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Abstract

Natural language processing is a discipline rooted in both linguistics and computer

science. It incorporates syntactic problems (grammatical category, word segmentation,

name entity recognition, etc.), semantics (sentiments analysis, texts categorization, trans-

lation, questions answering, etc.), vocal signals generation from texts or texts generation

from vocal signals, etc. In the last few years, some scientists and companies have been

able to create algorithms capable of achieving very high levels of performance for some

of these tasks such as translation or sentiment classification, in part, by using big data.

The fact that some algorithms perform so well with such a large amount of data gives

a significant business advantage to large companies with large databases over smaller

businesses or start-ups. The purpose of this thesis is to find algorithms or methods

that can be effective in solving some natural language processing problems on small

databases. For our research, we built a content-based recommendation system. We

tested similarity measures such as Latent Dirichlet Allocation, cosine similarity, long-

short term memory neural network, and the RV coefficient. We also compared the effi-

ciency of the term frequency-inverse document frequency versus the mutual information

to give a weighting scheme for the cosine similarity. We also compared the effectiveness

of mutual information versus using raw word count as thresholds to remove words from

a dictionary for the other similarity measures. We also used external databases, one con-

taining documents related to our problem and another having Wikipedia documents.

We also used a pre-trained GLOVE word embedding vector for our neural networks and

the RV coefficient. We concluded that the simplest algorithms generally work best when
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there is little data. We also proposed several possible solutions to improve the algorithms

we tested.
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Abrégé

Le traitement du langage naturel est une discipline ayant racine autant dans la linguis-

tique que dans les sciences informatiques. Elle incorpore un bon nombre de problèmes

syntaxiques (catégorie grammaticale, segmentation de mots, détection de noms pro-

pres, etc), sémantiques (classification de sentiments, catégorisation de textes, traduction,

répondre à des questions, etc), transformation de signaux vocaux en textes ou textes en

signaux vocaux, etc. Dans les dernières années certains scientifiques et compagnies ont

été capable de créer des algorithmes capable d’atteindre de très haut niveaux de perfor-

mances pour certaines de ces tâches tel que la traduction ou la classification de senti-

ment, en partie, grâce aux mégadonnées. Le fait que certains algorithmes performent

aussi bien avec une aussi grande quantité de données donne un avantage commercial

significatif aux grandes compagnies ayant de grande base de données sur les plus petits

commerçants ou les entreprises en démarrages. Le but de cette thèse est du trouvé des

algorithmes ou méthodes qui peuvent être efficaces pour résoudre certains problèmes

de traitement du langage naturel sur de petites base de données. Pour notre recherche,

nous avons construit un système de recommandation à base de contenus. Nous avons

testé des mesures de similarités tel que le Latent Dirichlet Allocation, la similarité du cos-

inus, un réseau de neurones profond long-short term memory, et le coefficient RV. Nous

avons aussi comparé l’efficacité du term frequency-inverse document frequency versus

l’information mutuelle pour donnée un poids aux mots pour la similarité du cosinus.

Nous avons aussi comparé l’efficacité de l’information mutuelle versus utilisé le nombre

de mots comme seuil d’épuration de dictionnaires dans l’application des autres mesures
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de similarités. Nous avons aussi utilisé des bases de données externes, une contenant

des documents reliés à notre problème et une autre ayant des documents de wikipedia.

Nous avons aussi utilisé un vecteur de prolongement de mot GLOVE pré entraı̂né pour

notre réseaux de neurones et le coefficient RV. Nous avons conclu que les algorithmes les

plus simple fonctionne généralement mieux lorsqu’il y a peu de données. Nous avons

aussi proposé plusieurs piste de solution pour amélioré les algorithmes que nous avons

testés.
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Chapter 1

Introduction

The coming of information technologies has changed our societies, economies and social

interactions. We now have web platforms that can help us to find a job or a romantic

partner, buy used or new objects, etc. Those platforms can have massive catalogs, and

it can be difficult for a user to navigate through so much data. For instance, the job

recruiting website indeed.com claims to add 9.8 jobs every second to its global catalog.

A user could not possibly read every new job opening to find the best job for them. As

another example, according to Statistica.com [33], Facebook had 2.27 billion users during

the second quarter of 2018. Facebook cannot manually select which ad will be shown

to which user. In those cases, Machine Learning (ML) can help users and platforms

to make sense of all the data and facilitate the recommendation or search process. An

algorithm that can produce automatic recommendations could be used to propose jobs

to applicants, items to users, etc. Some platforms such as Amazon, LinkedIn or Google

have acquired significant amounts of data over the years. Using that much data, it is

possible to create an efficient and accurate matching algorithm for various tasks such

as: target advertising, job recommendation, automatic text translation, social recommen-

dation. Some ML algorithms, such as deep learning neural networks (DLNN), perform

extremely well given vast amounts of data. This gives a powerful competitive advantage

to large internet companies. Unfortunately, most of those algorithms do not perform
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very well with smaller databases.

Most companies, organizations or government entities do not have such large amounts

of data; therefore, there is a need for ML algorithms that can be trained and perform

well using small databases. For instance, according to a survey from the firm Clutch [32]

published in March 2017, 71% of small businesses in the United States of America own

a website. These businesses could benefit from a recommender system to propose items

to their customers. There is also a need for chatbots to guide users on a website. These

chatbots could help customers with their purchases, explain a public policy to a citizen

or converse with citizens to gather data about their concerns. Large government entities

might have enough data on their databases to train such algorithms but smaller entities

such as small towns might need a new way to train useful algorithms with their limited

resources. Other similar applications of ML include recruitment, automated report gen-

eration, sentiment analysis for a product or a public policy, etc.

The general objective of this thesis is to find ways to train efficient ML algorithms for

natural language processing (NLP) problems. To train a ML algorithm, we need sam-

ples of input-output pairs. In general, it is much simpler to train an algorithm when the

inputs are the same size across all samples. For instance, images are set to a fixed num-

ber of pixels along the width and height of the image. In natural language problems,

the sentence length and the number of sentences in a document vary which prohibit

or complicate the use of ML algorithms. Another challenge in NLP is to choose ap-

propriate features for the task at hand. The simplest feature is the words themselves.

Words can be represented by a one-hot vector or as a word embedded vector. Words

can be lemmatized (i.e., converted to their basic form; singular and infinitive) to reduce

the size of a dictionary. Properties of words can also be used as features such as part

of speech, synonyms, antonyms, the co-occurrence of other words, etc. For instance,

the MRC psycholinguistic database [34] claims to have 150,837 English words and 26

different linguistic properties assigned to them on their database’s website. The do-

main of application of NLP algorithms is quite diverse as it can be used for automatic
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translation, search engine optimization, part of speech tagging, similarity measurement

between documents, question and answer, chatbots, sentiment analysis, etc. However,

considering how many feature and application domains there are, relevant papers in the

NLP literature for a particular task can be limited.

Our specific objective is to build a recommender system that can provide good recom-

mendations when trained on small textual databases. Our target application is to im-

prove Fleexer.com’s applicant-project matching system. Fleexer.com’s database contains

a list of candidates and project descriptions. The database contains textual data, but is

small and contains very few labels, that is, in only a few cases, appropriate applicant-

project matches have been manually identified. Our approach is to first perform a com-

parative study of existing algorithms and then identify ways to improve these algorithms

by augmenting the training set using external databases and incorporating information

measures of words.

We will train and test several algorithms as a similarity measure for our CB such as:

the cosine similarity, the RV coefficient, a long short-term memory (LSTM) deep neural

network and latent Dirichlet allocation (LDA). We will use the one-hot vector and the

word embedding for word encoding. We will use the term-frequency inverse document

frequency (TF-IDF), raw word count and mutual information (MI) as information mea-

sure. We will also use three different databases, Fleexer’s database, Fleexer’s database

and other job-related documents gathered from government entities and a corpus made

from all previously mentioned databases plus a Wikipedia dataset build by the Westbury

Lab [68]. We will test the effect of using the different databases to train the different sim-

ilarity measures and on both information measures. We will also test the effect that

information measure have on each similarity algorithm.

In this thesis, we build a content based recommender system based on natural language

processing. The contributions of our work are centered around similarity measures for

NLP applications:
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• First, we compared how the MI performs against the TF-IDF and raw word count.

MI and TF-IDF has been compared as weighting schemes and MI and raw word

count has been compared as a word removing schemes.

• Secondly, we tested several similarity measures: LDA, the cosine similarity, the

RV coefficient and a LSTM network. We chose four different similarity measures

that are very different from each other. Since most NLP research is done on large

databases, we did not know how well most algorithms should perform under these

circumstances.

• Thirdly, we have investigated the effect of using external databases to improve the

performances of recommender systems on small databases. We used an external

database that is somewhat relevant to the task and another that contains unrelated

documents to the task. We tested the effect of those external databases on informa-

tion measures and similarity measures. This helped us understand how sensitive

this task is on the choice of external databases.

This thesis is organized as follows. In Chapter 2, we present a literature review

that focuses on recommender systems and provides descriptions of three mainly used

recommender system types: the collaborative filtering (CF), the content based (CB) and

the hybrid recommender system. In Chapter 3, we provide some background on natural

language processing topics. In this chapter, we discuss performance measures, feature

representation, some challenges in NLP, and we define overfitting. Then, we define the

information measures that we used in our experiments: MI and TF-IDF. The last section

of this chapter is where we define the similarity measures that we use in our experiment,

namelt, LDA, the cosine similarity, the RV coefficient and the LSTM network. In Chap-

ter 4, we provide a detailed explanation of our architecture and methodology. In this

chapter, we presente in detail our databases, how we used our different information and

similarity measures and how we evaluated our results. In Chapter 5, we present and
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discuss our results. In chapter 6, we conclude this thesi, sharing what we learned in this

work.



6

Chapter 2

Literature Review

In this section, we will talk about recommender systems. First, we will describe three

types of a recommender system: collaborative filtering (CF), content base (CB) and hy-

brid. We will finish this chapter by presenting several research papers about recom-

mender systems and also some that used external databases to improve their algorithms.

Recommender systems are designed to offer recommendations to users by ”matching”

them with items (other users, objects, jobs, etc.). Recommender systems can be used by

a wide variety of web services (dating websites, marketplaces, job recruiting websites,

social networks, etc.). There are three predominant types of algorithms found in the rec-

ommender systems literature: CF, CB and hybrid. CF systems work in two steps. First,

they find similarities between users and then, they recommend items that similar users

liked or bought. They use recorded interactions between users and items (clicks, items

rating, purchases, messages send, etc.) to compute similarities. The motivation behind

CF is that a user might get better recommendations from users with similar opinion

rather than the general rating from all users for an item. Collaborative filtering algo-

rithms are used for movies and television shows recommendation, for examples, Zhou

et al. [22] and Koren et al. [23] used them for the Netflix prize challenge [21]. For online

shopping recommendations, Lenden et al. [24] used CF for Amazon.com item recom-

mendations. The disadvantage of collaborative filtering is the cold start problem, that
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happens when a new item or user is added to the database. Since the algorithm bases

its recommendation on user-item interactions, it is impossible to give recommendations

to a user or for an item with no history of interactions.

In CB systems, the idea is to match users with items using a similarity measure between

them. Mamadou et al. [26] used what they called interactions data from social networks

profiles (Facebook.com and LinkedIn.com) to recommend jobs opportunities to users.

They define interaction data as every interaction that a user has with the social network,

e.g., user’s posts, likes, comments, publications, time spent reading a publication, etc.

They used a semantic similarity algorithm to compute how similar a job’s description

and the textual interaction data of a user profile are, and then based their recommenda-

tion on this measurement of similarity. Using only textual data, they were able to make

predictions using an unsupervised similarity algorithm, cosine similarity, and a super-

vised one, support vector machine (SVM). The unsupervised learning approach does

not use any labeled data; in contrast, in the supervised learning approach, the labels

are used during training. Mooney et al. [27] used a slightly different approach for book

recommendations. They used textual data about books such as: title, authors, synopses,

published reviews, costumer comments and more. Then, they asked new users to rate

books. Finally, they recommended a book based on a similarity algorithm between users

using book’s textual data. In content-based recommendation, there is no cold start prob-

lem since the algorithm bases its recommendation on data in the user’s or item’s profile

instead of interactions.

There is also the possibility to combine the CF and CB approaches to create hybrid rec-

ommender systems which take advantage of the knowledge of other users experience

and are less affected by the cold start problem. A hybrid recommender system was

proposed by Lu et al. [28] for a job recruiting website. They achieve better results than

their CF and CB algorithms individually. Ghazanfar et al. [29] also used a hybrid recom-

mender system for a general purpose recommendation task. The CB part uses a naive

Bayes classifier as a similarity measurement. For the CF part, they used the cosine simi-
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larity between items that the users liked and the other items in the database multiplied

by the rating of other users. Finally, an algorithm determines the confidence level of the

CB. If it is high enough, it will recommend the items to the users without using the CF

parts. If the confidence level of the CB is not high enough, the algorithm will combine

the prediction from the CB and the CF part. Ghazanfar et al. reported better results than

using their CB or CF individually, a user-based CF, the algorithm IDemo4 [79] and the

content-boosted algorithm proposed in [80].

Most recommender systems are trained and tested using huge amounts of data. Na-

jafabadi et al. [47] did a survey of over 131 recommender system papers between 2000

and 2016. These papers used public databases such as: MovieLens 100k [51] (100k movie

ratings), MovieLens 1M [51] (1 million movie ratings), MovieLens 10M [51] (10 millions

movie ratings), Netflix [21] (100 millions television and movie ratings), Jester [52] (4.1

millions joke ratings), BookCrossing [53] (1.1 millions book ratings), delicious [54] (104

833 recipe ratings), and the MSD [55] (8 598 630 music track - tag pairs). As we can see,

most published methods use a lot of data, MovieLens 100k being the smallest, which

may indicate a lack in interest in recommender systems using small databases. However,

some papers have been published on using transfer learning for recommender systems.

The motivation and basic concept behind transfer learning is to improve an algorithm

when the dataset of the target task is small, by “transferring” what the algorithm has

learned from a larger but similar (in some sense) dataste. Zhao et al. [48] developed

a framework to train a recommender system using a large database by mapping items

to the other, smaller, database. Specifically, they used the Netflix database to train a

CF recommender system for Douban which is a Chinese recommendation website for

books, movies and music (however, they didn’t use the music data in their experiment).

They achieved better results than using only Douban database’s. The limitation of their

algorithm is the need for both databases to be very similar since they are using entity-

correspondence mappings (items with the same titles on Netflix and Douban) between

both systems. Zhang et al. [49] also used information from external databases to im-
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prove recommender systems. They developed a five steps framework to extract useful

data from one domain to another. For instance, they claim that they can use books rat-

ings to improve a recommender system that proposes movies.

After looking at what we found in the literature, we concluded that the reported research

on recommender systems that use small datasets is very sparse. The few papers that we

found that used external datasets to improve their algorithm on a task with a smaller

dataset used external datasets that are very similar to the smaller dataset’s target task.

There has been no study, and therefore, we cannot have any expectation of the effect of

using unrelated data on a recommender system for a small dataset. Since a small dataset

might have few labels the cold start problem of a CF algorithm might be a big issue. For

this reason, for this thesis we decided to build a CB recommender system.
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Chapter 3

Methodology: Mathematical Background

In this chapter, we will discuss several topics related to NLP. We will first define sev-

eral performance measures that are typically used in machine learning. Then, we will

discuss feature representations that are used in NLP such as: word embedding, one-hot

vector and others. We will then talk about the challenges and ambiguities frequently

encountered in NLP tasks.

After discussing overfitting, we will address the topic of information measurement

and explain the terms frequency-inverse document frequency and mutual information.

Then, since we aim to build a content-based recommender system, we will talk about

several similarity measures that we can use for this task such as: Latent Dirichlet alloca-

tion, cosine, Jaccard, Sorensen-Dice, RV coefficient and long-short-term memory (LSTM)

deep neural network (DNN).

3.1 Performance Measures

In machine learning, we need metrics to evaluate the performance of an algorithm. In

the binary classification (positive/negative) problem, such as identifying in which one

of two classes an example belongs, several metrics are often used such as the accuracy,

the precision, the recall and the F1-score [81]. If what we want to measure is not binary,
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e.g., when we want to predict a real number such as temperature forecast or stock price

prediction, the Pearson correlation coefficient and the Spearman correlation coefficient

can be used to compare the output of an algorithm to the ground truth.

In binary classifier evaluation, we first need to define four terms: true positive (TP),

true negative (TN), false positive (FP) and false-negative (FN). TP is the number of ex-

amples that the algorithm correctly identified as positive. TN is the number of examples

that the algorithm correctly identified as negative. FP is the number of examples that the

algorithm falsely identified as positive. Finally, FN is the number of examples that the

algorithm falsely identified as negative. Using these terms we can define the following

performance metrics: The accuracy which is the ratio of correctly identified examples

over the total number of examples or TP+TN
TP+TN+FP+FN , the precision which is the ratio of

correctly identified positive examples over the total number of predicted positive exam-

ple or TP
TP+FP , and the recall is the ratio of correctly identified positive examples over the

total number of true positive examples or TP
TP+FN . Finally, the F1-score is the harmonic

mean of the recall and the precision or 2 Precision×Recall
Precision+Recall .

The Pearson correlation coefficient is a measure of how well two vectors, say Y and

Ỹ, linearly correlate to each other. It is defined as the ratio of the covariance between

two vectors over the product of their standard variation

ρp =
cov(Y, Ỹ)

σYσỸ
. (3.1)

with the covariance defined as:

cov(Y, Ỹ) = E[(Y− E[Y])(Ỹ− E[Ỹ])] =
1
N

N

∑
i=1

(yi − E[Y])(ỹi − E[Ỹ]) (3.2)

and the standard variation defined as:

σν =
√

E[ν2]− [E[ν]]2 =

√√√√ N

∑
i=1

(νi − E[ν])2 (3.3)
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for vectors of lenght of N and the expected value of a vector E being the mean of the

vector.

The Spearman correlation coefficient, first described by Charles Spearman [75], is

also a measurement of how well two vectors correlate to each other for any monotonic

relation between two vectors Y and Ỹ. The difference between the Pearson and Spearman

correlation coefficient is that the Spearman coefficient uses a ranks vector rather than the

values of the vectors. For instance, in a vector of N values, transforming it to a rank

vector will result in the smallest value to have a rank of 1 and the biggest value to have

a rank of N. If we wanted to transform the vector Y = {1.2, 5,−1, 2} into a rank vector,

it will become RankY = {2, 4, 1, 3}. The Spearman correlation coefficient is defined by

ρs =
cov(RankY ,RankỸ)

σRankY
σRankỸ

.

As a performance measure, the Pearson and Spearman coefficients are used with the

predicted values Ỹ and the ground truth (or labels) Y. Suppose that we have a ground

truth vector Y and we want to test two algorithms that try to predict it by producing the

output vectors Ỹ1 and Ỹ2, respectively, which can be real numbers or integers. Then we

can find the Spearman correlation coefficient ρs1 and ρs2 between the two predictions Ỹ1

and Ỹ2 and the ground truth Y. When the values of ρs1 and ρs2 are similar, we need to do

a statistical significance analysis to determine how confident we are that one algorithm

is better than the other. According to Myers et al. [78] we first need to compute the

Fisher’s Z-transformation using:

Zr = 0.5 ln
1 + ρs

1− ρs
= arctanh(ρs) (3.4)

Then, using eq. (3.4) on the two results that we want to compare, we can find the z-score:

z =
Zr1 − Zr2√

(N1 − 3)−1 + (N2 − 3)−1
(3.5)

where Zr1, Zr2, N1 and N2 are respectively the Fisher’s Z-transformation from ρs1 and

ρs2 and the size of Ỹ1 and Ỹ2. Then, with the z-score, we can do a simple statistical test
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to know the significance of the result or in another words, the probability that the first

algorithm produces a more accurate prediction then the second:

P(ρs1 > ρs2) =
∫ z

−∞

1√
2π

exp (−x2

2
)dx (3.6)

3.2 Feature Representation

As mentioned in the introduction, feature representation is a challenge in NLP problems.

In most NLP algorithms, there are two ways to represent words: one-hot vectors / bag

of words [82] or word embeddings [16] [18]. A one-hot vector is a vector of length equal

to the vocabulary size where a word is represented by a one in its assigned position.

For instance, if the word cat is the 100th word in a 1000-word vocabulary, the one-hot

vector that will represent cat will be a 1000-word long vector where the value at the

index 100 is one while the other 999 values of the vector are zeros. This encoding is

very simple to implement and does not require any particular knowledge about words

but it also has several limitations. Its main weakness is the sparsity of the vector which

can cause computational problems and inefficiency. Also, adding new words to the

vocabulary will change the length of the feature vector which might be problematic for

certain algorithms. If we want to represent a document, we simply sum up all the one-

hot vectors representing each word in the document and the resulting vector is what is

called a bag of words vector.

Another problem with one-hot vector encoding is that the length of the vector can

be very large. In NLP problems, the vocabulary can be very large, thus the need for

a method to reduce it. One popular such method is word lemmatization [83] which is

the removal of plurals and the deconjugation of verbs. It can be advantageous for some

problems such as classification since words in their singular or plural form keep the

same meaning. On the other hand, for automatic text translation, it could be useful to

keep the verbs’ tense and the plural form since this information should appear in the
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final result. Lemmatization is a complicated NLP problem in itself. In most cases, simple

rules can be used. Examples of possible rules are removing the apostrophe at the end

of a word, replacing suffixes such as sses by ss, ies by y, or removing suffixes such as ed

or s. A rule like replacing ies by y would eventually fail for plural words where their

singular form ends with ie such as the word lie. Irregular verbs will also need special

rules such as replacing am, are, is by be.

In the case of word embedding, the goal is to encode each word by a vector such that

the distance between two vectors represents a semantic or syntactic relation between

these words. According to Mikolov et al. [16], their word embedding algorithm, the

continuous bag of words (CBOW), can capture semantic similarity in a way where a

similar relationship between words will result in a similar vector encoding. Word2vec

[18], created by Mikolov et al., is also a very popular word embedded algorithm. Their

methods overcome the limitation mentioned above in the one-hot vector approach. On

the other hand, to capture enough information, those algorithms usually need a lot of

data and a lot of computation to be properly trained.

In NLP problems, there are more than just words that can be used as features. Bo-

janowski et al. [17] additionally used the internal structure of words and trained an

embedded vector for words and sub-words. For each word, they added a 〈end〉 charac-

ter at the beginning and at the end, and then they created sub-words of a certain number

of letters. For instance, for sub-words of 3 letters, the word where becomes 〈end〉wh +

whe + her + ere + re〈end〉 and the special sequence where. They then created vector rep-

resentation for each word and its sub-words using the word2vec training algorithm [18].

According to Bojanowski and his team, this model allows for better representation of

rare words than other baseline methods such as CBOW [2] and word2vec [18] in a simi-

larity judgment task on the English Rare Words database [59]. On the other hand, they

achieve worse results than word2vec on the words analogy task on a frequently used

words dataset [58]. They also reported better results than their baseline on words anal-

ogy tasks in French, English, Spanish and German.
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It is also possible to use dictionaries to add features to an NLP problem. Dictionar-

ies can be used to find synonyms, antonyms, part of speech tags (noun, verb, adverb),

etc. For instance, Sultan et al. [12] used the Paraphrase Database (PPDB) to find sim-

ilar words to improve a longest common subsequence (LCSS) algorithm in a sentence

similarity task. LCSS is an algorithm that finds the longest subsequence that is present

in two sequences; the length of the longest subsequence is indicative of how similar the

two sequences are. Instead of only using a subsequence that matches perfectly with

both sequences, Sultan’s LCSS uses the longest subsequence of similar words between

two sentences. Gao et al. [15] used the Wordnet’s [50] taxonomy database to compute

similarities between pairs of words. They reported achieving a Pearson correlation coef-

ficient of 0.885 in a word similarity task on the RG dataset [60].

3.3 Challenges in NLP

In NLP, there are different cases of ambiguity that can appear. Some examples are

described next. One of the most common causes of ambiguity are homographs [84] or

words with multiple possible meanings. For instance, the word grenade can be a fruit or

a weapon. A word can also have multiple meanings and part-of-speech ambiguity; for

instance, the word ski can be a noun, e.g., ”I got a pair of skis”, or a verb, e.g., ”I want to

ski.” In sentiment analysis [86], some words can be more significant since they carry more

information about the general sentiment in a sentence. Such words can be adjectives like

good, bad, beauti f ul and ugly. Those words, based on the circumstances and context, can

carry an ambiguous connotation. For instance, in the phrases ”the ice cream was cold”

and ”the waiter was cold”, we can see that the adjective cold can be used to describe

the state of ice cream as well as saying that the waiter was unpleasant. Capturing the

semantics of a joke can be really difficult since jokes tend to talk about something that

is incoherent without telling it explicitly. Sarcasm [85] is another challenge in NLP since

the author says literally the opposite as what is meant.
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3.4 Overfitting

The overfitting problem occurs when the decision boundaries ”fit” too closely to the

training data. In machine learning, for a classification problem, the decision boundaries

are hyperplanes: classification decisions are made depending on which side of decision

boundaries a data point falls on and overfitting will cause the classifier to not create good

boundaries. In a function approximation problem, overfitting will cause the approxima-

tion to worsen when increasing the complexity of the approximation function. For a

function approximation example, see Figure 3.1. All 6 data points were created using

the function y = x + ε where ε is Gaussian noise. We approximated the original linear

model using 5 different degrees of polynomial regression, linear to fifth degree. We can

see that the linear, second-degree and third-degree polynomial regression estimations of

the original function were not too far off but that the fifth-degree polynomial regression,

even though it perfectly fits the original data points, is a really bad approximation of the

original function.

In supervised machine learning, overfitting occurs when the loss function of a model

during training is getting lower while the performance decreases when testing with new

samples (validation phase). This happens when the ratio of the number of parameters

over the number of labeled samples is high. Gordon F. Hugues [77] noted the existence

of an optimal complexity (number of parameters) for a binary classifier. For instance,

in a binary image classification task using a Bayesian classifier, using 1, 000 samples,

the optimal number of parameters was 23 and for 100 samples, the optimal number of

parameters was 8.

3.5 Definitions

First, let us define some symbols that we will use throughout the thesis.
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Figure 3.1: Overfitting example. Six data points (shown by circles) were created using the

function y = x + ε where ε is Gaussian noise. The curves on the graphs were obtained

by polynomial regression of degree 1 (top left graph) to 5 (bottom center graph).

S ∈N number of words in a dictionary

w ∈N index of a word from 1 to S

N ∈NM number of words for each document

M ∈N number of documents in a corpus

dm ⊆ D document m in the corpus D

V ∈ RS×K set of K-dimensional vector representation for all words

vw ∈ V K-dimensional vector representation of word w in the set V

3.6 Word Embedding

”You shall know a word by the company it keeps” John Rupert Firth, 1957.
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Word embedding is a way to map words to vectors. The idea is that words that are

commonly found near each other must have some kind of semantic or syntactic relation.

The goal of word embedding algorithms is to capture this relation between all words in a

corpus and represent it in a vector space. In that vector space, vectors of words that share

similar meanings should be clustered together. For instance, food-related words should

be close to each other. The distance between two word vectors also carries information

about their relationship; for instance, the resulting vector of (Paris− France) should be

similar of (London− England) since they share a common relationship: the first word is

the capital city of the second word, a country . There are many algorithms that can be

used to create a model for word embedding, such as: global matrix factorization [35],

skip-gram model [18] or a combination of multiple models [2].

3.6.1 Skip-Gram and Word2Vec

Although the Word2Vec algorithm of Mikolov et al. [18] [37] was originally trained using

a skip-gram model it has been shown to be an explicit matrix factorization of the words

co-occurrence matrix by Li et al. [36]. A skip-gram model is a model where the objective

is to predict values in a series surrounding one known value or more concretely, it

models the relation between one value and values surrounding it . In NLP, this means

predicting words surrounding one known word or more concretely, word2vec is a modal

of the relation between a word and it’s surrounding. The known word is called the center

word and the surrounding words are called the context window. This model supposes a

softmax distribution of the context window knowing the centered word and is defined

by:

∏
w∈D

P(l|w, Ṽ, V) (3.7)

where:

P(l|w, Ṽ, V) =
exp(ṽᵀl vw)

∑L
l′=1 exp(ṽᵀl′vw)

(3.8)
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where l is the identification of an individual context window, L is the number of possible

context windows, w is the identity of a center word, ṽl ∈ Ṽ and vw ∈ V are respectively

vector representations for l and w and Ṽ is the set of vector for every possible context

windows.

Maximizing the probability distribution in eq. (3.7) with respect to the sets of vectors

V and Ṽ bring word vectors with similar centered word close to each other. However,

this approach is impractical since it requires computing the term exp(ṽᵀl′vw) for every

context window and every word in the dataset or corpus which can be extremely com-

putationally expensive. For instance, if the context window is composed of 4 words

around the centered word and the vocabulary contains 10000 words, the number of pos-

sible context windows would be equal to L = 100004 = 1016. This is why Mikolov

et al., used a much more efficient negative sampling approach. Instead of maximizing

the probability of every word over every context window, the objective is now to maxi-

mize the probability that every pair of a centered word and a context window (w, l) are

observed in the corpus D. The objective function is:

arg max
Ṽ,V

∏
(w,l)∈E

P((w, l) ∈ D|Ṽ, V) = arg max
Ṽ,V

∏
(w,l)∈E

1

1 + e−ṽᵀl vw
(3.9)

where E is the set of all pairs of center words and context windows observed in corpus

D. We can see that a trivial solution exists for the problem in eq. (3.9) obtained by setting

ṽl = vw and ṽᵀl vw to a large enough value for every l and w. According to Goldberg et

al. [37], setting ṽᵀl vw to a value greater or equal to 40 result of a probability very close

to 1 in eq. (3.9). There is also the problem that maximizing the probability distribution

in eq. (3.9) will make every vector in V converge to a similar value. . To prevent those

issues, Mikolov used a new set E′ of pairs of centered word and context windows that

do not belong in the corpus D, which is where the term negative sampling comes from.
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The new objective function is now:

arg max
Ṽ,V

∏
(w,l)∈E

P((w, l) ∈ D|Ṽ, V) ∏
(w,l)∈E′

P((w, l) /∈ D|Ṽ, V) (3.10)

By considering the log of both sides of eq. (3.10) the optimization problem becomes:

arg max
Ṽ,V

∑
(w,l)∈E

log
1

1 + e−ṽᵀl vw
+ ∑

(w,l)∈E′
log

1

1 + eṽᵀl vw
(3.11)

By optimizing eq. (3.11), we make good (or existing in E) pairs of context windows

and centered words vector representation scalar product ṽᵀl vw high and inversely, pairs

drew from E′ will make this scalar product of their vector representation small. Accord-

ing to Goldberg and Levy [37] this means that words that share many context windows

will have similar word vectors. This affirmation makes intuitive sense considering that

group of words that are often seen together may not have similar meanings but rather

add complementary information to the group such as in: deep learning, Canadian maple

syrup, special Olympics.

3.6.2 Glove

The global vector for word representation (Glove) [2] is a very popular word embed-

ding algorithm created by Jeffrey Pennington and his team at Stanford University. Glove

combines a context window-based method such as word2vec and global matrix factor-

ization. They define a matrix X for co-occurring words whose (i, j)th element, Xij, is

the number of times the word wj occurs in a context window around the centered word

wi, and Xi = ∑k Xik is the number of times wi appear in the corpus. The probability

of seeing a word in a context window is Pij = P(j|i) = Xij/Xi. The context window is

composed of words that appear either before, after or around a center word and can be

of variable length or fixed in size. First, they suppose that the relationship between two

words wi and wj can be quantified by using the ratio of co-occurrence of a ”probe” word
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wk. Using this intuition, their starting point was to define a function F which took the

form of:

F(vwi , vwj , ṽwk) =
Pik
Pjk

(3.12)

where vw ∈ V is a vector representation of word w when w is a centered word and

ṽw ∈ Ṽ is a vector representation of word w when w is in the context window. In their

paper, they give an example using wi = ice, wj = steam and using probe words wk: solid,

gas, water and fashion. They demonstrated that words that are related to ice but not

steam such as solid would have a very high co-occurrence ratio, words that are related

to steam but not at ice would have a small co-occurrence ratio and words that are related

to both word like water or to none of then like fashion would have a co-occurrence ratio

close to 1.

They defined a least square cost function to minimize by optimizing both set of vector

v and ṽ and biases b and b̃ as:

J =
S

∑
i=1

S

∑
j=1

f (Xij)(v
ᵀ
wi ṽwj + bwi + b̃wj − log(Xij))

2 (3.13)

with:

f (Xij) =

 (
Xij

xmax
)α i f Xij < Xmax

1 otherwise
(3.14)

where bwi ∈ B and b̃wj ∈ B̃ are biases respectively associated with the centered word

and a word on a context window. The general idea of eq. (3.13) is very similar to the

word2vec eq. (3.11), the more often a center word wi is close to a word wj inside the con-

text window, the more the term vᵀwi ṽwj is going to be large, therefore, if the center words

wii and wi have similar word concurrence, their vector representation will converge to

similar values. The goal of the weighting function f (Xij) is to limit the weight of very

frequent co-occurrence by choosing xmax arbitrarily,they chooses to fix this number to

100. Choosing an α parameter smaller than one put more weight on rare co-occurrence,
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they reported better result using α = 3/4 than α = 1.

They reported better results than word2vec and other baselines in word similarity

tasks on dataset such as WordSim353 [72], MC [73] and The Stanford Rare Word [59]

and on the name recognition dataset CoNLL-2003 [74]. They also demonstrate that they

can easily train on a large corpus of 42 billion words.

3.7 Information Measurement

Information measurement is useful in semantic similarity tasks since it can tell us how

important a word is in a sentence. We can use this information either in a weighting

scheme or to choose which words are relevant enough to be added in a dictionary. For

instance, we used information measures as a weighting scheme in the cosine similarity

where we simply multiplied each word represented in a bag of words vector with their

associate weight. This is done before using the cosine similarity between the bag of

words of the documents that we want to compare. Next, we describe two of the most

commonly used information measures, namely, Term Frequency - Inverse Document

Frequency (TF-IDF) and Mutual Information (MI).

3.7.1 Term Frequency - Inverse Document Frequency (TF-IDF)

TF-IDF is composed of two parts, the term frequency (TF) which is a by-document term

and the inverse document frequency (IDF) which is a per-corpus term. TF-IDF is defined

by TF-IDF(w, d, D) = TF( fw,d)IDF( fw,D) where fw,d is the frequency or count of the

word w in a document d and fw,D is the frequency of the word w in a corpus D. There

is a wide variety of TF and IDF schemes that can be used together.

Some TF schemes include:
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binary
1 if the term w exists in d , 0 otherwise

(3.15)

raw term frequency fw,d (3.16)

term frequency
fw,d

∑w′∈W fw′,d
(3.17)

augmented normalized term frequency 0.5 + 0.5
fw,d

max
w′∈W

( fw′,d)
(3.18)

log term frequency log(1 + fw,d) (3.19)

Some IDF schemes include:

unary 1 (3.20)

inverse document frequency log(
M

fw,D
) (3.21)

probabilistic inverse frequency log(
M− fw,D

fw,D
) (3.22)

where M is the number of document in the corpus and W is the set of all word in the

corpus.

Salton & Buckley [30] did a comparative study comparing several TF and IDF mea-

sures as weighting schemes on five datasets of automatic text retrieval systems, in an-

other word, they tried to find documents using textual queries. . They reported better

precision using raw term frequency or augmented normalized term frequency for TF

and inverse document frequency or probabilistic inverse frequency for IDF.
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3.7.2 Mutual Information (MI)

The MI between two discrete random variables X and X′ is defined by:

I(X; X′) = ∑
x

∑
x′

P(x, x′) log(
P(x, x′)

P(x)P(x′)
). (3.23)

where x and x′ are the possible values of X and X′. MI was first described by Claude

Shannon [38] in his 1959 paper ”Coding theorems for a discrete source with a fidelity

criterion.” MI is a measure of how much information is contained in a random variable

X about another random variable X′. We can see that the term inside the log in Eq. (3.23)

should be equal to 1 if both variables are independent which would result in no mutual

information at all.

To use MI for text classification as a weighting scheme [31], we can use the MI be-

tween the word X = wi and the random variable X′ being the classes. The amount of

information in wi can be computed with:

I(wi) = I(X = wi; X′) = ∑
x′

P(x, x′) log(
P(x, x′)

P(x)P(x′)
). (3.24)

MI can also be used in words relatedness tasks [39] with X = wi and x′ = wj. In this

case, MI(wi, wj) is the probability that the words wi and wj are related.

3.8 Semantic Similarities

In this section, we will describe some techniques that can be used to compute how se-

mantically related two documents are. We will talk about the latent Dirichlet allocation,

the cosine similarity, the Jaccard distance, the Sorensen-Dice distance, the Rv coefficient

and the long short term neural network. Detail of how we used those techniques as

similarity measures can be found in the architecture and methodology chapter with the

exception of the Jaccard and Sorensen-Dice distances that we did not use.
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3.8.1 Latent Dirichlet Allocation (LDA)

LDA is a generative probabilistic model for a collection of discrete data created by Jor-

dan et al. [10] which is very appropriate for modeling text corpora. According to Ng et

al. [61], generative models make predictions by learning the joint distribution P(x, x′) be-

tween the input x and the label x′ while discriminative models base their predictions on

the posterior probability P(x′|x) or map directly an input x to a label x′. A common ex-

ample of a generative model would be the naive Bayes classifier and for a discriminative

model would be the logistic regression classifier. Since LDA is an unsupervised algo-

rithm and therefore doesn’t use labels during the training phase, the joint distribution

that we need to compute is between the input and the latent variables.

Before we describe LDA, we will first define a few variables.

K number of topics

α ∈ RK Dirichlet prior for the topic distribution per document

Ω ⊆NM sparse bag of words representation for a document

ω ∈NM×S dense representation of bag of words for each document

Z ⊆NM latent categorical variable of words in a document

β ∈ RS×K probability distribution of every word over each category

θ ∈ RM×K latent variable, topic distribution of each document
Jordan et al. [10], summarized LDA as a 3-level (corpus, document and word) hierarchi-

cal Bayesian model, where α and β are corpus-level parameters, θ is a document-level

parameter and Ω, ω and Z are word-level parameters. The general idea of LDA is that

each document and each word are associated to a finite mixture of K topics. The model

assumes a Dirichlet distribution of those topics θ per documents in D.

LDA is a generative model which means that the assumption of this model is that

documents are created according to a set of rules. To generate a new document the

length or number of word N is decided based on a Poisson distribution. Then the

distribution of topics for this document is chosen using a Dirichlet prior θ ∼ Dir(α). For

each word in document d, a topic z is assigned based on the probability distribution in
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θ. Finally, a words w is chosen according to P(w|z, β) which is a multinomial probability

conditioned on the topics in z, or in another word, the probability of a word being chosen

in the document is proportional to the probability of that word existing multiplied by

the probability of that word being associated with topic z. We can make the assumption

that the length of the document d is not critical and that the parameter K is known and

fixed. In original LDA paper, the following probability distribution for a document was

proposed:

P(θ, z, w|α, β) = P(θ|α)
N

∏
n=1

P(zn|θ)P(wn|zn, β) (3.25)

where P(zn|θ) is the probability of zn given θ or simply θzn . P(θ|α) is a Dirichlet distri-

bution given by:

P(θ|α) = Γ(∑K
i=1 αi)

∏K
i=1 Γ(αi)

θα1−1...θαK−1 (3.26)

where Γ(·) is the gamma function.

We can also visualize the LDA model using the plate notation shown at figure 3.2.

In this representation the plate represent sets (set of all documents from 1 to M, set of

all words in a document from 1 to N), the circles represent variable and the arrows (or

edges) represent the direction of the dependency between the variable.

wzθα

β

M N

Figure 3.2: Plate Diagram of LDA.

The Dirichlet distribution is convenient to create such a generative model since it is

in the exponential family, has finite dimensional, sufficient statistic and is conjugate to

the multinomial distribution which facilitates parameters estimation using variational

inference according to the original paper [10]. Variational inference is a mathematical
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tool that allows the optimization of parameters for a convex probability distribution

function p when one or more parameters are impossible or impractical to compute. This

is needed in this context since evaluating the latent variables θ and z using Bayesian

inference would require to compute:

P(θ, z|w, α, β) =
P(θ, z, w|α, β)

P(w|α, β)
. (3.27)

Therefore, we would need to marginalize the latent variable in eq. (3.27) using:

P(w|α, β) =
Γ(∑K

i=1 αi)

∏K
i=1 Γ(αi)

∫
(

K

∏
i=1

θαi−1)(
M

∏
n=1

K

∑
i=1

S

∏
j=1

(θiβij)ωnj)dθ (3.28)

As we can see in eq. (3.28), using vanilla Bayesian inference would be computationally

impractical for large S and M.

The idea of variational inference is to find a simpler function q that approximates the

function p then minimize the Kullback–Leibler divergence D(q‖p) between q and p with

respect to the parameters in the model. To create the function q, the author Jordan et

al. [10] proposed to remove the edges θ − z, z− w and β− w and the node w due to the

problematic of coupling θ and β, see figure 3.2. The new distribution becomes:

q(θ, z|γ, φ) = q(θ|γ)
M

∏
n=1

q(zn|φ) (3.29)

where γ ∈ RK×M is a Dirichlet parameter over the topic distribution for each docu-

ment and φ ⊆ RM is the topic distribution for each word in each document, γ and φ

are the free variational parameters. Then, we minimize the Kulback-Leibler divergence

with respect to the free variational parameters. To minimize D(q‖p), Jordan et al. [10]

proposed an expectation-maximization (EM) algorithm. In the E-step, we optimize the

free variational parameters γ and φ and in the M-step, we optimize α and β. To find

the optimal γ and φ, we can use the fixed-point method to set the derivative of D(q‖p)

to zero. This will give us the pair of update equations that need to be repeated until
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convergence below:

φni ∝ βiwn exp(Ψ(γi)−Ψ(
K

∑
j=1

γj)) (3.30)

and

γi = αi +
M

∑
n=1

φni (3.31)

where Ψ(·) is the digamma function or the integral of the log of the gamma function

and the ∝ sing mean proportional to. The algorithm to estimate both parameter φ and γ

is:

for d = 1 to M do
initialize φidn = 1/k for all i and n

initialize γid = αi + M/K for all i

while converging do

for n = 1 to Nd do

for i = 1 to K do
φt+1

idn = βiwn exp(Ψ(γt
id))

normalize φt+1
dn to sum to 1

γt+1
d = α + ∑Nd

n=1 φt+1
dn

Algorithm 1: E-step parameter estimation

The next step, M-step, is to find the equation that minimizes D(q||p) with respect

to α and β. To find β, it is possible to use a Lagrange multiplier since the sum of the

probability that a word belongs in all topics is equal to 1 or ∑K
i=1 βwi = 1 for a word

w, the original author [10] found this equation which is a closed-form solution to the

optimization problem:

β ∝
M

∑
d=1

Nd

∑
n=1

φdnΩdn (3.32)

The next step is to normalize every row so that all words have a cumulative probability

of being in every category equal to one.

Then, using Newton-Raphson’s method Jordan et al. [10] update the α as follows:

αt+1 = αt − H(αt)
−1g(αt) (3.33)
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using

g(αi) = M(Ψ(
K

∑
j=1

aj)−Ψ(ai)) +
M

∑
d=1

(Ψ(γdi)−Ψ(
K

∑
j=1

γdj))

H(αi) = δ(i, j)MΨ
′
(αi)−Ψ

′
(

K

∑
j=1

αj)

(3.34)

where Ψ
′

is the trigamma function or the first derivative of the digamma function. Eq.

(3.33) need to be repeated until convergence.

The final algorithm can be summarized as follows. We first need to initialize all

values in β to random positive numbers and normalize β’s rows to one. Then initialize

all values in α to one arbitrary positive value. Then repeat the E and M steps until global

convergence.

3.8.2 Cosine Similarity, Jaccard Distance, Sorensen-Dice

The Cosine Similarity, Jaccard Distance, Sorensen-Dice are similarity measures that use

simple bag of words of documents that are compared. We will denote by A and B the

bags of words representing the two strings under comparison.

The cosine similarity is the cosine of the angle θ between two vectors given by:

Cosine(A, B) = cos(θ) =
A · B
‖A‖‖B‖ (3.35)

where the A · B is the scalar product between vector A and B.The Jaccard distance is de-

fined by the ratio between the intersection and the union of two vectors. The intersection

of two vectors is the number of members (in this case words) that are simultaneously

present in both vectors. The union of two vectors is the total number of members (in our

case, the total number of different words) present in either both vectors.

Jaccard(A, B) =
|A ∩ B|
|A ∪ B| =

A · B
‖A‖+‖B‖ − A · B (3.36)
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The Sorensen-Dice similarity is the ratio between the intersection and the sum of the

length of the two vectors which is defined by:

Sorensen− Dice(A, B) =
2|A ∩ B|
|A|+ |B| =

2|A · B|
‖A‖+‖B‖ (3.37)

Thada et al. [11] tested the cosine similarity, the Jaccard distance and the Sorensen-

Dice coefficient for document retrieval using queries. In their paper, they found that the

cosine similarity gives better results for their problem.

3.8.3 RV Coefficient

The RV coefficient or correlation of vectors coefficient, developed by Robert and Es-

coufier [19], is a measure of the similarity of two sets of points represented in two ma-

trices. Let’s define two matrices F and G build from two sets of points of dimensionality

K and of respectively P and Q rows, where each row are the coordinate of a point, or

F ∈ RP×K and G ∈ RQ×K.The RV coefficient uses the ratio of the covariance over the

square root of the product of the variances of F and G. The RV coefficient takes values

between 0 and 1. The RV coefficient is equal to

RV(F, G) =
∑K

i=1 ∑K
j=1 f ′ijg

′
ij√

(∑N
i=1 ∑K

j=1 f ′2ij )(∑
K
i=1 ∑K

j=1 g′2ij )
=

tr(F′ᵀG′)√
tr(F′ᵀF′)tr(G′ᵀG′)

(3.38)

where F′ and G′ are defined as the square positive semi-definite matrices FᵀF and GᵀG,

respectibely, where tr is the trace operation. In the experiment section we will describe

how we used the RV coefficient as a similarity measure for NLP task.

3.8.4 Feed-Forward Neural Networks

Let’s define a few more variable relevant for feed-forward neural networks.
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K length of feature vector xt

M number of label ed example in a dataset

X ∈ RM×K set of all feature vectors

b ∈ R bias

R ∈ RK weight vector

Y ∈ RM set of all labels (on classification task Y is usually a natural number)

To understand how feed-forward neural networks work, we first need to define the

perceptron. A perceptron is a single neuron in an artificial neural network, and as such,

it can be viewed as the simplest neural network. It was invented by Frank Rosenblatt [40]

in 1957. A perceptron is a linear binary classifier. It computes the inner product between

a weight vector R ∈ RK and the input x ∈ RK. A bias b is added to the result and if the

result is greater than zero, the perceptron’s output is 1, otherwise, it is 0. Therefore, a

perceptron can be defined by the equations (3.39) and (3.40), below.

f (x) = Φ(net(x, R, b)) (3.39)

net(x, R, b) = xᵀR + b (3.40)

where Φ(·) is the activation function, specifically, the step function Φstep:

Φstep(x) =

 1 if net(x, R, b) > 0

0 otherwise
(3.41)

A graphical representation of a perceptron is shown in Figure 3.3.

To train the perceptron for a classification task, we have to find the optimal weight

vector R and bias b that minimize the squared error on the equation:

Y = [b||R][1||X]ᵀ (3.42)



CHAPTER 3. METHODOLOGY: MATHEMATICAL BACKGROUND 32
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function
Φ(x)

∑r2x2

...
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inputs weights

Figure 3.3: Perceptron structure

where the || operand is a concatenation and 1 is the “all-ones” vector of length M. We can

solve this equation by using a linear regression. Before performing the linear regression,

values in Y have to be set to either −1 (or negative example of this class) and 1 (positive

example of this class). The close form solution of this problem is:

[b||R] = ([1||X]ᵀ[1||X])−1[1||X]ᵀY (3.43)

An MLP is a fully connected feed-forward neural network comprising several layers

of neurons where all neurons of one layer are connected to all neurons in the next layer.

The first layer is the input layer, the last is the output layer, while all the other layers

are called intermediate layers. A neural network with a small number of intermedi-

ate layers is called shallow as opposed to a deep neural network that contains a large

number of intermediate layers. Examples of possibles deep neural network can be con-

volutional neural network (CNN), long short term memory (LSTM), gated recurrent unit

(GRU), deep belief network, etc. The complexity of those networks made it impractical

(sometimes impossible) to use a closed-form solution to train them. This is why most

neural networks are trained using backpropagation or gradient descent describe by the

equation:

[Rt+1 + bt||1] = [Rt||bt]− α(∆[Rt||bt]) (3.44)
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where ∆[Rt||bt] =
∂E

∂[Rt||bt]
is the partial derivative of the mean square error (MSE) with

respect to the weight for the neuron t and α is a learning parameter 0 < α ≤ 1. The MSE

of a neural network, also call the loss function, can be compute using :

E =
1

2M
||Y′ −Y||2 (3.45)

where Y′ is the actual output vector of the neural network. Since the derivative of the

step function is zero everywhere except at the origin where it is not defined, other acti-

vation functions such as the hyperbolic tangent (τ(x) = Tanh(x)) or the logistic function

(σ(x) = 1
1+exp(−x) ) are commonly used in neural networks trained using backpropa-

gation. Next, we will derive the backpropagation function in equation (3.44) for one

neuron, say neuron j, using equations (3.39) and (3.40) and the derivative chain rule .

For simplification, the bias bj is included in the vector Rj:

∂E
∂Rj

=
∂E

∂Φ(oj)

∂Φ(oj)

∂oj

∂oj

∂Rj
(3.46)

with oj = net(x, Rj).

Further, computing the derivative of the MSE

∂E
∂Φ(oj)

=
∂E
∂y′

=
∂

∂y′
1

2M
(y− y′)2 =

1
M

(y′ − y) (3.47)

where y and y′ are respectively the objective output (or labels for the last layer) and the

actual output of the neuron. Finally,

∂Φ(oj)

∂oj
=

∂

∂oj
Φ(oj) =

 σ(oj)(1− σ(oj)) i f Φ(oj) =
1

1+exp(−oj)

1− τ(oj)
2 i f Φ(oj) = tanh(oj)

(3.48)

δoj

δRj
=

δ

δRj
Rᵀ

j x = x (3.49)
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These equations are used to update the weights of neurons in R during the backward

pass. The calculation of the loss function is called the forward pass. Since the number of

training examples can be very large, it is possible to speed up the training phase by using

subsets or batches of all training examples at once instead of training the neural network

one example at the time. Weight also needs to be updated on multiple iterations. During

training, each time a neural network sees all the training examples once, it is called an

epoch, neural networks usually require to be trained on multiple epochs.

Backpropagation is commonly used to train shallow neural networks. A problem

arises when the error has to backpropagate through multiple layers of neurons as, of

course, in the case of deep neural networks. In a neural network, as demonstrated by

Bengio et al. in [42] the magnitude of the gradient can decrease exponentially and be-

come extremely small when it reaches the first layers; this problem is called the vanishing

gradient problem. Bengio et al. also demonstrated in another paper [41] the effect of an

exponentially increasing gradient or exploding gradient.

There are several methods to deal with the problems of vanishing and exploding

gradient. One of them, the auto-encoding learning method, is to train a subset of layers

at the time, starting from the earliest layer to the latest. In each subset of layers, the

objective is to ”encode” the input in a small layer of neurons then reproduce the input

in a larger layer. This technique can work without any labels. Auto encoding technique

can be used in CNN [44] and deep belief network [43]. A deep belief network is a neural

network with an architecture that can reassemble a MLP. The difference is that they are

trained using auto-encoder so they can produce good results with many layers.

3.8.5 Long Short Term Memory (LSTM) Neural Networks

To understand how LSTM work, we will first start by defining several variables.
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H hidden state size

xt ∈ RK feature vector at step t

ft ∈ RH output vector of the forget gate at time t

it ∈ RH output vector of the input gate at time t

ot ∈ RH output vector of the output gate at time t

lt ∈ RH cell state vector at time t

ht ∈ RH hidden state vector at time t

R f , Ri, Ro, Rl ∈ RH×K input gate weight matrices

U f , Ui, Uo, Ul ∈ RH×H output gate weight matrices

b f , bi, bo, bl ∈ RH bias vector

To process series (sequence of events temporally related such as stock prices, meteo-

rological measures, sequences of words in a document, etc) , recurrent neural networks

(RNN) are very popular. RNN is a class of neural networks that have a memory cell

whose output is also called internal state. Each entry in a series is processed one by one

as individual inputs. When processing the input at step t in a series, RNN uses their

internal states l from step t − 1 as input. Since RNNs are able to convey information

from every time step before t, they can make decisions (classification, estimation) based

on a complete sequence of events. Since time series can be very long, for an RNN to

work properly in those circumstances, it needs a mechanism to keep the information

when it is relevant to the task or otherwise discard it and, of course, also avoid the

vanishing/exploding gradient problem.

Gating is the most used keeper/discarder information mechanism in RNNs. The

general idea of gating is to use a gate, which is a layer of neurons, that control the

”flow” of information in the network. It is used, for instance, in gated recurrent unit

(GRU) [45] and LSTM neural network [46]. GRUs and LSTMs are similar variations of

gated RNN, there is two main difference between then. The first being that the LSTM

have three gates, input gate, output gate and forget gate and the GRUs have two gates
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the update gate (similar to the LSTM’s input gate) and the reset gate (similar to the

LSTM’s forget gate). The second difference being that the LSTMs have two memory

cells, the cell state and the hidden state while the GRUs only have one memory cell, the

output vector.

There are several possible LSTM schemes. In a blog post, Microsoft researcher James

McCaffrey [57] describes a basic LSTM with three gates: a forget gate, an input gate and

an output gate. He describe an LSTM using equation (3.50) to (3.54).

ft = σ(R f xt + U f ht−1 + b f ) (3.50)

it = σ(Rixt + Uiht−1 + bi) (3.51)

ot = σ(Roxt + Uoht−1 + bo) (3.52)

lt = ft ◦ lt−1 + it ◦ τ(Rcxt + Ucht−1 + bc) (3.53)

ht = ot ◦ τ(lt) (3.54)

Where the ◦ operation is a point-wise multiplication, τ is the hyperbolic tangent func-

tion, σ is the sigmoid function, eq. (3.50) is the equation of the forget gate, eq. (3.51) is

the equation of the input gate, eq. (3.52) is the equation of the output gate, eq. (3.53) is

the equation of the cell state and eq. (3.54) is the equation of the hidden state. The total

number of parameters is equal to 4HK + 4H2 + 4H.

A diagram of an LSTM can be found in figure (5.15), it might help clarify how LSTM’s

equation work together. As we can see in eq. (3.50), (3.51) and (3.52), the output of the

three gates have their range limited between 0 and 1 by a sigmoid function. Then, the

outputs of those gates are pointwise multiplied with a ”signal” or vector such as in eq.
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Figure 3.4: Graph representation of an LSTM

(3.53) and (3.54). By doing this pointwise multiplication with values ranging from 0 to

1, gates are able to control how much information is transmitted to the current cell state

and the hidden state. In a LSTM, the role of the forget gate is to control how much

information will be convey from the previous cell state to the actual cell state. The input

gate control how much information is added from the previous hidden state and the

current input to the cell state. Finally, the output gate control how much information

is transmitted from the cell state to the hidden state. The difference between the cell

state and the hidden state is very subtle. Since the cell state depends on the previous

cell state plus the information the input gate let trough, the cell state can be seen as the

accumulation of information at every time step. Since the hidden state values depend on

the cell state and the output gate, the hidden state can be seen as the relevant information

from every time step.

Chung et al. [45] did a comparative study of LSTM, GRU and normal RNN for dif-

ferent tasks. They concluded that both LSTM and GRU are superior to the normal RNN

due to their gated unit. However, between the GRUs and LTSMs, they could not con-

clude that one is better than the other and they did not conduct their research specifically

on a NLP task. Irie et al. [56] reported better results, in general, using LSTM than GRU

for several NLP tasks but not by a wide margin.
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To prevent overfitting, one common solution is to use dropout. The dropout regu-

larization technique is used by deactivating a randomly chosen set of connections in a

neural network during training. For each trained batch , a percentage of connections

will not be used during the forward and backward pass.

3.8.6 Skip-Through Vector

Skip-through vector, developed by Kiros et al. [20], is a good example of how we can use

deep learning for various NLP tasks. The goal of this algorithm is to encode sentences

for a general-purpose semantic task. They used a GRU neural network to predict a sen-

tence using the previous and next sentences as inputs. They then used the output vector

of the GRU as the feature vector for various tasks such as semantic-relatedness, para-

phrase detection, image-sentence ranking and classification.. They used a pre-trained

word2vec [18] word-embedded representation to encode words. They trained their

model on a large corpus of books (BookCorpus dataset). They show that skip-thoughts

vectors, or the output vector of their GRU, learn to accurately capture semantic and syn-

tactic elements of encoded sentences. They achieve very good overall results on several

datasets such as: the SICK dataset [62], the Microsoft Paraphrase Corpus dataset [63],

subjectivity/objectivity classification on the SUBJ dataset [64], opinion polarity on the

MPQA dataset [65], question-type classification on the TREC dataset [66] and image

caption on the COCO dataset [67].

3.8.7 NLP and DNN Transfer Learning (TL)

The general idea of TL is to use a large dataset to increase the accuracy of a neural

network for a task where a smaller dataset is available. The intuition behind TL is that

some patterns can be learned in a dataset that will be useful for a task on another dataset.

For instance, in computer vision, a neural network can learn low-level features (on few

pixels) such as edges, corners, etc. Those features are present in all images thus can be

used on a wide variety of computer vision tasks. In TL, it is also common to ”freeze”
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layers of neurons, this means to not allow those layers to be trained or fine-tune on the

smaller dataset.

Mou et al. [69] did a comparative case study on TL of DNN for NLP applications.

Their motivation was the realization that although multiple papers reported good results

OF? on image processing tasks, the reported results on NLP tasks were not promising.

They defined two distinct categories of TL training techniques. The first one, which

they called (INIT), consists of two phases. The first phase being pre-training, or initialize,

a DNN on the large dataset then use the parameter found as an initial point for the

second phase. The second phase being fine-tuning or using the smaller dataset to train

the DNN. The second technique, which they called multi-task-learning (MULT), is to

train a model on both databases simultaneously. In their experiments, they used two

distinct neural network configurations. For their first experiment, they used an LSTM

and for their second experiment, they used a CNN.

Their study focused on three questions. The first one is, whether we can transfer

knowledge from one neural network trained on one task to another in the cases where

the tasks are similar or different. The second is, which layers of the neural network

are transferable? And finally, what is the difference in transferability between INIT and

MULT and what is the effect of combining those two methods? They tested TL on several

sentence classification tasks.

For their first question, they found out that the transferability of a neural network

depends largely on how semantically similar the tasks are. In another paper, Mueller

et al. [70] reached the same conclusion. Wei et al. [71] also concluded that using pre-

trained word vectors that are trained on corpus semantically similars to the task result

in better performance in TL that word vectors trained on unrelated tasks. For their

second question, they concluded that only the last layer of the neural network is not

transferable. Wei et al. [71] concluded that freezing excessive or too many layers impacts

negatively the performance of TL. For their final question, they found that MULT and

INIT achieve generally similar results and combining these two approaches does not
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result in any significant improvement. It is also worth noting that they observed, in the

case of the INIT configuration, that the accuracy on the smaller dataset can worsen when

the number of trained epoch on the original problem (bigger dataset) gets higher than

the optimal number of training epochs.
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Chapter 4

Methodology: Architecture and

Databases

In this chapter, we will describe the architecture of the proposed system. First, we will

describe in detail the problem that we consider. Then, we will present the different

databases that we used. As we will see, the nature of these databases was the main

deciding factor behind our choice to build a content-based recommender system over a

collaborative filtering algorithm. Finally, we will discuss several other design choices,

such as, the pre-trained word embedding vector that we chose and the different infor-

mation measures and similarity measures that we tested.

4.1 Problem Description

For this project, the goal is to match vacant positions in projects with applicants. The data

is provided by Fleexer and is only textual. To test and train our recommender system,

we manually assigned scores for 600 pairs of position and applicant. Our method must

be able to take a pair of strings as input and output a score that represents how good of

a match the position is to the applicant.
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4.2 Architecture Overview

Figure 4.1: Architecture overview

A schematic of the proposed architecture is shown in Figure 4.1. In our project,

we used three different databases, Fleexer’s database, a database created from govern-

ment entities website and a Wikipedia database from the Westbury Lab [68]. All those

databases are use in our information measures. Then, using our similarity measures, we

find scores for our position-applicant matches. Finally, we compare the output of our

recommender system against our 600 manually assigned scores using the Spearman’s

correlation coefficient to evaluate our performances.

In the following, we will describe all the above components in detail, starting with

the databases used.
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4.3 Databases

For this project, we used databases from three different sources: Fleexer’s own databases,

government agencies’ databases and Wesbury Lab’s Wikipedia corpus (2010) [68].

4.3.1 Fleexer’s Database

The goal of Fleexer’s website is to let people create new projects or to contribute to exist-

ing projects. Multiple projects can also be clustered in an organization. Organizations,

however, were not considered in this research. For each project, there are fields for the

project name, start and end date, description, one or more business activities (which is

a categorical field, e.g., science, business, art, car, etc) and contact information. Each

project also has one or more available positions that need to be filled. For each position,

there are fields for the title, category (also categorical, e.g., design, chemestry, security,

etc), the number of applicants needed to fulfill that position, description and spoken lan-

guages. For each applicant, there are fields for name, short bio, education level, spoken

languages (categorical, e.g., French, English, Spanish, etc) and contact information. Also,

each applicant has one or more skills that they can advertise. For each skill, there are

fields for title, category (categorical, e.g., art, design, education, etc.), short description

and an objective (categorical, e.g., finding an internship, job, personal development).

A survey of the profiles, reveals that this database does not contain a lot of the

ambiguities described in section 3.3 such as humor or sarcasm and, therefore, there is no

need to implement a sentiment analysis algorithm. However, using this data we might

encounter several homographs such as ”bar” which could be used in sentences such as

”I passed the bar exam” or ”I worked in a bar”.

At the time of writing this thesis, Fleexer’s database was populated by 389 positions

and 552 skills from applicants for a total of 941 examples. However, around one-third

of the database contains incomplete profiles. Fleexer’s also owns a human-made dataset

of 600 labels. To create those labels, we manually took 60 project’s positions and 60
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applicant’s skills and found for all of them five matches rated from 1 (very good) to 5

(poor) according to the following scale: 1 meant a very good match (in other words, the

applicant should be working on this project), 2 meant a good match (or the applicant

might be a good fit but someone more qualified could be found), 3 corresponded to

a medium match (or the domain of expertise of the applicant and the required skills

for the project had some overlap but the applicant wouldn’t be a good fit), 4 meant a

bad match (or the domain of expertise of the applicant and the required skills for the

project had some small overlap but the applicant was not qualified for the position) and,

finally, 5 corresponded to a very bad match (there was no overlap between the domain

of expertise of the applicant and the required skills for the project).

To build our content-based recommender system, we chose to use only textual in-

formation, thus, we transformed any categorical data into text. We also thought that

some information was irrelevant for the algorithm such as the name of the applicant or

their contact information. On the applicant skills side, we chose to keep the applicant’s

description, and the skill’s category, description and title. On the position side, we chose

to keep: the project’s title, description, and the position’s category, description, and title.

4.3.2 Government Databases

Since Fleexer’s database was of limited size, we decided to use external databases to see

if we could improve on the accuracy of certain algorithms such as LDA, LSTM, and our

information measures. In other words, we wanted to know if using external databases

could remove certain limitations that comes with working on small databases. Ideally,

we would have used databases of job postings, applicant resumes and relational data

between those databases. For obvious reasons, public resume databases don’t exist let

alone relational data between job postings and resumes. Another problem is that all

data from third-party recruitment websites is proprietary, thus cannot be legally used

for commercial purposes.
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For the above reasons, we inquired at different government entities about allowing

us to use their job posting data on their websites. The city of Quebec, the town of

Longueuil and the Canadian Ministry of the public service gladly let us use their data

for our research. During summer 2018, When we gathered that data, the city of Quebec

had 161 job postings, the town of Longueuil had 69 job postings and the ministry of

public service had 937 job postings for a total of 1167 job postings.

Since these job postings were done according to government standards, some words

were repeated very often which might misguide some algorithms to conclude that those

words are not relevant to the task. For instance, since Canada is an officially bilingual

country (French and English), almost all job posting from the Canadian ministry of

the public service contains terms like ”Bilingual Imperative”, ”French” or ”English”.

There are also some terms that are just very usual in most job postings such as ”ability

to communicate”, ”experience in”, ”level of education” or ”competitive salaries and

benefits package”. Those words can potentially impact negatively our results.

4.3.3 Westbury Lab’s Wikipedia Corpus (2010)

The Westbury lab is a psycho-linguistic laboratory at the University of Alberta located

in Edmonton Canada. To create this database [68], they used the April 2010 English

Wikipedia Dump. From every article, they removed all links, navigation text and other

irrelevant material to obtain only textual data. They then removed every article less than

2000 characters long.

The final wikipidia database contains more than 2 million documents and 990,248,478

words. Since we have far less than 2 million job-related documents (government datasets

and Fleexer’s dataset) we only used 2500 documents to train our LSTM. We choose to

used this database to see if we can still improve our results even if this database is

unrelated to our problem.
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4.4 Data pre-Processing

Before using it, we first needed to pre-process the raw data from the three databases.

Since Fleexer, at the time of this writing, operates mostly around the region of Mon-

treal, their database’s textual data are in French and English. The city of Quebec and

the town of Longueuil had only french job postings, however, most job postings from

the Canadian ministry of the public service were in English. For this reason, we had to

translate all of our data into one language. We chose to translate everything into En-

glish for two main reasons. First, so that we wouldn’t have to deal with all the special

character present in French such as é,è,ê,à,ç, etc. Secondly, there are more available NLP

resources in English such as lemmatizers or pre-trained word embedded vectors. To do

the translation, We used the Azure translator application programming interface (API)

from Microsoft [87].

We also used a lemmatizer called LemmaGenerator available on Nugget [88]. This

allowed us to reduce our vocabulary. We then removed all special characters or all

characters that were not a letter (a to z, A to Z) or a number (0 to 9).

4.5 Word Embedding

We chose to use the pre-trained 300-dimensional Glove word embedding developed by

Pennington et Al. [2]. This pre-trained word vector embedding is available under the

Public Domain Dedication and License which gives us the right to use it for commer-

cial purposes. It is also widely used in the literature [3], [36], [89], [90]. The creators

of the algorithm trained it using the common crawl database containing 840 billion to-

kens (words). The word embedded vector was trained over a dictionary of 2.2 million

words. No special tag was put on homographs (words with multiple meanings) such as

”address” (is it a location or the verb to address?) or ”ring” (is it a sound or a jewel?).



CHAPTER 4. METHODOLOGY: ARCHITECTURE AND DATABASES 47

4.6 Information Measures

For this project, we used information measures as a weighting scheme and to reduce

our dictionary. For weighting purposes, we used the mutual information (MI) and the

term frequency-inverse document frequency (TF-IDF). When using TF-IDF, we chose the

raw term frequency in eq. (3.16) as TF and we chose the inverse document frequency in

eq. (3.21) as IDF. We chose those TF-IDF schemes since they provided good results in

document query applications according to Salton & Buckley [30].

To choose which word to keep in the dictionary, we used MI and raw word count.

We chose to remove words using two thresholds, a lower threshold to only remove the

words with low amount of MI or only remove the more frequent words using raw count

and an upper threshold to only remove words with high MI or only remove the rarest

words using raw count . For every experiment that used words removal, we tested

several values for lower thresholds ({0%, 1%, 5%, 10%, 15%}) as well as for the upper

threshold at values ({100%, 80%, 60%, 40%}). For instance, if we were testing with a

lower threshold of 5% and an upper threshold of 60% using raw word count, that would

mean that we removed from the dictionary the top 5% most common words and the top

40% rarest words. We did our tests by using every combination of both thresholds.

4.6.1 TF-IDF and Raw Word Count

For both TF-IDF and raw word count, we tested a combination of Fleexer’s data and the

government’s jobs databases as well as a combination of all three databases. The reason

why we tested two sets of databases is to determine if we could gather more beneficial

information using general data compared to only job-related data.
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4.6.2 MI

The idea behind using MI is that words that appear more often in job-related texts than in

general texts might hold more information than words that are equally likely to appear

in the two datasets. To train MI, we used two different classes, job-related text and

general text. We used our Fleexer and government’s jobs databases as one job-related

database and Westbury’s Wikipedia databases as general texts.

4.7 Similarity Measures

We tested several similarity measures which have been presented previously in the back-

ground in the similarity measures section. In this subsection, we will describe how we

used them.

4.7.1 Latent Dirichlet Allocation (LDA)

For LDA, we have several parameters or and architectural choices that can impact our

results such as the number of hidden topic K, which databases to choose from to train

LDA, how many words are we removing from our dictionary and which information

measure is the most appropriate to do so. We trained LDA using three training datasets:

Fleexer’s data only, job-related documents only (Fleexer’s and government entity’s) and

from all available databases (FLeexer’s, government entity’s and Westbury Wikipedia).

We tested LDA with several values for the number of topics K ∈ {25, 50, 75, 100, 150}.

We also tested MI and raw word count to remove words from the dictionary. We tested

raw word count from job-related documents only and from all available documents. We

used the probability distribution of all topics θ for each document as a feature vector.

Finally, using this feature vector, to measure how similar two documents are, we used

the cosine similarity.
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4.7.2 Cosine Similarity

To use the cosine similarity as a similarity measure, both texts that are compared need

to be transformed to vectors. The vector that represents a text is the sum of the one-

hot vector representation for each word in the text. We can multiply each element of

the vector with the associated word’s amount of information (MI or TF-IDF) when we

want to use information measure as weight. We tested the cosine similarity with: no

information measure, with MI, with TF-IDF from job-related documents only and TF-

IDF from all sources.

4.7.3 RV Coefficient

The RV coefficient is a similarity measure between two sets of points . Using the pre-

trained GLOVE word embedded vector, we created for each document a matrix repre-

sentation for a document i of dimension Ni × K where Ni is the number of words in

documents i and K the word vector representation length. Each row, or each point in

the matrix, is a vector representation of a word. The idea is that since similar word

vectors will cluster in the vector space and the distance between words vector carries

information, that the matrix representation of two similar documents even when using

different words should have a high normalized correlation coefficient. For instance, the

RV coefficient of the matrix representation of the document ”tiny dog” should be very

similar as the one for ”small canine” since ”small” and ”tiny” should be, in the vector

space, close to each other which should also be true for ”dog” and ”canine”, thus both

documents should have a high RV coefficient. As a brief illustration of this hypothe-

sis we compare the phrases A =”i ran to the store” to B1 =”i ran to lose weight” and

B2 =”i sprinted to the shop”. Using the cosine similarity at eq. (3.35) without weighting

we get, Cosine(A, B1) = Cosine(A, B2) =
vecᵀAvecB1

||vecA||2||vecB1||2
=

vecᵀAvecB2
||vecA||2||vecB2||2

= 3√
5
√

5
= 0.6.

Using the RV coefficient with GLOVE word embedding, we have RV(A, B1) = 0.5678

and RV(A, B2) = 0.8960. This is a desired result since the meaning of the phrases in A
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and B2 are much more similar than A and B1. We also used the raw word count and MI

to reduce our dictionary. According to Josse et al. [76], the value of the RV coefficient

also depends on the sample size. For this reason, we also tested the RV coefficient using

a maximum of Wmax words by documents. For those tests, we still used MI and raw

word count to remove words from the dictionary. From those remaining words, for each

documents, using MI, we choose the Wmax words with the most information still in the

dictionary and using raw word count we choose to keep the Wmax words with the rarest

occurrences.We tested Wmax with values 10, 25, 50, 100.

4.7.4 Long-Short Term Memory (LSTM)

Since for this project we only had 600 labels, we could not train an LSTM on this data

alone. Thus, we chose to use a TL approach. First, we needed a dataset to train an

LSTM. We chose to use all our datasets and train the LSTM to recognize if a document

is from the Westbury lab’s Wikipedia corpus or if it is job-related. The final classifier is

a perceptron with a softmax classifier and we used the hidden state of the LSTM as the

input to the perceptron. We chose to use the INIT approach since the LSTM architecture

has to change from the initial training phase to the fine-tuning phase and according to

Mou et al. [69], there is no significant performance difference between INIT and MULT.

We also used the pre-trained 300-dimensions GLOVE word embedding vector [2]. A

graphical representation of the architecture of the LSTM during the initial training phase

can be found in figure (4.2) where xt is the input at step t and ht is the hidden vector of

the LSTM at step t.

We used two different approaches for the task of rating matches between applicant

and project position. One was to use the cosine similarity between the hidden state vector

of the LSTMs for the applicant’s document and for the project position’s document. The

second approach was to use a linear regression on the hidden state vector of the LSTMs.

For the fine-tuning phase, we cloned our LSTM then used the hidden state vector as

input for a linear regression model. Cloning a neural network mean to create a ,complete
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Figure 4.2: LSTM architecture, initial training

or partial, copy of the network, both the architecture and the parameters are exact copy.

We trained our new neural network using the match rating labels as the target. This

allowed our networks to train using both documents as input at the same time. The

LSTM parameters were shared during cloning, i.e., all the parameters of both LSTM’s

were updated with the same values thus, they remained copies of each other. We did

our test using 10-fold cross-validation. Then, after the fine-tuning phase, we tested our

LSTM with both approach, keeping our linear regression as last layer and using the

cosine similarity as the last layer. The learning rate was set to 0.005 and we used 30%

dropout during both learning phases. A graphical representation of the architecture of

the LSTM during the fine-tuning phase can be found in figure (4.3).

For the linear regression model, after the fine-tuning, we decided to use the hidden

state vectors from both LSTMs and compute the closed-form solution of the linear re-

gression from there. It is common practice to use the hidden vector of the LSTM as a

feature vector [69], [70], [71], [89]

We tested our LSTMs over several cell sizes, trained epochs and fine-tuned train-

ing epochs. The cell size varied over {50, 100, 200, 400} which give respectively 61200,
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Figure 4.3: The LSTM architecture in fine tuning: top left is the original LSTM cloned

without the last layer, bottom left is our final LSTM architecture with a linear regression

as last layer, bottom right is our final LSTM architecture with the cosine similarity as last

layer
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160400, 400800 and 1121600 parameters. The initial number of training epochs varied

over {2, 5, 10, 30}. The number of fine-tuned training epoch varied over {0, 5, 10, 30, 50, 100,

200} where using 0 fine-tune training epochs corresponds to using the original LSTM

as-is. The number of initial training epochs may seem low but we observed that the

LSTM cell rapidly overfitted which necessitated early termination of training.

4.8 Evaluation

To evaluate our algorithms, we chose to use the Spearman correlation coefficient. This

evaluation criterion makes sense since it is more practical to measure if the algorithm

rank matches similarly to a human rather then measure if the algorithm’s output is

linearly similar to the human labels. This is true because, for some labels, good matches

were hard to find due to the small database, therefore, some labels classified as very

good matches (or 1’s) might not be so good after all.
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Chapter 5

Results

In this section, we will show the results of our experiments. For each parameter (hyper-

parameter, the dataset used, information measure used) that we evaluated, we will only

display the best results obtained for each value. We used Fisher’s transformation that

transforms the Spearman’s correlation coefficient to a Z-score in eq. (3.4), we then got

a z-score with eq. (3.5) and performed a z-test with eq. (3.6). Using those equations,

we performed several statistical significance tests on our results to add perspective. A

summary and discussion of these results will be given in the conclusion section.

5.1 LDA

For LDA, we first analyze the effect of changing the information measure to discriminate

words. We can see in Table 5.1 that using raw word count on all documents gave us the

best result with a Spearman’s correlation coefficient (ρs) of 0.415. Using raw word count

on job-related documents did slightly worse with a best ρs of 0.392 and finally, the best ρs

for MI was 0.307. The columns dataset used, Min inf thresh, Max inf thresh and K refer

to the parameter that gave us the best result with respect to the information measure

used. A statistical significance test on those results reveals that the probability of those
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information measures being the best is: raw count word on all documents at 68%, raw

word count on job-related documents only at 31.5% and MI at 0.5%.

Information Measure ρs dataset used Min inf thresh Max inf thresh K
MI 0.307 Fleexer 1% 100% 50

Raw word count 0.392 Fleexer 0% 80% 75

(Job related documents only)
Raw word count 0.415 All documents 0% 40% 100

(All documents)

Figure 5.1: Best results using LDA by information measure

We then analyze the effect of using different datasets to train the LDA algorithm.

As we can see in Table 5.2, the best result was obtained when we trained LDA on all

documents with a ρs of 0.415, on only Fleexer’s documents we obtained a ρs of 0.401

and only on job-related documents we obtained a ρs of 0.360. In addition, the best result

using job-related documents was obtained using all words in the corpus. A statistical-

significance z-test on those results reveals that the probability of these corpora being

the best choice to train on is: all documents at 58%, Fleexer’s documents at 36% and

job-related documents at 6%. It is hard to explain why training LDA on job-related

documents performed worst. Since those documents were generated mostly by govern-

ment entities, it is possible that the repetition of some words and terms (such as French,

English, bene f it or education level) made the algorithm think that those words were

likely to appear in most topics.

Training dataset ρs information measure used Min inf thresh Max inf thresh K
Fleexer 0.401 Raw word count 5% 40% 100

(All documents)
Job related documents 0.360 Using all words – – 75

All documents 0.415 Raw word count 0% 40% 100

(All documents)

Figure 5.2: Best LDA results by dataset used

In Figures 5.3 and 5.4 we see the effect on LDA of varying the number of topics for

different the datasets (Fig. 5.3) and information measures (Fig. 5.4). In Figure 5.3, we can

see that LDA’s performance peaks at 100 topics when it is trained on Fleexer’s dataset or
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on all documents but peaks at 75 topics when trained on job-related documents. We can

see that adding more topics increased the performance of LDA more significantly when

trained on all documents; this might be because the Wikipedia’s corpus has a more

diverse vocabulary, therefore, LDA requires a larger number of topics to distinguish

between job-related topics.

Figure 5.3: Best results by number of K topics for different datasets used for training for

LDA

In Figure 5.4 we can see that the MI performance peaks at 50 topics, raw word count

on only job-related documents peaks at 75 topics and raw word count with all documents

peaks at 100 topics. We can also see that on this graph the difference between the results

increases with the number of topics. Therefore, the higher the number of topics, the

more important it is to choose the best scheme to discriminate words.

In Figure 5.5 and 5.6 we can see the effect of varying the minimum amount of in-

formation threshold. For raw word count, words with low amounts of information

are words that appear very often such as prepositions, pronouns or articles. For MI,

words with low amounts of information are words that are equally likely to appear in

job-related documents and in any other documents, again, words such as prepositions,

pronouns, articles. Therefore we expected those words to be irrelevant to the task but

when we look at the results, in general, we can tell that removing them decreased the

performances of LDA. It seems that LDA properly assigns the probability distribution
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Figure 5.4: Best results by number of K topics for different information measures for

LDA

of the topics of those words. It is also possible that some of them are in fact relevant to

the task and since they appear often in the corpus, they help the LDA model to make

better word-topic associations.

Figure 5.5: Best results by minimum information threshold for each dataset used for

LDA

In Figures 5.5 and 5.6 we can see the effect of varying the maximum amount of

information threshold. For raw word count, words that we consider having a high

amount of information are uncommon words while for MI, they are words that are more

likely to appear in a job-related document. We expected that removing those words

would decrease the performance of our LDA models but, in fact, we could not saw

such a trend. The performance decreased slightly by removing words for MI and raw
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Figure 5.6: Best results by minimum information threshold by information measure for

LDA

word count on job-related documents but increased on raw word count trained on all

documents.

Figure 5.7: Best results by maximum information threshold for each dataset used for

LDA

5.2 Cosine Similarity

As we can see in Figure 5.9, using the MI as weight decreases the performances of the

cosine similarity compared to not using any weight on words. The TF-IDF clearly im-

proved our results. We can see that the TF-IDF is slightly more efficient using job-related

documents rather than all documents. We calculated using a z-test eq. (3.6) from a z-
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Figure 5.8: Best results by maximum information threshold by information measure for

LDA

Information Measure ρs
None 0.356

MI 0.168

TF-IDF (Job related documents only) 0.511
TF-IDF (All documents) 0.500

Figure 5.9: Cosine similarity results

score obtain with eq. (3.5) from the Fisher’s Z-transform in eq. (3.4) the significance of

these results and found out that the probability of TD-IDF using job-related documents

being the best algorithm to be at 60%, the probability of TD-IDF using all documents

being the best algorithm to be at 40% and the probability that the other two are the best

algorithm to be negligible (less than 0.1%).

5.3 RV Coefficient

We first present the results of the experiment done with no limit on the maximum num-

ber of words kept per document.

As we can see in Figure 5.10, raw word count still outperforms MI as a scheme to

discriminate words. Also, using all documents outperforms using only job-related doc-

uments in raw word count. We could also improve our result using MI to discriminate

word over using all word . A statistical-significance z-test using eqs. (3.4), (3.5) and (3.6)



CHAPTER 5. RESULTS 60

Information Measure ρs Min inf thresh Max inf thresh
None 0.303 na na
MI 0.415 0% 40%
Raw word count (Job related documents only) 0.428 10% 100% tie 80%
Raw word count (All documents) 0.469 15% 100%

Figure 5.10: RV coefficient results

reveals that the probability that the best words removing scheme is: raw word count on

all documents being at 75%, raw word count using job-related documents at 16%, using

MI at 9% and using all words is negligible.

Figure 5.11: Best results varying the minimum words selector threshold for RV coeffi-

cient

As we can see in Figure 5.11, when we increase the minimum information threshold,

the results are getting better using raw word count and worsen using MI. We can also

see in Figure 5.12 that diminishing the maximum threshold impacts the results using

word count only slightly negatively while improving the results using MI.

Now, we will discuss the results of the RV coefficient using a maximum number of

words per document. If we compare the results in Figure 5.10 with those in Figure 5.13,

we can see little to no difference in the results. Using MI to discriminate words did not

improve our results at all from that experiment. Using raw word count on job-related

documents only improved the performance from 0.428 to 0.430 and using raw word
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Figure 5.12: Best results varying the maximum words selector threshold for RV coeffi-

cient

Information Measure ρs Min inf thresh Max inf thresh max nb. of words
MI 0.415 0% 40% 100

Raw word count 0.430 10% 100% tie 80% 100

(Job related documents only)
Raw word count 0.472 15% 60% 50

(All documents)

Figure 5.13: Best results using a maximum number of words on RV coefficient

count on all documents improved the performance from 0.469 to 0.472. The chances that

putting a limit on the number of words used will improve our results from raw word

count using job-related documents and all documents are 52% and 53%, respectively.

We can see in Figure 5.14 that the RV coefficient performs better when given more

words. These results are surprising for us since we know that the results of the RV

coefficient depend on the number of rows of the two matrices under comparison. It

might be due to the fact that our word embedded vector is quite large (300 values) thus

the resulting matrices that are compared in eq. (3.38) are also very large (300 × 300)

which might make our implementation of the RV coefficient sensible to a higher number

of words that the vast majority of our compared documents contain.



CHAPTER 5. RESULTS 62

Figure 5.14: Best results varying the maximum number of words by documents for RV

coefficient

5.4 LSTM

Last layer ρs NB pre-trained epoch NB fine tuning epoch cell dimension
Cosine similarity 0.320 2 5 400

Linear regression 0.225 2 100 200

Figure 5.15: Best results LSTM

In Figure 5.15 we can see that using the cosine similarity on the hidden layers gave

us a ρs of 0.320 and using a linear regression on the hidden layers gave us a ρs of 0.225.

In this experiment, we are confident that the cosine similarity outperforms the linear

regression with a statistical confidence of 96% using a z-test from eqs. (3.4), (3.5) and

(3.6).

In Figure 5.16 we can see that using larger LSTMs cells improved our result. It is also

worth noting that the performance gain is much bigger on the cosine similarity than for

the linear regression as the last layer. This might be due to the fact that since we have so

little labeled data, the linear regression tends to overfit our data.
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Figure 5.16: Best results by cell size for LSTM

In Figure 5.17 we can see that the performance decreased when we added more pre-

trained epoch. There are two possible explanations for this behavior. First, that the task

that we trained our LSTMs on is not suitable for pre-training LSTMs for our final task.

Second, the LSTMs are overfitting to our initial task.

Figure 5.17: Best results by number of pre-trained epochs

To test the effect of fine-tuning, we looked at the average performance gain for a given

number of epochs. We can see in Figure 5.18 that fine-tuning does not have a significant
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impact on the performance. When using the cosine similarity as the last layer, we can

see that the fine-tuning bring little gain with 5 or 10 epochs then the results get generally

worse. We can see the opposite behavior using a linear regression as the last layer.

Figure 5.18: Average performance gain by number of fine-tuning epoch

5.5 Result Summary

Finally, we compare here all our results. The best ρs obtained by each similarity measure

are:
Cosine Similarity 0.511

RV Coefficient 0.472

LDA 0.415

LSTM 0.320

We can see that the cosine similarity gave us the best performance followed by the

RV coefficient, LDA and finally our LSTM. As we can see, the simplest the similarity

measure is, the better our results are which makes sense since we worked with so little

data. A statistical significance test reveals that the chances that the cosine similarity gives

the best result are 81%, 18% for the RV coefficient, 1% for LDA and is negligible for the

LSTM.
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Chapter 6

Conclusion and Future Work

In this thesis, we built a CB recommender system. As information measures, we have

used TF-IDF and MI as weighting schemes as well as raw word count and MI as word

discriminators. To build our CB recommender system, we tested four similarity mea-

sures: LDA, the cosine similarity, the RV coefficient and LSTMs. We have used external

databases to improve performance on several similarity and information measures. In

this section, we will share our findings and discuss approaches for future work.

As a weighting scheme, we have shown that using MI didn’t work very well. In fact,

it decreased the performance of the cosine similarity. MI put more weight on words that

are more likely to appear in job-related documents than in general documents. Those

words are not necessarily useful to match a project with an applicant. For instance, as

expected, words such as salary, position, f ederal and paperwork are some of the words

that get the highest values. We also observed that in a job-related document, the author

is more likely to write in the first person and in the plural form such as word as: us, we

or our. Therefore, some very common words might be given a high weight even if they

do not provide any knowledge about the general meaning of a document. Since TF-IDF

improved performance by adding weight on the words that occur less often, we might

presume that the term p(x, x′) in the MI equation (3.23) would negatively impact our

result. Without that term, very rare words that only appear in one class of document will
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have a disproportionately high value. We tested that hypothesis by removing that term

and the ρs fell from 0.168 to 0.110 using the cosine similarity. MI also systematically and

significantly underperformed raw word count as a word discriminant scheme on LDA

and RV coefficient. In the end, it is always hard to analyze the results when using MI

since useful words can end up with either a high or low value just as non-useful words.

We think that MI should be avoided as a weighting scheme and word discriminant

scheme in a document-document similarity measure.

As a weighting scheme, we have shown that TF-IDF performs very well. TF-IDF

improved the cosine similarity performance from a ρs of 0.356 to 0.511, a significant

change. If we look at the effect of using all documents versus using only the job-related

documents, the difference is not that significant anymore. The ρs is 0.500 using all

documents against 0.511 using job-related documents. These results prove that putting

more weight on rare words works. We think that other TF and IDF schemes have the

potential of improving the performance of the cosine similarity.

Raw word count was used in LDA and in the RV coefficient as a word removal

scheme. Contrary to TF-IDF, we saw that raw word count performed better using all

documents rather than job-related documents. On LDA, our best result using all doc-

uments gave us a ρs of 0.415 against 0.392 using the job-related document. On the RV

coefficient, our best result using all documents was a ρs of 0.472 against 0.430 using

job-related documents.

The best similarity is the cosine similarity. Our best run was achieved using TF-IDF

on job-related documents as a weighting scheme which gave us a ρs of 0.511. Our results

suggest that the cosine similarity is quite sensitive to the quality of the weighting scheme

used.

The next best similarity measure was the RV coefficient with Stanford’s pre-trained

GLOVE word embedding [2]. Using all words, we achieved a ρs of 0.303. Removing

words using raw word count on all documents and limiting the number of words per

document to 50 gave the best result with a ρs of 0.472. For the RV coefficient, we saw
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that the higher the minimum information threshold on raw word count is, the more

the performance increased. We also saw that the more we decreased the maximum

information threshold, the more the performances decreased. We also saw the opposite

trend using MI. These results suggest that the RV coefficient is particularly robust when

comparing documents using the rarest occurring words on those documents. Since the

result of the RV coefficient depends on the number of rows of each matrix, we thought

that limiting the number of words per documents would have a positive impact on

performances. We found out that it barely increased the performance using raw word

count (increased the ρs by 0.02 and 0.03 using respectively the job-related documents and

all documents) and made no difference using MI. Since the RV coefficient is relatively

robust on rare occurring words, it would be interesting to see the effect using other

word embedded vectors that are tuned to be accurate on rare occurring words such as

the word2vec trained on words and sub-words of Bojanowski et al. [17].

The third best similarity measure is the LDA. For the LDA, we tested the effect of:

discriminating words using MI and raw word count, training on three different corpora

and varying the number of topics. Our best result was found when we trained on all

documents, we used raw word count on all document to discriminate words, we kept

only the 40% most common words and used 100 topics. On this configuration, we

obtained a ρs of 0.415. To discriminate words, just as for the RV coefficient, we found out

that MI performed poorly and raw word count performed slightly better when using all

documents against using job-related documents for a best performance of 0.307, 0.415

and 0.392, respectively, using the Spearman’s correlation coefficient. We also found

out that training LDA on all documents performed best followed by training LDA on

Fleexer’s dataset then training LDA on job-related datasets. We cannot explain why

training LDA on all documents increased the performance while training LDA on job-

related documents decreased our performance. Using a statistical significance analysis

revealed that the chance that training on Fleexer’s database gives the best result is 36%.

LDA may perform better without being trained on external datasets. Contrary to the
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RV coefficient, we found out that LDA performed better when trained using the most

occurring words and removing the rarest words. This result suggests that the LDA

needs a word to be in a multitude of documents to accurately assign a topic probability

distribution to it. Finally, we also found out that the LDA performance peaks when

using 100 topics. In the literature, other versions of LDA exist that could improve our

result such as adding a Dirichlet prior to the topic distribution per words which should

be considered for future work [10].

Finally, the worst similarity measure was the LSTM. Our best score was achieved

using the cosine similarity as the last layer, 2 training epochs on the initialization task and

5 fine-tuning epochs and the LSTM cells had 400 dimensions. On our tests, the cosine

similarity clearly outperformed the linear regression as the last layer of our LSTMs. We

think that the linear regression overfitted and therefore we would need more labeled data

to make it work properly. We observed that bigger cell sizes tend to improve our results

on both architectures. We also observed that our results worsen when we added more

initial training epochs. This might be the case because our initial task is too different

from our final task, thus the network overfits to the initial task. Fine-tuning did not

improve the performance of our network significantly, this might be occurring because

our labeled dataset is too small therefore the network is overfitting. We think that the

LSTM can be used for such a task but we would need more labeled data and also a better

initial task.

To summarize, in this thesis, we demonstrated that we can use external databases to

improve the performance of a similarity measure for an NLP application. As a weighting

scheme, we observed slightly better performance using the job-related dataset than all

our datasets using TF-IDF on the cosine similarity. Using all our datasets to train LDA

improved our result against using only Fleexer’s data but using job-related document

performed worst. When we used raw word count as a word discriminant scheme, in all

our tests, using all documents performed better than using the job-related dataset. In
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most of our tests, using all documents resulted in better performances than using only

the job-related documents.

Finally, we demonstrated that the simplest similarity measure works best on small

labeled datasets. The cosine similarity paired with TF-IDF as a weighting scheme, even

if it as been known for a while, works best in our case. We also demonstrated that we

can use external datasets to improve our result. Since LDA works best using the most

commonly occurring words and the RV coefficient works best using the rarest words,

it is possible that combining their prediction could improve our result. We also think

that our LSTM architectures can work but we would need either a much bigger labeled

dataset or a better initial task for pre-training.
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