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Abstract 
This thesis deals with the problem of finding the correspondence of overlapping 

views. Correspondence is determined locally by finding the set of translations and ro­
tations that maps a local neighborhood in one view to its corresponding neighborhood 
in another. 

The solution is based on the concept of minimizing both the spatial and temporal 
variation of curvature between surfaces in adjacent views. Two specialized filters 
are used for this purpose: curvature and motion consistency. The first, curvature 
consistency, is applied individually on both views to recover a stable description of 
the local structure before correspondence. The second one, motion consistency, is 
used to control the rigidity of the relative motion of the object with respect to the 
observer. 

This notion of the control of the rigidity of the motion is very important and 
constitutes one of the main contributions of this thesis. The implementation and the 
analysis of the limitations of the method represents also an important part of this 
work. 
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Resume 
Cette these considere le probleme de la mise en correspondance de differents points 

de vue d'un objet lisse quelconque. L'approche proposee evite une recherche globale 
de la solution en minimisant localement la difference structurelle des deux vues. 

La methode repose entierement sur deux filtres specialises soient la "compati­
bilite des courbures" et la '"compatibilite des deplacements". Le premier de ces fil­
tres, la "compatibilite des courbures", est applique sur les deux vues separement afin 
d'obtenir une description stable de la structure locale avant la comparaison comme 
telle. Le deuxieme filtre, la ·'compatibilite de deplacement", permet de controler la 
rigidite du deplacemeut relatif de l'objet par rapport a l'observateur entre les vues. 

Cette notion de controle de rigiclite clu deplacement occupe une place tres im­
portante daus cet.t.e these et. coust.itue en fait une de ses principales contributions. 
L 'implantation et 1 'analyse des limitations de la methocle represente aussi une part 
importante clu travail presente. 
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Chapter 1 Introduction 

This thesis proposes a novel approach to the problem of finding the correspondence 
of a sequence of overlapping views of an arbitrary smooth object. The data used for 
this work has been acquired with a laser range finder system. 

The goal is to recover the motion parameters (translation and rotation) that locally 
map corresponding points in adjacent views. This is necessary to accommodate any 
non-rigid motion of the surface under view [8]. 

Surfaces are assumed to be piecewise smooth. This allows for the recovery of 
differential properties that are used in the process of determining correspondence. 
We accomplish this by using a reconstruction procedure based on the minimization 
of a functional form that embeds au implicit model of surface curvature. 

One of the advantages of this approach is that the problem of correspondence can 
be cast as a convex minimization problem. Surface descriptions in adjacent views can 
be put in correspondence by minimizing another functional form that describes their 
similarity as a function of the motion parameters. This approach can work for non­
rigid motion provided that the curvature structure varies smoothly. An additional 
filtering process called m.otion consistency is used to smooth out the variations in 
local motion estimates. reHecting the physical constraint that local descriptions are 
coupled through the surface in proportion to rigidity. 

We show that this approach works for synthetic and real data. 

1.1 Motivation 

There are a number of motiva.tions for this work. 

On the biological side. even though the human representation of the 3D world 
is far from being clearly understood, it seems that our representation contains more 
than a single static view. In fact, while thinking of a known object, we can rotate 
it, look at it at different scales and with different levels of detail. There are many 
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1. Introduction 

different attributes. associated with a representation such as calor, texture, brightness, 
roughness and non-visual information such as weight, viscosity, odor. In order to 
survive in the environment we had to learn how to integrate all of this information. 

Our representation of the world is dynamic, task-dependent and very flexible. 
Therefore, it is argued that the first step towards this representation is an integration 
of the different sources of information. Such a front-end process is required by any 
modeling system that does not have a priori knowledge of its environment. This 
thesis is not intended to explain biological vision, but rather proposes a mechanism 
for integrating data in artificial vision systems. 

On a more practical side, since artificial vision systems are often used in association 
with robotic systems, the construction of a 3D model of the world is needed for 
obstacle avoidance and path planning. Autonomous robots are a good example of 
systems requiring integration of views of their environment since it is continuously 
changing. 

1.2 Overview 

The problem to be solved can be posed as finding the set of motion parameters that 
preserves the local structure of a surface across adjacent views. The proposed solution 
to this problem is a minimization of the variation of the differential properties of the 
surface across views. This minimization is based on the assumption of a locally 
smooth (piecewise) curvature field and is done without invoking a global rigidity 
assumption. 

In order to get a complete mapping between two overlapping views, one could 
attempt to determine correspondence between successive pairs of images in pointwise 
fashion. However, the method is limited by computational complexity and the fact 
that not all points on a surface are good candidates for correspondence. Instead, our 
strategy is to select a subset of points satisfying a set of conditions related to the 
stability of their features. The solutions of these points are then used to initialize the 
solutions of neighboring points where the surface is visible, or to interpolate solutions 
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1. Introduction 

where the surface is occluded. 

Because motion parameters are estimated locally, an additional stage of filtering 
is required. A useful constraint in this regard is provided by the physical make-up of 
the surface. Motion between adjacent surface patches is coupled in proportion to the 
rigidity of the surface. Thus, motion parameters are constrained to vary smoothly 
which in turn induces a smooth deformation of the surface. 

The applicability of the method rests on two basic assumptions: 

1. within each view, the curvature field is piecewise smooth; 

2. deformations vary slowly with respect to motion. 

The first assumption will allow for the local estimation of the motion parameters 
using a gradient descent method based on a comparison of the differential properties 
of the surface in adjacent views. This assumption is enforced through the "curvature 
consistency" filter that is described later in Chapter 3. 

The second assumption expresses the fact that an object should not break as it 
moves. This assumption is enforced through the "motion consistency" filter that will 
be described in detail iu Chapter 4. 

To the previous assumptions, it is necessary to add a third one: the availability 
of an estimate of the motiou parameters. The quality of this estimate is related to 
the distinctiveness and robustness of the features computed. Such estimates can be 
obtained from a manipulator system moving a camera or from an inertial navigation 
system on a mobile platform. A by-product of this process is an updated and refined 
set of motion parameters that can be used by an autonomous robot to further refine 
its knowledge of its own position. 

1.3 Contributions 

The overall contribution of this thesis is a novel approach to view correspondence 
of arbitrary smooth objects without the assumption of global rigid motion. More 
specifically, the contributions are: 

3 
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1. a local formulation of the problem of view correspondence; 

2. an implementation of its solution; 

3. the design of a specialized filter to locally smooth out the motion parameters 
of neighboring points (motion consistency algorithm); 

4. an analysis of the limitations of the method; 

5. an analogy with standard continuation methods; 

6. a set of experiments with synthetic and rea.l data showing that the method gives 
accurate results. 

1.4 Organization of the thesis 

The next chapter presents a brief overview of the common methods used to find 
the correspondence of views. These methods are grouped in three main categories: 
set-up based, feature matching and structure comparison techniques. Each of these 
categories is explained and presented with few examples. 

Chapter :3 can be seen as necessary background material for this thesis. It describes 
the cur·vature consistency algorithm which is used to enforce the essential condition 
of smoothness of the differential properties of the surface. 

Chapter 4 is the heart of this thesis. It includes the complete and detailed descrip­
tion of the proposed solution to the view correspondence problem. It also describes 
the other specialized filter, ''motion consistency". 

Chapter 5 includes many different examples of application of the method on both 
synthetic and real range images. These examples lead to an analysis of the behavior 
of the method under different circumstances. 

Finally. the couclusiou summarizes the maiu contributions of this thesis and out­
lines what can be done to improve the performance and the robustness of the method. 

4 
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Chapter 2 The Problem of View Correspondence 

2.1 Introduction 

In this chapter, I present a brief overview of the different types of methods commonly 

used to find the correspondence of views. 

These different methods can be classified in three main categories: set-up based, 

matching of discrete features and matching of continuous characteristics. 

Methods in the first category use a precisely calibrated set-up to obtain the cor­

respondence of views. The second category of techniques consists of methods where 

specific features of the scene (such as lines or corners) are matched across views. Fi­

nally, methods in the third category try to compare some continuous characteristic 

of each view. 

In the following sections. we consider these methods in more detail. 

2.2 Set-up Based Techniques 

To minimize the complexity of view correspondence, one can avoid the problem all 

together through precise registration of the different view points. This can be accom­

plished through a precisely calibrated mechanical set-up. 

However. it is often difficult to obtain precise calibration, e.g. one obtains an 

estimate as opposed to an exact measurement. For a mobile robot for instance, the 

position is known up to a certain error but usually not precisely. In fact, one often 

needs to determine correspondence in order to refine the estimate of this position. 

In [1] for instance, Bhanu uses a rotary stage to get multiple views of an object. 

The correspondence of the views is given by the orientation of the stage and the 

calibration of the set-up with respect. to the sensor. A simple distance threshold is 

used to discard points scanned multiple times (visible from multiple viewpoints). The 

set of 3D points representing the object is then converted into a set of polygons for 
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2. The Problem of View Correspondence 

eventual shape matching with a model in a database. The type of set-up used for 

data acquisition works better for convex objects. 

Another example of this technique is given in [5] by Elfes and Matthies. In this 

case, a mobile robot tries to build an occupancy map of its environment by matching 

different views. Sonar and stereo range data are combined into a single representation 

using the robot position and orientation as a basis for view matching. A Bayesian 

model allows the fusing of information from the different sensors. The robot is as­

sumed to know its absolute position so that the different views can be merged easily. 

However, if this is not the case, an additive error in the registration of the views can 

be produced. By using the visual feedback produced by an active matching of views 

(such as the one proposed in this thesis), one can avoid this type of additive error 

position (assuming that visual information is more precise than the robot encoders). 

In fact, this type of technique will work only with a. carefully calibrated set-up 

which is difficult to accomplish iu the case of mobile robot. 

In the next sections, we examine several methods that actively register multiple 

views of an object. 

2.3 Discrete Feature Matching Techniques 

Discrete feature ma.tchiug techniques are applied in many different circumstances. For 

example, in stereo. oue a.ttempt.s to match discrete features from grey level images 

in order to obtain depth from triangulation. In the case of range images, matching 

features allows one to obtain the relative motion between adjacent views. 

The features to be matched can take different forms. For example, discontinuities 

in calor or grey level intensity can be used as features. In range images, one can use 

lines, planes or depth discoutinuities. 

What is common to all of these features is that they usually correspond to extremal 

values of a specific characteristic of the data. For this category of technique, it is 

important that a feature be a.t least locally unique and easy to detect. 

Shah and Ja.in give a.n example of this type of technique in [17] where the idea is 

6 



2. The Problem of View Correspondence 

to obtain structure from motion by matching time-varying corners between frames. 

A special operator, based on the variation of the grey-level of images, is used to 

detect the corner·ness of each pixel. This characteristic is then compared across views 

to determine the time-varying corners. The method appears to be robust to noise. 

However, there still remains the problem of matching the features across frames, 

which is feasible if short displacements are assumed and more than two frames are 

used. 

In [15], Bergevin, Laurendeau and Poussart estimate the motion between two 

range views using a hierarchical surface triangulation. It is assumed that the largest 

triangles on both views will represent more or less the same regions. A set of possible 

transformations mapping the two views results from the matching of a single pair. 

The amount of overlap existing between the views is used as a simple measure of 

the quality of fit of a given transformation and permits the isolation of the correct 

one. This transformation is usually coarse and needs some refinement. This is done 

with one of the three following techniques: hierarchical tracking of the best matching 

triangles, a method based 011 the heuristic search of Potmesil [14] and an adaptation 

of the iterative least-square computation of Chen and Medioni [3]. 

In the case of range images, the problem can be made easier. In [21], Vemuri and 

Aggarwal use a sensor combining range and intensity data to merge multiple views of 

an object. The object is placed on a base plane on which a specific pattern (a line) 

is drawn. This pattern must be at least partially visible from all view points. The 

pixel position of the line ca11 lw determined with the intensity part of the data while 

its 3D position can be determined with the range part of the data. The process of 

matching can be made automatic since all that is needed is the detection of a line 

in an intensity image. An advantage of this method is that no set-up calibration is 

needed (only the range finder is used to determine the position of the objects). The 

problem with this method is that it is not possible to get all the views of the object 

(the part touching the base plane will never be visible). 

Because it operates on discrete and isolated features, this type of technique often 

involves exhaustive search (or at least a search in an area determined by the estimate 
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of the motion). This usually makes it computationally more expensive than the third 

type of technique which is described in the following section. 

2.4 Matching Techniques based on Continuous Character­

istics 

Methods that perform a continuous companson of functions across views have an 

important advantage over discrete methods: they use a metric of comparison that 

varies smoothly in the neighborhood of the solution. If a metric can be found for 

comparison that is both smooth and convex then correspondence can be determined 

using standard minimization techniques such as gradient descent. This can result in 

an efficient search. 

To facilitate the design of such a. metric, it is often useful to convert the input 

(sensor) data iuto a stable intermediate form. This process is referred to as visual 

reconstruction [2]. It consists of algorithms by which a piecewise-smooth description 

of the input signal is computed from a discrete set of sensor measurements. This step 

often involves processes such as the detection of discontinuities, Gaussian smoothing, 

least-squares fit with parametric functions, etc. In these techniques there is always 

a trade-off between preserving the original data. and smoothing out the noise. Many 

different techniques are available and a good discussion of this topic is found in [2]. 

The method of recoustruction clwsen should preserve the structural element to be 

compared across views (depth, curvature, normal...). 

In order to avoid local minima while performing minimization, it is necessary to 

have a. first order estimate of the solution. Starting too far from it might well cause 

the method to fall into a local minimum not corresponding to the correct solution. 

An example of this type of method is given in [10] for stereo grey level images. 

Luca.s and 1\.anade iuterpret the intensity images as functions I= f(x, y). By smooth­

ing the images (reconstruction) before the cross-comparison and by assuming that the 

images are in approximate registration (estimation of motion), the stereo matching 

of the intensity functions is performed using a Newton-Raphson method. They claim 

8 



2. The Problem of View Correspondence 

that the technique is able to find the best match between two images with far fewer 

comparisons of images than techniques that examine the possible positions of regis­

tration in some fixed order. This method fails however for abrupt changes in disparity 

as is often the case for this type of technique at discontinuities. 

In [14], Potmesil presents a method to obtain a 3D solid model by matching 3D 

surface segments. In this case again, it is assumed that an estimate of the motion 

is given. The surfaces are compared across views at a few evaluation points using 

position difference (distance in the surface normal direction), orientation (surface 

normal) and curvature (magnitude of surface curvature). A heuristic search algorithm 

with an evaluation function controls the generation of new transformations. The 

paper makes no mention of application of a reconstruction method to the raw data. 

Another example of this kind of technique is given in [3] by Chen and Medioni. In 

this case, only the distance in the surface normal direction between the views is used 

to guide an iterative process. It is again assumed that a good estimation of the motion 

is given so that process can converge in a few iterations. The minimization of the 

difference of structure is done for few points selected on smooth areas (as determined 

by the local fit of planes). Here again, no specific algorithm for surface reconstruction 

is mentioned. 

Szeliski presents m [20] a method to estimate the motion between views from 

sparse range data (terrain maps). The idea. is to interpolate the surface between the 

sample points using :2D spliues iu order to get a. dense description. A new set of data 

(new view) is then put iu regist.ra.tiou with the current model of the terrain by finding 

the geometric transformation that makes it most likely (in the Ba.yesia.n sense) that 

the points came from the same surface. The representation of the surface is refined 

as more views are obtained and the uncertainty of the estimate of motion is obtained 

from the shape of the energy function in the vicinity of the solution. Assumptions 

such as the availability of a good estimate of motion and the smoothness of the surface 

allow the use of a gradient descent technique to solve for the optimal motion between 

two views. 

9 



2. The Problem of View Correspondence 

2.5 Summary 

In this chapter, I have described some of the general approaches used to find the 

correspondence of views. The most direct method is the use of a calibrated set-up 

which permits a straightforward determination of motion parameters. However, its 

use is limited to a very well modeled and calibrated environment. 

To deal with the general problem (imprecise estimation of motion), it is often 

necessary to perform an active registration of views such as the explicit matching of 

a few salient features across views (feature based techniques) or the comparison of 

continuous properties of the surface (curvature, surface normal, depth, etc) measured 

from different viewpoints. 

We have seen tltat tryiug to automate the process of discrete feature matching can 

be very difficult. A big part of the problem in this case is that the neighborhood of 

a feature has no special characteristics that can help in determining the proximity of 

this feature (a feature usually being isolated). For this reason, an exhaustive search 

is often required. 

On the other haud, by using smooth and convex metrics, it is sometimes possible 

to take advantage of the shape of the energy function in the vicinity of the solution, 

e.g. using a standard minimization procedure to solve the problem assuming that a 

good initial estimate of the motiou is available. The method presented in this thesis 

falls into the latter category. 

In the next chapter, we introduce and describe the particular method of recon­

struction used in this thesis before the cross-comparison of views: curvature consis­

tency. 

10 
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Chapter 3 The Curvature Consistency Algorithm 

3.1 Introduction 

Determination of correspondence on discrete surfaces often requires an accurate re­

construction of salient features. Such representations can permit the design of a 

comparison metric that ha~ the desirable properties of smoothness (piecewise) and 

convexity of the error surface. 

Our approach to the problem is to first obtain a piecewise smooth reconstruction 

of the underlying ~urface from which appropriate features (e.g. extremal points of 

curvature) can be reliably extracted. We are particularly interested in view invariant 

features that uniquely de~ cri be the surface. 

Differentia.! geometry can provide a. convenient way to locally characterize the 

surface in such a. manner. Thi~ characterization can be explained with the aid of figure 

3.1. Two planes perpendicular to each other are shown: Tp tangent to the surface and 

1fN orthogonal to Tp and containing the surface normal Np. The intersection of 1fN 

with the surface produces a contour referred to as a normal section. The curvature 

of this section at point P is called normal curvature, "'Np· As the orientation of 

plane 1fN is changed. the magnitude of the normal curvature KNp varies. It reaches a 

minimum and a maximum value for two special direction~ (that can be proven to be 

perpendicular [4]) which are referred to as principal directions. The corresponding 

curvatures of the~e directions are referred to as the principal minimum and maximum 

curvatures respectively. 

In this thesis, the association of the surface normal Np, principal directions (Mp 

and Mp) and principal curvatures ( KMp and t.:Mp) is referred to as the augmented 

Darbov.x frame, ~P [16]. An augmented Darboux frame provides a convenient way 

to represent the orientation and the structure of the ~urface at each point. The 

problem is how to obtain a reliable estimate of the augmented Darboux frame from 

a range Image. In this chapter, we present a solution to this problem: the curvature 
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3. The Curvature Consistency Algorithm 

Figure 3.1: Local surface representation: the augmented Darboux Frame 

consistency algorithm. 

3.2 Goals 

In its original form [lG], t.l1e goal of the curvature consistency algorithm was to infer 

the surface trace points etud obtain an estimate of the differential properties of the 

surface(s) in rnagnetic resonance images. When app lied to a range image, the prob­

lem is reduced to the est.imat io11 of the differential properties a.s the trace is known. 

Specifically, the goal is to estimate and refine the differential properties (normals and 

principal curvatures and directions) of this unique surface. 

Curvature consistency has. in generaL a smoothing effect on the surface because 

it does not explicitly t.reat t.he discontinuities. A solution to this problem is proposed 

in [6] as an extension of the algorithm (aclaptative localization of discontinuities). 

12 
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z 

Figure 3.2: Osculating paraboloid at point P 

3.3 Estimating the Differential Properties 

Surface 
Patch 

The differential properties est imated by th is algorithm are the normal N p, the prin­

cipal curvatures 1\,Mp and KMp and the associated principal directions J\!!p and Mp 

(augmented Darboux frame ~P). 

An est imate of the augmented Darboux frame is required at each point of the 

surface so that it can lw refined according to a local model of surface curvature. 

In the case of nwge imnges. <~I I t>st.imat.e of the augmented Darboux frames is found 

at each point by the least-squares fit of an osculating paraboloid to the point and its 

immediate neighbors (figure 3.2) . The fit includes both positional and surface normal 

information. The required properties are then simply computed using standard forms 

of differential geometry from the paraboloid equation [4]. 

3.4 Refining the Estimated Differential Properties 

Because the est imates of augmented Darboux frames found at the first step of the 

algorithm are usually noisy as can be seen in figure 3.3, it is necessary to refine them. 
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3. The Curvature Consistency Algorithm 

The noise of the estimates is due to the imperfection of the data acquisition process 

and the computation of derivatives of the signal (curvature is a function of the second 

derivative of the surface) [9, p.23]. 

The refinement process consists of three components. The first is a description 

of the local neighborhood of a point P, a set of supporting neighbors or contextual 

neighborhood. The second is a transport model which defines how the structure at a 

neighboring point Q is extrapolated to P. The third is a procedure for determining 

a maximum likelihood estimate of P given estimates P obtained from the contextual 

neighborhood using the transport model. 

The contextual neighborhood of point P includes all the points that are within a 

certain distance of P and that a.re assumed to be part of the same surface. For a range 

image, this task is usually reduced to choosing the points within a certain window 

centered on P or within a certain cylinder [9] (in range data, surfaces with a large 

slope can have their points spread quite far apart). For this reason, distance alone is 

not a good criterion to determine the contextual neighborhoocl of a point. A cylinder 

of infinite extent centered on P is chosen to delimit the contextual neighborhood. The 

radius of this cylinder acts as a scale parameter. 

The transport process is summarized in figure :3.5. Frames at adjacent points Qi 

are extrapolated along their respective transport surfaces to the vicinity of point P. 

For example, the estimate of the frame f.p determined from the frame at Q4 is f.p4 as 

shown in figure :3.5. 

The transport surface embeds a local model of the surface which enforces a smooth 

variation of curvature, e.g. the locally constant curvature constraints [13]. 

:\1any different types of surface can be used for this purpose, as shown in figure 

3.4. In the implementation used in this thesis, the transport surfaces are paraboloids. 

Paraboloids have the advantage of being analytically simple. However, as is shown 

in [9], a paraboloid has higher curvature at its origin. Therefore, when using them 

for transporting Darboux frames, the curvature is reduced by a small amount at each 

iteration. For a large number of iterations, this effect often results in a large reduction 

of the curvature which produces a smoother surface. 

14 
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3. The Curvature Consistency Algorithm 

(a) (b) 

Figure 3.3: (a) Estimation of one of the principal directions for a small owl 

statuette. The principal direction field is particularly noisy in low curvature 

regions. (b) Result of the application of five iterations of curvature consis­

tency to the noisy field shown in (a) using a neighborhood of 5 by 5. Note 

the consistency in the principal direction field. 
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3. The Curvature Consistency Algorithm 

(A) (8) (C) 

Figure 3.4: Different type of transport model. (a) shows parabolic patches. 
The magnitude of their normal curvature is maximum at the origin. (h) 
shows toroidal patches. They have constant curvature in only the two di­
rections shown with black lines in the figure. (c) shows a more complex 
analytical surface with constant curvature in all directions. 
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Figure 3.5: Mechanism of parallel transport of Darboux frames in curvature 

consistency. This figure shows a 2D version of transport of the neighbors' 

normals. Here, iufonuation at poiut P is to be updated by the neighbors' 

support (poiHt.s Q's). As can be seen, transport is realized by extending the 

neighbor 's locaJ pa.raboloid (bold) until point P can be projected onto it in 

the direction of the neighbor 's normal. The normal (and principal directions 

and curvatures) at the point of projection of P on the paraboloid patch is 

the parallel transported normal for the corresponding neighbor. 
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3. The Curvature Consistency Algorithm 

The final step of the process of refinement consists of using the transported Dar­

boux frames to update the estimate at point P. This is accomplished by defining 

a maximum likelihood estimate of the properties at point P given the constraints 

resulting from the transport process (i.e. the set of of augmented Darboux frames). 

Using standard methods (e.g. La.grange multipliers), a set of equations enforcing the 

locally constant curvature and constraints relative the nature of the Darboux frame 

are minimized. The details of this process are given in Appendix A. 

Figure 3.3b shows the result of applying five iterations of curvature consistency 

to the noisy field shown iu figure 3.3a. iVIore detailed examples of the method can be 

found in [9]. 

3.5 Discussion 

Curvature consistency IS a. form of "feature-preserving" smoothing. The features 

preserved are the extended Darboux frames at each points. To see that this is the 

case, consider the result shown in figure 3.6. The left side shows one of the principal 

curvature fields as recovered by cmvature consistency after.) iterations. The right side 

also shows one of the priucipal curvature fields of the same surface after a. convolution 

with a Gaussian. The field recovered with curvature consistency is clearly more 

coherent particularly in small curvature regions. 

This shows au important aspect of this reconstruction algorithm: it can recover 

a stable and cohereut description of differential properties of a. surface. Even though 

other reconstruction a.lgorithms have qualitatively the same smoothing effect on the 

surface (see figure :{. 7), tbey usually fail in recovering a cousistent description of the 

differential properties. 

The differential properties of a surface have an important quality: they are view 

invariant. Because of that, they are used in this thesis as the basis of cross-comparison 

of views in order to determine correspoudence. Curvature consistency is the way to 

estimate them iu a stable a.nd consistent manner. 
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3. The Curvature Consistency Algorithm 

(a) (b) 

Figure 3.6: Comparison of one of the principal direction fields found with 

cu rvat.ure consist.enc.v and convolution with a Gaussian. The curvature field 

in the left. i1nage ha.s beeu estimated with curvature consistency. The field 

for t. he G aussiau cou volution (right image) is the result of au estimation 

with leas t.-square fit of paraboloids (sitme process used to initialize curvature 

consistency) . The field for curvature consistency is clearly more coherent 

particularly in small curvature regions . 
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Figure 3. 7: ( :on1 parison lwtwee 11 c 11 rvat.u re consis t. e ncy and con voln tion 

with a Ga.ussian for<~ small owl statuette. Left image is the result of curva­

ture consistency. Right irna.ge is th e res ult of convolution with a. Gaussian 

with a sigma making a.n approximatively "equivalent" a.mount of smoothing 

for both filt e rs. 
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:J. The Curvature Consistency Algorithm 

3.6 Summary 

In this chapter, I have described the specific method used to reconstruct and stabilize 

the scenes before their integration, namely the curvature consistency algorithm. This 

method produces in few iterations a coherent curvature field that will be shown to be 

consistent enough to be compared across images. 

Curvature consistency is a feature preserving smoothing technique that is different 

than a simple convolution with a Gaussian. Even though both methods can apply 

qualitatively the same amount of smoothing, curvature consistency has the ability to 

recover and preserve a consistent curvature field. 
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Chapter 4 Putting Views In Correspondence 

4.1 Introduction 

In this chapter, I present in detail my solution to the problem of view correspondence. 

The discussion starts with a precise description of the problem at hand: the input 

needed, the output produced as well as a general description of the method. 

Section 4.:3 deals with refining the estimation of motion. Key concepts are pre­

sented and discussed in detail. 

Next, the concept of motion consistency is introduced. We will see how this 

procedure can be used to improve local motion estimates by enforcing a smooth 

variation of motion parameters on the surface. 

Section 4.5 presents a discussion on- the meaning of non-rigid motion and on the 

different parameters affecting it (window size, number of iterations ... ). It will be seen 

that non-rigidity of motiou is a concept tightly linked to scale. 

Finally, in Section 4.6, the method presented in this chapter will be compared to 

classical continuation methods. 

4.2 Problem Definition 

The problem is to find the correspondence or spatial relationship of two overlapping 

views of an object. More precisely, because we don't assume globally rigid motion, 

we are looking for a set of rotation matrices Q; and translation vectors T; mapping 

each point or set of points (patch) of one view into another view coordinate frame. 

Finding corresponcleuce of views can be seen to be useful simply because it in­

creases our knowledge of the world. In this sense, it may well be the first step of 

many other higher level tasks such as object grasping, mass center evaluation, path 

planning, mocleliug, object recognition, etc. The commou point to all these specific 

applications is that they can be simplified because more information about the world 
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is available after the integration of multiple views [22]. 
The method presented in this chapter works with range images or with any high 

density depth representation. Two (or more) overlapping views are needed together 
with an estimate of the displacement of the viewer (and/or of the object). The 
precision of this estimate clepeuds 011 the structure of the scene and is discussed later. 

The method assumes that surfaces are piecewise smooth. However, they must 
contain sufficiently distinguisl1ed features such that correspondence can be determined 
uniquely. Surfaces such as a plane, a sphere or a cylinder for example will cause the 
method to fail (as a human would anyway if he (she) were allowed to use only the 
same clues as the method). 

Assuming that the pre\'ious constraints are met., the problem is to find the cor­
respondence of tlw overla.ppi11g regions in each view and to correctly map the unique 
information (present iu only one of the views) to the other. Correspondence is deter­
mined locally without the assumption of globally rigid-body motion. The object is 
rather allowed to deform slightly from one view to the other. The correspondence is 
based on a comparison of curvature fields across views. 

The output of the overall process is a set of motion parameters relating each 
patch (or point) of a surfacf' seen in one view to the same patch (or point) seen (or 
occluded) in the other vi<>w. In the final representation, it is therefore common to 
have two points (one from each view) that describe the same part of an object. The 
integration (or fusion) of these corresponding multiple descriptions into a single one 
would be a natural next step of this work [12]. 

4.3 Refining Motion Estimates 

Consider the problem depicted in Figure 4.1 which consists of finding (matching) a 
specific extended Darboux frame ~P on a parabolic patch. By using only the vector 
part of (p (normal and principal directions), an infinite number of matches can be 
found (by changing its orientation, a frame can always be matched exactly with any 
other frame). 
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Figure 4.1: Because of symmetry, a single extended Darboux frame (cur­vature magnitude included) can be matched exactly at four locations on a paraboloid. This necessitates either a richer description ( neighborhood) or of an estimate of the solution. 
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? • 

Figure 4.2: Again, because of symmetry, a neighborhood of Darboux frames can be matched exactly at two locations on a. paraboloid. An es­timate of the solution is required in order to obtain a unique match. 
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In order to restrict the number of solutions, it is necessary to use more information 
to do the matching e.g. using the principal curvatures. Again, as shown in Figure 
4.1, this match is not unique. Because of the symmetry of the figure, four distinct 
matches can be found for ~P with exactly the same sign and magnitude for the 
principal curvatures. 

Even a comparison based on the local neighbors of (P would not lead to a unique 
solution (two solutions would still exist, again because of symmetry as shown in Figure 
4.2). However, if we are given an estimate of the solution (let's say precise up to a 
quadrant of the paraboloid), the unique and exact match can now be found. 

This example summarizes the requirements for finding a unique solution for the 
correspondence of two views. We need a rich (unique), stable and view invariant 
description of the surface. Vv'e also need an estimate of the solution for two principal 
reasons. First, it is necessa:ry in order to determine the unique solution even on simple 
analytic surfaces. Second, it is useful in order to reduce the search space. 

The steps required to determine the set of motion parameters relating two views 
can be summarized as follows: 

1. Curvature consistency on both images separately. The goal of this step is 
to make the curvature field vary smoothly in both views to facilitate comparison 
later. 

2. Subdivision of one of the VIews into small windows of n x n points. 
The division is done according to the intrinsic grid of the image. All the points 
within a window will be moved together (same motion parameters). However, 
each patch will have its own and independent motion parameters mapping it to 
the other view. 

3. Selection of the largest patches of constant Gaussian curvature on the 
first view. The selected windows will be the first ones for which correspondence 
will be solved because they are the most likely to result in a unique solution. 

4. Solution of local correspondence for these selected windows. In the 
correspondence process, an initial estimate of motion is used as starting point 
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of a minimization based on a local comparison of differential properties across 
v1ews. 

5. Propagation of motion parameters to the windows surrounding the 
selected patches. The motion parameters determined for the selected windows 
are used as a starting point for determining the solutions of neighboring points 

6. Application of motion consistency. Refine motion estimates according to 
the smooth deformation constraint. 

The remainder of this section describes these steps in detail. 

4.3.1 Application of Curvature Consistency on Both Views 
Separately 

This first step is important in order to meet one of the essential conditions of the 
process, that is a piecewise smoothly varying curvature field on both views. This will 
help to simplify the minimization process described later. 

It would be tempting to skip this pre-processing stage and try to recover both the 
motion and the local structure directly in the same step. In other words, why not 
use an extended neighborhood (points from both views) in the curvature consistency 
algorithm? The goal would then to try t.o minimize the residual error using different 
motion parameters ( differeut ueighbors). 

In fact, this does not work. The reason is that, especially with a noisy set of 
images, it is possible to obtain a smaller residual error with the wrong neighbors, 
giving as a by-product the wrong motion parameters. In other words, these two prob­
lems namely surface reconstruction and view correspondence (structural and temporal 
problems) confouud one another and cannot be solved concurrently. 

This explains why it is important to get a stable description of the surface structure 
via curvature consistency before any attempt of cross-comparison of the views. The 
goal of the application of curvature consistency is to diminish the noise effect and to 
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get a stable and reliable estimate of the principal curvatures and directions. For this 
purpose, the algorithm is applied to both images separately, preparing them for the 
process of view correspondence. 

The smoothness of the curvature field so obtained allows a comparison of the 
surfaces across views such that the associated motion parameters can be determined 
by a convex minimization procedure as described in the following sections. 

4.3.2 Subdivision of the First View in Small Windows 

Following reconstruction, the next step is to divide the surface described by the first 
view in small windows of n x n points. The number of regions and their size depends 
on the rigidity of the motion. In general, the size of these windows varies from 3 X 3 
to 7 x 7 points. 

Each of them is to be mapped independently of the others to the second VIew. 
At the end of the correspondence process, each window of n x n points in the first 
view will have its own set of motion parameters (rotation and translation) mapping 
it to the other view. By solving correspondence locally, the method is able to cope 
with non-rigid motion, i.e. the surface can deform globally provided that the local 
structure defined by its curvature varies slowly. 

Each patch or window will undergo a rigid motion i.e. each point within a patch 
will be assigned the same motion parameters. However, because patches can move 
independently, the structure of the surface as a whole can accommodate deformations. 
Besides providing a means of dealing with non-rigid motion, this subdivision is also 
useful in segmenting the surface into different categories of patches that can be treated 
differently. 

4.3.3 Classification of the Patches 

The Gaussian curvature (product of the minimum and maximum principal curvatures) 
is used to characterize the surface in the first view. The sign indicates whether the 
surface is elliptical ( + ), hyperbolic (-) or parabolic (zero Gaussian curvature). 
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Figure 4.4: 2D slice of a convex surface (constant KH-mapping). The three positions pointed to by the arrows have the same local structure in terms of curvature and are, in this sense, indistinguishable. It shows that KH-mapping is not a sufficient condition to guarantee a unique solution to correspondence. 

parabolic patches do not fall into this category because their structural information 
content in one of the direction is too low (null curvature) and would complicate the 
matching process. 

For the correspondence algorithm, it is necessary that the initial estimate results 
in a mapping onto the corresponding patch in the other view. 

Even if the starting point. of the comparison is in the same constant KH-mapping 
region, there is no guarantee that the result of the minimization will be the global 
solution. Figure 4.4 shows such an example. It is a convex figure (constant KH 
mapping) with a repetition of the same structure as shown by the three arrows. For 
example, a gradient descent procedure minimizing the difference between two regions 
would stop at the nearest solution and would not see the others. On a local basis and 
in terms of curvature only, there is no way to distinguish the three positions indicated 
by the arrows. 

In this sense, trying to start in the same constant KH-mapping region gives only 
a limited guarantee of success. By landing on a similar patch, the smoothness of 
the curvature field is likely to guide the gradient descent to the correct answer which 
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would not be the case if we started in the wrong regiOn. This might be viewed 
as a necessary but insufficient condition. The hope is that the stabilizing effect of 
curvature consistency will be strong enough within a region to make the curvature 
field vary smoothly and have a consistent structure in the immediate vicinity of the 
solution (which is verified experimentally). 

Usually, five to ten such patches are selected for the initial stage of the matching 
process which consists of minimizing the metric defined in the following section. 

4.3.4 Defining a Metric of Similarity 

The basis of our approach is the minimization of a functional form that measures the 
difference betweeu a local neighborhood in one image and a corresponding neighbor­
hood in an adjacent image. We describe the local structure of a point P in the first 
view with the augmented Darboux frame ~P and, in the second view, with the aug­
mented Darboux frame ~P'. The augmented Darboux frame at a point is determined 
as described in the previous chapter. A typical organization of the neighborhood at 
point P in both views is shown in Figure 4.5. 

Assuming that the best estimate for the motion of point Pis given by the rotation 
matrix Q (containing the Euler angles Bx, By,() z) and the translation vector T ( x, y, z), 
we can write the relationship between the components of the Darboux frames ~P and 
~P' as follows: 

I 

P +--+ Qp + T 

Mp' +--+ QMp 

.'Vi p' +--+ QMp ( 4.1) 

Np' +--+ QNp 

K.MP, +--+ K.Mp 

K.mp' +--+ K.mp 
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(a) (b) 

Figure 4.5: Typical organization of a neighborhood in two views. (a) shows 
a few Darboux frames in the neighborhood of a point seen in a first view. (b) shows exactly the same neighborhood seen from another viewpoint (after translation and rotation). The metric of similarity defined allows comparison 
of the structure of these neighborhoods by taking into account the motion 
parameters. 
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Observe that the principal curvatures ( KMp and Kmp) are viewpoint independent. 
Therefore, they can be compared across views without any geometric transformation. 
In a similar manner, it is also important to note that the three vectors comprising the 
so-called principal frame, namely the vectors M, M and N are unit length and have 
no position content. One needs only to adapt their orientation through the rotation 
matrix Q before comparing them across views. These vectors carry only a directional 
content; the translation vector T has no effect on them. Finally, the position of point 
P in the second view with respect to the first one is determined with the complete 
set of motion parameters, rot.ation and translation. 

The difference in the orientation of the Darboux frames and values of the principal 
curvatures is computed with equation 4.2. Each of the components of this equation 
is normalized to unit measure and weighted identically. 

A simple analysis of the previous metric shows that its value is contained in the 
range 0 to 5, varying from a perfect similarity of structure to a completely different 
one. 

Change m the motion parameters Q and T leads to a different corresponding 
Darboux frame (~ and therefore to a different value of the metric D that measures 
the similarity between (p and (~. The idea is to minimize the functional DQT as a 
function of values of Q and T. 

However, exhaustive search is not a good idea here because the search space is 
immense. The error surface, that is to say the metric D plotted for the various Q and 
T, is contained in a 60 space (3D rotations and 3D translations). In practice, however, 
the problem is reduced to a 50 space because the solution, the point minimizing the 
difference of structure, is known to lie on the surface defined by the second view, 
thereby imposing a constraint on the solution and removing one degree of freedom. 
The search space remains nevertheless too large for an exhaustive search. 
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In fact, there is no need for a global search because we assume that an estimate of 
the motion is available. We can therefore limit our search to a certain neighborhood 
in the vicinity of this position. We will demonstrate that a solution can be found 
using a gradient descent procedure provided that the conditions described in the next 
section are met. 

4.3.5 Existence and Uniqueness of the Solution 

The existence of a solution of the gradient descent formulation of the problem at hand 
(namely minimizing the metric D) implies the existence of the metric itself. And the 
existence of this metric depends solely on the availability of estimates of the necessary 
differential properties of the surface ( Darboux frame). 

It is therefore important to be able to estimate the principal curvatures and di­
rections. This meaus that tlte surface should be C 2 smooth 2 since the curvature 
magnitude is related to its second derivative. We will assume that the surfaces used 
in this process meet this condition (at least locally- piece\vise smooth surfaces). 

In addition to its existence, the metric D must be convex to have a unique solution. 
The convexity of D is not easy to show for the general case. Even for a special case 
such as a paraboloid a formal proof is somewhat difficult. 

For example. the principal curvatures of a paraboloid in standard position 

are given by 

where 

- - 1 ;·) "' 'l"
2 + 1 /') "' ·v 2 -- -<-<!•' -'--'2 

-h ± vb2 - 4ac 
2a 

a= 1 

2Continuous to second order 

( 4.3) 

( 4.4) 
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2 2 2 2 b = _ a1 + a2 + a 1 a 2 x + a 1 a 2 y 
(1 + aix2 + a~y2)3/2 

a1a2 c= ------------~--
( 1 + a?x2 + a~y 2 )2 

and the principal direction (not normalized) corresponding to the principal curvature 
11:1 is given by 

(4.5) 

where 

'1'"\ ( 1 2 2 2 2 )3/2 v=/\.1 +a1x +I\.2Y . ( 4.6) 

In order to prove the convexity of D for this specific form. one would have to 
replace the variables x and !I in equations 4 .. 5 and 4.5 by functions having for 
arguments the motion parameters Q and T. The resulting equations could then be 
substituted in the metric DQT· 

Because of the complexity of the resulting form, we do not offer any formal proof 
of the convexity of the metric D. However an empirical demonstration is presented 
in Figure 4.14. It shows four slices of the error surface obtained using the metric D 
when trying to match au arbitrary Darboux frame from this surface (without and with 
noise added) witb auotlter poiut. ou the same surface. The convexity of the resulting 
error surface is apparent. A similar result has been obtained for an hyperboloid. 

The interest of the parabolic case is the following. For any surface that can be 
locally approximated by a paraboloid (or an hyperboloid), the metric D is convex 
in the vicinity of the solution. The size of the region of convexity depends on how 
good the approximation is. For raw data, this approximation is, in general, good 
for a very limited area around the solution. However, application of an appropriate 
reconstruction procedure can extend this region significantly as is shown in Figure 
4.7. 
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Figure 4.6: Convexity of the metric D for two views of a synthetic 

paraboloid. (a) shows a. view of the noiseless paraboloid used. (h) is a. 
slice (displacement in :r: and in y) of the metric D. (c) is another slice (rota­

tion in f),. and f),,) of the metric D. Both slices <~. re cle<~.rly convex. (d) shows 

the same paraboloid with :->% white noise ;ulded. (e) and (f) present the 

same result as ( iJ) a.ud (c) respectivelv for the paraboloid in (d) . Results in 
(e) and (f) were obtained a.fter .)0 iterations of curvat.ure cousistenc.v. 

This demonstration serves to show that the method degrades gracefully (the same 

surfaces in Figure 4.6 (e) and (f) with fewer iterations would have many local minima). 

The number of iterations of curvature consistency performed has a large effect 

on the shape of the metric D. figure 4. 7 shows a. slice of the hyper-surface ( 6D) 

produced by t.ltf' mt>tric D for two views of a. small owl statue (Figure 5.1:3). The 

result shown is typical of the effect of curvature consistency on the convexity of D. 

This phenomenon and its consequences are presented in more detail later in Section 

4.6. 
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(a) (b) 

Figure 4.7: Effect of curv<tt.ure consistency on the convexity of D. A 2D 
slice of the hyper-surface (fiD) produced by D for two views of a small 
owl statue is presented <tJt.er different numbers of iterations of curvature 
consistency. ( {\,) shows t.his surf{\,ce after one iteration {\,nd (b) presents the 
same figure after five iterations. Many local ntinima present. in (a.) have 
disappeared in (h) where the convex shape is more cleMly <~. pparent. 

Minimizing the Metric D 

The initial estimate of motion parameters is used to obtain a. starting point for the 

process. The parameters are applied to a point P, mapping it from its position p 

on the first vievv to its corresponding position p ' on the second view. The nearest 

position p' is then cl10sen as the starting point of the minimization. If the distance 

from the position p' t.o the nearest point on the second surface is larger than a specified 

thresho ld , point P is said t.o correspond to unique information visible in only the first 

v1ew. 

D is minimized i11 gra,dient descent fashion. The gradient of D is estimated from 

discrete samples in the vicinity of p ' . Because of the convexity of the metric in this 

neighborhood, the minimal solution can be found quite efficiently (as compared to 

exhaust ive search). 

However, some care must. be taken in applying the procedure. For example, a 

slight change in the rotation parameters does not induce a corresponding change in 
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Figure 4.8: Bilinear interpolation of a range image. The range information 
is seen as a set of impulses at the grid corners. In this example, the value 
at position (i+a.,j+b) is ueeded where a and I> are smaller than l. The first 
step consists in interpolating the values at position (i+a,j) and (i+a,j+l). 
These two values are interpolated in their turn to obtain the desired value 
at (i+a,j+b). 

p due to quantization. As a result. steps are induced in the error function, making 

it more difficult to minimize. 

This type of behavior can lw reduced by interpolating between the points. For 

example. a simple hilinear iut.erpolatiou is sufficient to keep the error continuous and 

make it easier to minimize (sPP Figure 4.q). Tlw meaning of bilinea.r interpolation for 

a range image is graphically explained iu Figure 4.8. 

The solution obta.ined by the gradient. descent. procedure is rejected if the value of 

the metric D is larger than a threshold determined by the size of the neighborhood, 

the noise present iu the images and the deformability of the object. The motion 

parameters are deduced from the positions p and p' of point P in the first and 

second views respectively together with the corresponding preferred relative rotation. 
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4.3.7 

(a) (b) 

Figure 4.9: Effect of <l bilinear interpolation on the metric D. A slice 

of the fiD surface obt.flined with the metric D for two views of a synthetic 

(noiseless) p<traboloid is shown in two circumstances. (a) shows the surface 

without iuterpo];tt.iuu (He<trest poiut.) which is bumpy and has many local 

minima. (h) shows the same surface found with bilinear interplation. This 

time, the surface is smoother and easier to minimize 

Propagating the Motion Parameters 

At this stage, only few selected patches (see Section 4.3.3) have been matched in the 

second view through a complete minimization of the metric D. In order to associate a 

set of motion parameters t.o t'very patch in a view. a strategy of gradual propagation 

of informatiou is adopted. 

In this process , the selected patches (black patches in Figure 4.10) bequeath their 

motion parameters to their immediate neighbors. This information is then used by 

the neighbors as a starting point to find their own motion parameters through mini­

mization of the metric D. 

The process of updali.niJ tlw motion parameters 1s possible ouly if the neighbor 

IS part of an overlappiug regioll. This is determined by a distance threshold. If, 

when mapped with the parameters of the selected point, a neighbor is too far from 

the surface in the second view, it is said to be a unique information and its motion 

parameters can not be updated. 

The advantage of the propagation is that the search space is reduced by usmg 

a very good starting point. (motion parameters of an immediate neighbor). It also 
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(a) 

(b) 

Figure 4.10: Principle of propagation of the motion parameters. The 

patches are syl!lbolized by small rectangles all having their own motion pa­

rameters. Only the black patches have had their motion parameters refined 

with the gradient. descent. method described earlier (because they were cen­

tral points of t.he l;ug;est. constant. 1\H-ma.pping regions). At. the initial stage 

of the propagation i 11 ( ;t), t. he se black patches pass their motion parameters 

to their immediate neighbors. Each neighbor performs an update (minimiza­

tion of the metric f)) of the inherited parameters and propagates the result 

to its own neighbors. :-\t the end of the process (b), every patch has a set of 

motion parameters associated with it. The white patches in (b) where part 

of a non-overlappillg region (unique information) and were simply given the 

nearest set of motion parameters (without any form of update). The noise 

present in the initiaJ information (blu.ckpatches) has an effect on a. complete 

set of patches relat.ed to them and causes the surface t.o move in blocks (in 

this case t.ltree difl'erent. blocks). 
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4. Putting Views in Correspondence 

allows the association of a set of motion parameters to the points that are visible in 

only one of the views. For this process to give an appropriate result, it is necessary 

that the information of the selected points be accurate. An error in the matching of 

only one selected point may cause many other points to be badly matched ("motion 

in block" described in Figure 4.10). This is why it is so important to select candidates 

carefully and not hesitate to reject their match if some conditions (such as a threshold 

on the metric) are not met. 

4.4 Motion consistency 

In the previous sections, we have seen how to obtain estimates of motion (rotation 

and displacement) that map all the points of one view to another. It has also been 

shown that because they are local and because there is noise present in the images, 

these estimates are usually noisy. In fact, when applied to an image they often lead 

to errors in reconstruction (see Figure 4.11). 

A similar problem was seen in Chapter 3 with the noisy set of estimates of cur­

vature and principal directions. The solution then was to look at the surrounding 

points and make the curvature field locally consistent. 

The same approach is taken with the estimation of motion. The problem starts 

with a noisy set of motion parameters (translation and rotation at each point). The 

idea is to use a. specialized ''smoothing operator" to enforce a. constraint of locally 

rigid motion. In other words, the object should not break as it is mapped from one 

view to another one. Its deformation, induced by noise or by a real distortion, should 

vary smoothly over its surface. 

The problem can be separated in two parts: translation and rotation. These two 

parts can be dealt with separately but the separation must done carefully. It is well 

known that there are a.n infinite number of ways to go from one position to another one 

by composing different rotations a.ncl translations. While the final position depends 

on the amount of rotation and translation applied, the final orientation depends solely 

on the rotation applied. This tells us how to separate the problem. 
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Figure 4.11: Effect of I notion co nsistencv. A view of a small owl statuette 
is mapped in the fra.m e of <l second view (each window of 7 x 7 pixels has 
its own se t of motion pa ra meters). The second view itself is not shown 
for clarity. (a) shows the res ult obtained using locally determined motion 
parameters . (b) shows the same result after the application of 5 iterations of 
the motion consistency filter. The spatial relationship between the patches 
is now recovered correctly in (b). 
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4. Putting Views in Correspondence 

In fact, locally rigid motion means that a point should see his neighbors at almost 

the same position and with the same relative orientation in the two views. If those 

conditions are met perfectly everywhere on the surface, we have a rigid body motion. 

However, if those conditions are met locally only, we have what we call a "locally 

rigid body motion". The nature of local depends on the constant of rigidity of the 

body which, in a certain sense, defines the deformability of the object. 

4.4.1 Updating the Position 

Let us look in detail at a. point P and its 3 x 3 neighborhood consisting of 8 points 

Qi. The final mapping of poiut P onto the other view is to be updated using the 

motion parameters of its neighbors. In view 1, the points Qi see point P at a relative 

position rli. The position of P is thus given by 

(4.7) 

where p 1 is a vector representing the position of P in frame 1, q 1 i is a vector repre­

senting position of each of P's immediate neighbors and r 1i is a vector representing 

the relative displacement between P and each of the neighbors. 

Assuming a locally rigid transformation, a similar description applies to the local 

neighborhood in frame 2, i.e., 

( 4.8) 

using a similar definition for vectors p 2 , q 2i and r 2 i in view 2. A typical representation 

of the spatial organization of those vectors and points is shown in Figure 4.12. 

From equation 4.8, using the motion parameters of a point Qi and the constraint 

of local rigidity, it is then possible to predict where point P should be in view 2 

relative to this neighbor. 

First, point Qi is mapped onto view 2 using its own motion parameters Qi; (ro­

tation matrix) a.!l(] Of ( clispla.cement. vector): 
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(a) (b) 

Figure 4.12: Principle of motion consistency for displacement . The motion 

parameters for point P have to be updated. (a) shows point P and its 

neighbors Q1; iu view l. In (b) , we see the same patches lllapped in view 2 

using their own motion parameters. Because the set of motion parameters 

for this neit!;hborhood is noisy. the patches are misaligned when mapped in 

view 2. Vectors r2 i d!ld P:.li show where point. P should be when mapped in 

view "2. according to point. Q2; if we had a rigid-body type motion. Such a 

prediction is mrtde by every neighbor of point P. 
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( 4.9) 

Then the relative displacement between points Qi and P is expressed in view 2 

coordinates is: 

( 4.10) 

The position of point P in view 2 as predicted by its neighbor Qi is therefore 

(4.11) 

where Qi, and Ofi are the rotation matrix and the displacement vector computed 

from the motion parameters at point Q;. 

This last equation, after simplification, simply means that a prediction of the 

position of point P in view :2 is found by applying the motion parameters of point Qi 

toP in view 1, 

( 4.12) 

A prediction for point P on view 2 is obtained in this manner from each neigh­

bor. Given the set of predictions and the constraint of local rigidity, the maximum 

likelihood estimate of P in view 2 is given by: 

( 4.13) 

where the Wi take into account the rigidity of the object and the distance of the 

neighbor Qi to point P. In other terms, the weights wi reflect the object deformability 

as well as the locality of the rigid-body constraint enforced. 

Using Gaussian smoothing, one can determine these weights with the following 
equation: 

( 4.14) 
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where a can be seen as the constant of rigidity of the object and d; is the distance of 

point P to its neighbor Q;. The larger a, the more the object will be forced to move 

rigidly. 

4.4.2 Updating the Orientation 

Next we consider orientation. As was the case with the relative displacement, the 

idea is to maintain a coherence in the relative orientation of point P with respect to 

its neighbors Q; such that the local structure of the surface is preserved when mapped 

from one view to the other one. 

Obviously, if the points P and Q; had exactly the same rotational parameters, 

as is the case for a rigid body motion, their relative orientation would be preserved 

when mapped into a secoud view. However, the estimation of motion is noisy and 

is likely to vary even over a small neighborhood. These small variations in motion 

parameters from point to point are a cause of loss of structure. Therefore, trying to 

obtain a. local coherence in the rotational parameters in a neighborhood is equivalent 

to trying to preserve the relative orientation of those points from view to view. 

In fact, what we require is a. maximum likelihood estimate of the rotation part 

of the neighbors' rnotiou pa.ra.meters. However, in doing so, one has to be careful to 

avoid a common problem in the representation of rotations, namely non-invariance 

with respect to the choice of reference frame. 

Many differeut. represeutations for rotations have been proposed. All of them 

are based on Etder's Theorem of rigid-body rotation: the attitude of a body after 

having undergone any sequence of rotations is equivalent to a single rotation of that 

body through a.n angle f) about an axis n [Hl]. Even though they all have the same 

origin. these differeut. represeutatious (rotation matrices, spinors, quaternions, Euler 

angles ... ) are not all equiva.lent. in terms of invariance. 

According to Euler's Theorem, one of the most natural ways to express a rotation 

is the quaternion. A quaternion is composed of a vector (axis of rotation) and a scalar 

function of the angle of rotation. Therefore, a. qua.ternion expresses a. rotation in its 

simplest form. A summary of quaternion algebra. and its basic properties is given in 
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appendix B. 

Because of their view invariant property [19] [18], quaternions are best to represent 
and deal (e.g. interpolate) with rotation and this is why they will be used to update 

the orientation of point P. 

Without any loss of generality, consider only the rotation part of the neighbors' 

( Q;) motion parameters. It is easy to find, from the motion parameters, a quaternion 

qt expressing the rotation of point Q; from view 1 to view 2 (see Appendix B). 

The goal here is to keep consistent the relative orientation between point P and 

its neighbors Q; in view 1 and view 2. This goal would be achieved automatically 

if all the points (P and Qi) had the same rotation component in their own motion 

parameters. In this case, the patch composed of the whole neighborhood would be 

rotated by a constant amount and the relative orientation of the points on this patch 

would be preserved (rigid body motion). 

Therefore, to solve our problem, we have to find a quaternion q~P defined as the 

minimum distance t.o tbe other rotations. Distance is defined here as the angle of 

rotation (a scalar) relating two different orientations independently of the axis of 

rotation as explained by Euler's theorem (see Figure 4.13). 

Using the interpretation of quaternions given by the unit sphere (see Appendix 

B), we can set up a minimization in the following manner. 

Let q~P be the quateruiou tl1at is the miuimum distance (in the least-squares 

sense) to t.he quat.f'mious q~. corresponding to the local neighborhood of P. The 
distance between the orientations expressed by the quaternions q~P (the solution to 

our problem) and qt (rotation of a point in the neighborhood) is a function of the 

scalar part of the product q~P qt (where the quaternion q~P is the inverse of q~P - see 
Appendix B). This number really gives the difference of rotation applied by the two 

quaternions since it is nothing but a composition of rotation. It should be noted that 

the scalar part of t.he resultiug quaternion is cos~ where {} is the angle of rotation 
between the two orientations. 

If we define the quaternion q~P: 
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"'\~ 

~·v 

' ... ... ... ... ... 

Figure 4.13: Principle of motion consistency for rotation in :2D. In this 
example, frame P ha,s the minimum sum of squared distances (angles fl1 and 
fl2 ) to the frames 1 and :2. Frame P can be seen as an average of the two 
other orientations. The same principle is applied in 3D, using quaternions 
to obtain the angular displacement between the frames 
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a 

1 
b 

q2p = ( 4.15) 
c 

d 

and the quaternions q1, 

Xi 

Yi 
(4.16) 

z· 
' 

we find that the scalar pa.rt of the product q~Pq1, IS 

UXj + b!Ji + CZi + ds;. (4.17) 

This information can be summed up over the neighborhood of point P, namely 

the points Q;. A number inversely proportional to the coherence of rotation of q~P 

with all the q1. is obtaiued (sum of cos~). The goal is to maximize this number 

subject to the constraint of unit length for q~P' 

( 4.18) 

Using a Lagrange multiplier to enforce the constraint, the complete function to 

be maximized is written as: 

~ 2 2 2 2 E = ~(ax; + hy; + cz, + ds; + A(a + b + c + d - 1)) (4.19) 

As we did with the update of position (see Section 4.4.1), the terms of this sum 

can be weighted to take into account the object deformability as well as the distance 

of the neighbors to point P. Here again, the factors w; defined by equation 4.14 will 

be used. Therefore, we have the following equation, 
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""" 2 2 2 2 E = L.Jwi(a:z:; + byi + czi + dsi) +>.(a + b + c + d - 1)). 

Solving for a, b, c and d. we obtain the following partial derivatives: 

8E 
- = 2:)wixi + 2a>.) = 0, 
ba 
bE 
- = ""'(w··u· +')b).) = 0 bh L...- '·" ~ ' 
bE 
- - ""'(w·z· + ·Jc>.) - 0 {' -L....- '' ~ -, uc 
bE 
-. = L(w;s; + '2d>.) = 0. 
bd 

bE """ 2 2 2 2 ) f0: = L...-(a + b + c + d - 1 = 0. 

After simplification we find 

( 4.20) 

( 4.21) 

( 4.22) 

( 4.23) 

( 4.24) 

(4.25) 

(4.26) 

( 4.27) 

(4.28) 

( 4.29) 

By looking carefully at the two possible solutions (plus or minus signs), we realize 

that they in fact conespoud to two quaternions of opposite directions which repre­

sent the same rotation (see appendix B). Therefore, there is only one valid answer. 

However, it is a good practice to keep the scalar value positive to avoid any confusion 

caused by an angle of rotation larger than 180 degrees. The sign of the solution is 

then chosen so that d is positive. 
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4.4.3 Determining the Updated Motion Parameters 

We now have all that is needed to update the motion parameters of point P. We 

have found its final position on view 2, p2 , and its final orientation given by q~p· 

The mapping of point P from view 1 to view 2 is represented by the following 

equation, 

( 4.30) 

where QfP is a rotation matrix deduced from the quaternion q~P and d1 is the dis­

placement we are looking for expressed in view 1 coordinates. 

Hence, 

( 4.31) 

We now have updated all the parameters of point P needed to map it onto the 

second view. Such a process is applied to every point or patch in an iterative process. 

4.5 Controlling the Rigidity of the Motion 

Now that most of the proposed method to find correspondence of views has been 

described, it is appropriate t.o euumerate and describe the different knobs allowing 

control of the uou-rigiclit.v of mot.iou. 

Theses parameters are: 

1. The size of the patches. It should be adapted to the object constant of 

rigidity (a-). The bigger is a- the larger the patches can be. In a sense, one could 

always use small subwiuclows. This option simply means more computation in 

the case of an almost rigid motion. 

2. Motion consistency. Three parameters can be defined in relation with this 

algorithm: 

Number of iterations. The number of iterations should be proportional 
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to the rigidity of the motion and to the noise. At convergence (after a large 

number of iterations), motion consistency would produce a globally rigid mo­

tion. It is therefore important to apply it for only a few iterations, just enough 

to remove most of the noise, if the motion is known to be non-rigid. 

Window size. The effect of the size of the neighborhood is very similar to 

the number of iterations. A larger neighborhood implies a more rigid motion. 

Weighting factors (w;).The weighting factors w; as defined by equation 

4.14 take into account the distance of a neighbor and the constant of rigidity of 

the object. Obviously, for a non-rigid motion, these weights and the constant 

of rigidity should be very small and set to higher values for a more constrained 

motion. 

Together these parameters allow for a flexible control of the motion type. Unfor­

tunately, they also express the need to determine many different constants. However, 

we have observed that, for the case of rigid objects, :3 iterations of motion consistency 

with a neighborhood of J x ;3 aud a constant of rigidity of l for patches of 5 x 5 pixels 

give good results ( tl1e s[Jatial resolution of our test images was of about l sample per 

mm). Slight variations of these numbers do not appear to affect the final result. 

4.6 Relation Between this Method and Continuation Meth­

ods 

It is possible to establish a relationship between the method presented in this thesis 

and the classical coutiuuatiou methods such as the GNC (Graduated Non-Convexity) 
method of Blake and Zisserman. 

The idea behind the GNC is to turn a non-convex error function into a convex 

one by changing a control parameter. When the function to be minimized is convex, 

its solution (the minimum) does not correspond exactly to the original problem but 

is relatively near. As the fuuctiou is brought back to the non-convex shape represen­

tative of the original problem. the minimum ca.n be tracked and the global solution 
can be found. 

52 



4. Putting Views in Correspondence 

(a) 
(b) 

(c) (d) 

Figure 4.14: 2D slices of the surface produced with the metric D after 

different stages of curvature consistency. In this example, the displacement in 
x and in y are changed while the other motion parameters are kept constant. 
These surfaces are obtained for two views of a small owl statue presented 

in next chapter. (a) is after 1 iteration of curvature consistency, (b) is after 

2, (c) is after 3 and (d) is after 5 iterations. The surface becomes clearly 

convex as more iterations are performed. 

The same idea is applicable to our problem. We have seen in Section 4.3.5 the 

effect of the number of iterations of curvature consistency on the convexity of the 

metric D. Figures 4.14 and 4.15 show the same principle for different numbers of 

iterations of curvature consistency. The convexity of our metric is clearly controlled 

by the number of iterations of curvature consistency. 

However, we face the same problem as in the GNC method, namely that the 

convex problem (<tft.er mauy iterations) is not exactly our original problem. It is 

possible to apply the same strategy as is done with the GNC: gradually reduce the 

number of iterations and go back to the original problem while tracking the minimum. 

For example, refer to Figure 4.15. Having found the minimum in (d), it is possible 

to determine the corresponding minima in Figure 4.15 (c) through (a). However, one 

should be careful doing so. 

The estimation of the Darboux frames is very n01sy before the application of 

curvature consistency and the metric D is corrupted and influenced by this factor. In 

this sense, it would be a bad idea to minimize the metric D before doing at least few 

iterations of curvature consistency because it would be difficult to infer the structure 

of the surface. Therefore, it is preferable to always perform a minimum of two or 

three iterations before attempting to detemine correspondence. 
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(a) 

(b) 

(d) 

N urn ber of iterations 

Figure 4.15: :20 slices of the surface produced with t.lte metric D after 

different. stages of curvature consistency. In this example, the rotations in Bx 
and in By are changed while the other motion parameters are kept constant. 

These surfaces are obtained for two views of a small owl statue presented in 

next chapter. (a) is after 1 iteration of curva.t ure consistency, (b) is after 2, 

(c) is after 3 and (d) is after 5 iterations. The surface also becomes more 

smooth and convex as the number of iterations is increased, but the most 

remarkable characteristic is the relative reduction of the error. 
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It is therefore possible to relate the GNC principle to our method. However, 
the previous practical considerations put some constraints on its application. The 
relationship between our method and classical continuation methods is nevertheless 
direct and straightforward. 

4.7 Summary 

In this chapter, we have presented and characterized a method to find the precise 
correspondence of views given an estimate of the motion parameters relating them. 
The method is local and allows for a distortion of the object from one view to another 
one since the mapping is done on a local basis. 

We have also seen the limits of the method and the potential problems inherent to 
its application. The possibility of multiple solutions in the case of a noisy or highly 
textured surface llas been examined and the necessity for reconstruction prior to the 
cross-comparison has been demonstrated. 

To cope with noise inherent to local estimation, a new specialized filter has then 
been presented, motion consistency. We have shown that this filter enforces a coherent 
motion of the different parts of an object. It also expresses concretely the fact that 
an object should not break as it. moves (even though it. can chauge its shape). 

An analogy of this method wi t.b classical continuation methods has finally been 
proposed. It shows an obvious link: t.he parameter controlling the convexity being 
the number of iterations of curvature consistency. Practical considerations limit the 
extent of the analogy. 

In the next chapter, different exam pies of application of this method will be shown 
with synthetic and real range images. 
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Chapter 5 Results and experimentation 

5.1 Introduction 

In this chapter, the results of experiments with real and artificial data are presented. 
The goal is to show the ability of the method to recover the motion parameters 
relating two views of an object in different circumstances. 

Artificial range images will be divided in two categories: the ones for which the 
Darboux frames have been estimated using curvature consistency and the ones for 
which the Darboux frames have been found analytically. It will be seen that curvature 
consistency has a large effect on the precision of the recovered motion parameters. 

The data acquisition process for synthetic and real surfaces will be described 
shortly in the following section. Even though these details are more at the technical 
level, they nevertheless determine the accuracy of the results and constrain the limit 
of what is achievable iu practice with current hardware. They also help to understand 
concretely the problems faced when one tries to fuse different views of a single object. 

The following section will present results obtained with synthetic data. It will be 
shown how the noise and the precision of the Darboux frame estimates can influence 
the method. Surfaces with repetitive structure (see Figure 4.4) are also examined to 
see what kind of result eau be obtaiued in this case. 

Results obtained with nal range images will be presented in a following section. 
It will be seen tha.t the estimate of motion obtained from the calibration of a robot 
moving a camera needs to be updated in order to get an acceptable registration of 
two views. 

5.2 Data Acquisition 

In this section, t.he set-up used for the acquisition of the data is described in more 
detail. In fact, three types of set-up will be presented (one of them being a virtual 
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one for the synthetic images). It will also be necessary to present a few technical 
details about the specific range finder used in these experiments. 

5.2.1 Range Finder 

The range finder used for the present experiments is the result of a collaboration 
between McGill University and the NRCC (National Research Council of Canada). 
It is a 2-axis scanner capable of scanning a complete surface from a fixed view point. 
The basic principle is explained in Figure 5.1. 

The range of this scanner is of approximatively one meter with a field of view 
of 40 degrees in x and 28 degrees in y. Each of these directions ( x and y) can be 
divided into a maximum of 256 positions. The precision is in the order of 1 mm at 1 
meter of distance a.ml improves in a. non-linear fashion as the distance is reduced. A 
good technical description of the construction and the principle of this scanner can 
be found in [11]. 

It is possible to obtain calibrated data (real triplets x, y and z in mm for each 
point) in terms of the camera coordinate frame. For this purpose, a calibration 
procedure has to be applied carefully. The result of the calibration is a set of look-up 
tables and few simple geometric equations relating the indices i and j of a.n image to 
their physical coordinates (.c aud y in mm in the camera coordinate frame). 

In addition, because of its principle of triangulation, this scanner is sometimes 
unable to read a point position because the light is occluded by an obstacle (shadow 
effect). This produces a shadow or a hole in the information from the surface. For a 
better discussion about shadow and other type of problems related to this scanner, 
see [7]. 

5.2.2 Precision Stages 

A set of precision stages controlled by stepper motors is used to precisely move an 
object in front of the range finder. This allows for four degrees of freedom (2 rotations 
and 2 translations). This set-up is shown in Figure 5.2. 
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Figure 5.1: Schematic of the range finder used. A laser beam is emitted and 
hits a first mirror (x-mirror) which is reflective on both sides. This mirror 
controls the x position of the beam on the surface after its reflection on two 
other mirrors (fixed mirror and y- mirror). From the surface, the light is 
diffused and a part of it goes back to the detector through a series of mirrors 
(y-mirror, fixed mirror and the other side of the x-mirror). The detector is 
in fact a CCD array where the displacement of the beam is proportional to 
the distance of the surface (triangulation based technique). By changing the 
angles of the x-mirror and y-mirror, it is possible to scan a 2 dimensional 
patch of the surface. 
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Figure 5.2: Precision st.ages used in the data acquisition process. These 
stages were used to precisely move the objects in front of the range finder. 

The combination of stages allows for four degrees of freedom (2 displacements 
and 2 rotations). 
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Figure 5.3: Robot (Puma 560) hanging from the ceiling and used to move 
the range finder around the scene. The motion parameters of the robot can 
be used to det.ermine an estimate of the motion parameters between the 
views. 

The theoretical precision obtained is about 79 steps per mm in displacement in 

x and in y, 100 steps per degree for the rotation about the z-axis and 0.56 step per 

degree for the rotation about the x-axis. However, the real precision is a bit lower if 

one takes into account the mechanical play in the gears (backlash). 

In this set-up, multiple views of an object are obtained by keeping the camera 

fixed and by moving tltf' object. with t.he stages in front of the camera. 

5.2.3 Scanner Moved by a Robot 

A robot (Puma 560) mounted on the ceiling in an iverted configuration was also used 

to move the camera around a scene and collect data at different viewpoints. This 

set-up is shown in Figure 5.:3. 

The precision obtained in terms of motion parameters relating two views can vary 

considerably depending on the technique used for estimation. A first technique would 
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be to match by hand three (or more) points from the two views and deduce the motion 
parameters. This technique gives acceptable results but it requires intervention. It 
has, however, the advantage of being independent of the precision of the robot used 
(moreover, it is not necessary to use a robot to move the camera in this case). 

Another technique is to calibrate the camera with respect to the end-effector of 
the robot. This calibration is a rather complicated process involving many views 
of a scene made of easily recognizable targets that can be matched across views. 
The advantage here is an a·utornated process that needs only the robot positions to 
determine the relationship bt>tween two images. However, the precision obtained is 
not spectacular. It depends on both the precision of the robot and the quality of the 
calibration. An error of a few ( .S to 10) rnillimet.ers is typical with the Puma .560. 

5.2.4 Virtual Set-Up for Synthetic Data 

In the case of synthetic surfaces, a m.y-tracing technique has been applied to get 
different viewpoints from a computer-generated surface. It provides a very general 
method to scan any kind of surfacP and even allows simulation of the function of the 
range finder. 

In this virtual set-up, the surface to be scanned is traced in space. The camera 
position and orientation relative to the surface are then given to the process as a 
parameter. For each point. of the image, a ray starting at position ( i .. 7) in the camera 
frame and ending at the surfa<'<' is tracPd. Tlw length of this ray gives the depth of 
the surface at this position. 

The simulation of the range finder is done by adapting the direction of the rays 
traced accordingly with the calibration tables. 

5.3 Results with Synthetic Data 

The results presented iu this section ltave been obtained with two views of synthetic 
surfaces. Because these surfaces a.re artificial a.nd the process to scan them is purely 
at the software level, the motion parameters can be estimated perfectly and used to 
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validate our method. 

The first two tests are done with a paraboloid and an hyperboloid. These noiseless 
figures represent two perfect constant KH-mapping surfaces which is one of the condi­
tions discussed earlier in Section 4.3.3. The results obtained in these cases should be 
very accurate and will provide a minimal demonstration of the validity of the method. 

Another series of tests is then performed on noisy paraboloids. The interest here 
is to determine the maximum noise for which the method gives an acceptable result. 

A final test is made with a paraboloid to which a regular texture has been added. 
This demonstrates the limitation of the method in cases where the surface includes 
repetitive structure. The precision required for the estimation of the motion param­
eters is determined. 

5.3.1 Noiseless Paraboloid 

The equation of the paraboloid used in this case is 

:: = O.Olx2 + 0.005;t/. ( 5.1) 

The two images produced from it. were lOO x lOO pixels. The shape of this surface 
is shown at Figure 5.4 from a general viewpoint. 

For the first view, the camera motion parameters relative to the surface were 

81 = {-50. -.50, -lOO, 0, 0, 0} (.5.2) 

where the three first numbers are the displacements ;r, y and :.: and the three last 
numbers express the rotation iu Euler angles form (O:r, Oy and Oz in degrees). These 
six numbers give the position of the camera of the first view expressed in the surface 
coordinate frame. The second view has been scanned by placing the camera at 

82 = { -25, -35, -125. 20, 10, 45}. (5.3) 

From these two positions, it is possible to determine the relative position of the 
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2 

Figure 5.4: General view of the noiseless paraboloid used to generate two 

views for a test. 

two views: 

{_\ - {·'" l' _·)s ·)o 10 1 '} ICJ,. - _:J, .), -· ' - • • '10 (.5.4) 

expressing the position 1 of the second view in the coordinate frame of the first view. 

The precision of these numbers is very good as is shown clearly in Figure 5.5. They 

will therefore be used as a basis of comparison with the results obtained by our 

method. 

Finding Correspondence Using Analytic Darboux Frames 

For the first test. the Daxboux frames at each point of the two v1ews have been 

found analytically. It is possible t.o so because a synthetic surface with a known 

mathematical function is used. In the general case however, it will not be possible to 

do so and the curvature consistency algorithm will have t.o be used for this purpose. 

The Darboux frames estimated using the curvature consistency algorithm tend to be 

less precise and can lead t.o illt imprecision in the motion parameters recovered (due 

to smoothing). 

1 Here, the term po~itwn is used to designate the f11ll set. of motion parameters including the 
rotational part. 
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(a) (b) 

Figure 5.5: Correspondence of t.wo views of the artificial paraboloid shown 

in figure 5.4. The estimation of motion ( 0r) is used to put the views together. 

One of the views is shown as a shaded smface and the other is shown as a 

grid. The interlace of the grid with t.he shaded surface shows t.he accuracy 

and the precision of the motion parameters. 

For the purpose of the t.est., t.he t.wo smfaces have been misaligned by perturbing 

their known motion parameters ( 8,) . The initial motion parameters used as a. starting 

point of the view correspoudencP process were: 

e1 = {85 5 -1"' o o llO} 
' ' V~ ' ' 'J 

( 5.5) 

which is better visualized wit.h t.he help of Figure .) .6. 

In this case, we have a. surface of constant KH-mappiug (convex figme) and, for 

this reason, there would be only one poiut selected for the initial minimization (see 

previous chapter). However. only for this example, the implementation uses 3 fixed 

points for the initial process of matching. 

The motion parameters obtained for these three points after the initial step of 

minimization are: 
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(a) (b) 

Figure 5.6: Starting point. of the view correspondence process for two 
views of the noiseless paraboloid shown in figure .5.4. The misalignment of 
the views is clearly visible. 

81 = {:24.573, 15.760, -:25.24!), 20.018, 9.!J93, 45.024} 

82 = {25.439, 15.741, -24.972, 20.007, 10.065, 44.960} 

8:3 = {:24.792. 1G.073, -24.860, :20.022, 10.024, 44.984}. 

The final result of the co rrespo11dence (including motion consistency) is shown 111 

Figure 5. 7. This represeuts an upper bound on the precision of the algorithm. 

It is necessary to briefly comment the precision of the motion parameters 8 1 , 8 2 

and 8 3 compared to the theoretical ones ( 8,. ). It can be seen that these numbers are 

very similar in terms of rotation components but are slightly less precise in the case 

of the displacement compone11ts. 

Even though the precision obtained for 8 1 , 8 2 and 8 3 is quite good, one could 

have expected bette r results since we have a noiseless figure and a set of analytically 

determined Darboux frames ( t.he best of bot.h worlds). The problem is that we have 

a discretized surface; interpolation is required to obtain a better precision. For this 

purpose, a bilinear interpolation is used (see Figure 4.8). It does a reasonable job 
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(a) (b) 

Figure 5. 7: Correspondence of views found for the noiseless pa,ra.boloid 

using the st.Mting point shown in figure 5Ji. Again one of the views is shown 

as a shaded surfa,ce and the other one is shown as a grid. In this case 

however, the grid is colllposed of a set of independent 3 x 3 pa,tcltes. The 

quality of ma.tch c;u1 again he evaluated by looking at the interlr~ce of the 

shaded surface with t.lte grid. 
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but it is not perfect (as the numbers obtained tell). A better solution would be to 

apply the differential geometry concept of "parallel transport" [4] in interpolating the 

surface in between the samples. A better interpolated value would be so obtained 

allowing for a more precise determination of the motion parameters. This idea has 

not been implemented because it was felt that the gain in precision was too small 

(since we already have a. dense representation) for the additional computational load. 

The previous test has been repeated without interpolation (using the nearest 

point). The following results were obtained: 

8(n = {26.222, 14.510, -25.081, 19.847, 9.719, 45.297} 

8 2 n = {24.783, 14.987. -:24.968, 20.007, 10.063, 44.970} 

8 3 n = {24.778, l:J.852, -24.747, 19.693, 9.976, 44.87.5} 

It can be seen that while lwiug less precise, these results compare quite well with 

Gr (the theoretical result). Therefore, interpolation does not yield a big improvement 

in precision. It does however make a. difference in the convexity of the error function 

(metric D) which is made easier to minimize (see Figure 4.9). This is why a. bilinear 

interpolation will be performed on each of the subsequent tests. 

Finding Correspondence Using Estimated Darboux Frames 

The idea here is to see at. which precision the motion parameters can be recovered 

if we have only an estimate of the Da.rboux frames. For this purpose, the curvature 

consistency algorithm has been applied to both views. It should be recalled that 

curvature consistency estimates the Da.rboux frames by fitting paraboloids on sub­

windows of the surface. This can lead to a. noisy estimate because 1) the model is 

only approxima.te2 and :2) because of qua.utization effects. 

However, as more iterations of curvature consistency are performed, the noise in­

duced by the estimation stage tends to smooth out and the motion parameters can 

2Even a paraboloid cannot be represented perfectly by a set. of overlapping paraboloids. 
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be recovered more precisely. This is shown in table 5.1 where the motion parame­

ters have been found for three different points after different numbers of iterations 

of curvature consistency. From this table, it can be seen that the result becomes 

progressively more stable as more iterations are performed. 

Another interesting re~mlt should be noticed in relation to this experiment. Even 

though the motion parameters obtained from the correspondence algorithm (before 

motion consistency) seem to be very noisy after few iterations of curvature consis­

tency, they lead anyway to an acceptable result if a large number (e.g. 100) of 

iterations of motion consistency are applied. For this case, the effect of the quanti­

zation noise can be compeusa.t.ed with different. combinations of curvature or motion 

consistency. 

One should however be careful in interpreting this affirmation. In this case we 

have a noiseless paraboloid and the quantization noise is relatively low (low enough 

to allow the correspondence algorithm to work adequately). For higher levels of noise, 

the motion parameters estimated might be too far of the real answer and lead to a 

deformed surface even after the motion consistency filter. For this reason, it is always 

preferable to apply at !Past fpw (:~) iterations of curvature consistency before trying 

to find the correspondence of views. 

5.3.2 Noisy Paraboloid 

For this experiment, the two views of the paraboloid have been corrupted with 5% 

Gaussian noise (different noise on each view). Figure 5.8 gives an idea of the amount 

of noise added. The goal here is to see up to what precision we can recover the motion 

parameters. 

The first step is to try to get a good estimate of the local structure of the sur­

face. In other words, we have to find the underlying smooth surface and estimate its 

differential properties. For this purpose, a first trial is realized using 20 iterations of 

curvature consistency with a 5 x 5 window. The result obtained is showed in table 

5.2. It turns out that using a larger window size for the correspondence algorithm 

does not much improve the result if the local structure of the surface has not been 
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Iteration number X y z Ox Oy fl:, 
23.038 7.025 -23.479 17.894 10.406 44.687 

0 28.195 .5.941 -23.740 17.486 8.789 45.085 
25.975 31.343 -26.863 23.968 10.281 46.402 
23.711 19.334 -25.615 20.929 10.406 45.171 

1 19.580 5.364 -22.331 17.398 11.764 44.843 
25.139 16.116 -24.888 20.023 9.937 45.109 
25.086 18.029 -25.381 20.723 10.169 45.232 

2 28.128 19.151 -25.992 20.808 9.004 45.602 
25.399 16.466 -25.016 20.150 9.958 45.313 
25.236 li.533 -25.375 20.493 10.088 45.218 

3 26.135 17.474 -25.519 20.422 9.516 45.308 
25.352 16.533 -25.0:37 20.186 9.945 4.5.264 
25.461 17.29.5 -2.5.412 20.376 9.976 45.21.5 

4 2-L554 10.261 -2:3.928 18 . .537 10.263 45.007 
2.5. 29.5 16.610 -2.5.060 20.220 9.978 45.267 
25 . .532 16.90.5 -25.392 20.193 9.917 45.167 

5 25.206 11.480 -24.443 19.080 9.957 45.076 
25.344 16.599 -2.5.0.58 20.214 9.957 45.273 
25.6.5.:':) 16.715 -2.5.405 20.101 9.851 45.156 

6 25.901 12.369 -24.497 19.140 9.918 45.039 
25.334 16.608 -25.061 20.222 9.937 4.5.242 
25.043 15.763 -25.378 20.014 9.824 45.156 

7 25.6U 13 . .590 -24.733 19.343 9.698 45.091 
25.335 16.637 -25.071 20.235 9.937 45.242 
25.144 15.601 -25.388 19.937 9.774 45.156 

8 25.511 14.050 -2-1.846 19.556 9.726 4.5.052 
2.5.34:~ 1().612 -2.5.06:3 20.225 9.924 45.232 
2G.OGG 14.648 -25.056 19.898 9.723 45.148 

9 25.530 14.101 -24.865 19.578 9.704 4.5.036 
25.37.5 16.600 -25.060 20.220 9.906 45.230 
26.196 14.563 -25.080 19.856 9.668 4.5.167 

10 25.4 73 14.110 -24.856 19.583 9.726 4.5.023 
25.349 16.593 -25.057 20.218 9.914 c!.5.222 

Table 5.1: Motion parameters recovered for three points of the noise­
less paraboloid shown in Figure .5.4. Windows of .5 x .5 have been 
used by the correspondence algorithm as well as hy curvature consistency. 
The table shows the evolution of the results as more iterations of curva­
ture consistency are performed. In theory, the motion parameters 0r = 
{25, 15, -25, 20, 10, 4.5} should he obtained for each of the three points. 
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Figure 5.8: Paraboloid shown in Figure .').4 corrupted with 5% of Ganssian 

noise. A similar a.mount of noise have been added to the other view of the 

paraboloid. 

Window size ;t; y - ()x f)" (): -
5 40.328 :) .. ')97 -:22.:2:30 15.6:39 17.388 60.615 
7 56.293 1:3.971 -24.794 16.610 12.833 64.655 
9 41.236 11.98:2 -:24 .:3~):2 17.456 17.935 61.549 
11 40.574 I :3.20 I -25.481 17.609 17.656 61.527 

Table 5.2: Global set of motion pflrameters recovered for va.rious window 

size. It can be observed t.ltat using a la.rger window at this stage does not 

improve the result much if the local structure of the surface has not been 

recovered properl.v. 

properly recovered with cmvature consistency. 

A second experiment has been p<"rformed using a. window of 11 x 11 for curvature 

consistency. The global motion parameters recovered after 12 iterations of curvature 

consistency and using a. window of 5 x 5 for the correspondence algorithm is this 

time quite acceptable: 

0N = {24.504, 15.4G5, -:25.30~), :20.215, 9.754, 44.060} ( 5.6) 

The registration of the result ing smoot.h surfaces is shown in Figure .5 .9 where the 

quality of the fit can again be .iuclged by the interlace of the two views. 
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(a) 

(h) (c ) 

Figure 5.9: Registra.tion of two noisy views of a paraboloid. (a) is after 

0 iteration of motion consistency (estimation stage only) and (b) and (c) 

are after 100 iterations (top a.ncl side views). Even though the estimation of 

motion parameters <~. t stage (a) is poor (disconnected patches), the motion 

consistency filter can recover an acleq uat.e registration of the surface. Because 
of the noise added to them. the surfaces do not touch each other everywhere 

but a. good comprolllis<· has I>Pc~ n found. 
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5.3.3 

Figure 5.10: G(• JH•rr~l v lt'W of I he noiseless lty per l>oloid 11sed to g/•nera.te 

two views for a. test 

Noiseless Hyperboloid 

The goal of this test with svntlJetic data is to show that the method presented here 

works with hyperbolic pa.t.clJes as well as it does for parabolic patches. For this 

reason, only one test will be performed with two noiseless views of an hyperboloid 

whose Darboux frames have been estimated and refined with 10 iterations of curvature 

consistency using a 5 x 5 windo>vv. 

The equatiou of the h,vperboloid 11sed \vas 

., 2 
.:: = ().01:1_:- - 0.0051/ . (5 .7) 

The two images produced with it were 100 x 100 pixels. The shape of this surface 

is shown at Figme 5.10 from a general viewpoint. 

The two views were taken at the same positions used for the paraboloid and, 

therefore, the tbeoretical relettive motiou parameters between these views is also 

{_\ -{·F ~~ _·)t" ·>o 10 45} IJ,. - _.), .), -0. - , . ' ' (.5.8) 

The correspondence algorithm, started at 8 1 defined for the paraboloid case, was 

applied to three points and the following motion parameters were recovered (before 
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Fig ure 5 .11 : Regi:;tr<ltion or the two views of the synthetic hyperboloid. 

Again, the interlace or the surfaces shows t.he quality of the fit. 

motion consistency): 

81 = {'J5 81'> ....., .l .... , 15.7.58, -:24.985, :20.044, 9.746, 45 .046} 

82 = {:25 .70:3. Fi./5:1, -:25.023, :20 .007, 9.960, 45.015} 

8 - p- ')H 3 - _:J._ .. 1 ~:>.:354 , -24.947, 19.824, 9.885, 44.996} 

The registration of the views is shown in Figure ;).11. 

5 .3.4 Paraboloid with a P eriodic Structure 

This test demoustrates tl1e seusitivity of the metl10d to periodic patterns or structures. 

For this purpose, a paraboloid to which a sinusoid has been added has been generated. 

The size of this image is lOO x 100 and the period of the sinusoid is 15 (see Figure 

5.12). 

Again, the real motion parameters between the two views generated are 

8, = { 25, 15, -:25, :20, 10, 45} ( 5.9) 
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Ten iterations of curvature consistency were performed on each view separately 

and no noise was added. 

In a first test, the process of view correspondence has been started with E>r as 

estimate of the motion in order to determine a baseline for the second test. The 

motion parameters recovered were: 

E>sl = {22.63, 15.52, -24.47, 20.29, 10.57, 44.14} (5.10) 

The difference between E>r and 8 si can be explained by the smoothing effect of 

the curvature consistency algorithm. Even though the numbers recovered are not 

perfect, the fit of the two views is nevertheless quite good as it is shown in Figure 

- l') ) :::>. ~a. 

In the second test. the iuitial estimate of motion parameters was intentionally 

perturbed to confuse tlw conespondeuce algorithm. The idea was to show the locking 

effect of the repetitive structure. In fact, the perturbation of the motion parameters 

was made equal to the period of the repetitive pattern so that the process tries to 

match a point from the first view to a point on the next period of the second view. 

For this purpose, the following motion parameters were used as starting point: 

E>r = {40. 15. -25, 20, 10, 45} ( 5.11) 

As can be seen, only the displacemeut. in :c (direction of the sinusoid) was modified. 

Because of this modification, the correspondence algorithm made an error of one 

period of the repetitive structure (sinusoid). This means that the local structure 

of the sinusoid was seen as more important than the more global structure of the 

underlying paraboloid. 

The result of this mismatch eau be seeu iu Figure 5.12 (b). It is interesting to 

note that even though the match is wrong by one period of the sinusoid, the fit of 

the views is quite good. In a sense, this result shows the robustness of the method to 

non-rigid motion. In this case, if one was using rigid motion, it would be impossible 

to get a good fit of the surfaces in Figure 5.12 (b). 
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(a) (b) 

Figure 5.12: Registration of two views of a paraboloid with a repetitive 

structure (sinusoid). (a) shows the result of the process of view correspon­

dence when started with the correct motion parameters ( 0r ). One of the 

views is shown as a shaded surface and the other one is shown as a. grid. It. 

is again possible to judge the quality of the fit hy the interlace of the sur­

faces. (b) shows the sa.me result but this time the initial estimate of motion 

parameters was perturbed so that two diffe rent periods of the sinusoid are 

compared across vil'Ws. The structure of the sinusoid was strong enough 

(stronger than the underlying paraboloid) to cause an error of one period 

(relative to (a)). T!te fit of the surfaces is nevertheless quite good and shows 

the robustness of the method to non-rigid motion. 
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5.4 Results with Real Data 

In this section, two results for real images are described. In one case, a small owl 

statuette has been rotated by the precision stages presented in section 5.2.2. In 

the other case, a scale model of a Mercedes-300 has been scanned with the set-up 

described in section 5.2.3 (Scanner Moved by a Robot). In both cases, the range 

finder described in section 5.2.1 was used. 

5.4.1 A Small Owl Statuette 

For this experiment, a small owl statuette was rotated by the precision stages de­

scribed previously. :\ ro1.atiou or .t:) degrees about the main axis of the owl was 

performed betweeu the two views. 

In order to get an estimate of tl1e motion parameters, it is necessary to calibrate 

the set-up with respect to the range finder. The idea is to express the axis of rotation 

in the camera frame in order to be able to relate the two views. This process give us 

the following estimate of the relative motion parameters between the two views: 

ee = { -183.5, 3.2, 61.3, 1.3, 44.!J, -;3.6} (5.12) 

In order to get a smooth estimate of the differential properties of the surface, 

fifteen iterations of curvature cousistency were applied to both views separately using 

a neighborhood of 5 x .5. Figure 5.13 a) shows the resulting smooth surfaces put in 

correspondence usiug the estimated ep. This shows why we need to further refine 

this estimate. 

In Figure 5.13 b), the two views are again fused. but this this time our corres­

pondence algorithm is used instead. The fit is much more precise with the following 

motion parameters: 

e" = { -173.1, 11.0, 52.9, 3.47, 41.4, -4.38} (5.13) 

The difference between e" and the estimation ee can be explained by a combina-
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Figure 5.13: RPgist ra ti o n o f t.wo views nf a small statue owl. One of the 
views i::; shown as a ~ l1a.ded s urface and the other one is shown as a grid. 
In (a) and (h), the estirnil.ted 0 e was used to put t he views together. It is 
possible to sel' <l.ll itttperfec t.ion in the lll a. tch specially for one of the rotations . 
In (c) and (d) the res ult of our algorithm is shown after .SO ite rations of 
motion consistency. In this case, a window of 15 x 15 was used to for the 
correspondence algorithm. The interlace of the surfaces shows again the 
quality of the fit . 
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tion of factors. First, the calibration of the set-up is likely to be imperfect. Getting 

a good calibration requires careful set-up and many iterations of the calibration pro­

cedure. Another factor t.o consider is the imperfection of the range finder itself, that 

is to say its own calibration. 

In Figure 5.14, different stages of motion consistency are shown. In this result, the 

first view of the owl is mapped in the coordinate frame of the second view (the second 

view itself is not shown). It is particularly interesting to note the imperfection of the 

motion parameters found for some patches on the belly before motion consistency. A 

closer look to this result shows that, in fact, the propagation of the motion parameters 

is the cause of this mismat.ch. The surface at these positions is almost. umbilic. 

Because of this, it. is hard t.o get a good estimate of the principal directions which 

leads to errors iu corresvoudeuce of these poiut.s. 

The solution to this problem is to avoid applying the correspondence algorithm 

on umbilic regions. We therefore need to detect these regions. A possible way to 

do so is to sum the ratio of the principal curvatures over a neighborhood for each 

point of the surface and to normalize the results obtained. This number can then 

be used in association with a threshold to detect the umbilic regions. As with any 

method involving thresholds, it. is likely to fail on some occasions as it did in the case 

of a few points shown in Figure .5.14. It does however work most of the time and 

constitutes and interesting way to characterize the surface before selecting features 

for correspondence. 

The sequence of images slwwn in Figure ;).14 demonstrates the robustness of the 

algorithm and its abilit,y to gradually recover the correct structure of tl1e surface. 

Obviously, there is a trade-off' in lbe process. This trade-off is that some patches 

that were correctly positioned art> perturbed slightly because of a few undetected 

mismatched patches. However, if most of the points are initially well positioned then 

the final result will not be affected much. 

78 

http:mismat.ch


5. Results and experimentation 

(a) (h) (c) 

(d) (e) (f) 

Figure 5.14: !\'lapping oft he first view oft he owl in the coordinate frame 

of the second view after different. st.(Lges of motion consistency. The second 

view itself is not shown for clarity. (a) is the estimation of the motion 

pararnet.ers before motion consistenc.v. It. can be seen that the motion of 

some patches have been largely 111 isevalnated especially on the belly. (b), (c), 

(d), (e) and (f) are respectively after 5, 10, 50, 100, and 1000 iterations of 

motion consistency. The sequence shows the gr(l,dual recovery of the correct 

structure of the surface. 
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5.4.2 

(a) 
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(b) 

Figure 5.15: Start.ing point of the view correspondence process for the 

reduced model of a !vlercedes-300 . (a) shows one of the views taken (left side 

plus the top). (b) shows the starting point of the process as obtained via 

the caEbration of the set-np. 

A Scale Model of a Mercedes-300 

For this experiment. two views of a scale model of a Mercedes-300 (scale 1/24) were 

taken using the set-up described iu section 5.2.3 (Scanner Moved by a Robot). In this 

specific case, au estimate of the motion parameters was obtained via the calibration 

of the system (see Figme .5 .15). As has been said in section 5.2.3, the motion 

parameters obtained in this manner are not very accurate because of the imprecision 

of the current calibration. 

The two views werP recoust.rnct.ecl using t.en ( 10) iterations of curvature consistency 

with a 5 x 5 wiudow. Aud t.l1e final result. of the process of view correspondence after 

lOO iterations of motion consistency is shO\vn in Figme .5.16. A neighborhood of 9 x 

9 was used for the correspondence algorithm (initial comparison of structure). 

5.5 Summary 

In the first part of this chapter , we presented the different methods used to obtain 

multiple views of an object.. The degree to which motion parameters can be estimated 

varies with the method. 
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5. Results and experimentation 

(a) (b) 

Figure 5.16: Correspondence of views found for the Mercedes-300 using 
the starting point shown in Figure .5.15 b). A window of 9 x 9 was used for 
the compa.rison of structure and 100 iterations of motion consistency were 
applied. (a) shows one of the views as a shaded surface and the other one as 
a grid. (b) shows the same result with both views as a shaded surface. It is 
again possible to judge the quality of the fit by the interlace of the surfaces. 

The precision stages give a very good estimate of the displacement while the mo­

tion parameters obtained from the robot moving the range finder are a lot less precise 

(with the current calibration). it is also possible to use a mam1al matching of points to 

obtain motion estimates. The motion parameters obtained in this manner are usually 

good but require the intervention of a human (to effectively do the matching). 

The correspondence of views obtained for synthetic data sbowed the validity of 

the method, its precision and its sensi ti vi ty. We have seen that the precision of the 

motion parameters recovered is largely dependent on the precision of the estimation 

of the Darboux frames. The effect of the cliscretization of the surface is important but 

it can be reduced with more iterations of curvature consistency. It should be noted 

that it is not useful to try to match views if the local structure of the surface has not 

been properly recovered beforehand. 

The sensitivity of the method to repetitive structures has also been shown. In the 

presence of repetitive structures, the method can be easily confounded because it is 

local. In this case , the precision of the estimates should be better than the spatial 

frequency of the repetitive structure. 
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5. Results and experimentation 

Finally, two results with real data were presented. The human intervention for 

these tests was limited to the figure/background separation and the selection of the 

window sizes for curvature consistency and the comparison of structure across views. 

These selections could eventually be made automatic by an analysis of the noise 

present in the views. The quality of the results obtained shows that the method is 

quite robust and can deal with noise from different sources (estimation of motion 

parameters, surface quantization, imprecision of sensors, etc.). 

It has also been possible to see the convergence and the stability of motion consis­

tency which goes gradually from non-rigid motion to completely rigid motion (1000 

iterations). 
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Chapter 6 Conclusion 

A novel approach to the problem of view correspondence has been presented. The 

method proposed uses a rich description of the surface, i.e. the extended Darboux 

frame, to locally match views. The matching process exploits the fact that the metric 

of comparison is continuous and convex in the vicinity of a solution, allowing for 

rapid convergence. To improve the stability of local correspondence, an additional 

constraint on the recovered motion parameters was introduced which serves to filter 

out noise and refiect the continuity of motion of real objects. This constraint is 

referred to as motion consistency. The resulting algorithm has been shown to be 

accurate, stable and efficient in the recovery of rigid body motions given estimates of 

surface position. In addition, the local formulation of the algorithm combined with 

the motion blending afforded by motion consistency provides a means of dealing with 

non-rigid motion recovery. 

The robustness of the algorithm is dependent on the accuracy of the local surface 

description as reflected by estimates of the extended Darboux frame at each sample 

point. A feature preserving smoothing filter based on the concept of curvature consis­

tency was shown to provide sufficient accurate surface reconstruction for this purpose. 

In particular, it was demonstrated that the convexity of the metric of comparison was 

critically dependent on accurate recovery of the extended Darboux frame. 

The efficiency of the search implied by the matching algorithm is a function of the 

metric of comparison. Altlwugh no formal proof was offered, it was demonstrated 

that the resulting functiou was couvex iu the vicinity of the correct solution. This 

permitted the use of a gradient descent algorithm for determining the set of motion 

parameters associated with a particular correspondence. Further gains in efficiency 

were made by applying the complete algorithm to a subset of points selected for 

the stability of their features ( extremal points of curvature) and then propagating 

the solutions to adjacent points to be used to initialize new solutions. The motion 

83 



c 

c 

6. Conclusion 

consistency algorithm was then applied to smooth out errors in motion parameters 

estimates resulting from errors in local correspondence. 

The ability to deal locally with motion parameter estimation has two distinct 

advantages. First, the algorithm can accommodate the motion of non-rigid objects. 

Second, more reliable estimates can be determined for rigid objects. In the latter case, 

the motion consistency algorithm serves to integrate locally-determined estimates of 

the global rigid-body motion, providing a best estimate. The result can better tolerate 

local errors in correspondence that would confound more conventional rigid-body 

solutions. 

Some interesting extensions to motion consistency are possible. One would be to 

give it the capability of detecting motion discontinuities and avoid smoothing over 

them. In this manuer. objects composed of many moving parts could be dealt with 

more easily and more precisely. This can probably be accomplished b_y adapting some 

standard techniques (e.g. Kalman filtering) to the 6 dimensional space in which the 

motion parameters lie. 

Another improvement would be to integrate motion consistency with the local 

estimation stage. In other words, the idea would be to devise a minimization based 

on two simultaneous constraints: similarity of structure and similarity of motion. 

At present these two constraints act at different levels and cannot interact properly 

together. A better result would likely be achieved by applying these constraints 

simultaneously rather thau iu tandem. 

It would also be desirable to have a measure of confidence returned with estimates 

of each of the 6 motion parameters. This could be used in a weighting scheme applied 

to updating in the motion consistency algorithm.One possible approach would be to 

examine the shape of the error function in the vicinity of the solution. The metric 

value by itself is, iu general, uot a sufficient indicator of the quality of fit. 

Finally, it should be said that the problem of view correspondence is and will 

likely continue to be a difficult but fascinating problem. It is hoped that some of 

the ideas put forward in this thesis might make a contribution towards solving this 

problem. 
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Appendix A Determination of the Updated Frame in 
Curvature Consistency 

In this Appendix, I describe the details of the updating rules for the set of transported 
Darboux frames Qa. As was stated in Chapter 3, the frames, Qa, are obtained by 
parallel transport of the neighbors' Darboux frames to the point to be updated (point 
P). The Qa therefore represent the prediction of the Darboux frame at point P 
according to its neighbors. 

The goal of the updating process is to determine a Darboux frame that minimizes 
the following functional form which embeds the constraiut of minimum variation of 
curvature, 

n 

E = L(K~Pa- KMp)
2 + (K~Pa- KMp)

2 + (1- (M~0 ,J\1p) 2 ) + 
k=l 

(1- (M~a' .;\ltp) 2
) + (1- (N~a' Np) 2

) (A.1) 

where N, A1 and M are unit length vectors. 

Sander's approach [16] to solving this problem consisted of finding the normal 
and the principal curvatures in a first step and the principal directions afterwards. 
However, by doing so, the updated curvatures did not correspond to the updated 
principal directions. Rather, the curvatures associated with the updated frame were 
simply a mean of the raw curvatures of the translated frames and were not adapted 
to the updated principal directions. Lagarde showed in [9, p.35] that this introduced 
a loss of the local structure, specially near an umbilic point. Moreover, Sander, in his 
minimization, treated the principal directions as vectors i.e. as having an orientation 
content. Lagarde pointed out that principal directions have only a directional content 
and that a simple mean of their components was inappropriate. 

In practice, the minimization of the metric E (equation A.1) is achieved in three 
steps. The first step of the updating procedure is the determination of the local 
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normal. In a range image, because the surface is of the form z = f(x, y ), the z­

component of the normal is always of the same sign (positive or negative depending 

on convention). This leads to the following updating functional for N 

Ni+l = o::::::=l N~QX) L::=l N?aY' L::=l N?az) 
V(L:=l N~axP + (L::=l N~ay)2 + (L::=l N~azF. 

(A.2) 

The second step of the updating process consists of the determination of the 

principal direction l\1. This vector lies in the plane perpendicular to the normal, and 

can be written as a function of an angle () and of two arbitrary perpendicular vectors 

b1 and b2 lying in this plane 

lvf( B) = b1 cos()+ b2 sin B. 

The following conditions apply to b1 and b2 

( bl ' bl) = ( bl ' bl) = 1' 

(b1, b2) = (b1, N) = (b2 , N) = 0. 

The following updating functional can be derived for EM, 

n 

EM= L 1- (Mi+J' i\1:J 2
. 

n=l 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

The result of minimization is the angle () which determines the principal direction 

M 

() = tan- 1 

[
(An- Au) + )(A22- Au)2 + 4Af2] 

2A12 ' 
(A.7) 

where 

n 

A;j = L(MPo · b;)(Mp0 • hj)· (A.S) 
a=l 
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A. Determination of the Updated Frame in Curvature Consistency 

The other principal direction is determined by the cross-product 

M= M X N. (A.9) 

Finally, the third step of the updating process is the determination of the curvature 

magnitudes 

(A.lO) 
n 

and 

Recall that this process is done in parallel for all the points at a given iteration. 

In addition to the normal and principal curvatures and directions, the depth of 

the points is also updated by interpolating the values suggested by the neighbors 

(A.l2) 
n 

Because curvature consistency is an iterative algorithm, it is important to have 

a way of characterizing convergence. A measure of the consistency of the Darboux 

frames over the image is given by the residual errors [16]. For a point P, the partial 

residual errors have the form 

" 
Rfi = L("M- "'MPo.) 2 + (t.:,M- "~MPo.) 2 , (A.l3) 

o=l 

87 



c 

A. Determination of the Updated Frame in Curvature Consistency 

n 

RN= L(N,,- NxPa) 2 + (Ny- NyPa) 2 + (Nz- NzPa) 2
, 

a=l 
n 

RM = 2::(1- (M,Mp0 )
2

), 

(A.14) 

(A.l5) 

(A.l6) 

The summation of these partial errors for all the points updated at a given iteration 

provides a measure of the convergence. 
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Appendix B Summary of Quaternion Algebra 

This appendix presents the basics of quaternion algebra. It is not meant to be a 

complete reference but rather concentrates on notions needed in this thesis, specially 

for the updating of orientations in motion consistency. 

A quaternion is four-dimensionnal entity composed of vector (3 components) and 

a scalar. The vector represents the axis of rotation while the scalar is function of the 

angle of rotation. Commons representations include complex numbers form where s 

is the scalar and v is the vector 

q = s + v, (B.l) 

and the 4 x 1 vector form where n is a 3 x 1 unit length vector pointing in the 

direction of the axis of rotation and () is the angle of rotation about this axis 

{ 
sin ~n } {q} = . 
cos!!. 

2 

(B.2) 

Note that this quaternion is unit length with a positive scalar part for rotations 

of +180 to -180 degrees. In fact, to avoid ambiguity caused by the equivalence of 

positive and negative rotations, the sense of rotation should be defined by the vector 

part using the positive seuse determined by the right-hand rule. 

Addition is associative and commutative but has no physical meaning: 

(B.3) 

The conjugate q of a quaternion q is defined as 

q = S- V. (B.4) 

The conjugate of a quaternion is its inverse up to a scalar since it represents the 
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B. Summary of Quaternion Algebra 

same rotation with a reversed (negated) axis of rotation. For a unit length quaternion 

(the length is computed as for a vector), the conjugate is exactly the reverse 

-1 qq 1 
qq = IIGII 2 = . (B.5) 

The multiplication of quaternions is associative but not commutative. It i~ inter­

preted as the composition of rotations 

(B.6) 

The relationship between rotation matrices and quaternion is given a~ 

(B. 7) 

where a x is the matrix who~e operation on a vector yields the same result as the 

vector cross-product [ax]b = axb. 

The operation of a quaternion on a 3 x 1 vector a is defined as: 

qa = -v ·a+ (v x a+ .sa) (B.8) 

and applying a rotation operation to this vector is done as follow: 

Qa = qaq. (B.9) 

Rotations are composed by multiplication of quaternions in the following manner 

q A _ qAqB 
C- B C· (B.lO) 

It is interesting to note that given two systems with common origin and a quater­

nion determining their relative orientation, the vector part of this quaternion (rep­

resenting the axis of rotation) is expressed in the same manner in both systems 

( v A = v B). It is in fact an eigenvector of the corresponding rotation matrix Q~. 

The representation of the unit length quaternions on the unit 4D sphere is also 
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B. Summary of Quaternion Algebra 

interesting and important. Any coherent interpretation of the quaternions should be 

done through this sphere which has the following properties. 

The quaternions of opposite directions on this sphere represent the same rotation. 

For instance, the subset of unit quaternions with postive scalar part is sufficient to 

represent all the rotations that can be applied to an object. 

An other important characteristic is the possibility of interpolating rotation. This 

characteristic is called "great arc in-betweening" in [18]. When moving from a quater­

nion q 1 to an other one q 2 along the great arc circle relating them on the sphere, 

the corresponding rotation of an object is changed smoothly between the orientations 

determined by q 1 and q 2 . In other words, when using rotations expressed as unit 

quaternions on the sphere, it is possible to manipulate orientation as easily as it is to 

manipulate vectors in 3-D space. 
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Appendix C Interpreting rotations 

This appendix gives the meaning for the notation related to rotation used in this 

thesis. In the meantime, it also tries to clarify the ambivalence of a rotation in its 

general sense. 

A rotation matrix Q~ can be interpreted in two ways. In its first interpretation 

(probably the most common one), it represents a way to express a physically fixed 

vector given in a frame of reference B into another frame of reference A: 

(C.l) 

The columns of the 3 x 3 matrix Q~ are the axes of the frame B expressed in 

frame A 

(C.2) 

The so-called invariants (angle of rotation and axis of rotation) of this rotation 

matrix: 

au a12 al3 

Q~ = a21 a22 a23 (C.3) 

a31 a32 a33 
A 

are defined as 

tr(Q) = a11 + a 22 + a33 = 1 + 2cos(} (C.4) 

and 
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C. Interpreting rotations 

1 
v = [vect(Q)]A = 2 a13- a31 (C.5) 

where () is the angle of rotation and v is a vector parallel to the axis of rotation. 

The other interpretation of a rotation matrix is the application of a physical rota­

tion to a vector. The rotation applied is the same as the one that brings frame A in 

correspondance with frame B. The result is therefore another vector still expressed 

in frame A: 

(C.6) 

In the same manner, the quaternion q~ represents the rotation that brings frame 

A in correspondance with frame B. Therefore, this quaternion used in equation B. 7 

will produce the corresponding rotation matrix Q~. In terms of equations, we have 

(C.7) 

Finally, given a reference frame R and two quaternions q~ and q~ relating the 

frames A and B to R, then the relationship between A and B is found by: 

(C.8) 

One should note that when multiplying two quaternions to compose a rotation, a 

negative value for the scalar part can be obtained. The ambiguity possibly caused by 

this negative value can be removed using the fact that the negative of a quaternion still 

represents the same rotation. Therefore, when a negative scalar value is produced, 

the quaternion should be negated to keep the convention of positive scalar part and 

keep the angle of rotation in the interval of+ 180 to -180 degrees. 
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