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Abstract 

The Lattice Gas Cellular Automata method is a useful approximation for modeling 

fluids. It deals with systems of particles that move with a discrete set of velocities 

from site to site on a regular lattice. Such systems show fluid-like behavior in the 

appropriate limit. 

We first study the theory of LGCA using the conventional methods of Statistical 

Mechanics. We start from the microcanonical description of LGCA and investigate 

the conditions for fluid-like macroscopic behavior. We consider the most important 

quantities for the description of fluids, namely the kinetic propagator, and the dy­

namic structure factor which is the power spectrum of density fluctuations. We give 

the Green-Kubo approximation for the transport coefficients of LGCA models and 

investigate the effects of velocity and space discretization on the theory of transport 

phenomena. 

Next we compare the theoretical predictions with empirical results obtained from 

the numerical study of the Boltzmann collision matrix and from numerical simulations 

of the simple athermal FHP-1 model. We find agreement between the theoretical pre­

dictions of the transport properties and the results of such numerical investigations. 

We also studied the more complicated thermal19-bit model, introduced by Grosfils 

et.al. We show the importance of selecting appropriate collision processes to obtain 

fluid-like macroscopic behavior of the model. 

Finally, we discuss the advantages and disadvantages of the various models in the 

light of our results. 



IV 

La methode des automates cellulaires sur reseau {ACR) est une approximation 

tres utile a la modelisation des :fluides. Les ACR sont des systemes de particules 

qui se deplacent avec une gamme de vitesses discretes d'un site a l'autre sur un 

reseau regulier. De tels systemes presentent un comportement de :fluide dans la limite 

appropriee. 

La theorie des ACR est d'abord etudiee en utilisant les methodes habituelles de 

la mecanique statistique. N ous commen~orts par une description microcanonique des 

ACR et nous examinons les conditions necessaires pour reproduire le comportement 

d 'un :Huide. N ous considerons les quantites les plus importantes pour la description 

des :Huides, a savoir le propagateur cinetique et le facteur de structure dynamique qui 

est le spectre de puissance des :fluctuations de densite. Nous donnons !'approximation 

de Green-Kubo pour les coefficients de transport des modeles d'ACR et examinons 

les e:ffets de la discretisation de l'espace et des vitesses sur la theorie des phenomenes 

de transport. 

Les predictions theoriques sont ensuite comparees avec les resultats empiriques 

obtenus de I' etude numerique de la matrice de collision de Boltzmann et de simulations 

numeriques du modele simple athermique FHP-1. Nous trouvons un accord entre les 

predictions theoriques des proprietes de transport et les resultats de telles recherches 

numeriques. 

Le modele thermique plus complique, dit des 19 bits, introduit par Grosfils et 

al. est aussi etudie. Nous montrons !'importance de choisir les processus de collision 

appropries afin d'obtenir un modele dont le comportement macroscopique est celui 

d'un :Huide. 

Finalement, nous discutons des avantages et des inconvenients des divers modeles 

a. la lumiere de nos resultats. 
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Chapter 1 

Review of Lattice Gas Theory 

1 



0 

CHAPTER 1. REVIEW OF LATTICE GAS THEORY 2 

1.1 General approach to Lattice Gas Theory 

Numerical methods for fluid dynamics now occupy an important place in the science 

of fluids. A major stimulus to the field has been the large number of applications in 

which fluid flows play a crucial role, and this has spurred the interest of numerous 

physicists, computational engineers and mathematicians. 

In particular, methods that solve incompressible flow problems have undergone 

major improvements in the last few decades [1,2]. In this thesis we will discuss a new 

class of numerical approaches to solving one of the most common differential equations 

of physics, the N a vier-Stokes equation of hydrodynamics. Hydrodynamics is chiefly 

interested in situations where different parts of a fluid move with respect to one 

another (and with respect to solid obstacles) at velocities that are much smaller then 

that of sound. The phenomenology of fluids can be enormously varied. Depending 

on the speed of the main flow, the size and shape of the obstacles, and the viscosity 

of the fluid, one can have purely laminar flow, vortices, turbulence, etc. 

In this context, the relevant variable is the velocity u (a vector) of flow at different 

points, and the relevant parameter is the viscosity v of the fluid. The behavior of the 

fluid is governed by the N a vier-Stokes equation 

8u 1 
-
8 

+ (uV)u = --Vp + vV2u 
t p 

(1.1) 

where pis the pressure and pis the density. This is a nonlinear differential equation, 

and, except for special cases, one must make recourse to numerical methods in order 

to find its solution for given initial and boundary conditions. 

An alternate approach to studying fluid flow properties (as opposed to solving the 

above equation) is the construction of models of fluids consistent with the N a vier­

Stokes equation. It turns out that models of fluid dynamics based on so called Cel­

lular Automata have a number of attractive features and show considerable practical 

prormse. 

The term Cellular Automata, first introduced by von Neumann and Ulam in 1948, 

implies: 
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• dynamical variables defined at the nodes of a Lattice. 

• dynamical variables taking values in a finite set 

• synchronous application of a local transition rule at each lattice site, so that 

the new value of a dynamical variable at each site is a particular function of its 

current value and of the values of dynamical variables in a small neighborhood. 

The class of cellular automata used for the simulation of fluid dynamics are called 

Lattice Gas Cellular Automata (LGCA). The algorithms are based on discrete lat­

tice models of interacting "particles", whose continuum description is governed by 

the equations of continuum fluid Bow {1.1). Point particles undergo displacements 

on a regular lattice in discrete time-steps with collisional processes represented by 

configurational transitions at lattice nodes. The LGCA have some advantages over 

conventional methods of solution of the N a vier-Stokes equations in that they allow 

a considerable gain in computational efficiency and in some cases permit a deeper 

theoretical analysis. 

However, it is not obvious that, on a macroscopic scale, the gases described by a 

cellular automaton rule obey the Navier-Stokes equation (1.1). It turns out that some 

of them do not, and those which do, show the fluid-like behavior only approximately. 

The question must be raised as to the validity of the LGCA to represent actual 

fluids. The theoretical analysis of the lattice gas model does allow an answer to 

this question and can be carried out relatively easily. One views the lattice gas as a 

simplified version of the hard-sphere gas. Starting from exact micro-dynamical equa­

tions, statistical-mechanical computations can be conducted rather straightforwardly 

in a logical fashion with well controlled assumptions which bypass the many-body 

problem. The macroscopical parameters of LGCA can be then evaluated analyti­

cally . Results depend considerably on the model under consideration. We may find, 

for example, that in some models the discrete nature of LGCA affects the resulting 

"macro-dynamical equations" in the sense that the density and mass current may not 

be invariant under arbitrary rotations as is the fact in real fluids [3]. The other dis-
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advantage is that practically all LGCA 's have spurious conservation laws, as artifacts 

of the discrete space-time structure [3]. These spurious conservation laws will gener­

ate additional hydrodynamic equations containing spurious transport coefficients and 

hence should be carefully accounted for in the study of LGCA. 

It turns out that all the macrodynamics depends considerably on the microscopic 

construction of particular cellular automaton. The essential point here is the existence 

of the conservation laws. Similarly to the situation in the theory of continuous fluids 

[4], momentum conservation is vital for the existence of a flow velocity and for sound 

waves. The macroscopic equation for energy balance is vital for problems involving 

convection. The theory of LGCA is general enough to include all desired conservation 

laws, although there are often spurious ones as well. 

As mentioned, the theoretical analysis of LGCA is based on well known approxi­

mations in theory of liquids: the assumption of molecular chaos, the approximations 

of Chapman-Enskog analysis, linearizations of the collision matrix etc. The validity 

of these approximations is not obvious in LGCA models. Hence the special interest in 

"experimental" confirmation of the theory, namely computer simulation of LGCA. In 

such a simulation we investigate the density fluctuations. The motivation for this is 

that a fluid at global equilibrium can be viewed as a reservoir of excitations triggered 

by spontaneous fluctuations which temporarily disturb the system from local equilib­

rium. The excitations extend over a broad range of wavelengths and frequencies from 

the hydrodynamic scale down to the range of the intermolecular potential. 

Non-intrusive scattering techniques are used to probe these fluctuations at the 

molecular level (neutron-scattering spectroscopy) and at the level of collective ex­

citations (light-scattering spectroscopy). The quantity measured by these scattering 

methods is the power spectrum of density fluctuations, i.e., the dynamic structure fac­

tor S(k, w) which is the space and time Fourier transform of the correlation function 

of the density fluctuations. The spectral function S(k,w) describes the dynamical 

behavior. of spontaneous fluctuations and it illustrates how the details of the micro­

scopic processes manifest themselves at the macroscopic level. The most obvious 



0 

CHAPTER 1. REVIEW OF LATTICE GAS THEORY 5 

such manifestation is the description of the transport coefficients. While water and 

molasses both satisfy the Navier -Stokes equations, they do so with very different 

viscosities and diffusivities. All those differences show up in the form of the dynamic 

structure factor (as will be shown in Section 1.8). Thus the "fluid-like" form of the 

Structure Factor which results from computer simulation can be treated as a criteria 

for the success of a particular LGCA model. During the simulation other theoretical 

results can also be tested unambiguously. 

1.1.1 Outline of later chapters 

Chapter 1 begins with a review of lattice gas theory, and establishes notation that is 

used throughout the rest of the thesis. The main foci of this chapter are the Boltzmann 

evaluation of transport coefficients and the general derivation of the Landau-Placzek 

expression for the dynamic structure factor of a LGCA. 

Chapter 2 contains a simple example of a LGCA model with detailed analysis from 

both the theoretical and the computational point of view. We analyze the structure 

factor and transport properties of the model and compare simulation results to the 

known results for continuum fluids. 

In the Chapter 3 we introduce the relatively complicated thermal LGCA. Consis­

tency with classical equilibrium thermodynamics is given a special attention. Several 

results of computer simulations are presented to demonstrate some essential features 

for the construction of useful LGCA models. The results confirm that thermal Lattice 

Gas Automata are consistent models for real fluids. 

Finally, in the last Chapter, we summarize the results presented in this thesis and 

discuss the advantages and disadvantages of the various models. 
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1. 2 General definitions and notation 

A lattice gas is generally described by a state space and by a time-development rule. 

The state space is defined by associating b possible states for particles at each point 

of a lattice L (we will in future refer to these lattice points as lattice sites). At each 

site there can be many particles, but only one in each of the possible states. Each 

state is associated with the velocity of a particle residing at the given site of lattice 

(hence we often refer to the states as velocity channels). This arrangement allows 

us to associate each state on a given site with one bit, {bits are Boolean variables 

taking the values 0 or 1), and the particle configuration of the site with one b-word. 

Particular LGCA models are thus often referred to as b-bit lattice gas models. 

We denote the total number of bits on the lattice by N =biLl. For each value of 

the discrete time parameter t, we write the values of the bits as ni(r, t), where the 

discrete vector r E L counts all the sites of lattice and i counts the bits at lattice 

site r or, equivalently, enumerates the states of the particles (or velocity channels) at 

this site. We interpret the function ni( r, t) as an occupation number since it gives 

the value of the particle number of each velocity channel. This value is either 1 or 

0, namely the particle in the given state is either present or absent. So the particles 

obey the Fermi exclusion rule and hence all the statistical description of LGCA is 

similar to that of the Fermi gas, as will be shown in Section 1.6. 

Since the finite set of states directly corresponds to the finite set of particle ve­

locities, the number of all states b for a given model is defined by the symmetry of 

the underlying lattice, namely the number of nearest neighbors for any given site and 

by a restriction on the absolute value of the velocity, namely that allowed velocities 

connect the site with its nearest neighbors, next nearest neighbors, etc. Rest parti­

cles, having c = O, are also allowed in certain models. We denote the discrete set of 

velocity vectors by Ci, i = {1, ... , b }, hence the set of velocity vectors coincides with a 

set of all possible displacements of particles residing at a given site. 

Now we consider the time evolution of LGCA. This process consists of a collision 
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step and a propagation step. The collisions are local, and occur simultaneously at 

each site at equal time intervals ll.t according to particular rules defined for each 

model. Collision rules are often conveniently represented by a collision table: a list of 

diagrams depicting all possible precollisional states at a site with the corresponding 

postcollisional state( s}. In such a diagram the presence of particle with velocity Ci 

is marked by an arrow with the corresponding direction and length. Figures 2.2 and 

3.2 of this thesis are examples of collision tables. Collisions are then followed by the 

propagation of particles. Each particle moves to another site according to the value 

of its velocity, so that the value of bit i at site r becomes that of bit i at site r + cill.t. 

This can also be viewed as a change from the postcollisional state at time t to the 

precollisional state at time t + ll.t. 
Finally, it is worth mention that the boolean nature of the occupation numbers 

is the main feature which allows effective numerical simulation with remarkable com­

putational efficiency. The state of the system in such a simulation is represented by 

a matrix of I L I b-bit-words, each of them describing the state of a site. In this 

representation, the propagation step of the dynamics consist in moving bits from 

each matrix element to adjacent ones: an operation particularly suited to massively 

parallel computer hardware. 
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1.3 Microscopic dynamical equation 

As already described, for each value of i E {1, ... , b} there is a lattice vector Ci such 

that r + ciilt E L for every r E L where Llt is the duration of one time-step. It is 

convenient to set Llt equal to unity. 

We wish to express the evolution of LGCA in the form of an equation for the 

microscopic dynamics of the lattice gas; that is, we desire an equation for ni(r, t + 1) 

in terms of ni{r,t), where Llt denotes the timestep. Suppose, for a moment, that the 

particles simply propagated without colliding. Then the dynamics would be described 

by the following free streaming equation: 

The addition of collisions introduces a collision operator on the right-hand side of the 

above equation. That is, we have 

{1.2) 

where the collision operator, ni, describes the change in bit i due to collisions and 

is a nonlinear function of a limited set of occupation numbers n.{r, t) in the small 

neighborhood of a given node r. In other words, the collision operator depends on the 

occupation function n for all possible values of the index represented by the asterisk. 

All terms in the collision operator are the products of occupation numbers of particles 

ni(r, t) or "holes" n(r, t) = 1-ni(r, t) at the lattice site where the collision took place. 

The factors n ensure that multiple collisions can only occur if the appropriate post­

collisional states are empty or occupied by "holes". This is a consequence of the Fermi 

exclusion rule. In general, the collision process at a fixed lattice site and timestep 

can be fully specified by a 2n by 2n transition matrix A, whose element A( s -+ s') 

is unity if and only if the particles in state s = { ni(.) = 0 or 1, i = 1, ... b} collide to 

yield particles in state s'. Since each incoming state gives rise to exactly one outgoing 

state, 

2: A(s-+ s') = 1. {1.3) 
•' 
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The relationship of this matrix to the collision operator n will be shown in Section 

1.7. 

It is worth stressing the big variety of possibilities for constructing the collision 

matrix (collision rules) even under the restriction of conservation laws for any fixed 

d-dimensionallattice. The way we choose the collision matrix defines the model itself 

and affects its macroscopic properties in general. For an example of the construction 

of the collision term in Eq.(1.2) for a particular model see Section 2.2. 

Often, however, precise knowledge of each and every bit of the system is more 

information then one really desires. So we now consider some statistical aspects of 

lattice gas theory. Let us suppose that we have prepared an ensemble of lattice 

gas simulations, on grids of the same size, with different initial conditions. We may 

then take averages across this ensemble. We shall denote these ensemble averages by 

angular brackets (). But we denote the ensemble average of the quantity n,(r, t) by 

/i(r, t); that is 

(1.4) 

Note that while the ni's are binary, the fi's have values in the set of real numbers 

between zero and one. Physically /i{r, t) gives the probability of finding a particle 

with velocity ci at position r at time t, averaged over configurations. 

Similarly we define the matrix of transition probabilities A,.,: 

A ... = (A(s--+ s')) (1.5) 

A coarser description, such as a closed set of kinetic equations for the one-particle 

distribution function defined in (1.4) is then a more appropriate description of the 

system. In this description we expect to get the hydrodynamical behavior of the 

system. 

The idea that macroscopic properties of a physical system should be independent 

of the microscopic definition of the system is also a familiar concept in equilibrium 

statistical mechanics and in quantum field theory. In such theories, the effect of 

looking at the physics of the system at larger and larger scales is mathematically 
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described by the renormalization group flow of the system [5]. Generally, as the scale 

of the physics of interest becomes extremely large compared to the scale at which 

the system is defined, one finds that the renormalization group flow takes the system 

towards certain fixed points, which describe entire universality classes of theories with 

identical macroscopic behavior. The emergence of similar hydrodynamic equations in 

a variety of systems with different microscopic dynamics is an equivalent phenomenon 

in nonequilibrium statistical mechanics. 
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1.4 Conserved quantities 

A distinguishing feature of lattice gases is the presence of some number of conserved 

quantities that are linear in the bit values. The presence of conserved quantities is the 

key argument in understanding why we should expect the bulk beha.vior of particles 

moving and colliding on a lattice to be that of a fluid. In nature we observe tha.t 

ma.ny different fluids, with drastically differing intermolecular force laws, all satisfy 

the Navier-Stokes equations to a reasonable degree of approximation. In spite of all 

the differences between the intermolecular collisions in, say, water a.nd molasses, both 

conserve mass and momentum; ultimately the existence of these conserved quantities 

when combined with other conditions discussed later is what gives rise to fluid-like 

behavior a.t the macroscopic level [6]. On a more theoretic~ level conserved quan­

tities ensure the existence of respective conjugate thermodynamic variables and the 

existence of an equilibrium state of the fluid corresponding to these quantities. 

The quantities that are conserved may differ from one LGCA model to another. 

For example, in some lattice gases, the total number of particles is a conserved quan­

tity; it is clearly conserved by the propagation phase of the timestep, and we ca.n 

choose collision rules that conserve the particle number as well. Let us assume that 

we have a lattice gas with some number of conserved quantities with corresponding 

densities, such as 

number of particles 

momentum 

energy 

p(r, t) L n,(r, t) 

g(r, t) - L cini(r, t) 

c(r, t) = L !c;ni(r, t) 
. 2 
' 

(1.6) 

(1.7) 

(1.8) 

More explicitly the total number of particles N =Er p(r, t), the total momentum of 

the system P = Er g( r, t) and the total energy H = Er c( r, t) are constants of the 

motion. 

Because the corresponding densities can change only through free streaming but 
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not through collisions the collision term in Eq.(l.2) must satisfy the relation: 

I: q(Ci)Oi(n.(r, t)) = 0 (1.9) 
i 

where q( Ci) = {1, ci, ~c~, ... }. From {1.2) the local microscopic conservation laws then 

take the form 

l:q(Ci}[ni(r + Ci,t + 1)- ni{r,t)] = 0 
i 

{1.10} 

In terms of introduced in previous section ensemble average we can thus consider 

averaged values of the conserved quantities {1.6}-{1.8} 

Q = (Q(r,t)} = {l:q(Ci)ni{r,t)} = l:q(Ci)/i{r,t) = N,P,H, ... {1.11} 
i i 

where the average is calculated with the local equilibrium distribution. In terms of 

matrix of transition probabilities (1.5} the conservation laws take the form 

A ... h(s) = A ... h(s') 

h( s) = I: q( Ci)ni(.) 
i 

(1.12) 

{1.13) 

No summation over repeated indexes is implied. Physically Eq.(l.12) implies that if 

the transition occurs (A .. , f. 0) then the value h( s) = Li q( Ci )ni (.) of the conserved 

quantity in the pre-collisional state s is equal to that in the post-collisional state s'. 

We observe in passing that some lattice gases also posses spurious global conserved 

quantities. Such spurious global conserved quantities have no analog for continuum 

fluids, and need to be considered carefully when using lattice gases to model hydro­

dynamic phenomena. (See, e.g., [7-9].) For example, the most frequently occuring 

spurious invariant is the total staggered momentum [10,11]. The existence of this 

invariant can be easily understood by using a trivial one-dimensional example. Let 

g( :z:) be the linear momentum of the particles present at site :z:. Define 

Ge(t) = I: g(:z:,t) (1.14) 
zeven 

Go(t) = I: g(:z:, t) 
zodd 

http:Eq.(1.12
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as the total momentum of the particles on even or odd sites and let the collision 

rules conserve the momentum and the number of particles at each site. If we choose 

also that the particles can only hop between nearest neighbors, then G~ and Go 

are exchanged at each time step. Due to this extremely simplified dynamics a new 

conserved quantity S = ( -1)t(Ge- G0 ), called the staggered momentum, is present 

in addition to the usual total number of particles N and the total linear momentum 

Ge + G0 • Similar staggered conserved quantities exist in higher dimensional models. 

For example, lattice gases of single-speed particles on a Cartesian grid conserve some 

quantities separately on both checkerboard sublattices [7,8]. These models are usually 

insufficiently symmetric [3] and do not seem to have any interesting applications. 

In Sec.2.1 we encounter also the unwanted conservation of the particle number 

difference between any pair of opposite directions for a specific FHP model. As was 

shown in a number of papers [11,12], the existence of spurious invariants leads to 

modified hydrodynamics which is strongly tied to the microscopic structure of the 

model. It is therefore important to consider models where the presence of spurious 

invariants is eliminated or minimized. For example, the staggered momentum of the 

above example on the linear lattice can easily be destroyed by allowing for next-nearest 

neighbor hops. 

Finally we note that LGCA may not conserve energy. If energy is conserved, one 

has a thermal lattice gas model in which temperature can be defined in accord with 

thermodynamics, {see Section 1.6 for details). If the energy is not conserved or is 

simply a multiple of the particle density, such as in the simple FHP model discussed 

in Chapter 2, one has an atbermallattice gas model. 
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1.5 The Boltzmann Equation 

To obtain a closed set of equations for the fi, we take the ensemble average of Eq. (1.2). 

We are immediately confronted by the fact that the collision operator is generally a 

nonlinear function of the occupation numbers ni. As is well known, the average of a 

nonlinear function of a set of variables is not in general expressible as a function of 

the averaged variables. It also depends on the correlations between the quantities -

in this case on those between the incoming bits, ni. 

Thus, the simplest approximation that we can make to close the system of equa­

tions for the fi is to assume that the incoming bits, ni, are uncorrelated. This is 

the discrete version of the famous Boltzmann molecular chaos assumption. From this 

assumption, it follows that 

In this way, we get the lattice Boltzmann equation, 

{1.15) 

Physically speaking, the assumption of molecular chaos supposes that the prop­

agation substep effectively decorrelates the different bits at each site1 . That is, it 

supposes that colliding particles have never had any prior effect on each other. This 

assumption is almost never strictly correct for a system of particles moving on a dis­

crete lattice in a finite number of dimensions. By standard combinatorial arguments, 

the reencounter probability for two particles executing a random walk on a lattice 

is unity in one and two dimensions, is less than unity in three or more dimensions, 

and falls to zero as the number of dimensions goes to infinity. One might thus expect 

that the molecular chaos assumption becomes more valid as the number of spatial 

dimensions increases. Indeed, this is the case, and the molecular chaos assumption 

can be thought of as a sort of mean-field theory. In addition, in some circumstances, 

1 For stochastic lattice gases, such decorrelation is enhanced by the injection of stochasticity at 

each site at each time step. 
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it is possible for particles to set up coherent structures that persist for long times. 

Such structures, by their very nature, invalidate the molecular chaos assumption in 

a rather dramatic way. LGCA models with this characteristic are clearly not good 

models for fluid motion. 
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1.6 Thermodynamics 

Non-equilibrium fluid dynamics is of great practical interest in the physics of liquids. 

In many cases the non-equilibrium state of the fluid (or the LGCA) can be visualized 

as a collection of local equilibria that smoothly merge into one another and smoothly 

evolve in time; the various macroscopic quantities B.ow in a continuous way. 

This is because in a very large system, even relatively small portions of the system 

still contain a large number of parts, and thus can be meaningfully subjected to a 

macroscopic analysis. The equilibrium has established itself on a certain scale, so 

that the system as a whole is not at equilibrium. In this situation, the macroscopic 

parameters gradually change from place to place; moreover, at each place these pa­

rameters may gradually change also in time - such macroscopic evolution being of 

course driven by the spatial gradients of the macroscopic quantities involved. Be­

cause in this scheme the existence of thermodynamic equilibrium is essential we next 

consider the thermodynamics of the equilibrium state of LGCA. 

Let us assume that, given any initial conditions, the lattice gas evolves in such 

a way that it eventually attains some sort of steady state. This is achieved when 

particles travel and collide with one another. Collisions lead to a gradual randomiza­

tion of the particles' paths. This implies that, regardless of the initial distribution of 

particles, but after a certain amount of time for evolution, the system at any given 

time-step looks just as random as it looked one or more time-steps before; in phys­

ical terms, the entropy will not decrease. The lattice gas then effectively displays 

irreversible be ha vi or. 

We should mention here the special class of LGCA where, during evolution, each 

microscopic particle configuration has its unique predecessor state as well as its unique 

successor. These lattice gas models are called deterministic as opposed to nondeter­

ministic models, where each microscopic configuration has several possible outcomes, 

each of them weighted with some probability. Here we approach one of the central 

questions of statistical mechanics regarding reversibility: How do we get randomiza-
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tion if the collision rules are usually chosen to be microscopically reversible ? Or in 

other words, why we should expect the deterministic model to be reversible? The 

rules for collisions on each site thus correspond to a simple permutation of the possible 

particle arrangements. Hence the evolution of a complete particle configuration can 

be reversed by applying inverse collision rules at each site. The discrete nature of the 

cellular automaton model makes such precise reversal in principle possible. But the 

rapid randomization of microscopic particle configuration implies that very complete 

knowledge of the current configuration is needed. With only partial information, the 

evolution may be effectively irreversible. 

The macroscopic irreversibility and the existence of a steady state do not ensure 

that we can use the methods of Classical Thermodynamics and Statistical Mechan­

ics. The essential condition here is the existence of a universal equilibrium state 

which depends only on macroscopic conserved quantities. It turns out that not ev­

ery cellular automaton rule leads the LGCA to universal equilibrium. In order to 

understand when the steady state is at the same time a universal equilibrium state, 

we describe the time evolution of the LGCA in terms of a probability distribution 

function P(s,t) denoting the probability that the dynamic variables ni(r,t) take the 

values corresponding to the state s. This way one arrives at the Liouville equation of 

stochastic dynamics which is analogous to the microdynamic equation for determin­

istic dynamics, see [13]: 

P(t + 1) = s-1 AP(t) (1.16) 

with A being the matrix of transition probabilities as in (1.5). S is the streaming 

operator, mapping the post-collision state r, ci at time t to the pre-collision state 

r + ci, ci at timet+ 1. The equilibrium solution in the long time limit of the proba­

bility distribution of occupation numbers p0 ( s) = limt-->oo P( t) satisfies: 

s-1 Apo(s) = Po(s) (1.17) 

This is a mathematical representation of the physical definition of the equilibrium. 

The equilibrium distribution does not change under the action of either streaming or 
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collision operators and this places conditions upon the collision matrix A. 

To see them we assume that there exists an universal equilibrium solution 

p0 ( s) = D( Q( s) ), depending on the configuration only through the globally con­

served quantities Q( s) defined in ( 1.11 ). We separately consider the action of the free 

streaming operator S and the collision operator A. As Q( s) is a sum of single particle 

quantities, and as the system obeys periodic boundary conditions, Q( s) and D( Q( s)) 

are invariant under free streaming. To obey the Liouville equation, D( Q( s)) should 

therefore satisfy D = AD or 

D(Q(s)) = L A.uD(Q(s)) (1.18) 
u 

On account of {1.12) this reduces to the semi-detailed balance condition, 

(1.19) 
• 

We derived this condition from the assumption of the existence of a statistical equi­

librium solution defined only by the values of the macroscopic conserved quantities Q. 

So if the semi-detailed balance condition is not satisfied, the equilibrium distributions 

are not simply function of the invariants Q, and depend explicitly on the transition 

rules. This class of models does not have much physical interest and will not be 

considered further. We note that the LGCA considered in this thesis obey the even 

stronger condition of detailed balance 

(1.20) 

requiring that the forward and backward collision rates be equal. On account of (1.3) 

this satisfies the semi-detailed balance condition (1.19). 

1.6.1 Boltzmann Equilibrium 

The statistical mechanics of the LGCA universal equilibrium state is conveniently de­

scribed by a grand ensemble [14] with a phase space density proportional to e:z:p(bQ) 

[15] where Q as defined by (1.11) includes all spurious invariants, and all physical 
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ones. The set of thermodynamic fields b( r, t) includes the chemical potential p.( r, t), 

the reciprocal thermodynamic temperature f3(r, t) and conjugates to the momentum 

'Y(r, t) and to spurious conserved quantities h.(r, t). They are conjugate to the average 

or macroscopic densities Q(r, t), defined in {1.11). 

By setting 'Y = 0, (and if necessary setting all spurious conjugate thermodynamic 

variables to zero), one ensures that {Li <;ni(r,t)) = P = 0, so that the lattice gas is 

macroscopically at rest. The ensemble then reduces to the grand canonical ensemble 

so that we can write the probability distribution of occupation numbers in statistical 

equilibrium Po( s) as: 

Po(s) = Cezp[p.N- ,BH] {1.21) 

where C = C(b) is the grand partition function or normalization factor to ensure the 

ensemble density is normalized to unity [14]: 

I 

C = L: L: e-[L':r;(~-}/3cnnt(r,t)J {1.22) 
N • 

The prime indicates that the summation over occupation numbers is constrained to 

situations with exactly N particles. We note that the summand does not contain a 

factor Jl! because the particles are indistinguishable. 

Since the numbers ni{r, t) can be either 0 or 1, the further analysis is exactly 

the same as in the statistical mechanics of the Fermi gas {see, for example, [15]). In 

particular the mean occupation number of a single-particle state is given by 

f. = {ni{r,t)) =- -- - = , 0 1 [ 1 ({)G) l 1 
' C ,8 Of ~./3 1 + exp ( -p. + f3~ct) 

{1.23} 

where € = ~c~ is the kinetic energy and ff = limt--+oofi(t) is the longtime limit of the 

probability function f {1.4), which is invariant under the Boltzmann equation (1.15}. 

For this reason, the equilibrium is often referred to as Boltzmann equilibrium. If the 

Boltzmann equilibrium is spatially uniform, it can be specified by a set of values for 

the n mean occupation numbers, /i; and the associated distribution on the set of 

states is given by independently sampling each bit ni with probability fi· 
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In general the Boltzmann distribution of the model with an arbitrary set of con­

served quantities q~( Ci) is given by 

,~ = 1 
l 1 + e- L:.\ b.\q.\(ci) 

(1.24) 

where the set b~ are conjugate to the invariants q~. 

1.6.2 Thermodynamic quantities and relations 

In terms of the distribution function (1.23) we can write explicit expressions for the 

basic thermodynamic quantities which have the same form as in the ideal Fermi gas 

except that the sum over velocities is restricted to a small set of b values: 

N = pV = -8lnC/8p. = VLfi0 

i 

H = eV = 8lnC/8f3 = V4= ~elf~ 
l 

S = -(lnp(s )) = L fi0 lnfi0 + (1- f~)ln(1- tn 
PV/3 = lnC = -VL:ln(1- tn 

i 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

where N is the total number of particles, H the total energy, C is defined by (1.22) 

and S is the entropy. Equation (1.28) defines the thermodynamic pressure of a lattice 

gas. However, in the literature [14] one often uses the kinetic pressure which is defined 

through the virial theorem, or through the momentum flux density 

~20 2 2~12() 
PK = L....i c~Ji = -de= -d L.., -ci ni r, t . . 2 ' . {1.29) 

A kinetic temperature is sometimes also introduced [16] through the relation PK = 
pkBT. This temperature is of course different from the thermodynamic temperature, 

as was shown in [14]. The introduction of the kinetic pressure and the kinetic tem­

perature is justified by the simplicity arising from their linear dependence on the 

occupation numbers. In the limit of low densities f? --+ 0 and high temperatures 

f3 --+ 0 the kinetic and thermodynamic pressures become equivalent, because 

P = -
13
..!:.. 4= ln(1- t) => t: 4= fi0 =Plc 

• l 

(1.30) 
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In last equality we used the fact that in the high temperature limit, the f~ do not 

depend on i and can be taken out of the summation in Eq.(1.29). 

An important property of lattice gases is the speed of sound defined as 

8p 1 
c. = [(-)5]2 

8p 
(1.31) 

where S is the entropy per particle (1.28). It can be easily evaluated using linear re­

sponse, which relates the fluctuation in a given quantity to thermodynamic derivatives 

[17]. This allows us to write: 

so that 

2 = ( 8p )/( 8p) = ((6p)
2

} 

c. av av (6p6p) 

L:i et ( ( 6ni)2
} 

d L:i c~(( 6ni)2} 

(1.32) 

(1.33) 

(1.34) 

(1.35) 

In the last equation we used the definition of kinetic pressure (1.29). To obtain 

the fluctuation of 6ni(r, t) we differentiate the Fermi-Dirac distribution (1.23) with 

respect to the chemical potential J.L 

(6ni(r, t)6ni'(e, t)} = k;6i,i'6,.,,., 

ki = t(l- tn (1.36) 

The delta-functions come from the fact that there are no spatial correlations in a 

lattice gas. 

Combining Eqs.(1.36) and (1.36) we find for the velocity of sound: 

2 L:i k;cf c.= 2 
d~·k·c· LJ, l l 

(1.37) 

http:Eqs.(1.36
http:Eq.(1.29
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1.7 Linear approximation to the Boltzmann 

equation 

As mentioned in Section 1.6 the most interesting physics of fluids appears when 

the system is driven away from its equilibrium state. The response of the system 

to an external perturbation is known to be related to transport phenomena and 

will be discussed in Section 1.9 of this chapter. The lattice Boltzmann equation 

(1.15) fully describes the LGCA out of equilibrium, but, because of the nonlinearity 

and complexity of the collision operator is of little practical use in the evaluation 

of transport coefficients. Here we consider a linear approximation to the Boltzmann 

transport equation. 

This approach assumes that the distribution function fi differs only slightly from 

the equilibrium form fi0 (1.23). Thus we can make an approximation: 

(I~~ I~ 1) (1.38) 

With this approximation the collision term ni in the Boltzmann transport equation 

may be approximated by a power series expansion in q>i 

ni =I: nU)q;j +I: nmq;jq>le + ··· (1.39) 
j jk 

where f2{l) is the linearized collision operator. Notice that for a model with collisions 

involving at most K particles, the expansion (1.39) terminates at 0( q>K). As was 

shown in Refs.[6,12] the linearized collision operator f2(l) can be expressed in terms 

of the matrix of transition probabilities (1.5) 

nU)kj =I:( si- sDA .. •po(s)sj (1.40) 
••' 

where po( s) is the probability distribution of occupation numbers given by (1.21 ). We 

further observe that the product matrix 

(1.41) 
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is symmetric for models obeying detailed balance (1.20). The matrix O(l) is in general 

, non-symmetric. However in the special case of one-speed models this matrix becomes 

symmetric because ki does not depend on the subscript i. In such athermal models 

the conservation laws {1.10) written in terms of the microscopic collision operator 

{1.2) yield conditions on all the g(n) of the form: 

"n~':'lc> = o LJ l:J 000 

iilcooo 

" Cin~':'lc> = o LJ l:J 000 

(1.42) 
iilcooo 

In a spatially uniform system close to equilibrium one may use a linear approxi­

mation to the Boltzmann equation 

fi(r + Ci, t + 1) - fi(r, t) = ~ nU>t; 
i 

(1.43) 

This equation can be solved in terms of the eigenvalues a~ and eigenvectors 'I!~ of the 

matrix O(l) i.e., 

(1.44) 

with eigenvalues satisfying the inequalities, 

{1.45) 

{see Sec.1.8 for justification). The inclusion of ki as defined in (1.36) is convenient 

because it defines the eigenfunctions 'I!~ to be orthogonal with respect to a weighted 

thermal inner product 

< W~ I Wm > = ~ ki'I!~(Ci)Wm(Ci) =~~m (1.46) 
i 

The ti may always be written [18] as sums of pieces proportional to each of the 

orthogonal eigenvectors 'I!~ 

ti = ~B~w~(Ci) 
~ 

and the general solution of Eq.(l.43) is given in terms of Eq.(1.47) by 

(1.47) 

(1.48) 

http:Eq.(1.47
http:Eq.(1.43
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Since all nonzero a.x have negative real parts, the associated B.x must decay expo­

nentially with time. Only the combinations of i)i associated with zero eigenvalues 

survive at large times. 

It is easy to show that the set of eigenfunctions '11 .x with zero eigenvalues is pro­

portional to the set of conserved quantities q.x( Ci) = {1, Ci, le~, ... } defined in (1.9). 

Since ni(f0 (b.x)) = 0 for any set of b.x conjugate to the conserved quantities q,x (1.24), 

it follows that 

:E ani = :E ani h = 0 
i ab.x i 8fi 8b; 

(1.49) 

However, the derivative !f/k is just nu>, and so writing the derivatives ~ explicitly, 

we obtain 
~ (l)dfJ ~ {1) ( ) 
~ ni1 db.x = ~ ni1 kjq.x cj = o 

3 3 

(1.50) 

showing that the q,x(ci) are indeed eigenvectors of nU> with zero eigenvalues. Hence 

corresponding eigenvectors with zero eigenvalue play a special role and are associated 

with the conservation laws (1.10). 

This result supports the local equilibrium assumption used for the derivation of 

hydrodynamic equations. It implies that regardless of the initial average densities i)i, 

collisions bring the system to an equilibrium that depends only on the values of the 

macroscopic conserved quantities. 
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1.8 Dynamic Structure Factor 

In this section we introduce the formal definition and general properties of a time­

correlation function, namely the dynamic structure factor, and thus establish the link 

between spontaneous time-dependent fluctuations and the response of a lattice gas 

to an external probe. The importance of density fluctuations in LGCA models lies 

in the first place in the fact that LGCA fluctuations as well as those in real fluids 

can be measured with a high degree of accuracy using computer simulations and light 

scattering experiments respectively [4]. Thus the value of LGCA as a model of a real 

fluid can be easily seen. 

The Dynamic Structure Factor S(k, w) is defined as the double Fourier transform 

with respect to space and time of the correlation function of density fluctuation 8 p( r, t) 

around the equilibrium state: 

00 

pS(k,w) = 2: 2: e-iwt-ik·r < 8p(r, It 1)8p(O,O) >= (1.51) 
r t=-oo 

00 

2: e-iwty-l < 8p(k, I t 1)8p*(O, 0) > 
t=-oo 

where p(k) = Lr exp( -ik · r )p( r) is the spatial Fourier transform of the density and 

V =I L I= zd is the number of nodes in the d-dimensionallattice. 

The Fourier transformation of the linearized lattice-gas Boltzmann equation ( 1.43) 

yields to first order in the fluctuation 8ni: 

8ni(k, t + 1) = E e -ik·C; ( 8ij + n~;>)8ni(k, t) 
j 

(1.52) 

Hence we can write the most important quantity in the non-equilibrium description 

of LGCA, namely the kinetic propagator r , as: 

(1.53) 

where ki is the equal-time correlation function of the 8ni's given by (1.36). This form 

of the kinetic propagator as the t-th power of e-ik•c(l + n<1>) immediately implies 

that the eigenvalues of the matrix (1 + n<1>) must have modulus < 1. This justifies 

the inequality (1.45) for the eigenvalues of the linear collision matrix. 
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Then summing Eq.(l.53) over (i,j) and taking the temporal Fourier transform 

yields the dynamic structure factor (1.52) 

pS(k, w) = 2Re f.1 { eiw+k-c ~ 1 - Q(l) + ~} ij k; (1.54) 

This is the expression for the dynamic structure factor in Boltzmann approxima­

tion. In general it is too complicated to be expressed analytically. However, when 

one is interested in the dynamic structure factor in the hydrodynamic regime, then 

the method of Landau and Placzek [19] allows the calculation of S(k, w) analytically, 

from (1.54) in the limit of k-+ O,w-+ 0. 

Equation (1.53) contains the t-th power of the non-symmetric matrix e-ik·c(l + 

n<1>). In matrix notation its right eigenvectors are defined through 

{1.55) 

where the vector I "W~) has components I "W~)i = ~"W~(ci) with i = 1,2, ... ,b. 

First we note that in the k-+ 0 limit this equation becomes essentially the same 

as Eq.(1.44) with 

Z>.(k)l(k=O) = ln(l + 0>.) (1.56) 

We now can distinguish two types of eigenvalues or eigen-modes. The ones with 

z~(k) = 0 at k = 0 are called hydrodynamic modes, all the rest are called kinetic 

modes. Next we consider the eigenvectors. In (1.50) we have already determined the 

zero eigenvectors q>.( c) of Q(l) which represent the right eigenvectors "W >. in the long 

wavelength limit (k-+ 0). Denoting the eigenvectors as 

(1.57) 

the eigenvalue equations (1.50) and (1.9) can be written as 

n<1
> 1 q>.) = o, (q>. 1 n<1

> = o (1.58) 

The left eigenvectors, (4>>. I, defined through the relation, 

(1.59) 

http:Eq.(1.44
http:Eq.(1.53
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differ from the right eigenvectors I "\lf~(k)). By taking the transpose of {1.59), using 

the symmetry of thermal inner product {1.46) discussed in references [12,20], and 

comparing it with {1.55) we deduce, 

{1.60) 

where M~ is a normalization constant. The right or the left eigenvectors are not 

orthogonal, but form a complete biorthonormal set, satisfying, 

I: I w~)(4>~ I= t {1.61) 
~ 

(4>m I w~) =(.,Pm I e-ik·c I '11~)/M~ = Dm~ 

With the help of these eigenfunctions we make the following spectral decomposition 

of the Boltzmann propagator {1.53}, 

r(k, t)k =I: 1 w~(k}}ez~<k>(<t>~{k) 1 

~ 

With the above notations the structure factor {1.54) can be written as 

pS(k,w) = 2Re(p I [eiw+k·c- 1- n<l)rl +~I p) 
2 

= 2Re ~(pI '11~){4>~ I p}{eiw-z~(k)- 1 + ~} 
~ 2 

= 2Re""' N>. { . 
1 + ~} 

LJ e•w-z~(k) - 1 2 
~ 

= 2Re I: N~[iw- z~(k)t1 [1 + O(k2
)] 

~ 

where we used the relation ( e"' - 1 t 1 + ~ ~ z-1 valid for small z. 

{1.62) 

{1.63) 

{1.64} 

In order to obtain expressions for the N~ and the z~(k) we expand the hydro-

dynamic modes w~{k) and eigenvalues Z>.(k) in a Taylor-series with ik as a small 

parameter 

'lt~(k) = "\11~0) + ik"\11~1 ) + (ik)2 '11~2 ) 

z~{k} = ikzi0> + {ik)2zi2) 

(1.65) 

{1.66} 

We refer to [21] for detailed analysis of this expansions in terms of the eigenfunctions 

{1.58) for k = 0. The coefficients of the expansion can be expresses in terms of 
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thermodynamic derivatives such as the speed of sound c., and transport coefficients 

(see also Sec.l.9) such as the kinematic viscosity v, the heat diffusivity DT, and 

the sound damping constant r. It is shown that the dominant contributions to the 

structure factor in small k approximation come from hydrodynamics modes: the shear 

mode (,\ =..l), the heat mode {,\ = T) and the two sound modes {,\ = u = ±). In 

particular, the expansion {1.66) reduces to 

Z.L(k) -vk2 

ZT(k) - -DTk2 

Z~r( k) -iuc.k- fk2 {1.67) 

and the coefficients N>.. as defined in {1.64) are found to be 

{1.68) 

The sound damping constant r is found to be dependent on the other coefficients 

as: 
1 1 

f = -v + -(r- l)DT 
2 2 

{1.69) 

Finally, the combination of {1.64), (1.69) yields the expression for dynamic struc­

ture factor in the hydrodynamic regime, known in the literature as the Landau­

Placzek approximation: 

S(k,w) 
S(k) 

V- 1 2DTk2 1 fk2 

- (-v-) w2 + (DTk2)2 + ;; ~ (w ± c.k)2 + {fk2)2 

1 k (c.k ± w) 
+ ;;[r + (v -l)DT]c. ~ (w ± c.k)2 + {fk2)2 (1. 70) 

The first two terms in { 1. 70) represent three symmetric Lorentzians. The first one 

is the Rayleigh peak with a width DTk2 and the other two Doppler shifted ( ±c.k) 
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lines are the Brillouin peaks with a width rk2
• The last term in ( 1. 70) describes 

asymmetric contributions to the Brillouin lines (there are no asymmetric corrections 

to the Rayleigh line). 

The power spectrum ( 1. 70) consisting of the Rayleigh line and the asymmetric 

Brillouin lines, derived here from the Boltzmann equation for the lattice gas, is com­

pletely analogous to the results of the Landau-Placzek theory for continuous isotropic 

fluids [22]. 
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1. 9 Transport coefficients 

The hydrodynamic equations for the macroscopic local densities q(r, t) 

{p(r, t), g(r, t), e:(r, t), q.(r, t)} (see for example Eqs. (1.6)-(1.8) ) are obtained [6] 

by averaging the microscopic local conservation laws (1.10) a.nd by making leading 

order expansion in the gradients of the thermodynamics fields around equilibrium. 

The coefficients in this expansion are the thermodynamic succeptibilities (e.g., sound 

velocity) a.nd the transport coefficients £99• which define the linear response of a 

system to an external perturbation [23] 

Jq{r,t) =- L:L99.V'b9.(r,t) (1.71) 
q' 

where {Vb9,} is the set of thermodynamic driving forces. Jq{ r, t) is the longitudinal 

current associated with the conserved density q(Ci) = {1, ci, ~c:, ... } 

Jq{r, t) = L Cizq(Ci)Sni(r, t) (1. 72) 
i 

The currents J9(r,t) associated with the different conserved densities q(Ci) are re­

quired to be distinct. Thus it is conventional [4] to define subtracted currents 

} 9 = J9 - SQ(SQSQ}-1 (SQJ9 } = L:]9 (Ci)Sn(r,t) (1.73) 
ri 

which are mutually orthogonal in terms of the thermal product (1.46). Here { Q} 

are the global invariants as defined in (1.11). The single-particle currents ]9 ( Ci) will 

be specified when discussing specific transport coefficients for specific models (see 

Section 2.2 for example). 

To compute the Lqq' we use the well-known Green-Kubo formulas for continuous 

fluids [4,23] with a few minor adaptations for the discreteness of space and time. Thus 

the transport coefficient Lqq' for any d-dimensional thermal LGCA is given [24] by 

oo* 

Lqq' = lim v-lL e-•t(Jq(t)Jq•) 
•--+0 

(1.74) 
t=O 

where V is the total number of sites in the system. The two minor modification of 

the Green-Kubo formulas for continuous fluids are: the appearance of an asterisk 
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and of a discrete time sum instead of an integral. The asterisk on the summation 

indicates that the term with t = 0 has a weight ~· Green-Kubo relations contain 

subtracted currents as defined in (1. 73). The transport matrix Lqq' for LGCA fluids is 

a nonnegative matrix, implying that Lqq ~ 0 for all q. It may also include the spurious 

transport coefficients, connected with the spurious modes (if any are present). 

Next we discuss the specific transport coefficients that appear in the :fluid dynamic 

equations. The heat conductivity A (the thermal diffusion coefficient DT) is defined 

as the coefficient of proportionality between the dissipative heat current and the 

temperature (reciprocal temperature) gradient, i.e., 

with· (1.75) 

Similarly to the theory of continuous :fluids, we switch to the tensor description of 

transport phenomena related to the gradient of the vector flow field u, introducing 

the fourth-rank viscosity tensor for the LGCA, which relates the dissipative part of 

the stress tensor to the gradient of the :flow field 

(1.76) 

where a:(3-y6 = {x, y, z, ... } label Cartesian components. We restrict ourselves to those 

models which provide a fourth-rank tensor Vaf3-r6 having the full fluid symmetry so 

that it can be expressed in terms of two independent scalars. We then obtain the 

shear viscosity v = Vaf3af3 and the bulk viscosity ( = ( ~ )vaaf3f3 in the well known form 

from continuous fluid theory 

(1. 77) 

The Green-Kubo relations (1.74) considered so far are exact. They require the 

solution of the complete N-body dynamics (1.2). But we can readily obtain the 

Boltzmann approximation to any transport coefficient in terms of the eigenfunctions 

'IT>. and eigenvalues O:>. of the linearized Boltzmann collision operator (l(l) defined in c {1.44). Closely following the analysis given in Refs.[9,12], we find that the Green 



Chapter 2 

FHP-1 Lattice Gas Model 

33 



CHAPTER 2. FHP-1 LATTICE GAS MODEL 34 

In this chapter we will illustrate the predictions of LGCA theory for the simplest 

lattice gas models which have the features necessary to yield, in the appropriate ap­

proximation, the standard N a vier-Stokes equations for continuum fluids. That is, we 

will not consider models with spurious conservation laws or with insufficient isotropy 

of the underlying lattice. In the set of conserved quantities we include only the par­

ticle number and momentum. The simplest way to achieve this is to consider models 

with all particles having the same speed. The energy, therefore, just corresponds 

to the number of particles and is not an independent conserved scalar. The general 

theoretical results for LGCA given in Chapter 1 are easily adapted to such models, 

referred to in the literature [13,18] as athermal models, by disregarding all the terms 

which relate to the energy as a conserved quantity. Most of this Chapter deals with 

a simple example of such an athermal model: the 6-bit FHP-1 model. 

2.1 Introduction to FHP-class models 

i 

i+5 

i+4 

i+3 

i+2 

The FHP models, introduced by Frish, Hasslacher 

and Pomeau [1,6], are very simple. The underlying 

lattice is triangular with unit lattice constant. Each 

node is connected to its six neighbors by units vectors 

Ci 1 (with i defined modulo six) 2 (see Figure 2.1) and is 

thus endowed with six-bits. As discussed earlier in Sec-

tion 1.3, updating involves propagation and collisions. 

Possible collision processes are shown in Figure 2.2. Figure 2.1: Enumeration of pos­
sible states (or velocity channels) 
in the FHP-1 model When constructing collision rules for these processes we 

must consider both deterministic and nondeterministic rules as defined in Section 1.6. 

For a head-on collision with occupied "input channels" ( i, i + 3) shown in Fig.2.2{ a), 

there are two possible pairs of occupied "output channels" such that mass and mo­

mentum are conserved, namely {i + 1,i + 4) shown in Fig.2.2{b) and {i- 1,i- 4) 

shown in Fig.2.2(c). We can decide always to choose one of these channels; we then 

1 these are the lattice vectors 
2 meaning that the summation operation on indices has the cyclic property: 6+1 = 1, 6+2 = 2, 

5+2 = 1, etc 
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have a deterministic model, which is chiral. i.e., not invariant under mirror-symmetry. 

Alternatively, we can make a nondeterministic {random) choice, with equal proba­

bilities to restore mirror-symmetry. Finally, we can make a pseudo-random choice, 

dependent, for example, on the parity of a time or space index. 

We must also ensure the absence of spurious conservation laws. For example if 

we consider the model which include head-on collisions only then we have a model 

with one extra globally conserved quantity. This is because the head-on collisions 

conserve, in addition to total particle number, the difference of particle numbers in 

any pair of opposite directions i, i + 3, namely Er{ni{r, t)- ni+3{r, t)). This means 

that in addition to mass and momentum conservation, there is a spurious conservation 

law. The large-scale dynamics of such a model will differ drastically from ordinary 

hydrodynamics, unless the spurious conservation law is removed [6]. One way to 

achieve this is to introduce triple collisions (i, i + 2, i + 4)- {i + 1, i + 3, i + 5) (see 

Fig.2.2( d)( e)). Then each time the triple collision occurs, the difference of particle 

numbers along each of the three lattice directions changes. 

Several :.;nodels can be constructed on the triangular lattice. The simplest set 

of collision rules with no spurious law, called the FHP-1 model, involves (random) 

binary head-on collisions and triple collisions. This is the model that we analyze in 

detail below. 

The model FHP-2 is a seven-bit variant of FHP-1 including a zero-velocity rest 

particle, and variants of the head-on and triple collisions with a spectator rest par­

ticle. A spectator particle is one which is available at the site during a collision but 

which does not take part in the scattering process. It was shown [6] that binary col­

lisions involving rest particles remove the spurious conservation laws, and do so more 

efficiently at low densities than triple collisions. The set of collision rules can be sat­

urated by inclusion of the duals of the head-on collisions and head-on collisions with 

a spectator. In this way we arrive at the FHP-3 model which is a collision-saturated 

version of FHP-2 [6]. 
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Figure 2.2: Collision rules for the FHP-1 model with a), b), c) head-on collision with two equiprobable 

outcomes and d), e) triple collision. 
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An interesting question arrises when we consider the FHP model with rest par­

ticles. The availability of different particle speeds {and hence the different energy 

levels) allows us to define the thermodynamic temperature of the system. However, 

the FHP-2 and FHP-3 models do not belong to the category of thermal models. 

Indeed, FHP models with rest particles do not have interesting thermal properties. 

Their coefficient ofthermal diffusion {1. 75) is found to be equal to zero, because of the 

zero-value of the corresponding subtracted current {1.73) (See Eq.(2.14) and discus­

sion afterwards). Physically this can be explained because the zero-velocity particles 

do not participate in any kind of diffusion, so that the thermal diffusion coefficient is 

the same as that of the one-speed models. 

http:Eq.(2.14
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2.2 Collision Matrix 

To analyze the lattice Boltzmann equation (1.15) for the FHP-1 model we need to 

have the explicit form for the Collision operator introduced in (1.2). To obtain this, 

we enumerate all possible states (velocity channels) at one ·site according to the dia­

gram displayed in Fig. 2.1 As discussed in Section 1.3 of the first chapter, each term 

of the collision operator is constructed from the change in the number of type "i" 

particles due to a particular type of collision, multiplied by the probability of the 

arrangement of particles involved in that collision. In the Boltzmann approximation 

this probability is a simple product of the densities fi for particles that should be 

present, multiplied by factors (1- !;) for particles that should be absent. 

Then the probabilities of states (a), (b), (c) as shown in Fig. 2.2 are written as: 

(a) ftf4(1- !2)(1- fa)(1- fs)(1- !6) = P14 

(b) f2fs(1- !1)(1- fa)(1- !4)(1- !6) = P2s 

(c) faf6(1- !1)(1- !2)(1- !4)(1- fs) = Pa6 (2.1) 

In general the state with i1, i 2, ... , i1c particles present has the following probability: 

(2.2) 

Hence the collision rules displayed in Fig. 2.2 contribute the following terms to the 

collision matrix: 

1 1 
fh = -P14 + 2P2s + 2Pa6 

-P1as + P246 (2.3) 

with P1as and P246 being the probabilities of state (d) and (e) of Fig. 2.2 respectively. 

The other ni( i = 1, 6) are given by a cyclic shift of the indices, as a result of the 

hexagonal symmetry of the lattice. 

Rather tedious algebra has to be done to get the linearized Boltzmann collision 

matrix as defined by (1.38)-(1.39). The expansion (1.39), for example, gives the 

http:1.38)-(1.39
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following expression for the P14 term in (2.1) 

P14 =JP+ JP(/, -J,-J,f,f, -!,-f)®+ (2.4) 

with + being the column vector with six elements C)i, i = {1, 2, ... , 6}. Here f = fi0 is 

the equilibrium solution which does not depend on the index i for the FHP-1 model 

and f = 1- f. 

A similar procedure applied to the other terms in the collision operator gives the 

following expression for the first row of the linearized collision matrix 

n~!> = f P [ -1, ~{1 +f), ~{1 - 3!), 21- 1, ~{1 - 3!), ~{1 +f)] {2.5) 

Because in the FHP-1 model all particle types are equivalent up to a lattice symmetry 

transformation, other rows of the n<1> matrix are given simply by cyclic shifts the 

first row so that the complete form of n<l) is determined from the first row {2.5). n<1> 

can therefore, be written as a circulant matrix 

. 1 1 1 1 n<1> = t Pc:trc[-1, 2{1 +f), 2{1- 3!), 21- 1, 2{1 - 3!), 2{1 + f)J {2.6) 

(In terms of the probabilities 1 for different types of collisions, we can obtain the 

expression {2.6) from the general result {4.4.7) of Ref.[18], using 12 = 1, 12L = ~' 

/3a = 1, /3A = /4• = 0). 

With this explicit form of the linearized collision matrix we are now ready to 

approach the eigenvalue problem {1.55). In general this problem cannot be solved 

analytically although fork= 0 it reduces to Eq.(1.44), and for the FHP-1 model can 

be trivially solved because of the circulant property of the collision matrix [25]. In 

this case the result for the eigenvectors of (2.6) reads [18]: 

1 
v1 = ~{1,1,1,1,1,1) 

v2 = ~{1,u,-u*,-1,-u,u•) = (v6 )* 

v3 = ~(1, -u•, -u, 1, -u•, -u) = (v5)* 

1 
v4 = ~{1, -1, 1, -1, 1, -1) (2.7) 

http:Eq.(1.44
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where 

u = ezp(i7r/3) = ~(1 + iJ3) 

and the corresponding eigenvalues are 

AI= 0 

A2 = 0 

Aa = -3PP 
A4 = -6/2P 

A5 = (Aa)* 

40 

(2.8) 

(2.9) 

As it is expected from theory (see Sec.1.7) the matrix f2(l) has three zero eigen­

values corresponding to the hydrodynamic modes, i.e. the corresponding eigenvalues 

are associated with the conserved quantities of the system [18]. In the next sections 

we will show that analytical continuation to k f; 0 shows all the behavior of the 

hydrodynamic modes of real fluids within a small range k ~ kh which thus justifies 

the FHP-1 model as a valid representation for linear hydrodynamics. 

2.2.1 FHP transport coefficients in Boltzmann approxima­

tion 

We can now evaluate the transport coefficients of the FHP-1 model in Boltzmann 

approximation. It will be useful also to comment on the values for other FHP models. 

For the FHP-1 model the combination of (1.81) (1.84) and (1.77) with the explicit 

form of the Boltzmann collision matrix (2.6) gives 

1 1 1 
V = 12 /(1 - !}3 - S 

(=0 

(2.10) 

(2.11) 

where f = ~is the mean density per channel. The result for the shear viscosity (2.10) 

will be discussed and compared with results of computer simulations of the FHP-1 
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model in the next sections. The zero value of the bulk viscosity ( results from the 

observation that the diagonal terms of the respective subtracted current {1.84) are 

identically equal to zero. However we have non-zero bulk viscosity for other FHP 

models with rest particles. 

The thermal diffusion coefficient DT is identically zero for all FHP models, even 

those for which a temperature can be defined {see Sec.2.1). This comes about because 

the corresponding subtracted current 3e is equal to zero: 

{2.12) 

{2.13) 

{2.14) 

We used the expression for the density fluctuation correlation {1.36) to obtain the 

left-hand-side of {2.14). 

For the FHP-1 model this expression vanishes because the speed I Ci I is the 

same for each velocity channel i, and thus can be taken outside the summation as a 

constant. For FHP models with rest particles, the same result hold true because the 

rest particles do not contribute to any of the terms. Thus we have 

{2.15) 

for all FHP models. 

2.3 Structure of spectra 

We now study the hydrodynamic dispersion relations Z).(k) (1.55) of spatial fluctu­

ations in the occupation of single-particle states, which provide basic information 

about the collective excitations and their relevant time and length scales as discussed 

in Section 1.8. The spectra show how the speed of sound, damping constants, and 

transport coefficients depend on the wavelength of the excitations, on the thermo­

dynamic variables, and on the microscopic details of the models. In this manner 
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we are able to develop important and practical criteria to judge the applicability of 

lattice-gas models for the study of :O.ow properties. 

The set of (real parts of} the eigenvalues Z>.(k) determines the basic set of relax­

ation constants or time scales in the problem. Given the frequency or wavelength of 

interest one can judge from the spectrum which eigenmodes of the kinetic equation 

are relevant. Similarly to the theory of continuous :O.uids the range of wavelength and 

time scales of interest is compared to the mean free path 10 and the mean free time 

t 0 respectively. As a result we distinguish three different regimes: 

• a hydrodynamic regime (HR). Here klo ~ 1. This is the regime most relevant 

for scattering experiments on :O.uids, where the Landau-Placzek theory (Sec.1.8} 

fully explains the dynamic scattering function S(k, w) in terms of the slow 

hydrodynamic modes (1.67). It is the main focus of our interest. 

• a regime of generalized hydrodynamics (RGH). The hydrodynamic modes are 

still dominant here, but unlike in the hydrodynamic regime, the speed of sound 

and transport coefficients ( viscosities, etc.} become k dependent. The typical 

wavelengths and time scales are of the order of the mean free path (kl0 ~ 1). 

This case is analogous to the kinetic regime in the theory of continuous :O.uids 

and is typical for gases under normal pressure and temperatures [22]. 

• Finally when the wavelengths are small compared to 10 we have a lattice regime 

which is analogous to the free particle (or Knudsen) regime (kl0 ~ 1) in the 

kinetic theory of gases. 

To estimate the mean free path 10 for the FHP-1 model in terms of density p or 

channel density f, we recall that the physical meaning of the collision matrix is the 

change of particle population in unit time. So we can introduce a relevant time scale 

to by 
1 

n~-1 
to 

{2.16) 

and interpret it as the mean time during which one scattering process takes place. 
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HR+RGH 

Lat.t.ice Regime 

0.1 

o.o 

Figure 2.3: Real part of the spectrum z~(k), for the six-bit FHP-1 model at p = 2.4, vs k for 
k 11 :i. HR+RGH stands for Hydrodynamics Regime+ Regime ofGeneraiUed Hydrodynamics and 
corresponds to the region k < k1 = 0.3 indicated by the dashed line 

Comparing (2.16) and (2.6) we evaluate the mean free path lo as 

1 
lo =I Ci I to ~ !(1 _ !)2 

(2.17) 

Next we consider the solutions of equation (1.55) as a function of k-vector and 

study the spectrum in different regimes. The complexity of the collision matrix makes 

most of the spectrum accessible only by numerical methods. Analytical results can 

be obtained by perturbative methods when the wavelength is large or small compared 

to the mean free path, as was illustrated in Section 1.8. 

This section describes the numerical study of the FHP-1 model spectra. The 

numerical problem is rather simple. It involves the calculation of the six roots of the 

secular determina,nt of the complex matrix in (1.55) as a function of the reciprocal 

lattice vector k. The eigenvalues z.x(k) = Rez.x(k) + ilmz.x(k) are in general complex 

and the resulting dispersion relation of model with density p = 2.4 are shown in 

Figures 2.3 (real part) and 2.4 (imaginary). All six eigenvalues are plotted against 

k directed along the z axis in reciprocal space. 

The spectrum of Figures 2.3 and 2.4 shows three soft hydrodynamics modes, 
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Figure 2.4: Imaginary part of the spectrum z~(k), for the six-bit FHP-1 model at p = 2.4, vs A: for 

k 11 z 

labeled ..L ± and three hard kinetic modes with Rez>,(O) < 0, labeled 4,5,6. 

The k = 0 values of the spectrum are related to the eigenvalues of the linearized 

collision matrix (2.9) by Eq.(1.56). For f = p/6 = 0.4 the values of the kinetic modes 

are z4 (0) = 0.3011, zs(O) = z6(0) = 0.4311. This agrees with the k = 0 result of 

Fig. 2.3. 

The hydrodynamic modes consist of two propagating damped sound modes (A = 

±)with Jmz±(k) = =fc(k)k and one diffusive shear mode (A =..i) with Jmz.L(k) = 0. 

The real parts of Z±(k) coincide. All the real parts ofthe hydrodynamic modes equal 

zero at (k = 0) in accordance with (2.9) and the discussion afterwards. The real 

parts of the hydrodynamic and kinetic eigenvalues are well separated for k < k1 , 

where k1 is the wave number at which for the first time a hydrodynamic and kinetic 

eigenvalue are equal. Wave numbers rather smaller than k1 characterize the regime 

of generalized hydrodynamics (RGH). In our case we have k1 ~ 0.3 at p = 2.4. It is 

interesting to note that the mean free path as calculated from (2.17) is approximately 

7 lattice units. This allows us to estimate the kinetic regime as k ~ k~ = ~ = 0.15 

which is indeed of the same order as k1 • 

http:Eq.(1.56
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Small k region of the spectrum of Fig.2.3. In the hydrodynamic regime k < kh = 0.15 (kh is 
indicated by the dotted line) v(k) and r(k) do not depend on k, while in the regime of generalized 
hydrodynamics they do. 
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Figure 2.6: Small k region of the spectrum of Fig.2.4. 
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Figure 2.7: 

46 

Diffusive shear mode divided by k2 and sound mode (real part) divided by k2 plotted against k. 
The value of k beyond which these functions are no longer constant is kh ~ 1.5. This is the upper 
bound of the hydrodynamic regime. The shear viscosity v and sound damping constant r defined 
in (1.67) are evaluated as 0.85 and .42 respectively. 

In the limit of small k ( k ~ k1 ) the eigenvalues are given by the hydrodynamic 

dispersion relations (1.67). From Fig.2. 7 we estimate the maximum value of the k­

vector kh where those relations are still valid. Within a tolerance of 5%, the shear 

viscosity and the sound damping constant, as calculated from data of Fig.2.5, do not 

depend on kin the region of k < kh ~ 0.15 and are equal to 0.85 and 0.42 respectively. 

This is in good agreement with the values v = 0.84 and r = 0.42 calculated using 

Eqs.(2.10) and (1.69). A similar geometrical analysis of Fig.2.8 gives the value of 

sound velocity as c. = 0.73 ~ ~ = 0.707 (see Sec.1.6). 

Finally, we mention some important features of the spectrum beyond the hydro­

dynamic regime and their relation to the parameters and coefficients defined for the 

hydrodynamic regime. 

When k increases, the dispersion relations of classical hydrodynamics with k­

independent transport coefficients break down and we enter the regime of generalized 

hydrodynamics, where the dispersion relations can be represented approximately by 

http:Eqs.(2.10
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Sound mode (imaginary part) over k plotted against k. The k-+ 0 limit of the plot corresponds to 
the speed of sound and equals 0. 73. 

(1.67) with a slowly varying k dependent speed of sound c.(k) and k-dependent trans­

port coefficients r(k) and v(k) (see Fig.2.7). This regime was recently analysed by 

Das and eo-workers [26]. They showed that the k dependence of transport coeffi­

cients explains some older simulation results obtained for six-bit FHP lattice gases 

with a small number of allowed collisions. In particular they resolved the puzzling 

observations of a negative bulk viscosity in References [2] and [27]. 

Upon further increase of the wave vector we enter the lattice regime ( k > k1 , 

where k1 is indicated by the dashed line in Figures 2.3, 2.9, 2.10) where the excitation 

wavelength is smaller than the mean free path of the particles. This regime does not 

provide any significant physical information about the model. As mentioned earlier, 

the lattice regime is similar to the free particle regime in the low density limit and 

hence can be described by means of perturbation theory. In first order the spectrum 

z.x(k) can be written [26] as: 

z_x(k) = -ik • Ci + n~;) ~ -ik · Ci- j(l- /)2 (2.18) 

therefore -Rez.x(k) = /(1 - !)2 is expected to be six-fold degenerate. This is not 
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Figure 2.9: 
Real part ofthe spectrum z~(k), for the six-bit FHP-1 model at p = 2.4, vs k fork 11 y. 

exactly the case for density p = 2.4, as we see in Fig.2.3, however all the modes in 

the lattice regime differ only slightly one from another and from the value n~J> = 0.14 

obtained from Eq.(2.18). 

Finally we study the effects of the direction of the vector k and of the lattice 

gas density on the crossovers between the three defined LGCA regimes. Figure 2.9 

shows the spectrum with same parameters as in Fig.2.3, but with k parallel to y. 

We observe that the spectrum is approximately independent of the direction of k for 

small k within the hydrodynamic regime. For k > k1 = 0.3 (shown as the dashed 

line) the isotropy breaks down drastically. This is the consequence of the discreteness 

of space and time. The features of the free-particle regime (2.18) are not so obvious 

here as in Fig.2.3. Figure (2.10) shows the spectrum of a model with density p = 0.6. 

The onset of the lattice regime corresponds to lower values of k, namely k1 ~ 0.25 as 

a result of the increase in the mean free path caused by the decrease in density. 

http:Eq.(2.18
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Real part of the spectrum Z>.(k), for the six-bit FHP-1 model at p = 0.6, vs le for k 11 z axis in 
reciprocal lattice. 

2.4 Spectral analysis of a lattice-gas simulation 

Of paramount interest to fluid dynamics is the hydrodynamic regime where the eigen­

value spectrum Z>.(k) = Rez>.(k) + ilmz>.(k) is controlled by long-lived collective 

excitations. Those spectra define the form of the structure factor S{k, w) {1.52), 

namely at fixed wavelength and scattering angle k each eigenmode of the spectrum 

contributes according to {1.64) a spectral line with a maximum located approximately 

at Jmz>.(k) and a width determined by Rez>.(k). The structure factor of a model can 

be "measured" by running a computer simulation. In such a simulation we exam­

ine the spontaneous density fluctuations of a LGCA in equilibrium and compare the 

simulation results with the theoretical predictions of Sections 1.8 and 1.9 to assess 

the limits of validity of the Landau-Placzek theory and the Boltzmann evaluation of 

transport coefficients. 

We begin by showing plots of the structure factor as a function of k at fixed 

w, see Fig.2.11. We use the Fast Fourier Transform method of Ref.[28]. The series 

of 3-dimensional plots present the location of sound peaks in ( kz, k11 ) space at four 

http:Fig.2.11
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W=6w0 

Figure 2.11: 
S{ kz, ky) plots for different w for the FHP-1 model with density 1.4. The fl direction of k vector 
is scaled with the factor of .J3 as a result of making the Fourier transform from data defined on 
triangular lattice . 
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different frequencies for the FHP-llattice gas with density p = 1.4 and for a lattice of 

size 64x64. We observe that the peaks form a ring ink-space whose radius increases 

with increasing w, in a manner which is supposedly linear for small values of w. At 

w = 10w0 (wo = 2-rr/64 for the total simulation time t 0 = 64 time-units) the ring of 

sound peaks takes a form close to hexagonal. This is because the corresponding k 

vectors belong to the lattice regime and hence reflect the symmetry of the underlying 

lattice. The plots are clearly in qualitative agreement with the Boltzmann analysis. 

To perform a more quantitative analysis, it is convenient to work with plots of 

S(k, w) as a function of w for k along a particular direction. Figure 2.12 shows 

the three-dimensional plot of the structure factor (1.52) for the FHP-1 model ob­

tained from the Fourier transformation of the spontaneous density fluctuations. The 

resulting graph gives the intensity of the spectrum as a function of kz in recipro­

cal lattice units k0 = 2-rr /128 and w in reciprocal time units w0 = 2-rr /128. Note 

that the measured spectrum shows a considerable fluctuation of spectrum amplitude 

(noise), but gives nevertheless all the important features. The spectrum noise could 

be "smoothed" by averaging over repeated simulations or over the data for different 

directions of k within a single simulation. The latter way would be more efficient in 

terms of computer time, however, it is valid only for k vectors inside the hydrody­

namic regime, where the LGCA is considered effectively isotropic (See discussion in 

Sec.2.3). 

The simulations were performed with the following specifications: (i) system size of 

128x128 and 128 time steps; (ii) periodic boundary conditions; (iii) initialization with 

zero total momentum i.e. the system is at rest; (iv) measurements were performed 

after the system has reached equilibrium. (We allowed about 1000 steps, starting 

from a configuration "guessed" as close to equilibrium as possible). First we note the 

disagreement of the FHP-1 simulation data with the general form of the structure 

factor for fluids (1. 70): we do not observe the central Rayleigh peak. This is well 

explained by the fact that the energy in the FHP-1 model is a multiple of the number 

of particles, hence the transport of energy (caused by gradients of its corresponding 
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Three dimensional plot of the dynamic structure factor S(k, w) as measured from spontaneous fluc­
tuation correlations (lattice size 128x128, number of time-steps 128) for the FHP-1 model with 
density p = 2.4. X-Y plane scale: w is given in reciprocal time-step units w0 = 22r /128, k is from 0 
to 30 in reciprocal lattice units k0 = 221"/128 and is directed along z axis; vertical scale: intensity of 
spectrum. 
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conjugate thermodynamic variable, temperature) is essentially the consequence of the 

transport of particles. 

Further, we study the two symmetrically located Brillouin peaks observed in 

Fig.2.12 with a width rP according to (1.70) observed in Fig.2.12. At k/ko = 30 

the location of the sound peak and the linewidth of the sound peak are estimated 

as w.jw0 = 22 and 6.w./w0 = 17 respectively. From the location of the peaks we 

can again evaluate the speed of sound, assuming we are in the regime where the 

relation W&rillouin = c.k holds. Note that based on Eq.(1.64), valid for the hydrody­

namic regime, and numerical results for the imaginary part of eigenvalue spectrum 

Figs.2.4 and 2.6, this relation is expected to hold even a little beyond the hydrody­

namic regime, in our case up to k ~ 0.5. Thus we evaluate the velocity of sound as 

c.= 0.73. 

Next we use the Landau-Placzek parameterization Aw.(k) = rk2 and analyze the 

line-widths of Brillouin peaks Aw. obtained from the simulation data. At k = 30k0 = 

30 122~, flw. has the value (17 ± 2)w0 , where w0 = {;8 • Then the sound damping 

constant r becomes: 
flw. 17wo 

r = ----,;,2 = (30ko)2 = 0.39 (2.19) 

All the above results are in good agreement with results for the sound velocity 

(Fig.2.8) and the sound damping constant (Fig.2. 7) calculated from the direct numer­

ical solution of Eq.(1.55). This supports the validity of Eq.(1.55) in the hydrodynamic 

regime of LGCA and of the FHP-1 model for realistic fluid simulations. 

http:Eq.(1.55
http:Eq.(1.55
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Chapter 3 

Thermal Gases 

3.1 Introduction 

In the FHP-1 model considered in the previous chapter all the particles have the same 

speed. Therefore the energy of the system is proportional to the number of particles 

and is not an independent conserved quantity. Hence the grand canonical ensemble 

(1.21) does not depend on the total system energy, which is equivalent to f3 = 0 

(an infinite temperature) in ( 1.21) and all the subsequent formulas. The concept of 

temperature does not exist for this model. Indeed, the results of computer simulations 

of the FHP-1 model do not indicate the existence of any temperature related features, 

such as for example the Rayleigh peak in the structure factor (Fig.2.12). As mentioned 

in the introduction to Chapter 2 of this thesis, LGCA models of this type are called 

athermal models. 

Obviously the range of applications for athermal models is restricted to the situ­

ations where thermal effects do not play an important role. Laminar flow, vortices, 

turbulence and other phenomena can be simulated by the LGCA athermal models. 

However in many applications of the LGCA method for realistic fluid dynamics one 

wishes to use a model which exhibits thermal effects at the macroscopic level. In 

order to have such systems, with microscopic energy conservation, temperature, tem­

perature gradients, and heat conductivity, we need to have multi-speed models. That 
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way one can define temperature in accordance with thermodynamics and statistical 

mechanics. 

In this chapter we study the properties of such a thermal model. We approach 

the problem by asking which multispeed model can be considered as a logical exten­

sion of the athermal FHP-1 model studied in Chapter 2. As discussed in Sec.2.1, 

the inclusion of one additional rest particle does not define the model as a thermal 

one. Hence the next obvious choice is the so-called 13-bit model, where particles of 

speed J3 or 2 are included, allowing nearest neighbor hops, see Fig. 3.1 for example. 

However, by inspection, for such a model there are no collisions involving particles of 

different speeds which conserve both momentum and energy. Although it is possible 

to construct more general 13-bit models where the energy is not entirely kinetic [12] 

- or models with particles having different masses [29] which, hence, maximize the 

number of allowed collisions while conserving mass, momentum, and energy exactly 

- we will not consider such models in this thesis. 

Instead, we will consider models on the triangular lattice, which include six ex­

tra allowed velocities with value modulo 2, allowing propagation to next-nearest­

neighbors. This 19-bit model does permit collisions which conserve both energy and 

momentum in a non-trivial manner: we will analyze it in the rest of this chapter. 
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Figure 3.1: Representative velocities for 19-bit model. 

3.2 Definition of the 19-bit model 

The 19-bit model was introduced by Grosfils et.al [21], as a thermal model with non­

trivial energy conservation. Particles live on a triangular lattice, where there is one 

rest particle, and 3 sets of 6 particles with speeds c = 1, c = J3, and c = 2 and 

purely kinetic energies ~' ~ and 2 respectively. Velocities 1 and 2 correspond to dis­

placement by one and two lattice unit lengths, respectively, in one time step along 

any of the six lattice directions, and velocity .J3 corresponds to displacement to the 

next-nearest-neighbor sites along any of the six directions bisecting the lattice direc­

tions (see Fig. 3.1). Rest particles reside on the lattice sites. As before, particles obey 

the exclusion principle {1.23) and undergo collisions according to mass, momentum 

and energy conservation laws. The 19-bit model is thus a probabilistic LGA with a 

symmetric transition probability matrix. All transitions between input and output 

configurations are set to be equally probable for all states which are compatible under 

the basic conservation laws. 

3.3 Constructing the collision table 

One of the new features of LGCA of thermal gases as opposed to athermal ones is 

the considerably larger degree of freedom that is available in the construction of a 

collision table. In this situation we must pay special attention to the correct choice 
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Figure 3.2: elementary configurations for 19-bit model that transfer energy during collision 
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of collision rules to ensure the proper macroscopic behavior of the lattice gas 1 . 

The simplest indicator of the suitability of any given collision table is the existence 

of the universal equilibrium state {see Sec.1.6). We should keep in mind that for 

thermal models the number of collisions per unit of volume and per unit of time are 

not the only factors which provide the proper redistribution of particles corresponding 

to the Fermi-Dirac distribution function (1.23). The rapid randomization2 within 

one subset of velocities, for example, does not necessarily imply this redistribution. 

Therefore we are especially interested in collisions that involve particles of different 

velocities. These are shown in Fig.3.2. We refer to them as the energy transfer 

collisions and expect them to be responsible for the redistribution of the energy level 

population to accord with thermal equilibrium. 

Since the energy transfer collisions must be included in the collision table, how 

many of them are enough to provide the proper redistribution? Do we have to include 

FHP-like collisions rules within some (all) velocity levels? If yes, what is the relation of 

the number of energy transfer collisions to the total number of collisions? What types 

of collision table provide the most fluid-like macroscopic behavior of the model? What 

is the minimum simple set (sets) of collision rules that still ensure good randomization 

and redistribution of particles among the different velocity channels? 

There is no way to answer all the above questions rigorously. Even the analyt­

ical expression for the collision frequency in terms of the equilibrium distributions 

for the 19-bit model involves enormous number of terms as opposed to those for the 

simple FHP model. Hence we try to answer the above questions by means of "experi­

ments". We run the 19-bit model simulations and "measure" the density fluctuations 

for models with different collision tables and different parameters. In some cases we 

also count the number of collisions directly in order to understand the results in terms 

of the collision frequency and the mean free path. 

1 the original results of Grosfils et.al in Refs.[21,30] demonstrate the evident correctness of their 

choice of collision table, however, they did not clearly specified the collision rules that they used. 
2randomization of particle configuration was discussed in section (1.6} of this thesis. 
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klko -100 w/w0 

Figure 3.3: 
Three dimensional plot of the dynamic structure factor S( k, w) as measured from spontaneous fluctu­
ation correlations (lattice size 512x512, number of time-steps 1024) for the 19bit model with density 
p = 6.0. The collision table includes the energy transfer collisions (Fig.3.2) only; X-Y plane scale: 
w is given in reciprocal time-step units w0 = 211'/1024, k is from 0 to 25 in reciprocal lattice units 
ko = 211'/512 and is directed along the x axis; vertical scale: intensity ofthe spectrum. At kjk0 = 25 
the five ballistic peaks are located at frequencies 0, 25, 50, 75, 100 respectively in units of w0 • 
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First we run the simulation of the 19-bit gas with the collision table shown in 

Fig.3.2, i.e. with energy transfer collisions only. The three dimensional plot (Fig.3.3) 

of the dynamic structure factor S(k,w) was measured at the density p = 6.0 and 

temperature T = 1/ f3 = 5.16 for wave vectors along the x direction and with mag­

nitudes k ranging from 0 to 25 · ko = 25 · (211'" /512) = 0.3. In the paper of Grosfils 

et.al. [21] these wave numbers lie inside the hydrodynamic regime which is found to 

be k ~ kh = 0.6 (discussion of Sec.IV, Fig. 1(a) of the above reference). The total 

simulation time in our computer experiment is 1024 time-steps. The structure factor 

(Fig.3.3) does not exhibit the typical line shapes of the Rayleigh-Brillouin spectrum 

of real fluids. Instead we have 5 ballistic modes corresponding to discrete values of the 

allowed velocities projected on the x axis of the lattice. The result is very much the 

same as if there were no collisions at all (the so called free particle or ballistic regime). 

The conclusion is that the density of collisions is too low to provide a mean free path 

appropriate for the hydrodynamic regime. Indeed, the mean free path for this choice 

of collision table (energy transfer collisions only) as evaluated from the average num­

ber of collisions per one time-step is about 1800 lattice-units (See Table 3.1). This 

even exceeds the linear lattice size {512). 

3.4 Fluid-like behavior of the 19-bit LGCA 

There are several possible ways to increase the collision rates so as to produce fluid­

like behavior. First we can change the density of the LGCA in order to maximize 

the probability of the collision configurations of Fig.3.2. We estimate this optimal 

density approximately as p = 3.0 since most collisions from Fig.3.2 involve 3 particles 

at a site. The second way is to expand the collision table by including so called 

"spectator particles", as defined in Sec.2.1, into the collision rules. Needless to say 

that this would increase the probability of collisions in the model by several orders of 

magnitude. 

A more effective way is to expand the collision table by including the FHP-like 
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Collisions with Expanded set of collisions 

energy transfer only {FHP-like included) 

collision rate Vv 6.8 10-3 2.3 10-1 

mean free path l0 1800 50 

Table 3.1: Collision rates and mean free paths for two different collision tables (simulation result) 

collision rules within every subset of velocity channels. Table 3.1 shows the average 

number of collisions Vv per site per time-step of evolution for computer simulations 

of two different 19-bit LGCA: with and without FHP-like collisions. The mean free 

path l0 of each case is calculated from Eq.(2.16) where the relevant time scale t 0 is 

estimated from the number of collisions per unit of time (collision frequency) directly 

counted during the simulations. Comparing the mean free path l0 to the linear lattice 

size {512) we conclude that only in the case of the expanded collision table can we 

satisfy the condition kl0 ~ 1 for the hydrodynamic regime. 

Figure 3.4 shows the result of a simulation with the expanded collision table, but 

otherwise with exactly the same specifications as in the first case {Fig.3.3). We observe 

the full Rayleigh-Brillouin spectrum with a well defined central peak, establishing the 

existence of spontaneous thermal fluctuations. 

We see that the spectrum presented in Fig. 3.4 is characteristic of hydrodynamic 

behavior at long wavelengths. The dynamic structure factor exhibits the typical line 

shapes of the Rayleigh-Brillouin spectrum in real fluids. It consists of a Brillouin 

doublet, located at w = ±c.k, where c. is the sound velocity, and a Rayleigh line 

centered at w = 0. In general in the small k domain the spectral density of the 

lattice-gas fluctuations is consistent with the Landau-Placzek theory. Thus we can 

make a more quantitatively significant analysis of the spectrum. 

We consider the crossection of the structure factor data along the line kjk0 = 25 

shown in Fig.3.5. To get better resolution we smoothed the data (See Fig.3.6) using 

conventional computer routines [31]. The analysis of the Brillouin peaks is similar to 

http:Eq.(2.16
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w/w0 

Figure 3.4: 
Three dimensional plot of the dynamic structure factor S( k, w) as measured from spontaneous fluctu­
ation correlations (lattice size 512x512, number of time-steps 1024) for the 19bit model with density 
p = 6.0. The collision table includes the energy transfer collisions (Fig.3.2) only; X-Y plane scale: 
w is given in reciprocal time-step units w 0 = 211"/1024, k is from 0 to 25 in reciprocal lattice units 
k 0 = 211" /512 and is directed along the x axis; vertical scale: intensity of the spectrum. At k/ko = 25 
the sound peaks are located at frequencies +60 and -60 respectively in units of w0 . 
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Figure 3.5: Crossection of S(k, w) function along k/ko = 25 line. 
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Figure 3.6: Crossection of S(k, w) function along k/ko = 25 line. The result of smoothing proce­
dure [31] of original data, shown in Fig.3.5. 
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that for the FHP-1 model in Sec. 2.4. For the given value of k the location of the sound 

peaks is estimated as w, = ±60w0 (with a tolerance of 5-10%) which gives the value 

for the sound velocity as c, = 1.2 ± 0.1 . This compares well to the sound velocity 

c, = 1.259 of the 19-bit model as calculated from the relation (1.31). Furthermore the 

sound damping constant r, evaluated from the width of the sound peaks as shown in 

Eq.(2.19) is: 
50w0 

r = (25ko)2 ~ 20 (3.1) 

Similarly, the width of the central Rayleigh peak of Fig.3.6 gives the value for the 

thermal diffusion coefficient DT as: 

llwT 20w0 

DT = --w:- = (25ko)2 ~ 8 (3.2) 

These values are very comparable to those obtained from Fig.2(c) of reference [21], 

suggesting that the mean free path for that model, with density p = 1.1, was very 

comparable to that for the present model. Clearly this indicates that we have included 

fewer collision processes in our simulation than were employed by Grosfils et.al. [21]. 

http:Eq.(2.19
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Chapter 4 

Conclusions 

In this thesis we have studied the theory of Lattice Gas Cellular Automata, testing 

the most important aspects of the theory on two lattice gas models on a triangular 

lattice. 

In the first chapter we covered the basic issues of the theory of lattice gases. We 

concluded that LGCA may be considered as bona fide, although extremely simpli­

fied, statistical mechanical models, that are able to represent the hydrodynamics and 

transport properties of fluids. The properties of the equilibrium state and of the trans­

port pheno~ena were described for the general class of lattice gases with conservation 

laws for the number of particles, for momentum and for energy. The close parallels 

with continuous systems were emphasized throughout this chapter. The analysis pre­

sented was based on the linear Boltzmann equation, which accounts for short-range 

spatial correlations (i.e. k dependent transport coefficients), but neglects all mem­

ory effects. The present theory, therefore, does not yield any frequency-dependent 

transport coefficients and is essentially based on a mean field theory. 

We considered the simple example of the FHP-1 lattice gas model in Chapter 2. 

The energy in this model is not an independent conserved quantity, qualifying the 

model as an a thermal one. However, the general theoretical framework of the first 

chapter is easily adapted to the case of such a model by setting {3 = 0 (infinite tem­

perature). Starting from the explicit expressions for the collision matrix of the FHP-1 
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model we obtained the values of the transport coefficients in Boltzmann approxima­

tion, and then numerically studied the properties of the most important quantity 

in the lattice gas theory - the kinetic propagator (1.53) - by solving the eigenvalue 

problem (1.55). As a result we obtained the spectra or dispersion relation Z>.(k) 

which provide basic information about the relevant length scales, on the transport 

coefficients, on the thermodynamic variables, and on the microscopic details of the 

model. 

As a result of our investigations, we consider the following characteristics of LGCA 

models to be desirable and crucial, so that these models well represent the properties 

of fluids 

• as large as possible a hydrodynamic regime, namely the range of wave-numbers 

where transport coefficients do not depend on k. 

• the isotropy of the fluid dynamical equations, and the absence of spurious in­

variants. 

• sufficient separation of kinetic modes from hydrodynamic ones. According to 

Eq.(1.48) any averaged quantities not associated with conserved quantities de­

cay exponentially to zero in time. The rate of decay is defined by the kinetic 

mode values. 

For the FHP-1 model with density 2.4 we found the range of the hydrodynamic 

regime to be k :S 0.15 representing only 5% of the linear size of the Brillouin zone 

of the reciprocal lattice. Within this regime, the spectra and hence the transport 

coefficients are independent of the direction of k. We found that with decreasing 

density the isotropy breaks down at smaller and smaller k values,hence reducing the 

range of the hydrodynamic regime. 

Finally we ran simulations of the FHP-1 model, "experimentally" measuring the 

dynamic structure factor S(k, w ). The form of the structure factor also defines the 

values of the transport coefficients, which were found to be in good agreement with 

the Boltzmann values. 

http:Eq.(1.48
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In Chapter 3 we studied the multi-speed 19-bit model which allows the introduc­

tion of local energy conservation into the collision processes. The 19-bit model is a 

thermal model with well defined thermodynamic temperature and thermal transport 

properties. The expanded set of allowed velocities increase the number of possible 

collision tables as compared to FHP-class models. We investigated the results of simu­

lations for two different collision tables and showed the dependence of the macroscopic 

properties of the LGCA on the value of the mean free path. 

We computed the dynamic structure function for the two different collision tables. 

For one of them we obtained the fluid like form of the structure factor with a well 

defined central Rayleigh peak, which was not observed in the FHP-1 model. This is a 

result of the inclusion of the energy conservation into the set of conserved quantities 

and of the existence of a non-zero subtracted energy current. Again we tested the 

validity of the model by measuring the wave-number dependence of the frequency of 

the sound peaks, and of the linewidth of both the central peak and the sound peaks. 

The thermal19-bit model can potentially be applied to a wide variety of interest­

ing physical processes, including phase transitions, as a statistical mechanical model 

of a fluid. However, the necessity of including the large number of collision rules in 

the collision table makes the explicit analytical study of the this model almost im­

possible. For this reason, we feel it would be useful to develop simpler models which 

nevertheless exhibit the same statistical mechanical properties. We showed (Sec.3.5 

and 2.1) that, when the energy is entirely kinetic, non-trivial energy conservation 

cannot easily be implemented for simpler models such as the 13-bit or the 7-bit mod­

els on a triangular lattice even though it is possible for models with potential energy 

and/or other modified features [29]. However, the possibility of adopting the nontriv­

ial conservation of energy into the lattice gas algorithm and implementing it in this 

simpler models does exist, we suggest, within the canonical ensemble, where evolu­

tion is effectively described by the Monte-Carlo algorithm. This approach seems a 

promising way to construct LGCA for the modeling of real fluids. 

Another reason to search for simpler models arises from attempts to study the 
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effects of phase transitions on the properties of fluids. The introduction of interac­

tions between particles implies an energy change during the propagation phase of the 

time evolution. Such a change would require a theoretical analysis going beyond the 

framework of conventional lattice gas theory and would likely lead to new complica­

tions in LGCA theory. In the literature [32] progress has been made by constructing 

modified models which include effective interactions in the collision phase of the algo­

rithm: unfortunately such models do not obey even semi-detailed balance. Although 

they display behavior reminiscent of phase transitions - spinodal decomposition and 

the like - they do not model correct thermodynamics. In our view, further progress 

requires, again, the study of appropriate thermal LGCA. 
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