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Abstract

Let Γ be a discrete subgroup of PSL(2,R), and consider closed geodesics on Γ\H. In this

thesis, we study how these geodesics intersect when Γ is the group of units of norm 1 in an

Eichler order of an indefinite quaternion algebra over Q, i.e. over a Shimura curve. We start

by developing some theory for a general Γ, providing a pathway to interpret the geometry

of the situation (intersection point, angle, etc.) in terms of the algebra of Γ. The next focus

is on Γ = PSL(2,Z), where we relate the work to Conway’s topograph, as well as work

by Duke, Imamoḡlu, and Tóth on the linking number of modular knots. We then detail

some background on quaternion algebras, before diving in to the Shimura curve case. We re-

interpret intersection numbers in terms of x−linking of optimal embeddings of real quadratic

orders, and produce formulas which count the total amount of x−linking in a given Eichler

order. These formulas are essentially a real quadratic analogue to classical results of Gross

and Zagier. We define Hecke operators acting on optimal embeddings, and using the signed

intersection pairing, produce formal q−series, which are proven to be weight two modular

forms on Γ0(N). The thesis is concluded with a conjectural relation to work of Darmon and

Vonk on a real quadratic analogue to the difference of j−values, a brief description of the

practical algorithms used to compute with intersection numbers, and a short survey of future

projects.
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Abrégé

Soit Γ un sous-groupe discret de PSL(2,R), et considérons les géodésiques fermées sur Γ\H.

Dans cette thèse, nous étudions comment ces géodésiques s’intersectent lorsque Γ est le

groupe des unités de norme 1 dans un ordre d’Eichler d’une algèbre de quaternions indéfinie

sur Q, c’est-à-dire sur une courbe de Shimura. Nous commençons par développer la théorie

pour un groupe Γ général, fournissant un moyen d’interpréter la géométrie de la situation

(points d’intersection, angle, etc.) en termes de l’algèbre de Γ. L’accent est ensuite mis sur

Γ = PSL(2,Z), où nous relions notre travail au topographe de Conway, ainsi qu’aux travaux

de Duke, Imamoḡlu et Tóth sur le nombre de liaison de nœuds modulaires. Nous détaillons

ensuite quelques informations sur les algèbres de quaternions, avant de nous plonger dans

le cas des courbes de Shimura. Nous réinterprétons les nombres d’intersections en termes de

x−liaisons de plongements optimaux d’ordres quadratiques réels, et produisons des formules

qui comptent le nombre total de x−liaison dans un ordre d’Eichler donné. Ces formules sont

essentiellement un analogue quadratique réel des résultats classiques de Gross et Zagier.

Nous définissons des opérateurs de Hecke agissant sur des plongements optimaux, et en util-

isant l’appariement d’intersection signé, nous produisons des séries de puissance formelles,

que nous prouvons sont des formes modulaires de poids deux sur Γ0(N). La thèse se ter-

mine par une relation conjecturale avec les travaux de Darmon et Vonk sur un analogue

quadratique réel de la différence de valeurs de la fonction j, une brève description des al-

gorithmes pratiques utilisés pour calculer les nombres d’intersections, et un bref aperçu de

futurs projets.
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Chapter 1

Introduction

Let Γ be a Fuchsian group, i.e. a discrete subgroup of PSL(2,R). The action of Γ on the

upper half plane H turns the quotient space Γ\H into a Riemann surface, which links the

arithmetic world with the geometric world. Closed geodesics of Γ\H arise from hyperbolic

conjugacy classes in Γ, and are a classical object of study (for example, their distribution in

the case of Γ = PSL(2,Z) is studied in [Duk88]). In this thesis, we will examine how pairs

of these closed geodesics intersect, with the main focus being when Γ\H is a Shimura curve.

In Chapter 2, we introduce the foundations for studying intersection numbers of closed

geodesics. We produce general results that transfer the geometry of closed geodesics of Γ\H
into the algebra of Γ.

Chapter 3 concerns the case of Γ = PSL(2,Z). These intersection numbers directly cor-

respond to linking numbers of modular knots in the space SL(2,Z)\ SL(2,R), as studied

by Duke, Imamoḡlu, and Tóth in [DIT17]. Using the connection between indefinite binary

quadratic forms and hyperbolic matrices, we rephrase our results in terms of indefinite bi-

nary quadratic forms. By finding an interpretation of the intersection number in terms of

Conway’s topograph, we produce an efficient algorithm to compute the intersection number.

In Chapter 4, we introduce the quaternionic background required to study intersection

numbers for Shimura curves. The geometry of closed geodesics is replaced by the algebra of

optimal embeddings, and we describe the structure of the embeddings. Optimal embeddings

have been studied before (for example, see [Voi21]), but we go more in depth with regards to

explicitly describing orientations of optimal embeddings and the action of the class group.

2



Chapter 1 – Introduction

Chapter 5 is where we apply the results of Chapter 2 to the language of Shimura curves,

setting the stage for the rest of the thesis. Theorem 5.1.4 is the key theorem that allows us

to switch between hyperbolic geometry and algebra.

Chapter 6 studies x−linking, which is intrinsically related to intersecting geodesics, via

the aformentioned Theorem 5.1.4. Instead of focusing on one Eichler order, we fix a pair

of embeddings and consider the set of Eichler orders which they embed optimally into. By

using the local-global principle, we are able to characterize this setup and count the Eichler

orders. The main theorem of this section is Theorem 6.6.5, which gives the count.

In Chapter 7, we invert backwards to focusing on one Eichler order. Given a pair of pos-

itive discriminants D1, D2 and an Eichler order O, in Theorem 7.1.2 we compute how many

x−linked optimal embeddings of discriminants D1, D2 into O exist. We also consider how

they divide amongst orientations, and briefly consider how they distribute across the equiv-

alence classes of optimal embeddings. The formulae in Theorem 7.1.2 are a real quadratic

analogue of a result of Gross and Zagier relating to the factorization of the differences of

singular moduli (Proposition 6.1 of [GZ85]). We finish the chapter with explicit examples,

demonstrating the results.

Chapter 8 defines Hecke operators on optimal embeddings, and the corresponding inter-

section power series. We study in detail how the Hecke operator acts, by considering the

weights and discriminants of the resulting forms. The resulting prime power Hecke graphs in

Section provide a very nice visual component to the study. Next, we show that the Hecke op-

erators respect passing from optimal embeddings to root geodesics to quaternionic modular

forms (via Eichler-Shimura). Using Jacquet-Langlands, we can pass to weight two cuspforms

on Γ0(N), and thus prove in Theorem 8.0.4 that the series we constructed are in fact classical

modular forms. We provide several explicit examples as illustration.

Chapter 9 introduces the work of Darmon and Vonk ([DV20]) on a real quadratic analogue

to the difference of j-values. We make a conjectural connection between their work and

p−weighted intersection numbers for Shimura curves. The motivation for the connection is

the work of Gross and Zagier, where the factorization of j(τ1)− j(τ2) can be interpreted as a

quaternionic intersection involving the quaternion algebra ramified at p,∞. In the setup of

Darmon and Vonk, there are now two primes p, q, so the analogue would be intersections in

3



Chapter 1 – Introduction

the (indefinite) quaternion algebra ramified at p, q. We give a numerical example as evidence

(for more examples, see [DV20]).

Chapter 10 covers some algorithms used in the computation and study of intersection

numbers. In particular, we have three distinct ways to compute the intersection number, and

we compare the efficiency of the three methods.

Chapter 11 covers some future projects relating to this thesis that I plan to undertake.

One of the projects is a conjectural approach to remove the cohomology from the work of

Darmon and Vonk described in Chapter 9.

Finally, the appendix contains several proofs which do not fit well into the main text. We

detail explicit conditions for a general Pell’s equation to have a solution over Zp, and give

proofs of a number of results for p = 2 (the corresponding proofs for p odd are found in the

main text).
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Chapter 2

Closed geodesics and intersection

numbers

Let H := H∪R∪ i∞ be the upper half plane with its boundary. For z1, z2 ∈ H, the oriented

hyperbolic geodesic segment connecting z1, z2 is either a vertical line segment between z1

and z2, or the segment between z1 and z2 of the unique circle with centre on the real line

which passes through z1 and z2. Denote this segment by `z1,z2 , where we do not include the

endpoints z1, z2. The orientation comes from labeling the start point of the geodesic to be

z1, and the end point to be z2. We are implicitly taking all geodesics to be oriented. Define

˙̀
z1,z2 to mean `z1,z2 ∪ {z1}, and ῭

z1,z2 to mean `z1,z2 ∪ {z1, z2}.
Recall that Möbius maps act on H and H, and they take geodesic segments to geodesic

segments. In particular, if γ ∈ SL(2,Z) and z1, z2 ∈ H, then we have

γ(`z1,z2) = `γz1,γz2 .

When working explicitly with hyperbolic matrices in PSL(2,R), we need to lift them to

SL(2,R). By convention, we will always take the lift with positive trace.

2.1 Roots of hyperbolic matrices

Let γ = ( a bc d ) ∈ PSL(2,R) be a hyperbolic matrix, so that the equation γ(x) = x has two

distinct real solutions called roots. We label one root to be the first (attracting) root γf , and

5



Chapter 2 – Closed geodesics and intersection numbers

the other to be the second (repelling) root γs, via the equations

lim
n→∞

γn(x) := γf , lim
n→∞

γ−n(x) := γs,

for any x ∈ P1(R) that is not a root of γ. In particular, γ−1 has the same roots as γ, but

with the first and second roots swapped. We can algebraically express the first root as

γf =



a− d+
√

(a+ d)2 − 4

2c
, if c 6= 0;

∞, if c = 0 and a > 1;

b

d− a, if c = 0 and a < 1.

If σ ∈ PSL(2,R), then σγσ−1 has roots σ(γf ), σ(γs). It follows from the definition that

the “firstness” of γf is preserved, i.e.

(σγσ−1)f = σ(γf ), (σγσ−1)s = σ(γs).

As we will typically be working with conjugacy classes of elements, we write γ1 ∼ γ2 if γ1, γ2

are Γ−conjugate. Write [γ1] for the conjugacy class of γ1.

2.2 Closed geodesics

Define a closed geodesic of Γ\H to be a closed path that lifts to a geodesic in H. The geodesic

is said to be prime if it traces out its image exactly once. To construct closed prime geodesics,

start with a primitive hyperbolic element γ ∈ Γ (so that γ 6= σn for any σ ∈ Γ, n ≥ 2).

Define the root geodesic of γ to be the upper half plane oriented geodesic running from γs

to γf , i.e.

`γ := `γs,γf .

In particular, the root geodesic of γ−1 coincides with the root geodesic for γ, but is run in

reverse.

Since γ fixes γs, γf , γ fixes the geodesic `γ. For any x ∈ `γ, the geodesic ˙̀
x,γx will thus

descend to a closed geodesic in Γ\H, which is prime since γ is primitive. Define this closed

geodesic to be ˜̀
γ; the image of `γ runs over ˜̀

γ continuously. Furthermore, note that ˜̀
γ is

constant across the Γ−conjugacy class of γ. If `1, `2 are root geodesics, we write `1 ∼ `2 if

`1 = σ(`2) for some σ ∈ Γ, and we call them similar geodesics.

6



Chapter 2 – Closed geodesics and intersection numbers

Proposition 2.2.1. The map γ → ˜̀
γ gives a bijection between prime closed geodesics on

Γ\H and primitive hyperbolic conjugacy classes of Γ.

Proof. We already have the map from primitive hyperbolic conjugacy classes to prime closed

geodesics via taking γ → ˜̀
γ for any γ in the conjugacy class. To go the other way, start with

a prime geodesic ` and lift it to ˙̀
x,y for some x, y ∈ H. Let the full extension of this geodesic

in H be `x′,y′ , where x′, y′ ∈ P1(R). As we started with a closed geodesic, we necessarily

have y = γx for some γ ∈ Γ. Furthermore, if we lift ` to start at γx, it will lift `γx,γ2x,

which is also on `x′, y′. In particular, γ fixes the geodesic `x′,y′ and does not change the

orientation, whence x′, y′ are the second and first roots of γ respectively. This implies that

γ is a hyperbolic element of Γ. If γ were not primitive, then γ = σn, and ` would trace out

the path ˜̀
σ n times, and would not be prime.

It is a straightforward check that maps are inverse to each other, and the bijection

follows.

The curve ˜̀
γ can have self-intersection points, hence it is important to consider a point

on ˜̀
γ as lying on the curve, and not just in Γ\H.

Since we will be studying intersections of geodesics, it is important to take into account

the orientations of the geodesics at intersections. To this aim, we define the sign of an

intersection (which is not completely canonical, as one could negate the definition).

Definition 2.2.2. Let y1, y2, z1, z2 ∈ P1(R) be such that `1 = `y1,y2 and `2 = `z1,z2 are

geodesics that intersect transversely in the upper half plane. Travel along `1 from y1 to y2,

and consider which side z1 lies on. If it is on the right hand side of `1, then the sign of the

ordered intersection of `1, `2, denoted sg(`1, `2), is +1. Otherwise, the sign is −1.

It is important to check that this definition of sign has well-founded properties. To this

end, we have the following proposition.

Proposition 2.2.3. Let `1, `2 be geodesics that intersect in a unique point in the upper half

plane, and let `−1
1 denote the geodesic `1 run backwards. Then

sg(`1, `2) = − sg(`2, `1) = − sg(`−1
1 , `2),

7



Chapter 2 – Closed geodesics and intersection numbers

i.e. swapping the order of the inputs or traveling along one of the geodesics backwards negates

the sign. Furthermore, if γ ∈ PSL(2,R), then

sg(`1, `2) = sg(γ`1, γ`2).

Proof. The first result is immediate from the definition of the sign. It suffices to check the

second half for the matrices S = ( 0 1
−1 0 ) and Tx = ( 1 x

0 1 ) for x ∈ R, as these matrices generate

PSL(2,R). This is straightforward.

2.3 The intersection number

For γ1, γ2 ∈ Γ primitive and hyperbolic, the geodesics ˜̀
γ1 and ˜̀

γ2 either intersect in finitely

many places, or completely overlap. Furthermore, they completely overlap if and only if γ1

is Γ−conjugate to either γ2 or γ−1
2 .

Definition 2.3.1. The pair γ1, γ2 ∈ Γ is called a strongly inequivalent pair if γ1 is not

conjugate to either γ2 or γ−1
2 in Γ. This concept extends to pairs of Γ-conjugacy classes of

matrices.

To get rid of issues when γ1, γ2 are not strongly inequivalent, we refer to transversal

intersections.

Definition 2.3.2. Given primitive hyperbolic matrices γ1, γ2 ∈ Γ, denote

˜̀
γ1 t ˜̀

γ2

to be the (finite) set of transversal intersections of ˜̀
γ1 and ˜̀

γ2 .

Let f be any function defined on transversal intersections. The weighted intersection

number of γ1, γ2 is defined to be

IntfΓ(γ1, γ2) :=
∑

z∈˜̀
γ1t

˜̀
γ2

f(z).

In practice, the subscript Γ will normally be dropped, as it is typically fixed and clear from

context.

8



Chapter 2 – Closed geodesics and intersection numbers

The most natural choices of f are f = 1, the unweighted intersection number , and f equals

the sign of the intersection (as defined in Definition 2.2.2), the signed intersection number .

These choices are denoted by Int(γ1, γ2) and Int±(γ1, γ2) respectively. The advantage of the

signed intersection number is it is now well defined in homology of the surface (see Section

0.4 of [GH78] for a more general discussion of the signed intersection number), whereas the

unsigned intersection number depends on the actual geodesics. However, when the genus

of Γ\H is 0, this implies that the signed intersection number is always zero! In the case of

Shimura curves, we will define a third weight function, the q−weighted intersection number

for any prime q (see below Definition 5.2.2). In Chapter 11, we will briefly explore other

weight functions.

Remark 2.3.3. To formalize Definition 2.3.2, let φ1(t) and φ2(t) for t ∈ [0, 1] parametrize

the geodesics ˜̀
γ1 and ˜̀

γ2 , respectively. Then

˜̀
γ1 t ˜̀

γ2 = {(t1, t2) ∈ [0, 1]2 : φ1(t1) = φ2(t2) and φ′1(t1), φ′2(t2) are linearly independent.}.

In particular, if γ1, γ2 are not strongly inequivalent and ˜̀
γ1 passes n times through a point on

Γ\H, then this contributes n(n− 1) transversal intersections. Similarly, if γ1, γ2 are strongly

inequivalent, then a point on Γ\H passed through m times by ˜̀
γ1 and n times by ˜̀

γ2 con-

tributes mn transversal intersections.

2.4 Alternate interpretations of the intersection num-

ber

When working with intersection numbers, lifting from the quotient space Γ\H to H makes

matters more tractable. Let γ1, γ2 be primitive hyperbolic matrices, pick any z ∈ `γ2 , and

the curve ˜̀
γ2 lifts uniquely and bijects with ˙̀

z,γ2(z). Lifting each transversal intersection

P̃ ∈ ˜̀
γ1 t ˜̀

γ2 to ˙̀
z,γ2(z) produces a unique point P ∈ `γ t ˙̀

z,γ2(z), where `γ is formed

by lifting ˜̀
γ1 locally around P̃ to P and extending this so the endpoints lie on P1(R). We

necessarily have γ ∈ Γ and γ is Γ−conjugate to γ1.

Given a pair (P, γ) satisfying these properties, it will correspond to a transverse intersec-

tion P̃ ∈ Γ\H, and this correspondence is a bijection. Therefore, we can rewrite the formula

9
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for the intersection number.

Proposition 2.4.1. Let γ1, γ2 be primitive hyperbolic matrices and z ∈ `γ2. Then

IntfΓ(γ1, γ2) =
∑
γ∼γ1

|`γt ˙̀
z,γ2z |=1

f(γ, γ2).

Let Γi := γZi be the automorph group of `γi inside Γ for i = 1, 2. Instead of the condition

that γ is conjugate to γ1, we could set γ = σγ1σ
−1 for a unique σ ∈ Γ/Γ1. Similarly,

the intersection point lying on ˙̀
z,γ2z can be lifted to `γ2 by passing to the double coset

σ ∈ Γ2\Γ/Γ1. This gives us the next interpretation.

Proposition 2.4.2 (Double coset interpretation). Let γ1, γ2 ∈ Γ be primitive hyperbolic

matrices. Then

IntfΓ(γ1, γ2) =
∑

σ̃∈Γ2\Γ/Γ1

|`σγ1σ−1∩`γ2 |=1

f(σγ1σ
−1, γ2),

where σ is any lift of σ̃ ∈ Γ2\Γ/Γ1 to Γ.

A way to rephrase the above proposition is we are looking for intersecting root geodesics

of conjugates of γ1, γ2 modulo the automorphs. A cleaner interpretation is the following

proposition.

Proposition 2.4.3. Define an equivalence relation on pairs (σ1, σ2) of primitive hyperbolic

matrices in Γ by simultaneous conjugation, i.e.

(σ1, σ2) ∼ (ασ1α
−1, ασ2α

−1),

for all α ∈ Γ. Let f be a function defined on pairs of primitive hyperbolic matrices that is

constant across a simultaneous equivalence class. Then

IntfΓ(γ1, γ2) =
∑

(σ1,σ2)∈([γ1]×[γ2])/∼
|`σ1t`σ2 |=1

f(σ1, σ2).

The interpretation found in Proposition 2.4.3 will be the most useful theoretical inter-

pretation for us. We now record one final interpretation, which is used in Section 10.3.1 to

produce an algorithm to compute intersection numbers.

10
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Proposition 2.4.4. Let γ1, γ2 ∈ Γ be primitive hyperbolic matrices, and let r ∈ P1(R) −
{γ2,f , γ2,s}. Let

S = {σ ∈ Γ : σ ∼ γ1, |`σ t `γ2| = |῭σ t ˙̀
r,γ2r| = 1},

so that S is the set of conjugates of γ1 whose closed root geodesic intersects both `γ2 and

˙̀
r,γ2r. Then

IntfΓ(γ1, γ2) =
∑
σ∈S

f(σ, γ2).

Proof. The root geodesic `γ2 divides P1(R) into two regions, and the set {γn2 r : n ∈ Z} will lie

entirely in one region. Furthermore, in thinking of P1(R) as a circle, this set will be ordered

properly (i.e. if n1 < n2 < n3, then γn1
2 r, γn2

2 r, γn3
2 r lie in that order on the circle), and will

completely partition the side since

lim
n→∞

γn2 r = γ2,f , lim
n→−∞

γn2 r = γ2,s.

Figure 2.1 demonstrates this claim when r lies outside `γ2 .

γ
2

2
(r) γ2f γ2s γ2(r)rγ

−1

2
(r)

Figure 2.1: The geodesics `γn2 r,γ
n+1
2 r

In particular, any geodesic ῭ that transversely intersects `γ2 will transversely intersect a

unique geodesic ˙̀
γn2 r,γ

n+1
2 r. This can be scaled uniquely by a power of γ2 to intersect ˙̀

r,γ2r.

The situation is analogous to in Proposition 2.4.1, and the result follows.

11
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2.5 Intersection point and angle

By lifting an intersection into the upper half plane, we get a Γ-equivalence class of points.

Furthermore, since Möbius maps preserve angles, the intersection corresponds to a unique

angle. This motivates studying the intersection point and angle of pairs of PSL(2,R) matrices.

Definition 2.5.1. For any matrix M ∈ PSL(2,R), define ZM = M − Tr(M)
2

Id to be the

unique matrix of trace 0 related to M by a multiple of the identity matrix.

As we will see later, the matrix ZM is often simpler in structure than M (for example,

consider Zγq , which is defined in Definition 3.1.1).

Theorem 2.5.2. Let M1,M2 ∈ PSL(2,R) be hyperbolic matrices with corresponding non-

overlapping root geodesics `1, `2, and let ZMi
= Zi for i = 1, 2. Then

(i) `1, `2 intersect in the upper half plane if and only if

det(M1M2 −M2M1) > 0.

(ii) We have

det(M1M2 −M2M1) = det(Z1Z2 − Z2Z1) = 4 det(Z1Z2)− (Tr(Z1Z2))2.

(iii) If `1, `2 intersect transversely in the upper half plane, then

(a) the sign of the intersection is given by

sign((M1M2 −M2M1)21) = sign((Z1Z2 − Z2Z1)21).

(b) the intersection point is the fixed point of Z1Z2 that lies in the upper half plane.

(c) the intersection angle θ (measured counterclockwise from the tangent to `1 to the

tangent to `2) satisfies

tan(θ) =

√
det(Z1Z2 − Z2Z1)

Tr(Z1Z2)
.

12
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Proof. Consider conjugating M1,M2 by some N ∈ PSL(2,R), i.e. do

Mi → NMiN
−1 for i = 1, 2.

Then `i is taken to N`i and Zi is taken to NZiN
−1. It follows that proving the theorem for

M1,M2 is equivalent to proving it for NM1N
−1, NM2N

−1, except for possibly the sign of

intersection (which will be treated in due course). Therefore we can replace M1,M2 by the

conjugated pair, and since M1,M2 are diagonalizable over R, choose N to diagonalize M2.

Thus it can be assumed that

M1 =

a b

c d

 , M2 =

e 0

0 1
e

 ,

for real numbers a, b, c, d, e, with e > 1 and ad− bc = 1. The root geodesic corresponding to

M2 is `0,∞, so the root geodesic of M1 intersects this if and only if the product of the roots of

M1 is negative. This product is −b
c

, so the geodesics intersect in the upper half plane if and

only if b
c
> 0 (which includes the hypothesis that c 6= 0). For the determinant, we calculate

det(M1M2 −M2M1) = det

 0 b(1
e
− e)

c(e− 1
e
) 0

 = bc

(
e− 1

e

)2

, (2.5.1)

Since e 6= ±1, this is positive if and only if bc > 0, which is equivalent to b
c
> 0, which is the

first part.

For the second part, as Tr(Mi)
2

Id is a multiple of the identity, it commutes with all matrices.

Thus

M1M2 −M2M1 = Z1Z2 − Z2Z1. (2.5.2)

Since Zi has trace 0, its adjugate is −Zi, and therefore

det(Z1Z2 − Z2Z1) =
1

2
Tr ((Z1Z2 − Z2Z1)adj(Z1Z2 − Z2Z1))

=2 det(Z1Z2)− 1

2
Tr(Z1Z2adj(Z1)adj(Z2) + Z2Z1adj(Z2)adj(Z1))

=2 det(Z1Z2)− Tr((Z1Z2)2)

=4 det(Z1Z2)− (Tr(Z1Z2))2 ,

which completes the second point.

13
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From now on, assume that the root geodesics of M1,M2 intersect. Since the second root

of M2 is 0,

sg(M1,M2) = +1⇔M1,f > 0⇔M1,f > M1,s ⇔ c > 0.

Since

sign((M1M2 −M2M1)21) = sign(c(e− 1

e
)) = sign(c),

the result follows for the matrices M1,M2. To complete the proof for all matrices, it suffices

to show that the sign of (M1M2 −M2M1)21 is constant when we conjugate M1,M2. To do

this, note that M1M2 −M2M1 has trace 0, hence

M = M1M2 −M2M1 =

A B

C −A

 ,

where −A2 − BC > 0 as the root geodesics intersect. Let N = ( E F
G H ) be any matrix in

PSL(2,R), and then

((NM1N
−1)(NM2N

−1)− (NM2N
−1)(NM1N

−1))21 = (NMN−1)21 = CH2 + 2AGH−BG2.

This is a quadratic form in G,H with discriminant 4A2 +4BC < 0, so it is a positive definite

form. Thus the values it takes on pairs (G,H) 6= (0, 0) all have the same sign, equal to the

sign of C = M21, as claimed. Equation 2.5.2 completes this point.

For the last two points, we do the explicit calculation. The semi-circle `1 has equation(
x− a− d

2c

)2

+ y2 =
(a+ d)2 − 4

4c2
, y ≥ 0, (2.5.3)

and the line `2 has equation x = 0 and y ≥ 0. Thus the intersection point is given by

(x, y) =
(

0,
√

b
c

)
. We calculate that

Z1Z2 =
1

4

(a− d)(e− 1
e
) 2b(1

e
− e)

2c(e− 1
e
) (a− d)(e− 1

e
)

 , (2.5.4)

and this has fixed points ±
√

b
c
i, as desired.

For the angle, we have that cot(θ) is the slope of the tangent to `1 at the intersection

point. The slope of tangent to the circle (x−A)2 + y2 = R2 at (x0, y0) is A−x0
y0

, so Equation

2.5.3 gives us

tan(θ) =
1

cot(θ)
=

√
b/c

(a− d)/(2c)
=

2
√
bc

a− d.

14
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Equation 2.5.1 combined with Equation 2.5.2 and Equation 2.5.4 give that√
det(Z1Z2 − Z2Z1)

Tr(Z1Z2)
=

√
bc
(
e− 1

e

)
1
2
(a− d)

(
e− 1

e

) =
2
√
bc

a− d = tan(θ),

as desired.

By applying Theorem 2.5.2 to the case of Shimura curves, we will generate very appealing

and simple expressions for the intersection point and angle.
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Chapter 3

Intersection numbers for PSL(2,Z)

While much of the machinery and results for intersection numbers on Shimura curves will

work for Γ = PSL(2,Z) (as this is the image of the units of norm 1 in the quaternion algebra

Mat(2,Z)), the reverse is not true. In this chapter we will recast the intersection number for

PSL(2,Z) in terms of quadratic forms, and relate this to work by Duke, Imamoḡlu, and Tóth

on the linking number of modular knots ([DIT17]). The crowning achievement of this section

is an interpretation of the intersection number in terms of Conway’s topograph, which also

produces an efficient algorithm for computation. For an expanded exposition on quadratic

forms, see any standard reference, for example [Bue89].

3.1 Binary quadratic forms

Let q(x, y) = Ax2 +Bxy+Cy2 = [A,B,C] be a primitive integral binary quadratic form (i.e.

A,B,C ∈ Z and gcd(A,B,C) = 1) of discriminant D = B2 − 4AC. The group PSL(2,Z)

acts on q (on the right) via

γ ◦ q(x, y) := q(ax+ by, cx+ dy), where γ =

a b

c d

 .

Write q ∼ q′ if the quadratic forms q, q′ are related by an element of PSL(2,Z). We can

extend the equivalence to n−tuples of quadratic forms as follows:

(q1, q2, . . . , qn) ∼n (q′1, q
′
2, . . . , q

′
n)

16
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if there exists a γ ∈ PSL(2,Z) such that γ ◦ qi = q′i for all 1 ≤ i ≤ n.

Call a quadratic form indefinite if D > 0 and D is not a perfect square, positive definite

if D < 0 and A > 0, and negative definite if D < 0 and A < 0. Note that this definition

is consistent across equivalence classes of quadratic forms. For a fixed discriminant D, the

equivalence relation separates the primitive integral quadratic forms of discriminant D into

finitely many classes. The set of equivalence classes of indefinite/positive definite forms of

discriminant D forms a natural abelian group Cl+(D) of size h+(D), called the narrow class

group and narrow class number respectively. There is a natural bijection between indefi-

nite/positive definite equivalence classes primitive binary quadratic forms of discriminant D

and the narrow class group of OD, the unique order of discriminant D living in Q(
√
D) (see

Chapter 5 of [Coh93] for a full exposition).

For the rest of this section, we will work with primitive indefinite binary quadratic forms,

abbreviated as “PIBQF”s. Given a PIBQF q, the reciprocal form is −q, where all the coeffi-

cients are negated. Call q reciprocal if q ∼ −q. Write q 6∼± q′ if q is not equivalent to either

q′ or −q′, and call q, q′ a strongly inequivalent pair. Note that quadratic forms with distinct

discriminants are strongly inequivalent, and the notion of strong inequivalence extends to

pairs of equivalence classes.

To shift our language from primitive hyperbolic matrices to PIBQFs, we need a way to

pass between the two. The solution is to consider the action of PSL(2,Z) on q: this is an

infinite cyclic group, generated by an invariant automorph.

Definition 3.1.1. Let q = [A,B,C] be a PIBQF, and define

γq :=
( T−BU

2
−CU

AU T+BU
2

)
,

where (T, U) are the smallest positive integer solutions to Pell’s equation

t2 −Du2 = 4.

Then γq generates the stabilizer of q in PSL(2,Z), and we call γq the invariant automorph

of q.

Going from primitive hyperbolic matrices to PIBQFs is even easier.

17
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Definition 3.1.2. Let M = ( a bc d ) ∈ PSL(2,Z) be a primitive hyperbolic matrix, taken

with positive trace. The equation Mx = x translates to cx2 + (d − a)x − b = 0, so let

g = gcd(c, d− a, b). The PIBQF associated to M is defined to be

qM :=

[
c

g
,
d− a
g

,
−b
g

]
.

It can be checked that the operations q → γq and M → qM are inverse operations, whence

we have the bijection

PIBQFs↔ primitive hyperbolic matrices of PSL(2,Z).

The action of PSL(2,Z) on PIBQFs corresponds to conjugation on primitive hyperbolic

matrices as follows:

γMq = M−1γqM for all M ∈ PSL(2,Z). (3.1.1)

In particular, equivalence classes of PIBQFs corresponds to conjugacy classes of primitive

hyperbolic matrices. Furthermore, taking the reciprocal acts as taking the inverse, i.e. γ−q =

γ−1
q .

Using this bijection, we can consider the intersection numbers as taking in pairs of equiv-

alence classes of PIBQFs. Note that the theory could have been developed for PSL(2,Z)

and PIBQFs completely independently of the automorph and the bijection. Indeed, write

q = [A,B,C], and then the equation q(x, 1) = 0 has two real solutions, the roots of q. Let

the first root and second root be

qf :=
−B +

√
D

2A
, qs :=

−B −
√
D

2A
,

respectively. Then the first and second roots of q are equal to the first and second roots of

γq respectively. By replacing “matrix conjugacy” with “equivalence of PIBQFs” everywhere,

statements can be refashioned using just quadratic forms.

3.2 Intersection numbers of binary quadratic forms

Recasting Theorem 2.5.2 with Γ = PSL(2,Z) and quadratic forms produces very appealing

statements. Let qi = [Ai, Bi, Ci] (i = 1, 2) be a pair of PIBQFs of discriminants D1, D2, and

18
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define

B∆([A1, B1, C1], [A2, B2, C2]) := B1B2 − 2A1C2 − 2A2C1.

The notation B∆ comes from Gross-Zagier in [GZ85].

Theorem 3.2.1. We have

(i) The root geodesics of q1, q2 intersect uniquely in the upper half plane if and only if

|B∆(q1, q2)| <
√
D1D2.

(ii) If the root geodesics intersect uniquely, let x = B∆(q1, q2). Then

(a) the sign of the intersection is given by

sg(q1, q2) = sign(B1A2 −B2A1) = sign(B2C1 −B1C2).

(b) the point of intersection is the upper half plane root of

[−A1B2 + A2B1,−2A1C2 + 2A2C1,−B1C2 +B2C1],

which is a (not necessarily primitive) quadratic form of discriminant x2 −D1D2.

(c) the angle of intersection θ satisfies

tan(θ) =

√
D1D2 − x2

x
.

Proof. Let T 2
i −DiU

2
i = 4 be the smallest solution to Pell’s equation (i = 1, 2), and then

Zi := Zγqi =
Ui
2

−Bi −2Ci

2Ai Bi

 .

The determinant is det(Zi) =
U2
i

4
(−B2

i + 4AiCi) = −U2
i Di
4

, and

Z1Z2 =
U1U2

4

 B1B2 − 4A2C1 2B1C2 − 2B2C1

−2A1B2 + 2A2B1 B1B2 − 4A1C2

 .

Thus

Tr(Z1Z2) =
U1U2

2
(B1B2 − 2A1C2 − 2A2C1) =

U1U2

2
B∆(q1, q2).
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Theorem 2.5.2 says that the root geodesics intersect if and only if (Tr(Z1Z2))2 < 4 det(Z1Z2),

which translates to |B∆(q1, q2)| < √D1D2.

For the sign of the intersection, Theorem 2.5.2 gives

sg(q1, q2) = sign(Z1Z2 − Z2Z1)21 = sign ((U1U2)(B1A2 − A1B2)) = sign(B1A2 −B2A1).

The equality with sign(B2C1 − B1C2) comes from applying ( 0 1
−1 0 ) to q1, q2; the sign of the

intersection remains the same, and we start with PIBQFs [Ci,−Bi, Ai] instead.

The intersection point and angle come directly from plugging in these calculations into

Theorem 2.5.2.

Remark 3.2.2. There exist alternate interpretations/proofs of various results in the case of

quadratic forms, and we share a few here.

1. If the root geodesics of q1, q2 intersect, then an alternate interpretation of the sign of

the intersection is the sign of q1(q2,f , 1).

2. The discriminant of the quadratic form q1x+ q2y is

D1x
2 + 2B∆(q1, q2)xy +D2y

2,

so B∆ appears as the “cross term” of this expression. The intersection condition of

|B∆(q1, q2)| < √D1D2 can also be recast as

B∆(q1, q2)2 < B∆(q1, q1)B∆(q2, q2).

3. The root geodesics intersect if and only if the cross-ratio (q1,f , q1,s; q2,f , q2,s) is negative.

A messy computation shows that this cross-ratio is equal to

B∆(q1, q2)−√D1D2

B∆(q1, q2) +
√
D1D2

,

which provides an alternative proof of Theorem 3.2.1i.

In particular, we have the following theorem.

Theorem 3.2.3. The unweighted intersection number of q1, q2 of discriminants D1, D2 is

the size of the set{
(q′1, q

′
2) : q1 ∼ q′1, q2 ∼ q′2, |B∆(q′1, q

′
2)| <

√
D1D2

}
/ ∼2 .
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Intersection points of pairs of geodesics are always quadratic irrational numbers, so it

makes sense to also consider fixing such a point, and finding all possible root geodesics that

pass through the point (i.e. all ways for which the point can appear as an intersection). It

turns out that this is quite easy to characterize!

Proposition 3.2.4. Let τ be a quadratic irrational in H, the upper half plane root of the

positive definite integral binary quadratic form q1, and let q2 be a PIBQF. Then τ lies on the

root geodesic of q2 if and only if

B∆(q1, q2) = 0.

Proof. Let qi = [Ai, Bi, Ci] have discriminant Di for i = 1, 2. Then τ is on γq2 if and only if

(x, y) =

(−B1

2A1

,

√−D1

2A1

)
satisfies

(
x+

B2

2A2

)2

+ y2 =
D2

4A2
2

⇔
(
A1B2 − A2B1

2A1A2

)2

− D1

4A2
1

=
D2

4A2
2

⇔(A1B2 − A2B1)2 = A2
1D2 + A2

2D1

⇔A2
1B

2
2 − 2A1A2B1B2 + A2

2B
2
1 = A2

1B
2
2 − 4A2

1A2C2 + A2
2B

2
1 − 4A2

2A1C1

⇔B1B2 = 2A1C2 + 2A2C1,

which is equivalent to B∆(q1, q2) = 0.

3.3 Intersection numbers as linking numbers

This thesis project started by considering the work of Duke, Imamoḡlu, and Tóth in [DIT17].

They consider links in the space SL(2,Z)\ SL(2,R), which is diffeomorphic to the complement

of a trefoil knot in S3 (see [Mil71]). Let γ ∈ SL(2,Z) be a primitive hyperbolic matrix with

positive trace, and take Mγ to diagonalize γ, so that

γMγ = Mγ

ε 0

0 1
ε

 ,

where ε > 1 is the larger eigenvalue of γ. Let φ(t) :=
(
et 0
0 e−t

)
, and then

γ̃+(t) := Mγφ(t) and γ̃−(t) := MγSφ(t) for 0 ≤ t ≤ log(ε)
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define closed paths in the space SL(2,Z)\ SL(2,R). The knot [γ̃+] is null-homologous if and

only if γ is reciprocal, i.e. it is conjugate to γ−1. Thus we consider the link

[γ̃] := [γ̃+] + [γ̃−],

which is null-homologous in SL(2,Z)\ SL(2,R). Furthermore, this link remains constant over

a SL(2,Z) conjugacy class, as well as replacing γ by γ−1.

In Section 3 of [Ghy07], Ghys studied the linking number of [γ̃±] with the removed trefoil.

His answer is expressed in terms of the Rademacher function, which is directly related to the

classical Dedekind η function. In [DIT17], they instead consider the linking number of pairs

of the knots. Specifically, given a pair of strongly inequivalent conjugacy classes of primitive

hyperbolic matrices [σ], [γ], their linking number Lk([σ], [γ]) is the linking number of the

null-homologous links associated to the classes. Duke, Imamoḡlu, and Tóth produce similar

results to Ghys, by relating their answer to a modular cocyle (as opposed to a modular form).

However, the final linking number formula produced is not particularly amenable to explicit

computation. Furthermore, it is necessary to add [γ̃+] with [γ̃−] to produce null-homologous

links. Ideally, the removed trefoil would be filled in, and the linking number of [γ̃+] with [σ̃+]

would be computed. In Theorem 3.3.1 we prove that the linking number Lk([σ], [γ]) corre-

sponds to our PSL(2,Z) intersection number, and combining this with Algorithm 3.5.3 gives

an efficient way to compute the linking number. Using the Conway topograph interpretation

of the intersection number, a conjecture for the linking number of [γ̃+] and [σ̃+] is given in

Section 3.7.

Theorem 3.3.1. We have

Lk([σ], [γ]) = − Int(σ, γ),

and the linking number is always even. Furthermore, if σ or γ is reciprocal, then the linking

number is a multiple of 4.

Proof. Following [DIT17], let Γ = SL(2,Z) and let Γσ = {g ∈ Γ : gσg−1 = σ} = ±σZ. For

z1, z2 ∈ H, define

I[σ](z1, z2) := {α ∈ Γ\Γσ : α`σ intersects ˙̀
z1,z2},
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and note that its size does not depend on the choice of σ ∈ [σ]. Theorem 6.4 of [DIT17]

shows that taking z0 = Mγi ∈ `γ gives

Lk([σ], [γ]) = −|I[σ](z0, γz0)|.

For α ∈ I[σ](z0, γz0), the root geodesic α`σ = `ασα−1 intersects ˙̀
z0,γz0 , and ασα−1 is well

defined and distinct α’s give distinct conjugates (since α ∈ Γ\Γσ).

Proposition 2.4.1 showed that

Int(σ, γ) =
∑

β∈Γ conjugate to σ

|`βt ˙̀
z,γz |=1

1,

for z ∈ `γ not a fixed point of γ. The first result follows by taking z = z0. The rest will follow

from Corollary 3.4.8.

3.4 Conway’s topograph

The Conway topograph is a device used to understand the equivalence class of a binary

quadratic form. For an alternate presentation of the Conway topograph (as well as another

interpretation of the river of an indefinite form), see [SV18].

3.4.1 The action of PSL(2,Z) on an infinite 3-regular graph

Let G be the infinite 3−regular connected graph drawn in the plane. The Conway topograph

will consist of G and some additional data; we first study G. Let E(G)or be the set of pairs

(E, V ) where E is an edge of G, and V is one of the two vertices on E (i.e. an oriented edge).

We will define an action of PSL(2,Z) on E(G)or.

Recall that PSL(2,Z) is generated by the matrices S = ( 0 1
−1 0 ) and T = ( 1 1

0 1 ), which gives

the group presentation

PSL(2,Z) = 〈S, T |S2 = (ST )3 = 1〉.

If E has vertices V1, V2, define the action of S on (E, V1) to be S ◦ (E, V1) = (E, V2), or

equivalently you swap the edge orientation. To act via T , move along E to V1, and take
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the left branch with the same orientation (i.e. the vertex that is not V1). With reference to

Figure 3.1, the action of T is

T ◦ (E, V1) = (F, V3), T ◦ (F, V1) = (G, V4), T ◦ (G, V1) = (E, V2).

V2

V1

V3

V4

T

T

T
E

F

G

Figure 3.1: Action of T .

From this it is easy to see that the relations S2 = (ST )3 = 1 are satisfied, i.e. our

action does descend down to an action of PSL(2,Z). Furthermore, it is clear that the action

is transitive, and the stabilizer of (E, V ) is trivial. Thus we can form a (non-canonical)

bijection between E(G)or and PSL(2,Z), by picking a base element of E(G)or.

Note that an alternate interpretation of E(G)or is as the set of ordered triples (R1, E,R2),

where R1, R2 are distinct regions of the plane formed by G that are separated by the edge

E.

3.4.2 Definition of the topograph

A completed topograph will consist of the graph G, with numbers in all the regions formed

by G, numbers on all of the edges, and arrows on certain edges. To read off a BQF, pick any

region R1 and edge E bordering the region, and let R2 be the region on the other side of

E. Orient so that E is horizontal, with R1 above E and R2 below it. If ri and e represent

the numbers on the regions and edge, then we form the BQF [r1, e, r2] if the arrow on E is

pointing right, and [r1,−e, r2] if the arrow is pointing left. There will be no arrow if and only

if e = 0, and then you form [r1, 0, r2]. The BQFs read off in this fashion will form an entire

equivalence class of BQFs. Figure 3.2 is an example of how to read off BQFs.

24



Chapter 3 – Intersection numbers for PSL(2,Z)

3 5E E

5

−1

1

7
= [5; 3;−1] = [1;−5; 7]

Figure 3.2: Reading BQFs from the topograph.

To create the topograph, start with a BQF q = [A,B,C], and pick any pair (E, V ) ∈
E(G)or. For M ∈ PSL(2,Z), let M ◦ (E, V ) = (E ′, V ′). When E ′ is horizontal with V ′ on

the right, let R1 be the region above E ′ and R2 be the region below E ′. If M ◦ [A,B,C] =

[A′, B′, C ′], we write the number A′ in R1, and |B′| on E ′. If B′ > 0, draw the arrow so

that when E ′ is horizontal with R1 above it, then the arrow points right. If B′ < 0 draw the

opposite arrow, and if B′ = 0 draw no arrow.

First, we claim that this is well defined. Consider the equations

T ◦ [A,B,C] = [A,B + 2A,A+B + C], S ◦ [A,B,C] = [C,−B,A]. (3.4.1)

If M,M ′ correspond to the same region R1, then we necessarily have M ′ = MT k for some

integer k, and Equation 3.4.1 implies that they define the same number. If M,M ′ correspond

to the same edge, we either have M ′ = M or M ′ = MS, and Equation 3.4.1 again implies

that the definition of |B| and the arrow was consistent. Also, note that C ′ is necessarily

assigned to the region R2.

For an alternate interpretation of the arrow, note that each edge E touches four regions,

two along the length of the edge, and two its vertices. The arrow on E points from the

region touching a vertex with a smaller number to the region touching a vertex with a larger

number. These regions have the same number if and only if the number on the edge is 0, i.e.

no arrow was drawn.

As examples, Figures 3.3 and 3.4 are parts of the topographs for the forms [1, 0,−2] and

[1, 2,−2]. The numbers in the regions are coloured red, and the numbers on the edges are

black.
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Figure 3.3: [1, 0, 2] topograph.
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Figure 3.4: [1, 2,−2] topograph.

3.4.3 Key properties of the topograph

From the construction, it is immediate that the BQFs read off from the topograph created

from [A,B,C] form the equivalence class of forms similar to [A,B,C]. Furthermore, any two

forms in this equivalence class produce isomorphic topographs. However, one must be careful,

as a form [A,B,C] does not necessarily correspond to a unique pair (E, V ) on its topograph.

Indeed, it appears uniquely if and only if [A,B,C] has trivial automorph. Assuming the form

is primitive, this happens if and only if D < −4.

The numbers which appear in regions are precisely the numbers which can be represented

properly by the BQFs in the equivalence class. This fact, coupled with the following lemma,

allows us to determine if a number is properly represented by a given BQF.

Lemma 3.4.1 (Climbing Lemma). Let q = [A,B,C] be a BQF with A,B,C > 0. In the

topograph with q present, numbers beyond q (in the direction of the arrow on the edge corre-

sponding to q) are strictly increasing.

Proof. In the region beyond we fill in A + B + C, and on the two adjacent edges we fill in

B+2A,B+2C, so the numbers in the regions and the edges grow (and they remain positive,

so the same applies again).

Given two forms on a topograph q1, q2, we can easily find the transition matrix to go

between them. Indeed, let M = Id, let

L = T =

1 1

0 1

 , R =

1 0

1 1

 , (3.4.2)
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and start at the oriented edge corresponding to q1. Take the path to the oriented edge

corresponding to q2, where going forward and left corresponds to multiplying M by L on

the right, forward and right corresponds to multiplying M by R on the right, and reversing

direction corresponds to multiplying M by S on the right.

For example, from the [1, 0, 2] topograph found in Figure 3.3, take q1 = [2, 4, 3] and

q2 = [17, 14, 3], and we find that

M = SRLRR =

 5 2

−3 −1

 .

It can be checked that indeed, M ◦ q1 = q2.

3.4.4 The topograph of indefinite forms

When a binary quadratic form is indefinite, it will properly represent both positive and

negative numbers. How is this fact reflected in the topograph? First, note that there are

finitely many forms [A,B,C] of fixed discriminant D > 0 which satisfy AC < 0, since the

equation D = B2−4AC > B2 must be satisfied. On the topograph, it can be shown that such

forms form a single path called the “river,” which separates the regions with positive numbers

from the regions with negative numbers. Since there are finitely many forms possible, it is

in fact a periodic sequence.

When drawing the topograph of an indefinite form, it is best to “flatten” the river and

draw it horizontally, with trees branching off above (the positive direction) and below (the

negative direction). Start at a vertex V on the river, and travel to the right along it, keeping

track at each vertex whether we go left (L) or right (R). By stopping after the going along

the smallest period of the river, we get a sequence of L’s and R’s. By taking a sequence to

be equivalent to cyclic shifts, we assign a sequence to each topograph.

Definition 3.4.2. For a topograph T or form f in T , define Riv(T ) = Riv(f) to be this

sequence, called the “river sequence”. It can either be thought of as an infinite (in both

directions) periodic sequence of L’s and R’s, or as a finite sequence by only taking the least

period of the topograph river, and declaring two sequences to be the same if they differ by
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a cyclic shift (for example LLR ∼ LRL ∼ RLL). Furthermore, the river is said to “flow”

from left to right when the positive regions are above the river.

The topograph of [1, 2,−2] as displayed in Figure 3.4 has river sequence RLL, and Figure

3.5 gives part of the topograph of [10, 14,−5], which has discriminant 396 and river sequence

RRRLLRL.

10 19 18

63 79 55

7

−5 −14

−45 −53

−9

10

43

−5

−38

14

34

54 72 78

42

4 6

30

66 44

16 2

26

36 54 58 48

30

12

26

6

24

14

40 46

42 34

80

Figure 3.5: [10, 14,−5] topograph.

Some key questions are:

• Can we recover a topograph from a river sequence?

• What is the connection to a topograph where the river “flows backwards”?

• What river sequences are possible?

• For q in the topograph, does γq flow with or against the river?

The answer to the first question is yes. Take the smallest period of the river sequence,

and using R,L as in Equation 3.4.2, we get the invariant automorph of a form on the river,

which thus determines the form and hence the entire topograph. It is important that we

constructed this automorph by going right in the sequence, i.e. in the direction of the flow

of the river. If we had gone to the left (against the flow), we would have also picked up a

generator of the automorphism group of q, but it would be the inverse of what we define

in Definition 3.1.1. In fact, this shows that this river sequence (i.e. going left) gives us the
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river sequence of −q, the reciprocal of q. Formally put, to get Riv(−q), take Riv(q), replace

the L’s by R’s and R’s by L’s, and reverse the sequence. Thus it is easy to detect if an

equivalence class is reciprocal directly from the river sequence. For example, RRRL is not

reciprocal, but RRLL is.

In terms of possible sequences, note that there must be at least one L and one R, as

indefinite forms represent both positive and negative numbers. From the above commentary,

we see that any periodic sequence with at least one L and one R is the river of some topograph

(noting that the constructed automorph is in fact hyperbolic, so it does correspond to a

PIBQF).

The final answer is γq flows with the river, no matter what q is. To see this, first assume

q = [A,B,C] is on the river with A > 0. Then the entries of γq are all positive, and two of

the enties of γ−1
q are negative. The invariant automorph obtained by going along the flow of

the river will be a product of L’s and R’s, and will thus have positive entries, which gives

the result in this case. The general result follows from Equation 3.1.1.

Remark 3.4.3. When studying indefinite quadratic forms, one normally introduces the

notion of a reduced form, defines right and left neighbours of reduced forms, and shows that

this forms a unique cycle. Taking the common choice of [A,B,C] is reduced if B > |A+C|,
when going along the river, these reduced forms correspond to the forms between the branches

switching from the negative to the positive sides of the river (and vice versa). Taking the

right/left neighbour just corresponds to going to the next/previous reduced form along the

river.

Remark 3.4.4. Let q = [A,B,C] be a PIBQF; we can think of the river of the topograph of

q as its root geodesic. We have A = q(1, 0), and the number appearing in the corresponding

place after applying γnq will be A = q(x, y), where

( xy ) = γnq ( 1
0 ) ,

whence x
y

= γnq (∞). As n→∞, γnq (∞)→ qf , and as n→ −∞, γnq (∞)→ qs. Since γq moves

along the river in the direction it is flowing, we can think of the river as flowing from the

second root of q to the first root of q.
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3.4.5 Intersection numbers in terms of the topograph

Consider two topographs Ti, with chosen pairs (Ei, Vi) of an edge Ei in the graph of Ti and

a vertex Vi on Ei (i = 1, 2). Since the underlying graphs are the same, we can superimpose

one graph on the other by identifying V1 with V2 and E1 with E2. When we do this, one can

consider the interaction of the superimposed rivers R1, R2.

Proposition 3.4.5. Let the PIBQFs qi correspond to topographs Ti (i = 1, 2).

(i) The root geodesics of q1, q2 intersect transversely in the upper half plane if and only if

when you superimpose T1, T2 at q1, q2 (as above), the superimposed rivers R1, R2 meet

and cross. Furthermore, the root geodesics completely overlap if and only if the rivers

R1, R2 completely overlap.

(ii) If the root geodesics of q1, q2 intersect transversely in the upper half plane, consider the

flow of the the rivers. Going along the river R1 in the direction it is flowing, if R2 joins

the river from the right hand side then the sign of the intersection is 1, and if it joins

from the left the sign is −1.

Proof. Consider the set

{(sign(q1(x, 1)), sign(q2(x, 1)))},

as x ranges over R. Of the 4 possible non-zero pairs of signs (±1,±1), we note that

• All 4 pairs appear if the root geodesics intersect in the upper half plane;

• 3 pairs appear if the root geodesics do not intersect in the upper half plane and do not

overlap;

• 2 pairs appear if the root geodesics overlap.

This also remains true if we instead consider

{(sign(q1(x, y)), sign(q2(x, y)))},

where (x, y) range over pairs of coprime integers.
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When we superimpose the topographs, the numbers in the regions correspond to the

values that q1, q2 take on coprime integers. Since we impose q1 on top of q2, the value of

q1(x, y) is imposed onto the value of q2(x, y). However, the rivers R1, R2 determine the

boundary between the signs of the numbers in the regions, so that we get 4 sign combinations

if and only if the rivers meet and cross, 3 if they either never meet or meet and do not cross,

and 2 if they overlap.

Figure 3.6 demonstrates the four possible flow configurations, and the claimed corre-

sponding sign.

= +1 = +1

= −1 = −1

R1 R1

R1 R1

R2 R2

R2 R2

Figure 3.6: Possible flow configurations.

Recall Remark 3.4.4, where we interpreted the river as flowing between the two roots.

Combining this with the interpretation of the sign found in Proposition 3.4.5 gives the above

picture, as the second river originates at the second root and flows towards the first root.

Corollary 3.4.6. Let q1, q2 be a pair of PIBQFs. Then the unweighted intersection number

Int(q1, q2) is equal to the number of ways to superimpose the topographs corresponding to

q1, q2 on top of each other so that the rivers R1, R2 meet and cross, modulo the periods of

the rivers. The weighted intersection number Int±(q1, q2) is the same, except we add 1 when

R2 joins R1 from the right, and −1 when R2 joins R1 from the left.

Proof. This follows from Proposition 2.4.2 and Proposition 3.4.5.
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Let’s examine the consequences of Corollary 3.4.6 a bit more closely. If we have an

intersection, we can follow the flow of the river R2 until it meets R1 to find a unique pair of

vertices (V1, V2) satisfying

• Vi is on Ri for i = 1, 2;

• V1 is superimposed on V2;

• the vertex preceding V2 (in the sense of the flow of R2) is not superimposed on the

river R1.

Furthermore, given a pair (V1, V2) of vertices on the rivers R1, R2 respectively, there is a

unique way to superimpose the topographs so the above is satisfied (though there is no

guarantee that the rivers end up crossing). Since the rivers can either be flowing right or left

at Vi, we have four different behaviours, and display them in Figure 3.7.

R1 R1

R2 R2
R1 R1

R2 R2

Pair:

Sign:

(R,R) (R,L) (L,R) (L,L)

−1 −1 +1 +1

Figure 3.7: Sign of the intersection.

Put another way, the second river can join from the left (L) or right (R), and flow

in the same (S) or opposite (O) direction. The above picture demonstrates the behaviours

LO,LS,RS,RO in order from left to right. For each x ∈ {LO,LS,RS,RO}, define Intx to be

the intersection number where we only count intersections of the behaviour x. In particular,

we get that

Int = IntRS + IntRO + IntLS + IntLO and Int± = IntRS + IntRO− IntLS− IntLO . (3.4.3)
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Since the river of a reciprocal form is the same except with opposite flow, we can deduce

that

IntRS(q1, q2) = IntLO(q1,−q2), and IntRO(q1, q2) = IntLS(q1,−q2). (3.4.4)

When we switch the order of q1, q2, we get

IntRS(q1, q2) = IntLS(q2, q1), and IntRO(q1, q2) = IntLO(q2, q1).

For a non-trivial identity, we have the following proposition.

Proposition 3.4.7. The following equalities hold

IntRS(q1, q2) = IntLS(q1, q2), and IntRO(q1, q2) = IntLO(q1, q2).

Proof. Let the river corresponding to q1 be R1 = (x1, x2, . . . , xm) and the river corresponding

to q2 be R2 = (y1, y2, . . . , yn), where L is represented by 0 and R by 1. For now, assume

that gcd(m,n) = 1. Let A = (a1, a2, . . . , amn) be the sequence R1 repeated n times, and

let B = (b1, b2, . . . , bmn) be the sequence R2 repeated m times (take indices of A,B modulo

mn). As gcd(m,n) = 1, pairs (xi, yj) with 1 ≤ i ≤ m and 1 ≤ j ≤ n biject with the pairs

(ak, bk) for 1 ≤ k ≤ mn. Intersecting the rivers flowing in the same direction at (ak, bk) first

requires ak 6= bk. The rivers will then take the same path until we get to the smallest r ≥ 1

such that ak+r 6= bk+r. We will have an intersection if ak 6= ak+r!

In particular, consider the sequence C = A + B (mod 2) = (c1, c2, . . . , cmn). Potential

intersections will correspond to consecutive pairs of 1’s in C, so let I = {1 ≤ i ≤ mn : ci =

1} = {i1, . . . , ir} with i1 < i2 < . . . < ir. Form the sequence D = (ai1 , ai2 , . . . , air), seen

cyclically. In the sequence D, we have

• going from 0 to 0 corresponds to R2 coming in from the right and leaving to the right;

• going from 0 to 1 corresponds to R2 coming in from the right and leaving to the left;

• going from 1 to 0 corresponds to R2 coming in from the left and leaving to the right;

• going from 1 to 1 corresponds to R2 coming in from the left and leaving to the left.
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In particular, IntRS(q1, q2) counts the number of times we change from 0 to 1 in D, and

IntLS(q1, q2) counts how many times we change from 1 to 0 in D. As D is periodic, these are

equal, hence the result follows in this case.

When gcd(m,n) = d > 1, we instead form sequences of length mn
d

= lcm(m,n), and

apply the above. Repeat by shifting the B sequence by 1, 2, . . . , d− 1 to the right, and this

covers all intersections.

The second statement follows from replacing q2 by −q2 and using Equation 3.4.4.

Corollary 3.4.8. We have

Int(q1, q2) = 2(IntRS(q1, q2) + IntRO(q1, q2)), and Int±(q1, q2) = 0.

Furthermore, if either q1 or q2 is reciprocal, then

Int(q1, q2) = 4 IntRS(q1, q2).

Proof. This follows immediately from Equations 3.4.3, 3.4.4, and Proposition 3.4.7. Note

that Int±(q1, q2) = 0 also follows from PSL(2,Z)\H having genus 0, as the signed intersection

number is well defined in homology.

Corollary 3.4.9. Let q1, q2 be a pair of PIBQFs with river periods p1, p2. Then

4 ≤ Int(q1, q2) ≤ p1p2.

Proof. Each possible intersection came from a pair of vertices on the river modulo the periods,

which gives the upper bound. For the lower bound, it suffices to prove that IntRS(q1, q2) ≥ 1.

Since the river sequences contain at least one 0 and one 1, we can find the subsequence 01

in the first river, and 10 in the second. This will correspond to an intersection of type RS,

completing the proof.

3.5 Continued fractions and explicit computation of

the intersection number

The proof of Proposition 3.4.7 gives us a nice and fast algorithm to calculate intersection

numbers. We first describe how to calculate the river sequences, and then present the algo-

rithm.
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Algorithm 3.5.1. Given a PIBQF q of discriminant D, this algorithm calculates the river

sequence of q.

1. Find a reduced form q′ equivalent to q (see any book on quadratic forms, for example

Chapter VII of [Dic29]).

2. If the leading coefficient of q′ is negative, replace q′ by S ◦ q′.

3. Input (·, q′) into the following process (· is the empty string):

(a) Given (V, f), write f = [A,B,C] and let k =
⌊
−B+

√
D

2A

⌋
.

(b) If k > 0, append k copies of L to the right of V to form V ′, and let f ′ = ( 1 k
0 1 )◦f =

Lk ◦ f . If f ′ = q′, then terminate the process and return V ′; otherwise, repeat

with (V ′, f ′).

(c) If k ≤ 0, let k′ =
⌊
−B−

√
D

2C

⌋
. Append k′ copies of R to the right of V to form V ′,

and let f ′ = ( 1 0
k 1 ) ◦ f = Rk ◦ f . If f ′ = q′, then terminate the process and return

V ′; otherwise, repeat with (V ′, f ′).

Proof. The algorithm works by finding the consecutive blocks of R’s and L’s found on the

river. Reduced forms always appear between branches on opposite sides of the river, so we

start in a valid location. The maximum number of L’s we can go along the river corresponds

to the maximum value of k for which applying ( 1 k
0 1 ) to f gives a third coefficient that is

negative, and the maximum number of R’s corresponds to the maximum value of k for

which applying ( 1 0
k 1 ) to f gives a first coefficient that is positive. By applying this process

repeatedly, we will follow the river and eventually come back to our original form after

completing the period of the river. Note that in the actual process, after finding a block of

L’s we know that we will get a block of R’s (and vice versa), so we only have to calculate

both k and k′ the first time.

By calculating maximal blocks of L’s and R’s at once, the algorithm more efficient than

calculating each L and R on the river step by step.

Remark 3.5.2. Let the continued fraction of qf be

[a0, a1, . . .] = [a0, a1, . . . , as, as+1, . . . , as+p],
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where s is the smallest integer such that the continued fraction is periodic after index s, and

p is the smallest even integer such that the sequence has period p.

Define Riv′(q) to be the sequence of 0’s and 1’s formed by:

• s+ 1 (mod 2) repeated as+1 times;

• s+ 2 (mod 2) repeated as+2 times;

• · · ·

• s+ p (mod 2) repeated as+p times.

Then Riv′(q) and Riv(q) are equal! For example, if q = [10, 14,−5], then the continued

fraction of qf is

[0, 3, 2, 1, 1],

and

Riv′(q) = (1, 1, 1, 0, 0, 1, 0),

which agrees with Figure 3.5, where L corresponds to 0 and R corresponds to 1.

By using the continued fraction definition of river sequence, we can remove the need for

the Conway topograph in the presentation of results (though its understanding is crucial to

the proofs).

Algorithm 3.5.3. Given a pair of PIBQFs q1, q2, this algorithm calculates IntRS(q1, q2).

1. Use Algorithm 3.5.1 to calculate the river sequences for q1, q2, denoted r1 = (x1, x2, . . .

, xm) and r2 = (y1, y2, . . . , yn), where L’s are denoted by 0’s and R’s by 1’s.

2. Let g = gcd(m,n), let N = lcm(m,n), and let I = 0. Form the sequence B =

(b1, b2, . . . , bN) by repeating the sequence r2
N
n

times starting at b1 = y1. For each

1 ≤ i ≤ g,

(a) Form the sequence A = (a1, a2, . . . , aN) by repeating the sequence r1
N
m

times,

starting at a1 = xi.

(b) Form the sequence C = A+B (mod 2) = (c1, c2, . . . , cN).
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(c) Let j1 < j2 < . . . < jr be the indices j for which cj = 1, and let jr+1 = j1.

(d) For each index 1 ≤ k ≤ r with ajk = 0 and ajk+1
= 1, add 1 to I.

3. Return I.

By applying the above algorithm to the pair (−q2, q1), we calculate IntRO(q1, q2), and

hence get Int(q1, q2) by Corollary 3.4.8.

3.6 Examples

As illustration, we provide two examples of intersection numbers.

Example 3.6.1. Let q1 = [1, 3,−3] and q2 = [7, 6,−10], hence D1 = 21 and D2 = 316. We

compute the river sequences to be

Riv(q1) = a = (1, 0, 0, 0), Riv(q2) = b = (1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0).

To compute IntRS(q1, q2), it requires to count the triples (i, j, k) for which (ai+1, ai+2, . . .

, ai+k−1) = (bj+1, bj+2, . . . , bj+k−1) = s, (ai, ai+k) = (0, 1), and (bj, bj+k) = (1, 0). The triples,

s, a pair (f1, f2) with fi ∼ qi of the corresponding simultaneous equivalence class, and

B∆(f1, f2) are given in Table 3.1.

Table 3.1: Intersections of [1, 3,−3] and [7, 6,−10] of type RS.

(i, j, k) s f1 f2 B∆(f1, f2)

(2, 1, 3) (0, 0) [1,−1,−5] [3,−14,−10] 64

(3, 1, 2) (0) [1, 1,−5] [3,−14,−10] 36

(3, 9, 2) (0) [1, 1,−5] [6,−14,−6] 56

(3, 12, 6) (0, 1, 0, 0, 0) [1, 1,−5] [7,−8,−9] 80

(4, 1, 1) () [1, 3,−3] [3,−14,−10] −4

(4, 9, 1) () [1, 3,−3] [6,−14,−5] 4

(4, 12, 1) () [1, 3,−3] [7,−8,−9] 36

Note that in all examples, B∆(f1, f2) ≤ 81 <
√

21 · 316, as is predicted by Theorem 3.2.1.

We can compute IntRO([1, 3,−3], [7, 6,−10]) in similar fashion, by finding the triples (i, j, k)
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for which (ai+1, ai+2, . . . , ai+k−1) = (1−bj+k−1, 1−bj+k−2, . . . , 1−bj+1) = s, (ai, ai+k) = (1, 0),

and (bj, bj+k) = (0, 1). The triples, s, a pair (f1, f2) with fi ∼ qi of the corresponding

simultaneous equivalence class, and B∆(f1, f2) are given in Table 3.2.

Table 3.2: Intersections of [1, 3,−3] and [7, 6,−10] of type RO.

(i, j, k) s f1 f2 B∆(f1, f2)

(1, 6, 1) () [1,−3,−3] [−5,−16, 3] 12

(1, 6, 2) (0) [1,−1,−5] [−5,−16, 3] −40

(1, 6, 3) (0, 0) [1, 1,−5] [−5,−16, 3] −72

(1, 11, 1) () [1,−3,−3] [−9,−10, 6] −36

(1, 13, 1) () [1,−3,−3] [−10,−6, 7] −56

Therefore we have an example where IntRS(q1, q2) 6= IntRO(q1, q2).

Example 3.6.2. If q1 = [1, 1,−1] and q2 = [1, n,−1] for n ≥ 2, we claim that Int(q1, q2) = 8.

The automorphs of q1, q2 can be shown to be

γq1 =

1 1

1 2

 = RL, γq2 =

1 n

n n2 + 1

 = RnLn.

The corresponding river sequences are (1, 0), and n 1’s followed by n 0’s respectively. Since

q1 is reciprocal, by Corollary 3.4.8, Int(q1, q2) = 4 IntRS(q1, q2). Following Algorithm 3.5.3, if

n is even we generate Table 3.3.

Table 3.3: Intersections of [1, 1,−1] and [1, n,−1] for n ≥ 2.

A = (1, 0, . . . , 1, 0, 1, 0, . . . , 1, 0) A = (0, 1, . . . , 0, 1, 0, 1, . . . , 0, 1);

B = (1, 1, . . . , 1, 1, 0, 0, . . . , 0, 0) B = (1, 1, . . . , 1, 1, 0, 0, . . . , 0, 0);

C = (0, 1, . . . , 0, 1, 1, 0, . . . , 1, 0) C = (1, 0, . . . , 1, 0, 0, 1, . . . , 0, 1).

In the left hand case, the only time sequence A goes from a 0 to a 1 between consecutive

1’s in C is from index n to n + 1. Similarly, in the right hand case, it is only from indices

n− 1 to n+ 2. Therefore, IntRS(q1, q2) = 2, as claimed. When n is odd, the analogous result

follows.

38



Chapter 3 – Intersection numbers for PSL(2,Z)

3.7 Filling in the trefoil knot

As commented on in Section 3.3, the linking number of [σ̃+] and [γ̃+] is unknown. This linking

pair exhibits a very similar formal behaviour to IntRS and IntRO: they sum to half of the full

intersection number, they are equal when either input is a reciprocal matrix/quadratic form,

and they are not necessarily equal when both inputs are not reciprocal.

Conjecture 3.7.1. Let q1, q2 be a strongly inequivalent pair of PIBQFs. Then the linking

number of γ̃q1,+ and γ̃q2,+ in SL(2,Z)\ SL(2,R) with the trefoil filled in is equal to either

− IntRS(q1, q2) or − IntRO(q1, q2).

To approach this conjecture, one would need to understand how to compute the linking

number when the trefoil knot is filled in. Since this has not been done, we do not have any

numerical evidence towards the conjecture.
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Quaternionic background

From now on, we shift our focus to quaternion algebras. The goal of this section is to recall

quaternion algebras and Eichler orders, describe some of their key properties, and then give

a full study of optimal embeddings of quadratic orders into Eichler orders. This will set us

up to study intersection numbers on Shimura curves in Sections 5 and beyond. For a full

exposition on quaternion algebras, see [Voi21].

4.1 Local and global quaternion algebras

Let F be a field of characteristic 0, and a, b ∈ F×. We take B =
(
a,b
F

)
to be the quaternion

algebra associated to a, b, F . As an additive vector space, this is of dimension 4 over F , with

basis 1, i, j, k, and general element of the form

x = e+ fi+ gj + hk, where e, f, g, h ∈ F.

The multiplicative structure is determined by the standard equations

i2 = a, j2 = b, k = ij = −ji,

which imply that k2 = −ab. Alternatively, a quaternion algebra over F is a central simple

algebra of dimension 4. The standard involution on B is denoted by an overline, and explicitly

defined by

x := e− fi− gj − hk.
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The quaternion algebra also comes equipped with the reduced trace trd : B → F and the

reduced norm nrd : B → F , defined by

nrd(x) :=xx = e2 − af 2 − bg2 + abh2;

trd(x) :=x+ x = 2e.

When F = R, there are exactly two quaternion algebras up to isomorphism: Mat(2,R),

and the Hamilton quaternions QAdiv
∞ =

(−1,−1
R

)
(which is a division algebra). Similarly, over

Qp, there are two quaternion algebras up to isomorphism: Mat(2,Qp), and a division algebra

which we denote by QAdiv
p . From Theorem 13.3.10 of [Voi21], it follows that we can write

QAdiv
p =

(
p, e

Qp

)
,

where e is any integer such that

(
e

p

)
= −1, and

(
·
p

)
is the Kronecker symbol.

Let B =
(
a,b
Q

)
be a quaternion algebra over Q. Crucial to understanding B is under-

standing its local behaviour, i.e. studying Bv = B⊗Qv =
(
a,b
Qv

)
, where v is a place of Q and

Q∞ = R. Call v ramified in B if Bv ' QAdiv
v , and call v split otherwise. Define the Hilbert

symbol (a, b)v to be 1 if p is split in B, and −1 if B is ramified. Then the set of ramified

places is both finite and of even size, and we say that B has discriminant D, which is the

product of all ramifying places.

The quaternion algebra B over Q is uniquely determined (up to isomorphism) by the

set of ramifying places, and furthermore, any finite even sized set of places corresponds to

a quaternion algebra over Q. We call B indefinite if ∞ is split, and so B is ramified at an

even number of finite primes. In this thesis, we will primarily be working with indefinite

quaternion algebras, though some results can be adapted to the definite case.

An order O of B is a lattice that is also a subring. A maximal order is an order which is

not properly contained within another order. An example of a maximal order of Mat(2,Qp)

is Mat(2,Zp), and in fact all maximal orders of Mat(2,Qp) are conjugate. Over QAdiv
p , there

is a unique maximal order, which consists of all integral elements.

Let I be a lattice in B, and define the left order of I to be

OL(I) := {α ∈ B : αI ⊆ I}.
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Note that OL(I) is always an order of B, even if I is not. Given an order O, a left fractional

ideal of O is a lattice I for which O ⊆ OL(I), i.e. I admits multiplication on the left by O.

The notion of right order and right fractional ideal can be similarly defined.

If F = Q or Qp, then an order O is always a dimension four OF = Z,Zp−module

respectively. Let α1, α2, α3, α4 be a basis of O, and define the discriminant of O to be

disc(O) = −d(α1, α2, α3, α4) := − det(trd(αiαj)i,j).

It turns out that this is always a square, so we define the reduced discriminant of O by

discrd(O)2 = disc(O).

The reduced discriminant is only defined up toO×F , so over Q we typically take the convention

that it is positive, and over Qp we take it to be of the form pe with e ≥ 0. With these

conventions, it follows that if F = Q, then

discrd(O) =
∏
p

discrd(Op),

where the product is taken over all primes p and Op = O ⊗ Zp is the corresponding local

order in Bp. This product is well defined as discrd(Op) = 1 for all but finitely many p.

Over F = Q, an order is maximal if and only if the reduced discriminant is equal to the

finite part of D, the discriminant of the quaternion algebra. A general order O will have

discrd(O) = DM, where M is necessarily coprime to D, and is called the level of the order.

Working locally will be essential, so we will state the local-global correspondence for

lattices, (in [Voi21] it is given in terms of localizations and not completions, but they are

equivalent).

Theorem 4.1.1 (Theorem 9.5.1 of [Voi21]). Let V be a finite dimensional Q−vector space,

and let M ⊂ V be a Z-lattice. Then the map N → (Np)p gives a bijection between Z−lattices

N ⊂ V and collections of lattices (Np)p indexed by the primes which satisfies Mp = Np for

all but finitely many primes p.

Since orders are lattices, we derive the following corollary.
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Corollary 4.1.2. Let M,N be orders in B. Then

M = N ⇔Mp = Np for all primes p.

An Eichler order O of B is an order that is the intersection of two (uniquely determined)

maximal orders. Over F = Qp, if B is division there is exactly one maximal order, hence

this is the only Eichler order. Otherwise, B = Mat(2,Qp), and there exist Eichler orders of

levels pe for all e ≥ 0. They are all conjugate, and we define the standard Eichler order of

level pe to be  Zp Zp
peZp Zp

 .

Following the local-global principle of orders, when F = Q, an order O is Eichler if and only

if Op is Eichler for all primes p.

Over F = Q, if B is indefinite, a consequence of strong approximation is that all Eichler

orders of level M are conjugate over B×. Furthermore, all left fractional ideals I are principal,

i.e. there exists a c ∈ B for which I = Oc.

4.2 Normalizer of an Eichler order

Starting with an Eichler order O, we can produce more Eichler orders by conjugation. In

this section we determine when this action is trivial. Assume that F = Q or F = Qp, and

that B is a quaternion algebra over F .

Proposition 4.2.1. Let x ∈ B − F . Then the set CB(x) := {v ∈ B : vx = xv} is an

F−algebra and a two dimensional F−vector space spanned by 1, x. We call it the centralizing

algebra of x.

Proof. This follows immediately from Proposition 7.7.8 of [Voi21].

Corollary 4.2.2. Let x1, x2 ∈ B×−F× have the same minimal separable polynomial. Then

the set CB(x1, x2) := {v ∈ B : vx1 = x2v} is a two dimensional F−vector space.

Proof. By Corollary 7.7.3 of [Voi21], the equality of the minimal polynomials of x1, x2 implies

that there exists a w ∈ B× with wx1w
−1 = x2. Thus

v ∈ CB(x1, x2)⇔ vw−1x2 = x2vw
−1,
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so the corollary follows from Proposition 4.2.1.

Definition 4.2.3. Let O be an order in B, and define the subgroup of x ∈ B× for which

xOx−1 = O to be NB×(O), the normalizer group of the order O.

Definition 4.2.4. For f ∈ OF and an order O in B, let ON=f := {x ∈ O : nrd(x) = f} be

the set of elements of O of reduced norm f . Let Omin be the set of x ∈ O satisfying x/f /∈ O
for all f ∈ OF −O×F . For f ∈ OF , let Omin

N=f := Omin
⋂
ON=f .

Now, let’s specialize to indefinite quaternion algebras over Q.

Proposition 4.2.5. Let B be an indefinite quaternion algebra over Q and O an Eichler

order of level M. Then the sets ON=n are non-empty for all non-zero integers n.

Proof. By Eichler’s theorem on norms (Theorem 28.5.1 of [Voi21]), there exists an integral

α ∈ B× for which nrd(α) = n. The proof of this (whose main ingredient is strong approx-

imation for Eichler orders in an indefinite quaternion algebra) can be modified exactly like

Corollary 28.5.4 of [Voi21] to produce an α in an Eichler order of level M. All such orders

are conjugate, so an appropriate conjugate of α lies in ON=n, as desired.

Proposition 4.2.6. Let B be an indefinite quaternion algebra over Q and let O be an Eichler

order. For any α ∈ O with nrd(α) > 0, factorize nrd(α) = p1p2 · · · pr as a product of (not

necessarily distinct) primes. Then there exists π1, π2, . . . , πr ∈ O with nrd(πi) = pi for all i

and α = π1π2 · · · πr.

Proof. Theorem 11.4.8 of [Voi21] proves this over a maximal order in the Hamilton quater-

nions. The proof essentially works for all orders of class number 1: the only possible issue

is we are only guaranteed that nrd(πi) = ±pi (which was not an issue over the Hamilton

quaternions). Pick any u ∈ ON=−1, and if i is the smallest index for which nrd(πi) = −pi,
replace πi by πiu and πi+1 by u−1πi+1. We repeat until nrd(πi) > 0 for all i < r; since

0 < nrd(α) =
∏r

i=1 nrd(πi), it follows that nrd(πr) > 0 as well, and the proposition fol-

lows.

Next, we describe the normalizer groups of Eichler orders over Q and Qp.
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Proposition 4.2.7. Let B be a quaternion algebra over Qp with Eichler order O. If B =

QAdiv
p , we have

NB×(O) = B×.

Otherwise, write B = Mat(2,Qp) and take O =
(

Zp Zp
peZp Zp

)
, the standard Eichler order of

level pe. Let ω :=
(

0 1
−pe 0

)
, and then we have

NB×(O) = Q×p O×〈ω〉.

Proof. If B is division, then there is a unique maximal order, which must be O. Since

conjugating it keeps the order maximal, it is stabilized under conjugation by all of B×.

The proof for B not being division is Proposition 23.4.14 of [Voi21] (we have adjusted the

definition of ω so that it has positive norm).

Note that if B is not division and O is maximal, then NB×(O) = Q×p O×. Translating the

above proposition into the global case yields the following proposition.

Proposition 4.2.8. Let B be an indefinite quaternion algebra over Q with discriminant D,

and let O be an Eichler order of B of level M. Then there exists a collection of elements

{ωp : p | DM∞} with nrd(ωp) = pvp(DM) for p <∞ and nrd(ω∞) = −1 for which

NB×(O)

Q×O×N=1

= 〈ωp〉p|DM∞ '
∏

p|DM∞

Z
2Z
.

In particular, if O is maximal, then x ∈ Omin
⋂
NB×(O) if and only if all prime divisors of

nrd(x) are ramified in B.

Proof. By combining Proposition 18.5.3 and Equation 23.4.20 of [Voi21] with the fact that

O has class number one, we get the isomorphism

NB×(O)

Q×O×
'
∏
p|DM

Z
2Z
.

By taking a set of generators and looking locally, we can use Proposition 4.2.7 to show that

we can find an equivalent set of generators {ωp}p|DM which satisfy nrd(ωp) = pvp(DM) for

p <∞. Finally, we can pull out the∞ by using O× = ON=1∪ON=−1 and ON=−1 = ω∞ON=1

for any ω∞ ∈ ON=−1.
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4.3 Towers of Eichler orders

Let F = Qp and B = Mat(2,Qp). The Bruhat-Tits tree provides a combinatorial aspect to

the theory of maximal/Eichler orders of B. Vertices of the graph are maximal orders in B,

and there exists an edge between O and O′ if and only if O ∩O′ is an Eichler order of level

p. A summary of the main facts of the graph (see Section 23.5 of [Voi21]) are:

• The graph is connected and has no cycles, hence it is a tree (as the name implies);

• Every vertex has degree p+ 1;

• Let O1, O2 be maximal orders, and let O = O1∩O2 be the corresponding Eichler order

of level pe. Then O corresponds to the unique path between O1 and O2. This path has

length e+ 1, and the vertices on the path are precisely the e+ 1 maximal orders which

contain O.

Focusing on one Eichler order O of level pe, we can define the “inverted triangle” of

superorders of O as follows:

• It is a graph consisting of all (necessarily Eichler) superorders O′ ⊃ O as vertices;

• The vertices are arranged into e+1 rows, where the ith row from the top (starting with

row 0) consists of the Eichler orders of level pi containing O.

• There is an edge between orders O1, O2 if and only if one order contains the other and

they are in adjacent rows.

It follows directly from the Bruhat-Tits tree that there are e+ 1− i vertices in the ith row,

and the graph can be drawn in the plane so that each vertex (besides those in row 0) is

connected to the two closest vertices in the row above it. An Eichler order is the intersection

of the two orders it is connected to in the above row. As an example, the inverted triangle

for an Eichler order of level p5 looks like Figure 4.1.

The inverted triangle of O allows one to easily count superorders of O of a specified level

which do not contain certain given superorders (this will become necessary in Section 6).

Remark 4.3.1. The inverted triangle of O is essentially the same concept of branches of

orders, as found in [AC13] and [AACC18].
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4.4 Optimal embeddings

Let B be a quaternion algebra over F = Q,Qp, and let O be an order in B. Let D be a

discriminant (i.e. a non-square integer equivalent to 0 or 1 modulo 4), and let OD be the

unique quadratic order of discriminant D, lying in Q(
√
D).

Definition 4.4.1. An embedding of OD into O is a ring homomorphism φ : OD → O. Call

the embedding optimal if

• F = Q and the embedding does not extend to an embedding of a larger order into O.

If D is a fundamental discriminant, then all embeddings of OD into O are optimal.

• F = Qp, and the embedding does not extend to an embedding of OD/p2 . If D/p2 is not

a discriminant, then all embeddings of OD into O are optimal.

In particular, if F = Q, an embedding φ into O is optimal if and only if the corresponding

embeddings φp into Op are optimal for all primes p.

Any optimal embedding φ1 : OD → O extends to a unique ring homomorphism φ :

Q(
√
D) → B, and any ring homomorphism φ : Q(

√
D) → B will descend to an embedding

of any order inside φ−1(O) to O. In particular, it corresponds to an optimal embedding of a

unique order, φ−1(O).

Definition 4.4.2. If K is a quadratic extension of Q and φ : K → B is a ring homomor-

phism, let Dφ
O denote the discriminant of φ−1(O). Let φO := φ|φ−1(O) denote the optimal

embedding associated to φ and O.

Level p
0

p
1

p
2

p
3

p
4

p
5

Figure 4.1: Inverted triangle of level p5.

47



Chapter 4 – Quaternionic background

For any x ∈ B×, let φx := xφx−1. If φ was an optimal embedding from OD to O, then φx

remains so for x ∈ ON=1. In general, the image of φx will not necessarily land inside O, and

even if it does it may no longer be optimal. As such, we will often use φxO for the optimal

embedding associated to φx and O.

Definition 4.4.3. If φ1, φ2 are optimal embeddings of OD into O, we call them equivalent

if there exists r ∈ ON=1 for which rφ1r
−1 = φ2. The equivalence class of φ1 is denoted [φ1].

Define the set of equivalence classes of optimal embeddings of OD into O to be Emb(O,D).

As with tuples of hyperbolic matrices, we can extend the definition of equivalence to

n−tuples of optimal embeddings as follows:

(φ1, φ2, . . . , φn) ∼n (φ′1, φ
′
2, . . . , φ

′
n)

if there exists an r ∈ ON=1 such that rφir
−1 = φ′i for all 1 ≤ i ≤ n.

As we shall see, if there exists an optimal embedding, then there are h+(D) classes of

optimal embeddings, up to the notion of orientation. Studying this will be the focus of the

next few sections.

Definition 4.4.4. For D an integer, define pD ∈ {0, 1} to be the parity of D. For D a

discriminant, let the discriminant of Q(
√
D) be Dfund.

Since OD = Z
[
pD+

√
D

2

]
, an embedding of OD into O is equivalent to picking an element

x = φ
(
pD+

√
D

2

)
∈ O which has the same characteristic polynomial as pD+

√
D

2
, i.e. an element

x satisfying x2 − pDx+ pD−D
4

= 0.

We would like to determine when there exists an optimal embedding of a quadratic order

into a quaternion order. The main result is the following theorem.

Theorem 4.4.5. Let B be an indefinite quaternion algebra over Q with discriminant D, let

O be an Eichler order of level M in B, and let D be a discriminant. Then there exists an

embedding of OD into O if and only if the following holds:

• for all p | D, we have
(
Dfund

p

)
6= 1

• for all pe ||M, at least one of the following holds:
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–
(
Dfund

p

)
= 1;

– e ≤ vp
(
D
4

)
;

– p = 2 and e = v2

(
D
4

)
+ 1 and v2(D) is even;

– p = 2 and e = v2

(
D
4

)
+ 2 and Dfund is odd.

Furthermore, there exists an optimal embedding if and only if the condition p - D
Dfund for all

p | D is also satisfied.

Remark 4.4.6. When O is maximal, Theorem 4.4.5 takes a simpler form: all primes p

ramifying in B must be ramified or split in OD, and they cannot divide D
Dfund (for optimality).

Theorem 4.4.5 will be proved by studying the question locally, and using this to deduce

the global answer.

4.4.1 Existence of optimal embeddings

We start by considering optimal embeddings into the division and non-division quaternion

algebras over Qp.

Proposition 4.4.7. Let B = QAdiv
p , let D be a discriminant, and let O be the maximal

order. Then there exists an embedding of OD into O if and only if we have
(
Dfund

p

)
6= 1.

Furthermore, any embedding of OD extends extends to an embedding of ODfund.

Proof. The first half of the proposition follows immediately from Proposition 30.5.3 of

[Voi21]. For the final part, let φ give an embedding of OD. Since all elements of ODfund

are integral, the same is true for φ(ODfund). As O is the set of integral elements, the result

follows.

Proposition 4.4.8. Let D be a discriminant, let B = Mat(2,Qp), and let O be an Eichler

order of level pe in B. Then there exists an embedding of OD into O if and only if any of the

following are satisfied:

•
(
Dfund

p

)
= 1;

• e ≤ vp
(
D
4

)
;
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• p = 2 and e = v2

(
D
4

)
+ 1 and v2(D) is even;

• p = 2 and e = v2

(
D
4

)
+ 2 and Dfund is odd.

Furthermore, if there exists an embedding, then there exists an optimal embedding.

Proof. Without loss of generality, we can take O =
(

Zp Zp
peZp Zp

)
, the standard Eichler order of

level pe.

If e = 0, then we can take φ defined by φ
(
pD+

√
D

2

)
=
(
pD

D−pD
4

1 0

)
, which clearly gives an

optimal embedding.

Now assume that e > 0 and p is odd. An embedding is given by φ
(√

D
)

=
(

a b
pec −a

)
for any a, b, c ∈ Zp which satisfy a2 + bcpe = D. The embedding is optimal if and only if

p - gcd(a, b, c), and we see that if (a, b, c) give an embedding, then (a, bc, 1) give an optimal

embedding, which is the last statement. Such a triple (a, b, c) will exist if and only if there

exists an a ∈ Zp for which

pe | D − a2.

If vp(D) = vp(D/4) ≥ e, this is true for a = 0. Otherwise, assume vp(D) < e. Write D =

Dfundg2p2k for some positive integer g coprime to p and non-negative integer k, with 2k < e.

Then we necessarily have pk | a in any solution, so we reduce to solving pe−2k | g2Dfund− a′2.

If p | Dfund, then e ≥ vp(D) + 1 = 2k + 2, and we have no solution as vp(g
2Dfund − a′2) ≤ 1.

Otherwise, this has a solution if and only if Dfund is a square modulo p, which completes the

claim for p odd.

For p = 2, see Proposition A.2.1

To compile these local propositions into a global one, we need a version of the local-global

principle.

Lemma 4.4.9. Let B be a quaternion algebra over Q, let O be an Eichler order of level

M, and let D be a discriminant. Then there exists an (optimal) embedding of OD into O if

and only if there exists (optimal) embeddings of OD into Op for all finite primes p and an

embedding of OD into B∞.

Proof. The necessity of the conditions are immediate, so we need to check that they are

sufficient. For each place v, let φv be a corresponding (optimal) embedding into Ov (where
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O∞ = B∞). By the local-global principle for embeddings of quadratic fields ([Voi21], Propo-

sition 14.6.7), there exists an embedding ϕ : OD → B.

Since ϕ(OD) is integral, pick any maximal order R containing it. For all finite primes p,

we define orders Tp of Bp as follows:

• If p - M, define Tp = Rp

• If p | M, then as all embeddings are conjugate over B×p , there exists an xp ∈ B×p for

which xpφpx
−1
p = ϕp. Then ϕp gives an (optimal) embedding into Tp = xpOpx

−1
p .

By Theorem 4.1.1, there exists an order T of B that completes to the Tp at all primes p. In

particular, we see that ϕ gives an (optimal) embedding into T , and that T is also an Eichler

order of level M. All such orders are conjugate, so there exists a y ∈ B× which satisfies

yTy−1 = O. Then φ = ϕy is an (optimal) embedding of OD into O.

Theorem 4.4.5 is now an easy corollary of the above results.

Proof of Theorem 4.4.5. By Lemma 4.4.9, it suffices to do local calculations. There will be an

embedding into B∞ as B is indefinite, and Propositions 4.4.7 and 4.4.8 cover the completions

at finite primes.

In certain proofs, it will be useful to assume that an optimal embedding takes a certain

form. The following lemma allows us to do this.

Lemma 4.4.10 (Exercise 2.5 of [Voi21]). Let B =
(
a,b
F

)
be a quaternion algebra over a field

F of characteristic not equal to 2, and assume x ∈ B× is an element with trace 0 and reduced

norm n ∈ F×. Then there exists an m ∈ F× and an isomorphism θ : B →
(−n,m

F

)
satisfying

θ(x) = i.

Proof. Consider the inner product defined as 〈u, v〉 = 1
2

trd(uv). Pick any y such that B =

F (x, y), and by applying the Gram-Schmidt orthogonalization process, we can assume that

0 = 〈1, y〉 = 〈x, y〉. This implies that y2 = m ∈ F× and xy = −yx, whence we have the

result.
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Corollary 4.4.11. Let φ : OD → O be an (optimal) embedding into an order of the quater-

nion algebra B. Then there exists a quaternion algebra B′ with order O′ and an isomorphism

θ : B → B′ taking O to O′ such that θ ◦ φ : OD → O′ is an (optimal) embedding with

θ ◦ φ(
√
D) = iB′. In particular, given an (optimal) embedding, we can choose coordinates so

that the image of
√
D is i.

Proof. Take x = φ(
√
D) in Lemma 4.4.10, and consider the corresponding map θ. Let O′ =

θ(O), and then O′ is an isomorphic order for which θ ◦φ is an (optimal) embedding into.

4.4.2 Orientations of optimal embeddings

Fix B to be an indefinite quaternion algebra over Q with discriminant D and Eichler order

O of level M. Let D be a discriminant and φi : OD → O optimal embeddings of the order

of discriminant D for i = 1, 2. For every place v of Q, let φi,v be the composition of φi with

completing at v. If φ1 ∼ φ2, then clearly φ1,v ∼ φ2,v for all places v, though the opposite

notion need not be true (in fact, it will be true if and only if h+(D) = 1).

Definition 4.4.12. Let ov(φ) denote the (local) equivalence class of φv. The orientation of

an optimal embedding φ : OD → O is o(φ) = (ov(φ))v, the set of equivalence classes of the

corresponding local embeddings (v runs over all places).

Definition 4.4.13. For each possible orientation o of an optimal embedding of OD into O,

we denote by Embo(O,D) the equivalence classes of optimal embeddings with orientation o.

Thus the orientation of an optimal embedding measures the local information coming

from the embedding. The behaviour of the local orientations is summarized in the next

proposition.

Proposition 4.4.14. Assume that Emb(O,D) is non-empty. Then,

1. If B = O = Mat(2,R),

• if D > 0, then |Emb(O,D)| = 1.

• if D < 0, then |Emb(O,D)| = 2.
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2. If B = QAdiv
p with maximal order O,

• if p | D, then |Emb(O,D)| = 1.

• if p - D, then |Emb(O,D)| = 2.

3. If B = Mat(2,Qp) and O is an Eichler order of level pe,

• if e = 0, then |Emb(O,D)| = 1.

• if e > 0 and p - D, then |Emb(O,D)| = 2.

Proof. See sections 30.5 and 30.6 of [Voi21].

The above proposition is missing the case of B = Mat(2,Qp), O is an Eichler order of level

pe with e > 0 and p | D. In this case, there are various cases corresponding to the valuations

of D,M at p, and it becomes much more complicated. For simplicity of exposition, we will

omit this case. If desired, see Lemma 30.6.17 of [Voi21] for the details.

Now consider an optimal embedding φ : OD → O, where we are working globally. If

v - DM∞, then Emb(Ov, D) is trivial. Thus when we consider the orientation of φ, it suffices

to consider it only at places v | DM∞. Furthermore, as long as gcd(D,M) = 1, there are

only one or two orientations at each local place, so we can represent a local orientation as

either ±1 if there are two, or as 0 if there is one. Note that the choice of ±1 is not canonical.

If v < ∞, then fixing the local orientation of one optimal embedding of OD will fix it for

all optimal embeddings of ODk2 with ordv(k) = 0 only. If v = ∞, then fixing the local

orientation of one embedding of a negative quadratic order will fix it for all embeddings of

negative quadratic orders.

While the description of an orientation as a collection of local data is nice, it will be

useful to have more tangible interpretations. We start with v = ∞. Fix an inclusion map

ι : B → Mat(2,R), for example,

ι : e+ fi+ gj + hk →

e+ f
√
a b(g + h

√
a)

g − h√a e− f√a

 ,

where we are assuming that a > 0.
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We can assume that D < 0, and thus the equation ι(φ(
√
D))x = x has two solutions that

are complex conjugates of each other. Using the algebraic definition of first root as found

in Section 2.1, we call φ positive definite if the first root of ι(φ(
√
D)) lies in the upper half

plane, and negative definite otherwise.

Definition 4.4.15. The orientation of φ at v =∞ is

o∞(φ) :=


1 if φ is positive definite;

−1 if φ is negative definite;

0 if D > 0.

The following lemma shows that this definition agrees with the previous notion of orien-

tation, and that conjugating by an element of ON=−1 will swap orientation.

Lemma 4.4.16. Let u ∈ ON=±1. Then

o∞(φu) = nrd(u)o∞(φ).

Proof. Conjugation in GL(2,R) by an element of SL(2,R) preserves the half plane of the first

root. It is an easy calculation that conjugation by an element with determinant −1 swaps

the half planes, and the result follows.

Next, if p | D and p - D, then by Proposition 4.4.7 p is inert with respect to OD. Pick

reduction maps

π1 : OD → Fp2 , π2 : OD φ−→ O → Op → Fp2 ,

where for the first map we reduce modulo p, and for the second map we tensor O by with Zp
and reduce via the unique maximal ideal. By lifting from Fp2 to OD via π−1

1 and composing

with π2, we get an automorphism π2π
−1
1 : Fp2 → Fp2 . There are two such automorphisms,

namely the identity and conjugation.

Definition 4.4.17. The orientation of φ at p is

op(φ) :=


1 if π2π

−1
1 is the identity;

−1 if π2π
−1
1 is non-trivial;

0 if p | D.
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Lemma 4.4.18 shows that this definition agrees with the previous notion of orientation.

Lemma 4.4.18. If φ : OD → Op is an optimal embedding and x ∈ Op is non-zero, then

• op(φx) = op(φ) if vp(nrd(x)) is even;

• op(φx) = −op(φ) if vp(nrd(x)) is odd.

Proof. If p | D the result is trivial, so assume otherwise. By dividing x by powers of p, we

can assume that vp(nrd(x)) = 0, 1.

If nrd(x) is coprime to p, then in the construction of π2π
−1
1 for φx, we apply φ, conjugate

by x, and then reduce modulo the unique maximal idea p. Since nrd(x) is coprime to p, the

reduction x (mod p) is invertible, hence we can do the conjugation after reducing. But then

we are working in Fp2 , which is commutative, hence we have the same map, and the same

orientation.

Now assume that p || nrd(x). Write Bp =
(
p,e
Qp

)
with

(
e
p

)
= −1; by writing x = yi

with nrd(y) coprime to p, we see that it suffices to prove the statement for x = i. Letting

φ
(
pD+

√
D

2

)
= pD+fi+gj+hk

2
, we calculate that φi

(
pD+

√
D

2

)
= pD+fi−gj−hk

2
, whence

φ

(
pD +

√
D

2

)
− φi

(
pD +

√
D

2

)
= gj + hk ≡ gj 6≡ 0 (mod p),

as if p | g we would have p | D, contradiction. Therefore the image of pD+
√
D

2
under φ and φi

reduce to different things modulo p, and so they have opposite orientation.

If p | M and p - D, let φp(
√
D) = ( a b

c −a ), where we are assuming that we map to the

standard Eichler order of level M. Therefore a2 + bc = D, and thus a2 ≡ D (mod p).

Definition 4.4.19. Pick a1 such that a2
1 ≡ D (mod 2p). The orientation of φ at p is

op(φ) :=

1 if a ≡ a1 (mod 2p);

−1 otherwise.

If p > 2 we note that the orientation corresponds to a (mod p), and at p = 2 it cor-

responds to a (mod 4). Alternatively, it corresponds to (φp(
pD+

√
D

2
))1,1 (mod p) for all p.

Lemma 4.4.20 shows that this definition agrees with the previous notion of orientation.
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Lemma 4.4.20. Let φ : OD → Op be an optimal embedding into the standard Eichler order

of level pe, where e > 0 and p - D. If x ∈ Op, then

• op(φx) = op(φ) if nrd(x) is coprime to p;

• op(φx) = −op(φ) if x = ω =
(

0 1
−pe 0

)
;

• if op(φ
x) = −op(φ), then ω−1x ∈ Op.

Proof. Let φ(pD+
√
D

2
) =

(
a b
c pD−a

)
, let x =

(
e f
g h

)
, and first assume that p - nrd(x) = eh− gf .

We calculate that(
φx

(
pD +

√
D

2

))
1,1

≡ 1

eh

e f

0 h

a b

0 pD − a

h −f
0 e


1,1

(mod p)

≡a (mod p),

which implies that φ and φx have the same orientation.

If x = ω, we calculate that

φx

(
pD +

√
D

2

)
=

pD − a −c/pe
−bpe a

 .

Thus φ(
√
D)1,1 = 2a− pD = −(pD − 2a) = −φx(

√
D), which implies the second result.

For the last point, we have op(φ
x) = −op(φ) = op(φ

ω), hence φx and φω are equivalent

optimal embeddings (if they were not, then |Emb(Op, D)| ≥ 3, which is a contradiction).

Therefore there exists a z ∈ Op with nrd(z) = 1 for which

ω−1zxφ(ω−1zx)−1 = φ,

and by Proposition 4.2.1, we can write zx = Aω + Bωφ(pD+
√
D

2
) for some A,B ∈ Qp.

Explicitly,

zx =

 cB A+ (pD − a)B

pe(−A− aB) −pebB

 ∈ Op,

whence A+ (pD − a)B,A+ aB ∈ Zp. Subtracting yields (2a− pD)B ∈ Zp, and we note that

(2a− pD)2 = (φ(
√
D)1,1)2 ≡ D (mod p).

Therefore 2a− pD is coprime to p, so B ∈ Zp, and A ∈ Zp follows as well. This implies that

x ∈ z−1ωOp = ωOp, as required.
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Computationally, given embeddings φ1, φ2, we would like to be able to tell which primes

they differ in orientation at. The following proposition does the trick.

Proposition 4.4.21. Let φ1, φ2 : OD → O be optimal embeddings, and p a finite prime

which divides DM but does not divide gcd(D,M). Then φ1, φ2 have the same orientation at

p if and only if

p | nrd

(
φ1

(
pD +

√
D

2

)
− φ2

(
pD +

√
D

2

))
,

or, equivalently,

p1+2v2(p) | nrd
(
φ1(
√
D)− φ2(

√
D)
)
.

They have opposite orientations if and only if p - D and

p1+2v2(p) | nrd(φ1(
√
D) + φ2(

√
D)).

Proof. It suffices to prove this proposition locally. First, consider the case of p | D; let p be

the unique maximal ideal of Op. If p | D the conclusion is clear, and otherwise by Definition

4.4.17, φ1, φ2 have the same orientation if and only if the images of pD+
√
D

2
are the same

modulo p. This completes the first claim in this case.

Next, assume that p | M; thus p - D. Assume that Mi := φi,p

(
pD+

√
D

2

)
= ( ai bi

ci pD−ai )

(i = 1, 2) inside the standard Eichler order of level M in Mat(2,Qp). By Definition 4.4.19,

the orientations of φ1, φ2 are the same if and only a1 ≡ a2 (mod p). Since p | c1− c2, we also

see that p | nrd(M1 −M2) if and only if p | a1 − a2, which completes the first claim.

The second equation follows directly from the first. The final part of the proposition

follows from similar arguments to above.

Now that we have a good understanding of orientation, we will examine how the standard

involution and conjugation affect it.

Proposition 4.4.22. Let φ : OD → O be an optimal embedding. Then φ : OD → O defined

by φ(x) = φ(x) is an optimal embedding with orientation −o(φ).

Proof. The embedding φ is clearly optimal, so we just need to check the orientation. Note

that φ(
√
D) = −φ(

√
D), so by Proposition 4.4.21, the result follows for the finite primes. At

∞, the result follows from Definition 4.4.15.
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Proposition 4.4.23. Let B be an indefinite quaternion algebra over Q of discriminant

D with Eichler order O of level M, let φ : OD → O be an optimal embedding, and take

ωp ∈ N×B (O) for p | DM∞ as in Proposition 4.2.8. Then we have

• ov(φωp) = ov(φ) for all places v 6= p;

• op(φωp) = −op(φ) if p - gcd(D,M).

In other words, the optimal embedding φωp only swaps orientation at p.

Proof. This follows immediately from Lemmas 4.4.16, 4.4.18, 4.4.20.

Remark 4.4.24. When gcd(D,M) = 1, by successively conjugating an embedding by the

elements ωp for p | DM∞, we can pass between all possible orientations.

4.5 Action of the narrow class group on optimal em-

beddings

Let B be a quaternion algebra over Q of discriminant D with Eichler order O of level M, and

let φ1, φ2 be optimal embeddings of OD into O. Let ei = φi(
√
D) for i = 1, 2, and Corollary

4.2.2 implies that the set

SBφ1,φ2 := {v ∈ B : vφ1 = φ2v} = {v ∈ B : ve1 = e2v}

is a two dimensional Q−vector space. When we restrict to O, we define

SOφ1,φ2 := SBφ1,φ2 ∩O,

which is a 2 dimensional Z−module, say with basis v1, v2. Define the (integral) quadratic

form

Qφ1,φ2(X, Y ) := nrd(Xv1 + Y v2);

note that this depends on (v1, v2), though we do not include this in the notation. Working

with Qφ1,φ2 thus implicitly implies that we are working both with the embeddings and a

chosen basis. Different choices of basis (v1, v2) will translate Qφ1,φ2 by an element of GL(2,Z).
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We wish to orient the basis of SOφ1,φ2 so that Qφ1,φ2 is well defined up to SL(2,Z), and thus

[Qφ1,φ2 ] only depends on φ1, φ2 and not on the basis.

The discriminant of Qφ1,φ2 is (v2v1 − v1v2)2, which motivates considering the quantity

v2v1 − v1v2. Indeed, this quantity is is invariant under SL(2,Z), and negates itself under a

GL(2,Z) transformation with determinant −1. Using the identities vie1 = e2vi and e1vi =

vie2 for i = 1, 2 (the second follows from conjugating the first, and using that ei = −ei), we

calculate

e2v2v1 = v2e1v1 = v2v1e2.

Thus by Proposition 4.2.1, we must have v2v1 = A1 +A2e2 for some rational numbers A1, A2.

Since v2v1 ∈ O, it follows that A1 + A2e2 ∈ Z + pD+e2
2

Z, using the fact that e2 descends to

an optimal embedding into O. In particular, 2A1, 2A2 ∈ Z. We see that

v1v2 = v2v1 = A1 − A2e2,

whence V = v2v1 − v1v2 = 2A2e2 = Ae2, where A = 2A2 is a non-zero integer. Before going

further, we can already describe the orientation of the basis.

Definition 4.5.1. With the notation as above, (v1, v2) is said to be an oriented Z−module

basis of SOφ1,φ2 if v2v1 − v1v2 = Aφ2(
√
D) where A is a positive integer. With this choice, the

SL(2,Z) equivalence class of Qφ1,φ2 is well defined.

If u1, u2 ∈ ON=1, then we have

SO
φ
u1
1 ,φ

u2
2

= u2S
O
φ1,φ2

u−1
1 ,

whence [Qφ
u1
1 ,φ

u2
2

] = [Qφ1,φ2 ]. That is, the quadratic form equivalence class is also well defined

over equivalence classes of embeddings. The key results about Qφ1,φ2 are summarized in the

following proposition, which will be proved in Section 4.5.1.

Proposition 4.5.2. Let φ1, φ2 be optimal embeddings from OD to O. Then

(i) if o(φ1) = o(φ2), then Qφ1,φ2 is a primitive form of discriminant D, which is positive

definite if D < 0.

(ii) if φ1, φ2 differ in orientation at the finite primes q1, . . . , qs, where qi - gcd(D,M) for

all i, then Qφ1,φ2 is equal to a primitive form of discriminant D times
∏s

i=1 q
vqi (DM)

i .
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(iii) if φ1, φ2 differ in orientation at ∞, then Qφ1,φ2 is negative definite.

(iv) If α ∈ NB×(O) and φ1, φ2 have the same orientation, then we have

[Qφ1,φ2 ] = [Qφα1 ,φ
α
2
],

i.e. the group action commutes with conjugation by elements in NB×(O).

(v) If α ∈ ON=−1, then we have

[Qφα1 ,φ2
(X, Y )] = [−Qφ1,φ2(X,−Y )].

Proposition 4.5.2 produces a quadratic form out of two optimal embeddings, but does

not give a recipe to produce an optimal embedding given a quadratic form and an initial

optimal embedding.

Definition 4.5.3. Let φ be an optimal embedding of OD into O representing the equivalence

class [φ] ∈ Emb(O,D), and let g ∈ Cl+(D) be an element of the narrow class group.

• Take a proper fractional ideal I representing g in Cl+(D) such that vp(Nm(I)) = 0 for

all p | DM.

• Form the left ideal IO := Oφ(I) in O.

• As B is indefinite, all left ideals of a maximal order are principal, so write IO = OcI

for a cI ∈ B of positive norm.

• Define the optimal embedding φI = cIφc
−1
I , and the action of g on [φ] to be g·[φ] := [φI ].

In Section 4.5.2 we will prove that the above is well-defined, independent of all choices,

and is a group action.

The main result about the action of the class group on optimal embeddings is the following

theorem.

Theorem 4.5.4. Let D be a discriminant for which |Emb(O,D)| is non-empty, and let o

be a fixed orientation. Then the action of Cl+(D) on Embo(O,D) as described in Definition

4.5.3 is simply transitive. Furthermore, we have

Qφ1,φ2 · [φ1] = [φ2],
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i.e. the action is consistent with the definition of Qφ1,φ2.

Theorem 4.5.4 immediately implies the following corollary.

Corollary 4.5.5. If gcd(D,M) = 1, then the set Emb(O,D) is a finite set of size

h+(D)(1 + 1D<0)
∏
p|D

(
1−

(
D

p

))∏
p|M

(
1 +

(
D

p

))
.

Furthermore, for any valid orientation o, the set Embo(O,D) has size h+(D), and the narrow

class group Cl+(D) acts acts simply transitively on it.

The results of Corollary 4.5.5 are not new, for example see Example 30.7.4 of[Voi21].

However, they are typically derived adelically, whereas it is important for us to have very

explicit interpretations.

Remark 4.5.6. The set Embo(O,D) carries extra natural automorphims, i.e. in addition to

the ones coming from the narrow class group action. Indeed, conjugation by the element ωp

where p | D (or ω∞ when D > 0) will not change the orientation of an embedding, and will

be an involution.

4.5.1 Determining the quadratic form

This section is devoted to proving Proposition 4.5.2 through a series of lemmas.

Lemma 4.5.7. Let φ1, φ2 have the same orientation. Then the quadratic form Qφ1,φ2 is

primitive, and is positive definite if D < 0.

Proof. For the primitiveness, it suffices to show that for all finite primes p, there exists

integers x, y such that p - Qφ1,φ2(x, y) = nrd(xv1 + yv2). Since we have

S
Op
φ1,φ2

= {v ∈ Op : vφ1 = φ2v} = SOφ1,φ2 ⊗ Zp = Zpv1 ⊕ Zpv2,

it suffices to show that there exists an α ∈ SOpφ1,φ2 for which p - nrd(α). But φ1, φ2 have the

same orientation at p, whence they are locally conjugate by an element of norm 1, and the

result follows.

If D < 0, the definiteness follows from Lemma 4.4.16.
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Lemma 4.5.8. If φ1, φ2 differ in orientation at the finite primes q1, . . . , qs, where qi -

gcd(D,M) for all i, then Qφ1,φ2 is equal to a primitive quadratic form multiplied by∏s
i=1 q

vqi (DM)

i . If D < 0, then Qφ1,φ2 is negative definite if φ1, φ2 have opposite orientations

at ∞.

Proof. Let x =
s∏
i=1

ωqi , and then φx1 , φ2 have the same orientation by Proposition 4.4.23. It

is clear that

SOφ1,φ2 ⊇ SOφx1 ,φ2x;

we would like to show equality (which would prove the claim for D > 0). If z ∈ SOφ1,φ2 , then

Lemmas 4.4.18 and 4.4.20 show that x−1z ∈ O necessarily. Since x ∈ NB×(O), we also have

zx−1 ∈ O. If (v1, v2) is an oriented basis of SOφx1 ,φ2 , then we can write z = Av1x + Bv2x for

some A,B ∈ Q. Therefore zx−1 = Av1 + Bv2 ∈ O, whence A,B ∈ Z, and therefore a basis

of SOφ1,φ2 is (v1x, v2x). This is properly oriented since xx = nrd(x) > 0.

If φ1, φ2 have opposite orientations at∞, the definiteness follows from Lemma 4.4.16.

Recall that we took (v1, v2) to be an ordered basis of SOφ1,φ2 , and wrote v2v1 = A1 +A2e2 ∈
Z + pD+e2

2
Z. In particular,

D even⇒A1 ∈ Z, A2 ∈
1

2
Z;

D odd⇒A1, A2 ∈
1

2
Z and 2A1 ≡ 2A2 (mod 2).

Lemma 4.5.9. If φ1, φ2 have the same orientation, then Qφ1,φ2 has discriminant D.

Proof. The discriminant of Qφ1,φ2 is

(v2v1 − v1v2)2 = (2A2e2)2 = (2A2)2D,

whence it suffices to show that A = 2A2 has no prime divisors. Assume that p | 2A2 for some

prime p. First, note that

Qφ1,φ2(X, Y ) = nrd(v1)X2 + 2A1XY + nrd(v2)Y 2,

so by Lemma 4.5.7, p - gcd(nrd(v1), 2A1, nrd(v2)). We first claim that one of nrd(v1), nrd(v2)

is coprime to p. Indeed, assume that p | nrd(v1), nrd(v2), and
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• if p = 2, then 2 | 2A2, i.e. A2 is an integer. By our above comments, A1 is also an

integer, and thus 2 | 2A1. But now 2 | gcd(nrd(v1), 2A1, nrd(v2)), contradiction.

• if p is odd, then p | nrd(v2v1) = A2
1 −DA2

2, whence p | A1. Again, p | gcd(nrd(v1), 2A1,

nrd(v2)), contradiction.

Without loss of generality, assume that p - nrd(v1). As (v1, v2) was defined to be the ordered

basis of a Z−module, we can also replace v2 by v2 + kv1 for any integer k: this changes

v2v1 by k nrd(v1), and hence (A1, A2) → (A1 + k nrd(v1), A2). Since nrd(v1) is coprime to

p, this allows us to assume that A1 ≡ A2D (mod p) (which is equivalent to 0 (mod p) by

assumption, except in the case where p = 2 and A2, D are odd). Then

v2v1 = p
A1 + A2e2

p
∈ pO.

Since v1 has reduced norm coprime to p, this implies that v2 ∈ pO. This contradicts (v1, v2)

generating SOφ1,φ2 , so we are done.

Lemma 4.5.10. Let φ1 and φ2 have the same orientation, and let α ∈ NB×(O). Then

[Qφ1,φ2 ] = [Qφα1 ,φ
α
2
],

i.e. the group action commutes with conjugation by elements in NB×(O) with positive norm.

If α ∈ ON=−1, then we have

[Qφα1 ,φ2
(X, Y )] = [−Qφ1,φ2(X,−Y )].

Proof. If (v1, v2) is an oriented basis of SOφ1,φ2 , then (αv1α
−1, αv2α

−1) is a basis of SOφα1 ,φα2 . We

calculate

αv2α
−1αv1α−1 = αv2v1α

−1,

which implies that the basis is properly oriented. Thus

Qφα1 ,φ
α
2
(X, Y ) = nrd(αv1α

−1X + αv2α
−1Y ) = nrd(v1X + v2Y ) = Qφ1,φ2(X, Y ),

as desired.

For the second statement, (v1α
−1,−v2α

−1) is a basis of SOφ1,α,φ2 . We calculate

−v2α
−1v1α−1 = v2v1,
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which implies that this is properly oriented. Thus

Qφ1,α,φ2(X, Y ) = nrd(Xv1α
−1 − Y v2α

−1) = nrd(α−1) nrd(Xv1 − Y v2) = −Qφ1,φ2(X,−Y ),

as desired.

Lemmas 4.5.7, 4.5.8, 4.5.9, and 4.5.10 constitute a proof of Proposition 4.5.2. To close

the section, we note a corollary of this result.

Corollary 4.5.11. Let φ1 and φ2 differ in orientation at the primes q1, . . . , qs, where qi -

gcd(D,M) for all i. Let SOφ1,φ2 = Zv1 +Zv2, where (v1, v2) is properly oriented. Then we have

v2v1 − v1v2 =
s∏
i=1

q
vqi (DM)

i φ2(
√
D).

4.5.2 Narrow class group action

Now that we have the required facts about Qφ1,φ2 , we turn to the claimed group action in

Definition 4.5.3. First, we show that it is well-defined.

Lemma 4.5.12. In Definition 4.5.3, the equivalence class g · [φ] is independent of the choice

of φ representing [φ], the choice of I representing g, and the choice of cI in Definition 4.5.3.

Furthermore, g · [φ] has the same orientation as φ.

Proof. First, we claim that all choices made are indeed possible. Since all equivalence classes

of proper ideals contain infinitely many prime ideals, the choice of I is possible. For cI , we

choose an arbitrary cI that works, and if it has negative norm, we can multiply it on the left

by any element of ON=−1 to get a valid choice.

Next, we need to show that φI gives an optimal embedding into O. Let

OI = OrdR(IO) = {b ∈ B : IOb ⊆ IO} = c−1
I OcI ;

whence OI is another Eichler order of level M. It is clear that φ(OD) ⊆ OI , so φ gives an

embedding into OI . Let K = Q(
√
D), and then φ extends uniquely to a homomorphism

φ : K → B. If the embedding φ : OD → OI is not optimal, then it extends to φ : OD′ → OI ,

where D′ is a discriminant properly dividing D. Since OD′ commutes with I, we get

Oφ(I) ⊇ Oφ(I)φ(OD′) = Oφ(OD′)φ(I).
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Let J be the proper fractional ideal with IJ = OD, and then multiplying by φ(J) on the

right gives us

O = Oφ(OD) = Oφ(I)φ(J) ⊇ Oφ(OD′)φ(I)φ(J) = Oφ(OD′)φ(OD) = Oφ(OD′).

Therefore φ(OD′) ⊆ O, which contradicts φ being an optimal embedding into O. Thus our

assumption is wrong, and φ : OD → OI is indeed optimal. When we conjugate by cI , we get

that the embedding φI into cIOIc
−1
I = O is optimal, so it represents a class in Emb(O,D).

To prove that the action is independent of our choices, let x ∈ ON=1, and let α ∈ K

satisfy NmK/Q(α) > 0 and vp(NmK/Q(α)) = 0 for all p | DM. Assume we start with φx and

I ′ = αI as representatives instead. We have

OcI′ = Oφx(I
′) = Oxφ (αI)x−1 = Oφ(I)φ(α)x−1 = OcIφ(α)x−1,

where we used that Ox = O and α commutes with I. In particular, O = OcIφ(α)x−1c−1
I′ ,

which implies that r = cIφ(α)x−1c−1
I′ is a unit in O. Its reduced norm satisfies

nrd(cIφ(α)x−1c−1
I′ ) = nrd(cI) NmK/Q(α) nrd(cI′)

−1 > 0,

whence it must be in ON=1. Then cI′ = r−1cIφ(α)x−1, and we calculate

[cI′φxc
−1
I′ ] =[r−1cIφ(α)x−1(xφx−1)xφ(α−1)c−1

I r]

=[r−1cIφ(α)φφ(α−1)c−1
I r]

=[r−1cIφc
−1
I r]

=[cIφc
−1
I ],

so the action is well defined.

For the orientation, we consider the norm ideal of IO, i.e. nrd(IO) := {nrd(α) : α ∈ IO},
a fractional ideal of Z. We get

〈nrd(cI)〉 = nrd(OcI) = nrd(IO) = nrd(Oφ(I)) = Nm(I)Z,

whence nrd(cI) = Nm(I) as it is positive. By our assumption on I, we have vp(cI) = 0 for all

p | DM, so by Lemmas 4.4.18 and 4.4.20, the orientation of φI is the same as the orientation

of φ at all finite primes. Since nrd(cI) > 0, by Lemma 4.4.16 the orientation at ∞ is also

unchanged.
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Next, we prove that we do have a group action.

Lemma 4.5.13. If g, h ∈ Cl+(D) and [φ] ∈ Emb(O,D), then

g · (h · [φ]) = gh · [φ].

Proof. Pick proper fractional ideals I, J representing the class group elements g, h respec-

tively for which vp(Nm(I)) = vp(Nm(J)) = 0 for all p | DM. Note that IJ is then a valid

choice to represent gh, let Oφ(J) = OcJ , and let Oφ(IJ) = OcIJ . We have h · [φ] = [cJφc
−1
J ],

and we calculate

O(cJφc
−1
J )(I) = OcJφ(I)c−1

J = Oφ(J)φ(I)c−1
J = Oφ(IJ)c−1

J = OcIJc
−1
J .

Therefore

g · (h · [φ]) = [(cIJc
−1
J )cJφc

−1
J (cIJc

−1
J )−1] = [cIJφc

−1
IJ ] = gh · [φ],

as required.

The final ingredient required is that the two interpretations of the group action are

identical. Before doing so, we recall the equivalence between (positive definite/indefinite)

binary quadratic forms of discriminant D and proper fractional ideals of OD.

If the proper ideal I = 〈α1, α2〉Z satisfies α2α1−α1α2√
D

> 0, then we send it to the quadratic

form
Nm(Xα1 − Y α2)

Nm(I)
.

Given the quadratic form f = [A,B,C], we send it to the proper ideal〈
A,
−B +

√
D

2

〉
Z

.

Lemma 4.5.14. Let f be a binary quadratic form representing an element of Cl+(D) (where

f is positive definite if D < 0), and let [φ] ∈ Emb(O,D). Then Qφ,f ·φ and f are equivalent

binary quadratic forms.

Proof. Working with ideals, there are infinitely many split prime proper ideals in the class

of [f ] in Cl+(D). Take I to be a sufficiently large one, and without loss of generality write

I = pZ +
−m+

√
D

2
Z,
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which has norm p, an odd prime for which p - DDM. The quadratic form associated to I is

f =
[
p,m, m

2−D
4p

]
.

Take cI as in Definition 4.5.3, let cIφc
−1
I = φ′, and consider S = SOφ,φ′ . We know that

cI ∈ S, and since nrd(cI) = p is prime, it is not a non-trivial integer multiple of any

element in S. In particular, we can take a oriented Z-module basis of S to be (cI , v) for some

v ∈ S. From Corollary 4.5.11 we know that v must satisfy vcI − cIv = cIφ(
√
D)c−1

I . Let

n = trd(vcI) = vcI + cIv, and combining these two equations gives us

v =
n+ cIφ(

√
D)c−1

I

2p
cI = cI

n+ φ(
√
D)

2p
.

It follows that the quadratic form associated to this basis is Qφ,φ′ =
[
p, n, n

2−D
4p

]
, and it will

suffice to prove that n ≡ m (mod 2p). Since m,n have the same parity as D, it suffices to

show that m ≡ n (mod p) only. Furthermore, as our quadratic forms are integral, we have

m2 ≡ n2 ≡ D (mod p), so it follows that m ≡ ±n (mod p); we must only eliminate the

possibility of m ≡ −n (mod p).

Define the two candidate v’s to be

v1 = cI
m+ φ(

√
D)

2p
, v2 = cI

−m+ φ(
√
D)

2p
.

Since Oφ(I) = OcI , we see that Op+O−m+φ(
√
D)

2
= OcI . In particular, there exist r1, r2 ∈ O

such that cI = r1p+ r2
−m+φ(

√
D)

2
. Multiply on the right by m+φ(

√
D)

2
, and we derive

cI
m+ φ(

√
D)

2
= p

(
r1
m+ φ(

√
D)

2
+ r2

m2 −D
4p

)
∈ pO,

whence v1 ∈ O. Next,

v1 + v2 = cI
φ(
√
D)

p
/∈ O

since it has norm −D
p
/∈ Z. In particular, it follows that v2 /∈ O, and therefore v2 /∈ S. Thus

we must have v ≡ v1 (mod cI), i.e. m ≡ n (mod p), and so we are done.

All the ingredients are now prepared!

Proof of Theorem 4.5.4. Lemmas 4.5.12 and 4.5.13 show that Definition 4.5.3 gives a group

action of Cl+(D) on Embo(O,D). For the transitivity, let [φ1], [φ2] ∈ Embo(O,D), and con-

sider Qφ1,φ2 ∈ Cl+(D). Lemma 4.5.14 implies that Qφ1,φ2 · [φ1] = [φ2], as desired. For the
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faithfulness, let [φ] ∈ Embo(O,D) and f ∈ Cl+(D). If f · [φ] = [φ], then by Lemma 4.5.14

we have f ∼ Qφ,φ. An oriented basis of SOφ,φ is (1, φ(pD+
√
D

2
)), whence

f ∼ Qφ,φ = X2 + pDXY +
pD −D

4
Y 2,

which is the identity element. Therefore the action is faithful.

Remark 4.5.15. It is also possible to prove the group action using Qφ1,φ2 by showing that

if φ1, φ2, φ3 all have the same orientation, then

Qφ1,φ2 ◦Qφ2,φ3 = Qφ1,φ3 ,

where ◦ is Gauss composition of quadratic forms.
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Chapter 5

Intersection numbers for Shimura

curves

The goal of this section is to begin the study of intersection numbers on Shimura curves by

setting up the language and translating the results of Section 2.

In this chapter, let B be an indefinite quaternion algebra over Q with Eichler order O of

level M, and fix an embedding ι : B → Mat(2,R). Let

ΓO = Γ := ι(O×N=1)/{±1}

be the image of ON=1 in PSL(2,R), a discrete subgroup. The quotient ΓO\H is referred to

as a Shimura curve. We will be considering intersection numbers with respect to ΓO.

5.1 Basic facts on intersections

Let φ be an optimal embedding of discriminant D into O. Let εD = T+U
√
D

2
be the fundamen-

tal unit in OD, where (T, U) is the smallest positive integer solution to T 2−DU2 = 4. Then

φ(εD) ∈ ON=1 and trd(φ(εD)) = T > 2, hence ι(φ(εD)) is a primitive hyperbolic element

of ΓO (the primitiveness comes from the optimality of φ), and thus corresponds to a closed

geodesic on ΓO\H (and all closed geodesics arise in this fashion). Abbreviate `ι(φ(εD)) as `φ.

Definition 5.1.1. Let φ1, φ2 be optimal embeddings of positive discriminants D1, D2, and

let f be any function on transversal intersections. Then the f -weighted intersection number
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of φ1, φ2 is defined to be the f -weighted intersection number of ˜̀
φ1 ,

˜̀
φ2 . Explicitly, we write

IntfO(φ1, φ2) := IntfΓO(ι(φ1(εD1)), ι(φ2(εD2))).

As before, we translate Proposition 2.4.3 to the language of optimal embeddings.

Proposition 5.1.2. Every transverse intersection point of ˜̀
φ1 and ˜̀

φ2 can be lifted to H to

the intersection of `φ′1 , `φ′2, where φ1 ∼ φ′1 and φ2 ∼ φ′2. This lifting is unique up to the action

of simultaneous conjugation of (φ′1, φ
′
2) by ON=1, i.e. ∼2.

In particular, it suffices to count pairs (φ′1, φ
′
2) of intersecting root geodesics individually

similar to (φ1, φ2), taken up to simultaneous conjugation. Note that intersection numbers

are defined on pairs of equivalence classes of optimal embeddings, since they correspond to

conjugacy classes in ΓO.

The next task is to translate Theorem 2.5.2 into the new setting. When we do so, a

natural definition pops out.

Definition 5.1.3. Let x be any integer such that x2 6= D1D2 and x ≡ D1D2 (mod 2). The

pair (φ1, φ2) of embeddings of discriminants D1, D2 is called x−linked if

x =
1

2
trd
(
φ1(
√
D1)φ2(

√
D2)

)
.

In particular, if (φ1, φ2) is x−linked, then every pair in the equivalence class (of simultaneous

equivalence) [(φ1, φ2)] is x−linked.

The reason that x−linking is important is that it determines if root geodesics intersect

or not.

Theorem 5.1.4. The root geodesics `φ1 , `φ2 intersect transversely if and only if (φ1, φ2) are

x−linked for an x with

x2 < D1D2.

If the root geodesics intersect, then

(i) The intersection point is the upper half plane root of ι(φ1(
√
D1)φ2(

√
D2)), and so it

corresponds to an (not necessarily optimal) embedding of the negative quadratic order

Ox2−D1D2
.
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(ii) The sign of intersection is 1 if and only if φ1(
√
D1)φ2(

√
D2) corresponds to a positive

definite embedding.

(iii) The angle of intersection θ satisfies

tan(θ) =

√
D1D2 − x2

x
.

Proof. Adopt the notation of Theorem 2.5.2. Let Mi = ι(φi(εDi)) for i = 1, 2, where εDi =

Ti+Ui
√
Di

2
, with (Ti, Ui) being the smallest positive integer solution to T 2 − DiU

2 = 4. We

calculate

Zi = ι(φi(εDi))−
Ti
2

=
Ui
2
ι(φi(

√
Di)),

hence

det(Zi) =
−U2

i Di

4
, Tr(Z1Z2) =

U1U2x

2
.

Therefore

det(Z1Z2 − Z2Z1) = 4 det(Z1Z2)− (Tr(Z1Z2))2 =
U2

1U
2
2

4
(D1D2 − x2),

and so the root geodesics intersect if and only if x2 < D1D2.

Assume the root geodesics intersect, and let T = φ1(
√
D1)φ2(

√
D2); the intersection point

is the upper half plane fixed point of ι(T ). Since T satisfies T 2− 2xT +D1D2 = 0, T acts as

x+
√
x2 −D1D2. But T ∈ (2O + pD1)(2O + pD2) ⊂ 2O + pD1D2 , hence T corresponds to an

embedding of Ox2−D1D2
into O. This also implies that x ≡ D1D2 (mod 2).

Note that φi(
√
Di) = −φi(

√
Di), whence T = φ2(

√
D2)φ1(

√
D1). Thus the sign of the

intersection is 1 if and only if

0 < ι(T − T )21 = 2ι(T )2,1.

The first root of ι(T ) lies in the upper half plane if and only if ι(T )2,1 > 0, hence the sign of

intersection is as claimed.

Finally, the angle of intersection satisfies

tan(θ) =

√
U2

1U
2
2 (D1D2 − x2)/4

U1U2x/2
=

√
D1D2 − x2

x
.

71



Chapter 5 – Intersection numbers for Shimura curves

Remark 5.1.5. Similarly to Remark 3.2.2, it can be shown that if (φ1, φ2) are x−linked,

the first and second roots of ı(φi(εDi)) are φi,f , φi,s respectively, then the cross-ratio bewteen

the roots satisfies

(φ1,f , φ1,s;φ2,f , φ2,s) =
x−√D1D2

x+
√
D1D2

.

Note that this is independent of the form in the simultaneous equivalence class (φ1, φ2) and

the embedding ı into Mat(2,R).

Now that the concept of intersecting root geodesics has been replaced by x−linking,

deriving results becomes a a lot more manageable. While intersections only come from the

case of x2 < D1D2, a lot of properties of x−linking hold true for all x except for x2 = D1D2

(which is why this is included as a hypothesis). This case is a degenerate case, where the

root geodesics completely overlap.

The definition of x−linking does not assume that the embeddings land inside the same

order; they can just be arbitrary embeddings into B. In Lemma 6.2.1, we will show that

x ≡ D1D2 (mod 2) is all that is required for such an order to exist.

Define

Emb(O, φ1, φ2, x) := {(σ1, σ2) : σ1 ∼ φ1, σ2 ∼ φ2, (σ1, σ2) are x−linked}/ ∼2,

the equivalence classes of x−linked pairs of embeddings similar to φ1, φ2. Going further, write

Emb(O,D1, D2, x) :={(σ1, σ2) : [σi] ∈ Emb(O,Di), (σ1, σ2) are x−linked}/ ∼2

=
⋃

[φi]∈Emb(O,Di)

Emb(O, φ1, φ2, x),

so that Emb(O,D1, D2, x) captures all possible x−linking between optimal embeddings of

discriminants D1, D2. While we will eventually characterize and count Emb(O,D1, D2, x)

(see Theorems 6.4.2 and 7.1.2), we can already prove a strong necessary condition for this

set to be non-empty.

Lemma 5.1.6. Let v1, v2 ∈ O. Then

DM | nrd(v1v2 − v2v1).
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Proof. Let p | DM, and consider completing the quaternion algebra at p. We can assume

that the completion Op is either the unique maximal order if Bp is division, or the standard

Eichler order of level pe otherwise. In the first case, let the unique maximal ideal of Op be p,

and then Op
p
' Fp2 is a field. Thus

v1v2 ≡ v2v1 (mod p),

which implies that v1v2 − v2v1 ∈ p, and so p | nrd(v1v2 − v2v1).

The second case follows from the fact that looking modulo pe, we have upper triangular

matrices. The diagonal of their product is unchanged when we swap the order of multiplica-

tion, and the result follows.

Corollary 5.1.7. If (φ1, φ2) are x−linked, then

DM | D1D2 − x2

4
.

In particular, for a fixed pair of discriminants D1, D2, there is a finite set of non-isomorphic

pairs (B,O) of an indefinite quaternion algebra B over Q with Eichler order O for which

there exists optimal embeddings of D1, D2 into O giving a non-zero unweighted intersection

number.

Proof. Let xi =
pDi+

√
Di

2
, and from Lemma 5.1.6 and the calculations in Theorem 5.1.4, we

have

DM | nrd(φ1(x1)φ2(x2)− φ2(x2)φ1(x1))

=
nrd(φ1(

√
D1)φ2(

√
D2)− φ2(

√
D2)φ1(

√
D1))

16
=
D1D2 − x2

4
.

Intersections come from the finite set of x for which x2 < D1D2, and this calculation shows

that for each such x there are finitely many pairs (D,M) that satisfy the divisibility condition

(in Theorem 6.4.2 we will show that D is in fact uniquely determined from D1, D2, x).

Therefore, there are finitely many Eichler orders for which there exist intersections of optimal

embeddings of discriminants D1, D2.
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5.2 Intersection weights

To bring more arithmetic into the setup, we would like to vary the weight function.

Definition 5.2.1. Let φ1, φ2 be x−linked optimal embeddings of OD1 and OD2 into O, and

define φ1 × φ2 to be the optimal embedding into O for which

φ1 × φ2(x+
√
x2 −D1D2) = φ1(

√
D1)φ2(

√
D2).

Note that in the equivalence class [(φ1, φ2)] of simultaneous conjugation, the equivalence

class of [φ1 × φ2] is constant.

Definition 5.2.2. The sign of the intersection (φ1, φ2), denoted sg(φ1, φ2), is 1 if φ1 × φ2 is

positive definite, −1 if φ1×φ2 negative definite, and 0 otherwise. The level of the intersection,

denoted `(φ1, φ2) = ` ∈ Z+, is defined by φ×φ2 being an optimal embedding of discriminant

x2−D1D2

`2
.

By Theorem 5.1.4, the sign of the intersection corresponds to the physical sign of inter-

section as defined in Section 2.

Using the notion of sign and level, we can describe three different intersection functions

f that will be studied in this paper:

1. f(φ1, φ2) = 1 is called the unweighted intersection number, and is denoted IntO.

2. f(φ1, φ2) = sg(φ1, φ2) is called the signed intersection number, and is denoted Int±O.

3. For a prime q, f(φ1, φ2) = sg(φ1, φ2)(1 + vq(`(φ1, φ2))) is called the q−weighted inter-

section number, and is denoted IntqO.

We now present an alternate description of the q−weighted intersection for q | D. For

any n ∈ Z≥0 we get maps

ODi → O → O

qnO
.

Let N be the largest nonnegative integer such that the images of ODi in O
qNO

are equal.

Proposition 5.2.3. Assume that q - gcd(D1, D2) and q | D. With notation as above, we

have vq(`(φ1, φ2)) = N .
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Proof. We can work in the completion, since O
qnO

= Oq
qnOq

. The images of φi(ODi) in Oq
qnOq

are

the same if and only if there exist integers a, b with b coprime to q for which

pD1 + φ1(
√
D1)

2
≡ a+ b

pD2 + φ2(
√
D2)

2
(mod qnOq).

For now, assume that q > 2. Multiplying by 2 and rearranging, this is equivalent to

φ1(
√
D1)− bφ2(

√
D2) ≡ 2a+ bpD2 − pD1 (mod qnOq),

for some integers a, b with b coprime to q. Taking the trace of each side gives 0 ≡ 2(2a +

bpD2 − pD1) (mod qn), hence

φ1(
√
D1)− bφ2(

√
D2) ≡ 0 (mod qnOq).

If this is true for some b coprime to q, then taking a ≡ pD1
−bpD2

2
(mod qn) gives a valid pair

(a, b), hence this condition is equivalent.

If this is true, then multiplying on right by φ2(
√
D2) implies that

T − bD2

qn
∈ Oq,

where T = φ1(
√
D1)φ2(

√
D2). This implies that φ1 × φ2 descends to an embedding of dis-

criminant x2−D1D2

qn
. Therefore vq(`(φ1, φ2)) ≥ N .

For the other direction, we have T − x ∈ qnOq. If q is coprime to D2, multiplying by

φ2(
√
D2)

D2
on the right gives

φ1(
√
D1)− x

D2

φ2(
√
D2) ∈ qnOq.

If q - x we would be done, so assume otherwise. From Corollary 5.1.7,

q | D | D1D2 − x2,

whence q | D1. Since φ1 is an optimal embedding and q | D, Proposition 4.4.7 implies that

q || D1. In particular, vq(x
2−D1D2) = 1 necessarily, so vq(`(φ1, φ2)) = 0, and the conclusion

of N ≥ vq(`(φ1, φ2)) still follows. If q | D2, then q is coprime to D1, and multiplying T − x
by φ1(

√
D1)

D1
on the left and following the same argument gives the result.

For q = 2, see Proposition A.2.2.

Remark 5.2.4. The proof of Proposition 5.2.3 also shows that vq(`(φ1, φ2)) ≥ N for all

primes q. Equality also holds if q - x or q - D1D2, but does not necessarily hold for all q.
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Existence of x-linking

In general, we would like to start with an indefinite quaternion algebra B over Q with Eichler

order O, and take optimal embeddings φ1, φ2 of discriminants D1, D2 into O and study their

intersections. In the last section, we saw that this corresponds to studying the possible

x−linkings of pairs (φ′1, φ
′
2) individually similar to (φ1, φ2). Studying this directly is still

difficult, so in this chapter we study the inverted setup. We will start with a pair of x−linked

embeddings into B, and study the possible Eichler orders for which these embeddings land

in, are optimal with respect to, and the resulting levels of intersection. In Chapter 7 we will

take the ideas of this chapter, and translate them back to the setting where we start with a

fixed Eichler order.

The first main result of this chapter is a refinement of Corollary 5.1.7, namely that there

is exactly one quaternion algebra admitting x−linked embeddings of discriminants D1, D2, as

well as giving a precise description of it (Theorem 6.4.2). Assuming gcd
(
D1, D2,

D1D2−x2
4

)
=

1, let (φ1, φ2) be such an x−linked pair. We then describe the possible Eichler orders that

admit φ1, φ2 as embeddings, consider which admit them optimally, and finally describe the

possible levels of such embedding pairs. The condition gcd
(
D1, D2,

D1D2−x2
4

)
= 1 is included

as a sort of “most general case possible while still producing comprehensible results”. As-

suming that D1, D2 are coprime and fundamental will produce very nice statements, whereas

when you allow D1, D2,
D1D2−x2

4
to have common factors, many results and proofs become

more technical and full of casework. The methods found in this thesis adapt to those cases,

so if one has a specific need for this, it can be done.

76



Chapter 6 – Existence of x-linking

6.1 Simultaneous conjugation

The fact that we are only allowing conjugation by elements of O×N=1 and not all of B× is

crucial to x−linking.

Proposition 6.1.1. Let B =
(
a,b
F

)
be a quaternion algebra over a field F of characteristic

not equal to 2, and let (x1, y1) and (x2, y2) be pairs of elements of B× for which:

• None of xn, yn, xnyn lie in F for n = 1, 2;

• x1 and x2 have the same separable minimal polynomial over F ;

• y1 and y2 have the same separable minimal polynomial over F ;

• x1y1 and x2y2 have the same separable minimal polynomial over F .

Then the pairs are simultaneously conjugate over B, i.e. there exists an r ∈ B× for which

rx1r
−1 = x2 and ry1r

−1 = y2.

Proof. The minimal polynomials of xn, yn are quadratic, and by simultaneously conjugating

(x1, y1) and using Corollary 4.2.2 we can assume that x1 = x2 = x. By replacing (x, y1), (x, y2)

by (x− trdx
2
, y1− trd y1

2
),
(
x− trdx

2
, y2 − trd y2

2

)
no assumptions or conclusions change. Therefore

we can assume that x, y1, y2 all have trace 0 and square to an element of F×. By Lemma

4.4.10, we can relabel our coordinates to assume that x = i.

Let yn have reduced norm −N and let xyn have reduced trace 2T . Writing yn = fni +

gnj + hnk for n = 1, 2, the reduced norm and trace conditions give us the equations

af 2
n + bg2

n − abh2
n = N, T = fna.

Thus fn = T
a
, and with this substitution, our first equation rearranges to

g2
n − ah2

n =
aN − T 2

ab
.

If we can produce an invertible element c + di for which (c + di)y1(c + di)−1 = y2, then

we will be done as c+ di stabilizes x = i under conjugation. Consider the elements

c1 + d1i =− a(h1 + h2) + (g1 − g2)i;

c2 + d2i =− (g1 + g2) + (h1 − h2)i,
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and assume that g1 6= g2 and h1 6= h2. We calculate that

(c+ di)y1(c+ di)−1 =(c+ di)(f1i+ g1j + h1k)(c+ di)−1

=f1i+
(g1c

2 + 2ah1cd+ ag1d
2)j + (h1c

2 + 2g1cd+ ah1d
2)k

c2 − ad2
.

The i coefficients of this and y2 are always equal as f1 = f2 = T
a
. The j coefficient is equal

to g2 is equivalent to

(g1 − g2)c2 + 2ah1cd+ (ag1 + ag2)d2 = 0.

This has discriminant

4a2h2
1 − 4a(g1 − g2)(g1 + g2) = 4a(ah2

1 − g2
1 + g2

2) = 4a(ah2
2 − g2

2 + g2
2) = (2ah2)2,

and therefore it factorizes as

(g1 − g2)

(
c− a(−h1 − h2)

g1 − g2

d

)(
c− a(−h1 + h2)

g1 − g2

d

)
,

which equals 0 for (c, d) = (cn, dn) for n = 1, 2. The k coefficient is h2 is equivalent to

(h1 − h2)c2 + 2g1cd+ (ah1 + ah2)d2 = 0.

This has discriminant

4g2
1 − 4a(h1 − h2)(h1 + h2) = 4(g2

1 − ah2
1 + ah2

2) = 4g2
2 = (2g2)2,

whence the quadratic factorizes as

(h1 − h2)

(
c− −g1 − g2

h1 − h2

d

)(
c− −g1 + g2

h1 − h2

d

)
,

which again equals 0 for (c, d) = (cn, dn) for n = 1, 2. We just need to check that at least

one of these elements is invertible, i.e. has non-zero norm. The minimal polynomial of xyi is

X2 − 2TX + aN , and as it is separable it has non-zero discriminant. Thus 4T 2 − 4aN 6= 0,

and therefore T 2 − aN ∈ F×. If nrd(cn + dni) = 0 for i = 1, 2, then we have

0 = nrd(c1 + d1i)− a nrd(c2 + d2i) = 4
T 2 − aN

b
6= 0,

a contradiction. Therefore the proposition is proved in this case.
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The remaining cases are when g1 = g2 or h1 = h2. If g1 = g2, then we get h2
1 = h2

2 so

h1 = ±h2. If h1 = h2 the proposition is trivial, and if h1 = −h2 6= 0, then c+ di = −g1 + h1i

gives an element which works (noting that nrd(c + di) = g2
1 − ah2

1 = aN−T 2

ab
6= 0). The last

case is h1 = h2 and g1 = −g2, and c+ di = −ah1 + g1i works.

Applying Proposition 6.1.1 to optimal embeddings produces the following corollary.

Corollary 6.1.2. Let B be a quaternion algebra over F = Q or Qp, and let (φ1, φ2), (φ′1, φ
′
2)

be pairs of x−linked embeddings from OD1 ,OD2 respectively into B. Then V = {v ∈ B :

vφn = φ′nv for n = 1, 2} is a 1-dimensional F -vector space, generated by an element of B

with non-zero norm. In particular, the pairs of embeddings are simultaneously conjugate over

B×.

Proof. Let Vn = {v ∈ B : vφn = φ′nv} for n = 1, 2; by Corollary 4.2.2, this is a two

dimensional F -vector space. Furthermore, we have Vn = rn(F + φn(
√
Dn)F ) for n = 1, 2

for some r1, r2 ∈ B×. We claim that V1 and V2 are distinct: otherwise, right multiplica-

tion by φ1(
√
D1) on V1 remains in V1, hence it is true for V2 as well. This implies that

φ1(
√
D1) ∈ F + φ2(

√
D2)F , and therefore φ1(

√
D1) is a scalar multiple of φ2(

√
D2) (by tak-

ing traces). Writing φ1(
√
D1) = fφ2(

√
D2) for f ∈ F×, squaring gives us D1 = f 2D2 and

x = 1
2

trd
(
φ1(
√
D1)φ2(

√
D2)

)
= fD1. Thus x2 = f 2D2

1 = D1D2, which is a contradiction by

definition of x−linkage.

Since V = V1 ∩ V2, V has dimension 0 or 1 as V1, V2 are distinct. We apply proposition

6.1.1 to the images of
√
D1,
√
D2 under (φ1, φ2) and (φ′1, φ

′
2) respectively. All the minimal

polynomials in question are quadratic and separable as the discriminants are D1, D2, 4x
2 −

4D1D2, which are all non-zero. Thus the proposition applies and implies that V has dimension

1 and contains an invertible element, as desired.

6.2 Orders containing pairs of optimal embeddings

Given a pair of embeddings φ1, φ2, we study the set of orders for which they can (optimally)

embed into.
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Lemma 6.2.1. Let F = Q or Qp, and let B be a quaternion algebra over F . Let φi : ODi → B

be embeddings of the orders of discriminants D1, D2 into B, and define vi = φi

(
pDi+

√
Di

2

)
for i = 1, 2. Assume that x := 1

2
trd(φ1(

√
D1)φ2(

√
D2)) ∈ pD1D2 + 2OF and x2 6= D1D2.

Then

Oφ1,φ2 := 〈1, v1, v2, v1v2〉OF

is an order of B, necessarily the smallest order of B for which φ1, φ2 embed into. Furthermore,

up to multiplication by O×F we have

discrd(Oφ1,φ2) =
D1D2 − x2

4
.

Proof. For ease of notation write O = Oφ1,φ2 . First,

trd(v1v2) =
pD1pD2 + x

2
= pD1pD2 +

x− pD1pD2

2
∈ OF ,

and nrd(v1v2) = nrd(v1) nrd(v2) ∈ OF , whence v1v2 is integral. We will demonstrate that

v2v1 ∈ O, and the rest of the equations to prove that Oφ1,φ2 is closed under multiplication

can be deduced from this and the minimal polynomials for v1, v2. We compute

v1v2 + v2v1 =
pD1D2 + pD1φ2(

√
D2) + pD2φ1(

√
D1)

2
+
φ1(
√
D1)φ2(

√
D2) + φ2(

√
D2)φ1(

√
D1)

4

=pD1v2 + pD2v1 +
x− pD1pD2

2
,

whence v2v1 lies in O, as claimed.

The fact that O is an order will follow from computing its reduced discriminant, and

seeing that it is non-zero. To ease our calculations, write
1

φ1(
√
D1)

φ2(
√
D2)

φ1(
√
D1)φ2(

√
D2)

 =


1 0 0 0

−pD1 2 0 0

−pD2 0 2 0

pD1pD2 −2pD2 −2pD1 4




1

v1

v2

v1v2

 ,

and we have the equation

d(1, φ1(
√
D1), φ2(

√
D2), φ1(

√
D1)φ2(

√
D2)) = det(M)2d(1, v1, v2, v1v2),

80



Chapter 6 – Existence of x-linking

where M is the transition matrix above. We calculate that det(M) = 16 and

d(1, φ1(
√
D1), φ2(

√
D2), φ1(

√
D1)φ2(

√
D2)) = det


2 0 0 2x

0 2D1 2x 0

0 2x 2D2 0

2x 0 0 4x2 − 2D1D2


= −16(D1D2 − x2)2.

Since the discrd(O)2 = −d(1, v1, v2, v1v2), the reduced discriminant is as claimed (and is

non-zero by the assumption of x2 6= D1D2). See the proof of Theorem 2’ in [Kan89] for a

similar computation in a definite quaternion algebra.

It is immediate that O is the smallest order for which φ1, φ2 embed into, as such an order

must contain {1, v1, v2}, and O is generated as an OF algebra by these elements.

Lemma 6.2.1 will be crucial to understanding and counting x−linking. First, we use it to

show that things can be done locally.

Lemma 6.2.2. Let B be an indefinite quaternion algebra over Q of discriminant D, let O

be an Eichler order of level M in B, let D1, D2 be positive discriminants, and let x be any

integer such that x ≡ D1D2 (mod 2) and x2 6= D1D2. Then the set Emb(O,D1, D2, x) is

non-empty if and only if Emb(Op, D1, D2, x) is non-empty for all finite primes p.

Proof. If such a pair (φ1, φ2) ∈ Emb(O,D1, D2, x) exists, then the corresponding maps to

the completions gives elements of Emb(Op, D1, D2, x) for all p.

To prove the opposite direction, assume that (αp, βp) ∈ Emb(Op, D1, D2, x) for all p. By

Lemma 4.4.9, there exists an embedding φ1 of OD1 into B. By Corollary 4.4.11, we can assign

coordinates so that φ1(
√
D1) = i. In this case, we are considering the existence of a map φ2

such that φ2(
√
D2) = fi+ gj + hk, where

nrd(fi+ gj + hk) = −D2 and 2x = trd(i(fi+ gj + hk)) = 2fD1.

With the substitution of f = x
D1

, the equation nrd
(

x
D1
i+ gj + hk

)
+D2 = 0 is a quadratic

form in g, h. This will have a solution in R since B is indefinite, and it will have a solution
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in Qp for all p since Emb(Op, D1, D2, x) is non-empty. By Hasse’s principle, it has a solution

over Q; let the corresponding map be φ2.

Following Lemma 6.2.1, let O′ = Oφ1,φ2 be the smallest order for which φ1, φ2 embed into.

By Corollary 6.1.2, for all finite primes p there exists an rp ∈ B×p for which rp(αp, βp)r
−1
p =

(φ1,p, φ2,p). By the definition of O′, it follows that O′p ⊂ rpOpr
−1
p . For all primes p,

• let sp = rp if O′p 6= Op or p | D1D2;

• let sp = 1 otherwise.

Consider the sequence of local orders {spOps
−1
p }p. Since O′p = Op holds for all but finitely

many primes, by Theorem 4.1.1 there exists an order O′′ of B which localizes to spOps
−1
p for

all primes p. In particular, we note that O′′ is an Eichler order of level M, and φ1, φ2 give

embeddings into O′′. When p | D1D2 the local embeddings are optimal since (αp, βp) were

optimal, hence φ1, φ2 are optimal embeddings into O′′. Since all Eichler orders are conjugate,

let rO′′r−1 = O, and then [r(φ1, φ2)r−1] ∈ Emb(O,D1, D2, x), as required.

In particular, the non-emptyness of Emb(O,D1, D2, x) can be studied locally.

6.3 Local x-linking

While we were concerned with orders in Lemma 6.2.2, we will drop this for now and instead

consider embeddings into the entire quaternion algebra.

Definition 6.3.1. Define Emb(B,D1, D2, x) to be the set of all pairs (φ1, φ2) of x−linked

embeddings of discriminants D1, D2 into B.

Note that the results of Lemma 6.2.2 also applies to the sets Emb(B,D1, D2, x) and

Emb(Bp, D1, D2, x).

We start the local calculations by considering the division algebra case. Recall the Hilbert

symbol (a, b)p, which is 1 if
(
a,b
Qp

)
' Mat(2,Qp), and −1 otherwise. An alternate characteri-

zation is (a, b)p = 1 if and only if ax2 + by2 = 1 has solutions with x, y ∈ Qp (see Section 5.6

of [Voi21]).
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Lemma 6.3.2. Let D1, D2 be discriminants, let x be any integer such that x ≡ D1D2

(mod 2) and x2 6= D1D2, and let B = QAdiv
p .Then Emb(B,D1, D2, x) is non-empty if and

only if

(D1, x
2 −D1D2)p = −1.

If p - D1, this is equivalent to(
D1

p

)
= −1 and vp

(
D1D2 − x2

4

)
is odd.

Proof. If there does not exist an embedding of OD1 into B, then by Proposition 4.4.7 we

find that (D1, N)p = 1 for all N 6= 0, and the result follows. Otherwise, by Corollary 4.4.11,

we can write B =
(
D1,e
Qp

)
for some e ∈ Zp, where φ1(

√
D1) = i and (D1, e)p = −1. Writing

φ2(
√
D2) = fi+ gj + hk, it suffices to solve the equations

D1f
2 + eg2 −D1eh

2 = D2, x = fD1.

Therefore f = x
D1

, and the first equation rearranges to

g2 −D1h
2 =

D1D2 − x2

eD1

.

If this has a solution with h = h1, then by Hensel’s lemma there will be a solution with

h = h1 + pk for some k. In particular, they correspond to distinct g’s, so we can solve the

equation with the assumption that g 6= 0. The equation then rearranges to

D1(h/g)2 +
D1D2 − x2

eD1

(1/g)2 = 1,

which is in the format of the Hilbert symbol. The properties of the Hilbert symbol imply

that (
D1,

D1D2 − x2

eD1

)
p

= (D1, (x
2 −D1D2)e)p = −(D1, x

2 −D1D2)p,

from which the result follows.

If p - D1, there exists an embedding of OD1 if and only if
(
D1

p

)
= −1. If this holds, then

vp(e) is odd. Scaling by powers of p, it suffices to solve

g2 −D1h
2 =

D1D2 − x2

eD1

p2r, (6.3.1)

for r ≥ 0 and g, h ∈ Zp. Proposition A.1.1 implies that Equation 6.3.1 has a solution if and

only if vp

(
D1D2 − x2

eD1

p2r

)
is even, which is equivalent to our condition.
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Now we consider non-division algebras.

Lemma 6.3.3. Let D1, D2 be discriminants, and let x be any integer such that x ≡ D1D2

(mod 2) and x2 6= D1D2. Then Emb(Mat(2,Qp), D1, D2, x) is non-empty if and only if

(D1, x
2 −D1D2)p = 1.

If p - D1 this is equivalent to either(
D1

p

)
= 1 or

(
D1

p

)
= −1 and vp

(
D1D2 − x2

4

)
is even.

Proof. Via Corollary 6.1.2, we can fix the first embedding to be φ1(
√
D1) =

(
0 D1
1 0

)
, and we

write φ2(
√
D2) =

(
e f
g −e

)
∈ Mat(2,Qp). We will have a solution if and only if

e2 + fg = D2, D1g + f = 2x.

This implies that f = 2x − D1g, and plugging this into the first equation and rearranging

gives

e2 −D1

(
g − x

D1

)2

=
D1D2 − x2

D1

.

Let X = e and Y = g − x
D1

, and then the equation is

X2 −D1Y
2 =

D1D2 − x2

D1

.

The rest of the proof is analogous to Lemma 6.3.2, where Proposition A.1.1 completes the

characterization of the solubility when p - D1.

Lemmas 6.3.2 and 6.3.3 immediately imply the following corollary

Corollary 6.3.4. Let D1, D2 be discriminants, and let x be an integer such that x ≡ D1D2

(mod 2) and x2 6= D1D2. Then exactly one of QAdiv
p and Mat(2,Qp) admits x−linked em-

beddings of OD1 ,OD2, and which one is determined by if (D1, x
2 − D1D2)p is −1 or 1,

respectively.

Remark 6.3.5. The first half of Lemmas 6.3.2, 6.3.3 and Corollary 6.3.4 still holds when

p =∞, where Q∞ = R.

84



Chapter 6 – Existence of x-linking

6.4 Global x-linking

Fix discriminants D1, D2 and x any integer such that x ≡ D1D2 (mod 2) and x2 6= D1D2.

Corollary 6.3.4 combined with Lemma 6.2.2 implies that there is precisely one quaternion

algebra B over Q for which there exist embeddings φi of ODi into B that are x−linked, and

it is given by (
D1, x

2 −D1D2

Q

)
.

We can describe the ramification of this quaternion algebra by using a generalized definition

of the ε function from [GZ85].

Definition 6.4.1. Let D1, D2 be discriminants, and p any prime (or −1) such that

p - gcd(Dfund
1 , Dfund

2 ) and

(
Dfund

1 Dfund
2

p

)
6= −1.

Define

ε(p) :=



(
Dfund

1

p

)
if p and Dfund

1 are coprime;

(
Dfund

2

p

)
if p and Dfund

2 are coprime.

Theorem 6.4.2. Let D1, D2 be positive discriminants and x an integer with x ≡ D1D2

(mod 2) and x2 6= D1D2. Then the only quaternion algebra over Q that admits x−linked

embeddings from OD1 ,OD2 is

B =

(
D1, x

2 −D1D2

Q

)
.

Furthermore, let N = gcd(Dfund
1 , Dfund

2 ), and factorize

D1D2 − x2

4
= ±N ′

r∏
i=1

p2ei+1
i

s∏
i=1

q2fi
i

t∏
i=1

wgii ,

where N ′ is minimal so that D1D2−x2
4N ′

is coprime to N , pi are the primes for which ε(pi) = −1

that appear to an odd power, qi are the primes for which ε(qi) = −1 that appear to an even

power, and wi are the primes for which ε(wi) = 1. Then B is ramified at

{p1, p2, . . . , pr} ∪ {p : p | N ′, (D1, x
2 −D1D2)p = −1}.
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Proof. It suffices to compute (D1, x
2 − D1D2)p for p | D1D2−x2

4
satisfying p - N ′. If p - D1,

Lemmas 6.3.2 and 6.3.3 imply that the Hilbert symbol is −1 if and only ε(p) = −1 and

vp

(
D1D2−x2

4

)
is odd, i.e. p = pi for some i. Since

(D1, x
2 −D1D2)p = (D2, x

2 −D1D2)p,

the same holds for p - D2. As we assume that p - N ′, the final case is (without loss of general-

ity) p - Dfund
1 and p | D1, D2. By Lemma 6.5.5, we can replace (D1, D2, x) by (D1/p

2, D2, x/p),

and repeat.

Remark 6.4.3. To work with an explicit x−linked pair, take B =
(
D1,x2−D1D2

Q

)
, and define

φ1(
√
D1) = i, φ2(

√
D2) =

xi+ k

D1

.

This pair is x−linked and corresponds to φ1 × φ2(
√
x2 −D1D2) = j.

6.5 Local Eichler orders containing x-linked pairs

In general, the order Oφ1,φ2 will not be Eichler. As such, we need to describe and count the

Eichler orders which contain it.

Definition 6.5.1. Given a triple (D1, D2, x) where D1, D2 are discriminants and x is an

integer with x ≡ D1D2 (mod 2) and x2 6= D1D2, we call the triple nice if

gcd

(
D1, D2,

D1D2 − x2

4

)
= 1.

More generally, call a prime p nice (with respect to (D1, D2, x)) if

p - gcd

(
D1, D2,

D1D2 − x2

4

)
.

Restricting to nice triples/nice primes is a reasonable middle ground between a pleasant

exhibition and full generality. When D1, D2 are coprime and fundamental the results take

the simplest and nicest form, and working with not nice triples/primes yields results that

are full of cases, and rather unwieldy.
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In order to help prove that an order is Eichler, we consider the Eichler symbol (see

Definition 24.3.2 of [Voi21] for a full exposition). Working in B =
(
a,b
Qp

)
, for α ∈ B, define

∆(α) = trd(α)2 − 4 nrd(α) = 4(af 2 + bg2 − abh2),

where α = e + fi + gj + hk. For an order O of B, define (O, p) to be the set of values that(
∆(α)
p

)
takes as α ranges over O, where

(
·
p

)
is the Kronecker symbol.

Lemma 6.5.2. The set (O, p) determines the Eichlerness of O as follows:

• The order O is Eichler and non-maximal if and only if (O, p) = {0, 1} (i.e. O is

“residually split”).

• If −1 ∈ (O, p), then O is contained in precicely one maximal order.

Proof. The first point is a direct consequence of Lemma 24.3.6 of [Voi21]. For the second

point, if O′ is a superorder of O, then (O, p) ⊆ (O′, p). In particular, no superset has (O, p) =

{0, 1}, whence O is not contained in a non-maximal Eichler order. If O were contained in two

maximal orders, it would be contained in their intersection, a non-maximal Eichler order,

contradiction.

Lemma 6.5.2 allows us to compute the Eichler orders containing Oφ1,φ2 .

Lemma 6.5.3. Let φ1, φ2 be x−linked embeddings of discriminants D1, D2 into B, a quater-

nion algebra over Qp, where p is nice. Let O = Oφ1,φ2, and then:

(i) If p - D1D2−x2
4

, then O is maximal;

(ii) If ε(p) = −1, then O is contained in a unique maximal order;

(iii) If ε(p) = 1, then O is Eichler.

Proof. By Lemma 6.2.1, the reduced discriminant of O is D1D2−x2
4

. Thus if p - D1D2−x2
4

, then

O is maximal.

Now, assume that p | D1D2−x2
4

, which implies that p1+2v2(p) | x2 − D1D2. From the

assumption, it follows that p - gcd(D1, D2), so without loss of generality assume that p - D1.
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Take B, φi as in Remark 6.4.3, and then by Lemma 6.2.1, a general element of O is of the

form

α = A0 + A
pD1 + i

2
+B

pD2 + (xi+ k)/D1

2
+ C

j

2

=
(
A0 + A

pD1

2
+B

pD2

2

)
+

(
A

2
+
Bx

2D1

)
i+

C

2
j +

B

2D1

k,

for A0, A,B,C ∈ Zp. Therefore

∆(α) =D1

(
A+

Bx

D1

)2

+ (x2 −D1D2)C2 −D1(x2 −D1D2)
B2

D2
1

(6.5.1)

=D1A
2 + 2xAB +D2B

2 + (x2 −D1D2)C2. (6.5.2)

Considering Equation 6.5.1, we find

∆(α) ≡ D1

(
A+

Bx

D1

)2

(mod p1+2v2(p)),

hence (O, p) = {0, ε(p)}, which by Lemma 6.5.2 completes the second and third points.

Lemma 6.5.3 implies that locally, there is a minimal Eichler order containing Oφ1,φ2,p,

which is either the order itself, or the unique maximal order it is contained within. Therefore

the result is true globally, and we make this a definition.

Definition 6.5.4. Let φ1, φ2 be x−linked embeddings of discriminants D1, D2 into B, an

indefinite quaternion algebra over Q or Qp, where (D1, D2, x) is nice. Then there exists a

minimal Eichler order containing Oφ1,φ2 , denoted OEich
φ1,φ2

.

Since we are concerned with the optimality of embeddings, we need to determine which

orders containing OEich
φ1,φ2

admit φ1, φ2 as optimal embeddings.

Lemma 6.5.5. Let φ1, φ2 be x−linked embeddings of discriminants D1, D2 into B, an in-

definite quaternion algebra over Q. Let p be a prime for which p | D1

Dfund
1

, and let φ′1 be the

corresponding embedding of OD1/p2 into B that agrees with φ1 on OD1. Then (φ′1, φ2) are

x
p
−linked embeddings into B if and only if p | D1D2−x2

4
.

Proof. Since
1

2
trd
(
φ′1(
√
D1/p2)φ2(

√
D2)

)
=
x

p
,
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(φ′1, φ2) are x
p
−linked embeddings if and only if x

p
is an integer congruent to D1D2

p2
modulo 2.

If (φ′1, φ2) are x
p
−linked embeddings, then by Lemma 6.2.1 the reduced discriminant of

Oφ′1,φ2
is D1D2−x2

4p2
, which implies that p | D1D2−x2

4
, as required.

If p | D1D2−x2
4

, first assume that p is odd. Then p | x2, whence p | x, and x
p

is an integer

congruent to D1D2

p2
, as required.

If p = 2, then 8 | D1D2 − x2. If D2 is even or 8 | D1, then 8 | D1D2, so 8 | x2, and

hence 4 | x. Therefore x
2
≡ 0 ≡ D1D2

22
(mod 2), as required. Otherwise, 4 || D1 and D2 is odd.

As D1/4 is a discriminant, it is equivalent to 1 (mod 4), and so D1D2 ≡ 4 (mod 16). This

implies that x2 ≡ 4 (mod 8), and so x ≡ 2 (mod 4). Then x
2
≡ 1 ≡ D1D2

22
(mod 2), which

completes the proof.

We are now able to study the optimality of embeddings in OEich
φ1,φ2

, as well as the level of

this order.

Definition 6.5.6. Let D1, D2 be discriminants. Define a prime to be potentially bad (with

respect to D1, D2) if

p | D1D2

Dfund
1 Dfund

2

.

Define PB(D1, D2) to be the product of all potentially bad primes. In particular, D1 and D2

are both fundamental if and only if PB(D1, D2) = 1.

The embedding pair (φ1, φ2) can only fail to be optimal with respect to a potentially bad

prime.

Proposition 6.5.7. Let φ1, φ2 be x−linked embeddings of discriminants D1, D2 into B, an

indefinite quaternion algebra over Q, where (D1, D2, x) is nice. Factorize

D1D2 − x2

4
= ±

r∏
i=1

p2ei+1
i

s∏
i=1

q2fi
i

t∏
i=1

wgii ,

where pi are the primes for which ε(pi) = −1 that appear to an odd power, qi are the primes

for which ε(qi) = −1 that appear to an even power, and wi are the primes for which ε(wi) = 1.

Then

(i) The order OEich
φ1,φ2

is Eichler of level
∏t

i=1w
gi
i ;
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(ii) The embeddings φ1, φ2 are optimal embeddings into OEich
φ1,φ2

if and only if none of primes

pi and qi are potentially bad.

Proof. Let O = Oφ1,φ2 and OEich = OEich
φ1,φ2

. Lemma 6.2.1 computes the reduced discriminant

of O to be D1D2−x2
4

, so it suffices to compute the change in reduced discriminant between O

and OEich, which can be done locally. Lemma 6.5.3 implies that Op = OEich
p for p = wi, hence

those prime factors remain in the level. For p = pi, qi, Op is contained in a unique maximal

order, hence those prime factors disappear. This completes the first point.

For optimality, assume that φ1 is not optimal with respect to OEich. Thus there exists a

p | D1

Dfund
1

for which φ(OD1/p2) lands inside OEich. Let φ′1 denote this embedding (which agrees

with φ on OD), and then (φ′1, φ2) are x
p
−linked (things remain integral since their images

land inside OEich, which is an order). By definition, we have

O ⊆ Oφ′1,φ2
⊆ OEich,

and Lemma 6.2.1 says that the reduced discriminant of Oφ′1,φ2
is D1D2−x2

4p2
. Therefore p =

pi, qi, wi, so assume that p = wi. By Lemma 6.5.3, Op = OEich
p , hence this is equal to Oφ′1,φ2,p

as well, which contradicts the fact that the level of Oφ′1,φ2
differs from the level of O by the

factor p2. Therefore p = pi or p = qi, as claimed.

To finish, it suffices to show that if p | D1

Dfund
1

, D1D2−x2
4

satisfies ε(p) = −1, then the

embedding φ1 is not optimal into OEich. As above, let φ′1 denote the embedding of OD1/p2

corresponding to φ. By Lemma 6.5.5, (φ′1, φ2) are x
p
−linked, so by Lemma 6.2.1, Oφ′1,φ2

is an order of reduced discriminant D1D2−x2
4p2

. Since O ⊆ Oφ′1,φ2
and Op is contained in a

unique maximal order, this must be the same maximal order that contains Oφ′1,φ2,p
. Therefore

OEich
p = OEich

φ′1,φ2,p
, and so φ′1 embeds into OEich

p , hence it embeds into OEich, which proves that

φ1 is not optimal.

To finish off with optimality, we need to consider the optimality of φ1, φ2 into superorders

O′ of OEich
φ1,φ2

. Assume that none of the pi, qi are potentially bad, so that φ1, φ2 are optimal

in OEich
φ1,φ2

. The only way that φ1 would fail optimality in O′ is if O′ admitted the embedding

φ′1 of discriminant OD1/w2
j

(some 1 ≤ j ≤ t) that agrees with φ on OD1 . The pair (φ′1, φ2) is

x
wj
−linked by Lemma 6.5.5, and OEich

φ′1,φ2
is an Eichler order of level 1

w2
j

∏t
i=1w

gi
i by Proposition

6.5.7i. Therefore O′ admits φ1 as an optimal embedding if and only if O′ 6⊇ OEich
φ′1,φ2

.
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Definition 6.5.8. With notation and assumption as above, let Sφ1,φ2 be the (possibly empty)

set of orders OEich
φ′1,φ2

and OEich
φ1,φ′2

, each of which corresponds to a 1 ≤ j ≤ t for which wj | D1

Dfund
1

or wj | D2

Dfund
2

respectively.

The above discussion is the proof of the following proposition.

Proposition 6.5.9. Take the notation as in Proposition 6.5.7, and assume that none of

pi, qi are potentially bad. Then a superorder O′ of OEich
φ1,φ2

admits φ1, φ2 as optimal embeddings

if and only if it does not contain any order in Sφ1,φ2.

6.6 Local x-linking with level

Given D1, D2, x, Theorem 6.4.2 determines the unique quaternion algebra for which there

exists x−linked optimal embeddings. Under the additional restriction of (D1, D2, x) being

nice, Propositions 6.5.7 and 6.5.9 determine the possible Eichler orders that an x−linked

pair of embeddings becomes optimal in. In this section, we study the possible levels of such

embeddings.

Lemma 6.6.1. Let B be a quaternion algebra over F = Q or Qp. Let v1, v2, v3 ∈ B be such

that 〈1, vi, vj, vivj〉OF is an order for (i, j) = (1, 2), (1, 3), (2, 3). Then

O = 〈1, v1, v2, v3, v1v2, v1v3, v2v3, v1v2v3〉OF

is an order.

Proof. It suffices to show that any product v = vi1 · · · vik lands in O for any sequence

i1, . . . , ik with ij ∈ {1, 2, 3} for all j. This is accomplished via induction: the base case of

k = 0 is trivial. For the inductive step, assume it is true up to k − 1 ≥ 0. If ij 6= 1 for all

j, then v ∈ 〈1, v2, v3, v2v3〉OF (as this is an order), and we are done. Otherwise, take the

last occurrence of 1, say im. If im−1 = 1, then vim−1vim = v2
1 ∈ 〈1, v1〉OF , and by replacing

it we are done by induction. Otherwise, if m > 1, then im−1 6= 1, and if im−1 = j then

vim−1vim = vjv1 ∈ 〈1, v1, vj, v1vj〉OF . By writing vim−1vim in this basis and using induction,

we see that it suffices to prove the claim when we swap vim and vim−1 . By successively

repeating this process, we can assume that v starts with a v1 and has no other terms v1. But
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then vi2 · · · vik lies in 〈1, v2, v2, v2v3〉OF , and a left multiplication by v1 still lands us in O, as

desired.

The generalization of Oφ1,φ2 , as found in Lemma 6.2.1, is the following.

Definition 6.6.2. Let φ1, φ2 be x−linked embeddings from OD1 ,OD2 to B. Let ` ∈ Z+ be

such that x2−D1D2

`2
is a discriminant, and define Oφ1,φ2(`) to be the smallest order for which

OD1 ,OD2 ,O(x2−D1D2)/`2 embed into via φ1, φ2, φ1 × φ2 respectively, if it exists.

Lemma 6.6.3. Let F = Q, and with the notation as above, Oφ1,φ2(`) exists if and only

if `2 | D1D2−x2
4

. Furthermore, if (D1, D2, x) is nice, then Oφ1,φ2(`) has reduced discriminant

D1D2−x2
4`2

when it exists.

Proof. Let D3 = D1D2−x2
`2

, and let φ3 : OD3 → B be the embedding induced by φ1 × φ2. Let

wi = φi(
√
Di) and vi = φi

(
pDi+

√
Di

2

)
for i = 1, 2, 3, and let x = 1

2
trd(w1w2) ∈ pD1D2 + 2Z

by assumption. We have w3 = w1w2−x
`

, whence

1

2
trd(w1w3) =

1

2
trd

(
D1w2 − xw1

`

)
= 0.

Similarly, 1
2

trd(w2w3) = 0. If D3 is odd, then this is not in 2Z + pD3 , and it will follow

that 〈1, v1, v3, v1v3〉Z is not an order, whence no order exists. Since D3 is a discriminant,

if it is not odd it must be a multiple of 4. In particular, we have that `2 | D1D2−x2
4

. In

this case, 0 ∈ 2Z + pD3 , and so by Lemma 6.2.1, 〈1, vi, vj, vivj〉Z is an order for (i, j) =

(1, 2), (1, 3), (2, 3). Thus by Lemma 6.6.1, O = 〈1, v1, v2, v3, v1v2, v1v3, v2v3, v1v2v3〉Z is an

order, and it is necessarily the smallest order for which φi embeds into for all i = 1, 2, 3.

Now, assume that (D1, D2, x) is nice. Let pi = pDi , and we compute

1

v1

v2

v3

v1v2

v1v3

v2v3

v1v2v3



=



1 0 0 0

p1
2

1
2

0 0

p2
2

0 1
2

0

0 0 0 1
2

p1p2+x
4

p2
4

p1
4

`
4

0 −x
4`

D1

4`
p1
4

0 −D2

4`
x
4`

p2
4

x2−D1D2

8`
−p2x−p1D2

8`
p1x+p2D1

8`
p1p2+x

8




1

w1

w2

w3

 .
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Let this transition matrix be M . From the calculation in Lemma 6.2.1, we can compute that

d(1, w1, w2, w3) =
(

1
`

)2
d(1, w1, w2, w1w2) = −16(D1D2−x2)2

`2
. It suffices to show that the rows

of M generate a Z−lattice with determinant 1
16`

, as then we have the discriminant of O being

(D1D2−x2)2

16`4
, whence the reduced discriminant is D1D2−x2

4`2
, as desired. The calculation of the

rowspace is done by hand in Appendix A.3.

Since Oφ1,φ2 ⊆ Oφ1,φ2(`), the inclusion holds when we complete at p. Considering Lemma

6.5.3, we find that

• If p - D1D2−x2
4

, then Oφ1,φ2,p(`) is maximal;

• If ε(p) = −1, then Oφ1,φ2,p(`) is contained in a unique maximal order, necessarily the

same maximal order as the one containing Oφ1,φ2,p;

• If ε(p) = 1, then Oφ1,φ2,p(`) is Eichler.

In particular, this implies that there exists a minimal Eichler order containing Oφ1,φ2(`),

denoted OEich
φ1,φ2

(`). Factorize

D1D2 − x2

4
= ±

r∏
i=1

p2ei+1
i

s∏
i=1

q2fi
i

t∏
i=1

wgii ,

where pi are the primes for which ε(pi) = −1 that appear to an odd power, qi are the primes

for which ε(qi) = −1 that appear to an even power, and wi are the primes for which ε(wi) = 1.

The local conditions imply that

Oφ1,φ2 = Oφ1,φ2

(
r∏
i=1

peii

s∏
i=1

qfii

)
,

i.e. that the maximum possible level always occurs at the prime factors p of D1D2−x2
4

for

which ε(p) = −1. The analogous assessment of the prime factors p for which ε(p) = 1 leads

to the following proposition.

Proposition 6.6.4. Let ` =
∏r

i=1 p
e′i
i

∏s
i=1 q

f ′i
i

∏t
i=1w

g′i
i , where e′i ≤ ei, f

′
i ≤ fi, and 2g′i ≤ gi.

Then the Eichler order OEich
φ1,φ2

(`) has level
∏t

i=1w
gi−2g′i
i . Furthermore, assume that all the

pi, qi are not potentially bad. Let

S = {wi : wi | PB(D1, D2)}
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be the set of potentially bad primes among the wi. Then a superorder O′ of OEich
φ1,φ2

(`) admits

φ1, φ2 as optimal embeddings if and only if O′ does not contain OEich
φ1,φ2

(wi) for all wi ∈ S.

This is equivalent to g′i = 0 for all i such that wi ∈ S.

Proof. The first half of the proposition has been proven in the above discussion. For the

second half, the optimality of φ1, φ2 can only fail if we have a wj for which φ1 (without

loss of generality) descends to an embedding of OD1/w2
j
. Call this embedding φ′1, and as in

Proposition 6.5.7 the order OEich
φ′1,φ2

has level 1
w2
j

∏t
i=1 w

gi
i . It suffices to show that Oφ′1,φ2,wj

=

Oφ1,φ2,wj(wj), as this means that picking up a factor of wj in the level is equivalent to killing

optimality.

These Eichler orders have the same level, so it suffices to show inclusion only. However

this is immediate, as the embedding φ′1 × φ2 corresponds to an embedding of discriminant

x2−D1D2

p2
induced from

φ′1(
√
D1/p2)φ2(

√
D2) =

1

p
φ1(
√
D1)φ2(

√
D2).

An embedding having level exactly ` in O′ is equivalent to O′ containing Oφ1,φ2(`) but

not containing Oφ1,φ2(p`) for any prime p. At long last, we can describe the levels and counts

of Eichler orders admitting φ1, φ2 as optimal embeddings.

Theorem 6.6.5. Let φ1, φ2 be x−linked embeddings of discriminants D1, D2 into B, an

indefinite quaternion algebra over Q, let ` be a positive integer, and assume that (D1, D2, x)

is nice. Factorize
D1D2 − x2

4
= ±

r∏
i=1

p2ei+1
i

s∏
i=1

q2fi
i

t∏
i=1

wgii ,

where pi are the primes for which ε(pi) = −1 that appear to an odd power, qi are the primes

for which ε(qi) = −1 that appear to an even power, and wi are the primes for which ε(wi) = 1.

Then,

(i) This setup is possible if and only if B is ramified at exactly p1, p2, . . . pr;

(ii) There exists an Eichler order of level M for which φ1, φ2 are optimal embeddings into

if and only if both of the following are satisfied:
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• None of the pi, qi are potentially bad;

• M =
∏t

i=1w
g′i
i with g′i ≤ gi.

(iii) Let M satisfy the above. The number of Eichler orders of level M for which φ1, φ2 are

optimal embeddings into is

t∏
i=1


gi + 1− g′i if wi - PB(D1, D2);

2 if wi | PB(D1, D2) and g′i < gi;

1 if wi | PB(D1, D2) and g′i = gi.

(iv) There exists an Eichler order of level M for which φ1, φ2 are optimal embeddings of

into of level exactly ` if and only we have

` =
r∏
i=1

peii

s∏
i=1

qfii

t∏
i=1

w
g′′i
i ,

where 2g′′i ≤ gi − g′i and g′′i = 0 if wi | PB(D1, D2).

(v) Let M, ` satisfy the above. Let n be the number of indices i for which 2g′′i < gi − g′i.
Then the number of Eichler orders of level M for which φ1, φ2 are optimal embeddings

into of level exactly ` is 2n.

Proof. Part i is the content of Theorem 6.4.2, and the necessity of the conditions in part

ii follow from Proposition 6.5.7. To complete part ii, it suffices to prove it locally, and

Proposition 6.5.9 implies that there is an Eichler order of level wgi−2
i whose containment

must be avoided for each i such that wi | PB(D1, D2) (and no other orders need be avoided).

Recall the inverted triangle of local Eichler orders, as described in Section 4.3. The local

Eichler orders containing OEich
φ1,φ2,wi

form an inverted triangle with gi + 1 rows. There are

gi + 1 − n Eichler orders of level wni in the nth row of the triangle, starting at n = 0 and

ending at n = gi. Therefore if wi - PB(D1, D2), there are gi + 1− g′i possible Eichler orders of

level w
g′i
i . If wi | PB(D1, D2), then there is one when g′i = gi, and on all rows above it there

are two, as the order that we cannot contain has level wgi−2
i . In particular, this implies part

ii as this is a non-zero number.
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By the local-global principle for orders (Corollary 4.1.2), the total count for global orders

is the product of the local counts. The count in part iii follows from this and the previous

paragraph.

For parts iv, v, Proposition 6.6.4 and the discussion surrounding it imply that ` has

the prime factorization as claimed. The necessity of 2g′′i ≤ gi − g′i comes from the level

of OEich
φ1,φ2

(w
g′′i
i ) having valuation gi − 2g′′i at wi. Proposition 6.6.4 also implies that if wi |

PB(D1, D2), then the valuation of ` at wi must be 0, i.e. g′′i = 0.

To count this, we again work locally and use the local-global principle. The local count is

unchanged at the primes wi for which wi | PB(D1, D2). For primes wi not satisfying this, we

no longer have to worry about optimality. The Eichler order OEich
φ1,φ2,wi

(wni ) has level wgi−2n
i ,

and an intersection level is at least that if and only if the order contains OEich
φ1,φ2,wi

(wni ).

Drawing the inverted triangle as before, it follows by induction that

• In level wgi−2n
i , there are 2n + 1 orders, of which there are 2 of each embedding level

1, 2, . . . , n− 1, and one of embedding level n;

• In level wgi−2n+1
i , there are 2n orders, of which there are 2 of each embedding level

1, 2, . . . , n.

In particular, there are 2 orders of embedding level g′′i when 2g′′i < gi − g′i, and one when

2g′′i = gi − g′i. The condition coming from wi | PB(D1, D2) was there are two if g′i < gi, and

one if we had equality. But since g′′i = 0, if g′i < gi then 2g′′i < gi − g′i, hence this condition

is absorbed by 2g′′i < gi − g′i. This completes parts iv,v.
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Counting intersection numbers

In this chapter, we shift the focus back to studying Emb(O,D1, D2, x), which was the set

of equivalence classes of x−linked pairs of optimal embeddings of discriminants D1, D2 into

O. For a positive integer `, denote Emb(O, φ1, φ2, x, `) to be the set of pairs [(φ′1, φ
′
2)] in

Emb(O, φ1, φ2, x) which have level `. Define Emb(O,D1, D2, x, `) in an analogous fashion.

If o1, o2 are orientations of optimal embeddings, then attaching the subscript o1, o2 to any

of the sets defined as Emb(. . .) means we only take the pairs of optimal embeddings of the

specified orientations.

7.1 Total x-linking count into a given Eichler order

As alluded to at the start of Chapter 6, we need to pass between Eichler orders containing a

fixed pair of x−linked embeddings, and elements of Emb(O,D1, D2, x). This is accomplished

in the “inversion theorem”, which we now set up for.

Let F be Q or Qp, and let B be a quaternion algebra over F of discriminant D, which

is indefinite if F = Q. Let O be an Eichler order of level M in B. Assume that D1, D2 are

discriminants for which Emb(B,D1, D2, x) is non-empty, fix [(φ1, φ2)] ∈ Emb(B,D1, D2, x),
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let `2 | D1D2−x2
4

, and define

Tφ1,φ2(M) :={E : E is an Eichler order of B of level M

for which φ1, φ2 give optimal embeddings into;}

Tφ1,φ2(M, `) :={E ∈ Tφ1,φ2(M) such that (φ1, φ2) has level ` in E.}

Proposition 7.1.1. We have

|Emb(O,D1, D2, x, `)| =
∣∣∣∣NB×(O)

F×O×N=1

∣∣∣∣ |Tφ1,φ2(M, `)|,

and the same result without the `. If F = Q, then∣∣∣∣NB×(O)

F×O×N=1

∣∣∣∣ = 2ω(DM)+1.

Proof. By Corollary 6.1.2 and all Eichler orders of the same level being conjugate, we have

that Tφ1,φ2(M) is non-empty if and only if S = Emb(O,D1, D2, x) is non-empty. In particular,

we can assume that (φ1, φ2) give a class in S, and we will use this pair to define a map

θ : S → Tφ1,φ2(M). Given optimal embeddings (φ′1, φ
′
2) representing a class in S, by Corollary

6.1.2, there exists an r ∈ B× for which rφ′ir
−1 = φi for i = 1, 2. Define

θ((φ′1, φ
′
2)) = rOr−1.

It is clear that rOr−1 ∈ Tφ1,φ2(M), but we need to check that all choices were well defined. By

Corollary 6.1.2, the element r is defined up to multiplication by F×, which does not change

rOr−1. If (φ′1, φ
′
2) ∼ (φ′′1, φ

′′
2) in S, then there exists an s ∈ O×N=1 for which φ′i = sφ′′i s

−1

for i = 1, 2. The corresponding element r can then be taken to be r′ = rs, and then

r′Or′−1 = rsOs−1r−1 = rOr−1, as desired. Therefore the map θ is well defined.

Next, it is clear that θ is surjective. Indeed, if E ∈ Tφ1,φ2(M), then as all Eichler orders of

a given level are conjugate, there exists a b ∈ B× for which bEb−1 = O. Then (φb1, φ
b
2) ∈ S,

and this pair also maps via θ to E, as desired.

Therefore, it suffices to show that θ is a
∣∣∣ NB× (O)

F×O×N=1

∣∣∣-to-one map. Assume that θ((φ′1, φ
′
2)) =

θ((φ′′1, φ
′′
2)), and that the pairs correspond to r, s respectively. Then rOr−1 = sOs−1, hence

t = r−1s ∈ NB×(O). Writing s = rt, it follows that t−1φ′it = φ′′i , so it suffices to determine

how t−1(φ′1, φ
′
2)t varies as t ranges over NB×(O). For a fixed t, by Corollary 6.1.2, the set
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of elements conjugating (φ′1, φ
′
2) to any form in the class of t−1(φ′1, φ

′
2)t is ON=1t

−1F× =

t−1F×ON=1. Thus, for distinct t1, t2, they correspond to the same image if and only if

t−1
1 F×ON=1 = t−1

2 F×ON=1,

which is equivalent to t2t
−1
1 ∈ F×ON=1. This proves the first claim without the `. It is clear

that the level of intersection remains constant under θ, hence the statements remain true

when we add in the level `.

When F = Q, Proposition 4.2.8 yields

NB×(O)

Q×O×N=1

'
∏

p|DM∞

Z
2Z
,

which implies the final result.

Combining Proposition 7.1.1 with Theorem 6.6.5 produces the count of x−linking.

Theorem 7.1.2. Let B be an indefinite quaternion algebra over Q of discriminant D, let

O be an Eichler order of level M, let (D1, D2, x) be nice, and let ` be a positive integer.

Factorize
D1D2 − x2

4
= ±

r∏
i=1

p2ei+1
i

s∏
i=1

q2fi
i

t∏
i=1

wgii ,

where the pi are the primes for which ε(pi) = −1 that appear to an odd power, qi are the

primes for which ε(qi) = −1 that appear to an even power, and wi are the primes for which

ε(wi) = 1. Then

(i) The set Emb(O,D1, D2, x) is non-empty if and only if all of the following hold:

• D =
∏r

i=1 pi;

• None of the pi, qi are potentially bad;

• M =
∏t

i=1w
g′i
i with g′i ≤ gi.

(ii) Assume the above holds. Then

|Emb(O,D1, D2, x)| = 2ω(DM)+1

t∏
i=1


gi + 1− g′i if wi - PB(D1, D2);

2 if wi | PB(D1, D2) and g′i < gi;

1 if wi | PB(D1, D2) and g′i = gi.
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(iii) The set Emb(O,D1, D2, x, `) is non-empty if and only if ` takes the form

` =
r∏
i=1

peii

s∏
i=1

qfii

t∏
i=1

w
g′′i
i ,

where 2g′′i ≤ gi − g′i and g′′i = 0 if wi | PB(D1, D2).

(iv) Assume the above holds. Let n be the number of indices i for which 2g′′i < gi− g′i. Then

Emb(O,D1, D2, x, `)| = 2ω(DM)+n+1.

When we restrict to the case of D1, D2 being coprime, fundamental, and O being maximal,

Theorem 7.1.2 has a cleaner statement.

Corollary 7.1.3. Let B be an indefinite quaternion algebra over Q of discriminant D with

maximal order O, let D1, D2 be coprime fundamental discriminants, let x be an integer with

x2 6= D1D2 and x ≡ D1D2 (mod 2), and let ` be a positive integer. Factorize

D1D2 − x2

4
= ±

r∏
i=1

p2ei+1
i

s∏
i=1

q2fi
i

t∏
i=1

wgii ,

where pi are the primes for which ε(pi) = −1 that appear to an odd power, qi are the primes

for which ε(qi) = −1 that appear to an even power, and wi are the primes for which ε(wi) = 1.

Then

(i) Emb(O,D1, D2, x) is non-empty if and only if D =
∏r

i=1 pi;

(ii) Assume the above holds. Then

|Emb(O,D1, D2, x)| = 2ω(D)+1

t∏
i=1

(gi + 1).

(iii) Emb(O,D1, D2, x, `) is non-empty if and only if

` =
r∏
i=1

peii

s∏
i=1

qfii

t∏
i=1

w
g′′i
i ,

where 2g′′i ≤ gi.

(iv) Assume the above holds. Let n be the number of indices i for which 2g′′i < gi. Then

Emb(O,D1, D2, x, `) = 2r+n+1.
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7.2 Orientations and sign of intersection

In this and the previous chapter, the orientations of optimal embeddings and the sign of

intersection has been completely ignored; we now address this issue.

Lemma 7.2.1. Let B be an indefinite quaternion algebra over Q, let O be an Eichler order

of level M, let (φ1, φ2) be x−linked optimal embeddings of positive discriminants D1, D2

respectively, where x2 < D1D2, let v | DM∞, and let ωv ∈ N×B (O) be as in Proposition

4.4.23. Then (φwv1 , φwv2 ) is an x−linked pair of optimal embeddings into O with the same

level as (φ1, φ2). Furthermore,

• If v =∞ then the orientations are the same, but the sign of intersection is opposite.

• If v < ∞, then the orientations are negated at v only, and the sign of intersection is

the same.

Proof. It is clear that (φwv1 , φwv2 ) remains x−linked, optimal, and the orientation follows from

Proposition 4.4.23. Having opposite sign of intersection is equivalent to φ1 × φ2 swapping

orientation at∞ when conjugating by wv, and this also follows from Proposition 4.4.23.

In particular, any element of ON=−1 acts as an involution on Embo1,o2(O,D1, D2, x, `),

dividing it into equal sized sets of intersection sign being 1 and −1.

Definition 7.2.2. For any intersection set Emb(· · · ) or Embo1,o2(· · · ), use the superscript

+ to denote the embeddings with positive sign of intersection, and use − for negative sign

of intersection. For example, Emb+
o1,o2

(O,D1, D2, x, `) counts the equivalence classes of pairs

[(φ1, φ2)] of optimal embeddings of discriminants D1, D2 and orientations o1, o2 that are

x−linked of level ` with positive sign.

Lemma 7.2.3. Let B be an indefinite quaternion algebra over Q of discriminant D, let O

be an Eichler order of level M, let D1, D2 be positive discriminants, and let x be an integer

such that x2 6= D1D2 and x ≡ D1D2 (mod 2). Assume that Emb(O,D1, D2, x) is non-

empty, let o1 be a possible orientation of an optimal embedding of OD1 into O, and assume

that gcd(D1D2,M) = 1. Then there exists a [(φ1, φ2)] ∈ Emb(O,D1, D2, x) for which φ1 has

orientation o1. For each p | DM, we also have:
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• If p - D1, then op(φ2) is uniquely determined;

• If p | D1 but p - D2, then op(φ1) can be both 1 and −1.

Finally, the sets Emb+
o1,o2

(O,D1, D2, x, `) all have the same size when they are non-empty.

Proof. Start with [(φ′1, φ
′
2)] ∈ Emb(O,D1, D2, x), and from Lemma 7.2.1 we can conjugate

the pair by ωp for p | DM to get (φ1, φ2) with φ1 having orientation o1.

If p | D1 but p - D2, the local orientation result follows from from conjugating the

embddings by ωp, as op(φ1) = 0.

Next, assume p - D1. It suffices to prove this lemma locally, so first assume we have p | D,

i.e. Bp = QAdiv
p . As in the proof of Lemma 6.3.2, write Bp =

(
D1,e
Qp

)
, with φ1,p(

√
D1) = i

and (D1, e)p = −1. Let φ2,p(
√
D2) = fi + gj + hk for f, g, h ∈ Zp necessarily, and the trace

condition gives that f = x
D1

. Let p be the maximal order in Op, and then φ2,p(
√
D2) ≡ x

D1
i

(mod p), which only depends on x,D1. Therefore the local orientation of φ2 at p is fixed.

Otherwise, assume that Bp = Mat(2,Qp), and Op is the standard Eichler level of order

pe with e > 0. Let e1 = e+ v2(p), and then working modulo pe1 we write

φ1(
√
D1) ≡

a b

0 −a

 (mod pe1), φ2(
√
D2) ≡

c d

0 −c

 (mod pe1).

Therefore x ≡ ac (mod pe1), and since p - a (else p | D1), we have c ≡ x
a

(mod pe1). But this

is the definition of the orientation of φ2, namely the equivalence class of c modulo p1+v2(p) is

determined from x and the orientation of φ1 (which is a (mod p1+v2(p))). Therefore the local

orientations statments follow.

Finally, the above shows that we can pass between all pairs (o1, o2) for which Embo1,o2(O,

D1, D2, x, `) is non-empty via conjugation by ωp for p | DM, hence these sets all have the

same size. Exactly half of the pairs in a given set have positive intersection sign, which

completes the lemma.

We can say even more about how the possible x’s divide across a pair of orientations.

Proposition 7.2.4. Let B be an indefinite quaternion algebra over Q of discriminant D,

let O be an Eichler order of level M, let D1, D2 be positive discriminants, and let o1, o2 be
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possible orientations of optimal embeddings of discriminants D1, D2 into O. Then there exists

an integer xo1,o2 such that for all optimal embeddings φi ∈ Emboi(O,Di) (i = 1, 2), we have

xo1,o2 ≡
1

2
trd
(
φ1(
√
D1)φ2(

√
D2)

)
(mod 2DM).

In particular, the possible x−linkings across an orientation pair are all equivalent modulo

2DM.

Proof. Fix another pair φ′i ∈ Emboi(O,Di), and say that φ1, φ2 are x−linked and φ′1, φ
′
2 are

x′−linked. It suffices to show that x ≡ x′ (mod 2DM). We can work locally, so start with

p | D, and assume that φi, φ
′
i now land in Op. Let p be the unique maximal order of Op, and

as the embeddings have the same orientation, there exists u1, u2 ∈ Op,N=1 for which φ′i = φuii

for i = 1, 2. Since Op/p ' Fp2 is commutative, when working modulo p we can rearrange

terms freely. Thus

φu11

(
pD1 +

√
D1

2

)
φu22

(
pD2 +

√
D2

2

)
≡ φ1

(
pD1 +

√
D1

2

)
φ2

(
pD2 +

√
D2

2

)
(mod p).

Taking reduced traces implies that

pD1pD2 + x′

2
≡ pD1pD2 + x

2
(mod p).

If p 6= 2, it follows that x′ ≡ x (mod p), whence x′ ≡ x (mod p) by subtracting and taking

the norm. If p = 2, then x′ ≡ x (mod 2p), and so subtracting and taking norms gives

8 | (x′ − x)2, hence x ≡ x′ (mod 4).

Next, assume that pe ||M with e > 0, and assume that Op is the standard Eichler order

of level pe. As the embeddings have the same orientation, there exists u1, u2 ∈ Op,N=1 for

which φ′i = φuii for i = 1, 2. Explicitly write

φi

(
pDi +

√
Di

2

)
=

 ai bi

peci pDi − ai

 , ui =

 fi gi

pehi ki

 .

It follows that fiki ≡ 1 (mod pe). Modulo pe, we compute

φuii

(
pDi +

√
Di

2

)
≡

ai fi(pDigi − 2giai + fibi)

0 pDi − ai

 (mod pe).
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By taking the explicit expressions for φi

(
pDi+

√
Di

2

)
, doubling and subtracting pDi , and mul-

tiplying together we find that

x ≡ (2a1 − pD1)(2a2 − pD2) ≡ x′ (mod pe+v2(p)),

as claimed.

Combining the above shows that x ≡ x′ (mod 2DM) if 2 | DM, and x ≡ x′ (mod DM)

otherwise. In this case, x ≡ pD1pD1 ≡ x′ (mod 2), so the same conclusion follows.

If D1 is coprime to DM, then Lemma 7.2.3 and Proposition 7.2.4 can be used to show that

for o1 fixed, the integers xo1,o2 are all distinct modulo 2DM across all orientations o2. IfD1 has

factors in common with DM, this no longer needs to be true at those primes. Furthermore,

not all x’s satisfying the congruence condition will necessarily appear as x−linkings, as this

depends on the actual factorization of D1D2−x2
4

, and not just on congruences. For example,

this number will always be divisible by DM, but prime factors of D could appear to even

powers.

Lemma 7.2.3 allows us to count the sizes of Emb+
o1,o2

(O,D1, D2, x, `), by dividing |Emb+(

O,D1, D2, x, `)| across the total number of orientations. We record this in the next Corollary.

Corollary 7.2.5. Let B be an indefinite quaternion algebra over Q of discriminant D, let

O be an Eichler order of level M, let (D1, D2, x) be nice, and let ` be a positive integer.

Factorize
D1D2 − x2

4
= ±

r∏
i=1

p2ei+1
i

s∏
i=1

q2fi
i

t∏
i=1

wgii ,

where the pi are the primes for which ε(pi) = −1 that appear to an odd power, qi are the

primes for which ε(qi) = −1 that appear to an even power, and wi are the primes for which

ε(wi) = 1. Assume that

• D =
∏r

i=1 pi;

• gcd(M, D1D2) = 1 and gcd(D,PB(D1, D2)) = 1;

• M =
∏t

i=1w
g′i
i with g′i ≤ gi.

• ` =
∏r

i=1 p
ei
i

∏s
i=1 q

fi
i

∏t
i=1w

g′′i
i , where 2g′′i ≤ gi − g′i and g′′i = 0 if wi | PB(D1, D2).
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Let n be the number of indices i for which 2g′′i < gi − g′i. Then for every pair of orientations

(o1, o2), we have

|Emb+
o1,o2

(O,D1, D2, x, `)| = 2n or 0.

Proof. By Theorem 7.1.2, the count without the orientations or + is 2ω(DM)+n+1. If p | DM

but p - gcd(D1, D2), then Lemma 7.2.3 implies that there are precisely 2 pairs (op(φ1), op(φ2))

which admit x−linking, hence we divide by 2 for all such p. But the assumption of (D1, D2, x)

nice implies that this is all primes p | DM, so the factor ω(DM) is eliminated. Finally, exactly

half of the embeddings have positive sign, which implies the result.

7.3 Specializing to pairs of embeddings and summing

over x

We started with the question of finding intersections of ˜̀
φ1 ,

˜̀
φ2 where φ1, φ2 are optimal

embeddings of discriminants D1, D2, and instead answered the related problem of describing

the sets Emb+
o1,o2

(O,D1, D2, x, `). Accessing the original information boils down to:

• Identifying which values of x with x2 < D1D2 give x−linking with embeddings similar

to φ1, φ2. Proposition 7.2.4 identifies the residue class modulo 2DM that x must lie in,

but not all such x are valid.

• For each of these x’s, identifying how many of the x−linked pairs drop into the equiv-

alence classes of φ1, φ2, out of the h+(D1)h+(D2) possible class pairs.

• Identifying the corresponding signs and levels of the x−linked pairs equivalent to φ1, φ2.

All of these steps are possible algorithmically, and we explore this in Section 10.3.2.

Theoretically, this is much more difficult. For a fixed x, it is possible to partially describe

how elements in Emb+
o1,o2

(O,D1, D2, x) distribute:

• Fix [(φ1, φ2)] ∈ Emb+
o1,o2

(O,D1, D2, x). Then the map θ found in Proposition 7.1.1

combined with the work on Tφ1,φ2(M) in Chapter 6 allows us to describe possible

values of nrd(r) for r ∈ O such that [(φr1, φ
r
2)] ∈ Emb+

o1,o2
(O,D1, D2, x) and [(φr1, φ

r
2)] 6=
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[(φ1, φ2)]; they are essentially products of powers of prime divisors p of D1D2−x2
4

with

ε(p) = 1.

• Proposition 4.5.2 describes the element of the narrow class groups taking φi to φri in

terms of the reduced norms of elements that conjugate φi to φri .

• In particular, the distribution of Emb+
o1,o2

(O,D1, D2, x) across the h+(D1)h+(D2) pairs

of equivalence classes relates to the representations of products of primes p | D1D2−x2
4

with ε(p) = 1 by binary quadratic forms of discriminants D1, D2.

While it is possible to make this a bit more formal and explicit, this only works for a fixed x.

It is not clear how classes from distinct x’s interact, and this is the main theoretical barrier

to this approach.

7.4 Examples

We now present a few examples that illustrate the results of Theorem 7.1.2 and Corollary

7.2.5.

Example 7.4.1. Let D1 = 5 and D2 = 381, so that D1, D2 are coprime and fundamental.

Since 43 <
√

5 · 381 < 44, to compute which algebras admit non-trivial linking of D1, D2, it

suffices to compute 5·381−x2
4

for odd |x| ≤ 43, and find ε(p) for all prime divisors. The values

of ε(p) with p ≤ 100 are in Table 7.1

Table 7.1: ε(p) for D1 = 5, D2 = 381, p ≤ 100.

p 2 3 5 7 17 19 29 31 43 47 59 61 67 79 89 97

ε(p) −1 −1 1 −1 −1 1 1 1 −1 −1 1 1 −1 1 1 −1

Table 7.2 displays the possible ramifications of the quaternion algebras, along with the

corresponding positive x’s (since x and −x correspond to the same algebra).
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Table 7.2: Quaternion algebras admitting non-trivial linking in a maximal order for discrim-

inants 5 and 381.

Ramifying primes ∅ 2, 3 2, 7 2, 17 2, 43 2, 47

Positive x’s 7, 17, 25, 31 3, 9, 21, 27, 39 13, 29, 41, 43 35 23 5

Ramifying primes 2, 67 2, 193 2, 223 3, 7 3, 17 7, 17

Positive x’s 37 19 11 15 33 1

Let’s focus on Q =
(

3,−1
Q

)
, which is ramified at 2, 3. Let O be the maximal order spanned

by
{

1, i, j, 1+i+j+k
2

}
. Since h+(5) = 1 and there are four orientations, there are 4 embedding

classes of discriminant 5. Since h+(381) = 2 and 3 | 381, there are two orientations, and 4

total embedding classes of discriminant 381. Representative embeddings are given in Table

7.3.

Table 7.3: Optimal embedding classes for D = 5, 381.

D o2(φ) o3(φ) φ
(
pD+

√
D

2

)
5 1 1 1−i−j+k

2

5 −1 1 1−i−j−k
2

5 1 −1 1+i+j+k
2

5 −1 −1 1+i+j−k
2

381 1 0 1−11i−3j+3k
2

381 1 0 1+9i−3j+7k
2

381 −1 0 1−11i−3j−3k
2

381 −1 0 1+9i−3j−7k
2

The possible x’s are |x| = {3, 9, 21, 27, 39}. For each x, we factor 5·381−x2
4

in Table 7.4,

and determine the possible levels.
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Table 7.4: Factorization of 5·381−x2
4

for |x| = {3, 9, 21, 27, 39}.

|x| 5·381−x2
4

∏
peii

∏
qfii

∏
wgii Possible levels n

3 474 2131 791 1 1

9 456 2331 191 2 1

21 366 2131 611 1 1

27 294 2131 72 7 0

39 96 2531 4 0

It turned out that each x corresponds to a unique level, but this will not be the case

in general. This data says that |Emb+
o1,o2

(O, 5, 381, x, `)| should be 0 or 2 for the first three

entries and 0 or 1 for the last two entries. Let φ1 be the first embedding of discriminant 5 as

given in Table 7.3, and let σ1, σ2 be the first two embeddings of discriminant 381 as given in

the same table. For each intersection of φ1 with σi, we take a pair (φ′1, σi) representing the

intersection, and record the data in Table 7.5 (the signed level is the product of the sign and

the level).

Table 7.5: Intersection of φ1 with σ1, σ2.

Intersections with σ1 Intersections with σ2

φ′1

(
1+
√

5
2

)
x Signed level φ′1

(
1+
√

5
2

)
x Signed level

1−13i−55j−29k
2

3 −1 1+i−j−k
2

3 1

1−13i+197j−113k
2

3 −1 1+101i+359j−181k
2

3 1

1+31i+131j+69k
2

−9 2 1−i−j+k
2

−9 −2

1+31i−469j+269k
2

−9 2 1−41i−145j+73k
2

−9 −2

1−87i−373j−197k
2

−21 −1 1+i+5j−3k
2

−21 1

1−711i−3031j−1599k
2

−21 −1 1+11i+41j−21k
2

−21 1

1+223i+953j+503k
2

27 7 1−3i−13j+7k
2

27 −7

1−i−j+k
2

39 4 1−29i+71j+29k
2

39 −4

This data agrees with the theoretical claim. For the other orientation of 381, we have

essentially the same data, except the x’s are all negated.
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For another interesting example, we consider a non-maximal Eichler order, and compare

it to the results for the maximal order.

Example 7.4.2. Let D1 = 73, D2 = 937, and x = 89. Then D1, D2 are coprime, funda-

mental, and have class number 1 each. Let Q =
(

7,5
Q

)
, which is ramified at 5, 7. Let O be a

maximal order and O3 an Eichler order of level 3, given by

O =

〈
1,

1 + j

2
, i,

1 + i+ j + k

2

〉
, O3 =

〈
1, i,

1 + 3j

2
,
1 + i+ j + k

2

〉
.

There are 4 embedding classes into O and 8 embedding classes into O3 of each discriminant,

each corresponding to a distinct orientation. Since

73 · 937− 892

4
= (5171)()(2433),

with ε(5) = ε(7) = −1 and ε(2) = ε(3) = 1 (the empty parentheses indicate the absence

of qi’s), the sets Emb(O′, 73, 937, 89) should be non-empty for O′ = O,O3. Fix the optimal

embeddings

φ1

(
1 +
√

73

2

)
=

1− 2i+ 3j

2
, φ2

(
1 +
√

937

2

)
=

1 + 14i+ 5j − 4k

2
,

which land in and are optimal with respect to both O and O3. Since

1

2
trd(φ1(

√
73)φ2(

√
937)) = −121 ≡ 89 (mod 2 · 3 · 5 · 7),

Int(φ1, φ2) should have 89−linkage. As the class numbers are both one, this is all of the

89−linkage for the given orientations. Corollary 7.2.5 predicts the levels and counts, which

is recorded in Table 7.6.

Table 7.6: Theoretical prediction for counts of levels.

` |Emb+
o1,o2

(O, 73, 937, 89, `)| |Emb+
o1,o2

(O3, 73, 937, 89, `)|
1 4 4

2 4 4

3 4 2

4 2 2

6 4 2

12 2 1
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The difference in counts comes only at wi = 3, where 2g′′i < gi − g′i = 3 − g′i is true for

g′′i = 0, 1 when the level is maximal, but is only true for g′′i = 0 when g′i = 1, i.e. the Eichler

order of level 3.

We compute the 89−linkage using the algorithm described in Section 10.3.2. For each

intersection with positive sign, we take a representative pair (φ1, φ
′
2), and record φ′2 and the

level in Tables 7.7 and 7.8

Table 7.7: Positive 89−linking of φ1 with φ2 in O.

φ′2

(
1+
√

937
2

)
` φ′2

(
1+
√

937
2

)
`

1+22559i+21061j−12851k
2

1 1+119i+117j−69k
2

3

1+1769i+1657j−1009k
2

1 1+1428689i+1333449j−813783k
2

3

1+1769i+1657j+1009k
2

1 1+14i+19j−8k
2

4

1+22559i+21061j+12851k
2

1 1+14i+19j+8k
2

4

1+584i+551j+334k
2

2 1+6907484i+6446991j−3934506k
2

6

1+584i+551j−334k
2

2 1+4664i+4359j+2658k
2

6

1+44i+47j+26k
2

2 1+6907484i+6446991j+3934506k
2

6

1+44i+47j−26k
2

2 1+4664i+4359j−2658k
2

6

1+119i+117j+69k
2

3 1+179534i+167571j−102264k
2

12

1+1428689i+1333449j+813783k
2

3 1+179534i+167571j+102264k
2

12
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Table 7.8: Positive 89−linking of φ1 with φ2 in O3.

φ′2

(
1+
√

937
2

)
` φ′2

(
1+
√

937
2

)
`

1+1769i+1657j+1009k
2

1 1+1428689i+1333449j+813783k
2

3

1+119i+117j+69k
2

1 1+119i+117j−69k
2

3

1+1428689i+1333449j−813783k
2

1 1+14i+19j−8k
2

4

1+22559i+21061j−12851k
2

1 1+179534i+167571j+102264k
2

4

1+44i+47j+26k
2

2 1+6907484i+6446991j−3934506k
2

6

1+584i+551j−334k
2

2 1+4664i+4359j−2658k
2

6

1+6907484i+6446991j+3934506k
2

2 1+179534i+167571j−102264k
2

12

1+4664i+4359j+2658k
2

2

This data agrees with Table 7.6.

For a final example, we introduce a non-fundamental discriminant.

Example 7.4.3. Let D1 = 241 and D2 = 2736, which are coprime, and let x = 324. Note

that D1 is fundamental, but D2 = 223276, where 76 is fundamental. Take Q =
(

77,−1
Q

)
,

which is ramified at 7, 11. Let O be the maximal order spanned by
{

1, 1+i
2
, j, j+k

2

}
. We have

h+(241) = 1 and h+(2736) = 4, and consider the 5 optimal embeddings in Table 7.9 (one

being of discriminant 241, and the other 4 being one entire orientation of discriminant 2736.

Table 7.9: Optimal embedding classes for D = 241, 2736.

Label D o7(φ) o11(φ) φ
(
pD+

√
D

2

)
φ 241 1 1 1+i−12j+2k

2

σ1 2736 1 1 2i−50j+8k
2

σ2 2736 1 1 10i−281j+31k
2

σ3 2736 1 1 2i−50j−8k
2

σ4 2736 1 1 10i−281j−31k
2

Factorize
241 · 2736− 3242

4
= (71111)()(233252),
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where ε(7) = ε(11) = −1 and ε(2) = ε(3) = ε(5) = 1. As PB(241, 2736) = 2 · 3, factors of

2, 3 are not allowed in the level. In particular, for 324−linking, the only valid levels are 1, 5

(whereas if D1, D2 were fundamental, we could get all divisors of 30). The table of predicted

levels and counts is found in Table 7.10.

Table 7.10: Theoretical prediction for counts of levels.

` |Emb+
o1,o2

(O, 241, 2736, 324, `)|
1 8

5 4

Since
1

2
trd(φ(

√
241)σ1(

√
2736)) = 786 ≡ 324 (mod 2 · 7 · 11),

intersections of φ with σi should exhibit the above 324−linking behaviour. We compute

the possible positive 324−linking between φ and σi for i = 1, 2, 3, 4, and represent each

intersection by a pair (φ′, σi). The corresponding data is found in Table 7.11.

Table 7.11: Positive 324−linking of φ1 with σi.

i φ′1

(
1+
√

241
2

)
` i φ′1

(
1+
√

241
2

)
`

1 1+51079i+839827j−80937k
2

1 3 1−5i−89j−9k
2

1

1 1+39i−397j+23k
2

1 3 1−449i+4531j+255k
2

1

1 1+2433i−24575j+1387k
2

5 3 1−7i+65j+3k
2

5

2 1−17i+1220j−138k
2

1 4 1−87657i+1615987j+161959k
2

1

2 1+259i−4786j+480k
2

1 4 1−21i+373j+37k
2

1

2 1+5i−89j+9k
2

5 4 1−1395i+25706j+2576k
2

5

This data agrees with the theoretical claim.
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Hecke operators and modularity

Previously, we studied intersection numbers by adapting the point of view of algebraic equa-

tions and identities in a quaternion algebra, which were then studied by looking locally and

using the local-global principle. In this chapter we take advantage of a different point of

view, namely a topological one. The signed intersection number is very special in the sense

that it is defined not just on root geodesics coming from pairs of optimal embeddings, but on

pairs of homology classes! By exploiting the topological view and translating it to quaternion

algebras, we will produce modular forms.

In this section, fix B to be an indefinite quaternion algebra over Q of discriminant D, let

O be an Eichler order of level M, and let φi : ODi → O be optimal embeddings of positive

discriminants for i = 1, 2.

Definition 8.0.1. Let Emb(O) denote Z−linear formal sums of equivalence classes of op-

timal embeddings of quadratic orders into O. Denote by Emb+(O) the subspace supported

on optimal embeddings of positive discriminants, and denote by Emb−(O) the subspace

supported on optimal embeddings of negative discriminants.

Remark 8.0.2. The intersection number IntO can be thought of as a mapping

Emb+(O)× Emb+(O)→ Z,

by summing up the pairs of intersection numbers multiplied by the coefficients. Further-

more, one can even think of the image as being Emb−(O) by using the convention that
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IntO([φ1], [φ2]) is the sum of [(φ′1× φ′2)O] taken over all equivalence classes [(φ′1, φ
′
2)] of inter-

sections.

In Section 8.2, we will define a Hecke operator Tn : Emb+(O)→ Emb+(O) for all integers

n coprime to DM. In Section 8.3 we will define an Atkin-Lehner operator Wpe : Emb+(O)→
Emb+(O) for all prime powers pe || DM. By combining the different cases in Definition 8.3.3,

we produce a Hecke operator Tn for all positive integers n.

Definition 8.0.3. Let f be a function defined on transversal intersections, and φ1, φ2 optimal

embeddings of positive discriminants into O. The intersection series associated to φ1, φ2, f

is defined to be the formal power series

Ef
φ1,φ2

(τ) :=
∞∑
n=1

〈φ1, Tnφ2〉fqn,

where 〈, 〉f is the intersection pairing corresponding to f , and q = e2πiτ .

The main result of this chapter is the following theorem.

Theorem 8.0.4. There exists a modular form E ′ ∈ S2(Γ0(DM))D−new such that the nth

coefficient of E ′ and E±φ1,φ2 are equal for all n coprime to M. In particular, if O is maximal,

then E±φ1,φ2 ∈ S2(Γ0(DM))D−new.

To prove Theorem 8.0.4, we first pass from optimal embeddings to homology via φ→ ˜̀
φ.

The Eichler-Shimura relation allows us to pass to quaternionic modular forms, and we check

that our Hecke operators agree with Hecke operators acting on quaternionic modular forms

under the associations. The final step is using Jacquet-Langlands to transfer the result to

the theory of classical modular forms.

8.1 Näıve Hecke operators

Before defining Hecke operators on optimal embeddings, we must define a similar concept,

the näıve Hecke operators.

Definition 8.1.1. For a positive integer n, write

Θ(n) := ON=1\ON=n =
M⋃
i=1

ON=1πi.
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If gcd(DM, N) = 1, the action of the näıve Hecke operator T ′n on [φ] ∈ Emb+(O) is defined

by the formal sum

T ′n[φ] :=
M∑
i=1

[(πiφπ
−1
i )O].

Note that the choice of orbit representatives does not affect the definition of T ′n, as they

lead to equivalent embeddings. Furthermore, the choice of φ representing the class [φ] does

not affect the definition, as it will just permute the terms of the sum. In particular, if M <∞,

then T ′n is well-defined. In the rest of this section we will show that M is finite, as well as

describing some properties of T ′n.

Lemma 8.1.2. Let p be a prime number coprime to DM, and let k be a positive integer.

Then Θ(pk) is finite, of size 1 + p+ · · ·+ pk.

Proof. If x, y ∈ ON=pk , then xy−1 = xy
pk

. Since pk is a unit in Zq for all primes q 6= p, this lies

in Oq for all such q. Thus it suffices to work in the completion at p, i.e. considering the space

Op,N=1\Op,N=pk . As p - DM, we can assume that Op = Mat(2,Zp). As with the classical case

of SL(2,Z), one can check that the matricespa b

0 pk−a

 , a = 0, 1, . . . , k, and 0 ≤ b < pk−a,

give a complete set of representatives. The lemma follows.

Lemma 8.1.3. Let m,n, p be positive integers coprime to DM, with p being prime. The

following statements are true:

(i) The set Θ(n) is finite of size σ(n) =the sum of the divisors of n;

(ii) T ′m and T ′n commute;

(iii) T ′mn = T ′mT
′
n when m,n are coprime;

(iv) T ′
pk
T ′p = T ′

pk+1 + pT ′
pk−1 for all positive integers k.

Proof. The first point follows from Lemma 8.1.2 and the proof of the third point. The second

point will follow from the third and fourth points, so we focus on those. For the third point,
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write

Θ(m) =
M⋃
i=1

ON=1πi;

Θ(n) =
N⋃
i=1

ON=1π
′
i.

It suffices to show that the set {ON=1πiπ
′
j}i=M,j=N
i,j=1 is a valid and complete set of represen-

tatives for Θ(mn). First, if x ∈ ON=mn, then by Proposition 4.2.6 we can write x = yz with

nrd(y) = m, nrd(z) = n, and y, z ∈ O. Then z = u1π
′
j for some j and u1 ∈ ON=1, and we

write x = (yu1)π′j. We have yu1 = u2πi for some i and u2 ∈ ON=1, whence x = u2πiπ
′
j. Thus

we have a complete set of representatives for ON=1\ON=mn.

To show that they are all distinct, assume otherwise, so that ON=1πiπ
′
j = ON=1πi′π

′
j′ .

Thus ON=1πiπ
′
jπ
′−1
j′ = ON=1πi′ . If j = j′, then i = i′ and we are done. Otherwise, let

x = π′jπ
′−1
j′ ; we have nrd(x) = 1 and x /∈ O since j 6= j′. By taking completions, there exists

a prime divisor p of n such that xp /∈ Op. Since nrd(πi) = m is coprime to n, it is coprime to

p, and thus (πix)p /∈ Op, whence πix /∈ O. But πix ∈ ON=1πi′ ⊆ O, contradiction. Therefore

i = i′ and j = j′, as claimed.

For the last point, in Lemma 8.1.2 we gave explicit local descriptions of representatives

of the orbits. The lemma follows by checking it for these orbits, which is the exact same as

in the classical case.

The operators T ′n are the “obvious” candidate for Hecke operators acting on optimal

embeddings, and they indeed satisfy the typical properties of Hecke operators. However, we

desire the map Emb+(O) → H1(XO,Z) (the integral homology) induced by [φ] → ˜̀
φ to be

Hecke-equivariant, and this fails with T ′n. Furthermore, another desirable property would be

for the Hecke operators to be self-adjoint with respect to the intersection pairing, and T ′n

fails this as well.

8.2 Good Hecke operators

For [φ], [σ] ∈ Emb+(O), write

[φ] ∼n [σ]
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if there exists a π ∈ ON=n for which [(πφπ−1)O] = [σ]. Note that this is symmetric: let

πφπ−1 = uσu−1 for some u ∈ ON=1. Then πu ∈ ON=n, and [πuσ(πu)−1] = [φ].

Definition 8.2.1. Let [φ], [σ] ∈ Emb+(O) and write Θ(n) = ∪Mi=1ON=1πi for n coprime to

DM. The nth weight associated to the ordered pair ([φ], [σ]) is

wn(φ, σ) := |{i : 1 ≤ i ≤M, [(πiφπ
−1
i )O] = [σ]}|.

We drop the equivalence class brackets from the inputs for ease of reading.

In particular, the näıve Hecke operator can be expressed as

T ′n[φ] =
∑

[σ]∼n[φ]

wn(φ, σ)[σ].

The correct definition of Tn just switches the terms in wn!

Definition 8.2.2. Let n be coprime to DM. The action of the (good) Hecke operator Tn

on [φ] is defined by the formal sum

Tn[φ] :=
∑

[σ]∼n[φ]

wn(σ, φ)[σ].

Note that the sum subscript is unnecessary, as if [σ] 6∼n [φ], then wn(σ, φ) = 0.

Lemma 8.2.3. Let m,n, p be positive integers coprime to DM, with p a prime. The following

statements are true:

(i) Tm and Tn commute;

(ii) Tmn = TmTn if m,n are coprime;

(iii) TpkTp = Tpk+1 + pTpk−1 for all positive integers k.

Proof. As with Lemma 8.1.3, it suffices to prove the second and third points only. Since

T ′mn = T ′nT
′
m for m,n coprime, we have

∑
[σ]

wmn(φ, σ)[σ] = T ′n

∑
[θ]

wm(φ, θ)[θ]

 =
∑
[θ]

∑
[σ]

wm(φ, θ)wn(θ, σ)[σ].
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By equating the coefficients of [σ], we have

wmn(φ, σ) =
∑
[θ]

wm(φ, θ)wn(θ, σ).

Swapping φ, σ gives us

wmn(σ, φ) =
∑
[θ]

wm(σ, θ)wn(θ, φ).

Expanding out Tmn[φ] and TmTn[φ] in similar fashion to the näıve Hecke operators and using

this equality proves that Tmn = TmTn for coprime m,n.

For the third point, we know that T ′pT
′
pk

= T ′
pk
T ′p = T ′

pk+1 + pT ′
pk−1 . Expanding this out

as above and equating coefficients gives for all [σ] that∑
[θ]

wpk(φ, θ)wp(θ, σ) = wpk+1(φ, σ) + pwpk−1(φ, σ).

Swapping φ, σ thus gives∑
[θ]

wpk(σ, θ)wp(θ, φ) = wpk+1(σ, φ) + pwpk−1(σ, φ).

By expanding out TpkTp[φ] and (Tpk+1 + pTpk−1)[φ] and using this equality, we see that all

coefficients are equal, hence the third point is proved.

See Proposition 8.6.3 for an alternate expression for the good Hecke operators.

8.3 Atkin-Lehner and general Hecke operators

We have defined the Hecke operators Tn for n coprime to DM. Working with n not coprime

to DM is slightly different, and for such n we need the Atkin-Lenher operators Wpe .

Definition 8.3.1. Let p be a prime and e a positive integer such that pe || DM. Define ωpe

to be the ωp as found in Proposition 4.2.8 (i.e. ωpe ∈ NB×(O) and nrd(ωpe) = pe). Then the

action of the Atkin-Lehner operator Wpe on [φ] ∈ Emb+(O) is defined by

Wpe [φ] = [ωpeφω
−1
pe ].
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If φ′ ∈ [φ] and ω′pe was a different choice, then write φ′ = u1φu
−1
1 and ω′pe = ωpeu2 for

some u1, u2 ∈ ON=1. As ωpe ∈ NB×(O), there exists u ∈ ON=1 for which uωpe = ωpeu2u1. In

particular,

[ω′peφ
′ω′−1
pe ] = [ωpeu2u1φ(ωpeu2u1)−1] = [u(ωpeφω

−1
pe )u−1] = [ωpeφω

−1
pe ],

so the action of Wpe is well-defined. More generally, the same argument also shows that

[φ] = [σ]⇒ [ωpeφω
−1
pe ] = [ωpeσω

−1
pe ].

Furthermore, since ω2
pe ∈ Q×O×N=1, it follows that W 2

pe acts as the identity.

Lemma 8.3.2. Let n be coprime to DM, and let pe, qf || DM. Then

(i) Tn and Wpe commute;

(ii) Wpe and Wqf commute.

Proof. The key to both parts of the proof is the fact that ωpe ∈ NB×(O). For part i, by

expanding out TnWpe [φ] and WpeTn[φ], it suffices to prove that∑
[σ]

wn(σ, φωpe )[σ] =
∑
[σ]

wn(σ, φ)[σωpe ].

We can replace σ by σωpe in the first sum, and it is thus equivalent to showing that

wn(σωpe , φωpe ) = wn(σ, φ).

Writing Θ(n) =
∑M

i=1 ON=1πi, the first expression counts the i’s for which

[(πiωpeσω
−1
pe π

−1
i )O] = [ωpeσω

−1
pe ].

By conjugating each term by ω−1
pe , this counts the i’s for which

[(ω−1
pe πiωpeσ(ω−1

pe πiωpe)
−1)O] = [σ].

As ωpe ∈ NB×(O), it follows that {ω−1
pe πiωpe} is also a set of representatives of Θ(n), which

implies the equality.

The second part follows from a similar (but easier) computation.
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We are now ready for the full definition of a Hecke operator acting on Emb+(O).

Definition 8.3.3. For a prime power pe, define the Hecke operator Tpe to be

• Tpe as defined in Section 8.2 if p is coprime to DM;

• W e
p if p | D;

• 0 if p |M.

For a positive integer n =
∏M

i=1 p
ei
i , define

Tn :=
M∏
i=1

Tpeii .

It follows from Lemmas 8.2.3 and 8.3.2 that Tn is well defined (as all of the good Hecke

operators and the Atkin-Lehner operators commute), and that Tn agrees with the previous

definition of Tn when n is coprime to DM.

Remark 8.3.4. We can define an infinite Hecke operator analogously to the Atkin-Lehner

involutions. Take µ ∈ ON=−1 ⊆ NB×(O), and then

T∞[φ] := [µφµ−1].

As before, this is well-defined, commutes with all previously defined Hecke operators, and

squares to the identity operator.

8.4 Discriminants of conjugated embeddings

Let p be a prime with p - DM, and write ON=1\ON=p =
⋃p+1
i=1 ON=1πi. We wish to describe

the embeddings in the sum Tp[φ], namely: what are the discriminants of the corresponding

embeddings, and what are the multiplicities of each distinct embedding? This essentially

boils down to questions about fundamental units in towers of orders in the number field

Q(
√
D). In this section we will determine the structure of T ′p[φ], from which one can get the

structure of Tp[φ] (the only change is the weighting of coefficients).
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Definition 8.4.1. Let D be a positive discriminant and p a prime, and consider the fun-

damental units of positive norm εD, εp2D, εp4D, . . .. Define epk(D) = ek for k ≥ 1 to be the

positive integer such that

εp2kD = εek
p2k−2D

.

Write εD = T+U
√
D

2
, and for i ≥ 1 write εiD = Ti+Ui

√
D

2
. Then e1 is the minimal i for which

p | Ui, and inductively, ek is the minimal i for which pk | Ue1e2···ek−1i.

Proposition 8.4.2. Let vp(Ue1) = m. Then

• e1 | p−
(
D
p

)
;

• e2 = · · · = em = 1 if m > 1;

• ei = p for all i ≥ m+ 1.

Proof. For this whole proof, assume that p is odd; p = 2 can be found in Proposition A.2.3.

The claim that e2 = · · · = em = 1 if m > 1 is obvious, so we focus on the other two claims.

Observe that

Ui
√
D = εiD − ε−iD .

Let p be a prime ideal ofOD above p, and let k be the positive integer such that vp(D) = k−1.

Let e be the reduction of εD modulo pk. Since εD is a unit, e ∈
(
OD
pk

)×
. Then p | Ui is

equivalent to ei− e−i = 0, which is equivalent to e2i = 1. Therefore all such i’s are a multiple

of the minimal i, which is e1.

If p is split in OD, then k = 1 and we are working in Fp. Since F×p is cyclic of order p− 1,

this implies that e1 | p−1
2
| p− 1, as claimed.

If p is inert in OD, then k = 1 and we are working in Fp2 . Since εiD − ε−iD ∈ Z
√
D, we

have ei− e−i = 0 if and only if ei− e−i ∈ Fp. The group F×p2 is cyclic of order p2− 1, and the

subgroup F×p is cyclic of order p− 1, hence the quotient group is cyclic of order p+ 1. Thus

ep+1 ∈ Fp, and so ep+1 − e−(p+1) ∈ Fp, whence e1 | p+ 1, as claimed.

Finally, assume that p | D. Then k ≥ 2, and U
√
D

2
∈ pk−1. Raise this to the pth power,

since p |
(
p
i

)
for 1 ≤ i ≤ p− 1 and p(k − 1) ≥ k for k ≥ 2, we see that

εpD ≡ (T/2)p (mod pk).
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The same holds true for ε−pD , whence ep − e−p = 0, and so e1 | p, as claimed.

For the last point, by replacing D with p2mD, we can assume that p - U and p2 | D,

hence k ≥ 3. Since e1 6= 1 and e1 | p, we must have e1 = p. To complete the claim, we must

show that p || Up, as we can then induct. Since p - U , we have U
√
D

2
∈ pk−1 − pk. Working as

before, note that T/2 /∈ p (otherwise εD could not be a unit), and taking the pth power of εD

and working modulo pk+2 gives

εpD ≡ (T/2)p + (T/2)p−1p(U
√
D/2) (mod pk+2).

All the other terms of the binomial expansion disappeared, since their p−valuation was either

at least 2+2(k−1) = 2k ≥ k+2 (the next p−2 terms), or at least p(k−1) ≥ 3k−3 ≥ k+2

since k ≥ 3 (the last term). The similar expression for ε−pD holds, and we see that

εpD − ε−pD ≡ pU
√
D(T/2)p−1 (mod pk+2),

which implies that Up
√
D = εpD − ε−pD ∈ pk+1 − pk+2, and thus p || Up, as desired.

The term e1 is closely related to h+(p2D)
h+(D)

. Specifically, Theorems 7.4, 7.5 of [Bue89] combine

into the following proposition.

Proposition 8.4.3. We have

h+(p2D)

h+(D)
=
p−

(
D
p

)
ep1(D)

.

Definition 8.4.4. If D is a discriminant and p is a prime such that D
p2

is not a discriminant,

we say D is p−fundamental.

We can now describe the terms of T ′pφ.

Proposition 8.4.5. Let D = p2kD′, where D′ is a p−fundamental discriminant, and p -

DM. Consider the multiset {[(πiφπ−1
i )O] : 1 ≤ i ≤ p+ 1}. This contains

• p+ 1 optimal embeddings of discriminant p2D if k = 0 and
(
D
p

)
= −1.

• p optimal embeddings of discriminant p2D and one of discriminant D if k = 0 and(
D
p

)
= 0.
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• p− 1 optimal embeddings of discriminant p2D and two of discriminant D if k = 0 and(
D
p

)
= 1.

• p optimal embeddings of discriminant p2D and one of discriminant D
p2

if k > 0.

The optimal embeddings of discriminant p2D divide into

p−
(
D
p

)
ep1(D)

=
p−

(
D
p

)
epk+1(D′)

distinct equivalence classes, each with multiplicity ep1(D) = epk+1(D′).

Proof. Assume that p is odd; the intrepid reader can find the proof of p = 2 in the appendix,

Proposition A.2.4. To calculate the discriminants, it suffices to do the calculations after

completing at p. Thus we can assume that Op = Mat(2,Zp), and φp(
√
D) = ( 0 D

1 0 ). From

Lemma 8.1.2, we can take representatives

πi =

1 i

0 p

 : i = 0, 1, · · · , p− 1, π∞ =

p 0

0 1

 .

We compute

π∞φ(
√
D)π−1

∞ =

0 pD

1
p

0

 .

This gives us an optimal embedding of p2D in all cases. For i <∞,

πiφ(
√
D)π−1

i =

i D−i2
p

p −i

 .

If p is inert with respect to D, then D−i2
p

never lies in Zp, whence we get everything of

discriminant p2D. If p | D, then this gives discriminant p2D for all i 6= 0. When i = 0, we get

D or D
p2

, depending on if p2 | D or not. Finally, if p is split with respect to D, then precisely

two values of i allow this to lie in Mat(2,Zp), and we get 2 embeddings of discriminant D

and p− 2 of p2D. Therefore the discriminants occur as we claim.

Next, we check when we get similar embeddings of discriminant p2D. Let v = φ(εD) ∈
ON=1, fix i, and let πiv = uπj for some j and u ∈ ON=1. Then

(πjφπ
−1
j )O ∼ (uπjφπ

−1
j u−1)O = (πivφv

−1π−1
i )O = (πiφπ

−1
i )O,
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i.e. the resulting forms lie in the same equivalence class. We wish to show that in the discrimi-

nant p2D case this is also essentially necessary, i.e. if (πiφπ
−1
i )O ∼ (πjφπ

−1
j )O are embeddings

of discriminant p2D, then πiv
k = uπj for some integer k and u ∈ ON=1.

To prove this, we have [(πiφπ
−1
i )O] = [(πjφπ

−1
j )O] if and only if there is a u ∈ ON=1 for

which πiφπ
−1
i = u−1πjφπ

−1
j u. Rearranging, this is equivalent to π−1

j uπiφ(
√
D)(π−1

j uπi)
−1 =

φ(
√
D), hence π−1

j uπi = φ(x + y
√
D) for rationals x, y (from Proposition 4.2.1). Again

rearranging, this is equivalent to πjφ(x + y
√
D)π−1

i ∈ ON=1. Taking norms, we see that

x2 −Dy2 = 1, whence we are done if we can show that z = x + y
√
D ∈ OD. Since φ(pz) =

πjuπi ∈ O, we have z ∈ 1
p
OD, and so it suffices to look at the completion at p.

In this completion, we can take the explicit forms of πi and φ as above. Thus φ(x+y
√
D) =(

x yD
y x

)
. If i, j <∞, then we have

πjφ(x+ y
√
D)π−1

i =

x+ jy (j−i)x+(D−ij)y
p

py x− iy

 ∈ Mat(2,Zp).

From above, px, py ∈ Zp, so write X = px, Y = py. Then we necessarily have p | X + jY ,

and p2 | (j − i)X + (D − ij)Y . Looking at the second equation modulo p, we derive

0 ≡ (j − i)(−jY ) + (D − ij)Y ≡ (D − j2)Y (mod p).

Since we have embeddings of discriminant p2D, D − j2 6≡ 0 (mod p), whence p | Y , and so

p | X, as desired.

If i =∞, then j <∞, and we have

πjφ(x+ y
√
D)π−1

∞ =

x+jy
p

yD + jx

y px

 ∈ Mat(2,Zp).

It immediately follows that y ∈ Zp, and then x ∈ Zp too, as desired.

Now, we see that we form equivalence classes by right multiplication by v = φ(εD). Thus

the size of an orbit corresponds to the minimal k such that πiv
k = uπi, for some u ∈ ON=1.

Writing vk = φ(X+Y
√
D), in the above calculations we can take i = j (as well as repeating

for i = j = ∞) and it follows that πiv
k = uπi if and only if p | Y . The smallest k which

produces a corresponding Y with p | Y is the k such that εkD = εp2D. By Proposition 8.4.3,

the division into orbits follows.
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With notation as above, note that π∞πi and π0π∞ lie in pON=1. Therefore if we can go

from [φ] to [σ] with an element of Θ(p), then we can go back from [σ] to [φ].

Let’s study the discriminant D optimal embedding classes formed a bit further. Let D

be p−fundamental, and depending on if D is split/ramified/inert, there are 2/1/0 optimal

embedding classes of discriminant D that are a conjugation in Θ(p) away from [φ]. By

repeating, we see that they form a cycle, say {[φ1], [φ2], . . . , [φn]}, for which φ1 = φ and

[φi], [φi+1] (indices modulo n) are related by conjugation by an element of Θ(p) for all i (if

D is ramified we necessarily have n = 1, 2 only, and if D is inert then n = 1).

Proposition 8.4.6. Let p be a prime ideal of OD above p. Then n is the order of p in

Cl+(D).

Proof. If p is inert, then n = 1 and p = 〈p〉 is principal.

Otherwise, for all i there will exist an element of norm p taking [φi] to [φi+1]. Therefore

by Theorem 4.5.4, Qφi,φi+1
is a primitive quadratic form of discriminant D that represents

p. Since p is a prime, there are precisely two such forms, they are inverses to each other, and

correspond to p, p−1 under the correspondence between primitive indefinite binary quadratic

forms and proper fractional ideals of OD. In particular, without loss of generality, assume

that passing from [φ1] to [φ2] corresponds to p, and then the same is true when passing from

[φi] to [φi+1] for all i! We return back to [φ1] after doing pn (by Theorem 4.5.4 again), but this

must correspond to the identity quadratic form, i.e. this is equivalent to it being principal.

Therefore the cycle formed has length being the order of p in Cl+(D).

8.5 Prime power Hecke graph

Proposition 8.4.5 allows one to determine the behaviour of Tp on [φ]. However, it is desirable

to visualize the entire action of Tpn on [φ], and this is accomplished with the prime power

Hecke graph.

Let p - DM, let φ be an optimal embedding of the positive discriminant D into O, and

assume that D is p−fundamental. Then the prime power Hecke graph is denoted Gp
O(φ) =

G: it is a connected graph, all non-loop edges are undirected, there is at most one loop
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(which may be either directed or undirected), and there is at most one set of double edges.

Concretely, we define:

• The vertices of G are the equivalence classes of embeddings [(πφπ−1)O] for all π ∈ O
with nrd(π) being a power of p.

• The “level” of a vertex [σ] is k, where σ is an optimal embedding of discriminant p2kD.

• If [σ] is a vertex, draw a single undirected edge between [σ] and [(πσπ−1)O] for all

π ∈ ON=p.

• If p is ramified with respect to D and there is exactly one vertex of level 0, orient the

loop at [φ].

• If p is split with respect to D and there are exactly two vertices of level 0, draw a

second edge between them.

The remarks following Proposition 8.4.5 say that we can go backwards, which justifies having

the edges undirected. This only fails if we have a loop, and the “going backwards” element

was the same as the “going forwards” element. In particular, this is precisely when p is

ramified with respect to D and there is exactly one vertex of level 0, which explains the

second last point. Furthermore, when p is split with respect to D and there are exactly two

vertices of level 0, then having only one edge between the vertices would be incorrect as there

are two distinct ways to pass between the two vertices.

While the structure of G follows from the definition and Propositions 8.4.5, 8.4.6, we

record it explicitly for clarity.

Theorem 8.5.1. Let p be a prime ideal of OD above p. Then the shape of Gp
O(φ) is as

follows:

• If p is inert with respect to D, there is a single level 0 vertex and no loops.

• If p is ramified with respect to D, there are one or two vertices of level 0. If p is

principal, there is a single vertex and a directed loop at it. Otherwise, there are two

vertices, and they are connected by a single edge.
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• If p is split with respect to D, the level 0 vertices form a cycle whose length is the order

of p in Cl+(D). If there is one such vertex this is an undirected loop, and if there are

two such vertices there is a double edge.

• For each vertex in level 0, there are
p−(Dp )
ep1(D)

edges going to level one, and the target

vertices are all distinct (as we run over all level 0 vertices).

• From level k = 1 to level k = vp(Ue1)− 1 (only if this is at least 1), each vertex splits

into p vertices in the next level, again all distinct.

• In levels vp(Ue1) and beyond, each vertex is connected to exactly one vertex in the next

level.

When drawing G, one should group all vertices of a fixed level in a column, starting at

level 0 and going up by one at each step.

We now present some examples of prime power Hecke graphs. In each example, we note

D,M, D, p, draw the graph, and label the levels k and the exponents epk(D). Note that D,M

have essentially no role in these graphs: all that is required is for p - DM, and there needs to

exist optimal embeddings into the Eichler level of order M in the Eichler level of discriminant

D. In particular, given a fixed D, p, the graphs will look the same for all choices of D,M for

which the graphs exist.

First, Figure 8.1 is an example where D is inert with respect to p, where the graph is

always a tree.

G
p

O
(φ) for D = 14; M = 1; D = 5; p = 3

k: 0 1 2 3 4

· · ·

e
p

k(D): 2 3 3 3−

Figure 8.1: p inert.
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Proceeding onward, we have two examples when p | D, demonstrating the two possible

level 0 behaviours. Figure 8.2 gives a case where there is only one level 0 vertex.

G
p

O
(φ) for D = 10; M = 1; D = 13; p = 13

k: 0 1 2 3 4

· · ·

e
p

k(D): 13 13 13 13−

Figure 8.2: p ramified, one level 0 vertex.

In Figure 8.3, there are two level 0 vertices, as well as demonstrating an example with

e1 = e2 = 1.

G
p

O
(φ) for D = 33; M = 1; D = 1185; p = 5

k: 0 1 2 3 4

· · ·

e
p

k(D): 1 1 5 5−

Figure 8.3: p ramified, two level 0 vertices.

When D is split with respect to p, there are three main behaviours. Figure 8.4 demon-
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strates a loop at the start, as well as e1 = e2 = e3 = e4 = 1.

G
p

O
(φ) for D = 21; M = 1; D = 17; p = 2

k: 0 1 2 3 4 5 6

· · ·

e
p

k(D): 1 1 1 1 2 2−

Figure 8.4: p split, loop.

Next, Figure 8.5 has a double edge.

G
p

O
(φ) for D = 14; M = 1; D = 21; p = 5

k: 0 1 2 3 4

· · ·

e
p

k(D): 2 3 3 3−

Figure 8.5: p split, double edge.

Finally, when p has order at least three, the graph no longer has loops/double edges.

Figure 8.6 gives such an example with three level 0 vertices.
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G
p

O
(φ) for D = 21; M = 1; D = 321; p = 13

k: 0 1 2 3 4

· · ·

e
p

k(D): 3 13 13 13−

Figure 8.6: p split, three level 0 vertices.

With these examples in hand, we record down how to determine Tp[φ] from Gp
O(φ).

Proposition 8.5.2. Let [φ′] have level k on G = Gp
O(φ). Then Tp[φ

′] is a sum involving

only the terms [σ] with [σ] adjacent to [φ′] in G. The coefficient of such a [σ] of level k′

(necessarily k − 1, k, or k + 1) is

• The number of length 1 paths from [σ] to [φ′] if k′ ≥ k;

• epk(D) if k′ = k − 1.

In particular, if k′ = k + 1 there is exactly one such path of length 1. If k = k′, then

k = k′ = 0 necessarily, and there will again be only one, except for when p is inert with

respect to D and there are at most two level 0 vertices. In this case, the coefficient is 2.

8.6 Properties of Hecke operators

Before diving into two key propositions about Hecke operators, we record that when deter-

mining if root geodesics of optimal embeddings intersect, we can ignore the order O.
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Lemma 8.6.1. Let φ1, φ2 be embeddings into B of discriminants D1, D2, let b ∈ B×, let O

be any order of B, and let x = 1
2

trd(φ1(
√
D1)φ2(

√
D2)). Then the root geodesics of (φb1)O

and (φb2)O intersect if and only if

x2 < D1D2.

In particular, when checking for intersection of root geodesics, we can simultaneously conju-

gate by B× at will and ignore the order we are embedding into.

Proof. Let (φbi)O have discriminant k2
iDi for i = 1, 2 and a positive rational number ki. Then

1

2
trd

(
φb1

(√
k2

1D1

)
φb2

(√
k2

2D2

))
= k1k2x,

so Theorem 5.1.4 implies that the root geodesics intersect if and only if

(k1k2x)2 < k2
1D1k

2
2D2,

which is equivalent to x2 < D1D2.

While the näıve Hecke operators T ′n are not self-adjoint with respect to the intersection

pairing, the Hecke operators Tn are.

Proposition 8.6.2. Let n be any positive integer, and let f represent either the unweighted,

signed, or q−weighted intersection for q | DM. Then the f−weighted intersection pairing is

Hecke equivariant, i.e.

IntfO(Tn[φ1], [φ2]) = IntfO([φ1], Tn[φ2]).

Proof. It suffices to prove this proposition for Tp with p coprime to DM, as well as Wpe for

pe || DM. First, consider the case of Tp. Write Θ(p) = ∪p+1
i=1ON=1πi, and define the set

S1 = {(πi, u, φ) : |`φ t `φ2| = 1, φπi = φu1 , u ∈ ON=1}.

We claim that every element in the sum IntfO(Tp([φ1]), [φ2]) corresponds to an element of S1.

Write

Tp[φ1] =
∑

[σ]∼p[φ1]

wp(σ, φ1)[σ],

and then an intersection of this with φ2 corresponds to the equivalence class of the pair

(σv, φ2) with v ∈ ON=1 and |`σv t `φ2| = 1. Since wp(σ, φ1) = wp(σ
v, φ1) for all v ∈ ON=1, we
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can associate an element of S1 via (πi, u, σ
v) for all i for which σπiv = φu1 . Write ri = φi(εDi)

for i = 1, 2, and then the pair (σv, φ2) is well defined up to conjugation by powers of r2.

Furthermore, u is defined up to multiplication on the right by powers of r1. In particular, let

k1, k2 ∈ Z, write

πir
−k2
2 = δiπi∗ ,

for a unique πi∗ and δi ∈ ON=1, and define an equivalence relation on S1 via

(πi, u, φ) ∼S1 (πi∗ , δ
−1
i urk11 , φ

r
k2
2 ).

This relation corresponds exactly to the ambiguity described above in associating an element

of S1 to IntfO(Tp([φ1]), [φ2]). Therefore

Intersections of Tp[φ1] with [φ2]⇔ S1/ ∼.

Define S2 and the equivalence relation ∼S2 in the analogous fashion, i.e. with all indices

1, 2 swapped. In the exact same manner, we have that intersections of [φ1] with Tp[φ2] biject

naturally with S2/ ∼.

Let (πi, u, φ) ∈ S1, and let j, v be uniquely defined so that

pπ−1
i u = v−1πj,

where v ∈ ON=1. We define the map θ : S1 → S2 via

θ((πi, u, φ)) =

(
πj, v, φ

π−1
j v

2

)
.

First, we check that the image lands in S2. Using Lemma 8.6.1 and the shorthand notation

(σ1, σ2) for “the root geodesics of (σ1)O, (σ2)O intersect,” we have

(φ, φ2)⇒
(
φu
−1πi , φu

−1πi
2

)
⇒
(
φ1, φ

π−1
j v

2

)
.

Since (φ
π−1
j v

2 )πj = φv2, the image lands in S2. Let θ′ : S2 → S1 be the analogously defined

map going the other way (swap 1’s and 2’s), and it is straightforward to check that θ, θ′

are inverses to each other, whence S1 bijects with S2. To complete the proposition for the

unweighted intersection number, it suffices to check that θ descends to a map from S1/ ∼S1

to S2/ ∼S2 (the map θ′ will do the same in analogous fashion).
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Take the equations

πir
−k2
2 =δiπi∗ , pπ−1

i u =v−1πj, pπ−1
i∗ δ

−1
i urk11 =v′−1πj′ ;

θ((πi, u, φ)) =

(
πj, v, φ

π−1
j v

2

)
, θ((πi∗ , δ

−1
i urk11 , φ

r
k2
2 )) =

(
πj′ , v

′, φ
π−1
j′ v
′r
k2
2

2

)
,

and we need to show that the right hand side of the bottom two equations are equivalent

under S2. Rearranging the above equations gives

πj′r
−k1
1 =v′p(π−1

i∗ δ
−1
i )u

=v′rk22 (pπ−1
i u)

=(v′rk22 v
−1)πj.

Therefore (
πj′ , v

′, φ
π−1
j′ v
′r
k2
2

2

)
∼S2

(
πj, (v

′rk22 v
−1)−1v′rk22 , φ

r
k1
1 π−1

j′ v
′r
k2
2

2

)
=

(
πj, v, φ

π−1
j v

2

)
,

as claimed.

This proves the claim for Tp and the unweighted intersection number, and now we need

to consider the sign and level. Under the correspondance θ, we start with the intersection

pair (φ, φ2), and end with the pair (φπi , φπi2 ). In particular,

φπi × φπi2 = πi(φ× φ2)π−1
i ,

i.e. we apply conjugation by πi. Since nrd(πi) = p > 0, this does not change the sign of

the intersection. Furthermore, for q | DM, we have q 6= p, whence conjugation by πi does

not affect the q−part of the level. In particular, the signed and the q−weighted intersection

numbers are equal, as claimed.

All that remains is to show the self-adjointness of Wpe for pe || DM. This is similar to

the above, though much easier. For u ∈ ON=1, write uωpe = peω−1
pe v

−1 with v ∈ ON=1, and

then (
φ
uωpe
1 , φ2

)
⇒
(
φ
ωpeuωpe
1 , φ

ωpe
2

)
=
(
φv
−1

1 , φ
ωpe
2

)
⇒
(
φ1, φ

vωpe
2

)
.
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Similarly to before, this is well-defined and provides the required bijection. The corresponding

φ
uωpe
1 ×φ2 gets conjugated by ωpe , and this does not affect the sign or level since nrd(ωpe) > 0

and ωpe ∈ NB×(O).

In the above proposition, we used the fact that q - DM for the q−weighted equivalence.

In fact, as seen in the proof, the q−weighted intersection number is self-adjoint for Tp as

long as q 6= p. When q = p, there is no guarantee that it is self-adjoint, as there are examples

where it is not.

When we start working with Hecke operators on cohomology, the current expression for

Tn is less than ideal, as the coefficient is still quaternionic in nature. As such, it is useful to

have an alternative expression, where we still sum over Θ(n).

Proposition 8.6.3. Let n be coprime to DM. Then

Tn([φ]) =
∑

π∈Θ(n)

log εD(φ,O)

log εD(πφπ−1,O)

[(πφπ−1)O].

Proof. When n is prime, this follows from Propositions 8.4.2, 8.4.5, 8.5.2, and the prime

power Hecke graph. The result in general follows from Lemmas 8.1.3 and 8.2.3.

There is no need for an alternate description of the Atkin-Lehner operators, as there are

no “mysterious” coefficients.

8.7 Quaternionic modular forms

Our reference for this brief overview of quaternionic modular forms is sections 3, 5 of [DV13],

and Sections 2, 3 of [GV11]. For uniformity of presentation, assume that B 6= Mat(2,Q)

(see Remark 8.9.4 for details on changes to the B = Mat(2,Q) case). Fix an embedding

ι : B → Mat(2,R), and recall the definitions ΓO = ι(ON=1)/{±1} and XO = ΓO\H, the

corresponding Shimura curve.

For γ = ( a bc d ) ∈ ι(B×)/{±1} and a holomorphic function f : H → C, we define the

(weight two) slash operator as

(f |γ)(z) := det(γ)(cz + d)−2f(γz).
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Definition 8.7.1. A quaternionic modular form of weight 2 and level M for B is a holo-

morphic function H→ C such that

(f |γ)(z) = f(z)

for all γ ∈ ΓO.

Let MB
2 (O) denote the space of weight two quaternionic modular forms with respect to

O, and SB2 (O) the subset of cusp forms. Since B 6= Mat(2,Q), there are no cusps, hence all

quaternionic modular forms are cusp forms.

For a positive integer n coprime to DM, the Hecke operator Tn is defined as

(Tnf)(z) :=
∑

π∈Θ(n)

(f |π)(z).

For pe || DM, the Atkin-Lehner operator Wpe is defined as

(Wpef)(z) := (f |ωpe)(z).

When we refer to a Hecke operator, we are including the Atkin-Lehner operators.

As with the classical setting, there is an Eichler-Shimura relation. Specifically, if f ∈
SB2 (O), then 2πif(z)dz defines a holomorphic differential 1−form on XO (and vice versa).

Integration over the homology gives us a Hecke-invariant isomorphism

SB2 (O)⊕ SB2 (O)
∼−→ H1(XO,C).

The connection to classical modular forms comes from the Jacquet-Langlands isomorphism,

which gives

SB2 (O) ' S2(DM)D−new,

where the last term is the space of (classical) weight two cusp forms for Γ0(DM) that are

new at all primes dividing D. The Jacquet-Langlands isomorphism respects the actions of

Tp for primes p - DM and Wpe for prime powers pe || DM, but we do have to be careful with

the Atkin-Lehner involution: see Remark 8.8.2.

To describe the action of Hecke on H1, we first identify

H1(XO,C) ' H1(ΓO,C) = Hom(ΓO,C).
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For p - DM, let γ ∈ ΓO, and then multiplication on the right by γ permutes Θ(p). Therefore

there is a unique permutation γ∗ of {1, 2, . . . , p+ 1} for which

πaγ = δaπγ∗a

for some δa ∈ ΓO for all a. For f ∈ Hom(ΓO,C), we define

(Tpf)(γ) :=

p+1∑
a=1

f(δa).

Similarly, the action of Wpe is defined as

(Wpef)(γ) := f(ωpeγω
−1
pe ).

To distinguish the holomorphic and anti-holomorphic components of H1(XO,C), there is

an action of complex conjugation, denoted T∞, that acts as the identity on the holomorphic

component, and via −1 on the anti-holomorphic component. Pick any µ ∈ ON=−1, and for

γ ∈ ON=1, define

(T∞f)(γ) := f(µγµ−1).

8.8 Weight 2 classical modular forms

The main reference for this section is [AL70]. In order to prove the modularity of E±φ1,φ2 , we

need to understand the connection between Hecke/Atkin-Lehner operators and Fourier coef-

ficients of modular forms. A special case of Theorem 3 of [AL70] is the following proposition.

Proposition 8.8.1. Let f(τ) =
∑∞

n=1 anq
n be a weight 2 newform on Γ0(N), normalized so

that a1 = 1. Then

(i) If p - N , then

(a) f |Tp = apf ;

(b) anp = anap − pan/p for all n ≥ 1, with an/p = 0 if p - n.

(ii) If pe || N with e > 0, then

(a) f |Wpe = λ(p)f , where λ(p) = ±1.

136



Chapter 8 – Hecke operators and modularity

(b) anp = anap for all n ≥ 1;

(c) If e ≥ 2, then ap = 0;

(d) If e = 1, then ap = −λ(p), hence f |Wpe = −apf .

In particular, if n is coprime to DM then Tn produces the coefficient an, but otherwise

we have to be a bit more careful.

Remark 8.8.2. In the Jacquet-Langlands correspondence, the Atkin-Lehner operators Wp

for p | D acting on Shimura curves in fact pick up the Eigenvalue ap, and not λ(p) = −ap
(see Theorem 1.2 of [BD96]). This is why we defined the good Hecke operator Tp to be Wp

and not −Wp, as one may have initially thought. This choice is reflected in the examples in

Section 8.10, as the coefficients of E±φ1,φ2 divisible by primes ramifying in B are correct with

our convention.

We will be working with the space S2(Γ0(DM))D−new, hence if M 6= 1 we also need to

work with oldforms. Theorem 5 of [AL70] provides the description of the new and oldforms,

restated as follows.

Proposition 8.8.3. The space S2(Γ0(N)) has a basis which is a direct sum of classes, which

consist of newclasses and oldclasses. Every form in a class has the same eigenvalues for Tp

with p a prime not dividing N , and forms in different classes have distinct eigenvalues at Tp

for infinitely many primes p. Each newclass consists of a single form, which is an eigenform

for all Tp and Wpe. Each oldclass consists of a set of forms {f(dτ)}, where f ∈ S2(Γ0(N ′)) for

some N ′ dividing N properly, and d ranges over all positive divisors of N/N ′. Furthermore,

any such set is an oldclass. Each oldclass can be given an alternate basis where the forms

are also eigenforms for all Wpe.

While we can access the pnth Fourier coefficients of an eigenform in S2(Γ0(N)) with p | N ,

it requires knowing which oldclass the form belongs to. If we have no a priori knowledge of

this, then the task is less feasible. Since Jacquet-Langlands can produces M−old forms, we

treat this issue by ignoring coefficients that are not coprime to M.
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8.9 Proof of modularity

As before, assume that B 6= Mat(2,Q). Write

Emb+
C(O) = Emb+(O)⊗ C,

and for simplicity, assume that the quaternion algebra B lives inside Mat(2,R), so that we

drop the map ι. Consider the map α : Emb+
C(O)→ H1(XO,C) induced by

[φ]→ [˜̀τ,φ(εD)τ ],

where φ : OD → O is optimal and τ ∈ H. First, we note that this is independent of the

choice of τ since in homology we have

˜̀
τ,φ(εD)τ − ˜̀

τ ′,φ(εD)τ ′ = ˜̀
τ,τ ′ − ˜̀

φ(εD)τ,φ(εD)τ ′ = ˜̀
τ,τ ′ − ˜̀

τ,τ ′ = 0.

The map is also well-defined, as if u ∈ ON=1, then the embedding uφu−1 is sent to

˜̀
τ,uφ(εD)u−1τ = ˜̀

(u−1τ),φ(εD)(u−1τ) = ˜̀
τ,φ(εD)τ ,

as desired.

Lemma 8.9.1. The map α is surjective.

Proof. Let P be a path representing a basis element in H1(XO,C); it suffices to show that

P lies in the image of α. Lift P to H, and we get a path between τ and γτ for some τ ∈ H

and γ ∈ ON=1. In particular, P is equal in homology to ˜̀
τ,γτ . Since the primitive hyperbolic

elements of ON=1 generate the group, we can express γ =
∏N

i=1 γ
ni
i as a word in primitive

hyperbolic elements, and then

P = α

(
N∑
i=1

ni[γi]

)
,

as desired.

Therefore a general element of H1(XO,C) can be written as a C−linear combination of

terms ˜̀
τ,γτ for γ ∈ ΓO primitive and hyperbolic.

Let β be the isomorphism from H1(XO,C) to its dual H1(XO,C), given by

β(ψ)(ψ′) = 〈ψ, ψ′〉±,
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where ψ, ψ′ ∈ H1(XO,C) and 〈·, ·〉± is the signed intersection pairing. The translated action

of Tp for p - DM on H1(XO,C) is induced by

Tp(f)(γτ,γτ ) =
∑

πa∈Θ(p)

f(`τ,δaτ ),

for any f ∈ H1(XO,C), τ ∈ H, γ ∈ ΓO primitive hyperbolic, where as before πaγ = δaπγ∗a.

Similarly, if pe || DM,

Wpe(f)(γτ,γτ ) = f(`τ,ωpeγω−1
pe τ

),

and a similar expression holds for T∞.

By composing β ◦ α, we get a map from Emb+
C(O) to H1(XO,C), where we have defined

Hecke operators on each end.

Lemma 8.9.2. The map β ◦ α is Hecke-equivariant for Tp with p - DM, Wpe for pe || DM,

and T∞.

Proof. Start with Tp for p - DM. Let [φ] be an optimal embedding class of discriminant D,

let σ be an optimal embedding of discriminant D′, let γ = σ(εD′), and the map Tp(β ◦α([φ]))

is induced by

Tp(β ◦ α([φ]))(˜̀
τ,γτ ) =

∑
πa∈Θ(p)

〈˜̀τ,φ(εD)τ , ˜̀
τ,δaτ 〉±,

where πaγ = δaπγ∗a.

Applying Tp to [φ] first gives

β ◦ α(Tp([φ]))(˜̀
τ,γτ ) =〈α(Tp[φ]), α([σ])〉±

=〈α([φ]), α(Tp[σ])〉±

=
∑

πa∈Θ(p)

log εD′

log εD(σπa ,O)

〈˜̀τ,φ(εD)τ , ˜̀
τ,σπaO (εD(σπa ,O))τ 〉±,

where we used that the intersection pairing is Hecke-adjoint, Proposition 8.6.2. Thus it

suffices to prove that in homology,∑
πa∈Θ(p)

˜̀
τ,δaτ =

∑
πa∈Θ(p)

log εD′

log εD(σπa ,O)

˜̀
τ,σπaO (εD(σπa ,O))τ .

Consider δa = πaγπ
−1
γ∗a, and note that if a1, a2, . . . , ar is a sequence, then

r∑
i=1

˜̀
τ,δaiτ

= ˜̀
τ,δa1δa2 ···δar τ .
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Decompose the permutation γ∗ into cycles, and say (a1, a2, . . . , ar) is one such cycle. The

intermediate terms all cancel, and we derive that

δa1δa2 · · · δaj = πa1γ
jπ−1
aγ∗j

,

for all j. Thus

φπa1 (εjD′) = δa1δa2 · · · δajπaγ∗jπ−1
a1
,

so if r > 1 this does not lie in O for j = 1, 2, . . . , r − 1, but does for j = r. In particular,

σπa1 has fundamental unit εrD′ when r > 1. Since cycles are cyclic, the same is true for σπai

for all 1 ≤ i ≤ r. Using the equation

δaiδai+1
· · · δai−1

= πaiγ
rπ−1

ai
,

we derive

r∑
i=1

˜̀
τ,δaiτ

=
r∑
i=1

1

r
˜̀
τ,πaiγ

rπ−1
ai
τ

=
r∑
i=1

log εD′

log εD(σπai ,O)

˜̀
τ,σ

πai
O (ε

D(σ
πai ,O)

)τ
,

which has the desired form. When r = 1, let a1 = a and then δa = πaγπ
−1
a . The fundamental

unit of σπa is ε
1/r′

D′ for some positive integer r′, and we get the analogous result to the above

by writing γ = σπa(ε
1/r′

D′ )r
′
. By summing over all cycles in γ∗, the result follows for Tp.

The cases of Wpe for pe || DM and T∞ are much easier, and follow directly from the

definitions.

At last, we are ready to tackle modularity. By combining Eichler-Shimura, Jacquet-

Langlands, and β, we have an Hecke-invariant isomorphism

H1(XO,C) ' S2(DM)D−new ⊕ S2(DM)
D−new

.

The eigenvalues of S2(DM)
D−new

are complex conjugates of the eigenvalues of S2(DM)D−new,

but since this space is fixed under Gal(Q/Q), we can pair them up. In particular, by Propo-

sition 8.8.3 there exists a decomposition,

H1(XO,C) = ⊕m|MVm,
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where each Vm can be decomposed into eigenspaces corresponding to the eigensystems for

newforms on S2(Γ0(Dm)). Each eigenspace of Vm can then be decomposed into a basis of

eigenforms for all Tp and Wpe ; such bases will have twice the size of the corresponding bases

in S2(DM)D−new, since they also include the conjugated forms.

Take two basis elements, call them γ, γ′, say that they correspond to Vm, Vm′ respectively,

as well as to the eigensystems Tpγ = apγ, Wpeγ = apγ (and the same with γ′ and a′p). By

Proposition 8.8.3, if these are distinct eigensystems, there exists a p - DM with ap 6= a′p.

Then

ap〈γ, γ′〉± = 〈Tpγ, γ′〉± = 〈γ, Tpγ′〉± = a′p〈γ, γ′〉±,

whence 〈γ, γ′〉± = 0. Therefore the only way for this pairing to be non-zero is if m = m′ and

ap = a′p for all p. Assume this, and for simplicity assume that the elements are normalized

so that 〈γ, γ′〉± = 1.

Proposition 8.9.3. There exists a modular form E ′ ∈ S2(Γ0(DM))D−new such that the nth

coefficient of E ′ equals 〈γ, Tnγ′〉± for all n coprime to M.

Proof. Let E ′ correspond to the modular form with coefficients an, and let cn = 〈γ, Tnγ′〉±. If

p - DM, then as above, cp = ap. If p | D, then cp = ap follows from Remark 8.8.2. Therefore,

by combining Lemma 8.2.3 with Proposition 8.8.1, it follows that cn = an for all n coprime

to M.

In particular, Theorem 8.0.4 follows immediately from this.

Remark 8.9.4. When B = Mat(2,Q), then we are initially working with the open curve

YO = ΓO\H. In this case, Poincaré duality (via the map β) instead lands in the cohomology

of the closed curve XO, relative to the cusps. Eichler-Shimura gives the isomorphism to

S2(Γ0(N))⊕ S2(Γ0(N), as desired (N being the level of O).

8.10 Examples

It is instructive to demonstrate that we are able to generate non-trivial modular forms, that

they do not have to be eigenforms, and that they need not be M-new. The labels of newforms

correspond to the labels given in LMFDB ([LMF20]).

141



Chapter 8 – Hecke operators and modularity

For a first example, we consider a situation where we get a combination of newforms, so

the resulting form is not an eigenform.

Example 8.10.1. Let B =
(

7,5
Q

)
be ramified at 5, 7, and let O be the maximal order spanned

by
{

1, 1+j
2
, i, 1+i+j+k

2

}
. Thus D = 35, M = 1, and the dimension of weight two newforms on

Γ0(35) is 3. Label the forms f, g, g, where f is given by 35.2.a.a in LMFDB, and g is given

by 35.2.a.b. The coefficients of g are given in terms of β = 1+
√

17
2

, and the first 50 coefficients

of f, g are given by

f(τ) = q1 + q3 − 2q4 − q5 + q7 − 2q9 − 3q11 − 2q12 + 5q13 − q15 + 4q16

+ 3q17 + 2q19 + 2q20 + q21 − 6q23 + q25 − 5q27 − 2q28 + 3q29 − 4q31 − 3q33 − q35

+ 4q36 + 2q37 + 5q39 − 12q41 − 10q43 + 6q44 + 2q45 + 9q47 + 4q48 + q49 +O(q51),

and

g(τ) = q1 − βq2 + (−1 + β)q3 + (2 + β)q4 + q5 − 4q6 − q7 + (−4− β)q8 + (2− β)q9 − βq10

+ (1− β)q11 + (2 + 2β)q12 + (3− β)q13 + βq14 + (−1 + β)q15 + 3βq16 + (−3 + β)q17

+ (4− β)q18 + (−2− 2β)q19 + (2 + β)q20 + (1− β)q21 + 4q22 + (−2 + 2β)q23 − 4βq24 + q25

+ (4− 2β)q26 + (−3−β)q27 + (−2−β)q28 + (−1 + 3β)q29− 4q30 + (−4−β)q32 + (−5 +β)q33

+ (−4 + 2β)q34 − q35 − βq36 + 6q37 + (8 + 4β)q38 + (−7 + 3β)q39 + (−4− β)q40 + 2βq41

+4q42+(6−2β)q43+(−2−2β)q44+(2−β)q45−8q46+(−1−3β)q47+12q48+q49−βq50+O(q51).

Take the optimal embeddings of discriminants 5, 12 given by

φ1

(
1 +
√

5

2

)
=

1− j
2

, φ2

(√
12

2

)
= −−i− 8j − 3k

2
.

We compute the first 50 terms of E±φ1,φ2 to be

q2 − q3 − q4 + q8 + q9 + q10 + q11 − 2q12 + q13 − q14 − q15 − 3q16

− q17 + q18 + 2q19 − q20 + q21 − 2q23 + 4q24 + 2q26 + q27 + q28 − 3q29 + q32 − q33

− 2q34 + q36 − 4q38 − 3q39 + q40 − 2q41 + 2q43 + 2q44 + q45 + 3q47 + q50 +O(q51).
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By matching the coefficients, we have

E±φ1,φ2 =
−g(τ) + g(τ)√

17
.

Next, take the optimal embedding of discriminant 173 given by

φ3

(
1 +
√

173

2

)
=

1− 2i+ 27j − 10k

2
,

and we compute the first 50 terms of E±φ2,φ3 to be

2q1 − q2 + 3q4 + q5 − 6q6 − q7 − 7q8 + q9 − q10 − q11 + 4q12 + 6q13 + q14 − q15

+ 5q16 − 2q17 + 5q18 − 4q19 + 5q20 + q21 + 6q22 − 4q23 − 4q24 + 2q25 + 4q26 − 8q27

− 5q28 + 3q29 − 6q30 − 2q31 − 7q32 − 8q33 − 4q34 − 2q35 + q36 + 10q37 + 16q38 − 5q39

− 7q40 − 4q41 + 6q42 + 2q43 − 2q44 + 3q45 − 12q46 + 20q48 + 2q49 − q50 +O(q51).

By matching the coefficients, we have

E±φ2,φ3 =
1

2
f(τ) +

51 +
√

17

68
g(τ) +

51−
√

17

68
g(τ).

Next, consider a non-maximal Eichler order.

Example 8.10.2. Let B =
(

7,−1
Q

)
be ramified at 2, 7, and let O be the Eichler order of

level 3 spanned by
{

1, 3i, 2i+ j, 1+5i+j+k
2

}
. Thus D = 14, M = 3, and the dimensions of the

space of weight two newforms on each of Γ0(14) and Γ0(42) is 1. Let the eigenforms be f, g

respectively, so that f is given by the label 14.2.a.a in LMFDB, and g is 42.2.a.a. The first

100 terms of the forms are given by

f(τ) = q1 − q2 − 2q3 + q4 + 2q6 + q7 − q8 + q9 − 2q12 − 4q13 − q14 + q16 + 6q17 − q18 + 2q19

− 2q21 + 2q24 − 5q25 + 4q26 + 4q27 + q28 − 6q29 − 4q31 − q32 − 6q34 + q36 + 2q37 − 2q38 + 8q39

+6q41+2q42+8q43−12q47−2q48+q49+5q50−12q51−4q52+6q53−4q54−q56−4q57+6q58−6q59

+ 8q61 + 4q62 + q63 + q64− 4q67 + 6q68− q72 + 2q73− 2q74 + 10q75 + 2q76− 8q78 + 8q79− 11q81

−6q82−6q83−2q84−8q86+12q87−6q89−4q91+8q93+12q94+2q96−10q97−q98−5q100+O(q101),
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and

g(τ) = q1 + q2− q3 + q4− 2q5− q6− q7 + q8 + q9− 2q10− 4q11− q12 + 6q13− q14 + 2q15 + q16

+2q17 +q18−4q19−2q20 +q21−4q22 +8q23−q24−q25 +6q26−q27−q28−2q29 +2q30 +q32 +4q33

+2q34+2q35+q36−10q37−4q38−6q39−2q40−6q41+q42−4q43−4q44−2q45+8q46−q48+q49−q50

−2q51+6q52+6q53−q54+8q55−q56+4q57−2q58+4q59+2q60+6q61−q63+q64−12q65+4q66+4q67

+2q68−8q69+2q70+8q71+q72+10q73−10q74+q75−4q76+4q77−6q78−2q80+q81−6q82−4q83+q84

−4q85−4q86+2q87−4q88−6q89−2q90−6q91+8q92+8q95−q96−14q97+q98−4q99−q100+O(q101).

Take the embeddings of discriminants 13, 24 given by

φ1

(
1 +
√

13

2

)
=

1 + i− j + k

2
, φ2

(√
24

2

)
= −5i− 13j.

We compute the first 100 terms of E±φ1,φ2 to be

− q1 + q2 − q4 − q7 + q8 + 4q13 + q14 − q16 − 6q17 − 2q19 + 5q25 − 4q26 − q28 + 6q29

+ 4q31 + q32 + 6q34 − 2q37 + 2q38 − 6q41 − 8q43 + 12q47 − q49 − 5q50 + 4q52 − 6q53

+ q56 − 6q58 + 6q59 − 8q61 − 4q62 − q64 + 4q67 − 6q68 − 2q73 + 2q74 − 2q76 − 8q79

+ 6q82 + 6q83 + 8q86 + 6q89 + 4q91 − 12q94 + 10q97 + q98 + 5q100 +O(q101).

By matching the coefficients of q1, q2, we have

E±φ1,φ2 = −f(τ) +R(q3),

for some power series R. This continues to hold up until coefficient 100 by the above com-

putations, as is expected. If we want an equality of modular forms, this can be achieved by

bumping up the level to access the form f(9q) and using this to erase all coefficients of q3n:

E±φ1,φ2 = −f(τ)− 2f(3τ)− 3f(9τ).

Finally, we demonstrate an example where the old and newforms are non-trivially com-
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Chapter 8 – Hecke operators and modularity

bined. Let D3 = 45 and φ3

(
1+
√

45
2

)
= 1−3i−9j+3k

2
, and the first 100 terms of E±φ1,φ3 are

q1+q4−q5−q10−2q11+q13−q14+q16+4q17−q19−q20−2q22+4q23−3q25+5q26−4q29−2q31

−2q34+q35−4q37−3q38−q40+2q43−2q44+4q46−6q47+q49+2q50+q52+6q53+4q55−q56+2q58

−q59+7q61+2q62+q64−6q65+4q68+q70+4q71+6q73−6q74−q76+2q77+4q79−q80−6q82−5q83

− 2q85 − 6q86 − 2q88 − 6q89 − 5q91 + 4q92 + 6q94 + 4q95 − 12q97 − 3q100 +O(q101)

Matching coefficients gives

E±φ1,φ3 =
f(τ) + g(τ)

2
+R(q3),

for some power series R.
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Connection to a real quadratic

analogue of the j-function

Let j(τ) = 1
q

+ 744 + · · · be the classical j−function, where q = e2πiτ . If τ is a quadratic

irrational number of discriminant D (i.e. 〈1, τ〉Z = OD), then the theory of complex multipli-

cation implies that j(τ) is an algebraic integer for which Q(
√
D)(j(τ)) is the ring class field

of OD (see [Cox13] for a full treatment). Going further, in “On singular moduli” by Gross

and Zagier ([GZ85]), the factorization of j(τ1)− j(τ2) is studied, where τ1, τ2 are imaginary

quadratic irrationalities of coprime fundamental discriminants D1, D2. They give an expres-

sion for vp(norm(j(τ1) − j(τ2))), which is always 0 except for when p divides an integer of

the form
D1D2 − x2

4
,

for x ≡ D1D2 (mod 2) and |x| < √D1D2. This work was extended by Dorman in [Dor88], as

well as by Lauter and Viray in [LV15] to all pairs of discriminants when p > 2. In these works,

the computation of vp(norm(j(τ1) − j(τ2))) essentially boils down to a computation of an

arithmetic intersection number of optimal embeddings into Eichler orders in the quaternion

algebra ramified at p and ∞.

In “Singular moduli for real quadratic fields” by Darmon and Vonk ([DV20]), a conjectural

analogue in to j(τ1) − j(τ2) is given for real quadratic numbers. More concretely, let p ∈
{2, 3, 5, 7, 13} be a genus zero prime (i.e. there are no cusp forms on Γ0(p)), let Hp denote
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the p−adic upper half plane, and let τ1, τ2 be real quadratic points in Hp of discriminants

D1, D2. Using rigid meromorphic cocycles, they define the quantity

Jp(τ1, τ2) ∈ C×p /〈εZτ1〉,

where ετ1 is the fundamental unit associated to τ1. Lift Jp(τ1, τ2) to C×p , assume that D1, D2

are coprime, let H1, H2 be the ring class fields associated to D1, D2, and let H12 be the

composition.

Conjecture 9.0.1. [Conjecture 4.19 of [DV20]] The quantity Jp(τ1, τ2) belongs to H12. In

particular, we can consider the q−adic valuation for primes q of H12.

Let q lie above the integer prime q, let B be the quaternion algebra ramified at p, q, let

O be a maximal order of B.

Conjecture 9.0.2. [Conjecture 4.26 of [DV20]] If q is split in Q(
√
D1) or Q(

√
D2), then

ordq(Jp(τ1, τ2)) = 0. Otherwise, there exist optimal embeddings φ1, φ2 of discriminants D1, D2

into O for which

ordq(Jp(τ1, τ2)) = IntqO(φ1, φ2).

In other words, the exponents of primes above q in the factorizations of Jp(τ1, τ2) are given by

q−weighted intersection numbers associated to optimal embeddings of D1, D2 into a maximal

order in the indefinite quaternion algebra ramified at p, q.

Combining this conjecture with the results of this thesis, we achieve a similar statement

about the shape of primes dividing Jp(τ1, τ2).

Corollary 9.0.3. Assume that Conjectures 9.0.1 and 9.0.2 hold. Then if q lies above q in

H12 and ordq(Jp(τ1, τ2)) 6= 0, then there exists an integer x with x ≡ D1D2 (mod 2) and

|x| < √D1D2 for which the set of prime numbers r with ε(r) = −1 that satisfy vr

(
D1D2−x2

4

)
is odd is exactly the set {p, q}. In particular,

q | D1D2 − x2

4p
.

We are able to take this analogy a little further by considering the action of class groups.

On the Darmon-Vonk side, define

J+
p (τ1, τ2) =

Jp(τ1, τ2)

Jp(pτ1, τ2)
, J−p (τ1, τ2) = Jp(τ1, τ2)Jp(pτ1, τ2).
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On the quaternionic side, fix [φi] ∈ Emb(O,Di) for i = 1, 2, and let φ′1 = φ
ωp
1 be the

embedding where we swap orientations at p. Let G12 = Cl+(D1) × Cl+(D2), and then G12

acts on [φ1], [φ2] via the class group action (from Section 4.5) in each component. Form the

elements of the formal group Z[G12] (where we write g = (g1, g2)):

Ip,q(D1, D2) =
∑
g∈G12

IntqO(g1[φ1], g2[φ2]) · g,

I ′p,q(D1, D2) =
∑
g∈G12

IntqO(g1[φ′1], g2[φ2]) · g.

Define

I+
p,q(D1, D2) = Ip,q(D1, D2) + I ′p,q(D1, D2), I−p,q(D1, D2) = Ip,q(D1, D2)− I ′p,q(D1, D2).

To put things together, note that G12 acts on primes above q in H12; denote the action

of g on q by qg.

Conjecture 9.0.4. We have∑
g∈G12

ordqg(J
±
p (τ1, τ2)) · g = I±p,q(D1, D2) (mod G12),

where the equality is modulo multiplication by G12.

Besides the theoretical support behind these conjectures, there is vast numerical support.

Jan Vonk wrote has efficient algorithms to compute Jp(τ1, τ2) with large p−adic accuracy, and

the resulting quantities then tested for algebraicity. Analogously, I have computed optimal

embeddings into orders and the corresponding intersection numbers. I generated a document

detailing all possible intersections for D1 = 5, 13 and D2 ≤ 1000 (which ran to around 600

pages), and the numbers matched in all cases.

To provide an example, we take Example 4.29 of [DV20]. Let (D1, D2) = (13, 621), so

that h+(D1) = 1, and Cl+(D2) = Z/6Z, generated by g. Let p = 7, and there are 6 RM

points of discrimniant 621. With 200 digits of 7−adic precision, Vonk computed that the

resulting invariants J+
7 (τ1, τ2) (over the six choices of τ2) were the roots of

4378144x6 − 5762700x5 + 9490680x4 − 11616641x3 + 9490680x2 − 5762700x+ 4378144.
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Furthermore, the invariants J−7 (τ1, τ2) satisfied

17932877824x6 + 69949203456x5 + 143523182304x4 + 177833888503x3

+ 143523182304x2 + 69949203456x+ 17932877824.

Since we have the factorizations

4378144 = 25411471711, 17932877824 = 217411471711,

the q−adic valuations of the roots are 0 away from q = 2, 41, 47, 71. Similarly, by applying

Theorem 7.1.2 to D1, D2, for each odd integer x with |x| <
√

13 · 621 ≤ 89.9, we can compute

the factorization of 13·621−x2
4

, and this will determine the unique indefinite quaternion algebra

for which Emb(O, 13, 621, x) is non-empty. The set of possible ramification places is computed

to be

{[], [2, 7], [2, 19], [2, 37], [2, 41], [2, 47], [2, 59], [2, 67], [2, 97], [2, 109], [2, 229],

[2, 241], [2, 379], [2, 631], [2, 709], [2, 733], [2, 1009], [7, 41], [7, 47], [7, 71]}.

The pairs containing 7 are [2, 7], [7, 41], [7, 47], [7, 71], which correspond to q = 2, 41, 47, 71

respectively, exactly as before. In particular, for q not in this set, the claimed result holds. For

q in this set, fix q above q, and let ordq(·) denote the length 6 vector where the ith component

is the slope of the Newton polygon of · between i − 1 and i. The q−adic valuations of the

roots correspond to the negative of this set of slopes. Table 9.1 lists the corresponding

computations for I, I ′ and J+, J−, as computed by me and Vonk respectively.

Table 9.1: Computation of I, I ′, J+, J−.

q Iq,7(13, 621) I ′q,7(13, 621) ordq J
+(τ1, τ2) ordq J

−(τ1, τ2)

2 (1− g3)(2 + 5g + 2g2) (1− g3)(−3− 2g − 3g2) (3, 1, 1,−1,−1,−3) (7, 5, 5,−5,−5,−7)

41 1− g3 0 (1, 0, 0, 0, 0,−1) (1, 0, 0, 0, 0,−1)

47 1− g3 0 (1, 0, 0, 0, 0,−1) (1, 0, 0, 0, 0,−1)

71 1− g3 0 (1, 0, 0, 0, 0,−1) (1, 0, 0, 0, 0,−1)

By adding and subtracting the first two columns, the coefficients of correspond to the

vectors appearing in the third and fourth columns, as claimed.
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Algorithms

This chapter is dedicated to providing overviews of some of the algorithms used in computing

intersection numbers. For the sake of brevity, we will focus on the most important algorithms

only, as well as just giving a general overview of why they work (as opposed to a fully formal

setup with detailed proofs). Most of the algorithms used in the computations are implemented

in PARI ([The20]), and publicly available in the GitHub repository [Ric20]. Some of these

methods may also be added into future versions of PARI.

We start with some preliminary algorithms that are key in either the setup or execution of

the final intersection number algorithms. There are three distinct approaches to computing

the intersection number, and they are explored in Sections 10.3.1, 10.3.2, and 10.3.3. Each

has their own advantages depending on the setting.

For consistency, all timings were computed on the “math-jcn4” server at McGill.

10.1 Solving the representation problem for binary

quadratic forms

Let q(x, y) = [A,B,C] = Ax2 + Bxy + Cy2 be a primitive integral binary quadratic form

with non-square discriminant, and let n be an integer. The PARI/GP function “qfbsolve”

can be used to output all solutions (modulo units) to q(x, y) = n (as of version 2.13; in 2.11

and before, it would only output one solutions and was restricted n to being prime).
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More generally, let q(x, y) = Ax2 +Bxy+Cy2 +Dx+Ey, and consider q(x, y) = n. Let

d =B2 − 4AC;

a =2CD −BE;

b =2AE −BD.

If d 6= 0, take the substitution

x =
X + a

d
, y =

Y + b

d
.

After scaling, the equation q(x, y) = n transforms to the equation q′(X ′, Y ′) = AX2 +

BXY + CY 2 = n′, i.e. a homogeneous quadratic form in X, Y . Any integral solution (x, y)

corresponds to an integral solution (X, Y ) ≡ (−a,−b) (mod d). Thus solving q′ = n′ and

transforming the solutions back to (x, y) enables us to find a general form for the solutions

to the non-homogeneous quadratic equation q(x, y) = n when d 6= 0. If d is a square, then

this equation can be solved directly (this case has little use for us).

A small issue that arises is we have to scale things by d2, so n′ may become quite large.

Furthermore, only some solutions translate back to valid integral solutions (x, y), so there

may be some “wasted computations.”

10.2 Computing optimal embeddings

Before computing intersection numbers, we need to initialize a quaternion algebra and Eichler

order, and compute optimal embeddings. Setting up the algebra B given the discriminant D

is classical; for example see Proposition 14.2.7 of [Voi21]. Since most computations are done

with a maximal order of a quaternion algebra ramified at exactly two primes, it is useful to

set this case up explicitly, to keep the numbers small.

Our algorithm to compute optimal embeddings is essentially brute-force. Before detailing

it, we need to determine if two optimal embeddings φ1, φ2 are equivalent or not. From

Corollary 4.2.2, the set CB(φ1, φ2) = {v ∈ B : vφ1 = φ2v} is a two-dimensional Q−vector

space. By expanding this out, we can give an explicit matrix M whose kernel generates the set

of such v. Intersecting the kernel with O produces a pair v1, v2 which generates CB(φ1, φ2)∩O.
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The linear algebra used to produce v1, v2 is already implemented in PARI/GP. The question

then becomes: does there exist x, y ∈ Z for which nrd(xv1 + yv2) = 1? Expanding out this

equation produces a binary quadratic form in x, y, and using Section 10.1 we can see if this

has a solution or not, i.e. whether the two embeddings are conjugate or not over ON=1.

With this in mind, let D be a discriminant, and then Theorem 4.4.5 determines if op-

timal embeddings into O exist. If they do, then Corollary 4.5.5 counts the total number

of equivalence classes when gcd(D,M) = 1 (if this does not hold, then see Lemma 30.6.17

of [Voi21] for the correct count of local orientations). It then suffices to generate optimal

embeddings, testing if we get new equivalence classes, and repeating until we have one for

each equivalence class.

To generate these optimal embeddings, there exists positive integers d1, d2, d3, d4 for which

2O ⊆ 1

d1

Z +
i

d2

Z +
j

d3

Z +
k

d4

Z.

By writing φ(
√
D) = Fi/d2 + Gj/d3 + Hk/d3, we get a three variable quadratic form of

signature (0, 2, 1) to be solved for (F,G,H) ∈ Z3. Running over the variable with sign −1

(with a bit of optimization due to congruence requirements), we get a sequence of definite

binary quadratic forms, which can be solved via Section 10.1. Each potential solution must

be checked to make sure it lands in O and is optimal with respect to O.

Remark 10.2.1. The algorithm described is not the most efficient possible, but is fast

enough for our purposes. One large issue is every potential new embedding is checked against

all previously found embeddings, to determine if it is new or not. For small class numbers

this is reasonable, but as the class number grows, this becomes unwieldy.

To improve the algorithm, one can pre-compute the normalizer elements ωp for p | DM∞.

After finding the h+(D) embeddings of a single orientation, the ωp’s allow us to pass between

all orientations.

To find an entire class for a single orientation, we can use the described algorithm to

produce one optimal embedding. Using the description of the action of Cl+(D) found in

Definition 4.5.3, we can boost this up to the entire class. The difficulty with this approach

is it requires a solution to the principal ideal problem, i.e. given a left ideal I specified by
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generators over Z, finding an element cI for which I = OcI . The algorithm by Page in [Pag14]

provides a reasonable solution to this problem.

We provide some sample average running times to compute all optimal embeddings of a

single discriminant D into a maximal order in Table 10.1. Implementing the optimizations

described in Remark 10.2.1 should significantly decrease the running times when the class

number grows.

Table 10.1: Average running times to compute optimal embeddings.

D D range Avg time (s) D D range Avg time (s)

2 · 3 [1, 200] 0.002 3 · 37 [1, 200] 0.003

2 · 3 103 + [1, 200] 0.005 3 · 37 103 + [1, 200] 0.007

2 · 3 106 + [1, 200] 0.169 3 · 37 106 + [1, 200] 1.051

5 · 11 [1, 200] 0.004 7 · 71 [1, 200] 0.007

5 · 11 103 + [1, 200] 0.014 7 · 71 103 + [1, 200] 0.021

5 · 11 106 + [1, 200] 1.113 7 · 71 106 + [1, 200] 5.846

In all of the above cases, finding a single optimal embedding of the given discriminant

was instant (< 1 millisecond). Magma also has algorithms to compute a single optimal

embedding, that work in a more general situation. The downside is they are much slower,

taking several hundred milliseconds in the simplest of cases, and quickly scaling up.

10.3 Computing the intersection number

Let B =
(
a,b
Q

)
be a quaternion algebra of discriminant D with Eichler order O of level M,

generated over Z by v1, v2, v3, v4. Let φ1, φ2 be fixed optimal embeddings of discriminants

D1, D2 into O. We have three algorithms that can compute the intersection number of φ1

with φ2, and each has its own advantages and disadvantages. In the following four sections,

we describe the algorithms, and give sample running times.
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10.3.1 Intersection numbers via intersecting root geodesics

We can turn Proposition 2.4.4 into a reasonable algorithm to compute intersection numbers.

Assume that a > 0, and fix the inclusion map ι : B → Mat(2,R) given by

ι : e+ fi+ gj + hk →

e+ f
√
a b(g + h

√
a)

g − h√a e− f√a

 .

For [φ] ∈ Emb(O,D), write φ(
√
D) = fi+ gj+hk, with af 2 + bg2−abh2 = D. Let φf , φs be

the first and second roots respectively of ι(φ(εD)), and we can compute them explicitly as

φf =
f
√
a+
√
D

g − h√a , φs =
f
√
a−
√
D

g − h√a ,

when g − h√a 6= 0.

Let γ2 = ι(φ2(εD2)), assume that neither root of γ2 is ∞, and furthermore assume that

γ2,f > γ2,s > 0. Pick r ∈ R outside of `γ2 , so that γ2,s − r ≈ γ2r − γ2,f . Pictorially, the

situation looks like Figure 10.1.

γ2;s γ2;fr γ2r

Figure 10.1: Geodesics `γ2 and `r,γ2r.

Proposition 2.4.4 implies that we need to find all conjugates of φ1 so that one root

is between γ2,s and γ2,f , and the other is smaller than r or bigger than γ2r (assume for

now that no conjugates of φ1 have ∞ as a root). Let σ be a conjugate of φ1, and write

σ(
√
D1) = fi + gj + hk, with af 2 + bg2 − abh2 = D1. By negating (f, g, h), we will assume

that g− h√a > 0, hence the first root is bigger than the second. If we want the second root

to lie underneath `γ2 , we have the equations

γ2,s <
f
√
a−√D1

g − h√a < γ2,f , γ2r <
f
√
a+
√
D1

g − h√a . (10.3.1)

154



Chapter 10 – Algorithms

The equations rearrange to give√
D1

a
< f <

√
D1

a

γ2r + γ2,f

γ2r − γ2,f

.

As in Section 10.2, write

2O ⊆ 1

d1

Z +
i

d2

Z +
j

d3

Z +
k

d4

Z,

hence d2f ∈ Z. In particular, this gives a finite set of possibilities for f .

By running through a similar argument in all of the cases (the first root lies underneath

`γ2 , γ2,s < 0, either φ2 or σ has an infinite root, etc.), we can always produce an explicit

finite set of possibilities for f . Using (g, h) = (G/d3, H/d4) and af 2 + bg2 − abh2 = D1, each

possible f produces an indefinite binary quadratic form in G,H to be solved for G,H ∈ Z.

By writing the root geodesic of σ in terms of a general solution and considering Equation

10.3.1 (or the corresponding variant), we again get a finite explicit set of possibilities.

By checking which of these embeddings did land in and were optimal with respect to

O, we in fact get all intersections of φ1 with an optimal embedding of discriminant D2. By

taking only those embeddings that are conjugate to φ2, we at last get the intersection number

of φ1, φ2.

In the computation given, the range of possible f ’s is inversely proportional to γ2r−γ2,f .

Similarly, in other cases we get the range is inversely proportional to γ2,s − r, and this is

why we choose r so that these numbers are approximately equal: we want to minimize case

checking.

In the case that D2 has an extremely large fundamental unit, γn2 r will converge to the

roots extremely fast as n→ ±∞. In these cases, the ranges for f will be quite large, and the

algorithm will be significantly worse. Thus it is worth swapping φ1, φ2 if the fundamental

unit for D1 is smaller. For example, in the case of D = 7 · 71, we can optimally embed

discriminants 13, 97 via φ1, φ2 respectively. Since

ε13 =
11 + 3

√
13

2
, ε97 =

125619266 + 12754704
√

97

2
,

the computation should be faster when φ2 comes first. Indeed, writing f = F/d2, when 97

comes first we end up with two ranges for F being [−3, 9] and [−9, 3] (coming from the two

setups of one root being bigger than γ2r or one root being smaller than r), and thus there
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are 26 possibilities total for F . The resulting computation takes 0ms, i.e. is instant. When

discriminant 13 comes first, the ranges of F are [0, 134688040] and [−77647273, 0], and the

resulting computation takes just over 14 minutes.

10.3.2 Intersection numbers via x-linking

Any intersection pair must exhibit x−linking for |x| < √D1D2. Since

x2 ≡ D1D2 (mod 4DM),

we can compute the square roots of D1D2 modulo 4DM, find all such x with |x| < √D1D2,

and compute the corresponding Hilbert symbols for prime divisors of D1D2−x2
4

to deter-

mine if Emb(O,D1, D2, x) is non-empty (we are using Theorem 7.1.2). If D1, D2 are not

coprime, then for those x with (D1, D2, x) not nice we instead use Theorem 6.4.2 to deter-

mine if Emb(B,D1, D2, x) is non-empty. This may overcount and we get some x’s for which

Emb(O,D1, D2, x) is empty, but this set will be relatively small.

For each such x, we would like to find all embeddings φ′ of OD2 which exhibits x−linking

with φ1. Write

φ′
(
pD2 +

√
D2

2

)
= a1v1 + a2v2 + a3v3 + a4v4,

where a1, a2, a3, a4 ∈ Z. The following equations must be satisfied:

nrd(a1v1 + a2v2 + a3v3 + a4v4) =
pD2 −D2

4
;

trd(a1v1 + a2v2 + a3v3 + a4v4) =pD2 ;

trd
(
φ1(
√
D1)(−1 + 2a1v1 + 2a2v2 + 2a3v3 + 2a4v4)

)
= 2x.

The second and third lines are linear equations in the ai, and the first line is a quadratic.

By solving the second and third lines and substituting this into the first equation, we get a

two variable quadratic form, which must be indefinite. Solving the form using Section 10.1

will produce a finite set of families of solutions. Now, since we are looking for x−linked

pairs (φ1, φ
′) up to simultaneous conjugation, the embedding φ′ will only be defined up to

conjugation by φ1(εD1). This will reduce each family to a finite set of non-simultaneously

conjugate embeddings (often one), and the intersection number follows.
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10.3.3 Intersection numbers via fundamental domains

In [Voi09], algorithms are given to compute the fundamental domain D of a general Fuchsian

group. In particular, the algorithms can be applied to generate the fundamental domain of

XO, for O an Eichler order of B. Given an optimal embedding φ, we can pick a point on

its upper half plane root geodesic, and translate it to the fundamental domain. By following

the path of the geodesic and applying the appropriate transformation (via the side pairing)

at each edge of D, we can trace out the path of the geodesic in D.

This decomposes the geodesic into r segments, each a geodesic between two sides of D.

Given another geodesic that decomposes into s parts, computing the intersections of the two

sets is very easy, as it suffices to see if each of the rs pairs intersects (if they intersect, they

will intersect precisely once).

For example, let B =
(

55,−3
Q

)
be ramified at 5, 11, let O be the maximal order given by

〈1, i, 1+j
2
, 3+3i+j+k

6
〉Z. Let D1 = 2013 and D2 = 2020, and take

φ1

(
1 +
√

2013

2

)
=

3 + 12i+ 11j + 8k

6
, φ2

(√
2020

2

)
=

12i+ 50j + 5k

3
.

We compute the fundamental domain and the images of the root geodesics of φi in the

fundamental domain, and obtain Figure 10.2, which is generated using Matplotlib ([Hun07]).

We are working in the unit disc model, where the border of the fundamental domain is in

green, the root geodesic of φ1 is in red, and the root geodesic of φ2 is in blue. In particular,

there are two intersections, so the unweighted intersection number is 2.
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Figure 10.2: Root geodesics of φ1, φ2 in the fundamental domain.

The extra difficulty with this approach is the computation of the fundamental domain.

The aforementioned algorithm of Voight is implemented in Magma, and I have implemented

this algorithm in PARI. Improvements in my implementation (compared to Magma) include:

• Computation of an exterior domain in O(n log(n)) time instead of O(n2) (n is the

number of circles);

• Reduction of elements to a given exterior domain with each step in O(log(n)) time

instead of O(n) (n is the number of boundary arcs);

• Adapting the (probabilistic) enumeration of elements by Aurel Page in [Pag15] to the
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Shimura curve case.

Table 10.2 gives sample running times in six examples. The Magma computation for the

ramified at 101, 103 case was left running for 2 weeks, and did not terminate.

Table 10.2: Running times for the computation of the fundamental domain.

Ramification Sides t(Magma) (s) t(PARI) (s)

2, 11 12 2.430 0.030

2, 101 104 87.220 0.147

11, 13 114 170.220 0.175

3, 37 72 102.830 0.401

23, 29 568 6186.9 1.725

101, 103 10172 >2 weeks 40.797

10.3.4 Running times

The root geodesic approach of Section 10.3.1 is generally good, as long as one of the funda-

mental units is reasonably small. If both fundamental units are large, then the running time

can blow up.

For a varied quaternion algebra, the x−linking algorithm of Section 10.3.2 is reasonable;

it does not suffer any effects from unusually large fundamental units. Furthermore, it can

determine x−linking for |x| > √D1D2, if that is desired. A downside is it often produces

intersection pairs with large numbers, i.e. it does not do a great job of finding “reduced”

intersection pairs.

In general, if a fundamental domain has been pre-computed, then computing intersection

numbers with it is typically the best. Computing the geodesics is a straightforward process,

and the resulting intersection number follows. This also produces intersection pairs with

small coefficients, since we have reduced the intersection points. It can be slightly slower

in some small examples, but it is the most consistent method, and scales (with unweighted

intersection number) the best.
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For illustration, in Table 10.3 we computed intersection numbers of a fixed pair of op-

timal embeddings of discriminants D1, D2 into a maximal order of the quaternion algebra

ramified at D with the three different methods, and recorded the computation times. We also

record the positive regulators R+(D) = log(εD) to three decimal places, and the unweighted

intersection number.

The expressions T(RG), T(x−), and T(FD) refer to the times in seconds used to com-

pute the intersection number with the root geodesic method, x−linking method, and the

fundamental domain method (with pre-computed domain), respectively. Note that we are

using the optimization of swapping D1, D2 so that εD2 < εD1 in the root geodesic approach.

Table 10.3: Running times for the three intersection number algorithms.

D (D1, D2) (R+(D1), R+(D2) | Int+(φ1, φ2)| T(RG) T(x−) T(FD)

2 · 3 (5, 141) (0.962, 5.247) 6 0.0016 0.0044 0.0025

2 · 3 (236, 10013) (6.966, 11.683) 98 3.277 0.328 0.020

3 · 17 (12, 10001) (1.317, 10.597) 1 0.0045 0.0096 0.0026

3 · 17 (1013, 10001) (13.655, 10.597) 14 3.825 0.161 0.008

11 · 23 (21, 20009) (1.567, 55.255) 2 0.069 0.003 0.007

11 · 23 (2020, 2021) (7.389, 3.806) 1 0.013 0.013 0.002
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Future research

There are quite a few directions to take intersection numbers. I will give a brief overview of

various directions, separated into sections.

11.1 A more general topograph

In Section 3.4.5, we started with a primitive indefinite binary quadratic form equivalence

class, computed the river of its topograph, and computed the intersection number with

another form via a combinatorial formula. This is very similar to what we do in Section

10.3.3, i.e. computing intersection numbers via the fundamental domain. However, there are

a few key differences:

• Given a word coming from the generating set of O×N=1, it is not obvious if it generates

a hyperbolic element or not;

• We must draw the physical geodesics in the fundamental domain to determine the

intersections, whereas this is not necessary for the topograph.

There are certain times when we can be sure that two geodesic pieces intersect/don’t inter-

sect, but if two geodesics intersect the same side of fundamental domain it is not clear unless

we actually draw them.

It is worth investigating whether we can modify the fundamental domain approach into

being more topograph-like, i.e. describing an analogue of the Conway topograph for Shimura
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curves.

11.2 More modularity

Chapter 8 was dedicated to proving that E±φ1,φ2 was a modular form. What about Eφ1,φ2 and

Eq
φ1,φ2

for primes q? As long as q | DM, the Hecke operator is self-adjoint with respect to

the q−weighted intersection number, which is a key fact. Even when q - DM, the only prime

Hecke operator which this will fail at is Tq, so there may be a natural modification of the

q−weighting or Tq in this case to make the Hecke operator self-adjoint.

While these series do not appear to be modular forms of weight 2 on Γ0(DMM′), it is

reasonable to expect that they are a related concept, for instance mock modular forms.

11.3 Distribution questions

In this section we describe various distribution questions. We will mostly focus on the case

of Γ = PSL(2,Z), as this is where we have been able to compute the most data.

11.3.1 Distribution of intersection points and angles

Given a pair of PIBQFs q1, q2, lifting the intersection points to H gives a set of size Int(q1, q2)

of PSL(2,Z) equivalence classes of CM points. The points all have discriminants being a

square divisor of a number of the form x2 −D1D2, but what more can be said about them?

In [Duk88], Duke considers the images on the modular curve of Heegner points and modular

geodesics coming from fundamental discriminants D. With reference to convex regions with

piece-wise smooth boundary, he proves that the Heegner points are equidistributed as D →
−∞, and the modular geodesics are equidistributed as D →∞. We would like to formulate

similar results for the case of intersecting modular geodesics.

Fix q1, q2, let z ∈ `q1 , and let ` = ˙̀
z,γq1z

. The intersection points of ˜̀
q1 with ˜̀

q2 lift

uniquely to `, so we can study the distribution of intersections on ˜̀
q1 by lifting to `.

A natural guess would be to say that the intersection points become uniformly distributed

on ` as disc(q2)→∞, and this appears to be true in many examples. However, Example 3.6.2

162



Chapter 11 – Future research

gives a family qn = [1, n,−1] for which disc(qn) = n2+4→∞ and Int([1, 1,−1], qn) = 8 for all

n, which contradicts this. The next reasonable alternative would be to fix q1 and take all forms

of discriminant D as D →∞. For example, let q1 = [1, 1,−1], let D = 10002 + 4 = 1000004,

and let z = −4+
√

5i
3

(to optimize the symmetry). We find that h+(D) = 52, there are 1640

intersection points, and they generate Figure 11.1. They seem reasonably well distributed,

and the “deficiency” of intersections between q1 and [1, 1000,−1] has been compensated for.

−1.2 −0.8 −0.4 0

0.2

0.4

0.6

0.8

1

R

I

Figure 11.1: Intersection of [1, 1,−1] with discriminant 1000004.

Taking this one step further, let D range between 107 + 1 and 107 + 100 (we take a small

range of discriminants to increase the number of data points). There are 507159 intersections

points, and we calculate the hyperbolic distance (along ˜̀
q1) between the image of z = −4+

√
5i

3

and the intersection points. By using 4816 bins of length 0.0004, we generate a histogram in

Figure 11.2. The data appears fairly equidistributed, and we formalize this statement in a

conjecture.

Conjecture 11.3.1. Let q be fixed, let D be a positive discriminant, and let Iq(D) denote

the set of points on ˜̀
q that appear as intersections between q and a form of discriminant D.

Then the set Iq(D) is equidistributed (with respect to the hyperbolic metric) on ˜̀
q as D →∞.

A similar topic of study would be the distribution of the intersection angles. We take

the domain of arctan to be [0, π), and as before, fix q1 = [1, 1,−1] and let D range between

107 + 1 and 107 + 100. By using 6287 bins of length 0.0005 radians, we generate a histogram

in Figure 11.3.
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Figure 11.2: 507159 intersection points.
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Figure 11.3: 507159 intersection angles.

Small values of B∆ correspond to angles close to π
2
, and large values correspond to angles

close to 0 (if B∆ > 0) or π (if B∆ < 0). The histogram indicates that the distribution of the

angles is likely not uniform; it is closer to a semi-circle.

The analogous conjectures in the Shimura curve setting are expected to be true as well.

11.3.2 Distribution of the total intersection number

Adapting Corollary 7.1.3 gives us a formula for Int(D1, D2) =
∑

[qi]∈Cl+(Di)
Int(q1, q2) when

D1, D2 are coprime and fundamental, but this formula is still somewhat mysterious. For

example, it is not even clear that Int(D1, D2) 6= 0!

IfD is a discriminant, let R+(D) = log(T+U
√
D) denote the positive regulator associated

to D (where (T, U) is the smallest solution to T 2 −DU2 = 4). Let

CD1,D2 :=
Int(D1, D2)

h+(D1)h+(D2)R+(D1)R+(D2)

be the average intersection of forms of discriminant D1, D2 divided by the product of the

positive regulators. We took 23000 pairs of distinct discriminants between 5 and 1.6 million,

and calculated CD1,D2 for each pair. By using 541 boxes of length 0.0002, we generate the

histogram Figure 11.4.
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Figure 11.4: 23000 trials of CD1,D2 .

It seems that CD1,D2 is very close to 2.434 most of the time, though it is not clear what

the exact relationship is.

In general, let O be an Eichler order in the indefinite quaternion algebra B, and let D1, D2

be discriminants for which there exist optimal embeddings of Di into O. Define CO
D1,D2

to be

the average intersection of the optimal embeddings of discriminants D1, D2 into O divided

by R+(D1)R+(D2).

Conjecture 11.3.2. Let φ1, φ2 be optimal embeddings of discriminants D1, D2. There exists

an absolute constant C (that does not depend on Di or O) for which on average we have

IntO(φ1, φ2) ≈ C
R+(D1)R+(D2)

Area(XO)
.

Besides the data in Figure 11.4, we have computed examples for the maximal order in

quaternion algebras ramified at 2, 3 and 3, 5, and this data also supports Conjecture 11.3.2.

On a more theoretical level, the corresponding root geodesics have length 2R+(Di), so it

would be reasonable for them to intersect proportionally to this product on average. If the

ambient space has a larger area, then it would be “harder” for geodesics to intersect, which

is also reflected in the conjecture.

165



Chapter 11 – Future research

11.4 Towards explicit class field theory for real

quadratic fields

In Chapter 9 a conjectural connection was made to the work of Darmon and Vonk on a

conjectural analogue of j(τ1)− j(τ2) for τ1, τ2 real quadratic. A recently started project aims

to make this connection more concrete by removing the cocycles and replacing them with

quaternionic objects. In this section we make some preliminary definitions, and outline the

general approach. Most of the original ideas and definitions in this section originated with

Darmon and Vonk.

First, we shift from considering intersection numbers to an analogue, which we call the

intersection product.

Definition 11.4.1. Let f be a function on pairs of optimal embeddings that is invariant un-

der simultaneous conjugation by O. Let Γi = 〈φi(εDi)〉 for i = 1, 2, and let Γ = O×N=1/{±1}.
Then the intersection product IntprodfO is defined by

IntprodfO(φ1, φ2) =
∏

u∈Γ1\Γ/Γ2

f(φ1, φ
u
2),

when this product has finitely many terms. If f(φ1, φ
u
2) = 1 whenever `φ1 and `φu2 do not

intersect, then this is satisfied. We will only consider such f ’s in this section.

By Proposition 2.4.2, it follows that log(IntprodfO(φ1, φ2)) = Int
log(f)
O (φ1, φ2), so this is

indeed an analogue of the intersection number. The advantage of the intersection product is

we can consider functions which we believe will behave well multiplicatively, without having

to introduce a logarithm factor.

For optimal embeddings φ1, φ2, define φ1 · φ2 to be 0 if `φ1 , `φ2 do not intersect, and the

sign of the intersection otherwise. Recall Remark 5.1.5, where we noted that the cross ratio

of the roots of φ1, φ2 is equal to x−
√
D1D2

x+
√
D1D2

, which is constant across a simultaneous equivalence

class, and does not depend on the embedding into Mat(2,R).

Definition 11.4.2. Denote 1
2

trd(φ1(
√
D1)φ2(

√
D2)) = 〈φ1, φ2〉. If

f(φ1, φ2) =


(φ1,f , φ1,s;φ2,f , φ2,s) =

〈φ1, φ2〉 −
√
D1D2

〈φ1, φ2〉+
√
D1D2

if φ1 · φ2 6= 0;

1 else,
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we call f the modular cross ratio, and denote the intersection product by IntprodMCR
O . If

g = fφ1·φ2 , we call g the signed modular cross ratio, and denote the intersection product by

IntprodSMCR
O .

The modular cross ratio and signed modular cross ratio products will land in Q(
√
D1D2),

and will have norm one since each term has norm one. As such, it is reasonable to separate

out the top and bottom halves of the products.

Definition 11.4.3. If

f(φ1, φ2) =


〈φ1, φ2〉 −

√
D1D2 if φ1 · φ2 = 1;

(〈φ1, φ2〉+
√
D1D2)−1 if φ1 · φ2 = −1;

1 else,

we call f the half modular cross ratio, and denote the intersection product by IntprodHMCR
O .

If

g(φ1, φ2) =


〈φ1, φ2〉 −

√
D1D2 if φ1 · φ2 = 1;

(〈φ1, φ2〉 −
√
D1D2)−1 if φ1 · φ2 = −1;

1 else,

we call g the signed half modular cross ratio, and denote the intersection product by

IntprodSHMCR
O .

For an example of these definitions, take the setup from Example 7.4.1. Specifically, take

Q =
(

3,−1
Q

)
to be the quaternion algebra ramified at 2, 3, let O be the maximal order spanned

by
{

1, i, j, 1+i+j+k
2

}
, let D1 = 5, and let D2 = 381. Take the optimal embeddings

φ1

(
1 +
√

5

2

)
=

1− i− j + k

2
, φ2

(
1 +
√

381

2

)
=

1− 11i− 3j + 3k

2
.

We computed that IntO(φ1, φ2) = 8, with the 4 positive signed intersections correspond-

ing to x = −9,−9, 27, 39, and the 4 negative signed intersections corresponding to x =

3, 3,−21,−21. We compute the (signed) (half) modular cross ratio intersection products,

and display the results in Table 11.1
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Table 11.1: (Signed) (half) modular cross ratio intersection products of φ1, φ2.

f IntprodfO(φ1, φ2) Norm

MCR 147348057442184993−3142496007640631
√

1905
53842728626290688

1

SMCR 21273227070540593−487376583294887
√

1905
210323158696448

1

HMCR 448542959−7006009
√

1905
743128352

4528384
23222761

SHMCR 146572679−3325153
√

1905
46445522

4528384
23222761

The last two norms factorize as

287219261−279−2 =

(
1905− 32

4

)−2(
1905− (−9)2

4

)2

(
1905− (−21)2

4

)−2(
1905− 272

4

)1(
1905− 392

4

)1

.

The corresponding formula clearly holds in general. Furthermore, if p | D, then it follows

that

2 IntpO(φ1, φ2) = vp
(
Norm

(
IntprodHMCR

O (φ1, φ2)
))

+ Int±O(φ1, φ2),

and the same with the signed half modular cross ratio.

At the moment it is not obvious which of the four defined functions is the most natural,

which is why we included the definitions of all of them.

In any case, the above functions only map to Q(
√
D1D2). To go further, we record a

potential generalization the approach of Darmon and Vonk in Chapter 9. Let D1, D2 be

positive discriminants (for now assume they are coprime and fundamental), and let S be a

finite odd sized set of primes for which p is inert in ODi for all p ∈ S and i = 1, 2. Pick p ∈ S,

let B be the quaternion algebra ramified at S − {p}, let O be a maximal order of B, and

let φ1, φ2 be optimal embeddings of discriminants D1, D2 into O (which exist from Theorem

4.4.5). Note that φi induces a map from ODi
[

1
p

]
→ O

[
1
p

]
for i = 1, 2. Furthermore, since p

is inert with respect to Di, the group of elements of
(
O
[

1
p

])
N=1

that commute with φi is

±Γi, where Γi = 〈φi(εDi)〉. Let Γ =
(
O
[

1
p

])
N=1

/{±1}, and if u ∈ Γ has denominator pk,

then φu2 corresponds to an optimal embedding of discriminant p2kD2, and furthermore

〈φ1, φ
u
2〉 −

√
D1D2

〈φ1, φu2〉+
√
D1D2

=
〈φ1, (φ

u
2)O〉 −

√
D1p2kD2

〈φ1, (φu2)O〉+
√
D1p2kD2

. (11.4.1)
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If x = 〈φ1, (φ
u
2)O〉 is divisible by p, then p | D1D2−x2

4
, whence Emb(O,D1, p

2kD2, x) is empty

by Theorem 7.1.2. Thus p - x, and the expression in Equation 11.4.1 is then equivalent to 1

(mod pk).

Consider the infinite product

IPMCR
p (φ1, φ2) =

∏
u∈Γ1\Γ[ 1

p
]/Γ2

φ1·φu2 6=0

〈φ1, φ
u
2〉 −

√
D1D2

〈φ1, φu2〉+
√
D1D2

, (11.4.2)

and the analogous definition for SMCR,HMCR, SHMCR. Arrange the terms of the product

by increasing negative p−adic valuation of the denominator of u, and the fact that Equation

11.4.1 is equivalent to 1 (mod pk) implies that the product converges under this ordering.

By considering the prime power Hecke graph, it can be shown by induction that since

p is inert with respect to Di, then Tp2k [φi] is the sum of all optimal embedding classes of

even level ≤ 2k in Gp
O(φi), and similarly that Tp2k+1 [φi] is the sum of all optimal embedding

classes of odd level ≤ 2k + 1 in Gp
O(φi) (with all coefficients being 1). In particular, we have

proven the following proposition.

Proposition 11.4.4. With f ∈ {MCR, SMCR,HMCR, SHMCR}, we have

IP f
p (φ1, φ2) = lim

k→∞
IntprodfO(φ1, Tpkφ2) IntprodfO(φ1, Tpk+1φ2).

The analogue of Conjecture 9.0.1 is as follows.

Conjecture 11.4.5. Let T be a Hecke operator that kills S2 (Γ0(D)new). Then for some

f ∈ {MCR, SMCR,HMCR, SHMCR}, the value of IP f
p ([φ1], T [φ2]) is algebraic over Q, be-

longing to the composition of the Hilbert class fields associated to D1, D2. Furthermore, it is

essentially independent of which prime p ∈ S was chosen.

In Conjecture 11.4.5 we have to pass between optimal embeddings of different quaternion

algebras, and it is not immediately clear on how we should do this. While we have yet to

attempt computations of IP f
p , the motivation for the conjecture is it is a generalization of

the setup in Chapter 9, where S consisted of a singular prime. The justification for the Hecke

operator T is that is what is required to generalize Chapter 9 from genus 0 primes to all

primes, noting that T = 1 is a valid choice when there are no cusp forms on Γ0(p).
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Extra proofs

This appendix is devoted to various results and proofs that that do not fit into the main text

well. This includes proofs that are too long, too messy, or for the prime p = 2 (the proof is

often similar in style to p odd, but with subtle modifications).

A.1 Pell’s equation over p-adics

Proposition A.1.1. Let p be a prime, A a non-zero integer, and D a non-zero integer. Let

e = vp(A), let f = vp(D), let k be the largest non-negative integer such that 2k ≤ e, f , let

(e′, f ′, A′, D′) = (e − 2k, f − 2k,A/p2k, D/p2k), and let A′′ be the unique positive integer so

that A′/A′′ is a power of 4 and 4 - A′′. The existence of X, Y ∈ Zp that satisfy the equation

X2 −DY 2 = A

is characterized in Tables A.1 and A.2.
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f ′ e′ Conditions Solutions

0 -
(
D′

p

)
= 1 Yes

even
(
D′

p

)
= −1 Yes

odd
(
D′

p

)
= −1 No

1 even
(
A′/pe

′

p

)
= 1 Yes(

A′/pe
′

p

)
= −1 No

odd
(
−A′/(pe′−1D′)

p

)
= 1 Yes(

−A′/(pe′−1D′)
p

)
= −1 No

≥ 2 0
(
A′

p

)
= 1 Yes(

A′

p

)
= −1 No

1 - No

Table A.1: Solutions for p odd.

f ′ e′ D′ conditions A′′ conditions Solutions

0 6= 1 1 (mod 8) - Yes

= 1 No

- 3 (mod 8) 1, 5, 6 (mod 8) Yes

2, 3, 7 (mod 8) No

even 5 (mod 8) - Yes

odd No

- 7 (mod 8) 1, 2, 5 (mod 8) Yes

3, 6, 7 (mod 8) No

1 ≥ 1 - −D′, 4−D′ (mod 16) Yes

8−D′, 12−D′ (mod 16) No

0 2 (mod 8) 1, 7 (mod 8) Yes

3, 5 (mod 8) No

6 (mod 8) 1, 3 (mod 8) Yes

5, 7 (mod 8) No

≥ 2 1 - - No

2 0 - 1 (mod 4) Yes

3 (mod 4) No

≥ 3 0 - 1 (mod 8) Yes

3, 5, 7 (mod 8) No

Table A.2: Solutions for p = 2.

Proof. Looking modulo p2k shows that p2k | X2, hence we can write X = pkX1 where

X1 ∈ Zp. Thus we reduce to solving

X2
1 −D′Y 2 = A′,

and min(e′, f ′) ≤ 1. Start with the case of p > 2.

• If f ′ = 0, then
(
D′

p

)
= ±1.

– Say
(
D′

p

)
= 1.

If A′ ≡ 0 (mod p), then there exists a solution to this equation modulo p with

Y = 1, which can be lifted to Zp via Hensel’s lemma (and then p - Y ). Otherwise,

assume the equation has no solution modulo p. The term D′Y 2 ranges over all

quadratic residues (QR) modulo p, so we have a QR plus A′ is a quadratic non-

residue (QNR). There are p+1
2

QR modulo p (counting 0), and p−1
2

QNR modulo

p, so two distinct QR must be sent to the same QNR when we add A′ (mod p),

contradiction. Therefore there is a solution modulo p, and it is automatic that
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(X, Y ) 6≡ (0, 0) (mod p) as p - A′. Thus by Hensel’s lemma it lifts to Zp, and we

also have p - gcd(X1, Y ).

– Say
(
D′

p

)
= −1.

If e′ > 0, then X2
1 ≡ D′Y 2 (mod p), whence p | X1, Y . By repeating this argu-

ment, the power of p dividing X2
1 −D′Y 2 must be even, whence if e′ is odd there

is no solution. If e′ is even, then the above argument shows that we can scale

the equation by pe
′
, so that p - A′. By Hensel’s lemma, it suffices to consider the

equation modulo p. Since D′Y 2 will range over all QNR modulo p, if there are no

solutions then we must have a QNR plus A′ remains a QNR. But p - A′, so apply-

ing this p times it will imply that every residue modulo p is a QNR, contradiction.

Thus there is a solution in this case.

• If f ′ = 1, then X2
1 ≡ A′ (mod p).

– If e′ = 0, then if
(
A′

p

)
= −1 there are no solutions. Otherwise, this equivalence

has a solution, which lifts to Zp by Hensel’s lemma, and thus gives a solution with

Y = 0.

– If e′ = 1, then p | X1. Dividing by p and looking modulo p, we have −D′/pY 2 ≡
A′/p (mod p), and so Y 2 ≡ −A′/D′ (mod p). If

(
−A′/D′

p

)
= −1 there are no so-

lutions, and otherwise a solution to the equivalence lifts to Zp by Hensel’s lemma,

which gives a solution with X ′ = 0

– If e′ ≥ 2, then by looking modulo p, p2 we have p | X1, Y . Dividing through by

p2 replaces (A′, D′) by (A′/p2, D′), and so we repeat until we are in the case of

e′ = 0, 1.

• If f ′ ≥ 2, then X2
1 ≡ A′ (mod p).

– If e′ = 0, then this follows exactly as the case of (f ′, e′) = (1, 0).

– If e′ = 1, then p | X1, but then p | X2
1 −D′Y 2 = A′, contradiction. Thus there are

no solutions.
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If p = 2, we are solving X2
1 −D′Y 2 = A′ in Z2. We can assume that 2 - gcd(X1, Y ), and scale

the possible A′’s by powers of 4 at the end. Since squares in Z2 are of the form 4w(1 + 8w′),

the possible values of (X2
1 , Y

2) (mod 8) are (1, 0), (1, 1), (1, 4), (0, 1), (4, 1). This gives us 5

residue classes modulo 8 for X2
1 −D′Y 2 = A′. In the first three, we do get a lift to Z2 since

there is a value of Y making D′Y 2 + A′ ≡ 1 (mod 8), which is a square. In the last two

cases, if D′ is odd then the same holds, so this is an equivalent condition. If D′ is even, then

equivalently we are solving for an X1 so that
X2

1−A′
D′

≡ 1 (mod 8), which is equivalent to

X2
1 ≡ A′ +D′ (mod 23+f ′), so we get equivalences modulo 23+f ′ instead.

• If f ′ = 0, by the above it suffices to calculate the 5 residue classes.

– If D′ ≡ 1 (mod 8), we get X2
1 − D′Y 2 ≡ 0, 1, 3, 5, 7 (mod 8). Scaling this by

powers of 4, we see that all A′ are valid except for e′ = 1.

– If D′ ≡ 3 (mod 8), we get X2
1 −D′Y 2 ≡ 1, 5, 6 (mod 8).

– If D′ ≡ 5 (mod 8), we get X2
1 − D′Y 2 ≡ 1, 3, 4, 5, 7 (mod 8). Scaling by powers

of 4, this is equivalent to e′ is even.

– If D′ ≡ 7 (mod 8), we get X2
1 −D′Y 2 ≡ 1, 2, 5 (mod 8).

• If f ′ = 1,

– If e′ ≥ 1, then X1 is necessarily even, landing us in the Y odd case by our

assumption. Since f ′ = 1 and the even squares modulo 16 are 0, 4, we get the

result.

– If e′ = 0, then X1 must be odd, landing us in the first three residue classes. If

D′ ≡ 2 (mod 8), we get A′ ≡ 1, 7 (mod 8), and if D′ ≡ 6 (mod 8), then A ≡ 1, 3

(mod 8).

• If f ′ ≥ 2, then A′ ≡ X2
1 (mod 4).

– If e′ = 1, then X2
1 ≡ A′ ≡ 2 (mod 4), contradiction.

– If e′ = 0 and f ′ = 2, then A′ ≡ 1 (mod 4) is necessary. Given such an A′, one of

Y = 0, 1 make A′ +D′Y 2 equivalent to 1 (mod 8), and so an X1 exists.
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– If e′ = 0 and f ′ ≥ 3, then X2
1 ≡ A′ (mod 8). In this case, A′ ≡ 1 (mod 8) is both

necessary and sufficient.

A.2 Proofs for the prime 2

Proposition A.2.1. Let D be a discriminant, let B = Mat(2,Q2), and let O be an Eichler

order of level 2e. Then there exists an embedding of OD into O if and only if any of the

following are satisfied:

•
(
Dfund

2

)
= 1;

• e ≤ v2

(
D
4

)
;

• e = v2

(
D
4

)
+ 1 and v2(D) is even;

• e = v2

(
D
4

)
+ 2 and Dfund is odd.

Furthermore, if there exists an embedding, then there exists an optimal embedding.

Proof. Continue as the p odd case, where we have e > 0 (e = 0 hits the second bullet if D

is even and the fourth if D is odd). An embedding is given by φ
(
pD+

√
D

2

)
=
(

a b
2ec pD−a

)
, for

any a, b, c ∈ Z2 which satisfy a2− pDa+ bc2e = D−pD
4

. The embedding is optimal if and only

if either D is odd or D is even and 2 - gcd(a−D/4, b, c). If such an embedding exists, then

replacing (a, b, c) by (a, bc, 1) will thus give an optimal embedding, which is the last claim.

Such a triple will exist if and only if there exists an a ∈ Z2 for which 2e | D−pD
4

+ pDa− a2,

which translates to

2e+2 | D − (2a− pD)2.

If D is odd, then (2a − pD)2 ≡ 1 (mod 8), whence D ≡ 1 (mod 8) necessarily. If D ≡ 1

(mod 8), then it is a quadratic residue modulo all powers of two, hence we have a valid

solution. Note that this satisfies the first bullet, and D ≡ 5 (mod 8) will not satisfy any of

the bullet points.
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Finally, we consider when D is even. We get 2e | D
4
− a2, so write D = 22+2s+εd, with d

odd, s non-negative, and ε = 0, 1. If e ≤ 2s+ ε = v2

(
D
4

)
we will have a solution, so assume

otherwise. We must have a = 2sa′, and we get the equation 2e−2s | 2εd− a′2.

• If ε = 1, then e − 2s ≥ ε + 1 = 2, whence 4 | 2d − a′2, which is a contradiction since

v2(2d− a′2) ≤ 1. All four bullet points fail in this case.

• If ε = 0, we have the equation 2e−2s | d−a′2, i.e. d is a quadratic residue modulo 2e−2s.

This is true if and only if d ≡ 1 (mod 2min(e−2s,3)). When e− 2s = 1, 2 we get the third

and fourth bullets, and if e− 2s ≥ 3 we get the first bullet.

Proposition A.2.2. Let φ1, φ2 be optimal embeddings into O of discriminants D1, D2, such

that 2 - gcd(D1, D2) and 2 | D. Let N be the largest nonnegative integer such that the images

of ODi in O
2NO

are equal. Then we have v2(`(φ1, φ2)) = N .

Proof. Without loss of generality, assume that D2 is odd. As in Proposition 5.2.3, we work

in the completion O2

qnO2
. The images of φi(ODi) in O2

2nO2
are the same if and only if there exists

a, b ∈ Z2 with b odd for which

pD1 + φ1(
√
D1)

2
≡ a+ b

1 + φ2(
√
D2)

2
(mod 2nO2). (A.2.1)

Multiplying by 2 and rearranging, this is equivalent to

φ1(
√
D1)− bφ2(

√
D2) ≡ 2a+ b− pD1 (mod 2n+1O2), (A.2.2)

for some integers a, b with b odd.

Assuming Equation A.2.2, taking traces implies that 0 ≡ 2(2a+ b− pD1) (mod 2n+1O2),

hence 2n | 2a+ b− pD1 . Let 2a+ b− pD1 = 2nA for A ∈ Z2, and multiplying by φ2(
√
D2)/2n

on the right implies that

φ1(
√
D1)φ2(

√
D2)− bD2

2n
≡ Aφ2(

√
D2) ≡ A (mod 2O2).

In particular,
A+ (x− bD2)/2n + φ1 × φ2(

√
(x2 −D1D2)/22n)

2
∈ O2,
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which implies that φ1×φ2 descends to an embedding of discriminant
√

(x2 −D1D2)/22n. In

particular, v2(`(φ1, φ2)) ≥ N .

Next, consider the case when D1 is even: in this case we claim that v2(`(φ1, φ2)) =

N = 0. Assume that v2(`(φ1, φ2)) > 0; we seek a contradiction. This is equivalent to φ1 ×
φ2 descending to an embedding of x2−D1D2

4
, which implies that this is a discriminant. By

Theorem 4.4.5, we have D1

4
is not a discriminant and

(
D2

2

)
= −1, whence D1 ≡ 8, 12

(mod 16) and D2 ≡ 5 (mod 8). If D1 ≡ 8 (mod 16), then

x2 −D1D2

4
≡ (x/2)2 − 2 ≡ 2, 3 (mod 4),

whence x2−D1D2

4
is not a discriminant, contradiction. Therefore we can assume that D1 ≡ 12

(mod 16). Then,
x2 −D1D2

4
≡ (x/2)2 − 3 ≡ 1, 2 (mod 4),

so the only valid case is 4 | x. Since x2−D1D2

4
is then odd, we have an embedding if and only

if

O2 ⊇ φ1 × φ2

(
1 +

√
(x2 −D1D2)/4

2

)
=

2− x+ φ1(
√
D1)φ2(

√
D2)

4
.

In particular, φ1(
√
D1)φ2(

√
D2) ≡ 2 (mod 4O2), and this rearranges to

D2φ1(
√
D1/4) ≡ φ2(

√
D2) (mod 2O2).

Squaring gives
D2

2D1

4
≡ D2 (mod 4O2),

which implies that D1D2

4
≡ 1 (mod 4), a contradiction. Therefore v2(`(φ1, φ2)) = 0, as de-

sired.

All that remains to show is the inequality v2(`(φ1, φ2)) ≤ N when D1 and D2 are odd.

We can assume that v2(`(φ1, φ2)) = n ≥ 1 (we would be done if n = 0 by the opposite

inequality). In particular, we have u ∈ {0, 1} for which

u+ φ1 × φ2(
√

(x2 −D1D2)/22n)

2
∈ O2.

Multiplying by 2n+1 gives

2nu− x+ φ1(
√
D1)φ2(

√
D2) ∈ 2n+1O2.
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Using the fact that φ2(
√
D2) ≡ 1 (mod 2O2), multiplying by φ2(

√
D2)/D2 on the right and

rearranging gives

1 + φ1(
√
D1)

2
≡1 + (x− 2nu)/D2φ2(

√
D2)

2
(mod 2nO2)

≡D2 + 2nu− x
2D2

+
x− 2nu

D2

1 + φ2(
√
D2)

2
(mod 2nO2).

Since x ≡ pD1pD2 ≡ 1 (mod 2) and n ≥ 1, we have (x−2nu)/D2 ∈ Z×2 , as well as D2+2nu−x
2D2

∈
Z2. By Equation A.2.1, the images are the same modulo 2n, and thus N ≥ n as required.

Proposition A.2.3. Write εD = T+U
√
D

2
, where D is a positive discriminant. Let ei be

defined by

ε22iD = εei
22i−2D

,

write εiD = Ti+Ui
√
D

2
, and let v2(Ue1) = m. Then

• e1 | 2−
(
D
2

)
;

• e2 = · · · = em = 1 if m > 1;

• ei = 2 for all i ≥ m+ 1.

Proof. Instead of following Proposition 8.4.2, we can do everything directly. The claim that

e2 = · · · = em = 1 if m > 1 is again obvious, so we focus on the other two claims. First,

compute that

(T2, U2) =

(
T 2 + U2D

2
, TU

)
, (T3, U3) =

(
T
T 2 + 3DU2

4
, U

3T 2 +DU2

4

)
.

If D is even, then T is even, hence U2 = TU is even, and so e1 | 2 = 2 −
(
D
2

)
. If D ≡ 1

(mod 8), then if U is odd, we have

4 = T 2 −DU2 ≡ T 2 − 1 (mod 8), hence T 2 ≡ 5 (mod 8),

contradiction. Thus e1 = 1, and the conclusion follows. Finally, if D ≡ 5 (mod 8), then if U

is even we are done. Otherwise, U is odd, hence T is odd as well. Then U2 is odd, and

3T 2 +DU2 ≡ 3 + 5 ≡ 0 (mod 8),
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whence U3 is even. Thus e1 = 3 | 2−
(
D
2

)
, as claimed.

To prove the last point, it suffices to assume that D is even, D/4 is a discriminant, U is

odd, and we need to prove that 2 || U2. Since U2 = TU , this is equivalent to 2 || T . Since

T 2 = 4 + DU2, it follows that T is even. If 4 | T , then dividing by 4 and looking modulo 4

gives

0 ≡ (T/2)2 ≡ 1 + (D/4)U2 ≡ 1 +D/4 (mod 4).

Since D is even and D/4 is a discriminant, D/4 ≡ 0, 1 (mod 4), both of which are contra-

dictions.

Proposition A.2.4. Let D = 22kD′, where D′ is a 2−fundamental discriminant, and 2 -

DM. Consider the multiset {[(πiφπ−1
i )O] : 1 ≤ i ≤ 3}. This contains

• 3 optimal embeddings of discriminant 4D if k = 0 and
(
D
2

)
= −1.

• 2 optimal embeddings of discriminant 4D and 1 of discriminant D if k = 0 and
(
D
2

)
=

0.

• 1 optimal embeddings of discriminant 4D and 2 of discriminant D if k = 0 and
(
D
2

)
=

1.

• 2 optimal embeddings of discriminant 4D and 1 of discriminant D
4

if k > 0.

The optimal embeddings of discriminant 4D divide into

2−
(
D
2

)
e2

1(D)
=

2−
(
D
2

)
e2
k+1(D′)

distinct equivalence classes, each with multiplicity e2
1(D) = e2

k+1(D′).

Proof. We mostly mirror the proof of Proposition 8.4.5. We can work locally, so that O2 =

Mat(2,Z2), and we can assume that

φ2(
√
D) =

(
pD (D−pD)/2
2 −pD

)
.

From Lemma 8.1.2, we can take representatives

πi =

1 i

0 2

 : i = 0, 1, π∞ =

2 0

0 1

 .
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We compute

π∞φ(
√
D)π−1

∞ =

pD D − pD
1 −pD

 ,

which is an optimal embedding of 4D. For i = 0, 1,

πiφ(
√
D)π−1

i =

pD + 2i D−pD
4
− pDi− i2

4 −2i− pD

 .

If D ≡ 5 (mod 8), the top right coefficient is odd for i = 0, 1, whence this is an optimal

embedding of discriminant 4D. If D ≡ 1 (mod 8), these are optimal of discriminant D for

i = 0, 1. Finally, if D is even, then the top right coefficient is D/4 − i2 which is odd and

even for the two choices of i. Since all other coefficients are even, this will be an optimal

embedding of discriminant 4D for exactly one of the two choices of i, and an embedding of

discriminant D for the other. The only way the embedding of discriminant D is not optimal

is if either 16 | D and i is even, or D ≡ 4 (mod 16) and i = 1. In both of these cases the

embedding is optimal of discriminant D/4, and these cases are equivalent to k > 0. Therefore

the discriminants occur as claimed.

Next, we check when we get similar embeddings of discriminant 4D. Let v = φ(εD) ∈
ON=1, fix i, and let πiv = uπj for some j and u ∈ ON=1. As before, (πjφπ

−1
j )O ∼ (πiφπ

−1
i )O,

and we want to show that if this equation holds then πiv
k = uπj for some integer k and

u ∈ ON=1.

As in Proposition 8.4.5, this rearranges to πjφ(x + y
√
D)π−1

i = u ∈ ON=1 for some

rationals x, y. Taking norms, x2 − Dy2 = 1, whence we are done if we can show that z =

x + y
√
D ∈ OD. As φ(2z) = πjuπi ∈ O, we have z ∈ 1

2
OD, hence 4x, 4y ∈ Z. Take the

explicit forms of πi and φ as above; in particular,

φ(x+ y
√
D) =

x+ pDy y(D − pD)/2

2y x− pDy

 .

If i, j ∈ {0, 1}, we can assume they are distinct, hence i = 0, j = 1, and D ≡ 5 (mod 8) (as

the embeddings have discriminant 4D. Then,

πjφ(x+ y
√
D)π−1

i =

x+ 3y 1
2
x+ D−3

4
y

4y x− y

 ,
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has Z2 entries. Write 4x = X and 4y = Y , and this implies that

X ≡ Y (mod 4), 2X + (D − 3)Y ≡ 0 (mod 16), X2 −DY 2 = 16.

If X is odd, then Y is odd, hence 0 ≡ X2 −DY 2 ≡ 1− 5 ≡ 4 (mod 8), contradiction. Thus

X, Y are even, and X/2 ≡ Y/2 (mod 2). Since z = (X/2)+(Y/2)
√
D

2
, this implies that z ∈ OD,

as required.

If i =∞ and j = 0, 1, we have

πjφ(x+ y
√
D)π−1

∞ =

x
2

+ (pD+2j)y
2

jx+ ((D − pD)/2− pDj)y
2y 2x− 2ypD

 ∈ Mat(2,Z2).

Thus 2x, 2y ∈ Z, write 2x = X and 2y = Y , and it requires to show that X ≡ Y D (mod 2).

But X2 −DY 2 = 4, so they solve Pell’s equation, and the conclusion follows.

The finish is exactly as in Proposition 8.4.5.

A.3 Hermite normal form calculation

We calculate the determinant of the row-space of the matrix

M =



1 0 0 0

p1
2

1
2

0 0

p2
2

0 1
2

0

0 0 0 1
2

p1p2+x
4

p2
4

p1
4

`
4

0 −x
4`

D1

4`
p1
4

0 −D2

4`
x
4`

p2
4

x2−D1D2

8`
−p2x−p1D2

8`
p1x+p2D1

8`
p1p2+x

8



,

where:

• D1, D2 are discriminants with parities p1, p2 respectively;

• gcd
(
D1, D2,

D1D2−x2
4

)
= 1

• 4`2 | D1D2 − x2.
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Let L be this rowspace, and label the rows r1, . . . , r8. Since L ⊇ Z4 and Z4 has determinant

1, we see that the determinant of L is 1
N

for some positive integer N . Our aim is to show

that N = 16`. We can compute N by tensoring our space with Zp for all primes p, and

determining the power of p dividing the determinant of the corresponding Zp lattice.

Note that all denominators of M divide 8`. Hence p - 2` implies that Lp = Z4
p, and so

vp(N) = 0, as desired.

Next, assume that p | 2` is odd. Thus p | ` | D1D2 − x2, which implies that D1 and D2

are not both divisible by p. The first four rows of Mp span Z4
p, and the fifth row is already in

this span. Since ` | `2 | D1D2−x2, by removing the powers of 2 and applying row operations,

the last three rows (labeled r′6, r
′
7, r
′
8 in order) become

0 −x
`

D1

`
0

0 −D2

`
x
`

0

0 −p2x−p1D2

`
p1x+p2D1

`
0

 .

First, r′8 = p2r
′
6 + p1r

′
7, so we can ignore r′8. Next, we have

xr′6 −D1r
′
7, D2r

′
6 − xr′7 ∈ 〈r1, r2, r3, r4〉Zp .

Without loss of generality assume that p - D1, whence r′7 ∈ 〈r1, r2, r3, r4, r
′
6〉Zp . Then r3 ∈

〈r1, r2, r4, r
′
6〉Zp , and thus our basis is spanned by

1 0 0 0

0 1 0 0

0 −x
`

D1

`
0

0 0 0 1

 .

The power of p dividing the denominator of this determinant is vp(`) = vp(16`), as desired.

The remaining case is p = 2. Let v2(`) = k ≥ 0, write ` = 2k`′ with `′ odd, and assume
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that D1 is odd. Working over Z2, we multiply out by odd factors to obtain the row-space

M1 =



1 0 0 0

1
2

1
2

0 0

p2
2

0 1
2

0

0 0 0 1
2

p2+x
4

p2
4

1
4

`′2k−2

0 −x
2k+2

D1

2k+2
`′

4

0 −D2

2k+2
x

2k+2
p2`′

4

x2−D1D2

2k+3
−p2x−D2

2k+3
x+p2D1

2k+3

(p2+x)`′

8



.

We now find the span of the first 5 rows, and successively add in rows 6 through 8 in the

various cases.

• If D2 is even,

– If k = 0,

∗ If 2 || x, rows 1 to 5 give 
1
2

1
2

0 0

0 1
2

1
4

1
4

0 0 1
2

0

0 0 0 1
2

 .

Rows 6 and 7 already lie in this span, and row 8 shifts to
(
x2−D1D2

8
−D2

8
1
4

1
4

)
.

If 4 || D2, it follows that 8 | D1D2 − x2, and after a Z4
2 shift, row 8 becomes

( 0 1
2

1
4

1
4 ), which is already in the span. Otherwise, 8 | D2, and by a Z4

2 shift

we arrive at ( 1
2

0 1
4

1
4 ). Thus rows 1 through 5 sufficed, we get the determinant

2−4, so the power of two dividing the denominator is 4 = k + 4, as desired.

∗ If 4 | x, rows 1 to 5 give 
1
2

1
2

0 0

0 1 0 0

0 0 1
4

1
4

0 0 0 1
2

 ,
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and the last three rows already lie in this span. The determinant is again 2−4,

as desired.

– If k = 1, then 16 | D1D2 − x2.

∗ If 2 || x, then 4 || D2 necessarily. The first 5 rows give
1
2

1
2

0 0

0 1
2

1
4

0

0 0 1
2

0

0 0 0 1
2

 .

Shifting the sixth row gives
(
0,±1

4
, 1

8
, 1

4

)
(using D1 ≡ 1 (mod 4)), which can

replace row two, giving 
1
2

1
2

0 0

0 ±1
4

1
8

1
4

0 0 1
2

0

0 0 0 1
2

 .

The seventh and eighth rows lie in this span, and the determinant is 2−5, as

desired.

∗ If 4 | x, then 16 | D2 necessarily. The first 5 rows give
1
2

1
2

0 0

0 1 0 0

0 0 1
4

0

0 0 0 1
2

 .

Rows 7 and 8 already lie in this span, and row 6 shifts to
(
0, −x

8
, 1

8
, 1

4

)
. If

4 || x we can replace the second row, and if 8 | x we can replace the third

row, giving 
1
2

1
2

0 0

0 ±1
2

1
8

1
4

0 0 1
4

0

0 0 0 1
2

 and


1
2

1
2

0 0

0 1 0 0

0 0 1
8

1
4

0 0 0 1
2

 .

respectively. This gives determinant 2−5, as desired.
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– If k ≥ 2, then 64 | 22k+2 | D1D2 − x2. The last three rows shift to
0 −x

2k+2
D1

2k+2
`′

4

0 −D2

2k+2
x

2k+2 0

0 −D2

2k+3
x

2k+3
x`′

8

 .

Since xr6−D1r7 lies in the span of the first four rows, so we can eliminate r7 from

consideration. Similarly, x
2
r6 −D1r8 also lies in this span, so we can eliminate r8

from consideration too; only the first 6 rows are left.

∗ If 2 || x, rows 1 to 5 give us 
1
2

0 1
4

0

0 1
2

1
4

0

0 0 1
2

0

0 0 0 1
2

 .

We can replace r2 with r6 giving
1
2

0 1
4

0

0 −x
2k+2

D1

2k+2
`′

4

0 0 1
2

0

0 0 0 1
2

 ,

which has determinant −x
2k+5 , as desired (since v2(x) = 1).

∗ If 4 | x, rows 1 to 5 give us 
1
2

1
2

0 0

0 1 0 0

0 0 1
4

0

0 0 0 1
2

 .

In this case we can replace r3 with r6, giving
1
2

1
2

0 0

0 1 0 0

0 −x
2k+2

D1

2k+2
`′

4

0 0 0 1
2

 ,

which has determinant D1

2k+4 , as desired (since D1 is odd).
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• If D2 is odd,

– If k = 0, then the first 5 rows give us
1
2

1
2

0 0

0 −x
4

1
4

1
4

0 0 1 0

0 0 0 1
2

 .

The last three rows lie in this span, so we get determinant 2−4, as desired.

– If k ≥ 1, the first five rows give
1
2

1
2

0 0

0 1
4
−x
4

0

0 0 1 0

0 0 0 1
2

 .

The second row can be replaced by the seventh, giving
1
2

1
2

0 0

0 −D2

2k+2
x

2k+2
1
4

0 0 1 0

0 0 0 1
2

 .

This span also contains the sixth and eighth rows, hence is a valid basis. The

2−adic valuation of this determinant is −(k + 4), as desired.

If D2 is odd, then the above computations again hold. The final possibility is that D1, D2

are both even. Since gcd
(
D1, D2,

D1D2−x2
4

)
= 1, it follows that 2 || x, and that k = 0. Plug

this into M , and it follows immediately that the rowspace is spanned by
1
2

0 0 1
4

0 1
2

0 0

0 0 1
2

0

0 0 0 1
2

 .

The 2−adic valuation of the determinant is −4 = −(k + 4), as required.
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