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ABSTRACT

In this research the γ − ˜Reθt transition model is combined with the k − ω SST

turbulence model to predict the transition region for a laminar-turbulent boundary

layer and redesign the geometry to achieve lower skin friction drag coefficients. The

present work addresses several modifications necessary for a robust transition model

and investigates the accuracy of the model for a wide range of angles of attack and

Reynolds numbers. The transition model is employed to predict the transition lo-

cations and an assessment of the various transition mechanisms, Reynolds number

effects, sectional characteristics, and aerodynamic performance for two subsonic air-

foils are presented with comparisons to experimental data and numerical solutions.

Discrete adjoint equations for the transition and turbulence models are derived and

implemented into the design framework. The adjoint-based optimization procedure

is employed to optimize the S809 wind turbine profile and NLF(1)-0416 airfoil to

postpone the onset of transition and extend the natural laminar region of the tran-

sitional flow for minimizing the total drag, while maintaining the lift, or maximizing

the lift-to-drag ratio. The obtained results demonstrate the ability of the developed

optimization framework to design new natural laminar flow airfoils.
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ABRÉGÉ

Dans cette recherche, le modèle de transition γ− ˜Reθt est combiné avec le modèle de

turbulence k−ω SST afin de prédire la transition vers le régime turbulent et d’obtenir

des formes aérodynamiques au frottement visqueux minimal. Nous présentons les

modifications nécessaires à l’amélioration de la robustesse du modèle de transition

et étudions la précision du modèle pour une large gamme d’angles d’attaque et de

nombres de Reynolds. Le modèle de transition est utilisé pour prédire le point de

transition, pour évaluer les mécanismes de transition ainsi que les différents effets

reliés au nombre de Reynolds, et pour étudier les caractéristiques et les performances

aérodynamique de deux profils aérodynamiques. Des comparaisons avec des données

expérimentales et des solutions numériques sont présentées. Les équations adjointes

discrètes des modèles de transition et de turbulence sont dérivées et employées dans

un processus d’optimization. Cette procédure d’optimisation est utilisée pour mod-

ifier le profil d’éolienne S809 et le profil NLF(1)-0416 afin de retarder la transition

et d’étendre la zone laminaire de l’écoulement, de minimiser le coefficient de trâınée

totale tout en maintenant la portance, ou de maximiser la finesse aerodynamique.

Les résultats obtenus démontrent la capacité du procéssus d’optimisation développé

à concevoir de nouveaux profils écoulement laminaire naturel.
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CHAPTER 1
Introduction

1.1 Introduction

The rise in fuel prices together with the impending threat of an increase in

greenhouse gases due to the projected increases in global air travel has renewed a

call for the development of the next generation commercial air transport. The Eu-

ropean Union’s Clean Sky initiative [20] and NASA’s Environmentally Responsible

Aviation (ERA) Project [19] have placed benchmarks on the type of performance im-

provements that are expected on future aircraft designs. The goal is to develop the

enabling technologies to design environmentally responsible aircraft. The NASA N+3

program, which stands for three generations after the current commercial transport

aircraft, helps to develop technological bases for advanced airframes and propulsion

systems for aircraft scheduled to enter service in 2030. The following are brief sum-

maries of the various conceptual designs proposed by leading airframe manufactures

and institutions.

• Aircraft and Technology Concepts for an N+3 Subsonic Transport.

Here the design and manufacture of a subsonic fixed wing transport airplane for

2030’s as well as more environmentally and economically friendly technologies

are studied. This aircraft is anticipated to reduce the noise up to 71 db, the

NOx emission up to 80%, and the fuel consumption up to 60% in comparison
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with current fixed wing transport aircraft [13]. Three innovative concepts: liq-

uid natural gas as fuel, multiple-engine propulsion, and lower cruise speed, are

considered as the main design aspects of the airplane (figure 1–1). The reduced

Mach number combined with nearly-unswept wing reduces the wing weight and

induced drag, eliminates the leading edge slats, and maintains natural laminar

flow on the wing bottom. The double-bubble composite fuselage with lifting

nose increases the optimum carryover lift and effective span and reduces floor-

beam weight. A roomier passenger cabin with fewer windows decreases the

airplane weight as well. The benefit of the lifting nose is to have built-in nose-

up trimming moment [13]. Three geared turbofans with a high bypass ratio of

20 and high efficiency small cores increase the engine performance and reduce

the emissions. Having advanced combustors, materials, and a cooling system

in addition to having variable area nozzles further increases the efficiency of

this engine. The engine/pi-tail integration improves the propulsive efficiency

via fuselage boundary layer ingestion and shield the fan noise. The other ben-

efits are immunity from bird strike, small vertical tails due to small engine-out

yaw, and lightweight horizontal tail [13]. A 10% lower cruise speed helps the

designers to use technologies that are not applicable to current transonic com-

mercial airplanes. Participants in this study include Aurora Flight Sciences,

Aerodyne Research Inc., Pratt & Whitney, and Boeing Phantom Works led by

Massachusetts Institute of Technology [19].

• Small Commercial Efficient and Quiet Air Transportation for 2030-2035.

2



Figure 1–1: N+3 Subsonic Fixed Wing Transport Airplane [19]

The main goal is to develop the technology road-maps for a suburban airplane

with minimum impact on the environment. A hybrid technique that combines

a natural laminar flow (NLF) wing with active laminar flow to further extend

the transition point assist in reducing the total drag and fuel burn. Advances

in material and manufacturing processes will allow for more complex NLF wing

shapes, guaranteeing higher aerodynamic performance [7]. Advanced low NOx

combustors combined with low noise and high performance propellers reduce

the engine emission and noise. Using advanced propulsion materials reduces

the need for cooling, lowers the engine weight, and increases the performance

and durability of the engine. To reduce the airframe weight, low weight com-

posite structures are employed [7]. This 10- to 30-passenger aircraft (figure 1–2)
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Figure 1–2: Small Commercial Efficient and Quiet Airplane [19]

will reduce air traffic congestion and help better utilization of the current com-

munity airport infrastructures. GE Aviation along with GE Global Research,

the Cessna Aircraft Company, and the Georgia Institute of Technology are

participating in this program [19].

• Subsonic Ultra Green Aircraft Research (SUGAR).

This project, as part of NASA’s subsonic fixed wing technical plan, will in-

vestigate advanced concepts and technologies for future subsonic fixed wing

aircraft (figure 1–3). Currently laminar flow technologies are not mentioned in

the released publications; however due to the aircraft low Mach number and

low swept wing, laminar flow control techniques will mostly likely be employed.

The aircraft performance will be evaluated in regards to the noise, emission,
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Figure 1–3: Subsonic Ultra Green Aircraft Research [19]

take-off and landing length, and fuel consumption indicators. Technologies

and aircraft configuration risk will be identified along with the development

of technical road-maps for future aircraft programs [19]. The aircraft is based

on the Boeing 737-800 and is designed to lift 150 passengers with a higher

aspect ratio strut braced wing [2]. An advanced turbofan engine (gFan+) with

a high bypass ratio in addition to advanced combustor, compressor, and tur-

bine is developed to reduce noise and emission, and in the process decrease the

fuel consumption. Another version of SUGAR employs an electric-gas turbine

engine (hFan) which uses batteries to assist the aircraft during take-off and

cruise [2]. Boeing Phantom Works along with Boeing Commercial Airplanes,

General Electric, and the Georgia Institute of Technology are the research team

members [19].

• Advanced Concepts for Subsonic Commercial Transport Aircraft.

This project focuses on the development of advanced configurations and new

systems designed with a special interest on environmental issues such as noise

footprint, runway requirements, and traffic mix projections for in flight and
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Figure 1–4: Subsonic Commercial Transport Aircraft [19]

near airports (figure 1–4). In this project advanced propulsion concepts, multi-

mode propulsion, short take-off and landing, variable geometry, and flow con-

trol are studied and the application of advanced material and manufactur-

ing technologies are evaluated. These advanced processes reduce the airplane

weight and increase the performance and durability. The project has been

awarded to a team that includes Tufts University, Sensis Corp., Spirit Aerosys-

tems Corp. and Rolls-Royce North America Technologies Inc. (LibertyWorks)

led by Northrop Grumman Systems Corporation [19].

Across the Atlantic, the EU initiative is currently supporting six Clean Sky

platforms, where the Green Regional Aircraft (GRA) program that combines the

expertise of 32 European companies, is one of the most ambitious platforms [20]. To
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reduce pollutant emissions and noise generation, the GRA is designed with a light

weight structure, with advances in both aerodynamic and engine efficiencies, and a

complete life-cycle and environmental impact analysis including sustainable manu-

facturing to ensure that the aircraft satisfies future standards and regulations. The

following themes form the major concentration of innovation required to establish

a realizable aircraft: Low Weight Configuration (LWC), Low Noise Configuration

(LNC), All Electric Aircraft (AEA), Mission and Trajectory Management (MTM),

and New Configuration (NC). In the low noise configuration (LNC) phase, methods

for reducing the airplane drag and fuel consumption will be evaluated with a view

on decreasing external noise. NLF technology is employed to reduce the skin fric-

tion drag. The NLF technology has some disadvantages that will be explained in

section 1.2 and will be improved by using innovative high lift and anti-icing devices.

The gears will be aerodynamically optimized to reduce the generated turbulence and

consequently the airplane drag and noise. In addition, improvements of the high

lift systems will further reduce the airframe noise [20]. In the final phase of the

project, a new configuration of an advanced regional aircraft will be defined. This

new aircraft will employ state-of-the-art avionics, innovative engines such as open

rotors, and optimized aerodynamics and structure within a multidisciplinary design

environment. Low noise and emission to reduce the environmental impact on near

airport communities will be incorporated [20].

A second Clean Sky platform, the Smart Fixed Wing Aircraft (SFWA) project,

led by Airbus and Saab AB are illustrated in figure 1–5. The goals of this project

are [20]:
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Figure 1–5: Smart Fixed Wing Aircraft [20]

1. To reduce 25% of the wing drag by using active and passive natural laminar

flow technologies. Since the total wing drag produces 40% of the aircraft drag,

this reduction translates to 10% of the aircraft total drag reduction.

2. To reduce 20% of the fuel consumption by employing a counter rotating open

rotor engine. For this purpose a new rotor blade and pylon will be designed to

decrease the noise and vibration levels.

In the majority of new advanced subsonic aircraft proposed either through EU’s

Clean Sky [20] or NASA’s ERA program [19], laminar flow control techniques, either

passive or active, play a prominent role in the anticipated reduction in total drag.

Drag reduction is a significant issue in aircraft design, where one drag count reduction

in the design of a subsonic transport airplane corresponds to approximately 200lb

increase of its payload [3]. The efficiency of the aircraft increases by reducing the

drag and consequently a reduction in fuel burn is accompanied if the aircraft range

is kept constant. The lower fuel burn translates into lower emissions and thus the
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technology contributes towards the total expected greenhouse gas reduction that is

expected for the next generation of commercial aircraft.

For an aircraft, the total drag is broken down into four components based on

their origins [33] as follows:

• Skin-friction Drag

A boundary layer develops over the airplane wing and the produced shear stress

forms the skin friction component of the drag. The skin friction drag is the

largest component and contributes approximately half of the total drag at a

cruise condition.

• Pressure Drag

The developed viscous shear layer produces dissimilar pressure distributions

over the forward and rear portions of the wing. This pressure imbalance due

to the viscous effects, creates the pressure component of the total drag.

• Wave Drag

At transonic flights, the presence of shock waves produces the wave drag com-

ponent. The entropy generation across the shock wave reduces the stagnation

pressure and increases local static pressure in order to recover the freestream

pressure at the trailing edge; this pressure increase across the shock wave forms

the wave drag. In addition the interaction of the shock wave and the boundary

layer over the wing leads to boundary layer separation, further increasing the

drag.

• Vortex Drag
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The tip vorticies generated over the lifting surfaces of the airplane develop the

vortex component of the drag. The vortex drag is also known as the lift-induced

drag since its magnitude is proportional to the square of the airplane lift. This

component produces the second largest portion of the total drag.

A total drag breakdown of a medium size transport in cruise, demonstrates

that the skin friction drag is the dominant component with approximately 45% of

the total drag, while the lift-induced and pressure drag components are 40% and

15% respectively [15, 48]. The aircraft wing produces approximately 35% of the

skin friction drag which is the second largest contribution after the fuselage with

40% [15]. Hence, designing an aircraft that maintains laminar flow over the wing

helps to reduce the skin friction and total drag significantly. This drag reduction

decreases the required engine thrust and fuel consumption consequently.

In the 1930’s it was discovered that increasing the favourable pressure gradient

over the wing can postpone the onset of transition and reduce the skin friction

component of the total drag by extending the laminar boundary layer around the

wing. Generally, three different laminar flow control methods, passive, active, and

hybrid, are available to extend the laminar flow [4]. In the passive method, the

aerodynamic shape is designed to maintain a favourable pressure gradient over a

large area of the wing to postpone the transition and increase the extension of the

laminar boundary layer. This method is known as natural laminar flow (NLF) since

it maintains the laminar flow as much as possible over the wing. The NLF method

has two advantages; first, the wing shape is optimized to ensure a large laminar

region and hence additional weight contributing equipment is not required; second,
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the NLF method is a passive technology and therefore it does not increase the fuel

consumption of the airplane [4]. However, the NLF passive approach is not applicable

at high Reynolds numbers where the growth of streamwise instability waves is fast,

and at high sweep angles where the crossflow instabilities are the dominant transition

mechanism [15].

In contrast to the NLF approach, there are various active flow control methods

such as laminar flow control (LFC), hybrid laminar flow control (HLFC), and plasma

actuators. These methods extend the laminar flow in the presence of an adverse pres-

sure gradient by maintaining convex and stable velocity profiles along the boundary

layer while the NLF approach extends the favourable pressure gradient region to

postpone the transition point [12]. The active flow control methods increase the

operational weight and fuel consumption of the aircraft due to an additional suction

unit for the wing surface. Ice and insects can fill out the suction holes and reduce

the efficiency of the active flow control techniques in addition to contaminate the

laminar boundary layer and trip the boundary layer to fully turbulent. In the case

of an asymmetric failure of the active flow control system, dissimilarity in the drag

and lift on the aircraft wings can lead to unsymmetrical rolling and yawing moments

which alter the aircraft balance and stability [4].

The laminar flow control (LFC) technique thins the boundary layer thickness

and alters the boundary layer profile by the employment of suction. In addition,

the LFC method reduces the effect of crossflow instabilities over the swept wings.

These effects stabilize the laminar boundary layer, postpone the transition point,

and increase the extension of laminar flow over the wing [4].
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The hybrid laminar flow control (HLFC) technique combines the benefits of the

passive and active approaches [4]. It employs the natural laminar flow aerodynamic

shapes to increase the favourable pressure gradient and incorporates LFC techniques

to control the laminar flow in adverse pressure gradient regions and crossflow insta-

bilities [4].

The plasma actuator which is the third active flow control method, modifies the

velocity profile by introducing additional momentum into the unenergized regions

of the boundary layer. The higher momentum velocity profile is more resistant

to the disturbances and damps out Tollmien-Schlichting (T-S) waves; therefore the

stability characteristics of the modified boundary layer is augmented [14, 21]. In

addition, the pulsed plasma actuators have been successfully applied in active wave

cancellation. The actuator working in a closed loop mode produces waves along the

boundary layer. These waves have the same amplitude as the T-S disturbances but

with inverted phase (antiphase) in order to cancel the T-S waves and postpone the

onset of transition. These three different active flow control approaches extend the

laminar flow over the aircraft wing and reduce the airplane total drag [14, 21].

1.2 Natural Laminar Flow (NLF) Airfoils

In the 1930’s an inverse design method was applied to design new airfoils by

considering a pressure distribution and finding its corresponding airfoil shape [53].

During the 1940’s and 1950’s, NASA designed the 2-7 series airfoils systematically

by employing the inverse method and tested them in the Langley Low-Turbulence

Pressure Tunnel (LTPT) [53]. The favourable pressure gradient over the forward

portion of the airfoil accelerates the flow and reduces the local pressure in order to
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stabilize and maintain the laminar boundary layer. Since the transition points are

located near the minimum pressure points, designers modified pressure distributions

by postponing the minimum pressure points as much as possible to increase the

extension of laminar boundary layers. Airfoils which were able to maintain laminar

flow over more than 30% of the chord length on both upper and lower surfaces, were

named NLF airfoils [53].

By increasing the laminar flow region, the tangential force over the airfoil de-

creases and NLF airfoils can have significantly lower drag coefficients over a small

range of Reynolds numbers. However, this very important benefit comes with sev-

eral disadvantageous. First, the lower momentum in the laminar boundary layer

results in bursting of the laminar separation bubble which is a transition mechanism

at low and moderate angles of attack and will be explained further in section 1.3;

hence NLF airfoils have poorer stall characteristics, and thus are not suitable at

landing and takeoff conditions. However, changes to the geometric twist angle can

alter the pressure distribution over the aircraft wing and improve the early laminar

separation of NLF wings. Second, NLF airfoils are very sensitive to roughness since

roughness may trip the laminar to a turbulent boundary layer. Apart from specific

airfoil characteristics, there are geometric wing planform parameters that could pro-

mote laminar flow. Forward swept wings and larger taper ratios can reduce crossflow

and attachment line instabilities to achieve significant regions of laminar flow over

the wing. In addition, the use of composite materials has introduced an unintended

potential benefit for future aircraft wings. Absence of rivets on composite wings, will
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allow aircraft manufactures to capitalize on the smooth surfaces and employ NLF

profiles.

There are three classical approaches to design NLF wing sections. The first

method known as the direct approach, modifies an airfoil’s geometrical parameters

such as leading edge radius, thickness distribution, and camber to achieve a desired

set of airfoil characteristics. This traditional approach is only possible at the hands

of a skillful aerodynamicist [53]. The second approach employs an inverse design

method, where an airfoil shape is recovered to produce a target pressure or veloc-

ity distribution [53]. The last approach is to apply a gradient-based optimization

technique. In this method a proper objective function is defined to postpone the

transition point and to extend the laminar flow over the entire airfoil with respect to

the geometrical and aerodynamic constraints. The airfoil shape is iteratively modi-

fied until the cost function is satisfied. This approach is general and applicable to a

wide range of flows but requires a large number of flow evaluations to calculate the

sensitivity of the cost function associated with the airfoil shape parameters.

1.3 Transition Models

The numerical simulation of flow without considering the transition process

may result in the overprediction of total drag leading to an incorrect estimation of

aerodynamic load and performance. Modelling of transition from laminar to fully

turbulent boundary layer increases the accuracy and capability of computational

fluid dynamics (CFD) analyses to simulate the flow field more realistically, with

better agreement with experimental data. When the experimental data about the

location of the transition points are available, then the transition point can be set
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manually and laminar-turbulent RANS solvers can be used to simulate the transition

process. In cases where the experimental data about the transition point is unavail-

able, then there are two possible options: first, an educated guess of the transition

point based on interpolation among available data; second, a fully turbulent solu-

tion. Neither method is applicable to CFD-based aerodynamic shape optimization

and design frameworks where in every design cycle a new geometry is generated and

there is no experimental transition point available for these new cases. In addition,

development of a design (optimization) framework to potentially reduce the viscous

drag is dependent on the reliable prediction of transition points.

Using the transition prediction models incorporated within a laminar-turbulent

RANS solver can increase the accuracy and capability of the flow solver by predict-

ing the transition point and solving the laminar-turbulent flow instead of only the

fully turbulent flow. These models extend from simple empirical relationships via

linear stability equations (LSE) to parabolic stability equations (PSE) [57]. Empiri-

cal correlations for predicting the onset of transition are limited to two-dimensional

incompressible flows such as Michel’s method [6], Granville’s method [6], and the

H − Rx method [6]. The LSE and PSE methods using the en criterion are com-

putationally costly in comparison with the empirical correlations and are practi-

cally impossible for complex geometries since they require a separate boundary layer

solver to compute integrated and non-local boundary layer parameters such as the

displacement and momentum thicknesses. There are several methods to model three-

dimensional transitional flows. A computationally efficient approach, employs sev-

eral two-dimensional solutions to generate the three-dimensional transition line. The
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two-dimensional transition points could be obtained from the popular XFOIL and

MSES codes [30] that employ a simple viscous/inviscid coupling; however, the tech-

nique does not consider the effect of crossflow instabilities. An alternate approach is

to solve the quasi-3D boundary layer by using sweep/taper boundary layer analysis

based on the conical flow assumption [58] or by using a database method [45] to

provide the integral parameters of the boundary layer to simulate the growth of the

streamwise Tollmien-Schlichting (T-S) waves and crossflow (CF) instabilities. The

en method is applied in both the streamwise and crossflow directions with typical

n-factors of 9 and 5 respectively to predict the onset of transition. To consider the

interference between the T-S and crossflow instabilities a composite amplification

ratio [58] can be defined based on the streamwise and crossflow n-factors.

Apart from en-based approaches, correlation-based methods employ experimen-

tal data together with transport equations to limit the production of the turbulent

kinetic energy present in most turbulence models. These models such as the γ− ˜Reθt

transition model are designed to predict various transition processes within modern

CFD codes and are able to address practical engineering problems. To employ a

transition model which is fully compatible with turbulent RANS solvers and that it

can be integrated into a design framework, the transition model should possess the

following properties [30, 32]: allow the calibrated prediction of the onset and the

length of all transition mechanisms, require only local parameters, does not affect

the fully turbulent region, is not dependent on the coordinate system, and is extend-

able to three dimensions. In comparison with other transition models such as the en

method, the γ − ˜Reθt transition model encompasses these properties. Moreover it
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has the ability of using local parameters provided by a RANS solver instead of using

an additional boundary layer solver coupled with a RANS solver. This transition

model provides a unique solution based on the prescribed conditions, is able to be

coupled with the k−ω SST turbulence model and does not affect the solution of the

fully turbulent region.

Unlike the en method which predicts only the onset of transition by using dif-

ferent n factors based on the ambient turbulence intensity and the roughness of the

surface, the γ− ˜Reθt transition model predicts the onset and length of the transition

process and even the reattachment point in case of a laminar separation bubble. In

comparison with the linear stability theory such as the en method which predicts the

linear growth of instability waves, the γ − ˜Reθt transition model simulates all four

transition mechanisms and even analyzes the bypass transition caused by the non-

linear growth of the instabilities. The γ − R̃eθt transition model is able to simulate

the laminar-turbulent flow over complex geometries [30] while the en method has

some limitations such as the need for an accurate separate boundary layer solver. As

the transported variables are evaluated based on the local freestream velocity, the

γ− R̃eθt transition model is dependent on the coordinate system and this is the only

deficiency in the model [32]. The γ − R̃eθt transition model coupled with a three-

dimensional turbulent RANS solver without employing an additional boundary layer

solver, has shown the ability to model transition from laminar to fully turbulent

three-dimensional flows and the results have been validated by available experimen-

tal data [30]. In three dimensions, the γ − R̃eθt transition model with the current

correlations is able to simulate the transition process through the attachment line
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contamination. This model has the potential capability of simulating the crossflow

instabilities and their effects can be included in the correlations. Up to date, no

practical correlation that includes the crossflow contributions has been proposed and

the present work can be a basis to develop a three-dimensional laminar-turbulent

RANS solver based on the γ − R̃eθt transition model that simulates all different

types of transition mechanisms such as crossflow instabilities for three-dimensional

applications and ultimately employ the new framework to design and optimize the

next generation predominantly laminar flow aircraft wings. .

1.4 Transitional and Turbulent Airfoil Optimization

Upon the introduction of the finite-difference method to compute the sensitivity

derivatives for the purpose of shape optimization by Hicks and Henne [16], gradient-

based methods have been used widely in aerodynamic optimization and design prob-

lems [43]. The use of finite-difference to compute sensitivity derivatives is both com-

putationally costly and subject to subtractive cancellation errors which prevented

the approach from providing sensitivity derivatives that were accurate for viscous

flows. Through the work of Lions et al. [35] on the establishment of optimal control

of systems governed by partial differential equations, Pironneau [46] introduced the

control theory approach for elliptic design problems by computing the gradient in a

less costly approach than the finite-difference technique. In this approach the gradi-

ent of the cost function is obtained by solving the adjoint equations independent of

the number of the design variables. Jameson et al. [23, 25, 26] applied this theory

initially to potential flow and subsequently for the Euler and Navier-Stokes (N-S)

equations (hyperbolic PDEs) and successfully demonstrated automatic aerodynamic
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shape optimization of complete aircraft configurations in transonic flow. There are

two approaches, the continuous and discrete, in deriving the adjoint equations. In

the continuous approach, the adjoint equations and their boundary conditions are

derived by perturbing the cost function and flow field equations with respect to

flow variables through the use of Lagrange multipliers [43]. The equations are then

discretized and solved numerically. In the alternate approach, the discrete adjoint

equations are derived by applying control theory directly to the discretized flow field

equations. The primary difference between the two approaches is the accuracy of

the resulting gradients of the objective function with respect to any geometrical pa-

rameter or flow property. The solution of the discrete adjoint equations, provides

the exact discrete gradient that is independent of the grid size, while the continuous

approach provides an inexact gradient of the computed objective function. As the

grid size increases, the discretized continuous gradient approaches the true discrete

gradient. The reader is encouraged to refer to Nadarajah et al. [43, 44] for a complete

comparison between the continuous and discrete adjoint equations for inviscid and

viscous flows. In this preliminary work, the Baldwin-Lomax turbulence model was

employed and the eddy viscosity was assumed to be constant during the linearization

of both the continuous governing equations and its discrete counterpart.

In Le Moigne et al.’s work [42], the linearization of the Baldwin-Lomax model

was included in their derivation of the discrete adjoint equations. The eddy viscosity,

µt, in the Baldwin-Lomax turbulence model was defined based on local flow variables

and the straight differentiation of the eddy viscosity was used for linearization. The

obtained gradient was compared against the finite difference method and its ability
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in the drag minimization of the ONERA M6 wing was shown by employing a se-

quential quadratic programming (SQP) optimization algorithm. Zymaris et al. [60]

developed a continuous adjoint approach for the incompressible flow solver and the

SA turbulence model to investigate the sensitivities and gradient accuracy. The eddy

viscosity is not considered constant and the corresponding continuous adjoint equa-

tions and boundary conditions for the SA turbulence model are derived. In internal

flow problems, where the total pressure loss is heavily dependent on the turbulence

model, they showed that the gradient is more accurate than the gradient obtained

without considering an extra adjoint equation for the SA turbulence model. Kim

et al. [28] developed a discrete adjoint approach and a direct differential method in

order to study the sensitivity of RANS equations using three different two-equation

turbulence models (Menter’s k − ω SST , Wilcox’s k − ω and standard k − ε mod-

els). They showed that when the two-equation turbulence models are applied the

assumption of constant eddy viscosity in adjoint methods does not provide accurate

sensitivity derivatives in turbulent flows involving strong shocks. The two additional

adjoint variables related to the discrete adjoint equations of the turbulence mod-

els improves the accuracy of the gradient and increases the ability of the adjoint

approach to obtain better results.

After reviewing several fully turbulent optimization and design frameworks, the

developed laminar-turbulent flow solvers and their corresponding design and opti-

mization approaches are briefly explained. Lee et al. [33] developed a design and

optimization framework for NLF airfoils and wings by using a continuous adjoint

approach and an automatic transition prediction module. This module predicts the
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location of transition points in each design cycle. The Baldwin-Lomax turbulence

model is used for calculating the eddy viscosity in each cell. Here transition points

are not considered as design parameters and computed automatically in each de-

sign cycle; therefore the adjoint equations for the transition prediction method are

not derived and employed in the optimization process. Amoignon et al. [1] devel-

oped a transitional flow solver, where an Euler solver provides pressure distributions

for a separate boundary layer solver in order to compute the integral parameters

for solving the parabolized stability equations (PSE). The adjoint equations for the

combined flow solver are derived and employed in a gradient-based optimization

procedure. The cost function is the minimization of the energy of the disturbances

combined with the minimization of the wave drag in order to design NLF airfoils.

The RAE2822 airfoil is optimized in order to delay the transition point and remove

the shock wave. By reducing the total amplification of the disturbances, the transi-

tion point is delayed and the skin friction drag component is reduced. In addition,

the pressure drag decreases by removing the shock wave; therefore the total drag

is minimized while the lift and pitching moment are maintained. Driver et al. [10]

incorporated the MSES code [9] to their two-dimensional Newton-Krylov flow solver

employing the SA turbulence model [56]. The MSES code couples the Euler equation

together with a boundary layer solver and uses the en criterion to predict the onset of

transition points over the airfoil surface. The developed laminar-turbulent flow solver

has been employed in an aerodynamic shape optimization framework where adjoint-

based gradients are employed to compute the contribution from the RANS equations

together with finite-difference based gradients of the MSES code and demonstrated
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the ability of the optimizer to move the locations of the transition points in order to

maximize the lift, performance, and endurance factor of the airfoils [10].

1.5 Objectives

In this dissertation an improved γ − R̃eθt transition model is introduced and

validated for the simulation of transitional flows around NLF airfoils. The discrete

adjoint equations for the γ − R̃eθt transition and k − ω SST turbulence models

are derived in order to develop an adjoint-based design and optimization of NLF

airfoils. Finally new algorithms for the design of high lift-to-drag ratio NLF airfoils

are demonstrated by introducing novel objective functions such as the production of

turbulent kinetic energy.

1.6 Author’s Contributions

In the present work, the k − ω SST turbulence and γ − R̃eθt transition models

are implemented into the employed Reynolds-averaged Navier-Stokes (RANS) solver.

The k−ω SST turbulence model is modified to be used in the developed transitional

flow solver. Modifications to the γ − R̃eθt transition model are proposed to increase

the robustness and provide accurate solutions to a wider range of angles of attack and

Reynolds numbers. The discrete adjoint equations for the k−ω SST turbulence and

γ − R̃eθt transition models are derived and added to the discrete adjoint equations

of the RANS solver. The developed flow solver has been tested for various airfoils

and its accuracy and robustness have been validated. Furthermore, the developed

transitional discrete adjoint solver has been successfully employed to design and

optimize NLF airfoils.
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1.7 Thesis Outline

In chapter 2, the turbulent RANS solver, γ − ˜Reθt transition model, and their

numerical implementation are described. The necessary modifications to the k − ω

SST turbulence model to allow it to be coupled with the γ− ˜Reθt transition model are

thoroughly discussed. Finally, the proposed changes to the γ− ˜Reθt transition model

to increase its robustness and accuracy at various Reynolds numbers and angles of

attack are described.

In chapter 3, the gradient based optimization methods are explained. The un-

constrained optimization approaches such as steepest descent and smoothed steepest

descent methods are described and compared. The constrained optimization proce-

dure and the first-order optimality conditions are then presented. Finally, the various

approaches for choosing the design variables are discussed.

In chapter 4, the discrete adjoint theory is explained. The discrete adjoint

equations for the γ− ˜Reθt transition and k−ω SST turbulence models are derived as

well as their boundary condition source terms. The various cost functions employed

in the present work and their implementation are explained. Finally the gradient

of the cost function and the mesh perturbation method used in this research are

discussed.

Chapter 5 presents the validation of the results obtained by the developed flow

solver. The residual convergences of the laminar-turbulent flow solver, the γ − R̃eθt

transition model, and the k − ω SST turbulence model are studied. A thorough

grid study for the streamwise and normal directions are provided. The accuracy of

the laminar-turbulent flow solver are demonstrated for two different cases: the S809
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wind turbine blade, and the NLF(1)-0416 airfoil, and the results are validated by

comparing against available experimental data. The distributions of the pressure

coefficients and the skin friction coefficients are shown as well. Then the location

of the transition points at various angles of attack and the drag polar at different

Reynolds numbers are sketched against the experiments. Finally, the change of

the size of the laminar separation bubble at various angles of attack and Reynolds

numbers are qualitatively compared with the experimental reports.

In chapter 6, taking advantage of having an accurate laminar-turbulent flow

solver, the aerodynamic shape optimization framework is used to design new NLF

airfoils for minimizing the drag and maintaining or maximizing the lift. The NLF(1)-

0416 airfoil is optimized with and without using the transitional and turbulent ad-

joint variables to show the influence of solving the adjoint equations for the transition

and turbulence models. The observed difference between the results illustrates that

having these adjoint variables increases the accuracy of the obtained gradient and

improves the design process of the NLF airfoils. Furthermore, introducing the pro-

duction of turbulent kinetic energy to the cost function increases the effectiveness

of the transitional and turbulent adjoint variables and improves the optimization of

NLF airfoils. The airfoil shape is modified to maintain a favourable pressure gradient

and postpone the onset of transition over the upper and lower surfaces. This reduces

the total drag especially the skin friction component while the lift is maintained or

maximized. The results demonstrate the capability and accuracy of the developed

adjoint-based optimization framework to design new NLF airfoils.
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Finally, chapter 7 concludes the present research and provides a list of possible

future works.
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CHAPTER 2
The Navier-Stokes, k − ω SST Turbulence Model, and γ − R̃eθt Transition

Model Equations

2.1 Introduction

This chapter presents the integral and conservative forms of the governing equa-

tions. Furthermore the temporal and spatial discretization of the convective, viscous,

and artificial dissipative fluxes of the Navier-Stokes equations are explained as well

as the convergence acceleration techniques. Finally the γ− R̃eθt transition and k−ω

SST turbulence models and their corresponding discretization are described.

2.2 Navier-Stokes Equations

By applying the conservation of mass, momentum, and energy principles to a

control system, the Navier-Stokes equations are obtained [36]. The Navier-Stokes

equations which govern the motion of fluid elements in a continuum space, are a

set of non-linear partial differential equations (PDEs) and together with thermody-

namic relations describe the fluid properties such as density, velocity, pressure, and

temperature in any point of the flow field [11]. To evaluate these dynamic and ther-

modynamic properties at a fixed position in the flow field, the Reynolds transport

theorem (RTT) is employed to convert the temporal derivative from a Lagrangian

approach into an Eulerian form [44]. The following equation demonstrates the trans-

formation as,
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DBsystem

Dt
=

D

Dt

∫
V (t)

β dV

=
∂

∂t

∫
V (t)

βdV +

∫
A(t)

β~U.~n dA,

where Bsystem =
∫
V (t)

β dV and β is the transported property of the system per unit

volume, t is time, V is volume, A is area, and ~U is the velocity vector. By using

Gauss’s theorem [44], the surface integral is converted to a volume integral as follows,

D

Dt

∫
V (t)

β dV =

∫
V (t)

[
∂β

∂t
+
(
~∇ · β~U

)]
dV.

2.2.1 Conservation of mass

The continuity or conservation of mass states that the mass inside a control

system is neither produced nor destroyed and is mathematically presented as follows

D

Dt

∫
v(t)

ρ dV = 0,

which implies that the time rate of change of mass inside the system and volume,

V , are zero. By employing the Reynolds transport theorem the above equation is

transformed to

D

Dt

∫
v(t)

ρ dV =

∫
v(t)

[
∂ρ

∂t
+ ~∇.

(
ρ~U
)]

dV = 0.

Expanding the divergence of ~ρU and using the definition of the material derivative(
Dρ
Dt

= ∂ρ
∂t

+ ~U. ~∇ρ
)

, the continuity equation is defined as follows,
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D

Dt

∫
v(t)

ρ dV =

∫
v(t)

[
Dρ

Dt
+ ρ~∇ · ~U

]
dV = 0.

2.2.2 Conservation of momentum

Newton’s second law states that the summation of the body and surface forces

acting on a control system equals the time rate change of momentum [36] and is

formulated as

D

Dt

∫
V (t)

ρui dV =

∫
S(t)

Ti dS +

∫
V (t)

ρGi dV, (2.1)

where ui is the element of the velocity vector, ~U , in the xi direction. Gi is the

body force per unit volume component and Ti is the surface force vector per unit

surface area component in the xi direction. Using the Reynolds transport theorem,

the time rate of change of momentum is transformed to the material derivative form

and equation (2.1) is defined for a control volume as

∫
V (t)

[
Dρui
Dt

+ ρui~∇ · ~U
]
dV =

∫
S(t)

Ti dS +

∫
V (t)

ρGi dV.

The surface force vector component which is the sum of the hydrostatic pressure and

viscous stress, is written as follows over the control surface, S(t),

∫
S(t)

Ti dS =

∫
S(t)

(−pδkink + τkink) dS,

where p is pressure and τ is the viscous stress tensor. For the Newtonian isotropic gas,

there is a linear relationship between the stress tensor and the rate of deformation.

Using the Stokes assumption, the viscous stress tensor is defined as
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τki = µ

[
∂uk
∂xi

+
∂ui
∂xk

]
− 2

3
µ

[
∂uj
∂xj

]
δki.

By applying Gauss’s theorem [44], the surface integral of the surface forces compo-

nent, Ti, is converted to a volume integral

∫
S(t)

Ti dS =

∫
V (t)

(
− ∂p

∂xi
+
∂τki
∂xk

)
dV,

and finally the integral form of the conservation of momentum is obtained

∫
V (t)

[
Dρui
Dt

+ ρui~∇ · ~U +
∂p

∂xi
− ∂τki
∂xk
− ρGi

]
dV = 0.

2.2.3 Conservation of energy

According to the first law of thermodynamics [44], the following four items affect

the rate of change of energy in volume

• rate of work done by surface forces per unit area
(∫

S(t)
Tkuk dS

)
,

• rate of work done by body forces per unit volume
(∫

V (t)
ρGkuk dV

)
,

• rate of heat source addition into the volume
(∫

V (t)
Q dV

)
,

• and rate of heat loss through the control surface
(
−
∫
S(t)

qknk dS
)

. The heat

flux, qk, is calculated by Fourier’s law of heat conduction

qk = −κ ∂T
∂xk

,

where κ is the coefficient of thermal conductivity.

Therefore the conservation of energy equation is written as follows for a control

system
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D

Dt

∫
V (t)

ρ

(
e+

U2

2

)
=

∫
S(t)

Tkuk dS +

∫
V (t)

ρGkuk dV −
∫
S(t)

qknk dS +

∫
V (t)

Q dV,

where e is the internal energy and U is the magnitude of the velocity vector. The

Reynolds transport theorem is applied to convert the rate of change of energy of the

system into the material derivative form and then all surface integrals are converted

into volume integrals using the Gauss theorem. The conservation of energy equation

finally is presented as follows,

∫
V (t)

Dρ
(
e+ U2

2

)
Dt

+ ρ

(
e+

U2

2

)
~∇ · ~U +

∂

∂xk
(−σkiui + qk)− ρGkuk −Q

 dV = 0.

2.3 Conservative form of the Navier-Stokes equations

Collecting the integral form of the conservation equations yields the complete

system for the Navier-Stokes equations [36, 44]. The Cartesian coordinates and

velocity components are denoted by (x1, x2) and (u1, u2) respectively. By using

Einstein’s notation the two-dimensional equations take the form

∂ ~w

∂t
+
∂ ~fi
∂xi
− ∂ ~fvi
∂xi

= 0 in D, (2.2)

where the state vector, ~w, inviscid flux vector, ~f , and viscous flux vector, ~fv, are

described respectively by
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~w =



ρ

ρu1

ρu2

ρE


, ~fi =



ρui

ρu1ui + pδi1

ρu2ui + pδi2

ρEui + pui


, ~fvi =



0

τijδj1

τijδj2

ujτij + k ∂T
∂xi


,

where ρ and E are density and specific total energy, and δij is the Kronecker delta

function [44]. The pressure, p, is computed through the state equation.

p = (γ − 1) ρ

{
E − 1

2
(uiui)

}
,

where γ is the specific heat ratio. The ideal gas state equation specifies the relation

between temperature, T , and pressure, p,

p = ρRT,

where R is the gas constant. The viscous stresses, τij , are written as

τij = (µ+ µt)

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

(
∂uk
∂xk

)
δij

]
,

where µ is the molecular viscosity and µt is the turbulent eddy viscosity which is

provided by using a turbulence model as will be discussed in section 2.9. For moderate

temperatures, the molecular viscosity for air, can be obtained from the Sutherland

equation

µ = C1
T

3
2

T + C2

,
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where C1 = 1.458 × 10−6kg/(ms
√

K) and C2 = 110.4K.The thermal conductivity

coefficient, κ, relates the temperature gradient and heat flux. It is computed as

follows

κ =
cpµ

Pr
,

where cp is the specific heat at constant pressure and Pr is the Prandtl number.

2.4 Boundary conditions

The wall boundary conditions for viscous flows must satisfy the no-slip and no-

injection conditions; the normal and tangential components of the velocity vector

over the wall surface are zero

~U.~n = 0, and ~U.~t = 0,

where ~n and ~t are the normal and tangential unit vectors respectively. These equa-

tions imply that the velocity on the wall must be zero. To satisfy the energy equation

on the wall boundary, the adiabatic or isothermal boundary condition is employed.

Since in the present work the heat flux through the wall is zero, the adiabatic wall

condition is used and defined as follows

~q.~n = 0.

Since in computational fluid dynamics the domain is finite, the boundary con-

ditions at the far-field boundary must be defined in order to solve the Navier-Stokes

equations. By determining the inflow and outflow boundaries, the corresponding
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properties to the inward waves must be specified [44]. More explanation about this

procedure can be found in subsection 2.5.5.

2.5 Numerical Discretization

The Navier-Stokes equations are one of the most difficult partial differential sys-

tems of equations where analytical solutions are available only for selected simple

problems. To solve more complicated problems, researchers convert this set of non-

linear partial differential equations into a set of algebraic equations using numerical

discretization schemes in order to solve them computationally. Two issues need to

be addressed to numerically solve a partial differential equation; first, the generation

of a mesh of discrete points where the numerical equations are evaluated; second,

the manner in which the equations are numerically discretized and solved until a

converged solution is obtained. In this work, a structured grid and a second-order

finite-volume method is employed together with both explicit and implicit solvers to

march the equations to a steady state solution. This method has the ability to be

applied on any complex grid and preserves all conservation laws locally and globally.

Details about the numerical scheme and methods of convergence acceleration will be

discussed in the following subsections.

2.5.1 Finite-Volume Method

In the present work the integral form of the conservation equations are dis-

cretized by using a finite-volume method. To solve the Reynolds-averaged Navier-

Stokes (RANS) equations (2.2) on a body conforming structured grid, the following

metrics are used to transfer the physical domain to the computational coordinates

(ξ1, ξ2) [17, 44],
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Kij =

[
∂xi
∂ξi

]
, J = det (K) , K−1

ij =

[
∂ξi
∂xi

]
.

In the computational domain the governing equations are defined as

∂
(
~Jw
)

∂t
+
∂
(
~Fi − ~Fvi

)
∂ξi

= 0 in D .

Considering Sij = JK−1
ij as the projection of the ξi cell face along the xj axis, the

convective and viscous flux contributions in the computational space are defined by

~Fi = Sij ~fj and ~Fvi = Sij ~fvj respectively. In the following subsections the (x, y)

and (ξ, η) are used as the two-dimensional physical and computational coordinates

respectively.

2.5.2 Discretization of Convective Fluxes

In order to discretize the convective fluxes for cell (i, j), the derivatives of the

flux, ~fi, are evaluated in both computational directions (ξ, η) [44]. In each direc-

tion the derivative at the cell center, in the computational domain, is calculated by

subtracting the inviscid fluxes of the adjacent cell faces

∂ ~F1

∂ξ1

= ~F1
i+1

2 ,j
− ~F1

i− 1
2 ,j
,

where (i± 1
2
, j) indices denote the cell face centers as shown in figure 2–1 . In each

computational direction the average inviscid fluxes of the neighbouring cell centers

are used as follows,

~fi+ 1
2
,j =

1

2

(
~f+
i+1,j + ~f−i,j

)
.
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(i,j)

(i+1,j)

(i+1/2,j)

(i-1,j)

(i-1/2,j)

Figure 2–1: Inviscid Computational Stencil

Considering the cell based finite-volume method employed in this work, the

information is stored at the cell centres and the flux vectors are stated as

~f+
i+1,j =



ρi+1,jq
+

(ρu)i+1,jq
+ + yη

i+1
2 ,j
pi+1,j

(ρv)i+1,jq
+ − xη

i+1
2 ,j
pi+1,j

(ρE + p)i+1,jq
+


, and ~f−i,j =



ρi,jq
−

(ρu)i,jq
− + yη

i+1
2 ,j
pi,j

(ρv)i,jq
− − xη

i+1
2 ,j
pi,j

(ρE + p)i,jq
−


,

where q± are the flux velocities. They are calculated by using the metrics of trans-

formation and the velocity components in the physical domain,
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q+ =
yη

i+1
2 ,j

(ρu)i+1,j − xη
i+1

2 ,j
(ρv)i+1,j

ρi+1,j

, and q− =
yη

i+1
2 ,j

(ρu)i,j − xη
i+1

2 ,j
(ρv)i,j

ρi,j
.

2.5.3 Discretization of Viscous Flux

In order to discretize the viscous flux for the cell (i, j) a second-order central

difference approach is employed for the second derivatives of the velocity and tem-

perature [44]. To compute the viscous fluxes, ~fv
i+1

2 ,j
and ~gv

i+1
2 ,j

, on the face centers

the following mathematical procedure is applied

~fv
i+1

2 ,j
=

1

2

(
~fv
i+1

2 ,j+
1
2

+ ~fv
i+1

2 ,j−
1
2

)
, and ~gv

i+1
2 ,j

=
1

2

(
~gv

i+1
2 ,j+

1
2

+ ~gv
i+1

2 ,j−
1
2

)
,

where ~fv
i+1

2 ,j±
1
2

and ~gv
i+1

2 ,j±
1
2

represent the viscous fluxes calculated on the vertices

of the cell. The viscous fluxes are then evaluated in the computational domain as,

~Fv
i+1

2 ,j
= yη

i+1
2
,j
~fv
i+1

2

+ xη
i+1

2 ,j
~gv

i+1
2

.

To discretize and evaluate the viscous fluxes at the cell vertices, four cells that

share a vertex construct an auxiliary control volume, where its vertices are the cell

centers of the four mentioned cells. The auxiliary control volumes with cell centers(
i+ 1

2
, j + 1

2

)
and

(
i+ 1

2
, j − 1

2

)
are shown in figure 2–2. The viscous fluxes in the

physical domain for the node
(
i+ 1

2
, j + 1

2

)
are written as
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Figure 2–2: Viscous Computational Stencil

~fv
i+1

2 ,j+
1
2

=



0

τxx

τxy

uτxx + vτxy + k ∂T
∂x


i+ 1

2
,j+ 1

2

, and ~gv
i+1

2 ,j+
1
2

=



0

τyx

τyy

uτyx + vτyy + k ∂T
∂y


i+ 1

2
,j+ 1

2

,

where τxx, τyy, and τxy (= τyx) are the normal and shear stress tensors respectively.

For example the normal stress tensor for the node
(
i+ 1

2
, j + 1

2

)
is presented as

τxx
i+1

2 ,j+
1
2

= 2µi+ 1
2
,j+ 1

2

[
∂u

∂x

]
i+ 1

2
,j+ 1

2

− 2

3
µi+ 1

2
,j+ 1

2

{[
∂u

∂x

]
+

[
∂v

∂y

]}
i+ 1

2
,j+ 1

2

.
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The flow field properties such as velocity components, u, v, and the thermody-

namics properties such as thermal conductivity coefficient, k, and temperature, T ,

are being averaged from the neighbouring cell centres [44]. For example

Ti+ 1
2
,j+ 1

2
=

1

4
(Ti+1,j+1 + Ti+1,j + Ti,j+1 + Ti,j) .

In order to evaluate the velocity gradients, the auxiliary control volume illustrated

in figure 2–2 is used. By employing the metrics of transformation, the velocity

derivative in the physical domain is written based on the velocity gradients of the

computational domain as follows

(
∂u

∂x

)
i+ 1

2
,j+ 1

2

=
1

Ji+ 1
2
,j+ 1

2

[(
∂u

∂ξ

)
i+ 1

2
,j+ 1

2

yη
i+1

2 ,j+
1
2

+

(
∂u

∂η

)
i+ 1

2
,j+ 1

2

yξ
i+1

2 ,j+
1
2

]
,

where the velocity gradients in the computational coordinates,
(
∂u
∂ξ

)
i+ 1

2
,j+ 1

2

and(
∂u
∂η

)
i+ 1

2
,j+ 1

2

, are described as

(
∂u

∂ξ

)
i+ 1

2
,j+ 1

2

=
(ui+1,j+1 − ui,j+1) + (ui+1,j − ui,j)

2
, and(

∂u

∂η

)
i+ 1

2
,j+ 1

2

=
(ui+1,j+1 − ui+1,j) + (ui,j+1 − ui,j)

2
.

The average velocity differences of the auxiliary control volume (figure 2–2) are

employed to calculate the derivatives.
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2.5.4 Numerical Dissipation

Introducing numerical dissipation into the convective and viscous fluxes stabi-

lizes the numerical scheme of the discretized Navier-Stokes equations [17, 44]. In the

present work the Jameson-Schmidt-Turkel (JST) scheme [27, 17] is employed. This

scheme which is a combination of first- and third-order terms, is defined as,

~d = ε(2)∆x3λ

p

∣∣∣∣∂2p

∂x2

∣∣∣∣ ∂ ~w∂x − ε(4)∆x3λ
∂3 ~w

∂x3
,

where ε(2) and ε(4) are constants and λ is the eigenvalue vector of the Jacobian matrix

of the Navier-Stokes equations. In the discrete form, this artificial flux for the node(
i+ 1

2
, j
)

is defined as

~di+ 1
2
,j = ~d

(2)

i+ 1
2
,j
− ~d

(4)

i+ 1
2
,j
,

where the first term is the first-order and the latter is the third-order component.

The ~d
(2)

i+ 1
2
,j

term is stated as

~d
(2)

i+ 1
2
,j

= ν(2) 1

2

(
λ̃ξi+1,j

+ λ̃ξi,j

)
(~wi+1,j − ~wi,j) ,

where, λ is the scaled spectral radii of the Navier-Stokes equations [44]. These scaled

parameters are defined as follows

λ̃ξ =

[
1 +

(
λξ
λη

) 2
3

]
λξ, λ̃η =

[
1 +

(
λη
λξ

) 2
3

]
λη,

and are employed to improve the convergence of the solver on highly stretched

grids [44]. The ν
(2)
i,j term is proportional to the pressure gradient and defined as
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ν
(2)
i,j = max (σi,j, σi+1,j) , and σi,j =

|pi+1,j − 2pi,j + pi−1,j|
pi+1,j − 2pi,j + pi−1,j

.

In the high pressure gradient regions such as shock waves, this term increases the

dissipation and stabilizes the numerical solution by changing the unstable central

scheme into an upwind biasing algorithm around discontinuities [27, 44]. The third-

order dispersive term is defined as follows

~d
(4)

i+ 1
2
,j

= ν(4)Λi+ 1
2
,j (~wi+2,j − 3~wi+1,j + 3~wi,j − ~wi−1,j) ,

where

ν(4) = max

[
0,

(
1

32
− ν(2)

)]
.

Since the third-order term has the tendency to introduce oscillations around discon-

tinuities such as shock waves, the ν(4) coefficient activates it only over smooth regions

of the flow [44].

2.5.5 Discrete Boundary Conditions

In the following subsections the far-field and wall boundary conditions are dis-

cussed in the discrete form. In order to achieve reasonable convergence of the nu-

merical solution of the discretized equations, some constraints on the theoretical

definition of the boundary conditions are sometimes considered [44].

• Wall boundary

The wall boundary conditions are imposed on the surface of the body. In this

work, no-slip wall boundary conditions are applied [11, 17, 44].
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• Far-field boundary

The far-field boundary conditions are imposed based on Riemann invariants.

In order to extrapolate the velocity components for far-field ghost and interior

cells, the outgoing and inward characteristic waves are respectively calculated

based on the specified boundary conditions [11]. The details about the far-field

boundary conditions are explained in reference [17].

2.6 Time Integration Method

In order to reach a steady state solution, a time integration method must be

employed to march the solution in time. A modified version of the Runge-Kutta

algorithm [38] which has second-order accuracy [44], is used in this research. The

residual of the Navier-Stokes equations is evaluated in several stages inside the real

time interval between n∆t and (n+ 1) ∆t as follows,

~w(0) = ~w(n)

~w(1) = ~w(0) − α1∆t ~R
(
w(0)

)
...

~w(k) = ~w(0) − αk∆t ~R
(
w(k−1)

)
; k = 1, 2, . . . ,M

...

~w(n+1) = ~w(M),

where M is the number of stages. The Runge-Kutta algorithm combines these com-

puted residuals at different stages in order to construct a second-order approach in
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time. The stability of the numerical scheme is augmented by modifying the con-

vective and dissipative fluxes in every stage of the Runge-Kutta algorithm. In the

present work, a five stage modified Runge-Kutta algorithm [38] is used for the time

integration where in each stage the dissipative and convective fluxes are treated as

follows

~R(k) = ~C(k) + ~D(k)

~C(k) = ~C
(
w(k)

)
~D(k) = βk ~D

(
w(k)

)
+ (1− βk) ~D

(
w(k−1)

)
.

The βk coefficients are defined as below in order to increase the stability of the

equations along the real axis.

β1 = 1, β2 = 0, β3 = 0.56 β4 = 0, β5 = 0.44.

The αk coefficients are chosen as

α1 =
1

4
, α2 =

1

6
, α3 =

3

8
, α4 =

1

2
, α5 = 1.

The coefficients assure the maximum stability along the imaginary axis.

2.7 Convergence Acceleration Techniques

Three different techniques are employed to increase the convergence rate and

reduce the required time to reach a steady state solution. These methods include
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local time stepping, residual averaging, and multigrid. Details on these methods are

excluded in this thesis and can be found in reference [44].

2.8 Flow Preconditioning

At the limit of the incompressible flow regime, compressible flow solvers suffer

from the ill-conditioned nature of the governing equations and the low accuracy

of the poorly scaled artificial dissipation fluxes [47]. These two effects reduce the

convergence rate of the flow solver. To improve the accuracy and convergence of

the solver for incompressible cases, the Weiss-Smith preconditioner is used [47]. By

multiplying the Weiss-Smith preconditioner matrix, the convective and dissipative

fluxes are augmented in order to improve the condition number and stiffness of the

governing equations. This restores the accuracy and convergence of the compressible

flow solver as the Mach number approaches zero. This preconditioner matrix which

augments the Jacobian matrix of the Navier-Stokes equations, is expressed in entropy

form as follows

PS =



β 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,

where β is a constant in the order of the square of the Mach number (β = O (M2)).

By applying the transformation matrices [47], the preconditioner matrix is converted

into the conservative flow variable form
(
P = T TSCPST

T
CS

)
[47]. Consequently, this
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matrix is pre-multiplied by the Jacobian matrix of the Navier-Stokes equations as

follows

P−1∂ ~w

∂t
+
∂ ~Fi
∂ξi

= 0,

P−1∂ ~w

∂t
+ A

∂ ~w

∂ξi
= 0,

∂ ~w

∂t
+ PA

∂ ~w

∂ξi
= 0.

To scale the preconditioned fluxes for the artificial dissipation terms, the inverse of

the preconditioning matrix augments the dissipative fluxes as follows

~d = P−1

[
ε(2)∆x3λ

p

∣∣∣∣∂2p

∂x2

∣∣∣∣ ∂ ~w∂x − ε(4)∆x3λ
∂3 ~w

∂x3

]
.

2.9 Turbulence Model

The eddy viscosity in the RANS equations can be computed by various types

of turbulence models such as algebraic, one-equation, and two-equation models. In

the present work, a modified form of the k − ω SST model originally proposed by

Menter [39], has been employed. The conservative form of the k − ω SST-sust

turbulence model [55] which is suitable for external flows, is as follows,

Dρk

Dt
= τij

∂ui
∂xj
− β∗ρωk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
+ β∗ρω∞k∞, (2.3)
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Dρω

Dt
=
γ

νt
τij
∂ui
∂xj
− βρω2 +

∂

∂xj

[
(µ+ σkµω)

∂ω

∂xj

]
+ 2(1− F1)

ρσω2

ω

∂k

∂xj

∂ω

∂xj
+ βρω2

∞,

(2.4)

where k is turbulent kinetic energy and ω is specific dissipation. Every term of the

k − ω SST-sust turbulence model is identical to the Menter’s standard k − ω SST

turbulence model [39] except the last terms. These ambient terms eliminate the non-

physical decay of the turbulence variables at the far-field boundary. The F1 blending

function is defined as

F1 = tanh
(
arg4

1

)
, (2.5)

where

arg1 = min

[
max

( √
k

0.09ωd
,
500ν

d2ω

)
,

4ρσω2k

CDkωd2

]
.

In the above equation, d, is the minimum distance from the wall, and CDkω is defined

as

CDkω = max

(
2ρσω2

1

ω

∂k

∂xj

ω

xj
, 10−20

)
.

This blending function gradually transforms the Wilcox k−ω in the near wall region

into the standard k − ε model in the outer wake and free shear layer regions. By

using the blending function, F1, any constant φ, can be computed based on φ1 from

the Wilcox k − ω model and φ2 from the standard k − ε model
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φ = F1φ1 + (1− F1)φ2.

The, φ1, can be any of the following constants from the Wilcox k − ω model

σk1 = 0.85, σω1 = 0.5, β1 = 0.075,

β∗ = 0.09, κ = 0.41, γ1 = β1/β − σω1κ
2/
√
β∗,

and the φ2 constant can be any of the standard k − ε model constants as follows

σk2 = 1.0, σω2 = 0.856, β2 = 0.0828,

β∗ = 0.09, κ = 0.41, γ2 = β2/β − σω2κ
2/
√
β∗.

The turbulent eddy viscosity, µt, is defined as follows

µt =
ρa1k

max(a1ω,ΩF2)
. (2.6)

In this definition Ω is the absolute value of vorticity and a1 = 0.31. The function F2

is given by

F2 = tanh
(
arg2

2

)
, (2.7)

where

arg2 = max

(
2
√
k

0.09ωd
,
500ν

d2ω

)
.
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This function modifies the definition of the turbulent eddy viscosity in order to avoid

the overprediction of the shear stress especially in the presence of adverse pressure

gradients [39]. The recommended far-field boundary conditions are kfar-field =

10−6U2
∞ and ωfar-field = 5U∞

L
. The two constants for the wall boundary conditions

are kwall = 0 and ωwall = 10 6ν
β1(∆d1)2

. Since the turbulence model is solved decoupled

from the flow solver, then equations (2.3) and (2.4) should be solved for primitive

variables, k, and, ω.

2.10 Trnasitional Boundary Layer

A laminar boundary layer which usually forms in low Reynolds number flows has

a layer by layer structure. Each layer of the fluid slides over the adjacent layers and

exchange of mass, momentum, or energy takes place in microscopic scales between

the adjacent layers [18]. On the other hand, in a turbulent boundary forming in high

Reynolds numbers, the exchange of mass, momentum, or energy happens between

several layers. The fluid particles can move between the flow layers randomly and

in macroscopic scales to form the eddies [18]. As a result of the intense mixing

in a turbulent boundary layer, the gradient of the velocity profile is steeper and

consequently the turbulent shear stress is larger; therefore turbulent boundary layers

are more dissipative and the thickness of the boundary layer is greater than that of

laminar flows [18].

Transition from laminar to turbulent flow are due to diverse reasons and through

various processes. The following items can trip a laminar to a fully turbulent bound-

ary layer; high Reynolds number, adverse pressure gradient, freestream turbulence
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intensity, wall roughness, and temperature [30] are just some but are the most im-

portant causes of boundary layer transition. The transition process can be gradually

completed during the growth of Tollmien-Schlichting (T-S) wave instabilities, by-

pass transition, separated flow transition, and wake induced transition [30]. When

the freestream turbulence intensity is less than 1%, the two-dimensional Tollmien-

Schlichting (T-S) waves grow linearly along the boundary layer and their behaviour

gradually becomes nonlinear and finally changes to three-dimensional disturbances.

These disturbances produce the turbulent spots that merge and form a fully turbu-

lent boundary layer.

In three-dimensional boundary layers where the flow direction is not perpen-

dicular to the field isobars such as that found on swept wings, crossflow instability

instead of streamwise (T-S) is the primary transition mechanism [58]. Crossflow in-

stability waves are formed due to surface roughness or high freestream turbulence

intensity and the unstable modes of these waves grow due to the adverse crossflow

pressure gradient [58]. The evolution of the crossflow (CF) instabilities is similar

to the growth of Tollmien-Schlichting (T-S) waves in two-dimensional boundary lay-

ers. High level of freestream turbulence intensity (1% ≤ Tu) can bypass the early

stages of natural transition. In bypass transition, after the formation of the turbu-

lent spots, a fully turbulent flow is produced by the coalescence of these spots. In

separated flow transition, the low momentum laminar boundary layer separates and

forms a laminar separation bubble (LSB). Based on inviscid instability theory [50],

the produced laminar shear layer becomes unstable and transition to turbulent flow

occurs. Because of the presence of a pressure gradient, this transitional shear layer
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is re-energized and reattaches as a fully turbulent flow. The wake induced transi-

tion occurs when a turbulent wake flow contaminates a laminar boundary layer, by

increasing the freestream turbulence intensity to trip the boundary layer to a fully

turbulent regime. For example the turbulent wake behind a wind turbine tower can

contaminate the laminar flow over the downstream wind turbine blades [5].

2.11 Transition Model

The γ− ˜Reθt correlation-based transition model has been designed to predict the

transition region from laminar to turbulent flows using local flow variables [30, 37].

Menter et al. [31, 40, 41] first presented this model for transitional flows in various

engineering applications. Recently Langtry et al. [32] published the modified version

of the γ− ˜Reθt transition model with a complete set of correlations for general use in

modern CFD codes. In this model, a transport equation is solved for the turbulence

intermittency (γ) and another for the transport of the momentum-thickness Reynolds

number ( ˜Reθt),

Dργ

Dt
= Pγ −Dγ +

∂

∂xj

[(
µ+

µt
σf

)
∂γ

∂xj

]
,

Dρ ˜Reθt
Dt

= Pθ −
∂

∂xj

[
σθt (µ+ µt)

∂ ˜Reθt
∂xj

]
.

Similar to the turbulence model, the left-hand-side of the transition model equa-

tions includes the unsteady and advection terms. The production of the turbulence

intermittency factor, Pγ, is defined as

Pγ = Flengthca1ρS[γFonset]
0.5(1− ce1γ).
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This term employs Flength which is an empirical correlation to control the length of

the transition process [32], and defined as,

Flength =


398.189e−1 − 119.270e−4R̃eθt − 132.567e−6R̃e

2

θt R̃eθt < 400,

263.404− 123.939e−2R̃eθt + 194.548e−5R̃e
2

θt − 101.695e−8R̃e
3

θt 400 ≤ R̃eθt < 596,

0.5− 3.0e−4
(
R̃eθt − 596.0

)
596 ≤ R̃eθt < 1200,

0.3188 1200 ≤ R̃eθt.

To increase the accuracy of the prediction of the skin friction coefficient at high

Reynolds numbers, the following modification of the Flength is applied,

Flength = Flength

(
1− Fsublayer

)
+ 40.0Fsublayer,

where Fsublayer = e−(Rω0.4 )
2

, Rω = ρd2ω
500µ

, and d is the minimum distance from the wall.

The function Fonset which is responsible for the location of the onset of transition

from laminar to fully turbulent flow is described as,

Fonset = max (Fonset2 − Fonset3, 0) .

The definition of Fonset2 is

Fonset2 = min
(
max

(
Fonset1, F

4
onset1

)
, 2.0

)
, Fonset1 =

Rev
2.193Reθc

, (2.8)

whereRev = ρd2S
µ

and S is the magnitude of the strain tensor. The following proposed

correlation [32] is used to calculate, Reθc based on the local momentum thickness

Reynolds number, R̃eθt, as follows,
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Reθc =


R̃eθt −

(
396.035e−2 − 120.656e−4R̃eθt

+868.230e−6R̃e
2

θt − 696.506e−9R̃e
3

θt + 174.105e−12R̃e
4

θt

)
R̃eθt ≤ 1870,

R̃eθt −
[
593.11 + 0.482

(
R̃eθt − 1870.0

)]
R̃eθt > 1870.

The function Fonset3 is

Fonset3 = max

(
1.−

(
RT

2.5

)3

, 0

)
, RT =

ρk

µω
.

The destruction of the intermittency factor is obtained by

Dγ = ca2ρΩγFturb(ce2γ − 1),

where Fturb = e
−
(
RT
4

)4

[31]. The following constants are used in the transport

equation for the turbulence intermittency factor, γ

ce1 = 1.0, ca1 = 2.0, ce2 = 50, ca2 = 0.06, σf = 1.0.

The production term of the transport equation for the momentum thickness Reynolds

number, Pθ, is given by

Pθ = cθt
(ρU)2

500µ
(Reθt − ˜Reθt)(1− Fθt).

This term keeps the transported variable, R̃eθt, outside the boundary layer as much

as possible, close to the correlated Reθt, which is obtained as follows [32]

Reθt =


[
1173.51− 589.428Tu+ 0.2196

Tu2

]
F (λθ) Tu ≤ 1.3,

331.50 [Tu− 0.5658]−0.671 F (λθ) Tu > 1.3.
(2.9)
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In the above relation the turbulence intensity is defined as Tu = 100

√
2k/3

U
and

λθ = ρθ2

µ
dU
ds

[32]. The function, F (λθ), is obtained by the following relations [32]

F (λθ) =

 1−
[
−12.986λθ − 123.66λθ

2 − 405.689λθ
3
]
e−(Tu1.5)

1.5

λθ ≤ 0,

1 + 0.275
[
1− e(−35.0λθ)

]
e−(Tu0.5) λθ > 0.

To improve the robustness of the numerical solution of the transition model, the

following limits are applied to some of the parameters

−0.1 ≤ λθ ≤ 0.1, Tu ≥ 0.027, Reθt ≥ 20.

Here the blending function, Fθt, which allows the diffusion of the R̃eθt over the entire

domain is obtained by

Fθt = min

(
max

(
Fwakee

−( yδ )
4

, 1.0−
[
γ − 1/ce2

1.0− 1/ce2

]2
)
, 1.0

)
,

where δ = 375µΩ
ρU2 Reθt. The function Fwake which turns off the blending function in

the wake of airfoils is described as

Fwake = e−(Reω
105

)
2

, and Reω =
ρω y2

µ
.

The constant coefficients of the transport equation for the R̃eθt are

cθt = 0.03, and σθt = 2.0.

In order to increase the capability and improve the accuracy of the transition model

to simulate laminar separation bubbles (LSB) and predict the separation-induced
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transition, the following modification is applied to the intermittency factor, γ

γeff = max
(
γ, γsep

)
.

The definition of the separation-induced intermittency factor, γsep, is

γsep = min

[
2 max

(
0,

(
Rev

3.235Reθc

)
− 1

)
Freattach, 2

]
Fθt, (2.10)

where Freattach = e
−
(
RT
20

)4

is responsible for the reattachment of the fully turbulent

flow after the transition bubble.

At the outlet and wall boundaries, a zero-flux boundary condition is employed

for both transition model equations. The turbulence intermittency factor at the inlet

boundary is determined by γinlet = 1.0 and the R̃eθtinlet is computed from equation

(2.9) based on the inlet turbulence intensity, Tuinlet. [32].

2.11.1 Numerical Implementation of the Transition and Turbulence Mod-
els

The transition and turbulence models are solved decoupled from the governing

equations of the flow field. The advection terms in the transition and turbulence

equations are discretized by a first-order scheme while the dissipation and diffusion

terms use a second-order numerical discretization. In order to increase the stability

of the numerical solution of the transition and turbulence equations, a first-order

artificial dissipation term is added to each equation. In two-dimensional space each

equation of the discretized transition and turbulence models produces a pentadiago-

nal partial differential equation (PDE) system. To solve each pentadiagonal system
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implicitly, the alternating direction implicit (ADI) scheme is employed to split these

systems of equations. In each direction the constructed tridiagonal system can be

solved by using a direct method such as the Thomas algorithm [17]. The k− ω SST

turbulence model and the γ − R̃eθt transition model equations are solved in every

multigrid cycle of the RANS solver. The transition and turbulence models are only

updated on the finest grid of a multigrid cycle and on the coarser grids the transition

and turbulence variables are frozen and their restricted updated values on the finest

grid are used.

2.11.2 Modifications to the k − ω SST Turbulence Model

The integration of the γ − R̃eθt transition model, requires modifications of the

k − ω SST model to allow the turbulence model to be gradually activated along

the boundary layer upon the onset of transition. The interaction of the γ − R̃eθt

transition model with the k − ω SST turbulence model is through the following two

modifications.

First, the production and destruction terms of the original transport equation

for the turbulent kinetic energy are modified such that they are scaled by the ef-

fective turbulence intermittency factor, γeff to progressively increase the level of

turbulent kinetic energy, k, along the boundary layer. The original production, Pk,

and destruction, Dk, are redefined based on Langtry and Menter [32] as

P̃k = γeffPk, D̃k = min (max (γeff, 0.1)Dk, 1.0) ,
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where the production term, Pω = γ
νt
Pk, of the transport equation for the specific

dissipation, ω, is determined based on the original, production term, Pk and is not

modified by the transition model variables.

Second, the F1 blending function in the cross diffusion term in the transport

equation for ω, equation (2.4) is modified as follows

F1 = max
(
F1orig, F3

)
,

where F3 = e
−
(
Rd
120

)8

and Rd = ρd
√
k

µ
.

2.11.3 Proposed Modifications to the γ − R̃eθt Transition and k − ω SST
Turbulence Models

The following modifications are applied to address three issues that were ob-

served through our implementation of the γ − R̃eθt transition model.

• New definition of the eddy viscosity

Fluctuations in the skin friction coefficients within the transition zone were

observed for cases with stronger adverse pressure gradients typically due to

an increase in the angle of attack. The fluctuations are caused by an over-

prediction of the shear stress as the turbulence model is slowly beginning to

be active since the intermittency factor is rapidly increasing to unity. In spite

of providing a smooth skin friction coefficient in the fully turbulent regime,

Menter’s original definition (2.6) for the turbulence eddy viscosity results in

fluctuations in the skin friction coefficients within the transition region. We
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employ the following modified definition by Malan et al. [37]

µt = ρk ·min

[
1

max (ω, SF2/a1)
,

0.6√
3S

]
,

where S is the magnitude of the strain tensor and the additional term places a

further limit on the turbulent eddy viscosity. By using this definition the wall

shear stress evolves smoothly through the transition process. The obtained to-

tal drag coefficients and the distribution of the skin friction coefficients, demon-

strated in Chapter 5, are in good agreement with the experimental results for

laminar-turbulent flows.

• Treatment of the far-field boundary conditions

Numerical dissipation of the turbulence intensity from the inlet boundary to the

leading edge of the airfoil was observed. This leads to a dissimilar turbulence

intensity at the leading edge of the airfoil when compared to the experimental

data. The freestream turbulence model variables, k∞ and ω∞, are computed

based on standard definitions [59] from the freestream turbulence intensity,

Tu∞, and the ratio of the viscosities, RT =
(
µt
µ

)
∞

, as follows

k∞ = (3/2) (Tu∞U∞)2 , ω∞ =
ρ∞k∞
RTµ∞

.

However, they are further modified by the following relations [8]

ω∞ = (βs/U∞ + 1/ω∞)−1 , (2.11)

k∞ = k∞ (βω∞s/U∞)−β
∗/β ,
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where s is the axial distance from the leading edge to the far-field (inlet) bound-

ary cells and U∞ is the dimensional freestream velocity. This modification

compensates for the numerical dissipation of the turbulence variables from the

freestream (inlet) boundary to the leading edge of the airfoil and provides the

required turbulence intensity at the airfoil leading edge. Equation (2.11) is

employed to initialize the freestream turbulence kinetic energy, k∞ and dissi-

pation, ω∞ for the entire computational domain.

• Modification of the Fonset

The last observation was that at higher angles of attack, the accuracy of the

prediction of the transition point decreased. The primary correlation function

that predicts the location of the transition point as stated in equation (2.8)

is the Fonset1 function which is a ratio of the vorticity to the momentum-

thickness Reynolds number and a constant 2.193, where the magnitude of the

constant is based on achieving a value of unity for Fonset within a Blasius

boundary layer. However, as noted by Langtry et al. [32] the relationship be-

tween the vorticity and momentum-thickness Reynolds number is a function

of the pressure gradient. A study [32] of the relative error between the max-

imum value of the vorticity Reynolds number and the momentum-thickness

Reynolds number as a function of the boundary layer shape factor, reveals

that for moderate shape factors of (2.3 < H < 2.9), the error is less than 10%,

however the error grows rapidly for higher shape factor values. Langtry and

Menter [32] offered a modification of the intermittency factor for predicting

separation-induced transition as shown in equation (2.10), where the constant
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that controls the relationship between Rev and Reθc is increased to 3.235. How-

ever, at higher angles of attack, the adverse pressure gradient grows and hence

the correlation function, Fonset, needs to be rescaled. Results shown later in

this work, will demonstrate repeatedly that at higher than 5 degrees angle of

attack and/or higher Reynolds numbers the model underpredicts the transition

point. Introducing new functions that modify the equations due to changes in

the freestream conditions would be impractical and diminish the prime moti-

vation of the approach where transition is predicted based on local quantities

instead of global parameters or integrated values. In this work, we investigated

the role of the correlation function for the onset of transition and propose a

modified Fonset1 = Rev
3.29Reθc

correlation function and validated the model for

two airfoils at various Reynolds numbers and angles of attack.
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CHAPTER 3
Numerical Optimization Algorithms

Aerodynamic shape optimization and design based on CFD and flow control

(transition prediction) approaches can be treated as optimization problems con-

strained by systems of partial differential equations [44]. Two types of numerical

optimization techniques have been used to solve aerodynamic shape design problems:

gradient-based methods such as steepest decent and sequential quadratic program-

ming, etc., and non-gradient-based such as genetic algorithms, nonlinear simplex,

stochastic, etc.

Non-gradient based approaches offer the possibility of locating the global op-

timum; however, the need for a large number of function evaluations render this

approach intractable for aerodynamic design optimization based on solutions of the

Navier-Stokes equation. Its ability to explore a large design space, entitles it to be

employed together with low-fidelity equations such as potential flow to survey a large

range of planform variables to investigate various aircraft configurations within the

conceptual design stage.

In this work, the goal is to design natural laminar flow airfoils using the RANS

equation together with transition-turbulence models. The computational cost of the

fluid solver at a single flight condition requires approximately one wall clock hour
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and hence a non-gradient based approach would be infeasible. Therefore, a gradient-

based approach using a smoothed steepest descent algorithm will be employed and

presented in the following sub-sections.

3.1 Gradient-based Optimization Algorithms

In the following subsections the original steepest descent and smoothed steepest

descent methods are discussed.

3.1.1 Steepest Descent

In each design cycle a step length, α, and search direction, ~p, are employed in

order to update the design variable, ~x,

~xn+1 = ~xn + α~p. (3.1)

For the step length, α, a small constant value which satisfies the Wolf’s conditions

or a line search method can be used [44]. In order to find the search direction, ~p, the

optimization problem is defined as follows

min f(~x) w.r.t ~x ∈ Rm,

where f(~x) is a continuous function of the design variable vector, ~x that has m

components. Considering equation (3.1), Taylor’s expansion of the function f(~x) is

written around the design variable, ~x, as follows

f(~x+ α~p) = f(~x) + α~pT∇f(~x) +
1

2
α2~pT∇2f(~x)~p+ ..., (3.2)
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where ∇f(~x) and ∇2f(~x) are the gradient vector and Hessian matrix respectively.

The second term in equation (3.2), α~pT∇f(~x), expresses the change of the function

f(~x) along the search direction ~p. By minimizing this term, the function f(~x) is

minimized as well. Hence the optimization problem is stated as follows

min ~pT∇f(~x) w.r.t. ~x ∈ Rm

subject to ||~p|| = 1.

By using the definition of the dot product between two vectors and the fact that

||~p|| = 1, this term is described as

~pT∇f(~x) = ||~∇f || cos θ,

where θ is the angle between the ~p and ~∇f . In order to minimize the above equation,

cos θ must equal to −1. As a result the search direction, ~p, is counter parallel to the

gradient vector of the objective function and is defined as

~p = −
~∇f
||~∇f ||

.

By considering the norm of the gradient vector as a factor for the step length, α, the

search direction, ~p, can be defined as the negative of the gradient vector

~p = −~∇f,

and the design variable for the next design cycle is defined as
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~xn+1 = ~xn − α~∇f.

By choosing the negative gradient vector as the design search direction, the steepest

descent method assures the minimization of the cost function.

3.1.2 Smoothed Steepest Descent Method

In this modified version of the steepest descent method, the obtained gradient in

each design iteration is smoothed. Using the smoothed gradient of the cost function

accelerates the convergence of the optimization process. The smoothed gradient

allows the use of larger step lengths which reduces the number of design iterations

and accelerates the design and optimization process. Also the smoothed gradient of

the cost function guarantees the smoothness of the design variables in each design

iteration [44]. This property is valuable for aerodynamic shape optimization since

the design variables which are the surface grid points, remain smooth during the

optimization process. The non-smooth gradient of the cost function, ~∇f , which was

previously used to update the design variable vector, ~x,

~xn+1 = ~xn + ~δx = ~xn − α~∇f,

is replaced by the smoothed gradient, ~∇f , through the following equation

~∇f − ε ∂
2

∂ξ2

~∇f = ~∇f.

Using a large smoothing parameter, ε, allows a faster convergence of the optimizer

since a larger step length can be employed [44]; however, too large a value would
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alter the search direction considerably and convergence of the optimization problem

is no longer guaranteed. To show the effect of using the smoothed gradient on the

optimization process, the first-order variation of the cost function is computed as

follows

δf = −
∫ ∫

~∇fα ~∇fdξ

= −α
∫ ∫ (

~∇f − ε ∂
2

∂ξ2

)
~∇fdξ

= −α
∫ ∫

~∇f
2

dξ + α

∫ ∫ (
ε
∂2

∂ξ2

~∇f
)

~∇fdξ.

Integration by parts leads to

δf = −α
∫ ∫  ~∇f

2

+ ε

(
∂ ~∇f
∂ξ

)2
 dξ ≤ 0.

The obtained result is valid if both α and ε are positive.

3.2 Constrained Optimization

In this section the minimization of a function subject to constraints is discussed.

The quadratic penalty method which is employed in the present work, formulates the

constrained optimization problem as an unconstrained problem by defining a new

objective function that augments the original objective function with a quadratic
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penalty function that contains the constraints. The constrained optimization is de-

fined as,

min f(x) w.r.t. x ∈ Rm,

subject to Cj = 0, j = 1, . . . , n,

where Cj are equality constraints, and n is the number of constraints [22]. A new

objective function is defined by an additional term for each constraint. The additional

term has the property that it is positive when the current iteration for the design

variable vector, ~x, violates the constraint and zero otherwise. The new objective

function based on the quadratic penalty functions and the original cost function is

defined as follows

Q(~x ; µj) = f(~x) +
1

2

m∑
j

µj C(~x)j
2,

where µj are the penalty parameters and perform as a positive weight on the con-

straints, Cj. As the weight on the constraint increases, the constraint value ap-

proaches zero and the augmented objective function approaches the true objective.

The new unconstrained optimization problem is described as

min Q(~x ; µj) w.r.t. x ∈ Rm where j = 1, . . . , n.

Since the new objective function, Q(~x ; µj), is a linear combination of f(~x) and Cjs,

therefore it remains smooth and differentiable. Thus all the algorithms suitable for

unconstrained optimization can be employed for the optimization of Q(~x ; µj). In
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the present work the smoothed steepest algorthim (section 3.1.2) is used with the

quadratic penalty function method.

3.3 Design Variables

The design variables are one of the crucial choices for a successful optimization

and design procedure. In the present work, the surface grid points defining the airfoil

shape are chosen to be the design variables. In the discrete computational domain the

airfoil shape translates to mesh points. There are several other ways to change the

airfoil shape such as Hicks-Henne bump functions [16] and the B-spline curves [34].

3.3.1 Mesh Points

Jameson [24, 25] proposed the concept of using mesh points for aerodynamic

shape optimization. This point-wise method increases the number of design variables

and if the finite difference method is used to compute the gradient, the computation

would be intractable. Since, in the present work the discrete adjoint approach which

does not need any flow re-evaluation is employed, it is feasible to use mesh points

as design variables. However to avoid a discontinuous airfoil surface, the smoothed

steepest descent method (subsection 3.1.2) is used.
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CHAPTER 4
Discrete Adjoint Approach for the γ − R̃eθt Transition and the k − ω SST

Turbulence Models

In this chapter the discrete adjoint equations for the discrete form of the gov-

erning equations, the k−ω SST, and γ− R̃eθt transition models are presented. Next

the chapter list the various objective functions employed in this work, as well as their

corresponding discrete adjoint boundary conditions. Lastly, the gradient of the cost

function and the employed mesh perturbation technique are discussed.

4.1 Introduction

Consider an objective function, I = I(~w, ~xs), to be minimized, where ~w is the

flow variable vector, and ~xs are the surface mesh points that define the airfoil surface.

Since the residual of the flow solver, which is a function of the flow variables, ~w, and

surface points, ~xs, is assumed to be zero,

~R(~w, ~xs) = 0,

the gradient of the objective function, I(~w, ~xs), with respect to the surface points,

~xs, is obtained by defining the Lagrangian function

L(~w, ~xs, ~ψ) = I(~w, ~xs) + ~ψT ~R(~w, ~xs),
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where the governing equation is introduced as a constraint and ~ψ is the Lagrange

multiplier or adjoint vector. The sensitivity of the Lagrangian function with re-

spect to the design variable vector, where in this work the surface mesh points are

designated as the design variables, can be expanded as,

dL

d~xs
=

∂I

∂~xs
+
∂I

∂ ~w

∂ ~w

∂~xs
+ ~ψT

[
∂ ~R

∂ ~w

∂ ~w

∂~xs
+
∂ ~R

∂~xv

∂~xv
∂~xs

]
,

where ~xv = ~xv(~xs), the volume mesh points is a function of the surface mesh points,

~xs. To eliminate the flow variable sensitivities, we may rewrite the expression as

dL

d~xs
=

[
∂I

∂ ~w
+ ~ψT

∂ ~R

∂ ~w

]
∂ ~w

∂~xs
+

[
∂I

∂~xs
+ ~ψT

∂ ~R

∂~xv

∂~xv
∂~xs

]
, (4.1)

and choose ~ψT such that the left term of equation (4.1) is zero, then the adjoint

equation [22, 23, 25, 26] is defined as,

∂I

∂ ~w
+ ~ψT

∂ ~R

∂ ~w
= 0, (4.2)

where ∂ ~R
∂ ~w

is the Jacobian of the governing equations with respect to the flow variables.
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4.2 Formulation of the Discrete Adjoint Equations for the Turbulence
and Transition Models

In steady state the primitive form of the k−ω SST turbulence model are written

as,

µt

(
∂ui
∂xj

)2

− β∗ρωk +
∂

∂xi

[
(µ+ σk1µt)

∂k

∂xi

]
+ β∗ρωambkamb − ρui

∂k

∂xi
= 0,

γ

νt
µt

(
∂ui
∂xj

)2

− β1ρω
2 +

∂

∂xi

[
(µ+ σω1µt)

∂ω

∂xi

]
+ β1ρω

2
amb − ρui

∂ω

∂xi

+ 2 (1− F1)
ρσω2

ω

∂k

∂xi

∂ω

∂xi
= 0, (4.3)

and the primitive equations of the γ − R̃eθt transition model are as follows,

Flenghtca1ρS[γFonset]
0.5(1− ce1γ)− ca2ρΩγFturb(ce2γ − 1) +

∂

∂xj

[(
µ+

µt
σf

)
∂γ

∂xj

]
− ρui

∂γ

∂xi
= 0,

cθt
(ρU)2

500µ
(Reθt − ˜Reθt)(1− Fθt) +

∂

∂xj

[
σθt (µ+ µt)

∂γ

∂xj

]
− ρui

∂R̃eθt
∂xi

= 0. (4.4)

According to section 4.1, the linear adjoint operator (equation 4.2) can be written

as,

AT · ~ψ = ~C, (4.5)

where AT is the transpose of the Jacobian matrix of the flow residual, and ~C is

the derivative of the cost function with respect to the flow variables. There are

multitude of techniques in computing the exact Jacobian, spanning from reverse-

mode automatic differentiation (AD) [22], the complex-step approach [22], and hand-

derivation [22, 44]. In this work, we chose the hand-derivation, as opposed to AD as

unoptimized AD has a tendency to be slower as well as the complex-step approach.
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The primary disadvantage is the time-consuming nature of developing the discrete

adjoint equations through a hand-derivation. By adding a pseudo time term, the

adjoint equation (equation 4.5) is defined as,

∂ ~ψ

∂t
+R(~ψ) = 0,

where R(~ψ) = AT ~ψ− ~C is the residual of the adjoint equation. The derivation proce-

dure of the residual of the discrete adjoint equations for the γ−R̃eθt transition model

and k − ω SST turbulence model for the ADI scheme is described in Appendix A.

Hence the discrete adjoint equations for the transition and turbulence models for

each control volume (i, j) can be written as follows,

∂ψm,ij
∂t

= JDm,i+1jψm,i+1j + JDm,i−1jψm,i−1j

+ JDm,ijψm,ij + JDm,ij+1ψm,ij+1 + JDm,ij−1ψm,ij−1, m = 5, . . . , 8. (4.6)

where JD shows the entries of the pentadiagonal matrix of the ADI scheme for the

domain cells. Due to the usage of m = 1, . . . , 4 for the adjoint variables of the Navier-

Stokes equations, m = 5, 6 are employed for the adjoint variables of the turbulence

model and m = 7, 8 are for the transitional adjoint variables. To simplify the notation

for the subscripts and avoid a secondary subscript, we have chosen to eliminate the

comma between indices i, and j in the subscript. For an example, ij − 1, denotes

i, j − 1. The entries of the pentadiagonal matrix for the adjoint equation of the

turbulent kinetic energy, k, are defined as,
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JD5,i−1j =

[
−ρi−1j

u−i−1

∆xi−1

+
1

∆xi−1

(
µ+ σk1µt

∆x

)
i− 1

2

+ 2 (1− F1,i−1j)
ρi−1jσω2

ωi−1j

ωij − ωi−2j

(2∆xi−1)2

]
,

JD5,ij−1 =

[
−ρij−1

u−j−1

∆xj−1

+
1

∆xj−1

(
µ+ σk1µt

∆x

)
j− 1

2

+ 2 (1− F1,ij−1)
ρij−1σω2

ωij−1

ωij − ωij−2

(2∆xj−1)2

]
,

JD5,ij =

{
2β∗ρijωij − ρij

(
u+
i − u−i
∆xi

+
u+
j − u−j
∆xj

)
− 1

∆xi

[(
µ+ σk1µt

∆x

)
i+ 1

2

+

(
µ+ σk1µt

∆x

)
i− 1

2

]

− 1

∆xj

[(
µ+ σk1µt

∆x

)
j+ 1

2

+

(
µ+ σk1µt

∆x

)
j− 1

2

]}
,

JD5,i+1j =

[
ρi+1j

u+
i+1

∆xi+1

+
1

∆xi+1

(
µ+ σk1µt

∆x

)
i+ 1

2

− 2 (1− F1,i+1j)
ρi+1jσω2

ωi+1j

ωi+2j − ωij

(2∆xi+1)2

]
,

JD5,ij+1 =

[
ρij+1

u+
j+1

∆xj+1

+
1

∆xj+1

(
µ+ σk1µt

∆x

)
j+ 1

2

− 2 (1− F1,ij+1)
ρij+1σω2

ωij+1

ωij+2 − ωij

(2∆xj+1)2

]
.
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The entries of the pentadiagonal matrix for the adjoint equation of the specific dis-

sipation, ω, are defined as,

JD6,i−1j =

[
−ρi−1j

u−i−1

∆xi−1

+
1

∆xi−1

(
µ+ σω1µt

∆x

)
i− 1

2

+ 2 (1− F1,i−1j)
ρi−1jσω2

ωi−1j

kij − ki−2j

(2∆xi−1)2

]
,

JD6,ij−1 =

[
−ρij−1

u−j−1

∆xj−1

+
1

∆xj−1

(
µ+ σω1µt

∆x

)
j− 1

2

+ 2 (1− F1,ij−1)
ρij−1σω2

ωij−1

kij − kij−2

(2∆xj−1)2

]
,

JD6,ij =

{
2β∗ρijkij + 4βρijωij − ρij

(
u+
i − u−i
∆xi

+
u+
j − u−j
∆xj

)

− 1

∆xi

[(
µ+ σω1µt

∆x

)
i+ 1

2

+

(
µ+ σω1µt

∆x

)
i− 1

2

]
− 1

∆xj

(µ+ σω1µt
∆x

)
j+ 1

2

+

(
µ+ σω1µt

∆xj− 1
2

)
j− 1

2


− (1− F1,ij )

ρijσω2

ω2
ij

[
ki+1j − ki−1j

∆xi

ωi+1j − ωi−1j

∆xi
+
kij+1 − kij−1

∆xj

ωij+1 − ωij−1

∆xj

]}
,

JD6,i+1j =

[
ρi+1j

u+
i+1

∆xi+1

+
1

∆xi+1

(
µ+ σω1µt

∆x

)
i+ 1

2

− 2 (1− F1,i+1j)
ρi+1jσω2

ωi+1j

ki+2j − kij
(2∆xi+1)2

]
,

JD6,ij+1 =

[
ρij+1

u+
j+1

∆xj+1

+
1

∆xj+1

(
µ+ σω1µt

∆x

)
j+ 1

2

− 2 (1− F1,ij+1)
ρij+1σω2

ωij+1

kij+2 − kij
(2∆xj+1)2

]
.
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The entries of the pentadiagonal matrix for the adjoint equation of the intermittency

factor, γ, are defined as,

JD7,i−1j =

−ρi−1j

u−i−1

∆xi−1

+
1

∆xi−1

(
µ+ µt

σf

∆x

)
i− 1

2

 ,
JD7,ij−1 =

−ρij−1

u−j−1

∆xj−1

+
1

∆xj−1

(
µ+ µt

σf

∆x

)
j− 1

2

 ,
JD7,ij =

{
Flenghtca1ρSF

0.5
onset

(
1
√
γ
− ce1

√
γ

)
− ca2ρΩFturb (2ce2γ − 1)

−ρij

(
u+
i − u−i
∆xi

+
u+
j − u−j
∆xj

)
− 1

∆xi

(µ+ µt
σf

∆x

)
i+ 1

2

+

(
µ+ µt

σf

∆x

)
i− 1

2


− 1

∆xj

(µ+ µt
σf

∆x

)
j+ 1

2

+

(
µ+ µt

σf

∆x

)
j− 1

2

 ,

JD7,i+1j =

ρi+1j

u+
i+1

∆xi+1

+
1

∆xi+1

(
µ+ µt

σf

∆x

)
i+ 1

2

 ,
JD7,ij+1 =

ρij+1

u+
j+1

∆xj+1

+
1

∆xj+1

(
µ+ µt

σf

∆x

)
j+ 1

2

 .
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While the entries of the pentadiagonal matrix for the adjoint equation of the momentum-

thickness Reynolds number can be defined as,

JD8,i−1j =

[
−ρi−1j

u−i−1

∆xi−1

+
1

∆xi−1

(
σθt (µ+ µt)

∆x

)
i− 1

2

]
,

JD8,ij−1 =

[
−ρij−1

u−j−1

∆xj−1

+
1

∆xj−1

(
σθt (µ+ µt)

∆x

)
j− 1

2

]
,

JD8,ij =

{
−ρij

(
u+
i − u−i
∆xi

+
u+
j − u−j
∆xj

)
− 1

∆xi

[(
σθt (µ+ µt)

∆x

)
i+ 1

2

+

(
σθt (µ+ µt)

∆x

)
i− 1

2

]

− 1

∆xj

(σθt (µ+ µt)

∆x

)
j+ 1

2

+

(
σθt (µ+ µt)

∆xj− 1
2

)
j− 1

2

− cθt (ρU)2

500µ
(1− Fθt)

 ,

JD8,i+1j =

[
ρi+1j

u+
i+1

∆xi+1

+
1

∆xi+1

(
σθt (µ+ µt)

∆x

)
i+ 1

2

]
,

JD8,ij+1 =

[
ρij+1

u+
j+1

∆xj+1

+
1

∆xj+1

(
σθt (µ+ µt)

∆x

)
j+ 1

2

]
.

The i- and j-directions are the tangential and orthogonal directions to the wall

boundary respectively, while u−j and u+
j are defined as

u−j =
1

2
(uj − |uj|) ,

u+
j =

1

2
(uj + |uj|) . (4.7)

Since in the present work the discrete adjoint equations for the Reynolds-averaged

Navier-Stokes equations [44] are solved separately from the discrete adjoint equations

for the transition and turbulence models through a loose-coupling approach, a series

of coupling terms are derived and added to the equations as source terms. The

following terms are added to the right-hand-side (RHS) of the adjoint equations for
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the Navier-Stokes equations

RHS(ψ2) = ψ5
∂k

∂x
+ ψ6

∂ω

∂x
+ ψ7

∂γ

∂x
+ ψ8

∂R̃eθt
∂x

,

RHS(ψ3) = ψ5
∂k

∂y
+ ψ6

∂ω

∂y
+ ψ7

∂γ

∂y
+ ψ8

∂R̃eθt
∂y

.

The coupling terms which are added to the residual of the discrete adjoint equations

for the k − ω SST turbulence and γ − R̃eθt transition models are as follows,

RHS(ψ5) =
∂µ

∂k

(
ψ2
∂2U

∂x2
+ ψ3

∂2U

∂y2

)
,

RHS(ψ6) =
∂µ

∂ω

(
ψ2
∂2U

∂x2
+ ψ3

∂2U

∂y2

)
,

RHS(ψ7) =
∂µ

∂γ

(
ψ2
∂2U

∂x2
+ ψ3

∂2U

∂y2

)
,

RHS(ψ8) =
∂µ

∂R̃eθt

(
ψ2
∂2U

∂x2
+ ψ3

∂2U

∂y2

)
.

These terms couple the adjoint counterpart for the momentum equations of the

Reynolds-averaged Navier-Stokes equations to the adjoint equations for the transition

and turbulence models respectively.

4.2.1 Discrete adjoint boundary conditions

In contrast to the continuous adjoint approach where the boundary conditions

are separate equations, the discrete adjoint boundary conditions appear as source

terms in the equations of the interior cells adjacent to the wall and far-field bound-

aries.

• Inlet boundary
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The inlet Dirichlet boundary conditions [32, 37] for the turbulence and transi-

tion models are defined as

k∞ = 10−6U2
∞, ω∞ =

ρ∞k∞
10µ∞

,

γ∞ = 1.0, R̃eθt∞ = 1173.5− 589.428Tu∞ +
0.2196

Tu2
∞
.

By introducing the inlet boundary conditions into the mathematical derivation

of the discrete adjoint equations, the entries of the pentadiagonal matrix for

the boundary cell, ψij, are altered as follows

JB5,ij = JD5,ij + ρij
u−j

∆xj
− 1

∆xj

(
µ+ σk1µt

∆xj− 1
2

)
j− 1

2

,

JB6,ij = JD6,ij + ρij
u−j

∆xj
− 1

∆xj

(
µ+ σω1µt

∆xj− 1
2

)
j− 1

2

,

JB7,ij = JD7,ij + ρij
u−j

∆xj
− 1

∆xj

(
µ+ µt

σf

∆xj− 1
2

)
j− 1

2

,

JB8,ij = JD8,ij + ρij
u−j

∆xj
− 1

∆xj

(
σθt (µ+ µt)

∆xj− 1
2

)
j− 1

2

, i ∈ Ω, j ∈ δΩinlet,

where JB are the entries of the pentadiagonal matrix for the boundary cell.

• Outlet boundary

At the outlet, the turbulence and transition models employ Neumann boundary

conditions [32, 37]. Here the normal gradients of the variables at the outlet

boundary are zero as follows

∂k

∂η outlet
=
∂ω

∂η outlet
=
∂γ

∂η outlet
=
∂R̃eθt
∂η outlet

= 0.
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By applying the outlet boundary conditions of the turbulence and transition

models into the discrete adjoint approach, the entries of the pentadiagonal

matrix for the outlet boundary cell (i, j) can be represented as

JB5,ij = JD5,ij − ρij
u−i
∆xi

+
1

∆xi

(
µ+ σk1µt

∆xi+ 1
2

)
i+ 1

2

,

JB6,ij = JD6,ij − ρij
u−i
∆xi

+
1

∆xi

(
µ+ σω1µt

∆xi+ 1
2

)
i+ 1

2

,

JB7,ij = JD7,ij − ρij
u−i
∆xi

+
1

∆xi

(
µ+ µt

σf

∆xi+ 1
2

)
i+ 1

2

,

JB8,ij = JD8,ij − ρij
u−i
∆xi

+
1

∆xi

(
σθt (µ+ µt)

∆xi+ 1
2

)
i+ 1

2

, i ∈ δΩoutlet, j ∈ Ω.

• Wall boundary

At the wall boundary, the definition of the boundary conditions are dissimilar,

where the transition model employs a Neumann boundary condition, while the

turbulence model uses Dirichlet [32, 37]. The wall boundary conditions for the

turbulence model are defined as follows,

kwall = 0, ωwall =
6µ∞
βρ∞y2

.

By employing the wall boundary conditions of the turbulence model into the

discrete adjoint approach, the entries of the pentadiagonal matrix for the
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boundary cell (i, j) change and are defined as,

JB5,ij = JD5,ij − ρij
u+
j

∆xj
− 1

∆xj

(
µ+ σk1µt

∆xj+ 1
2

)
j+ 1

2

,

JB6,ij = JD6,ij − ρij
u+
j

∆xj
− 1

∆xj

(
µ+ σω1µt

∆xj+ 1
2

)
j+ 1

2

, i ∈ δΩwall, j ∈ δΩwall.

The transition model employs Neumann zero flux boundary conditions for both

equations [32, 37],

∂γwall
∂n

= 0,
∂R̃eθt,wall

∂n
= 0.

The Neumann type wall boundary conditions of the transition model are intro-

duced into the discrete adjoint approach, and the entries of the pentadiagonal

matrix are altered as follows,

JB7,ij = JD7,ij + ρij
u+
j

∆xj
+

1

∆xj

(
µ+ µt

σf

∆xj− 1
2

)
j− 1

2

,

JB8,ij = JD8,ij + ρij
u+
j

∆xj
+

1

∆xj

(
σθt (µ+ µt)

∆xj− 1
2

)
j− 1

2

, i ∈ δΩwall, j ∈ δΩwall.

The discrete derivatives of the cost function with respect to the field variables(
∂I
∂kij

, ∂I
∂ωij

, ∂I
∂γij

, ∂I
∂R̃eθtij

)
should be added to the right-hand-side of the discrete adjoint

equation of the domain, boundary cells or both as source terms [44, 22]. The discrete

adjoint equations are derived by hand; however, some parts of the hand derivation

of the transition and turbulence models have been verified through the MAPLE

software. For the sake of completeness, the continuous adjoint approach is presented

in Appendix B. The consistency of the adjoint approaches is shown in section B.2.2
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by recovering the continuous adjoint equations from the discrete adjoint equations

for the transition and turbulence models in the limit that the mesh width reduces to

zero. The discrete adjoint equations for the γ− R̃eθt transition model and k−ω SST

turbulence model form a four pentadiagonal PDE system. An alternating direction

implicit (ADI) scheme similar to the turbulence and transition models is employed

to solve the derived equations.

4.3 Cost Function

In this section the various cost functions employed to design NLF airfoils, are

explained. For each cost function, the derivative of the function with respect to

the state variable must be added to the right-hand-side of the corresponding costate

discrete adjoint equation (4.6). The derivative of the cost functions associated with

the state variables for the Navier-Stokes equations have been derived in reference [44];

therefore only the source terms of the discrete adjoint equations for the k − ω SST

turbulence model and γ − R̃eθt transition model are described as follows:

• Drag Coefficient

The drag coefficient is a boundary cost function which does not have any do-

main contribution and therefore its derivative is shown only as the source term

of the discrete adjoint equations for the boundary cells. In the physical domain,

the aerodynamic normal force coefficient is defined as follows,

Cn =
1

c

[∫ c

0

(Cp,l − Cp,u) dx1 +

∫ TE

LE
(Cf,u − Cf,l) dx2

]
, (4.8)
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and the following equation describes the aerodynamic axial force coefficient as,

Ca =
1

c

[∫ TE

LE
(Cp,u − Cp,l) dx2 +

∫ c

0

(Cf,u − Cf,l) dx1

]
. (4.9)

In the above equations c is the airfoil chord length while LE and TE stand

for the airfoil leading edge and trailing edge points. In addition Cp and Cf

are the pressure and skin friction coefficients respectively. Finally the u and l

indices are for the upper and lower airfoil surfaces. The drag coefficient which

constitutes pressure and skin friction components, is defined as follows,

ID = Cd = Cn cosα− Ca sinα,

where α is the angle of attack. The contributions of this function in the discrete

adjoint equations for the Navier-Stokes equations are stated in reference [44]

in detail. To derive the discrete adjoint boundary source terms, the drag is

differentiated with respect to the transition and turbulence state variables.

The derivative of the skin friction drag with respect to q can be defined as,

∂Cd
∂q

=
∂Cd
∂µt

∂µt
∂Pk

∂Pk
∂q

,

where q is any one of the transition or turbulence state variables, (γ, R̃eθt, k, ω).

• Lift Coefficient

To maintain or maximize the lift coefficient a quadratic penalty function is

defined as below

IL =
1

2
(Cl − ClT )2 ,
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where ClT is the target lift coefficient. For cases, where the lift is to be main-

tained, then the initial lift coefficient is employed, while a higher target value

is utilized if lift maximization is sought. According to equations 4.8 and 4.9,

the lift coefficient which has pressure and skin friction components, is defined

as below,

Cl = Cn sinα + Ca cosα.

Similar to the drag coefficient, the contributions of the lift coefficient to the

adjoint equations for the RANS solver are explained in reference [44]. The

derivative of the skin friction component of the lift coefficient with respect to

q can be expressed as,

∂Cl
∂q

=
∂Cl
∂µt

∂µt
∂Pk

∂Pk
∂q

,

where q again is any one of the transition and turbulence variables dependent to

the corresponding adjoint equation. The lift coefficient only has contributions

to the boundary cells.

• Production of Turbulent Kinetic Energy

Reduction of the turbulent kinetic energy decreases the turbulence intensity or

eddy viscosity over the entire domain. As the level of the turbulent viscosity

is reduced the transition points are postponed and the viscous component of

drag is minimized. More details about the idea and effectiveness of this cost

function will be presented and discussed in section 6.2. The production of

turbulent kinetic energy as a cost function is specifically applied to the adjoint

variables of the transition and turbulence models. This function is defined as
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follows,

IPk =
∑

Pk =
∑

γeffµtS
2 in Ω.

To add the effect of this cost function into the right hand side of the discrete ad-

joint equations for the transition and turbulence models, a chain rule equation

is employed as follows,

∂Pk
∂q

=
∂Pk
∂µt

∂µt
∂q

,

where q is representative of every transition and turbulence variable for the

computational cell. Unlike the previous two cost functions that were integrals

over the wall boundary, in this case, the production of the turbulent kinetic

energy cost function would appear as source terms in the discrete adjoint equa-

tions for the γ−R̃eθt transition and k−ω SST turbulence models and are defined

respectively as

RHS(ψ5)new = RHS(ψ5)old +
ργS2

ω
,

RHS(ψ6)new = RHS(ψ6)old − ργkS2

ω2
,

RHS(ψ7)new = RHS(ψ7)old + µtS
2,

RHS(ψ8)new = RHS(ψ8)old, in Ω.

The mentioned cost functions will be investigated for their effectiveness to design

new natural laminar flow (NLF) airfoils by postponing the transition points and

minimizing the pressure and skin friction drag components while maintaining or

maximizing the lift coefficient.
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4.4 Gradient of the Cost Function

As explained in section 4.1, the solution of the discrete adjoint equations removes

the dependency of the gradient of the cost function to the flow variables and only the

gradient is calculated with respect to the variation of the grid perturbation. After

solving the discrete adjoint equations, the gradient of the cost function (equation 4.1)

can be written as follows,

dL

d~xs
=

∂I

∂~xs
+ ~ψT

∂ ~R

∂~xv

∂~xv
∂~xs

,

where ∂I
∂~xs

is the variation of the cost function with respect to the perturbation of

the surface mesh points. The ∂ ~R
∂~xv

is the variation of the residual associated to the

variation of the volume grid points while ∂~xv
∂~xs

is the mesh sensitivity. To compute

the gradient each geometry surface point or design variable is perturbed and the

corresponding residual is re-evaluated. For the residual re-evaluation the grid should

be re-generated which is computationally very costly. To avoid the grid re-generation,

Jameson et al. [24, 25] introduced the following method for the structured grids to

modify the location of the grid points according to the perturbation of the airfoil

surface. The arc length from a grid point of a grid index line to its corresponding

perturbed geometry surface point is calculated. Then the ratio of the arc length

is computed versus the distance of the perturbed surface point from the far-field.

Based on the ratio the new location of the grid point is updated as follow xnewIj = xoldIj + Cj
(
xnewI1 − xoldI1

)
ynewIj = yoldIj + Cj

(
ynewI1 − yoldI1

) for j = 1, 2, ..., jmax,
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where Cj is defined as

Cj = 1− (3− 2Nj)N
2
j and Nj =

∑j
l

√
(xIl − xIl−1)2 + (yIl − yIl−1)2∑jmax

l

√
(xIl − xIl−1)2 + (yIl − yIl−1)2

.

The mentioned algorithm relates the variation of the surface points or design variables

to the variation of the grid point locations of the corresponding grid line. The grid

perturbation scheme is very robust and its robustness has been specifically verified for

two-dimensional viscous grids [29]. This simple method guarantees the smoothness

of the modified grids without any grid point cross-overs. More details about this

mesh modification algorithm can be found in reference [44].
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CHAPTER 5
Flow Solver Results

In this chapter a thorough validation of the developed laminar-turbulent flow

solver is performed against the NLF(1)-0416 airfoil [51] and S809 wind turbine pro-

file [52] experimental data.

5.1 Introduction

The following two airfoils are chosen to validate the accuracy and the capability

of the new transitional flow solver. The first test case is the NLF(1)-0416 airfoil which

was initially designed for general aviation applications [51] but has been successfully

used for wind turbine blades [49]. The second test case is the S809 airfoil which is

specially designed for stall-regulated horizontal axis wind turbine blades [52]. Fig-

ures 5–1(a) and 5–1(b) illustrate the NLF(1)-0416 and S809 profiles using a 512×256

structured C-type grid. To provide a thorough examination of the new transitional

solver, an extensive grid sensitivity study to investigate the role of the grid density in

both the x-direction and y-direction of the grids on the accuracy of the skin friction

coefficient, the length of the laminar separation bubble, and the location of the tran-

sition point, will be presented. Convergence of the flow solver as well as the transition

and turbulence solvers will be examined. The numerical results will be compared to

experimental and other numerical solutions [5, 32], when available, such as pressure

coefficient distributions, transition points versus angles of attack, and drag polars at

various Reynolds numbers. The Reynolds number and angle of attack effect on the
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Figure 5–1: 512× 256 structured C-type grid

size and position of the laminar separation bubble, the transition point, as well as

the proper modelling of the turbulent flow separation will be thoroughly analyzed

and compared to observations by Somers [52].

5.2 Convergence

The S809 wind turbine airfoil at a Reynolds number of 2× 106 and an angle of

attack of 1 degree is considered for the convergence study of the flow, k − ω SST

turbulence, and γ − ˜Reθt transition models. The density residual of the flow solver

reduces by five orders within 2000 multigrid cycles. This level of convergence is

sufficient to achieve global convergence and ensure that the lift and drag coefficients

have converged, which typically converged within 500 multigrid cycles, accurate up to

four decimal places. The residual convergence of the γ− ˜Reθt transition model and the

k−ω SST turbulence model are described in figure 5–2. The turbulent kinetic energy,

k, and specific dissipation, ω, achieve a ten order and machine zero convergence,
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respectively, within 1000 multigrid cycles. The turbulence intermittency factor, γ, is

reduced by ten orders, while the momentum-thickness Reynolds number, ˜Reθt attains

a six order reduction within 1000 multigrid cycles. The turbulence intensity level,

Tu∞ is set to 0.2% based on the recommendation of Langtry and Menter [32], and

the ratio of viscosities,
(
µt
µ

)
∞

is initialized to ten for all cases presented in this paper.

The initial and farfield values at the upstream boundary for the turbulent kinetic

energy, k, and specific dissipation, ω, are calculated via equation (2.11), while at the

downstream outlet boundary, a zeroth order extrapolation is employed. In the case

of the transition model, the turbulence intermittency factor, γ, is initialized to unity

in the entire domain and fixed at the same value at the farfield inlet boundary. The

momentum-thickness Reynolds number, ˜Reθt, is only a function of the turbulence

intensity level and computed from equation (2.9). As mentioned in section 2.3, the

three solvers are loosely coupled where the transition and turbulence models are

updated at the fine grid level of every multigrid cycle.

5.3 Grid Study

The NLF(1)-0416 airfoil at a Reynolds number of 2 × 106 and an angle attack

of 1 degree, is chosen to perform a grid study of the transition model. To study the

effect of the grid density along the streamwise and normal to the wall directions, the

grid study is first performed in the x-direction and secondly along the y-direction

separately. The proper grid density in the stream wise direction is required to ensure

an accurate simulation of the transitional model to precisely resolve the transition

point, while the y+ study is to ensure that the turbulent boundary layer is accurately

simulated. In the x-direction the coarse grid is a 384× 256 structured C-type mesh
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Figure 5–2: Convergence of the transition
and turbulence models

where 256 nodes are on the airfoil surface. The wall spacing is 1× 10−5 chords, and

here the y+ is approximately 0.1 for all grids. The distance to the farfield boundary is

at approximately 15 chord lengths from the leading edge of the airfoil. The medium

and fine grids are generated by increasing the number of points on the airfoil surface

by 128 points consecutively, while maintaining the wall distance and the number of

grid points in the wake region. Figure 5–3 illustrates the effect of the grid density in

the x-direction on the skin friction coefficient. Experimental results show a laminar

separation bubble at approximately 40% on the upper surface [51]. As the grid

size is increased, the skin friction distribution along the laminar region, remains

unaffected; however, a laminar separation bubble at 40% is evident for the medium

and fine grids and absent on the coarse grid. A comparison of the corresponding

lift and drag coefficient values for each grid are presented in table 5–1. The values

remain largely similar for the lift coefficient and identical for the drag coefficients
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among the three grids. It is interesting to note that the drag coefficient of the coarse

grid seems to be unaffected by the absence of the laminar separation bubble on the

upper surface. This is primarily due to the fact that even if the bubble was not

captured, the transition point remains unaffected and hence it did not affect the

total viscous contribution to the drag coefficient. Based on this study the 512×256

grid is sufficient to accurately resolve the transition point.

Table 5–1: Effect of Grid Density in the x-direction on the Convergence of Lift and
Drag Coefficient

Cases Lift Coefficient Drag Coefficient Pressure Drag Viscous Drag

384×256 0.582 0.0069 0.0019 0.0050
512×256 0.577 0.0069 0.0019 0.0050
640×256 0.574 0.0069 0.0019 0.0050

A similar analysis is repeated to investigate the role of y+ on the accuracy of

the skin friction coefficient and the location of the transition point. Four grids with

88



various y+ values are generated while keeping the number of points in both the x-

and y-directions the same as well as the expansion rate of the grids in the y-direction.

The 512 × 256 grid with a y+ of 0.1 from the grid study in the x-direction forms

the base grid, where the wall spacing is 1 × 10−5 chord lengths and the distance to

the farfield boundary is 15 chords. The 0.075, 0.15, and 0.3 y+ grids are generated

by changing the distance to the wall of the first grid cell. Figure 5–4 illustrates the

distribution of the skin friction coefficient for the upper surface for the four grids.

As the y+ is refined, the turbulent portion of the skin friction converges, while the

transition point as well as the size of the laminar separation bubble remains the same

for all grids, since the latter is governed by the grid resolution in the x-direction.

Table 5–2 shows that by decreasing the y+, the lift and drag coefficients converge.

In conclusion, the γ − R̃eθ transition model predicts the size and the location

of the laminar separation bubble accurately and converges to a unique distribution

of the skin friction coefficient for the 512× 256 grid with a y+ of 0.1 and as such it

will be used as the minimum required grid size for all subsequent studies presented

in this work.

Table 5–2: Effect of Average y+ on the Convergence of Lift and Drag Coefficient

Cases Y + Lift Coefficient Drag Coefficient Pressure Drag Viscous Drag

512×256 0.3 0.585 0.0065 0.0018 0.0047
512×256 0.15 0.579 0.0068 0.0019 0.0049
512×256 0.1 0.577 0.0069 0.0019 0.0050
512×256 0.075 0.577 0.0069 0.0019 0.0050
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Figure 5–5: Pressure coefficient distribu-
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5.4 NLF(1)-0416 Airfoil

The pressure coefficient distribution around the NLF(1)-0416 airfoil at a Reynolds

number 2 × 106 and angle of attack of 0 degree is compared with the experimental

data [51] in figure 5–5. A good agreement between the laminar-turbulent flow solver

and the experiment are observed. The favourable pressure gradient over the upper

surface is maintained up to 20% of the airfoil chord, and approximately constant

thereafter until the 45% chord position. Favourable pressure gradient is maintained

over 60% of the lower surface, terminating at a transition point as illustrated by the

kink in the pressure distribution. Laminar separation bubbles are present at these

locations as demonstrated in figure 5–6 and reported by the experimental data [51]

due to adverse pressure gradients. The laminar separation bubbles, reattaches as

fully turbulent boundary layers on both upper and lower surfaces. Figure 5–7 il-

lustrates the distribution of the turbulent eddy viscosity, µt, where the value is at

its minimum of 1 × 10−6kg/(ms
√

K) everywhere in the flow, except for the region

of the turbulent boundary layer. The insert in figure 5–7 demonstrates a close-up

view of the transition region, where the contour illustrates that the eddy viscosity

is gradually increasing from the 45% chord position. In figure 5–8, the contour of

the intermittency factor, γ is illustrated, where the value in a large majority of the

flow is unity, except in the laminar boundary layer where the value is nil. Since the

intermittency factor is computed through a transport equation, the effects of this are

evident in figure 5–8 where γ is convected downstream while bounding the turbulent

boundary layer from the transition point. The intermittency factor progressively

reaches a value of unity just aft of the trailing edge.
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Figure 5–10: Drag polar for the NLF(1)-0416 airfoil
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Figure 5–9 compares the locations of the transition points obtained by the ex-

perimental results [51], the numerical results of Brodeur et al. [5] which are based

on the en approach, and the γ − R̃eθ transition model at various angles of attack

at a Reynolds number of 2 × 106. The figure correlates the transition location to

the lift coefficient. There are two points reported by the experimental data at each

lift coefficient. The first point corresponds to the end of the laminar region while

the second indicates the turbulent reattachment point. The numerical transition

points reported in this work conforms to the latter. The general trend of the move-

ment of the computed transition point is to start around the mid-chord and move

towards the trailing edge on the upper surface while on the lower surface, transition

starts at 20% and moves rapidly to about 60% at a lift coefficient of 0.2 and remains

relatively steady with a gentle increase to the 70% chord position. At low lift co-

efficients, analogous to an angle of attack range of -3.5◦ to 0◦, the transition model

provides comparable results to that reported by Brodeur et al. [5]. However, as the

lift coefficient increases, the model places the transition point slightly closer to the

experimental data for both surfaces. At lower lift coefficients, transition is due to

the presence of a laminar separation bubble, while at higher lift coefficients natural

transition occurs. Figure 5–9 illustrates that the γ − R̃eθ transition model demon-

strates its ability to simulate both types of laminar-turbulent transition processes,

within a robust numerical framework where the convergence of the residuals remain

unaffected and all parameters associated with the transition and turbulence models

were kept frozen during the entire study.
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The drag polar obtained from the present laminar-turbulent flow solver is com-

pared to the experimental data [51] and the numerical results of Brodeur et al. [5]

in figure 5–10(a). The drag coefficient predicted by the transition model compares

very well for a wide range of lift coefficients, while, the fully turbulent simulations

over predicts the drag by approximately 30 counts except at the maximum lift co-

efficient of 1.6, where transition occurs near the leading edge. To study the effect

of Reynolds number on the accuracy and capability of the laminar-turbulent flow

solver, the drag polar at a Reynolds number of 4× 106 is compared in figure 5–10(b)

against the experimental results. The transition model shows an acceptable agree-

ment at high lift coefficients due to the fact that transition occurs closer to the leading

edge, but over predicts the drag coefficients at other lift coefficients. These results

were obtained with the original constant of 2.193 based on Langtry and Menter’s [32]

model which regulates the ratio between the vorticity, Rev, and momentum-thickness

Reynolds numbers, Reθc . The modified correlation, Fonset, developed in this work

and detailed in subsection 2.11.3, compares very well at all lift coefficients. To better

understand the effect of the modification, in figure 5–11, the boundary layer shape

factor distribution for the upper surface is compared between the original and mod-

ified models at a Reynolds number of 4.0 × 106 and an angle of attack of 7◦. The

original model allows the flow to develop to a point where the shape factor reaches

a value of 2.9, which places it at the upper bound of the range for moderate shape

factors, 2.3 < H < 2.9. Employing the modified calibration constant allows the lam-

inar flow to further develop, where the boundary layer shape factor grows slightly

above 3, and shifts the transition point towards the trailing edge by less then 5% of
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the chord; thereby lowering the viscous drag contribution. To further validate the

model, the transition points are compared between the two models in figure 5–12,

where the modified model places the transition location closer to the experimental

turbulence reattachment point at all lift coefficients. This supports the observation

that at higher Reynolds numbers, the transition point moves towards the leading

edge due to a moderate increase in the adverse pressure gradient, resulting in larger

boundary layer shape-factors, thus a recalibration of the original Fonset correlation

function is necessary. The recalibration of the Fonset correlation function has no

effect at a Reynolds number of 2× 106 as illustrated in figure 5–10(a). For Reynolds

numbers higher than 4×106, further experimental data and numerical investigations

are required to validate the modified γ− R̃eθt transition model. However, Langtry et

al. [31] have shown the effect of having the γ − R̃eθt transition model in comparison

with fully turbulent solutions for high Reynolds number cases such as Eurocoptor

airframe at Reynolds number of 30×106 [31]. Using the transition model reduces the

predicted drag around 5% in comparison with the fully turbulent solution without

having any effect on the convergence of the flow solver [31].

5.5 S809 Wind Turbine Profile

This section presents the validation of the laminar-turbulent flow solver with the

γ − R̃eθ transition model for the S809 wind turbine profile. Figure 5–13 compares

the distribution of the pressure coefficients around the S809 wind turbine profile

at the designed Reynolds number of 2 × 106 and an angle of attack of 0 degree

to the experimental results [52]. The pressure distribution agrees very well with

the experimental data. Figure 5–14 illustrates the distribution of the skin friction
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Figure 5–13: Pressure coefficient distribu-
tion for the S809 airfoil

X/C

C
f

0.2 0.4 0.6 0.8

0

0.002

0.004

0.006

0.008

Upper Surface
Lower Surface

Figure 5–14: Skin friction coefficient dis-
tribution for the S809 airfoil

coefficient for the upper and lower surfaces. The negative values of the skin friction

coefficients indicate the formation of laminar separation bubbles at the midchord

for the upper surface and forward of the midchord for the lower. This observation

agrees very well with the experimental data [52]. As the angle of attack is increased,

the laminar separation bubble on the upper surface decreases in length and moves

forward as illustrated in figure 5–15. The bubble is smallest at an angle of attack of

5◦ and disappears thereafter as the angle is increased further.

Figure 5–16 compares the location of the transition points predicted by the

γ − R̃eθ transition model at a Reynolds number of 2 × 106 against experimental

results [52] and the numerical results of Langtry et al. [32]. To maintain consistency

with the experimental data [52], the reported numerically computed transition point

corresponds to the turbulent reattachment point. The obtained numerical results are

in excellent agreement with the experimental data [52]. At angles of attack below 5◦,
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the upper surface transition point remains approximately aft of the midchord. As the

angle increases further, transition moves forward steadily and remains at the leading

edge from an angle of attack of 9◦. The laminar separation bubble on the upper

surface is the primary mechanism of the boundary-layer transition to turbulent flow

up to an angle of attack of 5◦. On the lower surface, the numerical result reports

that transition hovers approximately at the midchord for a large range of angles of

attack and jumps to the leading edge at -6◦, compared to -5.2◦ as that described by

the experimental results. A laminar separation bubble is present for angles of attack

of -5.6◦ and greater, but the bubble length decreases between angles 0◦ and -5◦ until

natural transition occurs at the leading edge at -6◦ with a turbulent separation at

the trailing edge.

Next we evaluate the sectional characteristics by first investigating the lift curve

slope as well as the moment coefficient and finally the drag polar at various Reynolds

numbers. Figure 5–17, compares the lift and moment coefficients at various angles

of attack with the experimental data [52]. The numerical results compares very well

from -2◦ up to 9◦. An illustration of the streamlines around the trailing-edge over the

upper surface for various angles of attack are presented in figure 5–18. At an angle

of 5◦, a very small amount of turbulent trailing-edge separation occurs. The amount

of separation increases slowly from 5◦ to 9◦, which agrees very well to experimental

observations [52]. At 11◦ the lift coefficient does not experience a reduction as that

observed experimentally. Figure 5–18, demonstrates that the turbulent separation

moves forward to the 70% chord position. We believe that the discrepancy in the lift

coefficient is largely due to the fact that the turbulence model was unable to capture
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the correct size of the turbulent separation. At 15◦, the lift coefficient is slightly

over predicted and the turbulent separation jumps to the midchord as reported by

the experimental data. The calculated moment coefficients agree very well with the

experimental data over the entire range of angles of attack. The numerical lift curve

slope at all angles is akin to results reported by Sorensen [54].

Figure 5–19 illustrates the drag polar at various Reynolds numbers. Since the

S809 airfoil was designed to operate at a Reynolds number of 2×106, we will initially

compare the results at this Reynolds number before validating at other Reynolds

numbers. The S809 wind turbine airfoil can maintain a low drag coefficient for a

wide range of angles of attack from around -5 to 5 degrees which are respectively the

lower and upper limits of the laminar bucket. The airfoil was specifically designed to

achieve low profile-drag coefficients for a range of lift coefficients. Both the original

and modified transition models, with the recalibrated Fonset function, agree very

well at low lift coefficients within the laminar region. However, at the lower laminar

bucket, the modified model predicts more accurate drag coefficients at an equivalent

lift, resulting in a well defined laminar bucket. We believe that the presence of

a greater adverse pressure gradient, increases the boundary layer shape factor and

thus the error between the maximum value of the vorticity Reynolds number and the

momentum-thickness Reynolds number increases; therefore requiring a recalibration

of the Fonset function. The upper limit of the laminar bucket occurs at an angle

of attack of 5◦ at a lift coefficient of 0.74 and both models compare well to the

experimental data. As expected the fully turbulent solutions over predict the drag

coefficients.
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Figure 5–19: Drag polar for the S809 airfoil
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As the Reynolds number increases to 2.5 × 106, figure 5–19(b), the modified

model predicts the upper limit of the bucket with greater accuracy; however, similar

to the 2×106 Reynolds number case, the difference is negligible at low lift coefficients.

The same is true at a Reynolds number of 3.0×106, as illustrated in figure 5–19(c). In

figure 5–20 the obtained transition points from the modified and original transition

models are compared to the experimental data at a Reynolds number of 3.0 × 106

for the upper surface. The figure illustrates that the original model, prematurely

moves the transition point towards the leading edge as the adverse pressure gradient

increases; thereby over predicting the drag coefficient. While the modified model,

follows closer the experimental transition points. The obtained results show that as

the Reynolds number increases, the modified transition model improves the accuracy

of the transition points and drag polars in comparison with the experimental data.
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CHAPTER 6
Optimization Results

In this section, the optimization of the NLF(1)-0416 and S809 airfoils using the

γ−Reθt transition and k−ω SST turbulence models and their adjoint counterparts

for various flight conditions will be demonstrated. In addition, the effectiveness of

the choice of cost functions to reduce the total drag coefficient for the new framework

is investigated.

6.1 Introduction

The aerodynamic shape optimization framework is employed to design new NLF

airfoils for minimizing the drag, while maintaining or maximizing the lift. The pre-

sented adjoint-based design code is employed to optimize the NLF(1)-0416 and S809

airfoils. The airfoil shape is modified to maintain a favourable pressure gradient and

postpone the onset of transition over the upper and lower surfaces. This reduces

the total drag especially the skin friction component while the lift is maintained or

maximized. The results demonstrate the capability of the developed adjoint-based

optimization and design framework to design new natural laminar flow (NLF) airfoils.

6.2 Optimization Results Using the k − ω SST Turbulence and γ − ˜Reθt
Transition Models

In transonic flow, especially in the presence of a shock wave, pressure drag is a

dominant component of the total drag. Aerodynamic shape optimization minimizes

the total drag by removing the shock and reducing the pressure drag with marginal
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reduction or sometimes an increase in the skin friction drag. At transonic Mach num-

bers, the sensitivity of the drag coefficient with respect to the surface geometry tends

to peak in the vicinity of shock waves and this greatly influences the optimization

algorithm and the resulting search direction. For the choice of parametrization, the

modified geometry experiences very localized changes, typically a slight curvature re-

duction immediately upstream of the shock wave. On the other hand, in low subsonic

flows where the skin friction drag is dominant, the sensitivity is less concentrated

at particular geometrical locations and aims towards much larger transformation of

the airfoil geometry. Hence our immediate goal before a multitude of optimization

cases are explored is to establish cost functions that best exploit the design space

spanned by the design variables. Here the use of the production of the turbulence

kinetic energy, k, as a possible alternative or supplementary cost function to the

total drag coefficient will be investigated to reduce the skin friction drag. Unlike the

drag coefficient, the production of the turbulence kinetic energy appears as a source

term in the transport equation bearing it’s name. It’s non-zero within the turbulent

boundary layer and is proportional to the eddy viscosity as well as the magnitude of

the vorticity vector based on the k − ω SST-V version of the model.

In figure 6–1, the effect of the production of k as a supplementary cost function

to total drag coefficient is illustrated. The figure demonstrates that its sensitive

not only to the design variables in the immediate vicinity but is affected by a large

range of surface grid points. To show the effectiveness of using the production of

turbulent kinetic energy (TKE) as the cost function in addition to the total drag,

the NLF(1)-0416 airfoil is redesigned to maintain lift and reduce the total drag with
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Figure 6–1: Distribution of skin friction coefficient of NLF(1)-0416 airfoil at 5◦; effect
of employing the production of k as the cost function

and without using the production of k as the cost function. Table 6–1 describes that

when the production of k is added, the skin friction component of drag is reduced

more than the case where only the total drag is minimized as long as the initial lift

coefficient is maintained during the optimization process for both cases. In figure 6–1

the skin friction distributions over the upper surface of the optimized airfoils with

and without employing the production of k are compared. As the production of

turbulent kinetic energy decreases, the turbulent viscosity level is lowered and the

transition point is postponed, and consequently the skin friction component of the

total drag which is proportional to µt, is reduced, resulting in a greater reduction

in the total drag. In both cases the initial lift coefficient is constrained and is well

maintained during the optimization process.

Figure 6–2 compares the initial and optimized airfoil shapes. With the addi-

tion of the production of k as a cost function, the airfoil camber increases and the
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Table 6–1: Comparison of drag coefficients for the NLF(1)-0416 and optimized airfoils
at 5◦ with and without using the reduction of prodk as the cost function

Cases Cd Cdp Cdf

NLF(1)-0416 0.0086 0.0032 0.0054
Optimized with prodk 0.0074 0.0029 0.0045

Optimized without prodk 0.0083 0.0030 0.0053

curvature is modified to maintain the favourable pressure gradient and postpone the

transition point. Figure 6–3 illustrates that when the production of k is excluded

from the cost function, the optimizer is unable to extend the favourable pressure

gradient and the laminar flow over the airfoil.

To investigate the effect of the addition of the production of k further, we com-

pare the adjoints of k, in figures 6–4(a) and 6–4(b). The adjoint solution demon-

strates the sensitivity of the objective function to perturbations to the residual of
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the governing equation. The adjoint values are mostly active in the fully turbulent

region extending from the transition point, demonstrating that perturbations of the

residual of k in this region would contribute towards the reduction of the objective

function. However, in figure 6–4(b), when the production of the turbulent kinetic

energy is excluded from the cost function, a contour plot of the adjoint of k does not

display the gradient within the boundary layer displayed in figure 6–4(a). In the case

of the γ−Reθt model, figure 6–5 presents the distribution of the adjoint values for γ.

The value is largely zero except for the transition region as illustrated by the insert in

figure 6–5(a). The adjoint solution correctly highlights the location of the transition

point and demonstrates its sensitivity towards the reduction in the production of the

turbulent kinetic energy. The largest magnitude is centred approximately at 35% of

the chord, which was earlier demonstrated in figure 6–1 as the transition location.

Removal of the production of the turbulent kinetic energy from the cost function,

produces an adjoint of γ that is largely nil throughout the computational domain.

As presented in Chapter 4, the gradient of the objective function with respect to

the design variable is equivalent to the dot product of the adjoint solution to the

sensitivity of the residual to the design variable. The adjoint solution operates as

a weighting function, and as such de-emphasizes the contribution of the transition

point to the reduction of the total drag coefficient.

This investigation establishes the need for the addition of the production of the

turbulent kinetic energy to the objective function to demonstrate successful reduction

in the total drag coefficient via reduction of the skin friction drag. All subsequent

cases in this chapter will employ both the drag coefficient and the production of k.
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Figure 6–4: Distributions of adjoint costate of k at 5 degrees with and without using
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6.3 NLF(1)-0416 Airfoil; Minimize Drag, while Maintain Cl

In the subsequent sections, several cases will explore the use of the γ-Reθt tran-

sition model to improve the aerodynamic performance of the NLF(1)-0416 and S809

airfoils by primarily reducing the drag coefficient. In the first case, we will minimize

the drag coefficient, while maintaining the lift coefficient at a typical cruising lift co-

efficient for a small general aviation aircraft. This is in sharp contrast to the typical

approach of designing high lift-to-drag ratio airfoils at low Reynolds numbers. We

believe this to be a more realistic test case to demonstrate the developed method-

ology. The performance of the redesigned airfoil at various angles of attack will be

investigated to demonstrate the approach. In the second case, we will explore the

ability of the model to design high lift-to-drag airfoils.

6.3.1 Angle of Attack of 0 Degree

In this subsection, the ability of the approach at redesigning the NLF(1)-0416

airfoil at a Reynolds number of 2× 106 and an angle of attack of zero degrees, where

the lift coefficient is 0.46, will be investigated. The objective is to minimize the total

drag and the production of the turbulent kinetic energy with respect to the airfoil

geometry, subject to maintaining the lift and pitching moment coefficients, while

the chord-wise thickness distribution is allowed to vary within 10% of the original

thickness distribution. The rationale for this choice is in line with our decision to

employ the new framework to design airfoils that are applicable for general aviation

type aircraft. Absence of a thickness constraint would allow the optimizer to inves-

tigate classical Liebeck type airfoils, where the low thickness ratio in much of the aft

portion of the airfoil may not be suitable for general or commercial aircraft.
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Table 6–2: Comparison of the drag coefficients for the NLF(1)-0416 and optimized
airfoils at 0◦; maintain the lift and reduce the drag

Cases Cd Cdp Cdf

NLF(1)-0416 0.0066 0.0018 0.0048
Optimized 0.0055 0.0014 0.0041

Table 6–2 lists the initial and optimized lift, drag, and pitching moment coeffi-

cients. The total drag during the optimization process is reduced by 11 counts and

its history is shown in figure 6–6. The skin friction drag decreases by 7 counts while

the pressure component is reduced by 4 drag counts. The pitching moment is main-

tained with about a 2% tolerance, while lift is kept within a percent where its history

is presented in figure 6–7. Figure 6–8 illustrates the initial and final skin friction co-

efficients, where the upper transition point moves towards the trailing edge from 44%

to 61% of the chord position. In addition to the movement of the upper transition

point which extends the laminar flow, the reduction of the turbulent viscosity assists

in the reduction of the skin friction by 7 drag counts. The extension of the laminar

flow region and the reduction of the skin friction drag in the turbulent region has

decreased the overall boundary layer height and hence a modest reduction of 4 drag

counts is achieved for the pressure drag component. In figure 6–9 the distributions

of the pressure coefficients are shown. The airfoil shape is altered to maintain the

favourable pressure gradient as much as possible in order to augment the boundary

layer stability and postpone the onset of transition. The initial and optimized airfoil

shapes are compared in figure 6–10. The increased camber of the airfoil surface in-

creases the favourable pressure gradient region, thus allowing the airfoil to maintain

the lift coefficient and promote the extension of the laminar boundary layer over the
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upper airfoil surface in order to reduce drag. A concave type pressure recovery is de-

veloped in the post transition region. Modifications to the lower surface geometry is

marginal with negligible change to the pressure and skin friction distributions. This

is primarily due to the lower sensitivities of the lift and drag coefficients with respect

to the lower surface geometry compared to the upper surface. It is important to note

that this is generally not the occurrence as will be demonstrated in the following

cases.

An important characteristic of NLF airfoils are their presumably lower perfor-

mance in fully turbulent flow. In figure 6–11 the drag polar of the optimized and

initial airfoils are compared for transitional and fully turbulent flows. Along the drag

polar for transitional flow, the optimized airfoil generates less or equivalent levels of

drag for the entire range of angles of attack except at 9◦ where the drag increases. At

low angles of attack the fully turbulent drag remains the same as that of the initial
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airfoil while at higher angles the drag begins to increase. In figures 6–12 and 6–13

the drag and lift coefficients of the NLF(1)-0416 and optimized airfoils at various

angles of attack are compared. The optimized airfoil has lower drag coefficients at

low angles of attack around 0◦ which is the design point, while it begins to rise at

higher angles. In addition, the lift coefficients for the optimized airfoil are well main-

tained at all angles of attack in comparison with the NLF(1)-0416 airfoil. This study

demonstrates that a single point optimization of an airfoil to extend the laminar

region for the purpose of drag reduction is able to produce an airfoil with compa-

rable fully turbulent flow performance. The investigation is not complete since a

multipoint optimization together with a constraint on the performance at fully tur-

bulent flows is warranted. The illustrated study is a first attempt and a multipoint

optimization should be part of future work.
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Table 6–3: Effect of y+ on the lift and drag coefficients of the optimized airfoil at 0◦

Y + Cd Cdp Cdf

0.1 0.0055 0.0014 0.0041
0.075 0.0054 0.0013 0.0041

To ensure that the observed reduction in the skin friction and pressure drags

are accurate, a y+ study is performed on the final airfoil shape while keeping the

overall grid size constant. The rationale for this decision is based on the grid study

presented in Chapter 2. To determine the effect of y+ on the optimized airfoil, a

new grid with y+ = 0.075 is generated. Table 6–3 demonstrates that the two grids

differ by one drag count, confirming the reductions observed in the skin friction and

pressure drags during the optimization process.

6.3.2 Angle of Attack of 5 Degrees

In this subsection, the NLF(1)-0416 airfoil is redesigned at a Reynolds number

of 2 × 106 and an angle of attack of 5 degrees. Also in this case, we illustrate the

effectiveness of including the adjoint equations of both the transition and turbulence

models. In figure 6–14 the original airfoil geometry is compared to the optimized

airfoil shapes with and without using the adjoint equations of the transition and

turbulence models, while in figure 6–15, the pressure distributions are compared. By

employing a complete linearization of the non-linear governing equations, the airfoil

geometry is modified in such a manner that the peak pressure reduces, while the

favourable pressure gradient region is extended to the mid-chord. Maintaining the

pressure gradient allows the upper transition point to move downstream towards the

trailing edge. The corresponding airfoil shape as shown in figure 6–14, illustrates
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that the optimizer achieves this by increasing the camber in the forward portion of

the airfoil to maintain the total lift coefficient, while simultaneously increases the

favourable pressure gradient and thus allowing the transition point to move aft. In

figures 6–16 and 6–17 the distributions of the skin friction coefficients are compared

for the upper and lower surfaces respectively. Maintaining a favourable pressure

gradient accelerates and energizes the laminar flow over the upper surface. This

stabilizes the boundary layer and postpones the upper transition point from 35%

to 44% of the airfoil chord length. Another interesting feature of the final design is

the reduction of the camber in the pressure recovery region. Here a reflex camber

is introduced, producing a Stratford-type pressure recovery, with a reduction in the

turbulent shear stress as illustrated in figure 6–16. The delay in the transition from

laminar to fully turbulent flow and the reduction of the turbulent shear stress lowers

the total skin friction drag of the airfoil. In figure 6–18 the final distribution of the

adjoint variable of the turbulent kinetic energy, k, is shown. In comparison with the

initial distribution (figure 6–4(a)), the production of the turbulent kinetic energy

in the vicinity of the airfoil is reduced and the level of the corresponding adjoint

variable decreases. Figure 6–19(b) demonstrates the final distribution of the adjoint

variable of γ. Although the adjoint variable is still active along the boundary layer

especially around the transition point; however, the values have been reduced by an

order of magnitude against the initial distribution (figure 6–19(a)). In the absence

of the adjoint equations for the turbulence and transition models, as expected, the

incomplete sensitivities are unable to change the airfoil geometry to reduce the total

drag coefficient. This example demonstrates the effectiveness and the need for a
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complete adjoint system to successfully extend the laminar region and reduce the

skin friction drag of the airfoil.

Table 6–4 compares the total drag coefficients as well as the pressure and skin

friction drag components for the initial and optimized airfoils. Figures 6–20 and 6–

21 illustrate the design history of the total drag and lift coefficients respectively.

The lift coefficient is maintained while the pressure drag decreases by 3 counts, and

the skin friction component is reduced by 9 drag counts. The marginal reduction

in the pressure drag is primarily due to a lower boundary layer thickness due to a

larger region of laminar flow as well as lower skin friction coefficients in the turbulent

region. The combined effect reduces the thickness of the turbulent wake and thus

contributes towards a lower pressure drag. Excluding the turbulence and transition

model adjoints has no effect on the final drag coefficients. In figure 6–22 the design
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Figure 6–19: Distribution of adjoint costate of γ for NLF(1)-0416 and optimized
airfoils at 5 degrees

Table 6–4: Comparison of the drag coefficients for the NLF(1)-0416 and optimized
airfoils at 5◦ with and without using adjoint variables of the transition and turbulence
models to maintain the lift and reduce the drag

Cases Cd Cdp Cdf

NLF(1)-0416 0.0086 0.0032 0.0054
Optimized with the costates 0.0074 0.0029 0.0045

Optimized without the costates 0.0086 0.0032 0.0054

history of the airfoil moment coefficient is demonstrated, and the pitching moment

is maintained within 10%.

Figure 6–23 compares the drag coefficients of the initial and optimized airfoils at

various angles of attack. The drag coefficients around the angle of attack of 5◦ where

the optimization is performed, are reduced or maintained while at negative and 9◦

angles of attack an increase is observed. The lift coefficients which are presented

in figure 6–24, are almost maintained at all angles of attack. In figure 6–25 the
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drag polars for the initial and optimized airfoils are shown in transitional and fully

turbulent regimes. As expected since the airfoil was designed at a single design point,

the largest drag reduction compared to the original airfoil is observed at an angle

of attack of 5 degrees. However, for values in the vicinity of five degrees, marginal

improvement is realized, with an adverse effect at lower and higher lift coefficients.

The optimized airfoil in fully turbulent flow produces slightly higher drag coefficients

at all angles of attack when compared to the initial airfoil. This demonstrates the

importance of including the performance of NLF airfoils in fully turbulent flow as

part of the design process and will be explored as part of our future work.

To ensure that the grid used in the optimization process is sufficient, a new

mesh with a lower y+ is employed for the optimized airfoil. Table 6–5 compares

the obtained results from the two grids. As the y+ decreases the pressure and skin
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Table 6–5: Effect of y+ on the lift and drag coefficients of the optimized airfoil at 5◦

Y + Cd Cdp Cdf

0.1 0.0074 0.0029 0.0045
0.075 0.0072 0.0028 0.0044

friction drag coefficients are within a single drag count. This illustrates that the final

results from the optimization procedure are independent of the grid.

6.4 S809 Wind Turbine Profile at 9 Degrees; Minimize Drag, while Main-
tain Cl

To demonstrate the capability of the optimizer to minimize the pressure drag

in addition to the skin friction component, the S809 airfoil is employed as the initial

airfoil geometry. The angle of attack and Reynolds number are chosen to be 9 degrees

and 2×106 respectively. At this angle, the presence of a turbulent separation bubble

spanning 5% of the chord length at the trailing edge, ensures that the pressure drag

is the dominant component of the total drag. Figure 6–26 compares the initial and

optimized airfoil shapes. The surface curvature and camber line change to reduce

the size of the turbulent separation bubble in addition to maintaining the favourable

pressure gradient as much as possible to postpone the onset of transition. In figure 6–

27, a comparison between the initial and final pressure distributions are presented.

For the initial S809 wind turbine profile the pressure peaks are at the leading edge

and transition occurs at the 3% chord location on the upper surface and 54% on

the lower surface. After optimization the pressure peak decreases and the favourable

pressure gradient over the upper surface extends.
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Figure 6–27: Distribution of pressure
coefficient of the S809 airfoil at 9◦;
maintaining lift and reducing drag

In figures 6–28 and 6–29 the distributions of the skin friction coefficients before

and after optimization are compared for the upper and lower airfoil surfaces respec-

tively. The negative values of the skin friction coefficients near the trailing edge

over the upper surface show the presence of a turbulent separation bubble near the

trailing edge. After optimization the size of the fully turbulent separation region is

reduced; as a result, the pressure drag component decreases. In addition, the upper

transition point is shifted towards the airfoil trailing edge to reduce the skin friction

component of the total drag by extending the laminar flow over the airfoil.

In figure 6–30 the velocity profiles at two chord-wise locations near the trailing

edge are compared for the initial and optimized airfoils. The negative velocity of the

initial profile shows the presence of a fully turbulent separation region at the trailing

edge. After optimization the velocity profiles are less negative, showing that the size
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Figure 6–30: Velocity profiles at two chord-wise locations over the upper surface of
the S809 and optimized airfoils at 9◦
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Figure 6–31: Turbulent separated re-
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Figure 6–32: Turbulent separated re-
gion for the optimized airfoil at 9◦

and intensity of the trailing edge separation region has decreased. In figure 6–31

streamlines near the trailing edge are employed to show the fully turbulent region

near the trailing edge of the S809 wind turbine profile. The streamlines in figure 6–32

demonstrate that after optimization the size of the fully turbulent separated region

decreases. This fully turbulent separation bubble with a smaller length and thickness

reduces the pressure component of the total drag.

Table 6–6: Comparison of the drag coefficients for the S809 and optimized airfoils at
9◦ with using adjoint variables of the transition and turbulence models to maintain
the lift and reduce the drag

Cases Cd Cdp Cdf

S809 Airfoil 0.0185 0.0114 0.0071
Optimized 0.0152 0.0089 0.0063

Figure 6–33 shows that the initial lift coefficient is well maintained during the

optimization process while the pitching moment remains around -0.04. As presented
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in table 6–6, the total drag is reduced by 33 counts where 25 drag counts are related to

the pressure component and the skin friction drag decreases by 8 counts. Figure 6–34

illustrates the total drag reduction history during the optimization process.

6.5 NLF(1)-0416 Airfoil at 5 Degrees; Maximize Lift-to-Drag Ratio

In this subsection, we investigate a new objective function, where the lift-to-

drag ratio is to be maximized with respect to the airfoil geometry and subject to a

thickness constraint. The design is performed at the same Reynolds number of 2×106

at an angle of attack of 5 degrees. To achieve high lift-to-drag ratios we employed

the same objective functions as that applied in the previous cases; however, here we

specified a target lift coefficient instead of using the lift of the original airfoil. In

this manner we were able to reuse the same adjoint boundary conditions. Similar to

the former cases, the chordwise thickness distribution was maintained within 10%
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Figure 6–36: Distribution of pres-
sure coefficient of NLF(1)-0416 airfoil;
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of the original value. This test case, is identical to the second case presented in

subsection 6.3, except that here a higher target lift coefficient is specified.

Figure 6–35 demonstrates the final airfoil geometry, where an extreme redesign

of the initial geometry is observed. The airfoil camber has increased considerably, in

the forward portion, while the aft portion experiences the same but enhanced reflex

camber seen earlier. To ensure a low drag profile as well as to maintain the initial

thickness distribution, the lower surface undergoes an equal amount of modification.

Note that at the 60% chord location, the lower surface experiences a shift in the local

surface slope. As the upper surface curvature abruptly changes at this location, the

constraint to maintain the thickness distribution as well as the objective to lower

the skin friction drag results in the observed lower surface geometry. Figure 6–36

illustrates the pressure distribution of the final geometry, where a large favourable
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pressure gradient region with a laminar roof-top pressure profile has been achieved,

thus shifting the transition point aft, while producing a Stratford-type pressure re-

covery in the aft portion of the airfoil to recover the freestream pressure without any

trailing edge separation. This has allowed the optimized airfoil to increase the lift

coefficient by 50% with a 5 drag count decrease of the total drag coefficient due to 12

counts decrease of the skin friction component and 7 counts pressure drag increase

as listed in table 6–7. In figures 6–37 and 6–38 the distributions of skin friction

coefficients are respectively presented for the upper and lower surfaces. The point of

transition for the upper surface moves towards the trailing edge and accelerates the

laminar boundary layer to postpone the boundary layer instability. The extension

of the laminar flow over the airfoil increases and the skin friction drag is reduced.
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Table 6–7: Comparison of the lift-to-drag ratio and drag coefficients for the NLF(1)-
0416 and optimized airfoils to maximize the lift-to-drag ratio

Cases Cl
Cd

Cl Cd Cdp Cdf

NLF(1)-0416 118.7 1.02 0.0086 0.0032 0.0054
Optimized Airfoil 185.2 1.500 0.0081 0.0039 0.0042
Optimized Airfoil 185.8 1.802 0.0097 0.0052 0.0045
Optimized Airfoil 180.9 1.881 0.0104 0.0059 0.0045
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Figure 6–39: Shape modifications of
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ing drag
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To challenge the optimizer to achieve higher lift-to-drag ratios, we incrementally

increased the lift coefficient. Figure 6–39 shows that as the lift coefficient increases

the airfoil shape changes in a manner to increase the camber and as a result the

minimum pressure peak decreases as shown in figure 6–40. To postpone the onset

of transition over the upper surface the optimizer extends the favourable pressure

gradient and maintains the achieved minimum pressure peak as much as possible.

As the curvature of the airfoil increases the pressure difference between the aft and

front of the airfoil increases and consequently the pressure component of the drag

increases.
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tion coefficient for the upper surface of
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As the lift coefficient increases, the upper transition point is delayed due to

the extension of the favourable pressure gradient over the upper surface (figure 6–

41). The lower transition point stays at its initial location until the airfoil camber
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changes in a fashion that the favourable pressure gradient can not be maintained

and the lower transition point is shifted towards the leading edge. After achieving

the maximum lift-to-drag ratio, as the lift increases the total drag increases and the

ratio is reduced. At a target lift coefficient of 1.93, the flow over the upper surface

separates due to the high airfoil camber and the lift is reduced while the pressure

drag drastically increases.

Figure 6–42 illustrates the boundary layer thickness over the upper surface of the

initial and optimized airfoils. The extension of the thin laminar boundary layer over

the forward portion of the airfoil increases since the transition point is postponed.

As the lift coefficient of the optimized airfoils increases the thickness of the fully

turbulent boundary layer increases until a lift coefficient of 1.93 where the boundary

layer separates and the lift coefficient decreases. The velocity distributions around

the initial and optimized airfoils are shown in figure 6–43. As the lift coefficient

increases the laminar boundary layer is stabilized and the flow accelerates; as a

result, the point of transition shifts towards the airfoil trailing edge.

Table 6–8: Effect of y+ on the lift and drag coefficients of the optimized airfoil at 5◦;
maximizing lift-to-drag ratio

Y + Cl
Cd

Cl Cd Cdp Cdf

0.1 180.9 1.881 0.0104 0.0059 0.0045
0.075 182.4 1.879 0.0103 0.0060 0.0043

A y+ study, shown in table 6–8, confirms the reductions observed in the final

drag coefficients and the final lift coefficient is within 0.002.
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(b) Optimized airfoil with Cl = 1.5
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(c) Optimized airfoil with Cl = 1.8
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Figure 6–43: Velocity distributions around the NLF(1)-0416 and optimized airfoils
at 5◦
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CHAPTER 7
Conclusion

A laminar-turbulent flow solver has been developed by employing the γ − R̃eθt

transition model combined with the k − ω SST turbulence model. The discrete ad-

joint equations for the transition and turbulence models are derived and added to the

adjoint-based optimization framework of a RANS solver. The new design and opti-

mization framework has been employed to design new natural laminar flow airfoils.

The first section summarizes the implementation and validation of the transitional

flow solver. The second section will briefly explain the discrete adjoint approach for

the transition and turbulence models and review the obtained results. In the final

section potential future works are described.

7.1 Development and Validation of the Laminar-Turbulent Flow Solver

The γ − R̃eθ transition model is employed in a preconditioned compressible

RANS solver using the k − ω SST turbulence model in order to simulate the tran-

sitional flow around two profiles. A grid study demonstrated the importance of

sufficient grid points both in the streamwise and normal directions to accurately

place the transition location and precisely resolve the turbulent boundary layer. A

sequence of numerical test on the NLF(1)-0416 airfoil and the S809 wind turbine

profile based on a range of Reynolds numbers and angles of attack, demonstrated

that the model was able to simulate both laminar separation bubble and attached

boundary layer transitions. Sectional lift, drag, and moment coefficients compared
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very well against experimental data as well as other numerical results. Drag polars

exemplified the effectiveness of the model over fully turbulent simulations. A modi-

fied model based on the recalibration of the Fonset function, demonstrated improved

accuracy in the prediction of the transition point and drag coefficients at equivalent

lift coefficients at higher angles of attack and Reynolds numbers. At these flow con-

ditions, an increase in the adverse pressure gradient leads to a moderate increase

in the boundary layer shape factor and a subsequent increase in the error between

the maximum value of the vorticity Reynolds number and the momentum-thickness

Reynolds number. The recalibrated function allowed the laminar boundary layer to

develop larger than moderate shape factors, thus extending the laminar region.

7.2 Development of the Optimization Framework for the Design of Nat-
ural Laminar Flow Airfoils

The discrete adjoint equations for the γ − R̃eθt transition model and the k − ω

SST turbulence model are derived and implemented into the optimization and design

framework which is based on the discrete adjoint of the RANS equations. Using these

new transition and turbulence adjoint variables with a proper cost function such as

the reduction of the turbulent kinetic energy, k, in addition to the drag coefficient

improves the capability of the discrete adjoint-based aerodynamic shape optimization

approach. Adding the reduction of production of k to the cost function augments the

sensitivity of the objective function to perturbations of the turbulence and transition

models and increases the influence of the corresponding adjoint variables on the

design process. The effectiveness of using the transition and turbulence adjoint

equations is shown in the drag minimization of the NLF(1)-0416 airfoil while the lift

is maintained at angles of attack of 1◦ and 5◦. The obtained results at 5◦ show that
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by excluding the transition and turbulence adjoint variables, the optimizer is unable

to reduce the total drag. The reduction of the turbulent kinetic energy decreases the

turbulent viscosity and shear stress; as a result, the transition point is postponed

and the skin friction drag component is reduced. In both cases the drag polar is

compared for the original and optimized airfoils to demonstrate how single point

designs affect the airfoil performance at other angles. In order to show the ability

of the design framework to reduce pressure drag, the S809 airfoil at 9◦ is employed

to minimize the total drag while the lift is maintained. In this case the optimizer is

successful in reducing the size of the turbulent separation region, thereby achieving

a greater decrease in the pressure drag. The last case optimized the NLF(1)-0416

airfoil shape to reduce the total drag and maximize the lift. The design framework

maintains the favourable pressure gradient and delays the onset of transition in

addition to increasing the camber in order to reduce the drag and increase the lift.

The obtained results demonstrate the potential of the developed design framework to

optimize new natural laminar flow airfoils with lower total drag without sacrificing

their performance in laminar-turbulent or fully turbulent flow.

7.3 Future Works

We believe that the present work has paved the way for the γ − R̃eθt transition

model to be incorporated within a three-dimensional adjoint-based design framework

and provides the proper foundation for future works. Some of the potential topics

for future research are listed below.

• Propose new correlations for the γ − R̃eθt transition model to simulate the

laminar-turbulent boundary layers at transonic regimes.
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• Modify the transition model and its correlations to model the crossflow insta-

bilities in addition to the streamwise waves for three-dimensional flows.

• Develop a multi-point design framework to optimize airfoils at different angles

of attack or Reynolds numbers.

• Include the performance of the designed airfoils in fully turbulent flow as part

of the optimization process.

• Extend the two-dimensional design framework to three dimensions and add

wing planform parameters such as sweep angle, taper ratio, etc. in addition to

the airfoil shape as design variables.
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APPENDIX A
Derivation procedure of discrete adjoint equations for the transition and

turbulence models

A.1 Formulation of Discrete Adjoint Approaches for the Transition and
Turbulence Models

To derive the discrete adjoint equations for the k−ω SST turbulence model and

γ− ˜Reθt transition model by hand, control theory is applied directly to the variation

of the discretized transition and turbulence model equations associated with the

variations of their field variables
(
δk, δω, δγ, δ ˜Reθt

)
. In order to show the derivation

of the discrete adjoint equations for the k − ω SST turbulence model and γ − ˜Reθt

transition model, each equation of these models is considered as follows

∂qij
∂t

= R (qij) ,

where q is a turbulence or transition state variable (k, ω, γ, R̃eθt), R(q) is the related

residual as described in equations (4.3) or (4.4), and i and j denote the cell indices.

To derive the discrete adjoint equations for cell (i, j), first a variation of the residual

for the cell (i, j) is computed with respect to the variation of the turbulence or

transition variable of the computational stencil as follows

δR(q)ij = Aiji+1jδqi+1j + Aiji−1jδqi−1j +
(
Aijij +Bij

ij

)
δqij

+Bij
ij+1δqij+1 +Bij

ij−1δqij−1,
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where A and B are the entries of the pentadiagonal matrix for the turbulence and

transition models in i- and j-directions respectively. The superscript index shows the

computational cell and subscript index indicates the contribution from the neighbor-

ing cells of the computational cell. To derive the discrete adjoint equations for the

cell (i, j), the contribution of the variation of the turbulence and transition state vari-

able δqij from the variation of the other residuals are considered for the neighboring

cells

δRi+1j(q) = · · ·+ Ai+1j
ij δqij + · · ·

δRi−1j(q) = · · ·+ Ai−1j
ij δqij + · · ·

δRij+1(q) = · · ·+Bij+1
ij δqij + · · ·

δRij−1(q) = · · ·+Bij−1
ij δqij + · · · .

For each cell the turbulence or transition adjoint vector is multiplied by the variation

of the residual of that cell. Then this product is summed over the entire domain as

follows

∑
i∈Ω

∑
j∈Ω

δRijψij = · · ·+Ri+1jψi+1j +Ri−1jψi−1j

+Rijψij +Rij+1ψij+1 +Rij−1ψij−1 + · · · ,

where imax and jmax are the maximum number of nodes in the i- and j-directions

respectively. After subsituting the expansion of the variation of the residual with
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respect to the variation of the state variable δqij, the terms are collected as follows

∑
i∈Ω

∑
j∈Ω

δRψ = · · ·+
[
Aiji+1jψi+1j + Aiji−1jψi−1j (A.1)

+
(
Aijij +Bij

ij

)
ψij +Bij+1

ij ψij+1 +Bij−1
ij ψij−1

]
δqij + · · · .

To remove the variation of the state variable δqij on the gradient, the terms that

appear within the brackets in equation (A.1) must sum to zero for each control

volume. These terms are then defined as the residual of the discrete adjoint equations

for the turbulence and transition models,

R(ψ) = Aiji+1jψi+1j + Aiji−1jψi−1j

+
(
Aijij +Bij

ij

)
ψij +Bij

ij+1ψij+1 +Bij
ij−1ψij−1. (A.2)

By defining JD as the entries of the pentadiagonal matrix for the discrete adjoint of

the domain cells, the equation A.2 is rearranged as follows

JDi+1jψi+1j + JDi−1jψi−1j + JDij ψij + JDij+1ψij+1 + JDij−1ψij−1 = R(ψ), (A.3)

which describes the residual of the discrete adjoint equation for the transition or

turbulence variable, q.
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APPENDIX B
Continous adjoint approach

B.1 Formulation of Continuous Adjoint Approach for Navier-Stokes Equa-
tions

In aerodynamic shape optimization a cost function is optimized with respect to

the shape modifications. This cost function is in form of

I =

∫
IBdB +

∫
IDdD ,

where IB and ID are the boundary and flow field cost function contributions which are

dependent on the flow variables vector, ~w, and surface mesh points, ~xs. The variation

of the surface mesh points, δ~xs, as the design variables, produces a variation in the

flow variable vector, δ ~w; therefore the variation of the cost function can be written

as,

δI =

∫ (
∂IB
∂ ~w

δ ~w +
∂IB
∂~xs

δ~xs

)
dB +

∫ (
∂ID
∂ ~w

δ ~w +
∂ID
∂~xs

δ~xs

)
dD .

On the other hand in the steady state the variation of flow field equations is described

by,

∂

∂ξi
δ
(
~Fi − ~Fvi

)
=

∂

∂ξi

(
∂ ~Fi
∂ ~w

δ ~w +
∂ ~Fi
∂~xs

δ~xs −
∂ ~Fvi

∂ ~w
δ ~w − ∂ ~Fvi

∂~xs
δ~xs

)
= 0,

where ξi is the computational domain coordinates, and ~Fi and ~Fvi are the inviscid and

viscous fluxes respectively as defined in subsection 2.5.1. Multiplying by a vector, ~ψ,
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as Lagrange multipliers, and integrating over the field produces∫
~ψT

∂

∂ξi
δ
(
~Fi − ~Fvi

)
= 0.

Integrating by parts and then subtracting from the perturbed cost function the fol-

lowing equation is obtained

δI =

∫ {[
∂IB
∂ ~w
− ~ψT

(
∂ ~Fi
∂ ~w
− ∂ ~Fvi

∂ ~w

)
~ni

]
δ ~w +

[
∂IB
∂~xs
− ~ψT

(
∂ ~Fi
∂~xs
− ∂ ~Fvi

∂~xs

)
~ni

]
δ~xs

}
dB

+

∫ {[
∂ID
∂ ~w

+
∂ ~ψT

∂ξi

(
∂ ~Fi
∂ ~w
− ∂ ~Fvi

∂ ~w

)]
δ ~w +

[
∂ID
∂~xs

+
∂ ~ψT

∂ξi

(
∂ ~Fi
∂~xs
− ∂ ~Fvi

∂~xs

)]
δ~xs

}
dD .

(B.1)

The vector ~ψ is computed in such a way that the gradient of the cost function

δI is then evaluated from the variation of the surface mesh points, δ~xs, without re-

calculating the variation of the flow variables. The variation of the flow field variables

vector, δ ~w, is eliminated from δI (equation B.1) by solving the adjoint equation for

~ψ as,

∂ID
∂ ~w

+
∂ ~ψT

∂ξi

(
∂ ~Fi
∂ ~w
− ∂ ~Fvi

∂ ~w

)
= 0, (B.2)

and considering the following equation as its boundary condition

~ψT

(
∂ ~Fi
∂ ~w
− ∂ ~Fvi

∂ ~w

)
~ni =

∂IB
∂ ~w

. (B.3)

The continuous adjoint equation (equation B.2) and the corresponding boundary

condition (equation B.3) are discretized over the domain and numerically solved. The

remaining terms which are dependent on the variation of the surface mesh points,

δ~xs, define the gradient of the cost function that can be used in a gradient-based

optimization approach to improve the design [44].
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B.2 Formulation of Continuous Adjoint Equations for the Turbulence
and Transition Models

Multiplying the four new costates (ψ5, ψ6, ψ7, ψ8) to the variation of the turbu-

lence and transition equations associated with the variation of primitive field vari-

ables
(
δk, δω, δγ, δ ˜Reθt

)
and integrating by parts over the entire domain, the con-

tinuous adjoint equations of the k−ω SST turbulence and γ−R̃eθt transition models

are derived∫ {
∂2

∂x2
i

[(µ+ σk1µt)ψ5] +
∂

∂xi
(ψ5ρui)− 2

∂

∂xi

[
(1− F1)

ρσω2

ω

∂ω

∂xi
ψ5

]
+ ψ5ρωβ

∗
}

dD = 0,∫ {
∂2

∂x2
i

[(µ+ σω1µt)ψ6] +
∂

∂xi
(ψ6ρui)− 2

∂

∂xi

[
(1− F1)

ρσω2

ω

∂k

∂xi
ψ6

]
+ψ6

[
β∗ρk + 2β1ρω − 2(1− F1)

ρσω2

ω2

∂ω

∂xi

∂k

∂xi

]}
dD = 0,∫ {

∂2

∂x2
i

[(
µ+

µt
σf

)
ψ7

]
+

∂

∂xi
(ψ7ρui) + ψ7Flengthca1ρSFonset

0.5(
0.5
√
γ
− 1.5ce1

√
γ)

+ψ7ca2ρΩγFturb (2ce2γ − 1)} dD = 0,∫ {
∂2

∂x2
i

[σθ (µ+ µt)ψ8] +
∂

∂xi
(ψ8ρui)− ψ8cθt

(ρU)2

500µ
(1− Fθt)

}
dD = 0. (B.4)

and their corresponding adjoint boundary conditions are∫
ni

{
ψ5

[
(µ+ σk1µt)

∂δk

∂xi
− ρuiδk + 2(1− F1)

ρσω2

ω

∂ω

∂xi
δk

]
− ∂ψ5

∂xi
(µ+ σk1µt) δk

}
dB = 0,∫

ni

{
ψ6

[
(µ+ σω1µt)

∂δω

∂xi
− ρuiδω + 2(1− F1)

ρσω2

ω

∂k

∂xi
δω

]
− ∂ψ6

∂xi
(µ+ σω1µt) δω

}
dB = 0,

∫
ni

{
ψ7

[(
µ+

µt
σf

)
∂δk

∂xi
− ρuiδγ

]
− ∂ψ7

∂xi

(
µ+

µt
σf

)
δγ

}
dB = 0, (B.5)∫

ni

{
ψ8

[
σθ (µ+ µt)

∂δω

∂xi
− ρuiδ ˜Reθt

]
− ∂ψ8

∂xi
σθ (µ+ µt) δ ˜Reθt

}
dB = 0.
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The variation of the field variables are not eliminated since each type of boundary

has its own special treatment which is dependent on its related turbulence and tran-

sition models boundary conditions. The objective function may include boundary

contribution, domain contribution, or both depending on its definition. According

to the continuous adjoint theory the derivatives of the boundary contributions of the

cost function with respect to the corresponding field variables are added to the right

hand side of the equation (B.5) and the similar derivatives of the domain terms are

used as the source terms for the equation (B.4).

B.2.1 Continuous adjoint boundary conditions

The equation (B.5) is simplified based on the boundary conditions of the tur-

bulence and transition models in order to derive the continuous adjoint boundary

conditions.

• Inlet boundary

The variation of the state variables on this boundary is zero
(
δk = δω = δγ = δR̃eθt = 0.

)
.

Regarding to this definition, the continuous adjoint boundary conditions are

written as follows∫
(µ+ σk1µt)

∂ψ5

∂xi
nidB = 0,

∫
(µ+ σω1µt)

∂ψ6

∂xi
nidB = 0,∫ (

µ+
µt
σf

)
∂ψ7

∂xi
nidB = 0,

∫
σθ (µ+ µt)

∂ψ8

∂xi
nidB = 0.

This implies that the gradient of the costate variables normal to the inlet

boundary must be zero.

∂ψ5

∂η
=
∂ψ6

∂η
=
∂ψ7

∂η
=
∂ψ8

∂η
= 0.
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• Outlet boundary

According to the equation (B.5), the continuous adjoint boundary conditions

for the turbulence and transition models at the outlet are described as follows∫
ni

{
ψ5

[
−ρui + 2(1− F1)

ρσω2

ω

∂ω

∂xi

]
− ∂ψ5

∂xi
(µ+ σk1µt)

}
dB = 0,∫

ni

{
ψ6

[
−ρui + 2(1− F1)

ρσω2

ω

∂k

∂xi

]
− ∂ψ6

∂xi
(µ+ σω1µt)

}
dB = 0.

∫
ni

{
−ψ7ρui −

∂ψ7

∂xi

(
µ+

µt
σf

)}
dB = 0,∫

ni

{
−ψ8ρui −

∂ψ8

∂xi
σθ (µ+ µt)

}
dB = 0.

• Wall boundary

Applying the wall boundary conditions into the continuous adjoint approach

(equation B.5) leads to the following adjoint boundary equations for the k−ω

SST turbulence model and the γ − R̃eθt transition model.∫
(µ+ σk1µt)

∂ψ5

∂xi
nidB = 0,∫

(µ+ σω1µt)
∂ψ6

∂xi
nidB = 0,∫

ni

{
−ψ7ρui −

∂ψ7

∂xi

(
µ+

µt
σf

)}
dB = 0,∫

ni

{
−ψ8ρui −

∂ψ8

∂xi
σθ (µ+ µt)

}
dB = 0.

B.2.2 Recovery of the continuous adjoint equations for the turbulence
and transition models from the discrete equations

To show the consistency of the discrete adjoint equations for the γ− R̃eθt transi-

tion and k−ω SST turbulence models, the discrete adjoint equations for the models
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approach the continuous ones when ∆xi and ∆xj approach zero. In the i-direction

the discrete adjoint equations for the γ − R̃eθt transition model and k − ω SST

turbulence model are re-written in the following form

(1− F1,i−1j)
ρi−1jσω2

ωi−1j

ωij − ωi−2j

2∆x2
i−1

ψ5,i−1j − (1− F1,i+1j)
ρi+1jσω2

ωi+1j

ωi+2j − ωij

2∆x2
i+1

ψ5,i+1j

− ρi−1j

u−i−1

∆xi−1

ψ5,i−1j − ρij
u+
i − u−i
∆xi

ψ5,ij + ρi+1j

u+
i+1

∆xi+1

ψ5,i+1j

1

∆xi−1

(
µ+ σk1µt

∆x

)
i− 1

2

ψ5,i−1j +
1

∆xi+1

(
µ+ σk1µt

∆x

)
i+ 1

2

ψ5,i+1j

− 1

∆xi

[(
µ+ σk1µt

∆x

)
i+ 1

2

+

(
µ+ σk1µt

∆x

)
i− 1

2

]
ψ5,ij + β∗ρijωijψ5,ij = 0,

(1− F1,i−1j)
ρi−1jσω2

ωi−1j

kij − ki−2j

2∆x2
i−1

ψ6,i−1j − (1− F1,i+1j)
ρi+1jσω2

ωi+1j

ki+2j − kij
2∆x2

i+1

ψ6,i+1j

− ρi−1j

u−i−1

∆xi−1

ψ6,i−1j − ρij
u+
i − u−i
∆xi

ψ6,ij + ρi+1j

u+
i+1

∆xi+1

ψ6,i+1j

+
1

∆xi−1

(
µ+ σω1µt

∆x

)
i− 1

2

ψ6,i−1j −
1

∆xi+1

(
µ+ σω1µt

∆x

)
i+ 1

2

ψ6,i+1j

+
1

∆xi

[(
µ+ σω1µt

∆x

)
i+ 1

2

+

(
µ+ σω1µt

∆x

)
i− 1

2

]
ψ6,ij

+

[
β∗ρijkij + 2βρijωij + (1− F1,ij )

ρijσω2

ω2
ij

ki+1j − ki−1j

∆xi

ωi+1j − ωi−1j

∆xi

]
ψ6,ij = 0,
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Flengthca1ρSF
0.5
onset

(
1
√
γ
− ce1

√
γ

)
ψ7,ij − ca2ρΩFturb (2ce2γ − 1)ψ7,ij

− ρi−1j

u−i−1

∆xi−1

ψ7,i−1j − ρij
u+
i − u−i
∆xi

ψ7,ij + ρi+1j

u+
i+1

∆xi+1

ψ7,i+1j

+
1

∆xi−1

(
µ+ σk1µt

∆x

)
i− 1

2

ψ7,i−1j +
1

∆xi+1

(
µ+ σk1µt

∆x

)
i+ 1

2

ψ7,i+1j

− 1

∆xi

[(
µ+ σk1µt

∆x

)
i+ 1

2

+

(
µ+ σk1µt

∆x

)
i− 1

2

]
ψ7,ij = 0,

and

− ρi−1j

u−i−1

∆xi−1

ψ8,i−1j − ρij
u+
i − u−i
∆xi

ψ8,ij + ρi+1j

u+
i+1

∆xi+1

ψ8,i+1j

+
1

∆xi−1

(
µ+ σω1µt

∆x

)
i− 1

2

ψ8,i−1j −
1

∆xi+1

(
µ+ σω1µt

∆x

)
i+ 1

2

ψ8,i+1j

+
1

∆xi

[(
µ+ σω1µt

∆x

)
i+ 1

2

+

(
µ+ σω1µt

∆x

)
i− 1

2

]
ψ8,ij − cθt

(ρU)2

500µ
(1− Fθt)ψ8,ij = 0.

When ∆xi approaches zero, by applying the definitions of u−i and u+
i (equation 4.7),

and considering the first- and second-derivatives [6] the following relations are pro-

duced

β∗ρωψ5 − 2
∂

∂xj

[
(1− F1)

ρσω2

ω

∂ω

∂xj
ψ5

]
+

∂

∂xi
(ψ5ρui) +

∂2

∂x2
i

[(µ+ σk1µt)ψ5] = 0,[
β∗ρk + 2β1ρω − 2(1− F1)

ρσω2

ω2

∂ω

∂xi

∂k

∂xi

]
ψ6 − 2

∂

∂xi

[
(1− F1)

ρσω2

ω

∂k

∂xi
ψ6

]
+

∂

∂xi
(ψ6ρui) +

∂2

∂x2
i

[(µ+ σω1µt)ψ6] = 0,
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∂2

∂x2
i

[(
µ+

µt
σf

)
ψ7

]
+

∂

∂xi
(ψ7ρui) + ψ7Flengthca1ρSFonset

0.5(
0.5
√
γ
− 1.5ce1

√
γ)

+ ψ7ca2ρΩγFturb (2ce2γ − 1) = 0,

∂2

∂x2
i

[σθ (µ+ µt)ψ8] +
∂

∂xi
(ψ8ρui)− ψ8cθt

(ρU)2

500µ
(1− Fθt) = 0.

The integrals of these equations over the domain in the i-direction are∫ {
β∗ρωψ5 − 2

∂

∂xj

[
(1− F1)

ρσω2

ω

∂ω

∂xj
ψ5

]
+

∂

∂xi
(ψ5ρui) +

∂2

∂x2
i

[(µ+ σk1µt)ψ5]

}
dD = 0,∫ {[

β∗ρk + 2β1ρω − 2(1− F1)
ρσω2

ω2

∂ω

∂xi

∂k

∂xi

]
ψ6 − 2

∂

∂xi

[
(1− F1)

ρσω2

ω

∂k

∂xi
ψ6

]
+

∂

∂xi
(ψ6ρui) +

∂2

∂x2
i

[(µ+ σω1µt)ψ6]

}
dD = 0,∫ {

∂2

∂x2
i

[(
µ+

µt
σf

)
ψ7

]
+

∂

∂xi
(ψ7ρui) + ψ7Flengthca1ρSFonset

0.5(
0.5
√
γ
− 1.5ce1

√
γ)

+ψ7ca2ρΩγFturb (2ce2γ − 1)} dD = 0,∫ {
∂2

∂x2
i

[σθ (µ+ µt)ψ8] +
∂

∂xi
(ψ8ρui)− ψ8cθt

(ρU)2

500µ
(1− Fθt)

}
dD = 0,

which are identical to the continuous adjoint equations for the transition and turbu-

lence models in the i-direction. By performing the same procedure in the j-direction,

similar results are achieved. Therefore the complete consistency of the discrete ad-

joint equations for the γ− R̃eθt transition model and k−ω SST turbulence model is

shown over the entire domain.
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