (log2FC) of all protein expression 
features versus p-value (-log10p) in CB vs. NCB tumour tissues. 



 

 71 

Table 6. Proteins differentially expressed between CB and NCB groups (FC >1.5, p<0.05)  
 

Protein Accession Gene Name 
 FC  

(CB/NCB) 
p-value 

P23526 Adenosylhomocysteinase AHCY     0.534  0.00135 

P02768 Serum albumin ALB     1.976  0.02088 

P07741 Adenine phosphoribosyltransferase APRT     0.602  0.04590 

Q07960 Rho GTPase-activating protein 1 ARHGAP1     0.609  0.02775 

P59998 Actin-related protein 2/3 complex subunit 4 ARPC4     0.647  0.03223 

P56134 ATP synthase subunit f, mitochondrial ATP5MF     0.596  0.01905 

P48047 ATP synthase subunit O, mitochondrial ATP5PO     0.633  0.02377 

P16152 Carbonyl reductase [NADPH] 1 CBR1     0.548  0.02675 

P49368 T-complex protein 1 subunit gamma CCT3     0.637  0.00527 

P50990 T-complex protein 1 subunit theta CCT8     0.476  0.00129 

Q99829 Copine-1 CPNE1     0.538  0.02061 

Q7Z4W1 L-xylulose reductase DCXR     0.510  0.03662 

Q16698 2,4-dienoyl-CoA reductase, mitochondrial DECR1     0.586  0.02935 

P38117 Electron transfer flavoprotein subunit beta ETFB     0.474  0.00345 

P55084 Trifunctional enzyme subunit beta, 

mitochondrial 
HADHB     0.507  0.04801 

P19367 Hexokinase-1 HK1     0.509  0.01396 

P52597 Heterogeneous nuclear ribonucleoprotein F HNRNPF     0.520  0.00457 

P14866 Heterogeneous nuclear ribonucleoprotein L HNRNPL     0.595  0.00296 

P08238 Heat shock protein HSP 90-beta HSP90AB1     0.590  0.00552 

P04792 Heat shock protein beta-1 HSPB1     0.533  0.01080 

P01859 Immunoglobulin heavy constant gamma 2 IGHG2     2.339  0.01448 

P01834 Immunoglobulin kappa constant IGKC     2.012  0.01815 

P06312 Immunoglobulin kappa variable 4-1 IGKV4-1     2.945  0.00499 

Q12905 Interleukin enhancer-binding factor 2 ILF2     0.591  0.01400 

Q12906 Interleukin enhancer-binding factor 3 ILF3     0.606  0.00687 

P17931 Galectin-3 LGALS3     0.597  0.04662 

πP40926 Malate dehydrogenase, mitochondrial MDH2     0.529  0.01071 
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Protein Accession Gene Name 
 FC  

(CB/NCB) 
p-value 

Q15365 Poly(rC)-binding protein 1 PCBP1     0.629  0.02384 

Q15366 Poly(rC)-binding protein 2 PCBP2     0.500  0.00345 

Q15084 Protein disulfide-isomerase A6 PDIA6     0.655  0.01484 

P35232 Prohibitin PHB1     0.562  0.00503 

Q99623 Prohibitin-2 PHB2     0.622  0.04948 

P01833 Polymeric immunoglobulin receptor PIGR   15.678  0.04660 

P60900 Proteasome subunit alpha type-6 PSMA6     0.531  0.02568 

P62906 60S ribosomal protein L10a RPL10A     0.608  0.02355 

P62913 60S ribosomal protein L11 RPL11     0.660  0.04438 

P50914 60S ribosomal protein L14 RPL14     0.583  0.01523 

Q07020 60S ribosomal protein L18 RPL18     0.607  0.02737 

P46776 60S ribosomal protein L27a RPL27A     0.508  0.02702 

P39023 60S ribosomal protein L3 RPL3     0.594  0.02538 

P05388 60S acidic ribosomal protein P0  RPLP0     0.635  0.00178 

P62249 40S ribosomal protein S16 RPS16     0.534  0.01384 

P08708 40S ribosomal protein S17 RPS17     0.657  0.00425 

P62269 40S ribosomal protein S18 RPS18     0.654  0.02504 

P15880 40S ribosomal protein S2 RPS2     0.503  0.00412 

P61247 40S ribosomal protein S3a RPS3A     0.657  0.00425 

P61247 40S ribosomal protein S3a RPS3A     0.656  0.00728 

P46781 40S ribosomal protein S9 RPS9     0.602  0.01431 

Q9NR31 GTP-binding protein SAR1a SAR1A     0.563  0.01391 

P31040 Succinate dehydrogenase [ubiquinone] 

flavoprotein subunit, mitochondrial 
SDHA     0.532  0.02468 

Q00325 Phosphate carrier protein, mitochondrial SLC25A3      0.450  0.00156 

Q13630 GDP-L-fucose synthase TSTA3     0.618  0.02588 

P49411 Elongation factor Tu, mitochondrial TUFM     0.396  0.00069 

P13010 X-ray repair cross-complementing protein 5 XRCC5     0.647  0.02883 
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Figure 21. Mapping of global proteomics results from CB vs NCB groups to protein 
networks and pathways. 
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(A) Network analysis via String-DB plot of high-confidence protein/protein interactions 
among proteins that are significantly different between clinical benefit (CB) and no clinical 
benefit (NCB) group. Edges represent evidence of protein/protein interactions. Colours 
indicate different evidence types. Major clusters are labeled according to shared features 
within the cluster. Nodes are overlaid from the Cytoscape visualization, with fold-change 
shown by colour. Node size increases as the p-value decreases. (B) Top 20 canonical 
pathways that are significantly differentially activated between clinical benefit (CB) and no 
clinical benefit (NCB) groups, based on assessment with Fisher’s Exact Test in Qiagen 
IPA. The height of the bar corresponds to the confidence of an association, with a 
threshold of p<0.01. IPA’s Z-score indicates the direction of regulation and extreme z-
scores are depicted with increased colour intensity. Orange bars represent increased 
activation in the NCB group whereas blue bars represent upregulated activity in the CB 
group. White bars indicate pathways with fewer than 4 mapped proteins or z-scores close 
to zero, indicating that the direction of regulation of individual pathway members does not 
strongly match a pre-specified pattern. Gray bars indicate pathways for which no 
prediction can be made due to available evidence in the database.  

 

Proteins network analysis finds differential proteins map to shared biological functions 

Protein network analysis of the 48 downregulated proteins plus AKT1, using the String-

DB (176), found 138 high-confidence interactions between proteins within this group (Figure 

21A). The observed PPI enrichment p-value of <1.0e-16 provides strong evidence for a 

meaningful biological relationship between the proteins of interest in this dataset. The network 

shows an enrichment of ribosomal proteins, mitochondrial proteins, and proteins involved in 

mRNA processing. 

Differentially expressed proteins map to translational control pathways  

To better understand the pathways responsible for the group differences observed, 

QIAGEN IPA software was used to systematically map the quantified proteins (along with their 

fold-changes, and p-values), to canoncial pathways. The pathway enrichment analysis showed a 

particularly strong involvement of EIF2 signaling (p<1.37e20), EIF4E /S6K and mTOR 

translational control pathways (Figure 21B). Table 7 illustrates the mapping of proteins to these 

pathways, while Table 8 provides QIAGEN-IPA’s proposed upstream regulators of the observed 

profile. 
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Table 7. Proteins mapped to top 8 differentially-regulated pathways in QIAGEN-IPA. 
 

IPA Canonical 
Pathways 

Pathway 
proteins 

Regulation  
(NCB / CB) Molecules 

LXR/RXR 
Activation 123 

↑ 0 
↓ 12 (10%) 

AGT, AHSG, ALB, AMBP, APOA2, 
APOH, CLU, GC, KNG1, ORM1, TF, 

TTR 

FXR/RXR 
Activation 126 ↑	0 

↓ 12 (10%) 

AGT, AHSG, ALB, AMBP, APOA2, 
APOH, CLU, GC, KNG1, ORM1,  TF, 

TTR 

EIF2 Signaling 224 ↑	14 (6%) 
↓ 0 

EIF4A1, RPL10A, RPL14, RPL18, 
RPLP0, RPS11, RPS16, RPS17, RPS18, 

RPS2, RPS3A, RPS4X, RPS7, RPS9 
Regulation of eIF4 

and p70S6K 
Signaling 

179 ↑	10 (6%) 
↓ 0 

EIF4A1, RPS11, RPS16, RPS17, RPS18, 
RPS2, RPS3A, RPS4X, RPS7, RPS9 

mTOR Signaling 212 
↑	10 (5%) 
↓ 0 

EIF4A1, RPS11, RPS16, RPS17, RPS18, 
RPS2, RPS3A, RPS4X, RPS7, RPS9 

Acute Phase 
Response Signaling 185 

↑	0 
↓ 9 (5%) 

AGT, AHSG, ALB, AMBP, APOA2, 
APOH, ORM1, TF, TTR 

Clathrin-mediated 
Endocytosis 

Signaling 
193 ↑	0 

↓ 6 (3%) 
ALB, APOA2, CLTC, CLU, ORM1, TF 

Coronavirus 
Pathogenesis 

Pathway 
203 

↑	10 (5%) 
↓ 2 (1%) 

AGT, KNG1, NPM1, RPS11, RPS16, 
RPS17, RPS18, RPS2, RPS3A, RPS4X, 

RPS7, RPS9 
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Table 8. Predicted upstream regulators, activation state, and associated proteins 
 

Regulator 
(NCB/CB) 

p-value of 
overlap Target Molecules in Dataset 

MYCN (↑) 5.39E-15 
CLU, EEF1G, EIF4A1, NME1, NPM1, PHB1, RPL18, 
RPLP0, RPS16, RPS17, RPS2, RPS3A, RPS4X, RPS7, 

RPS9, TUBB, TUFM 

MYC (↑) 5.16E-14 

AHCY, ALB, CCT3, CLU, EFEMP1, EIF4A1, HADHA, 
HADHB, HNRNPAB, HSPB1, NME1, NPM1, PHB1, 
PRDX3, RAB10, RPL10A, RPL14, RPL18, RPLP0, 

RPS11, RPS16, RPS17, RPS18, RPS2, RPS7, RPS9, TF 

TCR 1.45E-09 
MDH2, NME1, PHB1, RPL10A, RPLP0, RPS16, RPS17, 

RPS2, RPS3A, RPS4X, SDHA, SLC25A3, TUFM 

MAPT 
 1.46E-09 

ALB, CCT8, CLTC, EEF1G, HK1, NME1, PEBP1, 
PRDX3, RAB10, RPLP0, RPS16, SPTAN1, TUBA4A, 

TUBB, TUFM 

YAP1 7.73E-09 RPL10A, RPL14, RPL18, RPLP0, RPS11, RPS16, RPS17, 
RPS18, RPS2, RPS7, RPS9, TUBB 

RICTOR (↓) 9.47E-09 ATP5MF, ATP5PO, RPL10A, RPL14, RPL18, RPLP0, 
RPS11, RPS18, RPS2, RPS9, SDHA 

APP 
 8.76E-08 

ALB, CD59, CLTC, CLU, EEF1G, HK1, HSPB1, KNG1, 
NME1, PEBP1, RAN, SPTAN1, TTR, TUBA4A, TUBB, 

TUFM, YWHAB 

TP53 
 1.35E-07 

AHCY, ALB, ANXA2, CD59, CLTC, CLU, EIF4A1, GC, 
HADHA, HADHB, HSPB1, LASP1, MDH2, NME1, 

NPM1, ORM1, PRDX3, RAN, RPN1, RPS16, RPS18, 
SDHA, SERPINC1, TUBB 

Lh (↑) 6.84E-07	 PGRMC1, PHB1, RPL10A, RPS11, RPS16, RPS17, 
RPS18, RPS2, RPS7, RPS9 
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Interpretation 

Tumour AKT concentrations do not predict capivasertib response in this cohort 

We initially hypothesized that tumour’s AKT1 or AKT2 protein concentrations might be 

directly correlated with response to an AKT inhibitor like capivasertib. AKT transcript over-

expression has been observed with equal frequency in both PIK3CA-mutated and PIK3CA-wild-

type tumours (231). A large transcriptomic study of 547 tumours found that AKT1 and AKT2 

transcripts were over-expressed in up to 39% and 46% of HR+ human breast cancers 

respectively (231). The oncogenic effects of high AKT levels are linked to tumour grade and 

aggressiveness, and have been observed irrespective of phosphorylation status (232). In fact, 

over-expressed AKT1 has been reported to maintain some activity even when Ser473 

phosphorylation is not present (233), though these effects typically occur only with very high 

levels of AKT. 

Using our quantitative iMALDI-MS assay, we observed significant inter-tumour variability 

in the amount of AKT1 and AKT2 protein, with as much as a 4-fold difference among PIK3CA-

mutated tumours. However, total AKT1 and AKT2 protein concentrations did not differ between 

the CB and NCB groups in our sample set. We did however see a possible trend toward 

increased AKT2 in the samples originating from metastatic sites as compared to primaries (1.7 

vs. 1.2 fmol/ 10 ug total protein), though the difference did not reach statistical significance. 

Nonetheless, this observation is consistent with AKT2’s role in promoting motility in breast 

cancer cells (117). It is possible that the sample set analyzed does not represent the full range of 

expression; even higher levels might be observed in the larger population of breast cancers and 

might be more closely linked to treatment response. AKT3 quantitation could also be important, 

given its association with difficult-to-treat disease (234). 

Most of the existing literature focuses on assessment of AKT activity based on the ratio of 

phospho-AKT to AKT. We used mass spectrometry to quantify pAKT1 Ser473 and pAKT2 

Ser474 with high isoform specificity. However, only 3 samples showed pAKT stoichiometry 

sufficient to be precisely quantified by the PPQ assay. Despite our expectation of high pAKT 

concentrations reflective of PI3K pathway activation, recent publications have reported that 

pAKT may be unelevated or even markedly reduced in PIK3CA-mutated tumours (222,235). 

Furthermore, experimental evidence suggests that maximal activation of AKT can occur when as 

little as 5% of the AKT1 pool is phosphorylated (236), so analytical approaches to measure very 
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low abundance phosphorylation may be necessary. There is also a significant body of literature 

supporting the importance of other AKT phosphorylation sites, such as Thr308 (237), whose 

characterization might be informative.  

Since PTEN is the dominant regulator suppressing AKT phosphorylation in PIK3CA-

mutated cells (222), we also quantified PTEN from the tumour tissues. All 3 samples with >30% 

pAKT1 or pAKT2 had low PTEN values (<0.36 fmol PTEN/10 μg total protein, falling in the 

lowest quartile of the measured values). One other sample with 22% pAKT1, which appeared 

elevated but fell below the LLOQ, also had low PTEN. Nonetheless, PTEN expression levels did 

not differ significantly between the treatment response groups.  

The proteome profile associated with capivasertib treatment response 

While none of the expected target proteins differed significantly between the groups, label-

free quantitation data revealed that the PIK3CA-mutated tumours do in fact contain a series of 53 

proteins that are differentially expressed between the CB and NCB groups. Many of the proteins 

are previously linked to cancer, prognosis, treatment response, and particularly to the modulation 

of AKT activation.  

Only 5 of 53 differentially regulated proteins were upregulated in the clinical benefit 

group: serum albumin (ALB), polymeric immunoglobulin receptor (PIGR), and some 

immunoglobulin subunits (IGHG2, IGKC, IGKV4-1). In the StringDB/Cytoscape analysis, the 

immunoglobulin proteins were not mapped and albumin was not connected to the nodes of 

proteins downregulated in the CB group. The higher levels of serum albumin and immune-

related proteins could reflect better immune infiltration and perfusion of the tumours in the CB 

group that might facilitate treatment.  

However, systemic hypoalbuminuria has also been repeatedly linked to reduced PFS and 

overall survival in patients treated with TKIs (238,239). Low pre-treatment serum albumin level 

was found to strongly predict shorter progression-free survival (PFS) and reduced overall 

survival (OS) for patients with non-small cell lung cancer targeting EGFR (upstream from AKT) 

(238,240). A similar profile is observed in advanced thyroid cancer treated with TKIs (239). 

High levels of serum albumin are associated with reduced TNF-alpha and pro-inflammatory 

cytokine signaling, diminished gluconeogenesis, and activation of AKT to promote cell survival 

(241). Our CB group similarly showed higher serum albumin together with reduced levels of 

CPNE-1 (suggesting lower TNF-alpha signaling) and inflammatory proteins (ILF-2, ILF-3). 
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Immunoglobulin-related proteins with higher expression in the CB group can also be tied 

to AKT function. There is mixed evidence about the role of PIGR in cancer, but some evidence 

from hepatocellular carcinoma suggests that PIGR in extracellular vesicles promotes oncogenic 

AKT activity with downstream effects on GSK3B/β-catenin that are reversed by AKT inhibition 

(242). IGKV was one of 14 immunoglobulin genes downregulated in an AKT2 knock-out model 

of human lung cancer (243). IGHG2 has been linked to upstream activation of 

PI3K/AKT/mTOR as well as the MEK-ERK pathway through Phospholipase C signalling 

(244,245). AKT activation appears to play a role in regulating IgG production by cancer cells 

(243,246), which is associated with cisplatin resistance (246). IGKC is a well-known positive 

prognostic marker for metastasis-free survival and chemotherapy response that has been 

validated at the RNA- and protein-level (247). Though some data suggests limited prognostic 

utility for IGKC in HR+ breast cancers, this interpretation is likely confounded by the immuno-

modulatory effects of endocrine therapies (248), which are not expected with capivasertib. 

The 48 proteins that were downregulated in the CB group vs. the NCB group cluster to 3 

main nodes. The first group, which is the largest, and most highly interconnected, includes 13 

structural subunits of ribosomes. Specific subsets of ribosomal proteins have previously been 

identified as regulatory factors in breast cancer as well as pediatric acute myeloid leukemia (249-

252). Additional proteins in this group such as Poly(rC)-binding proteins (PCBP1, PCBP2) and 

heterogeneous nuclear ribonucleoproteins (HNRNPL, HNRNPF), are involved in RNA 

processing as well as protein translation, localization, and degradation (253). Each of these has 

been implicated in cancer, with distinct functions in regulating RNA splicing and alternative 

splicing (254-256).  A related, strongly inter-connected, node relates to regulation and processing 

of mRNA and DNA. Interleukin enhancer-binding factors (ILF2, ILF3) are involved in DNA 

repair and RNA metabolism (257). They contribute to oncogenesis as negative regulators of 

tumour-suppressing microRNAs and their activity is mediated by AKT-driven phosphorylation 

(258).  Depletion of ILF3 in HCC cells has been associated with decreased AKT phosphorylation 

in hepatocellular carcinoma, whereas expression of ILF2 and ILF3 has been linked to PI3K/AKT 

and MAPK signaling in esophageal squamous cell carcinoma (259,260).  

The final node consists of 11 differentially-expressed mitochondrial proteins. Of these, the 

prohibitins (PHB1, PHB2) have specifically been associated directly with the activation of 

protein kinase c activity (261). Both PHBs are directly phosphorylated by AKT, after which PHB 

forms a complex with RAF1 and activates the RAF1-MEK1-ERK pathway (262). This may 
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support higher activation of the MEK/ERK pathway, which is a known mechanism of resistance 

to AKT inhibitors, in the NCB group (263). PHB is also involved in a positive feedback 

mechanism wherein phosphorylation of PHB further increases AKT activity, perhaps further 

propelling over-activation. Several proteins that did not connect to the core clusters also have an 

important relationship to AKT’s oncogenic functions; a selection of the associated evidence is 

provided in Appendix 6. For instance, expression of galectin-3 has been shown to activate AKT 

in gastric cancer, resulting in a loss of responsiveness to IFN-γ similar to that observed in the 

context of PI3K mutations (264).  

 Taken as a whole, the nodes are suggestive of strongly increased translational activity in 

the NCB group together with the associated energetic demands. Since many of the identified 

proteins have been previously linked to cancer progression, prognosis, and treatment response, 

there is an inherent challenge in distinguishing whether any specific association with response to 

AKT inhibition. However, the clustering of differential proteins to a handful of interrelated 

functions, and functional linkages of the proteins to AKT activity, increases the confidence of the 

findings in this regard. 

Translational activity downstream from AKT is a potential mechanism of resistance to 

capivasertib  

To further examine biological relationships between the differentially expressed proteins, 

we applied QIAGEN’s Ingenuity Pathway Analysis (IPA) software to map protein expression 

fold-changes and p-values to canonical pathways and to statistically assess the observed patterns 

of regulation. IPA identified an enrichment of pathways associated with associated with 

hallmarks of cancer in this dataset; group differences were associated with changes in 

translational activity (e.g., EIF2 signaling, eIF4/p70S6K, mTOR pathway), inflammation (acute 

phase response signaling, LXR/RXR activation), cancer cell motility/invasion (actin 

cytoskeleton signaling), and altered glucose metabolism (gluconeogenesis, glycolysis). The 

coronavirus pathogenesis pathway is also identified and indeed inhibition of the 

PI3K/AKT/mTOR has been proposed for the treatment of COVID-19 because of its relationship 

to T-cell functions (265).  

 LXR/RXR activation was higher in the CB group. LXRs regulate glycolysis, lipid 

hemostasis, and possibly immune functions by enhancing the activity of GSK3β, which activates 

AKT and phosphorylates pathway proteins upstream (RICTOR, PTEN) and downstream (TSC) 



 

 81 

from AKT (266). IPA further predicts that Rictor, a key component of mTORC2, may regulate 

the observed differences through higher activity in the CB group (Table 8). RXRalpha is also 

known to transmit cellular signals to regulate differentiation, angiogenesis, and glycolysis by 

phosphorylating AKT pathway, though its upregulation may be associated with tumor 

suppression (267). 

Conversely, the EIF2 signaling pathway showed significantly higher activation in the 

tumours of the NCB group. eIF2α	(EIF2S1)	is a master regulator of translation dysregulation in 

cancer. It controls cell fate in response to various forms of stress, including the ER stress that 

occurs when unfolded proteins accumulate in the lumen (268). By modifying the efficiency of 

translation initiation during the unfolded protein response (UPR), PERK-phosphorylated eIF2α	

can both diminish translation of abundant transcripts and enhance translation of low-abundance 

transcripts thereby resulting in the widespread uncoupling of up to 90% transcripts from their 

protein products (268-270). Phospho-eIF2α has been proposed to activate AKT, by depressing 

mTORC1 and enhancing mTORC2 activity, to promote survival under conditions of ER or 

oxidative stress (271-273). However, the relationship is complex and bi-directional, with AKT 

regulating PERK/eIF2α as well (274,275). When phosphorylated at T799, AKT inhibits PERK in 

response to ER stress (275). 

While there is more to be elucidated to fully understand the complex crosstalk between 

eIF2α and AKT, the two pathways clearly work in close partnership as a molecular switch to 

control cell fate decisions under cell stress conditions (271). The two proteins can compensate 

for one another to maintain survival under stress (271). Thus it is not surprising that EIF2 

signaling has been previously implicated as a possible mechanism of resistance to AKT 

inhibitors (275,276). In capivasertib-sensitive breast cancer cell lines, transcription of genes 

associated with EIF2 signaling was significantly upregulated in response to capivasertib 

monotherapy (198). Inhibition of PERK/eIF2α sensitizes resistant cancers cells to AKT 

inhibitors (275). Increased ER stress was also shown to sensitize gastric cancer cells to AKT 

inhibition (277). In the NCB group tumours, the elevated baseline expression of ribosomal and 

translational proteins may help prevent the accumulation of mRNA transcripts that could trigger 

the unfolded protein response (UPR), activation of which would make them more sensitive to 

AKT inhibition. Meanwhile, increased AKT activation due to upstream PIK3CA mutation could 

help ensure continuous pro-survival signaling even under conditions of sustained EIF2 signaling. 

Together, this evidence supports the idea that EIF2 signaling could be a plausible molecular 
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context underlying resistance in the NCB group. While there is evidence for this relationship in 

HER2-overexpressing breast cancers (278), evidence from HR+ PIK3CA-mutated breast cancers 

would be novel.  

Proteins belonging to other translational control pathways downstream from AKT -- 

mTOR and eIF4/p70S6K signaling – were also enriched among the proteins of interest. 

Expression is upregulated for the associated proteins in the NCB group, though IPA could not 

statistically confirm the direction of regulation.  However, closer examination of the data shows 

that IPA defined its EIF2 pathway to include ribosomal proteins (RPL10A, RPL14, RPL18, 

RPLP0) that their EIF4 pathway does not. This omission led to statistical prioritization of EIF2 

signaling in IPA, we could not find evidence in the literature of a specific association of EIF2 

signaling with these RPLs; in fact, the relationship appears to be mediated by EIF4 (176).  

eIF4E controls translation downstream from AKT via mTORC1. pAKT phosphorylation of 

TSC1/2 inhibits it, resulting in mTORC1 activation and downstream activation of eIF4E-

associated translation (279). eIF4E then promotes translation of specific mRNAs (e.g., cyclins, 

ODC, c-Myc) (279). mTORC1-driven resistance to PI3K pathway inhibitors is now well-

characterized (119,280). Persistent mTORC1 signaling in PIK3CA-mutated cell lines is 

associated with resistance to p110α inhibition, even when AKT phosphorylation is measurably 

inhibited (281). A mutation activating mTOR has even been detected and effectively targeted in 

at least one patient treated with AKT inhibitors (282). Previous research points to TSC1/2 or 

mTOR mutations as a mechanism for mTORC1-driven resistance of PI3K inhibitors However, 

additional genetic mechanisms likely exist.  

Technical challenges and study limitations 

  Technical limitations in the quantitation of pAKT likely prevented optimal assessment of 

AKT activity in the tumours. More in-depth assessment could be achieved using alternative 

analytical approaches to multiplex additional targets (e.g., AKT3, AKT1 E17K, additional 

phosphorylation sites). An immuno-UPLC-MS/MS method was partially developed during the 

course of this project, which demonstrated the ability to capture peptides for AKT1 

(GEYIKTWR, m/z: 351.7+++) and AKT1 E17K (GKYIKTWR, m/z: 351.3+++) with a single 

antibody (Appendix 7). Despite their similar m/z ratios, the method could distinguish the 

analytes, even on a short gradient, based on retention time and transition ratio. However, 

continued development was not merited at the time, given the absence of study samples with this 
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mutation and the necessity to optimize a completely new experimental workflow including 

digestion with a new enzyme (e.g., clostrapain). Alternative technical approaches might also 

support more precise measurement of pAKT and PIK3CA p110⍺. Nonetheless, the global 

proteome data was able to provide important insights into tumours’ molecular activity both 

upstream and downstream of AKT. 

Though the biological relationships observed in our data are compelling, the certainty of 

our findings is inherently limited by several important constraints, the greatest of which is the 

small number of patients in the study and the heterogeneity of a heavily-treated clinical 

population.  “Clinical benefit” may not accurately reflect treatment efficacy, especially in the 

absence of a comparator group (e.g., alternative or placebo treatment) to signal the natural 

history of disease in this small cohort. That said, it is generally accepted as the only criterion 

available in this study population. Alternative definitions of “clinical benefit” (e.g. based on best 

response, 6 weeks PFS, 16 weeks PFS) yielded similar results with respect to the network and 

pathway analysis. Obtaining a sufficient number of well-characterized and high-quality patient 

samples with adequate material available for analysis is an ongoing challenge for translational 

research. The imbalance of primary versus metastatic samples in each group is another important 

caveat, though this is partially addressed by our statistical analysis.  

Most of the samples studied were obtained from the original tumor. It is therefore possible 

that these samples obtained at “baseline”, many years before treatment with capivasertib, did not 

yet show some markers that would predict treatment response. AKT activation is increasingly 

cited as a mechanism of resistance to chemotherapies, suggesting that important changes may 

arise over the course of treatment. Nonetheless, the most clinically-useful patient selection 

marker should ideally be detectable at an early stage of intervention with the potential to guide 

combination treatments. 

Moreover, there remains the universal challenge of distinguishing treatment-specific 

markers from overall prognostic markers. A gene expression profile similar to the NCB group, 

including upregulation of AKT1, 30 ribosomal subunits, and EIF signalling, has been observed 

in gastric cancers as a signature of acquired chemoresistance to cisplatin and fluorouracil 

combination chemotherapy (232). This is especially difficult to parse due to the many pleiotropic 

proteins involved and the complexity of their behaviour in different contexts.  For instance, 

although it is often stated that phosphorylation of AKT1 at both Thr308 and Ser473 are required 

for activation (283), it has been posited that increased pAKT1 Thr308 in the presence of ATP 
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can independently activate mTORC1/4E-BP1/S6K-driven biosynthesis, while an ATP deficit 

activates AMPK/FOXO/mTORC2 leading to phosphorylation of AKT at Ser478 (284). Interplay 

between nutritional status, cellular stress, pathway crosstalk, and feedback mechanisms affecting 

AKT activation likely each play a role in determining PIK3CA-mutated tumours’ response to 

targeted therapy. 

Nonetheless, the strong biological relationships between proteins identified in the analysis, 

and the agreement of this data with the literature, all provide evidence that the observed profile 

could be meaningfully and specifically with an increased likelihood of treatment benefit, at least 

in this cohort. 
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Results Chapter 2:  
Targeted protein quantitation in breast cancer cell lines verifies an 
association between capivasertib response and proteins of interest 

Chapter Summary 

We previously analyzed PIK3CAmut breast and gynecological tumours from patients 

enrolled in a clinical trial of capivasertib. We identified a differential proteomic profile between 

those patients who demonstrated a clinical benefit in response to capivasertib treatment 

compared to those who did not. The proteins of interest mapped to pathways involved in 

translational control including EIF2 and EIF4 activation. To further verify this association, we 

developed targeted MRM-MS assays for 50 proteins of interest (53 peptides) using synthetic 

proteotypic peptides and corresponding stable-isotope labelled standard peptides. Assays were 

optimized and characterized on a UPLC + Agilent 6495B-QQQ-MS. Each quantitative MRM-

MS assays was characterized according to the guidelines of the NCI’s Clinical Proteomic Tumor 

Analysis Consortium. Most assays were found to be fit-for-purpose in that they precisely and 

reproducibly quantify the analyte at the endogenous concentration in cell lines.  

A standard cytotoxicity assay was used to determine capivasertib sensitivity for each of the 

6 well-characterized cell lines selected for study. By applying the multiplexed panel, expression 

of the targeted proteins was compared between sensitive vs. resistant lines. The proteomic profile 

observed in the capivasertib-resistant cell lines was found to closely match the profile previously 

observed in the tumours of clinical trial patients. The reproducibility of the profile associated 

with capivasertib resistance across two orthogonal proteomics approaches and two fully 

independent models lends additional credibility to the proteins’ relationship to capivasertib 

sensitivity. Changes in protein concentration after capivasertib exposure were assessed. 

The assays were further developed for compatibility with clinical samples. PRM-MS 

assays were applied to 33 FFPE tumour blocks obtained with consent under Research Ethics 

Board approval at the Jewish General Hospital. The data was used to evaluate intra- vs. inter-

tumour variability and the effect of different sampling approaches. 
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Context 

Pathways of translational control in cancer  

Eukaryotic initiation factors (eIFs) play a crucial role in regulating protein synthesis in 

eukaryotic cells. They are the primary effectors of gene expression in the cell (285). As 

compared to transcriptional control, translational control offers a more efficient and immediate 

mechanism for altering the proteome during cellular adaptation (285,286). Moreover, aberrant 

translation plays a crucial role in cancer (285). eIF dysregulation is commonly observed in 

cancer, and is implicated in oncogenesis, proliferation, metastasis, and treatment resistance 

(285,287). For this reason, many eIFs are now considered a promising therapeutic targets (286).  

Among them, eIF4s are well-known regulators of translation initiation, which is the rate-

limiting step in protein synthesis (286,288). eIF4F consists of several subunits, including eIF4E, 

eIF4A, and eIF4G, that are involved in recruiting the ribosome to the mRNA and unwinding the 

mRNA secondary structure (288). A range of anti-cancer agents has been developed to target the 

eIF4F complex including inhibitors of eIF4A helicase, eIF4E cap-binding, eIF4E-eIF4G 

association, and eIF4E expression (286). Overexpression of eIF4E is present in the majority of 

breast cancers and has been associated with increased cell proliferation, invasion, and metastasis 

(288).  Moreover, the PI3K/Akt/mTOR pathway regulates eIF4 activity, leading to increased 

translation of specific mRNAs that promote tumor growth and survival (288).  

As described in the previous chapter, the role of EIF2 signaling in cancer is more complex 

and is still being elucidated (286). EIF2 signaling is regulated by several kinases that respond to 

cellular stress, including the PERK/eIF2α pathway that is activated by endoplasmic reticulum 

(ER) stress (289,290). eIF4E and eIF2α are both sensitive to the cellular stress and work together 

to modify translation (249); mTORC1 and CK2 may help to coordinate regulation of eIF2α and 

eIF4E (291).  In breast cancer, activation of PERK/eIF2α can contribute to the hallmarks of 

cancer by adapting cells for tumor growth and survival (290,292). PERK/eIF2α also appear to 

mediate treatment response, acting as a common mechanism of resistance (293,294). On the 

other hand, induction can also sensitize breast cancer cells to chemotherapy-induced cell death 

(294). This “double-edged sword” of PERK/eIF2α in determining treatment response is 

particularly significant in ER+ breast cancer where first-line antiestrogen therapies mildly induce 

PERK and other sensors, which interact with transcription factors like c-MYC to produce 
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endocrine resistance (295). However, further upregulation of PERK/eIF2α can actually drive 

apoptosis (295).  

Biomarker verification 

The results of our previous study revealed an activation of pathways associated with 

translational control in the tumours of heavily-treated patients who did not respond to 

capivasertib in a Phase II clinical trial. At least 53 putative proteomic markers of resistance to 

capivasertib treatment were identified from the label-free quantitation data. The differences in 

protein expression associated with resistance appear to be detectable from long-stored FFPE and 

are present at “baseline,” long before exposure to the drug. The results specifically suggested a 

possible role for translational control pathways including EIF2 signaling pathway and/or EIF4 

signaling downstream of mTORC1 in determining resistance to capivasertib. To assess the 

validity of this finding, we aimed to systematically assess the relationship identified proteins of 

interest to capivasertib in a verification study. 

Traditionally, the biomarker development pipeline followed a “triangular approach” 

wherein the size of study cohorts increased progressively with each validation step. Often, the 

discovery of new putative markers is published without further study to assess the reproducibility 

of the findings because of the significant investment required. When further validation is 

attempted, research is often geared directly at clinical qualification, which requires rigorous 

study design, analysis, and very large numbers of biospecimens. These biomarker validation 

studies require extremely rigorous study design, analysis, and very large numbers of 

biospecimens. Despite this significant investment, extremely few validation attempts are 

successful. Biomarker verification has been proposed as a useful “bridge” between biomarker 

discovery studies and resource-intensive validation (65). The goal is to quickly (but reliably) 

assess a large number of targets in a new larger sample set, obtaining additional evidence to help 

triage leads. The verification stage can also serve to assess the suitability of a method for 

subsequent validation efforts.  

Cell lines as a model system  

Biomarker verification is typically intended to be performed in a clinical cohort very 

similar to the intended clinical population. However, given that capivasertib is not yet approved 

for clinical use, there are extremely few tumour samples available that have associated 

capivasertib response data. The use of an alternative model is therefore required until larger-scale 
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application of the drug enables access to more clinical samples. Both mouse models and cell 

lines are commonly used in cancer research, each with their own advantages and disadvantages 

(296).  

Cell lines are readily available and enable cost-effective analysis. Thanks to their ability to 

generate large volumes of material, cell lines are well-suited to analysis of low-abundance 

analytes. Disadvantages include a tendency for genotypic and phenotypic drift that can limit 

inter-laboratory reproducibility (297). Even with optimal culture technique, the process of 

culturing inevitably selects for increasingly aggressive variants and is therefore unsuitable for 

modeling less aggressive malignancies or earlier stages of cancer development (297). This is true 

even of breast epithelial immortalized cell line MCF10A, which is increasingly used as a non-

cancer control, but must be handled carefully to avoid increasing tumour-forming behaviour with 

suboptimal seeding or repeated passages (298,299).  

In spite of its limitations, cell culture remains an essential tool for cancer research. As 

compared to mouse models, cell lines operate as a simplistic homogenous model of disease, 

without an immune system or anatomical effects, which may represent an advantage for 

mechanistic studies focused on the intra-cellular molecular landscape. To avoid potential pitfalls, 

best practices require limiting passage number, performing regular cell line authentication, and 

giving careful attention to avoiding or treating potential contaminations, especially myocoplasma 

infections(300,301). Employing multiple cell lines in a given study can also help ensure the 

robustness and validity of results.  

MRM-MS assays with internal standards 

 In our original protocol, we obtained information about enhanced EIF2 and EIF4 

pathway activity from global proteome data. Our label-free quantitation approach was able to 

achieve simultaneous relative quantitation of hundreds to thousands of proteins from a tiny 

amount of protein digest reserved from the supernatant of previously-analyzed samples. 

However, as discussed in the Introduction, a targeted approach is typically required as part of a 

fit-for-purpose approach to enable definitive quantitation of putative biomarkers for further study 

(1,149). The aforementioned dose-dependent nature of EIF2 signaling activity makes the precise 

quantitation of these proteins especially important, given the need to distinguish between slight 

elevations (conferring resistance) and dramatic sustained increases (resulting in apoptosis). 
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Multiple reaction monitoring (MRM-MS) using internal stable isotope-labeled standards is 

considered the gold standard in targeted protein quantitation because of its reproducibility, 

accuracy, and suitability for biomarker candidate verification (1,302). It is increasingly 

recognized for its potential for clinical applications (154,303). MRM-MS with internal standards 

offers exceptionally high specificity (that exceeds even iMALDI-MS or LFQ) based on matching 

of multiple parameters: (i) retention time, (ii) mass-to-charge of the precursor peptide, (iii) paired 

mass-to-charge of fragments ions, and (iv) the conserved ratio between multiple transitions. This 

exceeds even the specificity offered by iMALDI-MS, which collects only MS1, or LFQ 

approaches which may match to spectral libraries but do not contain a co-eluting standard to 

verify retention times or transition ratios. The ability to detect dissimilarities in the transition 

ratio between IS and analytes further aids in the identification and resolution of sample-specific 

interferences.   

Like iMALDI-MS, MRM-MS traditionally uses an external calibration curve, prepared in 

surrogate matrix. However, direct MRM-MS offers a much higher degree of multiplexing 

capability, with many assays routinely quantifying hundreds of proteins per run and spanning 

many orders of magnitude in concentration. This is not possible with antibody-dependent 

methods. Precise protein quantitation can be reliably achieved by MRM assays, with coefficients 

of variation (CVs) typically below 20% for most peptides. MRM-MS is also highly reproducible, 

with good inter-laboratory comparability and stable quantitation over time. Together with its 

rapid development time, these qualities make MRM an optimal approach for the verification 

stage of biomarker research (65). 

Sub-hypothesis, Objectives, Approach 

We previously hypothesized that proteomics may offer additional insights to inform patient 

selection for capivasertib. Our initial results from patient samples suggest that specific 

translational control pathways, particularly EIF2 and EIF4, may regulate response to 

capivasertib. We hypothesize that the profile associated with capivasertib resistance in PIK3CA-

mutated HR+ breast and gynecological cancers is conserved in other models. Specifically, we 

predict that (i) our proteins of interest will show similar expression patterns in HR+ PIK3CA-

altered breast cancer cell lines that are resistant to capivasertib as compared to those that are 

sensitive, (ii) protein expression changes after drug exposure will reflect increased activation of 

these pathways in response to capivasertib exposure, (iii) strategic co-treatment with an EIF2 
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inhibitor will sensitize resistant cells to treatment with capivasertib. We anticipate that 

quantitative methods for assessing these targets can be translated for use in clinical samples.  

Our verification study has the following objectives: 

1. Develop and validate high-quality MRM-MS assays to reproducibly quantify the 

proteins of interest and associated targets from cell lines 

2. Generate an appropriate series of cell culture samples with verified capivasertib 

sensitivity to test the hypotheses 

3. Analyze cell line samples to verify the relationship between protein concentration and  

capivasertib sensitivity 

4. Adapt the developed methods to nanoflow-PRM-MS for use with volume-limited 

samples and assess analytical performance  

5. Analyze patient FFPE tumour cores and slices for assessing feasibility in clinical 

samples with respect to compatibility, sensitivity, intra- vs. inter-tumour variability 

The results of this verification study will help to inform which, if any, of our putative 

markers merit evaluation in a large-scale clinical study toward biomarker validation. 

 
 

Figure 22. Experimental design for validating previously-identified targets in cell lines.  

Cell line selection 

To mirror the characteristics of patient samples from the previous study, we selected 6 

well-characterized hormone receptor-positive (HR+) breast cancer cell lines. The COSMIC Cell 

Lines Project was used as a centralized, curated resource to assess the mutational profile of cell 

lines (40). Four cell lines with known PIK3CA or AKT1 were selected to match with the clinical 

trial inclusion criteria. These line were predicted to show varying sensitivity to capivasertib (2 
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sensitive, 2 resistant), based on published and unpublished data (182). Two additional HR+ 

breast cancer cell lines with PTEN alterations (1 sensitive, 1 resistant) were selected for 

comparison, as our previous work did not indicate whether the profile of capivasertib is specific 

to PIK3CA-altered cell lines. Each cell line’s sensitivity to capivasertib was verified following 

expansion using a standard cytotoxicity assay.  

Protein target selection 

Proteins were chosen for assay development based on (i) observed ‘hits’ from patient 

study, (ii) proteins predicted altered based on activation of EIF2 or EIF4 translational control 

pathways, and (iii) proteins in the PI3K pathway. Proteins of interest from the previous study 

were triaged based on feature reduction by selecting representative proteins were highly 

correlated with other biologically related features (e.g., a few ribosomal proteins). Additional 

targets were prioritized based on their importance to the canonical eIF or PI3K signaling 

pathways. In consultation with Dr. Antonis Koromilas, an expert in EIF2 signaling, we identified 

several desired targets for the EIF2 pathway including eIF2α, phospho-eIF2α, PERK 

(EIF2AK3), ATF4, and ERK (MAPK1/MAPK3). eIF-2A was also included; It is important to 

distinguish eIF2α (EIF2S1) from eIF-2A (EIF2A) here, as the two are commonly confused 

(https://www.ncbi.nlm.nih.gov › articles › PMC7139343). While eIF2α is primarily responsible 

for the binding of Met-tRNAi to 40S and drives large-scale changes in initiation, eIF-2A usually 

plays a minor role. However, eIF-2A does appear to preferentially translate a specific subset of 

mRNAs (e.g., those regulated by non-canonical initiation codons such as uCUG, uUUG) under 

conditions of eIF2α phosphorylation. From the EIF4 pathway, mTOR, eIF4A-1 and eIF4E were 

identified as preferred targets based on their role in cancer.  

Assay development & validation 

To reduce waste and limit attrition, we evaluated each potential protein target for tryptic 

peptide suitability, the availability of assays published in the CPTAC portal, and previous 

detections in PeptideAtlas to determine whether the peptide was likely to be readily detectable 

without enrichment or fractionation. Cell lines were screened for detection of the endogenous 

peptide before ordering stable isotope-labeled peptides to develop quantitative assays. Targeted 

multiplexed UPLC-MRM-MS assays were developed and optimized for 50 proteins of interest 

using synthetic proteotypic peptides for calibration and corresponding stable-isotope labelled 

standard peptides as internal standards for quantitation from cell lines.  
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Like other data-intensive ‘omics disciplines, targeted proteomics has seen an increasing 

emphasis on standardization, which is required to support translational research (304,305). The 

National Cancer Institute (NCI) has established the Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) with the aim of removing barriers to translation of proteomics into clinical 

biomarker studies (65). One of the main goals of CPTAC is to standardize proteomics 

workflows, including the development and validation of targeted proteomics assays. To this end, 

CPTAC has published guidelines for proteomic assay development and characterization which 

include recommendations for the selection of peptides, the optimization of MRM parameters, the 

assessment of assay performance, and the reporting of assay characterization results. While this 

standard does not reach the high bar of analytical validity ultimately required for clinical 

biomarkers (306), obtaining reliable research results is the first critical step toward eventual 

clinical translation. We therefore completed CPTAC validation and deposition of our assays to 

ensure the quality, reproducibility, and transparency of our workflows. Characterization data was 

publicly deposited in the CPTAC Assay Portal. 

Toward translation: feasibility in clinical samples 

As part of our effort to verify method suitability, we adapted our validated assays for use 

with clinical samples. Most existing tumour samples available for cancer research are stored in 

Biobanks and pathology facilities as FFPE tumour blocks. To assess feasibility of future 

translation, we adapted our assay for use with the lower total protein amounts typically obtained 

from these samples. Parallel reaction monitoring (PRM)-MS demonstrates performance 

characteristics that are similar or better than MRM-MS (158), and high sensitivity can be 

attained by pairing PRM methods with nanoflow chromatography. To prepare for clinical sample 

analysis, we translated our assays for use on an EvoSep One liquid chromatography system 

coupled to a Q-Exactive Hybrid Quadrupole-Orbitrap-MS.  

The EvoSep system emphasizes a high level of standardization, together with the high 

throughput required for some clinical applications (307). The innovative design of this system 

limits sample preparation by using disposable sample loading tips to prevent contamination and 

carryover. Moreover, it offers the high sensitivity of nano-flow chromatography with much, 

much higher robustness than typical nanoflow systems (307). The Q-Exactive MS also offers the 

ability to acquire full-scan data simultaneously that can, for instance, be used to confirm total 

protein quantitation results. By adapting our assay to this platform, we aim to quantify our 

analytes from 1 µg of total protein digest per sample.  
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We applied the adapted method to analyze stored FFPE tumour samples obtained with 

consent from patients with advanced solid tumours genetically screened for AstraZeneca’s Phase 

II clinical trial of capivasertib. This offers an opportunity to assess method and target suitability 

for future biomarker studies in terms of (i) the ability to quantify from clinically available 

samples, (ii) the intra- and inter-tumour variability of the analytes of interest, and (iii) any 

correlation of protein concentrations to annotated clinical variables. 

Results 

Quantitative method validation data 

We initially selected 58 proteotypic peptides representing 53 target proteins for assay 

optimization. Of these, all but 4 peptides representing 3 proteins were found to be detectable in at 

least some cancer cell lines during screening (see Appendix 8). As shown in Figure 23 and Table 

9, this resulted in the development of a multiplexed assay consisting of 53 peptides to represent 

50 target proteins, including 31 “hits” from the previous study, 7 mTOR/eIF4 pathway proteins, 

3 eIF2 signaling proteins, and 9 others associated with translation or the PI3K pathway.  

 

 

Figure 23. Chromatographic separation of the target peptides.



 

Legend: blue = PI3K pathway, green = protein of interest from patient samples, yellow = EIF2 signaling protein, orange = EIF4 translational 

control protein, grey = other translation-associated protein 
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Table 9. Proteins and surrogate peptides selected as targets for assay development 
Uniprot  Gene  Protein name Selected Peptide 
P31749 AKT1 RAC-alpha serine/threonine-protein kinase B FFAGIVWQHVYEK 
P31751 AKT2 RAC-beta serine/threonine-protein kinase B beta YDSLGLLELDQR 

THFPQFSYSASIRE 
P02768 ALB serum albumin LVNEVTEFAK 
Q07960 ARHGAP1 Rho GTPase-activating protein 1 AINPINTFTK 
P59998 ARPC4 Actin-related protein 2/3 complex subunit 4 VLIEGSINSVR 
P18848 ATF4 Cyclic AMP-dependent transcription factor ATF-4 AGSSEWLAVDGLVSPSNNSK 
P16152 CBR1 Carbonyl reductase [NADPH] 1 LFSGDVVLTAR 
P49368 CCT3 T-complex protein 1 subunit gamma ELGIWEPLAVK 
Q99829 CPNE1 Copine-1 GTITVSAQELK 
Q9NZJ5 EIF2AK3 Eukaryotic translation initiation factor 2-alpha kinase 3 

(PERK) 
EHIEIIAPSPQR 

P05198 EIF2S1 Eukaryotic translation initiation factor 2 subunit 1 (eIF2α) VVTDTDETELAR 
P60228 EIF3E Eukaryotic translation initiation factor 3 subunit E YLTTAVITNK 
P60842 EIF4A1 Eukaryotic initiation factor 4A-I DQIYDIFQK 
P06730 EIF4E Eukaryotic translation initiation factor 4E IVIGYQSHADTATK 
P55010 EIF5 Eukaryotic translation initiation factor 5 VLTLSDDLER 
P56537 EIF6 Eukaryotic translation initiation factor 6 HGLLVPNNTTDQELQHIR 
P38117 ETFB Electron transfer flavoprotein subunit beta LSVISVEDPPQR 
P55084 HADHB Trifunctional enzyme subunit beta, mitochondrial LEQDEYALR 
P19367 HK1 Hexokinase-1 GDFIALDLGGSSFR 
P14866 HNRNPL Heterogeneous nuclear ribonucleoprotein L ISRPGDSDDSR 
P08238 HSP90AB1 Heat shock protein HSP 90-beta VVNVSSIMSVR 
P11021 HSPA5 Endoplasmic reticulum chaperone BiP ELEEIVQPIISK 
P04792 HSPB1 Heat shock protein beta-1 VSLDVNHFAPDELTVK 
P01859 IGHG2 Immunoglobulin heavy constant gamma 2 GLPAPIEK 
P06312 IGKV4-1 Immunoglobulin kappa variable 4-1 LLIYWASTR 



 

Legend: blue = PI3K pathway, green = protein of interest from patient samples, yellow = EIF2 signaling protein, orange = EIF4 translational 

control protein, grey = other translation-associated protein 
95 

Uniprot  Gene  Protein name Selected Peptide 
Q12905 ILF2 Interleukin enhancer-binding factor 2 ILPTLEAVAALGNK 
Q12906 ILF3 Interleukin enhancer-binding factor 3 IFVNDDR 
P01116 KRAS mut GTPase Kras LVVVGAVGVGK 
P17931 LGALS3 Galectin-3 IALDFQR 
O95819 MAP4K4 Mitogen-activated protein kinase kinase kinase kinase 4  VYPLINR 
P28482 MAPK1 Mitogen-activated protein kinase 1 (ERK 2) ELIFEETAR 
P27361 MAPK3 Mitogen-activated protein kinase 3 (ERK 1) IADPEHDHTGFLTEYVATR 

IADPEHDHTGFLTE(pY)VATR   
P40926 MDH2 Malate dehydrogenase, mitochondrial IFGVTTLDIVR 
P42345 MTOR Serine/threonine-protein kinase mTOR LFDAPEAPLPSR 

VLGLLGALDPYK 
Q15365 PCBP1 Poly(rC)-binding protein 1 IITLTGPTNAIFK 
Q15084 PDIA6 Protein disulfide-isomerase A6 GSTAPVGGGAFPTIVER 
P35232 PHB1 Prohibitin 1 FDAGELITQR 
Q99623 PHB2 Prohibitin-2 IVQAEGEAEAAK 
P01833 PIGR Polymeric immunoglobulin receptor VYTVDLGR 
P42338 PIK3CB Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic 

subunit beta isoform 
AAEIASSDSANVSSR 
EAGLDLR 

P46776 RPL27A 60S ribosomal protein L27a TGAAPIIDVVR 
P39023 RPL3 60S ribosomal protein L3 FIDTTSK 
P15880 RPS2 40S ribosomal protein S2 GTGIVSAPVPK 
P61247 RPS3A 40S ribosomal protein S3a VVDPFSK 
P46781 RPS9 40S ribosomal protein S9 IGVLDEGK 
P23443 S6K1 Ribosomal protein S6 kinase beta-1 FEISETSVNR 
Q15019 SEPTIN2 Septin-2 VNIVPVIAK 
Q13630 TSTA3 GDP-L-fucose synthase ILVTGGSGLVGK 
P49411 TUFM Elongation factor Tu, mitochondrial TIGTGLVTNTLAMTEEEK 
P13010 XRCC5 X-ray repair cross-complementing protein 5 LTIGSNLSIR 
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Linearity & sensitivity. Peak area ratios for each analyte and its internal standard were fitted to a 

linear regression model with 1/x2 weighting. The linear range was defined as the range in which 

the peak area ratio increases linearly with analyte concentration (R2>95) and precision remains 

high (<20% CV at the LLOQ, <15% CV in the rest of the range). In blanks injected directly 

following the injection of the highest calibration point, carryover contributed less than 20% of 

signal at the lower limit of quantitation (LLOQ). No interferences were detected in the matrix 

blanks. As shown in Figure 24, the developed assays cover a dynamic range of more than 3 

orders of magnitude. Most assays, with the exception of 4 peptides, demonstrated a linear range 

suitable for quantitation of the endogenous analytes. 

 

 

Figure 24. Assay dynamic range & endogenous levels, sorted in order of ascending LLOQ. 
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Repeatability of QC samples at 4 levels. Quality control samples of synthetic peptide in digested 

matrix at 4 concentrations (“low”, “medium-low”, “medium”, “high”) were processed and 

analyzed as 3 replicates each on each of 5 successive days. The total variability for each peptide 

was estimated by the sum of squares using measured concentrations. For each peptide, for each 

concentration level, we calculated intra-assay variability (CV between 3 replicates, averaged 

across the 5 days) and added this to the inter-assay variability (CV for a given replicate on 5 

days, averaged across the 3 replicates). Each of this is squared, summed, and then the square root 

is taken to represent “total variability” for that concentration level. CPTAC requires total 

variability to be <20% in order to validate the assay performance at that level. For our peptides, 

37 out of 54 passed for a minimum of 3 consecutive levels and 19 passed at all levels.  Another 8 

assays (total 45/54) demonstrated very good repeatability with total variability <25% at a 

minimum of 3 QC levels. Peptide assays corresponding to MAPK3 

(IADPEHDHTGFLTEYVATR) and HK1 (GDFIALDLGGSSFR) were discarded due to 

inadequate performance (CVs >30%) at multiple levels. 

 

 

Figure 25. Repeatability at 4 QC levels for assays sorted in order of ascending LLOQ.  
 

 



 

 98 

Stability. Stability (Exp. 4) was confirmed by assessing variability in the measured concentration 

at multiple timepoints and after one or more freeze-thaw cycles. All except 1 peptide were found 

to maintain stability within +/- 20% of the original concentration under all tested storage 

conditions. The peptide for EIF5 (HGLLVPNNTTDQELQHIR) did show a decrease in signal to 

75% of the starting concentration after 4 weeks at -80ºC.  

 

 

Figure 26. Peptide stability characterized across different storage conditions. 
 
 

Reproducibility. A pooled sample of MCF-7 protein extract repeatedly subjected to the complete 

proteomics workflow, including the digestion step, on 5 different days to assess reproducible 

quantitation of the endogenous analyte. The CV calculated across the 5 measurements was <25% 

for 39 of 44 peptides that had endogenous concentrations above the LLOQ in the pooled sample.  
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Figure 27. Reproducibility of endogenous quantitation from pooled MCF-7 QC sample.  
Prepared as 5 full-process replicates on 5 different days.  
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Protein concentration differences associated with capivasertib sensitivity in cell lines 

Capivasertib sensitivity. Using a standard cyotoxicity assay, MCF-7 (PIK3CA E545K) was 

confirmed to be capivasertib-sensitive (IC50<2 µM), while HCC1428 (AKT1 OE), ZR-75-30 

(AKT1 OE), and EFM-19 (PIK3CA H1047L) were found to be capivasertib-resistant (IC50>10 

µM) (Figure 28).  Of the PTEN mutant cell lines, CAMA-1 was found to be sensitive while ZR-

75-30 was found to be resistant. 

 

 

Figure 28. Growth inhibition as a function of capivasertib dose in breast cancer cell lines. 
Top: Dose-response curve for capivasertib vs. growth inhibition. Bottom: Calculated IC50 
for the 6 breast cancer cell lines tested. WT = wild-type 
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Targeted analysis in cell lines reproduces the proteomic profile from patient samples.  

As shown in Figure 29, hierarchical clustering separated sensitive (MCF-7, n=4) from 

resistant (HCC1428, n=2; ZR-75-30, n=2; EFM-19, n=5) PIK3CA or AKT1-altered cell lines on 

the basis of their expression of the proteins of interest. When a FDR-adjusted t-test was applied, 

assuming unequal variance, 3 proteins (CBR1, HSP90AB1, HSPB1) were found to be 

significantly downregulated in the resistant cell lines and 14 were upregulated (FC>1.5, FDR-

adjusted p-value<0.05). Boxplots of concentrations observed in each group are shown in Figure 

30 for a few proteins of interest. The proteomic profile observed in the capivasertib-resistant cell 

lines was found to closely match the profile observed in the tumours of patients in the NCB 

group (Table 10). Of the 22 protein concentrations that best discriminated between sensitive vs. 

resistant cell lines, 17 (77%) showed the same trend (high or low) as detected in the patient 

study.  
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Figure 29. Statistical analysis of targeted protein quantitation in capivasertib-sensitive 
(green) and capivasertib-resistant (red) HR+ PIK3CA-altered breast cancer cell lines. 
(top) Heatmap of protein concentrations quantified by MRM-MS with hierarchical 
clustering. (bottom left) Principal Components Analysis (PCA). (bottom right) Partial 
Least Squares – Discriminant Analysis (PLS-DA) plot.  
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 Figure 30. Protein concentrations in capivasertib-sensitive vs. -resistant cell lines 
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Table 10. Protein expression differences in capivasertib-resistant vs. -sensitive cells 
compared to the profile observed in patient samples 

VIP 
Rank Protein FC 

(res/sen) p-value Expression: 
Resist/Sensitive 

Expression: 
NCB vs. CB 

1 CBR1 0.16 0.0049 ↓ ↑ 
2 HSP90AB1 0.12 0.0200 ↓ ↑ 
3 PHB2 2.73 0.0001 ↑ ↑ 
4 MTOR 5.16 0.0008 ↑ pred. activated 
5 HSPB1 0.27 0.0023 ↓ ↑ 
6 EIF4E 1.98 0.0001 ↑ pred. activated 
7 SEPTIN2 2.93 0.0017 ↑ pred. activated 
8 PHB1 2.14 0.0049 ↑ ↑ 
9 RPL27A 2.68 0.0002 ↑ ↑ 
10 RPS2 2.22 0.0002 ↑ ↑ 
11 RPL3 3.54 0.0031 ↑ ↑ 
12 RPS9 2.85 0.0007 ↑ ↑ 
13 RPS3A 2.20 0.0011 ↑ ↑ 
14 CPNE1 5.68 0.0008 ↑ ↑ 
15 CCT3 1.57 0.0018 ↑ ↑ 
16 EIF3E 2.82 0.0039 ↑ pred. activated 
17 ARPC4 2.68 0.0132 ↑ ↑ 
18 HNRNPL 1.47 0.0199 ↑	(?) ↑ 
19 EIF2S1 1.51 0.1374 ↑	(?) pred. activated 
20 LGALS3 0.36 0.0954 ↓	(?) ↑ 
21 XRCC5 2.41 0.0834 ↑	(?) ↑ 
22 EIF2AK3 2.71 0.0593 ↑	(?) pred. activated 
23 PDIA6 1.44 0.0266 ↑ ↑ 
24 HADHB 2.04 0.0373 ↑ ↑ 
25 TSTA3 3.18 0.0252 ↑ ↑ 
26 PIK3CB 1.68 0.0308 ↑ - 
27 PIGR 0.47 0.3024 ↓	(?) low 
28 PCBP1 0.81 0.2971 - ↑ 
29 TUFM 1.32 0.1445 - ↑ 
30 ILF2 1.63 0.1303 ↑	(?) ↑ 

>30 ALB 0.08 0.4066 ↓	(?) low 
>30 ARHGAP1 3.15 0.0652 ↑	(?) ↑ 
>30 ATF4 1.01 0.7743 - pred. activated 
>30 EIF4A1 1.53 0.2321 ↑	(?) pred. activated 
>30 EIF5 2.02 0.1280 ↑	(?) pred. activated 
>30 ETFB 1.06 0.8466 - ↑ 
>30 HSPA5 0.87 0.6022 - - 
>30 ILF3 1.30 0.3118 - ↑ 
>30 MAPK1 1.60 0.1352 ↑	(?) pred. activated 
>30 MDH2 1.83 0.1188 ↑	(?) ↑ 
>30 S6K1 1.24 0.6434 - pred. activated 
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Investigating the mechanism of capivasertib sensitivity in cell lines 

Preliminary analysis of timecourse proteomics after capivasertib exposure. Each cell line was 

incubated with capivasertib at the cell line’s observed IC15 (see Table 11) for up to 5 days. For 

each cell line, 2 of 3 collected timecourse replicates were analyzed using the MRM-MS method. 

Heatmaps of this data are shown in Figures 31 and 32. Visual inspection suggests there may be 

differences in the treated and control samples for MCF-7 (where many targets are decreased after 

drug exposure) and for HCC-1428 (where many appear increased, confirmed in Figure 33 and 

34). All other cell lines show significant variability was observed between replicates.  

Additional features of interest will be identified by calculating protein concentration changes on 

a within-replicate basis by dividing the concentration in the capivasertib-treated plate by the 

concentration in the matching DMSO-treated plate. As shown in Figure 35, using this approach, 

proteins with FC>2 at any timepoint can be flagged to see if the trend is conserved across 

replicates from the same cell line. Proteins that are consistently differentially modulated in a 

given cell line after capivasertib exposure vs. DMSO-alone will be further investigated.   

Table 11. Doses assigned to each cell line in timecourse study 
 

Cell line  Published sensitivity to 
capivasertib Observed ICs Concentration for 

timecourse 

HCC-1428 HIGH SENSITIVITY  
(GI50: 0.15 μM) 

IC50: >30 μM 
IC15: 30 μM 30 μM AZD5363 

MCF-7 INT SENSITIVITY 
(GI50: 1.6, 1.3 μM) 

IC50: 0.95 μM 
IC15: 0.014 μM 

0.01 μM AZD5363 

EFM-19  RESISTANT 
(GI50: >8 μM) 

IC50: >15 μM 
IC15: 0.125 μM 5.0 μM AZD5363  

CAMA-1 HIGH SENSITIVITY  
(GI50: 0.04, 0.08, 1 μM) 

IC50: 0.125 μM 
IC15: 0.005 μM 0.005 μM AZD5363 

ZR-75-1 INT SENSITIVITY  
(GI50: 0.1, 1.5 μM) 

IC50: 0.125 μM 
IC15: 0.005 μM 0.005 μM AZD5363 

ZR-75-30 RESISTANT  
(GI50: >8 μM) 

IC50: >15 μM 
IC15: 1.7 μM 5.0 μM AZD5363  

 
 



 

 106 

 

Figure 31. Heatmap of protein concentrations in MCF-7 after capivasertib exposure  
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Figure 32. Heatmaps of protein concentrations after capivasertib exposure in additional 
cell line 
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Figure 33. PLS-DA demonstrating separation of treated vs. untreated HCC-1428 
 

 

Figure 34. Sample proteins with concentration increase in HCC-1428 after drug exposure. 
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Figure 35. Plot of protein concentration changes after capivasertib exposure in EFM-19 
for use in identifying features modulated by drug exposure 

 
 

Co-treatment with EIF2 inhibitor ISRIB does not appear to increase capivasertib sensitivity.  

Combination treatment of the ISRIB PERK/eIF2α inhibitor was tested using a matrix of 

concentrations to assess for synergistic effects. This approach was first applied to HCC-1428 

using 5 independent replicates, measured by a standard Alamar blue cytotoxicity assay at 72 

hours. Synfinder calculated the synergy score and provided visualization of the results, as shown 

in Figure 36. Across all replicates, Synfinder’s average reported synergy score was -1.19 +/- 

3.067, with a max reported value for any area of the plot at 12.1. These numbers represent the 

excess response as compared to simply an additive effect between the drugs (e.g., a score of 10 

represents a response 10% greater than expected). Therefore, no synergy was detected for HCC-

1428. Given the inadequate evidence from our other experiments that eIF2α is a mechanism of 

resistance to capivasertib in these PIK3CA-altered cancers, combination testing of the other 

resistant cell lines was postponed.  
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Figure 36. Synfinder scoring of synergy between capivasertib and ISRIB  
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Feasibility assessment in patient tumour samples 

PRM assay development. Assays for 50 peptides were adapted to the EvoSep-Q-Exactive-MS. 

Assay performance characteristics, as compared to the 6495 are shown in Table 12. Samples of 3 

different cell lines were initially analyzed for preliminary feasibility assessment. Of the tested 

PRM assays, 37 proteins demonstrated endogenous concentrations within the linear range when 

analyzed from 1 µg of total protein digest from cell line samples.  

Table 12. Assay performance characteristics – UPLC-MRM-MS vs. EvoSep-PRM-MS 
 

Parameter UPLC-MRM-MS  
(Agilent 6495B) 

EvoSep-PRM-MS  
(Q-Exactive) 

Lower Limit of Quantitation 
(fmol on-column)  

1-250   0.01-16  
Upper Limit of Quantitation  

(fmol on-column)  
500-2000   40-250 

Linearity (R2) > 0.95 > 0.95 

Typical CVs <20% <20% 

Endogenous quantified  
within linear range (# of assays) 46/54 37/50 

Total protein loading (μg) 25 1 

 

Cohort. From the 40 consented patients, tumour blocks were obtained for 28. Others could 

not be obtained due to the material being exhausted, limitations associated with transferring the 

blocks from other hospital sites, or no suitable sample (e.g., fine needle biopsy only). Clinical 

details for the JGH patients whose samples were obtained are presented in Table 13. The 

characteristics of the cohort screened at the JGH appear similar to the enrolled clinical trial 

patients: 93% vs. 91% female, average age of 60.4 vs 63.0 at screening. Mutations were most 

commonly observed in breast cancer, with 44% of cases including a mutation. PIK3CA was the 

most commonly mutated gene, appearing with alterations in 25% of patient tumours. In total, 

32% of tumours were found to have PIK3CA or AKT mutations. Among this cohort, all detected 

mutations were identified by NGS (used for 12 samples), whereas none were identified in the 

patients tested by real-time PCR of AKT1 and PIK3CA SNPs (n=9).  Of the patients with 

mutation-positive tumours, 3 patients ultimately enrolled in the study. 
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Table 13. Descriptive statistics for the JGH patient samples analyzed.  
 

 PI3K Mutation Neg  
(n=19) 

PI3K Mutation Pos  
(n=9) 

All 
(n=28) 

Clinical Information    
    
Female (n=___) 17 9 26 
Patient BMI  28.2 ± 5.2 26.7 ± 4.8 28.1 ± 5.0  
Patient age (years) 60.4 ± 15.0 60.3 ± 18.3 60.4 ± 15.5 
    
Cancer Type 

Breast (n=__) 
Gynecological (n=__) 

Other (n=__) 

 
10 
5 
4 

 
8 
1 
0  

 
18 
6 
4 

    
Mutations identified 

PIK3CA (n=__) 
AKT (n=__) 

PTEN (n=__) 

 
 
 
  

 
7 
2 
0  

 
7 
2 
0 

    
Sample Characteristics    
    
Sample site 

Metastatic (n=__) 
 
4 

 
2 

 
6 

Primary (n=__) 
Unknown (n=__) 

13 
2 

4 
3 

17 
5 

    
Storage time (years) 10.5 ± 3.6 10.5 ± 5.3 10.5 ± 4.1 
Cellularity (% tumour cells) 

 
76 ± 23 

 
78 ± 17 

 
76 ± 21 

 
Values are given as mean ± standard deviation unless otherwise specified.  
 

 

The analyzed samples had an average tumour cellularity of 76%, similar to the FFPE 

tumour slices obtained from clinical trial patients in the previous chapter (63% cellularity). 

However, the patient samples obtained at the JGH had been stored for longer, with an average 

collection date >10 years before analysis. The JGH samples were also stored as blocks instead of 

slices. 
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While we initially applied xylene-based deparaffinization to extract these samples as 

shown in Figure 37, this was later substituted for hot water-based deparaffinization steps for ease 

of processing and better yield. The average yield of total protein using the hot water protocol was 

69.8 +/- 12.9 µg for tumour cores and 75.4 +/- 31.9 ug for slices. Tumour cores appeared to yield 

slightly more protein content than cores from adjacent non-tumour areas (57.5 +/- 10.7 ug).  

 

 

Figure 37. Total protein yield of tumour slices & cores extracted by xylene 
deparaffinization 

 

Proteomic analysis of FFPE tumour samples from JGH patients. A total of 42 cores and 

unmounted slices representing 22 FFPE tumour samples were analyzed by PRM-MS on the 

EvoSep-Q-Exactive. For a subset of samples (n=8), we obtained both slices (n=14 total) and 

cores (n=12 total). Challenges with poor extraction and deparaffinization of thicker tumour slices 

initially hampered quantitation of AKT from JGH samples. However, quantitation in 1 mutation-

negative breast cancer slice generated an AKT1 concentration of 0.42 fmol/µg total protein 

(Figure 38). The multiplexed PRM method was able to reproducibly quantify few of the targeted 

proteins from 1 µg total protein extracted from tumour FFPE. Of the 50 targeted proteins, 34 

could be quantified at endogenous levels from at least 1 sample(s), but only 6 were quantified in 

more than half of the tested samples.  
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Figure 38. AKT1 protein quantitation from a sample of metastatic left breast 
adenocarcinoma. 

 

Inter- and Intra-tumour variability of measured proteins 

Measured protein concentrations were compared within and across tumour samples for the 

7 proteins that were quantified from 10 or more samples. As shown in Figure 39, measurements 

of ILF3 and PHB1 demonstrated limited variability when measured from tumours vs. slices vs. 

stroma, but also showed little inter-tumour variability. EIF2S1 and EIF6 showed greater inter-

tumour variability, while maintaining higher reproducibility between different samples from the 

same tumour block. Both LGALS3, HSPB1, and ALB were found to have very high variation 

between samples from the same tumour, obscuring potential comparison between tumours. ALB 

in particular was quantified at levels up to 100x higher in some tumour cores than from slices or 

tumour-adjacent cores from the same block. As shown in Table 14, there was an overall trend 

toward a higher concentration of the proteins when measured from tumour core extracts versus 

when measured from non-tumour cores or slices of the complete tissue area. 
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Figure 39. Inter- and intra-tumour variability of proteins quantified from cores and slices 
of JGH tumour blocks. 
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Table 14. Peptide concentrations (fmol/µg total protein) in JGH patient samples.  
 
   PHB1 EIF6 LGALS3  ALB HSPB1 EIF2S1 ILF3  RPL3  
LLOQ  fmol 

on-
column 

0.07 1.31 0.22 0.76 1.85 0.07 0.45 0.10 

ULOQ  237.97 221.10 234.94 225.43 232.77 192.29 196.18 657.15 

JGH-25023 

 Core  0.16 1.53 0.72 1.01 32.21 0.10 0.46 - 

 Slice  - - - - - - - - 

 Slice  - - - - - - - 0.87 

JGH - 14064 

 Core  0.41 1.68 12.85 127.31 20.19 0.07 0.59 98.89 

 Slice  - 1.48 1.35 2.43 4.59 - 0.45 - 

 Slice  0.11 1.52 2.68 7.50 7.54 - - - 

 Stroma  0.22 1.66 1.90 2.18 9.97 - 0.47 2.29 

JGH-13502 

 Core  0.08 1.52 0.48 2.51 3.48 0.08 - 24.18 

 Slice  - - - - - - - 7.47 

 Slice  0.19 1.42 1.80 1.58 17.10 0.08 0.49 4.50 

 Stroma  - 1.32 - 4.34 - 0.07 - 6.33 

JGH - 21646 
 Core  0.43 1.87 2.95 17.57 35.37 0.16 0.62 9.48 

 Slice  0.08 - 0.29 0.78 2.23 - 0.45 - 

JGH - 29976  Slice  - 2.08 1.37 55.56 6.60 0.07 - - 

JGH-32311 

 Core  0.15 - - 171.05 24.91 0.12 0.46 - 

 Slice  - 1.35 - 1.58 5.28 0.07 - - 

 Slice  - - - 1.08 2.94 - - 7.25 

 Stroma  - - - 1.40 1.96 0.07 - 2.13 

JGH-12325 

 Core  0.51 1.63 2.32 3.72 4.96 0.16 0.54 - 

 Slice  - - - 17.28 - - - - 

 Slice  0.08 1.54 - 0.78 2.03 - - - 

 Stroma  0.09 1.34 0.38 7.91 2.53 - - - 

JGH-21425 

 Core  0.19 1.68 - 10.86 6.43 0.08 - - 

 Slice  0.12 1.31 0.34 2.49 2.43 0.09 0.46 - 

 Slice  0.09 1.32 0.29 1.34 2.04 0.07 0.45 - 

 Stroma  0.15 1.31 0.44 26.20 2.92 0.11 0.47 - 

JGH-38049  Slice  0.24 1.38 - 38.07 4.99 0.085 0.46 - 

Avg. Tumour core 
(n=7) 0.27 1.65 3.87 47.72 18.22 0.11 0.53 44.18 

Avg. Non-tumour 
core (n=5) 0.15 1.41 0.90 8.41 4.34 0.08 0.47 3.58 

Average Slice 
(n=15) 0.13 1.49 1.16 10.87 5.25 0.08 0.46 5.02 
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Interpretation 

Development & validation of new MRM-MS assays 

Performance of the new multiplexed MRM-MS assays was evaluated according to 

CPTAC guidelines. The assays have been demonstrated as fit-for-purpose under Tier II 

applications, with sufficient precision, stability, and reproducibility for pre-clinical research 

(149).  Linear range and sensitivity were adequate for the majority (42/54) of the proteins of 

interest, 42 of which were consistently quantified at endogenous concentrations in cell line 

samples. Most assays (45/54) also demonstrated good to excellent precision and reproducibility 

when tested at levels spanning the linear range in a 5-day mini-repeatability experiment. The 

assays are therefore well-suited for their intended purpose of quantifying the proteins of interest 

from cell lines. Consultation of public resources (e.g., SRMAtlas, CPTAC Assay portal) 

supported identification of peptide targets with a low rate of attrition during assay development.  

The newly-generated assay performance data were, in turn, submitted for public 

deposition in the CPTAC Assay portal. Only the linear range and mini-repeatability experiments 

are required for deposition into the CPTAC portal. However, the additional CPTAC experiments 

performed generated important data with respect to assay performance as shown in Table 15. 

The peptide for EIF6 with generally favourable assay characteristics was found in Experiment to 

have limited stability for storage beyond 4 weeks, which may be a consideration for clinical 

applications where samples are sometimes prepared over several weeks and then batched until 

analysis.  

Through reproducible quantitation of the endogenous analyte, it was noted that while 

both peptides selected for MTOR showed similarly low variability in repeated quantitation from 

the endogenous sample, the inferred protein concentrations differed between the two: the 

concentration reported by VLGLLGALDPYK was more than double that of LFDAPEAPLPSR. 

Divergence between surrogate peptides from the same protein can occur due to differences in 

digestion efficiency, unanticipated modifications or variants, or instability of a peptide during 

sample preparation and digestion (308). Typically, when using multiple peptides to quantify a 

single protein, the assay with the better performance characteristics is selected to act as a 

quantifier (309). In this case, the mini-repeatability study demonstrated that LFDAPEAPLPSR 

more reliably quantified known quantities from quality control samples. Reassuringly, as shown 

in Figure 40, the two peptides are well-correlated (R2>90%).  
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Table 15. Summary of assay performance across different CPTAC experiments  
Gene name Selected Peptide Range Repeatability Stability Reproducibility 

AKT1 FFAGIVWQHVYEK ✓ X ✓ ✓ 
AKT2 YDSLGLLELDQR X X ✓ - 
ALB LVNEVTEFAK ✓ ✓ ✓ ✓ 

ARHGAP1 AINPINTFTK ✓ ✓ ✓ ✓ 
ARPC4 VLIEGSINSVR ✓ ✓ ✓ ✓ 
ATF4 AGSSEWLAVDGLVSPSNNSK ✓ <25% ✓ ✓ 
CBR1 LFSGDVVLTAR ✓ <25% ✓ ✓ 
CCT3 ELGIWEPLAVK ✓ <25% ✓ ✓ 

CPNE1 GTITVSAQELK ✓ ✓ ✓ <30% 
EIF2AK3 EHIEIIAPSPQR ✓ ✓ ✓ ✓ 
EIF2S1 VVTDTDETELAR ✓ ✓ ✓ ✓ 
EIF3E YLTTAVITNK ✓ ✓ ✓ ✓ 

EIF4A1 DQIYDIFQK ✓ <25% ✓ ✓ 
EIF4E IVIGYQSHADTATK ✓ ✓ ✓ <30% 
EIF5 VLTLSDDLER ✓ ✓ ✓ ✓ 
EIF6 HGLLVPNNTTDQELQHIR ✓ ✓ <4 weeks <30% 
ETFB LSVISVEDPPQR ✓ ✓ ✓ ✓ 

HADHB LEQDEYALR ✓ ✓ ✓ ✓ 
HK1 GDFIALDLGGSSFR X X ✓ - 

HNRNPL ISRPGDSDDSR ✓ X ✓ ✓ 
HSP90AB1 VVNVSSIMSVR ✓ <25% ✓ ✓ 

HSPA5 ELEEIVQPIISK ✓ ✓ ✓ ✓ 
HSPB1 VSLDVNHFAPDELTVK ✓ <25% ✓ <30% 
IGHG2 GLPAPIEK ✓ ✓ ✓ - 

IGKV4-1 LLIYWASTR X X ✓ - 
ILF2 ILPTLEAVAALGNK ✓ ✓ ✓ <30% 
ILF3 IFVNDDR ✓ ✓ ✓ ✓ 

KRAS mut LVVVGAVGVGK ✓ ✓ ✓ ✓ 
LGALS3 IALDFQR ✓ ✓ ✓ ✓ 
MAP4K4 VYPLINR ✓ ✓ ✓ - 
MAPK1 ELIFEETAR ✓ ✓ ✓ ✓ 
MAPK3 

(p)MAPK3 
IADPEHDHTGFLTEYVATR ✓ X ✓ ✓ 

IADPEHDHTGFLTE(pY)VATR ✓ <25% ✓ - 
MDH2 IFGVTTLDIVR ✓ X ✓ ✓ 

MTOR LFDAPEAPLPSR ✓ ✓ ✓ ✓ 
VLGLLGALDPYK ✓ X ✓ ✓ 

PCBP1 IITLTGPTNAIFK ✓ <25% ✓ ✓ 
PDIA6 GSTAPVGGGAFPTIVER ✓ ✓ ✓ ✓ 
PHB1 FDAGELITQR ✓ ✓ ✓ ✓ 
PHB2 IVQAEGEAEAAK ✓ ✓ ✓ ✓ 
PIGR VYTVDLGR ✓ ✓ ✓ ✓ 

PIK3CB AAEIASSDSANVSSR X ✓ ✓ - 
EAGLDLR ✓ ✓ ✓ <30% 

RPL27A TGAAPIIDVVR ✓ ✓ ✓ ✓ 
RPL3 FIDTTSK ✓ ✓ ✓ ✓ 
RPS2 GTGIVSAPVPK ✓ ✓ ✓ ✓ 

RPS3A VVDPFSK ✓ ✓ ✓ ✓ 
RPS9 IGVLDEGK ✓ ✓ ✓ ✓ 
S6K1 FEISETSVNR ✓ ✓ ✓ - 

SEPTIN2 VNIVPVIAK ✓ ✓ ✓ ✓ 
TSTA3 ILVTGGSGLVGK ✓ ✓ ✓ ✓ 
TUFM TIGTGLVTNTLAMTEEEK ✓ X ✓ ✓ 

XRCC5 LTIGSNLSIR ✓ X ✓ - 
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Figure 40. Correlation of 2 mTOR peptides each measured in 80 cell line samples 

 

New evidence to better understand mechanism underlying capivasertib resistance 

A similar proteomic profile is detected in two independent models using orthogonal methods  

To further investigate the possible association of the identified proteins and pathways with 

capivasertib response, we then implemented the validated assays to quantify the proteins of 

interest (n=29) and related targets (n=16) with high precision and reproducibility from cell 

lysates. The multiplexed panel was applied to samples from HR+ breast cancer cell lines with 

known activating PIK3CA or AKT1 alterations published in COSMIC. The cell lines were 

confirmed in vitro to be capivasertib-sensitive (MCF-7, n=4) or capivasertib-resistant (HCC-

1428, ZR-75-30, EFM-19, n=9 total). Remarkably, the observed pattern of changes in protein 

expression was highly conserved between the patient tumour samples and the cell line model. 

Figure 41 depicts selected cancer-associated canonical pathways. The proteomic signature 

previously observed in the “no clinical benefit” group is depicted as orange (activation) and blue 

(inhibition). Overlaid in red are the differences in protein concentration subsequently confirmed 

with MRM-MS in capivasertib-resistant cell lines.  
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Figure 41. Pathway schematic depicting proteins differently regulated in capivasertib-
resistant cancers, as observed in both patient tumours and breast cancer cell lines.  
Proteins with expression changes confirmed (FC>1.3, p<0.1) by MRM-MS data in cell 
lines are shown in red (increased), dark grey (no change), and green (decreased). Proteins 
with expression data from label-free quantitation (LFQ) in patient tumour samples are 
shown in dark orange (increased) and dark blue (decreased). Light orange (activated) and 
light blue (inhibited) indicate proteins with predicted activity changes based on the LFQ 
data. Proteins with no expression data are shown in light grey.   
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The reproducibility of this profile across two orthogonal proteomics approaches and two 

fully independent models lends significant credibility to the proteins’ relationship to capivasertib 

sensitivity. While the relationships between the analyzed proteins are complex, the sum of the 

evidence supports increased GSKβ/mTORC2-driven AKT activation in capivasertib-sensitive 

cancers versus increased downstream mTORC1-driven translation in capivasertib-resistance. 

Teasing apart the roles of EIF2- and EIF4-driven translation in capivasertib resistance 

Results from the targeted assay panel further provide vital evidence against attributing the 

observed increase in translational activity specifically to EIF2 signaling. When quantified 

directly, expression of ATF4 – the protein directly downstream from eIF2α and responsible for 

transducing EIF2-driven translation -- is near-identical between resistant and sensitive cell line 

samples. Previous studies suggest ATF is expressed in response to cellular stressors, and that 

high ATF protein levels are associated with cancer aggressiveness (310,311). Unlike many other 

cancer pathway proteins, ATF4 is specifically modulated through expression changes instead of 

through activation (e.g., by phosphorylation) (312). The absence of increased ATF4 in the 

resistant group therefore clearly signals that other translational control pathways are the more 

likely effectors of capivasertib resistance this dataset. This result is further supported by the 

finding that an eIF2α inhibitor did not yield synergistic effects when tested with capivasertib in a 

combination cytotoxicity assay applied to the capivasertib-resistant HCC-1428 cell line. ISRIB 

(trans-isomer, SelleckChem, S7400) is a selective eIF2α inhibitor and does not have global 

effects on translation, transcription, or mRNA stability in non-stressed cells (313).  

Comparing the expression of EIF2-associated proteins (EIF2S1 and ATF4) after 

capivasertib exposure capivasertib-sensitive MCF-7 and capivasertib-resistant HCC-1428 in the 

timecourse samples (Figure 42), eIF2α concentration is higher at baseline in HCC-1428 and 

appears to climb in HCC-1428 at the 2hr and 4 hr timepoints, while MCF-7 remains flat with 

much lower variability. ATF4 expression is quantified in MCF-7 and may rise after drug 

exposure, whereas it remains <LLOQ in HCC-1428 throughout. This suggests that although 

eIF2a is present at higher levels in HCC-1428, contrary to our expectation, EIF2 signaling is not 

active to drive ATF4 expression.  The large-scale endeavour of analyzing all replicates from this 

study continues, so additional data will help to confirm this result.  	
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Figure 42. eIF2a & ATF4 concentrations post-capivasertib in MCF-7 & HCC-1428 
 

The targeted proteomics data may also hint at a role for the MEK/ERK pathway. The 

prohibitins (PHB1/2), whose higher expression was confirmed in the capivasertib-resistant cells, 

appear to play an important role as well. PHBs are known to complex with RAF1 to activate the 

MEK-ERK pathway (262), which was recognized early as a potential mechanism of resistance to 

AKT inhibition (263). PHBs also activate a positive feedback mechanism to increase AKT 

activity (314). Pleiotropic PHB2 even plays a key role in ribosome biogenesis (315). Overall, the 

observed protein expression patterns are consistent with AKT activation in both groups -- as 

would be expected in PIK3CA-mutated tumours – but significant differences in downstream 

mTORC1-activation are evident.  
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Adaptation of assays for use with clinical samples 

Further assay optimization is needed 

While preliminary development suggested that most developed assays might be readily 

adapted for PRM-MS, results from the first analysis of patient samples were disappointing. This 

may be due in part to poor instrument performance on the day of analysis – despite performing 

multiple retention time checks before analyzing clinical samples, larger-than-typical retention 

time shifts were observed when the data were analyzed. Moreover, the peptides’ LLOQs as 

determined from the calibration curve on the day of sample analysis were, on average, 6x higher 

than those observed during initial assay development.  

While low-flow chromatography provides the potential for sensitivity gains, this increased 

sensitivity must also compensate for the lower loading volume, which is restricted to 1 µg total 

protein as compared to the 15-20 µg loadings used for MRM-MS of cell lines. It is established 

that up to 30% of protein targets may suffer from poor stability or extraction from FFPE samples 

(316), and this effect may be exacerbated by the very long storage of these samples. Finally, 

while cell lines function as a model of cancer, the process of immortalization and culturing, 

together with their unnaturally high purity, may result in higher expression of cancer proteins 

than that seen in real tumour samples. Together, these effects may help to account for the large 

number of samples and peptides with values below the LLOQ.  

The large number of missing values, together with the small number of patients in this 

cohort, prohibited meaningful statistical analysis of protein concentrations with respect to the 

carefully-annotated clinical variables (e.g., genetics, site of sample – primary vs. metastatic, breast 

cancer vs. gynecological cancer, BMI and insulin resistance status). However, the high level of 

AKT1 measured by iMALDI-MS in a mutation-negative JGH sample suggests that indeed there 

are at least some instances of discordance between AKT levels and predictions based on genetics 

results.   

Inter vs. intra-tumour heterogeneity as a considerations for biomarker development 

Tumour blocks may be sectioned, cored, or micro-dissected to provide samples for 

analysis. While microdissection affords a high degree of control over the selected tissue, it 

currently remains impractical for large-scale implementation. For those assays that generated 

sufficient data, we sought to assess the reproducibility of quantitation from the same tumour 
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block when combined with different sampling approaches. Both inter- and intra-tumour variation 

showed significant disparities between the analytes. The results may be helpful for triaging 

targets for further research; suitable biomarker candidates will need to demonstrate higher inter-

tumour variability over intra-tumour variability. The dramatic fluctuation in ALB and HSPB1 

levels within tumour blocks will realistically prohibit interpretation of measurements, so it may 

be appropriate to drop these candidates from future panels.  

In addition, the generally higher protein concentrations measured from tumour cores reveal 

that tumour cores likely offer better sampling, as they may maximize the contribution of cancer-

associated proteins to the total protein content. The recently-developed hot water protocol 

generates good yields from most cores.   

Study limitations 

There is a widely-used adage that is most apt to the application of cell lines in research: 

“All models are wrong but some models are useful” (317). While entire theses could be written 

exclusively on the benefits and drawbacks of cell lines, they currently represent an irreplaceable 

tool in cancer research, particularly in cases where clinical samples are simply not available. 

Within our selections, HCC-1428 was expected to be sensitive based on published data but was 

confirmed resistant through cytotoxicity testing. It is unknown whether this is due to variations 

between stocks, acquired resistance, or contamination with a different cell line. Nonetheless, this 

unexpected finding caused an imbalance in the sensitive vs. resistant groups, so that MCF-7 was 

the only representative of capivasertib sensitivity. This creates an important bias in the statistical 

analysis, because although we did seek to incorporate real biological replicates of MCF-7 by 

using multiple different passages for our experiments, the samples are still closely related. Using 

MCF-7 to generate an acquired resistance model while storing proteomics samples from each 

passage could be a useful alternative design, which would allow any sensitive cell line to act as 

its own control. More generally, the cell lines do not allow for any assessment of the 

generalizability to PI3K-wt tumours. ZR-75-1 and MCF-7 are also typically sensitive to 

endocrine therapies such as fulvestrant and tamoxifen, so they do not mirror the AZ study 

population in this aspect. However, as capivasertib is increasingly used in combination therapies 

in earlier stages of treatment, this may be of interest.  

With respect to protein quantitation by MRM-MS, even well-validated assays cannot claim 

“absolute” quantitation, since they depend on the use of synthetic peptides as opposed to the 
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protein standards that would be needed to control for digestion efficiency. In either case, the 

accuracy of quantitation of the external calibration standard (e.g., by AAA, CZE) inevitably 

impact the final protein measurement. The analysis of protein concentrations normalized to total 

protein is similarly dependent on the performance of the BCA assay.  Further optimization and 

testing of the PRM assays will doubtlessly be required before further clinical sample analysis. 

Had validation experiments been performed in advance, similar to what was done for the PRM 

assays, the assay limitations and inconsistent performance of the EvoSep-Q-Exactive would 

likely have been identified sooner. 
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Results Chapter 3:  
A simplified Geneva cocktail approach measures diet-associated 

CYP450 activity for optimizing cancer drug dosing 

 

Chapter Summary 

The cytochrome P450 enzyme subfamilies, including CYP3A4 and CYP1A2, play a major 

role in metabolism of a range of drugs including several anti-cancer treatments. Many factors 

including environmental exposures, diet, disease-related systemic inflammation, and certain 

genetic polymorphisms impact the activity of these enzymes. As a result, the net activity of each 

enzyme subfamily can vary widely between individuals and in the same individual over time. 

This variability has potential major implications for treatment efficacy and risk of drug toxicity, 

but there are currently no assays available to guide routine clinical decision-making.  

To address this, we implemented a streamlined mass spectrometry-based method to 

measure activities of CYP3A4 and CYP1A2 based on single timepoint testing. The assay was 

also adapted for use with dried blood spots to facilitate clinical implementation. The validated 

assay was applied to samples from 10 participants. The participants are considered “free-living” 

in that they were not subject to diet, medication, or lifestyle restrictions, or exclusion on the basis 

of health conditions. The assay results were compared with the predicted activity of each 

enzyme, based on a self-report tool capturing diet and medication intake.  

The results confirmed the methodology is safe and feasible to perform in free-living 

volunteers using midazolam and caffeine as test substrates for CYP3A4 and CYP1A2 

respectively. The measured CYP3A4 activity correlated with the predicted activity score 

obtained from the self-report tool. The results confirm the wide variation in CYP activity 

between individuals and the important role of diet and other exposures in determining drug 

metabolism.   

The finding that “everyday” exposures can be linked to CYP activity and cancer drug 

metabolism provides another line of evidence for the thesis’ central argument that genetics-only 

approaches, like pharmacogenetics, must be supplemented with metabolite and protein 

quantitation to achieve a full molecular picture of cancer and treatment response.  
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Context 

The therapeutic window and “precision dosing” in cancer treatment 

Challenges associated with narrow therapeutic index  

One common impetus for the development of new targeted therapies is to overcome 

limitations associated with the narrow therapeutic window of chemotherapies. Classic 

chemotherapies are known for their toxicity and serious adverse effects, which make achieving 

optimally effective doses challenging (318). However, many new agents, including targeted 

inhibitors, face the same challenge. DrugBank Online (go.drugbank.com, Accession Number 

DBCAT003972) maintains a list of drugs that are known for their narrow therapeutic index 

(NTI), meaning that “small differences in dose or blood concentration may lead to …serious 

therapeutic failures or [serious] adverse drug reactions” (319). The list of 254 NTI drugs includes 

160 drugs used in cancer treatment, including hormone-based therapies (e.g., Tamoxifen), 

mTOR inhibitors (e.g., Temsirolimus), other kinase inhibitors (e.g., Vandetanib, Ceritinib, 

Idelalisib), and many immunotherapies (e.g., Trastuzumab, Durvalumab, Blinatumomab), 

alongside traditional taxanes (e.g., Cabazitaxel, Docetaxel, Paclitaxel) (319). Capivasertib has 

been associated with serious adverse effect (AEs) including grade 3 or higher hyperglycemia, 

rash, and gastrointestinal events. (196) In a small Phase II trial of capivasertib in patients with 

AKT1 E17K mutations (n=35), 43% of patients required at least 1 AE-related dose modification, 

and 31% discontinued due to AEs (196). Dose optimization is therefore crucial for the effective 

cancer treatment irrespective of treatment response.  

Precision dosing 

The concept of “precision dosing” has therefore emerged to try to maximize efficacy while 

mitigating toxic effects of anti-cancer agents by tailoring doses or dosing intervals for individual 

patients (320). In the absence of robust biomarkers, this is often achieved by developing models 

that link specific clinical variables (e.g., age, sex, weight, body surface area, kidney or liver 

function, etc) or disease severity to specific doses or dose ranges (321). However, this approach 

may be overly simplistic for NTI drugs due to the potential for interactions between the dose-

adjusting factors and the important role of patient-specific and tumour-specific differences in 

pharmacokinetics (318,321). It is further complicated by intra-patient changes in 

pharmacokinetics over time with aging, disease progression, drug exposure/tolerance, and 



 

 128 

environmental exposures. Sophisticated models and algorithms have been developed to try to 

account for the wide array of factors involved in dosing of specific drugs. However, these are 

often subject to limited generalizability due to bias stemming from the particularities of the 

population in which they are developed (322). Moreover, this approach is research-intensive, 

complex, and algorithms are typically not suited to routine dose adjustments. A simpler and more 

practical solution for NTI drugs is to implement empirical approaches – those that seek to 

(directly or indirectly) measure drug metabolism levels. Effective methods for measuring 

patients’ individual NTI drug exposure can not only remove some of the “guesswork” but 

potentially enable finer dosing adjustments, routine safety monitoring, and “real-time” dose re-

tailoring as needed over the course of treatment. 

Empirical approaches to dose optimization  

While there is strong interest in therapeutic drug monitoring (TDM) methods to directly 

quantify administered cancer drugs, the approach is limited by the need for rigorous assay 

development and validation for each and every new drug (320). In some cases, many assays may 

even be required for a single drug in order to tackle all active or toxic intermediates, some of 

which may be unknown due to the diversity of drug metabolism pathways. The development of 

non-drug-specific patient characterization approaches is therefore important, including more 

comprehensive patient characterization to enhance routine care and guide cancer treatment 

dosing (320).   

One example of the latter approach is to determine cytochrome P450 enzyme activity in 

individual patients.  Most cancer drugs are metabolized by one or more of the cytochrome P450 

enyzmes (CYPs) principally those located in the mitochondria or endoplasmic reticulum of liver 

cells (323,324). Changes in the activity of specific CYPs may lead to rapid degradation of the 

drug with failure to reach a therapeutic dose of the active metabolite (323).  Alternatively, low 

clearance of the drug may dramatically increase toxicity (323). Inter-individual differences in 

CYP activity are not only observed, but have been altered treatment effectiveness and overall 

survival for both conventional chemotherapeutics and new targeted agents such as tyrosine 

kinase inhibitors (TKIs) (325-327). CYP activity characterization can therefore serve as a useful 

marker for “precision dosing”. To date, clinical testing of CYP activity prior to, or during cancer 

treatment is not available and there is a pressing need to address this critical knowledge gap in 

advancing individualized cancer drug dosing.   
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Factors associated with changes in CYP activity 

Genetics. Research in the area of CYP-based precision dosing initially focused heavily on 

a pharmacogenetic approach (328). By identifying  presence of known CYP gene 

polymorphisms  with different activities, the metabolism of drugs which were substrates for a 

given CYP subfamily was predicted  (323,329,330). This approach showed some promise as 

genetic polymorphisms could, in some cases, be tied to treatment response (331). All CYP 

enzymes present in the liver microsome are expected to be polymorphic, suggesting significant 

potential for important findings (332). However, many genetic variants of interest are present at 

low frequency, genetic sampling presents challenges for clinical implementation, and results 

from one cohort often cannot be generalized to another (333-335). While this is often considered 

to be an issue with inter-population genetic variability (336), it could also be due in part to 

significant interactions with other factors that affect CYP activity. A genetics-only approach 

does not account for the large inter- and intra-individual differences in activity of CYP enzymes, 

due to induction or inhibition by environmental or disease factors. 

Sex. In addition to genetic factors, other patient characteristics are associated with 

differences in CYP activity. For instance, several studies found that females exhibit higher 

CYP3A4 activity compared to males, when enzyme activity is directly measured (337-339). 

However, the significance of these differences is unclear, studies using a midazolam probe found 

that despite females’ higher clearance, circulating midazolam levels were similar between female 

and male subjects (340,341). Conversely, CYP1A2 enzyme activity may be higher in males 

(337-339). 

Age & weight. Other patient characteristics that vary over time, such as such as age, 

weight, inflammation nutritional status, and disease progression, can also significantly alter the 

level of CYP activity present over the course of treatment (342,343). Older age has been 

associated with reduced CYP450 enzyme activity, as well as reduced drug clearance and changes 

in liver size and perfusion (344-346). Obesity and diabetes have similarly been associated with 

reduced CYP activity, including lower clearance by CYP3A4 and CYP1A2 (347-349). 

Disease progression, nutritional status & treatment resistance. Nutritional status has an 

enormous impact on cancer prognosis; cachexia and muscle-wasting significantly change the 

body composition and metabolism (347,350). Other, subtler nutritional effects are also 

commonly observed. For instance, Vitamin D deficiency is a common occurrence in cancer 
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patients (351,352). As a strong inducer of CYP3A4, Vitamin D supplementation can influence 

metabolism of cancer therapies (351,353). Vitamin C deficiency can similarly decrease CYP 

protein expression (354) and is also commonly observed in advanced cancer patients (355). 

Transitory changes in inflammation can also impact CYP-driven drug metabolism and this 

adopts special significance in the context of immunotherapies (356,357). 

Over-expression of specific CYPs has been observed in tumours and progressive CYP 

over-activation is now implicated as a mechanism of resistance to cancer treatments 

(326,329,358). For instance, upregulation of CYP3A4 expression in cancer tissue is now a 

known mechanism of resistance to many anti-cancer treatments including treatment with TKIs 

(359).  In fact, CYPs themselves are now under consideration as an independent target for 

therapeutic intervention (326,360,361).  

Diet, drug-drug interactions & exposures. Drug-drug interactions, diet, natural health 

products, and other exposures such as smoking are all well-known to play an important role in 

determining drug metabolism (319,362-365). A wide variety of foods and beverages may affect 

CYP activity (363,366-368), as does smoking (369,370). Natural Health Products, such as 

traditional Chinese herbs often favoured by patients, are often taken in large quantities and many 

contain compounds that can significantly inhibit CYP activity (363,371-373).  

Approaches to measuring CYP activity 

Given the plethora of variables contributing to CYP activity, there is a need for 

technologies suitable for the timely and regular reassessment of patients’ contemporaneous 

phenotypic level of activity of important drug-metabolizing enzymes during cancer treatment.  

Enzyme assays. CYP enzyme activity may be measured directly using enzyme activity 

assays that deliver specific “velocity values”—the number of mols of substrate converted by an 

enzyme over a specified time period at a controlled pH and temperature (374). Because of the 

dynamics of enzyme rate reactions, where the reaction slows as substrate depletes, velocity 

values are typically measured during the early phase of enzyme activity, where the rate reaction 

is approximately linear (374). To achieve this, it is critical to properly select and validated the 

appropriate starting concentrations of substrate (375).  

One of the major limitations of this approach is that sampling of the associated enzymes 

from the liver is too invasive for most clinical applications. As a result, plasma is commonly 
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used for sampling, but may not always be a representative of enzymes’ activity in the liver, 

where most drug metabolism occurs. It should be noted that the significance of the differences 

quantified in enzyme activity differences does not always accurately predict the observed level 

of drug clearance by an individual (340,341). This may be due to limitations with peripheral 

measurement of CYP activity in the blood, or even due to uncharacterized bottlenecks in a drug’s 

metabolic pathway that limit the impact of enzyme activity on final blood levels of a drug. 

Geneva cocktail approach. Several “cocktail” approaches have been applied to phenotype 

the concomitant activity of multiple drug-metabolizing enzymes and transporters (190,191,376). 

The cocktail approach involves measure the circulating plasma concentration of innocuous drugs 

with known routes of metabolism and their primary metabolites at one or more specified 

timepoint(s) after the drugs’ administration. The ratio of a substrate to its metabolite acts as a 

probe to reflect the activity of the associated CYPs and transporters (377). 

Approaches using drug probes are similarly limited by the wide variety of drug metabolism 

pathways in play and their incomplete characterization; clinically meaningful results will always 

depend on appropriate probe selection and on whether peripheral levels accurately reflect drug 

levels in the tissue of interest. Nonetheless, assessments based on measuring drug levels may be 

able to better capture at least some of the impact of rate-limiting confounders (e.g., transforming 

enzymes, gut absorption, etc) that could potentially uncouple blood drug levels from enzyme 

activity. Approaches like the Geneva cocktail can also expect to be most representative when the 

route of administration for the probe drug matches the drug of interest. 

CYPs selected for current study and their role in anti-cancer drug metabolism 

The CYP450 enzyme superfamily comprises ~60 heme enzymes that are present 

throughout the human body (332). The CYP enzymes are responsible for metabolizing 

xenobiotics as well as biosynthesis of some low-molecular weight metabolites (332). A limited 

subset of these are believed to metabolize >90% of drugs (323). CYP3A4/5 is estimated to be 

involved in the metabolism of >50% of drugs with known metabolic pathways, while CYP1A2 is 

involved for 4% (323,332). CYP3A4 and CYP1A1/2 are also particularly important for hepatic 

detoxification of systemic cancer therapies (369). 

Focus on CYP3A4. CYP3A4 is highly expressed in liver and intestines and has a wide 

variety of drug substrates, spanning many therapeutic classes (323,328,363,378). It is commonly 
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considered the most important CYP enzyme for drug metabolism in humans (332). Many 

antineoplastic agents are metabolized by CYP3A4 including targeted inhibitors (e.g., gefitinib, 

erlotinib), etoposide and taxanes (323,336,379-381). The role of CYP3A4 in metabolism of 

testosterone and estrogen may also confer relevance for hormone-targeted cancer therapies (328). 

Increased CYP3A4 expression in tumours can confer resistance to many anti-cancer treatments, 

including treatment with TKIs (359). 

Moderate variability of CYP3A4 activity is observed in liver microsomal samples, with 

activity and expression varying up to 60-fold; only 60% of this variability can be attributed to 

genetic control (332). Because of its involvement in metabolism of so many different substrates, 

the risk of interactions – either drug-drug interactions or with other exposures – is high. The 

potent inhibiting effects of grapefruit flavonoids on CYP3A4 are the reason why grapefruit juice 

must be avoided with so many medications.  

Preclinical evidence suggests that capivasertib is both an inhibitor and substrate of 

CYP3A4 metabolism, as alluded to in the FAKTION study protocol (216). As a result, 

concomitant treatment with strong inducers or inhibitors of CYP3A4 metabolism not permitted 

in active trials of capivasertib (196,382). In fact, it is possible that capivasertib’s effects on 

CYP3A4 may be part of the way that it re-sensitizes patients to some drugs (e.g., taxanes) (383).  

Focus on CYP1A2. The role of CYP1A2 in cancer treatment is complex; it is heavily 

involved in biotransformation of drugs and drug metabolism, but it has also been linked to 

activation of pre-carcinogens and may in some cases play a role in cancer risk (328). CYP1A2 is 

primarily expressed in the liver (332). While it is involved in metabolism of comparatively fewer 

drugs (vs. CYP3A4), some of the substrates preferentially metabolized by CYP1A2 represent 

ubiquitous exposures (e.g., caffeine, acetaminophen) (332). Together with CYP3A4 and 

CPY1A1, CYP1A2 plays a role in metabolism of TKIs such as Erlotinib (369). Co-

administration of CYP1A2-inhibiting drugs has also been shown to increase toxicity of other 

TKIs (384). While no specific role of CYP1A2 in capivasertib metabolism has been established, 

the findings with other TKIs may suggest a need for caution in this domain.  

Moderate variability of CYP1A2 is observed in liver microsomal samples, represented by 

40-fold differences in expression and activity (332). CYP1A2 genotype has been linked to 

aromatase inhibitor response in breast cancer  (385). Diet also appears to play a substantial role 

in CYP1A2 variability with effects associated with the type of vegetables consumed or an 
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increase in consumption of barbequed meat (332). Common exposures such as caffeine and 

acetaminophen may act as competitive inhibitors, while barbequed meat and cigarette smoke 

constitute major inducers (386). 

Sub-hypothesis, objectives & approach 

CYP3A4 and CYP1A2 play a unique role in the detoxification and potentially the efficacy 

of systemic cancer therapies and TKIs (216,359,369,383,384). We hypothesize that: (i) a 

streamlined Geneva cocktail method applied in healthy free-living individuals will enable 

measurement of inter-individual differences in CYP3A4 and CYP1A2 activity, (ii) that the 

observed inter-individual differences may be linked to clinical characteristics (e.g., age, sex, 

BMI), and/or patterns of dietary or medication intake, as self-reported by participants. If 

“everyday” exposures can indeed be linked to CYP activity and cancer drug metabolism, this 

alone provides another line of evidence for the thesis’ central argument that genetics-only 

approaches, like pharmacogenetics, must be supplemented with metabolite and protein 

quantitation to achieve a full molecular phenotype of cancer and treatment response. 

In order to test the hypothesis, we will complete the following research objectives: 

1. Implement & validate an LC-MS/MS-based quantitation of OH-midazolam/midazolam 

and paraxanthine/caffeine as probes to measure CYP3A4 and CYP1A2 activity; 

2. Collect and analyze venous serum samples from 10 consenting free-living healthy 

volunteers before and after dosing with caffeine and midazolam, using a single 60-minute 

timepoint; 

3. Analyze results together with data from a medication and dietary habits questionnaire 

completed by participants; 

4. Adapt the assay for use with dried blood spots (DBS) as a practical alternative to venous 

sampling that would enable routine CYP activity monitoring in larger-scale clinical 

studies 

 

The Geneva cocktail method. The Geneva cocktail approach has been demonstrated as an 

effective and practical approach for monitoring activity of various CYPs (190). The approach is 

also compatible with DBS sampling (387,388). Significant data specifically supports the safety 
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of the full 6-drug Geneva cocktail in healthy volunteers, which includes doses of caffeine, 

bupropion, flurbiprofen, omeprazole, dextromethorphan, midazolam, and fexofenadine (388). In 

this study, adverse events affected only ~1.5% of participants, were self-limiting, and were not 

definitively causally linked to the drug cocktail (388). However, given our long-term goal of 

implementing this assay in studies with cancer patients receiving active treatment, many of 

whom are at higher risk of adverse effects or drug-drug interactions, we opted to include a 

smaller number of the least harmful drugs and most important CYPs for our study.  

Targeted CYP 450s. The research project was initially conceived with Dr. R. Thomas 

Jagoe at the Peter Brojde Lung Cancer Centre. CYP1A2, and especially CYP3A4, were selected 

for their relevance to metabolism of drugs used in treatment of lung cancer (369,379-381,389-

391). For our purposes, CYP3A4 is of special interest based on its central role in drug 

metabolism, treatment resistance, and its bi-directional relationship with capivasertib. 

Midazolam, erythromycin, cortisol and testosterone are all commonly used as probes to measure 

CYP3A4 metabolism (328); midazolam has a favourably minimal side effect profile. In fact, 

midazolam is currently being used as part of a clinical trial (NCT04958226) to assess the effects 

of repeated doses of capivasertib on oral midazolam as a probe for CYP3A pharmacokinetics 

among patients with advanced solid tumours. Caffeine, which is commonly used as a probe for 

CYP1A2, was selected in part to help offset any potential drowsiness from the midazolam. 

CYP1A2 represents an interesting target for study given its relationship to TKI metabolism and 

potential to be influenced by diet and common exposures.  

Practical considerations. The published methods for CYP activity assessment are 

frequently time-consuming for subjects and require multiple blood samples, making them 

difficult to use in larger clinical populations.  To minimize invasiveness, we further selected a 

single timepoint approach, timed at 60 minutes post-dosing, which is generally considered to be 

sufficient (392-394). The test substrates for these CYPs (caffeine and midazolam respectively) 

were chosen as they are both well tolerated at the doses used and reach peak concentration at 60 

minutes which is a reasonable assay time interval for clinical use. In contrast to prior studies 

using only healthy controls, we recruited free-living subjects to assess the feasibility of this 

modified protocol prior to testing in patients with cancer. 

In summary, we applied a simplified version of the Geneva cocktail to assess the activity 

of CYP1A2 and CYP3A4 in free-living volunteers (n=10) based on a single 60-minute timepoint 
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serum concentration of caffeine, paraxanthine, midazolam and hydroxy-midazolam. The CYP 

activity measured among free-living patients was assessed for correlation with clinical variables 

including a score (DiMQu) of predicted CYP inhibition or induction derived from a self-reported 

dietary and medication use questionnaire. Given the suitability of this approach for detecting 

differences in CYP induction/inhibition associated with routine exposures, the method was 

further adapted to dried blood spot to facilitate routine sampling with the ease of use and storage 

required for a busy hospital setting.  

Results 

Method validation data 

Linearity, precision, and accuracy were assessed using charcoal-stripped serum spiked with a 

calibration curve of caffeine/paraxanthine and midazolam/OH-midazolam reference standards, 

together with a fixed concentration of internal standards, as shown in Table 16 and Figure 43. 

Peak area ratios for each analyte and its internal standard were fitted to a linear regression model 

with 1/x2 weighting. 

 

Table 16. Calibration standards & spiked-serum QCs for the Geneva Cocktail Assay 
 

  
Standard Concentration by Calibration Sample / QC  

(equivalent in ng/mL of serum) 

Analyte 
IS 

conc. 
(fixed) 

A B C D E F G  QC 
High 

QC 
Med 

QC 
Low 

Caffeine 1000 5000 2000 800 320 128 51.2 20.5  2500 500 100 
Paraxanthine 400 2500 1000 400 160 64.0 25.6 10.2  1250 250 50 
Midazolam 2 250 100 40 16 6.4 2.6 1.0  12.5 2.5 0.5 

OH-
Midazolam 2 250 100 40 16 6.4 2.6 1.0  12.5 2.5 0.5 
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Figure 43. Sample Standard Curve of Hydroxy-midazolam and its internal standard 
 

Linear Range, Precision, Accuracy, Recovery. As shown in Table 17, the linear range (R2 

≥0.99) was 1 ng/mL-250 ng/mL for midazolam and OH-midazolam, 21 ng/mL-5000 ng/mL for 

caffeine, and 10 ng/mL-2500 ng/mL for paraxanthine. Carryover contributed less than 20% of 

signal at the lower limit of quantitation (LLOQ) following injection of high calibrators, and no 

interferences were detected in matrix double blanks. Precision met criteria in that coefficients of 

variation (CVs) did not exceed 15% for calibrators and QC samples measured in triplicate.  The 

measured concentration of calibration standards, based on the line of best fit, was accurate within 

+/-20% for each standard within the linear range for each analyte. Quality control samples 

(high/medium/low), consisting of charcoal-stripped serum spiked with known quantities of each 

analyte, were included with each batch and the measured concentration in these samples was also 

accurate within +/-20% of the known value. 

Table 17. Geneva Cocktail LC-MS/MS Assay Performance in Serum 

Analyte Linear Range 
(ng/mL) 

Number of 
points in 

curve 

Number of 
QC passed 

Linearity 
(R2) 

CV at 
LLOQ 

(%) 
Caffeine 20-5000 6/6 3/3 0.9914 <15 

Paraxanthine 10-5000 6/6 3/3 0.9942 <15 
Midazolam 1-100 6/6 3/3 0.9990 <15 

OH-Midazolam 1-200 6/6 3/3 0.9950 <15 
 

y = 1.9206x - 0.2332
R² = 0.9991
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Reproducibility & stability. The inter-run reproducibility of the assay demonstrated using quality 

control samples spiked at 3 levels (low, medium, high), prepared in triplicate at each level. Each 

set of 3 QCs (low, medium, high) was analyzed on a separate day, using an independent 

calibration curve and independent preparation of internal standards. Inter-day CVs were <15% 

for all analytes at each QC level. Since the workflow required long-term sample storage as 

additional patients were recruited to the study, long-term stability was also assessed. Samples re-

analyzed after 90 days of storage at -80ºC showed agreement with originally-measured 

concentration values (mean CVs <6% for all analytes in all re-tested samples).  

Recovery. The recovery for each analyte was assessed by comparing the quantitation of 

standards in buffer, spiked into previously-extracted charcoal-stripped serum, and spiked into 

charcoal-stripped serum before extraction. The recovery of standards spiked prior to extraction 

was measured in 3 replicates at 3 concentration levels per analyte, and was on average 95-99% 

for all analytes as shown in Table 18. 

Table 18. Results of recovery testing 
 

Analyte & sample  Level (ng/mL) & Recovery (%) 
Paraxanthine   high: 2000  medium: 320 low: 51.2 

Buffer 102%   97%   97%   
Spiked into extract 121%   104%   107%   
Spiked & recovered 102% ±2% 94% ±2% 91% ±3% 

Caffeine   high: 1000 medium: 160 low: 25.6 
Buffer 97%   101%   98%   
Spiked into extract 117%   103%   102%   
Spiked & recovered 104% ±3% 91% ±1% 91% ±1% 

OH-midazolam   high: 10 medium: 1.6 low: 0.26 
Buffer 101%   95%   98%   
Spiked into extract 115%   93%   121%   
Spiked & recovered 97% ±6% 95% ±12% 104% ±2% 

Midazolam   high: 10 medium: 1.6 low: 0.26 
Buffer 103%   100%   100%   
Spiked into extract 115%   91%   98%   
Spiked & recovered 103% ±2% 84% ±1% 97% ±6% 

 

Routine validation. The validation criteria applied to MS data prior to quantitation in patient 

samples is presented in Table 19. All criteria were passed on the days of patient sample analysis.  
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Table 19. Validation Criteria for Geneva Cocktail Assay at JGH 
 
Validation check Data reviewed Criteria for Acceptance 

Double Blank 1 replicate per run, injected 2x Response <20% of LLoQ per analyte 
Blank with IS 1 replicate per run, injected 2x Response <20% of LLoQ per analyte 

Ionization Effects All specimens & calibrators/QCs IS peak area variation 80-120% 
Transition Ratio Biological specimens  Consistent with calibrators/QCs 

Calibration Curve ≥6 levels, bracketing curves R2>0.995, CV <15% (<20% at LLOQ) 
Quality Controls 3xQCs (High/medium/low) ±20% of known concentration 

 

DBS Feasibility Testing 

The linear range for the assay adapted to DBS was compatible with the range observed in 

patient samples (Table 20). On-spot deconjugation performed as well as aqueous extraction 

followed by β-glucuronidase treatment, yielding similar fold increases in OH-midazolam. The 

observed increase in OH-midazolam was 5.2-fold (on-spot) and 6.5 –fold (aqueous extraction) 

for Whatman 903 cards, and 6.89-fold (on-spot) and 7.83-fold (aqueous) for HemaSpot HF 

(Figure 44). All analytes were successfully quantified from as little as 18.4 µL of human blood, 

equivalent to two petals from a HemaSpot HF DBS collection device. This indicates the 

suitability of DBS for proxy measurements of CYP activity with the chemical probes used. 

Table 20. Geneva Cocktail LC-MS/MS Assay Performance in DBS 
 

Analyte Range observed in participants 
(ng/mL) 

Assay linear range 
(ng/mL) 

Caffeine 110-6300 80-4000 
Paraxanthine 80-3600 40-2000 
Midazolam 4-12 0.4-20 

OH-Midazolam 30-100 4-200 
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Figure 44. Comparison of direct (on-spot) and sequential (aqueous extraction) extraction 
and deconjugation of OH-midazolam glucuronide 
Measurement of OH-midazolam from (a) dried blood samples and (b) and serum controls. 
DBS samples were either incubated directly with 500 units of β-glucuronidase overnight @ 
37°C (on-spot), or extracted first using aqueous extraction followed by deconjugation. 
Pooled serum samples (50 µL) were incubated w/wo 500 units of β-glucuronidase for 16h 
@ 37°C.  Dried serum spots (DSS) served as an additional control for possible effects of 
sample drying on the measurement of deconjugated OH-midazolam. 

 

Participant Characteristics 

A total of 10 participants (mean age 38 ± 11.8; n= 5 males) took part in the study. As 

shown in Table 21, none were smokers, 3 individuals reported chronic illnesses, 4 reported the 

use of natural health products (NHPs), and 6 reported medication use.  

 



 

 140 

Table 21. Participant Characteristics 
 

Characteristic   
Age (yrs)  38 (±11.8) 

BMI  23.2 (±1.7)    
Male  n = 5/10  

Chronic illness  n = 3/10  
Smokers  n = 0  

Natural health product use  n = 4/10 
Current medication use  n = 6/10 

 

Predicted CYP Activation Score (DiMQu Questionnaire) 

Net scores for DiMQu3A4 and DiMQu1A2 were calculated for each individual to provide a 

global prediction of the impact of their diet and medications on enzyme induction (Figure 45). 

No visible bar indicates a net score of zero. Positive scores were considered to be net inducing, 

whereas a negative score predicted inhibition. DiMQu3A4 scores predicted either no effect or a 

modest net inhibiting effect of diet and medication use on CYP3A4 enzyme activity for the 

majority of participants, whereas DiMQu1A2 scores predicted a net inducing effect principally 

driven by caffeine-containing products.  

 

Figure 45. Calculated DiMQu Scores for Each Participant 
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CYP P450 Phenotype of Volunteers 

Each participant’s CYP3A4 Metabolic Ratio is presented in Table 22. As expected, all 

patient serum had midazolam and OH-midazolam levels below the LLOQ at baseline sampling. 

At the 1-hour timepoint, the mean concentration of free OH-midazolam was 6.26 ± 1.91 ng/mL 

whereas the mean concentration measured in the β-glucuronidase-treated samples was 54.0±14.2 

ng/mL, representing a difference of more than 8-fold. CYP1A2 Metabolic Ratio for each 

participant is presented in Table 23. Despite instructions to fast completely prior to sampling, 

significant caffeine concentrations (up to 3761 ng/mL) and paraxanthine concentrations (up to 

3297 ng/mL) are observed in some participants’ baseline serum samples. 

Table 22. CYP3A4 Metabolic Ratio  
No reported value (-) indicates that the measured value was below the LLOQ. Total OH-
midazolam is the measured concentration after glucuronidase pre-treatment of the sample. 
The metabolic ratio is calculated as total OH-Midazolam at 1 hr divided by Midazolam at 1 
hr. 

 

 Midazolam 
(ng/mL) 

OH-Midazolam 
(ng/mL) 

Metabolic 
Ratio 

Time 0 hr 1 hr 0 hr Free 
1 hr 

Total 
1 hr 1 hr 

Participant       
1 - 7.35 - 7.86 47.9 6.52 
2 - 7.19 - 4.70 61.5 8.56 
3 - 10.9 - 8.95 76.0 6.96 
4 - 7.13 - 6.57 71.0 9.97 
5 - 6.69 - 4.15 47.1 7.04 
6 - 4.46 - 4.60 59.7 13.4 
7 - 7.29 - 5.93 49.4 6.78 
8 - 8.97 - 9.01 53.3 5.94 
9 - 4.97 - 3.97 25.3 5.09 
10 - 7.42 - 6.85 48.4 6.52 
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Table 23. CYP1A2 Metabolic Ratio 
The metabolic ratio is calculated as the change (∆) in paraxanthine at 1 hr divided by the 
change (∆)	in caffeine at 1 hr.  

 Caffeine 
(ng/mL) 

Paraxanthine 
(ng/mL) 

Metabolic 
Ratio 

 
Time 

 
0 hr 

 
1 hr 

∆  
1 hr 

 
0 hr 

 
1 hr 

∆  
1 hr 

 
1 hr 

Participant        
1 316.7 2246 1930 273.7 446.6 172.9 0.09 
2 487.3 2888 2400 732.0 971.8 239.8 0.10 
3 3761 6263 2502 3297 3227 229.3 0.09 
4 1747 5705 3957 1528 1809 271.7 0.07 
5 336.6 2752 2416 463.1 674.5 211.3 0.09 
6 212.6 2656 2444 341.2 576.7 235.5 0.10 
7 352.6 3704 3352 633.9 996.6 362.7 0.11 
8 111.6 2882 2770 81.01 246.4 165.4 0.06 
9 201.1 3346 3145 318.1 750.3 432.3 0.14 
10 898.4 3547 2649 1294 1393 99.30 0.04 

 

 

Correlation of Predicted Activation Score to Measured CYP Activity 

The DiMQu induction score for CYP3A4 was strongly correlated (Rs=0.79, p<0.01)) to 

the metabolic ratio of OH-midazolam:midazolam only in the β-glucuronidase-treated samples. 

However, the DiMQu score for CYP1A2 however did not correlate to the Paraxanthine:caffeine 

metabolic ratio at a statistically significant level (Rs=0.54, p=0.11) (Figure 46). Participant age 

and participant sex were not significantly associated with the metabolic ratio phenotype for 

CYP3A4 or CYP1A2 (Figures 47 and 48). 
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Figure 46. Correlation of DiMQu score to metabolic ratio for CYP3A4 & CYP1A2  

 
 

 
Figure 47. Scatterplots for metabolic ratio vs. age for CYP3A4 and CYP1A2  
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Figure 48. Metabolic ratio vs. sex for CYP3A4 & CYP1A2  

 

Interpretation 

Performance & utility of the approach 

Assay performance 

The implemented LC-MRM-MS assay demonstrates all necessary performance 

characteristics to be feasibly applied in a clinical study. Linear ranges were sufficient to quantify 

all 4 analytes in each participant serum sample and were consistent with the expected range of 

concentrations based on previous studies (190). Precision was consistent with FDA standards for 

bioanalytical method validation (395). Quality control samples prepared independently from the 

standard curve were consistently quantified within ±20% of the known concentration, even on 

independent days, suggesting high accuracy and reproducibility. Storage of collected serum 

samples at -80ºC over several months did not affect quantitation, which will support batched 

analysis for large-scale studies. Due to the presence of both caffeine and paraxanthine in the 

standard commercially-available pooled human serum (Bioreclamation), we instead employed 

charcoal-stripped serum for assay development and validation, which successfully eliminated 

signal from the blanks. When measured in blank samples, carryover from maximum 

concentration samples was limited to acceptable levels despite the wide linear range and high 

signal from caffeine. The method is highly robust, easy to use, and requires little instrument time 
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(samples run in <6 minutes). Rigorous validation criteria have been developed and implemented, 

which will ensure accurate quantitation of the analytes from patient samples. 

Our findings will also inform future application of the Geneva cocktail method. For 

instance, OH-midazolam is known to be metabolized to OH-midazolam-glucuronide, but the 

proportion of this intermediate as compared to the more commonly-measured OH-midazolam 

was unknown. In comparing matched patient serum samples with and without β-glucuronidase 

treatment, we established that the majority of OH-midazolam (>85%) is in fact glucuronide-

bound at 1 hour after midazolam dosing. Correlation between the determined CYP3A4-activity 

and DiMQu score was observed only when considering the ratio of total OH-

midazolam:midazolam after glucuronidase-treatment (rs=0.79, p=0.007) and not for the ratio of 

free-OH-midazolam-to-midazolam alone (rs =0.06). This result suggests that including the 

glucuronidase deconjugation step is crucial for accurate measurement of CYP3A4 activity, 

though many studies applying the Geneva cocktail have not included it (190,376).  

Adaptation to DBS 

A method for quantitation of the 4 Geneva cocktail analytes from DBS was developed and 

validated, with a linear range sufficient to cover the observed concentrations in the study 

participants. While patient samples were not analyzed with this method yet, laboratory testing 

suggests that this approach is feasible, consistent with prior publications (190,376). However, 

our method is the first to combine DBS extraction with on-spot glucuronidase treatment, which 

we now know is crucial for accurate assessment of CYP3A4.  

Characterizing CYP activity in free-living patients & correlation to DiMQu score 

Inevitable limitations are associated with the DiMQu approach: the comprehensiveness of 

the dietary and medication questionnaire, non-reported exposures (e.g., to illicit substances), or 

inaccuracy of self-report.  However, in our study, the DiMQu scoring system, developed in Dr. 

Thomas Jagoe’s lab to quantify common food and medication exposures influencing CYP3A4 or 

CYP1A2 activity, appears to function as intended. A variety of DiMQu scores were observed 

among participants, although CYP1A2 was overwhelmingly induced while CYP3A4 was more 

commonly inhibited. Quantitation of phenotypic enzymatic activity by metabolic ratios was 

achieved for both CYP3A4 and CYP1A2 in all patients.  
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While the developed assay demonstrates adequate performance for the clinical study of 

CYP-activity based on drug and metabolite ratios, it is noted that there was no correlation 

between the metabolic ratio of paraxanthine to caffeine and the DiMQu1A2 score. It is possible 

that the DiMQu1A2 score was inaccurate due to limits in the comprehensiveness of the dietary 

and medication questionnaire, incomplete or inaccurate reporting, non-adherence to fasting 

instructions, or consumption of medications containing caffeine (e.g., some painkillers). It is also 

likely that the minimum 8-hour avoidance of caffeine in the current study protocol is insufficient 

given the slower clearance of caffeine and paraxanthine (376) and a longer abstinence from 

caffeinated products prior to the final 8hr fast would have yielded more informative results. 

Caffeine and paraxanthine are commonly observed in blood from even properly-fasted 

individuals due to ubiquitous exposure combined with the long elimination half-life of these 

analytes of 3-11 hours (396). Some estimates suggest it may take approximately 7 days of 

abstinence for habitual caffeine consumers to fully clear the drug from their blood (397). 

The surprisingly high baseline caffeine and paraxanthine observed at baseline in some 

participants may have interfered with the measurement of  CYP1A2 by altering 

pharmacokinetics and clearance rates; the multiple-timepoint study design (considered 

extraneous for some other drugs) has previously been recommended for caffeine specifically 

(398). This might explain why measured CYP1A2 activity did not reproduce known associations 

with age and sex in this cohort either, although some sources suggest that these effects may be 

marginal (399). Other drugs metabolized by CYP1A2, such as acetaminophen, melatonin, or 

phenacetin, might be better suited to reduce the risk of interference in future studies (400).    

In spite of this, there does appear to be a possible trend between the DiMQuCYP1A2 score 

and metabolic ratio, though it does not reach statistical significance (p=0.11). The DiMQuCYP3A4 

score, on the other hand, is highly correlated to the OH-Midazolam:Midazolam ratio (p=0.007). 

While it is impossible to capture all potentially relevant inputs for the dietary and medical 

questionnaire, this strong association provides evidence for the utility of both the DiMQu score 

and the phenotyping assay. While the DiMQu score cannot serve as a substitute for molecular 

phenotyping, it may be useful to help flag patients for whom phenotyping is required. 
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Study limitations 

Generalization of the study results in limited by the small number of participants and the 

cohort’s dissimilarity from the characteristics of the target patient population (i.e., cancer 

patients). Participants were mostly staff or graduate students at the Jewish General Hospital and 

none exceeded the age of 60. In comparison, the median age of onset for breast cancer patients is 

62. Both obesity and smoking are known risk factors for multiple cancers. However, in our 

cohort all participants were non-smokers and had BMIs <26. For this reason, some expected 

relationships -- such as CYP1A2 induction by smoking (401) or CYP activity inhibition in 

obesity (402) -- could not be assessed at all in this dataset. No ethnicity or genetic data was 

obtained.  

No clear correlation was observed between CYP activity with age or sex. The inability to 

detect a clear trend may be due to inter-patient phenotypic variability that is greater than the 

marginal effects expected to be associated with sex or age (337-339,344-346,399). As discussed 

in the introduction, it is also possible that drug clearance may be discordant with enzyme activity 

measured by enzyme assays (340,341). In general, a regression model incorporating age, sex, 

and DiMQu score together might be better suited to assess inter-relationships between the 

variables.  
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Discussion 

Noteworthy findings & implications  

Proteomics identifies potential mechanisms of resistance within a genetically pre-selected 

clinical trial cohort 

In the first portion of this study, we performed both targeted and global proteomic 

characterization of PIK3CA-mutated breast and gynecological tumour samples from patients in a 

clinical trial of the AKT inhibitor capivasertib. Although AKT is the target of capivasertib, the 

current study did not find a difference in the expression of AKT1 or AKT2 in baseline tumour 

samples between the CB versus the NCB groups of samples. However, the addition of global 

proteomics using the iMALDI supernatants allowed further investigation of features associated 

with clinical benefit in response to capivasertib treatment. Statistical analysis of label-free 

quantitation data from 578 high-confidence proteins revealed a pattern of increased activation of 

translational control in the NCB group. Together with published evidence, this suggests a role for 

the upregulation of EIF2 pro-survival signaling and/or EIF4-driven translational initiation in 

resistance to AKT inhibitors.  

Our workflow in this study uniquely combined proteomics technologies, making optimal 

use of volume-limited clinical samples and demonstrating the ability to obtain useful proteomic 

data from slide-mounted FFPE collected >7 years prior. While both targeted and untargeted 

approaches are used in biomarker development, untargeted approaches are typically used in early 

stages of biomarker discovery, followed by targeted approaches for validation and 

implementation (149,403). In contrast, we used global proteomics to expand on the results 

obtained from hypothesis-driven targeted proteomics.  

Our data demonstrate the value of deeper molecular profiling at the protein level. The 

heterogeneity revealed within the genetically pre-selected cohort illustrates that a given genetic 

mutation does not fully predict the activation of the downstream pathway or the ability to target 

it with a given treatment. Network and pathway analysis pointed to greater upstream activation 

of AKT in the CB group, while the NCB group showed a profile of dysregulated protein 

biosynthesis (increased translation, mRNA processing, protein processing) and associated 

changes in energy balance (mitochondrial proteins). The baseline activation of EIF2 signaling 

detected by proteomics was found to represent a potential mechanism of resistance to AKT 
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inhibition, since EIF2 is known to be involved in compensatory pro-survival signaling under 

conditions of AKT inactivation in other models (404).  

Overall, our results provide evidence that resistance to capivasertib may be mediated by 

EIF2 or EIF4 (mTORC1) signaling in the tumours of a small cohort of patients in a Phase II 

clinical trial. While our findings were well-aligned with existing literature, the low sample 

numbers and limitations in the study design posed important caveats to their interpretation. Small 

cohorts are especially problematic in the context of the highly multivariate data generated by -

omics approaches (405). It was crucial to verify the proposed proteomic signatures of treatment 

response, particularly EIF2 and EIF4 signaling activation, in additional pre-clinical models and 

clinical sample sets tested for sensitivity to capivasertib. To facilitate precise and reproducible 

measurement in long-term, larger-scale studies, we urgently needed targeted quantitative assays 

for at least a subset of the proteins of interest.  

Targeted assay development & validation generates fit-for-purpose proteomics assays 

The successful development of quantitative MS-based proteomics approaches to confirm 

targets identified by global proteomics builds on a well-established idea of the “commonly 

applied” biomarker pipeline (296,406), though in reality only about 10% of proteomics 

biomarkers studies ultimately combine these technologies (1). The validated multiplexed 

proteomics panel developed in the second portion of the project was found to be suitable for the 

planned marker verification study.  

Given the significant investment required for assay development and validation, sharing 

of assay data, protocols, methods and standards (e.g., in the form of a kit) may also help other 

researchers in their own verification efforts. Of the 53 validated assays, 25 peptides had existing 

public data and 28 were new to the CPTAC portal (167). This expanded repertoire of assays for 

translational control proteins may be useful for other cancer researchers, but these pathways also 

represent an active research area in many other disciplines. Regulation of translation plays a 

critical role in development, guiding embryogenesis by determining embryonic axis, body 

pattern and cell fate (407). In neurology, translational control, together with modulation of the 

PI3K and ERK pathways, are responsible for balancing long-term potentiation and long-term 

depression to achieve the balance required for synaptic plasticity and memory (407). The 

activation of EIF4 and EIF2 signaling downstream from cell growth and proliferation pathways 

has been tied to a wide variety of pathologies including heart disease and oxidative damage 
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(407). Defects in these pathways are linked to poor glycemic control resulting in metabolic 

diseases and severe genetic syndromes (407,408).  

Marker verification & translational relevance for AKT inhibitor use  

We employed an innovative study model, employing pre-existing cell lines to verify 

findings from clinical samples. The results from the cell line study verify that cancers genetically 

pre-selected for PIK3CA mutations can be further sub-divided into capivasertib response groups, 

based on differing proteomic profiles. Detection of a similar protein expression profile in breast 

cancer cell lines, as measured by orthogonal quantitative methods, adds significant credibility to 

the hypothesis that differences in translational control are strongly correlated to capivasertib 

response in PIK3CA-altered cancer tissues. Moreover, the targeted proteomics data from cell 

lines provided new evidence to pinpoint EIF4/mTORC1 as the driver over EIF2 signalling.  

mTORC1-driven resistance to PI3K pathway inhibitors is now well-characterized 

(119,280). That the mTORC1-driven profile can be readily observed at the protein level using 

the developed assay represents a significant opportunity for translation. Previous research points 

to tenascin or mTOR mutations as a mechanism for mTORC1-driven resistance and this has even 

been detected and effectively targeted in at least one patient (282). However, additional genetic 

mechanisms likely exist. The proteomics panel implemented here may facilitate monitoring 

downstream effects to reliably detect shifts in mTORC1 activity, even in the case of unknown or 

uncharacterized genetic changes.  

Our results provide additional evidence for an mTORC1-driven pathway of resistance 

from the tumours of a small cohort of patients in a Phase II clinical trial. Moreover, we present 

some of the first evidence that this phenomenon could be (i) associated with drug response 

among patients genetically pre-selected for PI3K pathway activation, (ii) present in patients in a 

clinical setting many years before trial enrollment, and (iii) identified on the basis of protein 

quantitation from tumour and cell line samples collected prior to capivasertib exposure.  

The streamlined Geneva cocktail approach captures important variations in drug metabolism 

This portion of the thesis diverged from the focus on capivasertib to address the broader 

question of how to optimize doses for a variety of cancer treatments. Our study reported one of 

the first uses of a simplified single-timepoint Geneva cocktail approach to phenotype the activity 

of CYP1A2 and CYP3A4 in healthy free-living male and female study volunteers (n=10). Our 
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results further demonstrated that glucuronide deconjugation is crucial for CYP3A4 phenotyping 

with this approach. The protocol for DBS analysis represents the first method for on-spot 

denconjugation of glucuronide metabolites in the context of CYP activity monitoring.  The DBS 

method will help facilitate more routine implementation in the clinic to ultimately support dose 

optimization for better cancer therapies. 

The DiMQu induction score created to predict enzyme activation from a dietary 

questionnaire appears to effectively integrate information about inducers and inhibitors, in so far 

as it was correlated with observed metabolic phenotype. The correlation between CYP3A4 

phenotype with the induction score calculated from participants self-reported dietary and 

exposure questionnaire demonstrates the utility of such an approach, but more importantly, the 

need for this approach, given the inter-individual variation observed even among healthy 

volunteers. The link to diet and medication implies strong potential for intra-individual variation 

associated with these intakes. 

Translational relevance of the implemented Geneva cocktail approach  

While previous studies induced enzymatic changes with the administration of inhibitors 

and inducers (376), our findings highlight that common dietary exposures at “ordinary” levels of 

consumption can measurably impact drug metabolism. This clearly demonstrates the need for 

regular phenotypic assessment of changes in CYP activity that are correlated with modifiable 

factors such as diet and medications, which would not be captured in a pharmacogenetics 

approach to precision medicine. While a therapeutic drug monitoring (TDM) paradigm could 

also be used for phenotypic monitoring of cancer drug metabolism, and we have developed such 

approaches before (8), the Geneva cocktail approach has the potential to permit dose titration 

based on “real-time” assessment of CYP activity, prior to administration of a potentially toxic or 

ineffective dose of chemotherapy.   

There is clear evidence for the impact of diverse influences on CYP activity, but 

extensive research will ultimately be required to develop accurate models that meaningfully 

incorporate genetic and non-genetic factors and accurately predict their effects (327).  The 

interplay between contributors to CYP activity is notoriously complex (409). In the meantime, 

we have implemented a streamlined version of the Geneva cocktail approach for direct real-time 

monitoring of CYP activation that is simple, cost-effective, safe, and avoids potential challenges 

associated with patient privacy and genetic data. The phenotyping method has further been 
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successfully translated to dried blood spots for ease of implementation in a busy hospital setting 

and use in large-scale clinical studies. Future work should implement DBS sampling together 

with β-glucuronidase treatment to measure CYP activity in a broader cohort of cancer patients. 

Transfer of the reported assay to DBS will facilitate sample-collection and storage, while 

minimizing patient discomfort.  

Next steps: validating & extending the work 

Further investigating of mechanisms of resistance in cell culture & other pre-clinical models 

Research using the developed targeted proteomics assays in breast cancer cell lines is still 

ongoing. Additional replicates of from the timecourse studies will be analyzed to supplement the 

existing data; this will provide more reliable results given the high degree of variability observed 

between passages of the same cell line. The remaining samples contain additional replicates 

prepared in parallel from matching passages. It is hoped that the full suite of data will generate or 

confirm additional insights concerning the markers of interest.  

Moreover, we aim to apply a similar approach in a new model by repeatedly sampling a 

sensitive cell line (e.g., MCF-7) cultured over an extended period in the presence of capivasertib 

and regularly repeating cytotoxicity testing. This will allow us to test whether changes in the 

concentrations of putative markers may be temporally related to the development of acquired 

resistance, which would provide very strong evidence for a causal relationship and help to 

validate the proposed proteomic signature. Testing of additional combination therapies might 

also point to suitable co-targeting strategies to confirm and address these mechanisms of 

resistance.  

Further research in cell lines could include studies to investigate whether the profile 

associated with sensitivity/resistance is conserved in different cancer types (e.g., prostate), 

cancer subtypes (e.g. TNBC), and those with different mutational backgrounds (e.g., without 

detectable PI3K pathway alterations). Additional work is also needed to determine whether the 

observed treatment response profile can be extended to other cancer types, mutational contexts, 

or combination treatments.  

Other more sophisticated pre-clinical models, such as xenograft mouse models or patient-

derived xenografts (PDX), are also of interest to confirm the findings. PDX models, distinctively 

formed by engraftment, recapitulate at least a portion of the original tumour’s structure, 



 

 153 

microenvironment, and heterogeneity (410). Like cell lines, aggressive and advanced forms of 

disease are over-represented in xenograft models, and immune context is missing (410). 

However, PDX provide for a generally better representation of clinical disease. Were it not for 

the resource-intensive nature of this approach, the cultivation of 3-dimensional tumour tissue 

could also be a useful tool for assay characterization; for example, this might facilitate 

experiments to determine how FFPE preservation impacts protein quantitation versus fresh-

frozen tissue. Answering this question might help direct which assays to continue optimizing for 

use in clinical samples. 

Enhancing protein quantitation methods for compatibility with clinical sample types 

Analysis of stored tissues of JGH patients revealed that our EvoSep-PRM-MS method was 

insufficient to quantify most of the analytes in long-stored FFPE cores and slices. One important 

next step is therefore to further optimize the method so that more of the proteins of interest can 

be quantified in the linear range from this sample type. This may require the use of alternative 

chromatography systems (e.g., nLC) or a different mass spectrometer (e.g., TimsTOF) to 

enhance sensitivity. The upgraded assays should then be fully validated according to CPTAC 

guidelines prior to attempting further clinical sample analysis. Once the assays are well-

characterized, the intra- and inter-tumour heterogeneity study can be repeated in the hopes of 

achieving a more informative result based on the coverage of more proteins. Given our existing 

findings from proteins quantified in cores versus slices, it is recommended to use exclusively 

cores for future sampling. Depending on the results, we can then select a subset of assays with 

the most suitable performance in clinical samples for further use. Further feature reduction 

should also be considered to eliminate redundant information from strongly correlated protein 

concentrations and facilitate future data analysis.  

Future clinical applications 

Long-term, large-scale randomized prospective studies will ultimately be required to firmly 

establish the utility of any identified marker for predicting treatment response in a specified 

setting. Capivasertib is currently being evaluated in Phase III trials as part of combination 

therapies in prostate cancer (411,412), triple-negative breast cancer (214,215), and HR+  breast 

cancer (195,216,217) Recent primary analysis of the CAPItello-291 Phase III trial 

(NCT04305496) demonstrates that treatment with capivasertib + fulvestrant extends PFS in 
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patients with HR+/HER2- breast cancers with inadequate response to endocrine therapy and 

prolongs overall survival(218). Evidence of treatment benefit was found in the overall 

population, including patients with and without identifiable AKT pathway alterations (413). As 

capivasertib moves into earlier stages of treatment and is prescribed to a broader group of 

patients, it will be necessary to validate the findings in contemporaneous tissues, as in a biopsy-

driven trial (414).  

Successful implementation of a practical, feasible Geneva cocktail approach at the Jewish 

General Hospital will enable future studies specifically aimed at: (i) assessing associations 

between CYP3A4 and CYP1A2 activity and cancer treatment outcomes, (ii) understanding 

interactions with Natural Health Products that patients commonly use in parallel with treatment 

regimens, and (iii) optimizing treatment doses through precision dosing. While the main goal of 

was to lay groundwork to enable routine monitoring, the newly emerging role of CYPs in 

oncogenesis also suggests a possible application the assay in precision medicine to not only dose, 

but actually to help select appropriate targeted treatments (415).  

Synthesis & emerging themes 

The distinct value of proteomics data in precision medicine 

For nearly two decades, we have seen the rapid emergence of precision medicine, which at 

first produced evidence that specific genomic variants found in subsets of patient tumours 

conferred remarkable clinical sensitivity to particular targeted treatments  (28,31). When the 

limits of this approach became evident, studies like the WINTHER trial and others demonstrated 

the added value of transcriptomic data (53). Pre-clinical and clinical data have since 

demonstrated that protein levels can diverge from transcriptomic (mRNA) data and can assist in 

guiding choice of therapy (137,228). The overarching hypothesis of this thesis was that 

proteomics approaches could supplement more these existing approaches to advance precision 

oncology. Our data clearly demonstrate the value of deeper molecular profiling at the protein 

level. We found that even in the context of an activating genetic mutation, downstream pathway 

activity varies sufficiently to alter treatment response.  

This research also repeatedly established the importance of factors outside of the genome 

in modulating treatment response. The example of EIF2 signalling – in which varied cellular 

stress conditions rapidly induce uncoupling of the transcriptome and translatome – is one salient 
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example. In the context of the Geneva cocktail assay, we similarly illustrated how the activity of 

CYPs responsible for metabolizing the vast majority of cancer drugs (thereby regulating their 

effectiveness and toxicity) is modified in response to dietary exposures that do nothing to alter 

the genome.  

Moreover, the study results demonstrate how multiple markers will likely be needed to 

adequately predict treatment response to many targeted agents. Beyond the notion of genetic 

versus protein markers, the future of precision medicine appears to depend on our ability to truly 

achieve “-omics-level” approaches that incorporate signals from multiple targets and multiple 

methodologies to elucidate tumour biology for optimizing therapy decisions. This is a crucial 

reason to continue prioritizing the development of true proteomics approaches for precision 

medicine, as opposed to solely traditional antibody-based protein quantitation that is best suited 

for fewer targets.  

Evolving approaches to biomarker-based treatment strategies  

Spotlight on resistance & rational combination therapies 

With respect to companion diagnostics, one key theme emerging from this work is that 

identifying potential markers of resistance may prove more important for patient selection than 

markers of sensitivity. While many cancer cells exploit the PI3K pathway (even in the absence of 

detectable mutations), some are also primed to subvert AKT inhibition. This is in line with the 

challenges facing other targeted agents, where outcomes remain highly variable, with some 

patients showing dramatic responses and others showing much less efficacy. Even tumours that 

are initially sensitive to targeted agents inevitably develop resistance.  

It is not yet clear whether this is due exclusively to direct molecular mechanisms of 

resistance or whether differences and changes in drug metabolism may also contribute. CYP3A4 

is often over-expressed in cancer tissue and is a proposed mechanism of resistance to cancer 

treatments including TKIs (416-418). The recent awareness that capivasertib inhibits CYP3A4 

(419), raises the question of whether capivasertib’s effects on CYPs could be one mechanism by 

which it prevents resistance to other therapies or re-sensitizes patients to drugs to which they 

have previously developed resistance (358,420). 

In line with the observed challenges with resistance, there is an increasing emphasis on 

rational, evidence-based combination therapies to improve response rates and extend treatment 
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longevity. There is reason to believe that combination therapy is required to optimize efficacy for 

capivasertib, particularly in cancers with acquired resistance to hormone or HER2-directed 

therapies (219). In a trial of patients with breast tumours with AKT1 or other pathway alterations, 

combining capivasertib with fulvestrant gave greater ORRs up to 47% (211,216,217). The 

observation of a pre-treatment profile associated with future resistance in the NCB group, which 

may not be adequately addressed by AKT inhibition alone, suggests that adding agents targeting 

EIF2 or EIF4 signaling could be useful (421,422). 

Expanding applications to Inform existing therapeutic regimens 

Companion diagnostics are increasingly being used to facilitate new drug development and 

optimize clinical trials, but there is still an unmet need to optimize the use of existing treatments 

(423). While studies suggest that >80% of patient tumours carry “clinically actionable” genomic 

alterations (76), most treatment decisions are still guided by conventional pathology and clinical 

presentation. Few patients receive molecular subtyping or targeted therapies outside of clinical 

trials (25). The secondary analysis of samples from a clinical trial as in this project is one route 

by which proteomics can be implemented to make better use of previously-developed therapies. 

In a second and more dramatic example, the Geneva cocktail assay shows how the 

assessment of protein activity can be made useful and practical for “routine” clinical decision-

making. Eventual implementation of such an assay for routine use could have profound impacts 

on the practice of medical oncology. Inter-patient variation in treatment side effect profile is 

commonly attributed to off-target effects, but drug metabolism likely also contributes. For 

instance, while the pathogenesis of hand-foot syndrome (HFS) in response to some 

chemotherapies is not well understood, there are several lines of evidence that drug metabolism 

at least contributes to risk (424,425). The practicing oncologist will tell you that HFS often 

precedes a robust treatment response (426), which may also signal a higher effective dose in 

those patients. At present, oncologists are often left to guess at patient counseling and dose 

adjustments based on limited information (e.g., is that herbal medicine harmless? What dose 

should we give to someone on long-term antibiotic therapy?). Routine clinical measurement of 

CYP activity will help to take some of the guesswork out of medical oncology and enable 

evidence-based decision-making throughout treatment.  
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Enduring challenges in precision medicine  

Emphasis on clinically-relevant standards 

While this work highlights many advances in precision medicine, it also reflects several 

hurdles. As disruptive -omics technologies become increasingly accessible and enter the world of 

medicine, we must work to avoid the pitfalls of the past. Technical standardization and validation 

are core prerequisites in this endeavour (39,59). The tools developed by CPTAC to support 

method standardization, assay performance characterization, and data exchange are key to 

protect the future of proteomics against crucial errors (308). Guidelines for Tier 2 proteomics 

assays have secured the selectivity, repeatability, sensitivity, and reproducibility of biomarker 

candidate evaluation (149,427).  

Tier 1 assays will be needed to generate medically-actionable information in a format 

compatible with regulatory scrutiny (149). In 2021, the Clinical Laboratory Standards Institute 

(CLSI) introduced the new Guideline C64 for addressing quantitative measurement of proteins 

and peptides by mass spectrometry. This provides a vital waypoint toward Tier 1 assays; 

approval under CLSI was the same path forged for initial licensure of multiplex genomic panels 

like OncotypeDx. There is hope that the new guidelines serve to resolve a significant regulatory 

gap (39,59) while assuring the safety, reliability, and credibility that proteomics technologies 

need to reach the clinic (163). These guidelines may eventually re-open the door to FDA 

approval of proteomics assays (149). However, for the moment, Tier 1 assays remain largely on 

the horizon.  

Demand for biological insights to validate results 

In addition to technical and analytical validity, there is a strong need to deliver 

biologically- and medically-valid results through the use of orthogonal approaches, independent 

cohorts, and new models. Evidence suggests that evaluating of markers in a combination of 

complementary models and different sample types, as we have done in this project, increases the 

likelihood of identifying valid markers (296). The quest for validity also comes with an 

increasing impetus to deliver biological insights that logically substantiate new biomarkers and 

treatment strategies. This lesson was highlighted for the field of translational proteomics in the 

aftermath of the OvaCheck debacle, where the peaks used as markers were not even identified, 

let alone linked meaningfully to cancer prognosis (61,163). However, there is increasing support 
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for the tenet of biological foundations to back molecularly-targeted approaches across multiple 

oncology settings (428). The work performed in this project showcases proteomics’ ability to 

generate the desired in-depth molecular portraits that enhance our understanding of disease.  

Escaping the quicksand of big data  

Another aspect of validation concerns the use of appropriate data analysis pipelines, 

suitable statistical approaches, and translation of results. As the field of high-throughput high-

coverage -omics has grown, so have the challenges of analysing, storing, standardizing and 

interpreting the associated data (429). There is a need for new statistical tools and standards 

better suited to the analysis of highly multivariate data (430) (405). Scientists, translational 

researchers, and clinicians all need updated training and resources on the relevant approaches 

well as their important limitations (430).  

In almost all areas of science and medicine, we are now struggling to overcome data 

overload. This is especially true in the field of translational cancer research where genomics 

technologies are expanding faster than informatics workflows (429). Systems biology tools, like 

Ingenuity Pathway Analysis used in this project, are beginning to emerge to integrate previously 

intractable multi-omics data. However, as demonstrated here, such software is only as good as 

the quality of their databases. The most important data resources in cancer research, like 

COSMIC and CPTAC, still invest massive effort in careful manual curation. Artificial 

intelligence (AI) is increasingly being used to create algorithms that bring order to overwhelming 

datasets (430). However, the “black box” of AI approaches considerably limits how these 

algorithms may be applied in clinical settings. The integration and interpretation of multi-marker 

molecular signatures therefore remains a major challenge. In parallel to the learnings from early 

proteomics assays, the ability to tie a given algorithm to its biological foundations should be 

adopted as a reasonable check and balance. 

Obtaining relevant samples 

One approach to improving statistical power is to tackle larger sample sets. However, 

obtaining timely clinically relevant samples for molecular profiling remains a significant 

stumbling block. The patients with advanced and metastatic cancers receiving experimental 

drugs are those for whom surgery is no longer a viable therapeutic option. Therefore tumour 

samples from these patients are rarely contemporaneous. Biopsies pose risk to the patient and 
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generate limited material. In the field of tumour proteomics specifically, there is still an unmet 

need for standardized universal protocols to sample FFPE and methods to account for tumour 

heterogeneity with sampling techniques or concentration normalization strategies. While 

alternative sampling approaches like liquid biopsy may enable better timely and sequential 

sampling, they remain bounded by what can be detected at circulating levels (431). In a broader 

sense, biomarker studies in this population engender specific weaknesses: characterizing clinical 

benefit can be difficult and distinguishing specific treatment-response markers from general 

prognostic ones is even harder. 

Translational research throughout the drug development lifecycle 

The paradox of biomarker development (and pharmacovigilance, for that matter) is that 

despite lofty ideas about how biomarkers could expedite and improve drug approvals, most 

research on drugs doesn’t happen until after clinical approval. During clinical development there 

are restrictions on information sharing, a narrow focus of study to what is commercially relevant, 

and limited access to both the drug itself and clinical samples. After approval is when more 

opportunities for characterization and publication of data arise (432). 

To expand the utility of molecular subtypes, we need to incorporate molecular subtyping 

into all stages of the clinical research process, from early development to routine clinical care. 

This requires optimal selection of biomarkers and assembly into panels that address the most 

clinical cases. The resulting assays must be affordable, practical in terms of turnaround time and 

sample availability, de-risked in terms of material consumption and clinical utility, readily 

interpretable and clearly actionable. Such improvements will justify wider use of molecular 

subtyping even in “non-dire” clinical scenarios. In turn, the adoption of molecular subtyping 

outside of clinical trials will generate the data to inform interpretation and shape the future of 

clinical decision-making in more therapeutic settings.  
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Conclusion 

 

Outcomes 

The original objectives of this project were (i) to improve the use of existing targeted 

therapies through more comprehensive, enriched molecular profiles, and (ii) to use these profiles 

to improve our understanding of cancer. The novel findings of this research meet these 

objectives through the identification of novel putative proteomic markers of capivasertib 

resistance. In addition, the results provide some of the first evidence that there is a profile of 

AKT inhibitor resistance that can be detected in patients many years before trial enrollment or 

exposure to the drug. Our analysis tied this profile to differences in translational control 

downstream from mTORC1. The results demonstrate how proteomics might be useful to further 

segment a genetically pre-selected clinical cohort in terms of predicted treatment response. 

Quantitation of these novel markers by an orthogonal method in independent cell line models 

reinforced and clarified their association with capivasertib resistance.  

The development, validation, and application of fit-for-purpose technologies throughout 

the project enabled effective discovery, successful validation, and will continue to facilitate 

further work in this area. The Geneva cocktail study further provided an example of how mass 

spectrometry-based -omics methods can be tailored for clinical implementation, and how protein 

activity measurements reflect variations in drug metabolism that could not be captured by a 

genome-focused approach. Together, the work demonstrates the value and feasibility of modern 

fit-for-purpose proteomic and mass spectrometry technologies in precision oncology for 

improving patient selection, guiding precision dosing, and generating novel biological insights. 

Outlook & future directions: innovative models, markers & trial designs  

The popular book “the Emperor of All Maladies” chronicles the recent history of incredible 

and rapid advances in cancer research and treatment, stemming in large part from breakthroughs 

since the late 1940’s (433). Discoveries over the last 70 years have transformed cancer from a 

hopeless mysterious illness hidden behind closed doors to a well understood and often treatable 

disease. However, in spite of this enormous progress, author Dr. Mukherjee rightly questions 

whether we can ever truly win the fight against this supremely resilient disease (433). 
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As we venture into the next generation of cancer research, many of the gains being made 

are more incremental. Many of the most recently approved cancer therapies have only modestly 

improved prognosis and any prolonged survival time may be spent suffering from adverse 

effects. In fact, when the additional time spent in hospital receiving treatment or due to drug-

induced illness is taken into account, many drugs that improve overall survival actually fail to 

offer more “home days” for patients and their families (434). This is true for many new 

chemotherapies, radiotherapies, and immunotherapies, all of which must be delivered 

intravenously in hospital with close supervision. The oral route of administration and generally 

better tolerability of small molecule targeted treatments therefore represents an unparalleled 

opportunity to deliver meaningful outcomes for patients.  

We cannot afford to ignore this potential. It is imperative that we continue to advance the 

molecular subtypes of disease and clinically actionable biomarkers needed to establish a role for 

molecularly targeted treatments in routine clinical care. This effort will benefit from enhanced 

models of disease, augmented biomarker strategies, and state-of-the-art clinical trial designs. 

New pipelines that enable discovery in real-world patient populations may help to identify more 

reliable biomarker candidates. Diversified disease models are also under development to better 

replicate the tumour microenvironment and immune functions (32). Automation and the 

systematic characterization of research materials are making it increasingly feasible to 

implement massive panels consisting of thousands of cell lines for improved validation (32).  

Implementing signatures or scores derived from multiple markers is similarly expected to 

increase the sensitivity, specificity, and robustness of future companion diagnostics. Bringing 

together genomics, proteomics, and metabolomics will provide multi-layer signatures to 

determine treatment choice and dose. This is well demonstrated by recent advancements in 

proteogenomics, which is yielding fresh insights into molecular biology, illuminating new drug 

targets, and generating novel biomarkers for disease detection, surveillance and monitoring 

(160). Overcoming big data challenges will be critical to the success of these approaches.  

Where trials of rare cancers or segmented populations previously depended on large-scale 

multi-site coordination to achieve sufficient patient numbers (12), recent innovations in clinical 

trial design are helping to power the next set of breakthroughs. Basket trials are transforming our 

ability to deploy biomarkers in clinical studies. New forms of sampling, such as liquid biopsy are 

also enabling more timely biomarker assessment and the greater use of markers for monitoring 
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(32).  Early, informed dose optimization may also help potential cancer therapies move through 

the approval process by ensuring maximal efficacy can be obtained without encountering safety 

issues. The introduction of “precision dosing” studies into the drug development pipeline could 

help ensure that “special populations” (e.g., elderly patients, patients with co-morbidities) that 

are commonly excluded from trials but need NTI drugs can reliably receive evidence-informed 

care (321). The use of co-clinical trials where patients are treated in parallel with a personalized 

PDX model of their disease offer an entirely new framework for treatment selection and 

evaluation (32).  

Targeted treatments will ultimately be key to the next big horizon in cancer: addressing the 

pool of patients with “hard-to-treat” disease and rare cancer subtypes who benefit less from 

conventional treatments. Improving treatments and outcomes for patients with rare cancers 

requires an emphasis on combination therapies, deep biological insights into individual disease, 

and guiding biomarkers (12). Given the substantial investment already committed to develop 

these new agents, it is well justified to continue our efforts to perfect their use. New research 

tools, including proteomics, will help to light the way on this journey. 

 
 



 

 163 

Bibliography 

 
1. Sobsey CA, Ibrahim S, Richard VR, Gaspar V, Mitsa G, Lacasse V, et al. Targeted and 

Untargeted Proteomics Approaches in Biomarker Development. Proteomics 
2020;20(9):e1900029 doi 10.1002/pmic.201900029. 

2. Froehlich BC, Popp R, Sobsey CA, Ibrahim S, LeBlanc AM, Mohammed Y, et al. 
Systematic optimization of the iMALDI workflow for the robust and straightforward 
quantification of signaling proteins in cancer cells. PROTEOMICS–Clinical Applications 
2020;14(5):2000034. 

3. Froehlich BC, Popp R, Sobsey CA, Ibrahim S, LeBlanc A, Mohammed Y, et al. A 
multiplexed, automated immuno-matrix assisted laser desorption/ionization mass 
spectrometry assay for simultaneous and precise quantitation of PTEN and p110alpha in 
cell lines and tumor tissues. Analyst 2021;146(21):6566-75 doi 10.1039/d1an00165e. 

4. Sobsey CA, Popp R, Ibrahim S, Froehlich BC, Aguilar-Mahecha A, Basik M, et al. 
Abstract B21: Protein quantitation assays for Akt, PI3K p110α, and PTEN to assess PI3K 
pathway activity in tumor tissue. Molecular Cancer Research 
2020;18(10_Supplement):B21-B. 

5. Ibrahim S, Sobsey CA, Popp R, Zahedi RP, Batist G, Borchers CH. Abstract P4-10-20: 
Protein quantitation assays for AKT and PTEN to better understand sensitivity and 
resistance of breast cancer patients to treatment with AKT inhibitor capivasertib. Cancer 
Research 2020;80(4_Supplement):P4-10-20-P4-10-20. 

6. Sobsey CA, Froehlich B, Batist G, Borchers CH. Immuno-MALDI-MS for Accurate 
Quantitation of Targeted Peptides from Volume-Restricted Samples. Neuronal Cell 
Death: Springer; 2022. p. 203-25. 

7. Batist G, Sobsey CA, Mitsa G, Borchers C. WIN Symposium 2022 - Abstract No: 1 
Beyond the tip of the iceberg: Proteomic analysis in colon and breast cancer. J 
Immunother Precis Oncol 2022;5(4):118-60 doi 10.36401/jipo-22-x4. 

8. Gaspar VP, Ibrahim S, Sobsey CA, Richard VR, Spatz A, Zahedi RP, et al. Direct and 
Precise Measurement of Bevacizumab Levels in Human Plasma Based on Controlled 
Methionine Oxidation and Multiple Reaction Monitoring. ACS Pharmacol Transl Sci 
2020;3(6):1304-9 doi 10.1021/acsptsci.0c00134. 

9. Allen L, O’Connell A, Kiermer V. How can we ensure visibility and diversity in research 
contributions? How the Contributor Role Taxonomy (CRediT) is helping the shift from 
authorship to contributorship. Learned Publishing 2019;32(1):71-4 doi 
https://doi.org/10.1002/leap.1210. 

10. Canadian Cancer Statistics Advisory Committee in collaboration with the Canadian 
Cancer Society SCatPHAoC. Canadian Cancer Statistics 2021. cancer.ca/Canadian-
Cancer-Statistics-2021-EN2021 November 2021. 

https://doi.org/10.1002/leap.1210


 

 164 

11. Gatta G, van der Zwan JM, Casali PG, Siesling S, Dei Tos AP, Kunkler I, et al. Rare 
cancers are not so rare: the rare cancer burden in Europe. Eur J Cancer 
2011;47(17):2493-511 doi 10.1016/j.ejca.2011.08.008. 

12. Ashley D, Thomas D, Gore L, Carter R, Zalcberg JR, Otmar R, et al. Accepting risk in 
the acceleration of drug development for rare cancers. The Lancet Oncology 
2015;16(4):e190-e4 doi https://doi.org/10.1016/S1470-2045(14)71153-2. 

13. Manegold C. Current advancements in hard-to-treat cancers. American Journal of Cancer 
2005;4:105-13. 

14. Gupta A, Eisenhauer EA, Booth CM. The Time Toxicity of Cancer Treatment. J Clin 
Oncol 2022;40(15):1611-5 doi 10.1200/JCO.21.02810. 

15. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat 
Rev Clin Oncol 2018;15(2):81-94 doi 10.1038/nrclinonc.2017.166. 

16. Aggelis V, Johnston SRD. Advances in Endocrine-Based Therapies for Estrogen 
Receptor-Positive Metastatic Breast Cancer. Drugs 2019;79(17):1849-66 doi 
10.1007/s40265-019-01208-8. 

17. Chetta P, Zadra G. Metabolic reprogramming as an emerging mechanism of resistance to 
endocrine therapies in prostate cancer. Cancer Drug Resistance 2021;4(1):143. 

18. Fiorica F, Buttigliero C, Grigolato D, Muraro M, Turco F, Munoz F, et al. Addition of 
New Androgen Receptor Pathway Inhibitors to Docetaxel and Androgen Deprivation 
Therapy in Metastatic Hormone-Sensitive Prostate Cancer: A Systematic Review and 
Metanalysis. Curr Oncol 2022;29(12):9511-24 doi 10.3390/curroncol29120747. 

19. Baudino TA. Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr 
Drug Discov Technol 2015;12(1):3-20 doi 10.2174/1570163812666150602144310. 

20. Scheetz L, Park KS, Li Q, Lowenstein PR, Castro MG, Schwendeman A, et al. 
Engineering patient-specific cancer immunotherapies. Nat Biomed Eng 2019;3(10):768-
82 doi 10.1038/s41551-019-0436-x. 

21. Paramita DK, Hutajulu SH, Syifarahmah A, Sholika TA, Fatmawati S, Aning S, et al. 
BCR-ABL Gene Transcript Types of Patients with Chronic Myelogenous Leukemia in 
Yogyakarta, Indonesia. Asian Pac J Cancer Prev 2020;21(6):1545-50 doi 
10.31557/APJCP.2020.21.6.1545. 

22. Kharas MG, Fruman DA. ABL oncogenes and phosphoinositide 3-kinase: mechanism of 
activation and downstream effectors. Cancer Res 2005;65(6):2047-53 doi 10.1158/0008-
5472.CAN-04-3888. 

23. Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res 
Pract 2014;2014:357027 doi 10.1155/2014/357027. 

24. Westin JR, Kantarjian H, Kurzrock R. Treatment of chronic myelogenous leukemia as a 
paradigm for solid tumors: how targeted agents in newly diagnosed disease transformed 

https://doi.org/10.1016/S1470-2045(14)71153-2


 

 165 

outcomes. Am Soc Clin Oncol Educ Book 2012(32):179-85 doi 
10.14694/EdBook_AM.2012.32.60. 

25. Schwartzberg L, Kim ES, Liu D, Schrag D. Precision Oncology: Who, How, What, 
When, and When Not? Am Soc Clin Oncol Educ Book 2017;37(37):160-9 doi 
10.1200/EDBK_174176. 

26. Cohen P, Cross D, Janne PA. Kinase drug discovery 20 years after imatinib: progress and 
future directions. Nat Rev Drug Discov 2021;20(7):551-69 doi 10.1038/s41573-021-
00195-4. 

27. Lim SH, Lee JY, Sun JM, Ahn JS, Park K, Ahn MJ. Comparison of clinical outcomes 
following gefitinib and erlotinib treatment in non-small-cell lung cancer patients 
harboring an epidermal growth factor receptor mutation in either exon 19 or 21. J Thorac 
Oncol 2014;9(4):506-11 doi 10.1097/JTO.0000000000000095. 

28. Camidge DR, Bang YJ, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB, et al. Activity 
and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: 
updated results from a phase 1 study. Lancet Oncol 2012;13(10):1011-9 doi 
10.1016/S1470-2045(12)70344-3. 

29. Pacheco JM, Gao D, Smith D, Purcell T, Hancock M, Bunn P, et al. Natural history and 
factors associated with overall survival in stage IV ALK-rearranged non–small cell lung 
cancer. Journal of Thoracic Oncology 2019;14(4):691-700. 

30. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition 
of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010;363(9):809-19 
doi 10.1056/NEJMoa1002011. 

31. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved 
survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 
2011;364(26):2507-16 doi 10.1056/NEJMoa1103782. 

32. Huang M, Shen A, Ding J, Geng M. Molecularly targeted cancer therapy: some lessons 
from the past decade. Trends Pharmacol Sci 2014;35(1):41-50 doi 
10.1016/j.tips.2013.11.004. 

33. Shahid K, Khalife M, Dabney R, Phan AT. Immunotherapy and targeted therapy-the new 
roadmap in cancer treatment. Ann Transl Med 2019;7(20):595 doi 
10.21037/atm.2019.05.58. 

34. Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, et al. Breast cancer intrinsic subtype 
classification, clinical use and future trends. Am J Cancer Res 2015;5(10):2929-43. 

35. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression 
patterns of breast carcinomas distinguish tumor subclasses with clinical implications. 
Proc Natl Acad Sci U S A 2001;98(19):10869-74 doi 10.1073/pnas.191367098. 



 

 166 

36. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular 
portraits of human breast tumours. Nature 2000;406(6797):747-52 doi 
10.1038/35021093. 

37. Prat A, Pineda E, Adamo B, Galvan P, Fernandez A, Gaba L, et al. Clinical implications 
of the intrinsic molecular subtypes of breast cancer. Breast 2015;24 Suppl 2:S26-35 doi 
10.1016/j.breast.2015.07.008. 

38. Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to 
breast cancer classification, prognostication and prediction: a retrospective of the last 
decade. J Pathol 2010;220(2):263-80 doi 10.1002/path.2648. 

39. Fuzery AK, Levin J, Chan MM, Chan DW. Translation of proteomic biomarkers into 
FDA approved cancer diagnostics: issues and challenges. Clin Proteomics 2013;10(1):13 
doi 10.1186/1559-0275-10-13. 

40. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the 
Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 2019;47(D1):D941-D7 
doi 10.1093/nar/gky1015. 

41. Schmidt C. Mammaprint Reveals Who Can Skip Chemotherapy for Breast Cancer. J Natl 
Cancer Inst 2016;108(8) doi 10.1093/jnci/djw197. 

42. Normanno N, Apostolidis K, de Lorenzo F, Beer PA, Henderson R, Sullivan R, et al. 
Cancer Biomarkers in the era of precision oncology: Addressing the needs of patients and 
health systems. Semin Cancer Biol 2022;84:293-301 doi 
10.1016/j.semcancer.2021.08.002. 

43. Lao VV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol 
2011;8(12):686-700 doi 10.1038/nrgastro.2011.173. 

44. Jones PA. The DNA methylation paradox. Trends Genet 1999;15(1):34-7 doi 
10.1016/s0168-9525(98)01636-9. 

45. Karami Fath M, Azargoonjahromi A, Kiani A, Jalalifar F, Osati P, Akbari Oryani M, et 
al. The role of epigenetic modifications in drug resistance and treatment of breast cancer. 
Cell Mol Biol Lett 2022;27(1):52 doi 10.1186/s11658-022-00344-6. 

46. Iwamoto T, Pusztai L. Predicting prognosis of breast cancer with gene signatures: are we 
lost in a sea of data? Genome medicine 2010;2(11):1-4. 

47. Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and 
therapeutic targets. Ann N Y Acad Sci 2015;1353(1):72-88 doi 10.1111/nyas.12758. 

48. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA 
expression profiles classify human cancers. Nature 2005;435(7043):834-8 doi 
10.1038/nature03702. 



 

 167 

49. Izzotti A, Carozzo S, Pulliero A, Zhabayeva D, Ravetti JL, Bersimbaev R. Extracellular 
MicroRNA in liquid biopsy: applicability in cancer diagnosis and prevention. Am J 
Cancer Res 2016;6(7):1461-93. 

50. Kumar S, Prajapati KS, Singh AK, Kushwaha PP, Shuaib M, Gupta S. Long non-coding 
RNA regulating androgen receptor signaling in breast and prostate cancer. Cancer Lett 
2021;504:15-22 doi 10.1016/j.canlet.2020.11.039. 

51. Mirzaei S, Paskeh MDA, Hashemi F, Zabolian A, Hashemi M, Entezari M, et al. Long 
non-coding RNAs as new players in bladder cancer: Lessons from pre-clinical and 
clinical studies. Life Sciences 2022;288:119948. 

52. Sun Z, Jing C, Xiao C, Li T. Long Non-Coding RNA Profile Study Identifies an 
Immune-Related lncRNA Prognostic Signature for Kidney Renal Clear Cell Carcinoma. 
Front Oncol 2020;10:1430 doi 10.3389/fonc.2020.01430. 

53. Rodon J, Soria JC, Berger R, Miller WH, Rubin E, Kugel A, et al. Genomic and 
transcriptomic profiling expands precision cancer medicine: the WINTHER trial. Nat 
Med 2019;25(5):751-8 doi 10.1038/s41591-019-0424-4. 

54. Weidenbusch B, Richter GHS, Kesper MS, Guggemoos M, Gall K, Prexler C, et al. 
Transcriptome based individualized therapy of refractory pediatric sarcomas: feasibility, 
tolerability and efficacy. Oncotarget 2018;9(29):20747-60 doi 
10.18632/oncotarget.25087. 

55. Worst BC, van Tilburg CM, Balasubramanian GP, Fiesel P, Witt R, Freitag A, et al. 
Next-generation personalised medicine for high-risk paediatric cancer patients - The 
INFORM pilot study. Eur J Cancer 2016;65:91-101 doi 10.1016/j.ejca.2016.06.009. 

56. Asleh K, Lluch A, Goytain A, Barrios C, Wang XQ, Herranz J, et al. Correlative analysis 
of RNA biomarkers for adjuvant capecitabine benefit in the CIBOMA/2004-01phase III 
clinical trial of triple negative breast cancer patients. Cancer Research 
2022;82(12_Supplement):5271-. 

57. Tsimberidou AM, Fountzilas E, Bleris L, Kurzrock R. Transcriptomics and solid tumors: 
The next frontier in precision cancer medicine. Semin Cancer Biol 2022;84:50-9 doi 
10.1016/j.semcancer.2020.09.007. 

58. Panis C, Pizzatti L, Souza GF, Abdelhay E. Clinical proteomics in cancer: Where we are. 
Cancer Lett 2016;382(2):231-9 doi 10.1016/j.canlet.2016.08.014. 

59. Boys EL, Liu J, Robinson PJ, Reddel RR. Clinical applications of mass spectrometry-
based proteomics in cancer: Where are we? Proteomics 2023;23(7-8):e2200238 doi 
10.1002/pmic.202200238. 

60. Duraiyan J, Govindarajan R, Kaliyappan K, Palanisamy M. Applications of 
immunohistochemistry. J Pharm Bioallied Sci 2012;4(Suppl 2):S307-9 doi 
10.4103/0975-7406.100281. 



 

 168 

61. Zhang Z, Chan DW. The road from discovery to clinical diagnostics: lessons learned 
from the first FDA-cleared in vitro diagnostic multivariate index assay of proteomic 
biomarkers. Cancer Epidemiol Biomarkers Prev 2010;19(12):2995-9 doi 10.1158/1055-
9965.EPI-10-0580. 

62. Reilly GP, Gregory DA, Scotti DJ, Lederman S, Neiman WA, Sussman S, et al. A real-
world comparison of the clinical and economic utility of OVA1 and CA125 in assessing 
ovarian tumor malignancy risk. Journal of Comparative Effectiveness Research 
2023;12(6):e230025. 

63. Dunton CJ, Eskander RN, Bullock RG, Pappas T. Low-risk multivariate index assay 
scores, physician referral and surgical choices in women with adnexal masses. Current 
medical research and opinion 2020;36(12):2079-83. 

64. Ueland F, DeSimone C, Seamon L, Miller R, Goodrich S, Podzielinski I, et al. OVA1 has 
high sensitivity in identifying ovarian malignancy compared with preoperative 
assessment and CA-125. Gynecologic Oncology 2011;120:S73. 

65. Boja ES, Rodriguez H. The path to clinical proteomics research: integration of 
proteomics, genomics, clinical laboratory and regulatory science. Korean J Lab Med 
2011;31(2):61-71 doi 10.3343/kjlm.2011.31.2.61. 

66. Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, et al. Small molecules in targeted 
cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target 
Ther 2021;6(1):201 doi 10.1038/s41392-021-00572-w. 

67. Jin J, Wu X, Yin J, Li M, Shen J, Li J, et al. Identification of Genetic Mutations in 
Cancer: Challenge and Opportunity in the New Era of Targeted Therapy. Frontiers in 
Oncology 2019;9 doi 10.3389/fonc.2019.00263. 

68. Bittenbring JT, Thurner L, Ahlgrimm M, Stilgenbauer S, Bewarder M, Kaddu-Mulindwa 
D. Cost-effectiveness of precision cancer medicine-current challenges in the use of next 
generation sequencing for comprehensive tumour genomic profiling and the role of 
clinical utility frameworks (Review). Molecular and Clinical Oncology 2022;16(1) doi 
https://doi.org/10.3892/mco.2021.2453. 

69. Ruggles KV, Tang Z, Wang X, Grover H, Askenazi M, Teubl J, et al. An Analysis of the 
Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events 
in Cancer. Mol Cell Proteomics 2016;15(3):1060-71 doi 10.1074/mcp.M115.056226. 

70. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic 
and transcriptomic analyses. Nature reviews genetics 2012;13(4):227-32. 

71. Lin JJ, Cardarella S, Lydon CA, Dahlberg SE, Jackman DM, Janne PA, et al. Five-Year 
Survival in EGFR-Mutant Metastatic Lung Adenocarcinoma Treated with EGFR-TKIs. J 
Thorac Oncol 2016;11(4):556-65 doi 10.1016/j.jtho.2015.12.103. 

https://doi.org/10.3892/mco.2021.2453


 

 169 

72. Piperdi B, Perez-Soler R. Role of erlotinib in the treatment of non-small cell lung cancer: 
clinical outcomes in wild-type epidermal growth factor receptor patients. Drugs 2012;72 
Suppl 1(0 1):11-9 doi 10.2165/1163018-S0-000000000-00000. 

73. Yang J, Ahn M, Kim D, Ramalingam S, Sequist L, Wc S, et al. Osimertinib in pretreated 
T790M-positive advanced non-small-cell lung cancer: AURA study phase II extension 
component. Journal of Clinical Oncology 2017:1288-96. 

74. Goss G, Tsai C-M, Shepherd FA, Bazhenova L, Lee JS, Chang G-C, et al. Osimertinib 
for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): 
a multicentre, open-label, single-arm, phase 2 study. The lancet oncology 
2016;17(12):1643-52. 

75. Soria J-C, Ramalingam SS. Osimertinib in EGFR Mutation-Positive Advanced NSCLC. 
The New England journal of medicine 2018;378(13):1262-3. 

76. Johnson DB, Dahlman KH, Knol J, Gilbert J, Puzanov I, Means-Powell J, et al. Enabling 
a genetically informed approach to cancer medicine: a retrospective evaluation of the 
impact of comprehensive tumor profiling using a targeted next-generation sequencing 
panel. Oncologist 2014;19(6):616-22 doi 10.1634/theoncologist.2014-0011. 

77. Gray SW, Hicks-Courant K, Cronin A, Rollins BJ, Weeks JC. Physicians' attitudes about 
multiplex tumor genomic testing. Journal of Clinical Oncology 2014;32(13):1317. 

78. Sahajpal NS, Mondal A, Ahluwalia M, Kota V, Njau AN, Okechukwu N, et al. Clinical 
evaluation and performance of QIAGEN Clinical Insight Interpret (QCI-I) as a reporting 
tool for a comprehensive cancer panel (TSO 500). American Society of Clinical 
Oncology; 2020. 

79. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev 
Drug Discov 2014;13(2):140-56 doi 10.1038/nrd4204. 

80. Khan KH, Yap TA, Yan L, Cunningham D. Targeting the PI3K-AKT-mTOR signaling 
network in cancer. Chin J Cancer 2013;32(5):253-65 doi 10.5732/cjc.013.10057. 

81. Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B. The relation between 
PI3K/AKT signalling pathway and cancer. Gene 2019;698:120-8 doi 
10.1016/j.gene.2019.02.076. 

82. Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt 
signalling pathway and cancer. Cancer treatment reviews 2004;30(2):193-204. 

83. Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Frontiers 
in oncology 2014;4:64. 

84. Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer cell 2005;8(3):179-83. 

85. Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annual 
review of medicine 2016;67:11-28. 



 

 170 

86. O’Donnell JS, Massi D, Teng MW, Mandala M. PI3K-AKT-mTOR inhibition in cancer 
immunotherapy, redux. 2018. Elsevier. p 91-103. 

87. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in 
cancer: implications for therapeutic targeting. Adv Cancer Res 2005;94:29-86 doi 
10.1016/S0065-230X(05)94002-5. 

88. Hinz N, Jucker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive 
review. Cell Commun Signal 2019;17(1):154 doi 10.1186/s12964-019-0450-3. 

89. De Luca A, Maiello MR, D'Alessio A, Pergameno M, Normanno N. The 
RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer 
pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 
2012;16 Suppl 2:S17-27 doi 10.1517/14728222.2011.639361. 

90. Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR Pathway and 
Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci 
2020;21(12):4507 doi 10.3390/ijms21124507. 

91. Lu Y, Zhou J, Xu C, Lin H, Xiao J, Wang Z, et al. JAK/STAT and PI3K/AKT pathways 
form a mutual transactivation loop and afford resistance to oxidative stress-induced 
apoptosis in cardiomyocytes. Cell Physiol Biochem 2008;21(4):305-14 doi 
10.1159/000129389. 

92. Huang WC, Hung MC. Induction of Akt activity by chemotherapy confers acquired 
resistance. J Formos Med Assoc 2009;108(3):180-94 doi 10.1016/S0929-6646(09)60051-
6. 

93. Millis SZ, Ikeda S, Reddy S, Gatalica Z, Kurzrock R. Landscape of Phosphatidylinositol-
3-Kinase Pathway Alterations Across 19 784 Diverse Solid Tumors. JAMA Oncol 
2016;2(12):1565-73 doi 10.1001/jamaoncol.2016.0891. 

94. Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we 
making headway? Nature reviews Clinical oncology 2018;15(5):273-91. 

95. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and 
limitations. Nat Rev Cancer 2009;9(8):550-62 doi 10.1038/nrc2664. 

96. Janku F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From 
laboratory to patients. Cancer Treat Rev 2017;59:93-101 doi 10.1016/j.ctrv.2017.07.005. 

97. Rathinaswamy MK, Burke JE. Class I phosphoinositide 3-kinase (PI3K) regulatory 
subunits and their roles in signaling and disease. Advances in Biological Regulation 
2020;75:100657. 

98. Wu P, Liu T, Hu Y. PI3K inhibitors for cancer therapy: what has been achieved so far? 
Current medicinal chemistry 2009;16(8):916-30. 

99. Yang Q, Modi P, Newcomb T, Queva C, Gandhi V. Idelalisib: First-in-Class PI3K Delta 
Inhibitor for the Treatment of Chronic Lymphocytic Leukemia, Small Lymphocytic 



 

 171 

Leukemia, and Follicular Lymphoma. Clin Cancer Res 2015;21(7):1537-42 doi 
10.1158/1078-0432.CCR-14-2034. 

100. Mensah FA, Blaize JP, Bryan LJ. Spotlight on copanlisib and its potential in the 
treatment of relapsed/refractory follicular lymphoma: evidence to date. Onco Targets 
Ther 2018;11:4817-27 doi 10.2147/OTT.S142264. 

101. Wilhoit T, Patrick JM, May MB. Alpelisib: A Novel Therapy for Patients With PIK3CA-
Mutated Metastatic Breast Cancer. J Adv Pract Oncol 2020;11(7):768-75 doi 
10.6004/jadpro.2020.11.7.9. 

102. Skånland SS, Brown JR. PI3K inhibitors in chronic lymphocytic leukemia: where do we 
go from here? Haematologica 2023;108(1):9-21 doi 10.3324/haematol.2022.281266. 

103. Brown JR. Phosphatidylinositol 3 Kinase δ Inhibitors: Present and Future. Cancer J 
2019;25(6):394-400 doi 10.1097/ppo.0000000000000414. 

104. Zou Z, Tao T, Li H, Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: 
Progress and challenges. Cell & Bioscience 2020;10(1):1-11. 

105. Kwitkowski VE, Prowell TM, Ibrahim A, Farrell AT, Justice R, Mitchell SS, et al. FDA 
approval summary: temsirolimus as treatment for advanced renal cell carcinoma. The 
oncologist 2010;15(4):428-35. 

106. Buti S, Leonetti A, Dallatomasina A, Bersanelli M. Everolimus in the management of 
metastatic renal cell carcinoma: an evidence-based review of its place in therapy. Core 
Evidence 2016;11:23. 

107. Piccart M, Hortobagyi GN, Campone M, Pritchard KI, Lebrun F, Ito Y, et al. Everolimus 
plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-
2-negative advanced breast cancer: overall survival results from BOLERO-2†. Annals of 
Oncology 2014;25(12):2357-62 doi https://doi.org/10.1093/annonc/mdu456. 

108. Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI, Donskov F, et al. 
Cabozantinib versus everolimus in advanced renal-cell carcinoma. New England Journal 
of Medicine 2015;373(19):1814-23. 

109. Royce ME, Osman D. Everolimus in the treatment of metastatic breast cancer. Breast 
cancer: basic and clinical research 2015;9:BCBCR. S29268. 

110. Cohen Y, Shalmon B, Korach J, Barshack I, Fridman E, Rechavi G. AKT1 pleckstrin 
homology domain E17K activating mutation in endometrial carcinoma. Gynecologic 
oncology 2010;116(1):88-91. 

111. Kyung HY, Lauring J. Recurrent AKT mutations in human cancers: functional 
consequences and effects on drug sensitivity. Oncotarget 2016;7(4):4241. 

112. Hyman DM, Smyth LM, Donoghue MTA, Westin SN, Bedard PL, Dean EJ, et al. AKT 
Inhibition in Solid Tumors With AKT1 Mutations. J Clin Oncol 2017;35(20):2251-9 doi 
10.1200/JCO.2017.73.0143. 

https://doi.org/10.1093/annonc/mdu456


 

 172 

113. Mundi PS, Sachdev J, McCourt C, Kalinsky K. AKT in cancer: new molecular insights 
and advances in drug development. British Journal of Clinical Pharmacology 
2016;82(4):943-56 doi https://doi.org/10.1111/bcp.13021. 

114. Fortier A-M, Asselin E, Cadrin M. Functional specificity of Akt isoforms in cancer 
progression. 2011. 

115. Gonzalez E, McGraw TE. The Akt kinases: isoform specificity in metabolism and cancer. 
Cell cycle 2009;8(16):2502-8. 

116. Zinda MJ, Johnson MA, Paul JD, Horn C, Konicek BW, Lu ZH, et al. AKT-1,-2, and-3 
are expressed in both normal and tumor tissues of the lung, breast, prostate, and colon. 
Clinical cancer research 2001;7(8):2475-9. 

117. Hinz N, Jücker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive 
review. Cell Communication and Signaling 2019;17:1-29. 

118. Kostaras E, Kaserer T, Lazaro G, Heuss SF, Hussain A, Casado P, et al. A systematic 
molecular and pharmacologic evaluation of AKT inhibitors reveals new insight into their 
biological activity. Br J Cancer 2020;123(4):542-55 doi 10.1038/s41416-020-0889-4. 

119. Andrikopoulou A, Chatzinikolaou S, Panourgias E, Kaparelou M, Liontos M, 
Dimopoulos MA, et al. "The emerging role of capivasertib in breast cancer". Breast 
2022;63:157-67 doi 10.1016/j.breast.2022.03.018. 

120. Tokunaga E, Kimura Y, Mashino K, Oki E, Kataoka A, Ohno S, et al. Activation of 
PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer 
2006;13(2):137-44 doi 10.2325/jbcs.13.137. 

121. Nasrazadani A, Brufsky AM. Capivasertib inhibits a key pathway in metastatic breast 
cancer. Lancet Oncol 2020;21(3):318-9 doi 10.1016/S1470-2045(19)30857-5. 

122. Jacobsen K, Bertran-Alamillo J, Molina MA, Teixido C, Karachaliou N, Pedersen MH, et 
al. Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer. 
Nat Commun 2017;8(1):410 doi 10.1038/s41467-017-00450-6. 

123. Clement E, Inuzuka H, Nihira NT, Wei W, Toker A. Skp2-dependent reactivation of 
AKT drives resistance to PI3K inhibitors. Sci Signal 2018;11(521):eaao3810 doi 
10.1126/scisignal.aao3810. 

124. Zuo Q, Liu J, Huang L, Qin Y, Hawley T, Seo C, et al. AXL/AKT axis mediated-
resistance to BRAF inhibitor depends on PTEN status in melanoma. Oncogene 
2018;37(24):3275-89 doi 10.1038/s41388-018-0205-4. 

125. Zhang H, Wang Q, Liu J, Cao H. Inhibition of the PI3K/Akt signaling pathway reverses 
sorafenib-derived chemo-resistance in hepatocellular carcinoma. Oncol Lett 
2018;15(6):9377-84 doi 10.3892/ol.2018.8536. 

126. O'Brien NA, McDermott MSJ, Conklin D, Luo T, Ayala R, Salgar S, et al. Targeting 
activated PI3K/mTOR signaling overcomes acquired resistance to CDK4/6-based 

https://doi.org/10.1111/bcp.13021


 

 173 

therapies in preclinical models of hormone receptor-positive breast cancer. Breast Cancer 
Res 2020;22(1):89 doi 10.1186/s13058-020-01320-8. 

127. Hanker AB, Kaklamani V, Arteaga CL. Challenges for the Clinical Development of PI3K 
Inhibitors: Strategies to Improve Their Impact in Solid Tumors. Cancer Discov 
2019;9(4):482-91 doi 10.1158/2159-8290.CD-18-1175. 

128. Onesti CE, Vicier C, Andre F. What to expect from high throughput genomics in 
metastatic breast cancers? Breast 2015;24 Suppl 2:S19-22 doi 
10.1016/j.breast.2015.07.006. 

129. Mardis ER. The translation of cancer genomics: time for a revolution in clinical cancer 
care. Genome Med 2014;6(3):22 doi 10.1186/gm539. 

130. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding 
the missing heritability of complex diseases. Nature 2009;461(7265):747-53 doi 
10.1038/nature08494. 

131. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and 
complex traits. Nat Rev Genet 2005;6(2):95-108 doi 10.1038/nrg1521. 

132. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 
2007;447(7143):433-40 doi 10.1038/nature05919. 

133. Reimand J, Wagih O, Bader GD. The mutational landscape of phosphorylation signaling 
in cancer. Sci Rep 2013;3:2651 doi 10.1038/srep02651. 

134. Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K, Sahin A, Liu S, Barrera JA, et 
al. PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. 
Mol Cancer Ther 2011;10(6):1093-101 doi 10.1158/1535-7163.MCT-10-1089. 

135. Lapek JD, Jr., Greninger P, Morris R, Amzallag A, Pruteanu-Malinici I, Benes CH, et al. 
Detection of dysregulated protein-association networks by high-throughput proteomics 
predicts cancer vulnerabilities. Nat Biotechnol 2017;35(10):983-9 doi 10.1038/nbt.3955. 

136. Li J, Zhao W, Akbani R, Liu W, Ju Z, Ling S, et al. Characterization of Human Cancer 
Cell Lines by Reverse-phase Protein Arrays. Cancer Cell 2017;31(2):225-39 doi 
10.1016/j.ccell.2017.01.005. 

137. Li L, Wei Y, To C, Zhu CQ, Tong J, Pham NA, et al. Integrated omic analysis of lung 
cancer reveals metabolism proteome signatures with prognostic impact. Nat Commun 
2014;5:5469 doi 10.1038/ncomms6469. 

138. Blume-Jensen P, Berman DM, Rimm DL, Shipitsin M, Putzi M, Nifong TP, et al. 
Development and clinical validation of an in situ biopsy-based multimarker assay for risk 
stratification in prostate cancer. Clin Cancer Res 2015;21(11):2591-600 doi 
10.1158/1078-0432.CCR-14-2603. 

139. Cohen JD, Javed AA, Thoburn C, Wong F, Tie J, Gibbs P, et al. Combined circulating 
tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of 



 

 174 

pancreatic cancers. Proc Natl Acad Sci U S A 2017;114(38):10202-7 doi 
10.1073/pnas.1704961114. 

140. Badve S, Kumar GL. Predictive biomarkers in oncology: applications in precision 
medicine. Springer; 2018. 

141. Akbani R, Becker K-F, Carragher N, Goldstein T, de Koning L, Korf U, et al. Realizing 
the Promise of Reverse Phase Protein Arrays for Clinical, Translational, and Basic 
Research: A Workshop Report: The RPPA (Reverse Phase Protein Array) Society. 
Molecular & Cellular Proteomics 2014;13(7):1625-43 doi 
https://doi.org/10.1074/mcp.O113.034918. 

142. Voskuil JL. The challenges with the validation of research antibodies. F1000Res 
2017;6:161 doi 10.12688/f1000research.10851.1. 

143. Andersson S, Sundberg M, Pristovsek N, Ibrahim A, Jonsson P, Katona B, et al. 
Insufficient antibody validation challenges oestrogen receptor beta research. Nat 
Commun 2017;8:15840 doi 10.1038/ncomms15840. 

144. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. 
Proteomics. Tissue-based map of the human proteome. Science 2015;347(6220):1260419 
doi 10.1126/science.1260419. 

145. Algenäs C, Agaton C, Fagerberg L, Asplund A, Björling L, Björling E, et al. Antibody 
performance in western blot applications is context-dependent. Biotechnol J 
2014;9(3):435-45 doi 10.1002/biot.201300341. 

146. Edwards AM, Isserlin R, Bader GD, Frye SV, Willson TM, Yu FH. Too many roads not 
taken. Nature 2011;470(7333):163-5 doi 10.1038/470163a. 

147. Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem 
Biol 2005;1(5):252-62 doi 10.1038/nchembio736. 

148. Deterding LJ, Parker CE, Perkins JR, Arthur Moseley M, Jorgenson JW, Tomer KB. 
Nanoscale separations. Journal of Chromatography A 1991;554(1-2):329-38 doi 
10.1016/s0021-9673(01)88460-0. 

149. Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B, Deutsch EW, et al. 
Targeted peptide measurements in biology and medicine: best practices for mass 
spectrometry-based assay development using a fit-for-purpose approach. Mol Cell 
Proteomics 2014;13(3):907-17 doi 10.1074/mcp.M113.036095. 

150. Omenn GS, States DJ, Adamski M, Blackwell TW, Menon R, Hermjakob H, et al. 
Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 
collaborating laboratories and multiple analytical groups, generating a core dataset of 
3020 proteins and a publicly-available database. Proteomics 2005;5(13):3226-45 doi 
10.1002/pmic.200500358. 

151. Method of the Year 2012. Nat Methods 2013;10(1):1 doi 10.1038/nmeth.2329. 

https://doi.org/10.1074/mcp.O113.034918


 

 175 

152. Gillette MA, Carr SA. Quantitative analysis of peptides and proteins in biomedicine by 
targeted mass spectrometry. Nat Methods 2013;10(1):28-34 doi 10.1038/nmeth.2309. 

153. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, et al. Multi-site 
assessment of the precision and reproducibility of multiple reaction monitoring-based 
measurements of proteins in plasma. Nat Biotechnol 2009;27(7):633-41 doi 
10.1038/nbt.1546. 

154. Percy AJ, Chambers AG, Yang J, Hardie DB, Borchers CH. Advances in multiplexed 
MRM-based protein biomarker quantitation toward clinical utility. Biochim Biophys Acta 
2014;1844(5):917-26 doi 10.1016/j.bbapap.2013.06.008. 

155. Liebler DC, Zimmerman LJ. Targeted quantitation of proteins by mass spectrometry. 
Biochemistry 2013;52(22):3797-806 doi 10.1021/bi400110b. 

156. Lee JW, Devanarayan V, Barrett YC, Weiner R, Allinson J, Fountain S, et al. Fit-for-
purpose method development and validation for successful biomarker measurement. 
Pharm Res 2006;23(2):312-28 doi 10.1007/s11095-005-9045-3. 

157. Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Targeted proteomic 
quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics 
2012;11(12):1709-23 doi 10.1074/mcp.O112.019802. 

158. Ronsein GE, Pamir N, von Haller PD, Kim DS, Oda MN, Jarvik GP, et al. Parallel 
reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable 
linearity, dynamic range and precision for targeted quantitative HDL proteomics. J 
Proteomics 2015;113:388-99 doi 10.1016/j.jprot.2014.10.017. 

159. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. Parallel reaction 
monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. 
Mol Cell Proteomics 2012;11(11):1475-88 doi 10.1074/mcp.O112.020131. 

160. Nice EC. The status of proteomics as we enter the 2020s: Towards personalised/precision 
medicine. Anal Biochem 2022;644:113840 doi 10.1016/j.ab.2020.113840. 

161. Omenn GS, Nass SJ, Micheel CM. Evolution of translational omics: lessons learned and 
the path forward. 2012. 

162. Check E. Running before we can walk? Nature 2004;429(6991):496-7 doi 
10.1038/429496a. 

163. Wagner L. A test before its time? FDA stalls distribution process of proteomic test. J Natl 
Cancer Inst 2004;96(7):500-1 doi 10.1093/jnci/96.7.500. 

164. Check E. Proteomics and cancer: running before we can walk? Nature 
2004;429(6991):496-7 doi 10.1038/429496a. 

165. Baggerly K. Experimental Design, Randomization, and Validation. Clinical Chemistry 
2018;64(10):1534-5 doi 10.1373/clinchem.2017.273334. 



 

 176 

166. Liotta LA, Petricoin EF. Mass spectrometry-based protein biomarker discovery: solving 
the remaining challenges to reach the promise of clinical benefit. Clin Chem 
2010;56(10):1641-2 doi 10.1373/clinchem.2010.146142. 

167. Whiteaker JR, Halusa GN, Hoofnagle AN, Sharma V, MacLean B, Yan P, et al. CPTAC 
Assay Portal: a repository of targeted proteomic assays. Nat Methods 2014;11(7):703-4 
doi 10.1038/nmeth.3002. 

168. Whiteaker JR, Halusa GN, Hoofnagle AN, Sharma V, MacLean B, Yan P, et al. Using 
the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted 
Proteomics Assays. Methods Mol Biol 2016;1410:223-36 doi 10.1007/978-1-4939-3524-
6_13. 

169. Banerji U, Dean EJ, Pérez-Fidalgo JA, Batist G, Bedard PL, You B, et al. A Phase I 
Open-Label Study to Identify a Dosing Regimen of the Pan-AKT Inhibitor AZD5363 for 
Evaluation in Solid Tumors and in PIK3CA-Mutated Breast and Gynecologic Cancers. 
Clin Cancer Res 2018;24(9):2050-9 doi 10.1158/1078-0432.Ccr-17-2260. 

170. Popp R, Li H, LeBlanc A, Mohammed Y, Aguilar-Mahecha A, Chambers AG, et al. 
Immuno-Matrix-Assisted Laser Desorption/Ionization Assays for Quantifying AKT1 and 
AKT2 in Breast and Colorectal Cancer Cell Lines and Tumors. Anal Chem 
2017;89(19):10592-600 doi 10.1021/acs.analchem.7b02934. 

171. Froehlich BC, Popp R, Sobsey CA, Ibrahim S, LeBlanc AM, Mohammed Y, et al. 
Systematic Optimization of the iMALDI Workflow for the Robust and Straightforward 
Quantification of Signaling Proteins in Cancer Cells. Proteomics Clin Appl 
2020;14(5):e2000034 doi 10.1002/prca.202000034. 

172. Domanski D, Murphy LC, Borchers CH. Assay development for the determination of 
phosphorylation stoichiometry using multiple reaction monitoring methods with and 
without phosphatase treatment: application to breast cancer signaling pathways. Anal 
Chem 2010;82(13):5610-20 doi 10.1021/ac1005553. 

173. Froehlich BC, Gill HK, Joshi A, Goodlett DR. MS visualization and interpretation 
software (MS-VIS), a tool for visualizing mass spectra and analysing mass lists. Rapid 
Commun Mass Spectrom 2022;36(8):e9253 doi 10.1002/rcm.9253. 

174. Spitzer M, Wildenhain J, Rappsilber J, Tyers M. BoxPlotR: a web tool for generation of 
box plots. Nat Methods 2014;11(2):121-2 doi 10.1038/nmeth.2811. 

175. Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, et al. 
MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. 
Nucleic acids research 2021;49(W1):W388-W96. 

176. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING 
database in 2021: customizable protein–protein networks, and functional characterization 
of user-uploaded gene/measurement sets. Nucleic acids research 2021;49(D1):D605-
D12. 



 

 177 

177. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: Network 
Analysis and Visualization of Proteomics Data. J Proteome Res 2019;18(2):623-32 doi 
10.1021/acs.jproteome.8b00702. 

178. Mohammed Y, Domanski D, Jackson AM, Smith DS, Deelder AM, Palmblad M, et al. 
PeptidePicker: a scientific workflow with web interface for selecting appropriate peptides 
for targeted proteomics experiments. J Proteomics 2014;106:151-61 doi 
10.1016/j.jprot.2014.04.018. 

179. Deutsch EW. The PeptideAtlas Project. In: Hubbard SJ, Jones AR, editors. Proteome 
Bioinformatics. Totowa, NJ: Humana Press; 2010. p. 285-96. 

180. Smith SE, Mellor P, Ward AK, Kendall S, McDonald M, Vizeacoumar FS, et al. 
Molecular characterization of breast cancer cell lines through multiple omic approaches. 
Breast Cancer Res 2017;19(1):65 doi 10.1186/s13058-017-0855-0. 

181. Dai X, Cheng H, Bai Z, Li J. Breast Cancer Cell Line Classification and Its Relevance 
with Breast Tumor Subtyping. J Cancer 2017;8(16):3131-41 doi 10.7150/jca.18457. 

182. Sommer EM, Dry H, Cross D, Guichard S, Davies BR, Alessi DR. Elevated SGK1 
predicts resistance of breast cancer cells to Akt inhibitors. Biochem J 2013;452(3):499-
508 doi 10.1042/BJ20130342. 

183. Bairoch A. The cellosaurus, a cell-line knowledge resource. Journal of biomolecular 
techniques: JBT 2018;29(2):25. 

184. Schmitt K, Daubener W, Bitter-Suermann D, Hadding U. A safe and efficient method for 
elimination of cell culture mycoplasmas using ciprofloxacin. J Immunol Methods 
1988;109(1):17-25 doi 10.1016/0022-1759(88)90437-1. 

185. Ianevski A, Giri AK, Aittokallio T. SynergyFinder 3.0: an interactive analysis and 
consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids 
Res 2022;50(W1):W739-W43 doi 10.1093/nar/gkac382. 

186. Pino LK, Searle BC, Bollinger JG, Nunn B, MacLean B, MacCoss MJ. The Skyline 
ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom 
Rev 2020;39(3):229-44 doi 10.1002/mas.21540. 

187. Mitsa G, Guo Q, Goncalves C, Preston SE, Lacasse V, Aguilar-Mahecha A, et al. A Non-
Hazardous Deparaffinization Protocol Enables Quantitative Proteomics of Core Needle 
Biopsy-Sized Formalin-Fixed and Paraffin-Embedded (FFPE) Tissue Specimens. 
International Journal of Molecular Sciences 2022;23(8):4443. 

188. Batth TS, Tollenaere MX, Rüther P, Gonzalez-Franquesa A, Prabhakar BS, Bekker-
Jensen S, et al. Protein Aggregation Capture on Microparticles Enables Multipurpose 
Proteomics Sample Preparation*. Molecular & Cellular Proteomics 2019;18(5):1027-35 
doi https://doi.org/10.1074/mcp.TIR118.001270. 

https://doi.org/10.1074/mcp.TIR118.001270


 

 178 

189. Mady N. A validation study measuring the cytochrome P450 enzyme subfamily 3A4 
activity in free-living adults. https://escholarship.mcgill.ca/concern/theses/9p290f986: 
McGill University; 2020. 

190. Bosilkovska M, Deglon J, Samer C, Walder B, Desmeules J, Staub C, et al. Simultaneous 
LC-MS/MS quantification of P-glycoprotein and cytochrome P450 probe substrates and 
their metabolites in DBS and plasma. Bioanalysis 2014;6(2):151-64 doi 
10.4155/bio.13.289. 

191. Derungs A, Donzelli M, Berger B, Noppen C, Krahenbuhl S, Haschke M. Effects of 
Cytochrome P450 Inhibition and Induction on the Phenotyping Metrics of the Basel 
Cocktail: A Randomized Crossover Study. Clin Pharmacokinet 2016;55(1):79-91 doi 
10.1007/s40262-015-0294-y. 

192. Adams KJ, Pratt B, Bose N, Dubois LG, St. John-Williams L, Perrott KM, et al. Skyline 
for small molecules: a unifying software package for quantitative metabolomics. Journal 
of proteome research 2020;19(4):1447-58. 

193. Nitulescu GM, Margina D, Juzenas P, Peng Q, Olaru OT, Saloustros E, et al. Akt 
inhibitors in cancer treatment: The long journey from drug discovery to clinical use 
(Review). Int J Oncol 2016;48(3):869-85 doi 10.3892/ijo.2015.3306. 

194. Davies BR, Greenwood H, Dudley P, Crafter C, Yu D-H, Zhang J, et al. Preclinical 
Pharmacology of AZD5363, an Inhibitor of AKT: Pharmacodynamics, Antitumor 
Activity, and Correlation of Monotherapy Activity with Genetic BackgroundAZD5363, 
an Oral Inhibitor of AKT. Molecular cancer therapeutics 2012;11(4):873-87. 

195. Turner NC, Alarcon E, Armstrong AC, Philco M, Lopez Chuken YA, Sablin MP, et al. 
BEECH: a dose-finding run-in followed by a randomised phase II study assessing the 
efficacy of AKT inhibitor capivasertib (AZD5363) combined with paclitaxel in patients 
with estrogen receptor-positive advanced or metastatic breast cancer, and in a PIK3CA 
mutant sub-population. Ann Oncol 2019;30(5):774-80 doi 10.1093/annonc/mdz086. 

196. Kalinsky K, Hong F, McCourt CK, Sachdev JC, Mitchell EP, Zwiebel JA, et al. Effect of 
Capivasertib in Patients With an AKT1 E17K-Mutated Tumor: NCI-MATCH 
Subprotocol EAY131-Y Nonrandomized Trial. JAMA Oncol 2021;7(2):271-8 doi 
10.1001/jamaoncol.2020.6741. 

197. Robertson JFR, Coleman RE, Cheung KL, Evans A, Holcombe C, Skene A, et al. 
Proliferation and AKT Activity Biomarker Analyses after Capivasertib (AZD5363) 
Treatment of Patients with ER(+) Invasive Breast Cancer (STAKT). Clin Cancer Res 
2020;26(7):1574-85 doi 10.1158/1078-0432.CCR-19-3053. 

198. Ribas R, Pancholi S, Guest SK, Marangoni E, Gao Q, Thuleau A, et al. AKT Antagonist 
AZD5363 Influences Estrogen Receptor Function in Endocrine-Resistant Breast Cancer 
and Synergizes with Fulvestrant (ICI182780) In Vivo. Mol Cancer Ther 
2015;14(9):2035-48 doi 10.1158/1535-7163.MCT-15-0143. 

https://escholarship.mcgill.ca/concern/theses/9p290f986


 

 179 

199. Fox EM, Kuba MG, Miller TW, Davies BR, Arteaga CL. Autocrine IGF-I/insulin 
receptor axis compensates for inhibition of AKT in ER-positive breast cancer cells with 
resistance to estrogen deprivation. Breast Cancer Res 2013;15(4):R55 doi 
10.1186/bcr3449. 

200. Toren P, Kim S, Cordonnier T, Crafter C, Davies BR, Fazli L, et al. Combination 
AZD5363 with enzalutamide significantly delays enzalutamide-resistant prostate cancer 
in preclinical models. European urology 2015;67(6):986-90. 

201. Li J, Davies BR, Han S, Zhou M, Bai Y, Zhang J, et al. The AKT inhibitor AZD5363 is 
selectively active in PI3KCA mutant gastric cancer, and sensitizes a patient-derived 
gastric cancer xenograft model with PTEN loss to Taxotere. Journal of translational 
medicine 2013;11(1):1-10. 

202. Puglisi M, Thavasu P, Stewart A, de Bono JS, O'Brien ME, Popat S, et al. AKT 
inhibition synergistically enhances growth-inhibitory effects of gefitinib and increases 
apoptosis in non-small cell lung cancer cell lines. Lung Cancer 2014;85(2):141-6 doi 
10.1016/j.lungcan.2014.05.008. 

203. Thomas C, Lamoureux F, Crafter C, Davies BR, Beraldi E, Fazli L, et al. Synergistic 
Targeting of PI3K/AKT Pathway and Androgen Receptor Axis Significantly Delays 
Castration-Resistant Prostate Cancer Progression In VivoTargeting AKT Pathway and 
AR Axis in Prostate Cancer. Molecular cancer therapeutics 2013;12(11):2342-55. 

204. Liu J, Duan Z, Guo W, Zeng L, Wu Y, Chen Y, et al. Targeting the 
BRD4/FOXO3a/CDK6 axis sensitizes AKT inhibition in luminal breast cancer. Nat 
Commun 2018;9(1):5200 doi 10.1038/s41467-018-07258-y. 

205. Gris-Oliver A, Palafox M, Monserrat L, Brasó-Maristany F, Òdena A, Sánchez-Guixé M, 
et al. Genetic Alterations in the PI3K/AKT Pathway and Baseline AKT Activity Define 
AKT Inhibitor Sensitivity in Breast Cancer Patient-derived XenograftsBiomarkers of 
Sensitivity to AKT Inhibition in Breast Cancer. Clinical Cancer Research 
2020;26(14):3720-31. 

206. Di Cristofano A. Chapter Two - SGK1: The Dark Side of PI3K Signaling. In: Jenny A, 
editor. Current Topics in Developmental Biology. Volume 123: Academic Press; 2017. p. 
49-71. 

207. Cicenas J, Meskinyte-Kausiliene E, Jukna V, Rimkus A, Simkus J, Soderholm D. SGK1 
in Cancer: Biomarker and Drug Target. Cancers (Basel) 2022;14(10):2385 doi 
10.3390/cancers14102385. 

208. Gao J, Sidiropoulou E, Walker I, Krupka JA, Mizielinski K, Usheva Z, et al. SGK1 
mutations in DLBCL generate hyperstable protein neoisoforms that promote AKT 
independence. Blood 2021;138(11):959-64. 

209. Castel P, Ellis H, Bago R, Toska E, Razavi P, Carmona FJ, et al. PDK1-SGK1 Signaling 
Sustains AKT-Independent mTORC1 Activation and Confers Resistance to PI3Kalpha 
Inhibition. Cancer Cell 2016;30(2):229-42 doi 10.1016/j.ccell.2016.06.004. 



 

 180 

210. Dean E, Banerji U, Schellens JHM, Krebs MG, Jimenez B, van Brummelen E, et al. A 
Phase 1, open-label, multicentre study to compare the capsule and tablet formulations of 
AZD5363 and explore the effect of food on the pharmacokinetic exposure, safety and 
tolerability of AZD5363 in patients with advanced solid malignancies: OAK. Cancer 
Chemother Pharmacol 2018;81(5):873-83 doi 10.1007/s00280-018-3558-z. 

211. Smyth LM, Tamura K, Oliveira M, Ciruelos EM, Mayer IA, Sablin MP, et al. 
Capivasertib, an AKT Kinase Inhibitor, as Monotherapy or in Combination with 
Fulvestrant in Patients with AKT1 (E17K)-Mutant, ER-Positive Metastatic Breast 
Cancer. Clin Cancer Res 2020;26(15):3947-57 doi 10.1158/1078-0432.CCR-19-3953. 

212. Crabb SJ, Ye D-W, Uemura H, Morris T, Gresty C, Logan J, et al. CAPItello-280: A 
phase III study of capivasertib and docetaxel versus placebo and docetaxel in metastatic 
castration-resistant prostate cancer. American Society of Clinical Oncology; 2023. 

213. Fizazi K, George DJ, De Santis M, Clarke N, Fay AP, Uemura H, et al. A phase III trial 
of capivasertib and abiraterone versus placebo and abiraterone in patients with de novo 
metastatic hormone-sensitive prostate cancer characterized by PTEN deficiency 
(CAPItello-281). American Society of Clinical Oncology; 2021. 

214. Schmid P, Abraham J, Chan S, Wheatley D, Brunt AM, Nemsadze G, et al. Capivasertib 
Plus Paclitaxel Versus Placebo Plus Paclitaxel As First-Line Therapy for Metastatic 
Triple-Negative Breast Cancer: The PAKT Trial. J Clin Oncol 2020;38(5):423-33 doi 
10.1200/JCO.19.00368. 

215. Westin SN, Labrie M, Litton JK, Blucher A, Fang Y, Vellano CP, et al. Phase Ib Dose 
Expansion and Translational Analyses of Olaparib in Combination with Capivasertib in 
Recurrent Endometrial, Triple-Negative Breast, and Ovarian Cancer. Clin Cancer Res 
2021;27(23):6354-65 doi 10.1158/1078-0432.CCR-21-1656. 

216. Jones RH, Casbard A, Carucci M, Cox C, Butler R, Alchami F, et al. Fulvestrant plus 
capivasertib versus placebo after relapse or progression on an aromatase inhibitor in 
metastatic, oestrogen receptor-positive breast cancer (FAKTION): a multicentre, 
randomised, controlled, phase 2 trial. Lancet Oncol 2020;21(3):345-57 doi 
10.1016/S1470-2045(19)30817-4. 

217. Smyth LM, Batist G, Meric-Bernstam F, Kabos P, Spanggaard I, Lluch A, et al. Selective 
AKT kinase inhibitor capivasertib in combination with fulvestrant in PTEN-mutant ER-
positive metastatic breast cancer. NPJ Breast Cancer 2021;7(1):44 doi 10.1038/s41523-
021-00251-7. 

218. Turner NC, Oliveira M, Howell SJ, Dalenc F, Cortes J, Gomez Moreno HL, et al. 
Capivasertib in Hormone Receptor–Positive Advanced Breast Cancer. New England 
Journal of Medicine 2023;388(22):2058-70. 

219. Fujimoto Y, Morita TY, Ohashi A, Haeno H, Hakozaki Y, Fujii M, et al. Combination 
treatment with a PI3K/Akt/mTOR pathway inhibitor overcomes resistance to anti-HER2 
therapy in PIK3CA-mutant HER2-positive breast cancer cells. Sci Rep 2020;10(1):21762 
doi 10.1038/s41598-020-78646-y. 



 

 181 

220. Roylance R, Kilburn L, Kernaghan S, Wardley AM, Macpherson I, Baird RD, et al. 
Abstract P1-19-11: Results from plasmaMATCH trial treatment cohort C: A phase II trial 
of capivasertib plus fulvestrant in ER positive breast cancer patients with an AKT1 
mutation identified via ctDNA screening (CRUK/15/010). Cancer Research 
2020;80(4_Supplement):P1-19-1-P1--1. 

221. Schmid P, Abraham J, Chan S, Brunt AM, Nemsadze G, Baird RD, et al. Abstract PD1-
11: mature survival update of the double-blind placebo-controlled randomised phase II 
PAKT trial of first-line capivasertib plus paclitaxel for metastatic triple-negative breast 
cancer. Cancer Research 2021;81(4_Supplement):PD1-11-PD1-. 

222. Vasudevan KM, Barbie DA, Davies MA, Rabinovsky R, McNear CJ, Kim JJ, et al. 
AKT-independent signaling downstream of oncogenic PIK3CA mutations in human 
cancer. Cancer Cell 2009;16(1):21-32 doi 10.1016/j.ccr.2009.04.012. 

223. Faes S, Dormond O. PI3K and AKT: Unfaithful Partners in Cancer. Int J Mol Sci 
2015;16(9):21138-52 doi 10.3390/ijms160921138. 

224. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. 
Nature 2012;490(7418):61-70 doi 10.1038/nature11412. 

225. Paplomata E, O'Regan R. The PI3K/AKT/mTOR pathway in breast cancer: targets, trials 
and biomarkers. Ther Adv Med Oncol 2014;6(4):154-66 doi 10.1177/1758834014530023. 

226. She QB, Chandarlapaty S, Ye Q, Lobo J, Haskell KM, Leander KR, et al. Breast tumor 
cells with PI3K mutation or HER2 amplification are selectively addicted to Akt 
signaling. PLoS One 2008;3(8):e3065 doi 10.1371/journal.pone.0003065. 

227. Rugo HS, Schiavon G, Grinsted LM, De Bruin EC, Catanese MT, Hamilton E. Abstract 
OT2-14-01: CAPItello-292: A phase Ib/III study of capivasertib, palbociclib and 
fulvestrant, versus placebo, palbociclib and fulvestrant, for endocrine therapy-resistant 
HR+/HER2− advanced breast cancer. Cancer Research 2022;82(4_Supplement):OT2-14-
01-OT2-14-01. 

228. Roumeliotis TI, Williams SP, Goncalves E, Alsinet C, Del Castillo Velasco-Herrera M, 
Aben N, et al. Genomic Determinants of Protein Abundance Variation in Colorectal 
Cancer Cells. Cell Rep 2017;20(9):2201-14 doi 10.1016/j.celrep.2017.08.010. 

229. Vogeser M, Seger C. Pitfalls associated with the use of liquid chromatography-tandem 
mass spectrometry in the clinical laboratory. Clin Chem 2010;56(8):1234-44 doi 
10.1373/clinchem.2009.138602. 

230. Sobsey CA, Popp R, Ibrahim S, Froehlich BC, Aguilar-Mahecha A, Basik M, et al. 
Protein quantitation assays for Akt, PI3K p110 alpha, and PTEN to assess PI3K pathway 
activity in tumor tissue. 2020. AMER ASSOC CANCER RESEARCH 615 CHESTNUT 
ST, 17TH FLOOR, PHILADELPHIA, PA …. p 51-2. 



 

 182 

231. Cizkova M, Vacher S, Meseure D, Trassard M, Susini A, Mlcuchova D, et al. PIK3R1 
underexpression is an independent prognostic marker in breast cancer. BMC Cancer 
2013;13:545 doi 10.1186/1471-2407-13-545. 

232. Kim SH, Seung BJ, Cho SH, Lim HY, Bae MK, Sur JH. Dysregulation of 
PI3K/Akt/PTEN Pathway in Canine Mammary Tumor. Animals (Basel) 2021;11(7) doi 
10.3390/ani11072079. 

233. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, et al. Ablation 
in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is 
required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 
2006;11(6):859-71 doi 10.1016/j.devcel.2006.10.007. 

234. O'Hurley G, Daly E, O'Grady A, Cummins R, Quinn C, Flanagan L, et al. Investigation 
of molecular alterations of AKT-3 in triple-negative breast cancer. Histopathology 
2014;64(5):660-70 doi 10.1111/his.12313. 

235. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, et al. 
An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations 
in breast cancer. Cancer Res 2008;68(15):6084-91 doi 10.1158/0008-5472.CAN-07-
6854. 

236. Hoehn KL, Hohnen-Behrens C, Cederberg A, Wu LE, Turner N, Yuasa T, et al. IRS1-
independent defects define major nodes of insulin resistance. Cell Metab 2008;7(5):421-
33 doi 10.1016/j.cmet.2008.04.005. 

237. Vincent EE, Elder DJ, Thomas EC, Phillips L, Morgan C, Pawade J, et al. Akt 
phosphorylation on Thr308 but not on Ser473 correlates with Akt protein kinase activity 
in human non-small cell lung cancer. Br J Cancer 2011;104(11):1755-61 doi 
10.1038/bjc.2011.132. 

238. Fiala O, Pesek M, Finek J, Racek J, Minarik M, Benesova L, et al. Serum albumin is a 
strong predictor of survival in patients with advanced-stage non-small cell lung cancer 
treated with erlotinib. Neoplasma 2016;63(3):471-6 doi 10.4149/318_151001N512. 

239. Dalmiglio C, Brilli L, Campanile M, Ciuoli C, Cartocci A, Castagna MG. CONUT Score: 
A New Tool for Predicting Prognosis in Patients with Advanced Thyroid Cancer Treated 
with TKI. Cancers (Basel) 2022;14(3):724 doi 10.3390/cancers14030724. 

240. Park MJ, Lee J, Hong JY, Choi MK, Yi JH, Lee SJ, et al. Prognostic model to predict 
outcomes in nonsmall cell lung cancer patients treated with gefitinib as a salvage 
treatment. Cancer 2009;115(7):1518-30 doi 10.1002/cncr.24151. 

241. Jones DT, Ganeshaguru K, Anderson RJ, Jackson TR, Bruckdorfer KR, Low SY, et al. 
Albumin activates the AKT signaling pathway and protects B-chronic lymphocytic 
leukemia cells from chlorambucil- and radiation-induced apoptosis. Blood 
2003;101(8):3174-80 doi 10.1182/blood-2002-07-2143. 



 

 183 

242. Tey SK, Wong SWK, Chan JYT, Mao X, Ng TH, Yeung CLS, et al. Patient pIgR-
enriched extracellular vesicles drive cancer stemness, tumorigenesis and metastasis in 
hepatocellular carcinoma. J Hepatol 2022;76(4):883-95 doi 10.1016/j.jhep.2021.12.005. 

243. Franks SE, Briah R, Jones RA, Moorehead RA. Unique roles of Akt1 and Akt2 in IGF-IR 
mediated lung tumorigenesis. Oncotarget 2016;7(3):3297-316 doi 
10.18632/oncotarget.6489. 

244. Mandal S, Bandyopadhyay S, Tyagi K, Roy A. Recent advances in understanding the 
molecular role of phosphoinositide-specific phospholipase C gamma 1 as an emerging 
onco-driver and novel therapeutic target in human carcinogenesis. Biochim Biophys Acta 
Rev Cancer 2021;1876(2):188619 doi 10.1016/j.bbcan.2021.188619. 

245. Bhargava M, Viken KJ, Barkes B, Griffin TJ, Gillespie M, Jagtap PD, et al. Novel 
protein pathways in development and progression of pulmonary sarcoidosis. Sci Rep 
2020;10(1):13282 doi 10.1038/s41598-020-69281-8. 

246. Wang LM, Gan YH. Cancer-derived IgG involved in cisplatin resistance through PTP-
BAS/Src/PDK1/AKT signaling pathway. Oral Dis 2021;27(3):464-74 doi 
10.1111/odi.13583. 

247. Schmidt M, Hellwig B, Hammad S, Othman A, Lohr M, Chen Z, et al. A comprehensive 
analysis of human gene expression profiles identifies stromal immunoglobulin kappa C 
as a compatible prognostic marker in human solid tumors. Clin Cancer Res 
2012;18(9):2695-703 doi 10.1158/1078-0432.CCR-11-2210. 

248. Schmidt M, Edlund K, Hengstler JG, Heimes AS, Almstedt K, Lebrecht A, et al. 
Prognostic Impact of Immunoglobulin Kappa C (IGKC) in Early Breast Cancer. Cancers 
(Basel) 2021;13(14):3626 doi 10.3390/cancers13143626. 

249. Buoso E, Masi M, Long A, Chiappini C, Travelli C, Govoni S, et al. Ribosomes as a 
nexus between translation and cancer progression: Focus on ribosomal Receptor for 
Activated C Kinase 1 (RACK1) in breast cancer. Br J Pharmacol 2022;179(12):2813-28 
doi 10.1111/bph.15218. 

250. Zhang H, Cheng L, Liu C. Regulatory Networks of Prognostic mRNAs in Pediatric Acute 
Myeloid Leukemia. J Healthc Eng 2022;2022:2691997 doi 10.1155/2022/2691997. 

251. Lin Z, Peng R, Sun Y, Zhang L, Zhang Z. Identification of ribosomal protein family in 
triple-negative breast cancer by bioinformatics analysis. Biosci Rep 2021;41(1) doi 
10.1042/BSR20200869. 

252. Fang E, Zhang X. Identification of breast cancer hub genes and analysis of prognostic 
values using integrated bioinformatics analysis. Cancer Biomark 2017;21(1):373-81 doi 
10.3233/CBM-170550. 

253. Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health 
and disease. Human genetics 2016;135:851-67. 



 

 184 

254. Guo J, Jia R. Splicing factor poly (rC)‐binding protein 1 is a novel and distinctive tumor 
suppressor. Journal of cellular physiology 2019;234(1):33-41. 

255. Fei T, Chen Y, Xiao T, Li W, Cato L, Zhang P, et al. Genome-wide CRISPR screen 
identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. 
Proceedings of the National Academy of Sciences 2017;114(26):E5207-E15. 

256. Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E, et 
al. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug 
Resist Updat 2020;53:100728 doi 10.1016/j.drup.2020.100728. 

257. Jin Z, Xu L, Zhang L, Zhao M, Li D, Ye L, et al. Interleukin enhancer binding factor 2 is 
a prognostic biomarker for breast cancer that also predicts neoadjuvant chemotherapy 
responses. Am J Transl Res 2018;10(6):1677-89. 

258. Pei Y, Zhu P, Dang Y, Wu J, Yang X, Wan B, et al. Nuclear export of NF90 to stabilize 
IL-2 mRNA is mediated by AKT-dependent phosphorylation at Ser647 in response to 
CD28 costimulation. J Immunol 2008;180(1):222-9 doi 10.4049/jimmunol.180.1.222. 

259. Higuchi T, Todaka H, Sugiyama Y, Ono M, Tamaki N, Hatano E, et al. Suppression of 
MicroRNA-7 (miR-7) Biogenesis by Nuclear Factor 90-Nuclear Factor 45 Complex 
(NF90-NF45) Controls Cell Proliferation in Hepatocellular Carcinoma. J Biol Chem 
2016;291(40):21074-84 doi 10.1074/jbc.M116.748210. 

260. Zang B, Wang W, Wang Y, Li P, Xia T, Liu X, et al. Metabolomic Characterization 
Reveals ILF2 and ILF3 Affected Metabolic Adaptions in Esophageal Squamous Cell 
Carcinoma. Front Mol Biosci 2021;8:721990 doi 10.3389/fmolb.2021.721990. 

261. Mishra S, Ande SR, Nyomba BL. The role of prohibitin in cell signaling. FEBS J 
2010;277(19):3937-46 doi 10.1111/j.1742-4658.2010.07809.x. 

262. Bavelloni A, Piazzi M, Faenza I, Raffini M, D'Angelo A, Cattini L, et al. Prohibitin 2 
represents a novel nuclear AKT substrate during all-trans retinoic acid-induced 
differentiation of acute promyelocytic leukemia cells. FASEB J 2014;28(5):2009-19 doi 
10.1096/fj.13-244368. 

263. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, et al. 
Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can 
result in therapy resistance and how to overcome resistance. Oncotarget 
2012;3(10):1068. 

264. Tseng PC, Chen CL, Shan YS, Lin CF. An increase in galectin-3 causes cellular 
unresponsiveness to IFN-gamma-induced signal transduction and growth inhibition in 
gastric cancer cells. Oncotarget 2016;7(12):15150-60 doi 10.18632/oncotarget.7750. 

265. Abu-Eid R, Ward FJ. Targeting the PI3K/Akt/mTOR pathway: A therapeutic strategy in 
COVID-19 patients. Immunol Lett 2021;240:1-8 doi 10.1016/j.imlet.2021.09.005. 



 

 185 

266. Dianat-Moghadam H, Khalili M, Keshavarz M, Azizi M, Hamishehkar H, Rahbarghazi 
R, et al. Modulation of LXR signaling altered the dynamic activity of human colon 
adenocarcinoma cancer stem cells in vitro. Cancer Cell Int 2021;21(1):100 doi 
10.1186/s12935-021-01803-4. 

267. Zhang R, Li H, Zhang S, Zhang Y, Wang N, Zhou H, et al. RXRalpha provokes tumor 
suppression through p53/p21/p16 and PI3K-AKT signaling pathways during stem cell 
differentiation and in cancer cells. Cell Death Dis 2018;9(5):532 doi 10.1038/s41419-
018-0610-1. 

268. Holcik M. Could the eIF2alpha-Independent Translation Be the Achilles Heel of Cancer? 
Front Oncol 2015;5:264 doi 10.3389/fonc.2015.00264. 

269. Tebaldi T, Re A, Viero G, Pegoretti I, Passerini A, Blanzieri E, et al. Widespread 
uncoupling between transcriptome and translatome variations after a stimulus in 
mammalian cells. BMC Genomics 2012;13:220 doi 10.1186/1471-2164-13-220. 

270. Koromilas AE. Roles of the translation initiation factor eIF2alpha serine 51 
phosphorylation in cancer formation and treatment. Biochim Biophys Acta 
2015;1849(7):871-80 doi 10.1016/j.bbagrm.2014.12.007. 

271. Rajesh K, Krishnamoorthy J, Kazimierczak U, Tenkerian C, Papadakis AI, Wang S, et al. 
Phosphorylation of the translation initiation factor eIF2alpha at serine 51 determines the 
cell fate decisions of Akt in response to oxidative stress. Cell Death Dis 2015;6(1):e1591 
doi 10.1038/cddis.2014.554. 

272. Kazemi S, Mounir Z, Baltzis D, Raven JF, Wang S, Krishnamoorthy JL, et al. A novel 
function of eIF2alpha kinases as inducers of the phosphoinositide-3 kinase signaling 
pathway. Mol Biol Cell 2007;18(9):3635-44 doi 10.1091/mbc.e07-01-0053. 

273. Yang Y, Li XJ, Chen Z, Zhu XX, Wang J, Zhang LB, et al. Wogonin induced 
calreticulin/annexin A1 exposure dictates the immunogenicity of cancer cells in a 
PERK/AKT dependent manner. PLoS One 2012;7(12):e50811 doi 
10.1371/journal.pone.0050811. 

274. Blaustein M, Perez-Munizaga D, Sanchez MA, Urrutia C, Grande A, Risso G, et al. 
Modulation of the Akt pathway reveals a novel link with PERK/eIF2alpha, which is 
relevant during hypoxia. PLoS One 2013;8(7):e69668 doi 10.1371/journal.pone.0069668. 

275. Mounir Z, Krishnamoorthy JL, Wang S, Papadopoulou B, Campbell S, Muller WJ, et al. 
Akt determines cell fate through inhibition of the PERK-eIF2alpha phosphorylation 
pathway. Sci Signal 2011;4(192):ra62 doi 10.1126/scisignal.2001630. 

276. Koromilas AE, Mounir Z. Control of oncogenesis by eIF2alpha phosphorylation: 
implications in PTEN and PI3K-Akt signaling and tumor treatment. Future Oncol 
2013;9(7):1005-15 doi 10.2217/fon.13.49. 

277. Chen X, Dai X, Zou P, Chen W, Rajamanickam V, Feng C, et al. Curcuminoid EF24 
enhances the anti-tumour activity of Akt inhibitor MK-2206 through ROS-mediated 



 

 186 

endoplasmic reticulum stress and mitochondrial dysfunction in gastric cancer. Br J 
Pharmacol 2017;174(10):1131-46 doi 10.1111/bph.13765. 

278. Booth L, Roberts JL, Tavallai M, Chuckalovcak J, Stringer DK, Koromilas AE, et al. 
[Pemetrexed + Sorafenib] lethality is increased by inhibition of ERBB1/2/3-PI3K-
NFkappaB compensatory survival signaling. Oncotarget 2016;7(17):23608-32 doi 
10.18632/oncotarget.8281. 

279. Topisirovic I, Sonenberg N. mRNA translation and energy metabolism in cancer: the role 
of the MAPK and mTORC1 pathways. Cold Spring Harb Symp Quant Biol 2011;76:355-
67 doi 10.1101/sqb.2011.76.010785. 

280. Dunn S, Eberlein C, Yu J, Gris-Oliver A, Ong SH, Yelland U, et al. AKT-mTORC1 
reactivation is the dominant resistance driver for PI3Kβ/AKT inhibitors in PTEN-null 
breast cancer and can be overcome by combining with Mcl-1 inhibitors. Oncogene 
2022;41(46):5046-60. 

281. Elkabets M, Vora S, Juric D, Morse N, Mino-Kenudson M, Muranen T, et al. mTORC1 
inhibition is required for sensitivity to PI3K p110alpha inhibitors in PIK3CA-mutant 
breast cancer. Sci Transl Med 2013;5(196):196ra99 doi 10.1126/scitranslmed.3005747. 

282. Coleman N, Subbiah V, Pant S, Patel K, Roy-Chowdhuri S, Yedururi S, et al. Emergence 
of mTOR mutation as an acquired resistance mechanism to AKT inhibition, and 
subsequent response to mTORC1/2 inhibition. NPJ Precision Oncology 2021;5(1):99. 

283. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 
2007;129(7):1261-74 doi 10.1016/j.cell.2007.06.009. 

284. Vadlakonda L, Dash A, Pasupuleti M, Anil Kumar K, Reddanna P. The Paradox of Akt-
mTOR Interactions. Front Oncol 2013;3:165 doi 10.3389/fonc.2013.00165. 

285. Robichaud N, Sonenberg N. Translational control and the cancer cell response to stress. 
Curr Opin Cell Biol 2017;45:102-9 doi 10.1016/j.ceb.2017.05.007. 

286. Hao P, Yu J, Ward R, Liu Y, Hao Q, An S, et al. Eukaryotic translation initiation factors 
as promising targets in cancer therapy. Cell Commun Signal 2020;18(1):175 doi 
10.1186/s12964-020-00607-9. 

287. Malka-Mahieu H, Newman M, Desaubry L, Robert C, Vagner S. Molecular Pathways: 
The eIF4F Translation Initiation Complex-New Opportunities for Cancer Treatment. Clin 
Cancer Res 2017;23(1):21-5 doi 10.1158/1078-0432.CCR-14-2362. 

288. Siddiqui N, Sonenberg N. Signalling to eIF4E in cancer. Biochem Soc Trans 
2015;43(5):763-72 doi 10.1042/BST20150126. 

289. Lu S, Yang LX, Cao ZJ, Zhao JS, You J, Feng YX. Transcriptional Control of Metastasis 
by Integrated Stress Response Signaling. Front Oncol 2021;11:770843 doi 
10.3389/fonc.2021.770843. 



 

 187 

290. Urra H, Dufey E, Avril T, Chevet E, Hetz C. Endoplasmic Reticulum Stress and the 
Hallmarks of Cancer. Trends Cancer 2016;2(5):252-62 doi 10.1016/j.trecan.2016.03.007. 

291. Gandin V, Masvidal L, Cargnello M, Gyenis L, McLaughlan S, Cai Y, et al. mTORC1 
and CK2 coordinate ternary and eIF4F complex assembly. Nature communications 
2016;7(1):11127. 

292. Fels DR, Koumenis C. The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia 
resistance and tumor growth. Cancer Biol Ther 2006;5(7):723-8 doi 
10.4161/cbt.5.7.2967. 

293. Shi Z, Yu X, Yuan M, Lv W, Feng T, Bai R, et al. Activation of the PERK-ATF4 
pathway promotes chemo-resistance in colon cancer cells. Sci Rep 2019;9(1):3210 doi 
10.1038/s41598-019-39547-x. 

294. Alasiri G, Jiramongkol Y, Zona S, Fan LY-N, Mahmud Z, Gong G, et al. Regulation of 
PERK expression by FOXO3: a vulnerability of drug-resistant cancer cells. Oncogene 
2019;38(36):6382-98. 

295. Fan P, Jordan VC. Estrogen Receptor and the Unfolded Protein Response: Double-Edged 
Swords in Therapy for Estrogen Receptor-Positive Breast Cancer. Target Oncol 
2022;17(2):111-24 doi 10.1007/s11523-022-00870-5. 

296. Drabovich AP, Martinez-Morillo E, Diamandis EP. Toward an integrated pipeline for 
protein biomarker development. Biochim Biophys Acta 2015;1854(6):677-86 doi 
10.1016/j.bbapap.2014.09.006. 

297. Burdall SE, Hanby AM, Lansdown MR, Speirs V. Breast cancer cell lines: friend or foe? 
Breast Cancer Res 2003;5(2):89-95 doi 10.1186/bcr577. 

298. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. 
Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. 
Cancer Res 2008;68(4):989-97 doi 10.1158/0008-5472.CAN-07-2017. 

299. Lane MA, Romagnoli L, Cruise B, Cohn GM. Spontaneous conversion to estrogen 
receptor expression by the human breast epithelial cell line, MCF-10A. Oncol Rep 
1999;6(3):507-11 doi 10.3892/or.6.3.507. 

300. Freedman LP, Gibson MC, Ethier SP, Soule HR, Neve RM, Reid YA. Reproducibility: 
changing the policies and culture of cell line authentication. Nat Methods 
2015;12(6):493-7 doi 10.1038/nmeth.3403. 

301. Marx V. Cell-line authentication demystified. Nat Methods 2014;11(5):483-8 doi 
10.1038/nmeth.2932. 

302. Ong S, Mann M. Mass Spectrometry-based proteomics turns quantitative. Nat Chem Biol 
2005;1(5):252-62. 

303. Marx V. Targeted proteomics. Nat Methods 2013;10(1):19-22 doi 10.1038/nmeth.2285. 



 

 188 

304. Abbatiello S, Ackermann BL, Borchers C, Bradshaw RA, Carr SA, Chalkley R, et al. 
New Guidelines for Publication of Manuscripts Describing Development and Application 
of Targeted Mass Spectrometry Measurements of Peptides and Proteins. Molecular & 
Cellular Proteomics 2017;16(3):327-8 doi https://doi.org/10.1074/mcp.E117.067801. 

305. Freedman LP, Inglese J. The increasing urgency for standards in basic biologic research. 
Cancer Res 2014;74(15):4024-9 doi 10.1158/0008-5472.CAN-14-0925. 

306. Hayes DF. Biomarker validation and testing. Mol Oncol 2015;9(5):960-6 doi 
10.1016/j.molonc.2014.10.004. 

307. Bache N, Geyer PE, Bekker-Jensen DB, Hoerning O, Falkenby L, Treit PV, et al. A 
novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust 
proteomics. Molecular & Cellular Proteomics 2018;17(11):2284-96. 

308. van den Broek I, Romijn FP, Smit NP, van der Laarse A, Drijfhout JW, van der Burgt 
YE, et al. Quantifying protein measurands by peptide measurements: where do errors 
arise? Journal of proteome research 2015;14(2):928-42. 

309. van den Broek I, Mastali M, Mouapi K, Bystrom C, Bairey Merz CN, Van Eyk JE. 
Quality Control and Outlier Detection of Targeted Mass Spectrometry Data from 
Multiplex Protein Panels. J Proteome Res 2020;19(6):2278-93 doi 
10.1021/acs.jproteome.9b00854. 

310. Wang M, Lu Y, Wang H, Wu Y, Xu X, Li Y. High ATF4 Expression Is Associated With 
Poor Prognosis, Amino Acid Metabolism, and Autophagy in Gastric Cancer. Front Oncol 
2021;11:740120 doi 10.3389/fonc.2021.740120. 

311. Du J, Liu H, Mao X, Qin Y, Fan C. ATF4 promotes lung cancer cell proliferation and 
invasion partially through regulating Wnt/beta-catenin signaling. Int J Med Sci 
2021;18(6):1442-8 doi 10.7150/ijms.43167. 

312. Wortel IMN, van der Meer LT, Kilberg MS, van Leeuwen FN. Surviving Stress: 
Modulation of ATF4-Mediated Stress Responses in Normal and Malignant Cells. Trends 
Endocrinol Metab 2017;28(11):794-806 doi 10.1016/j.tem.2017.07.003. 

313. Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, et al. 
Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife 
2013;2:e00498 doi 10.7554/eLife.00498. 

314. Bao F, Hao P, An S, Yang Y, Liu Y, Hao Q, et al. Akt scaffold proteins: the key to 
controlling specificity of Akt signaling. American Journal of Physiology-Cell Physiology 
2021;321(3):C429-C42 doi 10.1152/ajpcell.00146.2020. 

315. Zhou Z, Ai H, Li K, Yao X, Zhu W, Liu L, et al. Prohibitin 2 localizes in nucleolus to 
regulate ribosomal RNA transcription and facilitate cell proliferation in RD cells. Sci Rep 
2018;8(1):1479 doi 10.1038/s41598-018-19917-7. 

https://doi.org/10.1074/mcp.E117.067801


 

 189 

316. Amarnani A, Capri JR, Souda P, Elashoff DA, Lopez IA, Whitelegge JP, et al. 
Quantitative Proteomics Using Formalin-fixed, Paraffin-embedded Biopsy Tissues in 
Inflammatory Disease. J Proteomics Bioinform 2019;12(7):104-12 doi 10.35248/0974-
276x.12.19.503. 

317. Box GE. Robustness in Statistics: Proceedings of a Workshop. Academic Press, New 
York; 1979. 

318. Malhotra V, Perry MC. Classical chemotherapy: mechanisms, toxicities and the 
therapeutc window. Cancer biology & therapy 2003;2(sup1):1-3. 

319. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a 
major update to the DrugBank database for 2018. Nucleic Acids Res 2018;46(D1):D1074-
D82 doi 10.1093/nar/gkx1037. 

320. Darwich AS, Polasek TM, Aronson JK, Ogungbenro K, Wright DFB, Achour B, et al. 
Model-Informed Precision Dosing: Background, Requirements, Validation, 
Implementation, and Forward Trajectory of Individualizing Drug Therapy. Annu Rev 
Pharmacol Toxicol 2021;61:225-45 doi 10.1146/annurev-pharmtox-033020-113257. 

321. Polasek TM, Shakib S, Rostami-Hodjegan A. Precision dosing in clinical medicine: 
present and future. Expert Rev Clin Pharmacol 2018;11(8):743-6 doi 
10.1080/17512433.2018.1501271. 

322. Asiimwe IG, Zhang EJ, Osanlou R, Jorgensen AL, Pirmohamed M. Warfarin dosing 
algorithms: A systematic review. British journal of clinical pharmacology 
2021;87(4):1717-29. 

323. Fujita K. Cytochrome P450 and anticancer drugs. Curr Drug Metab 2006;7(1):23-37 doi 
10.2174/138920006774832587. 

324. Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, et al. Cytochrome P450 Enzymes and 
Drug Metabolism in Humans. Int J Mol Sci 2021;22(23):12808 doi 
10.3390/ijms222312808. 

325. Petros WP, Hopkins PJ, Spruill S, Broadwater G, Vredenburgh JJ, Colvin OM, et al. 
Associations between drug metabolism genotype, chemotherapy pharmacokinetics, and 
overall survival in patients with breast cancer. J Clin Oncol 2005;23(25):6117-25 doi 
10.1200/JCO.2005.06.075. 

326. Michael M, Doherty MM. Tumoral drug metabolism: overview and its implications for 
cancer therapy. J Clin Oncol 2005;23(1):205-29 doi 10.1200/JCO.2005.02.120. 

327. Daali Y, Rostami-Hodjegan A, Samer CF. Editorial: Precision Medicine: Impact of 
Cytochromes P450 and Transporters Genetic Polymorphisms, Drug-Drug Interactions, 
Disease on Safety and Efficacy of Drugs. Front Pharmacol 2021;12:834717 doi 
10.3389/fphar.2021.834717. 



 

 190 

328. Bozina N, Bradamante V, Lovric M. Genetic polymorphism of metabolic enzymes P450 
(CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Arhiv za 
higijenu rada i toksikologiju 2009;60(2):217. 

329. Rochat B. Role of cytochrome P450 activity in the fate of anticancer agents and in drug 
resistance: focus on tamoxifen, paclitaxel and imatinib metabolism. Clin Pharmacokinet 
2005;44(4):349-66 doi 10.2165/00003088-200544040-00002. 

330. Shastry BS. Pharmacogenetics and the concept of individualized medicine. 
Pharmacogenomics J 2006;6(1):16-21 doi 10.1038/sj.tpj.6500338. 

331. Seredina TA, Goreva OB, Talaban VO, Grishanova AY, Lyakhovich VV. Association of 
cytochrome P450 genetic polymorphisms with neoadjuvant chemotherapy efficacy in 
breast cancer patients. BMC Med Genet 2012;13(1):45 doi 10.1186/1471-2350-13-45. 

332. Anzenbacher P, Anzenbacherová E. Cytochromes P450 and metabolism of xenobiotics. 
Cell Mol Life Sci 2001;58(5-6):737-47 doi 10.1007/pl00000897. 

333. Cronin-Fenton DP, Damkier P. Chapter Three - Tamoxifen and CYP2D6: A Controversy 
in Pharmacogenetics. In: Brøsen K, Damkier P, editors. Advances in Pharmacology. 
Volume 83: Academic Press; 2018. p. 65-91. 

334. Bienfait K, Chhibber A, Marshall JC, Armstrong M, Cox C, Shaw PM, et al. Current 
challenges and opportunities for pharmacogenomics: perspective of the Industry 
Pharmacogenomics Working Group (I-PWG). Hum Genet 2022;141(6):1165-73 doi 
10.1007/s00439-021-02282-3. 

335. Sukri A, Salleh MZ, Masimirembwa C, Teh LK. A systematic review on the cost 
effectiveness of pharmacogenomics in developing countries: implementation challenges. 
Pharmacogenomics J 2022;22(3):147-59 doi 10.1038/s41397-022-00272-w. 

336. McGraw J, Waller D. Cytochrome P450 variations in different ethnic populations. Expert 
Opin Drug Metab Toxicol 2012;8(3):371-82 doi 10.1517/17425255.2012.657626. 

337. Anderson GD. Gender differences in pharmacological response. International review of 
neurobiology 2008;83:1-10. 

338. Scandlyn MJ, Stuart EC, Rosengren RJ. Sex-specific differences in CYP450 isoforms in 
humans. Expert Opin Drug Metab Toxicol 2008;4(4):413-24 doi 
10.1517/17425255.4.4.413. 

339. Soldin OP, Chung SH, Mattison DR. Sex differences in drug disposition. J Biomed 
Biotechnol 2011;2011:187103 doi 10.1155/2011/187103. 

340. Chen M, Ma L, Drusano GL, Bertino JS, Jr., Nafziger AN. Sex differences in CYP3A 
activity using intravenous and oral midazolam. Clin Pharmacol Ther 2006;80(5):531-8 
doi 10.1016/j.clpt.2006.08.014. 



 

 191 

341. Hu Z-Y, Zhao Y-S. Sex-dependent differences in cytochrome P450 3A activity as 
assessed by midazolam disposition in humans: a meta-analysis. Drug metabolism and 
disposition 2010;38(5):817-23. 

342. Kinirons MT, O'Mahony MS. Drug metabolism and ageing. Br J Clin Pharmacol 
2004;57(5):540-4 doi 10.1111/j.1365-2125.2004.02096.x. 

343. Scripture CD, Sparreboom A, Figg WD. Modulation of cytochrome P450 activity: 
implications for cancer therapy. Lancet Oncol 2005;6(10):780-9 doi 10.1016/S1470-
2045(05)70388-0. 

344. Tranvag EJ, Norheim OF, Ottersen T. Clinical decision making in cancer care: a review 
of current and future roles of patient age. BMC Cancer 2018;18(1):546 doi 
10.1186/s12885-018-4456-9. 

345. Nightingale G, Schwartz R, Kachur E, Dixon BN, Cote C, Barlow A, et al. Clinical 
pharmacology of oncology agents in older adults: a comprehensive review of how 
chronologic and functional age can influence treatment-related effects. Journal of 
geriatric oncology 2019;10(1):4-30. 

346. Schmucker DL. Liver function and phase I drug metabolism in the elderly: a paradox. 
Drugs Aging 2001;18(11):837-51 doi 10.2165/00002512-200118110-00005. 

347. Lammers LA, Achterbergh R, Romijn JA, Mathot RAA. Nutritional Status Differentially 
Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5'-Diphospho-
Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term 
Fasting and High Fat Diet on Midazolam Metabolism. Eur J Drug Metab Pharmacokinet 
2018;43(6):751-67 doi 10.1007/s13318-018-0487-5. 

348. Dostalek M, Court MH, Yan B, Akhlaghi F. Significantly reduced cytochrome P450 3A4 
expression and activity in liver from humans with diabetes mellitus. British journal of 
pharmacology 2011;163(5):937-47. 

349. Brill MJ, Diepstraten J, van Rongen A, van Kralingen S, van den Anker JN, Knibbe CA. 
Impact of obesity on drug metabolism and elimination in adults and children. Clin 
Pharmacokinet 2012;51(5):277-304 doi 10.2165/11599410-000000000-00000. 

350. Fearon K, Arends J, Baracos V. Understanding the mechanisms and treatment options in 
cancer cachexia. Nat Rev Clin Oncol 2013;10(2):90-9 doi 10.1038/nrclinonc.2012.209. 

351. Wang Z, Schuetz EG, Xu Y, Thummel KE. Interplay between vitamin D and the drug 
metabolizing enzyme CYP3A4. The Journal of steroid biochemistry and molecular 
biology 2013;136:54-8. 

352. Hoffer LJ, Robitaille L, Swinton N, Agulnik J, Cohen V, Small D, et al. Appropriate 
vitamin D loading regimen for patients with advanced lung cancer. Nutrition journal 
2015;15(1):1-12. 



 

 192 

353. Schwartz JB. Effects of vitamin D supplementation in atorvastatin-treated patients: a new 
drug interaction with an unexpected consequence. Clin Pharmacol Ther 2009;85(2):198-
203 doi 10.1038/clpt.2008.165. 

354. Kobayashi M, Hoshinaga Y, Miura N, Tokuda Y, Shigeoka S, Murai A, et al. Ascorbic 
acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and 
simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats. 
Bioscience, Biotechnology, and Biochemistry 2014;78(6):1060-6. 

355. Mayland CR, Bennett MI, Allan K. Vitamin C deficiency in cancer patients. Palliat Med 
2005;19(1):17-20 doi 10.1191/0269216305pm970oa. 

356. Harvey RD, Morgan ET. Cancer, inflammation, and therapy: effects on cytochrome 
p450-mediated drug metabolism and implications for novel immunotherapeutic agents. 
Clin Pharmacol Ther 2014;96(4):449-57 doi 10.1038/clpt.2014.143. 

357. Lenoir C, Daali Y, Rollason V, Curtin F, Gloor Y, Bosilkovska M, et al. Impact of Acute 
Inflammation on Cytochromes P450 Activity Assessed by the Geneva Cocktail. Clin 
Pharmacol Ther 2021;109(6):1668-76 doi 10.1002/cpt.2146. 

358. van Eijk M, Boosman RJ, Schinkel AH, Huitema ADR, Beijnen JH. Cytochrome P450 
3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: 
relevance for resistance to taxanes. Cancer Chemother Pharmacol 2019;84(3):487-99 doi 
10.1007/s00280-019-03905-3. 

359. Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, et al. Small molecules in targeted 
cancer therapy: Advances, challenges, and future perspectives. Signal Transduct Target 
Ther 2021;6(1):201. 

360. Bruno RD, Njar VC. Targeting cytochrome P450 enzymes: a new approach in anti-cancer 
drug development. Bioorg Med Chem 2007;15(15):5047-60 doi 
10.1016/j.bmc.2007.05.046. 

361. Jiang F, Chen L, Yang Y-C, Wang X-m, Wang R-Y, Li L, et al. CYP3A5 functions as a 
tumor suppressor in hepatocellular carcinoma by regulating mTORC2/Akt signaling. 
Cancer research 2015;75(7):1470-81. 

362. McGraw J, Gerhardt A, Morris TC. Opportunities and obstacles in genotypic prediction 
of cytochrome P450 phenotypes. Expert Opin Drug Metab Toxicol 2018;14(7):659-61 
doi 10.1080/17425255.2018.1484451. 

363. Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 
testing in the clinical setting. Molecular Diagnosis & Therapy 2013;17(3):165-84 doi 
10.1007/s40291-013-0028-5. 

364. Anderson KE, Kappas A. Dietary regulation of cytochrome P450. Annual review of 
nutrition 1991;11(1):141-67 doi 10.1146/annurev.nu.11.070191.001041. 



 

 193 

365. Delgoda R, Westlake AC. Herbal interactions involving cytochrome p450 enzymes: a 
mini review. Toxicol Rev 2004;23(4):239-49 doi 10.2165/00139709-200423040-00004. 

366. Pelkonen O, Maenpaa J, Taavitsainen P, Rautio A, Raunio H. Inhibition and induction of 
human cytochrome P450 (CYP) enzymes. Xenobiotica 1998;28(12):1203-53 doi 
10.1080/004982598238886. 

367. Dresser GK. Dietary effects on drug metabolism and transport: Effect of peppermint oil, 
St. John's Wort, and fruit juices on cytochrome P450 3A4, P-glycoprotein, and organic 
anion transporting polypeptides in vitro and in humans. 2005. 

368. Harris RZ, Jang GR, Tsunoda S. Dietary effects on drug metabolism and transport. Clin 
Pharmacokinet 2003;42(13):1071-88 doi 10.2165/00003088-200342130-00001. 

369. O'Malley M, King AN, Conte M, Ellingrod VL, Ramnath N. Effects of cigarette smoking 
on metabolism and effectiveness of systemic therapy for lung cancer. J Thorac Oncol 
2014;9(7):917-26 doi 10.1097/JTO.0000000000000191. 

370. Faber MS, Fuhr U. Time response of cytochrome P450 1A2 activity on cessation of 
heavy smoking. Clin Pharmacol Ther 2004;76(2):178-84 doi 10.1016/j.clpt.2004.04.003. 

371. Zhao Y, Liang A, Zhang Y, Li C, Yi Y, Nilsen OG. Impact of Tetrahydropalmatine on 
the Pharmacokinetics of Probe Drugs for CYP1A2, 2D6 and 3A Isoenzymes in Beagle 
Dogs. Phytother Res 2016;30(6):906-14 doi 10.1002/ptr.5608. 

372. Zhao Y, Hellum BH, Liang A, Nilsen OG. Inhibitory Mechanisms of Human CYPs by 
Three Alkaloids Isolated from Traditional Chinese Herbs. Phytother Res 2015;29(6):825-
34 doi 10.1002/ptr.5285. 

373. Chow HH, Hakim IA, Vining DR, Crowell JA, Cordova CA, Chew WM, et al. Effects of 
repeated green tea catechin administration on human cytochrome P450 activity. Cancer 
Epidemiol Biomarkers Prev 2006;15(12):2473-6 doi 10.1158/1055-9965.EPI-06-0365. 

374. Bisswanger H. Enzyme assays. Perspectives in Science 2014;1(1-6):41-55. 

375. Brooks HB, Geeganage S, Kahl SD, Montrose C, Sittampalam S, Smith MC, et al. Basics 
of enzymatic assays for HTS. Assay Guidance Manual [Internet] 2012. 

376. Bosilkovska M, Samer CF, Deglon J, Rebsamen M, Staub C, Dayer P, et al. Geneva 
cocktail for cytochrome p450 and P-glycoprotein activity assessment using dried blood 
spots. Clin Pharmacol Ther 2014;96(3):349-59 doi 10.1038/clpt.2014.83. 

377. Tornio A, Filppula AM, Niemi M, Backman JT. Clinical Studies on Drug-Drug 
Interactions Involving Metabolism and Transport: Methodology, Pitfalls, and 
Interpretation. Clin Pharmacol Ther 2019;105(6):1345-61 doi 10.1002/cpt.1435. 

378. Robertson D, Williams GH. Clinical and translational science: principles of human 
research. Academic Press; 2009. 



 

 194 

379. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or 
chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 
2010;362(25):2380-8 doi 10.1056/NEJMoa0909530. 

380. Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, et al. Ipilimumab 
in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV 
non–small-cell lung cancer: results from a randomized, double-blind, multicenter phase II 
study. Journal of clinical oncology 2012;30(17):2046-54. 

381. Turrisi AT, 3rd, Kim K, Blum R, Sause WT, Livingston RB, Komaki R, et al. Twice-
daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer 
treated concurrently with cisplatin and etoposide. N Engl J Med 1999;340(4):265-71 doi 
10.1056/NEJM199901283400403. 

382. Shore N, Mellado B, Shah S, Hauke R, Costin D, Adra N, et al. A Phase I Study of 
Capivasertib in Combination With Abiraterone Acetate in Patients With Metastatic 
Castration-Resistant Prostate Cancer. Clin Genitourin Cancer 2023;21(2):278-85 doi 
10.1016/j.clgc.2022.11.017. 

383. van Eijk M, Boosman RJ, Schinkel AH, Huitema AD, Beijnen JH. Cytochrome P450 
3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: 
relevance for resistance to taxanes. Cancer Chemother Pharmacol 2019;84:487-99. 

384. Citarella F, Russano M, Galletti A, Vincenzi B, Tonini G, Santini D. Novel drugs, 
familiar interactions: ciprofloxacin may increase exposure to the RET inhibitor 
pralsetinib. Ann Oncol 2021;32(6):811-3 doi 10.1016/j.annonc.2021.02.023. 

385. Simonsson M, Veerla S, Markkula A, Rose C, Ingvar C, Jernstrom H. CYP1A2--a novel 
genetic marker for early aromatase inhibitor response in the treatment of breast cancer 
patients. BMC Cancer 2016;16:256 doi 10.1186/s12885-016-2284-3. 

386. Glue P, Clement RP. Cytochrome P450 enzymes and drug metabolism--basic concepts 
and methods of assessment. Cellular and Molecular Neurobiology 1999;19(3):309-23 doi 
10.1023/a:1006993631057. 

387. Bosilkovska M, Samer C, Déglon J, Thomas A, Walder B, Desmeules J, et al. Evaluation 
of mutual drug–drug interaction within Geneva cocktail for cytochrome P450 
phenotyping using innovative dried blood sampling method. Basic & clinical 
pharmacology & toxicology 2016;119(3):284-90. 

388. Rollason V, Mouterde M, Daali Y, Cizkova M, Priehodova E, Kulichova I, et al. Safety 
of the Geneva Cocktail, a Cytochrome P450 and P-Glycoprotein Phenotyping Cocktail, 
in Healthy Volunteers from Three Different Geographic Origins. Drug Saf 
2020;43(11):1181-9 doi 10.1007/s40264-020-00983-8. 

389. Tian D, Hu Z. CYP3A4-mediated pharmacokinetic interactions in cancer therapy. Curr 
Drug Metab 2014;15(8):808-17 doi 10.2174/1389200216666150223152627. 



 

 195 

390. Subhani S, Jamil K. Molecular docking of chemotherapeutic agents to CYP3A4 in non-
small cell lung cancer. Biomed Pharmacother 2015;73:65-74 doi 
10.1016/j.biopha.2015.05.018. 

391. Fujita K-i. Cytochrome P450 and anticancer drugs. Current drug metabolism 
2006;7(1):23-37. 

392. Streetman DS, Bertino Jr JS, Nafziger AN. Phenotyping of drug-metabolizing enzymes in 
adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics and 
Genomics 2000;10(3):187-216. 

393. Thummel KE, Shen DD, Podoll TD, Kunze KL, Trager WF, Bacchi CE, et al. Use of 
midazolam as a human cytochrome P450 3A probe: II. Characterization of inter-and 
intraindividual hepatic CYP3A variability after liver transplantation. Journal of 
Pharmacology and Experimental Therapeutics 1994;271(1):557-66. 

394. Notarianni L, Oliver S, Dobrocky P, Bennett P, Silverman B. Caffeine as a metabolic 
probe: a comparison of the metabolic ratios used to assess CYP1A2 activity. British 
journal of clinical pharmacology 1995;39(1):65-9. 

395. Bansal S, DeStefano A. Key elements of bioanalytical method validation for small 
molecules. The AAPS journal 2007;9:E109-E14. 

396. Lelo A, Birkett DJ, Robson RA, Miners JO. Comparative pharmacokinetics of caffeine 
and its primary demethylated metabolites paraxanthine, theobromine and theophylline in 
man. Br J Clin Pharmacol 1986;22(2):177-82 doi 10.1111/j.1365-2125.1986.tb05246.x. 

397. Burg AW. Physiological disposition of caffeine. Drug Metab Rev 1975;4(2):199-228 doi 
10.3109/03602537508993756. 

398. Coelho EB, Cusinato DAC, Ximenez JP, Lanchote VL, Struchiner CJ, Suarez-Kurtz G. 
Limited Sampling Modeling for Estimation of Phenotypic Metrics for CYP Enzymes and 
the ABCB1 Transporter Using a Cocktail Approach. Front Pharmacol 2020;11:22 doi 
10.3389/fphar.2020.00022. 

399. Gunes A, Ozbey G, Vural EH, Uluoglu C, Scordo MG, Zengil H, et al. Influence of 
genetic polymorphisms, smoking, gender and age on CYP1A2 activity in a Turkish 
population. Pharmacogenomics 2009;10(5):769-78 doi 10.2217/pgs.09.22. 

400. Spaggiari D, Mehl F, Desfontaine V, Grand-Guillaume Perrenoud A, Fekete S, Rudaz S, 
et al. Comparison of liquid chromatography and supercritical fluid chromatography 
coupled to compact single quadrupole mass spectrometer for targeted in vitro metabolism 
assay. J Chromatogr A 2014;1371:244-56 doi 10.1016/j.chroma.2014.10.055. 

401. Anderson GD, Chan L-N. Pharmacokinetic drug interactions with tobacco, cannabinoids 
and smoking cessation products. Clinical pharmacokinetics 2016;55:1353-68 doi 
10.1007/s40262-016-0400-9. 



 

 196 

402. Zarezadeh M, Saedisomeolia A, Shekarabi M, Khorshidi M, Emami MR, Muller DJ. The 
effect of obesity, macronutrients, fasting and nutritional status on drug-metabolizing 
cytochrome P450s: a systematic review of current evidence on human studies. Eur J Nutr 
2021;60(6):2905-21 doi 10.1007/s00394-020-02421-y. 

403. Whiteaker JR, Zhang H, Zhao L, Wang P, Kelly-Spratt KS, Ivey RG, et al. Integrated 
pipeline for mass spectrometry-based discovery and confirmation of biomarkers 
demonstrated in a mouse model of breast cancer. J Proteome Res 2007;6(10):3962-75 doi 
10.1021/pr070202v. 

404. Tenkerian C, Krishnamoorthy J, Mounir Z, Kazimierczak U, Khoutorsky A, Staschke 
KA, et al. mTORC2 Balances AKT Activation and eIF2alpha Serine 51 Phosphorylation 
to Promote Survival under Stress. Mol Cancer Res 2015;13(10):1377-88 doi 
10.1158/1541-7786.MCR-15-0184-T. 

405. Broadhurst DI, Kell DB. Statistical strategies for avoiding false discoveries in 
metabolomics and related experiments. Metabolomics 2006;2:171-96. 

406. Kitteringham NR, Jenkins RE, Lane CS, Elliott VL, Park BK. Multiple reaction 
monitoring for quantitative biomarker analysis in proteomics and metabolomics. J 
Chromatogr B Analyt Technol Biomed Life Sci 2009;877(13):1229-39 doi 
10.1016/j.jchromb.2008.11.013. 

407. Sonenberg N, Hinnebusch AG. New modes of translational control in development, 
behavior, and disease. Mol Cell 2007;28(5):721-9 doi 10.1016/j.molcel.2007.11.018. 

408. Calkhoven CF, Muller C, Leutz A. Translational control of gene expression and disease. 
Trends Mol Med 2002;8(12):577-83 doi 10.1016/s1471-4914(02)02424-3. 

409. Storelli F, Samer C, Reny JL, Desmeules J, Daali Y. Complex Drug-Drug-Gene-Disease 
Interactions Involving Cytochromes P450: Systematic Review of Published Case Reports 
and Clinical Perspectives. Clin Pharmacokinet 2018;57(10):1267-93 doi 
10.1007/s40262-018-0650-9. 

410. Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei 
K. Patient-derived xenograft (PDX) models, applications and challenges in cancer 
research. Journal of Translational Medicine 2022;20(1):206 doi 10.1186/s12967-022-
03405-8. 

411. Kolinsky MP, Rescigno P, Bianchini D, Zafeiriou Z, Mehra N, Mateo J, et al. A phase I 
dose-escalation study of enzalutamide in combination with the AKT inhibitor AZD5363 
(capivasertib) in patients with metastatic castration-resistant prostate cancer. Ann Oncol 
2020;31(5):619-25 doi 10.1016/j.annonc.2020.01.074. 

412. Crabb SJ, Griffiths G, Marwood E, Dunkley D, Downs N, Martin K, et al. Pan-AKT 
Inhibitor Capivasertib With Docetaxel and Prednisolone in Metastatic Castration-
Resistant Prostate Cancer: A Randomized, Placebo-Controlled Phase II Trial (ProCAID). 
J Clin Oncol 2021;39(3):190-201 doi 10.1200/JCO.20.01576. 



 

 197 

413. Turner N, Oliveira M, Howell SJ, Dalenc F, Cortés J, Gomez H, et al. Abstract GS3-04: 
GS3-04 Capivasertib and fulvestrant for patients with aromatase inhibitor-resistant 
hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced 
breast cancer: results from the Phase III CAPItello-291 trial. Cancer Research 
2023;83(5_Supplement):GS3-04-GS3-. 

414. Gambaro K, Marques M, McNamara S, Couetoux du Tertre M, Diaz Z, Hoffert C, et al. 
Copy number and transcriptome alterations associated with metastatic lesion response to 
treatment in colorectal cancer. Clin Transl Med 2021;11(4):e401 doi 10.1002/ctm2.401. 

415. Rodriguez-Antona C, Gomez A, Karlgren M, Sim SC, Ingelman-Sundberg M. Molecular 
genetics and epigenetics of the cytochrome P450 gene family and its relevance for cancer 
risk and treatment. Hum Genet 2010;127(1):1-17 doi 10.1007/s00439-009-0748-0. 

416. Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, et al. Small molecules in targeted 
cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target 
Ther 2021;6(1):201 doi 10.1038/s41392-021-00572-w. 

417. Miyoshi Y, Ando A, Takamura Y, Taguchi T, Tamaki Y, Noguchi S. Prediction of 
response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues. Int J 
Cancer 2002;97(1):129-32 doi 10.1002/ijc.1568. 

418. Floriano-Sanchez E, Rodriguez NC, Bandala C, Coballase-Urrutia E, Lopez-Cruz J. 
CYP3A4 expression in breast cancer and its association with risk factors in Mexican 
women. Asian Pac J Cancer Prev 2014;15(8):3805-9 doi 10.7314/apjcp.2014.15.8.3805. 

419. Jones RH, Carucci M, Casbard AC, Butler R, Alchami F, Bale CJ, et al. Capivasertib 
(AZD5363) plus fulvestrant versus placebo plus fulvestrant after relapse or progression 
on an aromatase inhibitor in metastatic ER-positive breast cancer (FAKTION): A 
randomized, double-blind, placebo-controlled, phase II trial. Journal of Clinical 
Oncology 2019;37(15_suppl):1005- doi 10.1200/JCO.2019.37.15_suppl.1005. 

420. Jiang F, Chen L, Yang YC, Wang XM, Wang RY, Li L, et al. CYP3A5 Functions as a 
Tumor Suppressor in Hepatocellular Carcinoma by Regulating mTORC2/Akt Signaling. 
Cancer Res 2015;75(7):1470-81 doi 10.1158/0008-5472.CAN-14-1589. 

421. Kentsis A, Volpon L, Topisirovic I, Soll CE, Culjkovic B, Shao L, et al. Further evidence 
that ribavirin interacts with eIF4E. RNA 2005;11(12):1762-6 doi 10.1261/rna.2238705. 

422. Borden KL, Culjkovic-Kraljacic B. Ribavirin as an anti-cancer therapy: acute myeloid 
leukemia and beyond? Leuk Lymphoma 2010;51(10):1805-15 doi 
10.3109/10428194.2010.496506. 

423. Gerhards NM, Rottenberg S. New tools for old drugs: Functional genetic screens to 
optimize current chemotherapy. Drug Resist Updat 2018;36:30-46 doi 
10.1016/j.drup.2018.01.001. 



 

 198 

424. Lou Y, Wang Q, Zheng J, Hu H, Liu L, Hong D, et al. Possible Pathways of 
Capecitabine-Induced Hand-Foot Syndrome. Chem Res Toxicol 2016;29(10):1591-601 
doi 10.1021/acs.chemrestox.6b00215. 

425. Nikolaou V, Syrigos K, Saif MW. Incidence and implications of chemotherapy related 
hand-foot syndrome. Expert Opin Drug Saf 2016;15(12):1625-33 doi 
10.1080/14740338.2016.1238067. 

426. Azuma Y, Hata K, Sai K, Udagawa R, Hirakawa A, Tohkin M, et al. Significant 
association between hand-foot syndrome and efficacy of capecitabine in patients with 
metastatic breast cancer. Biological and Pharmaceutical Bulletin 2012;35(5):717-24. 

427. Diederiks N, Ravensbergen CJ, Treep M, van Wezel M, Kuruc M, Renee Ruhaak L, et al. 
Development of Tier 2 LC-MRM-MS protein quantification methods for liquid biopsies. 
J Mass Spectrom Adv Clin Lab 2023;27:49-55 doi 10.1016/j.jmsacl.2022.12.007. 

428. Adelstein DJ. Clinical trial design in head and neck cancer: what has the oncologist 
learned? The Lancet Oncology 2012;13(7):e318-e23. 

429. Noor AM, Holmberg L, Gillett C, Grigoriadis A. Big Data: the challenge for small 
research groups in the era of cancer genomics. British Journal of Cancer 
2015;113(10):1405-12 doi 10.1038/bjc.2015.341. 

430. Ngiam KY, Khor W. Big data and machine learning algorithms for health-care delivery. 
The Lancet Oncology 2019;20(5):e262-e73. 

431. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of 
circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 
2014;6(224):224ra24 doi 10.1126/scitranslmed.3007094. 

432. Suvarna V. Phase IV of drug development. Perspectives in clinical research 
2010;1(2):57. 

433. Mukherjee S. The emperor of all maladies: a biography of cancer. Simon and Schuster; 
2011. 

434. Gupta A, O'Callaghan CJ, Zhu L, Jonker DJ, Wong RPW, Colwell B, et al. Evaluating 
the Time Toxicity of Cancer Treatment in the CCTG CO.17 Trial. JCO Oncol Pract 
2023:OP2200737 doi 10.1200/OP.22.00737. 

435. Chen Q, Lu M, Monks BR, Birnbaum MJ. Insulin Is Required to Maintain Albumin 
Expression by Inhibiting Forkhead Box O1 Protein. J Biol Chem 2016;291(5):2371-8 doi 
10.1074/jbc.M115.677351. 

436. Fiala O, Pesek M, Finek J, Racek J, Minarik M, Benesova L, et al. Serum albumin is a 
strong predictor of survival in patients with advanced-stage non-small cell lung cancer 
treated with erlotinib. Neoplasma 2016;63(3):471-6. 

437. Jae Park M, Lee J, Hong JY, Choi MK, Yi JH, Lee SJ, et al. Prognostic model to predict 
outcomes in nonsmall cell lung cancer patients treated with gefitinib as a salvage 



 

 199 

treatment. Cancer: Interdisciplinary International Journal of the American Cancer 
Society 2009;115(7):1518-30. 

438. Li X, Chen W, Yang C, Huang Y, Jia J, Xu R, et al. IGHG1 upregulation promoted 
gastric cancer malignancy via AKT/GSK-3beta/beta-Catenin pathway. Cancer Cell Int 
2021;21(1):397 doi 10.1186/s12935-021-02098-1. 

439. Vishnubalaji R, Alajez NM. Transcriptional landscape associated with TNBC resistance 
to neoadjuvant chemotherapy revealed by single-cell RNA-seq. Mol Ther Oncolytics 
2021;23:151-62 doi 10.1016/j.omto.2021.09.002. 

440. Wang LM, Gan YH. Cancer‐derived IgG involved in cisplatin resistance through 
PTP‐BAS/Src/PDK1/AKT signaling pathway. Oral Diseases 2021;27(3):464-74. 

441. Schmidt M, Hellwig B, Hammad S, Othman A, Lohr M, Chen Z, et al. A Comprehensive 
Analysis of Human Gene Expression Profiles Identifies Stromal Immunoglobulin κ C as 
a Compatible Prognostic Marker in Human Solid TumorsIGKC Predicts Prognosis. 
Clinical Cancer Research 2012;18(9):2695-703. 

442. Zhu J, Wang M, Hu D. Identification of Prognostic Immune-Related Genes by 
Integrating mRNA Expression and Methylation in Lung Adenocarcinoma. Int J 
Genomics 2020;2020:9548632 doi 10.1155/2020/9548632. 

443. Singh N, Sahu DK, Tripathi RK, Mishra A, Shyam H, Shankar P, et al. Differentially 
expressed full-length, fusion and novel isoforms transcripts-based signature of well-
differentiated keratinized oral squamous cell carcinoma. Oncotarget 2020;11(34):3227-
43 doi 10.18632/oncotarget.27693. 

444. Franks SE, Briah R, Jones RA, Moorehead RA. Unique roles of Akt1 and Akt2 in IGF-IR 
mediated lung tumorigenesis. Oncotarget 2016;7(3):3297. 

445. Li JP, Liu Y, Yin YH. ARHGAP1 overexpression inhibits proliferation, migration and 
invasion of C-33A and SiHa cell lines. Onco Targets Ther 2017;10:691-701 doi 
10.2147/OTT.S112223. 

446. Park N, Yoo JC, Ryu J, Hong SG, Hwang EM, Park JY. Copine1 enhances neuronal 
differentiation of the hippocampal progenitor HiB5 cells. Mol Cells 2012;34(6):549-54 
doi 10.1007/s10059-012-0235-7. 

447. Park N, Yoo JC, Lee YS, Choi HY, Hong SG, Hwang EM, et al. Copine1 C2 domains 
have a critical calcium-independent role in the neuronal differentiation of hippocampal 
progenitor HiB5 cells. Biochem Biophys Res Commun 2014;454(1):228-33 doi 
10.1016/j.bbrc.2014.10.075. 

448. Nowinski SM, Solmonson A, Rundhaug JE, Rho O, Cho J, Lago CU, et al. 
Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to 
tumorigenesis. Nat Commun 2015;6(1):8137 doi 10.1038/ncomms9137. 



 

 200 

449. Pei Y, Zhu P, Dang Y, Wu J, Yang X, Wan B, et al. Nuclear export of NF90 to stabilize 
IL-2 mRNA is mediated by AKT-dependent phosphorylation at Ser647 in response to 
CD28 costimulation. The Journal of Immunology 2008;180(1):222-9. 

450. Jia W, Kong L, Kidoya H, Naito H, Muramatsu F, Hayashi Y, et al. Indispensable role of 
Galectin-3 in promoting quiescence of hematopoietic stem cells. Nat Commun 
2021;12(1):2118 doi 10.1038/s41467-021-22346-2. 

451. Ilmer M, Mazurek N, Gilcrease MZ, Byrd JC, Woodward WA, Buchholz TA, et al. Low 
expression of galectin-3 is associated with poor survival in node-positive breast cancers 
and mesenchymal phenotype in breast cancer stem cells. Breast Cancer Res 
2016;18(1):97 doi 10.1186/s13058-016-0757-6. 

452. Xu F, Hua Q, Zhang A, Di Z, Wang Y, Zhao L, et al. LncRNA AC020978 facilitates 
non-small cell lung cancer progression by interacting with malate dehydrogenase 2 and 
activating the AKT pathway. Cancer Sci 2021;112(11):4501-14 doi 10.1111/cas.15116. 

453. Zhuang Y, Xiang J, Bao W, Sun Y, Wang L, Tan M, et al. MDH2 Stimulated by 
Estrogen-GPR30 Pathway Down-Regulated PTEN Expression Promoting the 
Proliferation and Invasion of Cells in Endometrial Cancer. Transl Oncol 2017;10(2):203-
10 doi 10.1016/j.tranon.2017.01.009. 

454. Eletto D, Eletto D, Dersh D, Gidalevitz T, Argon Y. Protein disulfide isomerase A6 
controls the decay of IRE1alpha signaling via disulfide-dependent association. Mol Cell 
2014;53(4):562-76 doi 10.1016/j.molcel.2014.01.004. 

455. Bavelloni A, Piazzi M, Faenza I, Raffini M, D'Angelo A, Cattini L, et al. Prohibitin 2 
represents a novel nuclear AKT substrate during all‐trans retinoic acid–induced 
differentiation of acute promyelocytic leukemia cells. The FASEB Journal 
2014;28(5):2009-19. 

456. Zhang H, Cheng L, Liu C. Regulatory networks of prognostic mRNAs in pediatric acute 
myeloid leukemia. Journal of Healthcare Engineering 2022;2022. 

457. Lin Z, Peng R, Sun Y, Zhang L, Zhang Z. Identification of ribosomal protein family in 
triple-negative breast cancer by bioinformatics analysis. Bioscience Reports 2021;41(1). 

458. Fang E, Zhang X. Identification of breast cancer hub genes and analysis of prognostic 
values using integrated bioinformatics analysis. Cancer Biomarkers 2018;21(2):373-81. 

 



 

 201 

Appendices 

 
 
 



 

 202 

1. Introduction: Multi-gene signatures for clinical stratification of breast cancer patients 

Examples of commercially-available prognostic multi-gene panels for clinical stratification of breast cancer patients  
  

MammaPrint Veridex 76-
gene 

MapQuant 
Dx 

MapQuant 
Dx simplified 

Oncotype DX Theros 

Technique DNA microarray DNA 
microarray 

DNA 
microarray 

qRT-PCR qRT-PCR qRT-PCR 

Provider Agendia Currently not 
commercially 

available 

Ipsogen Ipsogen Genomic Health bioTheranostics 

Assay type 70-gene signature 76-gene 
signature 

97-gene 
signature 

8-gene 
signature 

21-gene recurrence 
score 

16 cancer-related and 
5 reference genes 

2-gene ratio of 
HOXB13 to 

IL17R 
(H/l)/molecular 

grade index 
Tissue type Fresh or frozen Fresh or Frozen Fresh or 

Frozen 
FFPE FFPE FFPE 

Discovery 
set 

78 ER±, N0, < 5 cm 
diameter cancers, 

age < 55 years 

115 ER±, N0 
cancers 

64 ER+ cancers 447 ER+ samples, 
including samples 
from the tamoxifen 

only group of 
NSABP B-20 trial 

60 ER+ tumors, 
tamoxifen-only 
treated patients, 

20 micro-
dissected FFPE 

samples 
Initial 
validation 
set 

295 ER±, N±, < 5 
cm diameter cancer, 

age < 52 years 

171 ER±, N0 
cancers 

597 ER± cancers, of which 125 
profiled in-house  

668 ER+ samples 
from NSABP B-

14trial90(tamoxifen-
treated) 

20 ER+ FFPE 
samples 

Outcome Distant metastasis at 
5 years 

Distant 
metastasis at 5 

years 

Good (GG II) or  
poor (GG I III) prognosis 

Disease-free relapse 
at 10 years 

Relapse-free & 
overall survival 
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MammaPrint Veridex 76-

gene 
MapQuant 

Dx 
MapQuant 

Dx simplified 
Oncotype DX Theros 

Clinical 
application 

To aid in prognostic 
prediction in 

patients < 61 year of 
age with stage I or 

II, N0 disease with a 
tumor size of ≤ 5 cm 

To prognose 
N0 patients 

restratify grade 2 tumors into 
low-risk grade 1 or high-risk 

grade 3 tumors, specifically for 
invasive, primary, ER+ grade 2 

tumors 

predict the risk of 
recurrence in patients 
with ER+, N0 disease 

treated with 
tamoxifen; identify 
patients with a low 
risk of recurrence 
who may not need 

adjuvant 
chemotherapy 

stratify ER+ 
patients into 

groups with a 
predicted low-risk 

or high-risk of 
recurrence and a 
predicted good or 
poor response to 

endocrine therapy 

Results 
presentation 

Dichotomous; good 
or poor prognosis 

Dichotomous; 
good or poor 

prognosis 

Dichotomous, GGII or GG I III Continuous variable; 
recurrence score 

Continuous 
variable; risk of 
recurrence score 

Additional 
information 
provided 

mRNA levels of 
ER, PR, and HER2 

(Targetprint); 
Intrinsic subtypes 

(Blueprint) 

- - - mRNA levels of ER, 
PR, and HER2 

Molecular grade 
index 

Prognostic 
value in 
other 
populations 

Up to 3 positive 
nodes, and HER2+ 

disease 

ER+, N0 
patients treated 
with tamoxifen 

ER+, 
receiving 
aromatase 
inhibitors 

ER+, 
receiving 
aromatase 
inhibitors 

ER+ and 1-3 N+, 
ER+ postmenopausal 
receiving aromatase 

inhibitors 

- 

Predictive 
value 

Chemotherapy 
response (poor 

prognosis group) 

Chemotherapy 
response (poor 

prognosis 
group) 

Chemotherapy 
response (GG 

I III) 

Chemotherapy 
response (GG 

I III) 

Chemotherapy 
response  

(high recurrence 
score) 

Chemotherapy 
response  

(high risk of 
recurrence score)  

Level of 
evidence 

II  III  III  III I III 

FDA 
approval 

Yes No No No No No 
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MammaPrint Veridex 76-

gene 
MapQuant 

Dx 
MapQuant 

Dx simplified 
Oncotype DX Theros 

Availability Europe and USA 
 

Europe Europe Europe and USA USA 
NOTES In cases where 

clinicopathological 
measures disagree 
with MammaPrint, 
the latter predicts 

outcome with higher 
accuracy 

Outperforms 
the St Gallen’s 

and NCI 
guidelines in 
identifying 

patients with 
good prognosis 

who could 
forgo  

chemotherapy 

based on the premise that 
histological grade is a strong 

prognostic factor in ER 
positive tumors.  

stratify grade II cancers into 
grade I-like (with a low 

frequency of distant relapses) 
and grade III-like (having a 
clinical behavior similar to 
that of grade III) cancers 

Prognoses risk of 
distant relapse at 10 
years for ER+, node- 

breast cancer, 
predictive value 

among ER+ treated 
with AI; and ER+ 
with ≤3 nodes +;  

test in ASCO 
guidelines for making 
therapeutic decisions 
in early ER+ node- 

breast tumors 
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2. Methods: MS settings for multiplexed MRM and PRM assays 

 

MRM-MS Transition List 
 

Compound Name 
Precursor 

Ion 
Product 

Ion 
RT 

(min) 
Collision 
Energy 

AAEIASSDSANVSSR.heavy 737.85 272.14 5.55 33 
AAEIASSDSANVSSR.heavy 737.85 359.19 5.55 17 
AAEIASSDSANVSSR.heavy 737.85 932.43 5.55 25 
AAEIASSDSANVSSR.heavy 737.85 1019.46 5.55 25 
AAEIASSDSANVSSR.heavy 737.85 1090.5 5.55 25 
AAEIASSDSANVSSR.light 732.85 272.14 5.55 33 
AAEIASSDSANVSSR.light 732.85 349.18 5.55 17 
AAEIASSDSANVSSR.light 732.85 922.42 5.55 25 
AAEIASSDSANVSSR.light 732.85 1009.45 5.55 25 
AAEIASSDSANVSSR.light 732.85 1080.49 5.55 25 
AGSSEWLAVDGLVSPSNNSK.heavy 676.0038 741.3617 31.37 13 
AGSSEWLAVDGLVSPSNNSK.heavy 676.0038 654.3297 31.37 13 
AGSSEWLAVDGLVSPSNNSK.heavy 676.0038 371.1845 31.37 13 
AGSSEWLAVDGLVSPSNNSK.heavy 676.0038 327.6685 31.37 16 
AGSSEWLAVDGLVSPSNNSK.heavy 676.0038 1186.574 31.37 13 
AGSSEWLAVDGLVSPSNNSK.light 673.3324 1186.574 31.37 13 
AGSSEWLAVDGLVSPSNNSK.light 673.3324 733.3475 31.37 13 
AGSSEWLAVDGLVSPSNNSK.light 673.3324 646.3155 31.37 13 
AGSSEWLAVDGLVSPSNNSK.light 673.3324 367.1774 31.37 13 
AGSSEWLAVDGLVSPSNNSK.light 673.3324 323.6614 31.37 16 
AINPINTFTK.heavy 563.821 942.5135 20.9 13 
AINPINTFTK.heavy 563.821 828.4705 20.9 16 
AINPINTFTK.heavy 563.821 471.7604 20.9 13 
AINPINTFTK.heavy 563.821 414.7389 20.9 19 
AINPINTFTK.heavy 563.821 299.1714 20.9 13 
AINPINTFTK.light 559.8139 934.4993 20.9 13 
AINPINTFTK.light 559.8139 820.4563 20.9 16 
AINPINTFTK.light 559.8139 467.7533 20.9 13 
AINPINTFTK.light 559.8139 410.7318 20.9 19 
AINPINTFTK.light 559.8139 299.1714 20.9 13 
DQIYDIFQK.heavy 589.3026 934.5124 27.23 16 
DQIYDIFQK.heavy 589.3026 821.4283 27.23 16 
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DQIYDIFQK.heavy 589.3026 658.365 27.23 19 
DQIYDIFQK.heavy 589.3026 357.1769 27.23 13 
DQIYDIFQK.heavy 589.3026 244.0928 27.23 19 
DQIYDIFQK.light 585.2955 926.4982 27.23 16 
DQIYDIFQK.light 585.2955 813.4141 27.23 16 
DQIYDIFQK.light 585.2955 650.3508 27.23 19 
DQIYDIFQK.light 585.2955 357.1769 27.23 13 
DQIYDIFQK.light 585.2955 244.0928 27.23 19 
EAGLDLR.heavy 392.2154 263.6248 9.36 10 
EAGLDLR.heavy 392.2154 292.1355 9.36 7 
EAGLDLR.heavy 392.2154 298.1713 9.36 19 
EAGLDLR.heavy 392.2154 413.1982 9.36 7 
EAGLDLR.heavy 392.2154 583.3038 9.36 10 
EAGLDLR.light 387.2112 258.6506 9.36 10 
EAGLDLR.light 387.2112 287.1514 9.36 7 
EAGLDLR.light 387.2112 288.223 9.36 19 
EAGLDLR.light 387.2112 403.21 9.36 7 
EAGLDLR.light 387.2112 573.3255 9.36 10 
EHIEIIAPSPQR.heavy 467.2571 806.4407 15.52 7 
EHIEIIAPSPQR.heavy 467.2571 735.4036 15.52 10 
EHIEIIAPSPQR.heavy 467.2571 622.3195 15.52 13 
EHIEIIAPSPQR.heavy 467.2571 594.3234 15.52 10 
EHIEIIAPSPQR.heavy 467.2571 297.6653 15.52 7 
EHIEIIAPSPQR.light 463.921 806.4407 15.52 7 
EHIEIIAPSPQR.light 463.921 735.4036 15.52 10 
EHIEIIAPSPQR.light 463.921 622.3195 15.52 13 
EHIEIIAPSPQR.light 463.921 584.3151 15.52 10 
EHIEIIAPSPQR.light 463.921 292.6612 15.52 7 
ELEEIVQPIISK.heavy 703.405 1034.634 28.35 22 
ELEEIVQPIISK.heavy 703.405 792.5069 28.35 19 
ELEEIVQPIISK.heavy 703.405 693.4385 28.35 16 
ELEEIVQPIISK.heavy 703.405 565.3799 28.35 25 
ELEEIVQPIISK.heavy 703.405 242.159 28.35 19 
ELEEIVQPIISK.light 699.398 1026.619 28.35 22 
ELEEIVQPIISK.light 699.398 784.4927 28.35 19 
ELEEIVQPIISK.light 699.398 685.4243 28.35 16 
ELEEIVQPIISK.light 699.398 557.3657 28.35 25 
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ELEEIVQPIISK.light 699.398 234.1448 28.35 19 
ELGIWEPLAVK.heavy 631.8654 1020.597 35.16 19 
ELGIWEPLAVK.heavy 631.8654 850.4913 35.16 19 
ELGIWEPLAVK.heavy 631.8654 664.412 35.16 16 
ELGIWEPLAVK.heavy 631.8654 535.3694 35.16 25 
ELGIWEPLAVK.heavy 631.8654 300.1554 35.16 19 
ELGIWEPLAVK.light 627.8583 1012.583 35.16 19 
ELGIWEPLAVK.light 627.8583 842.4771 35.16 19 
ELGIWEPLAVK.light 627.8583 656.3978 35.16 16 
ELGIWEPLAVK.light 627.8583 527.3552 35.16 25 
ELGIWEPLAVK.light 627.8583 300.1554 35.16 19 
ELIFEETAR.heavy 559.2918 875.4497 19.9 16 
ELIFEETAR.heavy 559.2918 762.3656 19.9 16 
ELIFEETAR.heavy 559.2918 615.2972 19.9 13 
ELIFEETAR.heavy 559.2918 486.2546 19.9 22 
ELIFEETAR.heavy 559.2918 243.1339 19.9 16 
ELIFEETAR.light 554.2877 865.4414 19.9 16 
ELIFEETAR.light 554.2877 752.3573 19.9 16 
ELIFEETAR.light 554.2877 605.2889 19.9 13 
ELIFEETAR.light 554.2877 476.2463 19.9 22 
ELIFEETAR.light 554.2877 243.1339 19.9 16 
FDAGELITQR.heavy 580.3027 897.5028 21.69 22 
FDAGELITQR.heavy 580.3027 640.4016 21.69 19 
FDAGELITQR.heavy 580.3027 527.3175 21.69 19 
FDAGELITQR.heavy 580.3027 414.2335 21.69 16 
FDAGELITQR.heavy 580.3027 263.1026 21.69 19 
FDAGELITQR.light 575.2986 887.4945 21.69 22 
FDAGELITQR.light 575.2986 630.3933 21.69 19 
FDAGELITQR.light 575.2986 517.3093 21.69 19 
FDAGELITQR.light 575.2986 404.2252 21.69 16 
FDAGELITQR.light 575.2986 263.1026 21.69 19 
FEISETSVNR.heavy 596.2976 277.1183 14.09 18 
FEISETSVNR.heavy 596.2976 586.3183 14.09 27 
FEISETSVNR.heavy 596.2976 715.3609 14.09 18 
FEISETSVNR.heavy 596.2976 802.3929 14.09 21 
FEISETSVNR.heavy 596.2976 915.477 14.09 18 
FEISETSVNR.light 591.2935 277.1183 14.09 18 
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FEISETSVNR.light 591.2935 576.31 14.09 27 
FEISETSVNR.light 591.2935 705.3526 14.09 18 
FEISETSVNR.light 591.2935 792.3846 14.09 21 
FEISETSVNR.light 591.2935 905.4687 14.09 18 
FFAGIVWQHVYEK.heavy 544.62 295.14 32.73 13 
FFAGIVWQHVYEK.heavy 544.62 548.79 32.73 17 
FFAGIVWQHVYEK.heavy 544.62 633.84 32.73 13 
FFAGIVWQHVYEK.heavy 544.62 669.36 32.73 13 
FFAGIVWQHVYEK.heavy 544.62 742.89 32.73 13 
FFAGIVWQHVYEK.light 541.95 295.14 32.73 13 
FFAGIVWQHVYEK.light 541.95 544.78 32.73 17 
FFAGIVWQHVYEK.light 541.95 629.83 32.73 13 
FFAGIVWQHVYEK.light 541.95 665.35 32.73 13 
FFAGIVWQHVYEK.light 541.95 738.89 32.73 13 
FIDTTSK.heavy 410.2205 672.3654 4.65 13 
FIDTTSK.heavy 410.2205 559.2813 4.65 10 
FIDTTSK.heavy 410.2205 444.2544 4.65 16 
FIDTTSK.heavy 410.2205 261.1598 4.65 7 
FIDTTSK.heavy 410.2205 242.159 4.65 22 
FIDTTSK.light 406.2134 664.3512 4.65 13 
FIDTTSK.light 406.2134 551.2671 4.65 10 
FIDTTSK.light 406.2134 436.2402 4.65 16 
FIDTTSK.light 406.2134 261.1598 4.65 7 
FIDTTSK.light 406.2134 234.1448 4.65 22 
GDFIALDLGGSSFR.heavy 732.8715 1032.535 35.74 22 
GDFIALDLGGSSFR.heavy 732.8715 961.4977 35.74 22 
GDFIALDLGGSSFR.heavy 732.8715 848.4136 35.74 25 
GDFIALDLGGSSFR.heavy 732.8715 620.3026 35.74 19 
GDFIALDLGGSSFR.heavy 732.8715 320.1241 35.74 28 
GDFIALDLGGSSFR.light 727.8673 1022.527 35.74 22 
GDFIALDLGGSSFR.light 727.8673 951.4894 35.74 22 
GDFIALDLGGSSFR.light 727.8673 838.4054 35.74 25 
GDFIALDLGGSSFR.light 727.8673 610.2944 35.74 19 
GDFIALDLGGSSFR.light 727.8673 320.1241 35.74 28 
GLPAPIEK.heavy 416.7546 662.3963 11.74 10 
GLPAPIEK.heavy 416.7546 565.3435 11.74 16 
GLPAPIEK.heavy 416.7546 494.3064 11.74 16 
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GLPAPIEK.heavy 416.7546 331.7018 11.74 7 
GLPAPIEK.heavy 416.7546 284.1696 11.74 22 
GLPAPIEK.light 412.7475 654.3821 11.74 10 
GLPAPIEK.light 412.7475 557.3293 11.74 16 
GLPAPIEK.light 412.7475 486.2922 11.74 16 
GLPAPIEK.light 412.7475 327.6947 11.74 7 
GLPAPIEK.light 412.7475 276.1554 11.74 22 
GSTAPVGGGAFPTIVER.heavy 542.6222 724.4227 25.49 13 
GSTAPVGGGAFPTIVER.heavy 542.6222 655.3606 25.49 10 
GSTAPVGGGAFPTIVER.heavy 542.6222 627.37 25.49 25 
GSTAPVGGGAFPTIVER.heavy 542.6222 362.715 25.49 10 
GSTAPVGGGAFPTIVER.heavy 542.6222 317.1456 25.49 7 
GSTAPVGGGAFPTIVER.light 539.2861 714.4145 25.49 13 
GSTAPVGGGAFPTIVER.light 539.2861 650.3564 25.49 10 
GSTAPVGGGAFPTIVER.light 539.2861 617.3617 25.49 25 
GSTAPVGGGAFPTIVER.light 539.2861 357.7109 25.49 10 
GSTAPVGGGAFPTIVER.light 539.2861 317.1456 25.49 7 
GTGIVSAPVPK.heavy 517.3102 875.544 13.58 16 
GTGIVSAPVPK.heavy 517.3102 705.4385 13.58 13 
GTGIVSAPVPK.heavy 517.3102 606.3701 13.58 13 
GTGIVSAPVPK.heavy 517.3102 329.1819 13.58 10 
GTGIVSAPVPK.heavy 517.3102 252.1798 13.58 28 
GTGIVSAPVPK.light 513.3031 867.5298 13.58 16 
GTGIVSAPVPK.light 513.3031 697.4243 13.58 13 
GTGIVSAPVPK.light 513.3031 598.3559 13.58 13 
GTGIVSAPVPK.light 513.3031 329.1819 13.58 10 
GTGIVSAPVPK.light 513.3031 244.1656 13.58 28 
GTITVSAQELK.heavy 577.829 883.4975 14.79 16 
GTITVSAQELK.heavy 577.829 782.4498 14.79 16 
GTITVSAQELK.heavy 577.829 683.3814 14.79 13 
GTITVSAQELK.heavy 577.829 596.3494 14.79 16 
GTITVSAQELK.heavy 577.829 373.2082 14.79 13 
GTITVSAQELK.light 573.8219 875.4833 14.79 16 
GTITVSAQELK.light 573.8219 774.4356 14.79 16 
GTITVSAQELK.light 573.8219 675.3672 14.79 13 
GTITVSAQELK.light 573.8219 588.3352 14.79 16 
GTITVSAQELK.light 573.8219 373.2082 14.79 13 
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HGLLVPNNTTDQELQHIR.heavy 524.5284 682.8433 19.85 10 
HGLLVPNNTTDQELQHIR.heavy 524.5284 625.8218 19.85 10 
HGLLVPNNTTDQELQHIR.heavy 524.5284 575.298 19.85 10 
HGLLVPNNTTDQELQHIR.heavy 524.5284 520.3242 19.85 10 
HGLLVPNNTTDQELQHIR.heavy 524.5284 421.2558 19.85 16 
HGLLVPNNTTDQELQHIR.light 522.0264 677.8391 19.85 10 
HGLLVPNNTTDQELQHIR.light 522.0264 620.8177 19.85 10 
HGLLVPNNTTDQELQHIR.light 522.0264 570.2938 19.85 10 
HGLLVPNNTTDQELQHIR.light 522.0264 520.3242 19.85 10 
HGLLVPNNTTDQELQHIR.light 522.0264 421.2558 19.85 16 
IADPEHDHTGFLTEY[+79.966331]VATR.heavy 566.258 357.212 21.85 20 
IADPEHDHTGFLTEY[+79.966331]VATR.heavy 566.258 465.2038 21.85 11 
IADPEHDHTGFLTEY[+79.966331]VATR.heavy 566.258 610.7702 21.85 14 
IADPEHDHTGFLTEY[+79.966331]VATR.heavy 566.258 667.3122 21.85 11 
IADPEHDHTGFLTEY[+79.966331]VATR.heavy 566.258 699.3101 21.85 20 
IADPEHDHTGFLTEY[+79.966331]VATR.light 563.7559 347.2037 21.85 20 
IADPEHDHTGFLTEY[+79.966331]VATR.light 563.7559 460.1997 21.85 11 
IADPEHDHTGFLTEY[+79.966331]VATR.light 563.7559 610.7702 21.85 14 
IADPEHDHTGFLTEY[+79.966331]VATR.light 563.7559 667.3122 21.85 11 
IADPEHDHTGFLTEY[+79.966331]VATR.light 563.7559 689.3018 21.85 20 
IADPEHDHTGFLTEYVATR.heavy 546.2664 863.889 23.61 7 
IADPEHDHTGFLTEYVATR.heavy 546.2664 782.3573 23.61 10 
IADPEHDHTGFLTEYVATR.heavy 546.2664 619.3438 23.61 4 
IADPEHDHTGFLTEYVATR.heavy 546.2664 456.2804 23.61 13 
IADPEHDHTGFLTEYVATR.heavy 546.2664 357.212 23.61 10 
IADPEHDHTGFLTEYVATR.light 543.7644 863.889 23.61 7 
IADPEHDHTGFLTEYVATR.light 543.7644 782.3573 23.61 10 
IADPEHDHTGFLTEYVATR.light 543.7644 609.3355 23.61 4 
IADPEHDHTGFLTEYVATR.light 543.7644 446.2722 23.61 13 
IADPEHDHTGFLTEYVATR.light 543.7644 347.2037 23.61 10 
IALDFQR.heavy 436.7468 759.4023 18.25 16 
IALDFQR.heavy 436.7468 688.3652 18.25 10 
IALDFQR.heavy 436.7468 575.2812 18.25 13 
IALDFQR.heavy 436.7468 460.2542 18.25 22 
IALDFQR.heavy 436.7468 344.6862 18.25 10 
IALDFQR.light 431.7427 749.3941 18.25 16 
IALDFQR.light 431.7427 678.357 18.25 10 
IALDFQR.light 431.7427 565.2729 18.25 13 
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IALDFQR.light 431.7427 450.2459 18.25 22 
IALDFQR.light 431.7427 339.6821 18.25 10 
IFGVTTLDIVR.heavy 622.3678 983.5759 35.46 19 
IFGVTTLDIVR.heavy 622.3678 827.4861 35.46 19 
IFGVTTLDIVR.heavy 622.3678 726.4384 35.46 22 
IFGVTTLDIVR.heavy 622.3678 318.1812 35.46 25 
IFGVTTLDIVR.heavy 622.3678 261.1598 35.46 19 
IFGVTTLDIVR.light 617.3637 973.5677 35.46 19 
IFGVTTLDIVR.light 617.3637 817.4778 35.46 19 
IFGVTTLDIVR.light 617.3637 716.4301 35.46 22 
IFGVTTLDIVR.light 617.3637 318.1812 35.46 25 
IFGVTTLDIVR.light 617.3637 261.1598 35.46 19 
IFVNDDR.heavy 444.7261 775.3609 7.49 16 
IFVNDDR.heavy 444.7261 628.2924 7.49 13 
IFVNDDR.heavy 444.7261 529.224 7.49 13 
IFVNDDR.heavy 444.7261 388.1841 7.49 10 
IFVNDDR.heavy 444.7261 300.1542 7.49 22 
IFVNDDR.light 439.722 765.3526 7.49 16 
IFVNDDR.light 439.722 618.2842 7.49 13 
IFVNDDR.light 439.722 519.2158 7.49 13 
IFVNDDR.light 439.722 383.1799 7.49 10 
IFVNDDR.light 439.722 290.1459 7.49 22 
IGVLDEGK.heavy 419.7416 725.3919 9.85 13 
IGVLDEGK.heavy 419.7416 668.3705 9.85 13 
IGVLDEGK.heavy 419.7416 569.3021 9.85 13 
IGVLDEGK.heavy 419.7416 456.218 9.85 19 
IGVLDEGK.heavy 419.7416 270.1812 9.85 10 
IGVLDEGK.light 415.7345 717.3777 9.85 13 
IGVLDEGK.light 415.7345 660.3563 9.85 13 
IGVLDEGK.light 415.7345 561.2879 9.85 13 
IGVLDEGK.light 415.7345 448.2038 9.85 19 
IGVLDEGK.light 415.7345 270.1812 9.85 10 
IITLTGPTNAIFK.heavy 698.9181 1170.661 32.96 19 
IITLTGPTNAIFK.heavy 698.9181 956.5291 32.96 22 
IITLTGPTNAIFK.heavy 698.9181 855.4814 32.96 22 
IITLTGPTNAIFK.heavy 698.9181 328.2231 32.96 19 
IITLTGPTNAIFK.heavy 698.9181 227.1754 32.96 19 
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IITLTGPTNAIFK.light 694.911 1162.647 32.96 19 
IITLTGPTNAIFK.light 694.911 948.5149 32.96 22 
IITLTGPTNAIFK.light 694.911 847.4672 32.96 22 
IITLTGPTNAIFK.light 694.911 328.2231 32.96 19 
IITLTGPTNAIFK.light 694.911 227.1754 32.96 19 
ILPTLEAVAALGNK.heavy 709.4289 1191.682 36.44 22 
ILPTLEAVAALGNK.heavy 709.4289 880.4978 36.44 28 
ILPTLEAVAALGNK.heavy 709.4289 596.3448 36.44 16 
ILPTLEAVAALGNK.heavy 709.4289 581.3497 36.44 28 
ILPTLEAVAALGNK.heavy 709.4289 227.1754 36.44 16 
ILPTLEAVAALGNK.light 705.4218 1183.668 36.44 22 
ILPTLEAVAALGNK.light 705.4218 872.4836 36.44 28 
ILPTLEAVAALGNK.light 705.4218 592.3377 36.44 16 
ILPTLEAVAALGNK.light 705.4218 573.3355 36.44 28 
ILPTLEAVAALGNK.light 705.4218 227.1754 36.44 16 
ILVTGGSGLVGK.heavy 554.8444 882.5135 17.59 16 
ILVTGGSGLVGK.heavy 554.8444 783.445 17.59 19 
ILVTGGSGLVGK.heavy 554.8444 682.3974 17.59 16 
ILVTGGSGLVGK.heavy 554.8444 326.2438 17.59 13 
ILVTGGSGLVGK.heavy 554.8444 227.1754 17.59 16 
ILVTGGSGLVGK.light 550.8373 874.4993 17.59 16 
ILVTGGSGLVGK.light 550.8373 775.4308 17.59 19 
ILVTGGSGLVGK.light 550.8373 674.3832 17.59 16 
ILVTGGSGLVGK.light 550.8373 326.2438 17.59 13 
ILVTGGSGLVGK.light 550.8373 227.1754 17.59 16 
IRPECFELLR.heavy 429.2369 298.1813 26.8 7.1 
IRPECFELLR.heavy 429.2369 411.2653 26.8 7.1 
IRPECFELLR.heavy 429.2369 540.3079 26.8 10.1 
IRPECFELLR.heavy 429.2369 599.267 26.8 10.1 
IRPECFELLR.light 425.9008 288.193 26.8 7.1 
IRPECFELLR.light 425.9008 401.2771 26.8 7.1 
IRPECFELLR.light 425.9008 530.3297 26.8 10.1 
IRPECFELLR.light 425.9008 599.297 26.8 10.1 
IRPECFELLR.light 425.9008 746.3554 26.8 7.1 
ISRPGDSDDSR.heavy 405.526 626.3257 1.75 13 
ISRPGDSDDSR.heavy 405.526 589.2452 1.75 16 
ISRPGDSDDSR.heavy 405.526 551.2434 1.75 10 
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ISRPGDSDDSR.heavy 405.526 507.7274 1.75 7 
ISRPGDSDDSR.heavy 405.526 272.1592 1.75 19 
ISRPGDSDDSR.light 402.1899 626.3257 1.75 13 
ISRPGDSDDSR.light 402.1899 579.2369 1.75 16 
ISRPGDSDDSR.light 402.1899 546.2392 1.75 10 
ISRPGDSDDSR.light 402.1899 502.7232 1.75 7 
ISRPGDSDDSR.light 402.1899 262.151 1.75 19 
IVIGYQSHADTATK.heavy 504.603 699.8588 9.88 13 
IVIGYQSHADTATK.heavy 504.603 650.3246 9.88 10 
IVIGYQSHADTATK.heavy 504.603 593.7826 9.88 13 
IVIGYQSHADTATK.heavy 504.603 565.2718 9.88 16 
IVIGYQSHADTATK.heavy 504.603 213.1598 9.88 10 
IVIGYQSHADTATK.light 501.9316 695.8517 9.88 13 
IVIGYQSHADTATK.light 501.9316 646.3175 9.88 10 
IVIGYQSHADTATK.light 501.9316 589.7755 9.88 13 
IVIGYQSHADTATK.light 501.9316 561.2647 9.88 16 
IVIGYQSHADTATK.light 501.9316 213.1598 9.88 10 
IVQAEGEAEAAK.heavy 612.3215 1011.483 4.69 19 
IVQAEGEAEAAK.heavy 612.3215 883.4247 4.69 19 
IVQAEGEAEAAK.heavy 612.3215 683.345 4.69 19 
IVQAEGEAEAAK.heavy 612.3215 506.2453 4.69 16 
IVQAEGEAEAAK.heavy 612.3215 341.2183 4.69 16 
IVQAEGEAEAAK.light 608.3144 1003.469 4.69 19 
IVQAEGEAEAAK.light 608.3144 875.4105 4.69 19 
IVQAEGEAEAAK.light 608.3144 675.3308 4.69 19 
IVQAEGEAEAAK.light 608.3144 502.2382 4.69 16 
IVQAEGEAEAAK.light 608.3144 341.2183 4.69 16 
LEQDEYALR.heavy 573.7869 904.4398 10.79 19 
LEQDEYALR.heavy 573.7869 776.3813 10.79 19 
LEQDEYALR.heavy 573.7869 532.3117 10.79 22 
LEQDEYALR.heavy 573.7869 452.7236 10.79 13 
LEQDEYALR.heavy 573.7869 243.1339 10.79 16 
LEQDEYALR.light 568.7828 894.4316 10.79 19 
LEQDEYALR.light 568.7828 766.373 10.79 19 
LEQDEYALR.light 568.7828 522.3035 10.79 22 
LEQDEYALR.light 568.7828 447.7194 10.79 13 
LEQDEYALR.light 568.7828 243.1339 10.79 16 
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LFDAPEAPLPSR.heavy 661.8526 376.1367 23.83 24.4 
LFDAPEAPLPSR.heavy 661.8526 438.6943 23.83 18.4 
LFDAPEAPLPSR.heavy 661.8526 579.2988 23.83 21.4 
LFDAPEAPLPSR.heavy 661.8526 876.4313 23.83 21.4 
LFDAPEAPLPSR.heavy 661.8526 1062.495 23.83 21.4 
LFDAPEAPLPSR.light 656.8484 376.1967 23.83 24.4 
LFDAPEAPLPSR.light 656.8484 433.7302 23.83 18.4 
LFDAPEAPLPSR.light 656.8484 569.3406 23.83 21.4 
LFDAPEAPLPSR.light 656.8484 866.473 23.83 21.4 
LFDAPEAPLPSR.light 656.8484 1052.537 23.83 21.4 
LFSGDVVLTAR.heavy 594.3365 927.5133 24.36 19 
LFSGDVVLTAR.heavy 594.3365 840.4813 24.36 22 
LFSGDVVLTAR.heavy 594.3365 569.3645 24.36 16 
LFSGDVVLTAR.heavy 594.3365 470.2961 24.36 22 
LFSGDVVLTAR.heavy 594.3365 261.1598 24.36 16 
LFSGDVVLTAR.light 589.3324 917.5051 24.36 19 
LFSGDVVLTAR.light 589.3324 830.473 24.36 22 
LFSGDVVLTAR.light 589.3324 559.3562 24.36 16 
LFSGDVVLTAR.light 589.3324 460.2878 24.36 22 
LFSGDVVLTAR.light 589.3324 261.1598 24.36 16 
LLIYWASTR.heavy 566.8231 906.4707 29.65 19 
LLIYWASTR.heavy 566.8231 793.3867 29.65 16 
LLIYWASTR.heavy 566.8231 630.3234 29.65 16 
LLIYWASTR.heavy 566.8231 340.2595 29.65 13 
LLIYWASTR.heavy 566.8231 227.1754 29.65 16 
LLIYWASTR.light 561.8189 896.4625 29.65 19 
LLIYWASTR.light 561.8189 783.3784 29.65 16 
LLIYWASTR.light 561.8189 620.3151 29.65 16 
LLIYWASTR.light 561.8189 340.2595 29.65 13 
LLIYWASTR.light 561.8189 227.1754 29.65 16 
LSVISVEDPPQR.heavy 675.3686 1050.545 19.41 22 
LSVISVEDPPQR.heavy 675.3686 937.4613 19.41 22 
LSVISVEDPPQR.heavy 675.3686 507.2913 19.41 31 
LSVISVEDPPQR.heavy 675.3686 300.1918 19.41 19 
LSVISVEDPPQR.heavy 675.3686 300.1918 19.41 19 
LSVISVEDPPQR.light 670.3644 1040.537 19.41 22 
LSVISVEDPPQR.light 670.3644 927.453 19.41 22 
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Compound Name 
Precursor 

Ion 
Product 

Ion 
RT 

(min) 
Collision 
Energy 

LSVISVEDPPQR.light 670.3644 497.2831 19.41 31 
LSVISVEDPPQR.light 670.3644 300.1918 19.41 19 
LSVISVEDPPQR.light 670.3644 300.1918 19.41 19 
LTIGSNLSIR.heavy 542.3234 869.5079 22.31 16 
LTIGSNLSIR.heavy 542.3234 756.4238 22.31 22 
LTIGSNLSIR.heavy 542.3234 699.4023 22.31 16 
LTIGSNLSIR.heavy 542.3234 435.2576 22.31 13 
LTIGSNLSIR.heavy 542.3234 215.139 22.31 16 
LTIGSNLSIR.light 537.3193 859.4996 22.31 16 
LTIGSNLSIR.light 537.3193 746.4155 22.31 22 
LTIGSNLSIR.light 537.3193 689.3941 22.31 16 
LTIGSNLSIR.light 537.3193 430.2534 22.31 13 
LTIGSNLSIR.light 537.3193 215.139 22.31 16 
LVNEVTEFAK.heavy 579.3182 945.4767 18.41 16 
LVNEVTEFAK.heavy 579.3182 831.4338 18.41 16 
LVNEVTEFAK.heavy 579.3182 702.3912 18.41 19 
LVNEVTEFAK.heavy 579.3182 603.3228 18.41 16 
LVNEVTEFAK.heavy 579.3182 213.1598 18.41 13 
LVNEVTEFAK.light 575.3111 937.4625 18.41 16 
LVNEVTEFAK.light 575.3111 823.4196 18.41 16 
LVNEVTEFAK.light 575.3111 694.377 18.41 19 
LVNEVTEFAK.light 575.3111 595.3086 18.41 16 
LVNEVTEFAK.light 575.3111 213.1598 18.41 13 
LVVVGAVGVGK.heavy 503.331 213.1098 19.64 13.5 
LVVVGAVGVGK.heavy 503.331 312.1782 19.64 13.5 
LVVVGAVGVGK.heavy 503.331 595.3153 19.64 13.5 
LVVVGAVGVGK.heavy 503.331 694.3838 19.64 13.5 
LVVVGAVGVGK.heavy 503.331 793.4522 19.64 13.5 
LVVVGAVGVGK.light 499.3239 213.2098 19.64 13.5 
LVVVGAVGVGK.light 499.3239 312.2782 19.64 13.5 
LVVVGAVGVGK.light 499.3239 587.4011 19.64 13.5 
LVVVGAVGVGK.light 499.3239 686.4696 19.64 13.5 
LVVVGAVGVGK.light 499.3239 785.478 19.64 13.5 
TGAAPIIDVVR.heavy 561.3313 821.5119 22.97 19 
TGAAPIIDVVR.heavy 561.3313 411.2596 22.97 16 
TGAAPIIDVVR.heavy 561.3313 306.1912 22.97 13 
TGAAPIIDVVR.heavy 561.3313 230.1135 22.97 19 
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Compound Name 
Precursor 

Ion 
Product 

Ion 
RT 

(min) 
Collision 
Energy 

TGAAPIIDVVR.light 556.3271 811.5036 22.97 19 
TGAAPIIDVVR.light 556.3271 406.2554 22.97 16 
TGAAPIIDVVR.light 556.3271 301.187 22.97 13 
TGAAPIIDVVR.light 556.3271 230.1135 22.97 19 
TIGTGLVTNTLAMTEEEK.heavy 639.3306 845.3801 31.69 13 
TIGTGLVTNTLAMTEEEK.heavy 639.3306 774.3429 31.69 13 
TIGTGLVTNTLAMTEEEK.heavy 639.3306 643.3025 31.69 13 
TIGTGLVTNTLAMTEEEK.heavy 639.3306 479.7638 31.69 13 
TIGTGLVTNTLAMTEEEK.heavy 639.3306 215.139 31.69 16 
TIGTGLVTNTLAMTEEEK.light 636.6592 837.3659 31.69 13 
TIGTGLVTNTLAMTEEEK.light 636.6592 766.3287 31.69 13 
TIGTGLVTNTLAMTEEEK.light 636.6592 635.2883 31.69 13 
TIGTGLVTNTLAMTEEEK.light 636.6592 479.7638 31.69 13 
TIGTGLVTNTLAMTEEEK.light 636.6592 215.139 31.69 16 
VLGLLGALDPYK.heavy 633.881 270.1312 39.98 20.5 
VLGLLGALDPYK.heavy 633.881 383.2153 39.98 17.5 
VLGLLGALDPYK.heavy 633.881 771.3627 39.98 17.5 
VLGLLGALDPYK.heavy 633.881 884.4467 39.98 20.5 
VLGLLGALDPYK.heavy 633.881 1054.552 39.98 20.5 
VLGLLGALDPYK.light 629.8739 270.1812 39.98 20.5 
VLGLLGALDPYK.light 629.8739 383.2553 39.98 17.5 
VLGLLGALDPYK.light 629.8739 763.3885 39.98 17.5 
VLGLLGALDPYK.light 629.8739 876.4825 39.98 20.5 
VLGLLGALDPYK.light 629.8739 1046.588 39.98 20.5 
VLIEGSINSVR.heavy 598.8473 984.5348 18.41 22 
VLIEGSINSVR.heavy 598.8473 871.4507 18.41 25 
VLIEGSINSVR.heavy 598.8473 742.4081 18.41 22 
VLIEGSINSVR.heavy 598.8473 492.771 18.41 13 
VLIEGSINSVR.heavy 598.8473 213.1598 18.41 19 
VLIEGSINSVR.light 593.8431 974.5265 18.41 22 
VLIEGSINSVR.light 593.8431 861.4425 18.41 25 
VLIEGSINSVR.light 593.8431 732.3999 18.41 22 
VLIEGSINSVR.light 593.8431 487.7669 18.41 13 
VLIEGSINSVR.light 593.8431 213.1598 18.41 19 
VLTLSDDLER.heavy 585.8156 958.4715 20.37 19 
VLTLSDDLER.heavy 585.8156 857.4239 20.37 22 
VLTLSDDLER.heavy 585.8156 744.3398 20.37 19 
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Compound Name 
Precursor 

Ion 
Product 

Ion 
RT 

(min) 
Collision 
Energy 

VLTLSDDLER.heavy 585.8156 314.2074 20.37 16 
VLTLSDDLER.heavy 585.8156 213.1598 20.37 13 
VLTLSDDLER.light 580.8115 948.4633 20.37 19 
VLTLSDDLER.light 580.8115 847.4156 20.37 22 
VLTLSDDLER.light 580.8115 734.3315 20.37 19 
VLTLSDDLER.light 580.8115 314.2074 20.37 16 
VLTLSDDLER.light 580.8115 213.1598 20.37 13 
VNIVPVIAK.heavy 480.8202 747.5218 22.57 13 
VNIVPVIAK.heavy 480.8202 634.4378 22.57 13 
VNIVPVIAK.heavy 480.8202 535.3694 22.57 13 
VNIVPVIAK.heavy 480.8202 327.2027 22.57 10 
VNIVPVIAK.heavy 480.8202 214.1186 22.57 13 
VNIVPVIAK.light 476.8131 739.5076 22.57 13 
VNIVPVIAK.light 476.8131 626.4236 22.57 13 
VNIVPVIAK.light 476.8131 527.3552 22.57 13 
VNIVPVIAK.light 476.8131 327.2027 22.57 10 
VNIVPVIAK.light 476.8131 214.1186 22.57 13 
VSLDVNHFAPDELTVK.heavy 597.9837 846.9378 28.95 16 
VSLDVNHFAPDELTVK.heavy 597.9837 803.4218 28.95 16 
VSLDVNHFAPDELTVK.heavy 597.9837 746.8797 28.95 16 
VSLDVNHFAPDELTVK.heavy 597.9837 597.3698 28.95 13 
VSLDVNHFAPDELTVK.heavy 597.9837 405.2284 28.95 13 
VSLDVNHFAPDELTVK.light 595.3123 842.9307 28.95 16 
VSLDVNHFAPDELTVK.light 595.3123 799.4147 28.95 16 
VSLDVNHFAPDELTVK.light 595.3123 742.8726 28.95 16 
VSLDVNHFAPDELTVK.light 595.3123 589.3556 28.95 13 
VSLDVNHFAPDELTVK.light 595.3123 401.2213 28.95 13 
VVDPFSK.heavy 400.2256 700.3756 13.34 10 
VVDPFSK.heavy 400.2256 601.3072 13.34 10 
VVDPFSK.heavy 400.2256 486.2802 13.34 16 
VVDPFSK.heavy 400.2256 314.171 13.34 10 
VVDPFSK.heavy 400.2256 242.159 13.34 22 
VVDPFSK.light 396.2185 692.3614 13.34 10 
VVDPFSK.light 396.2185 593.293 13.34 10 
VVDPFSK.light 396.2185 478.266 13.34 16 
VVDPFSK.light 396.2185 314.171 13.34 10 
VVDPFSK.light 396.2185 234.1448 13.34 22 
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Compound Name 
Precursor 

Ion 
Product 

Ion 
RT 

(min) 
Collision 
Energy 

VVNVSSIMSVR.heavy 600.8359 1002.528 25.75 22 
VVNVSSIMSVR.heavy 600.8359 888.4847 25.75 19 
VVNVSSIMSVR.heavy 600.8359 789.4163 25.75 19 
VVNVSSIMSVR.heavy 600.8359 702.3842 25.75 16 
VVNVSSIMSVR.heavy 600.8359 313.187 25.75 19 
VVNVSSIMSVR.light 595.8317 992.5193 25.75 22 
VVNVSSIMSVR.light 595.8317 878.4764 25.75 19 
VVNVSSIMSVR.light 595.8317 779.408 25.75 19 
VVNVSSIMSVR.light 595.8317 692.376 25.75 16 
VVNVSSIMSVR.light 595.8317 313.187 25.75 19 
VVTDTDETELAR.heavy 679.8373 1160.531 9.55 19 
VVTDTDETELAR.heavy 679.8373 1059.483 9.55 25 
VVTDTDETELAR.heavy 679.8373 944.4559 9.55 25 
VVTDTDETELAR.heavy 679.8373 599.3387 9.55 34 
VVTDTDETELAR.heavy 679.8373 580.7689 9.55 16 
VVTDTDETELAR.light 674.8332 1150.522 9.55 19 
VVTDTDETELAR.light 674.8332 1049.475 9.55 25 
VVTDTDETELAR.light 674.8332 934.4476 9.55 25 
VVTDTDETELAR.light 674.8332 589.3304 9.55 34 
VVTDTDETELAR.light 674.8332 575.7648 9.55 16 
VYPLINR.heavy 442.765 622.391 14.87 10 
VYPLINR.heavy 442.765 525.3383 14.87 19 
VYPLINR.heavy 442.765 412.2542 14.87 19 
VYPLINR.heavy 442.765 311.6992 14.87 10 
VYPLINR.heavy 442.765 263.139 14.87 7 
VYPLINR.light 437.7609 612.3828 14.87 10 
VYPLINR.light 437.7609 515.33 14.87 19 
VYPLINR.light 437.7609 402.2459 14.87 19 
VYPLINR.light 437.7609 306.695 14.87 10 
VYPLINR.light 437.7609 263.139 14.87 7 
VYTVDLGR.heavy 466.7574 833.4391 14.05 19 
VYTVDLGR.heavy 466.7574 670.3758 14.05 13 
VYTVDLGR.heavy 466.7574 569.3281 14.05 16 
VYTVDLGR.heavy 466.7574 470.2597 14.05 16 
VYTVDLGR.heavy 466.7574 263.139 14.05 10 
VYTVDLGR.light 461.7533 823.4308 14.05 19 
VYTVDLGR.light 461.7533 660.3675 14.05 13 
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Compound Name 
Precursor 

Ion 
Product 

Ion 
RT 

(min) 
Collision 
Energy 

VYTVDLGR.light 461.7533 559.3198 14.05 16 
VYTVDLGR.light 461.7533 460.2514 14.05 16 
VYTVDLGR.light 461.7533 263.139 14.05 10 
YDSLGLLELDQR.heavy 716.3713 279.0475 31.4 32.1 
YDSLGLLELDQR.heavy 716.3713 313.1358 31.4 32.1 
YDSLGLLELDQR.heavy 716.3713 670.2894 31.4 23.1 
YDSLGLLELDQR.heavy 716.3713 783.3735 31.4 26.1 
YDSLGLLELDQR.heavy 716.3713 953.479 31.4 23.1 
YDSLGLLELDQR.light 711.3672 303.2075 31.4 32.1 
YDSLGLLELDQR.light 711.3672 660.3311 31.4 23.1 
YDSLGLLELDQR.light 711.3672 773.4252 31.4 26.1 
YDSLGLLELDQR.light 711.3672 943.5207 31.4 23.1 
YDSLGLLELDQR.light 711.3672 279.1275 31.4 32.1 
YLTTAVITNK.heavy 566.3286 855.5026 15.5 13 
YLTTAVITNK.heavy 566.3286 754.4549 15.5 19 
YLTTAVITNK.heavy 566.3286 653.4072 15.5 19 
YLTTAVITNK.heavy 566.3286 582.3701 15.5 16 
YLTTAVITNK.heavy 566.3286 277.1547 15.5 13 
YLTTAVITNK.light 562.3215 847.4884 15.5 13 
YLTTAVITNK.light 562.3215 746.4407 15.5 19 
YLTTAVITNK.light 562.3215 645.393 15.5 19 
YLTTAVITNK.light 562.3215 574.3559 15.5 16 
YLTTAVITNK.light 562.3215 277.1547 15.5 13 

 

PRM-MS Inclusion  
 

Peptide RT CE 
AAEIASSDSANVSSR 9.6 22 
AGSSEWLAVDGLVSPSNNSK 30.6 22 
AINPINTFTK 22.1 26 
DQIYDIFQK 29.5 30 
EAGLDLR 13.8 26 
EHIEIIAPSPQR 16 26 
ELEEIVQPIISK 28.8 22 
ELGIWEPLAVK 32.9 22 
ELIFEETAR 22.1 26 
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Peptide RT CE 
FDAGELITQR 23.9 26 
FEISETSVNR 16.5 26 
FFAGIVWQHVYEK 30 26 
FIDTTSK 9.2 22 
GDFIALDLGGSSFR 33.5 26 
GLPAPIEK 14.3 26 
GSTAPVGGGAFPTIVER 25.6 26 
GTGIVSAPVPK 15.3 26 
GTITVSAQELK 16.9 26 
HGLLVPNNTTDQELQHIR 19.1 26 
IADPEHDHTGFLTE(pY)VATR   22.2 26 
IADPEHDHTGFLTEYVATR 22.8 26 
IALDFQR 20.3 26 
IFGVTTLDIVR 32.9 26 
IFVNDDR 12 26 
IGVLDEGK 14 26 
IITLTGPTNAIFK 31 24 
ILPTLEAVAALGNK 33.1 26 
ILVTGGSGLVGK 19 22 
ISRPGDSDDSR 5.4 26 
IVIGYQSHADTATK 12.1 22 
IVQAEGEAEAAK 8.3 26 
LEQDEYALR 14 26 
LFDAPEAPLPSR 24.8 26 
LFSGDVVLTAR 25.3 26 
LLIYWASTR 29.2 26 
LSVISVEDPPQR 20.6 26 
LTIGSNLSIR 23.7 26 
LVNEVTEFAK 20.3 26 
TGAAPIIDVVR 24 26 
TIGTGLVTNTLAMTEEEK 30.7 22 
VLGLLGALDPYK 35.7 26 
VLIEGSINSVR 19.6 26 
VLTLSDDLER 22.5 26 
VNIVPVIAK 23.6 26 
VSLDVNHFAPDELTVK 27.5 26 
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Peptide RT CE 
VVDPFSK 16.3 26 
VVNVSSIMSVR 26 26 
VVTDTDETELAR 13.2 26 
VYPLINR 17 26 
VYTVDLGR 16.6 26 
YDSLGLLELDQR 31.1 26 
YLTTAVITNK 17.2 26 

 

MRM Assay Linear Range 
 

Gene name Protein name Peptide Adjusted 
LLOQ 6495 

Adjusted 
ULOQ 6495 

PIK3CB Phosphatidylinositol 4,5-bisphosphate 3-
kinase catalytic subunit beta isoform AAEIASSDSANVSSR 5.12 1,000 

ATF4 Cyclic AMP-dependent transcription factor 
ATF-4 AGSSEWLAVDGLVSPSNNSK 91.6 1,145 

ARHGAP1 Rho GTPase-activating protein 1 AINPINTFTK 5.48 2,675 
EIF4A1 Eukaryotic initiation factor 4A-I DQIYDIFQK 53.6 1,675 

PIK3CB Phosphatidylinositol 4,5-bisphosphate 3-
kinase catalytic subunit beta isoform EAGLDLR 12.8 1,000 

EIF2AK3 Eukaryotic translation initiation factor 2-
alpha kinase 3 EHIEIIAPSPQR 12.8 2,500 

HSPA5 Endoplasmic reticulum chaperone BiP ELEEIVQPIISK 128 1,603 
CCT3 T-complex protein 1 subunit gamma ELGIWEPLAVK 88.3 2,758 

MAPK1 Mitogen-activated protein kinase 1 ELIFEETAR 14.9 1,163 
PHB1 Prohibitin 1 FDAGELITQR 31.4 2,457 
S6K1 Ribosomal protein S6 kinase beta-1 FEISETSVNR 32.0 2,500 

AKT1 wt RAC-alpha serine/threonine-protein kinase FFAGIVWQHVYEK 80.0 2,500 
RPL3 60S ribosomal protein L3 FIDTTSK 0.820 2,500 
HK1 Hexokinase-1 GDFIALDLGGSSFR 106 1,324 

IGHG2 Immunoglobulin heavy constant gamma 2 GLPAPIEK 0.846 1,031 
PDIA6 Protein disulfide-isomerase A6 GSTAPVGGGAFPTIVER 26.8 2,091 
RPS2 40S ribosomal protein S2 GTGIVSAPVPK 3.34 1,632 

CPNE1 Copine-1 GTITVSAQELK 32.0 2,500 
EIF6 Eukaryotic translation initiation factor 6 HGLLVPNNTTDQELQHIR 31.5 2,464 

MAPK3 Mitogen-activated protein kinase 3 IADPEHDHTGFLTEp(Y)VATR 139 4,355 
MAPK3 Mitogen-activated protein kinase 3 IADPEHDHTGFLTEYVATR 173 2,158 
LGALS3 Galectin-3 IALDFQR 4.82 2,354 
MDH2 Malate dehydrogenase, mitochondrial IFGVTTLDIVR 42.7 1,335 
ILF3 Interleukin enhancer-binding factor 3 IFVNDDR 1.13 3,450 

RPS9 40S ribosomal protein S9 IGVLDEGK 2.00 2,500 
PCBP1 Poly(rC)-binding protein 1 IITLTGPTNAIFK 61.3 1,914 

ILF2 Interleukin enhancer-binding factor 2 ILPTLEAVAALGNK 48.7 609 
TSTA3 GDP-L-fucose synthase ILVTGGSGLVGK 5.12 2,500 

HNRNPL Heterogeneous nuclear ribonucleoprotein 
L ISRPGDSDDSR 12.7 2,482 

EIF4E Eukaryotic translation initiation factor 4E IVIGYQSHADTATK 5.24 1,024 
PHB2 Prohibitin-2 IVQAEGEAEAAK 6.53 510 
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Gene name Protein name Peptide Adjusted 
LLOQ 6495 

Adjusted 
ULOQ 6495 

HADHB Trifunctional enzyme subunit beta, 
mitochondrial LEQDEYALR 3.83 749 

MTOR Serine/threonine-protein kinase mTOR LFDAPEAPLPSR 80.0 2,500 
CBR1 Carbonyl reductase [NADPH] 1 LFSGDVVLTAR 201 2,509 

IGKV4-1 Immunoglobulin kappa variable 4-1 LLIYWASTR 15.7 489 
ETFB Electron transfer flavoprotein subunit beta LSVISVEDPPQR 25.6 1,998 

XRCC5 X-ray repair cross-complementing protein 
5 LTIGSNLSIR 200 2,500 

ALB serum albumin LVNEVTEFAK 19.8 3,869 
KRAS mut GTPase Kras LVVVGAVGVGK 32.0 2,500 
RPL27A 60S ribosomal protein L27a TGAAPIIDVVR 12.8 2,500 
TUFM Elongation factor Tu, mitochondrial TIGTGLVTNTLAMTEEEK 200 2,500 
MTOR Serine/threonine-protein kinase mTOR VLGLLGALDPYK - - 
ARPC4 Actin-related protein 2/3 complex subunit 4 VLIEGSINSVR 33.1 2,584 

EIF5 Eukaryotic translation initiation factor 5 VLTLSDDLER 17.6 1,372 
SEPTIN2 Septin-2 VNIVPVIAK 5.12 2,500 
HSPB1 Heat shock protein beta-1 VSLDVNHFAPDELTVK 118 1,469 
RPS3A 40S ribosomal protein S3a VVDPFSK 0.820 2,500 

HSP90AB1 Heat shock protein HSP 90-beta VVNVSSIMSVR 59.1 1,848 

EIF2S1 Eukaryotic translation initiation factor 2 
subunit 1 VVTDTDETELAR 25.7 2,008 

MAP4K4 Mitogen-activated protein kinase kinase 
kinase kinase 4 VYPLINR 1.71 2,142 

PIGR Polymeric immunoglobulin receptor VYTVDLGR 10.8 2,113 
AKT2 RAC-beta serine/threonine-protein kinase YDSLGLLELDQR 200 2,500 

EIF3E Eukaryotic translation initiation factor 3 
subunit E YLTTAVITNK 1.27 1,583 
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3. Methods: Dietary and Medical Questionnaire (DiMQu) & scoring 

 

Dietary & Medication Questionnaire  
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Categorical Assignment of Inhibitors / Inducers from Dietary Exposures 
Minor (*) inhibitors/inducers were assigned a strength score of 1. All others, strength = 2. 

 

Assignment of Inhibitors / Inducers from Patient-Reported Medications & Supplements 
Minor inhibitors/inducers were assigned a strength score of 1. For all others, strength = 2. 
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4. Methods: Geneva cocktail MS method details 

LC Settings 
Parameter Settings  
System Agilent 1290 Infinity system 
Column Zorbax Eclipse plus RRHD C18, 2.1x15mm, 1.8um 

(Column labeled "A") 
Guard Column none 
Column temp. (°C) 50°C +/- 0.8°C 
Mobile Phase A H2O + 0.1% formic acid 
Mobile Phase B Acetonitrile + 0.1% formic acid 
Flow Rate (ml/min) 0.6 
Run Time (min) 5.2 
Injection Volume (µl) Default Injection volume in method: 5 uL 

Perform 2 injections of each sample: 2 uL for caffeine, 
paraxanthine; 18 uL for midazolam, OH-midazolam 

Sample dispensing 0.0 mm needle draw position (Vial/Well bottom sensing 
on); 10 uL/min draw speed, 20 uL/min eject speed; 3 sec 
equilibration time, flush with 5.0 times injection volume 

Needle Wash Flush Port - 10 sec 
AS Temperature (oC) 4 
Max Pressure 1000 bar 

 
 

LC Gradient 
Step Time (min) % Mobile Phase B 
Applying sample to column 0.00-0.50 2% à 20%  
Pre-elution 0.50-1.00 2% à 20%  
Elution 1.00-3.00 20 à25% 
Post-elution 3.00-3.50 25 à98%  
Wash 3.50-5.00 98 à100%  
Reset 5.00-5.3 100 à 2%  
Equilibration 5.3-5.8 2% 
Post time +0.2 min 2% 
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MS Transitions & Collision Energies 
Analyte Transition CE 

Hydroxymidazolam (IS) 346/328 22 
Hydroxymidazolam (IS) 346/203 31 
Hydroxymidazolam 342/324 22 
Hydroxymidazolam 342/203 31 
Midazolam (IS) 330/295 28 
Midazolam (IS) 330/253 40 
Midazolam 326/291 28 
Midazolam 326/249 40 
Caffeine (IS) 204/144 21 
Caffeine (IS) 204/116 27 
Caffeine 195/138 21 
Caffeine 195/110 27 
Paraxanthine (IS) 187/127 20 
Paraxanthine 181/124 20 

 
 
 

MS Settings 
Parameter Settings  
System Agilent 6495 MS/MS 
Ion Source AJS ESI 
Method MRM-MS 
Delta EMV (+) 400 
Source gas temp 150 C 
Gas Flow 15 l/min 
Nebulizer 30 psi 
Sheath Gas Temp 250 C 
Sheath Gas Flow 11 l/min 
Polarity positive 
Capillary 3500V + / 3000 V neg 
Nozzle voltage 300 V pos / 1500 V neg 
Resolution (MS1 and MS2) Unit Res 
Fragmentor  380 
Cell Accelerator Voltage 5 
Cycle time 3.04 cycles/s, 329 ms/cycle (dwell 20/transition) 
Time filtering Peak width 0.03 min 
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Sample chromatograms 
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5. Results: Analysis of published AKT expression data in cancer cell lines 

Source: 

• Based on data published in Lapek, J., Greninger, P., Morris, R. et al. Detection of 

dysregulated protein-association networks by high-throughput proteomics predicts cancer 

vulnerabilities. Nat Biotechnol 35, 983–989 (2017). https://doi-

org.proxy3.library.mcgill.ca/10.1038/nbt.3955 

Methods: 

• Published dataset includes publicly-deposited relative abundance data at protein level 

(RPPA) and transcriptomic level for 36 well-characterized breast cancer cell lines  

• Categorized cell lines into commonly-used molecular subtypes (Luminal A, Luminal B, 

Basal, Her2-enriched)  

• Extracted relative abundance data for Akt1, Akt2, Akt3 and analyzed using multi-variate 

statistics to assess protein-RNA concordance, subtype-specific differences in 

Aktexpression 

• Coded cell lines according to published capivasertib sensitivity. 

• Figures generated in MetaboAnalyst 

Results:  

•  AKT1 and AKT2 protein expression appear higher in Luminal than in Basal subtypes 

(ANOVA p<0.05) 

• AKT3 is elevated in Basal vs other subtypes 

• Concordance varies by subtype and cell line 

• No relationship between observed transcriptomic or protein expression and capivasertib 

sensitivity.  

 
 
 

https://doi-org.proxy3.library.mcgill.ca/10.1038/nbt.3955
https://doi-org.proxy3.library.mcgill.ca/10.1038/nbt.3955
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Protein & mRNA expression of AKT1, AKT2 & AKT3 in breast cancer cell lines by 
subtype 
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Protein and mRNA expression of AKT1 and AKT2 in cell lines by capivasertib sensitivity 
 
 

 
 

Protein and mRNA expression of AKT1 and AKT2 in luminal breast cancer cell lines by 
capivasertib sensitivity 
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6. Results: Review of additional published evidence related to proteins of interest 

Relationship of proteins of interest to cancer and AKT activity 
Black = role in cancer, prognostic / treatment response, Purple = relationship to AKT 

PROTEIN 
ACCESSIO
N 

GENE 
NAME 

Protein 
function Observation  Evidence from Literature  

P02768 
Serum 
albumin 

ALB 

Serum protein 
- Osmotic 
pressure 
regulation, 
transporter 

Higher in 
CB 

• Albumin activates the AKT signaling pathway and promotes cell survival (241) 
• Albumin protects against chorambucil or radiation-induced apoptosis in CLL. TKIs 

targeting the PI3K pathway re-sensitize cells to these treatments.The protective action of 
albumin and AKT activation is compromised by lipid binding in blood. (241) 

• Hypoalbuminemia occurs in diabetes, with low insulin. Under higher insulin 
conditions, AKT is activated resulting in mTORC1-driven protein synthesis and 
lipogenesis. FOXO1 is inactivated. Akt is required for the effect of insulin on albumin 
production. FOXO1 represses albumin expression (435). 

• Low pretreatment serum albumin level associated with shorter PFS and OS for patients 
with non-small cell lung cancer treated with TKIs targeting EGFR (upstream from AKT) 
(436,437). Baseline serum albumin predicted OS better than tumour EGFR mutation, 
cancer stage or baseline ECOG PS (238). 

• Low pretreatment albumin in advanced thyroid cancer, together with other markers of 
nutritional status, strongly predicted PFS on TKI treatment (239) 

• Low serum albumin associated with increased pro-inflammatory cytokines, including 
TNF-alpha, which induces IL-6 and gluconeogenesis (239) 
 

Possible interpretations: 
• Upstream activation of AKT in CB group 
• Higher albumin is a positive prognostic marker in CB patients 
• Albumin has previously been associated with treatment response to TKIs 
• Nutritional status ties AKT activation 
• Since albumin is mainly found in blood, its higher level in CB could reflect better 

perfusion of the tested tissue  
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PROTEIN 
ACCESSIO
N 

GENE 
NAME 

Protein 
function Observation  Evidence from Literature  

P01859 
Immunoglob
ulin heavy 
constant 
gamma 2 

IGHG2 Humoral 
immunity - 
immunoglobul
in 

Higher in 
CB 

• IGHG2 has been linked to Phospholipase C signalling (245), which is an upstream 
activator of PI3K and AKT as well as the MEK-ERK pathway (244) 

• Similar protein, IGHG1, promotes proliferation, migration and chemo-resistance of 
gastric cancer to 3 common agents via the AKT/GSK-3/beta-catenin axis (438), increasing 
pAKT without affecting total expression of AKT 

• Higher IGHG2 was associated with improved paclitaxel sensitivity and relapse-free 
survival in TNBC (439) 

• Cancer-derived IgG is associated with activation of AKT in cisplatin resistance and 
MEK-ERK upregulation (440) 
 

Possible interpretations: 
• Increased upstream activation of AKT in CB group 
• Unclear relationship of IGHG to cancer aggressiveness and treatment sensitivity 
• Increased immune infiltration or surveillance of the tumours in CB group 

P01834 
Immunoglob
ulin kappa 
constant 

IGKC Humoral 
immunity - 
immunoglobul
in 

Higher in 
CB 

• High IGKC is a positive prognostic marker for metastasis-free survival and response to 
chemotherapy, validated at the RNA- and protein-levels (441) 

• Another article reports that prognostic value is limited to specific breast cancer subtype 
and treatment combinations, particularly TNBC (248) 

• Though some data suggests limited prognostic utility for IGKC in HR+ breast cancers, 
this interpretation is likely confounded by the immuno-modulatory effects of endocrine 
therapies (248), which does not apply to capivasertib. 
 

Possible interpretations: 
• Positive prognostic marker in CB group 
• Increased immune infiltration or surveillance of the tumours in CB group 
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PROTEIN 
ACCESSIO
N 

GENE 
NAME 

Protein 
function Observation  Evidence from Literature  

P06312 
Immunoglob
ulin kappa 
variable 4-1 

IGKV4-1 Humoral 
immunity- 
immunoglobul
in 

Higher in 
CB 

• High IGKV4-1 was associated with “low risk” in lung adenocarcinoma (442) 
• Fusions involving IGKV4 were observed in oral squamous cell carcinoma, in a model 

where Akt-mTOR/Akt-bad signaling was associated with metastasis and enhanced cell 
proliferation (443) 

• In an AKT2 knock-out model of human lung cancer, 14 of 20 downregulated mRNAs 
were associated with immunoglobulin genes, including IGKV (444) 
 

Possible interpretations: 
• Positive prognostic marker in CB group 
• Increased immune infiltration or surveillance of the tumours in CB group 

P01833 
Polymeric 
immunoglob
ulin receptor 

PIGR Immunity - 
Trans-cytosis 
of IgA / IgM 
across 
epithelial cells 

Higher in  
CB 

• pIgR activates PDK1/Akt/GSK3β/β-catenin and is associated with increased tumour 
aggressiveness that responds to AKT inhibitors (242) 
 

Possible interpretations: 
• Activation of AKT activity & sensitivity to AKT inhibitors in CB group 
• Increased immune infiltration or surveillance of the tumours in CB group 

Q07960  
Rho 
GTPase-
activating 
protein 1 

ARHGAP
1 

Negative 
regulator of 
Rho  

Higher in 
NCB 

• Associated with cell migration and invasion via negative regulation of Rho proteins 
(445) 

P16152 
Carbonyl 
reductase 
[NADPH] 1 

CBR1 NADPH-
dependent 
reductase 
 

Higher in 
NCB 

• Catalyzes the reduction of some antitumor drugs 

Q99829  
Copine-1 

CPNE1 TNF-alpha 
signaling, 
membrane 
trafficking, 
endoprotease 
processing 

Higher in 
NCB 

• Involved in neuronal progenitor cell differentiation; induces neurite outgrowth via 
AKT-dependent signaling(446,447)  

 
Possible interpretations: 
• CB group with higher serum albumin may have decreased TNF alpha and 

gluconeogenesis, reduced B-catenin, which is a mechanism of resistance  
Q7Z4W1  
L-xylulose 
reductase 

DCXR NADPH-
dependent 
reductase 

Higher in 
NCB 

• Involved in glucose metabolism 
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PROTEIN 
ACCESSIO
N 

GENE 
NAME 

Protein 
function Observation  Evidence from Literature  

Q16698  
2,4-dienoyl-
CoA 
reductase, 
mitochondri
al 

DECR1 Mitochondrial 
- fatty acid 
beta-oxidation 

Higher in 
NCB 

• Uncoupling proteins (UCPs) oppose this phenotype by inducing futile mitochondrial 
respiration that is uncoupled from ATP synthesis, resulting in nutrient wasting. 
Mechanistic studies reveal that uncoupling increases fatty acid oxidation and membrane 
phospholipid catabolism, and impairs recruitment of Akt to the plasma membrane. 
These findings demonstrate that mitochondrial uncoupling is an effective strategy to 
limit proliferation and tumorigenesis through inhibition of Akt, and illuminate a novel 
mechanism of crosstalk between mitochondrial metabolism and growth signalling. 
Overexpression of Akt overcomes metabolic regulation by UCP3, rescuing 
carcinogenesis. (448) 

• PERK, upstream from EIF2 is an indispensable component of the unfolded protein 
response (UPR), which is induced by imbalances between the load of proteins entering 
the ER and ER's ability to process them (448) 

P52597 
Heterogeneo
us nuclear 
ribonucleopr
otein F 

HNRNPF Translation - 
Ribosomal 
protein 

Higher in 
NCB 

• Additional proteins in this group such as Poly(rC)-binding proteins (PCBP1, PCBP2) 
and heterogeneous nuclear ribonucleoproteins (HNRNPL, HNRNPF), are involved in 
protein translation, localization, and degradation (253) 

P14866 
Heterogeneo
us nuclear 
ribonucleopr
otein L 

HNRNPL Translation - 
Ribosomal 
protein 

Higher in 
NCB 

Q12905 
Interleukin 
enhancer-
binding 
factor 2 

ILF2 Transcription, 
innate 
immunity, cell 
growth, forms 
RNA-binding 
complex with 
IFL3 

Higher in 
NCB 

• High ILF-2 is associated with poor prognosis and with improved anthracycline/taxane 
response (257) 

• Interleukin enhancer-binding factors (ILF2, ILF3) are involved in DNA repair and RNA 
metabolism, and contribute to oncogenesis by regulating gene expression (257) 

• Negative regulators of tumour-suppressing microRNAs whose activity is known to be 
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PROTEIN 
ACCESSIO
N 

GENE 
NAME 

Protein 
function Observation  Evidence from Literature  

Q12906 
Interleukin 
enhancer-
binding 
factor 3 

ILF3 Transcription, 
innate 
immunity, cell 
growth, forms 
RNA-binding 
complex with 
IFL3 

Higher in 
NCB 

mediated by AKT-driven phosphorylation (449)  
• Depletion of ILF3 in HCC cells has been associated with decreased AKT 

phosphorylation in hepatocellular carcinoma, whereas expression of ILF2 and ILF3 has 
been linked to PI3K/AKT and MAPK signaling in esophageal squamous cell carcinoma 
(259,260) 

• Depletion of ILF3 in HCC cells has been associated with decreased AKT 
phosphorylation in hepatocellular carcinoma, whereas expression of ILF2 and ILF3 has 
been linked to PI3K/AKT and MAPK signaling in esophageal squamous cell carcinoma 
(46,47).   

P17931 
 Galectin-3 

LGALS3  Pre-mRNA 
splicing factor. 
acute 
inflammatory 
response, 
recognizes 
membrane 
damage 

Higher in 
NCB 

• PI3K-AKT pathway activation induces Gal-3 expression in breast/prostate cancer (450)  
• Galectin-3 knockdown reduces AKT signaling (451) 
• Expression of galectin-3 (TSTA3) has been shown in gastric cancer cell lines to activate 

the PI3K pathway through increased AKT phosphorylation, resulting in a loss of 
responsiveness to IFN-γ, which is similarly observed in the context of PI3K mutations 
(264)  
 

Possible interpretations: 
• AKT activation in NCB group 

P40926  
Malate 
dehydrogena
se, 
mitochondri
al 

MDH2 Mitochondrial 
– Glucose 
metabolism, 
citric acid 
cycle 

Higher in 
NCB 

• LncRNA AC020978 facilitates non–small cell lung cancer progression by interacting 
with malate dehydrogenase 2 and activating the AKT pathway (452) 

• MDH2 stimulated by estrogen-GPR30 pathway down-regulates PTEN expression and 
promotes proliferation and invasion in endometrial cancer. (453) 

Q15365 
Poly(rC)-
binding 
protein 1 

PCBP1 RNA – RNA 
binding, 
translational 
co-activator 
 

Higher in 
NCB  

• Additional proteins in this group such as Poly(rC)-binding proteins (PCBP1, PCBP2) 
and heterogeneous nuclear ribonucleoproteins (HNRNPL, HNRNPF), are involved in 
protein translation, localization, and degradation. (253) 

Q15366  
Poly(rC)-
binding 
protein 2 

PCBP2 
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PROTEIN 
ACCESSIO
N 

GENE 
NAME 

Protein 
function Observation  Evidence from Literature  

Q15084  
Protein 
disulfide-
isomerase 
A6 

PDIA6 Translation - 
Chaperone for 
unfolded and 
misfolded 
proteins 

Higher in 
NCB 

• Negatively regulates the unfolded protein response (UPR) through binding to UPR 
sensors such as ERN1, which in turn inactivates ERN1 signaling (454) 

• May also regulate the UPR via the EIF2AK3 UPR sensor (454) 

P35232  
Prohibitin 

PHB1  Higher in 
NCB 

• Prohibitins (PHB1, PHB2) have specifically been associated directly with the activation 
of protein kinase c activity (455) 

• Both PHBs are directly phosphorylated by AKT, after which PHB forms a complex with 
RAF1 and activates the RAF1-MEK1-ERK pathway (455) 

• Phosphorylation of PHB in turn further increases AKT activity. (455) 

Q99623 
Prohibitin-2 

PHB2 Higher in 
NCB 

Multiple RPLs Translation - 
Ribosomal 
protein 
 

Higher in 
NCB 

• Specific subsets of ribosomal proteins have previously been identified as regulatory 
factors in breast cancer as well as pediatric acute myeloid leukemia (456-458) 

Multiple RPSs Higher in 
NCB 
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7. Results: AKT E17K methods development 

FASTA sequence of AKT1 showing location of E17K mutation 
Due to many lysines and arginines in the surrounding sequence, trypsin would not produce 
targetable peptides. m/z shift associated with mutation is only +1 m/z. An alternative 
enzyme such as clostrapain is required to cleave a targetable peptide 

 
 

Scheduled optimized MRM-MS assay with 16-minute gradient  
LC separation discriminates peptides even on a short gradient, and the transition ratio is 
distinctive for the mutant vs. wildtype peptides 
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Immunoenrichment of AKT1 wt and AKT1 E17K peptides 
A modified antibody-bead conjugation protocol and immunoenrichment procedure was 
developmed. We then assessed signal for the WT and MUT NAT and SIS peptides pull-
down overnight in buffer by each of 2 antibodies (Signatope) using the developed 
immuno-LC-MRM-MS/MS method. Both polyclonal antibodies were found to enrich both 
the WT and MUT peptides, enabling analysis in a single run.  
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8. Results: Detection screening 

Peptide Protein MCF-7  
13 ug 

MCF-7 
25ug 

MCF-7  
26 ug 

MCF-7 
50ug 

HT- 29 
15ug 

COLO-205 
16ug 

HCT-116 
18ug 

ZR- 75 
40ug 

MDA-MB- 
436   57ug 

AGSSEWLAVDGLVSPSNNSK ATF4 - - - - yes - - - - 
AINPINTFTK ARHGAP1 yes yes yes yes Yes Yes Yes Yes yes 
DQIYDIFQK Eif4a1 yes yes Yes yes Yes Maybe maybe Yes Yes 

EHIEIIAPSPQR EIF2AK3 - - - - - - - Yes - 
ELEEIVQPIISK HSPA5 yes yes yes yes yes yes yes yes yes 
ELGIWEPLAVK CCT3 yes yes yes yes yes yes yes yes yes 

ELIFEETAR MAPK1 yes yes yes yes yes yes yes Yes - 
FDAGELITQR PHB1 yes yes yes yes yes yes yes yes yes 

FIDTTSK RPL3 yes yes yes yes yes yes yes yes - 
GDFIALDLGGSSFR HK1 - - yes yes - - - yes yes 

GLPAPIEK IGHG2 yes yes yes yes yes yes yes yes yes 
GSTAPVGGGAFPTIVER PDIA6 Maybe Maybe Maybe Maybe yes yes - yes - 

GTGIVSAPVPK RPS2 yes yes yes yes yes yes yes yes maybe  
GTITVSAQELK CPNE1 Yes Maybe Yes - yes yes yes yes yes 

HGLLVPNNTTDQELQHIR Eif6 yes yes yes yes yes yes yes yes yes 
IADPEHDHTGFLTEYVATR MAPK3 yes yes yes Yes - yes yes - yes 

IALDFQR LGALS3 yes yes yes yes yes yes maybe yes yes 
IFGVTTLDIVR MDH2 yes yes yes yes yes yes yes yes yes 

IFVNDDR ILF3 yes yes yes yes yes yes yes Yes yes 
IGVLDEGK RPS9 yes yes yes yes yes yes yes yes yes 

IITLTGPTNAIFK PCBP1 yes yes yes yes yes yes yes yes yes 
ILPTLEAVAALGNK ILF2 yes yes yes yes yes yes yes yes yes 
ILVTGGSGLVGK TSTA3 yes yes yes yes yes yes yes yes Maybe 
ISRPGDSDDSR HNRNPL yes yes yes yes yes yes yes yes Maybe 

IVIGYQSHADTATK EIF4E yes yes yes yes yes yes yes yes yes 
IVQAEGEAEAAK PHB2 yes Yes yes yes yes yes yes Yes yes 

LEQDEYALR HADHB yes Yes yes yes yes yes yes yes maybe 
LFSGDVVLTAR CBR1 yes yes yes yes yes yes yes Yes maybe 

LLIYWASTR IGKV4-1 - - - - yes yes yes - - 
LSVISVEDPPQR ETFB yes yes yes yes yes yes yes yes yes 

LTIGSNLSIR XRCC5 yes yes yes yes yes yes yes yes yes 
LVNEVTEFAK ALB yes yes yes yes yes yes yes yes yes 
QTLPVIYVK GSK3B barely barely barely barely barely barely barely barely barely 
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Peptide Protein MCF-7  
13 ug 

MCF-7 
25ug 

MCF-7  
26 ug 

MCF-7 
50ug 

HT- 29 
15ug 

COLO-205 
16ug 

HCT-116 
18ug 

ZR- 75 
40ug 

MDA-MB- 
436   57ug 

RPHFPQFSYSASGRE (missed 1) AKT3 - - - - - - - - - 
SPDLAPTPAPQSTPR EIF2A - - - - - - - maybe - 
SPDLAPTPAPQSTPR EIF2A - - - - - - maybe - - 

TGAAPIIDVVR RPL27A yes yes yes yes yes yes yes Yes yes 
TIGTGLVTNTLAMTEEEK TUFM yes yes yes yes yes yes yes yes yes 

TQADLDSLVR DCXR yes yes yes yes yes yes yes yes - 
TVAAPSVFIFPPSDEQLK IGKC - - - - - - - - yes 

VLIEGSINSVR ARPC4 yes yes yes yes yes yes yes yes - 
VLTLSDDLER EIF5 yes yes yes yes yes yes yes yes yes 

VNIVPVIAK SEPTIN2 yes yes yes yes yes yes yes yes - 
VSLDVNHFAPDELTVK HSPB1 yes yes yes yes yes yes yes Yes yes 

VVDPFSK RPS3A yes yes yes yes yes yes yes yes - 
VVNVSSIMSVR HSP90AB1 yes yes yes yes yes yes yes yes yes 

VVTDTDETELAR Eif2s1 yes yes yes yes yes yes yes yes yes 
VYPLINR MAP4K4 - - - - - yes maybe - - 

VYTVDLGR PIGR yes Yes maybe yes maybe maybe maybe maybe yes 
YLTTAVITNK Eif3e yes yes yes yes yes yes yes yes - 
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9. Ethics approval 

 
The study described in Chapter 1 and Chapter 2 was conducted in accordance with the 
Declaration of Helsinki and approved by the Research Ethics Committee of the Jewish 
General Hospital (Project #2018-663 17-004, approved 03 Mar 2017) in Montreal, Quebec, 
Canada. Patient data and samples were originally obtained under site-specific Research 
Ethics Board approval as part of a registered international clinical trial (NCT01226316, 
posted 22 Oct 2010). Copies of required certificates are retained by Dr. Gerald Batist.  
 
The study protocol for Chapter 3 was approved by the Ethics board at the Jewish General 
Hospital in Montreal, Canada (Study number: CODIM-MBM-16-235). Copies of certificates 
for this work will be maintained by Dr. R. Thomas Jagoe. 

 


