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Un merci très spécial à ma famille, qui m’a toujours encouragée et supportée dans mes

divers projets. Merci particulièrement à Véronique et à ma mère Esther pour toutes les
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Abstract

Mathematical modeling can help providing better understanding of the nature and

characteristics of regulatory processes in hematology. We first review different

mathematical approaches used for modeling so-called dynamical hematological diseases,

which are characterized by oscillations in one or more blood cell lines. Then, we present

two delay differential equation (DDE) models of the hematopoietic system designed for

the study of the effects of Granulocyte-Colony Stimulating Factor (G-CSF)

administration. G-CSF is used clinically for treating subjects presenting low numbers of

white blood cells, a condition referred to as neutropenia that can result from different

causes. However, even though G-CSF is widely used in clinical practice, it is not clear

whether the standard G-CSF administration schedule is optimal. The aim of this work is

to study alternative treatment regimens that would optimize the use of G-CSF using a

mathematical modeling approach. The first model we propose is a comprehensive model

that considers G-CSF administration for cyclical neutropenia, a dynamical disorder

characterized by oscillations in the circulating neutrophil count. The second model

focuses on the effects of two recombinant forms of G-CSF (filgrastim and pegfilgrastim)

for the treatment of chemotherapy-induced neutropenia. For each model, we use a

combination of mathematical analysis and numerical simulations to study alternative

G-CSF treatment regimens that would be efficient while reducing the amount of drug.

We found that the dynamical properties of the model could be exploited for designing

better G-CSF treatment strategies.
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Résumé

La modélisation mathémathique est un outil qui permet d’obtenir une meilleure

compréhension des différents processus de régulation en hématologie. Dans un premier

temps, nous revisons différentes approches qui sont utilisées pour modéliser les maladies

hématologiques dites dynamiques. Celles-ci sont caractérisées par la présence

d’oscillations dans le niveau d’un ou de plusieurs types de cellules sanguines. Ensuite,

nous présentons deux nouveaux modèles d’équations différentielles à délais (EED) du

système hématopöıétique, qui sont dédiés à l’étude des effets de l’administration du

granulocyte-colony stimulating factor (G-CSF). Le G-CSF est utilisé en pratique pour

traiter les patients dont le niveau de globules blancs est faible, une condition appelée

neutropénie, qui peut survenir dans plusieurs contextes. Cependant, même si le G-CSF

est largement utilisé dans le milieu médical, il n’est pas clair que le protocole

d’administration standard soit optimal. L’objectif de cette thèse est d’étudier des

protocoles de traitement alternatifs qui optimiseraient l’utilisation du G-CSF en utilisant

une approche de modélisation mathématique. Le premier modèle que nous proposons est

un modèle qui inclut tous les types de cellules sanguines et qui considère l’administration

du G-CSF dans le cas de la neutropénie cyclique, une maladie caractérisée par la présence

d’oscillations dans le nombre de globules blancs, de plaquettes et de globules rouges.

Dans le second modèle, nous nous intéressons aux effets de deux formes de G-CSF

(filgrastim et pegfilgrastim) qui sont utilisés pour traiter la neutropénie qui survient

fréquemment suite à la chimiothérapie. Pour chacun des modèles, nous utilisons une

combinaison d’analyse mathématique et de simulations numériques pour étudier des

traitements alternatifs de G-CSF qui seraient efficaces tout en réduisant la quantité de

médicament utilisée. Nos résultats suggèrent que les propriétés dynamiques du système

pourraient être exploitées afin d’élaborer de meilleures stratégies de traitement.
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Chapter 1

Introduction

In this Chapter, we briefly present the characteristics of the regulation and production of

blood cells. We also introduce the clinical features of the use of granulocyte-colony

stimulating factor (G-CSF) for treating low levels of white blood cells. A comprehensive

introduction to the subject is presented in Chapter 2.

1.1 Presentation of the subject

Red blood cells, white blood cells and platelets are all derived from the same source: the

hematopoietic stem cells. Production of these different cell types (hematopoiesis) is very

important and gives rise to an enormous number of cells. For example, adult humans

produce the equivalent of their body weight in red cells, white cells and platelets every 7

years (Mackey (2001)). To better understand the mechanisms involved in the regulation

of hematopoiesis, several mathematical models have been put forward over the past few

decades. In particular, the existence of periodic hematological disorders, in which the

levels of one or more cell types display oscillations, have been shown to be very useful.

Indeed, with the use of dynamical systems theory, bifurcation theory and other

mathematical tools, the modeling and analysis of their dynamical properties has revealed

interesting insight into the underlying control mechanisms for this system. A

comprehensive review of the different mathematical approaches used for modeling four

periodic hematological diseases (periodic auto-immune hemolytic anemia, cyclical

thrombocytopenia, cyclical neutropenia and periodic chronic myelogenous leukemia) is

presented in Chapter 2.
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The most studied periodic dynamical disorder is probably cyclical neutropenia (CN), a

disease in which blood neutrophils counts oscillate between normal and barely detectable

levels. Neutrophils act as the primary defense of the organism against infection. Thus,

neutropenia, a condition is which the neutrophil levels are low, often leads to an increased

risk of infections and can have serious consequences. The standard treatment for CN is

daily doses of granulocyte-colony stimulating factor (G-CSF), which has the effect of

stimulating neutrophil production. Although this treatment has been proven to be

efficient, it is expensive and may have some undesirable side effects. In Chapter 3, we

develop a delay differential equation (DDE) model of the hematopoietic system that we

couple with an ordinary differential equation (ODE) pharmacokinetic model of G-CSF.

Parameters of the model are based on experimental data from seven CN dogs. Using

numerical simulations, we study alternative G-CSF treatment strategies for each of the

seven dogs. We show that G-CSF administration may lead to different qualitative

responses.

Neutropenia often occurs following chemotherapy and G-CSF is also used for treating

chemotherapy-induced neutropenia. Two distinct forms of G-CSF are used clinically:

filgrastim (daily doses) and pegfilgrastim (only one dose per chemotherapy cycle). In

Chapter 4, we develop a DDE model for the production of neutrophils, coupled with an

ODE model for G-CSF administration (parameters differ for filgrastim and pegfilgrastim).

This model focuses on known effects of G-CSF following chemotherapy by using explicit

functions for modeling amplification, aging velocity and death rates. The aim of this

study is to optimize G-CSF treatment schedules by studying the effects of varying the

starting day of G-CSF treatment as well as its duration. Numerical simulations and

analysis of the dynamical properties of the model are performed and reveal the

coexistence of two stable solutions.

1.2 Organization of the thesis

Chapter 2 provides a comprehensive review of dynamical hematological diseases and

presents the different mathematical methods used for modeling hematopoiesis. It is based

on a paper that has been accepted for publication (C. Foley and M.C. Mackey.

Dynamical Hematological Disease: A review, Journal of Mathematical Biology, 2008).

Chapter 3 studies alternative G-CSF treatment strategies for cyclical neutropenia using a
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full model of the hematopoietic system. This work has been published (C. Colijn, C.

Foley and M. C. Mackey. G-CSF treatment of canine cyclical neutropenia: A

comprehensive mathematical model, Experimental Hematology, 35, 898-907, 2007).

Chapter 4 proposes a new DDE model and uses it to study non-standard schedules for

two forms of G-CSF following chemotherapy. A version of this chapter has been

submitted for publication (C. Foley and M. C. Mackey. Optimizing G-CSF treatment

following chemotherapy, Journal of Theoretical Biology, 2008). The thesis concludes with

a discussion and possible future work in Chapter 5.
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Chapter 2

Dynamic Hematological Disease: A

review

Dynamic hematological diseases (also called periodic hematological diseases) are

characterized by oscillatory behaviours in one or more cell lines. They have been

intensively modeled due to their interesting dynamical nature. In this chapter, we review

the basic characteristics of four periodic hematological disorders (periodic auto-immune

hemolytic anemia, cyclical thrombocytopenia, cyclical neutropenia and periodic chronic

myelogenous leukemia) and examine the role that mathematical modeling and numerical

simulations have played in our understanding of the origin of these diseases and in the

regulation of hematopoiesis.

A version of this chapter has been accepted for publication: C. Foley and M.C. Mackey,

Dynamical Hematological Disease: A review, Journal of Mathematical Biology, 2008.

Although the majority of the above-cited paper is part of this chapter, some material has

been altered to give coherence and continuity to the thesis.

2.1 Introduction

Based on the analysis of simple mathematical models for Cheyne-Stokes respiration and

periodic hematological diseases, Mackey and Glass (1977) speculated that there were

dynamical diseases “· · · characterized by the operation of a basically normal physiological

control system in a region of physiological parameters that produces pathological

behavior.” Their work suggested “· · · the following approaches: (i) demonstrate the onset
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of abnormal dynamics in animal models by gradual tuning of control parameters;’ (ii)

gather sufficiently detailed experimental and clinical data to determine whether sequences

of bifurcations · · · actually occur in physiological systems; and (iii) attempt to devise

novel therapies for disease by manipulating control parameters back into the normal

range.” This programme has been especially successful within a hematological context

over the past three decades.

Periodic hematological diseases are particularly interesting from a modeling point of view,

due to their dynamical behaviors. Mathematical models (and their numerical simulations)

of periodic hematological disorders have contributed substantially to the understanding of

general regulatory principles of hematopoiesis and also provided insight into clinically

relevant treatment strategies. In this paper, we review some of the mathematical models

that have been developed over the years and recount how they have been of use. In

Section 2.2, we first review the normal aspects of the regulation and production of blood

cells as well as the basic characteristics of some periodic hematological disorders. Then, in

Section 2.3, we present the different mathematical tools that are typically useful for

modeling in hematology. Section 2.4 reviews the approaches used for modeling four

periodic hematological diseases, namely periodic auto-immune hemolytic anemia (AIHA),

cyclical thrombocytopenia (CT), cyclical neutropenia (CN) and periodic chromic

myelogenous leukemia (PCML). For each of these diseases, we review the mathematical

models as well as the knowledge of the disease gained from their mathematical analysis.

The paper concludes with a discussion in Section 2.5.

2.2 Normo- and Pathophysiological Hematopoiesis

In this section, we briefly review normal hematopoiesis and provide a short description of

some hematological diseases that have helped to elucidate the regulatoiry mechanisms of

hematopoiesis.

2.2.1 Normal hematopoiesis

Hematopoiesis is the term used to describe the production of blood cells. This process is

initiated in the bone marrow by the hematopoietic stem cells (HSCs). These cells are self

replicating, and produce all types of blood cells. The HSC can produce partially

differentiated progenitor cells (assayted by the colony-forming units (CFU-Mix)), which
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can then differentiate into committed cells that give rise to one of the cell lineages:

thrombocytes (platelets), erythrocytes (red blood cells (RBC)) or leucocytes (white blood

cells (WBC)) (see Figure 2.1). Although all blood cells originate from this common

source, the mechanisms that regulate their production are not completely clear.

Nevertheless, the production of erythrocytes (erythropoiesis) and platelets

(thrombopoiesis) appears to be regulated by specific cytokines via a negative feedback

mechanisms whereas granulopoiesis is perhaps more complicated and thus less clearly

understood. We briefly present these processes below.

The growth factor (cytokine) mainly involved in the regulation of erythrocyte production

is erythropoietin (EPO). EPO production adjusts to the demand for oxygen in the body

such that if there is a decrease in the O2 levels in tissues, there will be an increase in EPO

levels. This, in turn, will trigger increased production of primitive erythrocytes precursors

(colony-forming units-erythroid (CFU-E)) partially mediated by interfering with apoptosis

in these cells (Hardee et al. (2006), Koury and Bondurant (1991)). These cells will

mature and eventually (after a maturation delay) produce new erythrocytes. As a result,

the erythrocyte population will be increased and so will the oxygen carrying capacity of

the blood. Hence, EPO mediates a negative feedback such that a decrease (increase) in

the number of erythrocytes leads to an increase (decrease) in erythrocyte production.

The regulation of platelet production (thrombopoiesis) involves similar feedback

mechanisms mediated by the cytokine thrombopoietin. If the circulating platelets count is

decreased, it triggers thrombopoietin production which then stimulates maturation of the

platelet progenitor cells (colony-forming units-megakaryocyte (CFU-Meg)). This

eventually leads to an increase in platelet production, again partially mediated by a

decrease in megakaryocyte apoptosis (Ritchie et al. (1997)).

There are three types of leucocytes, namely the lymphocytes, the granulocytes and the

monocytes. We will focus our attention on granulopoiesis (production of granulocytes)

and more specifically on neutrophils, which constitute the most abundant type of

granulocyte, since cyclical neutropenia is the periodic hematological disease on which the

greatest amount of published clinical data exists. The mechanisms regulating

granulopoiesis involve the cytokine granulocyte-colony stimulating factor (G-CSF), which

is the main regulator of neutrophil production (Kaushansky et al. (1996)). It stimulates

the formation of neutrophils from hematopoietic stem cells, accelerates the formation of

neutrophils in the bone marrow and stimulates their release from the bone marrow into
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Fig. 2.1 Schema of the hematopoietic system, giving a schematic represen-
tation of the architecture and control of platelet (P), red blood cell (RBC),
and monocyte (M) and granulocyte (G) (including neutrophil, basophil and
eosinophil) production. Presumptive control loops mediated by thrombopoi-
etin (TPO), erythropoietin (EPO), and the granulocyte colony stimulating
factor (G-CSF) are indicated, as well as a local regulatory (LR) loop within
the pluripotent hematopoietic stem cell (HSC) population. CFU (BFU) refers
to the various colony (burst) forming units (Meg = megakaryocyte, Mix =
mixed, E = erythroid, and G/M = granulocyte/monocyte) which are the in

vitro analogs of the in vivo committed stem cells (CSC). Taken from Haurie
et al. (1998) with permission.
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the blood. Although the exact mechanisms by which G-CSF acts are still unclear, it has

been shown to decrease the transit time through the neutrophil postmitotic pool and

increase maturation rate (Lord et al. (1989), Price et al. (1996)) while interfering with

apoptosis (Basu et al. (2002)). Several studies have shown an inverse relationship between

the serum levels of G-CSF and the number of circulating neutrophils (Kearns et al.

(1993b), Mempel et al. (1991), Takatani et al. (1996), Watari et al. (1989)).

2.2.2 Dynamical diseases in hematology

Periodic hematological disorders are classical examples of dynamical diseases (Glass and

Mackey (1988); Mackey and Glass (1977)). Because of their dynamical properties, they

offer an almost unique opportunity for understanding the nature of the regulatory

processes involved in hematopoiesis. Periodic hematological disorders are characterized by

oscillations in the number of one or more of the circulating blood cells with periods on the

order of days to months (Haurie et al. (1998)). In this section, we briefly review the

clinical aspects of four periodic hematological disorders (see Figure 2.2 for examples of

experimental data for each disease). The first two, periodic auto-immune hemolytic

anemia (AIHA) and cyclical thrombocytopenia (CT), involve oscillations in only one cell

lineage. In the other two diseases, cyclical neutropenia (CN) and periodic chronic

myelogenous leukemia (PCML), there is cycling in all of the major blood cell groups.

This suggests that these disorders may involve a dynamic destabilization at the stem cell

level, leading to oscillations in all cell lineages.

Periodic auto-immune hemolytic anemia

Auto-immune hemolytic anemia (AIHA) results from an abnormality of the immune

system that produces autoantibodies, which attack red blood cells as if they were

substances foreign to the body. It leads to an abnormally high destruction rate of the red

blood cells. Periodic AIHA is a rare form of hemolytic anemia in humans (Ranlov and

Videbaek (1963)) characterized by oscillatory erythrocyte numbers about a depressed

level. The origin of the disease is unclear. Periodic AIHA, with a period of 16 to 17 days

in hemoglobin and reticulocyte counts, has been induced in rabbits by using red blood

cell auto-antibodies (Orr et al. (1968)).
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Fig. 2.2 Examples of experimental data for four hematological diseases.
AIHA: Reticulocyte numbers (×104 cells/µL) in an AIHA subject. Adapted
from Orr et al. (1968) with permission. CT: Cyclical fluctuations in
platelet counts (×103cells/µL). From Yanabu et al. (1993). CN: Circulat-
ing neutrophils (×103cells/µL), platelets (×105cells/µL) and reticulocytes
(×104cells/µL) in a cyclical neutropenic patient. From Guerry et al. (1973)
with permission. PCML: White blood cell (top) (×104cells/µL), platelet (mid-
dle) (×105cells/µL) and reticulocyte (bottom) (×104cells/µL) counts in a
PCML patient. From Chikkappa et al. (1976) with permission.
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Cyclical thrombocytopenia

Platelets are blood cells whose function is to take part in the clotting process, and

thrombocytopenia denotes a reduced platelet (thrombocyte) count. In cyclical

thrombocytopenia (CT), platelet counts oscillate generally from very low values (1 × 109

cells/L) to normal (150 − 450 × 109 platelets/L) or above normal levels (2000 × 109

cells/L) (Swinburne and Mackey (2000)). These oscillations have been observed with

periods varying between 20 and 40 days (Cohen and Cooney (1974)). In addition,

patients may exhibit a variety of clinical symptoms indicative of impaired coagulation

such as purpura, petechiae, epistaxis, gingival bleeding, menorrhagia, easy bruising,

possibly premenstrually, and gastrointestinal bleeding (Swinburne and Mackey (2000)).

There are two proposed origins of cyclical thrombocytopenia. One is of auto-immune

origin and most prevalent in females. The other is of amegakaryocytic origin, more

common in males.

Autoimmune cyclical thrombocytopenia is characterized by a shortened platelet lifespan

at the time of decreasing platelet counts (Beutler et al. (1995)). This is consistent with

normal to high levels of bone marrow megakaryocytes and with an increased destruction

rate of circulating platelets (Swinburne and Mackey (2000)). Autoimmune CT has also

been postulated to be a rare form of idiopathic (immune) thrombocytopenic purpura

(ITP) (Beutler et al. (1995)).

The amegakaryocytic form of CT is characterized by oscillations in bone marrow

megakaryocytes preceding the platelet oscillations (Balduini et al. (1993); Bernard and

Caen (1962); Dan et al. (1991); Engstrom et al. (1966)). In this second type of CT,

platelet oscillations are thought to be due to a cyclical failure in platelet production

(Bernard and Caen (1962); Cohen and Cooney (1974); Dan et al. (1991); Engstrom et al.

(1966); Hoffman et al. (1989); Lewis (1974)). The platelet lifespan is usually normal

(Lewis (1974)) and antibodies against platelets are not detected (Hoffman et al. (1989)).

Although it has been suggested that the failure of platelet production could arise at the

stem cell level (Kimura et al. (1996)), it is generally thought that the cycling originates at

the megakaryocyte level (Dan et al. (1991); Hoffman et al. (1989)). For a more detailed

review of CT, see (Swinburne and Mackey (2000); Santillan et al. (2000)).

It has been hypothesized that autoimmune and amegakaryocytic cyclical

thrombocytopenia have a different dynamic origin (Santillan et al. (2000)). This is
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supported by Swinburne and Mackey (2000), who noted that the patients diagnosed as

having the autoimmune CT generally have shorter periods (13-27 days) than those

classified as amegakaryocytic (27-65). Moreover, they reported that autoimmune patients

typically show platelet oscillations from low to normal levels, whereas amegakaryocytic

subjects generally show oscillations from above normal to below normal levels of platelets.

Cyclical neutropenia

In a normal individual, the number of circulating neutrophils is relatively constant with

an average of about 2.0× 109 cells/L. Neutropenia is a term that designates a low number

of neutrophils, thus indicating that the individual is less effective at fighting infections.

Cyclical neutropenia is characterized by oscillations in the number of neutrophils from

normal to very low levels (less than 0.5 × 109 cells/L). The period of these oscillations is

usually around 3 weeks for humans, although periods up to 45 days have been observed

(Haurie et al. (2000b)). The period in which the absolute neutrophil count (ANC) is very

low (also called severe neutropenia) usually lasts for about a week in humans. This period

is associated with symptoms such as mouth ulcers, periodic fever, pharyngitis, sinusitis,

otitis and other infections, some of which can sometimes be life-threatening. Fortunately,

CN is effectively treated with daily administration of the growth factor G-CSF, which has

the effect of reducing the period of the oscillations and increasing both the oscillation

amplitude and the value of the ANC nadir. This has the overall effect of decreasing the

period of severe neutropenia. We will see in Section 2.4.3 how mathematical modeling has

been used to design cheaper and more effective G-CSF treatment strategies.

Our understanding of CN has been greatly aided by the existence of a similar disease in

grey collies (Haurie et al. (1999b)). The canine disorder shows the same characteristics as

in humans, except that the period of the oscillations is usually between 11 and 15 days.

The existence of this animal model has allowed the collection of a variety of data that

would have been difficult, if not impossible, to obtain in humans.

A major characteristic of CN is that the oscillations are not only present in neutrophils,

but also in platelets, monocytes and reticulocytes (Haurie et al. (1998)), which is the

reason CN is sometimes referred to as periodic hematopoiesis (Palmer et al. (1996)). This

observation suggests that the source of the oscillations may lie in the stem cell

compartment. Although it is a rare disorder, cyclical neutropenia is probably the most
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extensively studied periodic hematological disorder. The availability of an animal model

and its dynamical properties makes it suitable for mathematical modeling and several

modeling studies have indeed aided our understanding of the basic mechanisms of this

disease, as we review in Section 2.4.3.

Periodic chronic myelogenous leukemia

Leukemia is a cancer of the blood or bone marrow characterized by an abnormal

proliferation of blood cells, usually leucocytes. Chronic myelogenous leukemia (CML) is

distinguished from other leukemias by the presence of a genetic abnormality in blood

cells, called the Philadelphia chromosome, which is a translocation between chromosomes

9 and 22 that leads to the formation of the BcrAbl fusion protein (O’Dwyer et al. (2000)).

This protein is thought to be responsible for the dysfunctional regulation of myelocyte

growth and other features of CML (Melo (1996)). (For more details about CML, see

Grignani (1985)).

A dynamical disease of particular interest is periodic chronic myelogenous leukemia

(PCML), characterized by oscillations in circulating cell numbers that occur primarily in

leucocytes, but may also occur in the platelets and reticulocytes (Fortin and Mackey

(1999)). The leucocyte count varies periodically, typically between values of 30 and

200 × 109 cells/L, with a periods ranging from 40 to 80 days. In addition, oscillation of

platelets and reticulocytes may occur with the same period as the leucocytes, around

normal or elevated numbers (Fortin and Mackey (1999); Henderson et al. (1996)). As in

cyclical neutropenia, the hypothesis that the disease originates from the stem cell

compartment is supported by the presence of oscillations in more than one cell lineage.

2.3 Mathematical Models of Hematopoiesis

Mathematical models have been used for modeling biological processes for decades. With

the advances in technology and the increasing amount of available data, mathematical

models and simulation techniques provide ways of better understanding the underlying

mechanisms of biological processes. In hematological modeling, several mathematical

tools and computational methods are used: differential equations (partial, ordinary or

delay), stochastic processes, Boolean networks, Bayesian theory, multivariate statistics,

decision trees, etc. For a review, see Roeder (2006) and Viswanathan and Zandstra
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(2003). The choice of the mathematical tools often depends on the desired level of

description of the model. For instance, one could model processes at small scale (e.g. at

the molecular or the cellular levels), or on a larger scale (model the whole system).

Mathematical models of in vivo hematopoietic regulatory systems using a stochastic

formulation have not been extensively developed, primarily because of the lack of

corresponding data for stem cells and their progeny. Since they are widely used, we focus

in this chapter on models that use differential equations: ordinary differential equations

(ODE), partial differential equations (PDE), or delay differential equations (DDE).

In this section, we first discuss the different types of delay differential equations and show

how some DDE systems could be reduced to an ODE system using the linear chain trick.

Second, we present a typical setting for a model, based on biological aspects of

hematopoiesis and show that this could be modeled by an age-structured model (PDE).

We then show that this PDE model can be reduced to a DDE model. Finally, we briefly

comment other types of models in Section 2.3.4.

2.3.1 DDE models

Delay-differential equations (DDEs) are a large and important class of dynamical systems.

They often arise in biological systems where time lags naturally occur (MacDonald

(1978b)). In particular, in hematology several processes are controlled through feedback

loops and these feedbacks are generally operative only after a certain time, thus

introducing a delay in the system feedback. The general form of a DDE for x(t) ∈ Rn is

dx

dt
= f(t, x(t), xτ ), (2.1)

where xτ is the delayed variable (x(t − τ)) and f is a functional operator in R × Rn × C1.

There are different kinds of delay-differential equations: with discrete fixed delays, with

distributed delays and with state-dependent delays. In this section, we briefly discuss

these different types of DDEs and give some examples of how they have arisen in

modeling hematological problems.
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DDE with constant delays

Delay differential equations with constant delays take the form

dx

dt
= f(x(t), x(t − τ1), x(t − τ2), ..., x(t − τn)), (2.2)

where the quantities τi, i = 1, 2, ..n are positive constants. For simplicity, consider the

DDE with a single constant delay:

dx

dt
= f(x(t), x(t − τ)). (2.3)

To obtain a solution of Equation (2.3) for t > 0, one needs to specify a history function on

[−τ, 0]. Indeed, recall that for an ordinary differential equation (ODE) system with n

variables, one would only need to specify the initial values x(0) for each of the n state

variables. In order to solve a DDE, one needs to specify not only the value at t = 0, but

also all the past values of x(t) over the interval [−τ, 0]. Since one needs on specify an

“infinite” number of values, DDEs are often viewed as infinite-dimensional systems.

Constant delay differential equations are often used in modeling in hematology (Bernard

et al. (2003); Beuter et al. (2003); Haurie et al. (1998); Mackey (1979a)). For example, let

X(t) represent the circulating cell population of a certain type of blood cell, assume that

γ is the random rate of loss of cells in the circulation and F is the flux of cells from the

previous compartment. Then, the dynamics of the number of circulating cells will have

the generic form
dX

dt
= −γX + F (X(t − τ)), (2.4)

where τ is the average length of time required to go through the compartment (time

delay). Typically, F is taken to be a monotone decreasing function of X to mimic the

negative feedback loops of the system.

DDE with distributed delays

Delays arise in biological systems because of properties inherent to the different processes

(time lag due to maturation, transmission of an impulse, etc.). Although constant delays

may be an excellent approximation of the time lag involved, one might want to account

for the distribution of time delay. Indeed, in a real system, it is much more likely that
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events related to the delay (maturation time for example) are distributed with a density

that is not a delta function. A distribution of delays is then be more appropriate and the

DDE becomes an integro-differential equation of the form

dx

dt
= f

(

x(t),

∫ t

−∞

x(τ)G(t − τ) dτ

)

. (2.5)

The density G(u) of the distribution function is referred to as the memory function or the

kernel and is normalized, i.e.
∫

∞

0

G(u) du = 1.

This type of model can also be interpreted as allowing for a stochastic element in the

duration of the delay (MacDonald (1978b)). Examples of such models in hematology are

found in Blythe et al. (1984), Haurie et al. (2000b) and Hearn et al. (1998). Also, we will

see in Section 2.3.2 that for some densities G(u), Equation (2.5) can be equivalently

viewed as a system of ordinary differential equations.

DDE with state-dependent delays

Another type of delay differential equation occurs when the delay depends on a state

variable. For example, one could imagine that the maturation time for a blood cell

depends on the amount of growth factor in the circulation as, for example, is the case

with the maturation time of neutrophil precursors in humans (Price et al. (1996)). An

example of a model with a state-dependent delay can be found in Mahaffy et al. (1998a),

but it is fair to say that models of hematopoietic regulation with state dependent delays

have not appeared because of the paucity of data for the analytic variation of delays with

respect to state variables.

2.3.2 ODE models

Delay differential equations naturally arise in modeling biological systems. However, since

DDEs are infinite-dimensional systems, they are difficult to analyze and handle

numerically. For some forms of delays, the so-called linear chain trick (MacDonald

(1978b)) enables the model to be written as an equivalent finite-dimensional system of

ordinary differential equations. Next, we present a simple example of this method which
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is a specific example of the more general considerations of Fargue (1973, 1974).

Consider the following DDE system with a distributed delay:

dx1

dt
= f

(

x1(t),

∫ t

−∞

x1(τ)G(t − τ) dτ

)

, (2.6)

with the special choice of the density of the gamma distribution for the memory function

G(u) = Gp
a(u) =

ap+1up

p!
e−au, (2.7)

where a is a positive number and p is a positive integer or zero. Note that the function

G(u) has a maximum at u = p/a and that, as a and p increase, keeping p/a fixed, the

kernel approaches a delta function and the distributed delay approaches the discrete time

delay with τ = p/a. Moreover, it is clear that the following three properties are satisfied:

lim
u→∞

Gp
a(u) = 0,

Gp
a(0) = 0 for p 6= 0, (2.8)

G0
a(0) = a.

The central idea of the method is to replace the distributed delay by an extension of the

set of variables. Define p + 1 new variables as

xj+1 =

∫ t

−∞

x1(τ)Gj−1
a (t − τ) dτ j = 1, 2, ..., p + 1, (2.9)

and set

xp+2 :=

∫ t

−∞

x1(τ)G(t − τ) dτ. (2.10)

Then, using the properties of G one can show that these new variables satisfy a sequence

of linear ODEs (see the Appendix for a detailed derivation). Solving the following system

is thus equivalent to solving the DDE problem (2.6), given that the new variables are
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given appropriate initial values:

dx1

dt
= f(x1, xp+2)

dxj+1

dt
= a(xj − xj+1) j = 1, 2, ..., p + 1,

dxp+2

dt
= a(xp+1 − xp+2).

(2.11)

The linear chain trick could be useful for numerical computations since it reduces the

problem to an ODE system, for which several numerical methods are available. However,

this method cannot be used for all sorts of delays (for more details about the method and

some examples, see MacDonald (1978b)). Within a hematological context, Hearn et al.

(1998) were unable to use this technique in their model of neutrophil production because

the estimated value of p in the experimentally determined distribution of delays was not

an integer. Other models (Loeffler and Pantel (1990); Loeffler et al. (1989); Schmitz et al.

(1993, 1994, 1995, 1990)) have used constructs somewhat analogous to the system (2.11).

Introducing a delay in a system could be thought of as a way of including age-structure in

the model. For instance, one could think of setting up a detailed model in which the

population dynamics is described by several maturation stages. If enough detail is known

about the time spent in each stage, one could then associate a differential equation

(ordinary or delayed) with each stage. However, detailed data such as these are often

(usually) not available. Alternatively, one could lump together all the stages and reduce

the model to only one DDE where the delay is the total maturation time. Another option

would be to use partial differential equations, as we will discuss in the next section.

2.3.3 Age-structured models

We now present a typical PDE model used in several applications. Based on Figure 2.1,

one can see that the production of any of the cell types takes many steps. Indeed, a cell

starts from the hematopoietic stem cell and then its progeny go through a number of

stages before being released into the circulation. One could model this process by

associating a partial differential equation for the cell density function with each stage,

which describes the population in the compartment as a function of the variables age a

and time t (Rubinow and Lebowitz (1975)). The model also contains feedback control
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elements (rate of apoptosis, rate of production, etc.) that regulate the release of cells from

one compartment to the other. The number of compartments depends on the data

available which determines the maximum level of detail appropriate for the model. For

instance, a model of erythropoiesis could have one compartment for each recognizable

stage of erythrocytes precursors, or alternatively merge some of the compartments

together and thus reduce the model dimensions. In the following, we will present some

results using only a generic compartment. The treatment for a larger model is the same.

We then show that by partial integration we can express this problem as a delay

differential equation model. Age-structured models provide a means of understanding the

regulation of hematopoiesis. Examples in the literature can be found in Adimy and

Crauste (2003), Adimy and Pujo-Menjouet (2001, 2003), Bélair et al. (1995), Dyson et al.

(1998), Mackey and Rudnicki (1994), Mahaffy et al. (1998a), Ostby et al. (2003, 2004),

Rubinow and Lebowitz (1975) and Santillan et al. (2000).

Let x(t, a) be the the cell density at time t and age a in a generic compartment. We

assume that cells disappear (die) at a rate γ(t). We also assume that the cells in the

compartment age with a velocity V (t) and that a cell enters a compartment at age a = 0

and exits this compartment at age a = τ . Therefore, the equation satisfied by x(t, a) is an

time-age equation (advection, or reaction-convection, equation):

∂x

∂t
+ V (t)

∂x

∂a
= −γ(t)x t > 0, a ∈ [0, τ ], (2.12)

The right hand side in this equation represents the rate at which cells in the age interval

a to a + δa disappear at time t. To represent the manner in which new cells enter the

compartment, we define the boundary condition (B.C.) x(t, 0) = H(t). Finally, to fully

represent the problem, we specify the initial condition (I.C.) x(0, a) = φ(a). In the

Appendix, we show that by partial integration of equation (2.12), we can reformulate this

problem as a delay differential equation. Using the method of characteristics (Webb

(1985)), we obtain the following delay differential equation:

dX

dt
= V (t)

[

H(t) − H(t− Tτ ) exp

(

−

∫ Tτ

0

γ(w) dw

)]

− γ(t)X(t), (2.13)

where X(t) is the total number of cells (X(t) =
∫ τ

0
x(t, a) da) and Tτ satisfies
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τ =
∫ t

t−Tτ
V (w) dw. Note that if γ is a constant, Equation (2.13) reduces to

dX

dt
= V (t)

[

H(t) − H(t− Tτ )e
−γTτ

]

− γX(t). (2.14)

In addition, if the aging velocity is constant (V (t) = V ), we have that Tτ satisfies

τ =

∫ t

t−Tτ

V dw = V Tτ ,

which implies that Tτ = τ/V . Hence, if γ and V are constant, we obtain a delay

differential equation with constant delay:

dX

dt
= V (t)

[

H(t) − H(t − τ/V )e−γτ/V
]

− γX(t). (2.15)

2.3.4 Other models

In this section, we briefly discuss some other types of mathematical models. As

mentioned above, several approaches have been used for modeling hematopoiesis (for

example DDE, ODE or PDE models). However, it is sometimes appropriate to combine

these approaches in one model as in Vainstein et al. (2005). In this work, the authors

used a PDE model which includes a distributed delay for the compartment transition

time and a constant delay for the cell cycle duration. Others have included probabilistic

aspects in the model, as in Lasota and Mackey (1984) where the authors used a

probabilistic approach to model to cellular maturation of proliferative cells.

Besides the PDE models presented in Section 2.3.3, other types of partial differential

equations have been used. For instance, a reaction-diffusion model for leukemia is

proposed in Bessonov et al. (2005). This type of model accounts for spatial variables,

which are not considered ODEs, DDEs and in the previously discussed PDE models. In

Ducrot and Volpert (2008), they proposed a reaction-diffusion system of equations in a

porous medium to describe the evolution of leukemia in the bone marrow. They showed

the existence of two stationary solutions, one of them corresponds to the normal case and

another one to the pathological case.

Finally, a different technique has recently been used in Bessonov et al. (2006). In this

work, the authors used a multi agent approach and created software to study
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hematopoiesis at the cell population level with the individually based approach. This

computational model is aimed at studying different features of hematopoiesis and may be

useful as an interface between theoretical work on population dynamics and experimental

observations.

2.4 Modeling Periodic Hematological Diseases

Based on the dynamical properties of the periodic hematological diseases, a number of

mathematical models have been put forward to better understand the mechanisms

responsible for the onset of the observed oscillations in blood cell counts. This

mathematical modeling of periodic hematological diseases has helped our understanding

of the mechanisms of hematopoiesis.

These models fall into two major categories and reference to Figure 2.1 will help place

these in perspective. The first broad group identifies the origin of the oscillations as a

destabilization of the peripheral control loops. In this case, the cell production is adjusted

relative to the number of mature cells in the blood and mediated by one of the three

cytokines (EPO, TBO and G-CSF). The second group of models focuses on the existence

of oscillations in many of the peripheral cell lineages (neutrophils, platelets and erythroid

precursors, see Figure 2.1). It assumes that oscillations arise in the common stem cell

populations through a loss of stability in the stem cell population that is hypothesized to

be independent of feedback from peripheral circulating cell types. Thus, this would

represent a relatively autonomous oscillation driving the three major lines of

differentiated hematopoietic cells (Colijn et al. (2006a)).

In this section, we review a number of mathematical models of the hematopoietic system

and show how dynamical disorders have helped understanding the mechanisms involved.

First, we review modeling of erythropoiesis guided by the dynamics of periodic

auto-immune hemolytic anemia, and then turn to a consideration of thrombopoiesis

drawing on the features of cyclical thrombocytopenia. Recall that each of these two

disorders only involve oscillations in one cell line. Then, we turn to a review of large scale

models drawing inspiration from the data and characteristics of cyclical neutropenia and

periodic chronic myelogenous leukemia.
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2.4.1 Modeling periodic autoimmune hemolytic anemia

In an early model of erythropoiesis, Mackey (1979a) examined the role of peripheral

erythrocyte destruction rate on the onset of AIHA using a simple constant delay

differential equation model for the regulation of erythrocyte production. The model

defines the rate of change of the circulating density of erythrocytes (E (cells/kg)) by

dE

dt
= −γE + β(Eτ ), (2.16)

where Eτ = E(t − τ), β is the cellular production rate in the early erythroid series cells

and γ (day−1) is the peripheral erythrocyte destruction rate. The delay τ represents the

total average number of days between the entrance of a cell into the erythroid series and

the release of a mature erythrocyte into the blood. As mentioned in Section 2.2,

erythropoiesis is regulated by a negative feedback mediated by the cytokine

erythropoietin (EPO). This is modeled by using a monotone decreasing Hill function for

the production rate β:

β(E) = β0
θn

θn + En
, (2.17)

where β0 (cells/kg/day) (the maximum production rate), θ (cells/kg), and n are

parameters. (Hill functions are often used for regulatory feedback expressions since they

frequently can be fit to existing clinical or laboratory data, and offer a form that is easy

to deal with analytically.) Mackey (1979a) performed a linear stability analysis of this

model and showed that a supercritical Hopf bifurcation occurs when the death rate of

circulating erythrocytes is increased above a certain critical value. This transition from

damped to stable oscillations would characterize the onset of periodic AIHA and account

for the experimentally observed characteristics of AIHA.

In their study, Bélair et al. (1995) developed an age-structured model that incorporates

the fact that the population of precursor cell matures at differing rates depending on the

EPO concentration, which itself varies according to the amount of oxygen carried in

blood. They developed a PDE model similar to the one presented in Section 2.3.

Assuming constant maturing velocity, the authors were then able to reduce their model to

a threshold-type DDE with two constant delays, using the method we presented in

Section 2.3.

Even though the bifurcation analysis performed on this model agreed surprisingly well



2 Dynamic Hematological Disease: A review 22

with experimental observations in an induced autoimmune hemolytic anemia, this model

was less than satisfactory in predicting the response of a normal patient to a blood loss as

in a blood donation. In their paper, Mahaffy et al. (1998a) expanded the previous model

of Bélair et al. (1995) to account for the active degradation of older cells and to include

the possibility of significant apoptosis. Next, we present the equations of this extended

age-structured model for hematopoiesis that includes apoptosis and active degradation of

the oldest mature cells.

The precursor cells begin from a pool that have differentiated into a self-sustaining

population which eventually leads to the production of mature erythrocytes. The model

considers two populations of cells: the precursor cells, denoted by p(t, µ) (see below), and

the mature non-proliferative cells, denoted by m(t, u). Figure 2.3 shows a cartoon

representation of the model.

Fig. 2.3 Schematic representation of the age-structured model of erythro-
poiesis, taken from Mahaffy et al. (1998a) with permission.

Let p(t, µ) denote the population of precursor cells at time t and age µ, and let V (E) be

the velocity of maturation, which may depend on the hormone (EPO) concentration, E.

If S0(E) is the number of cells recruited into the proliferating precursor population, then
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the entry of new precursor cells into the age-structured model will satisfy the boundary

condition

V (E)p(t, 0) = S0(E). (2.18)

Let the birth rate for proliferating precursor cells be β(µ, E) and α(µ, E) represent the

death rate through apoptosis. Let h(µ − µ̄) be the density of the distribution of maturity

levels of the cells when released into the circulating blood, where µ̄ represents the mean

age of mature precursor cells and

∫ µF

0

h(µ − µ̄)dµ = 1.

The disappearance rate function is given by:

H(µ) =
h(µ − µ̄)

∫ µF

µ
h(s − µ̄)ds

.

With these conditions the age-structured model for the population of precursor cells with

t > 0 and 0 < µ < µF satisfies:

∂p

∂t
+ V (E)

∂p

∂µ
= V (E)[β(µ, E)p − α(µ, E)p − H(µ)p]. (2.19)

Now, let m(t, ν) be the population of mature non-proliferating cells at time t and age ν.

Assume that the mature cells age at a rate W , which is considered to be a constant for

erythropoiesis since the aging process appears to depend only on the number of times

that an erythrocyte passes through the capillaries. From the disappearance rate function,

the boundary condition for cells entering the mature population is given by

Wm(t, 0) = V (E)

∫ µF

0

h(µ − µ̄)p(t, µ)dµ, (2.20)

where the maturity level µF represents the maximum age for a cell reaching maturity.

The authors assumed that destruction of erythrocytes occurs by active removal of the

oldest cells. The immune system recognizes erythrocytes that are no longer efficient and

tags them with special markers, which then signals macrophages (white blood cells) to

degrade them. For erythrocytes, if one assumes either a finite source of markers or a fixed
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number of macrophages, then there is a constant flux of the oldest erythrocytes that are

dying. From a modeling point of view, this results in a moving boundary condition with

the age of the oldest erythrocyte, νF (t), varying in t. The boundary condition is then

given by

(W − ν̇F (t))m(t, νF (t)) = Q, (2.21)

where Q is the fixed erythrocyte removal rate (for a full derivation, see Mahaffy et al.

(1998a)). If γ(ν) is the death rate of mature cells (depending only on age), then the

partial differential equation describing m(t, ν) is given by:

∂m

∂t
+ W

∂m

∂ν
= −Wγ(ν)m, t > 0, 0 < ν < νF (t), (2.22)

where the maximum age, νF (t), is determined by (2.21).

As in the simple DDE model of Mackey (1979a), the EPO level E is governed by a

differential equation with a negative feedback, depending on the total population of

mature cells, M(t), defined by

M(t) =

∫ νF (t)

0

m(t, ν)dν. (2.23)

The differential equation for E is thus:

dE

dt
=

a

1 + KM r
− kE, (2.24)

where k is the decay constant for the hormone and the rate of EPO production is given

by a monotone decreasing Hill function.

The partial differential equations and their boundary conditions given by

Eqns. (2.18)-(2.22) describe the age-structured model for erythropoiesis. The hormone

EPO exerts control in the model through the boundary conditions, the birth and death of

precursor cells, and the velocity of aging. Using the method of characteristics and the

techniques presented in Section 2.3, one can reduce this system of equations to a system

of threshold delay equations. Moreover, if one makes some simplifying assumptions (see

Mahaffy et al. (1998a) for the details), it further reduces this system to a system of delay

differential equations with a fixed delay and one state dependent delay and it transform
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the constant flux boundary condition (2.21) to

Q = (1 − ν̇F (t))eβµ1e−γνF (t)S0(E(t − T − νF (t))). (2.25)

The following system of delay differential equations with a fixed delay T and a state

dependent delay occurring in the equation governing the age at which mature cells die is

obtained:

dM(t)

dt
= eβµ1S0(E(t − T )) − γM(t) − Q,

dE(t)

dt
= f(M(t)) − kE(t), (2.26)

dνF (t)

dt
= 1 −

Qe−βµ1eγνF (t)

S0(E(t − T − νF (t))
.

Analysis of the characteristic equation for the linearized model demonstrated the existence

of a Hopf bifurcation when the destruction rate of erythrocytes is increased, as in the

previous models by Bélair et al. (1995) and Mackey (1979a). Parameters of the model

have been estimated from experimental data. Numerical simulations were performed for

both periodic auto immune hemolytic anemia in rabbits and blood donation in humans

and compared with experimental data. Even though the extension of the model presented

in Mahaffy et al. (1998a) leads to the same conclusion about the origin of periodic AIHA,

the moving boundary condition has the advantage of better capturing the physiological

reality of apoptosis in circulating cells. Moreover, the model is sufficiently general to

characterize other hematopoietic lines. In particular, a similar age-structured model has

been used for modeling cyclical thrombocytopenia, as we will see in the next section.

2.4.2 Modeling cyclical thrombocytopenia

A number of studies have presented models for the regulation of thrombopoiesis. Some

considered only a simple thrombopoiesis feedback (Bélair and Mackey (1987); Gray and

Kirk (1971); von Schulthess and Gessner (1986)) whereas other models are more

physiologically detailed (Apostu and Mackey (2008); Eller et al. (1987); Györi and Eller

(1987); Wichmann et al. (1979)). Nevertheless, they all assume that the production of

platelets is regulated by a negative feedback loop mediated by thrombopoietin (TPO). In

their study, von Schulthess and Gessner (1986) suggested that the normal platelet control
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system was biased close to a stability boundary and that this was the origin of the

oscillatory platelets counts observed in some normal individuals (Morley (1969)). Bélair

and Mackey (1987) specifically considered the case of cyclical thrombocytopenia. Based

on the analysis of their model, they hypothesized that an increased destruction rate of

circulating platelets could give rise to the characteristic oscillations in the circulating

platelet counts seen in CT, an hypothesis that has recently been modified in Apostu and

Mackey (2008) using a more comprehensive model. Santillan et al. (2000) developed an

age-structured model for the regulation of platelet production that we briefly present

below.

The development of the mathematical model for thrombopoiesis in Santillan et al. (2000)

follows earlier age-structured mathematical models for erythropoiesis (Bélair et al.

(1995)), bearing in mind that the primary difference between the processes of

erythropoiesis and thrombopoiesis is in the development of the precursor cells. In

erythropoiesis, the stem cells undergo rapid proliferation and differentiation until they

reach the stage of reticulocytes, where the cells simply mature to become circulating

erythrocytes. In thrombopoiesis, the stem cells proliferate, then become megakaryocytes

that no longer proliferate, but undergo nuclear endoreduplication. These megakaryocytes

have different ploidy values at maturation and release differing numbers of platelets. In

order to simplify calculations and based on the relative frequencies of megakaryocytes in

various ploidy classes, the authors chose to divide the megakaryocyte populations into

three classes, denoted by mi(t, µ), i = 0, 1, 2,. As before, t represents time and µ

represents the age of the megakaryocyte.

The partial differential equations describing the development of the megakaryocytes are

given by:

∂m0

∂t
+

∂m0

∂µ
= −k0(T )m0, (2.27)

∂m1

∂t
+

∂m1

∂µ
= k0(T )m0 − k1(T )m1, (2.28)

∂m2

∂t
+

∂m2

∂µ
= k1(T )m1, (2.29)

where ki(T ) is the transfer rate from ploidy class i to ploidy class i + 1. The domain for

these partial differential equations is t > 0 and 0 < µ < µF .
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Relevant boundary conditions for each population were included. The remaining

equations for the circulating platelets p(t, µ) and its boundary condition are similar to the

ones presented in Section 2.4.1 for erythrocytes and will not be presented here. They used

a constant flux boundary condition as derived in Mahaffy et al. (1998a) and a negative

feedback ODE for regulation of thrombopoietin.

Despite some difficulties in estimating parameters of this age-structured model, the model

numerically reproduced the normal human response to a bolus injection of TPO. The

dynamic characteristics of the autoimmune version of cyclical thrombocytopenia were

reproduced if the rate of platelet destruction in the circulation is elevated to more than

twice the normal value. The authors hypothesized that the amegakaryocytic version of

cyclical thrombocytopenia, with its longer periods and different dynamic clinical

presentation could potentially find an explanation in considerations of the dynamics of

the hematopoietic stem cell.

Recently, a more comprehensive mathematical model was used to understand the clinical

data of patients with cyclical thrombocytopenia (Apostu and Mackey (2008)). This model

is based on the work of Colijn and Mackey (2005a) (presented in Section 2.4.3 and Figure

2.5) and accounts for all cell lineages (erythrocytes, leucocytes and platelets). The authors

found that it was not possible to induce oscillations in the platelet compartment without

destabilizing the neutrophil compartment using the model of Colijn and Mackey (2005a).

They found that using a constant platelet differentiation rate (instead of a rate depending

on the circulating platelet levels), the hematopoietic model was then able to generate

oscillations in platelets while maintaining the other cells lines at their steady state values.

Their model successfully duplicates the platelet counts in CT patients and agrees

qualitatively with clinical data. However, it supports only partially the conclusions drawn

from the previous modeling study of Santillan et al. (2000), where CT was hypothesized

to be due to an increased platelet destruction rate . Indeed, their numerical experiments

showed that more than one parameter had to be modified to reproduce clinical data.

Using a simulated-annealing method (see Section 3.5.3, they concluded that a variation in

the megakaryocyte maturity, a slower relative growth rate of megakaryocytes, as well as

an increased random destruction of platelets are the critical elements generating the

platelet oscillations in CT. Moreover, the authors believe that both types of CT are due

to a Hopf bifurcation in the platelet dynamics, but that the parameter change inducing

the bifurcation might depend on the type of cyclical thrombocytopenia. Their model
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raises a number of clinical issues that will have to be resolved in the future.

2.4.3 Modeling cyclical neutropenia

Due to its interesting dynamics and its clinical and laboratory manifestations, cyclical

neutropenia is probably the most studied periodic hematological disease. A number of

mathematical models have been put forward to attempt to model this disorder, and they

fall into two major categories (see Figure 2.1 to place them in perspective). For other

reviews, see Colijn et al. (2006a); Dunn (1983); Fisher (1993); Haurie et al. (1998).

The first group of models identifies the origin of CN with a loss of stability in the

peripheral negative feedback control loop. Typical examples of models of this type which

have specifically considered CN are Kazarinoff and van den Driessche (1979), King-Smith

and Morley (1970), MacDonald (1978a), Morley (1979), Morley et al. (1969), Morley and

Stohlman (1970), Reeve (1973), Schmitz (1988), Schmitz et al. (1993), Schmitz et al.

(1994), Schmitz et al. (1995), Schmitz et al. (1990), Shvitra et al. (1983), von Schulthess

and Mazer (1982), and Wichmann et al. (1988).

The second group of models builds upon the existence of oscillations in many of the

peripheral cellular elements (neutrophils, platelets, and erythroid precursors, see Figure

2.1) and postulates that the origin of CN is in the common hematopoietic stem cell

(HSC) population. A loss of stability in the stem cell population is hypothesized to be

independent of feedback from peripheral circulating cell types and would thus represent a

relatively autonomous oscillation driving the three major lines of differentiated

hematopoietic cells. In their study, Hearn et al. (1998) concluded that there is no

consistent way in which a destabilization of the peripheral loop alone can give rise to the

characteristics of CN. It seemed more likely that the oscillations of CN originate from the

hematopoietic stem cell population as was originally proposed in earlier work by Mackey

(1978a, 1979b). Some mathematical models coupled a stem cell compartment with the

peripheral loop for granulocytes (Bernard et al. (2003); Haurie et al. (2000b); Hearn et al.

(1998)) whereas others present a more complex model showing the stem cells coupled to

all major cell lines (Colijn and Mackey (2005a)). For a complete review, see Colijn et al.

(2006a).

We present two of these models that have given significant insight into the origin of

cyclical neutropenia. Then, we show how these models have been used to improve
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existing treatment for CN.

Origin of Cyclical Neutropenia

Bernard et al. (2003) presented a two variable delay differential equation (DDE) system

that has negative feedback loops in both the peripheral loop and the stem cell loop.

Figure 2.4 illustrates the two compartments of the model: the hematopoietic stem cell

(HSC) compartment (denoted S) and the neutrophil compartment (denoted N). The

HSCs are assumed to be self-renewing, and thus cells in the resting (G0) phase can either

enter the proliferative phase at rate K(S) or differentiate into neutrophils (N) at rate

F (N). As the neutrophil precursors differentiate, their numbers are amplified by a factor

A, which accounts for both successive divisions and cell loss due to apoptosis. It is also

assumed that apoptosis occurs during the proliferative phase at rate γs and that mature

neutrophils die at rate α. As can be seen in Figure 2.4, the system is controlled by two

negative feedback loops. The first one regulates the rate K(S) of reentry of HSCs to the

proliferative cycle, and it operates with a delay τs (the cell cycle time) that accounts for

the time required to produce two daughter cells from one mother cell. The second loop

regulates the rate F (N) of HSC differentiation into mature neutrophils. It operates with

a delay τN that accounts for the transit time through the neutrophil precursor

compartment.

Mathematically, this model translates into the following two variable delay differential

equation (DDEs) form. The equations for the two variables N and S can be derived from

a time-age-maturation formulation, or written directly from consultating Figure 2.4. For

the compartment N , the loss is the efflux to death αN and the production of mature

neutrophils is equal to the influx F (N)S from the HSC compartment times the

amplification A. Since one needs to take into account the transit time τN , the total

production of mature neutrophils is AF (N(t− τN ))S(t− τN ), or equivalently AF (NτN
)SτN

(recall that NτN
= N(t − τN )). This leads to the total rate of change of N given by

dN

dt
= −αN + AF (NτN

)SτN
. (2.30)

For the second variable, the loss from the compartment S is the flux reentering the

proliferative phase, K(S)S, plus the efflux going into differentiation, F (N)S. The

production of S is equal to the flux of cells reentering and surviving the proliferative
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Fig. 2.4 Schematic representation of the mathematical model of Bernard
et al. (2003). Two feedback loops control the entire process through the pro-
liferation rate K(S) and the differentiation rate F (N). Taken from Bernard
et al. (2003) with permission.
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phase, given by K(SτS
)SτS

e−γSτS , times the cell division factor 2. The dynamics of S is

then described by

dS

dt
= −F (N)S − K(S)S + 2K(SτS

)SτS
e−γSτS . (2.31)

The feedback functions F (N) and K(S) are monotone decreasing Hill functions, similar

to the one used in Mackey (1979a):

F (N) = f0
θn
1

θn
1 + Nn

, (2.32)

and

K(S) = k0
θs
2

θs
2 + Ss

. (2.33)

F (N) controls the number of neutrophils (N) while K(S) regulates the level of HSCs (S).

This model was sufficiently simple that it was possible to perform a complete bifurcation

analysis that highlighted the dynamical features of CN (Bernard et al. (2003)). Using a

combination of mathematical analysis and computational tools, Bernard et al. (2003)

showed that the origin of cyclic neutropenia is probably due to an increased apoptosis

rate in the recognizable and committed neutrophil precursors, leading to a destabilization

of the hematopoietic stem cell compartment through a supercritical Hopf bifurcation.

This has the effect of generating oscillations in the HSC population. This result was in

accordance with previous modeling studies (Haurie et al. (2000b)) and agrees with

experimental data on grey collies. This model could also be used to study the effects of

G-CSF treatment on CN, as we will see in the next section. First we present a more

sophisticated model of the hematopoietic system that has also been used to study cyclical

neutropenia.

As mentioned, CN is characterized by oscillations in all major cell lines (neutrophils,

reticulocytes and platelets). This motivated the development of a comprehensive

mathematical model that includes not only the neutrophils and HSC, but also the

platelets and red blood cells. This allowed a more realistic approach since one could then

study the response of the hematopoietic system when considering all cell lines. In

addition, the model simulations could thus be compared with data for platelets and

erythrocytes. Colijn and Mackey (2005b) developed a comprehensive model that contains
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four compartments: the HSC (Q), the neutrophils (N), the erythrocytes (R) and the

platelets (P ). This model combines a number of compartmental models we have reviewed

in previous sections: the stem cell and neutrophil dynamics are based on the model in

Bernard et al. (2003), and the erythrocyte and platelet compartment are simplified models

based on Mahaffy et al. (1998a) and Santillan et al. (2000) respectively. The circulating

cells are coupled to each other via their common origin in stem cell compartment.

Regulatory negative feedback loops determine how much differentiation from the stem

cells each cell line will undergo. Since it takes several days to produce a mature cell from

a newly differentiated cell, time delays appear in the equations. The model consists of a

set of four coupled delay differential equations. Their derivation is similar to Equations

(2.30) and (2.31) from Bernard et al. (2003)’s model and is based on Figure 2.5:

dQ

dt
= −β(Q)Q − (κN + κR + κP )Q + 2e−γSτSβ(QτS

)QτS
,

dN

dt
= −γNN + ANκN (NτN

)QτN
,

dR

dt
= −γRR + AR

{

κR(RτRM
)QτRM

− e−γRτRSκR(RτRM +τRS
)QτRM +τRS

}

,

dP

dt
= −γP P + AP

{

κP (PτPM
)QτPM

− e−γP τPSκP (PτPM +τPS
)QτPM+τPS

}

.

(2.34)

Analogous to Eq. (2.32) and (2.33) we have

β(Q) = k0
θs
2

θs
2 + Qs

, κN(N) = f0
θn
1

θn
1 + Nn

,

κP (P ) =
κ̄p

1 + KpP r
, κR(R) =

κ̄r

1 + KrRme
,

(2.35)

where the first two functions are the same as in Bernard et al. (2003). For a complete

derivation, see Colijn and Mackey (2005b). This model was applied to both PCML

(Section 2.4.4) and CN.

The authors used a simulated annealing approach (see Section 3.5.3) and clinical data

from dogs and humans to estimate the model parameters. The model supported the

hypothesis on the origin of CN put forward in Bernard et al. (2003) and showed that

realistic CN oscillations in neutrophils and platelets can result from an increased

apoptosis rate in the neutrophil precursors. Interestingly, in order to mimic clinical data,
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it was also necessary to decrease the rate of differentiation into the neutrophil line and

the maximal rate of re-entry of the stem cells into the proliferative phase.

s(t, a)

a = τS
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N(T )
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βτS
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a = 0
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Fig. 2.5 Schematic representation of the comprehensive mathematical model
of Colijn and Mackey (2005a) including the HSC and the three differentiated
cell lines. Each cell lineage is controlled by a negative feedback loop. Taken
from Colijn and Mackey (2005a) with permission.

A bifurcation analysis was performed on the model. This analysis predicted that changes

in the platelet compartment can have long-term effects on the nature of the oscillations.

Simulations show that temporarily increasing the platelet amplification factor AP will

often induce the simulations to jump from an oscillating solution to the coexisting stable

solution. Oscillations were thereby abolished. While there are limitations to the clinical

applicability of these results because of the difficulties in administering a drug such as
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thrombopoietin, the ability of the platelet dynamics to affect the long-term behavior of

the whole hematopoietic system is theoretically intriguing.

In the next section, we show how the model of Bernard et al. (2003) could be used to

explore different G-CSF treatment strategies for CN. In Chapter 3, we will adapt Colijn

and Mackey (2005b)’s model for studying alternative G-CSF therapy regimens.

Treatment of Cyclical Neutropenia with G-CSF

Treatment for cyclical neutropenia typically involves daily G-CSF administration. This is

an effective treatment since it has the overall effect of decreasing the period of severe

neutropenia by increasing the nadir and the amplitude of the oscillations as well as

decreasing their period (Haurie et al. (1998)). However, G-CSF is expensive (about $45

000 per year for a 70 kg adult treated daily) and may cause undesirable side effects. In

this section, we show how mathematical modeling can illuminate the effects of different

G-CSF treatment schemes.

Foley et al. (2006), using the model of Bernard et al. (2003) presented earlier, analyzed

alternate G-CSF treatment schemes. Even though the effects of G-CSF have been

included implicitly in the model through the feedback function F (N), it can be shown

that by using physiologically relevant parameter values, this model can replicate the

characteristics of CN and the effects of G-CSF administration. Mimicking CN can be

achieved by increasing the rate of apoptosis for the neutrophil precursors, i.e. decreasing

the amplification parameter A (which accounts for cell death). To simulate the effects of

G-CSF in CN the authors modified five of the eleven parameters of the model: decrease

apoptosis in both the HSC (decrease γs) and in the neutrophil precursors compartment

(increase A), decrease the duration of both the proliferative and differentiating phases (τn

and τs) as well as increasing the parameter θ1 in the feedback function. This yields two

sets of parameters of interest (for untreated CN and CN under G-CSF treatment).

Assuming that the five parameters vary linearly between the untreated CN state and the

G-CSF treated values, the authors expressed the five relevant parameters as a function of

a new parameter T , in such a way that T = 0 corresponds to untreated CN and T = 1

corresponds to the treated state. Increasing T was therefore associated with increasing

G-CSF concentration. A complete bifurcation analysis was then performed using this

G-CSF parameter (T ).
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Interesting dynamical features of the model were found. The bifurcation analysis agreed

with the clinical aspects of G-CSF administration (increased amplitude and decreased

period of the oscillations Haurie et al. (1999a,b)), as expected. However, some cases have

been reported in the literature in which G-CSF treatment abolished significant

oscillations (Hammond et al. (1989); Haurie et al. (1998, 1999a)). Interestingly, the model

also accounts for this effect of G-CSF administration. Indeed, for T = 1 (G-CSF

treatment), a stable steady state (corresponding to annihilation of oscillations) coexists

with a stable large amplitude oscillation. This bistability in the system is interesting since

it suggests that by properly designing the treatment administration scheme, one might

stabilize the neutrophil count to a desirable level and could potentially reduce the amount

of G-CSF required in treatment. In Foley et al. (2006), the authors exploited this

bi-stability and showed that, depending on the starting time of the G-CSF treatment, the

neutrophil count could either be stabilized or show large amplitude oscillations. Using

computer simulations, they also showed that other G-CSF treatment schemes (such as

administering G-CSF every other day) could be effective while using less G-CSF, hence

reducing the cost of treatment and side effects for patients.

The model of Bernard et al. (2003) grasped the essential features of the system while

being simple enough to carry out the detailed analysis and simulations presented in Foley

et al. (2006). It gave insight into the dynamics of the system but it had two major

shortcomings. First, the model included neither erythrocyte nor platelet dynamics even

though clinical data indicates oscillations in those cell lines in CN patients. Thus it is not

known if the results would be consistent with observed platelet and reticulocyte data.

Second, G-CSF kinetics are implicitly included in the model and are based on a

pseudo-equilibrium assumption on the kinetics of G-CSF clearance, which is a

simplification. Therefore, the simulations did not take into account the pharmacokinetics

of G-CSF. In Chapter 3, we study different G-CSF treatment strategies using Colijn and

Mackey (2005b)’s model to which we add a two-compartment pharmacokinetic model for

G-CSF administration.

2.4.4 Modeling periodic chronic myelogenous leukemia

As for cyclical neutropenia, periodic chronic myelogenous leukemia (PCML) is an

interesting dynamical disease of the hematopoietic system in which oscillating levels of
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circulating leukocytes, platelets and/or reticulocytes are observed. Typically all of these

three differentiated cell types have the same oscillation period, but the relation of the

oscillation mean and amplitude to the normal levels is variable. The hypothesis that

oscillations originate in the stem cells is related to the fact that oscillations of the same

period occur in different cell lines. However, in several mathematical models, only one cell

line, or one line coupled to the stem cells, is represented. In particular, Pujo-Menjouet

et al. (2005) explored how long-period oscillations (as seen in PCML) could arise within

the context of a G0 stem cell model. They used a two-dimensional DDE model and they

performed a careful mathematical analysis. They studied when stability was lost and

oscillations occur, and how various parameters modify the period of these oscillations.

They also considered a limiting case of the original model in order to compute an explicit

solution and give an exact form of the period and the amplitude of oscillations. They

showed that the main parameters controlling the period are the cellular loss (the

differentiation rate δ and the apoptosis rate γ), while the cell regulation parameters

(proliferation rate β and cell cycle duration τ ) mainly influenced the amplitude. In

Pujo-Menjouet and Mackey (2004), the authors used the same model and determined the

local stability conditions and showed under what conditions a Hopf bifurcation may

occur. They interpreted the role of each parameter in the loss of stability, and then

examined a simpler model to try to deduce possible changes at the stem-cell level that

might be responsible for the characteristics of PCML.

In these papers, the models assumed a constant cell cycle duration, leading to a system of

nonlinear differential equations with discrete delays. In Adimy et al. (2005a, 2006), the

authors assumed that all cells do not divide at the same age, introducing a distributed

delay in the two-dimensional nonlinear differential equation system. The dynamics and

stability of this model were analyzed in Adimy et al. (2005a,b, 2006). In particular, the

authors showed the existence of a Hopf bifurcation and applied their results to periodic

chronic myelogenous leukemia. They showed that their model can display long periods of

peripheral cell oscillations (as seen in PCML) for relatively short cell cycle duration.

Adimy et al. (2006) studied the action of growth factors on the hematopoietic system

using a DDE model. They assumed growth factors act on the rate of introduction in the

proliferative phase and applied their model to PCML. Then, in Adimy and Crauste (2007)

they considered the action of growth factors on apoptosis using a three-dimensional DDE

system with distributed delay, concluding that the action of growth factors can lead to
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the existence of oscillating solutions in the stem cell population.

All these models only consider one cell line coupled with the stem cells and do not include

platelet and erythrocyte regulation. Thus, it is not clear whether their hypothesis would

be consistent with observed platelet and erythrocyte data in PCML. For this reason, the

comprehensive model for the regulation of the hematopoietic system (Colijn and Mackey

(2005b)) presented in Section 2.4.3 was used to examine the possible origins of of PCML.

Based on estimates of parameters for a typical normal human, the authors systematically

explored the changes in some of these parameters necessary to account for the

quantitative data on leukocyte, platelet and reticulocyte cycling in 11 patients with

PCML, using two different fitting procedures (the Marquardt Levenberg procedure as well

as simulated annealing). Both methods gave qualitative and quantitative agreement with

the published data on PCML in reproducing the period, amplitudes and mean values of

the oscillating cell types as well as the relative phase differences between them. This

indicates that the model is capable of duplicating the overall features of the coupled

oscillations of the different cell lines.

Based on their analysis and numerical simulations, the oscillatory nature of PCML could

be generated through a bifurcation in the dynamics of the coupled HSC compartment and

the regulation of differentiated leukocytes. The critical model parameter changes required

to simulate the periodic chronic myelogenous leukemia patient data were the

amplification in the leukocyte line (AN), the differentiation rate from the stem cell

compartment into the leukocyte line (f0), and the rate of apoptosis in the stem cell

compartment (γS). In particular, their model system was very sensitive to changes in γS,

suggesting that changes in the numbers of proliferating stem cells might be important in

generating PCML. Note also that a high-frequency oscillation on top of the typical long

time periods oscillations was often seen in their numerical simulations. Colijn et al.

(2006b) analyzed a two-compartment DDE model for stem cell and neutrophil

populations and showed how such oscillations can be understood in the context of slow

periodic stem cell oscillations. They suggested that these observed intermittent high

frequency oscillations are likely to be partially due to the system dynamics, and not

simply result from noise and fluctuations in the biological parameters.
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2.5 Discussion

Due to their interesting dynamical characteristics, hematological periodic diseases are

good candidates for using mathematical modeling and bifurcation theory to better

understand the underlying mechanisms of hematopoiesis and even to potentially

understand how clinical treatment affects dynamics.

We have reviewed four dynamical diseases and presented different mathematical models

that have aided our understanding of the origin and features of these diseases. Several

types of mathematical models have been used and the choice typically depends on the

availability of data and the overall objective of the study. Due to advances in

measurement technology, an increasing amount of cellular and molecular data is being

generated. Their analysis and the complexity of the underlying mechanisms require the

contribution of mathematical models and computational methods. Indeed, mathematical

modeling and simulation techniques contribute to the discovery of regulatory principles

and may also provide clinical predictions. In particular, we illustrated how one could use

mathematical models to optimize standard G-CSF treatment for cyclical neutropenia.

The same ideas may be used for other diseases if enough clinical data are made available

for appropriate parameter estimations. Indeed, despite major advancement in new

technologies, some quantities are still difficult to measure or estimate, making the

parameter estimation a limitation for mathematical modeling.

In conclusion, we also mention three other recent studies that have used computational

methods for specific clinical applications. First, Engel et al. (2004) used an ODE model

for studying the effects of 10 different multi-cycle poly-chemotherapies on leucocytes in

lymphoma patients. Their model provides quantitative predictions for different G-CSF

chemotherapy schedules (Engel et al. (2004); Scholz et al. (2005)). Second, the PDE

model in (Ostby et al. (2003, 2004)) was successfully applied to clinical results for

granulocyte reconstitution after high-dose chemotherapy with stem cell and G-CSF

support in breast cancer patients. Finally, we mention the work of Skomorovski and Agur

(2001) and Skomorovski et al. (2003), who developed a computer tool that simulates

thrombopoietin (TPO) administration schedules on the platelets number and on the cell

counts of different bone marrow compartments. This tool is aimed at suggesting improved

drug protocols for patients suffering from low blood platelet levels. In our opinion, these

are other examples which show that clinical biology and dynamical modeling should not
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be regarded as independent fields, but rather as complementary parts of biology.

We hope that readers will appreciate that mathematical modeling is a process that

constantly evolves as the predictions of the models are iterated against data and clinical

findings, and the results of the past three decades in modeling the of dynamical

hematological diseases is an example of this. For example, the original model for PCML

in Mackey and Glass (1977) bears little resemblance to the more recent model of Colijn

and Mackey (2005b) and indeed the original model of Mackey and Glass (1977) is

inconsistent with the currently available clinical data. Likewise, the earlier model of

Mackey (1978a) identified apoptosis within the stem cell compartment as the likely

culprit in the generation of the oscillations of CN. This led, in turn, to laboratory and

clinical investigations that did, indeed, identify significantly higher than normal levels of

apoptotic cells in the bone marrow but the apoptosis was occurring in the committed

neutrophil precursors! This model has been revisited a number of times Bélair and

Mackey (1987); Bernard et al. (2003); Colijn and Mackey (2005b,a); Mackey and

Rudnicki (1994); Mahaffy et al. (1998b); Pujo-Menjouet et al. (2005); Pujo-Menjouet and

Mackey (2004); Santillan et al. (2000) as knowledge has improved, and conclusions drawn

from subsequent models has led to an evolution of our understanding of this disease as

well as the treatment of it using G-CSF.

The reader will, no doubt, also realize that each model has its positive and negative

aspects. The level of detail of the model depends on the availability and quality of the

data and also on the questions we want to address. The more detail, the more

complicated the model will be. A mathematical analysis might then be hard to undertake

and the conclusions may only be based on numerical experiments which many, including

us, find less than satisfactory. On the other hand, a simple model may be easier to

analyze and mathematical analysis can give more insights into the dynamical properties

or the underlying system, but it may oversimplify and fail to capture some important

features of the reality.

The issue of model complexity is intimately tied to the issue of the dimensionality of the

parameter space, and this is tied directly to one of the quandaries that faces every

modeler. The more complex the model, the more parameters that must be estimated. It

is a virtual truism in mathematical biology that one is almost never able to obtain all of

the parameters in a model from the same laboratory or clinical setting using the same

procedures and techniques and subjects. So, as mathematical model construction is
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something of an art in itself the same can be said for parameter estimation. Experience

suggests that the hardest part of the modeling exercise is in obtaining decent parameter

estimations.

2.6 Appendix

2.6.1 Method for converting a PDE model into a DDE model

As presented in Section 2.3.3, we consider the cell density x(t, a) at time t and age a in a

generic compartment. We assume that x(t, a) satisfies the following time-age equation

(advection, or reaction-convection, equation):

∂x

∂t
+ V (t)

∂x

∂a
= −γ(t)x t > 0, a ∈ [0, τ ], (2.A.1)

with boundary condition (B.C.):

x(t, 0) = H(t) (2.A.2)

and initial condition (I.C.)

x(0, a) = φ(a). (2.A.3)

Next, we show that by partial integration of equation (2.A.1), we can reformulate this

problem as a delay differential equation.

Integrating with respect to the age variable a, we obtain

∫ τ

0

∂x(t, a)

∂t
da +

∫ τ

0

V (t)
∂x(t, a)

∂a
da = −

∫ τ

0

γ(t)x(t, a) da

=⇒
dX

dt
+ V (t) [x(t, τ) − x(t, 0)] = −γ(t)X(t),

where X(t) is the total number of cells:

X(t) =

∫ τ

0

x(t, a) da.

We can then substitute the boundary condition x(t, 0) = H(t) to give

dX

dt
= V (t)[H(t) − x(t, τ)] − γ(t)X(t). (2.A.4)
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We next need to find an expression for x(t, τ). This can be done by directly solving

Equation (2.A.1) using the method of characteristics. We define a new (dummy)

independent variable s and let x(s) = x(t(s), a(s)). Thus, we obtain

dx

ds
=

∂x

∂t

dt

ds
+

∂x

∂a

da

ds
= −γ(t)x.

This defines a set of three ODEs for t > 0 and a ∈ [0, τ ] as follows:

dt

ds
= 1 =⇒ t(s) = t(0) + s (2.A.5)

da

ds
= V (t) =⇒ a(s) = a(0) +

∫ s

0

V (w) dw (2.A.6)

dx

ds
= −γ(t)x =⇒ x(s) = x(0) exp

(

−

∫ s

0

γ(t(w), a(w)) dw

)

. (2.A.7)

Denote by C the curve emanating from the point (t, a) = (0, 0), and separating the (t, a)

plane into two distinct regions R1 and R2 (cf. Figure 2.6). The curve C is defined by

C =

{

(t, a)|t(s) = s and a(s) =

∫ s

0

V (w) dw for s ∈ [0, sT ]

}

, (2.A.8)

where the value of sT corresponds to the value of s required to reach age a = τ . Thus, sT

must satisfy

τ =

∫ sT

0

V (w) dw. (2.A.9)

The solution x(t, a) takes a different form depending on whether it lies in region R1 or

region R2. Recall that the general solution is given by Equation (2.A.7)

x(s) = x(0) exp

(

−

∫ s

0

γ(t(w), a(w)) dw

)

.

Therefore, we need to find an expression for x(0) and s as a function of a and t in order

to obtain the expression for x(t, a) := x(t(s), a(s)). Recall also that we are interested in

the value x(t, τ).

1. If (t(0), a(0)) ∈ R1: Then, it can be seen from Figure 2.6 that t(0) = 0. Hence, we

have t(s) = s and a(s) = a(0) +
∫ s

0
V (w) dw with 0 < a(0) < τ . Using the initial
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Fig. 2.6 Generic example of the curve C that separates the a− t plane into
regions R1 and R2.

condition (2.A.3), this implies that x(0) = φ
(

a −
∫ t

0
V (w) dw

)

and therefore, we

obtain

x(t, τ) = φ

(

τ −

∫ t

0

V (w) dw

)

exp

(

−

∫ t

0

γ(w) dw

)

.

2. If (t(0), a(0)) ∈ R2: Then, from Figure 2.6, one can see that a(0) = 0 and thus

a(s) =
∫ s

0
V (w) dw and t(s) = t(0) + s. Hence, using the boundary condition

(2.A.2), we have x(0) = H (t − s). Now, we need to find an expression for s. This is

defined implicitly using the expression for a(s). Indeed, we have that s represents

the time required for age a to increase from 0 to a(s). Moreover,

a(s) =

∫ s

0

V (t(w)) dw =

∫ s

0

V (t(0) + w) dw =

∫ t(0)+s

t(0)

V (σ) dσ.

Recall also that we are interested in x(t, τ). Thus, let us define by Tτ the time

needed for the age variable to go from 0 to τ , i.e.:

τ =

∫ Tτ

0

V (w) dw. =

∫ t

t−Tτ

V (w) dw. (2.A.10)
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Therefore, the expression for x(t, τ) reads as follows:

x(t, τ) = H(t − Tτ ) exp

(

−

∫ Tτ

0

γ(w) dw

)

,

where Tτ satisfies equation (2.A.10).

Therefore, from the method of characteristics the solution x(t, τ) is

x(t, τ) =







φ
(

τ −
∫ t

0
V (w) dw

)

exp
(

−
∫ t

0
γ(w) dw

)

if (t, a) ∈ R1

H(t − Tτ ) exp
(

−
∫ Tτ

0
γ(w) dw

)

if (t, a) ∈ R2,

with Tτ satisfying τ =
∫ t

t−Tτ
V (w) dw. Since we are interested in long term behaviour, we

consider only the case where (t, a) ∈ R2 (from Figure 2.6, one can see that region R2

includes the t-axis whereas R1 is bounded by a = τ .) We obtain

x(t, τ) = H(t − Tτ ) exp

(

−

∫ Tτ

0

γ(w) dw

)

.

Substituting in equation (2.A.4), this yields the general solution for X(t)

dX

dt
= V (t)

[

H(t) − H(t − Tτ ) exp

(

−

∫ Tτ

0

γ(w) dw

)]

− γ(t)X(t). (2.A.11)

2.6.2 The Linear chain Trick

In this section, we present the derivation of the ODE system obtained using the linear

chain trick (see MacDonald (1978b) for more details and examples). Consider the

following DDE system with a distributed delay:

dx1

dt
= f

(

x1(t),

∫ t

−∞

x1(τ)G(t − τ) dτ

)

, (2.A.12)

with the special choice of the density of gamma distribution (2.7) for the memory

function. Note that this trick works only for some particular memory functions. Using

definitions (2.9) and (2.10) and properties (2.8), we show that we can express the DDE

problem (2.A.12) as the (p+2)-dimensional ODE system (2.11). First, substituting the
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definition of xp+2 into Equation (2.A.12) directly leads to the first differential equation

dx1

dt
= f(x1, xp+2).

Next, we derive the expression for
dxj+1

dt
, j = 1, ...p + 1. From the Leibniz integral rule, we

have that

dxj+1

dt
=

d

dt

(
∫ t

−∞

x1(τ)Gj−1
a (t − τ) dτ

)

= x1(t)G
j−1
a (0) + lim

u→∞

Gj−1
a (u) +

∫ t

−∞

x1(τ)
d

dt
Gj−1

a (t − τ) dτ. (2.A.13)

From the three properties of Gj−1
a (u) presented above, the first and second terms on the

right hand side vanish, except for the case j = 1 where the first term is equal to ax1.

Also, one can easily show that the derivatives of Gj−1
a (t − τ) are given by

d

dt
G0

a(t − τ) = −aG0
a(t − τ),

d

dt
Gj−1

a (t − τ) = a
[

Gj−2
a (t − τ) − Gj−1

a (t − τ)
]

(j = 2, 3, ..p + 2).

Hence, substituting in Equations (2.A.13) and using definition (2.9) , we obtain the

required set of differential equations for xj (j = 2, 3, ...p + 2):

dx2

dt
= ax1 − a

∫ 0

−∞

x1(τ)G0
a(t − τ) dτ = ax1 − ax2, (2.A.14)

dxj+1

dt
= a

[
∫ t

−∞

x1(τ)
(

Gj−2
a (t − τ) − Gj−1

a

)

dτ

]

= axj − axj+1. (2.A.15)
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Chapter 3

G-CSF treatment of canine cyclical

neutropenia: A comprehensive

mathematical model

In the last chapter, we reviewed different modeling approaches in hematology, mainly

based on the study of periodic hematological disorders. In particular, modeling of cyclical

neutropenia (CN) and analysis of its dynamical properties has provided insights on the

origin of the disease and potentially helped in the design of new G-CSF treatment

regimens. Indeed, Foley et al. (2006) proposed alternative G-CSF treatment strategies for

cyclical neutropenia using a combination of analytical and numerical tools. However,

their model did not account for the pharmacokinetics of G-CSF and did not consider the

platelets and erythrocytes, in which oscillations are also observed in CN. In this chapter,

we resolve these issues by proposing a comprehensive mathematical model of the

mammalian hematopoietic system that couples the pharmacokinetics of G-CSF to the

hematopoietic stem cell, neutrophil, platelet, and erythrocyte dynamics. We then study

the effects of varying the treatment initiation time, and whether injections are given daily,

every other day, or every three days.

A version of this chapter has been published: C. Colijn, C. Foley and M. C. Mackey.

G-CSF treatment of canine cyclical neutropenia: A comprehensive mathematical model,

Experimental Hematology, 35, 898-907, 2007.
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3.1 Introduction

All blood cells are derived from the hematopoietic stem cells (HSC), which are

undifferentiated cells having a high proliferative potential. These multipotent stem cells

can proliferate and mature to form all types of blood cells (platelets, leucocytes and

erythrocytes). Production in these cell lines is regulated by a variety of cytokines,

including erythropoietin (EPO), which mediates the regulation of erythrocyte production,

thrombopoietin (TPO), which regulates production of platelets (but may also affect other

cell lines), as well as granulocyte colony-stimulating factor (G-CSF), which regulates

leukocyte numbers.

In Colijn and Mackey (2005a,b) a comprehensive mathematical model for the regulation

of hematopoiesis was presented. This work was motivated by the existence of several

hematological diseases that display a highly dynamic nature characterized by oscillations

in one or more of the circulating cell lines (Haurie et al. (1998)). Examples of these are

cyclical neutropenia, periodic chronic myelogenous leukemia, cyclical thrombocytopenia

and periodic hemolytic anemia.

In this chapter, we concentrate on cyclical neutropenia, a rare hematological disorder

characterized by oscillations in the circulating neutrophil count. These levels fall from

normal to barely detectable levels with a typical period of 19 to 21 days in humans

(Haurie et al. (1998); Guerry et al. (1973); Dale and Hammond (1988)), even though

periods up to 40 days have been observed (Haurie et al. (1998)). These oscillations in the

neutrophil count are generally accompanied by oscillations with similar period in the

platelets, lymphocytes and reticulocytes (Haurie et al. (1998, 2000a)). Cyclical

neutropenia also occurs in grey collies with periods on the order of 11 to 16 days (Haurie

et al. (1998, 1999b, 2000a)). This animal model has provided extensive experimental data

that has enriched our understanding of cyclical neutropenia.

Though the gene modified responsible for canine cyclical neutropenia has been identified

(Horwitz et al. (2004)), the dynamic origin of the cycling is only partially understood.

Because of its interesting dynamical nature, many mathematical models have been

formulated to attempt to answer this question. While many have modeled cyclical

neutropenia as arising only from destabilization of neutrophil dynamics (King-Smith and

Morley (1970); Morley et al. (1969)), the work of Bernard et al. (2003) and Colijn and

Mackey (2005a) suggest that the origin of cyclical neutropenia lies in a destabilization of
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the combined HSC and neutrophil control system. The hypothesis that oscillations

originate in the stem cells is supported by the observation that in cyclical neutropenia

oscillations are also present in platelets and reticulocytes.

Cyclical neutropenia in humans is often treated using granulocyte colony stimulating

factor (G-CSF) (Hammond et al. (1989)), which is known to interfere with apoptosis

(Koury (1992); Park (1996); Migliaccio et al. (1990); Williams and Smith (1993)).

Treatment protocols typically call for daily subcutaneous injection of G-CSF at 3 to 5 µg

per kg of body weight (Ozer et al. (1997); Dale et al. (2003)). This represents a current

cost of over US$45,000 per year for a 70 kg adult. Clearly it would be of enormous

economic benefit if the same clinical effects could be achieved with less G-CSF. A few

alternative treatment strategies in humans have been reported in which various

administration schemes have been used (Jayabose and Sandoval (1994); Dicato et al.

(1992); Danielson and Harmenberg (1992); Dale et al. (2003)).

In Bernard et al. (2003), a two-compartment model accounting for a destabilization of the

HSC compartment was used to mimic the dynamical behavior of the hematopoietic

system under G-CSF treatment. In Foley et al. (2006) the authors showed that,

depending on the starting date of the G-CSF treatment, the neutrophil count could either

be stabilized or show large amplitude oscillations (both behaviors have been observed

experimentally (Hammond et al. (1989))). Their model suggested that other G-CSF

treatment schemes (such as administering G-CSF every other day) could be effective

while using less G-CSF. However, this model included neither erythrocyte nor platelet

dynamics even though clinical data indicates oscillations in those cell lines in cyclical

neutropenia patients. Thus it is not known if the results would be consistent with

observed platelet and reticulocyte data. Second, the simulations did not take into account

the pharmacokinetics of G-CSF.

In this chapter, we present a new model for assessing the effects of G-CSF treatment in

cyclical neutropenia. To do this, we augment the comprehensive model of the

hematopoietic system from Colijn and Mackey (2005a) by coupling it with a

two-compartment pharmacokinetic model that accounts for G-CSF kinetics. The details

of the mathematical model are presented in the Appendix.
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3.2 Data and Methods

3.2.1 Data

We used data on seven grey collies generously supplied by Dr. David C. Dale (University

of Washington School of Medicine, Seattle) and previously analyzed in Haurie et al.

(1999b). All of these dogs showed statistically significant cycling in neutrophils and/or

platelets, according to the Lomb periodogram analysis carried out in Haurie et al.

(1999b). The Lomb periodogram is equivalent to power spectrum analysis but is tailored

for unevenly sampled data sets. It is used to detect periodicity in the blood counts before

and during treatment with G-CSF. Data for neutrophils, erythrocytes and platelets were

available both for untreated dogs as well as dogs receiving daily G-CSF.

3.2.2 Model and Data Fitting

We have developed a mathematical model that couples the pharmacokinetics of G-CSF to

the hematopoietic stem cell, neutrophil, platelet and erythrocyte dynamics. The model is

based on the work of Colijn and Mackey (2005a) and is described in the Appendix.

Briefly, it consists of 4 delay differential equations each describing the time evolution of

one of the cell types, coupled to two equations representing the changing levels of G-CSF

in the subcutaneous tissue and in the circulation. The G-CSF compartment adds 10

parameters, which are estimated from the literature (see Table 3.1 in the Appendix).

In Colijn and Mackey (2005a), the hematological portion of the present model was fitted

to observed data for cyclical neutropenic dogs and human patients, both untreated and

receiving G-CSF treatment. To do this, a simulated annealing optimization method was

used to minimize the least squares difference between the simulation and the data (see

Section 3.5.3 for more details on simulated annealing). Both the platelet and neutrophil

counts were matched for dogs with untreated cyclical neutropenia, and (separately) for

dogs undergoing daily treatment with G-CSF injections.

The results were that three of the model’s parameters were identified as the most crucial

in simulating the effects of cyclical neutropenia and its treatment with G-CSF: the

amplification in the proliferating neutrophil precursors, the rate of apoptosis in the

proliferating HSC’s, and the maximal rate of differentiation from the HSC’s into the

neutrophil line. Interestingly, it was consistently necessary to change all of these to
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account for the features of the data.

Here, we used the fits for 7 dogs without G-CSF treatment from Colijn and Mackey

(2005a). For three of these, we then used the simulated annealing procedure to minimize

the least squares difference between the simulation and the treated data, changing only

the three most critical parameters. We then estimated, without fitting, the treated

parameters for the remaining 4 dogs. At this point, the parameter sets successfully match

the model simulations to data, without the new G-CSF compartment (i.e. the model is

that of Colijn and Mackey (2005a)).

We now add the pharmacokinetic G-CSF compartment, to obtain our full model. The

quality of the fits is preserved; in other words, the least squares difference between the

model and simulations is as good, or better, with the G-CSF compartment than without,

though the parameters were estimated for the model without it. (See Figures 3.1 and 3.2

and the discussion below).

At this point, having determined both the untreated and treated parameter values we are

in a position to use simulation to explore the effects of different treatment strategies. We

experiment with simulating treatment every day, every second day, and every three days,

for each of the dogs. We also examine the effect of changing the time in the cycle when

treatment is first initiated.

3.3 Results

The parameter sets for the first three dogs are given in the first three columns of Table

3.2 in the Appendix. In each case, we found that the neutrophil amplification increases

substantially under G-CSF treatment, as does the rate of stem cell apoptosis, and the

differentiation into the neutrophil line. We therefore predict similar changes for the

remaining dogs (see the four last columns in Table 3.2 of the Appendix). There is some

redundancy in the model, in that increasing the neutrophil amplification and the

differentiation into the neutrophil line from the stem cells have similar effects. This is not

unexpected, since the primary effect of both changes is to raise neutrophil levels.

Figure 3.1 shows the fit of the untreated and treated data for Dogs 100, 118 and 127 (for

which we used the simulated annealing method for fitting the treated values of the

parameters). Note that the simulations match the data reasonably well for the

neutrophils as well as for the erythrocytes and platelets (not shown). This confirms that
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Fig. 3.1 Serial neutrophil data and simulations for Dogs 100, 118
and 127. (Data and simulations for platelets and erythrocytes are not shown).
The left panel shows untreated data (points) and simulations (solid line). The
right panel shows data and simulations for dogs under daily G-CSF treatment.
Note that the model accounts for the different scalings in neutrophil counts.
The simulations were obtained using parameters resulting from the simulated
annealing method. Neutrophil units are 108 cells-kg−1.
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Fig. 3.2 Serial neutrophil data and simulation results for Dogs 101,
113, 117 and 128. The left panel shows data from untreated dogs (points)
and simulations (solid line). The right panel shows data and simulations for
dogs given daily G-CSF treatment. Note that the model accounts for the
different scalings in neutrophil counts. The simulations were carried out using
parameters estimated from the data from Dogs 100, 118 and 127. Neutrophil
units are 108 cells-kg−1.
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the new model, with the G-CSF coupled to the cell population dynamics, is capable of

reproducing the data. The least squares differences between the simulations and the data

were not significantly less than the values reported in Colijn and Mackey (2005a). These

simulations and data are for daily treatment.

Figure 3.2 shows the data and simulations for the other four dogs (Dogs 101, 113, 117 and

128), again with daily treatment. Recall that these were the estimated, not fitted, values

for the treated parameters and note the quality of the fits. Thus, we are able to match

observed data without automated parameter fitting based simply on an examination of

the treated data and the parameter changes for Dogs 100, 118 and 127.

For each dog, we performed simulations comparing daily treatment, treatment every other

day, and every three days. We find that particularly for Dogs 100, 101, 118 and 127,

changing the period of the treatment can significantly affect the nature of the oscillations.

Figure 3.3 shows the results of treating Dog 118 every other day, rather than every day.

We have also explored the effects of changing the time at which the treatment is initiated.

In most cases, this did not significantly change the long-term behavior. However, for Dog

127 the amplitude of the oscillations was significantly reduced when the treatment was

initiated in the latter half of the cycle. More specifically, measured from day 1 (defined

here to be the day when the neutrophil level reaches its minimum), we find that smaller

oscillations occur if treatment is initiated on day 8 or afterwards, or on days 2 or 5 (see

Figure 3.4). When treatment was initiated on other days, larger oscillations in the model

resulted. We were aware from our previous study (Foley et al. (2006)) of similar models

that there is the possibility that two or more qualitatively different states can be locally

stable, and we have also found evidence for this in the present model. Namely, changing

the treatment onset time from day 1 to day 8 for Dog 127 caused the simulation to

stabilize to two very different types of behavior.

It should also be noted that increasing the G-CSF dosage in the model sometimes helped

to stabilize oscillations (Dog 127), but in several cases (Dogs 100, 128 and 101) a dosage

increase from 5 µg/kg to a dosage in the range 15-25 µg/kg caused some simulations to

fail. In those simulations, the differentiation rate out of the stem cells was so high, and

the apoptosis rate in the stem cells was so high, that the stem cell population was no

longer able to maintain itself. For the other dogs, there was always a dosage that was

sufficiently high to terminate the simulation, but it was sometimes a factor of 10 higher

than the actual dosage given.
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Fig. 3.3 Effects of varying G-CSF treatment frequency. Simulations
for Dog 118 when we administer G-CSF daily (top panel), every other day
(middle panel) and every third day (bottom panel). Treatment always starts
on day 300. Notice the change in the amplitude of the oscillations depending
on the treatment regime. Neutrophil units are in 108 cells-kg−1.
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Fig. 3.4 Effects of changing initiation time of G-CSF treatment.
Simulations for Dog 127 when we change the time at which daily G-CSF
treatment is initiated. If day 1 represents the day at which the nadir occurs,
we see starting treatment day (STD) is 1 (top), STD = 2 (second panel), STD
= 4 (third panel) and STD = 9 (bottom). We can either have large amplitude
oscillations (panels 1 and 3) or small oscillations (panels 2 and 4). Neutrophils
are in units of 108cells-kg−1.
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3.4 Discussion

We have developed a model of the hematopoietic system (including the bone marrow

stem cells, circulating neutrophils, platelets and erythrocytes) that includes a

pharmacokinetic model of G-CSF dynamics in tissue and in circulation. The model is

able to account for the features of untreated, and G-CSF-treated, data for dogs with

cyclical neutropenia. This is accomplished, starting with parameter fitting done in Colijn

and Mackey (2005a), by fitting parameters for 3 dogs and thereby estimating, not fitting,

parameters for 4 other dogs.

One of the most intriguing observations resulting from the parameter fitting in this study,

as in Colijn and Mackey (2005a), is that to fit observed data for cyclical neutropenic dogs

and human patients during G-CSF treatment it was necessary to assume that there was

an increase in the rate of apoptosis in the stem cell compartment during G-CSF

treatment, at the same time as the more expected increase in neutrophil amplification

(consistent with an inhibition of apoptosis in the proliferating neutrophil precursors).

The study we report here about treatment schedules indicates that changing the period of

the treatment from daily to every other day, and then to every third day, almost always

significantly alters the nature of the oscillations. Since G-CSF is costly and may have

undesirable side effects, it may be worth exploring this option further in humans.

Furthermore, we found in one case (Dog 127) that changing the time of onset of

treatment to the latter half of the cycle (as measured by setting day 1 to be the day when

the neutrophil level is minimal) results in much smaller amplitude oscillations in the

treated simulation.

In the model, both of these interventions (changing the treatment period, and changing

the onset time) had more significant effects on the oscillations than did changing the

G-CSF dosage. Indeed, increasing the dosage was not seen to be a viable option in our

simulations, as it frequently led to the termination of the simulation rather than to the

stabilization of oscillations.

The observed data are highly variable from one dog to another, but the simulations can

be individualized to account for this. This presents the possibility of using “real time”

data for a given dog to individualize model simulations and make predictions about the

effects of different treatment schedules.

Earlier modeling work also suggested that significantly different behavior would result
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from different G-CSF treatment schedules. Our model substantiates this, and quantifies

the effects using realistic G-CSF dynamics and yielding simulations that are directly

comparable to observed data. Our central result is that in the model, changing the time

of treatment initiation and/or the period of treatment may result in equally good, or

better, long-term outcomes and may require less G-CSF. These changes would be

practical to implement and, if less G-CSF were required, would reduce the risk of side

effects as well as the cost of treatment.
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3.5 Appendix: The model

3.5.1 Model structure

The model we have developed includes the hematopoietic stem cells, the neutrophils,

platelets and erythrocytes, as well as tissue G-CSF levels and circulating G-CSF in the

blood. The model has four distinct cellular compartments and two compartments

representing G-CSF (c.f. Figure 3.5).

The stem cells are pluripotential and self-renewing, and can differentiate into the

leukocyte, erythrocyte or platelet lines. Alternatively, the stem cells may re-enter the

proliferative phase of the stem cell compartment, during which they undergo a random

loss via apoptosis at rate γS. The stem cell compartment model is based on the original

work of Mackey (1978b). The neutrophil, erythrocyte and platelet compartments are

modeled after earlier efforts (Bernard et al. (2003); Santillan et al. (2000); Bélair et al.

(1995); Mahaffy et al. (1998a)). G-CSF, meanwhile, is injected into the tissue

compartment and enters the circulation from there. It is cleared from the circulation by

two processes: a random loss, and a linear neutrophil-mediated clearance representing the

fact that neutrophils take up circulating G-CSF (Stute et al. (1992); Takatani et al.

(1996)); at very high G-CSF levels the neutrophil-mediated clearance is saturable, but at

the concentrations relevant here, a linear approximation is accurate.

Our notation is as follows. The hematopoietic stem cells (HSC’s) are denoted by Q (in

units of 106 cells/kg, see Figure 3.5). The circulating neutrophils, erythrocytes and

platelets are denoted N (units 108 cells/kg), R (units 1011 cells/kg) and P (units 1010

cells/kg), respectively. Each of the differentiation rates from the stem cell compartment

into the cell lines depend on the number of circulating cells of the relevant type, so there

is a feedback between the circulating cell numbers and the rates of differentiation. These

are negative feedback functions, so when the number of circulating mature cells of a given

line decreases, the corresponding differentiation rate κ increases to compensate. The rates

of differentiation (units of days−1) from the HSC’s into the three circulating cell lines are

denoted by κN(N), κR(R) and κP (P ), respectively. Tissue levels of G-CSF are denoted X

(units µg/kg), and circulating G-CSF concentration is G (units µg/mL).

The effects of G-CSF on the system (injected with a temporal schedule I(t)) are

ultimately represented by changes in the parameters AN (the effective amplification in the

neutrophil line between the HSC’s and the circulating neutrophils), γS, (the rate of
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hematological model. The notation QτS

≡ Q(t − τS) indicates that there is a
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apoptosis in the HSC compartment), and θ1 (through which G-CSF increases the level of

differentiation from the stem cells into the neutrophil line). Only the circulating, and not

the tissue, G-CSF has these effects. These particular effects are isolated because in Colijn

and Mackey (2005a), these were the primary parameter changes that were found

necessary for model simulations to match the observed laboratory and clinical data for

dogs and humans with cyclical neutropenia undergoing G-CSF treatment.

With this notation, and the convention that Xτ ≡ X(t − τ), the model equations are
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given by

dQ

dt
= −β(Q)Q − (κN + κR + κP )Q + 2e−γSτSβ(QτS

)QτS

dN

dt
= −γNN + ANκN(NτN

)QτN

dR

dt
= −γRR + AR {κR(RτRM

)QτRM
− e−γRτRSκR(RτRM +τRS

)QτRM +τRS

}

dP

dt
= −γP P + AP {κP (PτPM

)QτPM
− e−γP τPSκP (PτPM+τPS

)QτPM +τPS

}

dX

dt
= I(t) + kT VBG − kBX

dG

dt
=

kB

VB

X − kT G − (αN + γG)G.

(3.A.1)

The (negative) feedback functions are:

β(Q) = k0
θs
2

θs
2 + Qs

κN (N) = f0
θn
1

θn
1 + Nn

κP (P ) =
κ̄p

1 + KpP r

κR(R) =
κ̄r

1 + KrRme
.

(3.A.2)

We must also specify an input function I(t) that represents the subcutaneous G-CSF

injections. We assume that this input is brief in duration, and that the total amount of

G-CSF added corresponds to the desired dosage, namely

∫ after

before

I(t)dt = dosage. (3.A.3)

Note that if σ is small, a Gaussian-like input approximates a Dirac δ-function, and we can

write
∫ after

before

ae−t2/σ2

dt ≈

∫

∞

−∞

ae−t2/σ2

dt = aσπ.
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Therefore to simulate periodic injections, we let

I(t) = H(t − d)ae−((t mod T )−T/2)2/σ2

, (3.A.4)

where H(t) denotes the Heaviside step function

H(t) =

{

0 t ≤ 0

1 t > 0.

The day on which treatment is initiated is denoted by d, and the Heaviside function

simply turns the injections on. The term “t mod T” ensures periodicity, and we require

that T >> σ so that the approximation to the integral remains valid. Finally, we ensure

that (3.A.3) holds by choosing the parameter a such that aσπ =dosage.

It remains only to describe how the G-CSF acts on the hematological portion of the

model. As mentioned above, previous work Colijn and Mackey (2005a) indicated that

G-CSF will raise AN , γS and θ1. Thus, given that we begin with values for these

parameters that we know match the treated data in the model without G-CSF kinetics,

we want to have G-CSF injections cause fluctuations in those three parameters about

their treated values.

We therefore write those parameters as functions of the circulating G-CSF (where in

Colijn and Mackey (2005a,b) they were constant):

AN = Auntr
N (1 − H(t − d)) + H(t − d)(mA(G − Ḡ) + Atr

N)

γS = γuntr
S (1 − H(t − d)) + H(t − d)(mg(G − Ḡ) + γtr

S )

θ1 = θuntr
1 (1 − H(t − d)) + H(t − d)(mt(G − Ḡ) + θtr

1 )

(3.A.5)

The superscripts “tr” and “untr” respectively indicate values corresponding to treated

and untreated data. The parameters mA, mg and mt are slopes that specify how much

AN , γS and θ1 change in response to a given change in G-CSF concentration, G. Ḡ is the

average G-CSF concentration for each data set. These were computed using the G-CSF

model alone (without the cell types coupled to it), and using the average neutrophil levels

in each data set.
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The slopes were computed as follows:

mA = m(Atr
N − Auntr

N )/Ḡ

mg = m(γtr
S − γuntr

S )/Ḡ

mt = m(θtr
1 − θuntr

1 )/Ḡ.

(3.A.6)

In (3.A.5), mA, mg and mt set the amount of fluctuation in AN , γS and θ1. When the

parameter m in (3.A.6) is 1, then when G falls to zero, AN , γS and θ1 drop all the way

down to their average untreated levels. If m < 1, then they do not fall all the way to their

untreated average levels when G = 0 but rather fluctuate about their treated levels with a

lower amplitude.1

3.5.2 Parameter estimation

There are a number of parameters to be estimated, and many of these have been

considered in previous modeling studies (Colijn and Mackey (2005a,b); Bernard et al.

(2003)). Our baseline parameters for the HSC compartment, and the neutrophil, platelet

and erythrocyte compartments are the same as in Colijn and Mackey (2005a). Colijn and

Mackey (2005a,b) can be consulted for an extensive discussion of how these parameters

were determined.

Some of the pharmacokinetic parameters for the G-CSF portion of the model can be

taken from published data on G-CSF kinetics. We require estimates of the transfer rates

kT and kB, the volume VB, and the parameters α and γG which give the clearance rate of

G-CSF from the bloodstream.

Hayashi et al. (2001) and Kuwabara et al. (1994) determined kT = 0.06 hr−1 and VB = 76

mL/kg, while Vainstein et al. (2005) give γ = 0.06 hr−1. We use kB = 0.25 hr−1, which is

larger than the value 0.1 given in Hayashi et al. (2001) but which we needed to reach the

observed levels of G-CSF using the approximate I(t) function input. It only remains to

estimate α, which relates the number of circulating neutrophils to the clearance of

G-CSF. Given a known value for N on the day of treatment, and the G-CSF

concentration as a function of time, the half-life can be related to the clearance rate by

t1/2 = ln 2/(αN + γ). With the half-lives and circulating neutrophil counts in Stute et al.

1This can be seen by re-arranging (3.A.5) and (3.A.6), setting t > d to get AN −Atr

N
= m

A
tr

N−A
untr

N

G
(G−

Ḡ).
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(1992) and Kearns et al. (1993a), this gives a range of α = 0.015 − 0.03 kg/hr.

To check the validity of this determination, and to ensure that the model is giving a

reasonable description of G-CSF dynamics, we digitized a time series of G-CSF

concentration from Stute et al. (1992) and fit the model simulations to these data. The fit

is shown in Figure 3.6. The value of α from the fit is 0.03, consistent with the above

estimate.
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Fig. 3.6 Predicted serum G-CSF time series compared to digitized
data from Stute et al. (1992).
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Parameter Name Value Used Unit Sources

Stem Cell Compartment

Q∗ 1.1 x106 cells/kg Bernard et al. (2003)

γS 0.07 days−1 Bernard et al. (2003)

τS 2.8 days Bernard et al. (2003); Abkowitz et al. (1988)

k0 8.0 days−1 Bernard et al. (2003)

θ2 0.5 ×106 Bernard et al. (2003)

s 4 (none) Bernard et al. (2003)

Neutrophil Compartment

N∗ 6.9 x109 cells/kg Abkowitz et al. (1988); Beutler et al. (1995)

γN 2.4 days−1 Bernard et al. (2003); Deubelbeiss et al. (1975); Haurie et al. (2000b)

τMN 3.5 days Bernard et al. (2003)

AN 752 100’s Colijn and Mackey (2005a)

f0 0.40 days−1 (calculated)

θ1 0.36 x108 cells/kg Bernard et al. (2003)

n 1 (none) Bernard et al. (2003)

Erythrocyte Compartment

R∗ 3.5 ×1011 cells/kg Mahaffy et al. (1998b)

γR 0.001 days−1 Mahaffy et al. (1998b)

τRM 6 days Mahaffy et al. (1998b)

τsum 120 days Mahaffy et al. (1998b)

τret 2.8 days Beutler et al. (1995)

AR 5.63 10,000’s Beutler et al. (1995); Novak and Necas (1994)

κ̄r 0.5 days−1 (calculated)

Kr 0.0382 (×1011cells/kg)−1 Mahaffy et al. (1998b)

me 6.96 (none) Mahaffy et al. (1998b)

Platelet Compartment

P∗ 2.14 ×1010 cells/kg Santillan et al. (2000)

γP 0.15 days−1 Santillan et al. (2000)

τP M 7 days Santillan et al. (2000)

τP S 9.5 days Santillan et al. (2000)

AP 28.2 1000’s Beutler et al. (1995)

κ̄p 1.17 days−1 (calculated)

Kp 11.66 (×1010cells/kg)−1 Santillan et al. (2000)

r 1.29 (none) Santillan et al. (2000)

G-CSF compartment

X∗ 0.1 µg/kg (calculated)

G∗ 0 µg/ml (calculated)

kT 0.07 hours−1 Hayashi et al. (2001)

kB 0.25 hours−1 fit

VB 76 mL/kg Hayashi et al. (2001)

α 0.03 kg/hr Stute et al. (1992); Kearns et al. (1993a), fit

γ 0.07 hours−1 Vainstein et al. (2005), fit

a 2.2 µg * hours/kg (calculated)

σ2 0.001 hours2 (calculated)

T 24 hours (calculated)

Ḡ 0.01 µg/ml (calculated)

m 1 (none) (calculated)

Table 3.1 Normal steady state parameters appropriate for dogs.
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Parameter Name Dog 100 Dog 118 Dog 127 Dog 101 Dog 113 Dog 117 Dog 128

Auntr
N 488 73.4 18.8 135.8 51 659 100

Atr
N 912.4 866.4 68.3 900 200 2000 800

θuntr
1 0.36 0.36 0.36 0.36 0.36 0.36 0.8

θtr
1 2.0 4.1 2.1 4 4 4 5

γuntr
s 0.03 0.03 0.005 0.05 0.01 0.05 0.08

γtr
s 0.17 0.15 0.05 0.18 0.055 0.1 0.18

τS 2.80 2.80 2.80 2.52 2.45 2.52 2.52

k0 1.45 1.21 1.34 1.03 1.5 1.59 1.90

f0 0.30 0.69 1.44 0.81 0.48 0.17 0.5

AR 5.63 5.63 5.63 5.80 5.63 5.80 5.63

τPM 7 7 7 6.9 5.27 6.9 7

AP 21.63 49.38 30.88 91.74 6.15 14.0 21.0

κ̄P 1.38 1.16 0.26 0.32 3.48 0.69 0.90

KP 3.41 10.82 2.46 8.01 11.66 3.79 4.0

Ḡ 0.008 0.0038 0.0083 0.008 0.01 0.008 0.005

Table 3.2 Parameters used for computation for each dog. The other param-

eters are the same as in Table 3.1.

3.5.3 Simulated-Annealing

Simulated annealing is an optimization approach derived from the physical cooling of

metals. The algorithm explores the parameter space looking for a minimum of an energy

function, which was given by the sum of square (3.A.7) in our case. At each step, the

algorithm generates a random neighbor solution by perturbing the parameters. We used

the Metropolis acceptance rule (Metropolis et al. (1953)) to determine whether we would

move to the proposed perturbation of the parameters. If the energy of this new state was

lower, the move was accepted. However, unlike other optimization procedures, in

simulated annealing the current parameter set could also be altered to one which gives a

higher energy. Such uphill moves were accepted with probability P = e−∆ET where T is

the temperature. Thus, as T decreased, the probability that an uphill move was accepted

decreased. The fact that uphill moves can be accepted allows for the system to be

perturbed out of a local minima. Simulated annealing is know to be advantageous for

optimization of energy functions containing several local minima.



3 G-CSF treatment of canine cyclical neutropenia: A comprehensive
mathematical model 65

To set up the algorithm, we needed to define an energy function and determine how the

cooling, or annealing, would be done (i.e. define a cooling schedule). We used the same

energy function and cooling schedule as in Colijn and Mackey (2005b). Briefly, since we

aimed at fitting the model to data, the energy function was given by the following sum of

squares:

E =

√

√

√

√

M
∑

i=1

(

(N s
i − Li)2

N̄2
+

(P s
i − Pi)2

P̄ 2

)

+
(Rs

i − Ri)2

R̄2

+δ

[

(N̄ s − N̄)2

N̄2
+

(P̄ s − P̄ )2

P̄ 2
+

(R̄s − R̄)2

R̄2

]

(3.A.7)

+δ

[

(var(N s) − var(N))2

var(N)2
+

(var(N s) − var(P ))2

var(P )2
+

(var(Rs) − var(R))2

var(R)2

]

,

where N , P and R refer to neutrophils, platelets and red blood cells respectively. The

superscript s indicates simulation whereas the lack of a superscript indicates observed

data. The bars indicate that the mean has been taken, ’var’ refers to the variance and the

sum is taken over a total of M points. Although the energy function looks complicated, it

is in fact simpler than it may appear. The first and dominant term (first line) is the

square root of the usual sum of square, normalized by their means. The remaining terms

(second and third lines), scaled by a small parameter δ, involve means and variances of

the three blood cell types. These terms were added to force the solution to be oscillatory

in order to account for the oscillations observed in platelets, neutrophils and reticulocytes.

Without these terms, a steady state solution would frequently be obtained since a

constant solution can have a lower sum of squares than an oscillatory solution than would

be out of phase or having a different period. For more details, see Colijn and Mackey

(2005b). We used the following geometric cooling schedule to determine how and when

the temperature T will be decreased:

Tn = T0α
n, (3.A.8)

where α ∈ (0.995, 0.999). The initial temperature T0 was chosen such that about half of

attempted uphill moves were accepted initially. The temperature is decreased following

(3.A.8) after the system has undergone a random walk of length n in the parameter
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space. For more details about simulated annealing, see Salamon et al. (2002).
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Chapter 4

Optimizing G-CSF treatment

following chemotherapy

Granulocyte-colony stimulating factor (G-CSF) stimulates neutrophils production and is

used clinically for treating neutropenia (low neutrophil levels). In chapter 3, we used a

mathematical modeling approach and experimental data to study alternative G-CSF

treatment regimens for cyclical neutropenia. We found that G-CSF can either increase or

decrease the amplitude of the oscillations. These results suggest that administration of

G-CSF can affect the dynamical behaviour of the granulopoiesis system. In this chapter,

we are also interested in studying the effects of G-CSF administration, but for

chemotherapy-induced neutropenia. Indeed, G-CSF is widely used in oncological practice

for treating neutropenia and preventing infections that often follow chemotherapy

treatment. To better study this situation, we develop a delay differential equation model

for the regulation of neutrophil production. We use explicit functions for modeling the

effects of G-CSF on the amplification factor, the postmitotic transit time and the

apoptosis rates. Using a combination of analysis and numerical simulations, we use this

model to study the effects of delaying G-CSF treatment following chemotherapy for two

recombinant forms of G-CSF (filgrastim and pegfilgrastim). We also examine the

consequences of varying the duration of filgrastim treatment and study some dynamical

properties of the system.

A version of this chapter has been submitted for publication: C. Foley and M. C. Mackey.

Optimizing G-CSF treatment following chemotherapy, Journal of Theoretical Biology,
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2008.

The reference Foley and Mackey (2008) and the reference Colijn et al. (2007) are

respectively presented in chapter 2 and in chapter 3.

4.1 Introduction

Hematopoiesis is the term that refers to the production of blood cells. This process is

initiated in the bone marrow by the stem cells, which are self-renewing and which can

differentiate and mature to produce all types of blood cells: the leucocytes (white blood

cells or WBCs), the erythrocytes (also known as red blood cells (RBCs)) and platelets.

Production of blood cells is regulated by cytokines (growth factors) via negative feedback

mechanisms. Erythropoietin (EPO) regulates the production of red blood cells,

thrombopoietin mediates platelets production whereas Granulocyte-Colony Stimulating

Factor (G-CSF) regulates granulopoiesis (production of white blood cells).

Neutropenia refers to a condition in which the number of neutrophils is low. Neutrophils

usually make up 50-70% of circulating white blood cells and serve as the primary defence

against infections by destroying bacteria in the blood. Hence, having a reduced number of

neutrophils makes the body less able to fight infection and this condition can sometimes

become life-threatening. Neutropenia is said to be severe if the Absolute Neutrophil

Count (ANC) is less than 500 cells per microlitre of blood (or equivalently, 0.38×108

cells/kg). Severe chronic neutropenia may be present at birth (congenital neutropenia) or

may occur at any stage in life (acquired neutropenia). In particular, chemotherapy often

causes neutropenia since it typically attacks cells indiscriminately regardless of whether

malignant or normal. In fact, neutropenia is one the most frequent side-effects of

chemotherapy (Rahman et al. (1997), Vainstein et al. (2005)). Administration of

recombinant forms of the growth factor G-CSF has been shown to stimulate neutrophil

production and is now the standard treatment for neutropenia. However, the clinical

administration schedule of G-CSF is typically determined by trial and error and it is not

clear if there is an optimal way of giving G-CSF after chemotherapy (Clark et al. (2005),

Bennett et al. (1999)).

Some clinical studies have tried to optimize G-CSF timing following chemotherapy

(Morstyn et al. (1989), Meisenberg et al. (1992), Butler et al. (1992), Fukuda et al.

(1993), Koumakis et al. (1999)), but the conclusions vary between studies. The goal of
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this chapter is to study G-CSF treatment strategies following chemotherapy using a

mathematical modeling approach and supplemented by numerical simulations.

Over the past decades, mathematical modeling has provided insight into different aspects

of biological system function. Several mathematical models have been used as tools for

better understanding the nature of hematopoiesis and hematopoietic diseases (see Roeder

(2006) and Foley and Mackey (2008) for reviews). Some of these models are very detailed

and aimed at obtaining insight into biological mechanisms (Rubinow and Lebowitz

(1975), Shochat et al. (2002), Vainstein et al. (2005)). They have several compartments

and hence are often high dimensional and contain a large number of parameters. Other

models focus on specific aspects of neutrophil production. These models can take various

forms and present different levels of details. For instance, they could be formulated as

partial differential equations (PDE) (Ostby et al. (2003)), delay differential equations

(DDE) (Bernard et al. (2003), Foley et al. (2006)) or ordinary differential equations

(ODE) (Panetta et al. (2003), Scholz et al. (2005), Shochat et al. (2007)).

Analysis and numerical simulations of such mathematical models can also provide a way

of studying G-CSF treatment strategies in various contexts. For example, Ostby et al.

(2003) proposed a reaction-diffusion partial differential equation (PDE) model for the

hematopoietic reconstitution after high-dose chemotherapy and G-CSF treatment. They

investigated the physiological effects of G-CSF on proliferation rate, maturation rate,

mobilization and cell death relative to engraftment. Scholz et al. (2005) used an ODE

model for computing the time dependent behaviour of cell numbers in each compartment

under the influence of poly-chemotherapy and G-CSF administration. Their model

includes self-regulating mechanisms that describe the effects of G-CSF administration and

chemotherapy treatment. Shochat et al. (2007) developed a simple two-dimensional ODE

system for the G-CSF-neutrophil dynamics using an axiomatic approach. They performed

a detailed mathematical analysis to deduce interesting dynamical properties of the

system. Finally, Foley et al. (2006) and Colijn et al. (2007) used DDE models to propose

alternative G-CSF treatment schedules for cyclical neutropenia. However, in these

models, G-CSF effects were implicitly included through negative feedback functions.

The model we develop in here is a four-variable delay differential equation model coupled

with a two-compartment ODE model that accounts for G-CSF subcutaneous

administration. It is distinguished from previous DDE models by an explicit modeling of

the effects of G-CSF administration on amplification, maturation and apoptosis rates.
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Moreover, the model can reproduce currently available clinical data for two forms of

recombinant G-CSF used in clinical practice (filgrastim and pegfilgrastim). We use it to

study alternative time schedules for G-CSF following chemotherapy as well as dynamical

aspects of the system.

This chapter is organized as follows. First, we review some aspects of granulopoiesis and

present the standard clinical G-CSF treatment procedures following chemotherapy in

Section 4.2. Then, in Section 4.3, we develop a new mathematical model for neutrophil

production that accounts explicitly for G-CSF effects. This model is then used in Section

4.4 to numerically study alternative G-CSF schedules for two forms of G-CSF (filgrastim

and pegfilgrastim). In Section 4.5, we study some dynamical properties of the model and

conclude with a discussion in Section 4.6.

4.2 Background

In this section, we review the basic aspects of granulopoiesis and discuss how G-CSF is

used for treating chemotherapy-induced neutropenia.

4.2.1 Granulopoiesis

Granulopoiesis is the term for the production of granulocytes. Neutrophils are the most

abundant type of granulocytes. Neutrophil precursors in the bone marrow can be divided

into two pools: the mitotic and the post-mitotic pools. Cells in the mitotic pool are

proliferative and they consist of the progenitor cells, myeloblasts, promyelocytes and

myelocytes. Cells in the post-mitotic pool are non-proliferative and they act as a reserve

pool (or storage compartment) before entering the blood. They consist of metamyelocytes

and the banded and segmented neutrophils. Under normal physiological conditions, the

transit time through the mitotic pool is approximately 6 days (Israels and Israels (2002)).

Then, cells are held in the bone marrow in the post-mitotic pool for about another 6 days

(Price et al. (1996)) before being released into the circulation. When G-CSF levels are

increased (either in response to an inflammatory process or by exogenous administration),

the transit times through the mitotic and post-mitotic pools are reduced (Lord et al.

(1989)). G-CSF acts on both precursor and mature cells by stimulating the effective

proliferation of committed granulocytes progenitors (myeloblasts, promyelocytes and

myelocytes), apparently by decreasing apoptosis. Administration of exogenous G-CSF is
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known to increase the number of circulating neutrophils by increasing the number of

mitotic cells, reducing the maturation time and releasing the bone marrow storage pool

(Israels and Israels (2002), Lord et al. (1989), Price et al. (1996)).

4.2.2 Treating neutropenia using G-CSF treatment

G-CSF (granulocyte-colony stimulating factor) is a hematopoietic growth factor that

stimulates the bone marrow to increase the production of neutrophils. Thus, this is the

treatment of choice for neutropenia. It is produced naturally in the body, but

recombinant forms of G-CSF (filgrastim (Neupogen), lenograstim (Granocyte) and

pegfilgrastim (Neulasta)) are used as drugs to accelerate recovery from neutropenia. In

this study, we will only consider filgrastim and pegfilgrastim. They are both G-CSF

analogs produced by recombinant DNA technology. The gene for human granulocyte

colony-stimulating factor is inserted into the genetic material of Escherichia coli.

Recombinant G-CSF produced by E. coli is only slightly different from G-CSF naturally

made in humans. Filgrastim is a small molecule which is rapidly filtered by the kidney

and cleared from the blood, necessitating daily administrations. The pegylated filgrastim

(pegfilgrastim) is the same molecule as filgrastim but to which a 20 kDa polyethylene

glycol moiety has been added. This addition changes its pharmacokinetic properties and

virtually eliminates renal clearance. Hence, whereas filgrastim is rapidly cleared after a

subcutaneous dose, pegfilgrastim, a bigger molecule, has a much longer half life.

Therefore, only a single administration after each cycle of chemotherapy is necessary for

pegfilgrastim instead of a number of daily injections for filgrastim, thereby reducing cost

and inconvenience to the patient.

Other than a difference in their clearance rate, both molecules have the same effects: they

boost the number of neutrophils by decreasing the apoptosis rates in neutrophil precursors

(Hannun (1997)) and thus increasing the effective amplification factor, and accelerating

the transit time through the postmitotic pool (Lord et al. (1989), Price et al. (1996)).

Side effects

Even though G-CSF is a natural substance, a too high concentration may cause side

effects such as bone pain, red and itchy skin, fever, chills and fluid retention, nausea,

vomiting and diarrhea.
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Clinical uses

G-CSF is used clinically to treat neutropenia in several situations. In particular, since a

common side effect of many chemotheraputic drugs is a reduction in the number of white

blood cells, G-CSF is often given after chemotherapy to elevate the white blood cell

production. It is usually given subcutaneously (injection under the skin) because the

increase in neutrophil count is higher and the stimulated duration is longer than with an

intravenous administration of the same dose (Hayashi et al. (2001)). In this study, we only

consider the use of G-CSF following myelosuppressive chemotherapy on patients suffering

from nonmyeloid types of cancer, e.g. we are assuming that a model of regulation of

neutrophil production can be taken to represent a hematologically normal individual.

Filgrastim (Neupogen)’s clinical guidance (www.neupogen.com) for cancer patients

receiving myelosuppressive chemotherapy recommends a starting dose of 5 µg/kg/day,

subcutaneously. Doses may be increased in increments of 5 µg/kg for each chemotherapy

cycle, according to the duration and severity of the ANC nadir. Neupogen should be

administered no earlier than 24 hours after the administration of cytotoxic chemotherapy

and it should be administered daily for up to 2 weeks, until the ANC has reached normal

levels following the expected chemotherapy-induced neutrophil nadir.

The recommended dosage of Neulasta (pegfilgrastim) is a single subcutaneous injection of

6 mg administered once per chemotherapy cycle (clinical guidances www.neulesta.com).

Neulasta should not be administered in the period between 14 days before and 24 hours

after administration of cytotoxic chemotherapy.

4.3 Mathematical model

In this section, we describe a mathematical model for neutrophil regulation and

production. This model is divided into two parts: the main compartment, which models

the white blood cell production system, and the G-CSF compartment, which models

G-CSF subcutaneous injections. The effects of G-CSF are included in the main

compartment through different functions. This model will be used in section 4.4 to study

the effects of different schedules of G-CSF following chemotherapy.
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4.3.1 Description of the main part of the model

We consider a model with 5 compartments. Let m(t, a), s(t, a), p(t, a), n(t, a) and w(t, a)

be the population densities at time t and age a of proliferative stem cells, resting (G0)

stem cells, proliferative precursors cells, non-proliferative precursors and circulating white

blood cells respectively (see Fig. 4.1). We make the following assumptions:

1. Apoptosis: We assume that in each of these compartments (except for the G0

stem cell compartment), there is a random loss of cells due to apoptosis, at a rate

denoted by γs, γp, γn and γw for the proliferative stem cells, proliferative precursors,

non-proliferative precursors and circulating neutrophils respectively. We assume

that all of the apoptosis rates except γw depend on the G-CSF concentration G(t).

2. Aging velocity: We assume that the cells in each compartment age with a certain

velocity Vi(G), i = m, s, p, n, w. In particular, we take Vm (proliferative stem cells),

Vs (stem cells in G0 phase), Vp (proliferative precursors) and Vw (white blood cells)

to be equal to 1. On the other hand, we consider that the velocity for the

non-proliferative precursors compartment (Vn(G)) depends explicitly on G-CSF

because G-CSF is known to modify the maturation time of this population (Lord

et al. (1989)). We assume that a cell enters the non-proliferative compartment at

age a = 0 and exits this compartment at age a = τn. Hence, if we increase Vn(G),

the transit time through that phase will decrease since it will take less time to go

through the compartment.

3. Differentiation rate: We assume that the differentiation rate δ(W ) from the

resting G0 stem cell compartment to the proliferative phase depends on the number

of circulating neutrophils W (t).

4. Re-entry of G0 phase stem cells into proliferation: Cells in the resting G0

phase (represented by s(t, a)) can either differentiate at a rate δ(W ) or reenter

proliferation at a rate β(S) (we will assume β does not depend on G(t)). The

function β(S) is a decreasing Hill function and hence, as the number of cells in the

G0 phase decreases, the proliferation rate is increased. Cells enter the proliferative

phase of the stem cells at age a = 0 and leave at age a = τs. We assume that before

entering the G0 compartment, the cells divide into two daughter cells and hence we

consider an amplification factor of 2.
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5. Amplification factor A(G): Cells exiting the proliferative phase are amplified by

a factor A(G). This accounts for the number of divisions occurring in the

proliferative phase and it depends on the G-CSF concentration explicitly.

From Fig. 4.1, we can write down a partial differential equation satisfied by the cell

density function for each compartment. We let a represents age and t time. The

age-structured model for the cell populations can be written as:

∂m

∂t
+

∂m

∂a
= −γs(G)m t > 0, a ∈ [0, τs] (4.1)

∂s

∂t
+

∂s

∂a
= −δ(W )s − β(S)s t > 0, a > 0 (4.2)

∂p

∂t
+

∂p

∂a
= −γp(G)p t > 0, a ∈ [0, τp] (4.3)

∂n

∂t
+ Vn(G)

∂n

∂a
= −γn(G)n t > 0, a ∈ [0, τn] (4.4)

∂w

∂t
+

∂w

∂a
= −γww t > 0, a > 0. (4.5)

Note that age a characterizes each compartment separately but time t is the same in all

compartments. For instance, cells entering a given compartment are always characterized

by a = 0. The right hand sides of these equations account for the cell loss. To completely

determine the system, we also need to provide initial conditions and boundary conditions.

We consider the following boundary conditions:

m(t, 0) = β(S(t))S(t), s(t, 0) = 2m(t, τs),

p(t, 0) = δ(W (t))S(t), n(t, 0) = A(G(t))p(t, τp),

w(t, 0) = n(t, τn),
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Fig. 4.1 Schema of the main part of the model. See the text for full details
as well as the notation.
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where A(G) is the amplification factor from proliferative to non-proliferative neutrophil

precursors and the total population of each type is defined as:

M(t) =
∫ τs

0
m(t, a) da, S(t) =

∫

∞

0

s(t, a) da,

P (t) =
∫ τp

0
p(t, a) da, N(t) =

∫ τn

0

n(t, a) da,

W (t) =
∫

∞

0
w(t, a) da.

Also, we use initial conditions of the form

m(0, a) = φm(a) a ∈ [0, τs]

s(0, a) = φs(a) a > 0

p(0, a) = φp(a) a ∈ [0, τp]

n(0, a) = φn(a) a ∈ [0, τn]

w(0, a) = φw(a) a > 0.

We assume that the re-entry into stem cell proliferation and differentiation in the

neutrophil line are modeled by the same monotone decreasing Hill functions as in Colijn

and Mackey (2005a). Therefore, when the stem cells level S decreases, β(S) increases and

stem cell production is increased. Similarly, when the neutrophil count is low, it increases

the differentiation rate δ(W ). The functions β(S) and δ(W ) are given by

β(S) = k0
θ2
2

θ2
2 + S2

(4.6)

δ(W ) = f0
θ1

θ1 + W
. (4.7)

The aging velocity is related to the transit time through a given stage. Since we do not

have any a priori information on how G-CSF decreases the time spent in the

non-proliferative precursor phase, we postulate a simple bounded relationship:

Vn(G) = (Vmax − 1)
G

G + bv
+ 1. (4.8)
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Note that this function is increasing so that the time spent in the phase is decreased as G

increases. Recall that the amplification factor A(G) also varies as a function of G-CSF.

Again, as we have no a priori information on its shape, we assume a bounded relationship:

A(G) = (Amax − Amin)
G

G + bA

+ Amin. (4.9)

Using the method presented in Section 2.6.1, we can integrate each equation and express

the model as delay differential equations (DDE) for the total cell population numbers

S(t), P (t), N(t) and W (t). The complete derivation of the DDE model is presented in the

Appendix and yields the following equations:

dS

dt
= 2β(Sτs)Sτs exp

(
∫ τs

0

−γs(G(t)) dt

)

− [β(S) + δ(W )]S, (4.10)

dP

dt
= −γp(G)P + δ(W )S − δ(Wτp)Sτp exp

(

−

∫ τp

0

γp(G(t)) dt

)

, (4.11)

dN

dt
= −γn(G)N + Vn(G)δ(Wτp)Sτp exp

(

−

∫ τp

0

γp(G(t)) dt

)

∗

∗

[

A(G) − A(Gτ̄n) ∗ exp

(

−

∫ τ̄n

0

γn(G(t)) dt

)]

, (4.12)

dW

dt
= −γwW + A(Gτ̄n)δ(Wτp)Sτ̄p exp

(

−

∫ τp

0

γp(G(t)) dt−

∫ τ̄n

0

γn(G(t)) dt

)

.(4.13)

A subscript on a variable denotes a temporal delay in that variable (xτ := x(t − τ)).

4.3.2 Description of the G-CSF model

As it can be seen from the previous equations, many of the parameters in the system

depend on the G-CSF concentration G(t). Indeed, G-CSF regulates the system in several

different ways and, in particular, it is known to regulate the neutrophil production

through a negative feedback mechanism.

The model for G-CSF is similar to the one used in Colijn et al. (2007). It is a

two-compartment model that accounts for subcutaneous G-CSF injections. The model is

illustrated in Fig. 4.2. The notation is as follows: X denotes the tissue levels of G-CSF

(units µg/kg(body weight)) and G denotes the circulating G-CSF concentration (units

µg/mL). Note that instead of using concentrations for both tissue and blood
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compartment, we used per body weight levels for the tissue compartment. Since it is

easier to express the input I(t) in terms of quantity, this allows us to get rid of the

parameter representing the volume of tissue compartment. Of course, the corresponding

terms need to be scaled accordingly by the volume of the blood compartment VB in order

to make units of G and X agree in both equations. G-CSF is injected into the tissue

compartment and enters the circulation from there. It is eliminated through saturable

and unsaturable mechanisms. The saturable mechanism involves the G-CSF receptors on

neutrophils whereas the unsaturable process mainly involves kidneys (Vainstein et al.

(2005)). From Fig. 4.2, one can write down the dynamic equation for the G-CSF

σNF (G) + γG

I(t)

Blood

G(t)

X(t)

Tissue

Gprod

kBkT

Fig. 4.2 A two-compartment model for subcutaneous administration of G-
CSF. I(t) is a step function representing injection of exogenous G-CSF into
the tissues. X(t) and G(t) are respectively the amount of G-CSF in tissues
(µg/kg) and the blood G-CSF concentration (µg/ml). kT and kB are rate
constants for exchange between the blood and tissue compartments. G-CSF
clearance rate is given by σNF (G) + γG. See the text for further details.
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compartment:

dX

dt
= I(t) + ktVBG − kBX (4.14)

dG

dt
= Gprod +

kBX

VB
− kT G − (γG + σWF (G))G. (4.15)

The first equation represents the rate of change of G-CSF in tissues. I(t) is the input

from exogenous G-CSF given subcutaneously, VB is the volume of the blood compartment

and kT and kB are rate constants for exchange between the blood and tissue

compartments. The rate of change of G-CSF concentration in blood is expressed in the

second equation, where Gprod is the fixed G-CSF production and the clearance is given by

γGG + σWF (G)G.

Next, we derive expressions for G-CSF clearance and the input function I(t) that models

subcutaneous injections.

G-CSF clearance

A number of mathematical models of G-CSF clearance have been used in the literature.

Some authors used Michaelis-Menten kinetics to model the combination of saturable and

non-saturable clearance (Kuwabara et al. (1994); Hayashi et al. (2001); Ostby et al.

(2003)). Alternatively, one could model the unsaturable clearance by a first-order process

and the saturable G-CSF clearance by directly treating the binding of G-CSF receptors

(Vainstein et al. (2005)). The model we propose here is of the second type.

First, the unsaturable clearance process could be modeled by a first-order process γGG,

where γG is the rate of degradation of G-CSF by the kidneys. To this, we add an

expression for the saturable G-CSF clearance. Indeed, G-CSF is also removed from the

circulation by binding to free receptors on neutrophils. Let F (G) be the fraction of bound

G-CSF receptors, W be the neutrophil number and σ be a binding coefficient of G-CSF

to its receptors. Thus, the number of G-CSF molecules removed from the circulation

through the saturable clearance is given by σWF (G), where

F (G) =
G2

G2 + k
. (4.16)

The reader is referred to the Appendix for further details on the derivation of the function
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F (G).

Input function I(t)

In this study, we consider subcutaneous administration of rhG-CSF, which has been

shown to lead to a higher increase in neutrophil count and a longer duration than for

intravenous administration (Hayashi et al. (1999)). To model a bolus subcutaneous

injection (a high quantity of drug injected rapidly in the tissue), we used a step function

of amplitude a and duration s that is turned on at t = ton. More precisely,

I(t) = a ∗ [H(t − ton) ∗ (1 − H(t − (ton + s)))], (4.17)

where H(t) is the heaviside function defined as

H(t) =

{

0 t ≤ 0

1 t > 0.

The total quantity given in the bolus injection is easily computed as a ∗ s.

4.4 Numerical simulations

We use a numerical solver for delay differential equations (dde) called ddesd (Shampine

(2005)) that runs under matlab. For all simulations, we set the maximum time step to

0.01. Recall that the full model is given by the Equations (4.10)-(4.15). We first make

some simplifying assumptions. The computation of τ̄n requires integrating the aging

velocity over time until the area under the curve is equal to τn (τn =
∫ τ̄n

0
Vn(G(w)) dw). It

involves finding the upper bound of the integral, which depends on the shapes of G(t) and

Vn(G) and on the value at which we start integrating (at the beginning of the phase

(a = 0), at the current time t, etc. ). For example, one could also define

τn =
∫ t

t−τ̄n
Vn(G(w)) dw. For this reason, we decided to simplify the problem and to

assume that τ̄n at time t is given by τ̄n = τn/Vn(G(t)). This represents the instantaneous

value of τ̄n and it will change as t changes. It means that if Vn was kept constant, it will

take τn/Vn days to go through the proliferative phase. For similar reasons, we simplify the

computation of exp
(

−
∫ τs

0
γs(G(t)) dt

)

, exp
(

−
∫ τp

0
γp(G(t)) dt

)

and



4 Optimizing G-CSF treatment following chemotherapy 81

exp
(

−
∫ τ̄n

0
γn(G(t)) dt

)

by using, respectively, e−γsτs , e−γpτp and e−γnτ̄n .

Often in discussing our results we will talk as if discussing an individual with cancer, or

an individual receiving chemotherapy. The reader will appreciate that this only a literary

device, and we are really talking about the model with a set of parameters appropriate to a

given condition.

Thus, we numerically integrate the mathematical model and study how the model

behaves in four different situations. First, in Section 4.4.1, we perform simulations of the

system without G-CSF treatment. Next, we look at the effects of daily G-CSF

(Filgrastim) on cancer patients (Section 4.4.2) and following chemotherapy (Section

4.4.3). Finally, we simulate the effects of Pegfilgrastim on the model in Section 4.4.4.

4.4.1 Simulation without G-CSF treatment

First, we integrate the system assuming no exogenous G-CSF is given. Since we have

delayed variables, we need to specify a history function on the interval [-max(τs, τp, τn), 0].

For simplicity, we chose constant initial functions and simulated the system for several

different initial values (ranging from 0 to three times the steady state values for each state

variable). We found that for these initial functions, the system settles down to a steady

state after a transient of about 100 days. Let (S∗, P∗, N∗, W∗) denote the steady state

solution of stem cells, proliferative neutrophil precursors, non-proliferative neutrophil

precursors and circulating neutrophils. Using the parameters listed in Table 4.1,

numerical simulations yield values of S∗ = 3.1 × 106 cells/kg, P∗ = 0.46 × 106 cells/kg ,

N∗ = 8.45 × 109 cells/kg and W∗ = 2.35 × 108 cells/kg. Values for normal subjects

reported in the literature vary from one study to the another. In Bernard et al. (2003),

the estimate for the stem cell numbers S∗ is 1.1×106 cells/kg but this is an imperfect

estimate for many reasons, primarily because of the lack of precision in defining and

experimentally determining which cells are truly stem cells. The normal number of

non-proliferative neutrophil precursors (N∗) ranges between 4.0 to 10.0 ×109 cells/kg

(Vainstein et al. (2005)) and is estimated at 5.59×109 cells/kg in Dancey et al. (1976).

Finally, Bernard et al. (2003) estimated a normal blood neutrophil count W∗ of 6.9×108

cells/kg (range between 5.0 to 10.0×108 cells/kg) whereas Vainstein et al. (2005) reported

an average of 3.0×108 cells/kg (range between 2.0 and 5.0×108 cells/kg). Despite the

apparent discrepancy for the stem cell numbers, our steady state values are similar to
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those reported in the literature.

We can also solve the system at steady state and get analytical expressions for the

equilibrium values of S∗, P∗, N∗ and W∗. See Appendix 4.7.4 for the analytical derivation

and a proof of the uniqueness of a positive steady state.

4.4.2 Simulating G-CSF (filgrastim) treatment
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Fig. 4.3 Effects of varying G-CSF dose. Simulation of daily filgrastim ad-
ministration in the model (before chemotherapy) during a period of 14 days
for two dosages: 5µg/kg (blue) and 10µg/kg (red). Parameters used are listed
in Table 4.1.

In this section, we use our model to study the effects of daily filgrastim administration.

Since we are considering only nonmyeloid malignancies, we assume the same set of

parameters for normal and cancer subjects. Simulations of the model for daily doses of

5µg/kg and 10µg/kg during 14 days are shown in Fig. 4.3. We used constant initial

functions corresponding to the steady state solutions obtained in Section 4.4.1. One can

see that neutrophils increase to 7-fold (5µg/kg) and 17-fold (10µg/kg) during daily

G-CSF treatment, in agreement with results of Chatta et al. (1994). The aging velocity

Vn(t) and the amplification factor A(t) are also increased under treatment, as explained in

Section 4.7.3.



4 Optimizing G-CSF treatment following chemotherapy 83

4.4.3 Simulating Filgrastim effects following chemotherapy

The use of cytotoxic drugs is considered as a standard treatment for cancer. There are

many chemotherapeutic agents and several of them have been shown to induce apoptosis

in cancer cells as well as in healthy cells (see Hannun (1997) for a review). Moreover, the

apoptosis induced by cytotoxic agents can be inhibited by hematopoietic growth factors,

such as G-CSF (Lotem and Sachs (1992)). In this section, we use the model to study the

effects of daily G-CSF (filgrastim) on subjects suffering from nonmyeloid malignancies

who have undergone chemotherapy. After presenting the numerical method used for

simulation in Section 4.4.3, we briefly review previous clinical attempts in optimizing

G-CSF treatment schedules following chemotherapy in Section 4.4.3. Then, we use our

model to study the effects of the starting day of G-CSF treatment following

chemotherapy (Section 4.4.3) and of the duration of G-CSF treatment (Section 4.4.3).

Numerical method

From a modeling point of view, the effects of chemotherapy and G-CSF treatment are

mimicked through the functions A(G), Vn(G), γs(G), γp(G) and γn(G). As explained in

Section 4.7.3, G-CSF increases the amplification factor, decreases the transit time in the

postmitotic pool (increases aging velocity Vn) and decreases the apoptosis rates in the

stem cells (γS) and in the neutrophil precursor cells (γN and γP ).

To numerically simulate the effects of G-CSF following chemotherapy, we start from the

stable steady state found in Section 4.4.1 that represents cancer. Then, we increase the

values of γs, γp and γn to their maximum values γmax
i (i = s, p, n) to mimic the effects of

chemotherapy. The administration of exogenous G-CSF is explicitly expressed by

changing the input function I(t), which then affects the amplification A(G), the aging

velocity Vn(G) and the apoptosis rates γs(G), γp(G) and γn(G). The parameters used

after chemotherapy are the same as in healthy/cancer subjects. Finally, note that since it

is recommended that G-CSF is to be started at least 24 hours after chemotherapy, we

gradually decrease the apoptosis rates between the end of chemotherapy and the

beginning of G-CSF treatment. We use decreasing linear functions of the type

γi(t) = (γmin
i − γmax

i ) t
8

+ γmax
i for i = s, p, n. The factor 8 in the slope of the linear

functions was chosen because a study in monkeys (Meisenberg et al. (1992)) reported an

average period of 8 days for recovery of the ANC following chemotherapy.
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Previous studies

In this section, we review previous clinical attempts to optimize filgrastim administration

following chemotherapy.

Typically, a rapid rise in the neutrophil count is observed after G-CSF administration,

followed by a neutrophil decrease to low ANC values. After this ANC nadir, the

neutrophil levels then increase. Treatment protocols prescribe daily filgrastim (starting

dose of 5µg/kg) beginning at least 24 hours after chemotherapy. It should be

administered daily for up to 14 days or until the ANC has reached normal levels following

the neutrophil nadir.

The use of G-CSF has been proven to be of great utility in reducing

chemotherapy-induced neutropenia. Nevertheless, it is not clear what would be the best

schedule for giving G-CSF following chemotherapy. A few studies have considered

alternative G-CSF regimens in order to find optimal G-CSF timing (Morstyn et al. (1989),

Meisenberg et al. (1992), Butler et al. (1992), Fukuda et al. (1993), Koumakis et al.

(1999)). However, the results and conclusions vary from one study to another. There are

basically two main lines of thought concerning the timing of G-CSF administration. Some

authors consider that the duration of neutropenia and the neutrophil nadir are not

significantly different whether G-CSF is given as early as 24 h or even as late as 8 days

after chemotherapy (Meisenberg et al. (1992), Morstyn et al. (1989)). However, others

have concluded that it is preferable to start G-CSF administration early after

chemotherapy treatment because it reduces the number of infections and hospitalization

days. Next, we briefly discuss the main results of studies based on these two premises.

In their study on monkeys, Meisenberg et al. (1992) showed that beginning daily

filgrastim (5 µg/kg) on either days 1, 3, 5 or 7 after chemotherapy all reduce neutropenia.

They demonstrated that the duration of G-CSF treatment could be reduced considerably

by delaying G-CSF initiation. They also observed that early G-CSF (1 day after

chemotherapy) led to a more rapid recovery of myeloid progenitor cells and an earlier

onset of neutropenia than delayed treatment.

Morstyn et al. (1989) also studied the effects of delaying filgrastim treatment following

chemotherapy and of reducing its duration of administration. Data in their paper

(reproduced in Fig. 4.4) suggests that the amplitude in the ANC levels in response to

G-CSF could vary depending on the starting day of G-CSF administration. In particular,
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maximal neutrophil levels are higher when starting filgrastim treatment on the day

following chemotherapy and lower when starting 7 days after chemotherapy. Morstyn

et al. (1989) demonstrated that starting G-CSF 7 days after chemotherapy still has the

effect of rapidly raising the ANC levels, although the neutrophil response is typically of

smaller amplitude (see Fig. 4.4). They also concluded that it was not necessary to

continue G-CSF for more than 7 days.

In contrast to these studies, Butler et al. (1992) administered G-CSF starting on days 4

or 11 during intensive chemotherapy for breast cancer. They found that patients who

were given G-CSF on day 4 had fewer days of neutropenia, hospitalization and antibiotic

days while having similar duration the G-CSF treatment. These results are in agreement

with another study by Fukuda et al. (1993), who also showed that early G-CSF

administration following chemotherapy was more beneficial than late administration,

when the number of neutropenic days and the depth of the nadir were considered.

Finally, Koumakis et al. (1999) compared various timing schedules of G-CSF treatment

following chemotherapy. They were interested in investigating the dependence of the

optimal time (preemptive vs. supportive) of G-CSF initiation on criteria such as

incidence of febrile neutropenia, antibiotic use, duration and cost of G-CSF

administration. Preemptive treatment involves starting G-CSF shortly after

chemotherapy whereas in supportive therapy, G-CSF is started later and only when

neutropenia occurs. The authors concluded that G-CSF administration shortens

neutropenia regardless of the treatment starting day and that no significant difference was

observed among early- and late- treatment groups. However, the incidence of antibiotic

use and febrile episodes was less when G-CSF was started early (1 or 2 days after

chemotherapy). For these reasons, they recommended preemptive rather than therapeutic

administration of G-CSF for subjects receiving chemotherapy.

In the next section we use our model to study the timing of filgrastim administration with

respect to the starting day of administration and the duration of treatment.

Effects of varying the starting day of filgrastim treatment

As discussed above, it has been suggested that delayed initiation of filgrastim could

successfully reduce neutropenia while being cost-effective. Using our mathematical model,

we found that changing the starting day of filgrastim administration could result in
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important qualitative changes in the ANC levels. Fig. 4.5 shows the effects of starting

filgrastim 1 day and 8 days after chemotherapy. Note that, as in Morstyn et al. (1989),

our model leads to very different responses in the ANC levels. Early administration of

filgrastim results in a large response in the neutrophil levels, followed by a decrease to low

ANC. Filgrastim was simulated to stop when the neutrophil levels were back to normal

following this nadir. Conversely, initiation of filgrastim 8 days after chemotherapy lead to

a very different qualitative response. Neutrophil levels increased but remained relatively

stable around normal levels during G-CSF treatment without falling to very low values

(see Fig. 4.5). Starting G-CSF one week after chemotherapy leads to a reduced

Fig. 4.4 Data from Morstyn et al. (1989) showing the effects of varying the
time and duration of filgrastim administration on neutrophil levels in relation
to melphalan therapy. Each of the 4 panels show data from 4 patients. G-CSF
is started on day 1 after chemotherapy in the first two panels and on day 7 in
the last two panels.

maximum ANC during G-CSF treatment (about half of the maximum ANC value when

starting G-CSF the day following chemotherapy) (see Fig. 4.6). Interestingly, delaying

filgrastim of one week also coincides with higher neutrophil nadir during filgrastim

treatment (approximately twice the nadir value compared to starting treatment on day

one).

These results are in agreement with those reported in Morstyn et al. (1989). It suggests

that late G-CSF administration following chemotherapy should be efficient in reducing

the neutropenic period, provided that neutropenia does not occur prior to the start of

treatment. Since the ANC increases rapidly after filgrastim administration, this suggests
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Fig. 4.5 Simulation of 2 cycles of chemotherapy and daily filgrastim
(5µg/kg). Top panel: Filgrastim is administered daily, starting the day fol-
lowing chemotherapy treatment until the neutrophil levels reach normal values
following the expected nadir. Bottom panel: Filgrastim is started 8 days after
chemotherapy treatment for a period of 11 days. Changing the starting day
of treatment may lead to different responses in the neutrophil count.
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that filgrastim could be efficiently used as supportive treatment, i.e. starting G-CSF only

at the onset of neutropenia. Moreover, this could result in a more stable ANC response

and avoid the typical decrease in neutrophil count. However, we do not take into account

the use of antibiotics in this model, which is a criteria that was in favor of a preemptive

treatment in the study by Koumakis et al. (1999). Also, in a clinical setting, there are

several factors to consider when administering G-CSF to patients, such as the type of

cancer, the intensity of the chemotherapy, the age and general health of the subject, the

history of febrile neutropenic episodes, etc. All these factors can influence the response to

filgrastim treatment. Therefore, our results should be looked at from a qualitative point

of view. Our model suggests that two different types of response (large amplitude

followed by low nadir and a relatively stable ANC) can be obtained by filgrastim

administration. We believe that this may be due to the existence of multiple stable

solutions in the system (see Section 4.5).
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Fig. 4.6 Minimum and maximum neutrophil values during G-CSF treatment
for both filgrastim (5µg/kg/day) and pegfilgrastim (100 µg/kg) with respect
to the starting day of G-CSF treatment following chemotherapy. Neutrophil
levels are in ×108 cells/kg.
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Effects of varying the duration of filgrastim treatment

In this section, we study the effects of varying the duration of filgrastim treatment. Since

clinical guidelines suggest starting filgrastim on day 1 and stopping its administration

when the neutrophil levels are back to normal values following the expected nadir, we

chose to always simulate the start of filgrastim on the day following chemotherapy and

only vary the end of G-CSF treatment. Fig. 4.7 shows the simulation when filgrastim is
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Fig. 4.7 Effects of varying the duration of filgrastim treatment. Simulation
of daily filgrastim (5 µg/kg) started on day 1 after chemotherapy. Top panel:
Filgrastim is given for 4 days and stopped when the ANC is still increasing.
Middle panel: Filgrastim is given for 8 days and stopped just before the nadir.
Bottom panel: The duration of filgrastim is 12 days and filgrastim is stopped
when neutrophil levels have reached normal ANC after the expected nadir.

given for 4, 8 and 12 days. When starting treatment on day 1, one can see that a rapid

rise in neutrophil occurs, followed by the decrease and a second increase in ANC. The

amplitude of this second increase as well as the depth of the expected nadir vary with the

length of treatment. For each duration of filgrastim from 1 to 14 days, we computed the

nadir and maximum neutrophil counts of the second ANC increase over 2 cycles of

chemotherapy (see Fig. 4.8). We found that the longer the treatment, the higher are the

maximum neutrophil levels. More interestingly, depths of the nadir are similar for

treatment duration of more than 8 days. With this model, administering filgrastim for 8
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Fig. 4.8 Effects of the duration of daily filgrastim (5µg/kg) over 2 cycles
of chemotherapy (3 weeks between chemotherapy treatment). Filgrastim is
started on day 1. Top panel: Values of the chemotherapy-induced nadir with
respect to the duration of treatment. Bottom panel: Maximum neutrophil
levels reached following the expected nadir. Neutrophil levels are in ×108

cells/kg.
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days correspond to stopping it just before the expected neutrophil nadir whereas ending

G-CSF when ANC are back to a normal after the nadir corresponds to a duration of 12

days of treatment. Therefore, our simulations suggest that the duration of filgrastim

therapy could be reduced by stopping treatment when the nadir is reached, instead of

waiting for the ANC to get back to normal levels.

It is worth noting that only one day of filgrastim given the day following chemotherapy

leads to a reduced increase of the ANC and a higher neutrophil nadir, as shown in Fig.

4.9. As in the case of delayed treatment discussed above, the ANC response remains

relatively stable around normal values, without falling down to very low neutrophil levels.

We make the hypothesis that this reflects the existence of another stable solution in the

system. From a mathematical point of view, many factors influence the response of the

model, among which the historical values of all variables (stem cells, precursors,

neutrophils) as well as the choice of parameters. Therefore, even though our model

predicts the existence of such solution and suggests that only one day of filgrastim could

be successful in managing chemotherapy-induced neutropenia, further investigation would

be needed since, to our knowledge, no data on this is available in the literature. As one
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Fig. 4.9 Simulation of filgrastim (5µg/kg) given only for one day the next
day after chemotherapy. Two cycles of chemotherapy (3 weeks between
chemotherapy treatment) are shown. ANC levels remain close to normal val-
ues and no deep nadir occurs. Neutrophil levels are in ×108 cells/kg.
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can see in Fig. 4.8, the nadirs and maximum values with respect to the duration of

treatment have similar behaviour for both cycles, except that the nadirs are lower and

maximums are higher for the second cycle. We do not have a clear explanation for that

difference. However, since we are mainly interested in the dynamical properties of the

model, we believe that this quantitative aspect is of less importance and focus on the fact

that the same types of variations in nadirs and maximum values hold for both cycles.

4.4.4 Simulation of Pegfilgrastim responses following chemotherapy

In this section, we study the effects of pegfilgratim administration following

chemotherapy. Recall that clinical guidance for pegfilgrastim calls for a 6 mg dose no

earlier than 24 hours following the chemotherapy treatment. Using the parameters listed

in Table 4.1, we integrated the model and looked at the effects of a bolus subcutaneous

administration of 100 µg/kg (corresponding to the standard 6 mg dose for a 60 kg

subject). As with filgrastim, we found that modifying the starting day of the treatment

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

days

N
eu

tr
op

hi
ls

 (
x1

08  c
el

ls
/k

g)

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

days

N
eu

tr
op

hi
ls

 (
x1

08  c
el

ls
/k

g)

Chemo Chemo

Chemo Chemo

Pegfilgrastim Pegfilgrastim

Pegfilgrastim Pegfilgrastim

Fig. 4.10 Effects of changing the starting day of pegfilgrastim treatment on
the neutrophil count. Top panel: Pegfilgrastim (100µg/kg) is given 1 day after
chemotherapy. Bottom panel: Pegfilgrastim (100µg/kg) is given 8 days (first
cycle) and 5 days (2nd cycle) after chemotherapy.

may change the qualitative response of the ANC levels. This was expected since a

number of studies have shown that pegfilgrastim has the same effects as filgrastim for
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treating neutropenia (Holmes et al. (2002), Green et al. (2003), Molineux et al. (1999)).

Our model agrees with that. In the first panel of Fig. 4.10, pegfilgrastim is given 1 day

after the chemotherapy treatment, resulting in a large ANC response. In the second

panel, pegfilgrastim is administered 8 days (first cycle) and 5 days (second cycle) after the

chemotherapy treatment. The ANC increase is of less amplitude in the first cycle. Thus,

as for filgrastim, the model predicts that delaying G-CSF administration may result in

different qualitative behaviours (see Fig. 4.6 for the minimum and maximum values with

respect to the starting day of G-CSF) and potentially abolish the nadir typically observed

after the large ANC rise.

4.5 Bifurcation and multistability

Numerical results from Section 4.4 suggest that different types of qualitative behaviours

can be observed when performing simulations of the mathematical model. By varying the

starting day or duration of G-CSF treatment following chemotherapy, the model

displayed either a large ANC response followed by low nadir or a smaller ANC increase

that remains relatively stable. We hypothesize that this is due to coexistence of multiple

stable solutions (multistability) in the system. Multistability (or bistability in the case of

two coexisting stable solutions) has been shown to explain different types of biological

responses (Angeli et al. (2004), Ferrell (2002), Ozbudak et al. (2004)). In particular, it

has been invoked to explain the establishment of mutually exclusive phases and

oscillatory behaviour in cell cycle (Pomerening et al. (2003), Sha et al. (2003)), properties

of mitogen-activated protein kinase cascades in animal cells (Ferrell and Machleder

(1998), Bagowski and Ferrell (2001), Bhalla et al. (2002)), cell cycle regulatory circuits in

Xenopus and Saccharomyces cerevisiae (Cross et al. (2002), Pomerening et al. (2003)) as

well as switch-like biochemical responses in the lac operonand trp operon (Yildirim and

Mackey (2003), Yildirim et al. (2004), Santillan and Mackey (2004), Santillan et al.

(2007)). It has also been suggested that bistability could account for oscillations triggered

by G-CSF in non-cycling forms of neutropenia (Foley et al. (2006)). In this section, we

study some dynamical aspects of the mathematical model in order to validate the

existence of multistability.

The fact that we obtained different qualitative responses in our simulations is an

indication that the system undergo a bifurcation. A bifurcation occurs when a small
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change in parameter values (bifurcation parameters) causes a sudden qualitative change

in the long-term dynamical behaviour of the system (the reader is referred to Beuter et al.

(2003) and Strogatz (2000) for more details on bifurcation theory in dynamical systems).

To better analyze the dynamical properties of the model, we first choose a relevant

bifurcation parameter among all the parameters of the model. Since we are interested in

the effects of G-CSF, we consider only the main part of the model (variables S, P, N, and

W , see Fig. 4.1) and take G-CSF concentration G as the bifurcation parameter. Recall

that the effects of G-CSF are modeled through the functions A(G), Vn(G), γS(G), γp(G)

and γN(G).

We attempted to compute a bifurcation diagram for the neutrophil level solutions with

respect to G-CSF concentration G. We used DDEBiftool, a matlab package for

bifurcation analysis of delay differential equation with constant or state-dependent delays.

Although the computation of steady state solutions was successful, numerical problems

occurred when computing branches of periodic solutions. In fact, the system is very

complex and it appears that several branches of periodic solutions (many of which are

unstable) coexist. Moreover, numerical instabilities made the computation difficult.

Nevertheless, we were able to explore some dynamical aspects of the DDE model by

numerically integrating the main part of the model and varying G (again considered as a

parameter as explained above). We found that for low concentration of G-CSF after

chemotherapy, oscillatory behaviour is observed, indicating the existence of a locally

stable periodic solution. Also, for large values of G-CSF concentration, solutions settled

down a locally stable steady state. More interestingly, we were able to illustrate the

bistable nature of the system by keeping a fixed value of G and varying only the initial

function (history). We obtained two qualitatively different responses as shown in Fig.

4.11: a stabilization toward a locally stable steady state (top panel) and sustained

oscillations (bottom panel). This shows that two coexisting stable solutions exist and

may provide an explanation for the different qualitative behaviours observed in Section

4.4. In fact, changing the starting day of G-CSF after chemotherapy is equivalent to

changing the past values of the state variables (initial functions).
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Fig. 4.11 Bistable behaviour in the model. Simulation of the DDE model for
a fixed value of G = 0.9. The initial functions (history) of the variables S,P,N,

and W are different for each panel. Top panel: the solution settles down to
a steady state. The constant initial function corresponding to steady state
solutions of Section 4.4.1 was used. Bottom panel: sustained oscillations are
present, indicating the existence of a stable periodic orbit. The initial function
was the oscillatory solution obtained when using G = 0.8 and starting with
constant steady state values. Parameters used are the same as in Table 4.1
except that bi = 10 (i = A, v, s, p, n) to avoid numerical instabilities.
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4.6 Discussion

We have developed a mathematical model of white blood cell production to study

schedules of G-CSF treatment following chemotherapy. The model incorporates explicitly

the effects of G-CSF, namely a decrease in postmitotic transit time, an enhanced

amplification, and effects on apoptosis rates. Experimental data for two recombinant

forms of G-CSF, filgrastim and pegfilgrastim, were successfully reproduced with the

mathematical model.

Through numerical simulations, we studied the effects of varying the starting day of

G-CSF administration following chemotherapy for both filgrastim and pegfilgrastim. We

found that this could result in two qualitatively different responses: a large neutrophil

increase followed by a deep nadir (early treatment) or a smaller ANC increase that

remains relatively stable and does not go to very low levels (delayed treatment). We

showed that this can apparently be explained by the coexistence of two stable solutions in

the system (oscillations and steady state). In fact, the model dynamics are very rich and

the outcome of numerical simulations depend on several factors (parameter values, initial

function, etc.). Similarly, several aspects also influence responses to G-CSF therapy in

clinical practice (age, chemotherapy regimen and intensity, type of cancer, ...). As a

result, there are great variations in the ANC among individuals and also from one cycle

to another for the same patient. Therefore, the reader should consider our results from a

qualitative point of view and focus on the fact that changing the starting day of G-CSF

could lead to different behaviours and potentially abolish the neutrophil nadir.

We also studied the effects of the duration of filgrastim treatment. Contrary to clinical

guidance, which suggests administering filgrastim until ANC levels are back to normal

following the expected nadir, our simulations predict that stopping it just before the

nadir would have similar effects while reducing the amount of drug.

Earlier modeling work on alternative G-CSF schedules for cyclical neutropenia (Foley

et al. (2006) and Colijn et al. (2007)) also suggested that different treatment regimens can

lead to significantly different responses. Our results substantiate this and propose

practical strategies for reducing the cost of G-CSF treatment following chemotherapy.

Moreover, our model could easily be used for exploring other issues concerning G-CSF

treatment. Indeed, it is easy to change the dose and the frequency of treatment in the

model. One could think of other interesting treatment regimens that could be studied,
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such as the effects of administering G-CSF every other day, instead of everyday for

example. The model could also be used for assessing different mechanisms of action of

G-CSF. For instance, it has been shown that G-CSF increases the amplification factor for

the neutrophils precursors (Lord et al. (1989)). However, it is not clear whether this is

due to a real increase in the number of cell divisions, a decrease in the apoptosis rate in

the precursors or a combination of both. In this study, we assume both mechanisms were

affected by G-CSF. Since our model accounts for these two effects separately, one could

study in more detail the impact of each mechanism. In conclusion, despite the great

variability among individuals, we believe that the model can provide interesting insights

on the effects of G-CSF treatment following chemotherapy and help to better understand

the dynamical nature of the underlying system.

4.7 Appendix

4.7.1 Derivation of the model

We show the derivation of the DDE model. First, we briefly present a generic equation for

a PDE model and then present how such a model can be expressed as delay differential

equations. For a full derivation, see the review by Foley and Mackey (2008).

Let x(t, a) be the the cell density at time t and age a. The general form of equation for

the cell density x(t, a) of this model is

∂x

∂t
+ V (G(t))

∂x

∂a
= −γ(G(t))x t > 0, a ∈ [0, τ ],

with some boundary condition x(t, 0) = H(t) and initial condition x(0, a) = φ(a). By

integrating with respect to the age variable and using the method of characteristics to

find an expression for x(t, τ), one obtains the following delay differential equation (DDE):

dX

dt
= V (G(t))

[

H(t) − H(t − Tτ ) exp

(

−

∫ Tτ

0

γ(G(w)) dw

)]

− γ(G(t))X(t),

where X(t) =
∫ τ

0
x(t, a) da is the total number of cells at time t. Note that if the death
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rate γ is a constant, the equation reduces to

dX

dt
= V (G(t))

[

H(t) − H(t − Tτ )e
−γTτ

]

− γX(t).

We now apply this technique to equations (4.1)-(4.5) to express the model as delay

differential equation for the total population numbers S(t), P (t), N(t) and W (t). First, we

integrate equation (4.2) for s(t, a) with s(t, 0) = 2m(t, τs) and lima→∞ s(t, a) = 0. We

obtain

dS

dt
+ lim

a→∞

s(t, a) − s(t, 0) = − [β(S(t)) + δ(W (t))]S(t).

=⇒
dS

dt
= 2m(t, τs) − [β(S(t)) + δ(W (t))]S(t). (4.A.1)

In order to get an expression for m(t, τs), we have to solve equation (4.1)

∂m

∂t
+

∂m

∂a
= −γs(G(t))m t > 0, a ∈ [0, τs],

with m(t, 0) = β(S(t))S(t). We obtain

m(t, τs) = m(t − τs, 0) exp

(
∫ τs

0

−γs(G(t)) dt

)

= β(S(t − τs))S(t− τs) exp

(
∫ τs

0

−γs(G(t)) dt

)

.

Substituting m(t, τs) in equation (4.A.1) yields the equation for S(t):

dS

dt
= 2β(Sτs)Sτs exp

(
∫ τs

0

−γs(G(t)) dt

)

− [β(S) + δ(W )]S. (4.A.2)

Using constant apoptosis rate, the equation becomes

dS

dt
= 2β(Sτs)Sτse

−γsτs − [β(S) + δ(W )]S. (4.A.3)

We use the notation Sτs := S(t − τs) and Gτs := G(t − τs). More generally, a subscript on

a variable denotes the delay in this variable.

Next, we derive an expression for the proliferative population of precursors cells P (t) by
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solving the partial differential equation (4.3) with boundary condition

p(t, 0) = δ(W (t))S(t). Integrating with respect to a leads to

dP

dt
+ p(t, τp) − p(t, 0) = −γp(G(t))P (t). (4.A.4)

The value of p(t, τp) is found by solving the partial differential equation with the method

of characteristics presented in Foley and Mackey (2008). We directly obtain

p(t, τp) = δ(Wτp)Sτp exp

(

−

∫ τp

0

γp(G(t)) dt

)

.

Substituting in equation (4.A.4), we get the following delay differential equation for the

proliferative neutrophil precursors:

dP

dt
= −γp(G)P + δ(W )S − δ(Wτp)Sτp exp

(

−

∫ τp

0

γp(G(t)) dt

)

. (4.A.5)

Similarly, we derive an equation for the non-proliferative precursors cells N(t) with

n(t, 0) = A(G(t))p(t, τp) and obtain

dN

dt
+ Vn(G(t))[n(t, τn) − n(t, 0)] = −γn(G(t))N(t). (4.A.6)

The value of n(t, τn) is given by

n(t, τn) = n(t − τ̄n, 0) ∗ e−γnτ̄n

= A(Gτ̄n)δ(Wτp)Sτp exp

(

−

∫ τp

0

γp(G(t)) dt −

∫ τ̄n

0

γn(G(t)) dt

)

,

with τ̄n satisfying

τn =

∫ t

t−τ̄n

Vn(G(w)) dw.

Substituting in equation (4.A.6), we obtain a delay differential equation for the
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non-proliferative neutrophil precursors:

dN

dt
= −γn(G)N + Vn(G)δ(Wτp)Sτp exp

(

−

∫ τp

0

γp(G(t)) dt

)

∗

∗

[

A(G) − A(Gτ̄n) ∗ exp

(

−

∫ τ̄n

0

γn(G(t)) dt

)]

(4.A.7)

Finally, we derive an equation for the circulation white blood cell population W (t) by

solving equation (4.5) with w(t, 0) = n(t, τp) and lima→∞ w(t, a) = 0. Integrating with

respect to a gives

dW

dt
+ [ lim

a→∞

w(t, a) − w(t, 0)] = −γwW (t)

=⇒
dW

dt
= n(t, τn) − γwW (t).

Substituting the value of n(t, τn) leads to the governing equation for white blood cells:

dW

dt
= −γwW + A(Gτ̄n)δ(Wτp)Sτ̄p exp

(

−

∫ τp

0

γp(G(t)) dt−

∫ τ̄n

0

γn(G(t)) dt

)

. (4.A.8)

Notice that we have not derived an equation for the proliferative stem cell compartment

m(t, a) because it was not necessary to do so. Indeed, it can be seen from Fig. 4.1 that

the dynamics of this compartment is included in a loop and hence, in the equation for the

resting stem cells s(t, a). We only solved the pde (4.1) to get the value of m(t, τs) when

solving for the resting stem cells S(t).

4.7.2 Derivation of the fraction of bound G-CSF receptors (F (G))

We define an expression for the fraction F (G) of G-CSF receptors that are bound. To do

so, we consider more closely the process of binding of G-CSF to its receptor. On a single

neutrophil, there are between 200 to 1000 binding sites. Each binding sites contain a

G-CSF receptor, which can bind to two G-CSF molecules (Layton and Hall (2006)). We

assume that two G-CSF molecules bind simultaneously. This could be represented by the

following submodel:

R + 2G ⇋
k1

k−1
RG2
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where R are G-CSF receptors, G is G-CSF, RG2 is the bound complex and k1 and k−1

and binding rate constants. From the law of mass action,

d[RG2]

dt
= k1[R][G]2 − k−1[RG2], (4.A.9)

where the brackets denote concentrations. At steady state, d[RG2]
dt

= 0 and therefore,

k1[R][G]2 = k−1[RG2]. To simplify, let us scale out one parameter and define k = k−1/k1.

Also, let T be the total number of receptors (free and bound in the complex RG2):

T = R + RG2.

Thus, we obtain

[R][G]2 = k[RG2]

=⇒ [T − RG2][G]2 = k[RG2]

=⇒ [T ][G]2 = [RG2]([G]2 + k)

=⇒ [RG2]
[T ]

=
[G]2

[G]2 + k
.

Hence, the fraction of bound G-CSF receptors ( [RG2]
[T ]

) is given by

F (G) =
G2

G2 + k
. (4.A.10)

Therefore, the expression for clearance of G-CSF is (γG + σWF (G))G.

4.7.3 Parameter estimation

We present the parameter estimation for the main compartment as well as the G-CSF

compartment (for both filgrastim and pegfilgrastim).

Parameter estimation for the main compartment

In this section, we estimate the parameters of the main part of the model using

experimental data and other information from the literature. A list of the parameters is
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presented in Table 4.1. Since we are interested in studying the effects of G-CSF following

chemotherapy, we need to be able to mimic the three following situations with the

mathematical model:

1. Cancer : This set of parameters represents the characteristics of people suffering

from cancer prior to chemotherapy. We do not look at a specific type of cancer, but

we do consider only nonmyeloid types of cancer. The parameters used for this

category are the same as for healthy subjects.

2. Chemotherapy : The effects of myelosuppressive anti-cancer drugs are often

associated with a significant incidence of severe neutropenia. We mimic

chemotherapy by increasing the apoptosis rates γs, γp and γn (Hannun (1997)) and

keeping all the other parameters fixed.

3. G-CSF : G-CSF is used for treating chemotherapy-induced neutropenia. The effects

of G-CSF are included explicitly in the model through the functions

A(G), Vn(G), γs(G), γp(G) and γn(G).

Age at the end of different phases τi The age at the end of a given phase will not

be dependent on the G-CSF concentration. To mimic the decrease or increase in the time

spent in the proliferative or non-proliferative phase, we increase or decrease the aging

velocity.

• τs: In Bernard et al. (2003), τs was estimated to lie between 1.4 and 4.2 days. We

use the same value of 2.8 days as in Bernard et al. (2003).

• τp: From Israels and Israels (2002), cells spend about 6 days in the mitotic pool

under normal physiological state whereas in Mackey and Dormer (1982), they

estimated 3.27 days. We take τp = 5 days.

• τn: The transit time through the postmitotic pool under normal physiological

conditions (no exogenous G-CSF) is between 6 and 8.4 days (Israels and Israels

(2002), Price et al. (1996), Roskos et al. (2006)). We take τn = 6 days. Under

G-CSF treatment, τn varies from 2.9 days (4.3µg/kg) to 4.3 days (0.4 µg/kg) (Price

et al. (1996)) and we account for this decrease by changing the aging velocity Vn(G).
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Aging velocities for the non-proliferative phase Vn(G) We use the following

bounded function for modeling the aging velocity:

Vn(G) = (Vmax − 1)
G

G + bv
+ 1,

where Vmax is the maximum velocity and the parameter bv controls how fast the velocity

is increasing. Notice that for G = 0, the velocity is 1, so that it takes τn days to go

through the phase. We set Vmax to τn, so that the minimum transit time for the

postmitotic pool is one day (Lord et al. (1989)). In order to determine the value of the

parameter bv, we simulated G-CSF (filgrastim and pegfilgrastim) administration in the

system and fitted the model to data from Green et al. (2003) using a nonlinear least

squares approach (see Fig. 4.12). We also ensured that the aging velocity doubles under

G-CSF. Indeed, from Price et al. (1996), we have that the time spent in the postmitotic

pool is reduced from 6.4 days (no G-CSF) to 2.9 days (5 µg/kg G-CSF/day). Using

bv = 0.001 for filgrastim and bv = 0.08 for pegfilgrastim, we obtain that τ̄n (time spent in

postmitotic pool) ranges between 2.9 and 6 days.

Apoptosis rates γi There are 4 apoptosis rates to consider. Three of them (γs, γp and

γn) vary in response to G-CSF and chemotherapy, whereas we assume that the death rate

from the circulating neutrophils γw remains unchanged during chemotherapy and G-CSF

treatment. We take γw = 2.4 days−1 as in Bernard et al. (2003). Next, we look at the

three other apoptosis rates for cancer subjects, under chemotherapy and G-CSF

treatment.

• Cancer : To simulate nonmyeloid cancer with the model, we use the same values as

for healthy individuals. We take γs= 0.07 days−1 (Bernard et al. (2003)). In Mackey

et al. (2003), they estimated γp to vary between 0.27 and 0.31 days−1 (average 0.28

days−1). We take γp = 0.27 days−1. Finally, we assume that the death rate for the

proliferative and non-proliferative precursors are the same (γn = 0.27 days−1).

• Chemotherapy : It has been shown that myelosuppressive chemotherapy induces

apoptosis in cells (Hannun (1997)). Moreover, it has been reported that

chemotherapy may induce oscillations in the blood neutrophil count (Kennedy

(1970)). Thus, we chose the death rate values so that the model displays oscillations
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(the minimal value so that we get oscillations). Indeed, increasing the apoptosis in

the model destabilizes the system and triggers oscillations (see later). However, we

need to be careful not to increase the death rates too much because it leads to

failure in the system (number of proliferative cells goes below zero). Since the

apoptosis rates are maximal under chemotherapy, we denote the parameters by the

superscript ”max”. We take γmax
s = 0.2 days−1, γmax

p = 0.45 days−1 and

γmax
n = 0.45 days−1.

• G-CSF : As mentioned said above, G-CSF inhibits the chemotherapy-induced

apoptosis. Therefore, we will mimic the action of G-CSF following chemotherapy by

decreasing the apoptosis rates γS, γp and γN as a function of G-CSF. We use the

following decreasing bounded functions:

γs(G) = (γmax
s − γmin

s )
bs

G + bs
+ γmin

s , (4.A.11)

γp(G) = (γmax
p − γmin

p )
bp

G + bp
+ γmin

p , (4.A.12)

γn(G) = (γmax
n − γmin

n )
bn

G + bn
+ γmin

n . (4.A.13)

where γmin
i and γmax

i are respectively the minimum and maximum values for the

apoptosis rates (i = s, p, n) and the bi are parameters that control the steepness of

the function. We use minimum values γmin
i to be the same as the cancer (healthy)

values and the maximum values to be the same as the chemotherapy values. The

parameters bs, bp and bn have an important effect on the model’s response to G-CSF

administration. A low value of bi means that the death rate will remain near its

maximum value γmax
i longer, whereas high values of bi lead to a more rapid decrease

toward its minimum value γmin
i . Moreover, since the pharmacokinetic properties of

filgrastim and pegfilgrastim are different, values differ depending on the type of

G-CSF recombinant form. We used data from Green et al. (2003) to fit values

(using a least squares approach as before) and obtain bs = 0.01 and bp = bn = 0.05

for filgrastim and bs = 0.01 and bp = bn = 1 for pegfilgrastim (see Fig. 4.12).

Amplification factor A(G) A study by Lord et al. (1989) reported an extra 3.2

amplification divisions in neutrophil development with added G-CSF. This corresponds to
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a number of effective divisions (NE), i.e. it includes the effects of apoptosis in the mitotic

compartment. However, the apoptosis rate γp is included explicitly in our model, and

therefore we are interested in the absolute number of divisions (NA). Using the relation

NA = NEe−γpτp and parameters listed in Table 4.1, we obtain that 3.2 effective divisions

correspond to 5.1 absolute cell divisions. Roskos et al. (2006) estimated an maximum

amplification factor of 4 extra effective divisions, corresponding to 5.8 extra cell divisions.

We use a simple bounded function to model the amplification factor as a function of G:

A(G) = (Amax − Amin)
G

G + bA
+ Amin. (4.A.14)

In Bernard et al. (2003), they estimated that 15.2 cell divisions occur in the mitotic

compartment. We use Amin = 216 × 102 and Amax = 221 × 102 so that it leads to relevant

steady states values for the neutrophil number. The parameter bA influences how fast the

amplification is increased under G-CSF. The smaller bA, the faster A increases. We

simulated daily filgrastim administration (5µg/kg) as well as a bolus 100µg/kg of

pegfilgrastim and fitted the model to data from Green et al. (2003). We obtained values

of bA = 0.35 (filgrastim) and bA = 1.05 (pegfilgrastim) (see Fig. 4.12). With these values,

the amplification ranges between 216 × 102(655) to 218.3 × 102(3700). For daily doses of 10

µg/kg of filgrastim, amplification goes up to approximately 4500×102 (18.8 divisions).

This is less than the estimate of 3.2 extra effective cell divisions reported in Lord et al.

(1989), but we consider this is reasonable. Lower values of bA lead to higher ANC

responses.

Differentiation rate from stem cell δ(W ) We use δ(W ) = f0
θ1

θ1+W
as in Colijn and

Mackey (2005a) with f0 = 0.40 days−1 and θ1 = 0.36 × 108 cells/kg. This is a monotone

decreasing function, accounting for the negative feedback loop in the system (if W

decreases, then δ(W ) increases, leading to an increase in differentiation and eventually an

increase in W ).

Reentry into stem cell proliferative phase β(S) We assume that β(S) does not

depend on G-CSF and we take the decreasing Hill function β(S) = k0
θ2
2

θ2
2+S2 as in Colijn

and Mackey (2005a). Values of k0 and θ2 are 8.0 days−1 and 0.3 × 106 cells/kg.
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Parameter Name Value Used Unit Sources

Stem cell compartment
S∗ 1.1 (0.0001-1.1) ×106 cells/kg Mackey (2001)
γs 0.05 (0.01-0.20) days−1 Bernard et al. (2003)
γmin

s 0.05 days−1 calculated
γmax

s 0.20 days−1 calculated
bs 0.01 - calculated
τs 2.8 (1.4 - 4.2) days Bernard et al. (2003)
k0 8.0 (2.0-10.0) days−1 Colijn and Mackey (2005a)
θ2 0.3 ×106 cells/kg Colijn and Mackey (2005a)
f0 0.40 days−1 Colijn and Mackey (2005a)
θ1 0.36 (0.1-2.0) ×108 cells/kg Colijn and Mackey (2005a)

Prolif. precursors compartment
P∗ 2.11 ×109 cells/kg Dancey et al. (1976)
γp 0.27 days−1 Mackey et al. (2003)
γmin

p 0.27 days−1 Mackey et al. (2003)
γmax

p 0.45 days−1 calculated
bp (filgrastim) 0.05 - fit
bp (pegfilgrastim) 1 - fit
τp 5 days Israels and Israels (2002)
Amax 20972 100 Bernard et al. (2003)
Amin 655 100 Bernard et al. (2003)
bA (filgrastim) 0.35 - fit
bA (pegfilgrastim) 1.05 - fit

Non-prolif. precursors compartment
N∗ 5.59 ×109 cells/kg Dancey et al. (1976)
γn 0.27 days−1 Mackey et al. (2003)
γmin

n 0.27 days−1 Mackey et al. (2003)
γmax

n 0.45 days−1 calculated
bn (filgrastim) 0.05 - fit
bn (pegfilgrastim) 1 - fit
τN 6 (3.27-8.4) days Price et al. (1996)
Vmax 6 - calculated
bv (filgrastim) 0.001 - fit
bv (pegfilgrastim) 0.08 - fit

Neutrophils compartment
W∗ 6.9 (4.0 - 10.0) ×108 cells/kg Abkowitz et al. (1988); Beutler et al. (1995)
γw 2.4 (2.2-2.5) days−1 Bernard et al. (2003)

G-CSF compartment
X∗ 0.1 µg/kg Colijn et al. (2007)
G∗ 0 µg/ml Colijn et al. (2007)
VB 76 mL/kg Hayashi et al. (2001), Colijn et al. (2007)
Gprod 7.2 ×10−29 µg/(ml*day) Vainstein et al. (2005)

Filgrastim
kT 1.68 day−1 Hayashi et al. (2001),Colijn et al. (2007)
kB 9.84 day−1 Colijn et al. (2007)
σ 0.72 kg/day Stute et al. (1992); Kearns et al. (1993a); Colijn et al. (2007)
γG 3.36 day−1 fit
a 1200 µg/(kg*day) (calculated)
s 0.0083 day (calculated)
ton 0.0083 day (calculated)
k 10 - fit

Pegfilgrastim
kT 0 day−1 Roskos et al. (2006)
kB 0.32 day−1 fit
σ 0.01 kg/day fit
γG 1.4 day−1 fit
a 12048 µg/(kg*day) (calculated)
s 0.0083 day (calculated)
ton 0.0083 day (calculated)
k 0.01 - fit

Table 4.1 Parameters of the model (steady state values).
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Fig. 4.12 Simulation of daily filgrastim (5µg/kg) and pegfilgrastim (
100µg/kg) on cancer patients. Data (squares and circles) are taken from Green
et al. (2003). Filgrastim was given for a period of 14 days. Parameters used
are listed in Table 4.1.

Parameter estimation for the G-CSF compartment (Filgrastim)

In this section, we present the parameters used for modeling the effects of filgrastim

administration with the G-CSF model presented in Fig. 4.2. Most of the pharmacokinetic

parameters were taken from published studies on G-CSF kinetics, whereas the remaining

ones were calculated or estimated using experimental data taken in the literature.

The values of the parameters are presented in Table 4.1. The rate constants kT = 0.07

hour−1 (1.68 day−1) and σ = 0.03 kg/hour (0.72 kg/day) as well as the of the volume of

blood VB = 76 ml/kg are the same as in Colijn et al. (2007). The value of the endogenous

production rate of G-CSF Gprod was taken from Vainstein et al. (2005) who estimated it

as 4.83 pM/hour (7.259 × 10−28µg/(ml blood)*day). To estimate the values of the

constant k, γG and kB, we fitted our model to the digitized data from Morstyn et al.

(1989), which shows G-CSF blood levels following a bolus subcutaneous injection of

10µg/kg (see Fig. 4.13) in patients who had histologically proven metastatic malignancy.

We minimized the mean square error (MSE) of our model with respect to the wanted

parameters using fminsearch in matlab, which implements the Nelder-Mead simplex

(direct search) method for multidimensional unconstrained nonlinear minimization.
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Despite the fact that this method only minimizes functions locally and that our MSE

function has several local minima, this method gave good results because we had good

initial guesses to supply to the function. More sophisticated numerical methods that are

designed for globally optimizing functions, such as simulated annealing, were tried but the

results were not better while the computation time was much higher.

We estimated the value of k to be 10 and the value of γG to be 0.14 hour−1 (3.36 day−1).

In Vainstein et al. (2005), they took γG to be 0.06 hour−1 although their value could vary

between 0.01 and 0.5 hour−1. In Hayashi et al. (2001), they estimated kB = 0.10 hour−1

whereas Colijn et al. (2007) used kB = 0.25 hour−1. For our study, it was necessary to use

a higher value ( kB = 0.41 hour−1 = 9.84 day−1) in order to reach to observed levels of

G-CSF following a 10µg/kg injection from the experimental data (Morstyn et al. (1989)).

As explained above, the exogenous input function I(t) was modeled by a step function.

For the purpose of fitting data from Morstyn et al. (1989), we used a = 50µg/(kg*hour)

(a = 1200µg/(kg*day)), s = 0.2 hours (s = 0.0083 days) and ton = 0.2 hours (ton = 0.0083

days), which is equivalent to a bolus injection of 10µg/kg. Fig. 4.13 shows a numerical

simulation of the model using parameters in Table 4.1.

Parameter estimation for the G-CSF compartment (Pegfilgrastim)

The two-compartment model presented in Fig. 4.2 is used for modeling both filgrastim

and pegfilgrastim administrations. However, since the pharmacokinetic properties of these

two recombinant forms of G-CSF are different, some parameters need to be changed.

Recall that filgrastim is cleared from the body by two mechanisms: renal clearance (the

main degradation route) and neutrophil-mediated clearance (Zamboni (2003)). However,

pegfilgrastim, which has a larger molecular weight, is less easily cleared by the kidneys.

The predominant route of elimination for pegfilgrastim is thus by binding to neutrophil

receptors. From a modeling point of view, we make the following modifications:

• Decrease the clearance parameter γG associated with renal clearance.

• Decrease the rates kT and kB between the tissue and blood compartments. Since

Pegfilgrastim is a larger molecule, we assume a slower absorption into the blood

(Molineux et al. (1999)) and thus we decrease kB. In their model, Roskos et al.

(2006) included a time lag to account for this delayed absorption. Moreover, we

assume kT = 0 as in Roskos et al. (2006).
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Fig. 4.13 Simulation of bolus subcutaneous injection using the G-CSF
model (4.15). Top panel: Filgrastim administration (10 µg/kg). The model
(solid line) is compared to data from Morstyn et al. (1989) (stars). Parame-
ters used are listed in Table 4.1. Bottom panel: Simulation of an injection of
100µg/kg of Pegfilgrastim using the G-CSF model (solid line). The parame-
ters used are N = 5.6×108 cells/kg, γG = 1.4 day−1, kT = 0 day−1, kB = 0.32
day−1, σ = 0.01 kg/day and k = 0.01. All other parameters are the same as
in Table 4.1. Data from Zamboni (2003) are shown in red stars.
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• Modify the parameter k in the function F (G) (fraction of bound receptors). Recall

that if we decrease the value of k, this implies that a smaller G-CSF concentration

is needed for obtaining the same fraction of bound receptors.

• Modify the binding coefficient σ to account for the delayed absorption of the drug.

To estimate these parameters, we used data from Zamboni (2003) and fitted the model

equations (4.15) using the same least square approach as for filgrastim (see above). We

used a constant neutrophil value of N = 5.6 × 108 cells/kg based on ANC data reported

in Zamboni (2003). We obtained the estimated values γG = 1.4 day−1, kB = 0.32 day−1

and k = 0.01 and σ = 0.01 kg/day. Fig. 4.13 shows integration of the model compared to

clinical data from Zamboni (2003).

4.7.4 Analytical derivation of steady state values

In this section, we derive analytically the expressions for the steady states and show that

there exists a unique positive equilibrium value. First, one needs to solve the following

system of equations:

dS

dt
|∗ = 0,

dN

dt
|∗ = 0,

dG

dt
|∗ = 0,

dP

dt
|∗ = 0,

dW

dt
|∗ = 0

dX

dt
|∗ = 0,

where |∗ denotes that the equation are evaluated at steady state values

(S∗, P∗, N∗, W∗, G∗, X∗). Note that at equilibrium, delayed variables remain constant (for

example, S(t − τs)∗ = S∗). Assuming, G∗ = 0 and X∗ = 0, we first obtain expressions for

the steady state values S∗ and W∗:

dS

dt
|∗ = 0 =⇒ β(S∗)(2e

−γsτs − 1) = δ(W∗) (S∗ 6= 0), (4.A.15)

dW

dt
|∗ = 0 =⇒ γwW∗ = A∗δ(W∗)S∗e

−γpτp−γN ¯τN ∗ . (4.A.16)
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We ignore the trivial zero solution and consider only positive solutions. Solving Equation

(4.A.15)for S∗ in terms of W∗ yields:

S∗ = θ2

√

k0(2e−γsτs − 1)

δ(W∗)
− 1. (4.A.17)

Substituting into Equation (4.A.16), we obtain

W∗ =
A∗δ(W∗)

γw

[

θ2

√

k0(2e−γsτs − 1)

δ(W∗)
− 1

]

e−γpτp−γN ¯τN ∗ . (4.A.18)

One can find a sufficient condition under which the system has a unique positive steady

state solution (a similar proof as in Bernard et al. (2003)). Let the right-hand side of the

previous equation be H(W∗) and r = 2e−γsτs − 1. We only need to prove that dH
dW∗

is

negative. Then, by the fixed point theorem, we conclude that there exists a unique

positive steady state. The derivative of H(W∗) with respect to W∗ is

dH

dW∗

=
A∗θ2δ

′(W∗)e
−γpτp−γN ¯τN ∗

2γw

(
√

k0r

δ(W∗)
− 1

)

∗

(

2 −
1

1 − δ(W∗)/(k0r)

)

. (4.A.19)

Since all parameters have positive values and δ′(W∗) is negative by definition (δ(W ) is a

decreasing function), we have that H ′(W∗) is negative if and only if the term
(

2 − 1
1−δ(W∗)/(k0r)

)

is positive. This is equivalent to showing

1 − 2δ(W∗)/(k0r)

1 − δ(W∗)/(k0r)
> 0. (4.A.20)

Sufficient conditions for this to hold are δ(W∗) < k0r
2

and r > 0 (r = 0.97 using the

parameter values in Table 4.1). Also, from definition of δ(W ), we have that f0 > δ(W ) for

all W . Therefore, a sufficient condition under which there exists one and only one positive

steady state solution for W∗ is

f0 <
k0(2e

−γsτs − 1)

2
. (4.A.21)

A unique solution for W∗ implies a unique nonzero positive solution for S∗ from Equation
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(4.A.17). Finally, given values of S∗ and W∗, one obtains values for N∗ and P∗ from the

following relationships:

dN

dt
|∗ = 0 =⇒ P∗ =

1

γp

[

δ(W∗)S∗(1 − e−γpτp)
]

, (4.A.22)

dP

dt
|∗ = 0 =⇒ N∗ =

1

γN

[

Vn∗δ(W∗)S∗e
−γpτpA∗(1 − e−γN ¯τN ∗)

]

. (4.A.23)

Using (X∗, G∗) = (0, 0) and values from Table 4.1 for solving Equations (4.A.17),

(4.A.18), (4.A.22) and (4.A.23), one obtains the same steady states values as in the

numerical simulations.
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Chapter 5

Conclusion

5.1 Discussion

We have reviewed different methods used to model hematological processes and explained

how dynamical diseases can provide insight into hematopoietic regulatory mechanisms

and help to better understand how clinical treatment can affect their dynamics. In

particular, we showed that the administration of granulocyte-colony stimulating factor

(G-CSF) may lead to qualitatively different responses. Even though G-CSF is widely

used clinically for treating different types of neutropenia, it is not clear if there is an

optimal way of giving it. In this thesis, we have studied alternative G-CSF treatment

strategies for cyclical neutropenia and chemotherapy-induced neutropenia using a

modeling approach and a combination of analysis and computer simulations.

As discussed in Chapter 2, each model has its positive and negative aspects and takes

into account more or less detail of the underlying system. The choice of the level of detail

is often directed by the question we want to address and by the type of analysis we want

to be able to perform with the model. Mathematical modeling is a process that is in

constant evolution and the work in this thesis illustrates this. Indeed, the idea of using a

mathematical approach to study different G-CSF administration schemes originates from

a previous study by Foley et al. (2006). It this work, the authors used a two-dimensional

DDE model that includes neutrophils and stem cells. To mimic the effects of G-CSF on

cyclical neutropenic dogs, five relevant parameters were changed: the amplification and

apoptosis rates, the transit times in the proliferative and differentiating phases and a

parameter θ1 that was part of a negative feedback function. Two sets of parameters (one
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for CN and another one for G-CSF) were taken into account and simulating G-CSF

effects was carried out by switching from one set of parameters to the other. G-CSF

effects were also implicitly included in the feedback function. Although this model

assumed several simplifications, it had the advantage of grasping the essential features of

cyclical neutropenia and G-CSF treatment while being simple enough to perform

complete bifurcation analysis. Interestingly, simulations and analysis revealed that the

system was bistable and that varying the time of initiation of G-CSF treatment could

affect the dynamical behaviour of the system and potentially abolish oscillations.

The fact that different behaviours could be obtained when varying the G-CSF

administration schedule motivated the two new models presented in this thesis. In

Chapter 3, we were also interested in the treatment of cyclical neutropenia with G-CSF

and wanted to see whether the bistability found earlier in the system was still present in a

more elaborate model. Since oscillations are also present in platelets and red blood cell

precursors in cyclical neutropenia, we used a DDE model for the full hematopoietic

system (red blood cells, white blood cells and platelets), coupled with an ODE

pharmacokinetic model for G-CSF administration. The addition of this two-compartment

model for subcutaneous injections of G-CSF made the model more realistic by taking into

account the time needed for G-CSF to go from the tissue compartment to the blood as

well as its degradation rate. In the earlier version, G-CSF was assumed to be effective

immediately when administered (when the G-CSF parameter set was turned on) and to

disappear instantaneously when the G-CSF parameters were turned off. Another

improvement of the present model was that we used linear functions to go from the

untreated to the G-CSF treated state instead of an on-off switch. Three parameters were

modified to mimic the effects of treatment: the amplification in the proliferating

neutrophil precursors, the rate of apoptosis in the proliferating hematopoietic stem cells

(HSC), and the maximal rate of differentiation from the HSCs into the neutrophil line.

The model parameters were successfully fit to experimental data for seven cyclical

neutropenic dogs before and during treatment. Numerical simulations, which were

performed for each dog, showed that changing the time of treatment initiation and/or the

period of treatment could result in satisfactory long-term outcomes and may require less

G-CSF than usual. Different types of responses were observed (small and large amplitude

oscillations), suggesting the existence of multiple stable solutions.

Since G-CSF is also often used for treating neutropenia after chemotherapy treatment, we
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were interested in studying the effects of G-CSF on the dynamics of granulopoiesis in this

situation. In Chapter 4, we developed a new DDE model for neutrophil production, which

is coupled to a two-compartment pharmacokinetic model for G-CSF, similar to the one

proposed in Chapter 3. It differs from the previous model by making explicit the effects of

G-CSF rather than having some effects included implicitly in the feedback functions.

More precisely, amplification, transit time for the postmitotic phase and apoptosis rates

were modeled using simple bounded functions that depend on G-CSF blood concentration.

The proliferative and non-proliferative phases of neutrophil precursors were considered

separately and the apoptosis was no longer implicitly included in the amplification for the

neutrophil mitotic precursors compartment. Moreover, the clearance of G-CSF was

modeled so that it takes into account the neutrophil-mediated clearance process instead

of only the clearance from the kidney (as in Chapter 3). All these refinements made the

model more realistic with respect to G-CSF administration. Parameters of the model

were obtained for both filgrastim and pegfilgrastim, two recombinant forms of G-CSF

that are used clinically for treatment of chemotherapy-induced neutropenia. The goal was

to study different treatment strategies through numerical simulations of the model. We

found that varying either the starting day of G-CSF treatment or its duration could

result in two qualitatively different responses: a large neutrophil increase followed by a

deep nadir or a smaller ANC increase that remains relatively stable and does not go to

very low levels. We showed that this could be explained by the very rich dynamics of the

system and the presence of multistability.

In summary, our results suggest that hematopoiesis in general, and granulopoiesis in

particular, have inherent dynamical properties and that G-CSF administration can affect

these dynamics. We believe that these dynamical properties could be exploited to design

more efficient G-CSF treatment strategies for CN and chemotherapy-induced

neutropenia, presumably leading to financial savings and fewer side effects. However, our

results are based on mathematical modeling and numerical simulations. Although this

approach allows one to explore a wide range of potential treatment regimens in a

systematic way, experimental data on such alternative G-CSF administration schemes

would be needed to better validate our modeling results. Indeed, despite the

improvements made to the earlier model used in Foley et al. (2006) regarding G-CSF

administration, our models represent approximations to reality. In real life, there is a

great variability in and between patients and several factors may influence treatment.
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5.2 Future work

The model presented in Chapter 4 could be used to study different mechanisms of

granulopoiesis and of G-CSF administration. In particular, we assumed G-CSF was

acting on both the apoptosis rate and the amplification factor in the proliferative phase of

neutrophil precursors. Since both effects are modeled separately, we could study in more

detail the precise effects of each factor.

As mentioned above, clinical data for alternative treatment schedules with G-CSF are

needed to validate our results and make further model improvements. If such data were

available, the individualized approach presented in Chapter 3 could be interesting to

implement since it fits the model to data before and during treatment for a given subject.

Numerical simulations for this subject could then predict the possible outcomes of

different treatment schemes.

In conclusion, hematopoiesis and G-CSF effects are not yet fully understood and several

aspects are still being studied. Clinical findings and future studies will provide new

insights and help to better understand the system. The models presented here would then

have to be modified accordingly, as this is part of the evolutionary process of

mathematical modeling.
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