
Load-Balancing and Reconfiguration
in a J2EE Application Server System

Xiaoguang Liang

Master of Science

School of Computer Science

McGill University

Montreal,Quebec

January 14, 2006

Copyright © 2005 by Xiaoguang Liang

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-24721-1
Our file Notre référence
ISBN: 978-0-494-24721-1

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

DEDICATION

l dedicate this thesis to my parents, who allow me to pursue my dreams.

ii

ACKNOWLEDGEMENTS

First, l would like to thank my supervisor, Professor Bettina Kemme, for her

guidance and encouragement. Whenever l had questions and difficulties in my thesis

study, her thoughts and insights always inspired me. Second, l would like to thank

Huaigu Wu, author of the Adapt SIB replication system, for his kind help. He is

.such a warm-hearted person and always provided me with useful information and

suggestions. In addition, l would like to thank my husband Michel and my sons Leo

and Olivier for their support to my study. Without their support, l would not be

able to finish my thesis.

iii

ABSTRACT

Distributed systems are the main architecture for enterprise applications. To

develop a reliable distributed system, replication is necessary. The Adapt SIE repli

cation system [27] provides a feasible solution for a reliable application server system.

However, the system can not scale up since there is always only one primary server

executing client requests. This thesis presents the LB system which is based on the

Adapt sm system, but with more functions. The LB system may have the same

number of server replicas as in the Adapt SIE system, but it can have more than one

primary server, each being able to execute client requests. Thus, a load-balancing

mechanism is needed to distribute the load equally among different replicas. In addi

tion, reconfiguration in case of failure, and restart must be considered as weIl. This

thesis presents load-balancing and reconfiguration solutions for the LB application

server system.

iv

ABRÉGÉ

Les systèmes répartis sont l'architecture principale pour des applications d'entre

prise. Pour développer un système réparti fiable, la redondance est nécessaire. Le

système de redondance de Adapt SIE [27] fournit une solution réaliste pour un

système fiable de serveur d'application. Cependant, le système ne peut pas pren

dre d'expansion puisqu'il y a toujours seulement serveur primaire exécutant des de

mandes de client. Cette thèse présente le système LB (Load Balancing) qui est

basé sur le système Adapt SIE, mais avec plus de fonctions. Le système LB peut

avoir le même nombre de serveurs que dans le système Adapt SIB, mais il peut

avoir plus d'un serveur primaire, chacun qui peut exécuter des demandes de client.

Ainsi, un mécanisme d'équilibrage de charge est nécessaire pour distribuer la charge

également parmi différents serveurs. En outre, la reconfiguration en cas de pannes,

et de redémarrage dans le système LB doivent être aussi bien considérés. Cette thèse

présente des solutions d'équilibrage de charge et de reconfiguration pour le système

de serveur d'application LB.

v

TABLE OF CONTENTS

DEDICATION

ACKNOWLEDGEMENTS

ABSTRACT

ABRÉGÉ ..

LIST OF FIGURES

1

2

3

Introduction . .

Multi-tier architecture
Replication

1.1
1.2
1.3 Load balancing and reconfiguration

Background Information

2.1 J2EE application server
2.2 Group communication systems.
2.3 JBoss application server
2.4 The Adapt framework for replication
2.5 Cluster
2.6 Load balancing
2.7 Related work

The Adapt SIE Replication System

3.1 Correct replication of J2EE application servers .
3.2 Simple algorithm
3.3 Analyzing failure cases and the actions on the backup
3.4 Providing state consistency and exactly-once execution
3.5 Protocol details of the Adapt SIE replication system ..

3.5.1 Assumptions for the Adapt SIE replication system

VI

ii

III

iv

v

IX

1

1
3
4

7

7
9

11
13
14
15
16

19

19
20
21
23
25
25

4

5

6

3.5.2 Sorne terminology used in the Adapt SIE replication system 26
3.5.3 Client si de replication protocol . 27
3.5.4 Server side replication protocol . 27

LB System During Normal Processing . 33

33
34
35

4.1
4.2
4.3

Design concept of the LB system
General architecture
Load Balancing during normal processing .

Reconfiguration 39

40
40
40
41
42
44
44
45
46
47
50
52
53
56
57
57
61

5.1

5.2

5.3

5.4

5.5
5.6
5.7

Terms, definitions and data structures .
5.1.1 Initial configuration
5.1.2 Failover types ...
5.1.3 Group timestamps .
5.1.4 Status information.
Initialization of the LB system .
5.2.1 LB initialization .
5.2.2 RM initialization
Coordination
5.3.1 The RM coordination protocol
5.3.2 The LB coordination proto col
Failover
5.4.1 LB failover
5.4.2 Failover tasks at RMs
Recovery
Client requests after LB server crash
Case study

Experiments and Result Analysis 67

6.1 Hardware and software used in the experiments 67
6.2 Performance tests during normal processing 68

6.2.1 System configuration 68
6.2.2 No database access 69
6.2.3 Database access only 70
6.2.4 Database access plus SFSB processing 71

6.3 Performance tests during reconfiguration . . 72
6.3.1 System configuration for both groupignore and groupupdaie 73

vu

7

6.3.2 Experiment design for both groupignore and groupupdate 73
6.3.3 groupzgnore 74
6.3.4 groupupdate 75
6.3.5 System configuration for groupmerge . 76
6.3.6 Experiment design for groupmerge 76
6.3.7 groupmerge. . . 77

Conclusions and Future Work 80

80
80

7.1
7.2

Conclusions
Future work

References 82

viii

LIST OF FIGURES
Figure page

1-1 M ulti-tier architecture 2

1-2 Passive replication of middleware server . 4

2-1 JBoss interceptor architecture 12

2-2 Interception of invocations in the Adapt framework 14

3-1 Failure cases. 21

4-1 Without load-balancing . 36

4-2 With load-balancing .. 37

5-1 Coordination at RM r of server S upon receiving view change event
V indicating join/leave of RM r' of server S' 48

5-2 Coordination at LB l upon receiving view change event V indicating

5-3

5-4

5-5

5-6

6-1

6-2

6-3

6-4

6-5

join/leave of an LB 51

LB failover steps at LB l of server S .

group ignore

groupupdate

groupmerge

No database access

Database access only

Database access plus SFSB processing .

group ignore

groupupdate

IX

54

61

63

65

69

70

71

74

75

6-6 groupmerge . o. 77

x

1.1 Multi-tier architecture

CHAPTER 1
Introduction

Traditional enterprise applications were designed as aU-in-one modules. User

interface, processing logic, and database access were tightly coupled. Such systems

are hard to design, maintain and modify. With the rapid development of network

ing technology, especiaUy with the wide use of the Internet, the new generation of

enterprise applications has a more feasible solution: multi-tier architecture.

A multi-tier architecture [8] separates an application into several layers: client

layer, business logic layer, and data layer. The client layer contains user interfaces,

the business logic layer implements business rules on the retrieved data, and the

data layer represents the underlying database. Each layer can be implemented as a

self-contained component and deployed onto a separate machine. Using a multi-tier

architecture, each layer can be designed and maintained separately without affecting

the functionality of the other layers. Another advantage of a multi-tier architecture

is that the performance at each layer can be fine-tuned separately, hence providing

better performance for the whole system. In other words, a multi-tier architecture

makes distribution possible.

A very common architecture is depicted in Figure 1-1. The client layer only

knows the middleware server, also caUed application server, sends aU the requests

to it, and gets the results back from the middleware server. The middleware server

1

Client
Middleware

server Database

Figure 1-1: Multi-tier architecture

pro cesses an the business Iogic. Important data that must be persistent, resides in the

database, and the middieware server makes cans to the database whenever such data

must be accessed. The middieware server aiso offers other functionalities, such as

transaction management, database connection management, user session information

management, etc. Hence, the middieware server plays a very important raIe in such

a muiti-tier system.

What will happen if the middleware server fails? Clients can not connect to

the system, thus the enterprise application will not be availabie. Aithough the mid-

dleware server couid come back to service soon after the failure, an information

about currently connected clients is Iost, which couid cause data inconsistency in the

database, and clients may be confused by the results. How can these kinds of disas-

ters be avoided, that is, how can the system be made fauit-tolerant? The solution is

replication of the middleware serveL Of course the data base layer can also fail, and

hence, affect the accessibility and correctness of the system. However, this thesis

2

focuses on the middleware tier, and we will only talk about the fault-tolerance of the

middleware server.

1.2 Replication

Replication [7, 25] has been widely used in fault-tolerant systems for reliability

purposes. Middleware server replication means there are several middleware servers

in the system, and each of them is called a repli ca. Two kinds of replication schemes

are often used: active replication and passive replication. Using active replication,

the client sends a request to all the replicas, and all the replicas pro cess the request

simultaneously. Once there is a replica failure, the system is still available since all

the other replicas are still alive. The advantage of this replication scheme is that

failover, that is the period until the system is back to normal processing after a

replica failure, is fast. On the other hand, each client request is processed at each

replica, which means a significant overhead in the system during normal processing.

Passive replication is depicted in Figure 1~2. Among many replicas, there is only

one primary replica, which is accessible to the clients, and all other replicas are only

backups of the primary replica. Only the primary replia executes the requests. The

primary periodically sends its state information to all the backup replicas, and each

backup replica will store the primary state information for backup purpose. If the

primary fails, a backup takes over as new primary. There are two advantages of

passive replication over active replication. First, it can be used when execution is

non-deterministic because only one executes requests and the others sim ply apply

the receiving state changes. Second, applying state information received from the

primary has usually less overhead than executing the requests themselves. Hence,

3

the backups can be used for other computation puposes. But the coin always has two

sides. Failover in passive replication is more complicated than in active replication.

One of the backups will have to restore aU the primary information and become the

new primary in the system. The Adapt SIB replication system [27] developed by

Huaigu Wu uses passive replication, which is the base of the LB system developed

in this thesis.

Client

Middleware
server

Figure 1-2: Passive replication of middleware server

1.3 Load balancing and reconfiguration

In passive replication, only one replica can be the primary while aU the others

are backups. Scalability can not be achieved by increasing the number of replicas.

However, if we aUow each replica to be primary for sorne clients and backup for sorne

4

of the other primaries, then the scalability of the whole system can be improved, as

long as being a backup has less overhead than being a primary. This thesis proposes

the LB system, an extension to the Adapt SIB repli cation system, that allows more

than one primary. LB stands for load-balancing. The LB system distinguishes

several replication groups, each having one primary and one or more backups. Each

server repli ca can be primary for one replication group and backup for other groups.

To distribute the workload to the different groups, we propose a load-balancing

mechanism such that each replica gets an equal share of load. This approach provides

both reliability and scalability.

The LB system, however, is also more complex to handle, especially in case of

failure and recovery. What will happen to the LB system if a server replica fails?

Several replication groups are affected, in particular, the group for which this server

was primary. In addition, what will happen if the failed replica recovers? How

can the machine be reintegrated into the system and possibly become a primary

again? Failover and recovery are also called reconfiguration. This thesis proposes

transparent and automatic reconfiguration mechanisms for the LB system.

The LB system has been implemented as an extension of the existing open

source application server JBoss [20, 21], which is based on the J2EE specification [22].

We have performed extensive experiments showing that scalability can be achieved

by our load-balancing mechanism, and failure and recovery is handled smoothly,

transparently, and with the least possible impact on the rest of the system.

The rest of the thesis is structured as follows. Chapter 2 provides backgroud

information for the LB system. Chapter 3 describes in detail the Adapt SIE system,

5

which is the base of the LB system. Chapter 4 gives an overview of the LB system

and its main features during normal processing. Chapter 5 brings reconfiguration

issues of the LB system. In particular, it describes how the system is initialized,

and what steps are taken when server replicas fail and recover. Chapter 6 presents

the experiments and result analysis. Chapter 7 brings conclusion and proposes sorne

future work for the LB system.

6

CHAPTER 2
Background Information

2.1 J2EE application server

J2EE [22] stands for JAVA 2 Platform Enterprise Edition, which defines a stan-

dard for distributed component-based applications. It ai ms to provide a maint ain-

able, reliable and scalable platform for enterprise applications. A J2EE application

server is an example of a middleware server as we mentioned in Section 1.1. But let

us first talk about Enterprise Java Beans (EJB) [23], which build the programmable

units for J2EE application servers. BasicaIly, there are two kinds of EJBs: session

beans and entity beans. Session beans are used to implement business logic (for

ex ample , a program that implements a money transfer or that keeps track of aIl the

goods a user has selectecd for purchase while she or he is logged into an online store).

There are two types of session beans: stateful and stateless beans. A stateful session

bean is usually associated with a user session and keeps the information for this

particular user during the period the user is connected to the system. A stateless

session bean is used to perform arbitrary tasks, but will not keep state information

once the task is finished. An entity bean is a representative of the underlying persis-

tent data, for instance, it can be used to represent a data record of a database table.

Entity beans are also stateful. The state of the entity bean must be synchronized

with the data state in the underlying database. Each EJB has a home interface and

a remote interface, the home interface allows a client to create, find, and remove

7

EJB objects; the remote interface is used for remote client access, and contains the

business methods. Servlet and JSP are programmable units for presentation logic

and control ftow. They allow for an easy generation of web pages.

A J2EE application server consists of a Servlet container and an EJB container.

The Servlet container serves as a runtime environment for Servlets and JSPs, which

are mostly used to implement presentation logic. The EJB container provides run

time support for EJBs, where the business logic is processed.

The J2EE application server offers several other services as well, such as trans

action management service, concurrency control service, and database connection

(JDBC) service. These services can be used by the EJB applications. The J2EE

application server makes EJB application development easier since the application

does not need to implement those services that the J2EE application server provides,

but can sim ply call them when needed.

A transaction is a set of operations logically belonging together. A transaction

has change state in the application server (stateful session beans) and the database

(represented by entity beans). The transaction manager (TM) of the application

server manages all the transactions. Once a begin transaction operation is received

by the transaction manager, it st arts a new transaction and assigns this transaction

a transaction number. All the operations with this transaction number are executed

as part of the transaction until a commit or abort operation is encountered. If the

operation is commit, the transaction manger will make the changes on entity beans of

this transaction permanent (i.e., commit the database transaction). If the operation

is abort, the transaction manager will un do all the operations executed so far (and

8

the database transaction aborts). There are two ways of transaction management

in a J2EE application server: bean-managed (BMT) or container-managed (CMT).

BMT means that the EJB application developers have to manage the transaction

programmaticaUy, that is, the programmer has to indicate in the code where the

transaction should start and where it should end. CMT me ans the EJB container

will take care of the transaction management. The transaction boundaries can be

set up in a configuration file. When a EJB is deployed in the EJB container, a

transaction attribute is specified for each method of the bean in the configuration

file. The container reads the necessary information from the configuration file and

manages the transaction accordingly. For example, assume the transaction attribute

for a method is set to Required. Whenever the method is caUed, if the caUing thread

is associated with a transaction, the actions within the method become part of this

transaction. If no transaction is associated, the container submits a begin transaction

request to the transaction manager, then the method executes within this transac

tion. After execution finishes, the container caUs the commit operation to terminate

the transaction.

J2EE application servers are now widely used in enterprise application systems.

Their reliability and availability are crucial to the whole enterprise application sys

tem. Many commercial J2EE application server providers start to provide some

replication mechanisms to increase reliability.

2.2 Group communication systems

Group communication systems [24], as implied by their name, provide com

munication for aU members of an application group. They provide a number of

9

messaging serviCes to applications, and make reliable distributed systems possible.

Sorne messaging services offered by group communication are as foUows:

Reliable multicast and message ordering: A group communication system

provides reliable multicast from senders to aU receivers of the same group. Multicas

ting happens when a member of an application group needs to send a message to aU

its members of the same group. The reliability of group communication guarantees

that 1) each member receives a message at most once 2) if a member multicasts a

message m then it will eventuaUy receive m unless it crashes and 3) when a mem

ber p receives a message, and if p does not fail for sufficiently long time, aU other

members in the same group will receive the message unless they fail. A stronger

guarantee, caUed uniform reliable delivery, guarantees that if a member receives a

message, even if it fails immediately after, aU other members in the same group

will receive the message unless they fail. In addition, group communication systems

provide message ordering mechanisms. In this thesis, we are interested in 1) FIFO

ordering: if a member sends a message m before it sends message m', aU members

in the same group receive m before m' 2) Total ordering: if two members receive

m and m', both either receive m before m'or m' before m.

Membership services, also called view management: Group configuration

can change if group members join or leave the group. A view reflects the current

membership of a group. When a group member joins the group, aU the members

of the group (including the new one) will receive a new view, which includes aU the

members in the current group. Wh en a group member leaves the group, aU the

remaining members of the group will also receive a view change event, in which the

10

member left is taken out of the new view configuration. The group communication

mechanism assures that aIl the members of a group get the view change events in the

same order. View management of group communication allows easy management of

group members. This provides a very useful tool for upper level application designers

to manage the membership of an application group. For example, a member p has

received as its last view the view V Assume a new view change event happens in the

group, and the member receives a new view change event V'. If there is a member q

in V' which was not in view V, that implies a new member joined the group. The

member p could decide accordingly what it wants to do with the new member q,

for example, send it the latest state information for recovery purposes. If there is

a member q in V that is no more in V', that implies a member left the group by

failure or voluntarily. Hence p may do something accordingly as weIl. Examples of

group communication systems are Horus [17], ISIS [6], Transis [9], Totem [16] and

Spread [14]. Spread is an open-source group communication system, which we use

in our implementation.

2.3 JBoss application server

J2EE has provided a standard for building application servers. There are many

commercial application servers in the market already, such as IBM WebSphere, BEA

WebLogic, etc. Besides these commercial products, there are also several open-source

application server products available. JBoss is one of them.

JBoss [20, 21] provides a full J2EE implementation, containing an EJB container

and a Servlet container, and providing services like JTA (Java Transaction), JDBC

(Database connectivity) , JNDI (Java Naming Directory Inteface), etc. It offers aIl

11

of these services with the help of JMX (Java Management Extension), which serves

as a spine for integration of all the modules, containers, and plug-ins.

The JBoss EJB container is the core implementation of the JBoss server. Here

we have to mention EJBObject and EJBHome. EJBObject is the implementation of

a bean's remote interface, and EJBHome implements a· bean's home interface. When

a client wants to access an EJB object for the first time, it first gets a reference to

EJBHome from the EJB container by looking it up in the JBoss naming server.

Then the client calls the CreateO method on EJBHome and gets back an EJBObject

reference (RMI stub). Once the client has the EJBObject reference, it can call the

method of this EJB directly through the EJB container.

JBoss uses a smart interceptor stack to wrap the services for EJB access [18].

A client call to an EJB component will go from one interceptor to another until

it reaches the component it calls. Upon complet ion of the call, the result will be

returned back through the interceptor chain in reverse order until it reaches back to

the client. The interceptor architecture of JBoss is shown in Figure 2-1.

.....
0

,.--- c C\I c a.
..... r---~ Q)

"0 c Q) "= v
cu "co a. a. a. cu Q)

Q) Q) Q) C 0> Q) - c u u u ê c
~ \(1 0 ~ ~ ~ 0 cu
1- 1-

..... -

1

-= -= -=
'--- :::l C

L...--

0 0
ü

Figure 2-1: JBoss interceptor architecture

12

When the client caU is forwarded to an interceptor, the interceptor can do some

extra work before the caU is forwarded to the next interceptor and after the response

is received by this interceptor. It provides a third party the possibility to put its

own interceptor between two existing interceptors. This opens an easy door for a

replication framework.

2.4 The Adapt framework for replication

Replication of a J2EE application server provides reliability for enterprise ap

plication systems. There exist many replication algorithms, and the study of new

replication algorithms is still ongoing. To compare replication algorithms, they have

to be implemented into the J2EE application server. If each of them was implemented

independently and embedded into the application server, this would require a lot of

work for each implementation. The purpose of the Adapt framework [4, 15] for repli

cation is to facilitate the implementation of replication algorithms. It provides a

uniform abstract framework such that a replication algorithm only needs to use the

API of the framework, and the framework will then deal with the implementation

issues of the underlying application server.

The Adapt framework inserts interceptors into the interceptor stack of the JBoss

server, which behave like component monitors of client caUs. Once a client caU

comes to one of the inserted interceptor, it is directed to a repli cation algorithm

implementation which does the corresponding replication work. The interceptor

then redirects the client caU to the next interceptor. In this way, the framework does

not change the underlying application server design and implementation. It provides

an API such that a replication algorithm can be easily deployed into the server. The

13

Adapt framework for replication has been developed for the free open-source JBoss

serveL Figure 2-2 shows how the Adapt framework intercepts client requests. 1 and

2 in Figure 2-2 are the possible interception points during an invocation between

two components. 1 can be used to implement sorne client-side logic for the server

replication algorithm. For instance, it can resend the request to a new server replica

in case of failure. 2 is at the server side, where replication can take place before the

call is forwarded to the callee.

Client Server

Figure 2-2: Interception of invocations in the Adapt framework

2.5 Cluster

A cluster is a group of comput ers connected together by a local area network

which work together as one machine from the view point of the client. Clients of

the cluster know the address of the system, but have no idea whether the system is

one machine or a cluster. A cluster can provide high availability, high reliability and

high scalability.

14

2.6 Load balancing

If there is more than one server in a cluster which can handle client requests, it is

quite clear that we need to have a mechanism to allow every such server to get its turn

to serve the clients. Load balancing [1, 2, la, 12, 19] is a mechanism to distribute the

tasks among aIl available servers such that each server g~ts an equal share of work,

thus improving the scalability of the cluster. For example, [la] suggests Random,

Round Robin, and Load load-balancing algorithms.

• Random : is a simple load-balancing algorithm. When a new task arrives for

execution, one of the servers is picked up randomly. The advantage of this

load-balancing algorithm is that it is simple to implement. The disadvantage

is that the same server may be picked up constantly such that this server is

heavily overloaded while other servers rest idle.

• Round Robin: is another simple load-balancing algorithm. A server is chosen

using the round robin method. Each server gets its turn one after another.

The advantage of this load-balancing algorithm is also its simplicity. The hope

is that the tasks are more evenly distributed among aIl available servers com

pared to the random load-balancing algorithm. However, if different tasks have

different load associated to them, the load will not be distributed equally across

the servers.

• Load : is a more complicated load-balancing algorithm. In this load-balancing

algorithm, each server has a load, which could be measured by CPU usage,

number of current requests executing, etc. Each server gets its task share

according to its load at that time. The higher the load, the less likely that it

15

will get a new task assigned. The advantage of this load-balancing algorithm is

that the load can be more evenly distributed across aU available servers. The

mechanism is more suit able than the Round Robin if tasks have different loads.

The disadvantage is that it is more complicated to implement. For example, it

is difficult to make an accurate measurement of the current system load.

2.7 Related work

e-Transaction [11] is a replication proto col used in three-tier systems to pro

vide reliability of the middleware server. When a client request comes to a server

replica, it is executed within the context of a transaction. AdditionaUy, a request

marker is inserted into a marker table in the database. If the transaction is commit

ted, the marker becomes permanent in the database. If the transaction is aborted,

the marker is automatically removed by the database together with aIl other effects

of the transaction. In case of failure of this server replica before it sends a response

to the client, the client may submit the same request again to another server replica.

The new replica checks the marker table first to see if the request has already been

executed successfuIly. If it finds the marker associated with this request, then the

response is sent directly to the client. Otherwise, the request is treated as a new re

quest. This is also caIled exactly-once guarantee. Since a request never leads to more

than one execution, we have at-most-once execution. Since the client resubmits a re

quest when it does not receive a response, we have at-Ieast-once. In total, this yields

exactly-once execution. e-Transaction does not consider stateful middleware servers

(as J2EE with its stateful session beans). Neither does it discuss load-balancing.

16

WebLogic application server [5]: Passive replication is used by WebLogic,

and only the primary server pro cesses client requests. The server state replication

from the primary to the backup happens after the response is returned to the client.

In case that the primary fails after it returns the response to the client but before it

sends the state information to the backup, the new server state is lost at the backup.

In this case, once the backup becomes the new primary, the server state will not be

consistent.

JBoss application server [13, 20, 21]: Passive replication is also used by

JBoss. Different to WebLogic, replication happens at the end of each request just

before returning the response. If the transaction associated with this request is

eventually aborted, the server state of the backup will not be consistent with the

server state of the primary. Also, if the primary crashes in the middle of executing

a request, the backup has inconsistent state.

Both WebLogic and JBoss provide cluster support with load-balancing. How

ever, their replication algorithms do not really provide complete fault-tolerance in

sorne cases as we mentioned above.

The Adapt SIB Replication System [26, 27]: This scheme uses passive

replication and sends state changes before the commit of transactions. It considers

sateful servers and coordinates execution to provide data consistency across middle

ware server repli cas and database. Additionaly, it provides exactly-once execution

similar to e-Transaction. The Adapt SIB system is actually a cluster system, but

because there is only one server in the cluster that works as a primary while all

others only work as backups of the primary, the Adapt SIE system is a restricted

17

case of cluster system, which only provides availability and reliability. The goal of

this thesis is to extend SIE to a scalable cluster system, which is called LB system.

18

CHAPTER 3
The Adapt SIB Replication System

In this chapter, we talk about the Adapt SIB replication system [26, 27]. The

Adapt SIB system serves as the base of the LB system, which will be discussed

later. The main assumption in the Adapt SIB algorithm is that each client request

generates exactly one transaction in the application server. That is, the execution

of a client request r happens in the context of one individual transaction t. Henee

there is a 1-1 association between transaction and request.

3.1 Correct replication of J2EE application servers

There are two things the replication algorithm has to guarantee in order to

achieve fault-toleranee of a stateful J2EE application server. The first one is to

guarantee the state consistency between the replicated application server and the

backend database. State consistency means that if a transaction changes both the

state of the application server and the database, the state of the application server

and the state of the database are consistent after the transaction is committed (both

have the state changes associated with the transaction) or aborted (none of the state

changes remains at application serveT or database). Without replication and assum

ing no failures, this state consistency is guaranteed by the transaction mechanism.

But with replication, the state consistency among aU the replicas of the application

server must be guaranteed such that in case of failure, the backup replica can become

19

the new primary without losing state consistency. Another requirement is to guaran

tee that a client request is always executed exactly once. For a given request in case

of failure of the primary, the new primary must be able to determine if the request

was already executed and the corresponding transaction committed. If yes, it will

not execute it again. Otherwise, if a client had sumitted a request but the primary

crashed before finishing execution and returning a response, hence the corresponding

transaction aborted, the request should be executed again by the new primary. State

consistency and exactly-once execution are critical for the correctness of a replication

algorithm. A good replication algorithm should always satisfy these two guarantees.

3.2 Simple algorithm

A standard passive replication algorithm would do the following steps. Wh en

a request arrives from the client at the primary, a transaction is started and the

execution can change one or more beans in the application server and access the

database. At the end of execution, the primary sends all server state changes to the

backups, then it commits the transaction, and then it returns the response to the

client. For simplicity, let's ignore transaction aborts due to deadlock or application

semantics (e.g. not enough money in account). That is, let's assume that each request

leads to a successfully committed transaction as long as there are no failures (the

real Adapt SIB algorithm considers aborts). However, this is not enough to gurantee

state consistency and exactly-once execution. Let's have a look at some failure cases

and the actions the backup that becomes the new primary has to perform after the

crash as part of the failover procedure.

20

(a) (b)

(c) (d)
SA: state A SB: state B

Figure 3-1: Failure cases

3.3 Analyzing failure cases and the actions on the backup

Figure 3-1 (a)- (d) show diagrams of possible execution scenerios for request R.

We see the actions executed at the client, the primary, the backup, and the database.

In Figure 3-1 (a), the replication algorithm wor ks in its normal processing state,

there is no failure, and the state of the primary replica (state is SB) is consistent

with the state of database (state is SB) after the transaction associated with request

R commits; the backup replica also keeps the right version of replication information

(state is SB). State consistency is guaranteed.

21

In Figure 3-1 (b), the primary replica fails before it sends the state change

information to backup replicas and commits the transaction. At the crash of the

primary, the database will abort the above transaction associated with request R.

Although the update of the state of the primary repli ca is lost, the backup replica

(state is SA) and database (state is SA) are consistent at this point since none of

them has state changes associated with request R. However, execution is at-most

once. To achieve the exactly-once execution, either we rel y on the client to resubmit

the request or we have such automated resubmission system in place. In the Adapt

framework, there is an interceptor point at the client side that allows for automated

resubmission. If the backup becomes the new primary and the client resends the same

request, the request can be processed normally on the new primary. Exactly-once is

guaranteed.

In Figure 3-1 (c), the primary repli ca fails after updating the backup's state

but before terminating the transaction related to request R. The backup received

the update information and it has a new state (state is SB), but the database aborts

the transaction at the time of the crash and does not contain R's updates (state is

SA). Now, if the backup becomes the new primary, it is obvious that the state of the

application server (state is SB) is inconsistent with the state of the database (state

is SA). There must be a control mechanism to solve this inconsistency problem. The

new primary has to discard the state changes received from the old primary. Then

it should re-execute the client request upon resubmission.

In Figure 3-1 (d), the primary replica fails after it terminates the transaction at

the database, but before it returns the response to the client. The new primary (with

22

state SB) may not re-execute the request upon resubmission but should immediately

return the result.

A problem is how the new primary distinguishes the cases depicted in Figure

3-1 (c) and 3-1 (d). In both cases it has received the state changes and the client

will resubmit the request. The new primary must be able to detect whether the

corresponding database transaction committed before the crash of the old primary

or aborted at the time of the crash.

3.4 Providing state consistency and exactly-once execution

From the above analysis, we can see how important it is to solve the state

consistency problem and the exactly-once problem. Now let us take a closer look

how the Adapt SIE replication system solves these two problems .

• Marker insertion : We keep a marker table in the database to store com

mitted transaction ids. If a transaction updates the data base , a marker is also

inserted into the marker table. Since the marker insertion is an operation of

this transaction, if the transaction is eventually committed, then the marker is

permanent in the marker table. If the transaction is aborted, th en the marker

is removed from the marker table as part of the abort. This marker insertion

is critical to guarantee correctness .

• K~êping track of responses : We keep a Hashtable RR with requests and

corresponding responses as additional state at each replica. When the primary

sends the state information on behalf of a client request ta the backups, it also

sends the response it is going to return to the client.

23

• Transparent resubmission of outstanding requests : We have an inter

ceptor at the client side, which intecepts the client request and also the response

that the server returns to the client. If this interceptor receives an exception

from the server, then it resends the client request again to the new primary

server until it gets back a response to the client request. This whole procedure

is completely transparent to the client.

Let us look again at the example execution. For the scenarios in both Figure

3-1. (a) and Figure 3-1 (b), the state consistency and exactly-once execution are

guaranteed with or without marker insertion and Hashtable RR. In Figure 3-1 (a),

the client will not resubmit the request. In Figure 3-1 (b), both backup and database

have no information regarding the request, and it is safe to re-execute it when the

client resubmits it.

For the scenario in Figure 3-1 (c), neither state consistency nor exactly-once is

guaranteed without the help of marker insertion. and RR. The primary fails before

updating the database, which means there is no marker for this transaction in the

marker table. During failover, the backup will check the marker table in the database

for an transactions for which it received state change message. If a transaction id can

not be found in the marker table, then the replication information of this transaction

is dropped at the new primary to provide state consistency. If the client resends the

same request again, it will become a new request to the new primary, providing

exactly-once execution.

For the scenario in Figure 3-1 (d), the marker for this transaction is permanent

in the marker table. During the failover time of the backup replica, after checking in

24

the marker table, the backup knows that the transaction actuaUy committed in the

database. It will keep the replication information for this transaction and include the

response in the hashtable RR. After the failover, the new primary has state consistent

with the database. In this case, once the client resends the same request to the new

primary, the new primary will first check its Hasthable RR, find the response, and

return it right away to the client, without re-execution, guaranteeing exactly-once

execution.

3.5 Protocol details of the Adapt SIB replication system

As we mentioned ab ove , in the Adapt SIB replication system, there is more

than one application server, but only one of them can become the primary to pro cess

client requests, aU the other replicas only store the replication information sent by

the primary replica. The system is implemented using the Adapt framework for

replication based on JBoss application server. The group communication used in

the system is JBORA [3], which is a JAVA API of the group communication system

Spread [14].

The Adapt SIB replication protocol can be separated into two parts: server-side

protocol and. client-si de proto col. In this section we will describe both protocols in

detail.

3.5.1 Assumptions for the Adapt SIB replication system

1. A replica of the system always works correcctly until it crashes. The primary

is always available until it crashes.

2. The database server is always reliable, no database failure occurs.

3. The client does not fail.

25

4. We assume no network partition occurs.

3.5.2 Sorne terminology used in the Adapt SIB replication system

1. Client Replication Manager (CRM) implements the replication algo

rithm of an EJB at the client side. Each EJB has its own CRM, which is an RMI

stub and is sent back by the server when the client caUs CreateO on EJBHome.

Inside CRM, there is a serverlist of the replicas in the replication group. The CRM

is the implementation of the interceptor 1 at the client si de as depicted in Figure

2-2. AU the requests of the client to this EJB will always go through this CRM first.

2. Replication Manager (RM) is actually the component monitor described

in Section 2.4, which implements the replication algorithm at the server side. Each

replica has an RM. The RM on the primary first intercepts aU requests (requests

to EJBs or begin/commit requests to the transaction manager) and does some pre

request processing before sending the request to the required EJB or the transaction

manager. When it gets back the response from the transaction manager or EJB it

will do post-request processing, e.g., sending the replication information to aU backup

replicas. Then it returns the response to the client, actuaUy the CRM at the client

side. Each RM keeps a status variable to keep track of its state. At the initialization

of the system, every replica has a status of pre-primary, which means any of them

can become a primary. Once the primary is decided in the system (the one who first

receives a client request becomes the real primary), aU other replicas set their status

as backup. Once the primary replica fails, a new primary will be elected from aU

the backups, and it will do the failover and its status becomes during_failover. Once

the failover finishes, it become the new primary. If during normal processing, a new

26

repli ca joins the replication group, the new replica has a status of during-f"ecovery,

and after the recovery finishes, it has a status of backup.

3.5.3 Client side replication proto col

The client is not aware of the CRMs. Once the client sends a request to the

application server, the CRM of the EJB intercepts the request, and the CRM will

forward the request to the primary server. The server then pro cesses the request,

and sends back the response first to this CRM, and the CRM will check the response

to see if the response is normal. If the response is normal, the CRM will then return

the response to the client. If the CRM gets an exception from the server, that means

the primary replica has failed, the CRM will check its serverlist, connect to the next

available server, and asks whether it is the new primary. Once it has found a new

primary replica, it resends the request to the new primary. This repeats until a

correct response is received.

3.5.4 Server side replication proto col

The sever side repli cation proto col includes four parts: primary proto col during

normal processing on the primary replica, backup proto col during normal processing

on the backup replica, new primary protocol at the time of failover on the new

primary replica, and recovery protocol when a failed replica recovers or a new repli ca

joins the replica group.

In each RM, there are some attributes implemented:

• Hashtable RR : stores the pairs of client request and its response.

27

• Hashtable TRS : stores information for transactions that are currently exe

cuting, which are the pairs of transaction and aU the EJB instances that the

transaction accessed plus the response for the client if already existing.

• Vector ES : stores the EJB state information for each committed transaction.

• LinkedList MB : message buffer to store the replication messages sent by the

primary RM.

• Boolean is_Failover : If it is true, the RM is during failover.

• Boolean is_Recovery : If it is true, the RM is during recovery.

Primary protocol during normal processing

The primary RM has two parts of work to do: the transaction interceptor inter

cepts a begin/commit transaction request before the request reaches the transaction

manager of the normal JBoss server. The request interceptor intercepts requests for

EJBs, and eliminates duplicate requests.

In the request interceptor, once a client request to execute a method on an EJB

cornes to the primary RM, it first checks its RR table to see if there is already an

entry for this request. If yes, which means that it is a duplicate request, the response

stored in the RR will be returned to the client right away. If no, which means this

is a new request from the client, the RM will hand it to the required EJB, and once

the RM gets back the response, it will store it in RR and then return it to the client.

The EJB caUed by the client can make caUs to other EJBs as weU, which are nested

caUs. AU the nested caUs belong to the same transaction, and aU the EJB state

changes are recorded in T RS.

28

In transaction interceptor, once a begin/commit request of a transaction is in

tercepted, it will do sorne replication work first, and then forward the operation of

the transaction to the real transaction manager of JBoss serveL

If the request is a begin transaction, the primary RM will make a new entry into

TRS with a new transaction id assigned to this new transaction.

If the operation is commit, the primary RM inserts a marker into the marker

table in case that the database was updated. In order to decide whether the database

was updated, the transaction interceptor also intercepts every request to the database

and decides whether the access was read or write. The RM also generates a repli~

cation message and multicasts it to aIl backup replicas in the current group. Using

uniform reliable delivery, the replication message includes the transaction id, the pair

of the request and the response, and an stateful EJBs accessed in this transaction,

including the state of each stateful session bean, but not the state of any entity bean

since its state is always synchronized with the database. Then the primary RM waits

until it receives its own replication message (note that with total order multicast,

it receive its own message). That guarantees that the backups have received the

message. Then the commit is forwarded to the transaction manager of JBoss who

finaIly commits the transaction in the database. The commit confirmation of the

transaction manager is again intercepted. The RM generates a committed message

and multicasts it to an backups to confirm the replication information sent before.

Backup protocol during normal processing

The message buffer ME of a backup stores an the messages sent by the primary

RM. The message processor associated with this backup RM will constantly try

29

~ ...

to retrieve a message from the ME in the order they were received and pro cess

it accordingly. If the message processed is a repli cation message, then the related

information of this transaction will be put into TRS instead of ES because it is still

possible that the transaction aborts due to crash. Once the committed message is

processed, the information of the transaction will then be removed from TRS and

put into ES and RR.

New primary protocol at the time of failover

Once the primary RM fails, one of the backup RMs will be chosen to become

the new primary RM. But before the backup can really become the new primary, it

must pass a failover period. The new primary can be sure that if a transaction is

committed in the database, it must also have been committed in the primary, and if

a transaction is aborted in the database, the primary crashed while the transaction

was still alive.

Once the backup detects the failure of the primary, it will set its is_Failover to

true, and it will trigger its failover process. First it pro cesses all the transactions

in TRS, that is, it received the replication message but not the committed message.

It checks the marker table in the database to know if the transaction is committed

in the database or not. If a marker is found in the marker table, which means the

transaction is already committed in the database, the RM will confirm the trans

action by putting replication information into ES and RR. Otherwise, if no marker

is found in the database, which means the transaction is actually aborted in the

database, the RM will remove the replication information of this transaction from

TRS and drop it. In either case, the state of the RM and the state of the database

30

is always consistent. However, the failover is not finished yet, the new primary RM

must reconstruct each stateful session bean (SFSB) and entity bean (EB) involved

in the committed transactions. The SFSBs can be constructed with the replication

information in ES. The EBs will be constructed by retrieving their state from the

database since their state is always consistent with the state of the database. Now

the failover of the new primary has finaUy finished. The indicator is_Failover is set

to false. The new primary now is ready to handle client requests.

Recovery proto col when a failed replica (or a new replica) joins the
replica group

A failed replica may want to join the group again. Once a replica fails, it loses aU

its state information, and becomes a brand new replica to the group. It is assumed

that the recovered replica can only become a backup replica. The main task here for

the recovery is to make the new recovered replica to have a state consistent with the

state of aU the other backups in the system. There are two problems to be solved.

First, who will send the recovery information? Second, how to make sure that the

state of the new replica is consistent with the state of aU the other backups?

Once a new replica joins the current group, aU replicas in the system wiU detect it

due to the view change event delivered by the GCS (Group Communication System).

AU backups in the system then multicast a query sender message. The query sen der

message is sent using total order multicast. With this aU the backups receive the

same first query sender message. The backup who sent the first query sender message

then becomes the peer site to send the recovery information to the new joined replica.

Upon reception of the first query sender message, the sender of this query sender

message generates the recovery message. The TRS, RR, ES will be locked in order

31

to coordinate recovery with the reception of replication messages from the primary.

AIl information received before the query sender message will be transferred to the

new site. AIl messages received after the query sender message will be processed by

the new site itself.

At the new replica, its indicator is_Recovery is set to true. It also receives the

query sender message from aIl the backups. Once it receives the first query sender

message, it knows who the peer site is, and then it will also lock the TRS, RR,

ES such that its message processor will not be able to perform message processing.

Once the recovery information is received, the new replica first parses the recovery

information, and then clears the ME according to the parsed recovery information

to drop the messages that are already covered in the recovery message such that

the state of the new replica is consistent with the state the peer site sends. Once

the recovery is finished, the is_Recovery is set to false, and the new replica becomes

a new backup of the system. It can start to pro cess the replication messages as a

normal backup.

32

CHAPTER4
LB System During Normal Processing

4.1 Design concept of the LB system

The Adapt SIB system has one replication group with one primary and several

backups. In the LB system, we have several such replication groups, each with

a primary and several backups. Each primary is able to handle client requests.

Since there is more than one replication group in the system, we must have a load-

balancing algorithm to dispatch a client to one of the replication groups, such that

each replication group gets its share of the whole workload of the LB system. But

which server in the system will do the load-balancing work? A first solution is that we

have a dedicated server, which works only as a load-balancer, also called dispatcher.

This architecture is quite simple and easy to implement, but what will happen if the

dispatcher fails? The whole system will be unavailable. Another solution is that we

have a load-balancer group similar to the replication groups. Each LB server has a

load-balancer which is a member of this group. But only one of them works as a

primary load-balancer, all the others are only backup load-balancers. If the primary

load-balancer fails, one of the backups takes over and becomes the new primary load

balancer. Using a group of load-balancers has the advantage that if the primary fails,

the GCS automatically detects the failure and can inform the backups. The group

concept also helps the load-balancers to communicate with each other to exchange

enough information such that each of them has the same up-to-date information of

33

the whole system for dispatching purposes. We use the second solution in our LB

system.

4.2 General architecture

Each site (machine) runs one LB server. In the following, we identify an LB

server by the site name. An LB server consists of several active components. It

has one LoadBalancer (LB). The LBs running on the different servers belong to

one group, which we call the LB group. One of the LBs in this group works as a

special primary LB. It is responsible for executing the load-balancing algorithm and

dispatching clients to replication groups. The other LBs serve as backups for the

primary LB. We refer to the LB server with the primary LB as the primary LB

server.

Furthermore, each LB server can have several ReplicationManagers (RM). Each

RM of an LB server is a member of a different replication group, and at most one

RM of an LB server is the primary RM of its group. All the others must then be

backups in their corresponding groups. An RM in the LB system is not exactly

the same as in the Adapt SIB system. In the LB system, each group still has one

primary RM, and sorne backup RMs. But the primary RM will not intercept client

requests directly, but through the local LB. The LB of an LB server S receives the

client requests sent to Sand forwards them to the primary RM of S. The primary

RM takes a request from the LB, performs its actions according to the Adapt SIB

algorithm, and returns the result to the LB which forwards it to the client .

. Note that the different LBs and RMs are identified via their serverjsite name in

their groups. For instance, the LB of LB server S is identified as S in the LB group,

34

and an RM (primary or backup) for group C running on S is also identified as S in

replication group C. In the following, when we say an LB server fails, we assume an

LB server entirely crashes, including its LB and aIl its RMs crash.

4.3 Load Balancing during normal processing

In the LB system, the load-balancing algorithm works at the client level, which

means onee a client is assigned to a replication group, aIl its requests will go to that

group until the client disconnects or the primary of this group crashes. That is, a

client session is scheduled to a replication group. In this way, we can assure that aIl

the information about the same client session is always stored in the same replication

group. If a client first sends a request to group Cl, and then it sends its next request

to group C2, neither group Cl nor group C2 has the full information about this

client session, which is not desired in a stateful application system.

Let's now have a closer look at how clients are assigned to groups during normal

proeessing without crashes. As we already know there are many load-balancing algo

rithms available, such as Random, Round Robin, Load, etc. It was not the purpose of

this thesis to invent a new load-balancing algorithm. Instead, this thesis focuses on

a framework that allows dynamic reconfiguration of a cluster-based system, in which

each server can handle client requests and at the same time serves as backups for

other servers. Renee, we designed our framework such that any load-balancing algo

rithm can be plugged into the framework. Our current system is implemented with

the Round Robin algorithm. In the following, we discuss how this new framework

intereepts client requests and assigns new clients to a replication group.

35

client NamingContext PRM

initailContext
Naming PRM

socket

Nstub

EJBl Home

PRM: primary RM Nstub: Naming server stub

Figure 4-1: Without load-balancing

Figure 4-1 shows how a client connects to the application server in the Adapt

SIB system, which only has one replication group, and no LB group. The client first

caUs initialContext, which is a client si de agent for the naming server on the server

side. initialContext has access to a li st of servers caUed serverlist, which contains the

server names that ho st an RM (primary or backup) of the replication group. The

initialContext then connects to the naming server on the server with the primary RM

to get back a naming server stub. Then the client makes a lookup caU on the required

EJB via the naming server stub, and gets back the EJBHome object. Once the client

has the EJBHome, it caUs Create() on this object to get the remote interface of this

36

EJB, and at the same time, a ClientReplicationManager (CRM) of this EJB is also

downloaded to the client side, which is part of the Adapt SIB replication algorithm.

client NamingContext PLB BLB

--.....iu.il.aiIContext D Naming GI D
Naming

G2 -~ -
Dstub ~

~ . -
G2 serverlist

socket

Nstub

EJBllookup
EJBI H me

CreateO

EJBI stub
CRM

PLB: Prima ry LB BLB: Backup L B D: dispatcher
Gl:theprimaryRM ofGI G2: the primaryRMof G2

Figure 4-2: With load-balancing

Figure 4-2 shows how the load-balancing algorithm works in the LB system.

initialContext now has a list of servers that run an LB. When a client caUs ini-

tialContext for the first time, the initialContext in the LB system does something

more than it do es in the Adapt SIB repli cation system. It contacts the primary LB

server using a socket connection to get the LB stub back, then accesses the primary

LB via the LB stub. The primary LB chooses the replication group according to

the load-balancing algorithm configured in the LB configuration file and returns the

server list of this replication group to the initialContext of the client. In Figure 4-2,

this is G2. This is the repli cation group that this client will make its requests to.

37

Thus, the load-balancing for this client is completed. If the initialContext connects

to a backup LB server instead of a primary LB server, the backup LB server will

send a null object back instead of an LB stub. In this case, the initialContext will

try the next LB server on its server list until it finds the primary LB serveL Once

the initalContext gets the server list of the assigned replication group, it will then

connect to the LB server with the primary RM of the group that was assigned to the

client. From there nearly the same steps are taken as in the Adapt SIB replication

group as shown in Figure 4-1. The only difference is that, as mentioned before, aIl

further requests of this client actually go through the local LB of this LB server.

This LB does sorne extra actions needed for fault-tolerance. We will discuss these

actions later.

38

CHAPTER 5
Reconfiguration

While execution during normal processing is a rather straightforward extension

of the original Adapt SIE system, dynamic reconfiguration is more chaIlenging. There

are three different situations in which reconfiguration takes place. First, at system

startup one LB server after the other is started and joins the system. Second, when

an LB server crashes, it leaves the running system. Third, when a crashed LB server

restarts after a crash, it rejoins the system. In aIl three cases, the LB group and

the replication groups associated with the leavingjjoining LB server are affected.

That is, when an LB server joins/rejoins the system, it joins the LB group and aIl

replication groups for which it has an RM configured to be running. If an LB server

crashes, it leaves aIl such groups. Information about the group configuration, of who

is primary and who is backup must be adjusted during a reconfiguration so that after

reconfiguration has finished aIl LBs and RMs know the current state of the system.

In the foIlowing, we use a stepwise approach to describe the reconfiguration

process. We first introduce terms and data structures that play an important part

for reconfiguration. Then, we look at system startup to give an intuition how the

system is set up. Then, we describe the main protocol that is run for each type of

reconfiguration. As mentioned above each st art or crash of an LB server S triggers

group changes for aIl groups associated with S. Upon the group change of the LB

group, we run an LB coordination, upon the group change of a replication group,

39

we start an RM coordination. These coordination proto cols make sure that aH LB

servers have up-to-date information about the state of the system and can work

properly. After discussing the coordination protocols, we look at the crash and the

recovery of LB servers, and how clients communicate with the system after such

reconfiguration.

5.1 Terms, definitions and data structures

5.1.1 Initial configuration

A configuration file contains aU information needed to set up an LB system. It

contains a list of aU LB servers and a list of aU replication groups. For each replication

group G, it contains the list of servers that should have an RM for C, and the server

who is supposed to be the primary for G. The file also indicates the load-balancing

algorithm that should be used. Currently, we assume this configuration file is static

and does not change. It is created once before system initialization and used at

system start-up and whenever a server restarts after a failure.

·5.1.2 Failover types

If an LB server S fails, aU RMs on S fail as weIl. There are three types of failover

schemes that could possibly happen in the LB system.

1. groupignore: If the failed LB server S has only backup RMs, each failed RM

is simply removed from the server li st of the corresponding group. No further

reconfiguration is needed.

2. groupupdate: If there is a primary RM for group C on the failed LB server S,

and if there exists an LB server S' that has a backup RM for G and no primary

RM for any other replication group, then this backup RM on S' will become

40

the new primary RM for G. Group Gis simply updated with a new primary

RM.

3. groupmerge: If there is a primary RM for group G on the failed LB server

S, and on every LB server, on which there is a backup RM for G, there is a

primary RM for another replication group, none of the backup RMs can become

primary for G since we allow at most one primary RM on each LB serveL This

means G has to be merged with another group G'. AN LB server S' is chosen

such that S' has the primary RM for G' and a backup for G. The LB on S' will

then merge group G into G' . Group G will not be available after the merge.

5.1.3 Group timestamps

Group timestamp is the mechanism used in the LB system to distinguish clients

of different replication groups. A group timestamp group_gis is a value pair (G :

gis) consisting of the name of the replication group (G) and its startup timestamp

(gis). We will see later in more detail when and how such timestamps are generated.

Roughly, a group receives a new timestamp whenever it changes the primary RM.

Since the load-balancing algorithm assures sticky client assignment, we want to be

sure that the same client always goes to the primary RM of the replication group

that is responsible for the cliept. The first time the client connects to the repli cation

group G assigned by the primary LB, it does not have the group timestamp of G.

But when it receives the first response, it obtains the group timestamp of G with

this response. After that, the client will piggyback the group timestamp of Gin each

request. We will see later that the group timestamp plays a critical role in the LB

41

system to guarantee that client requests are taken care of correctly even during and

after reconfiguration. Group timestamps are maintained within two data structures.

• Vector newGTS: stores the group timestamps of all the currently available

groups. The available groups are the groups that have a running primary RM .

• Hashtable oldGTS: stores key/value pairs respecting two group timestamps.

The group timestamp stored as the key is the group timestamp (C : fI) of a

group C at the time of failure of the primary RM of C. The group timestamp

(C' : t2) stored as the value is the group timetamp of the current group C'

which takes care of the clients of Cafter the crash of the primary of C. C = C'

in case of groupupdate, but C -1- C'in case of groupmerge. oldGTS is necessary

for the LB system to correctly handle failover and make sure the client requests

always go to the right group after failover. All the key/value pairs in oldGTS

must be updated each time after a failover to make sure that each failed group

is always paired to a current running group which takes care of its clients.

5.1.4 Status information

Each RM in the system keeps track about the status of its replication group.

Most of this status information already exists in the Adapt SIB system. Additionally,

each LB keeps track about the entire current configuration in the system.

Status information at RM

This is basically the same information as already maintained in the Adapt SIB

system. Each RM r of a group Chas a fiag isPrimaryRM indicating whether it is

primary or not. When discussing the Adapt SIB system, we had se en that each RM

r also has a serverlist containing all available RMs. The first RM in serverlist is

42

the primary RM. This information, however, is not that crucial anymore in the LB

system, because the LB maintains such serverlists.

Status information at LB

The LB l of LB server S keeps track of its servername S. It also has fiag isPrima

ryLB indicating whether it is the primary LB. For each RM r running on S, l main

tains a RMlnfoObject identifying the name of r's group C, whether r is primary of

C, and the group timestamp in case ris primary. For instance, (Cl, irue, (Cl: gis))

indicates that this RM is a primary for group Cl with group timestamp (Cl : gis).

The LB keeps aIl RMlnfoObjects in a RMITable. The LB also keeps the newCTS

vector and the oldGTS table described above. Furthermore, it maintains two lists

that provide information about the configurations of the currently existing replication

groups. The groupserverlisi stores information of aIl replication groups for which at

least one RM is running in the system, including both replication groups with primary

RM and those without primary RM. A group without a primary RM could happen

during the initialization of the LB system or when a group G merges with another

group G' due to a failure of its primary RM such that G is disabled. For instance,

if the groupserverlisi contains an entry (C, (SI, S2)), it indicates that group C is

up and has currently available RM members on sites SI and S2. available_serverlist

is a subset of the groupserverlist. It stores information of aIl replication groups with

a running primary RM. That me ans these replication groups are ready to handle

client requests. For instance, an entry of available_serverlist can be (C, (SI, S2)).

This indicates that Chas currently two running RMs, on SI and S2 respectively.

As in the Adapt SIE system, the first in the list is the primary RM. That is, in our

43

example, SI is the primary RM. The available_serverlist is used by the LB to assign

new clients to replication groups via the load-balancing algorithm. The second part

(SI, S2) of the entry (G, (SI, S2)) for G in available_serverlist replaces the original

serverlist in the Adapt SIE sytem. That is, this is the li st sent to the CRM once the

load-balancing algorithm has decided that the client should be served by group G.

Both groupserverlist and available_serverlist are dynamic since they will change due

to failure and recovery in the LB system. However, after a reconfiguration has been

completed, the lists on all LBs are identical.

5.2 Initialization of the LB system

At initialization time of the entire system, one LB server after the other is

started up. For each server S, first the LB of S is initialized. The LB initialization

triggers the initialization of the RMs on this serveL In our current implementation,

the number of LB servers, the number of replication groups and the assignment of

RMs to replication groups are fixed as configured in the system configuration file.

Furthermore, we assume that all LB servers configured in the configuration file are

started up during system initialization. It will be part of future work to dynamically

adapt the configuration during runtime. The most critical thing here will be to add

completely new servers and new groups to the system

5.2.1 LB initialization

At the initialization of LB l on LB server S, l first reads the configuration file,

and do es some variable initialization. In particular, it sets its servername to S, and

it sets isPrimaryLB to false. It initializes all tables, vectors, and lists. Then, it

creates the RMIInfoObjects for all RMs that are supposed to run on S according to

44

the configuration file, and then caIls the RM initialization procedure for each of them.

The RM initialization is discussed in the next section. After aIl RMs are initialized,

each RM has joined its replication group and has its proper status information. This

information is also refiected back in the RMIInfoObjects of the LB. l then joins

the LB group via a group communication join request. A group change event will

be delivered to l and aIl LBs that are already members of the LB group (the ones

that started up before l). The view change event triggers a coordination among

the members of the LB group in which they exchange enough information such that

each LB has updated status information that refiects the current configuration. In

particular, if S is the first server to be started up, i.e., l is the first in the LB group,

then l will be the primary LB, otherwise it will be a backup LB. We discuss this

configuration in detail later. After this configuration pro cess has finished, the LB

and RMs of the new LB server are ready to perform their tasks.

5.2.2 RM initialization

The RM initialization procedure is caIled by the LB of LB server S for each RM

r of group G configured to be running on S. r first sets isPrimaryRM to false, and

isconfiguredPrimary according to the configuration file to either true or false. Then

it joins G by submitting a group join request. A group change event will be delivered

to r and aIl RMs that are already members of the G (the ones that started up before

r). The view change event triggers a coordination among the current members of

G in which they exchange enough information such that each RM has up-to-date

information about the state of the group. This coordination proto col is described in

more detaillater. In particular, if r is configured to be primary, isPrimaryRM will

45

actuaIly be true after the coordination, otherwise r will be backup RM. That is, if

an LB server Sis configured to have a backup RM running for a group G, then this

RM will be a backup after RM initialization even if the primary RM of G is not yet

running. Renee, during initialization time, a replication group can have backup RMs

running without a primary RM. In contrast and as discussed in the previous section,

for LBs the first LB to start up will be the primary LB in or der to guarantee that

the LB group always has a primary LB. Note also that sinee RM initialization takes

place before the LB joins the LB group, the RM coordination always takes plaee

before the LB coordination.

5.3 Coordination

As we have seen above, at system initialization LBs and RMs join the respective

groups. Each join triggers a view change event at aIl old members of the group and

the new member. This view change event, in turn, triggers a coordination among aIl

group members to exchange status information. This coordination is not only run at

system initialization but always when a group configuration changes, i.e., also when

an LB server fails or restarts. When an LB server fails, its LB is excluded from the

LB group and its RMs are excluded from their replication groups. When it restarts,

the LB and RMs again rejoin their groups. The coordination proto cols for LB and

replication groups are the heart of our reconfiguration.

When a view change event is delivered by the ces at aIl members of the new

configuration of a group (including a joining member, exclu ding Et leaving member),

each member of this new group configuration multicasts a message to aIl members

of the group. The content of the message refiects what the member knows about its

46

~ ..

configuration and the status of the system. After each member receives the messages

from aH members of the group, it has the correct status information of this group

and coordination for this member has finished.

The foHowing discussion makes the foHowing assumptions. When an LB server

S starts at system initialization or restarts after a crash, first aH RMs of S join their

replication groups triggering the coordination within these groups. Then, the LB of

S joins the LB group triggering the coordination within the LB group. By assuming

such ordering, we can be sure that the LB of S, when sending its status information

to the other LBs during coordination, it has the correct information about aH RMs

and their replication groups running on S.

In contrast, when an S crashes, the group communication system automaticaHy

triggers view change events for the LB group and aH replication groups that had

members on S exclu ding these members from their groups. These view change events

can occur concurrently, and no particular or der of the se events can be assumed.

5.3.1 The RM coordination protocol

The purpose of the RM coordination of group G after a view change event is

to let each member of G have up-to-date information of the group configuration. In

particular, we must determine who is primary RM in G. RM coordination already

took place in the Adapt SIE proto col. We simply adjust this proto col here to ex

change and generate also information in the regard to the LB system. In particular,

the RMIInfoObject that belongs to the LB must be updated at the end of the RM

coordination if it has changed. Note that the RMs do not need to take care of the

serverlist anymore, sin ce the CRMs now receive this information from the LBs.

47

Let V be the view change event indicating that an RM r' has joined/left the

replication group C. If r' joins the group, V is the first view it receives (after startup

or crash). If r' leaves the group it does not receive V. Each member r of V can

tell whether a V was triggered by a join of a new member r' or the leaving of an

old member r'. Figure 5-1 shows the coordination steps taken by RM r of V upon

receiving view change event V.

1. In case r' leaving the group, do nothing
2. In case r' joining the group

(a) multicast whether ris primary (identified by isPrimaryRM variable)
(b) receive aIl messages from aIl other members of V
(c) if someone is already primary

i. if (r = = r') (r is the one that joined G)
* update RM/InfoObject of group G of local LB to: (G, false, NULL)

ii. perform RM recovery for r'
(d) e1se (no primary yet)

i. if (r == r') and is configured to be primary (identified by isconfiguredPrimary)
* set isPrimary to true
* create a new group timestamp (G:gts)
* update the RM/InfoObject of group G of local LB to: (G, true, (G:gts))

ii. else if (r == r) and is not configured to be primary
* update the RM/InfoObject of group G of local LB to: (G, fa/se, NULL)

iii. else (r <> r') do nothing

Figure 5-1: Coordination at RM r of server S upon receiving view change event V
indicating join/leave of RM r' of server S'

When an RM leaves its replication group C, failover has to be performed if this

RM was the primary RM. In this case, either groupupdate or groupmerge occurs.

Hence, in the LB system, the replication group C itself can not decide whether and

which backup will become the new primary RM. Instead, the primary LB will make

48

such a decision. Hence, RM failover is not triggered by the RM coordination but

by the LB coordination as we will see later. In fact, RM coordination actually do es

nothing when an RM leaves its group (line 1).

In case an RM has joined the group, the RM members exchange messages to

determine whether there is a primary RM (lines 2a-b). We can consider several cases.

First, let's have a look what happens during initialization. Assume LB servers are

started up in order SI, S2, S3, and S2 is configured to have the primary RM for G.

At startup of SI, G will be a group without primary (line 2d.ii). After startup of

S2, since G has not yet a primary and S2 is configured to be primary, the RM on

S2 will set itself as primary and inform its LB (li ne 2d.i) .We will later see that

the LB during LB coordination will make G available for processing client requests.

After startup of S3, G has already a primary and has possibly already executed

client requests. Hence, the backup RM on S3 has to go through recovery (line 2c).

Now assume, that after initialization of all three LB servers, S2 fails. Assume a

groupupdate happens and S3 has the new primary RM of G. If now S2 rejoins,

although S2 is configured to have the primary RM for G, there is already a primary

at S3. Hence, the RM on S2 will be a backup RM and needs recovery (line 2c).

If, however, a groupmerge occurred after the crash of S2, then G became disabled

at the time of S2's crash. When now S2 rejoins, its RM can again be the primary

RM (line 2d.i). Note that in all cases 2c and 2d, only the joining site updates its

RMIInfoObject. For an existing RM in G, the RMIInfoObject will not change. In

fact, the only thing existingRMs might do is to help the new RM in recovery (line

2.c.ii).

49

5.3.2 The LB coordination protocol

The main purpose of the LB coordination is to choose the primary LB if there is

no primary, and to let each running LB have the up-to-date information of the who le

LB system, in particular the appropriate groupserverlist and available-Berverlist.

They are needed for load-balancing and to provide the CRMs with correct serverlists.

Let V be the view change event indicating that an LB has joinedjleft the LB

group. If an LB joined the group, V is the first view it reeeives (after startup or

crash). If an LB leaves the group it does not reeeive V. Each member l of V can

tell whether V was triggered by a member leaving the LB group or a new member

joining the LB group. Figure 5-2 shows the steps of LB l running on server S upon

reeeiving view change event V.

The LB coordination triggers the recalculation of groupserverlist and avail

able_serverlist. Before resetting, however, we temporarily store the old available_serverlist

which we will need for failover (lines 1-2). Then, each LB, including the new joining

LB if it is the case, multicasts a message indicating whether it is currently primary

of the LB group and aIl information about its RMs, and then waits to receive aIl the

messages from aIl members (lines 3-4). LB coordination has to make sure that there

is always exactly one primary LB (line 5). For that the first left-most LB server

listed in the configuration file that is also member of the new view V will have the

primary LB. Renee, at system initialization, when the first LB server st arts up, its

LB will set itself to be primary LB (independently of where it is listed in the LB

server list of the configuration file). After that, when the remaining servers start up,

there is already a primary LB, and they will become backup LBs. After that, only if

50

1. Reset groupserverlist
2. Set old_available ta available_serverlist, and then reset available_serverlist.
3. multicast whether 1 is primary (identified by isPrimaryLB variable) and aIl

RMIInfoObjects (stored in RMITable) of 1
4. receive aIl messages from aIl members of V.
5. if none of the LBs is primary LB

(a) go through li st of LB servers in configuration file from left ta right
(b) let S' be the first in this list such that l' running on S' member of V
(c) if (l == n set isPrimaryLB ta true

6. for each message received from LB l' running on server S' (including own one)
and for each RMIInfoObject of group G included in message
* if S' has primary RM for G

(a) make a new entry for G in groupserverlist if there was not one yet
or adjust the entry for G by making S' the first one in the server list
serverlist of G in groupserverlist

(b) create entry (G, serverlist) in available_serverlist
(c) If l' joined V, take (G:gts) of the RMIInfoObject of G, and include in newGTS.

* else
(a) make a new entry for G in groupserverlist if there was not one yet

or adjust the entry for G ta include S'
(b) if an entry for G exists in availablejerverlist, append S' ta the entry

for G if not already included
7. In case of an LB leaving the group initiate LB failover

Figure 5-2: Coordination at LB l upon receiving view change event V indicating
join/leave of an LB

the primary LB crashes and leaves the LB group, another LB will take over as new

primary.

Apart of deciding on a primary LB, the information about the RMs is used to

rebuild groupserverlist and availablcserverlist (lines 6). In case of a join, we can

be sure that RM coordination takes place before LB coordination, Hence, the new

LB has already correct information about the status of its RMs, and therefore, aH

RMIInfoObjects transmitted in the messages include the correct information, and

the LBs update their lists appropriately (line 6 (a,b)). In case a new LB server joins

51

and it has a primary RM for a group, then this is a new enabled group, and hence,

its group timestamp must be stored in newGTS (line 6c). In case of a crash, the LB

leaving the group does not participate in the coordination, and hence, its server will

not appear anymore in the groupserverlist and available_serverlist of the remaining

LBs. The question is, whether the lists will contain the correct information about the

remaining servers considering that in case of crash, there is no guarantee on the order

of coordination, i.e., LB coordination can take place before RM coordination or vice

versa. However, the order is not important. Recall RM coordination as described

in the previous section. When an RM leaves its replication group, the remaining

members of the group actually do not exchange any messages. As mentioned before,

in contrast to the SIE algorithm, the RMs don't decide by themselves who becomes

the new primary RM if the old crashed. Instead, the LBs will take care of this (line

7), and we have a doser look at this in Section 5.4.1.

5.4 Failover

If an LB server fails, its LB and RMs fail as well and leave their corresponding

groups. This automatically triggers the coordination protocol in each of these groups.

As discussed in Section 5.3.1, RM coordination actually does not do anything in this

case. Instead, the failover proto col at the LBs is responsible to decide on the fate of

the replication groups to which the failed LB server belonged. For the backup RMs

that were running on the failed LB server nothing has to be done. The only critical

case is for the replication group G for which the failed LB server had the primary

RM. Note that there is at most one such group G.

52

5.4.1 LB failover

LB failover consists of several steps. First, the primary LB decides what kind of

failover has to be performed (groupignore, groupmerge, groupupdate) and informs the

other LBs accordingly. Upon receiving the decision, failover is completed if nothing

has to be done. This is the case if the failed LB server only had backup RMs.

Otherwise, one LB is responsible for performing the groupmerge/groupupdate. Once

it is completed, it informs aIl other LBs that failover has completed, and aIl LBs

adjust their data structures accordingly. Figure 5-3 shows the steps of LB l running

on server S performed for failover.

In step 1, the primary LB decides on what has to be done. By comparing

old_available and available_serverlist, the primary LB can decide whether there was

a primary RM running on the crashed server. If not, nothing has to be do ne (line

la). If a primary RM for group G was running (li ne lb.i), the primary LB can look in

groupserverlist to determine backup RMs for group G (line 2b.ii). For each of these

servers S', the primary LB checks in available_serverlist whether this server has a

primary RM for another group G' . This is the case if there is an entry (G' , (S', ...))

in available_serverlist where S' is the first in the serverlist. If there is a server S'

with a backup for G and no primary RM for another group, then a groupupdate is

possible. The primary LB sends the decision for groupupdate to aIl, indicating that

S' should run the new primary RM for G (line lb.iii). If aIl servers with a backup

RM for G have also a primary RM running, then the primary LB sends the decision

for groupmerge to aU, choosing any of the servers S' with a backup RM for G to

53

1. if pimary LB then (decide on what has to be done)
(a) if old_available has entries for the same groups as availablejerverlist,

then multicast decision = (groupignore) (failed LB server had only backup RMs)
(b) else

i. let G be the group failed LB server had primary RM (group appears in
old_available but not available_serverlist)

ii. let serverlist be the list of servers associated with the entry for G in groupserverlist
iii. for the first server S'in serverlist that has no primary RM for another replication

group (determined by looking at availablejerverlist),
multicast decision = (groupupdate, G, S) (indicating that S' should failover to
have the new primary for G).

iv. if there is no such server (aIl servers with backups also run a primary RM),
pick any server S'in serverlist, multicast decision = (groupmerge, G, S) (indicating
that S' should merge the group for which it has the primary RM with G).

2. receive decision
3. if decision == (groupignore), return
4. if decision == (groupupdate, G, S') and local server S == S'

(a) calI RM fai/over of the backup RM of group G on local server S
(b) create a new group timestamp (G:gts)
(c) update the RMIInfoObject of group G to: (G, true, (G:gts))
(d) multicast success = (groupupdate, G, S', (G:gts))

5. if decision == (groupmerge, G, S') and local server S == S'
(a) let G' be the group for which S has primary RM
(b) caU RM merge of the primary RM of group G' on local server S indicating G

as group to be merged
(c) multicast success = (groupmerge, G, S' ,G')

6. receive success message
7. if success == (groupupdate, G, S', (G:gts))

(a) update available_serverlist to have entry for G (take entry for G from
groupserverlist but set S'as first server in list)

(b) let (G:oldgts) be the group timestamp of Gin newGTS.
(c) set (G:gts) as new group timestamp of G in newGTS.
(d) include pair (G:oldgts)/(G:gts) as pair in oldGTS, and for each pair

(g:x)/(G:oldgts) in oldGTS, replace with (g:x)/(G:gts).
8. if success == (groupmerge, G, S' ,G')

(a) if local server S has backup RM for G, calI RM reset
(b) let (G:oldgts) be the group timestamp of G in newGTS.
(c) let (G' :gts) be the group timestamp of G in newGTS.
(d) remove (G:oldgts) from newGTS.
(e) include pair (G:oldgts)/(G' gts) as pair in oldGTS, and for each pair

(g:x)/(G:oldgts) in oldGTS, replace with (g:x)/(G' :gts).

Figure 5-3: LB failover steps at LB l of server S

54

perform a merge of C with the group C' for which S' has the primary RM (line

Ib.iv).

Each LB receives the decision message (line 2). Failover is completed if nothing

has to be done (line 3). In case of groupupdate (line 4), the LB on the responsi ble

server S' initiates RM failover so that its backup RM for C becomes the new primary

for C taking over aIl current clients of C. The RM failover procedure is basically

the same as in the Adapt SIB system. Once this failover is completed, the LB of

S' generates a new group timestamp, udpates its RMIInfoObject data structure

and multicasts a success message. In case of groupmerge (line 5), the LB on the

responsible server S' determines for which group C' it has the primary RM. It can

determine C' by looking at its RMIInfoObjects. Then, the LB calls a special merge

procedure of the primary RM of C' running on S'. We will see later how this merge

procedure will merge the backup information of C with the primary information

of C'. C' will take over aIl current clients of C. After successful merge, the LB

multicasts a success message.

Each LB receives the success message unless nothing needed to be done (line 6).

If a groupupdate took place (line 7), C remains an available group with a primary

RM. Rence, the available_serverlist must be updated. Since C changed its group

timestamp, the data structures newCTS and oldCTS must be updated accordingly.

If a groupmerge took place (line 8), C is no more available, i.e., it has no primary

RM anymore but another group C' will take over the clients of C. Rence, any LB

server that has a backup RM for C resets this backup (line 8a). This is necessary

because when C becomes again an available group later on, it will not serve its old

55

clients anymore but only accept new clients. Furthermore, since C is now disabled, its

timestamp is removed from newGT8. C' remains its current timestamp. AdditionaUy,

we capture in oldGTS that now C'is responsible for the current clients of G.

After the failover procedure terminates at an LB l, aU its data structures capture

the latest information of aU replication groups, independently of whether l is primary

LB or not. Rence, if the primary LB fails, any other LB can immediately take over

as new primary LB.

5.4.2 Failover tasks at RMs

We have seen above that the LB makes three different types of requests to a local

RM. In case a backup RM of a group C should become primary RM, the LB caUs the

standard failover procedure, that already existed in the SIE algorithm. It returns

when the new primary RM is ready to receive client requests. In case a replication

group is disabled, the remaining backup RMs have to be reset. This is quite simple.

They sim ply discard aU the information about EJBs, clients and responses.

The steps for a group merge are more complicated. In case of a group merge

on a server S' that has a primary RM for group C' and a backup RM for group C,

the primary RM of C' must take the backup information of C, perform failover for

C according to the SIE algorithm, and then merge the data structures maintained

by the SIE algorithm for C' with those of C. Most of the merge is straightforward,

since C and C' so far served different sets of clients. Renee, they have disjoint sets

of SFBS and requestjresponse pairs. Rowever, clients of both groups might have

accessed the same EBs. This is possible if the accesses in both groups were read

accesses. In this case, the merge has to take care that there are not two instances

56

of the same EB. The primary RM of CI must also multicast the backup information

of C to aU group members of CI such that aU the backup RMs of CI have aU the

replication information of group C. This is needed because not only the primary of

CI must be able to handle requests from the clients of C but also the backups in

CI must be able to receive now replication information about these clients during

normal processing. The merge procedure returns when the primary RM of CI has

completed the merge, is ready to serve the clients of both C and CI, and the backup

RMs of CI have received the backup information for C.

5.5 Recovery

Compared to failover, the recovery proto col is quite simple and completely cov

ered by the coordination protocol. The join of a recovered LB server S triggers

an RM coordination in each affected replication group and an LB coordination in

the LB group. This coordination proto col takes complete care of recovery. Assume

there is an RM r on S that is a configured primary RM for group G. After the RM

coordination, r knows whether G currently has a primary RM or not. If yes, then

it becomes a backup for G. However, if G currently is disabled and has no primary

RM, which happens after a groupmerge, r becomes the new primary for G. Thus, G

is available to the load-balancer and back to service for new clients.

5.6 Client requests after LB server crash

We have already discussed in the previous chapter, how clients are handled if

no reconfiguration takes place. A main change compared to the Adapt SIB system

is that a client now always communicates via the LB of a server and not with the

RM directly. A client c connects to the system via the initialContext method. This

57

method accesses a file containing the LB serverlist. It contacts the first in this list

as being the primary LB. This primary LB assigns a group G to c according to the

load-balancing strategy and provides the initialContext with the current server list of

group G (according to available_serverlist). When c now contacts the server S with

the primary RM of G (the first in the list) , it will transparently receive the CRM

which will then intercept each client request according to the Adapt SIB system. In

our LB system, the CRM is an LB stub (in contrast to the Adapt SIB system, where

it was a stub of the RM). The CRM maintains a requesLgts object which keeps track

of the group timestamp information of the current group that the client is connected

to. When the CRM intercepts a client request, the CRM piggybacks requesLgts on

this request and sends this request to the LB l of server S. If it is the first time the

client makes a request, requesLgts has a null value. If the CRM receives a failure

exception to the request, it resends the request to LB l'of server S' which is the

next in the server list of group G until it receives a positive response. A positive

response might piggyback a group timestamp group_gts. If this is the case, the CRM

sets requesLgts to group_gts.

When an LB l on server S receives a request from a client c with requesLgts,

there are two possibilities.

Case 1) S has a primary RM PRM of group G with group timestamp group_gts.

We con si der several cases.

• If requesLgts is null, that means this is the first time the client makes a call to

the server S, l will pass this request to P RM (primary of G). It is possible that

this client was originally assigned to group G' on LB server S', but S' failed

58

and S is the next available server on the server list of G '. Hence, when the

CRM received a failure exception for S' it resent the request to S. However,

since this is the first request of the client, the client will sim ply be assigned

to G instead of C'. When the call returns, l piggybacks group_gts so that the

CRM stores it in requesLgts and piggybacks it on its next request .

• If requesLgts is not null, l compares the requesLgts to group_gts. If the two

match perfectly, l will pass the request to PRM (primaryof G), and return the

response to the CRM. Otherwise, l checks its oldGTS table to see if there is a

group timestamp which is paired with requesLgts. This information might not

be available if the LB system is currently undergoing a reconfiguration. In this

case, we wait and check the oldGTS once the reconfiguration is finished. Let

new_gts be the group timestamp which is paired with requesLgts. This means

the client with requesLgts now should be taken care of by the group with

new_gts. If new_gts matches group_gts of group C for which S has the primary

RM, l passes the client request to PRM and returns the response to the CRM

piggybacking group_gts. If new_gts does not match group_gts, then G is not

the group that should take care of this client. l returns an exception to the

CRM. The CRM will try the next server in the server list until it finds the right

one. A match between group_gts and new_gts occurs in the following scenario.

Let requesLgts belong to group C' on server S'. The CRM had originally sent

the request to server S'. However, S' failed and the CRM received a failure

exception. At the crash of S' the LB system either performed a groupupdate

or groupmerge. In any of the two cases, a server S" with a backup RM of

59

C' took over the clients of C' and the requesLgis was included in oldCT S

paired with the correct new group timestamp. When the CRM received the

failure exception from S' it contacted the next server in server list of C'. If this

is Sand S happens to be the server S" that took over the clients of C', then

new_gts matches with group_gts, otherwise it does not. It is also very important

to keep the paired information of oldCTS up-to-date. For example, we have

a pair (Cl, TSl)j(C2, TS2) in oldCTS, and now C2 fails and was taken over

by C3, we then have a new pair of (C2, TS2)j(C3, TS3) in oldCTS. We want

to update the old pair of (Cl, TSl)j(C2, TS2) to (Cl, TSl)j(C3, TS3) such

that we can find out that C3 is taking care of clients of old Cl by only one

se arch in the oldGTS (see Figure 5-3 line 7d and 8e).

Case 2) S has no primary RM on it. In this case, if reconfiguration is cur

rently ongoing, we wait until reconfiguration has finished. If S still has no primary

RM, 1 returns an exception to the CRM. Otherwise, the actions under Case 1 are

performed.

While failover requires to redirect clients of a failed RM, the recovery of an LB

server does not really affect the client request processing for the existing clients of

the LB system. But if an RM on this recovered LB becomes a new primary of a

disabled group and makes this group available again to the load-balancer, there will

be one more group to handle new incoming clients.

60

5.7 Case study

In order to better understand how client requests are processed while and after

reconfigurations, we give sorne typical examples of request processing within an LB

system.

Case 1): groupignore. We have a system of three LB servers 81, 82, 83 and the

primary LB (PLB) is on 81. There are two replication groups: Gl={81, 82, 83},

where 81 has the primary RM and the group timestamp is (G1 : tsll), and G2={82,

81, 83}, where 82 has the primary RM and the group timestamp is (G2 : ts21) (see

Figure 5-4). There are only two backup RMs on 83. The server 83 first fails and

later recovers ..

client sl(PLB) sZ s3

r-!2adbalance
B gl:tsll LB gZ:tsZI

gts:null . , ",ques (nu)

resnonse(e1' ~o1
(g2:ts21)

)'''ZI)
response(gZ: ZI)

r====-I-r--t-t--l-I-:::::::,.

t-

Figure 5-4: groupignore

In Figure 5-4, 81 is the primary LB, and 82 and 83 are only backup LBs. 81 has

the primary RM of group Gl, 82 has the primary RM of group G2, and 83 has only

backup RMs. When a client first calls the LB system, the load-balancing algorithm

61

is triggered. Assume the client is assigned to group C2 by the load-balancer. The

client gets back the group server list C2= {S2, S1, S3}. At that time, requesLgts at

the CRM is nun. The client sends its first request to S2 and the CRM piggybacks

requesLgts with value nun. Once the CRM gets back the response with the current

group timestamp (G2 : ts21), the CRM sets its requesLgts to (G2 : ts21). After

that, the CRM always sends requests with requesLgts as (C2 : ts21). Nowassume

that S3 fails. Since there were only backup RMs on S3, no client request is affected.

Later, S3 recovers. No client request will be affected neither.

Case 2): groupupdate. The system setup is the same as in Case 1. We want to

show how the client request processing is affected by the failover and recovery if S2

fails and recovers later (see Figure 5-5). Note that S2 has primary RM of C2. After

the failure of S2, the backup RM of C2 on S3 becomes the new primary RM of C2

and a new group timestamp (G2 : ts22) is assigned. When server S2 recovers, the

configured primary RM of C2 on S2 becomes a new backup since there is already a

primary RM for C2 on S3.

In Figure 5-5, a client connects to the system, and is assigned to C2={S2,S1,S3}

by the load-balancer. The client sends its first request with requesLgts as nun to

S2. Since the requesLgts is nun, the request is processed by the RM2 on S2. Then

a response piggybacking current group timestamp (G2 : ts21) is sent back to the

client, and the CRM of this client sets its requesLgts object to (G2 : ts21). Now

assume that S2 crashes and failover starts. At the same time, the client sends its

second request with requesLgis as (G2 : is21) to S2, but because S2 has crashed,

the CRM of the client gets back an exception. The CRM then tries the same request

62

client sl(PLB) s2 s3

gts:null

-1oadbalance
."...B gl'tsll LB

g2T
I LB

S..:"H,O. re uest(nu
) 1

response(.2: ~2

~
) reQues (g2.lS 1)

excention

equest(g~
(g2 ts21)! (I:tsll

f ul'b'\1~rfi ished g2:ts22
e . 01 GT {(g2:ts 1)-(g2 ts22»)

request(g2:ts21) oldG S{(2:ts21)-(g :ts2 »)

(g2:ts21

resoonse(p7' 107"
recovery finished

(g2:ts22

1

1
1

Figure 5-5: groupupdate

on the next server on its server list, which is 81. But since requesLgts is (G2 : ts2l),

and the group_gts on 81 is (Gl : ts 11), they do not match. Since failover is not yet

completed, the request has to wait. Once the failover is completed, S3 has the new

primary for G2 with group timestamp (G2 : ts22). Now, the LB on S1 checks in

oldGTS for a match for (G2 : ts2l), and finds (G2 : ts22). Since (G2 : ts22) does

not match (Gl : tsll) of the primary RM on SI, an exception is sent back to the

CRM again. Now the CRM sends the request with requesLgts as (G2 : ts2l) to

83. The requesLgts does not match the group timestamp (G2 : ts22) of the primary

RM running on 83. But after checking oldGT8, the LB on 83 finds the match with

(G2 : ts22) and knows that its local primary RM for G2 is responsible for this client

and forwards it to the RM. When returning the response to the CRM it piggybacks

the new group timestamp (G2 : ts22). When the CRM receives the response, it will

set its requesLgts object to (G2 : ts22). Everything is back to normal again.

63

Now even if S2 recovers, since there is already a primary RM for C2, the con

figured primary of C2 on S2 has to become a new backup of C2. Thus, recovery has

no effect on request processing.

Case 3) groupmerge Assume a system with three LB servers, S1, S2, S3, and

three replication groups. C1={S1, S2, S3}, where S1 has the primary RM, and the

group timestamp is (Gl : tsll), C2={ S2, S1, S3}, where S2 has the primary RM and

the group timestamp is (G2 : ts2l), and C3={S3, S2, S1}, where S3 has the primary

RM and the group timestamp is (G3 : ts3l). No server has only backup RMs.

If server S3 now fails, the primary LB has to make a groupmerge reconfiguration

decision. Assume it chooses to merge C3 with C2. After the failover, C3 is not

available anymore, and C2 takes care of all the existing clients of C3. G2 keeps

its timestamp (G2 : t2l) and a pair (G3 : t3l)j(G2 : t2l) is included in oldGTS.

Once S3 recovers, because there are only two backup RMs of C3 on S1 and S2, the

configured primary RM of C3 on S3 becomes the new primary RM, and C3 becomes

a br and new C3 with (C3:ts32).

In Figure 5-6, we show two clients of the LB system. clienti is an existing

client of group C3 with requesLgts of its CRM set to (G3 : ts3l), and client2 is

a new client of the LB system. Assume it is also assigned to group C3. After

the first request, the CRM of client2 has requesLgts set to (G3 : ts3l). Now S3

fails: When client2 now sends its second request to S3, its CRM receives a failure

exception. The CRM th en sends the request again to the next server S2. Since

the requesLgts (G3 : ts3l) does not match the group timestamp (G2 : ts2l) of the

primary RM of S2 the request has to wait until failover finishes. Once failover has

64

clientl client2 sl(PLB) s2 s3

(g3:ts31 s3,s2,sl
r-!2.adbalance

LB gl:tsll LB g2:ts21 LB g3:ts31

gts:null ,J,'","

(g3:ts31

request(g3 :ts31

r
re uest(3:ts 1)

exceDtion X ' 0'
g3:t 31)! (g2:t 21
w't

~ ver finish d
01 GT ~ (g2 ts21))

re
(g2:ts21

request\gj:, r') recovery finished
g3: s32

Œ :td 1)!=(g3: s32)

request(g3:tsJ! g3:t 31)!-(g2:t 21
ii1'd6 ~)-(2:ts21))

res ~o'

(g2:ts2 1)

Figure 5-6: groupmerge

completed, group C3 has merged with C2. The LB of 82 checks in oldCT8 and

finds a match of (C3 : ts31) with (G2 : ts21) which is the current group timestamp

of G2 for which 82 has the primary RM. Hence, the LB forwards the request to

this primary RM and returns the response back to the CRM of client2 piggybacking

group timestamp (G2 : ts21). The CRM will set its requesLgts accordingly. Assume

now that 83 recovers and installs a new primary of C3 with (C3:ts32). G3 is now

again available to the load-balancer. Now let us look at clientl. clienti did not

send any request before 83 is fully recovered. Suppose now clienti sends a request

65

piggybacking requesLgts (G3 : ts31) to 83. Since the requesLgts does not match the

current group timestamp (G3 : ts32) of G3, S3 checks oldGT8 and finds a match

with (G2 : ts21). 83 realizes that clienti has been taken over by group G2. Hence,

it sends an exception back to the CRM of clienti. The CRM then sends the same

request to 82. The LB on 82 also checks in oldGTS, finds the match for its local

group, takes care of request execution, and sends the response back to the CRM

piggybacking (G2 : ts21). The CRM will update its requesLgts accordingly. That

is, aIl clients G3 had at the time of the crash are taken over by group G2, and the

special case where a client do es not seùd requests between the crash and the recovery

of a server is correctly taken care of.

66

CHAPTER 6
Experiments and Result Analysis

To evaluate the performance and the functionality of the LB system, we have

conducted two sets of experiments. The first set of experiments compares the perfor-

mance of the original JBoss, the Adapt SIE system and the LB system during normal

processing (without failure and recovery). The purpose of these tests is to see how

load-balancing can improve the performance in case that the application server is

the bottleneck of the system. Another set of experiments is to test the behavior

of the LB system during failure and recovery. The failure cases are groupignore (a

backup fails), groupupdate (the primary fails, and a backup takes over as primary),

and groupmerge (the primary fails and the group merges with another group). We

would like to show the effect of each of these reconfigurations on the LB system. The

load-balancing algorithm used in aH these tests is Round Robin.

6.1 Hardware and software used in the experiments

1. Hardware We used four Linux comput ers with the names csB, cs9, csl0,

csll (each has 3.4GHz Pentium 4 CPU with 1GB RAM). Three of them are used

as LB servers, and one of them is used as a client simulator. They are aH located in

the same local network with a fast Ethernet connection.

2. Software We compared three different configurations: the original JBoss

server, the Adapt SIB replication system, and the LB system. Furthermore, we had

a client simulation program, which simulated the client access to the server. The

67

client simulation program had several parameters to be set such that it could simulate

different scenarios. We can set the number of clients to run simultaneously, the total

running time for each client, the number of transactions per second submitted by

each client, and the application that the clients access.

As for applications, we used a set of three simple EJB applications with only

onestateful session bean (SFSB) per client. Database access was always through the

stateful session bean. The applications differ in how heavy the processing is required

within the server and the database.

1. No database access: In this case, the SFSBs do sorne heavy computation

on behalf of client requests leading to high CPU load on the application serveL

There is no database access at aIl. In this case, the application server may become

the bottleneck of the system.

2. Only database access: The only task of the SFSB is to access the database

and return the result to the client. The SFSB itself does not do any other processing.

In this case, the database server could become the bottleneck of the system.

3. Database access plus SFSB processing: The SFSBs not only conduct

database access but also do sorne processing after the database access. In this case,

either the application server or the data base server could become the bottleneck of

the system.

6.2 Performance tests during normal processing

6.2.1 System configuration

In an cases, the client simulation program runs on cs8. When running the

original JBoss system without repli cation , only one machine is used for JBoss (cs9).

68

For the Adapt SIB system, three replicas are running on cs9, csl0, csll respectively,

with cs9 being the primary. The LB system has two groups, and each group has

three members: G 1 = {cs9, csl0, csll} with primary running on cs9, G2= {csl 0,

cs9, csll} with primary running on csl0. The primary LB will be decided during

the LB system initialization (the one that is first started up).

6.2.2 No database access

No data base access

600 r;======;------::>

500
u;

S. 400· I~~~~.__.J____.::::::;:::;~or-~
~ '---
'" 300 +-------.r'"":;.....-:--~~.._l
III
~ 200 .I---~~~-____='-OC=-------___i

~ 100~~~~~------~

2 3 4 5 6 7 8 9 10

Number of clients

(a) Response time vs N umber of clients

No data base access

~ 2000 -I--------;7'~~~~::::<'=='~~
"ë / ! 1500 ._-~-----------------i

t 1000 /' I-+--JBoss

g> 500 +-=---ri--------1I ____ Adapl SIB Syslemr--

2 1-.-LB System
~ 1"

2 3 4 6 7 8 9 10

Number of clients

(b)Throughput vs Number of clients

Figure 6-1: No database access

Figure 6-1 (a) shows the response time with increasing number of clients for

aIl three systems, in which each client submits 10 transactions per second. AlI of

them have the same pattern, the response time increases almost linearly with the

increase of the number of clients. Compared to the original JBoss system, the Adapt

SIB replication system has slightly longer response time, which is caused by the

replication overhead. The LB system has the short est response time among aIl three

systems. The LB system has more overhead than the Adapt SIB system since the LB

system has more groups and accordingly more group communication. But because

the LB system actually has two replication groups, and ~ach group has its own

69

primary RM located on a different machine, each primary RM serves an average of

half of the clients. Rence, each machine is less loaded leading to the overall lower

response times than the Adapt SIB system or JBoss. For instance, at Figure 6-1 (a),

LB has response times nearly 50 percent lower than both Adapt SIB and original

JBoss. We can also see this clearly from Figure 6-1 (b) which shows the maximam

achievable throughput depending on the number of clients. The original JBoss system

and the Adapt SIB system both saturate when the client number reaches 2. But

because the LB system has two replication groups, i.e., two LB servers handle client

requests, the LB system becomes saturated when the client number reaches 4. After

the saturation point, the throughput of each system stops increasing.

6.2.3 Database access only

Oatabase access only

î
100

80 œ
E
" 60
Il c 40
~
œ 20 II:

2 4 6 8 10 12 14 16 18 20

Number of clients

(a)Response time VS Number of clients

14000

~ 12000

.~ 10000

! 8000

&. 6000

go 4000

~ 2000 ...

Database access only

-+-JBoss
~ __ Adapl SIB system!

____ LB System ~

-------~
.....
2 4 6 8 10 12 14 16 18 20

Number of clients

(b)Throughput vs Number of clients

Figure 6-2: Database access only

In this test, each client also submits 10 transactions per second. Figure 6-2

shows response time and throughput with increasing number of clients where the

application mainly accesses the database. In this test, the response time is mainly

the database access time plus the time used to insert a marker into the database for

70

the SIB system and the LB system. The application server has the least impact on

the response time, which also means the application server can never become the

bottleneck of the system. Because in this experiment, the application server never

becomes the bottleneck of the system, adding more primary servers cannot improve

the system performance. Instead, it increases the overhead of the system. The LB

system does not have any advantage in this situation and it has the worst response

time among an three systems due to the increased overhead. However, Figure 6-2 (a)

and Figure 6-2 (b) shows that LB performs nearly as good as SIB despite the higher

communication overhead. In general, however, inserting an additional marker, both

needed for the SIB system and the LB system puts even more burden on the DB

leading to considerable worse response time and slightly worse max throughput than

a non-replicated system.

6.2.4 Database access plus SFSB processing

Session bean + data base access

400 rF"'====--;-----,
350

f 300

i 250~~~~~~~~~ ., 200 t-
~ 150r-----~~~----~
~ 100 i--=~-"
& 50 +-"'~-'-----

2 4 6 8 10 12 14 16 18 20

Number of clients

7000

$' 6000

.~ 5000

! 4000

i 3000
Q.

'§, 2000
~ e 1000
(:

session bean + data base access

......
V-"

~"

- :7"':'

-/ I __ JBOSS nF
.1 __ Adapt StS System

--à- LB System

2 4 6 8 10 12 14 16 18 20

Number of clients

(a)Response time VS Number of clients (b)Throughput vs Number of clients

Figure 6-3: Database access plus SFSB processing

Again in this test, each client submits 10 transactions per second. Figure 6-3

shows response time and throughput with increasing number of clients where the

71

application accesses the database and also do es sorne work in the application server.

In this test, the response time consists of two parts, half of the time for database

access, including the time needed to insert a marker into the data base for the SIB

system and the LB system, another half of the time for the processing within SFSBs.

The application server can not do anything to improve the database response time,

but it can do something to improve the response time of SFSBs. The LB system

has more overhead indeed, but because the LB system improves its response time

by using load-balancing to distribute the load into two groups, the overall response

time is still the lowest among the three systems (see Figure 6-3 (a)). AIso, the LB

system can handle more throughput than both the original JBoss system and the

SIB system (see Figure 6-3 (b)).

From the above experiments, we conclude that if the application server is the

bottleneck of the whole system, we can improve system performance by using m0re

primary servers and balance the load among them. But if the application server is

not the bottleneck, the load-balancing mechanism can not improve the performance

of the system. Instead, it adds more overhead.

6.3 Performance tests during reconfiguration

In this section, we show how the system behaves during reconfiguration (in

cluding gmupignore, groupupdate, and groupmerge). groupignore means the failed

server S only had backup RMs on it. In this case, the reconfiguration does actually

nothing. groupupdate means that the failed server S had a primary RM for group G,

and there is another LB server S'in the LB system which has no primary RM but

at least a backup RM of the failed group G. In this case, the reconfiguration is to

72

update this backup RM to become the new primary of G. groupmerge means that the

failed server S had a primary RM for G, and each LB server in the LB system which

has a backup RM of G, also has a primary RM for another replication group. The

reconfiguration is to merge G into another available group G '. In these experiments

we first run the LB system for some time, then we force a server replie a to crash.

Finally we rejoin this replica to the system. We measure the response time every

20 milliseconds at the server side, and see how reconfiguration affects the response

time. In all the following three tests, we let each client submit 10 transactions per

second.

6.3.1 System configuration for bath groupignore and groupupdaie

In order to test groupignore and groupupdaie, we start with a system configura

tion with G 1 ={ es9, esl0, esll} with es9 as the primary RM, G2={ esl 0, es9, esll}

with esl0 as the primary RM. It is obvious that there are only two backup RMs

on server esll (one for each group). The client simulation program runs again on

machine es8. The application used is the one without database access mentioned in

section 6.1.

6.3.2 Experiment design for bath groupignore and groupupdate

The experiment runs as follows. We first start up all three servers. Then we

start four clients, each runs 200 seconds. We crash esll and restart it later for the

groupignore, and we crash esl0 and restart it later for the groupupdate. Furthermore,

we start four new clients before the four existing clients finish, which means there is

a certain time period where there are eight clients in total in the system.

73

groupignore

250

200

'iii'
§.

150
QI
E

""

--t;~roUP1 1

__ Group2

!\
~ ~

J \-- ...
QI ~ ~-.,oc .. 100 c -~

0 c.. ..
QI
II:

50

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Tlmeslot

Figure 6-4: groupignore

6.3.3 group ignore

Figure 6-4 shows the response time measured at the server side. At the begin-

ning, the system has only four clients, two for each replication group. es11 fails at

time slot 7 and then recovers at time slot 8. Because there were only backup RMs on

server es11, the crash of csll does not affect any replication group. Henee, response

times do not change during the reconfiguration. The recovery of server csll do es not

affect the response time neither. There is only backup RMs on it and the handling

of the recovery messages does not affect the response time of the groups. At time

slot 10, the second four clients start running in the system, which means there are

in total eight clients in the system, four for each group. The response time increases

due to the increase of the number of clients distributed on es9 and es10. At time slot

13, the first four clients finish running, and there are only four clients left in the sys-

tem, the response time decreases again due to the decrease of the number of clients.

74

;--.

Because the reconfiguration does not reaUy do anything special, the reconfiguration

here has no impact at aU on the response time of any group.

6.3.4 groupupdate

groupupdate

250

200
Iii' .s

150 QI

,§

_. t

1\
IL ... --&.

J ~ __
QI - ~ .. 100 c
0
Q. .. -.-Group1
QI

50 a: __ Group2 before failover -

__ Group2 after failover
0

5 7 9 11 13 15 17 19 21

Timeslot

Figure 6-5: groupupdate

Figure 6-5 presents the response time measured at the server side when server

csl0 fails and recovers later. At the beginning, the system has only four clients,

two for each group. At time slot 3, server csl0 fails. Because the primary RM of

group G2 was on server csl0, G2 has to find a new primary RM for its group. Since

there are only backup RMs on server csll, and one of them is a backup RM of G2,

the reconfiguration updates this backup RM to become the new primary RM of G2.

After the reconfiguration, G2 continues to work as before except now the primary

is on csll. The response time of G2 does not change much compared to group Gl

since failover is fast. At time slot 6, server csl0 recovers, but since there is already a

primary RM in G2, server csl0 only can have two backup RMs, one for each group.

The recovery of server csl0 does not affect the performance of any groups since it

75

has only backup RMs. At time slot 10, the second four clients started, which means

that there are eight clients in total in the system, four for each replication group.

The response time of both group increases with the increased number of clients in

the system. At time slot 13, the first four clients finish running, the response time

decreases again due to the decrease number of clients in the system (from eight to

four).

6.3.5 System configuration for groupmerge

In order to test groupmerge, we start with a system configuration with G t ={ es9,

est 0, estt} with es9 as the primary RM, G2={ est 0, es9, estt} with est 0 as the

primary RM, and G3={ est t, es9, est O} with estt as the primary RM. It is obvious

that each server has a primary RM. The client simulation program runs again on

machine es8.

6.3.6 Experiment design for groupmerge

The experiment runs as foUows. We first start up aU three servers. Then we

start the first six clients, each runs 200 seconds. We crash estt while the first six

clients are still running. We then start up the second six clients before the first six

clients finish running. This means during a certain time period, there are twelve

clients in total in the system. After the first six client have finished running, we

restart esl1. And then we start the last six clients before the second six clients finish

running. This means there is another period of time where there are twelve clients

in total in the system.

76

450

400

350

Ui' 300 g
QI

~ 250
QI
<II 200 c
0
Co
<II 150 QI
II:

100

50

0

groupmerge

-+-Group1
__ Group2
............ Group3 belere crash
__ Group3 alter recevery

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 222324252627

Timeslot

Figure 6-6: groupmerge

6.3.7 groupmerge

Figure 6-6 shows the response time during the reconfiguration measured at the

server side. The first six clients st art running in the system at time slot 1, each

group has two clients, and they have almost the same response time. At time slot

4, server csll fails, which means group C3 has lost its primary RM. Since both cs9

and csll each has a primary RM, it is not possible in this case to do a groupupdate

reconflguration, but a groupmerge reconfiguration is performed. The LB system

decided that group C3 should merge with group Cl, which means Cl should take

over the clients of C3. After the reconflguration, C3 is disabled, and is not available

anymore to the clients of the system. We see clearly from Figure 6-6 that the

77

response time of Cl increases after the time slot 4 because the two clients of group

C3 are now running in Ci. In other words, there are four clients in total in Cl

while C2 still has two clients. At time slot 7, the second six clients start before the

first six clients finished running. Since C3 is not available, there are only two groups

available to the new clients. Cl and C2 each gets three new clients according to

Round Robin. At that moment there are seven clients in Cl, and five clients in C2.

The response time of each group increases based on their increased number of clients.

Cl has longer response time than C2 because Cl has two more clients than C2. At

time slot 13, the first six clients finish running, Cl and C2 now each has three clients

(from the second group of clients), thus the response time is reduced dramatically

and almost the same for each group. At time slot 14, server csll recovers. Since C3

now has a new primary RM, C3 becomes available to the clients again, which means

there are three groups Cl, C2, and C3 available for load-balancing. But since there

are no new clients coming to the system, C3 is idle. At time slot 16, the third six

clients st art running before the second six clients finish running. Cl, C2, C3 each

gets two new clients. Cl and C2 each has five clients while C3 has two clients. The

response time of Cl and C2 are almost the same since they both have five clients

while C3 has the lowest response time since it has only two clients. At time slot 19,

the second six clients finish running in the system, and there are only six clients left

in the system. Cl, C2, and C3 each has two clients now, and the response times of

Cl and C2 decrease and are the same as C3.

From the experiments during the reconfiguration, we see clearly how the recon

figuration affects the performance of the system. The experiments also show clearly

78

the behavior of the Round Robin strategy. For instance, at time slot 16 in Figure

6~6, when six new clients join the system, we distribute them over the servers in a

round robin fasion, i.e., each server receives two. With other mechanism, it might

be possible to assign more clients to G3 since it is currently the least loaded.

79

7.1 Conclusions

CHAPTER 7
Conclusions and Future Work

The current LB system provides load-balancing and performs reconfiguration

automatically after failure and recovery. It is a feasible solution for the application

server system.

7.2 Future work

The current LB system can still be extended to become more flexible.

1. Advanced load-balancing algorithm In the current LB system, we

used Round Robin as the main load-balancing algorithm. However, the ideal load-

balancing algorithm would be load-related. In a load-related load-balancing scheme,

clients are assigned to groups based on the system load at that moment. Further

more, the load of one client may differ from the load submitted by another client.

A good load-balancing algorithm has to take this into account. The load-balancing

algorithm can be easily replaced in the LB framework. Hence, the framework builds

an excelled basis to study advanced load-balancing algorithms.

2. Dynamic group re-adjustment In the current LB system, an LB server

can not re-read the configuration file, thus, it can not do group re-adjustment. It is

currently not possible to have a new replication group in the LB system such that

new sites can be added to the system and become new primaries. Thus, it is desirable

to have a mechanism to allow the LB servers to re-read the configuration file and

80

do dynamic group re-adjustments once the configuration file changes. Instead of

re-reading a configuration file, we could also add an system administration interface

through which configuation changes can be submitted.

81

References

[1] Luis Aversa and Azer Bestavros. Load Balancing a Cluster of Web Servers
Using Distributed Packet Rewriting. In 2000 IEEE International Performance,
Computing and Communication Conference, 2000.

[2] J. Balasubramanian, D. C. Schmidt, 1. Dowdy, and O. Othman. Evaluating
the Performance of Middleware Load Balancing Strategies. In Eighth IEEE
International Enterprise Distributed Object Computing Conference, 2004.

[3] A. Bartoli, C. Calabrese, M. Prica, E. A. D. Muro, and A. Montresor. Adaptive
Message Packing for Group Communication Systems. In OTM Workshops 2003:
912-925, 2003.

[4] A. Bartoli, V. Maverick, S. Patarin, J. Vuckovié, and H. Wu. A Framework for
Prototyping J2EE Replication Algorithms. In Int. Symp. on Distributed Objects
and Applications, 2004.

[5] BEA Systems Inc. BEA WebLogic Server Programming WebLogic Enterprise
JavaBeans, Release 7.0 edition, September 2002.

[6] Birman, K. P., and R. Van Renesse. Reliable Distributed Computing with Isis
Toolkit. IEEE, 1993.

[7] N. Budhiraja, K. Marzullo, F.B. Schneider, and S. Toueg. The Primary-Backup
Approach. In Distributed Systems. Second edition. ACM Press, 1993.

[8] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems Concepts and
Design. Addison Wesley, 200l.

[9] D. Dolev and D. Malki. The Transis Approach to High Availability Cluster
Communication. Communications of the ACM, 39(4):64-70, 1996.

[10] Roy Friedman and Daniel Mosse. Load Balancing Schemes for High-Throughput
Distributed Fault-Tolerant Servers .. In 16th Symposium on Reliable Distributed
Systems (SRDS'97), 1997.

82

83

[11] S. Fr0lund and R Guerraoui. A Pragmatic Implementation of e-Transactions.
In Froc. of Symp. on Reliable Distributed Systems (SRDS) , 2000.

[12] S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier. Cluster-Based Scal
able Network Services. In i6th ACM Symposium on Operating System Frinciple,
1999.

[13] Sacha Labourey and Bill Burke. JBoss Clustering. The JBoss Group, 2002.

[14] Spread Concepts LLC, Center for Networking, and Distributed System (CNDS).
Spread Toolkit. http://www.spread.org.

[15] V. Maverick. Object Model for Pluggable J2EE Replication Strategies. Technical
report, Universita di Bologna, Bologna, Italy, June 2003.

[16] L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, RK Budhia, and C.A. Lingley
Papadopoulos. Totem: A Fault-Tolerant Multicast Group Communication Sys
tem. Communications of the A CM, 39(4):54-63, April 1996.

[17] R Van Renesse, KP. Birman, and S. Maffeis. Horus: A Flexible Group Com
munication System. Communications of the ACM, 39(4):76-83, April 1996.

[18] Andreas Schaefer. JBoss: An In-Depth Look at the Interceptor Stack, 2002.
http://www.onjava.com/pub/a/onjava/2002/07 /24/jboss statck.html.

[19] K Shen, H. Tang, T. Yang, and L. Chu. Integrated Resource Managemen.t for
Cluster-based Internet Services. In Symposium on Operating Systems Design
and Implementation, 2002.

[20] Scott Stark and The JBoss Group. JBoss Administration and Development
Third Edition (3.2.x Series). The JBoss Group, August 2003.

[21] Scott M Stark and The JBoss Group. JBoss Application Server, 2002.

[22] SUN Microsystems Inc. JAVA 2 Flatform Enterprise Edition Specification, vi.3,
October 2000.

[23] SUN Microsystems Inc. EJB 2.0 Specification, November 2003.

[24] R Vitenberg, 1. Keidar, G. V. Chockler, and D. Dolev. Group Communication
Specification: A Comprehensive Study. ACM Computing Surveys, 33(4), 2001.

84

[25] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding
Replication in Databases and Distributed Systems. In Proc. of the Int. Conf.
on Distributed Computing Systems (ICDCS), 2000.

[26] H. Wu and B. Kemme. Eager Replication Protocol for Stateful Ap-
plication Servers. Technical report, McGill University, June 2004.
http:j jwww.cs.mcgill.ca;-hwu19j.

[27] H. Wu, B. Kemme, and V. Maverick. Eager Replication for Stateful J2EE
Servers. In Int. Symp. on Distributed Objects and Applications (DOA), 2004.

