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ABSTRACT 

 

Surveillance performed using routinely collected electronic data offers advantages that 

include a short reporting delay and a low acquisition cost. Monitoring of neuraminidase inhibitor 

(NI) dispensing in community pharmacies has emerged as a possible automated information 

source for influenza surveillance. However, little is known about the utility of these data for 

monitoring influenza activity. Therefore, we aimed to evaluate the timeliness, correlation, and 

predictive accuracy of community pharmacy NI dispensing in relation to laboratory-confirmed 

influenza activity in Quebec, Canada, during 2010-2013. Our secondary objective was to 

compare the characteristics of NI dispensing to those of visits for influenza-like illness (ILI) in 

emergency departments (ED), a commonly used source of surveillance data. 

Provincial weekly counts of positive influenza laboratory tests were used as a reference 

measure for the level of influenza circulation. We applied ARIMA models to account for 

seasonality and computed cross-correlation functions to measure the strengths of association and 

lead-lag-relationships of NI dispensing and ILI ED visits to our reference indicator. Finally, 

using an ARIMA model, we evaluated the ability of NI dispensing and ILI ED visits to predict 

laboratory–confirmed influenza.  

NI dispensing was significantly correlated (R=0.68) with influenza activity with no lag; 

the earliest statistically significant correlation occurred with a lead-time of 1 week. The maximal 

correlation of ILI ED visits was not as strong (R=0.50), but occurred with a lead-time of 1 week. 

Both NI dispensing and ILI ED visits were significant predictors of laboratory-confirmed 

influenza in a multivariable model; the predictive potential was greatest when NI counts were 

lagged to precede laboratory surveillance by two weeks. 
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We conclude that NI dispensing data can provide timely and valuable information for the 

surveillance of influenza at the provincial level. 
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RÉSUMÉ 

 

La surveillance qui s’appuie sur des données électroniques recueillies et enregistrées en 

routine offre des avantages tels qu’un court retard de déclaration ainsi qu’un faible coût 

d'acquisition. La surveillance des ventes au détail de médicaments sur prescription contre 

l’influenza, les l'inhibiteurs de la neuraminidase (NI), a émergé comme une source possible 

d'information automatisée pour la vigie sanitaire de la grippe. Toutefois, les caractéristiques de la 

performance de ces données comme objet de surveillance ne sont pas bien connues. Dès lors, 

nous avons cherché à évaluer les données de distribution des NI dans les pharmacies 

communautaires comme un nouvel outil de surveillance de l’influenza, de par leur relation 

d’ordre temporelle (décalage), de leur corrélation et de leur capacité prédictive, en comparaison à 

l'activité grippale confirmée en laboratoire, au Québec, Canada, de 2010 à 2013. Notre objectif 

secondaire était de comparer ces caractéristiques à celles de la surveillance des visites pour 

syndrome d’allure grippal (SAG) inscrites aux d'urgences. 

Les données hebdomadaires provinciaux du nombre de tests de laboratoire positifs pour 

l'influenza ont été utilisées comme mesure de référence pour le niveau d’activité grippale. Nous 

avons appliqué la méthodologie de modélisation ARIMA pour tenir compte de la saisonnalité et 

de l’autocorrélation. Nous avons ensuite calculé les fonctions de contre-corrélation pour mesurer 

les forces d'association et explorer les relations temporelles entre la distribution des NI et les 

visites SAG avec notre mesure de référence. Enfin, nous avons évalué la valeur prédictive de la 

distribution des NI et des visites SAG dans le montage d'un modèle ARIMA pour les comptes 

d’influenza confirmés en laboratoire. 
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La distribution des NI était significativement corrélée (R = 0,68) avec l'activité grippale 

au temps de latence zéro; la première corrélation statistiquement significative a eu lieu avec un 

décalage anticipatoire d’une semaine. La corrélation maximale des visites SAG n'était pas aussi 

forte (R = 0,50), mais a culminé une semaine plus tôt que les distributions NI. Tant la distribution 

des NI et les visites SAG à l'urgence étaient des variables prédictives significatives dans un 

modèle multivarié de cas confirmés en laboratoire; le potentiel prédictif du modèle était maximal 

lorsque les distributions NI ont été décalées pour précéder la surveillance en laboratoire de deux 

semaines. 

Ainsi, nous concluons que les données de distribution NI peuvent fournir des 

informations utiles et en temps opportun pour la surveillance de la grippe à l'échelle provinciale. 
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CHAPTER 1 - INTRODUCTION 

 

1.1 Background 

Surveillance is a cornerstone of public health practice [1]. It is a continuous and dynamic 

process that involves the collection, analysis, interpretation and dissemination of health data with 

the final objective of using the results to prevent and control disease [2]. The best recognized use 

of public health surveillance data is the monitoring of trends for the detection of epidemics of 

communicable diseases [3, 4].  

Among infectious diseases requiring public health monitoring, influenza figures 

prominently due to the large burden of this disease and its ability to evolve and escape population 

immunity over time [5]. During a typical seasonal epidemic in Canada, influenza causes 35 

hospital admissions per 100,000 persons [6], and 3,500 (95%CI, 3,200 - 3,700) deaths [7]. 

Influenza prevention and control programs aim to reduce the overall burden of disease – but 

especially among sub-populations that are at highest risk of serious disease – through yearly 

vaccination campaigns and the targeted use of antivirals [8, 9]. To achieve this aim effectively, 

public health agencies require up-to-date and accurate influenza surveillance information. 

However, timeliness and validity vary between data sources [10, 11].   

Traditional data sources for influenza surveillance, such as influenza laboratory tests and 

cases of influenza-related illnesses seen by sentinel physicians, are typically associated with a 

reporting delay of as much as 1-2 weeks [12]. Consequently, public health researchers have 

sought novel electronic data sources that could complement traditional sources and serve as a 

leading indicator for influenza activity by providing earlier information for rapid outbreak 

detection and near real-time situational awareness [10, 13]. Examples of potential non-traditional 
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data streams for influenza surveillance include: absenteeism reports [14, 15], over-the-counter 

and prescription drug sales [16-18], online activity monitoring [19, 20] and health advice calls 

[21, 22].  

 

1.2 Rationale 

It is estimated that there are over 2 million clinic visits per year for influenza in the United 

States [23]. Of these, approximately 20% receive a prescription for antiviral treatment. In 

Canada, the neuraminidase inhibitor (NI) class of medications (oseltamivir and zanamivir) is the 

only recommended first-line therapy for influenza since 2006 because of widespread resistance to 

adamantanes [8].  Prescription drug sales databases are potentially easy and fast to access because 

prescribed drugs are subject to electronic adjudication by insurance companies at the time of 

dispensing. Therefore, the monitoring of NI dispensing data from community pharmacies has 

emerged as a possible automated data source for surveillance of influenza, and has been used as 

an influenza indicator by the Public Heath Agency of Canada (PHAC) since 2012-13 [24]. 

However, there is currently little information about the performance characteristics of these data 

as a tool for influenza surveillance. Furthermore, no evaluation of antiviral dispensing to date has 

controlled for autocorrelation (i.e., the lack of independence between data points in a time series), 

a requirement for valid inferences from seasonal health data [25, 26].  

Because influenza activity in the outpatient setting tends to occur before an increased 

incidence of more severe disease [27-29], we hypothesized that changes in the weekly volume of 

outpatient antiviral prescriptions might precede changes in weekly counts of positive influenza 

tests and that NI dispensing could serve as an early indicator of epidemic influenza activity.  
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1.3 Objectives 

1. The primary objective of this thesis was to evaluate retail pharmacy NI dispensing data as 

a novel automated influenza surveillance tool in Quebec, Canada, during 2010-2013. In 

particular, we assessed the timeliness, correlation, and predictive accuracy of NI 

dispensing data in relation to a reference standard for influenza activity, laboratory-

confirmed cases of influenza.  

 

2. Our secondary objective was to compare the characteristics of the NI dispensing data to 

those of emergency department (ED) visits for influenza-like illness (ILI), a currently-

employed method for influenza surveillance.  
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CHAPTER 2 - LITERATURE REVIEW 

 

2.1  Influenza 

2.1.1 Burden of disease 

In temperate climates, respiratory viruses circulate with a marked seasonality, with peak 

activity during the winter months and significant temporal overlap between different viruses [30, 

31]. Influenza viruses (influenza type A [sub-types A/H1N1 and A/H3N2] and type B) cause 

seasonal outbreaks (also referred to as seasonal epidemics) sometime between November and 

April of each year in North America [32, 33]. However, the exact timing of an outbreak is 

variable and difficult to predict, as are its overall severity, peak intensity, vaccine field 

effectiveness and the distribution of its circulating strains [34].  

During a typical seasonal epidemic, influenza causes symptomatic infection in 

approximately 5-30% of the population, with the highest rates of infection in children aged 5–9 

years [35, 36]. The manifestations vary widely and may include upper respiratory illness (cold-

like symptoms, pharyngitis, acute otitis media or sinusitis) community-acquired pneumonia, 

exacerbation of underlying medical conditions (e.g., chronic obstructive pulmonary disease, 

asthma, and congestive cardiac failure), fulminant respiratory disease, and death [5]. The 

likelihood of each of these outcomes is determined by many factors, including patient age, pre-

existing immunity (through prior infection or vaccination), the presence of comorbidities or 

immune suppression and characteristics of the virus itself. 

The burden of influenza on a population is primarily attributable to a combination of the 

clinical severity of illness and the number of persons infected [34, 37]. These factors can vary 

between seasonal epidemics as a function of population immunity as well as circulating strain 
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virulence and transmissibility [38, 39]. Recent Canadian studies have estimated that, nationally, 

seasonal influenza is responsible for 35 (95% CI, 31–39) respiratory admissions per 100,000 

persons in an average year [6], and that approximately 3,500 (95%CI, 3,200 - 3,700) deaths are 

attributable to influenza annually [7]. The risks of complicated disease causing serious illness, 

hospitalization or death are highest in infants (age <1 year), the elderly (age ≥65 years), and 

persons with underlying medical conditions [9, 40-45]. In North America, seasonal influenza 

hospitalisation rates in infants and the elderly are approximately 2.5 – 5 times that of the general 

population [6, 40].  In industrialised countries, approximately 90% of seasonal influenza-

associated deaths occur among patients ≥65 years old [46]. Worldwide, annual epidemics are 

estimated to result in about 3 to 5 million cases of severe illness, and about 250,000 to 500,000 

deaths [47]. 

In contrast to seasonal epidemics, in which circulating strains have slowly evolved so as to 

partially escape population immunity, influenza pandemics are caused by the global spread of a 

novel influenza A virus to which the majority of the population has no prior immunity [5]. 

Because the characteristics of the new virus are not well known early in the course of a 

pandemic, they are necessarily unpredictable, with attack rates and disease severity that may be 

similar or considerably greater than during a seasonal outbreak [37]. The age distribution of the 

population affected and the timing of peak activity can also differ from a typical season.  

 

2.1.2 Diagnosis: clinical and laboratory 

It is difficult to accurately diagnose influenza in clinical practice; laboratory testing is 

required for definitive diagnosis [48, 49]. The clinical syndrome typically associated with 

influenza, influenza-like illness (ILI), has been defined differently, but definitions tend to be 

similar across most researchers and surveillance systems. In Canada, PHAC defines ILI as an 



19 

 
 

 

“acute onset of respiratory illness with fever and cough and with one or more of the following - 

sore throat, arthralgia, myalgia, or prostration which is likely due to influenza” [50], whereas the 

United States Centers for Disease Control and Prevention’s (CDC) definition is “fever 

(temperature of 100°F [37.8°C] or greater) and a cough and/or a sore throat without a known 

cause other than influenza” [51].  However, other respiratory viruses that temporally co-circulate 

with influenza, such as respiratory syncytial virus (RSV), also frequently cause ILI [52]. 

Therefore, ILI is less specific than laboratory confirmed influenza and estimates of the positive 

predictive value (PPV) of ILI during periods of influenza activity have varied. In predominantly 

young healthy adult outpatients, the PPV of ILI for influenza infection can range from 77% to 

87%, depending on variations of the ILI definition [53, 54]. Yet the specificity of ILI can be low, 

as influenza virus was the cause of ILI (PHAC definition) in only 652 of 1501 (43%) participants 

that presented to a Canadian community-based sentinel clinic surveillance system in 2012-13 

[55]. Because of the wide range of symptoms caused by influenza, estimates of the sensitivity of 

ILI in outpatients have generally centred around 60-80% [53, 54, 56, 57]. Clinical predictors of 

influenza do not perform as well in young children (<5 years old) [58] and in the elderly [59]. In 

the former, the incidence of other respiratory viruses, especially RSV, that cause fever and cough 

in both the outpatient and hospital settings is much higher than that of influenza [60]. 

Consequently, the PPV of ILI (CDC definition) has been reported to be as low as 20% (95% CI, 

17%–23%) among children aged 6–59 months [61]. In patients >60 years old with influenza, 

fever is frequently absent; therefore, the sensitivity of ILI may be as low as 30% in this 

population [59].    

Laboratory diagnosis of influenza is based on the identification of the virus in a patient’s 

respiratory secretions by one of three methods [62]: 
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 1) Molecular assays such as reverse-transcription polymerase chain reaction (RT-PCR) are 

considered the reference standard due to their very high analytical and clinical sensitivity and 

specificity [49]. Although these assays may require less than 2 hours of analytical time, turn-

around time for results may be much longer because specimens may need to be sent to 

specialized laboratories and testing may be performed in batches due to cost considerations.  

2) Direct detection of viral antigen by immunofluorescence or rapid immunoassays. 

Immunofluorescence testing is fast (analytical time, ~1h) but requires considerable technical 

skill, is more subjective and is also less sensitive (80-90%) compared to PCR. Rapid 

immunoassays are the fastest and simplest method and could potentially be performed at the site 

of care; however, their sensitivity (highly variable: 40-85%) and specificity (>90-95%) are the 

poorest of all techniques, especially when used outside of the pediatric population [63].  

3) Virus isolation in culture used to be the gold standard method and is still required for 

full phenotypic characterization of a strain’s antigenic properties and antiviral susceptibility. 

However, since the advent of RT-PCR and antigen detection techniques, culture has fallen out of 

favor because of its lower sensitivity (80-90% vs. RT-PCR) and long delays (>48h) to produce 

results [48].  

Despite the difficulties in establishing a clinical diagnosis, the vast majority of influenza 

diagnoses will not be confirmed microbiologically, principally for two reasons [49, 57, 64]. First, 

most test results are not available in a timely manner for management decisions in the outpatient 

setting. Rapid immunoassays could provide results within 20 minutes, but are rarely used at the 

point of care in clinics and EDs in Quebec and Canada because of concerns regarding accuracy, 

costs and quality control outside of the laboratory setting [63, 65]. Second, during an epidemic, 

the presence of a clinical predictor such as ILI is considered to produce a high enough likelihood 

of true infection that confirmation is usually not required to guide management of outpatients 
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[49]. The Infectious Diseases Society of America clinical practice guidelines for the management 

of seasonal influenza provide testing indications based on: patient age, signs and symptoms, time 

since onset of symptoms, immune status, presence of high risk comorbidities, disease severity 

(outpatient vs. hospitalized), and the presence of circulating influenza in the community [64]. The 

net result is that the overwhelming majority of influenza tests are performed on hospitalized 

patients or patients that are likely to be hospitalized for their current illness. 

 

2.1.3 Influenza prevention and control: vaccination  

Immunization is the cornerstone of influenza prevention. In Canada, annual influenza 

immunisation campaigns preferentially target categories of individuals at high-risk of 

complications; however, the vaccine is also available and recommended to the general public [9]. 

The antigenic characteristics of current and emerging influenza virus strains provide the basis for 

selecting the three strains included in each year's trivalent vaccine (one representative strain of 

each of:  A/H1N1, A/H3N2 and B). Vaccination should be performed yearly for two reasons. 

First, influenza viruses evolve over time and the contents of the vaccine are re-evaluated yearly to 

reflect circulating strains. Second, vaccine-induced immunity wanes. Even if circulating strains 

have not changed, protective antibody levels may not last two influenza seasons [66]. In North 

America, vaccines are available for distribution in the late Fall, just prior to the onset of the 

seasonal epidemic.  

Jefferson et al from the Cochrane Collaboration reviewed pediatric randomized clinical trial 

(RCT) data and found that the efficacy of influenza immunisation against laboratory-confirmed 

disease was 59% (95% CI, 41% - 71%) for inactivated vaccines in children >6 months and 80% 

(95% CI, 68% - 87%) for live attenuated vaccines in children >2 years [67]. A separate Cochrane 

review of RCTs in healthy adults reported overall efficacy of inactivated vaccines in preventing 
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confirmed influenza of 60% (95% CI, 53% - 66%) [68]. Efficacy is thought to be lower in the 

elderly; however, “given the heterogeneous nature of the vaccines tested (monovalent, trivalent, 

live, or inactivated aerosol vaccines), setting, follow up and outcome definition, no firm 

conclusions can be drawn from this body of evidence” according to the 2010 Cochrane 

publication on the subject [69]. 

Vaccine field effectiveness is in large part a function of the antigenic match between the 

strains selected for inclusion in the vaccine and those that actually circulated. Since 2004, 

estimates of vaccine effectiveness against medically-attended, laboratory-confirmed influenza in 

Canada have been produced using a test-negative case-control design embedded within a sentinel 

surveillance network of several hundred community-based practitioners from 5 provinces, 

including Quebec [70].  Component-specific results from the three seasons that correspond to the 

study period of this thesis (2010-11, 2011-12 and 2012-13) are presented in Table 2-1 [55, 71, 

72]. During the course of our study, influenza vaccine effectiveness varied considerably from 

season to season (overall and by vaccine strain) and across vaccine components during a season. 
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Table 2-1. Overall and component-specific vaccine effectiveness estimates against medically-

attended, laboratory-confirmed influenza from a Canadian sentinel surveillance network: 2010-

11, 2011-12 and 2012-13.  

 

Vaccine component 

Vaccine effectiveness, %;  (95% CI) 

2010-11 2011-12 2012-13 

Overall 36 (17–51) 58 (44–69) 52 (38-64) 

A/H1N1 60 (19–80) 80 (54–91) 60 (21-80) 

A/H3N2 35 (11–53) 63 (36–78) 44 (24-59) 

B 28 (−8 to 52) 45 (21–62) 68 (47-81) 

 

CI, confidence interval 

Data from references [55, 71, 72]. 

 

2.1.4 Influenza prevention and control: antiviral therapy  

Influenza is the only respiratory virus with commercially available specific antiviral therapy. 

Since 2000, the influenza neuraminidase inhibitors (NI) oseltamivir (Tamiflu®, Hoffman-La 

Roche, Limited, Mississauga, ON, Canada) and zanamivir (Relenza®, GlaxoSmithKline Inc., 

Mississauga, ON, Canada) have been licensed in Canada for the treatment of influenza infection 

[8]. Resistance to the adamantane class of antivirals is widespread and their use is no longer 

recommended as a first-line agent for the treatment or prevention of influenza since 2006. 

A recent Cochrane review of published and unpublished RCT data reported that early 

(within 48 hours of symptom onset) treatment of outpatients with oseltamivir reduces symptom 
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duration by 17 hours (95% CI, 8 to 25 hours) [73]. Another systematic review and meta-analysis 

by independent investigators concluded that oseltamivir also reduces the risk of lower respiratory 

tract complications requiring antibiotic treatment by 37% (95% CI, 18%-52%) [74].  Given the 

relatively modest benefits for outpatients, Canadian and United States guidelines recommend that 

antiviral treatment preferentially target persons with suspected or confirmed influenza who are at 

higher risk for influenza complications because of age or underlying medical conditions [8, 75]. 

Regarding serious outcomes, observational studies performed among hospitalised patients in 

Canada suggest that NI treatment, particularly earlier NI treatment, significantly reduces the odds 

of intensive care unit admission or death [76-78]. A multinational cohort study by Muthuri et al 

found that, among patients admitted for A/H1N1 infection since 2009, when comparing NI 

treatment vs. no treatment, early vs. later treatment and early vs. no treatment, all significantly 

reduced mortality odds [79]. Based on this evidence, treatment of any person with confirmed or 

suspected influenza who requires hospitalization is recommended, even if the patient presents 

more than 48 hours after illness onset [8, 75]. Finally, NIs are licensed for both pre-exposure and 

post-exposure prophylaxis for high-risk patients; however, since the 2009 A/H1N1 pandemic, 

early treatment is preferred over prophylaxis due to concerns regarding emergence of drug 

resistance in Canada [8, 80].  

 

2.2 Surveillance of influenza 

2.2.1 Overview of influenza surveillance 

Surveillance has been described as a continuous and dynamic process that involves the 

systematic collection, analysis, interpretation and dissemination of data with the final objective of 

using the results to improve health through the prevention and control of disease [2]. Information 
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obtained though surveillance can guide immediate public health action, inform longer-term 

program planning, and stimulate the formulation of research questions.  

The best recognized use of public health surveillance data is the monitoring of trends 

relating to communicable diseases for the detection of outbreaks, i.e., increases in incidence 

above the expected or background rate for the disease [3, 4, 81]. Infectious disease surveillance 

by public health agencies has traditionally depended on voluntary or mandatory reporting of 

cases by physicians, hospitals and laboratories [3] Longstanding traditional data sources for 

influenza surveillance include: 1) medically-attended influenza-related illnesses in sentinel 

ambulatory care networks; 2)  positive influenza laboratory tests from sentinel diagnostic 

laboratories; 3) hospital admissions for pneumonia and influenza (P & I) as recorded in hospital 

discharge summaries; and 4) deaths due to P&I from death certificates [12]. However, these 

mostly manual approaches to surveillance can be insensitive, inflexible, and slow. For laboratory 

surveillance, the inherent delays associated with laboratory processing and testing (although 

modern influenza diagnostic techniques offer shorter delays compared with traditional viral 

culture), the manual submission of reports, and subsequent data analysis and dissemination may 

total 2 weeks or more [82, 83]. Reports form ambulatory clinics are also delayed by manual data 

entry. Adjudication and compilation of hospital discharge summaries and death certificates can 

take weeks to months. Consequently, recent research has focused on identifying non-traditional, 

automated data sources for influenza surveillance that can provide an early indication of 

influenza outbreaks and near real-time situational awareness of influenza activity for clinicians 

and public health officials [10, 13].  
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2.2.2 Syndromic surveillance for influenza 

Syndromic surveillance is a rapidly evolving field within public health practice. It involves 

the monitoring of pre-diagnostic data associated with the disease under surveillance, such as 

clinical syndromes (e.g, ILI), health indicators of different actions persons might take (e.g., visit 

an ED), or consequences they might suffer (e.g., absence from work) [84]. Syndromic 

surveillance systems typically seek to use existing electronic health data for near-real time 

monitoring involving automated methods of data collection, transmission and analysis [85].  

For the monitoring of influenza, syndromic information sources include ED chief 

complaints [86, 87], outpatient clinic visits [27, 29], billing data for medical services [28, 88], 

school or work absenteeism reports [14, 15], over-the-counter and prescription medication sales 

[16-18], online activity monitoring [19, 20], and emergency medical system (911) or health 

advice calls [21, 22].  

These pre-diagnostic data sources can be timelier than traditional data sources if data are 

collected by an automated system to minimize reporting delays. Furthermore, the population 

captured by novel surveillance streams may differ from the populations monitored by traditional 

data sources and therefore display different epidemic dynamics. For example, several studies 

have demonstrated that data for milder influenza-related illness can provide earlier signals for 

seasonal influenza outbreaks compared with measures of more severe disease [87]. In Australia, 

Zheng et al observed that monitoring time series of ED visits clinically diagnosed with influenza 

provided 3-18 days earlier warning compared with surveillance of laboratory-confirmed 

influenza, as the latter disproportionately represents disease in more severe or hospitalised cases 

[89]. Using physician billing data, Chan et al. found that outpatient clinic visits for ILI increased 

in frequency up to two weeks prior to ED visits for ILI and hospital admissions for P&I in 

Montreal, Quebec [28]. Compared with P&I mortality data, Brownstein et al reported that 
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ambulatory visits for acute respiratory illness in Massachusetts displayed a lead-time of 

approximately 4 weeks [27].   

Although syndromic surveillance systems are promising, novel, non-specific data sources, 

systems using data not initially collected for the purpose of surveillance should be evaluated 

carefully.  Their accuracy must be validated and their utility assessed in comparison to 

established and specific sources of information [81, 90]. Several attributes serve as hallmarks of 

the utility of a communicable disease surveillance method or system: sensitivity to identify both 

individual cases and outbreaks, simplicity of structure and ease of operation, quality data 

(completeness and validity), positive predictive value (proportion of reported cases that actually 

have the disease under surveillance), representativeness (ability to accurately describe the 

occurrence of disease over time, place and person), stability (data are reliably available when 

needed), flexibility to adapt to changing information needs or operating conditions, acceptability 

(willingness of persons and organizations to participate in the surveillance system), and 

timeliness (the early identification of trends and outbreaks) [91]. 

 

2.2.3 Data streams currently in use for influenza surveillance in Quebec and Canada 

In Canada, national influenza surveillance is performed by PHAC through the Centre for 

Immunization and Respiratory Infectious Diseases and the National Microbiology Laboratory. 

PHAC publishes a weekly FluWatch report for the dissemination of influenza surveillance 

information [24]. The FluWatch program includes six routinely collected indicators of influenza 

activity:  

1. Laboratory surveillance: sentinel laboratories report the total number of influenza tests 

performed and the total number of tests positive for influenza (by virus type and sub-type, when 

typing information available). 
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2. Antigenic characterisation and antiviral resistance testing for circulating influenza viruses. 

3. Sentinel ILI primary care consultation rates: sentinel physicians report the total number of 

patients seen for any reason and the total number of patients meeting the PHAC definition for ILI 

for one clinic day each week.  

4. Regional influenza activity levels: provincial and territorial representatives provide weekly 

assessments of regional influenza activity and the number of outbreaks of influenza or ILI in 

schools, hospitals and residential institutions.  

5. Severe outcomes surveillance: pediatric and adult influenza-associated hospital admission, 

intensive-care unit admission and mortality data are monitored through hospital-based 

surveillance and provincial/territorial reporting directly to PHAC.  

6. Pharmacy surveillance: antiviral dispensing data are provided by Rx Canada Inc. and sourced 

from over 3,000 stores major retail drug chains nationwide. Data provided include the number of 

new NI prescriptions and the total number of new prescriptions dispensed.  

   

  In addition, FluWatch assesses international influenza activity and monitors reports of 

cases of emerging respiratory pathogens such as influenza viruses of avian or swine origin and 

other respiratory viruses, e.g, the middle-eastern respiratory syndrome coronavirus. 

  In the province of Quebec, laboratory surveillance for respiratory viruses is performed by 

the Laboratoire de santé publique du Québec (LSPQ), the provincial reference public health 

laboratory that is part of the Institut national de santé publique du Québec (INSPQ) [92]. 

Aggregate weekly counts of positive test results (by influenza type and subtype, when available) 

and the total number of tests performed for influenza are reported by sentinel laboratories to the 

LSPQ. The INSPQ disseminates these results, stratified by age group and health region, through 

weekly updates and monthly “Flash Grippe” summaries [93]. Moreover, the INSPQ monitors 
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and reports on the following data streams in Flash Grippe: ED visits for ILI, pediatric hospital 

admissions for P&I, calls to the provincial health advice hotlines ( -  and Info-Social) for 

ILI, and the number of influenza outbreaks in long-term care facilities. 

 

2.3 Evaluations of the utility of influenza antiviral prescription drug dispensing data for the 

surveillance of influenza activity 

 We reviewed the studies that assessed the utility of influenza antiviral dispensing data 

from community-based retail pharmacies for the surveillance of influenza activity through a 

comparison with an established reference indicator for influenza activity. We identified five such 

studies (Table 2–2).  

 



 

 

 

Table 2-2. Studies assessing the utility of influenza antiviral dispensing as an influenza surveillance method. 

Author, year Study 

period 

Location Methodology Antiviral 

dispensing 

data 

Primary 

comparator 

Lead-lag 

relation 

Account 

for 

autocorr. 

Yearly 

analysis 

Primary outcome 

Yoshida, 2009 

[94] 

2004-2006 Osaka, 

Japan 

Correlation 

analysis 

NI + Ad Confirmed  

cases reported 

by sentinel 

physicians 

N/P N/P N/P R=0.954 

Sugawara, 

2012 [95] 

2009-2011 Japan Correlation 

analysis 

NI Confirmed  

cases reported 

by sentinel 

physicians 

N/P N/P Yes 2009-10, R=0.992;  

2010-11, R=0.972 

Greene, 2012 

[96] 

2000-2010 US Correlation 

analysis 

NI + Ad Laboratory 

surveillance 

N/P N/P N/P R ranged from 

0.34-0.72, across 

jurisdictions 

Patwhardhan, 

2012 [97] 

2007 US Correlation 

analysis 

NI + Ad CDC ILI 

surveillance 

network 

N/P N/P N/A R=0.92  

Aramini, 2013 

[98] 

2009 

(second 

pandemic 

wave) 

Ontario, 

Canada 

Poisson 

regression 

NI Laboratory 

surveillance 

Maximal 

significance 

at lag 0 

N/P N/A Significance in a 

model predicting 

A/H1N1 lab cases: 

P-value <0.001 
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Ad, adamantanes 

Autocorr., autocorrelation 

ILI, influenza-like illness 

N/A, not applicable 

N/P, not performed 

NI, neuraminidase inhibitors 

R, Pearson correlation coefficient 

US, United States 
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 To evaluate the association between NI dispensing counts and established indicators of 

influenza activity, studies identified in this review estimated 1) strength of correlation, 2) 

timeliness, or 3) predictive value.  

 Correlation analysis, frequently used to measure the association between two time series 

[10, 25, 28, 99], was employed by four of the five studies [94-97].  Yoshida et al observed a very 

strong correlation (R=0.954) between antiviral dispensing (NI and adamantanes) and sentinel 

physician reports of laboratory-confirmed influenza in Osaka, Japan during a two-year period 

(2004-2006) [94]. At the national level in Japan, using a similar comparator, Sugawara et al 

reported that NI dispensing produced correlations of 0.992 and 0.972 during the 2009 A/H1N1 

pandemic and the following season (2010-11), respectively [95]. However, there was modest 

variability between prefectures and the lowest regional correlation was 0.689.  In the United 

States, using the Vaccine Safety Datalink Project database, Greene et al examined NI and 

adamantane prescriptions in relation to laboratory surveillance data over 10 years (2000-2010) 

[96]. They reported their correlation analyses stratified by 8 different medical care organizations; 

no pooled estimate was produced. The correlations of weekly antiviral dispensings with the 

proportion of tests positive for influenza showed variability, ranging from 0.34-0.72. Finally, 

Patwardhan et al compared antiviral drug sales (NI and adamantanes) to CDC Outpatient 

Influenza-like Illness Surveillance Network (ILInet) data, observing a correlation of 0.92 in 2007 

[97].  They also compared antiviral dispensing to another non-traditional surveillance method, 

Google Flu Trends, which attempts to provide estimates of influenza activity based on Internet 

search data [19]. The correlation for five years' aggregate data (2007–2011) was 0.92. For each of 

the five years between 2007 and 2011, correlations were 0.85, 0.92, 0.91, 0.88, and 0.87 

respectively. However, Google Flu Trends is not considered to be a reliable comparator as 

several validation studies have reported that estimates of influenza activity based on this data 
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source may deviate significantly from influenza patterns demonstrated by traditional surveillance 

systems [12, 100, 101].  

 Taken as a whole, antiviral dispensing data appear to be moderately to strongly correlated 

with established influenza surveillance methods. Unfortunately, the results of all four of the 

studies to date are likely biased because none accounted for the autocorrelation that is inherent to 

seasonal health data. Empirical correlations (estimated from the raw data) are highly prone to bias 

when the data are temporally autocorrelated (i.e., the value on any given day is correlated with 

values on previous days). Because of the autocorrelation within each individual series, the 

empirical correlation of two unrelated time series can be spuriously but significantly high due to 

chance alone [102] or due to the confounding effect of a seasonal covariate [25, 103]. 

 The evaluation of the timeliness of a novel data source generally aims to assess if it could 

serve as a leading indicator for influenza activity, i.e., could provide earlier information for rapid 

outbreak detection and situational awareness [10, 13]. There is no well-established definition of 

timeliness or one preferred method for its quantification [10]. A frequently encountered method 

to assess timeliness of data is an extension of simple correlation analysis, the cross-correlation 

function (CCF), which measures the correlation between two time series that have been lagged by 

various units of time. Lead-time can then be defined as the lag at which the peak correlation in 

the CCF occurs or as the earliest lag at which a statistically significant correlation occurs [10, 25, 

28]. Unfortunately, none of the reviewed studies that performed correlation analyses explored 

lead-lag relationships between data sources or addressed timeliness in any way. Regarding the 

CCF, in addition to the aforementioned reasons for which it is important to account for 

autocorrelation, it has also been demonstrated that, without appropriate filtering (i.e., “pre-

whitening” or removing systematic patterns in the data), long-scale phenomena (over months to 

years) such as seasonality tend to overwhelm the CCF, obscuring the short-scale fluctuations 
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(over weeks) that are more relevant to the surveillance of influenza outbreaks [13].  

 In the context of a Poisson regression model predicting laboratory cases, Aramini et al 

explored the lead-lag relationship between the weekly volume of NI prescriptions and the weekly 

numbers of positive laboratory tests of A/H1N1 in Ontario, Canada, during the second wave of 

the outbreak of the 2009 pandemic [98]. They found “a statistically significant relationship 

between weekly influenza A(H1N1) case counts and antiviral prescriptions at the local health 

authority level (p<0.001). Statistical significance was greatest when influenza A(H1N1) cases 

counts were not lagged by time”. No further details regarding their modeling strategy were 

provided; however, it appears that they did not account for autocorrelation in their analysis. In 

generalized linear models (such as Poisson regression), one of the fundamental assumptions is 

that the observations of a variable are independent and identically distributed. However, we have 

already established that observations in seasonal data are autocorrelated and, consequently, not 

independent of each other. Furthermore, the mean weekly values and their variances will vary 

over time with seasonality. Therefore, it is well understood that, when using generalized linear 

models to study outcomes related to influenza, seasonal variation and secular trends in the data 

must be removed [40, 104, 105].  

Finally, it is notable that influenza outbreaks can show important year-to-year variability 

in terms of peak activity, intensity, timing, duration, disease severity, vaccine effectiveness and 

distribution of circulating viruses [34]. All of these variables will affect the healthcare seeking 

behavior of patients and the propensity of clinicians to test and treat for influenza. Therefore, if 

possible when assessing a novel data source, a year-by-year analysis should be performed in 

addition to aggregated estimates, as results may not always be consistent across influenza seasons 

[28]. In our review, only the Sugawara et al study of national data from Japan provided estimates 

stratified by study year. 
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In conclusion, there is little information available on the utility as a surveillance method 

of NI dispensing data, a currently used indicator of influenza activity in Canada. Reported 

empirical correlations with traditional data sources appear promising; however, valid estimates 

are lacking because no study to date has accounted for autocorrelation. The timeliness and 

predictive accuracy of NI dispensing has also yet to be properly characterized. Furthermore, little 

is known about the representativeness of the results from year to year. Finally, no study has used 

more than one established comparator to place NI dispensing in the common context of 

monitoring multiple data streams, such as laboratory surveillance and ED visits for ILI.   
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CHAPTER 3 - METHODS 

 

3.1 Overview, study setting and study design 

For this thesis, we evaluated the utility of NI dispensing in retail pharmacies as a data 

source for influenza surveillance by assessing three key attributes of a surveillance method: 

timeliness, correlation and predictive accuracy [11].    

This is an ecological time-series study; we analysed only aggregate measures [106]. We 

compared the weekly time series of counts of NI dispensing and ED ILI visits to the weekly time 

series of positive influenza laboratory tests (as a reference measure of influenza circulation).  

The study period covered three years, including three seasonal influenza epidemics, from 

July 4, 2010 to June 29, 2013, in Quebec, Canada. All data were obtained from province-wide 

databases. The province of Quebec is situated in the central region of Canada. It is the country’s 

largest province, and the second most populated. In 2013, its population was estimated to be 

8,155,300 inhabitants [107]. 

 We obtained permission from the LSPQ, the INSPQ and IMS Brogan Canada, to use the 

data for this thesis. In addition, the Institutional Review Board at McGill University approved 

this project. 

 

3.2 Sources of data 

3.2.1 Provincial sentinel laboratory surveillance 

The INSPQ performs year-round laboratory-based surveillance for influenza, thereby 

contributing data to PHAC’s FluWatch program and to the World Health Organization’s Global 

Influenza Surveillance and Response System [92, 108]. The LSPQ collects weekly information 
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on results of testing for influenza from each of the over 40 sentinel virology laboratories across 

the Province of Quebec. Weekly counts of positive tests for influenza (incident cases) and weekly 

counts of the total number of diagnostic tests performed for influenza (culture, antigen detection 

[immunofluorescence or enzyme immunoassay] RT-PCR) are reported to the LSPQ by manual 

entry (by a laboratory technologist or a clerk) on a web-based platform within 72 hours of the end 

of the previous week. Weekly percentages of positive tests can therefore be calculated. When 

influenza is identified, laboratories report virus type (A or B); however, less than 15% have the 

capacity to distinguish influenza A subtype (A/H1N1 or A/H3N2). 

Although the virology laboratories are located in hospital centres, specimens may 

originate from patients of any age and from various clinical settings, such as community or 

hospital outpatient clinics, EDs, and acute care or long-term care inpatient wards. Nevertheless, 

based on published indications for testing, it is expected that the vast majority of results originate 

from hospitalised patients or from patients at risk of severe outcomes [49, 64].  

The surveillance program is passive (testing is performed at treating physicians’ 

discretion and cases are not actively sought). Laboratory participation is voluntary; however, all 

18 régions socio-sanitaires are represented. A survey conducted in 2013 by the LSPQ found that 

a total of 61 laboratories perform diagnostic testing for influenza in Quebec [109]. By season, the 

number of hospitals providing data was: 44 in 2010-11 44 (72% of the total number of virology 

laboratories); 45 in 2011-12 (74%); 46 in 2012-13 (75%).  

Sentinel hospitals also provide the LSPQ with a sample of each season’s influenza 

isolates for further characterization to estimate the proportion of each influenza subtype 

circulating that year, their antigenic similarity to the annual vaccine strain, and their antiviral 

susceptibility profiles.  
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3.2.2 NI dispensing 

IMS Brogan Canada, Inc., a commercial provider of information services and technology 

for the healthcare industry, provided, free of charge, aggregate weekly counts of oseltamivir and 

zanamivir prescriptions dispensed in Quebec. These data were obtained from their proprietary 

Canadian Weekly CompuScript drug use database. The Weekly CompuScript database collects 

prescription volume dispensed by Canadian retail (i.e., non-hospital) pharmacies to outpatients on 

a weekly aggregate basis. Information was available for approximately 60% of pharmacies in the 

province of Quebec. The number of pharmacies providing weekly data ranged from 1,071 to 

1,080 over the study period. According to IMS Brogan, for Weekly Compuscript, each supplier 

and their data are verified on a weekly basis to ensure that they are within the standards set for 

quality control (based on consistency with previous weeks). If variances are noticed, then they 

are examined to determine if they are explainable or require further verification with the supplier. 

 

3.2.3 ED visits for ILI 

Aggregate weekly counts of visits for ILI to a Quebec ED were obtained from the Daily 

Report on the Situation in Emergency Departments and Hospitals (Relevé quotidien de la 

situation à l’urgence et au centre hospitalier – RQSUCH) database. Each acute care hospital in 

Quebec is required to report the daily number of patients registering to the ED who present with 

the chief complaint of ILI, defined as fever and cough, as well as the total number of patients 

registering to the ED for any reason. These counts are entered manually by nurses or clerks in 

each hospital and are transmitted daily to local public health authorities and the Ministry of 

Health for healthcare utilization surveillance. However, the manner in which the ILI definition is 

applied, by whom (healthcare professional or support staff), and from which source, is left to the 

discretion of each ED. This system has been in operation since May 2008, with 100% coverage 
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of Quebec EDs since May 2009. During our study, data completeness (assessed daily, for each 

hospital) was 99.83%. 

 

3.3 Choice of reference indicator 

We used the laboratory counts as our reference indicator for the level of influenza 

circulation because laboratory testing is the most specific method for the detection of influenza. 

Laboratory surveillance is commonly used as both a data source and an outcome measure in 

influenza forecasting [82]. 

 

3.4 Outcomes 

1) Timeliness. There is no standard metric to evaluate the timeliness of a data source for 

surveillance purposes [10]. For this thesis, we assessed timeliness, or lead-time, by 

exploring lead/lag relationships with our reference indicator, the influenza laboratory 

surveillance data stream, by cross-correlation analysis and by fitting Box-Jenkins transfer 

function models (see Data analysis section). A data source was considered timely (i.e., a 

leading indicator) if it demonstrated statistically significant cross-correlations at lags ≥ 0 

i.e., when it was lagged relative to the reference series so as to precede it.  

2) Correlation. The Pearson product-moment correlation coefficient (R) was used to 

measure correlation during cross-correlation analysis [99]. R is a measure of the linear 

correlation (dependence) between two variables, giving a value between +1 and −1 

inclusive, where 1 is total positive correlation, 0 is no correlation, and −1 is total negative 

correlation.  
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3) Predictive accuracy was evaluated by fitting multivariable transfer function models to the 

laboratory-confirmed influenza time series. We defined the best model as the model with 

the lowest corrected Akaike’s Information Criterion (AICc); an input time series was 

considered to be a useful predictor if its inclusion lowered the AICc. 

 

3.5 Data analysis  

Analyses were performed using R version 2.14 (www.r-project.org) and SAS version 9.3 

(SAS Institute, Inc., Cary NC). A two-sided P value of <0.05 was considered statistically 

significant.  

 

3.5.1 Removal of autocorrelation through ARIMA modeling  

As discussed in section 2.3, to obtain valid estimates of timeliness and correlation when 

comparing time series, it is imperative to account for seasonal variation and long-term trends, 

thereby removing the autocorrelation structure in the data and controlling for the “non-

independence” of events.   

To overcome the possible bias in estimates due to autocorrelation, one can transform (or 

filter) the series under consideration by fitting an appropriate statistical model, so that the 

residuals are a series of independent, identically distributed random observations. This process 

was termed “pre-whitening” by Box and Jenkins [26].  

Different statistical models can be used for pre-whitening. For instance, seasonality and 

trend can be modeled within a generalized linear model regression approach (e.g., Poisson, quasi-

Poisson, or negative binomial model) by incorporating polynomial terms, autoregressive terms or 

smoothing splines. However, classical regression may sometimes be insufficient for explaining 

http://www.r-project.org/
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all of the dynamics of a time series [110]. The autoregressive integrated moving average 

(ARIMA) approach, first popularized by Box and Jenkins, was specifically designed to address 

the issue of modeling the stochastic dependence of consecutive data [102]. An ARIMA model 

predicts a current value Yt in a response (output) series by a linear combination of the p previous 

observations Yt−1, …, Yt−p, a linear combination of the q previous errors or “random shocks” at−1, 

… at−q and a constant term. Here, p and q represent the order of the autoregressive (AR) and 

moving average (MA) components, respectively.  Mathematically, this can be generalized to: 

 

Yt  = Constant + φ1(Yt−1) +... + φp(Yt−p) + at − θ1(at−1) −... − θq(at−q) 

 

where {… Yt−1, Yt, Yt+1, …} is a series of observations at equally spaced time intervals, {… 

at−1, at, at+1, …} is a white noise series of independent and identically distributed random 

variables whose distribution is approximately normal with mean zero and variance σ2, and 

φ1,...,φp and θ1,...,θq are parameters to be estimated from the data. 

 Box-Jenkins modeling should only be applied to time series that is stationary, i.e., the 

series has a constant mean and variance over time. If the variance is related to the mean, then a 

variance-stabilizing transformation has to be applied, such as log-transformation. Stabilizing the 

mean can be achieved by differencing the data: subtracting the value at each time point by the 

value at the previous time point to detrend the series. The parameter d is used to refer to the 

number of differences, resulting in an ARIMA (p,d,q) model. 

 The standard approach to ARIMA modeling has three steps, which may be iterative.  

1) Model identification, wherein the orders of the AR (p) and MA (q) terms are chosen. The 

simplest model that fits the data should be selected. 
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2) Estimation of the model parameters. Values of the AR and MA coefficients that provide 

the best fit are determined using computational algorithms such maximum likelihood 

estimation. 

3) Diagnostic checking of the models is then conducted by examining their residuals. The 

residuals should be independent of each other and resemble a white noise process; that is, 

no significant autocorrelations between residuals should be detected and they should 

display normality. If the model is inadequate, steps 1 to 3 are repeated to identify another 

potential model.  

When discriminating between adequate models, the AIC can used to assess the goodness 

of fit of each model [110].  

For any statistical model, the AIC can be calculated as: 

AIC = 2k – 2ln(L) 

where k is the number of parameters in the model, and L is the maximized value of the 

likelihood function for the model. 

However, it has been suggested that, in the context of ARIMA modeling, the AICc is a 

preferred criterion, because it has a greater penalty for extra parameters and thereby reduces the 

risk of over-fitting, i.e. of tailoring the fit too closely to the particular numbers observed. [111]. 

AICc = AIC + (2k(k+1))/(n-k-1) 

where n denotes the sample size (i.e., the number of time periods).  

 

3.5.2 Cross-correlation analysis  

The association between two time series can be quantified by the CCF, which determines 

the correlation (Pearson’s R) between the two series over a range of time lags [10, 25, 28].  As 

described above, we differenced each time series to render it stationary and then applied ARIMA 
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models to remove autocorrelation [26, 102].  We pre-whitened the NI dispensing data by using 

the standard approach of identification, estimation and diagnostic checking of the residuals. 

Models were fit using maximum likelihood estimation. The AICc guided selection among 

adequate models, taking into account both goodness of fit and parsimony. Then, we applied the 

final ARIMA model to the laboratory surveillance reference time series. The CCF was 

subsequently computed between the residuals of both pre-whitened series. We identified the lags 

at which the maximum and earliest statistically significant correlations occurred. We repeated 

this process for the ED ILI data.  

Because seasonal influenza epidemics can show important year-to-year variability in 

terms of their intensity, duration, timing and distribution of circulating viruses [34], we also 

performed the same CCF analyses separately for each of the three outbreaks to evaluate if our 

results would be consistent across influenza seasons. 

 

3.5.3 Transfer function models 

Transfer functions estimate the dynamic linear relation between an input and an output 

series. A transfer function model is therefore an ARIMA model that predicts a value in the output 

time series as a linear combination of its own past values, past errors, and current and past values 

of other time series.  

We assessed the value of NI dispensing data for the prediction of influenza activity using 

transfer function models [26, 102, 105]. First, we differenced, log-transformed and pre-whitened 

each series as previously described. Then, bivariate and multivariate Box-Jenkins transfer 

function models were developed to describe the relationship between the pre-whitened output 

series (laboratory surveillance data) and each of the pre-whitened input series (NI dispensing and 

ED ILI visits). Only positive lags with a significant cross-correlation were considered. Log-
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transformations of the series were considered when model assumptions were not easily met by 

models constructed from the untransformed series. The AICc of the ARIMA model of the output 

series was used as a yardstick when comparing the informative potential of different transfer 

function models. An input series was considered to be a useful predictor if its inclusion lowered 

the AICc. 

 

3.5.4 Sensitivity analyses 

To measure influenza activity, surveillance systems frequently monitor the proportion of 

the number of positive influenza tests over the total number of influenza tests performed [112, 

113]. Applying a denominator is thought to account for the fact that health care seeking behavior 

and physician propensity to test may be influenced by factors unrelated to the level of influenza 

circulation. For instance, during holidays or during severe weather, patients may be less likely to 

consult for influenza infection; proportions may be insensitive to this effect and thus, compared 

to counts, better reflect the prevalence of circulating virus. Holidays (and the accompanying 

delay in test turnaround time), the presence of other circulating viruses, and results of recent 

influenza surveillance reports may also affect a physician’s likelihood to test for influenza. 

However, we did not use proportions in our primary analyses; we chose to use laboratory counts 

and ILI counts. The primary reason for this choice was that we did not have access to an 

appropriate denominator for NI dispensing (e.g., total number of all drugs dispensed). Using a 

denominator to account for time-varying healthcare utilization phenomena in our reference series 

but not in our NI data might bias our results. The use of proportions to measure influenza activity 

also has the disadvantage that the denominator is influenced by the presence or absence of other 

cyclical diseases that are not related to influenza. For instance, when monitoring proportions of 

ED visits for ILI, if there is a gastroenteritis outbreak during the winter, then the total number of 
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ED visits will be inflated and will bias towards a relative underestimation of influenza activity. 

Similarly, during peak RSV season, physicians will perform more influenza tests (RSV may 

present like influenza) thereby lowering the proportion of positive tests for influenza, even if the 

prevalence of influenza is in reality unchanged.  

Nevertheless, to assess if our results were robust to the use of proportions as opposed to 

counts, we reran our CCF and prediction model analyses using the weekly proportion of positive 

influenza tests (weekly count of positive laboratory influenza tests / weekly count of influenza 

tests performed) as the reference time series and the weekly proportion of ILI ED visits (weekly 

count of ILI ED visits / weekly count of total ED visits) instead of ILI ED counts. 
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CHAPTER 4 – THE ACCURACY AND TIMELINESS OF 

NEURAMINIDASE INHIBITOR DISPENSING DATA FOR 

PREDICTING LABORATORY-CONFIRMED INFLUENZA 

 

4.1. Preamble 

 There is much interest in identifying syndromic surveillance data sources that could serve 

as a leading indicator for influenza activity, i.e., could provide earlier information for rapid 

outbreak detection and near real-time situational awareness. Pharmacy surveillance of outpatient 

prescription sales of the neuraminidase inhibitor (NI) class of influenza antivirals is currently 

being used as indicator of influenza activity by the Public Health Agency of Canada.  However, 

to date, studies evaluating the utility of antiviral dispensing have not controlled for 

autocorrelation. Therefore, previous estimates of the timeliness and correlation of antiviral 

dispensing in relation to established surveillance methods are likely to be biased.   

 In this manuscript, we evaluated the timeliness, correlation, and predictive accuracy of 

community pharmacy NI dispensing in relation to laboratory-confirmed influenza activity in 

Quebec, Canada, during 2010-2013. We did so by first applying ARIMA modelling to the data to 

control for autocorrelation, and then computing cross-correlations of the residuals of both series 

across various lags to assess timeliness and correlation. We also compared these results to those 

obtained with another commonly used influenza indicator, visits to hospital emergency 

departments for influenza-like illness (ILI). Finally, we assessed the predictive accuracy of both 

NI dispensing and ILI visits in modelling laboratory counts of influenza.  

 This manuscript has been formatted for submission to Clinical Infectious Diseases. 
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ABSTRACT 

 

Background: Neuraminidase inhibitor (NI) dispensing in community pharmacies has emerged as 

a possible automated data source for influenza surveillance. However, little is known about the 

utility of these data for influenza surveillance. We aimed to evaluate the timeliness, correlation, 

and predictive accuracy of community pharmacy NI dispensing in relation to laboratory-

confirmed influenza activity in Quebec, Canada, during 2010-2013. Our secondary objective was 

to compare these characteristics to those of surveillance for influenza-like illness (ILI) in 

emergency departments (ED), a commonly used source of surveillance data.  

Methods: Provincial weekly counts of positive influenza laboratory tests were used as a 

reference measure for the level of influenza circulation. We applied ARIMA models to account 

for serial correlation. We computed cross-correlations to measure the strengths of association and 

lead-lag-relationships of NI dispensing and ILI ED visits with our reference indicator. Finally, we 

evaluated the predictive value of NI dispensing and ILI ED visits in fitting an ARIMA model for 

laboratory–confirmed influenza.  

Results: NI dispensing was significantly correlated (R=0.68) with influenza activity at lag 0 and 

the earliest statistically significant correlation occurred with a lead-time of 1 week. The maximal 

correlation of ILI ED visits was not as strong (R=0.50), but peaked one week earlier. Both NI 

dispensing and ILI ED visits were significant predictor variables in a multivariable model of 

laboratory-confirmed cases; the predictive potential was maximal with NI counts lagged to 

precede laboratory surveillance by two weeks. 

Conclusions: NI dispensing data provides timely and valuable information for influenza 

surveillance. 
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Influenza surveillance is of public health importance. One of its primary goals is to 

provide public health officials and clinicians with early detection and situational awareness of 

influenza activity by determining the timing, location and degree of influenza circulation and 

associated diseases [1, 2]. Traditional data sources for influenza surveillance such as monitoring 

of positive influenza laboratory tests and medically attended influenza-related illnesses are 

typically associated with a reporting delay of as much as 1-2 weeks [3]. Consequently, public 

health researchers have sought novel electronic data sources that could provide timely 

information for rapid influenza outbreak detection [4, 5].  

It is estimated that there are over 2 million clinic visits per year for influenza in the United 

States [6]. Of these, approximately 20% receive a prescription for antiviral treatment. In Canada, 

the neuraminidase inhibitor (NI) class of medications (oseltamivir and zanamavir) is the only 

recommended empiric therapy for influenza since 2006 because of widespread resistance to 

adamantanes [7]. Monitoring NI dispensings from community pharmacy drug sales databases has 

recently emerged as a possible automated source of timely information regarding influenza [8]. 

Influenza activity in the outpatient setting tends to occur before an increased incidence of 

more severe disease [9-11]. Consequently, we hypothesized that changes in the weekly volume of 

outpatient antiviral prescriptions might precede changes in weekly counts of positive influenza 

tests and that NI dispensing could serve as an early indicator of epidemic influenza activity. 

Therefore, we aimed to evaluate retail pharmacy NI dispensing data as a novel automated 

influenza surveillance tool in Quebec, Canada, by assessing its timeliness, correlation, and 

predictive accuracy in relation to laboratory-confirmed influenza activity. Our secondary 

objective was to compare the above characteristics of the NI dispensing data to those of an 

established influenza surveillance data source, emergency department (ED) visits for influenza-

like illness (ILI).  
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METHODS 

Overview and study design 

In this ecological study, we compared the weekly time series of counts of NI dispensing 

and ED ILI visits to the weekly time series of positive influenza laboratory tests (as a reference 

measure of influenza circulation) over three years, for the period of July 4, 2010 to June 29, 2013, 

in the province of Quebec, Canada. We evaluated three key performance characteristics of the NI 

dispensing and ED ILI data streams for influenza surveillance: timeliness, correlation and 

predictive accuracy [12].    

Ethics approval was granted by the McGill University Faculty of Medicine Institutional 

Review Board  

 

Outcomes 

Timeliness, or lead-time, was assessed by exploring lead/lag relationships with the 

influenza laboratory surveillance data stream by cross-correlation function (CCF) analysis and by 

fitting Box-Jenkins transfer function models (see Data analysis section). A data source was 

considered timely if it demonstrated statistically significant cross-correlations at lags ≥ 0 i.e., 

when it was lagged relative to the reference series so as to precede it. Strength of correlation 

(Pearson’s R) [13] was measured by the greatest significant cross-correlation in the CCF. Finally, 

predictive accuracy was evaluated by fitting multivariable transfer function models to the 

laboratory-confirmed influenza time series. We defined the best model as the model with the 

lowest corrected Akaike Information Criterion (AICc). 
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Sources of data 

Provincial sentinel laboratory surveillance 

The Institut national de santé publique du Québec performs laboratory-based surveillance 

for influenza year-round [14]. Aggregate weekly counts of laboratory-confirmed influenza A or B 

detection (positive culture, antigen detection [immunofluorescence or enzyme immunoassay] or 

polymerase chain reaction results) and the number of tests performed in participating hospitals 

are collated and disseminated publicly. The surveillance program is passive (testing is performed 

at treating physicians’ discretion; cases are not actively sought) and laboratory participation is 

voluntary. However, all 18 Quebec health regions are represented and the number of hospitals 

providing data was stable throughout the study period (44 in 2010-11; 45 in 2011-12; 46 in 2012-

13). A sample of each season’s influenza isolates are characterised to estimate the proportion of 

each influenza subtype circulating that year and their antigenic similarity to the annual vaccine 

strain.  

We used the laboratory counts as our reference indicator for the level of influenza 

circulation because, due to the inaccuracy of clinical diagnostic criteria, laboratory testing is 

required to confirm influenza infection [15, 16]. Virological surveillance is therefore commonly 

used as both a data source and an outcome measure in influenza forecasting [17]. 

 

NI dispensing 

Aggregate weekly counts of NI prescriptions dispensed to outpatients in Quebec retail 

(non-hospital) pharmacies were obtained from IMS Brogan's Canadian Weekly CompuScript 

proprietary drug use database. The number of pharmacies providing weekly data ranged from 

1,071 to 1,080 (>60% of all Quebec retail pharmacies) over the study period.  
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ED visits for ILI 

Aggregate weekly counts of visits for ILI to a Quebec ED were obtained from the Daily 

Report on the Situation in Emergency Departments and Hospitals (Relevé quotidien de la 

situation à l’urgence et au centre hospitalier – RQSUCH) database. Each acute care hospital in 

Quebec is required to report the daily number of patients registering to the ED who present with 

the chief complaint of ILI, defined as fever and cough, as well as the total number of patients 

registering to the ED for any reason. These counts are entered manually by nurses or clerks in 

each hospital and are transmitted daily to local public health authorities and the Ministry of 

Health for healthcare utilisation surveillance. During our study, data completeness was 99.83%. 

 

Data analysis 

Analyses were performed using R version 2.14 (www.r-project.org) and SAS version 9.3 

(SAS Institute, Inc., Cary NC).  

 

CCF: analysis of timeliness and correlation 

The CCF is a frequently used measure of the association between two time series; it 

quantifies their correlation over a range of time lags [4, 10, 18]. However, the empirical CCF 

(estimated from the raw data) is highly prone to bias, especially when one or both data series 

exhibit temporal autocorrelation (i.e., the value on any given day is correlated with values on 

previous days). Because of the autocorrelation within each individual series, the empirical CCF 

of two unrelated time series can display significantly high but spurious correlations due to chance 

alone [19] or due to the confounding effect of a seasonal covariate [18, 20]. Long-scale 

phenomena (over months to years), such as the seasonality within a series, tend to overwhelm the 

CCF, obscuring the short-scale fluctuations (over weeks) that are more relevant to the 

http://www.r-project.org/
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surveillance of influenza outbreaks [21]. In order to overcome these problems, series are filtered 

(i.e., “pre-whitened”) to remove the effects of systematic patterns and long-term trends, such as 

seasonality, on the empirical CCF [21]. To pre-whiten the series we fit an autoregressive 

integrated moving average (ARIMA) model to the NI dispensing data by using the standard 

approach of identification, estimation and diagnostic checking of the residuals, thereby 

transforming the NI series into a white noise series with no autocorrelation [19, 22]. In the case of 

several models passing all diagnostic tests, the corrected Akaike’s Information Criterion (AICc) 

guided model selection [23]. The best fitting ARIMA model was then applied to the laboratory 

surveillance reference time series, and the CCF of the two residual series was estimated. From 

this CCF, we identified the lags at which the maximum and earliest statistically significant 

correlations occurred. We did the same for the ED ILI series to estimate the CCF the ED ILI 

series and the laboratory-confirmed series and then produced the CCF of the two residual series. 

A two-sided P value of <0.05 was considered statistically significant. Because influenza 

outbreaks can show important year-to-year variability in terms of their intensity, duration, timing 

and distribution of circulating viruses [24], we also performed the same CCF analyses separately 

for each of the three outbreaks to evaluate if our results would be consistent across influenza 

seasons. 

 

Transfer function models.  

We assessed the value of NI dispensing data for the prediction of influenza activity using 

ARIMA modelling [19, 22, 25]. First, we pre-whitened each series as previously described. Then, 

bivariate and multivariate Box-Jenkins transfer function models were developed to describe the 

relationship between the pre-whitened output series (laboratory surveillance data) and each of the 

pre-whitened input series (NI dispensing and ED ILI visits). Only positive lags with a significant 
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cross-correlation were considered. Log-transformations of the series were considered when 

model assumptions were not easily met by models constructed from the untransformed series. 

The AICc of the ARIMA model of the output series was used as a yardstick when comparing the 

informative potential of different transfer function models. An input series was considered to be a 

useful predictor if its inclusion lowered the AICc. 

 

Sensitivity analyses 

Health care seeking behaviour and physician propensity to perform laboratory testing for 

influenza vary over time. Applying a denominator to laboratory and ILI surveillance counts to 

account for such phenomena may modify estimates of influenza prevalence [1, 2]. Therefore, to 

assess if our results were robust to the use of a proportion as opposed to counts, we reran our 

CCF and prediction model analyses using the weekly proportion of positive influenza tests 

(weekly count of positive laboratory influenza tests / weekly count of influenza tests performed) 

as the reference time series and the weekly proportion of ILI ED visits (weekly count of ILI ED 

visits / weekly count of total ED visits) instead of ILI ED counts. No denominator for NI 

dispensing was available in our dataset. 

 

RESULTS 

NI dispensing 

There were 21,066 NI prescriptions dispensed during the study period (5,550 in 2010-11; 

3,347 in 2011-12; 12,169 in 2012-13). Of these dispensings, 20,999 (99.7%) were for 

oseltamivir. 
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Description of the 2010-11, 2011-12 and 2012-13 influenza seasons 

The time series of weekly laboratory confirmed influenza cases, NI retail pharmacy 

dispensing and ED ILI visits for the period of July 4, 2010 to June 29, 2013 are presented in 

Figure 4-1. The influenza types and sub-types circulating in Quebec during each season of the 

study period are described in Table 4-1. The 2010-11 and 2012-13 influenza seasons were both 

characterised by a predominance of A/H3N2 (87% and 78% of strains, respectively). However, 

the intensity of the 2012-13 epidemic was remarkable, with peak weekly counts that were more 

than twice as high as in 2010-11, and four times greater than during the relatively mild 2011-12 

season. In 2011-12, the outbreak was briefer and peaked later (March 2013), with concomitant 

circulation of both influenza A and B in roughly equal proportions (45% and 55%, respectively).  

 

Description of the NI and ILI series in relation to the influenza series  

Visually, the NI series closely tracked the laboratory influenza series (Figure 1). For the 

ILI ED series, although its seasonality was similar to that of the laboratory cases, there was a 

considerable volume of ILI presenting to Quebec EDs year-round, even when little or no 

influenza was circulating in the province. Moreover, in 2011-12, the peak in weekly ILI ED visits 

occurred in early January, before the seasonal influenza epidemic had even begun.  

 

CCF: correlation and timeliness 

 In the overall analysis, the CCFs for the NI series with the laboratory series demonstrated 

that NI dispensing temporally coincided with (maximal correlation at lag 0) and was strongly 

correlated with (correlation of 0.68) laboratory-confirmed influenza activity (Table 4-2).  

Assessing the CCF of these two series separately for each of the three seasons, these observations 

were consistent over the entire study, with maximal correlations of ≥ 0.5 occurring at lag 0 and 
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the earliest significant correlation at lag 1 in each individual season. The magnitude of the peak 

correlation with influenza activity was stronger for the NI series than the ILI series overall (0.68 

vs. 0.50) and in two of the three seasons (0.50 vs. 0.67 in 2010-11; 0.54 vs. 0.33 in 2011-12; 0.73 

vs. 0.61 in 2012-13). The timeliness of the ILI series showed mild variability in the year-to-year 

analysis, with peak correlations and earliest significant correlations occurring at either lags 0 or 1. 

 

Prediction models 

Unlike the estimation of the CCF, for the transfer function models the final results are 

based on an analysis of log-transformed series since model residuals of the transformed series 

more easily passed diagnostic tests for model assumptions. Using NI dispensing or ILI ED visits 

as input series in separate single-input Box-Jenkins transfer function models improved the fit of a 

predictive model for weekly counts of laboratory-confirmed influenza cases (Table 4-3).  In a 

multivariable model, both series were significant predictors of influenza counts. Including NI 

dispensing data at a lag of 2 weeks in this model optimised fit. 

 

Sensitivity analyses 

Repeating the analyses using the proportion of positive influenza tests as the reference 

time series and the proportion of ILI ED visits instead of ILI ED counts had little effect on the 

magnitude and direction of the associations that we observed. 

 

DISCUSSION  

 We found that NI dispensing from retail pharmacies was timely and strongly correlated 

with laboratory-confirmed influenza activity during the same week over three non-pandemic 

seasons. This association was observed after filtering to correct for autocorrelation, such as 
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seasonality, and is therefore a feature of the short-scale relationship between the two data streams 

[21]. NI dispensings were also a significant predictor of laboratory-confirmed influenza activity 

in a multivariable model. The model’s predictive potential was maximal when the log-

transformed NI time series was lagged to precede the log-transformed laboratory surveillance 

data by two weeks. 

 Traditionally, systems for monitoring influenza activity have relied on reports from 

diagnostic virology laboratories as their primary source of information. Such laboratory 

surveillance data are highly specific: all cases reported are confirmed influenza infections. 

However, in Quebec, as in many jurisdictions [17, 26], sentinel laboratories must first manually 

submit weekly data on a web portal and there is typically a delay of 1-2 weeks before the results 

are published. Because all prescriptions in Quebec are subject to electronic adjudication at the 

time of dispensing, the monitoring of NI sales represents a potentially feasible, less laborious, 

inexpensive, and automated surveillance method.  

 Previous studies in Quebec and elsewhere have shown that ambulatory care or ED-based 

syndromic surveillance data for acute respiratory illness or ILI can provide earlier signals for 

seasonal influenza outbreaks compared with measures of more severe disease, such as 

hospitalizations or mortality due to pneumonia and influenza [9-11].  Because community 

pharmacy NI dispensing represents milder infections treated as outpatients, we hypothesized that 

the NI data would lead the laboratory surveillance series, as the latter is primarily representative 

of patients hospitalised with severe disease [27]. Conversely, if clinicians’ knowledge of current 

levels of influenza circulation, based on laboratory surveillance reports, very strongly influences 

antiviral treatment, NI dispensing would lag behind this reference indicator. In our CCF analysis, 

however, the maximal cross-correlation between the NI and laboratory surveillance data was at 

lag zero and we also observed a significant cross-correlation at a lead-time of one week. 
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Moreover, when included in a regression model, the greatest predictive value of the NI series was 

with a lag of two weeks. Taken together, our observations suggest that, in addition to being a 

promptly available data source, NI prescriptions may also serve as an early indicator of epidemic 

influenza activity, especially when used for forecasting.  

Earlier studies have suggested that prescription drug dispensing might offer timely 

information regarding influenza activity, without necessarily quantifying a lead-lag relationship 

to an established reference time series.  Using a space-time permutation scan statistic, Greene et 

al compared the performance of 10 types of electronic clinical data, including antiviral dispensing 

(NIs and adamantanes), for the detection of clusters of illness related to influenza (though not 

necessarily laboratory-confirmed) during the 2007-08 influenza season in Northern California. 

[28]. Antiviral dispensing provided the earliest signal for one of the clusters, detected two of the 

four events, and produced no false alarms. During the second wave of the 2009 pandemic in 

Ontario, Canada, Aramini et al found that A/H1N1 counts were associated with NI prescriptions 

in a Poisson regression analysis; statistical significance was greatest when the series were not 

lagged by time (p <0.001) [31]. 

To date, assessments of the correlation between antiviral prescribing and influenza 

activity, including the Ontario study, have not accounted for autocorrelation and seasonality. 

Therefore, these estimates are likely to be biased. Furthermore, in contrast to our study, none of 

the prior work on NI dispensing compared it to more than one traditional data source, which is 

necessary to understand its usefulness in context with currently used methods. In Japan, local and 

national-level dispensing data demonstrated empirical correlations (R) of  > 0.95 with ILI sentinel 

surveillance data [26, 30].  In the national study, correlations during the 2009 A/H1N1 pandemic 

and the following season (2010-11) were very similar (R= 0.992 and 0.972, respectively) [26]. 

However, there was modest variability between prefectures and the lowest regional correlation 
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was 0.689.  In the United States Vaccine Safety Datalink Project, differences were observed 

between 8 different medical care organizations. The empirical correlations of weekly antiviral 

dispensings with the proportion of tests positive for influenza ranged from 0.34-0.72 [8].  

 As with all forms of syndromic surveillance, antiviral dispensings cannot be as specific an 

indicator of influenza activity as laboratory data. Several factors may contribute to “false-

positives”, i.e., occurrences of NI dispensing that do not represent an incident case of influenza 

infection. First, while we expect that the majority of prescriptions were for treatment of acute 

illness, our data did not allow us to assess indication. Prophylaxis has been estimated to be the 

indication for <10% of antiviral dispensing in the 2000-2010 Vaccine Safety Datalink Project 

study [8]. That proportion is probably even smaller in our Quebec data; since the 2009 A/H1N1 

pandemic, early treatment is preferred over prophylaxis due to concerns regarding emergence of 

drug resistance [7, 32]. Although personal stockpiling of antivirals is discouraged [33], evidence 

of such activity has been reported when spikes in NI sales coincided with media coverage of 

highly pathogenic H5N1 influenza, but not with other markers of influenza activity, such as 

laboratory and ILI surveillance [34]. Significant amounts of stockpiling might therefore trigger a 

false alarm for an influenza outbreak. However, if the monitoring of NI dispensing is performed 

as part of a multistream surveillance program, it offers the opportunity for public health officials 

to recognize inappropriate prescribing and intervene to reduce the risk of lack of availability of 

treatment for those that need it most [33, 35]. 

 Outpatient antiviral treatment of influenza is rarely based on laboratory testing, in large 

part because test results are not available during the patient encounter. It has been estimated that 

only 3-6% of outpatients treated with antivirals in the United States were tested for influenza [8]. 

Since NIs are therefore being prescribed empirically based on a clinical syndrome [7], it is 

intriguing that our NI dispensing series was clearly more specific than our ED ILI data and that 
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trends in NI dispensing and laboratory surveillance data were so closely associated, even after 

correcting for seasonality. We believe that prescribers’ prior knowledge of circulating levels of 

influenza contributes to, but cannot fully account for this phenomenon. Laboratory surveillance 

results take >1 week before being published and our NI data coincided with or led laboratory 

surveillance by 1-2 weeks. Fiejté et al reported that, during the second wave of the 2009 A/H1N1 

pandemic, in Utrecht, Netherlands, among patients prescribed oseltamivir in the community 

setting, those in whom the decision to treat was in accordance with national guidelines more 

frequently started their course of therapy compared to those in whom the treatment decision was 

deemed inappropriate (97.4% vs. 55.9%, P <.001). Thus, it appears that patients’ behaviour after 

the medical visit affects NI dispensing counts and that those with more severe symptoms or those 

more likely to be infected with influenza may also be more likely to fill their prescription.  

  Among the limitations of our study, we note that our data did not allow for age-stratified 

analyses. Patient age influences influenza transmission dynamics and, consequently, data 

timeliness. Studies using laboratory-based [36] and syndromic surveillance [9, 10] have 

demonstrated that data from children offer the earliest lead-times. Identifying the age groups that 

provide the timeliest data might further improve the utility of monitoring antiviral dispensings. 

We were also unable to determine if NI data timeliness and correlation with influenza activity are 

consistent geographically across Quebec. Therefore, despite the fact that our data were collected 

province-wide, results may not be valid for all 18 health regions. Another caveat is that NI 

dispensing data may not have the same performance characteristics during a pandemic period 

when disease severity, age distribution, timing within the calendar year, media coverage, 

medical-seeking behaviour, and physician propensity to test and treat can differ greatly from 

seasonal influenza.  Furthermore, indications for NI treatment and NI prescription rates vary 

significantly across countries [37]. Consequently, our results may not be applicable in 
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jurisdictions without similar access to prescription drugs. Finally, estimating true influenza 

incidence from laboratory or ILI surveillance remains a challenge [1, 25, 38]. Therefore, any 

reference indicator used to assess NI dispensing will be imperfect and results may vary based on 

the choice of comparator.  

 We took several measures to ensure the validity of our results. Chiefly, we pre-whitened 

the time series prior to estimating correlations between them, removing autocorrelation and 

thereby reducing the possibility of biased measures of association [18]. Also, by filtering the 

effect of seasonality, we focused on the short scale features of the lead-lag relationships to 

produce estimates applicable to the detection of rapidly evolving influenza outbreaks [21]. 

Furthermore, the choice of ARIMA methodology for building prediction models is well suited for 

shorter-term forecasting, as it places greater weight upon recent past values [22]. Finally, year-

by-year analyses demonstrated that our estimates were stable to variations in epidemic season 

timing, duration, overall severity, peak intensity and antigenic characterisation of the 

predominant strains. 

 In summary, the correlation, timeliness and predictive ability of NI dispensing data in 

relation to laboratory-confirmed influenza activity that we report here suggest that this readily 

available data stream could act as a leading indicator for outbreak detection. Monitoring NI 

dispensing, especially in parallel to traditional sources of surveillance data, should increase 

public health practitioners’ situational awareness of influenza activity thereby facilitating timely 

interventions and resource management.   
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Table 4-1. Circulating influenza strains, by season, from 2010 to 2013 in Quebec, Canada. 

 

Season A, H1N1 subtype 

(%)
a
 

A, H3N2 subtype 

(%)
a
 

B, Yamagata lineage 

(%)
a
 

B, Victoria lineage 

(%)
a
 

2010-

11 

A/California/07/2009 

(2) 

A/Perth/16/2009 

(87) 

*B/Wisconsin/01/2010 

(0.4) 

B/Brisbane/60/2008 

(10.6) 

2011-

12 

A/California/07/2009 

(24) 

A/Perth/16/2009 

(21) 

*B/Wisconsin/01/2010 

(6) 

B/Brisbane/60/2008 

(49) 

2012-

13 

A/California/07/2009 

(5) 

A/Victoria/361/2011 

(78) 

B/Wisconsin/01/2010 

(16) 

*B/Brisbane/60/2008 

(1) 

 

a
 Estimated percentage of total circulating strains for that year, based on genetic and antigenic 

characterisation of a sample of provincial surveillance viral isolates from throughout the season. 

* Strains not included in that year’s trivalent seasonal influenza vaccine 

Bold face indicates the predominant circulating strain for that season  
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Table 4-2.  Correlation coefficients in the cross-correlation functions between the time series of 

neuraminidase inhibitor prescription dispensing, acute-care hospital emergency department visits 

for influenza-like illness, and a common reference time series of laboratory confirmed influenza 

cases in Quebec, Canada, 2010 to 2013. 

 

Time series 

Peak correlation 

Earliest statistically  

significant correlation 

Lag (weeks) Correlation Lag (weeks) Correlation 

Overall (2010-2013)     

NI 0 0.68 1 0.22 

ILI ED  1 0.50 1 0.50 

2010-2011     

NI  0 0.50 1 0.34 

ILI ED  0 0.67 1 0.32 

2011-2012     

NI  0 0.54 1 0.44 

ILI ED  0 0.35 0 0.35 

2012-2013     

NI  0 0.73 1 0.22 

ILI ED  1 0.61 1 0.61 

 

NI, neuraminidase inhibitor 

ILI, influenza-like illness 



 

 

 71 

ED, Emergency department  
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Table 4-3. Fitted ARIMA model and Box-Jenkins transfer function models for the prediction of 

weekly cases of laboratory-confirmed influenza infection. 

 

Time series Form (p, d, q)
 a
 Lag (weeks)

 b
 P value

  c
 AICc 

Laboratory influenza cases 4,1,0 NA NA 270.3 

Single input models 

NI dispensing 4,1,0 +2 0.020 263.1 

ED visits for ILI 4,1,0 0 0.001 262.6 

Multivariable model (two input series) 

NI dispensing 0,1,4 +2 0.030 

255.6 

ED visits for ILI 0,1,4 0 0.001 

 

a
 Where p represents the order of the autoregressive term, d represents the order of differencing, 

and q represents the order of the moving average term 

b
 The positive lag (i.e., lead-time, when the input series is lagged to precede the reference 

indicator output series) with a statistically significant cross-correlation that minimized the AICc, 

and optimised model fit 

c
 The P value of the coefficient for the input series   

ARIMA, autoregressive integrated moving average 

AICc, Akaike’s Information Criterion corrected  

NA, not applicable  
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NI, neuraminidase inhibitor 

ILI, influenza-like illness 

ED, Emergency department 

 

 

 

 

 



 
 

 

 

Figure 4-1. Time series plots of the weekly counts of neuraminidase inhibitor (NI) prescriptions dispensed, acute-care hospital 

emergency department (ED) visits for influenza-like illness (ILI), and laboratory confirmed cases of influenza in Quebec, Canada, 

2010 to 2013. 



 
 

 

 

CHAPTER 5 - SUMMARY AND CONCLUSIONS 

  

In this dissertation, we evaluated the utility of monitoring NI dispensing in community 

retail pharmacies as a surveillance method for influenza at the provincial level, using time series 

methodology to account for autocorrelation. We compared NI dispensing to a reference standard 

for influenza activity, laboratory surveillance of influenza cases. The correlation, timeliness and 

predictive accuracy of NI dispensing data in relation to laboratory-confirmed influenza activity 

suggest that this readily available data stream could be used as a leading indicator for outbreak 

detection and situational awareness during seasonal epidemics. These observations were 

consistent over time, despite the different characteristics (timing, duration, peak intensity, vaccine 

effectiveness, and distribution of influenza subtypes) displayed by each of the three influenza 

seasons studied. To place our results in context with current influenza surveillance practice, 

which typically monitors several information sources in parallel, we performed our evaluation of 

NI dispensing data alongside an identical analysis of ED visits for ILI, a commonly used 

syndromic surveillance data stream. 

Our results, their comparison with the literature, and their limitations were already 

discussed in the manuscript (chapter 4). In this chapter, a few additional issues will be addressed, 

in particular with regards to some of the implications of our findings for public health practice. 

Analysis of aggregate weekly data allowed us to estimate the timeliness, strength of 

association and predictive accuracy of NI dispensing in relation to laboratory surveillance for 

influenza. However, several other important attributes for surveillance [11, 81, 91], introduced in 

section 2.2.2 of this thesis, could not be evaluated in the context of our study.  
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 Estimating the sensitivity and positive and negative predictive values of NI 

prescriptions for detecting individual cases of influenza would require diagnostic 

accuracy assessment of individual-level data against a reference standard diagnostic 

method. Regarding the sensitivity and predictive values for detecting influenza 

outbreaks, an potential approach would be to employ aberration detection algorithms 

[114] (e.g., cumulative sum [CUSUM], exponentially-weighted moving average or 

scan statistics methods) that generate alerts when a certain threshold is exceeded.  

 The simplicity of NI surveillance was not formally assessed in this study, but we 

expect that it would be high, as very little data is necessary to establish that the health-

related event being monitored has occurred; also, data collection and management 

should be straightforward because the data are available electronically.  

 Monitoring prescription drug data may require public health agencies to establish 

partnerships with the owners of prescription sales data (health maintenance 

organisations, commercial providers of information services [e.g., IMS Brogan], or 

large retail pharmacy chains). The willingness of private partners to participate in such 

a program (acceptability) might be challenged by confidentiality issues, resource 

constraints, and lack of financial incentives. However, in jurisdictions with universal 

health care and electronic medical records, the public health agency may have ready 

access to such data for surveillance purposes.  

 Establishing data quality would require a verification of the completeness and validity 

of the NI dispensing data. Although we could not perform such a verification for the 

Canadian Weekly CompuScript database used in this thesis, IMS Brogan informed us 

that they have standard operating procedures for quality control and quality assurance. 
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 To assess the flexibility of NI monitoring, we would need to observe how such a 

surveillance system would respond to a new demand; for instance, the addition of a 

new medication to the NI class of drugs or a request to analyse daily (instead of 

weekly) counts.  

 We found that the representativeness of NI dispensing as an indicator of influenza 

activity at the provincial level appears to be very good and did not fluctuate over time 

(three years). However, as discussed in Chapter 4, we could not assess this attribute 

across age groups or across geographic areas, nor do we know how it would perform 

during a pandemic.  

 The stability of an NI surveillance system (i.e., the ability to collect, manage, and 

provide data properly without failure) is a very practical matter that will vary across 

databases, data providers, and the influenza monitoring program that the data is being 

reported to.  

 

Despite the positive results presented in this thesis, it is unlikely that NI dispensing would 

be used as the sole indicator of influenza activity by a surveillance program. Although NI 

prescribing usually reflects a high degree of suspicion for influenza infection on the part of 

prescribing physician, it remains an indirect measure of influenza circulation – like all forms if 

syndromic surveillance. Behaviours unrelated to true influenza activity, such as stockpiling in the 

context of increased media coverage relating to potential influenza pandemics, can influence NI 

dispensing counts [115].  While these types of events might occasionally threaten the validity of 

NI sales as an indicator of influenza activity, they provide an additional motivation to collect this 

information. Oseltamivir and zanamivir are limited resources; shortages of oseltamivir have 
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occurred in North America, especially during peaks of influenza activity [116, 117]. Monitoring 

NI dispensing could allow public health officials to recognize impending shortages earlier and 

intervene in a timely manner to reduce the risk of lack of availability of treatment for those that 

need it most. A Dutch evaluation of multistream syndromic surveillance judged that there was 

value in following NI prescriptions during the 2009 A/H1N1 pandemic: “early in the pandemic, 

the reaction of the public to media reports on pandemic influenza was illustrated by sharp 

elevations in the number of oseltamivir prescriptions. This information was used to urge 

physicians to exercise restraint in prescribing oseltamivir, in order to decrease the risk of 

oseltamivir shortage and viral resistance later in the pandemic” [90]. 

In summary, in this thesis I have presented the first evaluation of the utility of NI 

dispensing data that used robust time-series analysis methods to account for autocorrelation. I 

demonstrated that this readily available and easily accessible electronic data source provides 

timely and accurate information for influenza surveillance. My findings suggest that influenza 

antiviral dispensing counts could provide early information and act as a leading indicator for 

outbreak detection. This novel syndromic surveillance method, especially in parallel to traditional 

sources of surveillance data, should increase public health practitioners’ and clinicians’ 

situational awareness of influenza activity, thereby facilitating timely population-level 

interventions and resource management, and informing testing and treatment decisions at the 

individual patient level.   
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