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Abstract

To achieve the best performance, most computer languages are compiled, ei-

ther ahead of time and statically, or dynamically during runtime by means of a

Just-in-Time (JIT) compiler. Optimizing compilers are complex, however, and for

many languages such as Ruby, Python, PHP, etc., an interpreter-based Virtual Ma-

chine (VM) offers a more flexible and portable implementation method, and more-

over represents an acceptable trade-off between runtime performance and develop-

ment costs. VM performance is typically maximized by use of the basic direct-

threading interpretation technique which, unfortunately, interacts poorly with mod-

ern branch predictors. More advanced techniques, like code-copying have been pro-

posed [RS96,PR98,EG03c,Gag02] but have remained practically infeasible due to im-

portant safety concerns. On this basis we developed two cost-efficient, well-performing

solutions.

First, we designed a C/C++ language extension that allows programmers to ex-

press the need for the special safety guarantees of code-copying. Our low-maintenance

approach is designed as an extension to a highly-optimizing, industry-standard GNU

C Compiler (GCC), and we apply it to Java, OCaml, and Ruby interpreters. We

tested the performance of these VMs on several architectures, gathering extensive

analysis data for both software and hardware performance. Significant improvement

is possible, 2.81 times average speedup for OCaml and 1.44 for Java on Intel 32-bit,

but varies by VM and platform. We provide detailed analysis and design guidelines

for helping developers predict and evaluate the benefit provided by safe code-copying.

In our second approach we focused on alleviating the limited scope of optimiza-

tions in code-copying with an ahead-of-time-based (AOT) approach. A source-based

i



approach to grouping bytecode instructions together allows for more extensive cross-

bytecode optimizations, and so we develop a caching compilation server that special-

izes interpreter source code to a given input application. Although this requires AOT

profiling, it further improves performance over code-copying, 27% average for OCaml

and 4-5% on selected Java benchmarks.

This thesis work provides designs for low maintenance, high efficiency VMs, and

also demonstrates the large performance improvement potentially enabled by tailor-

ing language implementation to modern hardware. Our designs are both based on

understanding the impact of lower-level components on VM behavior. By optimizing

the software-hardware interplay we thus show significant speed-up is possible with

very minimal VM and compiler development costs.
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Résumé

Pour avoir une meilleure performance, la plupart des langages de programma-

tion sont compilés, soit avant leur exécution et statiquement, ou dynamiquement,

pendant leur utilisation, à l’aide d’un compilateur “Just-in-Time” (JIT). Cepen-

dant, les compilateurs avec des fonctionnalités d’optimisation sont complexes, et plu-

sieurs langages, tel que Ruby, Python, PHP, profitent mieux d’une solution flexible

et portable tel qu’une machine virtuelle (MV) interprétée. Cette solution offre un

échange acceptable entre la performance d’exécution et les coûts de développement.

La performance de la MV est typiquement maximisée par l’utilisation de la tech-

nique d’interprétation “direct threading”, qui, malheureusement, interagit mal avec

les prédicteurs de branches moderne. Des techniques plus avancées, tel que “code-

copying” ont été proposées [RS96,PR98,EG03c,Gag02], mais ne sont pas applicable

en pratique à cause de préoccupation de sécurité. C’est sur les bases suivantes que

nous avons développé deux solutions coût-efficace qui offrent une bonne performance.

Premièrement, nous avons développé une extension au langage C qui permet aux

programmeurs d’exprimer le besoin pour des garanties spéciales pour la technique de

“code-copying”. Notre technique, qui requiert très peu de maintenance, est développée

comme une extension à un compilateur qui a non seulement des fonctionnalités d’op-

timisation très élaborées mais qui est aussi un standard d’industrie, le “GNU C Com-

piler” (GCC). Nous pouvons alors appliquer cette technique sur les interpréteur Java,

OCaml et Ruby. Nous avons évalué la performance de ces MV sur plusieurs archi-

tectures, en collectionnant de l’information pour analyser la performance logiciel et

matériel. La marge d’amélioration possible est très grande, une accélération d’ordre

2.81 pour OCaml et 1.44 pour Java sur l’architecture Intel 32-bit. Il est important de
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noter que cette marge est différente selon les MV et les architectures. Nous fournissons

une analyse détaillée et des normes de développement pour aider les programmeurs à

prédire et évaluer les bénéfices possibles d’une utilisation sécuritaire de la technique

de “code-copying”.

Notre deuxième solution vise à réduire les limitations sur la portée des optimi-

sations de la technique de ”code-copying” basée sur une méthode “ahead-of-time”

(AOT). Une méthode basé sur le code source qui regroupe les instructions de bytecode

permet des optimisations cross-bytecode plus élaborées. Nous avons donc développé

un serveur de compilation à mémoire cache qui se spécialise dans l’interprétation de

code source donné comme entrée à une application. Quoique cette solution nécessite

un profilage AOT, elle améliore les performances de la technique de “code-copying”

par 27% pour le langage OCaml et par 4-5% sur certain tests de performance Java.

Cet ouvrage fournis des modèles pour des MV nécessitant peu de maintenance et

hautement performant. De plus, il démontre le grand potentiel d’amélioration possible

avec des techniques qui personnalisent l’implémentation selon le matériel. Tous nos

modèles sont basés sur la compréhension des impacts des composantes de bas-niveau

sur le comportement de la MV. En optimisant les interactions entre le matériel et le

logiciel, nous démontrons que des améliorations importantes sont possible avec très

peu de coût de développement pour le compilateur et la MV.
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Chapter 1

Introduction

Virtual machines are used as a target compilation architecture by many languages.

The most widely known example is Java, but the same is true of OCaml, Ruby,

Python, PHP, Perl6, Forth, and many others. In our work we are concerned with im-

proving the efficiency of virtual machines understood as the return on investment in

their development and maintenance measured in terms of the resulting performance.

To this end we choose, from a number of available VM engine solutions, a simple but

well-performing technique known as code-copying. We develop the C/C++ compiler

support this technique needs to become a practical solution, we test its application to

multiple programming languages and virtual machines, on a variety of hardware, and

finally we use it as the basis for further VM optimization using code specialization,

caching, and ahead-of-time compilation. By understanding, at each step, where the

performance improvement is possible in the interaction between software and hard-

ware we develop our system in the direction of increased performance but without

incurring large development and maintenance costs.

Below we first present the concept of virtual machines, discuss the efficiency of

software-hardware interplay in the context of our work, and finally present the con-

tributions and outline of the entire thesis.
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1.1. Virtual Machines

H  A  R  D  W  A  R  E

A P P L I C A T I O N

PROGRAMMING LANGUAGE

V I R T U A L   M A C H I N E

S
O
F
T
W
A
R
E OPERATING SYSTEM

Figure 1.1: A Virtual Machine is the intermediate layer that can be compared to

glue joining an application written in a programming language with the hardware it

is executed on.

1.1 Virtual Machines

Virtual machines (VMs) are the intermediate layer between the actual hardware and

an application written in a particular programming language. As illustrated in Figure

1.1, a VM is the layer that mediates, with the help of an operating system, between

the hardware and the application written in a particular programming language.

Over last two decades virtual machines have gained popularity because they enable

a number of possibilities that are either not available or more difficult to exploit in

more traditional solutions:

• Independence from a particular hardware and operating system platform al-

lowing programmer to use cleaner interfaces and more universal libraries thus

lowering development and porting costs.

• Transparent runtime optimization for a particular platform using all hardware

and operating system-specific elements, e.g. using CPU instructions available

only on a particular CPU model.

• Transparent runtime optimization based on the behavior of a particular appli-

cation e.g. by focusing the optimization efforts on the most often executed code

2



1.1. Virtual Machines

Virtual Machine

Interpreter Compiler

code-copying
direct-

threaded
switch-

threaded
ahead-of-timejust-in-time

Figure 1.2: The taxonomy of virtual machines execution techniques.

(a.k.a. hot spots) [Sun, IBM].

• Flexibility in experimentation with new language designs and extensions to

existing languages, e.g. the introduction of Java generics [NW06] required no

changes to the VM, nor did Jython [Jyt] which allows for compilation and

execution of Python programs on the Java platform.

• Implementation of security policies, e.g. Java web applets are run inside a sand-

box environment with limited privileges.

A virtual machine is often a complex application that is charged with many tasks

such as: efficient execution of bytecode (main priority), memory management (often

employing automated garbage collector), concurrency (threading) support, dynamic

code loading, exposing OS functionality, facilitating access to language libraries. Each

language targeting a virtual machine uses a virtual assembly, usually called bytecode,

to encode mostly simple operations performed on a virtual machine. The choice of

the operations represented by the bytecodes and the construction of a virtual machine

differ for each language and, as we will show later in this work, have profound impact

on the VM design and runtime behavior.
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Because of the differences between languages, resources available to developers,

and their priorities, there exist a number of approaches to constructing virtual ma-

chines and, in particular, bytecode execution engines they employ. Figure 1.2 shows

a rough taxonomy of the different kinds of execution techniques used by virtual ma-

chines. We will be looking at their specifics in the next chapter, in Section 2.3. Some

VMs emulate the fetch-decode-execute cycle for each bytecode (interpreter-based)

which provides a reasonable performance at a very low cost. Other VMs first trans-

late (compile) a larger number of bytecodes (e.g. whole method, function, or whole

application) into the underlying hardware language and then execute it (compiler-

based). The compilation can take place either ahead-of-time (AOT), before the VM

starts executing an application, or just-in-time (JIT), while an application is being

executed. Mixed designs are also popular [SYK+05,MK00]. Building and maintain-

ing a highly-optimizing compiler for a language is a very time-consuming and overall

extremely costly process, and advanced research techniques such as code-copying offer

significant promise by providing a cheap development route to better performance.

Overall, we can view the different approaches to bytecode executions on a continuum,

where we trade off performance for lower development and maintenance costs.

1.2 Efficiency of Software-hardware Interplay

Heuristically, development cost and performance are directly related. As a rough mea-

sure then, we can define VM efficiency as the ratio between the resulting performance

and the costs of the initial development and maintenance:

VM efficiency =
runtime performance

initial development cost + maintenance cost

In this sense an optimization is any change to a system that improves VM ef-

ficiency, as per the above definition. This is motivated by the fact that for many

environments performance remains important, but the development and maintenance

costs of an optimizing compiler may be outweighed by the simplicity and rapid de-

velopment time of an interpreter-based VM.
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Cost
(init ial &
maintenance)

Runtime
Performance

Interpreters

Optimizing
JITs & AOTs

Low Efficiency High Efficiency

non-opt
JITs

OUR
WORK

Figure 1.3: Our goal is to achieve better runtime performance while keeping the costs

of initial development and maintenance of a virtual machine low.

Our work here approaches optimization from this perspective. We take two broad

views on improving VM efficiency, one based on extending a known runtime opti-

mization technique, code-copying, with important and practical safety guarantees,

and one which investigates the extent to which simple Ahead of Time technique

can be used to further improve performance at low cost. These two directions are

intended to complement each other, showing it is possible to develop cost-efficient,

well-performing solutions that come close to bridging the gap between interpreter and

optimizing compiler-based virtual machines. Figure 1.3 shows the relative positioning

of our work in relation to the VM efficiency of various executions designs. Motivation

for the two major improvements of our work include:

1. Code-copying is a promising solution that provides performance better than in-

terpreters and non-optimizing JITs while remaining simple and cheap to imple-

ment. Code-copying has been found to be very efficient in a variety of environ-

ments [RS96,PR98,Gag02,ETK06]. For example, early work in Java showed it

offers an almost 2 times better performance than most popular direct-threading

technique, and as we show almost 3 times better performance for OCaml.
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2. AOT and optimized code solutions can offer better efficiency if development

costs can be reduced. In our solution we make use of an existing, highly-

optimizing static compiler, GCC, as the main part of a specialized caching

compilation server. We create a system that operates hands-free, where the

source code of VM interpreter loop is optimized for the execution of the most

often occurring sequences of bytecodes that in code-copying were previously ex-

ecuted unoptimized. This composition of several tools and techniques provides

performance even better than code-copying, over 4% average improvement on

selected benchmarks for Java, and 27% average improvement in OCaml.

Below we give further motivation and detail on each of these two approaches. We

organize our work around three milestones in this respect: 1) ensuring safety in code

copying, 2) analyzing code-copying performance and determining relevant factors

that guide its best use, and 3) extending performance further through the low-cost

compilation server design.

Prerequisite of safety

Code-copying is a very attractive solution because of its simplicity and performance.

Although interpreter-based, it does create code dynamically and can be thought of as

a partial JIT solution (as shown in Figure 1.2). While we will describe the specifics of

code-copying later, we want to make a point that code-copying, unfortunately, comes

with one important, and a nearly fatal issue.

With currently available tools it is almost impossible to guarantee the

execution safety of code created by code-copying, especially with variety

of compilers and hardware architectures. Without such guarantee code-

copying offers outstanding and cheap performance that is useless in prac-

tice.

Code-copying makes strong assumptions about the underlying compiler behavior that

are not always true for modern compilers and machines. Primarily for this reason, to

the best of our knowledge, there exist no production systems that use this technique,
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despite its simplicity and performance advantages. This motivates the first of the 3

milestones presented in this work, described in Chapter 4, where we focus on ensuring

the required conservative correctness in code optimizations and transformations. We

handle the safety issue by extending the C/C++ standard and implementing this

extension in a highly-optimizing, industry-standard GNU C Compiler (GCC). Despite

the unusual nature of our changes we manage to follow the best compiler design

practices and ensure long-term maintainability of our modifications within the GCC

framework.

Broad and detailed analysis and prognostic of code-copying

The 3 interpreter-based techniques mentioned previously, in the order of increasing

performance: switch-threading, direct-threading, and code-copying, perform differently

largely because of their interactions with the underlying hardware. It is important to

fully understand where the improvement comes from and why, in order to choose an

appropriate technique.

Not all virtual machines, programming languages, and hardware archi-

tectures benefit the same from the use of code-copying. Before deciding

whether code-copying is the right solution we want to be able to under-

stand the reasons behind the expected future performance and be able to

assess it before implementing.

This can only be achieved by gaining a broader and deeper view into how program-

ming language features and virtual machine architectures influence the performance

of code-copying on various hardware architectures. This issue is the core of the second

of the 3 milestones presented in this thesis. This milestone is described in Chapter 5,

where we apply code-copying techniques to virtual machines of 3 very different lan-

guages (Java, OCaml, and Ruby), on 3 different architectures (Intel 32-bit, x86 64,

and PowerPC 64-bit), and perform extensive experiments to measure and analyze

both, the language execution properties, and the interactions of each virtual machine

with different hardware architectures.
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Further optimization with a compilation server

A natural step to further improve VMs performance, beyond what code-copying is

able to offer is to optimize larger portions of machine code.

The simplicity of code-copying, as well as its conservative correctness

requirements mean that some opportunities for further optimization are

missed. Some of them are already partially handled in hardware, by the

use of caches and other means to minimize the incurred penalties, but it

is much more advantageous to perform these optimizations in software.

For applications that are run repeatedly the overhead of these missed op-

timizations accumulates.

Building yet another specialized optimizing compiler, would mean incurring a very

significant cost thus, in our opinion, lowering the efficiency of the system. In our

third and last milestone, described in Chapter 6, we propose a solution based on a

caching compilation server that improves performance of VMs for repeated execution

scenarios. We extend two virtual machines (for Java and OCaml) that already support

code-copying to use this server to create specialized versions of virtual machines

optimized for a particular application. In the server we employ an existing highly-

optimizing static compiler, GCC. With this AOT-based approach we are able to

further improve the performance (about 2-5% improvement over code-copying on

Java and 27% on OCaml) while maintaining a good balance between the resulting

performance and the overall costs of the solution, as well as ensuring an efficient,

portable design.

1.3 Contributions

With our work we make the following specific contributions:

• We develop a safe and practical code-copying technique appropriate for a high-

performance interpreter based on a portable extension to GCC. This provides

previously elusive safety guarantees for the code-copying technique.
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• Our approach ensures a maintainable design within the context of GCC while

also demonstrating a simple and effective path for supporting code-copying in

general in an optimizing compiler. Ensuring safety in code-copying could be

performed by large, invasive efforts at nearly all levels of compilation; instead

our technique minimizes the impact on other GCC components by reducing the

impact to insertion of few, well-separated passes.

• We provide an attractive, single-compiler solution for code-copying and demon-

strate implementations of this technique for three distinct virtual machines (lan-

guages: Java, OCaml, Ruby), supported on three machine architectures (Intel

32-bit, x86 64, PowerPC 64-bit).

• Using static and dynamic software metrics and hardware performance counters

we provide a detailed analysis of code-copying under all combinations of our

investigated languages and environments. This includes comparisons between

direct-threaded and code-copying approaches. Based on our analysis we pro-

vide guidance on the expected performance of code-copying, prior to actual

implementation.

• Finally, we present a system composed of multiple virtual machines that use

a caching compilation server. We show how by concatenating C source code

for groups of bytecodes (superinstructions) a virtual machine can be specialized

for an application. By caching the resulting specialized binaries we provide a

platform that leverages a static compiler and allows us to amortize the cost of

compilation over multiple runs of an application. This provides a substantial

performance improvement with minimal maintenance and development costs of

the system.

1.4 Thesis Outline

In the next chapter we provide detailed background information on interpreter and

virtual machine architectures followed by an overview of the related work in Chapter 3.
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The first milestone, the design and implementation of our GCC compiler modifications

is found in Chapter 4. The description of our second milestone regarding a detailed

analysis of code-copying technique application to Java, OCaml, and Ruby on Intel 32-

bit, x86 64, and PowerPC 64-bit architectures is found in Chapter 5. A presentation

of our third and last milestone involving construction of a compilation server for

Java and OCaml VMs is found in Chapter 6. Finally, notes on future directions and

conclusions of our work are presented in Chapter 7.
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Chapter 2

Background

In this chapter we focus on highlighting the concepts and tools that are essential

for understanding our work. We first discuss the effects of hardware features on the

performance of interpreters, then we highlight the reasons for using VMs and different

approaches to their design, and then demonstrate the differences between the 3 main

kinds of virtual machine interpreters, followed by a more in-depth explanation of the

code-copying technique, and an overview of our AOT-based approach. We close this

chapter with a summary of the benchmarks and description of the machines used

throughout this work.

2.1 Hardware Architectures

The performance of an interpreter often heavily depends on the particularities of a

hardware architecture it is compiled for and executed on. Some of the most important

factors influencing the performance include number of registers, branch prediction

capabilities, construction of the pipeline, cache size, speed of main memory.

In practice interpreters writers often hand-optimize register use by assigning a spe-

cific register to an often-used variable (like program counter of the VM) [SGBE05].

Certain interpretation techniques, e.g. stack caching, demand the use of one or more

registers solely for the purpose of speeding up the interpretation [PWL04, Ert95].
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Figure 2.1: Virtual Machine is the intermediate layer that translates architecture-

independent bytecode into operations directly executable on a target architecture.

While a deeper analysis of the impact of number of registers on interpreters perfor-

mance is beyond the scope of this work we shall note that, for example, the lower

number of registers on Intel 32-bit architecture is often a concern when implementing

interpretation techniques like stack caching. Higher number of registers allows an

interpreter to keep more of its often accessed data (program counter, stack frame

pointer, etc.) in registers instead of in memory thus improving the overall perfor-

mance.

Branch prediction accuracy has a tremendous effect on interpreter performance.

In modern hardware architectures the execution of each instruction is divided into,

roughly, between 10 and 100 pipelined stages. While such a design allows a CPU to
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execute more instructions per cycle it relies on the CPU’s long pipeline to keep all the

stages busy at all times. In the ideal case of linear code execution this would pose no

problem but real-life code contains a multitude of control flow changes (jumps), pos-

sibly conditional. In order to keep the pipeline full such a CPU usually speculatively

executes code beyond (conditional or indirect) branches and cancels the speculatively

executed operations in case a branch destination turned out to be different. For such

an approach to be successful it needs to rely on a branch predictor. The role of a

branch predictor is to predict with as great accuracy as possible the destination of each

branch. The prediction of unconditional branches is trivial. Most branch predictors

focus on the prediction of destination of conditional branches but not necessarily in-

direct (computed) branches. The exact details vary between hardware architectures,

and branch prediction usually remains part of the unpublished and vaguely docu-

mented works that are critical for each vendor to gain a performance advantage over

others. Usually a branch predictor can only predict a single destination of a branch

and hence is rather unsuccessful when applied to indirect (computed) branches that

may have multiple destinations which are the usual method of instruction dispatch

in interpreters.

The size and speed of cache and main memory can also have an important impact

on the performance of a virtual machine. In particular, if the working body of code of

a VM is larger than the size of the instruction cache and the speed of the main memory

is significantly lower than that of cache a noticeable slowdown can be expected. This

applies, in particular, to architectures where interpreters can actually be faster than

compilers because an interpreter can fit fully inside a limited amount of fast memory,

while compiled code can not.

In general different hardware architectures are expected to interact somewhat

differently with various approaches to interpretation and compilation in a virtual

machine.
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2.2 Virtual Machines

The purpose of the kind of virtual machines we are concerned with in this work

is to provide a high-level abstraction of the underlying machine and its resources.

In particular, VMs provide an abstraction layer with elements such as: available

instruction set, architecture of the virtual CPU, memory model, object model (if

any), calling convention, and many others. There exist two basic kinds of virtual

machines: system and process. System virtual machines are concerned with sharing

the underlying hardware resources between different operating system instances (e.g.

VMWare, Xen, plex86, UML [VMW,BDF+03,Ple,Hos06]). These virtual machines

usually offer the instruction set, memory model and other features identical to the

actual hardware they are running on. This results in lower overhead than process

VMs and very rarely need compilation-based solutions to improve the performance.

We describe several existing system virtual machines in more detail in Section 3.3.

The other kind, the one we are concerned with in this work, are the process

virtual machines to which we simply refer throughout this work as virtual machines.

This kind of virtual machine is by itself an application of an operating system. As we

illustrate in Figure 2.1, a virtual machine is the layer between a language architecture

and hardware architecture. Just as there exist many languages, there exist many kinds

of hardware. Typically a virtual machine supports one programming language and

multiple hardware platforms (e.g. Java, P-Code interpreters), although of course it

is possible to prepare a VM to support multiple languages.

The most important function of a virtual machine is to optimally translate the

operations of a programming language (bytecode instructions) into instructions un-

derstood by hardware (machine code). As we showed earlier in Figure 1.2, page 3,

the translation is usually done using a compiler or interpreter. It is important to

note that in the process of translating instructions both the source (language) and

target (hardware) architecture features have important influence on the resulting per-

formance. In our work we are most interested in solutions based on an interpreter or

ahead-of-time compiler.
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ILOAD_0:

ILOAD_1:

IADD:

ISTORE_2:

ILOAD_0 code

ILOAD_1 code

IADD code

ISTORE_2 code

. . .

switch (*bcode++)        {

ILOAD_1 ILOAD_0 IADD ISTORE_2 .  .  .

}

Figure 2.2: Switch interpreter mechanism and its overhead sources.

2.3 3 Kinds of Interpreters

Interpreters have the advantage of simplicity compared to compiler-based approaches.

They are easier to write, maintain, and modify which allows for more rapid devel-

opment and innovation. Their structure can be quite modular, making it easier to

experiment with different designs for garbage collectors, threading models, execution

engines, etc. Here we present 3 execution techniques for interpreters that build on

one another to provide improved performance.

Switch-threaded

A switch-threaded interpreter simulates a basic fetch, decode, execute cycle. Program

bytecode is fed as a stream and an interpreter repeatedly fetches the next bytecode to

be executed. A large switch-case statement is then used to branch to the actual VM

code implementing the behavior of that particular bytecode. The execution cycle
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for a single bytecode in this kind of interpreter can be described as test–branch–

execute–branch-back as illustrated in Figure 2.2. This process is straightforward and

building a switch-threaded interpreter is conceptually easy. Unfortunately if, as in

Java, bytecodes often encode only small operations, the overhead of fetching and

decoding an instruction can be proportionally high, making the overall design quite

inefficient.

Direct-threaded

A direct-threaded interpreter is a more advanced interpreter that minimizes the decod-

ing overhead inherent in the switch-threaded case. This kind of interpreter requires

an extension offered by some C compilers known as labels-as-values in order to be

able to reference runtime code addresses. The C language is of particular importance

since many operating systems and VMs are written in C or its close derivatives. Nor-

mally, in C a goto instruction can only target a statically specified label. With the

labels-as-values extension it is possible to take an address of a label and store it in a

pointer type variable. This variable can then be used as the argument to a goto in-

struction, allowing indirect control transfer. A direct-threaded interpreter makes use

of this capability by replacing a stream of bytecodes with a stream of labels targeting

the corresponding bytecode implementations. With this mechanism the interpreter

can execute an indirect goto to immediately jump to the implementation of next

bytecode. Optimization is implied by reducing the repeated decoding of instructions.

The repeated test–branch–execute–branch-back for each bytecode execution is traded

for a one-time preparatory action where a stream of bytecodes is translated into a

stream of addresses. With this mechanism the operations required for one bytecode

execution are simplified to a much faster branch–execute process thus removing a

substantial amount of overhead.

Direct-threading is state-of-the-art for interpreter designs, used in GCJ, Sun, IBM,

OCaml interpreter [GCJ,Sun,IBM,OCa], and many other virtual machines. It is im-

portant to notice that the speed advantage of a direct-threaded interpreter over a
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switch-threaded interpreter already comes with the requirement of additional, spe-

cialized support from the compiler used to compile the interpreter.

Code-copying

Code-copying is a further optimization to interpreter design, albeit one which makes

relatively strong assumptions about compiler code generation. The basic idea behind

code-copying is to make use of the compiler applied to the VM to generate binary

code for matching bytecodes. The main source of performance improvement is the

vast improvement application of this technique has on the branch prediction success

rate in modern CPUs using BTB (Branch Target Buffer) tables. Similar to the direct-

threaded approach, a preparatory step is used that translates a stream of bytecodes

into a stream of addresses. Different from direct-threading, however, the preparatory

process actually copies internal bytecode implementations. This copied code forms

superinstructions effectively producing a branch–execute–execute–... execution pat-

tern, also eliminating many internal branches. We describe this technique in greater

detail in the next section.

2.4 Code-copying Technique

In a sense, and as indicated in Figure 1.2, code-copying bridges interpreter and

compiler-based VM implementation approaches, and can be thought of as a ,,partial-

JIT” technique. It creates code dynamically, but is usually considered a further

optimization to interpreter design. Early works in code-copying showed significant

performance improvement is possible, at least if essential safety concerns can be ad-

dressed [RS96,PR98,Gag02,PGA07].

Below we describe basic interpreter designs and implementation concerns, as well

as the nature of safety considerations for code-copying.
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ILOAD_0:

ILOAD_1:

IADD:

ISTORE_2:

ILOAD_0 code
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. . .

in terpre ter  main  loop
(d i rec t - th readed)
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(code-copying)

super instruct ion
ILOAD1_ILOAD0_IADD_ISTORE2

length:  4

ILOAD_0 code

ILOAD_1 code

IADD code
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Figure 2.3: A comparison of code execution in a traditional, direct-threaded (left)

vs. a code-copying (right) code interpreter. Each non-dotted arrow is a jump; the

total number is reduced by code-copying and the existing jumps are more predictable,

mostly due to multiple copies of the same instruction.

2.4.1 Mechanism of Code-copying

The basic idea behind code-copying is to make use of the compiler applied to the VM

to generate binary code for matching bytecodes. The chunks of VM code used to

implement the behavior of each bytecode are identified in the source code using the

same labels-as-values extension as direct-threading, and then copied and replicated to

generate a more efficient instruction stream. At runtime, the code-copying interpreter

uses the addresses of pairs of labels to find the necessary code chunks. Each pair of

labels encloses and defines the VM code actually used to implement the behavior

of a bytecode. By copying the code between such labels and concatenating it with

other code chunks from subsequent instructions, a superinstruction can be generated

elsewhere in memory. This also eliminates branches between bytecodes in the same
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superinstruction as shown in Figure 2.3.

Not all bytecodes should or can be copied in this way. Copying large bytecodes

does not bring performance improvement and only causes increased memory usage

and is usually avoided. Certain bytecodes that attempt unusual or special opera-

tions (the exact definition depends on the OS and VM) are also not copied. More

detailed descriptions of bytecode selection techniques for code-copying and creation

of superinstructions can be found in [ETK06,Gag02,PR98,RS96].

Depending on the application and other factors the code-copying technique can

provide substantial performance gains over direct-threading technique. For example

[Gag02] showed 1.2 to 3 times speedups for a Java interpreter. In this work we

will show that by applying this code-copying to other languages the speedups over

direct-threading technique can be even greater.

2.4.2 Safety Concerns

An inherent difficulty with code-copying is ensuring the integrity of the copied code.

A chunk of copied code must not have dependencies on its initial location in mem-

ory, or its execution after being copied into a new place in memory will differ from

the original. Early works in this area assumed a fairly naive compiler model where

equivalence of the copied code and original code is straightforward. Unfortunately,

this does not remain true in the presence of aggressively optimizing compilers. The C

standard does not contain any semantics that would allow us to express and impose

the necessary restrictions on selected parts of code. For instance the bracketing labels

placed before and after source code chunks and used to address them do not, in any

way, guarantee contiguity of the resulting binary code chunks, nor do they place re-

strictions on the use of relative as opposed to absolute addressing methods. General

compiler optimizations, essential to good VM performance, may relocate basic blocks

within a chunk outside of the bracketing labels, and efficient code-generation makes

best use of short, relative addressing instructions. At VM runtime this will result in

incomplete copies of such a code chunk, the use of relative addressing of jump or call

targets outside of a code chunk, for instance, will make the copies of such a chunk
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contain jumps or calls to invalid addresses. These and other related serious issues

have to be handled, otherwise virtual machine crashes or undefined behavior are to

be expected. To the best of our knowledge there is no production-quality solution

that would ensure creation of code chunks by an optimizing C compiler that can be

safely copied and executed.

Without guaranteed safety of code-copying an interpreter cannot practically, re-

liably make use of this powerful technique. Previous implementations used hand-

done examination, trial-and-error, and manual porting combined with specialized

test suites [PGA07] in attempts to ensure safety. The large effort required, and the

lack of a fully verified result motivated our design presented in Chapter 4.

2.5 Source code comparison

To better demonstrate the practical differences between interpreter designs Figure

2.4 illustrates the VM code used in each of these designs. The same Java bytecode,

LCMP, is shown as it is handled in the 3 types of interpreters. In a switch-threaded

VM, we see statements case INSTRUCTION LCMP: and break that are part of switch

statement and together they bracket the code implementing the behavior of LCMP1

instruction. In the direct-threaded code we see an INSTRUCTION START LCMP: label

precedes the code. The addresses of these labels represent the the bytecode instruc-

tions in the input instructions stream, allowing each bytecode implementation to

make an indirect jump, goto *(pc++), to the next instruction to be executed.

In code-copying we see two labels COPIEDCODE START LCMP: and COPIEDCODE END-

LCMP: bracketing the implementation. At runtime, the code-copying interpreter uses

the addresses of such pairs of labels to find the necessary code chunks. Overall, the

implementation code remains largely the same even for more complicated instructions,

while the bracketing code changes depending on the interpreter engine used.

1LCMP compares two long (64-bit) precision scalar types.
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a)
case INSTRUCTION_LCMP:
{ /* instruction body */
jlong value1 = *((jlong *) (void *) &stack[stack_size - 4]);
jlong value2 = *((jlong *) (void *) &stack[stack_size - 2]);
stack[(stack_size -= 3) - 1].jint =
(value1 > value2) - (value1 < value2);

}
break;

b)
INSTRUCTION_START_LCMP:
{ /* instruction body */
jlong value1 = *((jlong *) (void *) &stack[stack_size - 4]);
jlong value2 = *((jlong *) (void *) &stack[stack_size - 2]);
stack[(stack_size -= 3) - 1].jint =
(value1 > value2) - (value1 < value2);

}
goto *(pc++);

c)
COPIEDCODE_START_LCMP:
{ /* instruction body */
jlong value1 = *((jlong *) (void *) &stack[stack_size - 4]);
jlong value2 = *((jlong *) (void *) &stack[stack_size - 2]);
stack[(stack_size -= 3) - 1].jint =
(value1 > value2) - (value1 < value2);

}
COPIEDCODE_END_LCMP:

Figure 2.4: Addressing the effective code of LCMP Java bytecode instruction in a)

switch-threaded, b) direct-threaded, and c) code-copying interpreter.

2.6 AOT-based Solution and Runtime Traces

Another source for further VM performance improvement is to advance in our ap-

proach towards actual optimizing compilation. This can be especially important for

programs that execute repeatedly or over long periods of time, where the cost of

compilation will be amortized. Best results can be obtained if the optimization tool

is aware to some extent of program behavior. This allows code to be tailored or

specialized to the actual execution and usually requires some form of code analysis
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along with increasingly important profiling information. In the case of JITs the pro-

file can be collected dynamically at runtime. The AOT approach requires multiple

runs, where the data pertaining to one run is collected and stored to be used in

subsequent runs. Typically such optimizations are heavily machine-dependant and

require a massive effort to produce a full JIT or AOT compiler. In Chapter 6 we

present our AOT-based solution where we leverage an existing static compiler and

show how single counter-based profile data can be used to produce a low-maintenance,

low-development-cost solution.

2.7 Virtual Machines, Benchmarks, and Machines Used

The approaches investigated in this thesis focus on practical results that emphasize

the low development and maintenance costs before performance. We thus include

extensive experiments, using a wide variety of benchmarks and architectures. Here

we discuss 3 main experimental VM environments as well as the hardware architec-

tures on which we run them throughout our work. These VMs, architectures, and

benchmarks are as follows.

• Java

We use the SableVM Java virtual machine interpreter (v1.13) [Gag02]. This VM

was chosen because of its state-of-the-art design and the fact that it already

supports all 3 interpreter designs, including code-copying (originally without

safety guarantees).

Benchmarks used are the standard SPECJvm98 benchmark suite [Sta] which

provides a large spectrum of benchmarks with different behaviors. To further

extend the range of tested applications we use two large, object-oriented in-

house benchmarks SableCC (a parser generator) [GH98] and Soot (analysis and

optimization framework for Java) [PQVR+01], and several benchmarks (bloat,

fop, luindex and pmd)2 from the DaCapo suite (v2006-10-MR2) [BGH+06].

2Not all DaCapo benchmarks are able to execute on the version of SableVM we used.
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• OCaml

We use the OCaml interpreter (v3.10.0) [OCa] which out-of-the-box supports

both switch-threaded and direct-threaded engines, and which we extended to

also support (safe) code-copying in a way analogous to SableVM support. OCaml

was also formerly used in research works on other techniques similar to code-

copying and direct-threading [BVZB05,ZBB05].

Formal benchmarks suites, comparable to those for Java, do not exist for

OCaml. A large number of benchmarks we thus use come from the interpreter

itself (in the test subdirectory of the sources). These are small to medium-sized

programs implementing and testing well-known data structures, algorithms,

as well as OCaml language features. Again, to extend the range of tested

applications we further added several benchmarks from the Debian Shootout

suite [Deb].

• Ruby

Ruby interpreter before version 1.9 (release candidate at the time of this writ-

ing) used an interpreter engine largely incompatible with direct-threading or

code-copying and hence unsuitable for our purposes. Instead, we base our in-

vestigation on the Yarv (Yet Another Ruby VM) interpreter (v0.4.1) [Sas05],

which has since become the official engine for Ruby 1.9 due to its better design

and performance. Yarv not only supports direct-threading but it also contains

analysis of bytecode that have the potential to make code-copying more efficient

in some cases.

Ruby is typically used as a tool for development of short scripts and web ap-

plications [Rub], and performance-based benchmarks for Ruby are even less

common than for OCaml. With growing acceptance of Ruby comes interest in

improving its performance which makes Ruby an interesting, industry-relevant

research target. We selected the larger (mainly in the terms of runtime) of the

benchmarks that are distributed with the VM source code (in the benchmark

subdirectory) and added several benchmarks from Debian Shootout. Because

most of those Ruby benchmarks had relatively small size compared to Java or
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OCaml benchmarks we decided to also include Yarv’s supplied self-test program

test-all with a substantially larger total code size.

Our work includes investigating and optimizing VM design, particularly as it

relates to the underlying hardware architectures. We thus employ several machine

types in attempt to fully assess the impact of different hardware designs. The test

configurations in this work used the following hardware as representatives of the most

popular hardware configurations.

• ia32 – 32-bit Intel. This is a typical desktop machine.

Pentium 4 3GHz with hyperthreading. L2 cache size of 1MB, L1 data cache size

of 16kB, L1 instruction cache (trace cache) 12K ops. This machine had 1GB

RAM installed and ran Debian GNU Linux 4.0 (”Etch”) using Linux kernel

version 2.6.18 with SMP support, optimized for i686 machines.

• xeon – 32-bit Intel. This is a typical server machine.

Intel Xeon 2.4GHz with hyperthreading. L2 cache size 512kB. This machine

had 2GB RAM installed and was running Debian GNU/Linux 4.0r2 (codename

”Etch”).

• x86 64 – 64-bit x86 64 – This is a modern 64-bit machine that can serve as a

desktop or small server.

AMD64 (Athlon64) Dual Core 3800+ 2GHz. L2 cache size was 512kB per CPU

(1GB total), L1 data cache 64kB per CPU and L1 instruction cache 64kB per

CPU. This machine had 4GB RAM installed and ran Ubuntu 7.10 (codename

”Gutsy”) using Linux kernel version 2.6.22 with SMP support.

• ppc – 64-bit PowerPC. This is a 64-bit PowerPC machine with a RISC CPU

(all other machines are CISCs). Can be used as a desktop or server.

Power Macintosh G5 with two CPUs 970 running at 1.8GHz. L2 cache size was

512kB per CPU (1GB total), L1 data cache 32kB per CPU and L1 instruction

cache 64kB per CPU. This machine had 1.5GB RAM installed and was running

Mac OS X Server version 10.4.11.
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In the next chapter we present an overview of existing works related to the main

areas of our work.
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Chapter 3

Related Work

The work presented in this thesis is within several areas of research, mainly: byte-

code interpretation methods, code optimization, static and just-in-time compilers,

virtual machines, and compilation servers. In this chapter we present a represen-

tative selection of the most relevant works in these areas. Note that this chapter

only contains descriptions of the related works and does not discuss the differences

between these works and our work. To make the understanding of the content of this

thesis easier the discussion of differences is located in a designated section in each of

the chapters discussing the 3 milestones of our work (Sections 4.5, 5.4, and 6.7).

Certain related works mentioned below could be potentially assigned to more than

one section, therefore our placement is somewhat subjective. We decided that the

techniques that modify the machine code, and/or that need specialized knowledge

about an architecture, or perform machine code generation (copying memory is not

code generation in our understanding) would fall into the category of Compilation

Techniques. In the Virtual Machines section the aim was to gather related work

pertaining to complete execution environments, some of which might be using com-

pilation, or interpretation, or both, or other techniques. We also included hardware

virtualization systems in that section. Compilers, virtual machines and relevant solu-

tions aiming at resource sharing were given a separate section on Compilation Servers

and Resource Sharing.
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3.1 Interpreters

The most basic (and slowest) bytecode interpreter design is known as switch-threaded,

basically consisting of a while loop containing a large switch statement where each

bytecode is processed by branching to the appropriate internal functionality. While

simple in concept and implementation such interpreters suffer from an extremely

costly dispatch overhead, and it is much better to use the more effective direct-threaded

technique. These approaches have been compared and analyzed by Ertl and Gregg

in [EG01,EG03a] and are explained in more detail in the next chapter.

Much of our work is centered around the technique of code-copying, also (some-

what confusingly) known as code inlining, selective inlining, or (more meaningfully)

dynamic superinstructions. Code-copying is a technique originating from direct-

threaded interpretation. It was first described by Rossi and Sivalingam [RS96] and

later in a better known work by Piumarta and Riccardi on, what they called, selective

inlining [PR98]. Compilers used at the time were not too aggressive in their opti-

mizations and thus these works did not face many of the challenges that the use of

code-copying poses today, due to common use of highly-optimizing compilers. Still,

we have to note that their solutions, while delivering substantial performance im-

provements, did not mention the concern for, and did not provide safety guarantees.

The most important reason why code-copying is significantly faster than other

interpretation techniques is its positive influence on the success rate of branch pre-

dictors commonly used in today’s hardware containing branch target buffers (BTB).

Application of the code-copying technique to GForth has been analyzed in a few stud-

ies by Ertl et al. [EG03c,ETK06,EG03b], showing that the majority of performance

improvement is due to improvements in branch prediction. Ertl et al. also compared

code-copying (called in these works dynamic superinstructions) to other techniques

like dynamic and static instruction replication and static creation of superinstructions.

They demonstrated that all of these techniques (often combined together) can also

bring significant performance improvements. Their results also demonstrated, once

again, that speedup due to branch prediction improvements expectedly outweighs

other negative effects, such as a slight increase in instruction-cache misses.
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Peng et al. [PWL04] described an interpreter using a stack caching technique which

exploits the fact that in stack-based virtual machines the top stack elements are the

ones accessed most often. By forcing C compiler to use registers as a cache for these

elements and creating multiple versions of certain instructions (for accommodating

different arrangements of stack elements in the cache) while maximizing code reuse

this technique achieved visible speedups of about 13%. Analyzes of stack caching

application in interpreters can also be found in works by Ertl et al. [EG03b,Ert95].

Berndl, Zaleski et al. [BVZB05, ZBB05] introduced a new technique they called

context threading. This technique leverages the existing hardware prediction mecha-

nisms for call and return assembly instructions to remove about 95% of mispredic-

tions. They show it is possible to further improve the speed of their technique by

selective use of code-copying for very small bytecode instructions. Vitale et al. [VZ05]

analyzed applicability of this technique to a Tcl interpreter characterized by large

bytecode bodies and, for most applications and benchmarks, little time spent in in-

terpreter dispatch. On a selected set of dispatch-intensive benchmarks they achieved

an almost 10% speedup.

Gagnon was the first to use the code-copying technique in a Java interpreter,

SableVM [Gag02]. This implementation solved some important problems specific to

the interpretation of Java bytecode by analyzing the bytecode before execution and,

for example, splitting certain operations into multiple, VM-specific bytecodes. The

code-copying engine it featured required manual tuning that could not give guarantees

of safe execution and therefore could not be regarded as a production-ready solution.

Interestingly, SableVM provided very good performance. For example, experiments

with a simple, non-optimizing portable JIT for SableVM (SableJIT [B0́4]) showed

that such a JIT was only barely able to achieve speeds comparable to the code-

copying engine. This demonstrated once again that code-copying is a very attractive

solution, save only for its lack of safety.
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3.2 Compilation techniques

A solution similar to a code-copying engine is a JIT compiler using code generated by

a C compiler, as developed by Ertl and Gregg [EG04] for Gforth. In this solution the

resulting binary code is created by concatenation of binary code chunks of the VM

itself that are found by placing labels at their beginning and end. The main difference

between this solution and code-copying is that the resulting concatenated code is

actually modified (patched) on the fly, so as to contain immediate values and remove

the need for the instruction counter. The patching process requires architecture-

specific knowledge about the machine code, hence we consider this solution a code-

generation technique. A very similar solution has been applied to TCL interpreter

by Vitale and Abdelrahman [VA04] but the resulting performance gains were much

smaller than for Gforth because bytecodes in TCL are much larger and thus the

dispatch overhead to be removed is much smaller.

Other solutions in this area include systems like DyC [GPM+04]. DyC dynam-

ically recompiles programs during their execution so as to enable the use of run-

time values. Such an approach benefits from allowing for optimizations based on

partial evaluation. A similar solution was presented by Consel et al. [CLLM04]

in a C program specialization system. It included run-time specialization based

on C source code templates compiled ahead of time with a static compiler and

then used at run-time. The specialization technique was applied to Java by Ma-

suhara and Akinori [MY01] and Java and OCaml by Thibault et al. [TCL+00] with

good results. Of course, moving towards a full, optimizing JIT represents a sig-

nificant resource commitment, out of the reach of many scripting or experimental

languages. Zaleski, Brown, and Stoodley developed Gradually Extensible Trace In-

terpreter (YETI) [ZBS07] that couples interpreter with a trace-oriented JIT compiler

to allow for gradual development of the JIT compiler and lowering the cost of the

initial development. There also exist portable JITs like GNU Lightning (used e.g. in

OCamlJIT by Starynkevitch [Sta04]), but these often come with support for limited

number of platforms and their own limited set of code primitives.

Specialized interpreters are another route to optimized performance. In Vmgen
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the VM system can be trained on a set of programs to detect the most often occur-

ring small sequences of bytecodes. The source of an interpreter is then automatically

modified to combine these sequences into superinstructions, optimized the next time

the interpreter is recompiled [EGKP02]. Such a generalized solution can be used

for rapid development of systems that normally include an interpreter, as done by

Palacz et al. [PBF+03]. Somewhat similar in spirit is a proposal by Varma and Shu-

vra [VB04] for a system where Java bytecode is translated into custom-generated C

code, including Java-specific optimizations, and then compiled using a standard C

compiler. While the speed benefits of these solutions are indisputable, they still re-

quire non-automated training, selection of the set of training programs and interpreter

recompilation.

Profile-based tuning has also been used to improve bytecode execution. An opti-

mization based on exploitation of frequently occurring bytecode sequences was shown

by Stephenson and Holst under the name of multicode substitution [SH03]. In this

work hot sequences of bytecodes are discovered off-line by ahead of time profiling

and new code is created (either by a JIT or ahead of time in an interpreter) with

aggregated, compact instructions representing larger execution sequences. Stephen-

son showed that to limit the total number of instructions (including those created by

the optimization itself) such an approach must be combined with careful selection of

sequences based on how well a sequence of bytecodes can be optimized.

Hybrid and other approaches to bytecode execution are of course also possible,

which are discussed in the next section on complete virtual machine solutions. Tak-

ing a compiler-centered view of these solutions we shall note two approaches demon-

strated by Bothner [Bot03] in GCJ and Lattner and Adve [LA04] in LLVM. GCJ

is a GCC-based Ahead-Of-Time compiler including a direct-threaded interpreter for

dynamically loaded code. GCJ takes as its input either Java source or Java bytecode

(class files) and compiles them to an architecture-specific executable. Its main use is

in embedded devices where memory footprint is critical and competitive JIT-based

solutions are either too large for a small device or too costly due to their licensing.

LLVM is a compilation framework created for lifelong program analysis that features

its own code representation, own compiler and other tools that make it extendable and
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reusable. Almost every performance-oriented virtual machine features a just-in-time

optimizing compiler able to perform method inlining, branch-optimization and other

optimizations. Such a compiler often permits several optimization levels chosen de-

pending on how often a section of code is executed. Ma and Pirvu [MP08] presented

an interesting work on improving VM startup time by using ahead-of-time (AOT)

compilation. Dynamo [BDB00] is an advanced system that employs an interpreter of

native code to detect common execution paths and a highly specialized optimizing

compiler to optimize future code execution along these paths. Its focus is on runtime

recompilation and optimization of native code.

3.3 Virtual Machines

Virtual Machines are complete vehicles that internally can use different solutions

to achieve their goals. Here we present several popular Virtual Machines for Java

that differ significantly in their design. The most common approach is to use an

interpreter engine or non-optimizing (e.g. template-based) compiler for the early ex-

ecution of code and rarely executed code (a.k.a mixed-mode execution). Then, in

performance-oriented solutions, to gather an execution profile and use an optimiz-

ing just-in-time compiler, as described earlier. The design of IBM’s Java VM [IBM]

and Sun Microsystem’s HotSpot Java VM [Sun] uses an interpreter and a highly

optimizing JIT compiler (with several optimization levels) used only for frequently

executed code. A different approach has been taken by the architects of Kaffe [Kaf],

which offers a standard direct-threaded interpreter on many architectures, and em-

ploys a good optimizing JIT compiler on selected few due to the limited resources

of the project. SableVM [GH01] is a Java virtual machine that features 3 kinds of

interpreters (switch, direct, inline-threaded) built from a single set of definitions of

bytecodes, is highly portable, and focuses on maintainability and quality of code.

JikesRVM [Jik] is written in an extended Java, does not make use of an interpreter,

but employs a JIT compiler with 3 levels of optimizations. Its focus is on delivering

high performance. The Parrot Virtual Machine [Par] is a relatively new project that
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created a VM capable of executing bytecode of multiple programming languages like

Perl6 or Python. The VM is a register-based VM, combined with a translator that

inputs a stream of bytecodes of a language and translates it into a stream of bytecodes

understood by the VM.

Virtual machines and virtualization matters are not limited to only execution of

code for virtual architectures. There exist a number of solutions used to virtualize

actual hardware, known as system virtual machines. System virtual machines are

concerned with sharing the underlying hardware resources between different operating

system instances. The VMWare [VMW] emulator recompiles native x86 architecture

code on the fly to execute both user-level and kernel-level code within a user-level

program, and emulate the standard PC hardware. It allows for multiple virtual

PC machines executing on a single physical machine with a single host operating

system. A similar approach is used by plex86 [Ple]. Another solution known as

User Mode Linux [Hos06] that allows a modified Linux kernel to be executed in

userspace as an unprivileged application that can then be used as a virtual Linux

machine to execute other applications. All these solutions require that a single host

OS is installed and running on a physical machine, and that the virtual machines

are run as clients (applications) on top of the host OS layer. A recently developed

solution is known under the name Xen [BDF+03], with the goal of running multiple

equivalent operating system instances, with no host OS on a single machine. This

solution is more lightweight but it requires slight modifications to the kernels of

operating systems running on a virtualized physical machine to include more advanced

mechanisms of hardware resources sharing.

3.4 Compilation Servers and Resource Sharing

In some environments, due to imbalance of resources available to different devices,

or due to opportunities for avoiding performing identical tasks by multiple agents,

sharing of certain resources (compilation services, compiled code, execution environ-

ments) and optimizing ways of transferring the resources (e.g. minimizing network
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traffic, transferring running programs or live objects) can bring tangible benefits.

Below we present a selection of works using these techniques.

Lee et al. presented a compilation server [LDM04] based on JikesRVM. This

system uses a central, powerful machine running JikesRVM as a compilation server

that serves smaller, embedded devices connected to the server via relatively slow

links. They achieved a significant improvement of execution time, pause time and

memory allocation on the client virtual machines. Another server-based solution

targeted at handheld devices was presented by Palm et al. Its goal was to reduce

power consumption [PLDM02]. Franz proposed a different system for centralized code

generation [Fra97]. It uses a specialized, platform-independent software distribution

format twice as dense (i.e. taking half the space to carry the same information) as Java

bytecode. In this system the generated code is translated into unoptimized native code

at the destination VM, at load time. The native code, including libraries used by it, is

profiled and optimized using otherwise idle system cycles. These systems demonstrate

that a compilation server is a useful tool that can improve certain characteristics of

VM execution by sharing resources among VMs.

There were other attempts at using shared resources to improve performance of

VMs. Cabri et al. implemented a mechanism [CLQ06] to capture the state of a

running thread and restore it on a different JVM. Such mechanisms can be used

to parallelize multithreaded programs and balance the computational load among

multiple physical machines. A review of the research on a related mechanism – object

persistence in Java – can be found in a work by Lunney and McCaughey [LM03].

Joisha et al. [JMSG01] modified a VM to share the binary executable code among

multiple VMs. Importantly, with this technique they were able to reduce the amount

of writable memory used.

As the basis for our later work on fast interpretation of multiple programming

languages and implementation of a VM-oriented compilation service, in the next

chapter we present an enhancement to GNU C Compiler (GCC) that enables safe

code-copying.
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Chapter 4

Static Compiler (GCC) Enhancement

The main advantage of using an interpreter is its simplicity that results in low

costs of development and maintenance. The performance of interpreters, however,

has always been their weakest point.

The code-copying technique provides a vast performance improvement at a very

low engineering cost. The biggest problem with this technique is the difficulty of pro-

viding safety guarantees. Without guaranteed safety of code-copying an interpreter

cannot practically, reliably make use of this powerful technique. Previous implemen-

tations used examination by hand, trial-and-error, and manual porting combined with

specialized test suites [PGA07] in attempt to ensure safety. The large effort required,

and the lack of a fully verified result motivates the work presented in this chapter.

As we discussed previously, the most simplistic, switch-threaded interpreter was

the basis for a faster design known as a direct-threaded interpreter. Direct-threading

is a technique that used a compiler extension known as labels-as-values. Specialized

support of direct-threading in GCC and other compilers permitted this technique to

become the most commonly used one by interpreter developers. In regard to code-

copying we believe that providing a similar support in an industry-standard compiler

will make this technique much more attractive in practical applications.

In this chapter we present our enhancement to an industry-standard GNU C

Compiler (GCC). As we said previously, our goal was to create a system where the

superior performance and simplicity of code-copying technique can be exploited, while
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Figure 4.1: Optimizing compiler can relocate less likely executed code to the outside

of labels bracketing code used by code-copying.

providing the necessary safety guarantees. We demonstrate that with this enhance-

ment code-copying Java VM (SableVM) can safely achieve speedup up to 2.7 times,

1.5 on average, over the direct interpretation, thus proving that this maintainable

enhancement makes the code-copying technique reliable and thus practically usable.

Below we first present the design of our enhancement, the experimental results,

discussion of related work and finally the conclusions.

4.1 Problem of Compiling for Code-copying

As numerous studies have shown the performance gains from using code-copying

technique are clear [ETK06,EG03c,Gag02,GH01,PR98]. However, one of the biggest

problems faced by the developers of code-copying interpreters is ensuring that the

fragments of the code chunks copied to construct superinstructions are still fully

functional in their new locations and as parts of superinstructions. In an optimizing

compiler, like GCC, there are a number of possible issues caused mostly by a certain

few optimizations.

• Basic blocks partitioning. Optimizing compilers divide basic blocks into likely
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Figure 4.2: Execution of a superinstruction containing a code chunk with a missing

part or a call using relative addressing might cause VM crash.

executed ones (hot) and not likely executed (cold). Blocks belonging to each

group are put together, so as to improve cache efficiency. Unfortunately this

optimization often moves a basic block belonging to the internal control flow of

a code chunk to the outside (usually far away) of the bracketing labels of the

code chunk thus making it unusable for code copying (see Figure 4.2).

• Most often executed path optimization. As illustrated in Figure 4.1 an optimizing

compiler can relocate code that is less likely to be executed, like null pointer

checks (common in many bytecodes) to the outside of pair of labels bracketing

the code chunk. If this happens, such a code chunk can not be used for code-

copying. This is because the only code that is copied is the code between the

two bracketing labels. There is no easy and portable way that a VM can even

detect such unusable code chunks at runtime. What is worse, when such a code

chunk is used (see Figure 4.2) in code-copying and the less likely execution path

is encountered then the relocated part of code is missing from superinstruction

an undefined behavior will occur resulting most likely a segmentation fault.

• Jumps using relative addressing. A regular C goto to a label can be translated

by a compiler into an instruction using a relative or absolute addressing. If a

relative addressing method is used and the target is outside of the copied code

chunk then such a bytecode is not suitable for code-copying. This is because the
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target of the jump is dependant on the position of the code, and this position is

changed when the code is copied. Again, there is no easy and portable way to

detect this problem in a VM and using such a bytecode makes a VM unreliable.

• Calls using relative addressing. On many popular architectures, e.g. on Intel,

the target address of a call is specified using an address relative to the currently

executed instruction (unless the call is to a far target, which is rarely the case).

A code chunk containing such call can not be used for code-copying for the same

reasons as in the case of a relative jump.

Previous works [PGA07] attempted to remedy some of these problems by modi-

fications to the C source code or disabling some of the compiler optimizations. The

usual result was mostly a lower likelihood of encountering the above problems, but

not an actual guarantee. These attempts prompted us to solve the problem at the

source, that is, in the compiler itself.

4.2 Architecture of a Compiler

The modifications to GNU C Compiler (GCC) presented later in this chapter are

easier to understand when viewed over a draft of a general compiler architecture. In

Figure 4.3 we present a simplified data-flow oriented structure of a C compiler. For

the C language the process of compilation is preceded by processing of C source code

by the C preprocessor (cpp) and its output becomes the input for a C compiler. The

compiler first parses the source code and translates it into an intermediate repre-

sentation (IR). For GCC this intermediate representation is a data structure known

as tree. This representation is then processed by multiple compilation passes that

incrementally analyze and transform it in a way that improves the quality of the

code. In this process additional data structures are built around the intermediate

representation, like basic blocks (BB) and control flow graph (CFG). Basic block is

a unit of code that has one entry point, one exit point, no jumps within the unit

(with the exception of the last operation in the unit) and no outside jumps that jump

to the middle of the unit. Basic blocks form vertices (or nodes) of the control flow
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C source code

C preprocessor

preprocessed source code

Parsing pass

Internal Representation 1
"tree" in GCC

Lowering pass

Optimization passes
operating on IR1 ("tree")

Internal Representation 2
"RTL" in GCC

Code generation pass

Optimization passes
operating on IR2 ("RTL")

assembler sources

assembler tool (e.g. GNU "as")

resulting binary
(lib, exe, ...)

Compiler (e.g. GCC)

Figure 4.3: A largely simplified view of a C/C++ compiler based on GCC internal

structure.
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graph. The control flow graph is a representation of all control flow paths that might

be visited during an execution of the code. After all passes operating on the tree

IR are completed1 that representation is transformed into another one, in the case

of GCC known as Register Transfer Language (RTL). Register Transfer Language

is a lower-level representation that is very close to the actual assembly of a specific

hardware architecture2. Again, multiple passes process this representation of the code

analyzing it and incrementally transforming it to ensure better quality resulting code.

In GCC the total number of passes applied to all intermediate representations (IRs)

depends on optimization options used and is usually greater than 50. The last pass of

the compiler is the code generation pass. This pass translates the lower intermediate

representation, RTL, into textual assembly output. This output is then used by an

external, architecture-specific assembler tool (e.g. GNU as) to create the resulting

binary object (e.g. an executable or library file).

It is important to note that given the general structure of compilers, and C/C++

compilers in particular, the solution we propose in this chapter is not a special case

based on particularities of a specific compiler (GCC). Rather, it is based on the

principles on which compilers are built and is expected to be just as applicable to

other compilers.

4.3 Design

Many virtual machines are implemented in C, and problems arise from the fact that

there is nothing in the C standard nor in most C compiler capabilities that guaran-

tees that part of binary code copied from one place in memory to another will be

functionally equivalent to its original image. Code optimization can rearrange in-

structions outside of expected, source-based limits, and without specific optimization

guarantees it is difficult to ensure the correctness of the final implementation. A more

in-depth overview of the code-copying technique can be found in Section 2.4.1. Here,

1The actual mechanism is more complicated but the explanation is omitted to improve clarity.
2Definitions of Basic Block, Control Flow Graph, and Register Transfer Language based on

Wikipedia [Wik] content.
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we immediately continue to the design of our specialized support for this technique.

Our approach is to use manual specification by source annotation in the form

of the well-known #pragma operator. This operator is used to surround and thus

help identify copyable code chunks. The bulk of our design effort is in ensuring

safety for code copying, a result guaranteed by a small set of well-specified additional

passes within GCC. Below we first detail requirements for code to be relocatable and

thus suitable for code-copying, followed by a description of the GCC modifications,

including the final verification phase.

4.3.1 Generation of safely copyable code

There are specific requirements that a chunk of code has to meet so it could be copied

to another location in memory, concatenated with other chunks and safely executed.

A code chunk can only be safely copied if its copy is functionally equivalent, i.e. chunk

of code Cbaseaddrα ≡ Cbaseaddrβ where α 6= β.

We thus define a chunk of code C to be copyable if all of the following conditions

ensuring functional equivalence are true:

• C occupies a single contiguous space in memory that starts and ends with two

distinct code labels specified by a programmer.

• Natural control flow enters C only at its “top” and exits only at its “bottom.”

• Any jump from inside of C to code outside of C (e.g. to an exception handler)

uses an absolute target address.

• Any jump from the inside of C to another place inside C uses a relative target

address.

• Any function call from inside of C uses an absolute target address.

• At C boundaries registers must be used consistently with other code chunks

boundaries (this is already ensured by GCC’s computed goto extension).
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4.3.2 GCC modifications

Our goal was to modify a highly optimizing C compiler, such as GNU C Compiler

4.2, to selectively generate code that meets these requirements, thereby ensuring

functional equivalence of selected code chunks.

As we have shown before in Section 4.2 a regular optimizing C compiler like

GCC applies over 50 passes to process the code. These passes modify the code in

ways that are usually supposed to improve the speed of the resulting code or its

other parameters. Given the size, complexity and continuous development of the

optimization passes it is not feasible to modify and maintain all of these passes to

selectively generate code conforming to our requirements. Instead, we modify the

compiler to:

• preserve the information about which parts of the code have to be treated

specially—from the moment the source code is parsed to the moment the final

assembly is generated,

• allow (almost) all of the optimizations to execute without modifications and

then at certain selected points of the compilation process use additional passes

that modify the code in a manner that makes selected code chunks copyable.

One can think of it as a cross-cutting approach that works by finding, preserving, and

processing data across multiple compilation passes.

The overall set of modifications is divided into separate passes that collectively

track or restore information throughout the whole compilation process; a general

description is shown in Figure 4.4. Depending on the representation of the code at

each stage of compilation this information is tracked in a different form. In the source

code it exists as #pragma lines, then as special flags of selected AST elements, later

we attach it to basic blocks and computed goto’s, and eventually it is inserted in the

form of notes into the assembly (RTL). Tracking this information turned out to be

the most difficult part of our work. It is because of all the aggressive optimizations

that might duplicate, remove, and move parts of the code in which we are interested

that ensuring copyable code is non-trivial. We ensure that this information is not
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I. Register pragma locations start/end during parsing

II. Scan the tree (twice)

III. Insert permanent marking and ensure areas are solid

IV. Correct ordering of basic blocks in copyable areas

VI. Verify RTL of copyable areas

SCAN 2:

- modify gotos within the copyable areas to use absolute

  addressing (via register) if the target is outside of an area

- modify calls within areas to use absolute addressing

    (call via register)

GCC: source is parsed and AST is created

GCC: Basic blocks and CFG are created

GCC: Tree-SSA and RTL optimizations

GCC: late and arch-specific optimizations

- initial permanent marking of BEGIN/TARGET basic blocks

- restore marking of copyable areas using BEGIN, TARGET

    and computed gotos as boundaries (reusable pass)

- restore marking of copyable areas (reusable pass)

- reorder basic blocks of copyable areas

V. Insert RTL markers of copyable areas boundaries

SCAN 1:

- ensure each pragma location is followed by a label

- flag these label statements as BEGIN & END

- insert volatile assembly around END labels

- ensure the copyable-code properties hold

Figure 4.4: To produce copyable code with minimal changes to the internal structure

of the compiler we inserted several well isolated passes.
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case SVM_INSTRUCTION_LCMP:
{ /* instruction initialization */
vm->instructions[instr].param_count = 0;
vm->instructions[instr].copyable_code = &&COPYABLE_START_LCMP;
env->vm->instructions[instr].copyable_size =
((char *) &&END_LCMP) - ((char *) &&COPYABLE_START_LCMP);

break;
}

#pragma copyable begin
COPYABLE_START_LCMP:
{ /* instruction body */
jlong value1 = *((jlong *) (void *) &stack[stack_size - 4]);
jlong value2 = *((jlong *) (void *) &stack[stack_size - 2]);
stack[(stack_size -= 3) - 1].jint =

(value1 > value2) - (value1 < value2);
}

#pragma copyable end
END_LCMP:

Figure 4.5: Pragma directives are placed around the code that will be used by code-

copying engine at runtime.

lost, misplaced or mangled by separating it from structures accessed by optimization

passes, where possible, and by employing multiple sanity checks in each of our passes

that use this information.

Below we discuss in great detail our modifications to GNU C Compiler as presented

in Figure 4.4. For an overview of the data-flow structure of a C compiler in which

these changes have been implemented please see Figure 4.3.

Phase I: Register pragma locations

Figure 4.5 illustrates a fragment of interpreter source code for a single instruction.

The code of an instruction (bytecode) is surrounded by the special copyable #pragma

statements that mark the beginning and end of the copyable chunk. To make the

compiler recognize and accept the pragmas we reuse the existing standard mechanisms

for handling pragmas inside GCC.
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Phase II: Scan the tree (1)

To ensure chunks are properly identified and separated an initial pass is performed to

check starting and ending conditions. Each location of #pragma copyable begin and

end registered during parsing is checked to ensure it is followed by a label. These start

and end labels have then their special start and end flags set accordingly. Finally

the code is modified by artificially inserting into the stream of statements two empty

volatile assembly instructions around the end label.

The volatile assembly code acts as a barrier to code movement, and is used to

ensure the basic blocks directly following areas, the target blocks, are preserved and

act as the sole and unique exits of the natural control flow from a copyable area.

Our tests showed that otherwise some optimizations would attempt to remove or

merge target blocks. In principle a similar concern applies to the first basic block of

a copyable area, the start ing block. However in our tests the compiler would never

try to remove or duplicate this block. We did not investigate it further, but if it

ever became a problem such issue could always be handled the same way as in target

blocks. We implemented sanity checks that would fail if blocks marked start or target

were removed or duplicated.

Phase II: Scan the tree (2)

In most architectures control flow jumps can be relative or absolute. Relative jumps

have the advantage of being (usually) smaller instructions, but having a machine-

specific limitations on the distance for which they are useful. Absolute jumps are often

longer instruction sequences since the complete target address must be encoded, not

just the relative displacement. As mentioned in Section 4.3.1 for control flow that

goes outside of the copyable area absolute jumps are required to ensure the code

behaves the same once copied. Similarly, jumps within a copyable region must use

relative addressing to guarantee a copy will behave in an equivalent fashion.

Our second phase thus includes a pass to convert control flow statements that

go outside of a copyable area (and not to the target block) to use absolute addresses

for their targets. There are two cases of such control flow: a goto and a function
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Original source code:

#pragma copyable end
END_LCMP:

Is changed into:

__volatile__ __asm__ ("":::"memory");
END_LCMP:

__volatile__ __asm__ ("":::"memory");

Figure 4.6: At an early compilation stage volatile statements are automatically in-

serted by the compiler around the end label to ensure that the target basic block will

remain intact throughout optimizations.

call, both complicated by the fact that GCC itself does not produce the final binary

code, rather it uses an external, platform-specific assembler program. It is in fact the

assembler’s role to choose the addressing mode for each call or jump; typically the

shortest addressing mode to reach the target is chosen, but there is no general and

relatively platform-agnostic way to specify in the assembler input that a jump or a

call is to use absolute addressing. Below we describe how we ensure absolute jumps

are used through the use of computed gotos, and then how we process the code chunk

to ensure control flow is safe for copying.

To force selected jumps and calls to use absolute addressing we modify the code

of these instructions to make jumps and calls via a register. As shown in Figure

4.7, in C these instructions are represented respectively by a computed goto and a

function call using a function pointer. A computed goto is a special feature of the

labels-as-values extension of GCC used by direct-threaded engine. It is a goto whose

argument is not a label but a variable containing the address of a label (or any

other address). Using a register to hold the destination address may have a negative

impact on the performance that will vary from platform to platform, or even CPU

type. Here the benefits of maintainability and safety are paramount, and as we will

show in Section 4.4 our solution is efficient in practice. Nevertheless, more portable

ways of expressing absolute addressing could slightly improve performance.
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Original code within a copyable area:

goto NullPointerException_label; /* label outside of the copyable area */

Is automatically replaced during early compilation stages with:

{
void *address = &&NullPointerException_label;

/* this assembly prevents constant propagation */
__asm__ __volatile__ ("" : "=r" (address) : "0" (address) : "memory");

goto *address; /* computed goto uses absolute addressing */
}

Figure 4.7: To ensure absolute addressing a goto to outside of a copyable area is

replaced with a specially crafted computed goto.
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Our current system assumes that code chunks are small enough that the compiler

will use optimal, relative jumps within the code of instructions found in a region.

While it does not attempt to ensure intra-area jumps are relative, an appropriate

pass could easily be added. The reason this assumption is valid is that the relative

jumps are preferred by GCC and external assembler whenever possible because of

their smaller size and possibly faster execution. The only case when an absolute

jump target addressing is used is when the target of a jump is beyond the scope of

relative addressing, which on contemporary architectures is about +/- 32kB or more.

Since the application of code copying only makes sense for small code chunks (less

than 1kB, most of the time about 100B) relative addressing is the only one used, and

thus this assumption is always valid.

Phase III: Mark and ensure areas are solid

Rather than modifying a large part of GCC to ensure the properties of copyable

code regions are preserved at all subsequent compilation stages, by all compilation

passes, we instead inserted two additional passes. The first pass modifies the code in

a way that ensures a minimum of information about copyable code regions is always

preserved. The second (reusable) pass uses this information and is capable of finding

all the basic blocks belonging to copyable areas after arbitrary optimizations. Both

passes include sanity checks mentioned earlier ensuring the additional information on

code chunks is not lost or mangled.

After the source code is parsed into the stream of statements the compiler creates

descriptions of basic blocks. Each such description contains pointers to the first and

the last instruction that a basic block contains. We found that a basic block is a

convenient unit to carry the additional information about the copyable code. It gives

an easy access to smaller components of the code, like each particular instruction,

while also being easily accessible via higher-level structures, e.g. the control flow

graph. We extended the data structure describing a basic block to store the unique

id of the copyable area a block belongs to and to store a field of utility flags. The

initial marking of basic blocks is straightforward. We scan the stream of statements
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a r e a  =  5
f lags = START

a r e a  =  5

a r e a  =  0

a r e a  =  5

a r e a  =  5
f lags=TARGET

a r e a  =  0

Basic blocksS t a t e m e n t s  s t r e a m

  . . .

#pragma copyable end

    ICMP_END:

/* Code after the area */

/* Code before the area */

#pragma copyable start

  COPYABLE_ICMP_START:

  . . .

/* Copyable code */

Figure 4.8: Initial marking of basic blocks right after parsing.

for labels earlier marked as start and end, and mark basic blocks located between

pairs of such statements with corresponding flags, as shown in Figure 4.8.

In general, optimizations can create new basic blocks, move or split existing ones.

One of the possible results is that some basic blocks that functionally are part of a

copyable area might no longer be placed between the start and target basic blocks

of this area and might not carry the initial marking. To recover marking after opti-

mizations we rely on the preservation of the start and target blocks, which in turn

is ensured with sanity checks. Area marking restoration can then be done through

simple propagation along the control flow graph, from the start block of each area

until the target block and jumps via computed goto’s. It is critical that the compiler

had earlier modified all the jumps to outside of copyable areas to use computed goto’s.

This way it is possible to always find the limits of copyable areas.
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Importantly, our approach does not use a heuristic and is guaranteed to properly

restore the list of blocks belonging to each copyable area. We still included extensive

sanity checks that in practice should never be triggered. This is because, for instance,

we earlier inserted volatile assembly around chunks end labels (see Figure 4.5) and

disabled cross-jump optimization (see below). With these measures in place previ-

ously executed optimizations should not have inserted or deleted start or target blocks

or cause the control flow graphs of different code chunks to interfere.

The one optimization that is nearly guaranteed to cause interference between

control flow sub-graphs of different code chunks is, in GCC, called a cross-jump.

It is currently the only optimization that has to be disabled for a function that

contains copyable code. It attempts to find parts of code within a function that

are identical and then share a single copy of the code among all the places in the

function where this code is used, reducing overall code size. This optimization clearly

conflicts with the need of the code-copying engine to use self-contained code chunks

and has therefore always been useless in this context. Selective per-function disabling

of this optimizations does not change the way all the rest of code of virtual machine

is compiled.

Phase IV: Correct basic blocks ordering

The main reason for our basic block reordering pass is an optimization performed by

GCC by default, basic block partitioning. This pass does two things. It divides the set

of basic blocks of a function into those that are expected to be executed frequently

(hot blocks) and those that are expected to be executed rarely (cold blocks). In

the final assembly all the hot blocks of each function are located contiguously in the

upper part of the code, and the cold blocks are located below the hot blocks. This

optimization also reorders basic blocks to ensure that fall-thru edges are used for the

most often encountered control flow. These are heuristic techniques for improving

instruction cache hit rate and simplifying control flow, and this optimization can in

practice improve the performance of a virtual machine by several percent, therefore

we want to allow for it.
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Figure 4.9: From the marking of only two basic blocks, start and target, the complete marking can be restored by

following the edges of the control flow graph. Once the marking is restored it is possible to rearrange the basic

blocks of a marked copyable area.
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Alternatively we had an option to disable this optimization on a per-function

basis. This was deemed unsatisfactory for two reasons. First, we perceive the fall-

thru edges optimization as a welcome attempt to improve the quality of the resulting

code later used for code-copying. Secondly, we have to be aware that there are other

optimization passes that can also relocate basic blocks. Therefore with or without

block partitioning we had to create a solution that would be able to deal with any

kind of relocation of basic blocks.

For a chunk of code to be copyable the compiler has to restore the order of basic

blocks so that the marked code is self-contained. In this case the goal is to move

basic blocks to ensure that the start basic block of the copyable area is followed by

all other blocks belonging to it, which are then followed by the target basic block of

the same copyable area. After the marking of basic blocks belonging to all areas is

restored (as described in the previous section) it is relatively easy to move all basic

blocks belonging to an area into the wanted positions, as can be seen in Figure 4.9.

Positions of basic blocks that are part of the control flow graph of a copyable area

and are initially located between start and target blocks are left untouched. Basic

blocks that are part of the control flow graph of a copyable area but are initially not

in between start and target blocks are moved to immediately precede the target block.

The ordering of these basic blocks is preserved. Positions of other basic blocks, not

belonging to copyable areas, are left unchanged. This means that almost all optimiza-

tions of fall-through edges and others that reposition basic blocks are preserved which

minimizes the negative effect this reorganization might have on performance. In fact,

in some cases, this reorganization actually improves VM performance, regardless of

the use of code-copying, as we will show in the case of OCaml in Chapter 5, Figure

5.10 on page 93.

Phase V and VI: RTL markers and final verification

The additional passes described above modify the structure of code based on up-to-

date information about the boundaries of basic blocks, construction of the control

flow graph, and other data. During the final compilation passes the GCC compiler

51



4.3. Design

discards some of this information or does not keep it up to date. In our tests we found

that these last optimization passes do not change the structure of the code enough to

invalidate the properties of copyable code. Nonetheless, this was not sufficient for the

safety guarantees we required and another solution was needed. We therefore added

two simple passes.

During the compilation process, not long before the information about basic blocks

and control flow graph becomes unavailable, an additional pass inserts into the pro-

gram representation (RTL stream) special (untouchable by other passes) notes that

mark the start and end of copyable areas, including the ID of an area. The notes is

an existing GCC mechanism for RTL code annotations. The second pass is then a

simple verification pass that uses only a minimum of information. It is executed just

before the final assembly is sent to an external assembler. With the notes inserted

by our previous pass it is possible to verify all the necessary properties of copyable

areas when the code is final. The verification algorithm traverses the RTL instruction

stream and ensures that:

• all copyable areas are present,

• copyable areas do not interleave with one another,

• jumps from a copyable area A to a symbol (i.o.w. to a label, thus assumed

relative) are either to a target within A or to this area’s target label, i.e. the

label that begins the target basic block (the relative nature of the jump is

trivially ensured, as explained in the description of Phase II: Scan the tree(2)

on page 45),

• jumps to the outside of an area are made via register and not a symbol (thus

are absolute),

• all calls from within areas are made via register and not a symbol (thus are

absolute).

A verification error at this point is uncorrectable and is treated as an internal com-

piler error. This guarantees that if source code compiles properly then the copyable
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Figure 4.10: Performance comparison of SableVM with standard direct-threaded

engine, unsafe code-copying engine and safe code-copying engine using the GCC

copyable-code enhancement.

chunks of binary code will be safe to copy and execute in a code-copying VM. Sanity

checks in all our passes ensure proper flow of the information on code chunks which

allows the final verification to function reliably. In our experience we have not yet

encountered a case where the verification pass would fail when all the former passes

executed properly.

4.4 Experimental Results

To examine practicality of our design we modified a Java Virtual Machine, SableVM

[Gag02], to use our enhanced GCC. In SableVM source we marked code chunks with

our copyable #pragma. Code-copying was already supported in SableVM, but re-

quired globally disabling block reordering in GCC and did not provide safety guar-

antees. During preparations we used our enhanced GCC to verify the unsafe code
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Metric #

Data structures modified 4

Fields added to data structures 6

Data structures added 3

Functions added to existing files 4

Function calls/hooks inserted 8

Code lines added or modified 139

Code lines in new files 1500

Figure 4.11: Metrics of code modified and added to GCC.

formerly used by SableVM’s code-copying engine and found several cases where exe-

cution of a less likely control flow path in a bytecode would result in a VM crash due

to a function call using relative addressing.

The goal of our main experiments was thus to demonstrate that our new approach

allows the code-copying strategy to be realistically and more reliably used while main-

taining the performance. The results shown in Figure 4.10 have been gathered using

machine ia32 (machine specifications and benchmark descriptions can be found in

Section 2.7, page 22). The SPEC and in-house benchmarks were executed with their

default settings (-S 100), the resulting executions times were averaged over 10 runs,

and performance is shown normalized to the speed of the direct-threaded engine as a

baseline for comparison.

The benefits of code-copying are clear. We are able to achieve approximate parity

with the unsafe code-copying approach. More surprising perhaps is that the perfor-

mance of SableVM version 1.13 modified to use our GCC extensions actually im-

proved over the manual code-copying design in most cases. We attribute the general

improvement to the fact that previously SableVM had to globally disable basic block

reordering for the code-copying engine to work at all. With the added GCC support

for code-copying this useful optimization was enabled. We also note that the per-

formance of two SPEC benchmarks that benefit the most from code-copying, as well
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as Soot slightly decreased, about 2-3%. We suspect that this effect is caused by the

memory barriers inserted into the code in places where the special #pragma is used.

These barriers might be inhibiting some of the optimizations. It is also the case that

inadvertent changes to instruction cache behavior cause significant performance varia-

tions (as much as 10% [GVG06,GVG04]). More detailed analysis of performance gains

and losses is thus warranted, but certainly the magnitude of correlation in Figure 4.10

is sufficient to demonstrate the general success of our compiler-facilitated approach.

Overall, the effect is clear: our modifications efficiently enable code-copying as a safe

technique for VM interpreter design.

One of our goals was to minimize the impact of our changes to GCC on GCC

maintenance. Figure 4.11 shows the results of our impact measurements in terms of

required changes to code and data structures. In a truly large project such as GCC we

see these numbers as indicators that our extension has minimal impact on the existing

GCC code and its maintenance. A major upgrade of our enhanced GCC, porting our

modifications from GCC v. 3.4 to v. 4.2 (about 2 years of GCC development) took

only a few hours and consisted mostly of renaming via search/replace to account

for changed names of fields in GCC data structures and testing. We believe this

validates our claim that a relatively simple compiler modification can help improve

the performance of dynamic execution environments.

4.5 Notes on Related Work

The first uses of code-copying technique by Rossi and Sivalingam [RS96] and soon

after by Piumarta and Riccardi [PR98] did not, in practice, have to face the issues

resulting from the use of highly-optimizing compilers. Compilers at that time were

vastly less aggressive than today and there existed a much closer relation between

the source code and the resulting binary code. Most of the works that used code-

copying also silently ignored the issue, with the exception of Ertl’s work [EG04] on

retargettable JIT using code generated by C compiler (building on code-copying)

which faced similar issues. Ertl’s solution did include automated tests to detect code
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chunks that were definitely not copyable, but it was not guaranteed to find all such

chunks (see Figure 6 in [PGA07] for an example) and thus did not ensure safety. In

Gagnon’s work within SableVM [Gag02] by-hand and trial-and-error methods were

used for detecting non-copyable code. As a later improvement to SableVM an actual

database of copyable bytecodes per-architecture, and per-compiler (and its version)

was added. Prokopski et al. [PGA07] described a specialized bytecode testing suite to

speedup the process of constructing this database for new architectures or compiler

versions. Despite the extensiveness of the test suite its use still did not and could not

provide proper execution safety guarantees.

4.6 Conclusions

For a variety of reasons, including simplicity and dynamic support, many modern

languages are based on virtual machine (VM) designs. Efficiency and ease of design

are key features for rapidly evolving languages and associated execution environments.

Code-copying interpreters offer a good trade-off between performance and mainte-

nance, but were previously limited by the lack of critical safety guarantees, as well as

maintenance concerns with respect to the modifications to the static compiler. Copy-

able code must behave functionally the same when copied, and while conceptually

trivial these guarantees are simply not provided by current compilers or C language

extensions.

With our work we demonstrate that it is possible to make code-copying safe and

practical. Our approach to GCC modifications demonstrates viability of our tech-

nique for ensuring the safety properties essential to code-copying. We show how this

technique can be relatively easily integrated with a modern C compiler, while keeping

the changes relatively isolated and making only limited assumptions about the inner

workings of a compiler, thus ensuring long-term maintainability.

The implementation of a code-copying GCC extension on which we based the

work presented in this chapter was focused on supporting the i386 architecture. On
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other architectures there might be additional issues with delay slots (e.g. MIPS), rela-

tive addressing of externs and globals (e.g. x86 64), or relative-jump span limitations

(e.g. PowerPC). Addressing these hardware architecture-specific issues a deeper per-

formance analysis, further determining the source of our gains in using code-copying

applied to other VM architectures, are the core of our work presented in the next

chapter.
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Chapter 5

Application to Multiple Virtual Machines,

Multiple Architectures

In the previous chapter we presented a C compiler enhancement implemented

within GNU C Compiler (GCC) that provided the support necessary for safe execution

of virtual machines that use the code-copying technique. This enhancement allows

a programmer to use a simple C pragma to mark chunks of VM source code that

will be used at runtime for code-copying. The compiler then ensures that the code

chunks generated from these parts of the source code are contiguous in memory and

can be safely copied at runtime, while also ensuring as many code optimizations as

possible are still applied. This approach makes code-copying practically usable, and

was essential in allowing us to scale our development and investigation further.

Due to varying language features and virtual machine design, however, not all

languages benefit from code-copying to the same extent. We consider here properties

of interpreted languages, and in particular bytecode and virtual machine construction

that enhance or reduce the impact of code-copying. We implemented code-copying

and compared performance with the original direct-threading virtual machines for

three languages, Java (SableVM), OCaml, and Ruby (Yarv), examining performance

on three different architectures, ia32 (Pentium 4), x86 64 (AMD64) and PowerPC

(G5). Best speedups are achieved on ia32 by OCaml (maximum 4.88 times, 2.81 times

on average), where a small and simple bytecode design facilitates improvements to
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branch prediction brought by code-copying. Yarv only slightly improves over direct-

threading; large working sizes of bytecodes, and a relatively small fraction of time

spent in the actual interpreter loop both limit the application of code-copying and

its overall net effect. We are able to show that simple ahead of time analysis of

VM and execution properties can help determine the suitability of code-copying for

a particular VM before an implementation of code-copying is even attempted.

Below we first discuss the application of code-copying to 3 different VMs, then we

discuss properties of different VMs and languages backed by several metrics. Later we

present and discuss the experimental results, comment on related works, and finally

draw conclusions.

5.1 Application to Java, OCaml and Ruby

Our experimentation is based on examining code-copying in several environments.

SableVM already supported code-copying (in fact all three interpreter designs [Gag02]).

Our modifications to SableVM were thus mainly to modify the VM to use the gcc

enhancements described previously, obviating the existing system for verifying cor-

rectness of copied code.

OCaml and Yarv (Ruby)1 use only direct-threading, and so changes were more

extensive. For both OCaml and Yarv VMs we used the same general scheme for the

code-copying implementations. At a high level this involved:

a) adding a small set of functions and data structures supporting the management

of superinstructions,

b) modifying the interpreter loop, either through C macros (OCaml) or changes to

the C code generator (Yarv) to use the special pragmas to identify the copyable

code regions implementing individual bytecodes, and

1The current version of the popular Ruby interpreter used, at the time of this writing, a different
interpretation technique, not readily compatible with code-copying. It is also the case that Yarv
contains analyzes that can potentially simplify bytecode and improve opportunities for code-copying.
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c) modifying the function responsible for bytecode preparation to construct and

use copied code, storing the revised code in a modified code array.

To identify copyable sequences several language-specific bytecode analysis are re-

quired, making changes to bytecode preparation the most complicated step. For ex-

ample, before attempting the creation of copied code all bytecodes changing control

flow must be found and their jump targets identified. In the case of SableVM other

analyzes are necessary for detecting potential class loading, identifying GC points,

and other language-specific concerns.

5.2 Execution Properties

Basic properties essential to good code-copying performance can be gathered ahead

of time, through simple dynamic metrics and examination of the virtual machine

bytecode design. This allows an assessment of the suitability of a virtual machine for

code-copying prior to implementation; our results here can also serve as a heuristic

guide during bytecode design for maximizing the performance of code-copying.

Performance and behavior of three different virtual machines, on three hard-

ware platforms are examined. These cases illustrate a spectrum of implementations

and potential performance. Each of a Java virtual machine, an OCaml interpreter,

and a Ruby interpreter are examined running on 32-bit Intel (ia32 ), 64-bit AMD64

(x86 64 ), and 64-bit PowerPC (ppc) hardware. Each virtual machine was tested

on each architecture in two configurations: one using the standard direct-threading

technique and one using our safe code-copying technique. For each VM we selected

a set of benchmarks that would run properly across all architectures. We measured

the behavior of each benchmark in 3 ways: its performance, its interaction with the

hardware as indicated by hardware counters and dynamic characteristics of creation

and usage of code created using code-copying technique.
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5.2.1 Architectures and Virtual Machines

Performance of any program is obviously closely tied to the machine architecture

on which it runs. Variability due to different hardware designs can be magnified

when investigating the performance of a code-copying virtual machine—the benefit

of code-copying is largely produced by better enabling branch prediction, improving

code locality, etc. These are factors that can vary significantly on different computer

hardware. Our analysis thus compares performance on three popular architectures:

Intel 32-bit ia32, 64-bit x86 64, and 64-bit PowerPC ppc (the exact descriptions of

machines can be found in Section 2.7).

External performance influences were eliminated or reduced as much as possible.

On all machines all used software was installed on a local hard drive, and unnecessary

processes and network activity were stopped. To reduce noise due to multiprocessing

on ia32 and x86 64 we ensured through the cpu affinity functionality in glibc and

the Linux kernel that all VM threads execute on a single CPU only. Mac OS X,

however (ppc machine), intentionally does not provide such functionality, leaving the

decision of CPU assignment to the OS.

For each virtual machine and on each architecture we examine performance for a

variety of language-specific benchmarks, as described in Section 2.7

All of these virtual machines are (primarily) implemented in C so the GCC en-

hancement presented previously was directly applicable. To measure the performance

we timed 7 runs of each benchmark and averaged the results. We computed standard

deviation, and for almost all cases it was less than 0.01 of the average measured value,

and never greater than 0.04.

5.2.2 VM and Language Characteristics

The different bytecode sets offered by different virtual machines can have a large

impact on code-copying performance. More complex bytecode instructions perform

more “work” per bytecode, while smaller bytecodes will tend to have more relative

branching overhead, and thus greater opportunity for improvement through code-

copying. The extent to which copyable sequences can be exploited is also driven
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interpreter instructions LOC per copyable instructions

loop kLOC total instruction # %

SableVM (15.0) 3.4 319 (57) 25 194 61%

OCaml 1.0 133 8 96 72%

Yarv 1.2 121 10 (71) 61 (59%) 50%

Table 5.1: Average size of an instruction (in lines of code) and fraction of copyable

instructions in the 3 considered VMs. For SableVM the number in parenthesis is

the number of lines after m4 macros expansion of its interpreter loop source code.

Also, for the SableVM interpreter loop LOC count we did not include instruction

initialization code which, in this particular VM, happens to be interleaved with in-

struction code. For Yarv the best performance was obtained when the maximum

size of copyable instructions was limited to 100-150 bytes, lowering the number of

copyable instructions from potential 71 to 61 actually used.

by characteristics of VM workload. The programs which exercise copyable sequences

more often will naturally see greater improvements. This is in relation to non-copyable

sequences, but in order to account for whole program improvement also in relation

to the fraction of whole program time spent in the interpreter loop. If execution

depends on expensive library or runtime services then again the relative improvement

provided by code-copying will be reduced. Below we discuss these concerns and

present dynamic data from our three virtual machines.

The relative complexity of operations executed by a bytecode is a measure of

how much work (in terms of CPU time) each bytecode does, including work done

by functions called from within a bytecode. A reasonable expectation is that the

more work an average bytecode does the less positive the effect of using the code-

copying technique. As previously mentioned, much of the improvement shown by

code-copying is due to reduced overhead in jumping between bytecodes, removing

jumps and simplifying branch prediction. Complex bytecodes mean this optimization

operates on a smaller runtime overhead per bytecode, and so has less overall impact.

The presence of consecutive groups of simple or small bytecodes (doing little
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Figure 5.1: Percentage of time spent in the interpreter loop of the direct-threaded interpreters for x86 64, and of

bytecodes loaded that were potentially copyable, for a) SableVM, b) OCaml, and c) Yarv.
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“work”) not containing control flow branches or targets (from the bytecode point

of view, not the internal implementation) is also an important factor. Such consec-

utive groups are candidates to become superinstructions during runtime, and so a

greater percentage of execution spent in such groupings implies greater benefit from

code-copying. Arithmetic operations tend to be expressed with small bytecodes, and

so programs including significant amounts of direct computation, not too densely in-

terleaved with control flow changes, will show a greater benefit. Note that in our

implementation we currently require that the copied code of a superinstruction con-

tains at most one control-flow changing bytecode, and it must be the last one in a

superinstruction. This is not, however, an inherent limitation of code-copying. If

all bytecode instructions were copyable it would equate a superinstruction span to a

basic block but since not all bytecode instructions are copyable superinstructions are

usually smaller.

Static measurements for our three VMs are shown in Table 5.1: the overall size of

each actual interpreter loop, the number of distinct bytecodes, the size of instructions,

and the relative percentage of the number of copyable bytecode instructions. Copyable

instructions were manually identified for this data. Lines-of-code is of course a very

approximate measure, not taking into account usage of C macros or inlined functions.

SableVM for example does not use C macros, but does generate C code using a

preprocessor (m4); the number of lines is thus higher than in other interpreters even

for similar bytecodes. Coupled with the complexity of any internal functions called

by bytecode implementations this, as we will show later in comparison to dynamic

results, makes the average static size of bytecodes a fairly poor indicator of runtime

complexity. Relative number of copyable bytecodes is more useful; while it is also

a static indication of performance, suggesting the proportion of execution time that

may benefit from code-copying, it reflects runtime performance quite well.

Dynamic results are shown in Figure 5.1. The actual execution time is measured,

and the relative amount of runtime spent in the interpreter loop is shown, along with

the relative number of bytecodes loaded at runtime that were statically identified as

copyable. This data is from the x86 64 architecture, but other machines demonstrate

comparable results. It is important to note that these statistics can be easily gathered
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early in the VM design process, and importantly before any effort is invested in

implementing code-copying.

5.2.3 Analysis

Analysis of these simple measurements already provides strong indicators for the

potential performance of code-copying. Here we separately consider first Java, then

OCaml, and finally Ruby. Java is an example of a good environment for code-copying;

OCaml serves as an example where code-copying excels, and Ruby of an environment

in which code-copying will not tend to provide significant improvements.

Analyzing SableVM’s execution behavior is made more complex due to the use of

some internal code optimizations. Java, for instance, requires dynamic loading and

linking of classes at first runtime reference, and so many otherwise simple bytecodes

include more complex implementation behavior to handle this special case. SableVM

(and other Java VMs) optimizes this by splitting such instructions into two versions,

a slower version to handle initialization, and a faster version for repeated execution.

Let us take an example of PUTFIELD bytecode. The purpose of this bytecode is to set

the value of a field in an object. The opcode of this bytecode is followed by a 16-bit

parameter that is an index into constant pool. The element in the constant pool is a

symbolic reference to a field in a class. If one were to always assume the pessimistic

case and follow the chain of informations until the memory address (offset) of an

actual field is found the interpretation process would be incredibly slow. Instead, it is

on the first execution of a specific occurence of PUTFIELD bytecode that the pessimistic

case is followed. This might result in class loading and static initialization. At the

least it is necessary to calculate the address (offset) of the wanted field within a class

of objects. Once a specific PUTFIELD occurence is executed, however, class loading will

not be required, and once the relative address is calculated it can be cached and used

by subsequent executions of this occurence of PUTFIELD. Other optimizations include

using specialized bytecodes in place of instructions that operate on generic classes of

primitives (short, byte, int, etc). For a more complete explanation of the design see

Gagnon [Gag02].
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Figure 5.1 shows that SableVM spends almost 90% of execution time executing

code within the interpreter loop (not counting code executed in functions called from

the loop), and that almost 80% of dynamically loaded bytecodes are potentially copy-

able. With respect of overall execution time, there is certainly significant room for

code-copying to achieve very good performance. From Table 5.1, however, the aver-

age size of an instruction is relatively large (47 lines). As mentioned, SableVM code,

unlike the other two VMs, has expanded macros and moreover many very complex

operations related to class loading are implemented directly in the interpreter loop

source. The impact of the apparent complexity of bytecodes here can be further

discounted by comparing static and dynamic results. 61% of bytecode instructions

were statically found to be copyable in the interpreter loop, whereas almost 80% of

bytecodes loaded at runtime were copyable. Larger, non-copyable bytecodes seem to

be found at execution time less often than the shorter, copyable bytecodes. These

characteristics suggest a great positive impact of code-copying application and as

previous works have already noted (e.g. Gagnon [Gag02]) Java bytecode is in fact a

great candidate for code-copying, even in the presence of many bytecodes executing

complex operations.

OCaml bytecode in many ways resembles that of Java, without much of the com-

plexity brought by Java’s Object model, VM and class library interface, and other

factors. From Table 5.1 a quick comparison of the source code of SableVM and OCaml

reveals that implementations of OCaml instructions are several times smaller than

Java instructions (in SableVM), only about 8 lines of code. The fraction of bytecodes

defined in interpreter loop that are copyable is actually higher than SableVM (72%

vs. 61%) while the copyable bytecodes constitute a similar ratio, almost 80% of the

loaded bytecodes (Figure 5.1). In this case bytecodes are more evenly sized, and so

dynamic measurement matches static better. The OCaml interpreter spends about

85% of execution time in the interpreter loop, also giving it a vast space for improve-

ment. With similar overall runtime characteristics, and less complex code size (even

accounting for lack of macro expansion) these initial measurements suggest that the

OCaml interpreter may be an even better candidate for code-copying than SableVM.

The size of the Ruby interpreter loop and the average size of an instruction in
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terms of lines of code are comparable to that of OCaml (Table 5.1). Still, overall

Yarv has the overall weakest positive indicators. Although 59% of bytecodes are

statically copyable, later implementation results showed that applying code-copying

to larger bytecodes (more than 100–150 bytes; values in this range produced similar

results) reduced performance, and a threshold of 50% of bytecodes provided the best

performance (this lower setting is used for actual code-copying experiments later in

this chapter). Unlike SableVM or OCaml the time spent in the interpreter loop of

Yarv varied greatly between different benchmarks; Figure 5.1 shows an average of

slightly less than 70%, but ranging between 7% and 96%. The number of potentially

copyable bytecodes loaded was also much lower, only about 60%, compared to almost

80% in case of SableVM and OCaml. An inspection of the source code for bytecode

instructions further reveals that many of the bytecodes that are small in terms of code

size use internal VM function calls, making the bytecodes fairly “heavy” at runtime,

and heuristically limiting the impact of code-copying. These properties suggest that

code-copying may not bring nearly as much general performance improvement to Yarv

as to the other VMs.

Although coarse, for each of the three VMs these observations are sufficient to at

least give a relative ranking of expected performance benefit. OCaml has almost all

positive attributes, while SableVM suffers from more complex instructions, and Yarv

much less runtime opportunity for its even smaller set of copyable instructions. This

gives three widely spread data points for examining code-copying performance. By

considering VMs serving as both positive and negative examples we hope to validate

our ahead of time analysis, and to allow future researchers and practitioners to under-

stand where opportunities and pitfalls lie in terms of implementing or optimizing a

code-copying VM. In the next section we examine actual performance of code-copying

implementations of all of these VMs on different architectures.
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5.3 Code-Copying Results

Deeper analysis of code-copying is performed by making detailed measurements of

code-copying versions of all three VMs on our different architectures. These imple-

mentations all make use of the basic GCC support for code-copying described in

Chapter 4. Results from analyzing these implementations demonstrate the value of

code-copying in terms of speedup, as well as providing good evidence of how and why

code-copying achieves the performance it does, given different VM and architectural

characteristics. In our wide performance testing across 3 architectures and 3 virtual

machines we used a variety of benchmarks, as described previously. We have made

use of hardware counter information for detailed and low-overhead profiling, although

this necessarily exposes machine differences and profiling limitations.

The presentation and analysis of results are organized as follows. We first dis-

cuss our low-level profiling strategy, along with some of its attendant complexities

followed by the most general overall performance results summary in Table 5.2. We

then present detailed performance results for each VM in Figure 5.2 with the absolute

runtimes available in Tables 5.7, 5.8, and 5.9. An overview of branch misprediction

rates, which we found to be tightly bound to the performance results, is reported

in Tables 5.6 and 5.10. This is followed by a closer examination of the best and

worst performing benchmark for each VM; precise identification of hardware and VM

features that impact performance helps understand performance and orient future

optimization and design. In the end we present the results of dynamic metrics, par-

ticularly dynamic superinstruction lengths in Figure 5.3 followed by detailed results

of multiple metrics for all VMs and benchmarks in Tables 5.3, 5.4, and 5.5. From this

we are able to show that the basic ahead of time analysis predictions are validated,

and that several potential contributors to code-copying performance do indeed reflect

runtime performance.

We are looking for answers to the following question: what are the features of a

language, its bytecode construction and thus its virtual machine construction that

improve the overall runtime performance, in particular when using the code-copying

technique.
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5.3.1 Profiling

To assess the interaction of the benchmarked VMs with hardware architectures we

used hardware performance counters to do online profiling. On the ia32 and x86 64

machines we used OProfile [OPr] versions 1.9.2 and 1.9.3, respectively. On PowerPC

970 (G5) we used the standard OS X tool Shark 4.5. The goal was to measure the

following values for the interpreter loop and copied code:

• CPU time (copied code measured separately),

• number of branches encountered (conditional branches only, whenever possible),

• number of branches mispredicted (or pipeline stalls and other negative events

due to branch mispredictions),

• cache misses (treating L2 and L1 separately whenever possible).

Acquiring counter data is straightforward in concept, but poses a number of tech-

nical challenges. For instance, because of hardware limitations it is not possible to

gather all counter data in a single program execution; only a limited set (and cer-

tain combinations) of counters can be used at any one time. We therefore ran each

benchmark once as a warm-up with hardware counters disabled, then ran the same

benchmark several times with different configuration of hardware counters until all

desired data was collected. On ia32 and x86 64 machines we collected 7 sets of results

for each benchmark. Ppc machine results are more limited. Available tools permit the

measurement of only one hardware counter at a time (there can only be one counter

set as Trigger in Shark) and data must be manually processed for the accurate event

counts (rather than relative percentages) necessary to evaluate code-copying behav-

ior. On PowerPC 970 (G5) we therefore limited the number of collected results to

3 sets per benchmark for 4 benchmarks per virtual machine (with the exception of

Yarv where we measured 2 benchmarks only).

Variability in hardware counter behavior was also assessed. For each VM we chose

2 benchmarks (the slowest and fastest) and collected data for each counter 7 times

(with the exception of PowerPC where due to the labor-intensive process of gathering
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counter data we limited the number of trials to 3 per counter). With the exception

of Yarv, to further ensure any trends visible in the results are actually related to the

observed performance we selected 2 more benchmarks, the second slowest and second

fastest. For these benchmarks we collected data 3 times (once on PowerPC) for

each hardware counter. Primary and secondary tests here correlate well, indicating

reasonably stable behavior.

Processing the results collected on Pentium 4 and AMD64 we discarded the highest

and the lowest count out of 7 runs then averaged the remaining 5 and computed their

standard deviation. To decide on the level of trust for each result we used the standard

deviation divided by the average of the values on which it was computed. This allowed

us to easily assess the accuracy of hundreds of results2. The values of this metric are

low for the majority of counter measurements. On ia32 and ppc our deviation metric

had values below 0.1 and on x86 64 below 0.2 in most cases. Generally higher values

existed, as expected, for the more noisy cache-related counters. In all cases our

observations and relative judgements are based on data changes dramatically larger

than variance. Full data is available in the raw data results [Raw], not included here

for space reasons.

On ia32 machine we collected hardware counter results in two runs with the

following settings:

• First run:

– L2 cache misses: BSQ CACHE REFERENCE events with mask 0x700, trig-

ger count 6000.

– Branches: BRANCH RETIRED events with mask 0xc, trigger count 6000.

– Mispredicted branches: RETIRED MISPRED BRANCH TYPE events with

mask 0x1f, trigger count 6000.

• Second run:

– CPU time: GLOBAL POWER EVENTS events, trigger count 100000.

2For example, for a series of values 3, 5, 7 this deviation metric is the same as for 30, 50, 70.
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On x86 64 machine we collected hardware counter results in two runs with the

following settings:

• First run:

– L1 instruction cache misses: INSTRUCTION CACHE MISSES, trigger count

600.

– L1 data cache misses: DATA CACHE MISSES, trigger count 600.

– Total no. of branches: RETIRED BRANCH INSTRUCTIONS, trigger count

600.

– Mispredicted branches: RETIRED MISPREDICTED BRANCH INSTRUCTIONS,

trigger count 600.

• Second run:

– L2 cache misses: L2 CACHE MISS events with mask 0x7, trigger count

600.

– Instruction fetch stalls: INSTRUCTION FETCH STALL events, trigger count

600.

– Dispatch stall because of branch abort: DISPATCH STALL FOR BRANCH-

ABORT, trigger count 600.

– CPU time: CPU CLK UNHALTED, trigger count 6000.

On ppc machine we collected each hardware counter result in a separate run:

• Flush caused by branch misprediction (presented as branches mispredicted in

the next section): trigger count 6000.

• Total number of branches: trigger count 60000.

• CPU cycles: trigger count 600000.

• L2 data cache misses: trigger count 600.
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• L2 instruction cache misses: trigger count 600.

The following hardware counter results were also collected on PowerPC but turned

insignificant or unrelated results (as can be seen in the raw data results [Raw]):

• Branch mispredictions because of: target address misprediction or valid instruc-

tions available but Instruction Fetch Unit held by Branch Information Queue

or Instruction Decode Unit. Trigger count 6000, raw data name BranchMispred-

TargetPlus.

• Branch misprediction because of: Condition Register value. Trigger count: 600,

raw data name BranchMispredCR.

• Branch misprediction because of: target address prediction events. Trigger

count: 600, raw data name BranchMispredTarget.

On all architectures to ensure the best possible view of hardware behavior we

used higher trigger counts for events that occur more frequently (like CPU cycles)

and lower trigger counts for rare events (like cache misses). This is also subject to

software and hardware constraints; e.g., we were not able to use trigger counters below

6000 on the Pentium 4. To obtain more comparable results for counters collected at

different rates we rescaled the final values as if all hardware counters were set to

trigger events at the same counter value, 10000.

Code-copying is primarily an optimization of the interpreter loop, and so in most

data gathering we focus on the execution of the loop (and copied) code. Our measure-

ments are narrowed to only those events that were registered while executing inside

of the interpreter function (static code space) or in the copied code. Events regis-

tered in functions called from the interpreter function were not taken into account.

In particular, in the current section unless otherwise specified total time values are

only measured for the time spent in the interpreter loop, be it of a direct-threaded

interpreter or code-copying one. Time in copied code values tell how much of the to-

tal time spent in interpreter loop was spent in copied code. Other hardware counter

values related to branches and cache behavior were also analyzed only for the code

executed inside of interpreter loop.
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SableVM OCaml Yarv

ia32 1.44 2.81 1.14

x86 64 1.32 1.80 1.06

ppc 1.05 1.52 1.03

Table 5.2: Average speedups of total execution time of code-copying over direct-

threading measured across virtual machines and architectures running all used bench-

marks. Note this table presents the overall VM performance, as opposed to other re-

sults in this chapter that measure VM behavior only within the interpreter function.

5.3.2 Dynamic behavior of copied code

We have gathered both overall and detailed performance and other profiling data from

code-copying implementations of all three VMs. Overall speedup is summarized in

Table 5.2, showing the ratio of direct-threaded execution time to code-copying time.

More detailed examination is done through a variety of metrics, presented in Tables

5.3, 5.4, and 5.5 on pages 75, 76, and 77.

The speedups in Table 5.2 show that across architectures code-copying works best

on ia32, with high average speedups on our selected benchmarks of 1.44, 2.81, and 1.14

for SableVM, OCaml, and Yarv respectively. On x86 64 code-copying also achieves

high speedups of 1.32, 1.80 on SableVM and OCaml, and more marginal improvement

with Yarv. The PowerPC implementation of code-copying is able to reach a high

speedup of 1.52 only by the OCaml interpreter, with only small improvement for

SableVM and Yarv. As our ahead of time analysis predicted, across virtual machines

the best performance was observed on OCaml (reaching a maximum speedup of 4.88

on the ia32 execution of the quicksort.fast benchmark), with good but less-improved

performance on SableVM, and minimal overall improvement to Yarv.

To gain a better insight into actual dynamic usage of copied code we gathered

further profiling data pertaining to bytecode and superinstruction creation and ex-

ecution and translated them into several dynamic metrics. Tables 5.3, 5.4, and 5.5

summarize the following measurements for our three virtual machines. Note that

we only present these metrics on x86 64 architecture, as they are similar between
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architectures with appropriate scaling.

• Average bytecodes executed per dispatch. Calculated as the number of exe-

cuted bytecodes divided by the number of dispatches (jumps) this is the length

of executed superinstructions in bytecodes weighted by relative number of exe-

cutions of each sequence. More directly this metric allows us to see how many

dispatches are removed by code-copying and thus the length of an average exe-

cuted instruction.

• Copied code memory usage. This is the amount of memory allocated and used to

store copied code (superinstructions). Excessive memory usage can contribute

to reduced performance, and so it is important to know the extent of code-

copying memory requirements.

• Unique superinstructions. The number of superinstructions created during a

VM execution measures the variety of execution, giving indications of memory

requirements and potential overhead.

• Copied code memory divided by number of unique superinstructions. This is

the average amount of memory used by a superinstruction; another indicator of

size and resource requirements.

• Memory occupied by 90% of used copied code instructions. Heuristically, the

majority of instructions will come from a small set of potential instructions. We

counted the total number of executions of both simple and superinstructions,

then found the subset of instructions that make up 90% of executed instruc-

tions. Out of those 90% we summed the memory used only by superinstructions

(created using code-copying).

• Memory occupied by 90% of used copied code instructions divided by copied

code memory usage. This is the percentage of total memory used for copied

code that accounts for 90% of executed code.
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[bc] [kB] [B] [kB] [%]

SableCC 2.13 505 1972 262 16 3.16

Soot 2.04 975 3698 270 17 1.69

compress 4.70 294 1232 244 10 3.48

db 2.66 290 1307 227 4 1.21

jack 2.10 358 1562 235 17 4.76

javac 2.40 590 2607 232 18 2.94

jess 1.99 398 1744 233 8 2.08

mpeg. 7.96 750 1557 493 23 2.99

mtrt 1.74 359 1591 231 5 1.25

bloat 2.20 1227 4065 309 4 0.32

fop 2.35 1891 4050 478 16 0.84

luindex 2.98 961 3366 292 22 2.27

pmd 1.86 1195 3862 3175 10 0.80

Average 2.84 719 2421 288 13 2.30

Table 5.3: Dynamic bytecode execution metrics for SableVM (Java) on x86 64.

Per-benchmark performance data is further presented in Figure 5.2. Branch pre-

diction behavior is known to be critical to code-copying performance [EG03c,ETK06],

and so we present data in Tables 5.6 and 5.10. Another important property for both
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[bc] [kB] [B] [kB] [%]

almabench 7.68 114 675 172 23 20.07

almabench.fast 7.68 111 675 169 21 18.56

bdd 3.24 31 242 131 3 10.69

fft 17.34 32 171 189 9 27.02

fft.fast 17.34 32 171 189 9 27.02

kb 2.03 41 425 98 1 3.00

nucleic 2.14 113 734 157 2 2.06

quicksort 3.00 19 152 131 1 4.90

quicksort.fast 2.88 18 159 113 1 5.15

ray 2.34 93 710 134 4 4.51

sorts 3.30 214 1478 148 5 2.30

norm 5.12 82 635 132 1 1.54

Average 6.17 75 519 145 7 9.70

Table 5.4: Dynamic bytecode execution metrics for OCaml on x86 64.

understanding performance and for considering future, further optimizations is the

length of superinstructions; this is shown in Figure 5.3. For the best and worst per-

forming benchmark in each VM we give further hardware counter data, including

cache behavior. This is shown for SableVM in Figures 5.4 and 5.5, for OCaml in
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[bc] [kB] [B] [kB] [%]

fib 1.37 0.42 16 27 0.2 46.15

pentomino 1.22 4.98 72 71 0.4 8.39

tak 1.44 0.62 16 40 0.1 15.65

meteor-contest 1.21 14.33 145 101 0.3 2.11

nsieve 1.53 2.18 41 54 0.3 15.41

Average 1.36 4.51 58 59 0.3 17.54

test-all 1.29 436.29 2328 192 2.4 0.53

Average 1.34 76.47 436 81 0.6 14.71

Table 5.5: Dynamic bytecode execution metrics for Yarv (Ruby) on x86 64.
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VM benchmark
Direct Copying

ia32 x86 64 ppc ia32 x86 64 ppc

SableVM
compress 58.4% 37.3% 34.3% 3.8% 5.6% 17.3%

jack 40.7% 33.0% 29.5% 20.2% 15.0% 22.2%

Ocaml
quicksort.fast 53.2% 20.9% 28.7% 4.5% 4.2% 11.3%

almabench 38.9% 27.1% 37.0% 3.8% 6.5% 26.1%

Yarv
nsieve 12.8% 15.2% 15.5% 0.2% 2.5% 3.8%

pentomino 9.6% 14.2% 12.8% 6.2% 6.7% 10.8%

Table 5.6: Direct-threaded and code-copying implementation branch misprediction

percentages across architectures, for best and worst performing benchmark on each

VM. For ia32 and x86 64 the numbers represent the ratio of mispredicted branches

to total branches, and for PowerPC the numbers represent the ratio of instruction

pipeline flushes due to branch misprediction to total branches.

Figures 5.6 and 5.7, and for Yarv in Figures 5.8 and 5.9. To make observations of

benchmark behavior based on hardware counter data easier in Figures 5.4 to 5.9

under each bar chart of hardware counter results an additional marking showing the

expected impact of the measured hardware event on the overall performance is added.

The ‘++’ symbol indicates a very substantial improvement from using code-copying

over direct-threaded, ‘+’ indicates a useful improvement, ≃ means a lack of mean-

ingful change, and ‘–’ an expected degradation of performance.

5.3.3 General Findings

Overall branch prediction is, unsurprisingly, one of the main reasons for performance

improvement. Reductions in the rate of branch mispredictions (or pipeline flushes due

to branch misprediction) closely follows performance. Reductions in the total num-

ber of branches, as measured through average superinstruction length, also mirrors

performance. Both are, however, constrained by the relative amount of time spent in
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a)

b)

c)

Figure 5.2: Performance (speedup) results for a) SableVM (Java), b) OCaml, and

c) Yarv (Ruby). Note in this figure we measured the overall VM performance, as

opposed to other results in this chapter that measure VM behavior only within the

interpreter function.
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a)

b)

c)

Figure 5.3: Average lengths (in bytecodes) of executed superinstructions for

a) SableVM, b) OCaml, c) Yarv.
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benchmark ia32 x86 64 ppc

SableCC 23.04 14.72 21.23

Soot 373.86 230.96 363.31

compress 213.35 101.70 148.96

db 76.97 48.38 74.22

jack 36.71 22.30 31.61

javac 60.26 34.14 52.49

jess 38.25 24.14 36.96

mpegaudio 178.70 84.76 126.82

mtrt 42.04 29.91 36.83

fop 247.91 159.76 237.01

luindex 2418.01 1356.92 1968.47

pmd 1385.74 884.92 1219.03

Table 5.7: Absolute runtimes (in seconds) of Java benchmarks presented in Figure 5.2

for the direct-threaded engine of SableVM.
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benchmark ia32 x86 64 ppc

almabench 50.52 33.50 49.33

alma.fast 50.09 32.95 47.87

bdd 16.77 11.23 16.14

fft 13.01 7.57 12.33

fft.fast 14.27 7.46 12.41

kb 18.02 11.82 18.41

nucleic 28.73 18.36 25.98

quicksort 14.92 6.25 12.91

qsort.fast 15.03 5.71 11.22

ray 175.56 110.21 165.68

sorts 46.63 30.26 45.47

spec-norm 93.69 60.33 96.30

takc 15.13 6.78 13.45

taku 24.47 11.12 24.71

Table 5.8: Absolute runtimes (in seconds) of OCaml benchmarks presented in Fig-

ure 5.2 for the direct-threaded engine of OCaml.

benchmark ia32 x86 64 ppc

fib 27.45 24.10 43.00

pentomino 43.75 40.89 69.13

tak 2.45 2.22 3.92

vm1 length 3.38 2.87 7.76

meteor-contest 26.55 27.39 46.78

nsieve 17.72 14.25 24.51

test-all 14.49 13.96 21.14

Table 5.9: Absolute runtimes (in seconds) of Ruby benchmarks presented in Figure 5.2

for the direct-threaded engine of Yarv.
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VM Direct (ia32) Copying (ia32)

SableVM 37% 11%

OCaml 44% 5%

Yarv 12% 8%

Table 5.10: Average branch misprediction percentages across benchmarks for ia32 on

each VM, direct-threaded and code-copying.
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a)

+ + + + + ++ + + + + ++ +

b)

Dir Cpy Cpy Cpy

ia32 x86 64 ppc

total time (interp. func.) 1.0 0.31 0.31 0.65

time in copied code 0.0 0.74 0.51 0.79

branches total 1.0 0.58 0.46 0.64

branches mispred. / total 1.0 0.07 0.15 –

branches mispred. flush 1.0 – – 0.32

branch abort stalls 1.0 – 0.40 –

instruction fetch stalls 1.0 – 0.45 –

c)

ia32 x86 64 ppc

Dir Cpy Dir Cpy Dir Cpy

L1 d – – 3461 4349 – –

L1 i – – 6 2052 – –

L2 d – – – – 53 153

L2 i – – – – 3 8

L2 i+d 2 4 122 385 – –

Figure 5.4: Hardware counter results for SableVM JVM running the SPEC compress

benchmark. Subfigures a) and b) present branch-related results. Subfigure c) shows

the number of i-cache and d-cache misses per 1M (1000000) CPU cycles.
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a)

+ + ++ + +

b)

Dir Cpy Cpy Cpy

ia32 x86 64 ppc

total time (interp. func.) 1.0 0.83 0.63 1.52

time in copied code 0.0 0.45 0.31 0.62

branches total 1.0 0.79 0.70 0.80

branches mispred. / total 1.0 0.50 0.45 –

branches mispred. flush 1.0 – – 0.60

branch abort stalls 1.0 – 0.67 –

instruction fetch stalls 1.0 – 0.82 –

c)

ia32 x86 64 ppc

Dir Cpy Dir Cpy Dir Cpy

L1 d – – 9167 8721 – –

L1 i – – 1450 13233 – –

L2 d – – – – 25 212

L2 i – – – – 11 4041

L2 i+d 3 16 76 311 – –

Figure 5.5: Hardware counter results for SableVM JVM running the SPEC jack

benchmark. Subfigures a) and b) present branch-related results. Subfigure c) shows

the number of i-cache and d-cache misses per 1M (1000000) CPU cycles.
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a)

++ + + + + ++ + + + + +

b)

Dir Cpy Cpy Cpy

ia32 x86 64 ppc

total time (interp. func.) 1.0 0.15 0.48 0.57

time in copied code 0.0 0.76 0.68 0.77

branches total 1.0 0.50 0.55 0.48

branches mispred. / total 1.0 0.08 0.20 –

branches mispred. flush 1.0 – – 0.19

branch abort stalls 1.0 – 0.71 –

instruction fetch stalls 1.0 – 0.54 –

c)

ia32 x86 64 ppc

Dir Cpy Dir Cpy Dir Cpy

L1 d – – 522 472 – –

L1 i – – 1 2 – –

L2 d – – – – 2 2

L2 i – – – – 0 1

L2 i+d 0 1 5 10 – –

Figure 5.6: Hardware counter results for OCaml running the quicksort.fast bench-

mark. Subfigures a) and b) present branch-related results. Subfigure c) shows the

number of i-cache and d-cache misses per 1M (1000000) CPU cycles.

86



5.3. Code-Copying Results

a)

+ + ++ + + + + +

b)

Dir Cpy Cpy Cpy

ia32 x86 64 ppc

total time (interp. func.) 1.0 0.38 0.69 0.61

time in copied code 0.0 0.94 0.92 0.85

branches total 1.0 0.43 0.71 0.55

branches mispred. / total 1.0 0.10 0.24 –

branches mispred. flush 1.0 – – 0.39

branch abort stalls 1.0 – 0.31 –

instruction fetch stalls 1.0 – 0.90 –

c)

ia32 x86 64 ppc

Dir Cpy Dir Cpy Dir Cpy

L1 d – – 10749 8979 – –

L1 i – – 401 6491 – –

L2 d – – – – 2 12

L2 i – – – – 2 9

L2 i+d 0 1 47 185 – –

Figure 5.7: Hardware counter results for OCaml running the almabench benchmark.

Subfigures a) and b) present branch-related results. Subfigure c) shows the number

of i-cache and d-cache misses per 1M (1000000) CPU cycles.
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a)

+ + + + +

b)

Dir Cpy Cpy Cpy

ia32 x86 64 ppc

total time (interp. func.) 1.0 0.73 1.05 0.81

time in copied code 0.0 0.20 0.22 0.38

branches total 1.0 0.84 1.85 0.90

branch mispred. / total 1.0 0.02 0.17 –

branches mispred. flush 1.0 – – 0.22

branch abort stalls 1.0 – 1.15 –

instruction fetch stalls 1.0 – 1.32 –

c)

ia32 x86 64 ppc

Dir Cpy Dir Cpy Dir Cpy

L1 d – – 2108 1914 – –

L1 i – – 2 2 – –

L2 d – – – – 6 5

L2 i – – – – 2 3

L2 i+d 428 598 522 633 – –

Figure 5.8: Hardware counter results for Yarv Ruby VM running the nsieve bench-

mark. Subfigures a) and b) present branch-related results. Subfigure c) shows the

number of i-cache and d-cache misses per 1M (1000000) CPU cycles.
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a)

+ +

b)

Dir Cpy Cpy Cpy

ia32 x86 64 ppc

total time (interp. func.) 1.0 1.18 1.18 1.21

time in copied code 0.0 0.11 0.12 0.17

branches total 1.0 1.01 1.12 0.91

branches mispred. / total 1.0 0.64 0.47 –

branches mispred. flush – – – 0.77

branch abort stalls 1.0 – 1.13 –

instruction fetch stalls 1.0 – 1.13 –

c)

ia32 x86 64 ppc

Dir Cpy Dir Cpy Dir Cpy

L1 d – – 2340 3585 – –

L1 i – – 4235 2484 – –

L2 d – – – – 7 5

L2 i – – – – 7 6

L2 i+d 16 26 133 120 – –

Figure 5.9: Hardware counter results for Yarv Ruby VM running the pentomino

benchmark. Subfigures a) and b) present branch-related results. Subfigure c) shows

the number of i-cache and d-cache misses per 1M (1000000) CPU cycles.
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copied code.

Branch misprediction (or pipeline flush due to branch misprediction) rates are

found in Tables 5.6 and 5.10. A comparison between the rates for direct-threaded

and code-copying VMs reveals a correlation between these results and performance.

In each of the analyzed cases a significant drop in branch mispredictions due to

code-copying results in a significant performance improvement, and smaller branch

misprediction drops resulted in more moderate performance improvements.

The relative impact can largely be explained by considering the branch prediction

capabilities of the different architectures. The Pentium 4 (Prescott core) has a 31

stage pipeline, along with 4k entries in the front-end BTB (Branch Target Buffer)

table, and 2k entries in the back-end BTB. A specialized predictor borrowed from

the Pentium M series is used to improve the prediction of indirect branches. Unfor-

tunately, this predictor has serious performance problems with consecutive indirect

branches, and is designed to work best when indirect branching is interleaved with

direct branches, a property which is generally not true of direct-threaded code exe-

cution. Limitations such as this, the relatively small size of BTB tables and a very

long pipeline mean the impact of complex branching can be large on the Pentium 4,

and we conclude these as the reasons for the very high branch misprediction rates in

the direct-threaded engines.

The AMD64 X2 Dual CPU (Hammer core) has a 12 stage pipeline with branch

misprediction penalty being 11 cycles. It uses three branch prediction structures. The

local branch history table has 2k entries, the global history table has 16k entries, and

a branch selection table is used to decide which of these two predictors is expected to

give a more accurate prediction. Additionally it also has a specialized unit called the

branch target address calculator which diminishes the penalty caused by a wrong pre-

diction. A short pipeline, advanced, hybrid prediction strategy, and more abundant

resources allow this architecture to greatly reduce misprediction-rates over Pentium

4.

Our PowerPC G5 (970FX) uses 10 execution units per CPU with a 25 stage

pipeline. Similar to the AMD64 it employs a three-part branch prediction strategy,
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although with tables allowing 16k entries each. The global history table contains 11-

bit long vectors of branch execution history. Up to 2 branches can be predicted per

cycle and up to 16 predicted branches can be in flight. Despite the larger tables, on

a directed-threaded engine this has a roughly comparable branch-prediction behavior

to AMD64.

Improvements brought by code-copying mostly correlate well with branch pre-

diction behavior—the AMD64 machine is able to better predict branch targets for

SableVM and OCaml than the Pentium 4 (ia32 architecture), and so the drop in

mispredictions due to using code-copying is correspondingly smaller on x86 64 than

ia32. PowerPC shows even less impact from branch prediction improvements, and

this hierarchy is reflected in the overall performance of the three architectures. The

code-copying implementation of the compress benchmark, for example, reduces the

misprediction rate on ia32 from 0.584 to 0.038 (just 7% of direct-threading), on x86 64

from 0.373 to 0.056 (down to 15%), on PowerPC pipeline flushes due to branch mis-

predictions drop from 0.343 to 0.173 (32%). Similarly, (Figure 5.2) ia32 performance

is greatly increased (speedup 2.66), x86 64 performance is nicely improved (speedup

1.92), and PowerPC performance improved somewhat (speedup 1.45).

The number of branches is obviously an important performance factor affected by

code-copying, both through reduced branch mispredictions, and with the elision of

branches within a superinstruction, through the execution of fewer instructions. The

average, dynamic length of superinstructions (in bytecodes) is shown in Figure 5.3.

this behavior can be directly related to the average VM performance shown in sum-

mary Table 5.2. The longest superinstructions (6.17 bytecode on average) are found in

OCaml and it also delivers the best performance out of all 3 VMs. Somewhat shorter

(2.84 bytecode on average) superinstructions are used by SableVM, allowing it to

deliver very good performance, but not as much improved as OCaml. Yarv execution

results in very short (1.36 bytecode on average) superinstructions, and comparatively

poor overall performance. Unfortunately, although Yarv still has about half of its

bytecodes copyable these do not tend to form large contiguous sequences at runtime.

The overall impact of benefits to branch prediction and code execution are reduced

if they are not applied reasonably ubiquitously. Data in proportion to time spent in
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actual copied code as opposed to non-copyable bytecode executions is shown for the

individual case studies in Figures 5.4 through 5.9. In the case of OCaml benchmarks

in Figures 5.6 and 5.7, for example, we see that the fraction of interpreter loop time

spent in copied code ranges from about 70% to about 90%. The other extreme is again

represented by Yarv, where the time spent in copied code ranges from only about 15%

to about 25%. Modulo cache and other non-local effects these ratios provide an upper

limit on the potential performance improvements.

5.3.4 Overhead

Overhead in a code-copying system comes from several sources. Actual copying of

code increases code-preparation time, and memory and superinstruction management

add additional costs, although these are one-time costs amortized over the lifetime

of execution. Ongoing overhead is mainly due to changes in code-generation from

the compiler enhancements that support code-copying. Some of the modifications

done to the compiled code by our passes create in the code elements that can act as

code-motion barriers (for example the volatile asm statements) that prevent certain

optimizations across such a barrier. These addition of code-motion barriers can be

expected to inhibit or alter application of some optimizations.

To measure the overall overhead we compared performance of direct-threaded

VMs with the performance of code-copying VMs, where the copied code is created,

but not actually used at runtime. Figure 5.10 (page 93) summarizes results; SableVM

data is not gathered due to difficulties in separating the code-copying engine from

direct-threaded execution. Overhead varies considerably, changing performance on

average between -5% and 11%, and overall between -20% and nearly 25% for the two

VMs. Negative overhead is possible due to instruction cache changes, and perhaps

poor heuristic performance of basic block rearrangement or other optimizations that

are (locally) prevented by the code-copying enhancement. We note, however, that

for OCaml overhead is fairly low and often negative; for Yarv overhead is almost

uniformly positive and sometimes large. This also partially accounts for and reflects

the lower improvement experienced by Yarv due to code-copying.
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a)

b)

c)

OCaml Yarv

ia32 -2.78% 10.57%

x86 64 1.36% 3.19%

ppc -3.09% 5.93%

Figure 5.10: Overhead of VMs with pragmas inserted around bytecode instructions

used by code-copying and with copied code prepared but not executed, over standard

direct-threaded VMs. Part a) shows OCaml, b) Yarv, and c) averages.
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5.3.5 Further Performance Factors

While branch instruction effects are primary in a general sense, individual bench-

marks naturally vary, and raise a number of issues not obvious or clear from a simple

consideration of the branch-reducing nature of code-copying or its basic overhead.

Instruction cache behavior, for instance, is also potentially negatively affected by

the size and number of superinstructions. Other, benchmark-specific and compiler-

driven factors can further intrude. Below we discuss these issues in relation to our

experimental data.

Instruction Cache Impact

Using any dynamic code creation technique carries the danger of creating too much

code and lowering the performance (increasing miss rates) of the CPU instruction

cache. Our results show that excessive code size is not a significant concern for our

VMs and tests. From Tables 5.3, 5.4, and 5.5 we see that copied code usually occupies

at most a few hundred bytes per superinstruction, with total size averaging less than

1MB in Java and well less than 100kB in OCaml and Ruby. Despite this large

size difference, a consideration of important code size shows the VMs are both similar

and not overly affected by too many distinct superinstructions. When looking at code

within the 90% of most actively executed bytecode instructions memory requirements

are much reduced, 13kB on average for Java, 7kB on average for OCaml, and never

more than 23kB in any tested case.

Code size is a rough predictor of I-cache performance; better information is ob-

tained by measuring actual cache miss behavior. Part c) of Figures 5.4 through 5.9

(pages 84 through 89) shows runtime instruction and data cache miss rates for the

best and worst performing benchmarks. While there is a general, and sometimes

marked (Figure 5.4) increase in L1 I-cache misses the effect is not uniform, and does

not correlate well with performance. Of course L1 misses are not necessarily that

expensive if caught by the L2 cache, and a more important concern with L1 usage is

that an increase in I-cache pressure can cause more spillover into the L2, and thus
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greater chance of having to undergo the costly step of retrieving data from main mem-

ory. This effect is evident in the SPEC jack benchmark on PowerPC; in part c) of

Table 5.5 there is a large increase in the L2 I-cache miss rate due to code-copying. We

believe that this higher L2 I-cache miss rate is part of the reason for this benchmark’s

lower performance on PowerPC.

Improvements to instruction cache miss rates may be possible by exploiting the

heavy concentration of execution in a relatively small number of superinstructions.

We expect we would be able to achieve most of the performance benefits of code

copying by only creating a small fraction of the code we create currently, although

this requires profiling or adaptive techniques to discover the 90% of most actively

used superinstructions.

Extreme Case of Code Preparation Overhead

The test-all benchmark on Yarv is the largest Ruby benchmark we used and its be-

havior and characteristics are very different from other benchmarks. This benchmark

performs surprisingly poorly, but for other reasons than originally expected. As can

be seen in the dynamic metrics in Table 5.5 it creates a large amount of copied code,

over 3200 superinstructions using over 430kB of memory, an exceptionally large num-

ber of superinstructions in comparison with other Ruby benchmarks. As a code sanity

test, the bulk of code in this program consists of small tests executed once, or only

a few times. This results in only about 0.5% of the code created accounting for 90%

of execution. Code-copying itself has little positive impact in this situation; interest-

ingly, as seen in the actual performance of test-all (Figure 5.2) the larger overhead

of copied code does not have as large a negative impact as these relative results for

Yarv may suggest.

Performance degradation (on Intel-like architectures) is in fact dominated by code

preparation costs, in which the VM initializes code for execution, adding an overhead

which is not in this case amortized over multiple executions of the created code: only

about 7% of execution time is spent in the interpreter loop. Since the behavior of

this benchmark is unusual we present averages in Tables 5.5 with and without the
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test-all benchmark included.

Extreme Case of Inhibited Compiler Optimizations

In early experiments with the code-copying version of Yarv an anomaly was found

when running the nsieve benchmark on the x86 64 architecture. Paradoxically, the

number of branches executed in the interpreter loop grew by a factor of 1.85 in the

code-copying engine, and moreover disabling runtime use of code-copying and re-

measuring performance produced the same result. We attribute this to the interac-

tion of code-copying and compiler optimization, an overhead consideration in general.

Non-localized disabling of branch or basic block reordering optimizations, in combi-

nation with benchmark-specific behavior would account for the increased number of

branches in the interpreted code, irrespective of whether it was actually code-copying

or executing code in the normal, direct-threaded fashion. This behavior did not occur

with other benchmarks or on other platforms, and while it may have reduced perfor-

mance it did not result in a slowdown—the overall overhead for nsieve is still small

on x86 64 (Figure 5.10). In Chapter 6 we show how by using source-optimized su-

perinstructions we can provide performance equal or better than that of code-copying

and avoid inhibiting any compiler optimizations by removing the need for #pragma

copyable use.

Summary

Different languages and VM (bytecode) designs have a strong impact on the per-

formance benefit provided by code-copying. At one end of the scale languages and

bytecode instruction sets like Ruby (and the particular VM we used—Yarv) introduce

several problems when it comes to the application of code-copying. Outwardly small

bytecodes in fact perform significant amounts of runtime work, making numerous calls

to helper functions and often changing control flow of the program. This constrains

code-copying, making long superinstructions unlikely. With little time overall spent

in the actual interpreter loop, the main positive effect of code-copying in reducing

branch costs is greatly lessened.
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Dramatically better effects are shown on a language like OCaml, that has func-

tionally small, fine-grained bytecodes containing mostly simple operations. Full im-

plementations are also typically contained within the bytecode itself, with no need for

functions called externally. Code-copying applies very well to this kind of VM design

since it is possible to create many superinstructions (improving branch prediction,

even for short superinstructions) and superinstructions that are longer (removing

many branches). Java bytecode has qualities of both Ruby and OCaml; performance

fortunately falls closer to the OCaml side of the spectrum. Further simplification of

bytecode implementations, however, would likely increase the performance improve-

ment.

All behavior is affected by the quality of hardware branch prediction. In general

PowerPC shows the least gains and Intel 32-bit the most, largely reflecting the relative

branch prediction capabilities of the different architectures. The effect of hardware is

still not as pronounced as aspects of virtual machine design, and hardware resources

are scarce, but clearly improved hardware branch prediction would be another source

of optimization especially applicable to interpreter-based virtual machines.

5.4 Notes on Related Work

The related work for this chapter is mostly in the area of hardware branch predictors

behavior during interpreter execution. Application of the code-copying technique to

GForth has been analyzed in a few studies by Ertl [EG03c,ETK06,EG03b], showing

that the majority of performance improvement is due to improvements in branch

prediction. Ertl et al. also compared code-copying (called in these works dynamic

superinstructions) to other techniques intended to improve branch prediction behavior

like dynamic and static instruction replication and static creation of superinstructions.

They demonstrated that all of these techniques (often combined together) can also

bring significant performance improvements. Their results also demonstrated, once

again, that speedup due to branch prediction improvements expectedly outweighs

other negative effects, such as a slight increase in instruction-cache misses. Vitale
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et al. [VZ05] analyzed applicability of code-copying technique to a Tcl interpreter

characterized by large bytecode bodies and on a set of dispatch-intensive benchmarks

achieved an almost 10% speedup.

In our work we performed a much broader analysis of hardware behavior by

employing 3 hardware architectures and testing code-copying implementations for

3 vastly different programming languages. This allowed us to draw conclusions across

different hardware and programing languages and this way giving a more comprehen-

sive view of applicability of the code-copying technique. More information regarding

the unique extent and direction of our work can be found in the section that follows.

5.5 Conclusions

An examination of the behavior of different languages and virtual machines is useful

for any cross-context optimization. Code-copying has been prototyped in single en-

vironments before, but our work represents the first multi-language, multi-platform

examination of performance, based on a safe implementation model for code-copying.

There is clearly a spectrum in the performance impact of code-copying, with behav-

ior depending on virtual machine implementation, bytecode design, and hardware

considerations.

Although various factors can influence results, bytecode properties dominate. Sim-

ple bytecodes can be easily collected into superinstructions, and imply more time in

the actual interpreter loop, raising the upper bound on potential impact. Virtual ma-

chine designs that stress simple as opposed to complex bytecode behavior represent

a trade-off between simplicity of code generation/execution, and smaller code size.

Code-copying can be applied in both scenarios, but practical limitations mean perfor-

mance improvement is best for simple designs, where overhead is heavily concentrated

in interpreter loop dispatch costs.

Our choice of VMs allowed us to begin with an established, existing implemen-

tation of code-copying and then extend our field of experimentation with one VM

(OCaml) whose characteristics suggested it might be an even better candidate for
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code-copying than the first VM (SableVM), and another VM (Yarv) whose char-

acteristics suggested that obtaining speedups from the use of code-coping might be

problematic. We believe our choice gave us an opportunity to explore both the positive

and negative examples of code-copying application hence allowing future researchers

and practitioners to both understand what there is to be gained and why, but also

what they need to avoid.

Determining the potential impact of code-copying ahead of time benefits virtual

machine designers as well as implementers contemplating the use of code-copying.

Based on our experiments we are able to tie certain characteristics of bytecode and

interpreters using direct-threading to the performance improvement provided by code-

copying. Our experience suggests a short, step-by-step procedure for estimating the

degree to which a virtual machine currently using direct-threading may improve after

application of code copying.

1. Determine the bytecode instructions in the source code that can be used in

code-copying.

2. Calculate the relative number of bytecodes in the interpreter source code that

are potentially copyable. Check if applying an upper limit to the bytecode size,

e.g. 150-200 bytes, makes a difference. Refer to Table 5.1 for evaluation. The

more (and more small) bytecodes that are copyable the better for code-copying.

3. On a set of benchmarks measure how many loaded bytecodes are potentially

copyable. Refer to Figure 5.1 for evaluation. The more loaded bytecodes that

are copyable the better.

4. On a set of benchmarks measure how much time is spent in the interpreter

loop (excluding functions called from within the loop). The more consistent the

results and the more time is spent in the loop the more generally useful and

effective code-copying will be.

5. On a set of benchmarks and using a given architecture measure branch predic-

tion miss-rates within the interpreter loop. Refer to Table 5.2 for interpretation.

The higher the miss-rate the more room for improvement by using code-copying.
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Based on these simple measurements (or as many as can be acquired) it should be

possible to gain a meaningful insight into whether an investment of time and effort

into a code-copying implementation for a particular language and virtual machine

is worthwhile. Note that an unpromising evaluation outcome does not necessarily

mean code-copying will never be applicable to a language or a virtual machine. For

example, some forms of bytecode optimization or restructuring, as was originally done

for SableVM [Gag02], may improve the end result.

Our implementations of code-copying form an initial step in analyzing and op-

timizing performance through this technique. The typically small size of the core

runtime bytecode working-set (top 90% of executed bytecodes) for all our virtual

machines suggests significant improvements to runtime overhead are possible by not

copying all copyable sequences executed, either through adaptive selection of the

sequences to copy (e.g., using hotness counts) or by using ahead of time profiles to

guide choices. This would further improve performance, and make the technique more

generally attractive even when branching is not known to be a major performance bot-

tleneck. In the next chapter we present a technique that provides performance com-

parable and better than code-copying and requires no C compiler extension. In this

approach 99% of most often executed superinstructions are selected and a standard C

compiler is used to perform inter-bytecode optimizations on these superinstructions,

and by that further improve the performance of interpreters.
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Chapter 6

Virtual Machine Specialization with

Caching Compilation Server

In this chapter we present a specialized compilation server that provides further

performance improvements to virtual machines by enabling optimizations within se-

lected superinstructions. Our server is architecture and VM-agnostic and can be used

with virtually any bytecode-based virtual machine interpreter. In the following sec-

tions we discuss the architecture of our system, the specifics of our implementation,

performance results for two virtual machines, compare our system with other related

works and finally present our conclusions.

The result of our work is a system composed of multiple virtual machines that

use a caching compilation server service. The compilation server is used to create

and store specialized VM binaries optimized for particular applications. To improve

performance of a virtual machine beyond what interpreter-based solutions can pro-

vide, a compiler is required. Projects with sufficient funds usually create their own

just-in-time compiler from scratch, specialized for a particular language. This costly

approach is not available to smaller projects. In our solution we leverage an ex-

isting, industry-standard highly-optimizing static compiler, GCC. A profile-enabled,

code-copying interpreter is used to detect frequently used (hot) groups of instructions

(superinstructions) that are candidates for optimization. The biggest drawback of

such solution, the long compilation time of a static compiler, is dealt with by caching
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Figure 6.1: Overview of the specialized compilation server using the enhanced GCC with two extended virtual

machines.
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the resulting binaries. This way the compilation overhead is spread over multiple

runs of a virtual machine. The performance improvement over previously evaluated

purely code-copying interpreters is most visible in the case of OCaml, with average

speedup of 27%, and a maximum of 81%. Java interpreter, SableVM, shows smaller

benefits of 2-2.5% on average, with the top-5 benchmarks improving by 4-5%, and an

8% maximum. Our analysis of the results indicates that the performance difference

between languages results from their dissimilar functional properties.

The rest of this chapter is structured as follows. We first present an overview of

our design, then we explain the source of performance improvement, followed by de-

tailed description of how specialized source code is created, including optional source

optimization; we then present the process of optimized VM recompilation, our perfor-

mance results, notes on selected related work, and, finally, we draw the conclusions.

6.1 System architecture

We designed our optimization system to achieve the best possible performance results

while avoiding low-level, architecture-specific concerns and maximizing the reuse of

existing solutions. Figure 6.1 presents an overview of the implemented system.

The main components of the compilation server are as follows:

• Virtual machine sources repository – the server stores multiple sets of partial

sources it receives from extended virtual machines. Each set is specialized, i.e.

it is generated based on the behavior of a specific application.

• Specialized optimizer – because the server has access to the specialized sources

of a VM there exists an opportunity to perform additional analysis and opti-

mizations in the source code that will improve the final result of compilation.

This component is optional.

• Compilation queue – The server can receive multiple compilation requests which

might need to be delayed. The server can be configured to allow for a specific

103



6.1. System architecture

number of compilations to occur simultaneously. It could also order compila-

tions in a specific manner, e.g. giving priority to a specific VM.

• Enhanced GCC Compiler – we used a compiler supporting safe code-copying

because we wanted the resulting virtual machines to use this technique next to

source-optimized superinstructions. We should note that these two techniques

are separable and, while not using code-copying would slightly lower the overall

performance of virtual machines in our setup, any C compiler could potentially

be used.

• Cache of specialized binaries – after a compilation task is completed the resulting

binary of a specialized virtual machine is stored in a file cache that is accessible

to extended virtual machines.

Our compilation server requires that virtual machines are extended to cooperate

with the server. We optimized the division of the tasks between the compilation

server and virtual machines so as to avoid unnecessary complications to the system.

By our design we perform each task in the most suitable place, where all input data is

readily available and an action can be performed on this data, instead of encoding and

transferring this data for later processing to a separate tool. This principle applies in

particular to the specialized code generation which is performed by virtual machine

itself.

Each extended virtual machine needs to be able to perform the following tasks.

• For a specific application a VM needs to search the server cache for a specialized

binary and load it – if the binary is available. If this step is successful then the

next tasks are generally not used in this run of the virtual machine.

• Profiling the application – a virtual machine gathers the execution profile of

superinstructions used by the application.

• Partial source code generation – the profile is then used to generate the special-

ized source code and sent to the compilation server. We discuss profiling and

source code generation in details in a later section.
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The compilation server and extended virtual machines cooperate in the manner

illustrated in Figure 6.2. Initially the compilation server is idle and waiting to be

contacted by a virtual machine. A virtual machine is about to begin an execution

of an application. It searches server cache for an optimized binary. If it finds one

it loads this binary and executes the application on a specialized VM. If it does not

find an binary optimized for the application it is about to run it begins executing the

application using a non-specialized, vanilla version of the VM engine. It gathers the

execution profile. When enough profiling information is gathered it uses this informa-

tion to generate optimized partial sources of itself and sends them to the compilation

server as a compilation request. The VM continues execution of the application with

no further profiling overhead. The compilation server receives the request, optimizes

the partial sources (optional), and enqueues the compilation request. When the com-

pilation is complete the resulting specialized binary is placed in server cache. From

that point on every virtual machine about to execute the same application will find

the specialized binary in the cache and will load it and use it to execute the application

at a greater speed.

6.2 The source of performance improvement

The goal of our system was to improve the performance of virtual machines. Such

improvement does not come from the use of compilation server. Rather, the server

is only a convenient way of engineering a system that takes advantage of existing

optimization opportunities. In our case this opportunity was the suboptimal code of

superinstructions. In the previous two chapters we described the superinstructions

as created by concatenating binary code from several small, contiguous memory re-

gions into one larger contiguous memory region. While the performance improvement

achieved was very substantial and added safety allowed reliable implementations in

multiple virtual machines there was at least one clear optimization opportunity that

was not yet exploited.
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Specialized VM
Binary Available?

Hand over to
Compilation Server

Queue

Execute Application
Gather Profile

Execute Application
(Optimized VM)

Produce Specialized
Partial Code

Load Specialized
VM Binary

Store Specialized
VM Binary

Source
Optimizations

(optional)

Disable Profiling
Continue Application

Compile New
Specialized VM

Virtual Machine
Startup

Compilation Server
Waiting

Yes No

1 *

2 *

Figure 6.2: Order of operations initiated by a virtual machine cooperating with our

compilation server.
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DUP

ISTORE_1

DUP_ISTORE_1

top++

stack[top] = stack[top-1]

locals[1] = stack[top]

top--

locals[1] = stack[top]

inter-bytecode
optimization

Figure 6.3: One of the obvious expected advantages of inter-bytecode optimization

was the removal of unnecessary store and read operations for temporary values.

The performance improvement in our system comes mainly from performing opti-

mizations within superinstructions. Figure 6.3 presents an actual case where superin-

structions are clearly inefficient because they are focused on executing each bytecode,

instead of focusing on the overall effect of execution of all instructions in a superin-

struction. The Figure demonstrates how two bytecodes DUP and ISTORE 1 perform

stack push (meaning data store in memory and incrementation of stack top pointer),

and pop (meaning data read from memory and decrementation of stack top pointer)

that undo one another’s work. This problem can be remedied by introducing opti-

mizations that span across instructions boundaries, optimizations that work globally

within a superinstruction (DUP ISTORE 1 in the Figure). One possible solution would

be to write a specialized machine code to machine code optimizing compiler. Such

systems exist already (e.g. Dynamo [BDB00]) and require substantial amounts of

architecture-specific code and re-implementation of many generic compiler optimiza-

tions. Continuing our practice of maintaining maximum independence from specific

hardware, reusing existing tools and solutions, and addressing issues at a higher level

we decided on a different and, from our point of view, more advantageous solution.

The following elements are important when analyzing the sources of performance
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improvement in our system:

1. crucial inter-instruction optimizations — Our system uses the source code of

instructions as the singular elements from which sources of whole superinstruc-

tions are created. This is done simply by concatenation of source code of each

instruction instead of their binary code as it is done in code-copying. The

source code is then sent to a C compiler which, in almost all cases, can perform

the wanted optimizations. As we will show later, this approach enabled the

compiler to perform many crucial inter-instruction optimizations that were not

possible before. For the purpose of this work we will call these superinstructions

source-optimized superinstructions.

2. independence of code-copying — The use of source-optimized superinstructions

is de-facto independent of the use of code-copying. In our design we have

extended a pre-existing framework for code-copying to make the detection (via

profiling) and creation of source-optimized superinstructions easier. At the same

time it would be possible to build it on top of a switch or direct-threaded inter-

preter. In the system we implemented the use of code-copying provides about

1% of the speedup (over direct-threading) while about 99% of the performance

improvement (over direct-threading) is due solely to the use of source-optimized

superinstructions. This is because in our system we choose the 99% of most

often executed superinstructions as candidates for source-based optimization.

Note that in this chapter we will most often compare the performance of our

system with the performance of code-copying.

3. avoiding the use of #pragma copyable — Interestingly, we were also able to

improve the quality of the resulting binary code by avoiding the use of #pragma

copyable in source-optimized superinstructions. This was possible because

source-optimized superinstructions do not need to be copied to other places

in memory to be concatenated with other instructions. The use of #pragma

copyable in chunks of code used by code-copying engines is necessary for safety

purposes. Unfortunately, as we noted in Chapter 4, by ensuring the required
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safety properties this pragma also inhibits certain optimizations. As we will

show later in this chapter, not using this #pragma allows the C compiler to

produce better quality code.

4. specialized optimizations — In Section 6.4 we present a tool that operates on

C source code and optimizes accesses to a stack structure in ways a C compiler

could not optimize by itself.

Overall, the main performance improvement in our system comes from allowing op-

timizations across instruction boundaries.

6.3 Creation of the source code

For the purpose of optimizing superinstructions across instruction boundaries our

system must be able to create source code for these superinstructions. Creation of

the source code of a superinstruction is a three-step process.

1. individual source separation (vanilla VM build time) — The source code of each

instruction must be separated out from the sequence of instructions defined in

interpreter main loop. Source code of each instruction must be available sepa-

rately so it can be concatenated as necessary with other instructions’ sources.

2. profile required (1* in Figure 6.2) — A VM might be using a large number

of superinstructions. It might not be necessary or feasible to make them all

source-optimized. This is because the compilation time tends to increase (ap-

proximately) exponentially with the number of instructions defined in the main

interpreter loop. The superinstructions that are worth optimizing are chosen

based on application profiling information, so appropriate profiling data must

be gathered.

3. sources concatenation (2* in Figure 6.2) — For the selected, most often used

superinstructions the sources of the instructions they contain are concatenated

so that they can be later optimized by a compiler.

This process is described in detail in the following sections.
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6.3.1 Separate per-instruction source code

To be able to create the source code of a superinstruction the source code of each

instruction it contains of must be available. The natural place where the source

code of each instruction is defined is the interpreter loop. In our system at virtual

machine build time the interpreter loop source code is analyzed and split into multiple

files – one per instruction – containing only the source code of that instruction. To

that end the source code is first pre-processed by cpp preprocessor and pragmas,

embracing labels, dispatch code – are stripped. The resulting files only contain the

effective code of each instruction, that is, the code that actually executes the useful

operations prescribed by the definition of an instruction. The mechanism for splitting

and stripping the source code slightly varies for each virtual machine. This process

occurs only once at vanilla VM build time and is not repeated for specialized VMs

because the split source code is already available.

6.3.2 The profiling subsystem

As we mentioned before, it might not be feasible or advantageous to optimize all

superinstructions used by an application, especially if the number of superinstructions

is large. This makes it necessary to choose which superinstructions will be optimized

and this choice is based on the behavior of an application that is measured by a

profiling system. The two most popular approaches to profiling and using the gathered

optimization for optimizing the application are the following:

• Executing training set of applications (or the same application multiple times),

then generating an optimized VM using the gathered overall profile.

• Dynamic optimization where profiling and optimization (recompilation) happen

in a single run of an application. Most optimizing JITs use this technique.

Our system is more similar to the first one with the difference that we use only

a single run of an application (or approximately the first 30 seconds of the run) to

gather the profile. Also, we do not attempt to create a VM optimized to an ”average”
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application. Instead we optimize one copy of the VM for each application it runs.

The optimized VM is made available to all new instances of application after the

compilation of optimized VM is complete, and is not available to the already running

VMs, although this could potentially be achieved via on-stack-replacement.

The profiling system we implemented measures the frequency with which superin-

structions are executed. The choice of superinstruction as the main profiling unit is

natural because the goal of the profiling subsystem was to identify the superinstruc-

tions that were executed most often (hot superinstructions). An additional instruction

PROFILE was defined that is inserted at the head of each profiled superinstruction and

can be removed at runtime, as shown on Figure 6.4. Because a superinstruction is

a relatively small unit, registering execution of each single superinstruction causes a

substantial overhead. We therefore decided to use a simple but more efficient method.

For performance reasons the PROFILE instruction uses a global counter so that only

every N-th execution of superinstruction is recorded in the profile. After a few ex-

periments the value of N was chosen to be 10 so as to keep the overhead of profiling

at around 2%. Also, after the profile is gathered the profiling of superinstructions is

turned off with no further performance penalties.

While the choice of a particular data structure to hold the profile data has no

bearing on the validity of our method, since we query our profile data often we choose

an adaptive data structure with efficient query cost. In our system we use a splay

tree data structure because, while its cost of an operation is only O(log n), it also

has the property of keeping most often accessed elements closer to the tree root thus

minimizing the access time for these elements. In our implementations of code-copying

engine the descriptions of superinstructions are kept in a splay tree data structure

using the integer values of bytecodes as keys. To profile superinstructions effectively

we created a second splay tree holding profile data about each superinstruction using

the starting memory address of each superinstruction as keys. At superinstruction

creation time an element is inserted into each of these trees for every superinstruction.

Profiling of superinstructions can be easily enabled and disabled at runtime which

allows us to remove the overhead of profiling after sufficient amount of profiling data

has been gathered. As shown in Figure 6.4 making an instruction profiled or not
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Figure 6.4: Profiling of superinstruction binary code can be turned on and off by

simple memcpy and memmove operations, given that the necessary memory space has

been allocated in advance.

requires only one or two simple memory copy or move operations. With this method

the starting memory address of a superinstruction remains the same. This is impor-

tant, because it would not be feasible to visit all loaded bytecode arrays (the content

of which has been translated into memory addresses) and modify the addresses for

each occurrence of a superinstruction that we want to enable or disable profiling of.

In our approach the performance of superinstructions with profiling disabled is equiv-

alent to those initially created without profiling, and the only overhead is the extra

memory allocated for PROFILE instruction code. The function recording an execution

of profiled superinstruction searches the profile splay tree using the start address of

superinstruction as the key. At the time of execution of PROFILE bytecode this ad-

dress can be found in *(pc-1), since pc is incremented just before the jump to the

start address of next superinstruction. The profiling code in SableVM ignores profile

hits coming from virtual machine startup and only profiles the application. In OCaml

the virtual machine startup is non-existent.

The profile is considered complete either after sufficient number of profile samples

has been gathered (about 30 seconds of execution of Java VM) or the application has
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exited. This imperfect method proved to be quite effective in practice. Once enough

samples have been gathered the profile data can be used to choose the superinstruc-

tions that will be source-optimized.

6.3.3 Choice and creation of superinstructions

To decide which superinstructions will be source-optimized the profile data is used to

select the superinstructions that make for 99% of all executions of superinstructions,

but not more than 1000 superinstructions. As we mentioned before, the hard limit

is necessary because because the compilation time tends to increase (approximately)

exponentially with the number of instructions defined in the main interpreter loop.

In practice the hard limit (of 1000 superinstructions) we defined was never reached by

any of our benchmarks (see source-optimized superinstructions count in Figure 6.6)

but there might exist applications where this limit would be reached.

The source code of the selected superinstructions needs to be provided to the

compilation server (and later – the compiler) as regular C code, in a file. The name

of the file is based on the identification of the benchmark that was being executed

when the profile was gathered. For each superinstruction a header is written, then

the sources of each instruction in the order they appeared in the superinstruction,

then the footer is appended. Header and footer contain code that creates the la-

bels necessary for direct-threading or code-copying engines, and optionally #pragma

copyable if the latter engine were to use source-optimized superinstructions. At this

step several other files are also created which, at compilation time, will initialize ad-

ditional data structures, e.g. tables of addresses and names of the source-optimized

superinstructions. All these files are handed over to the compilation server which in

a later step might apply specialized optimizations to the source code (as described in

the next section) and finally enqueue a compilation request.

Note that only source code for specialized superinstructions is created, since most

of the VM will be left unchanged. For this reason we call this set of source code files

specialized or partial code.
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6.4 Specialized optimization

The partial code of VMs is stored in the compilation server before it is compiled along

with the rest of VM sources. This creates an opportunity to apply additional analyses

and optimizations to the source code to improve the final results of compilation.

In particular, in case of SableVM, due to initially unsatisfactory performance

results, we decided to apply specialized optimization to the source code of superin-

structions. We created a helper application that inputs the source code of all su-

perinstructions, optimizes Java method stack accesses within each superinstruction,

and outputs an optimized version. Our tool works directly on C source code, and

understands a subset of C large enough to properly parse and analyze the source code

of all instructions of SableVM.

This tool exploits one particular property of stack-based code that a standard

C compiler has no way of understanding and exploiting. This is because there is no

mechanism defined by the C standard (or any GCC extensions) to inform the compiler

that an array structure and a pointer together describe a stack structure. Let us take

an example when in stack notation a value is pushed on the stack by one instruction

and then it is popped from the stack by the next one. Knowing how a stack works

means understanding that the state of the stack after these two operations is the

same as if the value was never written to the stack in the first place. If these two

instructions are within a single superinstruction then there is no need to actually

have this value ever written to memory as it can be temporarily stored in a register.

Unfortunately GCC (or any C compiler we know about) will see the stack as an array

that was updated and will insist on making the write actually happen.

To remedy this inefficiency our optimization tool first analyzes the source code of

each superinstruction for stack accesses and stack pointer updates. The input to our

tool is the source code and the names two variables that are provided manually: the

variable holding the stack slots and the variable pointing to the top of the stack. The

results of this analysis are then used to create a temporal map of accesses and stack

sizes, as can be seen in Table 6.1. The temporal map is then used to map all input,

output and temporary stack values to actual local variables in each superinstruction
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a) #pragma stackopt begin b)
{ { /* Local stack slots. */

jint stack 1 jint ;
jint stack 0 jint ;

/* No inputs. */

{ /* ILOAD */ { /* ILOAD */
jint indx = (pc++)->jint;
stack[stack size++].jint =
locals[indx].jint;

1*
jint indx = (pc++)->jint;
stack 0 jint = locals[indx].jint;

}

{ /* ILOAD */

}

{ /* ILOAD */
jint indx = (pc++)->jint;
stack[stack size++].jint =
locals[indx].jint;

2*
jint indx = (pc++)->jint;
stack 0 jint = locals[indx].jint;

}

{ /* ISUB */

}

{ /* ISUB */
jint value1 =
stack[stack size - 2].jint;

jint value2 =
stack[--stack size].jint;

stack[stack size - 1].jint =
value1 - value2;

3*

4*

5*

jint value1 = stack 0 jint;

jint value2 = stack 1 jint;

stack 0 jint = value1 - value2;

}

{ /* ISTORE */

}

{ /* ISTORE */
jint indx = (pc++)->jint;
locals[indx].jint =
stack[--stack size].jint;

6*
jint indx = (pc++)->jint;
locals[indx].jint = stack 0 jint;

}

{ /* ILOAD */

}

{ /* ILOAD */
jint indx = (pc++)->jint;
stack[stack size++].jint =
locals[indx].jint;

7*
jint indx = (pc++)->jint;
stack 0 jint = locals[indx].jint;

} }

/* Store outputs. */
stack[stack size + 0].jint =

stack 0 jint;
stack size += 1;

} }

Stack Stack accesses timeline

location 1* 2* 3* 4* 5* 6* 7*

1 Write(opt) Read(opt)

0 Write Read Write Read Write

Figure 6.5: Source code optimization for stack accesses. One write and one read

are eliminated. Others can be optimized by a regular C compiler. An actual hot

superinstruction used by SPEC compress benchmark.
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a)

Stack ALOAD + ILOAD + FCONST 0 + FASTORE

location Stack accesses timeline

1 2 3 4 5 6

2 W(3) R(3)

1 W(2) R(3)

0 W(1) R(3)

b)

Stack ALOAD 3+ILOAD+ALOAD 3+ILOAD+FALOAD+FNEG+FASTORE+IINC

location Stack accesses timeline

1 2 3 4 5 6 7 8 9 10 11 12

3 W(4) R(4)

2 W R W R W(3) R(3)

1 W(2) R(2)

0 W(1) R(1)

Table 6.1: Two cases of stack access optimization from SPEC-mpegaudio benchmark.

a) Removes 3 reads and 3 writes to the stack. b) removes 4 reads and 4 writes to the

stack. Others can be optimized by a regular C compiler. Removed read-write pairs

are marked with an index number for each pair.

code, as can be seen in Figure 6.5.

For the purpose of describing the modifications done to the source code we intro-

duce the following definitions. A temporary stack value is one that does not exist on

stack neither before nor after superinstruction is executed, but is only used internally

within superinstruction. An input stack value is one that existed before superinstruc-

tion execution and is used (read) by superinstruction code. An output stack value

is one that is modified (written to) by superinstruction and is left on stack after the

execution of superinstruction is complete.
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The source code of each superinstruction is modified in the following ways:

• New local variables are declared, one for each data type (int, float, etc.) of an

input, output or temporary stack location, e.g. see Local stack slots section in

Figure 6.5b.

• Stack accesses (both reads and writes) are replaced with accesses to these local

variables, e.g. in Figure 6.5 in the first ILOAD section we see how stack[stack size++].jint

access is replaced with stack 0 jint based on accessed data type and stack

location 0 for the access number 1*, as seen in the table at the bottom of the

Figure.

• Code is added at the head of superinstruction to read input stack locations into

appropriate local variables (the example code in Figure 6.5 has no stack inputs).

• Code is added at the tail of superinstruction to write values of appropriate local

variables into output stack locations, e.g. see section Store outputs in Figure

6.5b, where stack 0 jint variable is stored into the top location of the stack.

With data flow modified in this way a C compiler is able to avoid unnecessary read and

write operations on the stack. The stack (memory) operations that can be avoided are

marked as (opt) in Figure 6.5, and with numbers (1), (2), ... in Table 6.1. Some of

the reads and writes are not marked because the compiler had all the data to optimize

them out even without our optimizations to the source. This is mainly because only

the last write to a stack location has to actually be carried out before the end of a

chunk.

We applied this technique to a Java VM only but we shall note that we expect

OCaml to be much less amenable to this technique. While both Java and OCaml

bytecode instructions use a stack-based machine the set of instructions in OCaml

allows for direct access not only to the top element of the stack, but basically allows

for random access to several top elements of the stack. This makes the actual stack

use patterns in OCaml much different to those of Java, in particular lessening the

need for oft-repeated stack push and pop operations in OCaml.
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6.5 Compilation of the optimized VM

The final step where the partial source code is used is the actual compilation of a

specialized virtual machine. Files with specialized, partial source code are stored in a

separate directory, uniquely marked by a prefix based on identification of the program

that virtual machine was executing. A formerly enqueued compilation request waits

until the compilation server is available. We decided to limit the number of compila-

tions to 1, but there is nothing inherent in our design that would prevent raising this

number to allow for simultaneous compilations. The reason for choosing to have a

single compilation at a time is that compilation is a highly CPU- and cache-intensive

process and on a single-CPU machine, especially running other applications at the

same time, increasing the number of concurrent GCC instances could very easily

severely decrease the overall performance of the system.

Once the server is ready to handle a compilation request the files with partial

source code generated for a specific benchmark on a specific VM are copied into the

directory containing complete VM sources. The sources of each VM were modified

so as to compile properly and produce a non-specialized, vanilla VM (identical to

the original code-copying VM) if these additional files with specialized source are

empty. Once the files with specialized code are in place the virtual machine engine

is recompiled and the resulting binary is placed in the server cache, next to the

specialized partial sources from which it was generated. Note that by VM compilation

we mean that only the VM engine is recompiled, as there is no need to recompile

language libraries and other elements that may come as parts of a complete execution

environment.

The process consisting of profiling the application, generating specialized partial

code of superinstructions based on the profile, optional optimizing the source code

and finally compilation of an optimized VM is now complete. The optimized VM

binary is available to any virtual machine instance that will attempt to find a binary

optimized for the same application.

118



6.6. Performance results and metrics

6.6 Performance results and metrics

For the purpose of testing our expectations of achieving performance improvement by

using source-optimized superinstructions we extended two virtual machines, SableVM

and OCaml to cooperate with our compilation server. To validate our design we

performed a series of performance tests using two machines ia32 and xeon (described

in Chapter 2, Section 2.7 as Intel P4 3GHz and Intel Xeon 2.4GHz, respectively) to

run the extended SableVM and OCaml. We executed each benchmark 10 times and

took the average runtime as the final measured value. The standard deviation of

runtimes for all benchmarks did not exceed 0.15 of the measured value.

The results presented in Figure 6.6 and Figure 6.7 demonstrate that the perfor-

mance improvement brought by our technique of source-optimized superinstructions

differs very significantly between languages and virtual machines. The performance

of Java interpreter (SableVM) was slightly increased by about 2.0% and 2.5% on

average, depending on the machine. For the top-5 benchmarks (Soot, compress, jess,

mpegaudio and raytrace) the performance improved by a 4-5% average. Individual

benchmarks performance improved by up to about 8%. The performance of OCaml

interpreter increased dramatically by 27% on average, with performance of individual

benchmarks improved by up to 81%.

As in the previous stages of our work presented in this thesis we looked at pos-

sible metrics that would explain the difference in results for different benchmarks

and virtual machines. We employed several metrics comparing code-copying and

source-optimized superinstructions: superinstruction binary code length reduction

factor, superinstruction length in bytes, average superinstruction length in bytecodes

(weighted by executions of each superinstruction), and the number of created source-

optimized superinstructions. We also looked at the data gathered from hardware

counters during experiments described in the previous chapter.

Even without using more sophisticated tools it is clear there is little correlation

between the values provided by metrics and the performance results. Let us attempt

to look at Figure 6.7 and view the number of bytecodes in a superinstruction as a

predictor of speedup, following the reasoning that a longer chunk of source code can
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Src-opt speedup (ia32) 1.1 5.0 3.9 -0.7 0.3 1.9 -0.8 5.6 2.8 3.6 0.0 1.1 0.8 2.5 1.9 4.2

Src-opt speedup (Xeon) 1.0 4.2 3.0 1.2 2.2 -1.5 8.4 4.2 1.8 3.4 1.4 1.7 -0.1 3.5 2.5 4.6

bytes reduced by [%] 42.4 38.3 60.7 40.0 41.4 42.9 38.2 47.3 46.2 46.2 38.3 44.1 36.1 40.2 43.0 46.1

supinsn len [bytes] 99 94 140 85 99 126 89 222 132 132 81 118 158 92 119 135

avg. supinsn len [bcodes] 2.1 2.0 4.7 2.7 2.1 2.4 2.0 8.0 1.7 1.7 2.2 2.3 3.0 1.9 2.8 3.7

src-opt supinsns count 133 215 10 16 118 206 57 65 112 112 129 228 138 163 122 91.8

Figure 6.6: Summary of the results achieved with the compilation server by SableVM (Java). Y-axis values have

been rescaled so as to allow for comparison of several metrics.
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src-opt supinsns count 43 43 45 23 23 60 71 14 19 106 5 5 38.1

Figure 6.7: Summary of the results achieved with the compilation server by OCaml VM. Y-axis values have been

rescaled so as to allow for comparison of several metrics.
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be better optimized. We find the evidence to the contrary, for example, by comparing

the results and metrics for fft and fft.fast with quicksort and quicksort.fast

benchmarks. The first pair (Fast Fourier Transform) has an average executed superin-

struction lengths of about 18 bytecodes amounting to almost 1kB of binary code but

resulting in only a moderate speedup of 13% and 17%. The second pair (Quicksort)

has an average executed superinstruction lengths of only about 3 bytecodes amount-

ing to only about 100 bytes of binary code that result in extraordinary speedups of

48% and 81%. Similar examples contradicting the expected correlations are found for

all presented metrics. These observations suggest that a more thorough approach is

warranted and a calculation of an actual correlation coefficient is necessary.

Table 6.2 contains correlation coefficients calculated between the speedups achieved

using source-optimized superinstructions in each of the benchmarks and a value of

each of the metrics. The correlations presented were calculated using Spearman’s

rank correlation coefficient formula [rcc]. The results from applying this formula can

be explained in the following manner. Possible values range from -1.0 to 1.0, where

0.0 means no correlation, 1.0 means complete correlation and -1.0 means reverse cor-

relation (e.g. if values in the base series increase and the values in the correlated series

always decrease).

We have to report that overall we found no meaningful correlations between these

metrics and performance improvements. In a few cases we found correlations for a

specific architecture and VM. For SableVM on ia32 (P4 machine) the performance

seems to be correlated to some degree with the reduction in superinstructions code

length (coeff. 0.68 – the more reduction the bigger the speedup), and the length

of superinstructions in bytes (coeff. 0.63 – the longer the code in bytes the bigger

the speedup). For OCaml on ia32 machine the performance seems to be somewhat

correlated with the number of superinstructions constituting 99% of superinstruction

executions (coeff -0.58 – the less superinstructions necessary to cover the 99% of

executions the bigger the speedup). Most of the correlation coefficients, however, are

much lower. In particular, a strong correlation for any particular metric would be

visible on all or most architectures, which is not the case. In our opinion there is no

substantial evidence that the performance is bound to any subset of the properties
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OCaml (ia32) SableVM (ia32) SableVM (Xeon)

src-opt speedup 1.00 1.00 1.00

bytes reduced by [%] -0.03 0.68 0.05

supinsn len [bytes] -0.41 0.63 -0.05

avg. supinsn len [bcodes] -0.07 0.03 -0.37

src-opt supinsns count -0.58 0.09 -0.26

Table 6.2: Correlation between the speedup achieved by using source-optimized su-

perinstructions and the values of selected metrics from Figures 6.6 and 6.7. If any

global correlation actually existed it would be visible on all architectures (horizon-

tally). Stronger correlations are marked with double underline. Weaker correlations

are marked with single underline.

we measured.

Overall, the results of the above analysis and the evident lack of substantial corre-

lation are the motivation for a deeper investigation of the reasons behind the observed

results.

6.6.1 Generated code comparison

In our opinion the actual performance improvement is due to compiler optimizations

that were enabled by concatenation of the source code. These new opportunities

depend heavily on the actual instructions involved. Optimization opportunities dif-

fer between bytecodes for different virtual machines, hence the observed variance of

results.

Figure 6.8 presents the assembly of a single superinstruction created in three dif-

ferent ways. The a) version is a superinstruction created by concatenating binary

code created by GCC compiler using formerly described #pragma copyable exten-

sion to ensure the necessary properties of the code. The b) version is the assembly

of the same superinstruction but this time created by using concatenated source and
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compiled again with the enhanced GCC, still using #pragma copyable. The c) ver-

sion is the same as b) but with #pragma copyable removed from the code. Besides

the obvious and clearly visible difference in lengths of these three binary code chunks

a deeper analysis reveals that the compiler was able to apply several optimizations

that could not be used previously, or apply optimizations with better results.

The most important optimizations now applied by the C compiler were:

• load-store-load optimization – keeping more data in registers without writing

them back to memory and loading back (several eliminated memory accesses

are marked in Figure 6.8 with
⊙

symbol),

• common subexpression elimination – once a value is computed it is kept for

reuse by the code that follows,

• low-level, machine-dependant optimizations – different (better) choice of CPU

instructions (e.g. compare CPU instructions used by LTINT bytecode instruction

to instructions used in b) or c) version in Figure 6.8),

• optimizations of common execution path – by basic blocks reordering, code

reorganization and inversion of conditionals (e.g. see jump to rarely executed

code at label 2 in Figure 6.8c marked with
⊗

symbol).

We note that in the c) version the actual number of assembly instructions is almost

the same as in b) but code that was expected to be less often executed was moved

further away so as to avoid interference with the top-down control flow. Also note

that because the c) version does not use #pragma copyable it can not be copied and

executed elsewhere in memory. This limitation is largely unimportant because the

superinstruction is already fully constructed and there is no reason to create copies or

concatenations with other instructions. The c) version was the one used during the

performance experiments while the b) version was the one used to compute metrics on

binary code size. In our opinion the difference in optimization opportunities resulting

from the source code of superinstructions and thus the quality of resulting binary code

is the main cause for the observed differences in performance of different benchmarks

and virtual machines.
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a)- - - - ACC4:
mov 0x10(%edi),%eax⊙
mov %eax,0xfffffeb4(%ebp)

- - - - PUSHACC3:⊙
mov 0xfffffeb4(%ebp),%ecx
mov %edi,%eax
lea 0xfffffffc(%edi),%edx
mov %edx,%edi
mov %ecx,0xfffffffc(%eax)
mov 0xc(%edx),%edx⊙
mov %edx,0xfffffeb4(%ebp)

- - - - LTINT:⊙
mov 0xfffffeb4(%ebp),%eax
cmp %eax,(%edi)
setg %al
add $0x4,%edi
movzbl %al,%eax
lea 0x1(%eax,%eax,1),%edx⊙
mov %edx,0xfffffeb4(%ebp)

- - - - BRANCHIFNOT:⊙
cmpl $0x1,0xfffffeb4(%ebp)
je <label 2>
add $0x4,%esi

label 1:
jmp <label 3>

label 2:
mov %esi,%eax
mov (%esi),%esi
lea (%eax,%esi,4),%esi
jmp <label 1>

- - - - NEXT:
label 3:
mov (%esi),%ecx
add $0x4,%esi
jmp *%ecx

b) mov 0x10(%edi),%eax
lea 0xfffffffc(%edi),%ecx
mov %esi,%edx
mov %eax,0xfffffffc(%edi)
cmp 0xc(%ecx),%eax
jle <label 2>
lea 0x10(%esi),%esi
movl $0x3,0xfffffeb4(%ebp)

label 1:
lea 0x4(%ecx),%edi
jmp <label 3>

label 2:
mov 0xc(%esi),%esi
movl $0x1,0xfffffeb4(%ebp)
lea 0xc(%edx,%esi,4),%esi
jmp <label 1>

label 3:
mov (%esi),%ecx
add $0x4,%esi
jmp *%ecx

c) mov 0x10(%edi),%eax
lea 0xfffffffc(%edi),%ecx
mov %esi,%edx
mov %eax,0xfffffffc(%edi)
cmp 0xc(%ecx),%eax⊗
jle <label 2 (outside)>
lea 0x10(%esi),%esi
movl $0x3,0xfffffeb4(%ebp)

label 1:
lea 0x4(%ecx),%edi

label 3:
mov (%esi),%ecx
add $0x4,%esi
jmp *%ecx

Figure 6.8: Assembly of an OCaml superinstruction (ACC4 + PUSHACC3 + LTINT + BRANCHIFNOT) constructed

by a) code-copying, b) sources concatenation c) sources concatenation with no #pragmas.
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nsieve OCaml [s] Java [s] relative speed OCaml/Java

direct-threaded 13.5 7.24 0.54

code-copying 4.12 2.38 0.58

src-optimized 3.49 1.85 0.53

Table 6.3: Comparison of the relative performance of a single benchmark (nsieve) on

both OCaml and Java VMs and different execution engines.

SableVM SableVM-top5 OCaml

Compilation [s] 73.4 73.4 88.3

Speedup [%] 2.5 4.6 27.1

Break-even runtime [min] 49.9 26.4 5.4

Table 6.4: Compilation times (overhead), average speedups and resulting break-even

runtime of optimized VMs.

6.6.2 Quick Comparisons of VMs Performance

Experimentation with two VMs of different design but using the same interpretation

techniques is a good opportunity for comparison of performance also across different

VMs. We used two implementations of nsieve benchmark, one for Java and one for

OCaml to solve the same task. We measured their performance on different execution

engines for both virtual machines and present the results in Table 6.3. While we do

not claim that a single-benchmark comparison allows us to draw final conclusions

our results do demonstrate that with different execution engines the relative speed of

this benchmark implemented in Java and OCaml remained similar, with Java being

almost twice as fast in all 3 evaluated cases. This suggests that Java bytecode is more

efficient as an input to an interpreter than OCaml bytecode is.
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6.6.3 Compilation Overhead and Break-even

Using a static compiler to recompile a complete VM engine is a relatively expensive

task even though our system uses a cache to minimize the number of compilations.

It is therefore important to determine what actual gains can be expected. Taking

into account the compilation overhead and the resulting speedup we computed basic

break-even expectations that are found in Table 6.4. SableVM, on average, would

need to accumulate a total runtime of an application of almost one hour (or less than

30 minutes for the top-5 benchmarks) to start gaining on the investment in compi-

lation. OCaml would start benefiting from source-optimized superinstructions after

only about 5 minutes of accumulated runtime of an application. It shall be noted

that we refer to the accumulated runtime, meaning the total runtime an application

executed on one or more instances of an optimized VM. These times may seem sub-

stantial but are expected because of the use of highly-optimizing static C compiler

(GCC). The existence of optimized binaries cache helps offset these long necessary

runtimes by allowing the gains to accumulate over a longer period of time, across

multiple executions of the same program.

6.7 Notes on related work

The design of work presented in this chapter relies on our advanced safe code-copying

technique and previous work on its application to interpreters discussed in Chapters

4 and 5.

Other have investigated the application of source-optimized superinstructions, or,

in general, optimizing sources created from lists of bytecodes. In the system proposed

by Varma [VB04], for example, Java bytecode is translated into custom-generated C

code including Java-specific optimizations and then compiled using a standard C

compiler. Ertl created a system known as Vmgen [EGKP02] that generates source

for superinstructions based on an execution profile, which is an analogous idea to

our source-optimized superinstructions but differs from our system which provides

efficient code reuse and caching costs. In comparison to Varma’s work our system
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is only concerned with generating C source code for small groups of bytecodes, not

for whole applications. One of differences between our work and both Varma’s and

Ertl’s work is that our system offers a hands-free operation without user intervention

(although one can imagine Ertl’s system as a basis for a hands-free implementation

similar to ours). Our system is centered around a compilation server working in con-

junction with a cache system and supporting multiple virtual machines for different

languages. In our system there is also no need to choose a training set of applications

since every application is optimized separately. Both our system and Vmgen are

able to perform source-optimization of stack accesses, and while Vmgen expects the

stack operations to be defined in a simple, yet specialized language, our Java byte-

code source optimizer understands a subset of C. We also pursued a different path of

analysis for determining the performance improvements brought by source-optimized

superinstructions.

Our design for a VM-based compilation server makes use of code cache for re-

source sharing with later invocations of an application. There are many works in

the area, here we list the main approaches and how they differ from ours. In several

solutions we find a powerful machine used as a compilation server for mobile devices

or devices with limited resources, e.g. Franz et al. [Fra97] or Palm et al. [PLDM02].

In a similar approach Lee et al. [LDM04] presented a compilation server based on

JikesRVM JIT. There were attempts at using code caching and static ahead-of-time

compilation to improve startup time of IBM JVM [MP08]. These approaches worked

on larger codebases, optimizing parts of complete applications, as opposed to our

approach where the basic source-optimization unit is a superinstruction. Also they

did not use C code as their intermediate representation and did not employ a static

but JIT compiler. Joisha et al. [JMSG01] modified a VM to share the binary exe-

cutable code among multiple VMs to reduce the amount of writable memory. In the

area of distributed compilation and caching compiler servers two prominent solutions

exist known as CCache [CCa] and DistCC [Dis]. Their focus is on improving the

compilation process itself either by distributing compilation or caching parts of the

compiled works for future reuse and as such are complementary to our work and could

potentially be used in place of the compiler in our server solution. In our case the
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sharing takes place on disk and is done to avoid recompilation of the same source

code, and to spread the substantial overhead of compilation with a static compiler

over multiple runs of an application.

Overall, in contrast with our work, other solutions were focused on reusing ex-

isting, highly optimizing and specialized JITs, or translating and optimizing larger

bodies of code, or focused on distribution and caching of the compilation process

itself. They targeted other environments, or attempted to apply other optimization

techniques, not necessarily taking into account reusability of the solution, or the im-

plementation and maintenance costs. We summarize the properties of our solution in

the next section.

6.8 Conclusions and future directions

In this chapter we presented a source-optimized superinstructions technique applied

to Java and OCaml interpreters. Our solution used a static compiler, GCC, as the

main optimization tool thereby ensuring portability and avoiding costly development

of a JIT. While our implementation used a code-copying-enabled VM as the basis,

the technique itself is, in fact, independent of code-copying and can be implemented

without the specialized compiled support required for safe code-copying. The per-

formance improvement over previously evaluated purely code-copying interpreters is

most visible in the case of OCaml, with speedup of 27% on average, and 81% maxi-

mum. Java interpreter, SableVM, shows smaller benefits of 2-2.5% on average, with

the top-5 benchmarks improving by 4-5%, and 8% maximum. We attribute the great

improvements in OCaml to enabling better optimization opportunities for the com-

piler. At the same time we shall note that even with this improvement the OCaml

interpreter does not seem to beat Java bytecode interpretation performance in per-

forming an identical task, although more evaluation points are necessary to make this

statement conclusive.

Our work can be further extended in several directions. An interpreter able to

perform an on-stack-replacement could be used so that the optimized interpreter
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function can be loaded at VM runtime. We also did not attempt to optimize GCC

compilation flags which could be used to speed-up the compilation process and still

regain the majority of performance improvement.

Overall, we achieved a very good performance improvement with this technique

using relatively few resources and building upon existing solutions like GCC and the

support for safe code-copying.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

While highly-optimizing compilers will always offer better performance than any

interpreter-based solution there will also always be groups of language developers

and users for whom such compilers are much too expensive to write and maintain.

These groups are on the lookout for cheaper solutions offering the best possible per-

formance at a lower cost. Our goal in this work has been to develop and improve

methods for maximizing the performance of virtual machines in ways that require

relatively little effort from a VM programmer.

Part of this goal can be achieved by employing solutions that improve the hardware-

software interplay. We have added compiler support for source-specified optimization

barriers solving the long-standing problem of safety in code-copying virtual machine

design. Our low-maintenance approach to this important safety problem offers a

good trade-off between performance and development costs and allows CPU branch

predictors to work with the VM design instead of against it.

In the first milestone of our work we designed a C/C++ language extension that

allows programmers to express the need for special safety guarantees of code-copying.

We implemented this extension in a highly-optimizing, industry-standard GNU C

Compiler (GCC). Despite the unusual nature of our changes we managed to follow
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the best compiler design practices and ensure long-term maintainability of our modi-

fications within the GCC framework (see Section 4.6 for details). This makes it more

likely that the extension will gain a wider industry support in the future.

In the second milestone of our work we implemented safe code-copying in Java,

OCaml, and Ruby to practically demonstrate the applicability of our compiler exten-

sion and performance gains delivered by code-copying. To comprehensively test and

analyze the performance and the issues of software-hardware interplay we gathered

extensive data on 3 largely different architectures Intel 32-bit, x86 64, and PowerPC

64-bit. This shows the varying nature of the performance improvement with respect

to architectures and the importance of considering both language-VM design and the

hardware-software interplay issues. OCaml on Intel 32-bit was 2.81 times faster on

average, and up to 4.8 times maximum. The performance of Ruby, however, improved

only slightly by 1.03 to 1.14 average factor, depending on the architecture. Java im-

proved significantly by an average factor of 1.32 on x86 64, and 1.44 on Intel 32-bit,

but only 1.04 on PowerPC 64-bit. Our investigation included a detailed analysis of

the causes of such vast performance differences and found several factors influencing

it, most important among them being the average size of language bytecodes and the

behavior of branch predictors on each hardware platform. We believe these results

and the detailed conclusions our work contains (see Section 5.5) will provide guid-

ance to developers evaluating the potential use of safe code-copying in their virtual

machines.

In the third milestone of our work, to further improve the performance of our

system, we implemented an ahead-of-time-based approach with a compilation server.

This solution focuses on specializing interpreter source code to each application and

optimizing source code of groups of bytecode instructions. By using a cache to store

specialized VM binaries the overhead of compilation is spread over multiple runs

of a virtual machine. With this system we achieved speedups of average 27% for

OCaml and 4-5% on selected Java benchmarks over the safe code-copying technique

(not direct-threading). The technique itself is in fact completely independent of code-

copying and can be implemented as an alternative VM engine with no need for the

specialized compiler support required for code-copying.
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7.2. Future Work

In summary, our work presents two largely different approaches, both offering

great performance, and applicable to variety of virtual machines. Code-copying has

the advantage of being 100% dynamic and adaptable, thus is suitable for nearly any

VM, but to ensure execution safety requires specialized compiler support. Our AOT-

based approach works with any compiler, but requires on-disk cache and is most

suitable for often-run or long-running applications. Both solutions offer performance

far better than the industry standard direct-threading, and the choice depends on

particularities of the system they will enhance.

7.2 Future Work

The work presented in this thesis can be further extended in several directions. It

would be advantageous to extend the safe code-copying support we implemented in

GNU C Compiler (GCC) to more architectures and ensure the design generalizes.

Also, the mechanism used within GCC to implement the special guarantees for code-

copying demonstrates a more general approach to providing a variety of localized

changes to the generated code. Other uses for such an approach include specialized

optimization barriers, turning selected optimizations on and off for selected blocks

of code, disabling optimizations for the sections of code that will be debugged while

keeping the rest highly-optimized, etc. Such features are not currently available in

GCC because they seem difficult to create and maintain but our approach to code-

copying can be used as the basis for their implementation.

While we gathered extensive performance results, software and hardware behav-

ior metrics for multiple VMs and hardware platforms evaluation of performance on

current CPUs is non-trivial and certain behaviors observed could still use a bet-

ter explanation. We have attributed the disappointing improvement on the PowerPC

platform to branch predictor design, but fuller detail on the specific branch prediction

features and operation, and how they relate to our design would give a more complete

explanation of performance. Such detail, unfortunately, is not readily available for

commercial and proprietary CPUs.
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7.2. Future Work

Currently, in our AOT-based solution, when an optimized VM binary is created

it can be used by the next invocation of VM while the currently executing instances

cannot take advantage of the optimized version. This could be helped by performing

on-stack-replacement (OSR) so that the optimized version of VM could be loaded

at VM runtime. On-stack-replacement is a mechanism where the state of currently

executing function (or method) can be saved and the execution state transferred to

a new implementation of a function (or method) to continue its execution. In the

case of an interpreter this would allow us to replace an interpreter engine, currently

executing the function containing the main interpreter loop, with a new, optimized

(specialized) one. Additionally, to further reduce the cost of compilation the GCC

flags used could be optimized so as to only include the core optimizations and thus

speed-up the compilation process while still regaining the majority of performance

improvement.

Ruby VM (Yarv) contains many bytecodes that are currently unfit for code-

copying due to their large sizes. We suspect that this situation could be improved

by bytecode splitting and specialization. For example, more detailed traces could

be used to track the behavior of bytecodes themselves and then, after analysis, to

automatically produce simpler specialized bytecodes where necessary. In certain cases

the existing bytecode can be transformed and specialized at load time, as is currently

done in the Java interpreter we used.

We also hope that the gains from the use code-copying and the advantage provided

by our GCC extensions will be recognized and the support necessary for this technique

will be one day available in some of the major compilers.
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