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Abstract: A classical problem in survival analysis is to estimate the failure time distribution from right-
censored observations obtained from an incident cohort study. Frequently, however, failure time data
comprise two independent samples, one from an incident cohort study and the other from a prevalent cohort
study with follow-up, which is known to produce length-biased observed failure times. There are drawbacks to
each of these two types of study when viewed separately. We address two main questions here: (i) Can our
statistical inference be enhanced by combining data from an incident cohort study with data from a prevalent
cohort study with follow-up? (i) What statistical methods are appropriate for these combined data? The theory
we develop to address these questions is based on a parametrically defined failure time distribution and is
supported by simulations. We apply our methods to estimate the duration of hospital stays.

Keywords: combined cohort; maximum likelihood estimation; survival analysis.

1 Introduction

In a medical study, researchers may wish to estimate the distribution of the duration of a disease or medical
status. The data that are available depend on the study design. For example, the French Pulmonary Arterial
Hypertension Network prospectively followed a cohort for three years for the occurrence of pulmonary arterial
hypertension (PAH) [1]. The times between diagnosed PAH and death comprised the time-to-event data.
Subjects who entered the study already diagnosed with PAH formed a prevalent cohort whereas those who had
onset of PAH during the study period formed an incident cohort. Thus, the study design resulted in observed
time-to-event data of two types. Similarly, the Nun Study of Aging and Alzheimer’s Disease was a prospective
observational study in which the enrolled subjects were classified either as incident or prevalent cases [2].
Outside the field of medical research, examples of combined incident and prevalent cohort data can be found
in the areas of finance, sports analysis and public policy [3-5].

Statistical procedures for data arising exclusively from either an incident or prevalent cohort have been
thoroughly examined in the survival analysis literature. When failure time data are subject to random right-
censoring, the Kaplan-Meier estimator can be used to consistently estimate the unknown survivor function
non-parametrically [6, 7]. Alternatively, the parametric maximum likelihood procedures outlined by
Kalbfleisch and Prentice may also be used [8]. For data that are generally left-truncated and right-censored,
the survivor function may be estimated non-parametrically using an altered form of the Kaplan-Meier
estimator sometimes called the Tsai, Jewell and Wang (TJW) estimator [9-11]. However, if the initial dates
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of the failure times are assumed to arise independently from a stationary Poisson process resulting in
uniform truncation times, sharper inference may be made [12]. Under this assumption of stationarity,
Asgharian et al. derived the non-parametric maximum likelihood estimator (NPMLE) of the survivor
function, and established its asymptotic properties [12]. The asymptotic properties of the TJW estimator,
appropriate under arbitrary left-truncation, but less efficient than under stationarity, are given in [9]. An
alternative option is to assume a fully parametric model for the survivor function, while allowing the
truncation distribution to be arbitrary or, if justifiable, to be uniform. The asymptotic properties of the MLEs
in either of these two settings follow from standard likelihood theory, with modifications for length-bias
and censoring [13].

Frequently however, failure time data comprise two independent samples, one from an incident cohort
study and the other from a prevalent cohort study with follow-up. There are drawbacks to each of these two
types of study when viewed separately. Briefly, pure incident cohort studies require lengthy follow-up, first
to capture a sufficient number of incident events and thereafter, to capture a sufficient number of un-
censored failure times. Often cost and logistical constraints preclude extensive follow-up and consequently,
the NPMLE of the survivor function is left undefined for a large part of its support. Prevalent cohort studies
with follow-up suffer less from these drawbacks since failure intervals are by definition, intercepted
“midstream” at the start of follow-up. Moreover, even with restricted follow-up, increasing the sample size
of the initial cohort will lead to improved coverage of the support of the targeted survivor function; there is
improved coverage because there is no constraint on the initiation dates of those entering the initial
prevalent cohort. On the other hand, since the subjects who comprise the prevalent cohort are determined
by screening a larger cohort cross-sectionally, their observed failure times are subject to left-truncation and
biased. They are therefore, not representative of the underlying survival distribution. Although the
observed failure times from a general prevalent cohort study with follow-up are biased, we reserve the
expression length-biased for the particular setting in which the underlying incidence process is a stationary
Poisson point process [12]. Under general left truncation, the TJW estimator, can sometimes yield visibly
poor estimates of the survivor function, when used for data collected in a pure prevalent cohort study with
follow-up [14, 15]

Exploiting the respective advantages of these two types of study, Wolfson et al. show that combining these
data can have considerable benefit in the arbitrary truncation distribution model [15]. Importantly, the TJW
estimator is the NPMLE and its asymptotic properties may be established in this combined setting [16].
However, when a uniform truncation distribution may be assumed (that is, “under stationarity”) in the
combined cohort setting, the NPMLE is not simply the NPMLE obtained from a pure prevalent cohort study with
follow-up by setting some of the truncation times equal to zero. These zero-truncation times are not consistent
with their assumed uniformity. A non-parametric estimator of the survivor function may nevertheless, be
obtained [17, 18]. Unfortunately, there is a major drawback to non-parametric estimation under stationarity in
this setting; the asymptotic properties of the NPMLE under random informative censoring are unknown and
remain an open problem (see [19], Problem 6.4).

In this article, under stationarity, we therefore propose the use of parametric models for the survivor
function with combined data. Although the use of parametric models means a loss of model robustness, we
show in this article that this drawback is offset by the availability of distributional properties for our parametric
estimators. This viewpoint is supported to some extent by Miller who compares the performance of common
failure time parametric survival models to the Kaplan-Meier estimator [20]. We establish consistency and
asymptotic Normality of the MLEs. We note that the estimators are not functions of identically distributed
random variables since one set is length-biased (from the prevalent cohort) and the other is not (from the
incident cohort). Further, we do not impose any structure for the onset process of the incident cases. Imposing
a structure on the onset process for the incident cases may be a restriction which we wish to avoid in a meta-
analysis. A further complication is that the failure times from the prevalent cohort are informatively censored
while those from the incident cohort are non-informatively censored. Consequently, derivation of the as-
ymptotics requires some care.



DE GRUYTER J. McVittie et al.: Data from an incident cohort study and a prevalent cohort study —— 285

Several authors have considered scenarios that allow for a combination of incident and prevalent
cohort failure time data, under various stationarity assumptions. In the field of geology, Laslett proposed
a procedure for estimating the bivariate distribution function of lengths and angles of different types of
cracks in an observed rock face [21]. Subsequently, Wijers and van der Laan considered Laslett’s esti-
mator in the one-dimensional case and derived its associated asymptotic properties under the
assumption of an underlying stationary Poisson onset process for all initiating events, both inside and
outside a window of observation [22, 23]. In particular, the incident cases that arise in the observation
window are assumed to be generated by the same homogeneous Poisson process as to the left of the
window. We do not impose this restriction. Importantly, the setting of Wijers and van der Laan permits
only administrative censoring. This precludes the possibility of (random) censoring due to the loss of
follow-up, which is a hallmark of most medical cohort studies. Vardi proposed an EM algorithm for non-
parametric estimation of the survivor function for combined data allowing for random censoring [17]. He
was unable to assert that his estimator is the NPMLE nor was he able to establish the distributional
properties of his estimator (see [19] reference cited above). Saarela et al. considered a conditional
likelihood method for making inferences about the incidence rate using combined cohort data [24].
However, their goal was entirely different from ours. They used simulations to compare their methods to
analyses based on prevalent cases only.

The remainder of the article is laid out as follows. In Section 2, we define the notation for combined cohort
failure time data. We give the joint likelihood function in Section 3 and state the main theorem on the
consistency and asymptotic Normality of the MLE under certain regularity conditions (a detailed proofis given
in the Supplementary materials). Through simulations we examine how the performance of the combined
cohort MLE varies when the proportion of incident and prevalent cohort subsample sizes change while the
grand sample size remains fixed, as well as when the chosen parametric model is misspecified. In Section 5, we
apply our methods to estimate the durations of stays in a Montreal area hospital. Section 6 contains some
concluding remarks.

2 Notation

To construct the combined likelihood function, we begin by defining the data that arise from the contributing
incident and prevalent cohorts separately. We assume that all failure intervals of interest begin with initiation
times (or dates), which for simplicity of exposition we shall call onset times (dates). Failure intervals will then
be taken to be “disease” durations.

Let T denote the underlying failure time random variable with parametric density function fy (-; @) and
parametric survivor function Sy (-; 8). An incident cohort comprises a cohort of subjects who are determined to
be disease-free at some time origin, and who are followed for a fixed period of time. In this time period, some of
the subjects (called incident cases) will experience disease onset and by the end of the study, some of these
incident cases will either yield fully observed or randomly right-censored failure times. We shall assume that
there is no cohort effect so that the dates of disease onset play no role other than in the determination of the
fully observed or right-censored disease durations; thus, in the incident cohort we shall allow the incidence
process to be arbitrary. Let C be the underlying incident cohort censoring random variable with non-parametric
probability density function and survivor function, f¢ (-) and S¢ (-), respectively. Let n onsets occur in the study
period and fori € {1, 2, ..., n}, let the observed data consist of the pairs (X;, §;) = (min(T;, C;), §;) where 6; = 1 if
T; < C; and O otherwise fori e {1, 2, ..., n}.

For the prevalent cohort, let Z; denote the onset date of subject j for j € {1,2, ..., k}. We note, in
advance, that only a subset of these k onset dates will be observed, being the onset dates of those who
comprise the prevalent cohort. Without loss of generality, we assume the start date of follow-up of those
with prevalent disease is a fixed constant R. We call this prevalence day. This setup is easily extended to
one that allows for staggered entry of the prevalent cases. We also assume that {Z,j = 1,2, ..., k} arise
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from a stationary Poisson process. We define the truncation times ]lj =R -Z; forj € {1,2,...,k}. The
truncation times are therefore independently and uniformly distributed on every fixed interval [a,R). Let
T, Ty, ..., T¢ be the ii.d. failure times of all those with onset dates prior to R. We assume that
T ~fu(;0), E(T]) = u(0), and that subject i is recruited into the prevalent cohort if T} > A;. We denote
the left-truncation time of subject i, who is recruited into the prevalent cohort, by A; and the residual
life time of this subject by B; for i € {1, 2, ..., m} where m < k. The A;s and B;s are equivalent, respectively,
to the backward and forward recurrence times of renewal theory. Note that the A;s are not uniformly
distributed as they form a selected subset of the uniformly distributed A;s. We further assume that each
B;, i € {1,2,...,m} is subject to potential random right-censoring by the random variable C; with non-
parametric density function and survivor function, f¢-(-) and Sc- (-), respectively. Thus, the observed
prevalent cohort is comprised of m i.i.d. triples of random variables (X}, A;, §;) = (min(B;, C}), 4, 6;) where
67 = 1if B; < (i and O otherwise where the observed failure/censoring times are given by ¥; = Xj + A; forj e
{1,2,...,m}

We denote the total sample size of the incident and prevalent cohorts by | = n+m. Let y; for je{1, 2, ..., [} be
the deterministic indicator function denoting whether the observed jth failure/censoring time belongs to the
incident or prevalent cohort subsample. The combined cohort is thus comprised of I independent but not
identically distributed quadruples of observations (Xjy+X;(1-y)), 6;y;+6;(1-y;), Aj(1-y)), y;) where y; = 1 if
observation j is from the incident cohort and O otherwise, for je{1, 2, ..., I}. For a graphical representation of the
observed cohort data, see Figure 1.

3 Estimation

For ni.i.d. observations from an incident cohort alone, under the assumption of non-informative random right-
censoring, the likelihood function for 0 is given by

n
I 5; 1-6;
Z1(0) o [1f (x5 0)S;™ (x:5 0) m
i=1
Incident Cohort
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or—X
o———o0
o—X
o—0
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Subsample Figure 1: A graphical representation of a sample of
combined incident and prevalent cohort right-censored
& 0 failure time data. The filled circles represent the onset
” dates, the open circles represent the calendar dates of
[ X .
censoring and the crosses represent the calendar dates
® o of failure. The incident cohort subsample consists of
\
failure/censoring times with onset after prevalence day.
The prevalent cohort subsample consists of failure
o—1T——X P L . P X /
censoring times for which onset occurs prior to preva-
lence day where the associated (potentially unobserved)

Prevalence Day End of Study failure time surpasses prevalence day.
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To ensure Eq. (1) yields an MLE of @ contained in the parameter space 0, we assume that not all n obser-
vations are censored. Studies with short follow-up may yield a high proportion of censored incident cases,
which can be problematic for inference based on purely incident cohort data. However, under stationarity,
the censoring mechanism is informative for a cohort of purely prevalent cohort data and the censored
observations provide direct information on the failure time distribution beyond the information that failure
would have occurred after them. Therefore, allowing for the addition of prevalent cases in the observed
sample helps alleviate this problem. Under stationarity, for a pure prevalent cohort, the likelihood for 0 is
given by

& m f 5; (yi; 0)556; (y,-; 9)
Zp(0) ]q £ (6) @

where p(0) = [ :xfu (x; @)dx [13].

It is worth noting that the likelihood given in Eq. (2) does not require knowledge of the individual
backward/forward recurrence times unlike the case of general left truncation [10], and estimation can be based
solely on their sum. Under the assumption of between-subject independence in the combined cohort, the joint
likelihood function, -#¢, can be expressed as the product of the likelihoods given in Eq. (1) and Eq. (2), yielding:

Zc(0)=21(0)x Lp(0)

0 m £ (v 0)S (v.- €)
oc]_[fg" (Xi;g)sb_&i (Xi;e)l_[fu (y],G)SU (yl’o)
i1 j1 u(0)

We denote the MLEs, obtained through maximization of Egs. (1)-(3) using the incident, prevalent and com-

bined cohort data, respectively, by 8;, 8 and 8. As the sample data in the incident and prevalent cohorts arise
from different sampling schemes, it follows immediately that the three proposed estimators are distinct. For
pure incident and pure (identically distributed) prevalent cohort failure time data, it has been shown that the
respective MLEs for 0 are both consistent and asymptotically Normally distributed [8, 13, 25]. However, in the
combined cohort, the data do not arise from a single sampling scheme and are not identically distributed. We
extend the “pure cohort asymptotic properties” of the parametric MLE to the combined cohort case through
Theorem 1.

Theorem 1. Let the underlying absolutely continuous failure time distribution function be given by F (- ; 8y) where
0, € © c R¥. Let @C denote the MLE of 0, obtained by maximization of Equation (3). Let T (8,) be some positive
definite matrix. Then, as n+m—oo

W 8560 ,
Q) Virm@c - 00)%.1(0,T1(0,))

Proof. Refer to the Supplementary materials. [

Remark: Following [26] and appealing to the law of large numbers,

2
1:(90) = —a]E(dd? [51' 10g(fU (Xis 00)) + (1-6;)log (Sy (Xi; 90))])
0
d2
—(1-—anE<55;[s;log<fb(¥3;eo))+(1-5;)log(su(yv;eo»]) )
0

dZ
+(1- a)(ﬁlog (V(eo)))
0

where a is the limiting proportion of the number of incident cases to the total size of the combined cohort. An
empirical estimator for the asymptotic covariance matrix (i.e. the observed Fisher information) is then given by
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4 Simulations

We used simulated data sets to evaluate the performance of our parametric MLE, controlling the sample sizes
and parameter values. In each simulation, we sampled n observations from an incident cohort and m obser-
vations from a prevalent cohort allowing n and m to vary. For the incident cohort, we sampled n pairs of
Weibull distributed failure times and either constant or Exponentially distributed censoring times to corre-
spond to subjects that are either followed for a fixed period of time after enrollment into the study or subjects
that are lost to follow-up after enrollment, respectively. In the simulation studies discussed below, we specify
the type of censoring that was assumed for the data generating procedure. For each pair, we recorded the
minimum of the sampled failure and censoring times and whether the time was observed as a failure. For the
prevalent cohort, we sampled a single onset time from a Uniform distribution with support in the interval
(0,100) and then sampled a Weibull failure time which was added to the sampled onset time. If the resulting
sum was greater than 100, both the sampled onset time and failure time were retained, otherwise, both were
discarded. Weibull parameter values were chosen such that the implicit right-truncation of the failure times at
100 was negligible. This procedure was repeated until m pairs of (onset, failure time) data were obtained. For
each sampled pair, we censored the forward recurrence time indepenently by either a fixed constant (corresponding
to a fixed follow-up period) or by a random Exponentially distributed censoring time (corresponding to potential
loss to follow-up). We recorded the triples made up of the onset time, the minimum of the forward censoring and
forward failure time and whether the observation was a failure time. From the observed triples, the failure/
censoring lengths were calculated by summing the backward recurrence times (i.e. 100- sampled onset times) and
the forward failure/censoring times. We obtained a simulated combined cohort by concatenating the incident
and prevalent cohort data sets as well as setting an additional variable to indicate whether the datum entry
was an incident or prevalent cohort observation. These simulations were used to highlight, empirically, the
following three assertions about the combined cohort parametric MLE:

(1) In a meta-analysis, perhaps obviously, when individual subject level data are available from two inde-
pendent cohort studies of different types, the combined cohort parametric MLE will have a smaller
standard error than the individual cohort parametric MLEs.

(2) Inacombined cohort study with fixed total sample size and short follow-up, resulting in one cohort being
heavily censored and the other being lightly to moderately censored, the standard error of the parametric
MLE using data from both types of cohort will be smaller than the standard error of the same estimator
when applied to data retrieved from only a single cohort of the same sample size.

(3) The combined cohort estimator may be robust against misspecification of the parametric model.

We consider the simulation results pertaining to each of the above statements in order.

Since there is no analytical method for comparing the relative magnitudes of the asymptotic covariance
matrices of the individual and combined cohort parametric estimators, we compared the efficiency of the MLEs
empirically using simulated individual cohort failure time data with sample sizes of 250 and 500 over 1000
simulation runs. In the combined cohort case, for each sample size, we used all available incident and
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prevalent cohort data (i.e. 250/250 or 500/500). We used different Exponential censoring distributions to vary
the censoring proportion between 30, 50 and 70%. We estimated the Weibull distribution parameters for each
of the 1000 simulation runs and computed the sample covariance matrix of the estimates. We then computed
the determinant of the sample covariance matrix to obtain the generalized variance of the parameter pair
estimators [27]. We allowed the failure time parameters to vary to allow for increasing or decreasing hazard
functions. We list the ratios of the generalized variances of the combined cohort estimators to the generalized
variances of the individual cohort estimators in Table 1. Based on the ratios in Table 1, combining data from
both the incident and prevalent cohorts yields a clear improvement in the magnitude of the generalized
variance. Since in the incident cohort we make the standard assumption of non-informative censoring, we find
that as the censoring percentage increases, the ratio of generalized variances of the combined cohort para-
metric MLE to the incident cohort parametric MLE decreases. In contrast, because censoring is informative in
the prevalent cohort, we find that as the censoring percentage increases, the ratio of the generalized variances
of the combined cohort parametric MLE to the prevalent cohort parametric MLE increases. These results show
that the combined cohort parametric estimator inherits the non-informative or informative censoring prop-
erties of the incident or prevalent cohort cases, respectively. Similar results are presented for the case when the
censoring percentages are allowed to vary between cohorts (see Tables 1 and 2 in the Supplementary materials).

When it is feasible to include cases from both prevalent and incident cohort studies with fixed follow-up
periods, consideration must be given to the optimal proportions of each cohort type. We set a fixed grand
sample size of 500 observations and varied the prevalent/incident subsample sizes in increments of 50
observations each. We considered the setting in which all enrolled subjects had the same follow-up period
measured either from prevalence day or from the time of enrollment for the prevalent or incident cases,
respectively. This assumption yielded failure time data that were only administratively censored by the end
date of the follow-up period. The parameters of the failure time distribution were set to allow for either
increasing or decreasing hazard functions, respectively. Under the assumption of an increasing hazard
function, approximately 70% of the incident cases were censored. In contrast, the prevalent cases were only
lightly to moderately censored. However, under the assumption of a decreasing hazard function, approxi-
mately 70% of the prevalent cases were censored with incident cases being lightly to moderately censored. We
computed the generalized variances of the parameter estimates over 1000 simulation runs and plotted the
ratios of the generalized variances of the MLE obtained from combined cohorts of size 500 relative to
the generalized variances obtained from a pure incident cohort of size 500 in Figure 2. From the convexity of
the ratio plots, we find that when the incident cohort is heavily censored (increasing hazard setting) or when
the prevalent cohort is heavily censored (decreasing hazard setting) there appears to be an optimal proportion
of incident to prevalent cohort cases. For example, in the increasing hazard setting, the optimal proportion is
roughly 100 incident cases to 400 prevalent cases. When the follow-up periods for the individual cohorts are

Table 1: Ratios of the generalized variance for the maximum likelihood parameter estimates of the combined cohort parametric
estimators relative to the individual cohort parametric estimators over 1000 simulation runs for varying sample sizes. Failure
times were generated from a Weibull distribution (increasing/decreasing hazard) with random censoring times generated from an
Exponential distribution.

Censoring percentage

Failure time distribution Sample sizes Cohort ratio type 30% 50% 70%
Weibull (2,2) 500/250 Combined/Incident 0.627 0.516 0.382
(Increasing hazard) Combined/Prevalent 0.901 0.915 1.00
1000/500 Combined/Incident 0.694 0.568 0.378

Combined/Prevalent 0.853 0.842 0.895

Weibull (0.5, 1) 500/250 Combined/Incident 0.217 0.123 0.0536
(Decreasing hazard) Combined/Prevalent 0.482 0.482 0.525
1000/500 Combined/Incident 0.237 0.135 0.0606

Combined/Prevalent 0.534 0.567 0.631




290 —— . McVittie et al.: Data from an incident cohort study and a prevalent cohort study DE GRUYTER

Table 2: Mean supnorm distances of the estimated survival curves from the true survival curves for

combined cohort data using parametric maximum likelihood estimates over 1000 simulation runs. The
individual cohort sample sizes were 500 each where the underlying failure times were i.i.d. according to
a Weibull distribution with an Exponential censoring distribution. The three combined cohort models
assumed either Weibull (Comb.1), Gamma (Comb.2) or log-Normal (Comb.3) failure time distributions.

Censoring percentage

Estimator type 30% 50% 70%
Weibull shape 2.0 scale 2.0 (increasing hazard)

Comb.1 0.0104 0.0112 0.0125
Comb.2 0.0355 0.0370 0.0408
Comb.3 0.0820 0.0863 0.0963
Weibull shape 0.5 scale 1.0 (decreasing hazard)

Comb.1 0.0103 0.0108 0.0118
Comb.2 0.0803 0.0869 0.0993
Comb.3 0.145 0.156 0.179
Weibull shape 1.0 scale 2.0 (constant hazard)

Comb.1 0.0101 0.0107 0.0118
Comb.2 0.0101 0.0106 0.0114
Comb.3 0.104 0.110 0.126

different, resulting in equal censoring percentages, the optimal proportion of incident to prevalent cases
appears to be roughly one half (for further details, see Figure 1 of the Supplementary materials). Similarly
shaped ratio curves were obtained when the censoring times were randomly generated and not fixed con-
stants. In general, the convexity of the ratio curves show that there are improvements to the overall parametric
estimation procedure, aside from the obvious increase in total sample size (as in Table 1), when combining
independent samples of incident and prevalent cohort failure time data.

To assess the impact of a misspecified parametric model, we generated combined cohort samples of size
1000 (500/500 prevalent/incident cases) for which the underlying failure times were distributed according to a
Weibull distribution with either increasing or decreasing hazard. We fit the combined cohort parametric MLE
assuming that the failure times arose from either Weibull, Gamma and log-Normal distributions. For each of
these parametric models, we computed the absolute maximum distance between the estimated survivor
function and true survivor function for which we averaged the computed distances over 1000 simulation runs,
respectively. The simulation results in Table 2 suggest that the MLE in the combined cohort accommodates a

Increasing Hazard Function Decreasing Hazard Function Figure 2: Ratios of the
generalized variances of the
maximum likelihood

— parameter estimates for
combined cohort data relative
to pure incident cohort data
= over 1000 simulation runs for
varying individual cohort
sample sizes. Failure times
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T T T T T T
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administrative incident/
forward censoring times for
the individual cohorts,
respectively.
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misspecified Gamma model quite well but not so well for a log-Normal model. In practice, as will be seen in
Section 5, the parametric model should be selected with care.

5 Application

Hospital stay durations may be used as a measure of a hospital’s efficiency in treating patients after accounting
for ‘case-mix’ or variation in types and severity of illnesses. Hence, they could be used to direct the future
management decisions of various hospital services by hospital administrators or policy makers [28]. We drew
on duration-of-stay records from a Montreal area hospital that provided data under the Population Health
Records platform project at McGill University [29]. This platform links data from administrative sources,
clinical records as well as responses from surveys and then provides a system to access this data in an attempt
to monitor the health of a specific population. Our data consisted of a subset of duration-of-stay records that
had been collected over a period of approximately 17 years. For reasons of confidentiality, the hospital cannot
be identified. For brevity, we shall refer to the hospital as the “PopHR hospital”. The true admission/discharge
dates were anonymized on a day-length integer scale where even the start date of the 17 year observation
window was not divulged. Using a small subset of this data, our goal was to estimate the distribution of the
duration of stays in the PopHR hospital. An individual’s duration was measured from the date of admission to
the date of discharge or death. Admissions to the hospital based on scheduled surgeries, childbirth or between
hospital/ward transfers were not included in the data. Admission and discharge dates that were less than 24 h
apart were also not included. We considered two observation windows of approximately 15 days in length,
measured from days 800-815 (165 incident/69 prevalent cases) and 1165-1180 (151 incident/84 prevalent
cases), respectively. In the earlier window, approximately 40 and 44% of the incident and prevalent cohort
subject failure times were censored, respectively. Similarly, in the later window, approximately 38 and 34% of
the incident and prevalent cohort subject failure times were censored, respectively.

Using the earlier window of observations as an independent training data set, we fit Weibull, Gamma and log-
Normal parametric models. As we observed the admission dates for the entire 17 year observation window, we were
able to check for uniformity in the onset dates using graphical methods. We found no reason to doubt the
stationarity assumption of the onset dates. We remark that it is even possible to check for stationarity using
prevalent cohort data, where the underlying onset process is not fully observed (see [30, 31]). Using the separate
incident and prevalent cohort data, we compared the parametric survival function estimates based on the Weibull,
Gamma and log-Normal distributions, to their respective non-parametric estimates by calculating the supnorm
distances between them. We selected the log-Normal parametric model as it yielded small supnorm distances for
the separate cohorts. Using the log-Normal distribution, we then found separate cohort estimates from the data
observed in the second observation window. The (parametrically and non-parametrically) estimated survivor
functions from the individual cohorts are displayed, along with the parametrically estimated survivor function
obtained by combining the separate cohort data, in Figure 3. Since the observation window was restricted to
15 days, the Kaplan-Meier estimate in the left panel of Figure 3 is not defined past 15 days. In contrast, the NPMLE of
the survival function using only the prevalent cohort data is defined past the 15 day mark as the data consists of
longer time durations which were cross-sectionally sampled. Under the log-Normal parametric model, we found
that the median time from admission to discharge was approximately 4-5 days using the incident cohort data, and
approximately 5-7 days using either the prevalent or combined cohort data. The parametrically estimated survivor
function using the combined cohort data appeared to incorporate the features of the individual cohort estimates by
fitting closely to the estimated incident cohort survivor curve for shorter times (<8 days) and then fitting closely to
the estimated prevalent cohort survivor curve for longer times (>20 days). The combined cohort estimated survivor
curve tends to always be between the individual cohort estimated survivor curves.
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6 Discussion

We use a parametric model in the combined survival data setting of this article because the asymptotic
properties of the NPMLE of the survivor function remain unestablished at this time. Moreover, we believe that a
careful choice of parametric model can provide a good practical alternative to non-parametric estimation.
Combining incident and prevalent cohort data can have benefits in at least four different ways: (i) Even
relatively few incident cases can considerably enhance the inference when added to a prevalent cohort that has
been followed up (see Table 1). (ii) Conversely, adding a few cases from a prevalent cohort study with follow-up
can considerably enhance the inference from a pure incident cohort, particularly when study follow-up is short
(see Figure 2). (iii) In recent years, many funding agencies and journals have required researchers to make their
subject-level data widely available. Consequently, individual participant data meta-analyses that are able to
use full study data are becoming more common [32]. Such meta analyses of survival data could be based on the
union of data from incident cohort studies and data from prevalent cohort studies with follow-up. (iv) In a
single study, although the original intent may not have been to combine the two types of data, it is clear that
increasing the sample size by combining these data (if available) should increase the efficiency of the
parameter estimators. For a study in which both types of data were collected and where no single unified
analysis was carried out, see [33].

We were able to show empirically that, under certain parameter and censoring combinations, the ratios of
the generalized variances of the combined cohort parametric estimator to the generalized variance derived
from a pure incident cohort, was convex. This suggests that the optimal proportion of prevalent-to-incident
cases occurs at the minimum. However, this ratio depends on the very parameters one is attempting to
estimate. Therefore, one would need rough parameter estimates when designing a future study with intent to
use both prevalent and incident cohorts.
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