Population-based case-control study of the effects of antidepressant drugs on the risk of development of cancer

By:

Hani M. Tamim MPH

Joint Departments of Epidemiology and Biostatistics and Occupational Health, McGill University, Montreal

September, 2003

A Thesis submitted to the

Faculty of Graduate Studies and Research
in partial fulfillment of the requirements
of the degree of Doctor of Philosophy

© Copyright by Hani M. Tamim, 2003

Abstract

Population-based case-control study of the effects of antidepressant drugs on the risk of cancer development

Introduction: Although mechanisms have not been identified, animal and epidemiological studies suggest that tricyclic antidepressants (TCAs) promote tumor growth in humans. Recently, a study in fruit flies differentiated between two types of TCAs: genotoxic ones, which were found to be carcinogenic, and non-genotoxic ones, which were not. Consistent results were found, in an epidemiologic study, in humans' breast cancer. We carried out a historical population-based case-control study to determine whether the use of TCAs increases the risk of developing any of four cancer types (breast, prostate, and ovarian cancers, and non-Hodgkin's lymphoma). The effects of the use of different classes of antidepressants on the risk of developing cancer were assessed as well.

Methods: The source population was the dynamic cohort defined by membership with Saskatchewan Health between the years 1981 and 2000. At least four matched controls were selected for each case identified by the Saskatchewan Cancer Registry, using incidence density sampling. The detailed drug exposure data over a minimum of 5 years before diagnosis and up to a maximum of 23 years allowed us to study for each site the respective effects of dosage, timing, and duration of antidepressant drug use.

Results: During the 20-year period, the numbers of breast, prostate, ovarian, and non-Hodgkin's lymphoma cases included in the analyses were 7330, 7767, 1090, and 1980 respectively. Exposure to genotoxic TCAs, 2-5 years prior to the date of diagnosis, was associated with an increased risk of both breast and prostate cancers (p-trend = 0.001 and 0.08 respectively). Genotoxic TCAs also increased the risk of breast cancer and non-Hodgkin's lymphoma when exposure took place 11-15 years prior to the date of diagnosis (p-trend = 0.03 and 0.02 respectively). Surprisingly, exposure to genotoxic TCAs 6-10 years prior to the index date was associated with a decreased risk of prostate cancer (p-trend = 0.01). On the other hand, exposure to non-genotoxic TCAs, 2-5 years before the index date, was associated with an increased risk of breast cancer and non-Hodgkin's lymphoma (p-trend = 0.008 and 0.002 respectively). In addition, an increased risk of ovarian cancer was associated with exposure to non-genotoxic TCAs 6-10 years before the index date (p-trend < 0.001). Finally, exposure to SSRIs (Selective Serotonin Reuptake Inhibitors), 10 years before diagnosis, was not associated with the risk of any of the 4 cancers.

Conclusion: Although our breast cancer analyses provided similar conclusions to those reported in the literature on the effects of genotoxic TCAs, we didn't find similar effects in association with the three other cancer types (prostate, ovarian, and non-Hodgkin's lymphoma). Globally, our results did not show any consistent results in favor of the a priori hypothesis stating that exposure to genotoxic TCAs increases the risk of cancer development, as compared with non-genotoxic TCAs.

Résumé

Etude cas-témoins sur l'effet des antidépresseurs sur le risque de développement de cancer

Introduction: Bien que les mécanismes n'aient pas été identifiés, plusieurs études animales et épidémiologiques suggèrent que les antidépresseurs tricycliques (ATCs) sont des promoteurs de la croissance des tumeurs chez les humains. Récemment, une étude chez les animaux a différencié deux types d'ATCs : génotoxiques- (responsables de cancer) - et non-génotoxiques (non cancérogènes). Ces résultats ont été confirmés par une étude épidémiologique sur le cancer du sein. Dans ce contexte nous avons effectué une étude cas-témoins à base populationnelle pour déterminer si l'usage des ATCs augmentait le risque de développement de cancer au niveau de 4 sites (cancers du sein, de la prostate, et de l'ovaire, ainsi que les lymphomes Non-Hodgkiniens). L'effet de plusieurs classes d'antidépresseurs sur le risque de cancer a été évalué.

Méthodes: La population source est une cohorte dynamique définie par l'appartenance à Santé Saskatchewan pour la période 1981 à 2000. Pour chaque cas identifié dans le Registre du Cancer de Saskatchewan au moins quatre contrôles ont été sélectionnés dans la population source en utilisant la technique d'échantillonnage de densité d'incidence. Les données détaillées sur l'exposition aux médicaments (un minimum de 5 ans avant le diagnostic et jusqu'à un maximum de 23 ans) nous ont permis d'étudier pour chaque site les effets respectifs du dosage, de la période d'exposition, et de la durée de l'usage d'antidépresseurs.

Résultats: Sur une période de 20 ans, nous avons pu observer 7330 cancers du sein, 7767 cancers de la prostate, 1090 cancers de l'ovaire et 1980 cas de lymphome Non-Hodgkinien. L'exposition aux ATCs génotoxiques dans la période de 2-5 ans avant la date du diagnostic, était associée à un risque accru des cancers du sein et de la prostate (p de tendance = 0.001 et 0.001 respectivement). Les ATCs génotoxiques ont également été trouvés associés au risque de cancer du sein et de lymphome Non-Hodgkinien quand l'exposition a eu lieu 11-15 ans avant la date du diagnostic. De manière inattendue (et contre l'hypothèse), l'exposition aux ATCs génotoxiques 6-10 ans avant la date du diagnostic a été trouvée associée avec un risque décru de cancer de la prostate (p de tendance = 0.01). De plus (contre l'hypothèse), l'exposition aux ATCs non-génotoxiques, 2-5 ans avant la date de diagnostic, a été trouvée associée à un risque accru de cancer du sein et de lymphome de Non-Hodgkinien (p de tendance = 0.008 et 0.002 respectivement). De même, un risque accru de cancer ovarien a été trouvé associé à l'exposition aux ATCs nongénotoxiques 6-10 ans avant la date de déclaration du cancer (p de tendance < 0.001). L'exposition aux IRSSs (Inhibiteurs spécifiques de recaptage de la sérotonine), 10 ans avant le diagnostic, n'a pas été trouvée associée à aucune tendance pour aucun des 4 cancers considérés.

Conclusion: Bien que l'analyse du cancer du sein ait fournie les mêmes conclusions reportées dans la littérature sur les effets des ATCs génotoxiques, nous n'avons pas trouvé d'effets similaires en association avec les trois autres sites (prostate, ovaire et lymphome Non-Hodgkinien). Nos résultats ne supportent pas l'hypothèse a priori voulant que l'exposition aux ATCs génotoxiques accroisse le risque de cancer par rapport aux ATCs non-génotoxiques.

Statement of Originality

This thesis was undertaken to determine whether the use of antidepressant drugs, genotoxic TCAs in particular, increases the risk of developing any of 4 different types of cancer (breast, prostate, ovarian, and non-Hodgkin's lymphoma). This research constitutes original scholarship and advances the knowledge in the domain of both cancer epidemiology and pharmaco-epidemiology.

This work is considered an advancement in the literature since it is the first population-based study of the effects of antidepressants on prostate and ovarian cancers and non-Hodgkin's lymphoma. Although previous work has assessed the effect of antidepressants on cancer development, this thesis represents one of the initial attempts to differentiate between two types of tricyclic antidepressants, genotoxic and non-genotoxic ones. Overall, the original findings of this research provide new insights into the effects of antidepressants in general, and tricyclics in specific, on cancer development.

This project contains no previously published material, except where reference is made in the context of this thesis. Data provided by Saskatchewan Health for this study has not been previously analyzed or reported elsewhere, ensuring the originality of the results presented in this thesis.

I personally carried out the literature review, analyses, and the write up of the thesis; with the highly appreciated guidance and contribution of the committee members recognized in the acknowledgments.

Disclaimer

This Study is based in part on de-identified data provided by the Saskatchewan Department of Health. The interpretation and conclusions contained herein do not necessarily represent those of the Government of Saskatchewan or the Saskatchewan Department of Health.

Acknowledgements

The completion of this thesis would have not been possible without the generous contribution and assistance of many individuals to whom I would like to extend my gratitude. First and foremost, I would like to express my deepest thanks to my thesis supervisor, Dr. Jean-Paul Collet, who not only provided guidance and insight throughout the last three years, but also offered encouragement and support during the whole process.

I would also like to acknowledge the contribution of the committee members, who were very generous with their time and energy. Their stimulating discussions and invaluable inputs helped produce this thesis in its final form. A special thank you goes to Dr. Jean-François Boivin for his organized discussions, clear thoughts, and practical advice. I would also like to extend my appreciation to Dr. James Hanley for his clear in-depth discussions of different issues that came up along the way.

A special note of gratitude is extended to the late Dr. Colin Sharpe, a member of my initial thesis committee, who helped provide the base on which this thesis was built. His kindness, meticulous attention to details, and insightful advice will always be remembered with appreciation.

There are a number of individuals to whom I am indebted for their assistance through out the completion of this project. I would like to thank the research groups at Saskatchewan Health and Saskatchewan Cancer Agency who worked on preparing the data used in this thesis. A particular thank you goes to Dr. MaryRose Stang, for her comprehensive explanations and remarks on many issues related to the project.

Mr. Eric Belzile's efforts in preparing the complicated programs used in most

of the analyses of this study are highly appreciated. Another thank you goes to Miss

Carine Bellera for carrying out most of the data management. Mr. Thierry Ducruet's

help with the data management was also greatly valued. I would also like to

acknowledge the secretarial help provided by Mrs. Cathy DeLeo. Dr. Hassan Bazzi's

advice on many chemistry-related issues is greatly valued. For the support and

assistance offered by my office mates, especially Helen Vasiliadis, I will always be

thankful.

This work would not have been possible without the financial support of the

National Institute of Health.

My acknowledgements will not be complete without a special thank you for

my parents and family members for their everlasting support. A special note of

recognition goes to my sister, Hala Tamim, who first introduced me to the field of

epidemiology, and encouraged me to pursue this degree. Last but not least, I would

like to thank my wife, Nisrine, for her encouragement and inspiration throughout the

entire course of my studies.

To those whose names I did not specifically mention, please accept my

thanks.

Dedication: I dedicate this work to my parents who made me who I am.

 \mathbf{X}

Table of Contents

	Page
Abstract	ii
Résumé	iv
Statement of originality	vi
Disclaimer	viii
Acknowledgements	ix
Table of contents	xi
List of figures	xix
List of tables	XX
List of appendices	xxiv
Chapter 1: Introduction	1
Chapter 2: Review of the literature	5
2.1 Cancer	5
2.1.1 Introduction	5
2.1.2 Definition	7
2.1.3 Cell division	8
2.1.3.1 Cell cycle	9

		2.1	.3.2	Cell differentiation	10
		2.1	.3.3	Cell division in relation to tumor cells	12
	2.1	.4	Carcino	ogenesis	13
	2.1	.5	Cancer	development	15
		2.1	.5.1	Initiation	16
		2.1	.5.2	Promotion	17
		2.1	.5.3	Progression	20
		2.1	.5.4	Carcinogenic agents	21
		2.1	.5.5	Latency period	22
	2.1	.6	Histolo	ogical classification (cell of origin)	23
	2.1	.7	Metast	asis	26
	2.1	.8	Staging		27
	2.1	.9	Descrip	ption of the cancer sites under study	28
		2.1	.9.1	Female breast cancer	28
		2.1	.9.2	Prostate cancer	29
		2.1	.9.3	Ovarian cancer	30
		2.1	.9.4	Non-Hodgkin's lymphoma	30
2.2		An	tidepres	ssants	32
	2.2	.1	Depres	sion	32
		2.2	.1.1	Definition	32
		2.2	.1.2	Causes of depression	34
		2.2	.1.3	Depression and cancer	36
	2.2	.2	Antide	pressants	39

	2.2.	3	Specific	c description of antidepressants	41
		2.2.	.3.1	Tricyclic antidepressants	42
		2.2.	.3.2	Monoamine oxidase inhibitors	42
		2.2.	.3.3	Selective serotonin reuptake inhibitors	43
		2.2.	.3.4	Atypical antidepressants	43
	2.2.	.4	Freque	ncy of use of different antidepressants	43
	2.2	.5	Selection	on of antidepressants	46
2.3	3	An	tidepres	sants and Cancer	48
	2.3	.1	Experi	mental studies of the effects of antidepressants	
			on can	cer risk	49
	2.3	.2	Epiden	niological studies of the effects of antidepressants	
			on can	cer risk	53
2.4	4	Co	nclusior	n, rationale, and relevance	62
Chap	ter 3	: O	bjectiv	es	65
3.	1	Ger	neral ob	jective	65
3.	2	Spe	ecific ob	pjectives	66
Chap	ter 4	: N	Iethods		68
4.	1	Inti	roductio	on	68
4.	2	Des	sign		69
4.	3	Sou	urce pop	pulation	70
4.4	4	Ide	ntificati	on of cases	71

	4.5	Selection	of controls	72
	4.6	Exposure		74
	4.6	6.1 Expos	sure assessment	74
	4.6	5.2 Expos	sure definition	75
		4.6.2.1	Exposure during full period	76
		4.6.2.	1.1 Ever/never exposed	76
		4.6.2.	1.2 Cumulative dosage exposure	77
		4.6.2.2	Exposure by time period	78
		4.6.2.	2.1 Average daily dose of exposure	78
		4.6.2.	2.2 Duration of exposure	80
	4.7	Adjusting	g for covariates	80
	4.8	Statistica	l analysis	82
	4.8	8.1 Expos	sure during full period	82
	4.8	8.2 Expos	sure by time period	83
	4.8	8.3 Statis	tical methods used	85
		4.8.3.1	Descriptive analyses	85
		4.8.3.2	Multivariate analyses	85
	4.9	Ethical is	sues	87
Cl	hapter :	5: Results		88
	5.1	Female b	reast cancer	88
	5.1	1.1 Tricy	clic antidepressants	89
		5.1.1.1	Effect of ever/never and cumulative dosage exposure	89

	5.1.1.1	.1	20-year history	89
	5.1.1.1	.2	15-year history	90
	5.1.1.1	.3	10-year history	92
	5.1.1.1	.4	5-year history	93
5	5.1.1.2	Ef	fect of average daily dose of exposure by time period	94
	5.1.1.2	2.1	All TCAs combined	95
	5.1.1.2	2.2	Genotoxic and non-genotoxic TCAs	96
	5.1.1.2	2.3	Exclusive genotoxic and non-genotoxic TCAs	97
5	5.1.1.3	Ef	fect of duration of exposure by time period	97
	5.1.1.3	3.1	All TCAs combined	98
	5.1.1.3	3.2	Genotoxic and non-genotoxic TCAs	98
	5.1.1.3	3.3	Exclusive genotoxic and non-genotoxic TCAs	99
5.1.2	2 SSRIs			100
5	5.1.2.1	Ef	fect of ever/never and cumulative dosage exposure	100
	5.1.2.1	.1	10-year history	100
	5.1.2.1	.2	5-year history	101
5	5.1.2.2	Ef	fect of average daily dose of exposure by time period	101
5	5.1.2.3	Ef	fect of duration of exposure by time period	102
5.2 F	Prostate ca	ance	er	103
5.2.1	Tricyc	lic a	antidepressants	104
5	5.2.1.1	Ef	fect of average daily dose of exposure by time period	104
	5.2.1.1	1	Genotoxic and non-genotoxic TCAs	104

		5.2.1.1.2	Exclusive genotoxic and non-genotoxic TCAs	105
	5.2	.1.2 E	Effect of duration of exposure by time period	106
		5.2.1.2.1	Genotoxic and non-genotoxic TCAs	106
		5.2.1.2.2	Exclusive genotoxic and non-genotoxic TCAs	107
5.2	2.2	SSRIs		108
	5.2	2.2.1 E	Effect of average daily dose of exposure by time period	108
	5.2	2.2.2 F	Effect of duration of exposure by time period	108
5.3	Ov	arian can	cer	109
5.	3.1	Tricyclic	c antidepressants	110
	5.3	3.1.1 I	Effect of average daily dose of exposure by time period	110
		5.3.1.1.1	Genotoxic and non-genotoxic TCAs	110
		5.3.1.1.2	Exclusive genotoxic and non-genotoxic TCAs	111
	5.3	3.1.2 I	Effect of duration of exposure by time period	111
		5.3.1.2.1	Genotoxic and non-genotoxic TCAs	111
		5.3.1.2.2	2 Exclusive genotoxic and non-genotoxic TCAs	112
5.	3.2	SSRIs		112
5.4	No	n-Hodgk	in's lymphoma	113
5.	4.1	Tricycli	c antidepressants	114
	5.4	4.1.1 I	Effect of average daily dose of exposure by time period	114
		5.4.1.1.1	Genotoxic and non-genotoxic TCAs	114
		5.4.1.1.2	2 Exclusive genotoxic and non-genotoxic TCAs	115

5.4.1.2 Effect of duration of exposure by time period	115
5.4.1.2.1 Genotoxic and non-genotoxic TCAs	116
5.4.1.2.2 Exclusive genotoxic and non-genotoxic TCAs	117
5.4.2 SSRIs	117
Chapter 6: Discussion	119
6.1 Summary of the results	120
6.1.1 TCA exposure	120
6.1.1.1 Female breast cancer	120
6.1.1.2 Prostate cancer	122
6.1.1.3 Ovarian cancer	123
6.1.1.4 Non-Hodgkin's lymphoma	123
6.1.1.5 Summary	124
6.1.2 SSRI exposure	126
6.2 Consistency with published results	127
6.2.1 Female breast cancer	128
6.2.2 Prostate cancer	131
6.2.3 Ovarian cancer	131
6.2.4 Non-Hodgkin's lymphoma	133
6.2.5 Overall results	134
6.2.6 Cell turnover	136

6.3	Strengths	s and limitations of the study	138
6.	3.1 Streng	gths	138
	6.3.1.1	Study design	138
	6.3.1.2	Statistical analyses	141
6.	.3.2 Limit	tations	144
	6.3.2.1	Study design	144
	6.3.2.2	Representation of outcomes	145
	6.3.2.3	Representation of exposure	147
	6.3.2.4	Statistical analyses	150
	6.3.2.5	Control for potential confounding variables	152
6.4	Conclusio	on and future research	162
Chapter 7: References			164

List of Figures

		Page
Figure 1:	Multistage process of carcinogenesis	182
Figure 2:	Experiments performed on mouse skin which allowed the	
	distinction between initiation and promotion	183
Figure 3:	Structural formulas of the TCAs amitriptyline and imipramine	184
Figure 4:	The dose-response relationships for the TCAs amitriptyline,	
	desipramine and imipramine	185
Figure 5:	Illustration showing the way controls were selected (based	
	on the three matching variables	186
Figure 6:	Illustration of how drug history was categorized for the two	
	groups of exposure definitions	187
Figure 7:	Yearly incidence of <u>breast</u> cancer cases	188
Figure 8:	Age distribution of breast cancer cases	189
Figure 9:	Yearly incidence of prostate cancer cases	190
Figure 10:	Age distribution of prostate cancer cases	191
Figure 11:	Yearly incidence of ovarian cancer cases	192
Figure 12:	Age distribution of ovarian cancer cases	193
Figure 13:	Yearly incidence of non-Hodgkin's lymphoma cases	194
Figure 14:	Age distribution of non-Hodgkin's lymphoma cases	195

List of Tables

		Page
Table 1:	Incidence of <u>breast</u> cancer, for the 20-year period prior to index	
	date, according ever/never and cumulative TCA exposure	196
Table 2:	Incidence of breast cancer, for the 15-year period prior to index	
	date, according ever/never and cumulative TCA exposure	198
Table 3:	Incidence of <u>breast</u> cancer, for the 10-year period prior to index	
	date, according ever/never and cumulative TCA exposure	199
Table 4:	Incidence of breast cancer, for the 5-year period prior to index	
	date, according ever/never and cumulative TCA exposure	200
Table 5:	Incidence of <u>breast</u> cancer as a function of <u>dosage</u> of <u>TCA</u>	
	exposure	201
Table 6:	Incidence of <u>breast</u> cancer as a function of <u>dosage</u> of genotoxic	
	and non-genotoxic <u>TCA</u> exposure	202
Table 7:	Incidence of <u>breast</u> cancer as a function of <u>dosage</u> of exclusive	
	genotoxic and non-genotoxic TCA exposure	203
Table 8:	Incidence of <u>breast</u> cancer as a function of <u>duration</u> of <u>TCA</u>	
	exposure	204
Table 9:	Incidence of <u>breast</u> cancer as a function of <u>duration</u> of genotoxic	
	and non-genotoxic <u>TCA</u> exposure	205

Table 10:	Incidence of <u>breast</u> cancer as a function of <u>duration</u> of exclusive	
	genotoxic and non-genotoxic <u>TCA</u> exposure	206
Table 11:	Incidence of <u>breast</u> cancer, for the 10-year period prior to index	
	date, as a function of ever/never and cumulative SSRI exposure	207
Table 12:	Incidence of <u>breast</u> cancer, for the 5-year period prior to index	
	date, as a function of ever/never and cumulative SSRI exposure	208
Table 13:	Incidence of <u>breast</u> cancer as a function of <u>dosage</u> of <u>SSRI</u>	
	Exposure	209
Table 14:	Incidence of <u>breast</u> cancer as a function of <u>duration</u> of <u>SSRI</u>	
	Exposure	210
Table 15:	Incidence of <u>prostate</u> cancer as a function of <u>dosage</u> of genotoxic	
	and non-genotoxic TCA exposure	211
Table 16:	Incidence of <u>prostate</u> cancer as a function of <u>dosage</u> of exclusive	
	genotoxic and non-genotoxic TCA exposure	212
Table 17:	Incidence of <u>prostate</u> cancer as a function of <u>duration</u> of genotoxic	
	and non-genotoxic <u>TCA</u> exposure	213
Table 18:	Incidence of <u>prostate</u> cancer as a function of <u>duration</u> of exclusive	
	genotoxic and non-genotoxic TCA exposure	214
Table 19:	Incidence of <u>prostate</u> cancer as a function of <u>dosage</u> of <u>SSRI</u>	
	Exposure	215
Table 20:	Incidence of <u>prostate</u> cancer as a function of <u>duration</u> of <u>SSRI</u>	
	exposure	216

Table 21:	Incidence of <u>ovarian</u> cancer as a function of <u>dosage</u> of genotoxic	
	and non-genotoxic <u>TCA</u> exposure	217
Table 22:	Incidence of <u>ovarian</u> cancer as a function of <u>dosage</u> of exclusive	
	genotoxic and non-genotoxic <u>TCA</u> exposure	218
Table 23:	Incidence of <u>ovarian</u> cancer as a function of <u>duration</u> of genotoxic	
	and non-genotoxic <u>TCA</u> exposure	219
Table 24:	Incidence of <u>ovarian</u> cancer as a function of <u>duration</u> of exclusive	
	genotoxic and non-genotoxic TCA exposure	220
Table 25:	Incidence of <u>ovarian</u> cancer as a function of <u>dosage</u> of <u>SSRI</u>	
	exposure	221
Table 26:	Incidence of ovarian cancer as a function of duration of SSRI	
	Exposure cases and controls	222
Table 27:	Incidence of non-Hodgkin's lymphoma as a function of dosage	
	of genotoxic and non-genotoxic TCA exposure	223
Table 28:	Incidence of non-Hodgkin's lymphoma as a function of dosage	
	of exclusive genotoxic and non-genotoxic TCA exposure	224
Table 29:	Incidence of non-Hodgkin's lymphoma as a function of duration	
	of genotoxic and non-genotoxic <u>TCA</u> exposure	225
Table 30:	Incidence of non-Hodgkin's lymphoma as a function of duration	
	of exclusive genotoxic and non-genotoxic TCA exposure	226
Table 31:	Incidence of non-Hodgkin's lymphoma as a function of dosage	
	of <u>SSRI</u> exposure	227

Table 32:	Incidence of <u>non-Hodgkin's lymphoma</u> as a function of <u>duration</u>	
	of <u>SSRI</u> exposure	228
Table 33:	Summary table of the incidence of cancer as a function of dosage	
	of <u>TCA</u> exposure	229
Table 34:	Summary table of the incidence of cancer as a function of <u>duration</u>	
	of <u>TCA</u> exposure	230
Table 35:	Summary table of the incidence of cancer as a function of dosage	
	of exclusive genotoxic and non-genotoxic TCA exposure	231
Table 36:	Summary table of the incidence of cancer as a function of <u>duration</u>	
	of exclusive genotoxic and non-genotoxic TCA exposure	232
Table 37:	Summary of the general effects of genotoxic and non-genotoxic	
	TCAs on the four types of cancer	233
Table 38:	Comparison of the results reported by the current study and by	
	Sharpe et al.'s study for exposure to high levels of genotoxic	
	and non-genotoxic TCAs, 11-15 years before diagnosis	234
Table 39:	Overlap of data used by Sharpe et al.'s study and the current study	235

List of Appendices

]	Page
Appendix A: Chem	nical names, structures, empirical formulae, and molecular	
weigh	nts of the antidepressant drugs	
Appendix A.1:	Tricyclic antidepressant drugs	236
Appendix A.2:	Monoamine oxidase inhibitor drugs	241
Appendix A.3:	Selective serotonin reuptake inhibitor drugs	243
Appendix A.4:	Atypical antidepressant drugs	246
	mary of the epidemiological studies assessing the association een antidepressant drug use and risk of cancer	248
Appendix C: Sum	mary of the cut off points used for categorizing the	
conti	nuous exposure indices	250
Appendix D: Addi	tional analyses for breast cancer	
Appendix D.1:	TCA dosage analyses for those aged 50 years or younger	251
Appendix D.2:	TCA dosage analyses for those aged between 50 and 65	252
Appendix D.3:	TCA dosage analyses for those aged 65 years or older	253

Appendix E: Addi	tional analyses for <u>prostate</u> cancer	
Appendix E.1:	TCA ever/never and cumulative exposure, for the	
	20-year period prior to index date	254
Appendix E.2:	TCA ever/never and cumulative exposure, for the	
	15-year period prior to index date	256
Appendix E.3:	TCA ever/never and cumulative exposure, for the	
	10-year period prior to index date	257
Appendix E.4:	TCA ever/never and cumulative exposure, for the	
	5-year period prior to index date	258
Appendix E.5:	TCA dosage analyses	259
Appendix E.6:	TCA duration analyses	260
Appendix E.7:	SSRI ever/never and cumulative exposure, for the	
	10-year period prior to index date	261
Appendix E.8:	SSRI ever/never and cumulative exposure, for the	
	5-year period prior to index date	262
Appendix F: Add	itional analyses for ovarian cancer	
Appendix F.1:	TCA ever/never and cumulative exposure, for the	
	20-year period prior to index date	263
Appendix F.2:	TCA ever/never and cumulative exposure, for the	
	15-year period prior to index date	265
Appendix F.3:	TCA ever/never and cumulative exposure, for the	

10-year period prior to index date

266

Appendix F.4:	TCA ever/never and cumulative exposure, for the	
	5-year period prior to index date	267
Appendix F.5:	TCA dosage analyses	268
Appendix F.6:	TCA duration analyses	269
Appendix F.7:	SSRI ever/never and cumulative exposure, for the	
	10-year period prior to index date	270
Appendix F.8:	SSRI ever/never and cumulative exposure, for the	
	5-year period prior to index date	271
Appendix G: Add	itional analyses for non-Hodgkin's lymphoma	
Appendix G.1:	TCA ever/never and cumulative exposure, for the	
	20-year period prior to index date	272
Appendix G.2:	TCA ever/never and cumulative exposure, for the	
	15-year period prior to index date	274
Appendix G.3:	TCA ever/never and cumulative exposure, for the	
	10-year period prior to index date	275
Appendix G.4:	TCA ever/never and cumulative exposure, for the	
	5-year period prior to index date	276
Appendix G.5:	TCA dosage analyses	277
Appendix G.6:	TCA duration analyses	278
Appendix G.7:	SSRI ever/never and cumulative exposure, for the	
	10-year period prior to index date	279
Appendix G.8:	SSRI ever/never and cumulative exposure, for the	
	5-year period prior to index date	280

Chapter 1: Introduction

Cancer develops gradually as a result of increased genetic susceptibility; environmental insults, such as chemical exposure or smoking cigarettes; lifestyle factors, including diet; and many more.

The incidence of cancer varies considerably among different geographic areas worldwide; incidence ranges from 4 to 100 times for the most common sites (Parkin et al., 1987; IARC, 1990; and Boring et al., 1994). This geographic variation, together with the results of studies of migrant populations showing that migrants tend to acquire the cancer incidence of the host countries, demonstrates the important role played by environmental factors in the development of human tumors. It has been estimated that more than 75% of cancers are the result of environmental exposures (Lenbard et al., 2001). Nevertheless, epidemiological studies show that most cancers manifest a tendency to aggregate in families. Close relatives of a cancer patient can be considered to have increased risk of that neoplasm, but not for all forms of cancer. It has been estimated that no more than 20% of cancers are based on inherited genetic predisposition.

The epidemic of cancer is receiving intense scrutiny on three different levels (Strom, 2000). On the most fundamental level, the complex dynamics of cellular growth and differentiation and their disruption during oncogenesis are being studied in laboratories around the world. On the next level up, experiments in animals are

being carried out to measure carcinogenicity of agents with animal bioassays. Finally, epidemiological studies in human populations are being conducted to asses the effects of hereditary, environmental, and life-style factors on the occurrence of cancer.

Over the past fifty years, the application of increasingly sophisticated observational methods in cancer epidemiology has led to the characterization of high and low risk populations throughout the world and to the identification of multiple chemical, physical, and microbial carcinogens, as well as agents that may inhibit carcinogenesis. The notion that chemical exposures can cause cancer is well accepted. Chemicals have been found that cause genetic damage and induce neoplastic transformation of cells. Most of the recognized carcinogens are chemicals to which humans are exposed, which further supports the hypothesis that cancer is a disease predominantly related to environmental exposures.

One of the first authoritative lists of cancer-causing agents, and probably the best at that time, was prepared by a WHO expert committee in 1964 (World Health Organization, 1964). Among the recognized etiological factors susceptible to control are exposure to sunlight; tobacco smoking; chewing of betel, nass, and tobacco; consumption of alcohol; atmospheric pollution; ionizing radiation; and several specific industrial cancer hazards (Schottenfeld et al., 1996). Thus, it is not unreasonable to assume that other chemicals among the thousands to which we are exposed will be identified as carcinogenic to humans.

The attitude prevailing today is that only epidemiological studies may provide unequivocal evidence that an exposure is carcinogenic in humans. Chemicals demonstrated to be carcinogenic in animals cannot always be assumed to be human carcinogens until there is epidemiologic evidence for such an association (Rothman et al., 1998). As a consequence, experimental evidence, in particular the one obtained in long-term animal tests, has often been regarded as a secondary line of evidence. Nevertheless, past experience showed that the experimental evidence of carcinogenicity indeed preceded evidence in humans for certain chemicals, and it could have been used to discontinue exposure before confirmation from studies in humans became available. This was the case of 4-aminobiphenyl, aflatoxins, mustard gas, DES, melphalan, 8-methyoxypsoralen + UV radiation, and vinyl chloride (Tomatis et al., 1989).

Medications are deliberately ingested by or injected into people in amounts usually much greater than other chemicals found in the environment that are suspected to be carcinogenic. There is good evidence that some drugs can increase the risk of cancer, thus raising the possibility that other drugs may have similar effects. Although some drugs have been shown to be carcinogenic in animals, few have been demonstrated to initiate or promote the development of cancer in humans (Schottenfeld et al., 1996). This is true especially for drugs that are widely used over long periods of time for the treatment of chronic illnesses.

In particular, the status of antidepressant drugs as possible carcinogens in humans remains unclear. Animal and epidemiologic studies provide inconsistent results (Steingart et al., 1995). In 1993, a study in fruit flies showed that some tricyclic antidepressants (TCAs) were genotoxic (Van Schaik et al., 1991; and Van Schaik et al., 1993). Consistent results were found in humans in a large epidemiologic study which demonstrated an association between exposure to the same TCAs and the development of breast cancer (Sharpe et al., 2002). The consistency of the results of the above mentioned studies raises the question of whether the use of these antidepressants is associated with the development of other types of cancer. The relatively widespread use of these drugs makes this question important from a public health point of view.

The objective of this study was to investigate the relation between antidepressant drug use and the risk of cancer (at 4 different sites) using a multiple site-specific case-control approach. The general hypothesis tested was that people exposed to TCAs are at increased risk of developing cancer.

Chapter 2: Review of the literature

This chapter will be divided into four sections. The first section will include a brief review of cancer development as well as a description of the cancer sites under study. The second section will be devoted to reviewing depression as a disease, as well as the use of antidepressants. The results of the previous studies that assessed the association between the use of antidepressants and the development of cancer will be provided in the third section. Finally, the conclusion, as well as the rationale and the relevance of the current study, will be summarized in the fourth section.

2.1 Cancer

2.1.1 Introduction

Cancer is the second leading cause of death in the United States and Canada, exceeded only by heart disease. In 2000, in the US, approximately 1.2 million persons were expected to receive new diagnoses of cancer, and 0.55 million persons were expected to die from this disease (23% of all deaths) (American Cancer Society, 1993; Boring et al., 1994; and Greenlee et al., 2000). Since 1990, approximately 12 million new cases have been diagnosed, and nearly five million lives have been lost to cancer in the US. The National Cancer Institute estimates that more than 8 million cancer survivors are alive in the US today (Ries et al., 1999). As for Canada, an estimated 132,100 new cases and 65,000 deaths from cancer were expected in 2000.

Among Canadian children in the late 1990s, an average of 879 were diagnosed with cancer and 176 died from cancer each year.

The financial costs of cancer are great both to the individual and to the society as a whole. In the United States, the National Cancer Institute estimates overall annual costs for cancer at \$107 billion; \$37 billion for direct medical costs, \$11 billion for morbidity costs (cost of lost productivity), and \$59 billion for mortality costs (Thom, 1996).

As for the cancer sites that mainly account for the increased incidence of cancer in general, it was found that, in 1999, the most frequently diagnosed cancers were breast cancer in women and prostate cancer in men (Greenlee et al., 2000). The cancers that caused the most deaths in the United States were lung cancer (first in each sex), colorectal cancer (second in both sexes combined), breast and uterine cancers in women, and prostate cancer in men. Together they accounted for more than 55% of all deaths from cancer. As for childhood cancers, the most common cancer was leukemia, which accounted for over 30% of new cases and deaths.

Cancer is primarily a disease of older people, with 70% of new cancer cases and 80% of deaths due to cancer occurring among those who are at least 60 years of age (National Cancer Institute of Canada, 1997). As the population continues to grow in size and shifts to an older age distribution, increasing numbers of people will be affected by cancer. Cancer risk is not the same for both sexes where males develop

and die from cancer with greater frequency than females. The lifetime risk of developing cancer has been estimated to be one in two men and one in three women (Ries et al., 1999).

2.1.2 Definition

Cancer refers to an abnormal mass of tissue, the growth of which exceeds and is uncoordinated with that of the surrounding normal tissues and persists in the same excessive manner after cessation of the stimuli which evoked the change (Willis, 1952). Cancer may also be called a malignancy, a malignant tumor, or a neoplasm, meaning "new growth". It results from the continuous and rapid production of abnormal cells that invade and destroy other tissues.

Cancer can arise from any type of tissue. Most cancers are named for the type of cell or organ in which they start. If a cancer spreads (metastasizes), the new tumor bears the same name as the original (primary) tumor. For example, if lung cancer spreads to the liver, the cancer cells in the liver are lung cancer cells. The disease is called metastatic lung cancer (not liver cancer).

Cancer is a complex family of diseases and carcinogenesis is a complex process. From a clinical point of view, cancer is a large group of diseases, perhaps up to a hundred or more, that vary in their age of onset, rate of growth, state of cellular differentiation, diagnostic detectability, invasiveness, metastatic potential, prognosis,

and response to various therapeutic modalities. From a molecular and cell-biological point of view, however, cancer may be a relatively small number of diseases involving alterations to a cell's genetic apparatus. Ultimately, cancer is a disease of abnormal gene expression of the genes regulating cell division and apoptosis (programmed cell death). The cellular properties that malignant cancer cells have in common include their unregulated cellular proliferation, invasiveness, metastatic potential, and their resistance to apoptosis.

Cancers are tough opponents because they do not abide by the same regulations as the normal cells. They can multiply out of control without aging or dying. They have the ability to change quickly and to acquire mechanisms that help them resist recognition and attack by the immune system. They can even release proteins that help build a network of blood vessels to nourish themselves with nutrients and oxygen.

2.1.3 Cell division

Growth, renewal, and repair in all multicellular organisms depend on formation of new cells by repeated division of pre-existing ones. Two processes of cell division are distinguished, mitosis, which occurs in somatic cell types, and meiosis, which takes place only in the development of germ cells in the ovary and testis.

2.1.3.1 Cell cycle

A somatic cell undergoing mitosis divides to form two daughter cells each with the same chromosome complement as the parent cell. The frequency of cell division varies greatly among the many cell types in the body.

The cell cycle is defined as a repeating sequence of biochemical and morphological events taking place in the cell. The key biochemical event of the cell cycle is the replication of the DNA strands that form the chromosomes. DNA synthesis is not a continuous process from one mitosis to the next but rather occurs during a discrete period of the intermitotic time.

The cell cycle can be subdivided into four temporally distinct phases: mitosis, G_1 , S, and G_2 . Mitosis is the nuclear division that a cell undergoes to produce two daughter cells with identical copy of its genetic material. G_1 is the interval during which the daughter cells increase in size, and is between the end of mitosis and the initiation of DNA replication (S). The S phase is the portion of the cell cycle dedicated to fulfilling the specialized functions of a given cell type, ie DNA synthesis. G_2 is the interval between the end of the S phase and the beginning of the next mitosis and it represents the time required to organize the nucleus for the events of mitosis (Fawcet, 1986; Moossa et al., 1991).

The length of a cell cycle can vary depending on the cell type and environmental conditions. For mammalian cells, the cell cycle can be as long as several days. The entire process of cell renewal is referred to as the cell turnover, and its duration is the cell turnover time. In humans, the mucosa of the jejunum has the fastest rate of turnover of any tissue in the body, where the complete cell cycle occupies about 24 hours (Fawcet, 1986). The gastrointestinal epithelium is completely replaced in two to five days. The tissue renewal time is 15 to 30 days for skin, and 50 days for pancreas (Sell et al., 1994).

2.1.3.2 Cell differentiation

Cells in vivo can exist in a nonproliferating (quiescent) growth state in which they are inactive with regard to proliferation (do not progress through the cell cycle), but are extremely active in carrying out the specialized functions dictated by the state of differentiation (Moossa et al., 1991). Cells can also exist in a proliferating growth state, in which they progress through the cell cycle and ultimately divide. Some cells can undergo a change in growth state, whereas for others as in terminally differentiated cells, growth state transitions cannot occur (Baserga R, 1985; Pardee et al., 1978; and Prescott, 1987).

Stem cells are undifferentiated cells that are able to retain the ability to divide throughout life and give rise to any of the body's more than 200 cell types, that in turn can become highly specialized and take the place of cells that die or are lost. Unlike

mature cells, which cannot replicate, stem cells can both renew themselves as well as create new cells of whatever tissue they belong to.

Two examples of tissues composed totally or predominantly of quiescent cells are liver and nerves (Moossa et al., 1991). Hepatocytes and neurons are both highly differentiated and very long-lived cell types that normally do not divide during the life of the adult organism. In the liver, however, after partial hepatectomy (removal of part of the organ) or injury to the liver, the remaining cells are stimulated to proliferate rapidly until the original volume of liver has been restored. Nonproliferating hepatocytes, therefore, exist in a reversible quiescent state. By contrast, there are no stimuli known to reactivate the proliferation of mature neurons. Once fully differentiated, neurons are apparently incapable of cell division. Thus, neurons exist in an irreversible quiescent state. The distinction between reversible and irreversible quiescent states has important implications for the susceptibility of cells to neoplastic transformation (Lenbard et al., 2001). In a number of epithelia, such as those of the gastrointestinal tract and the skin, there is a continual loss of fully differentiated superficial cells, and thus a population of undifferentiated stem cells retain the capacity for rapid proliferation to provide continual replacement commensurate with the rate of cell loss.

Complex tissues contain cell populations in different states of differentiation and often in different growth states. For example, skin contains terminally

differentiated keratinocytes that are irreversibly quiescent, fibroblasts that are reversibly quiescent, and epithelial stem cells that proliferate regularly.

2.1.3.3 Cell division in relation to tumor cells

The increase in the number of cells is one way in which normal tissues grow in mass or replace dead cells. It is also the predominant mechanism by which tumors grow in mass. The basic biochemistry of normal and tumor cells are remarkably similar. Tumor cells do not necessarily grow faster than normal cells and they generally go through all four phases of the cell cycle when they proliferate.

Nevertheless, tumor cells are defective in one or more regulatory mechanisms that normally prevent inappropriate proliferation. Usually, the transformed malignant cells fail to stop in the G_1 or at the G_1/S boundary in the cell cycle when they are subject to metabolic restriction of growth (Moossa et al., 1991). In addition, tumor cells often modify their local environment such that it becomes more favourable for cell proliferation.

Cell proliferation is regulated by both positive and negative regulatory mechanisms that control growth state transitions and progression through the cell cycle. Neoplastic growth can be influenced by increased sensitivity to (or activation of) growth stimulatory mechanisms or from decreased sensitivity to (or inactivation of) growth inhibitory mechanisms (Moossa et al., 1991).

Tumor cells from different origins display a wide spectrum of growth control defects. However, there is strong evidence that no single defect in growth control can fully account for the tumorigenic phenotype; multiple defects are required for tumorigenesis in tumor cells from a single origin, and thus these cells are often defective in more than one growth regulatory mechanism (Moossa et al., 1991). Thus, by the time a tumor has been detected, the cells have undergone multiple changes that together allow relatively autonomous proliferation.

Apoptosis is the normal physiological process of cell death that functions to control cell populations during embryogenesis, immune responses, hormone withdrawal from dependent tissues, and normal tissue homeostasis. One of the growth control defects that tumor cells show is their resistance to apoptosis.

2.1.4 Carcinogenesis

Mutation lies at the heart of carcinogenesis, and it may be acquired by the action of both external (chemicals, radiation, and viruses) and internal (hormones, immune conditions, and inherited mutations) factors. Three classes of normal regulatory genes - the growth-promoting protooncogenes, the growth-inhibiting cancer-suppressor genes (antioncogenes), and genes that regulate programmed cell death - are the principal targets of genetic damage.

On the other hand, laboratory and human data reveal the existence of two distinct classes of cancer genes (Moolgavkar, 1986; and Cotran et al., 1999).

- 1-The cancer-causing genes or the oncogenes, which develop from the protooncogenes: cellular regulate genes that normal growth differentiation. Protooncogenes and cellular oncogenes are dominantly inherited and are normal components of all cells. They code for proteins that are involved in cellular growth and development. In many cancers, it has been established that activated oncogenes mediate neoplastic transformation and uncontrolled growth. Activation during the carcinogenic process might occur through major genetic alterations, such as chromosomal translocation, transposition, major deletions, or formation of new genes, or simply by the processes of transcription, transversion, or minor deletions. It is only in the transformed cell that the oncogene proteins escape this regulation.
- 2- Tumor-suppressor genes (antioncogenes or regulatory genes) are another class of genes which play an important role in human carcinogenesis. These genes normally suppress cell division, stimulate terminal differentiation, and maintain genomic stability. And, in contrast to oncogenes, a mutation that inappropriately inactivates these genes increases the probability of neoplastic transformation. They are recessively inherited and require the loss of both genomic alleles to affect function. The inactivation of specific tumor-

suppressor genes may be responsible for the development of specific neoplasms.

2.1.5 Cancer development

All carcinogenesis models assume that carcinogenesis is a multistage process and that cancer is the end result of a sequence of changes that began in a single cell. The multistage model of carcinogenesis was introduced by Berenblum who described the carcinogenic process of mouse epidermis induced with tetradecanolyphorbol-13-acetate (TPA) (Berenblum, 1947; and Berenblum, 1954). The model also found application to virus-induced rabbit papilloma and the spontaneous mammary neoplasia of rabbits (Greene, 1940), which further helped in the understanding of carcinogenesis.

The multistage model can be differentiated into three main stages of development: initiation, promotion, and progression. The first event in the multistage model of carcinogenesis is that there is the formation of a new cell called the "initiated cell". The initiated cell can be the beginning of cancer, if certain events follow. Once a new cell becomes "initiated" it is unlikely that the cell will revert to its former normal self, and the only way it can be removed is by an event that leads to cell death. Although the process of initiation is irreversible, it is also, by itself, relatively unimportant, compared with the stages of promotion and progression in relation to the ultimate appearance of cancer as a disease (Schottenfeld et al., 1996).

Figure 1 is a graphical representation of the 3 stages of the multistage process of carcinogenesis.

2.1.5.1 Initiation

Initiation, the first stage in the natural history of neoplastic development, is a permanent and irreversible alteration in the genetic structure of a cell that confers the potential to develop into a neoplastic clone of cells, with the capacity to become malignant. This is a characteristically rapid and irreversible event, which has been described by Berenblum (1954), resulting in the formation of a small number of latent or dormant tumor cells. The initiated cell may remain latent for long periods of time until exposure to a promoting agent and subsequent growth of the nascent tumor. Although the initiation event is difficult to observe, its presence may be inferred on the basis of its future behavior.

The mechanism of initiation by a variety of carcinogenic compounds has been widely studied and involves damage to the DNA. Cell biologists believe that the crucial event which initiated cancer usually occurs in the cellular DNA of a regenerating stem cell. This could be a break in a chromosome caused by UV irradiation or an oxidation of a DNA nucleotide base by a chemical. The neoplastic potential is a function of the strength and the duration of the carcinogen applied, as well as time from first exposure. In order for these initial lesions to affect a permanent change in the DNA structure, however, it is vital for the cell to undergo a

rapid replication since most injuries are corrected by DNA repair enzymes. For example, a methylating agent might produce a point mutation resulting in the replacement of a Guanine-Cytosine base pair to an Adenine-Thymine base pair, or a chromosome breakage could result in the translocation of genes from one chromosome to another. In fact spontaneous point mutations occur frequently during cell replication. It is only when these mutations are not corrected and are transmitted to the daughter cells that a permanent mutation is created.

Initiation of a cell may be followed by the cell's death either through toxicity of the carcinogen or destruction by the host immune defense, repair by DNA repair enzymes, indolent persistence, or proliferation under the influence of promotion. After the cell is initiated it may go through a typically long phase called the promotion phase.

2.1.5.2 Promotion

Berenblum described promotion as entailing two processes, cellular proliferation and delay of cell maturation (Berenblum 1954). The characteristic of the stage of promotion that clearly distinguishes it from the stages of initiation and progression is reversibility. Unlike initiation, a variety of environmental alterations (including the frequency with which the promoting agent is administered) and the aging process can continually modulate the stage of promotion.

In contrast to the initiation stage, the mechanism of promotion is not well understood. Agents which induce this phase are called promoters, and might be exogenous or endogenous factors. Numerous actions of promoters have suggested underlying tumor promotion including stimulation of proliferation, altered gene expression, generation of oxygen free radicals, inhibition of intercellular communication, and inhibition of apoptosis (Moolgavkar, 1986).

The promotion phase is characterized by the unregulated increase in number of cells originating from the initiated cell. Therefore, the initiated proliferating stem cells express the altered genotype. They are characterized by both a behavior and a morphology that are different from the tissue in which they originate. These cells might be identified in histological slides by their atypical appearance.

Cancer cells fail to stop proliferating when cell density reaches that of a monolayer of cells in contact with one another (i.e., loss of contact inhibition). As a result, cancer cells overgrow and form multicell layers called foci. Typically, normal human cells grown in culture display a finite number of population doublings or passages in cell culture before they stop growing and die. Often, this process is termed in vitro aging or senescence. Cancer cells in culture show no restriction in their number of proliferative generations. This unlimited capacity for proliferative growth is termed immortalization.

Normal human cells in cell culture require the presence of high levels (5%) of serum for optimal proliferative growth. In the presence of low levels of sera, cells remain viable but do not proliferate readily. The lessened dependence on exogenously supplied growth factors corresponds with cancer cell ability to display autonomous growth characteristics. Malignant cells can produce growth factors and can express receptors for these same growth factors and thus, lose their dependence on exogenously supplied growth factors (Lenbard et al., 2001).

The classic experiments that allowed the distinction between initiation and promotion were performed on mouse skin and are outlined in Figure 2 (Cotran et al., 1999). The following concepts relating to the initiation-promotion sequence have emerged from these experiments:

- 1. Initiation results from exposure of cells to an appropriate dose of a mutagenic agent (initiator); an initiated cell is in some manner altered, rendering it likely to give rise to a tumor (groups 2 and 3). Initiation alone, however, is not sufficient for tumor formation (group 1).
- 2. Initiation causes permanent DNA damage (mutations). It is therefore rapid and irreversible and has "memory". This is illustrated by group 3, in which tumors were produced even if the application of the promoting agent was delayed for several months after a single application of the initiator.
- Promoters can induce tumors in initiated cells, but they are nontumorigenic by themselves (group 5). Furthermore, tumors do not result when promoting agent is applied before, rather than after, the initiating agent (group 4). This

indicates that, in contrast to the effects of initiators, the cellular changes resulting from the application of promoters do not affect DNA directly and are reversible.

4. That the effects of promoters are reversible is further documented in group 6, in which tumors failed to develop in initiated cells if the time between multiple applications of the promoter was sufficiently extended.

2.1.5.3 Progression

The final stage is the progression to cancer. It is the stage in which malignant disease appears, and is most directly associated with the development of cancer as a disease in humans that directly involves cancer therapy. Progression is an irreversible qualitative change in the nature of the cellular lesion during its development to a malignant neoplasm (Foulds, 1964). It is an irreversible stage since it demonstrably changes the structure of the genome of the neoplastic cell, and thus it affects the structure and function of the cell. Such changes continue to progress during this stage, and are directly related to the increased unrestricted growth, metastasis, invasiveness, transplantability, loss of contact inhibition, biochemical disturbances, and autonomy of growth; however, there is no order in the development of these characteristics, and furthermore there is no one trait or set of traits that has been defined as the beginning of tumorigenesis.

Once progression has begun, the action of promoters will not be needed anymore. It is the stages of initiation and progression that involve changes in the structure of the genome of the cell (although it is only demonstrable during the stage of progression).

2.1.5.4 Carcinogenic agents

Based on the existence and characteristics of the stages of initiation, promotion, and progression during carcinogenesis in animal systems, the classification of carcinogenic agents may be related to the stage(s) at which they exert their principal effects on the carcinogenic process (Schottenfeld et al., 1996):

- 1- Initiating agents are capable only of initiating cells
- 2- Promoting agents are capable of causing the expansion of initiated cell clones
- 3- Progressor agents are capable of converting an initiated cell or a cell in the stage of promotion to a potentially malignant cell
- 4- Complete carcinogens are agents possessing the capability of inducing cancer in normal cells; usually possessing properties of initiating, promoting, and progressor agents
- Non carcinogens do not affect any of the stages or carcinogenesis, and thus acute or chronic exposure does not lead to the development of neoplasia.

The words "initiator", promoter", and "progressor" were originally defined within the context of experiments on chemical carcinogenesis in animals. They had

to be administered in the proper sequence (initiator followed by promoter) to produce tumors. In epidemiology, an initiator is often thought of as an early-stage carcinogen, whereas a promoter is thought of as a late-stage carcinogen (Moolgavkar, 1986). In differentiating between these two types of carcinogens, one should take into consideration factors such as: the time since the initial exposure, the duration of exposure, the time following cessation of exposure until diagnosis of cancer, and the age at first exposure to the agent, although in many cases it may not be possible to determine each of these parameters with confidence.

Current understanding of chemical carcinogenesis suggests that chemicals act at one or more stages in a process that includes initiation of previously normal cells and promotion of these cells toward malignancy. The process may require 20 years or more to produce clinically detectable cancer (Farber, 1987). For both initiation and promotion, prolonged exposure is considered important, although in some cases a single exposure may be sufficient to initiate cells.

2.1.5.5 Latency period

Cancer, like most diseases, is characterized by a period of latency between the initial etiologic insult and the clinical appearance of the disease itself (Thomas, 1988). This period, which is usually very long lasting up to 30 years, could be divided into an induction period followed by a latent period. The time between the first application of the carcinogen or exposure and development of the first tumor cell is

called the induction period. When the induction period ends, the latent period begins. The latent period is the period from development of the first tumor cell to detection or diagnosis of cancer. This period is a function of not only how quickly the cancer manifests itself clinically, but also the state of diagnostic technology. Among the first to describe a latency period in human neoplasia was Ramazzini (Wright, 1964), who observed a high incidence of breast cancer in Catholic nuns and reasoned that the causative factor was the lack of parity in this population. This implied a latency period between the lack of pregnancy in the early years of life and the development of mammary carcinoma in later years.

2.1.6 Histological classification (cell of origin)

Cancer, which may arise from any type of cell in any body tissue, is not a single disease but includes a large number of diseases classified according to the tissue of origin and type of cell in which new growth occurs. Several hundred such classes exist, constituting three major subtypes:

1- Carcinomas, malignant tumors of epithelial or organ parenchymal derivation, include the most frequently occurring forms of human cancer (85% of all registered cancers). They arise from the epithelial tissue, which is made up of the cells that cover the external surface of the body (such as the skin) or that line the internal cavities and organs, plus those cells derived from the linings that form glands (such as glandular tissue of the breast and prostate). In other words, the epithelial

cells include the cells that secrete or otherwise process the body's chemicals and thus, are the first point of contact of the body with environmental substances and circulating carcinogens or pre-carcinogens. In addition, epithelial cells and blood cells are the major dividing cells in adults. This is important because most cancers become invasive and clinically important only after the cells originally damaged by a carcinogen have undergone several divisions. Muscle or fat cells, with a low rate of cell division, although exposed to radiation or some other carcinogen, will be less likely than epithelium to undergo sufficient proliferation for latent malignant changes to be manifested clinically. Two types of carcinomas could be differentiated: carcinomas with a structure resembling skin are termed squamous cell carcinomas, and those that secrete mucins or hormones or at least forming gland-like structures are called adenocarcinomas.

- 2- Sarcomas arise from connective and supportive tissue such as fat, fibrous tissue, bone, cartilage, blood vessels, nerves, and muscles.
- 3- Leukemias and lymphomas include the cancers that involve blood-forming tissue and are typified by the enlargement of lymph nodes, the invasion of the spleen and bone marrow, and the overproduction of immature white cells.

Tumors are also classified as either benign or malignant. The empirically known biological behavior of the tumor, as well as its microscopical appearance are the most important features used to differentiate between these two types of tumors.

Benign tumors grow only in the tissue in which they originate and are usually separated from neighboring tissue by a surrounding capsule, or sac. Benign tumors generally grow slowly and in structure closely resemble the tissue in which they first grew. The clearest cases of benign tumors are skin moles and warts. A few benign tumors, such as polyps of the colon, may later become malignant. Benign tumors may in some cases endanger a person's health by obstructing, compressing, or displacing neighboring tissues or organs, as in the brain. Chief among these are brain tumors called gliomas, which can grow large enough to exert substantial pressure on nearby brain structures and destroy respiratory function. A liver tumor can kill by destroying the vital functions of that organ.

Malignant cells on the other hand, are unable to differentiate or mature into an adult, functioning state. As these cells multiply, they may form a mass called a tumor, which enlarges and continues to grow without regard to the function of the tissue in which it originated. Cells in malignant tumors are sometimes said to have lost their characteristic function. The most important property rendering a tumor malignant is the ability to invade nearby or distant tissues; this spread to distant tissues is called metastasis, and it usually occurs by means of the blood or lymph vessels.

-

2.1.7 Metastasis

Metastasis is the spread or movement of cancer cells from the primary cancer site to another area of the body. Malignant cells are characterized by their capacity to metastasize (i.e., to invade surrounding normal tissues through the bloodstream, lymphatic systems, or other fluids to distant organs). Other than certain white blood cells, this is something most normal cells cannot do, and it is the most deadly characteristic of cancer.

The routes and sites of metastases vary with different primary cancers. One route of metastasis is when a cancer extends through the surface of the cancerous organ into the space surrounding the organ where tumor cells may break away from the surface and penetrate the fibrous boundaries that normally separate one tissue from another and grow on the surface of the adjacent organs.

The tumor cells can also infiltrate the walls of the lymph vessels and be carried to the lymph nodes and pass into the lymphatic circulation. Tumor cells shed into the lymph system often proliferate in the nearest cluster of lymph nodes, where they grow before spreading to more distant parts of the body.

Many cancers directly shed cells into the bloodstream early in their growth.

Most of these cells die in the bloodstream, but some lodge against the surface and pass through blood vessel walls into the tissue to grow into a tumor, a process called

vascular invasion. Others may divide only a few times, forming a small nest of cells that remain dormant as a micrometastasis. They may remain dormant for many years, only to grow later for reasons not yet known. Fewer than 1 in 10,000 cells shed from the primary tumor are thought to survive, but these are enough to spawn secondary tumors elsewhere in the body.

Tumor cells shed from colon cancer, for example, are carried by the portal and lymphatic circulation to the liver, where secondary tumors then arise. Tumor cells from other areas of the body travel by the blood through the heart and on to the lungs, where they start metastatic lung tumors, before being carried to other organs. The lungs and liver are therefore the most common sites of metastases.

2.1.8 Staging

Microscopic examination of tissue is used to determine tumor grade and stage, which together offer important prognostic information. Tumor grading is based primarily on the degree of differentiation of the malignant cells, their nuclear features, and an estimate of the rate of growth as indicated by the mitotic rate. Tumor staging is based on features of the untreated primary lesion (including size and extent of tissue invasion) and on the presence of lymph node or hematogenous metastasis as determined by microscopic examination. Four stages have been defined, each stage being progressively more serious. Stage one tumors are small and local, stage two

and stage three tumors are larger and usually involve lymph nodes, and stage four tumors have metastasized to other areas of the body.

2.1.9 Description of the cancer sites under study

In the absence of specific knowledge about etiology of some of the cancer sites, they can only be described in terms of risk factors and statistical associations. In the following section, a description of the cancer sites considered in this study is given, along with some information on the known risk factors.

2.1.9.1 Female breast cancer

Breast cancer (ICD-O: C50-C50.9) (Percy et al., 1990) is a malignant tumor in the glandular tissues of the breast. It is the most common cancer in women (184,200 in 2000), accounting for almost 30% of all newly diagnosed cancers, and the second leading cause of cancer death (41,200 in 2000) in US women (Greenlee, 2000).

Carcinoma of the breast develops as a neoplasm of the ductal epithelium in over 90% of the cases, with the remainder developing as lower grade neoplasms from lobular epithelium (Schottenfeld et al., 1996).

A substantial body of experimental, clinical, and epidemiologic evidence indicates that estrogens play a major role in the etiology of breast cancer. Prolonged

estrogen stimulation may increase the risk of developing breast cancer (early menarche, late menopause, postmenopausal obesity). Risk of breast cancer increases with age (women in their 40's), nulliparity, and age at first birth. Other factors that were found to be associated with an increased risk of breast cancer include use of postmenopausal estrogen replacement therapy, oral contraceptive use, diet, and alcohol intake. Other factors, such as physical activity, were found to be protective ones against the development of breast cancer. In addition, Inherited, or familial, breast cancer accounts for 5 to 10% of all breast cancers. The importance of family history is reflected in the nine-fold greater risk if a first-degree relative has had bilateral premenopausal breast cancer.

2.1.9.2 Prostate cancer

Prostate cancer (ICD-O: C61.9) (Percy et al., 1990) is a malignant tumor in the prostate, a gland in a man's reproductive system, which encircles the bladder outlet. In the United States, prostate cancer is expected to be the most common cancer in men (180,400 cases in 2000) and the second leading cause of cancer death in men (31,900 in 2000) (Greenlee, 2000). Prostate cancer accounts for approximately 29% of new cancer cases in men and 11% of cancer deaths.

It has been shown that risk of prostate cancer increases with age (especially among those older than 55 years) and family history of prostate cancer.

2.1.9.3 Ovarian cancer

Ovarian cancer (ICD-O: C56.9) (Percy et al., 1990) is the malignancy that occurs in one or both of a woman's ovaries. Ovarian cancer is the sixth leading cause of cancer and fifth leading cause of cancer death in US women; in 2000, an estimated 23,100 women are expected to receive a new diagnosis of this cancer, and 14,000 are expected to die from this disease (Greenlee, 2000).

Women older than 50 years old are at higher risk of developing ovarian cancer. Other risk factors for ovarian cancer include diet, history of ovarian cancer in the family, number of pregnancies, age at first birth, breast-feeding and use of oral contraceptives.

2.1.9.4 Non-Hodgkin's lymphoma

Non-Hodgkin's lymphomas (ICD-O Morphology code: 959*, and 967*-972*) are cancers that start in the lymphatic system. These lymphomas occur both in children and in adults. These lymphomas are the third most frequent type of cancer in children. An expected 7,400 new cases and 1,400 deaths are expected in the United States in 2000 (Greenlee, 2000). Non-Hodgkin's lymphoma is the fifth leading cause of cancer and the sixth leading cause of cancer death in US men and the fifth leading cause of cancer and the

These types of cancer occur most often in people between 15 and 34 and in people over the age of 55. Brothers and sisters of those with these cancers have a higher-than-average chance of developing this disease. People with certain medical conditions are at higher risk of developing Hodgkin's disease. Slightly higher rates of the disease occur among people with reduced immunity.

2.2 Antidepressants

2.2.1 Depression

A number of large-scale studies indicate that depression rates have increased worldwide over the past several decades. At least 8% of adults in the United States and Canada experience serious depression at some point during their lives; estimates of life-time incidence range as high as 19.5% (Angst et al., 1992; and Sellick et al., 1999). The total number of health related visits for depression in the United States increased from 11 million in 1985 to 20.4 million in 1994 (Pincus et al., 1998). A WHO report projects that by the year 2020 depression will rank second only to cardiovascular disease in terms of its disability-associated burden (Murray et al., 1996). The illness affects all people, regardless of sex, race, ethnicity, or socioeconomic standing. Furthermore, younger generations are experiencing depression at an earlier age than did previous generations (Weissman et al., 1995).

2.2.1.1 Definition

Depression, one of the most common mental illnesses among people of different ages, is characterized by intense sadness or loss of interest in usual activities, accompanied by poor appetite, insomnia or hypersomnia, psychomotor agitation or retardation, decreased sexual drive, fatigue, feelings of worthlessness, decreased concentration, or thoughts of death or suicide.

While everyone experiences episodes of sadness at some point in their lives, depression is distinguished from this sadness when symptoms are present most days for a period of at least two weeks. Severe depression, also called major depression, can considerably impair a person's ability to function in social situations and at work. As many as 10 to 15% of individuals with this disorder display suicidal behavior during their lifetime.

Depression can take several other forms. In bipolar disorder, sometimes called manic-depressive illness, a person's mood swings back and forth between depression and mania. People with seasonal affective disorder typically suffer from depression only during autumn and winter, when there are fewer hours of daylight. In dysthymia, people feel depressed, have low self-esteem, and concentrate poorly most of the time - often for a period of two years - but their symptoms are milder than in major depression. Some people with dysthymia experience occasional episodes of major depression. Mental health professionals use the term "clinical depression" to refer to any of the above forms of depression.

The illness may come on slowly then deepen gradually over months or years. On the other hand, it may erupt suddenly in a few weeks or days. A person who develops severe depression may appear so confused, frightened, and unbalanced that observers speak of a "nervous breakdown". Symptoms of depression can vary by age. In younger children, depression may include physical complaints, such as stomachaches and headaches, as well as irritability, "moping around," social

withdrawal, and changes in eating habits. Children may feel unenthusiastic about school and other activities. In adolescents, common symptoms include sad mood, sleep disturbances, and lack of energy. Elderly people with depression usually complain of physical rather than emotional problems, which sometimes leads doctors to misdiagnose the illness.

2.2.1.2 Causes of depression

Some depressions seem to come without any apparent reason. Others seem to have an obvious cause: a marital conflict, financial difficulty, or some personal failure. Yet many people with these problems do not become deeply depressed. Psychologists believe depression results from an interaction between stressful life events and a person's biological and psychological vulnerabilities.

Psychological theories of depression focus on the way people think and behave. In a 1917 essay, Austrian psychoanalyst Sigmund Freud explained melancholia, or major depression, as a response to loss - either real loss, such as the death of a spouse, or symbolic loss, such as the failure to achieve an important goal. Freud believed that a person's unconscious anger over loss weakens the ego, resulting in self-hate and self-destructive behavior. It is proposed that depressed people tend to view themselves, their environment, and the future in a negative light because of errors in thinking. These errors include focusing on the negative aspects of any situation, misinterpreting facts in negative ways, and blaming themselves for any

misfortune. People learn these self-defeating ways of looking at the world during early childhood. This negative thinking makes situations seem much worse than they really are and increases the risk of depression, especially in stressful situations.

Psychologists agree that stressful experiences can trigger depression in people who are predisposed to the illness. Stressful experiences may include the death of a loved one, divorce, pregnancy, the loss of a job, and even childbirth. About 20% of women experience an episode of depression, known as postpartum depression, after childbirth. In addition, people with serious physical illnesses or disabilities often develop depression.

By studying twins, researchers have found evidence of a strong genetic influence in depression. Genetically identical twins raised in the same environment are three times more likely to have depression than fraternal twins. Moreover, women are two to three times more likely than men to suffer from depression (Weissman et al., 1995).

Depression is considered to be a long-term, often lifelong, disorder. Results of a study of 431 patients treated within a community showed that after 5 years, 55% of patients had suffered at least one recurrence of the illness, 12% had been chronically depressed all the time, and only 33% had recovered and were in continued good health (Keller et al., 1992). After 15 years, the majority of patients had suffered at least one recurrence (82%), 6% had been depressed the entire time, and only 12%

had recovered and stayed well. Risk factors for recurrence include history of frequent of multiple episodes, onset after the age of 60 years, long duration for episodes, severe index episode, seasonal pattern, family history of depression, and comorbid anxiety disorder or substance abuse.

2.2.1.3 Depression and cancer

Throughout the 1980's, the relationship between depression and cancer risk was studied by several investigators. Some of the studies conducted to assess this association found that depressed patients were at increased risk of developing cancer, whereas other studies did not find an association.

Shekelle et al. (Shekelle et al., 1981) and Persky et al. (Persky et al., 1987) conducted 17- and 20-year follow-up studies to assess the association between depression at baseline and mortality from cancer in a sample of 2020 men. The authors found an increase in the risk of death from cancer associated with depression [OR = 2 (95% CI = 1.38 - 3.54)]. The association persisted after adjusting for the effects of age, cigarette smoking, alcohol consumption, and family history of cancer.

Linkins et al. (Linkins et al., 1990) conducted a 12-year follow-up study to assess the association between the presence of depression at baseline in 2264 subjects, and the development of cancer. The authors found a strong association between depression and the development of cancer which was limited to smokers.

Compared with non depressed people who never smoked, depressed mood at the highest level of smoking was associated with relative risks of 4.5 (95% $\rm CI=1.9-10.6$) for total cancer, 2.9 (95% $\rm CI=0.9-9.3$) for cancer at sites not associated with smoking, and 18.5 (95% $\rm CI=4.6-74.4$) for cancer at sites associated with smoking. The major disadvantage of this study was the lack of control for any of the major confounding factors.

More recently, in 1998, Penninx et al. (Penninx et al., 1998) conducted a population-based cohort study to examine the association between depressive symptoms and cancer. The authors used the Center for Epidemiologic Studies Depression scale to assess depression in 4825 subjects aged 71 years or older who were followed for a mean follow-up of 3.8 years. After adjustment for possible confounding variables, the hazard ratio for cancer associated with chronically depressed mood was 1.88 (95% CI: 1.13 – 3.14). This analysis was based on a small sample size, 146 chronically depressed persons (3% of the cohort), a feature which was one of the limitations of this study. Lack of adequate control for the effect of antidepressant drug use was another limitation, since information on antidepressant drug use was obtained only for the 2 weeks period prior to the inception of the cohort.

Other studies conducted to assess the same relation did not find any association between depression and the development of cancer. A cohort study conducted by Hahn et al. (Hahn et al., 1988) did not find any statistically significant association between depression and the subsequent development of breast cancer in a

sample of 8932 women. In a study conducted by Kaplan et al. (Kaplan et al., 1988), the authors did not find an association between the presence of depressive symptoms and cancer incidence and mortality in a cohort of 6848 persons free of cancer. Zonderman et al. (Zonderman et al., 1989) did not find any significant risk for cancer morbidity or mortality in association with the presence of depressive symptoms in a 10-year follow-up study.

In 1994, Friedman (Friedman, 1994) conducted a follow-up study of up to 19 years, to assess the association between depression and incidence of cancer. The study population consisted of 923 patients with some form of depression diagnosed in a psychiatric clinic. The authors found that depressed patients showed a slightly elevated risk of developing cancer in comparison with the other members of a cohort of 143,574 persons who received prescriptions from a pharmacy [Standardized morbidity ratio = 1.21 (95% CI: 0.95 - 1.53)]. The risk of developing cancer increased when cancers diagnosed in the first 2 years after the diagnosis of depression were ignored [Standardized morbidity ratio = 1.38 (95% CI: 1.06 - 1.76)].

More recently, Gallo et al. conducted a 13-year follow-up study in which they assessed the association between depression at baseline and development of cancer among 2017 persons (Gallo et al., 2000). After adjustment for the effect of age, gender and tobacco and alcohol use, major depression was not found to be significantly associated with increased risk of cancer at follow-up. However, among

women with major depression, the risk of breast cancer was increased [adjusted RR = 3.8 (95% CI: 0.6 - 2.8)], based on 25 breast cancer cases.

In summary, the evidence for an association between depression and cancer occurrence from the prospective cohort studies conducted to date is inconclusive, with finding either a lack of association or a weak positive association (McGee et al., 1994; Spiegel, 1996; Penninx et al., 1998; and Croyle, 1998). Such an association could have been a result of reverse causality bias in which the depressed mood is the consequence rather than the cause of the undiagnosed cancer (Linkins et al., 1990). Lack of control for the effect of confounding could have affected the results of these studies. Specifically, the effect of treatment of depression, such as antidepressant drug use, is an important factor that most of the studies failed to adequately control for.

2.2.2 Antidepressants

About 70% of patients with depression respond to antidepressant drug therapy and can experience a complete recovery from their depression (Richelson, 1994). However, relapses occur very frequently and patients must often take antidepressants to either prevent or treat relapses. Consequently, prolonged exposure to antidepressant drugs over extended periods is frequent.

Antidepressants are also used to treat other disorders such as anxiety disorders, agoraphobia (fear of open spaces), panic attacks, obsessive-compulsive neurosis, migraine headaches, and chronic pain (Hardman et al., 1996). These drugs are also used to treat enuresis (urinary incontinence) in children. Antidepressants are also frequently prescribed to cancer patients to treat pain, a fact that makes the association under study of specific importance.

Treatment of depression with antidepressants can be divided into two types: continuation and maintenance treatment. Continuation treatment begins after acute remission is achieved, and is intended to prevent relapses back into the depressive episodes. Most antidepressants take about two to three weeks of treatment before beneficial effects occur. Maintenance treatment attempts to prevent a recurrence of depression following completion of continuation therapy. It has been recommended that continuation therapy of 3-6 months after acute stabilization should be considered for all depressed patients, and maintenance therapy should be considered for many severely depressed patients of (Hirschfeld, 2000).

Thousands of neuronal signals are transmitted to an individual's brain each moment, controlling his breathing, movements, thoughts, and emotions. Neuronal circuits provide the basic "road map" for brain signals, and chemical neurotransmitters transmit signals from one neuron to another. Neurotransmission in the brain utilizes several chemicals and peptides. Neurotransmitters involved in depression include norepinephrine, dopamine, and serotonin.

Treatable neurotransmission diseases fall into two categories, those caused by too much neurotransmission and those caused by too little. The biogenic amine hypothesis suggests that depression is caused by impaired neurotransmission due to abnormally low levels of neurotransmitters in certain parts of the brain. Antidepressants are thought to work by increasing the levels of neurotransmitters in the brain. Specifically, antidepressants work by interacting with neurotransmitters at three different points: they can change the rate at which the neurotransmitters are either created or broken down by the body; they can block the process in which a neurotransmitter is recycled by a presynaptic neuron and used again, called reuptake; or they can interfere with the binding of a neurotransmitter to neighboring cells.

2.2.3 Specific description of antidepressants

Currently used antidepressant drugs fall into four classes (tricyclic antidepressants, monoamine oxidase inhibitors, selective serotonin reuptake inhibitors, and atypical antidepressants). The following is a specific description of each of the antidepressants assessed in this study, categorized according to their classes. The chemical names, chemical structures, empirical formulae, and molecular weights of the antidepressant drugs used in the US and Canada are presented in appendix A (A.1 - A.4).

2.2.3.1 Tricyclic antidepressants

Tricyclic antidepressants (TCAs), named for their three-ring chemical structure (figure 3), were the first antidepressants to be discovered in the 1950s. TCAs block the reuptake of neurotransmitters into the presynaptic neurons, keeping the neurotransmitter in the synapse longer and making it more available for action on the postsynaptic cell. TCAs can be categorized according to their chemical structure into two groups: one having a carbon atom at position 5 in the central ring, and the other having a nitrogen atom at that position. Molecules with a carbon atom at position 5 (5-C) include amitriptyline, doxepin, maprotiline, nortriptyline, and Molecules with a nitrogen atom at that position (5-N) include protriptyline. imipramine, desipramine, clomipramine, lofepramine, and trimipramine. The TCA amoxapine is atypical and is included in neither group. Figure 3 shows the structural formula of amitriptyline and imipramine drugs representing the 5-C and 5-N groups, respectively. Undesirable effects of TCA use may include anticholinergic effects, cardiotoxicity, sedation, orthostatic hypotension, mania, hypomania, weight gain, impotence, or obstructive jaundice.

2.2.3.2 Monoamine oxidase inhibitors

Monoamine oxidase inhibitors (MAOIs) decrease the rate at which neurotransmitters are metabolized, thus increasing their synaptic concentration. This class includes isocarboxazid, moclobemide, phenelzine, and transleypromine.

Undesirable effects of MAOI use may include hepatotoxicity, excessive CNS stimulation, or orthostatic hypotension.

2.2.3.3 Selective serotonin reuptake inhibitors

Selective serotonin reuptake inhibitors (SSRIs) became available in 1987; they block the reuptake of the neurotransmitter serotonin into presynaptic neurons, thereby prolonging its activity. Drugs in this class include citalopram, fluoxetine, fluoxamine, paroxetine, and sertraline.

2.2.3.4 Atypical antidepressants

The atypical antidepressants are those which do not fall in any of the previously described categories, and thus are grouped into a separate category. Drugs in this category include nefazadone, trazodone, and venlafaxine.

2.2.4 Frequency of use of different antidepressants

Antidepressant medications in general are widely prescribed. In the United States, the number of depression visits during which an antidepressant medication was prescribed increased from 10.99 million in 1988 to 20.43 million in 1993 and 1994 (p<0.01) (Pincus et al., 1998).

Most of the currently used TCAs began to see broad use in psychiatry in the early 1950's and were the most-used antidepressant medications until mid 1990's (Voirol et al., 1999). Recently, prescribing patterns of antidepressant drugs have changed. Because of their equivalent efficacy and more favorable side-effect profile, prescribing of SSRIs has increased over time (Peretti et al., 2000; Mendlewicz et al., 2000). Despite this trend, TCAs are still being widely used (Potter et al., 1998). For example, a personal or family history of responsiveness to TCA pharmacotherapy may favor a TCA trial earlier rather than later in the treatment plan. Mamdani et al. found that the prescriptions for SSRIs accounted for 9.6% of antidepressant prescriptions dispensed in 1993 and 45.1% in 1997 in a population-based study of more than 1.4 million Ontario residents aged 65 years or older (Mamdani et al., 2000). In the same population prescriptions for tricyclic antidepressants fell from 79.0% in 1993 to 43.1% in 1997.

Although the prevalence of use of antidepressants among children and adolescents under the age of 18 is relatively low, it has significantly increased during the last few decades, particularly in the last 15 years. Younger generations are experiencing depression at an earlier age than did previous generations (Weissman et al., 1995). Social scientists have proposed many explanations, including changes in family structure, urbanization, and reduced cultural and religious influences. Antidepressants have been used to treat depression, anxiety, and attention deficit/hyperactivity disorders in children and adolescents.

Most of the studies that have assessed the prevalence of antidepressant drug use among very young children (younger than 5 years old), have found an increase in prescriptions for this age group over time. An analysis was carried out in 2000 to estimate the prevalence of antidepressant drug use among children aged 2 through 4 years in the US (Magno Zito et al., 2000). The prevalence was calculated using three large computerized data sources, for three different times (1991, 1993, and 1995). The prevalence (per 1000) of the use of antidepressants in general among the participants (almost 158,060 children) was found to be 1.4 in 1991, 2.1 in 1993, and 3.2 in 1995; whereas the numbers for tricyclic antidepressants were 1.3, 1.8 and 2.4 respectively. Another report described a 10-fold increase in prescriptions for an SSRI in the United States for children 5 years and younger between 1993 and 1997 (Minde K, 1998).

In the United States, around 20 million people have problems with accidental urination, when they are developmentally able to have control of their bladders (5 to 7 million are children 6 to 12 years old). This loss of urinary control is called "urinary incontinence" or enuresis. Although it affects many young people, it usually disappears naturally over time, which suggests that incontinence, for some people, may be a normal part of growing up. About 10% of 5-year olds, 5% of 10-year olds, and 1% of 18-year olds experience episodes of enuresis, and it is twice as common in boys as in girls. Antidepressant drugs (such as imipramine, amitriptyline, clomipramine and desipramine) are used to treat enuresis in children on a chronic basis (Rapoport et al., 1980). It acts on both the brain and the urinary bladder.

Unfortunately, total dryness with either of the medications available is achieved in only about 20% of patients.

2.2.5 Selection of antidepressants

Individual antidepressants have unique profiles of psychopharmacologic effects, and individual patients have unique profiles of depressive symptoms (Stahl, 1998). The initial choice of antidepressant drug therapy from among the wide variety of drugs available is based on both the pharmacologic characteristics of the antidepressant and each patient's characteristics (such as age, pregnancy status, smoking and drinking habits, psychosocial factors, and whether the patient has a prior history of response or non-response to a particular drug) (Kaplan et al., 1993; Richelson, 1994; and Flint, 1998).

None of the antidepressants has been proven more effective than the others in treating depression. Thus, the grounds for the choice among these antidepressants depends on the onset of action, elimination half-life, therapeutic blood level, side effects, drug interactions, toxicity associated with overdose, efficacy, and cost (Kaplan et al., 1993; Richelson, 1994; Rudorfer et al., 1997, and Flint, 1998).

The mechanism of action of antidepressants allows prediction of both adverse effects and therapeutic effects (Stahl, 1998). Because numerous pathways in the brain use the same neurotransmitter, manipulating transmission in a diseased pathway

simultaneously affects synapses of normal neurons. For this reason, antidepressant drugs are notorious for causing a variety of side effects. These CNS drugs are considered as neurotransmitter modulators. And thus, some tricyclic side effects relate to the fact that these medications have similar effects on other neurotransmitters in the CNS, notably histamine and acetylcholine. In some cases, side effects, such as the sedating properties of some TCAs, might be advantageous for the treatment of specific diseases, such as comorbid anxiety and insomnia.

Doctors determine which antidepressant to prescribe according to the type of side effects an individual can tolerate. It is believed that many of the antidepressant-responsive conditions have a hereditary component. Thus, starting with the same agent to which a genetically related family member with the same disorder has responded favorably in the past may be likely to produce a beneficial effect.

Taking the TCAs as an example, there are two broad chemical classes of these drugs. The tertiary amines (amitriptyline, imipramine, trimipramine and doxepin), which have proportionally more effect in boosting serotonin than norepinephrine, produce more sedation, anticholinergic effects and orthostatic hypotension. Amitriptyline and doxepin are especially sedating. Secondary amines (nortriptyline, desipramine, and protriptyline) tend more toward enhancement of norepinephrine levels and hence toward irritability, overstimulation and disturbance of sleep. The tertiary amines, thus, are more useful where depression is accompanied by sleep disturbance, agitation and restlessness; whereas the secondary amines may be

preferable where the depressed patient is fatigued, withdrawn, apathetic and inert. The psychiatrist's initial evaluation, therefore, must go into extensive detail about the pattern of depressive symptoms a person has experienced, in order to select the most appropriate drug. An impression about which side effects a person would best tolerate or benefit from will enter into the physician's choice of tricyclic as well. Overall, desipramine and nortriptyline are the most benign in terms of patient tolerance, and are often the initial TCA of choice.

However, these are just the broadest guidelines, and in practice, treatments are individualized in terms of agent and dose in a trial-and-error fashion. Since there is no way to predict with certainty which drugs will benefit any given patient, depressed patients may need to try several different antidepressants before a suitable one can be found.

2.3 Antidepressants and cancer

One implication of the chemical carcinogenesis theory is that drugs taken for long intervals may be more suspect as possible carcinogens than those used only briefly. Initial suspicion of drug-cancer associations often results from theoretical considerations of the chemical and pharmacokinetic properties of the compound, from results of in vivo or in vitro tests for mutagenicity or other genetic effects, or from reports of experiments in animals (Schottenfeld et al., 1996). In the following

sections, the experimental and the epidemiological studies of the association between antidepressant drug use and cancer development are summarized.

2.3.1 Experimental studies of the effects of antidepressants on cancer risk

The main source of evidence for tumor promotion by antidepressant drugs was a Canadian study that received considerable attention when it was published because of the quality of the study and its disturbing implications (Brandes et al., 1992; Miller, 1993). Brandes et al. studied whether antidepressant drugs could promote tumor growth and development in rodents at concentrations relevant to the treatment of human depression (equivalent human dose range: 100-150 mg/day for amitriptyline, and 20-80 mg/day for fluoxetine) (Brandes et al., 1992; Brandes, 1992; Brandes et al., 1995; and Labella et al., 1996). The rationale behind carrying out this study was the structural similarity between antidepressants (amitriptyline, and fluoxetine) and N,N-diethyl-2-[4-(phenylmethyl)phenoxyl ethanamine HCL (DPPE). a derivative of tamoxifen that increases DNA synthesis in malignant cells and stimulates tumor growth in rodents. Three tumor models were studied: i) tumors transplanted via subcutaneous injections of C-3 fibrosarcoma cells in mice; ii) tumors transplanted via subcutaneous injections of B16f10 melanoma cells in mice; and iii) dimethylbenzanthracene (DMBA) induced mammary cancers in female rats. The results showed that both amitriptyline and fluoxetine promoted tumor growth in all of the 3 rodent models.

A similar study, however, conducted by the Food and Drug Administration's Division of Research and Testing was not able to replicate the results of Brandes et al. (Mathews, 1995; and Parchment et al., 1996). The authors studied the effect of the drugs considered in Brandes et al. (Brandes et al., 1992) on the promotion of tumor growth using the same published study design and methodology. Both TCAs and SSRIs were studied; no evidence was found that these drugs increased tumor growth in vitro or in laboratory rodents.

Wright et al., in 1994, tested the hypothesis that inhibition of cell death through apoptosis may underlie the mechanism of tumor promotion in chemical carcinogenesis (Wright et al., 1994). They found that amitriptyline and fluoxetine, along with 8 other known and suspected tumor promoters, blocked apoptosis (through inhibition of DNA fragmentation) in a variety of cell types including fibroblasts, myeloid and moncytic leukemias, and carcinomas derived from the prostate, breast, and liver. In addition, amytriptyline inhibited DNA fragmentation at a concentration even lower than serum levels in patients receiving a typical dose (100 mg/day) of this antidepressant. The cells gradually acquired resistance to apoptosis upon treatment with these drugs. The kinetics of this phenomenon was dose-related: cells cultured in the highest concentration of amitriptyline acquired resistance more rapidly than cells cultured in the lowest concentration.

In two studies, Iishi et al. investigated the effects of different antidepressants on the incidence and multiplicity of colon tumors, as well as on the serum

norepinephrine concentration and the labeling index of colon mucosa in Wistar rats (Iishi et al., 1993; and Iishi et al., 1994). The colon tumors, which were induced by treating the rats with azoxymethane, were classified histologically as adenomas, carcinomas in situ, and adenocarcinomas. Rats were treated with azoxymethane in NaCl solution once a week for 10 weeks. In their first study (Iishi et al., 1993), desipramine hydrochloride dissolved in a saline solution was injected daily into the rats for 35 weeks. Treatment with desigramine significantly increased the incidence but not the number of colon tumors in week 35. In their second study (Iishi et al., 1994), pargyline (a monoamine oxidase B inhibitor) and clorgyline (a monoamine oxidase A inhibitor) were dissolved in a saline solution and injected in the rats each day for 35 weeks. Pargyline was found to enhance colon carcinogenesis in rats by week 35, whereas no effect was detected in relation to clorgyline. Two explanations for finding an effect of pargyline but not of clorgyline were considered: i) treatment with pargyline increased significantly the dopamine concentration in the nucleus more than treatment with clorgyline, or ii) treatment with pargyline resulted in a significant increase of vesicular norepinephrine in whole brain homogenates. These studies concluded that the antidepressants (desipramine and pargyline) enhanced experimental colon carcinogenesis by their effect of increasing the norepinephrine concentration in the colon wall and subsequently increasing the proliferation of colon epithelial cells.

Bendele et al. (Bendele et al., 1992) tested fluoxetine hydrochloride for carcinogenicity in three studies in Fischer rats and C57BL/6 x C3H F₁ mice. Each

study consisted of a control group and three treatment groups to which fluoxetine was administered for 24 months at three different dietary daily doses. The three different doses administered to rats and mice were approximately 1-25 times the equivalent daily human dose for depression (20 mg/day). The authors did not find any statistically significant increase in incidence of any individual type of neoplasm in either rats or mice.

In 1991, Van Schaik and Graf assessed the genotoxicity of different tricyclic antidepressants using a test in Drosophila melanogaster (Van Schaik et al., 1991; and Van Schaik et al., 1993). Drosophila has been used in mutagenesis studies and also in short-term assays for identifying carcinogens. An array of known genotoxins that require bioactivation were detected by the wing spot test (also known as the wingmosaic system), attesting to the validity of the assay (Vogel et al., 1999). The wing spot test allows detection of several genetic end-points such as mutation and recombination. Three-day-old larvae, trans-heterozygous for 2 linked recessive wing hair mutants (multiple wing hairs and flare), were fed the test compounds in water mixed with a standard dry food for 48 hours. Wings of the emerging adult flies were scored for the presence of spots of mutant cells which can be the consequence of either somatic mutations or mitotic recombination events. Imipramine, desipramine, clomipramine, and lofepramine, which have a nitrogen atom at position 5 in the central ring of their chemical structure, were clearly genotoxic. Three out of the 4 drugs showed a dose-response relationship. Figure 4 shows the dose-response relationships for amitriptyline, desipramine and imipramine with total spots per wing considered as the response. An explanation as to why lofepramine did not show any dose-response relationship might be related to its chemical structure. Lofepramine is a compound similar to imipramine and clomipramine with the difference being a longer and more complex side chain attached to the nitrogen atom. Amitriptyline, protriptyline, and nortriptyline, which have a carbon atom at position 5 in their central ring, were not genotoxic. The authors suggested that the nitrogen atom at position 5 in the 7-membered central ring of the tricyclic molecule was responsible for the genotoxicity of the compounds in Drosophila. This genotoxicity assay (wing spot test) using Drosophila was further tested by an epidemiological study, discussed in the next section (Sharpe et al., 2002).

2.3.2 Epidemiological studies of the effects of antidepressants on cancer risk

Epidemiologic studies have provided inconsistent results regarding associations between antidepressant drug use and the risk of cancer. The following section summarizes all the studies, identified through an extensive literature review, assessing the underlying association (starting with the earliest and ending up with the most recent ones). A tabulated summary of all these studies is also provided in appendix B.

Friedman et al. carried out a systematic screening of medical drugs for possible carcinogenic effects with a maximum follow-up period of 15 years of exposure (Friedman et al., 1980; Friedman et al., 1983; Selby et al., 1989; and

Friedman, 1992). The cohort consisted of 143,574 outpatients who had at least one prescription recorded in a drug-dispensing database during the period between July 1969 and August 1973 in San Francisco. They reported results for 215 drugs or drug groups in relation to 56 primary cancer sites and combinations of sites. Each drug was screened for associations with each cancer site and all sites combined by comparing the number of new cases that developed among the users of that drug (i.e. persons to whom it was dispensed at least once) with the number expected among the same group on the basis of age- and sex -specific incidence rates for all pharmacy users. Neither of the two antidepressants assessed (amitriptyline and imipramine) was found to be significantly associated with the development of cancer at any site. Among the 1,957 amitriptyline users, 195 developed cancer, when 182.7 were expected [Standardized Mortality Ratio (SMR) = 1.07 (95% CI: 0.92 - 1.23)]. Among the 308 imipramine users, 12 developed cancer, when 15.6 were expected [SMR = 0.77 (95% CI: 0.40 - 1.34)] (Friedman, 1992). This study, however, had several important limitations including the small number of exposed cases and the fact that dosage, duration of use, and timing of exposure were not specified. Moreover, exposure status was incomplete because only 78% of the prescriptions were filled at the facility pharmacy. Surveillance also missed 15% of the cancers diagnosed in subjects who had left their medical center but remained in the area.

A retrospective cohort study of nonestrogenic drugs and risk of breast cancer was conducted by Danielson et al. (Danielson et al., 1982). Data from a prepaid health care organization with computerized information on diagnoses and outpatient

drug use (since July 1976) were used. The study included 302 women aged 35-74 years diagnosed with breast cancer between 1977 and 1980. Exposure to any of the nonestrogenic drugs was defined by having a study drug dispensed to a woman within the six-month period before the breast cancer was diagnosed. An age-adjusted risk ratio of 0.5 for the use of tricyclic antidepressant drugs relative to nonusers was found (90% CI: 0.3 – 0.8). This protective effect is difficult to interpret because the sample size was small and the study had limitations such as selection bias, no control of confounding, crude assessment of exposure without any consideration of dosage or duration of use, and short exposure histories limited to 6 months before diagnosis (Danielson et al., 1982).

Wallace et al. conducted a case-control study in which they studied psychotropic drugs in relation to the development of cancer (Wallace et al., 1982). The study population consisted of 151 breast cancer patients and 151 hospital controls matched on age, with no prior history of cancer. Information on past antidepressant drug use was obtained from subjects through interviews. A subject was considered to be exposed to antidepressants if she specified that she was taking antidepressant medication for an interval longer than 1 month. The crude relative risk for prior use of antidepressants was 1.77, which was not statistically significant. After adjustment for menstrual, reproductive, and family history of breast cancer, the relative risk was 2.84 (p-value < 0.04). Controlling for the effect modification by socioeconomic status decreased the RR to a non-significant 1.62 (p-value > 0.2). Dosage and timing

of drug use before diagnosis were not specified. Another weakness of this study was the possibility of recall bias.

An analysis using data from two population-based case-control studies was conducted by Harlow et al. to assess the association between self-reported use of antidepressants and epithelial ovarian cancer (Harlow et al., 1995). The study included 450 cases and 454 controls matched on age, race, and residence. Prior use of antidepressants exceeding one to six months was associated with an increased risk of ovarian cancer [adjusted OR = 2.1 (95% CI: 0.9 - 4.8)]. The association was stronger in women who initiated treatment before age 50 [adjusted OR = 3.5 (95%) CI: 1.3 - 9.2)]. A significant association was found for using antidepressants 10 or more years prior to diagnosis [adjusted OR = 9.7 (95% CI: 1.2 - 78.8)]. The same authors assessed this association, in a second analysis, using data from another population based case-control study (Harlow et al., 1998). The analysis included 563 women diagnosed with malignant or borderline epithelial ovarian tumors, and 523 controls. Women who reported using any psychotropic medication for 6 months or longer had a significantly greater risk of epithelial ovarian cancer [adjusted OR = 1.4] (95% CI: 1.0 - 2.0)] and invasive ovarian cancer [adjusted OR = 1.6 (95% CI: 1.1 -2.3)] than nonusers, after adjustment for potential confounding variables. First use of psychotropic medication before the cessation of menstrual periods for more than 2 years was associated with a 3-fold increase in risk of ovarian cancer relative to non exposed women [adjusted OR = 2.9 (95% CI: 1.3 - 6.6)]. One of the strengths of this

study was the consideration of timing and duration of exposure. The weaknesses included small sample size, failure to consider dosage, as well as possible recall bias.

Kelly et al. examined the association between use of antidepressants (TCAs and SSRIs, and other antidepressants) and development of breast cancer in a hospital-based case-control study (Kelly et al., 1999). The study included 5,814 women with primary breast cancer and two control groups: 5,095 women with primary malignancies of other sites, and 5,814 women with other conditions. Data on medical history, as well as lifetime history of medication use, were collected by interviewing the subjects. The authors did not find any association between the use of antidepressant drugs and the risk of breast cancer, and the results were very similar using both control groups. An effect could have been missed in this study because of the misclassification that might have resulted from basing drug exposure on subjects' recall. Because this was a hospital-based case-control study, the prevalence of antidepressant exposure among the hospitalized controls may have been greater than the prevalence among the general population; this could have resulted in estimates biased towards the null.

Dalton et al. conducted a population-based cohort study to assess the association between the use of antidepressant medications and the risk of cancer using a county's prescription database in Denmark (Dalton et al., 2000). The study included 30,807 adult antidepressant drug users (older than 15 years of age) who were followed for an average of 3.2 years between 1989 and 1995. The authors assessed

the association between antidepressant drug use and the incidence of four groups of cancer: Non-Hodgkin's lymphoma, smoking related cancers, other cancer sites, and total cancer. An increased risk of non-Hodgkin's lymphoma among people with five or more TCA prescriptions was found [Standardized Incidence Ratio = 2.5 (95% CI: 1.4 - 4.2)]. Limitations of this study included the short follow-up period, and the rough estimation of drug exposure, with no consideration of dosage, timing and duration of exposure.

Coogan et al. conducted a case-control study to examine the association between ovarian cancer and the use of tricyclic antidepressants and selective serotonin reuptake inhibitors (Coogan et al., 2000). The analysis included 748 women diagnosed with epithelial ovarian cancer, between 1976 and 1997, who were compared with cancer controls (n = 1496) and non-cancer controls (n = 1496). A lifetime history of medication use was obtained by asking about drug use, where for each episode of drug use reported, information on drug name, starting date, frequency of use, and duration of use were recorded. Odds ratios derived with cancer and noncancer controls were not significantly increased for regular use of any of the antidepressants under study. For the TCAs, the odds ratio was found to be 0.8 (95%) CI: 0.4 - 1.5) when compared with cancer controls, and 0.7 (95% CI: 0.4 - 1.3) when compared with non-cancer controls. When the analysis was restricted to those who started using TCAs regularly 10 years before the index date, the odds ratio was found to be 1.6 (95% CI: 0.6 - 4.6) when compared with cancer controls and 1.5 (95% CI: 0.5 - 4.10) when compared with non-cancer controls. These estimates are questionable mainly because these analyses were based on a very small sample size, with the number of cases not exceeding 16 cases in any of separate analyses. Another limitation of the study was the fact that they collected information on drug exposure through interviews; it would have been hard for the participants to remember information on the 40 indication categories which were recorded.

A population-based case-control study was conducted by Cotterchio et al. to evaluate the association between the use of various antidepressant medications and breast cancer risk (Cotterchio et al., 2000). The study included 701 primary breast cancer cases diagnosed during 1995 and 1996, who were matched on age with 702 randomly selected population controls. The duration of antidepressant medication use for more than 25 months was associated with an increased risk of breast cancer when only age was adjusted for [Age-adjusted Odds Ratio = 1.6 (95% CI: 0.9 - 2.8)]. On the other hand, both the age-adjusted and multivariate-adjusted odds ratio estimates for more than 25 months of tricyclic antidepressant medication use were associated with an increased risk of breast cancer [Age-adjusted Odds Ratio = 2.5 (95% CI: 1.2 -5.1); and multivariate-adjusted Odds Ratio = 2.1 (95% CI: 0.9 - 5.0)]. None of the other associations for durations of less than 5 months and between 6 and 24 months of antidepressant use was found to be larger than unity. Limitations of this study included the short follow-up period, small sample size, and the rough estimation of drug exposure, with no consideration of dosage and timing. The observed association could have been biased because of the recall of the participants because data were

collected through mailed, self-administered questionnaires (Lawlor, 2000; and Beebe et al., 2000).

Another study, which assessed the association between antidepressant use and the risk of breast cancer, was conducted by Wang et al. in 2001 (Wang et al., 2001). This retrospective cohort included 38,273 women who filled a prescription for any of a number of antidepressants and 32,949 who filled a prescription for any other medication during the 1989 to 1991 period. After adjustment for potential confounders, there was no significantly elevated risk of developing breast cancer for any antidepressant use [Adjusted Hazard Ratio = 1.04 (95% CI: 0.87 - 1.25)]. No significantly increased risk was observed for any of the four quartiles of either the cumulative dosage or the duration of antidepressant (ranging from short to long) and hazard of developing breast cancer, and neither there was any suggestion of a trend towards an increasing risk with higher cumulative dosages or longer durations of use. One of the strengths of this study was the consideration of the dosage and duration of antidepressant use, whereas the lack of accounting for the timing of use, as well as the short follow-up period (2 and a half years), were among the limitations of this study.

Dublin et al. carried out a population-based case-control study to assess the association between antidepressant use and risk of ovarian cancer (Dublin et al., 2002). The study included 314 ovarian cancer cases diagnosed between 1981 and 1997 and 790 matched controls. Antidepressant exposure was obtained by reviewing the computerized pharmacy database, established in 1977. Cases were less likely

than controls to have filled two antidepressant prescriptions in any 6-month period prior to the date of diagnosis (OR = 0.71, 95% CI: 0.47 - 1.1), or to have used an antidepressant continuously for 6 months or longer (OR = 0.64, 95% CI: 0.36 - 1.1). The authors concluded that women who have taken antidepressants in the past are not at an increased risk of ovarian cancer. Limitations of this study included the rough estimation of drug exposure, with no consideration of dosage, timing and duration of use.

Recently, Sharpe et al. (Sharpe et al., 2002) conducted a large populationbased case-control study to test the hypothesis that exposure to TCAs increased the incidence of invasive female breast cancer. Data from the Saskatchewan health services databases and the Saskatchewan Cancer Registry (SCR) were used in their study which included 5,882 cases and 23,517 controls. The authors found that exposure to TCAs 11-15 years before diagnosis was associated with an increased risk of breast cancer with a dose-response trend and a rate ratio of 2.02 (95% CI: 1.34 – 3.04) for those highly exposed to TCAs relative to those unexposed in that time period (Sharpe et al., 2002). Higher exposure to the genotoxic TCAs (amoxapine, clomipramine, desipramine, doxepin, imipramine, or trimipramine) was associated with a trend towards an increasing rate ratio 11-15 years later (p-trend = 0.0009), where at the highest exposure level the rate ratio was 2.47 (95% CI: 1.37 - 4.40). On the other hand, exposure to non-genotoxic TCAs (amitriptyline, maprotiline, nortriptyline, and protriptyline) was not found to be associated with an increased risk of breast cancer, where at the highest exposure level, the rate ratio was 0.99 (95% CI:

0.49 – 1.99). The design of this study could be considered quasi-experimental: drugs with different chemical structures were prescribed without consideration of risk factors for breast cancer development. Thus, the differences observed in the risk of breast cancer are very likely to be related to the difference in chemical structures of the antidepressant drugs rather than confounding factors (other determinants of breast cancer risk).

2.4 Conclusion, rationale, and relevance

In summary, combining the two groups of TCAs in previous epidemiological studies might partly explain the inconsistencies in the reported results. Most epidemiologic studies that focused on the association between antidepressants and cancer incidence were limited because of rough estimates of exposure, with no specification of dosage, duration of use, or timing of use in relation to diagnosis, and in most instances, self-reporting of use (Thomas, 1988). Other important limitations included small sample sizes, short periods of follow-up, and lack of adequate control of confounding variables, such as the effect of depression on the development of cancer. However, the recent study by Sharpe et al. (Sharpe et al., 2002) strongly suggests that some TCAs may be carcinogenic (increasing risk of breast cancer). Their results were consistent with experimental studies in fruit flies (Van Schaik et al., 1991; and Van Schaik et al., 1993) which demonstrated genotoxicity (implying the relation could be due to tumor initiation) and raise important concerns given the widespread use of these agents.

Breast cancer, the site studied by Sharpe et al., might not be the only cancer site affected by exposure to antidepressants. The carcinogenicity process of antidepressants is not believed to be site specific, and thus a similar effect could exist in other cancer sites.

We studied the association between antidepressant drug use and the development of cancer at 4 different sites. The cancer sites chosen for this thesis were selected from 19 different sites available for a bigger project which aimed at assessing this association. The choice of the four cancer sites was based on their high prevalence, as well as the fact that they show variability in terms of their cell turnover rate.

We studied the association between antidepressant drug use and the risk of cancer by means of multiple site-specific nested case-control studies using data compiled from the databases of the Saskatchewan Cancer Agency and Saskatchewan Health, specifically the cancer registry and the outpatient prescription drug and health insurance registration databases, respectively. A cancer registry was established in Saskatchewan in 1932; complete computerized data for all cancer sites are available since 1967 (Downey et al, 2000). The Saskatchewan Prescription Drug Plan (SPDP) was introduced in September 1975 and provides benefits to about 91% of the population covered by Saskatchewan Health (Downey et al, 2000).

These databases provide a unique opportunity to study the association between exposure to antidepressant drugs and cancer (Downey et al, 2000). This fact has been recognized and exploited by the scientific community, as evidenced by the numerous studies that have already been conducted with either or both of these databases (Ernst et al., 1992; Strom 2000; Risch et al., 1994; Csizmadi et al., 1998; Csizmadi et al., 2000; Csizmadi et al., 2000; Csizmadi et al., 2003; Collet et al., 1999; Sharpe et al., 2000; and Sharpe et al., 2002). In addition, this project is part of a research program in onco-pharmacoepidemiology that has already studied the effects of prescribed drugs on the risks of colon cancer (Collet et al., 1999) and breast cancer (Sharpe et al., 2000; and Sharpe et al. 2002).

With the increase in incidence and mortality rates of cancer, identifying preventable causes should be a priority for research. Depression is a frequently occurring, serious illness, which seems to be occurring more frequently over time, at younger ages. Because depression is a relapsing illness, many people must use antidepressants over extended periods of time, both to prevent and treat relapses. Since many different antidepressants are available, it is important to determine which ones are safe and which ones are not with respect to the development of cancer. By relating risk to the chemical structure of the drugs, we may be able to provide physicians with new information to make better treatment decisions and the pharmaceutical industry with information that will enable chemists to modify drug structure to improve drug safety.

Chapter 3: Objectives

3.1 General objective

The general objective of this study was to determine whether the use of antidepressant drugs, in particular the genotoxic TCAs, increases the risk of developing any of the 4 different types of cancers (breast, prostate, and ovarian cancer; and non-Hodgkin's lymphoma).

The cancer sites considered in this study included three that had been studied in relation to antidepressant exposure in previous studies (breast, ovarian, and non-Hodgkin's lymphoma), and one that has never been considered in previous studies that assessed this association (prostate cancer).

TCAs were categorized into two groups, based on their genotoxicity in Drosophila: the non-genotoxic TCAs (amitriptyline, maprotiline, nortriptyline, and protriptyline), and the genotoxic TCAs (amoxapine, clomipramine, desipramine, doxepin, imipramine, and trimipramine). Accordingly, we tested the hypothesis that exposure to genotoxic TCAs increases the risk of developing cancer at one or more of the sites under study, relative to exposure to non-genotoxic ones.

The inclusion of these cancer sites in this study allowed us to test the hypothesis of whether the carcinogenic effect of the genotoxic antidepressants vary

according to rates of cell turnover. The frequency of cell division varies greatly among the many cell types in the body. Some cells, such as in the prostate and the lymph nodes, are long-lived and there is no cell division in postnatal life to replace those lost through age or injury. Other cells, such as in the breast and the ovary, are short-lived and cell division in postnatal life occurs frequently to replace cells lost. This entire process of cell renewal is referred to as cell turnover (Fawcet, 1986; and Damajanov et al., 1996). Hyperplasia (an increase in the number of cells in a tissue or organ) can place an organ at an increased risk of neoplasia, especially if there is chronic stimulation of cell division. An increased percentage of cells in the cell cycle increase the possibility of spontaneous chromosomal abnormalities and thus altering oncogene structure and function and inducing mutations or rearrangements (Damajanov et al., 1996). Thus, the effect of antidepressants may be more apparent when cell division is high and the turnover is rapid, whereas, the effect may be less obvious when the multiplication is low and turnover is slow (Fawcet, 1986; and Damajanov et al., 1996).

3.2 Specific objectives

Specific objectives include:

Testing the hypothesis that people exposed to TCAs, relative to those unexposed to antidepressants, are at increased risk of developing cancer at any of the sites under study,

- Testing the hypothesis that exposure to genotoxic TCAs increases the risk of developing cancer at any of the sites under study relative to exposure to non-genotoxic ones,
- Determining if the carcinogenic effect of the genotoxic antidepressants vary according to rates of cell turnover,
- Studying the effects of the use of other antidepressant drugs (MAOIs and SSRIs) on the risk of developing cancer at the sites under study,
- Studying for each class of drug and each site under study the respective effects of level of exposure, timing of use, and duration of use.

Chapter 4: Methods

4.1 Introduction

The approach adopted to study the association between antidepressant drug use and risk of cancer at different sites was the multiple site-specific case-control design. In case-control studies, persons with the disease of interest, and a suitable control group (reference), who are disease free, are identified within a defined population (Last, 1995).

Saskatchewan, one of the ten provinces in Canada, has a population of about one million people (or 4% of the total population of Canada). The Saskatchewan Prescription Drug Plan (SPDP) has been operating since September 1975, and provides outpatient prescription drug benefits to about 91% of the Saskatchewan population covered by the Saskatchewan Health (Downey et al., 2000). The covered population ineligible for outpatient prescription drug benefits is primarily registered Indians, who receive drug benefits under a federal program. Immigrants become eligible for health benefits three months after arriving, which is recorded as the coverage initiation date. Emigrants lose their eligibility three months after leaving. All residents of the province of Saskatchewan, except members of the Canadian Forces or Royal Canadian Mounted Police and federal penitentiary inmates, are entitled to receive benefits through the health care system once they have established residence and registered with Saskatchewan Heath for a Health Services Card. There

is no distinction based on socioeconomic status. Each resident is assigned a unique personal identification number. Information including name, address, sex, date of birth, and date of effective coverage are maintained in the registry database, which is used by all Saskatchewan Health programs. This permits the electronic linkage of information contained in different databases (Downey et al., 2000).

Computerized data for all cancer cases diagnosed since 1967 (Downey et al., 2000) are maintained in the Saskatchewan Cancer Registry (SCR). Registration of cases in Saskatchewan is virtually complete because the reporting of cases is required by the law. In addition, there is a high level of diagnostic specificity as the majority of diagnoses are confirmed by pathological reports which are components of the database. Through this mechanism, approximately 98% of all new cancer cases are covered (Parkin et al., 1997).

4.2 Design

We carried out four site-specific population-based nested case-control studies using the population eligible to receive outpatient prescription drug benefits from Saskatchewan Health. Data routinely recorded by Saskatchewan Health and the SCR were used to obtain information on antidepressant use and cancer occurrence.

The source population was the dynamic cohort defined by registration with Saskatchewan Health from January 1, 1981 to December 31, 2000. All incident cases

of each type of cancer diagnosed in the study population during the specified period were ascertained through the Saskatchewan Cancer Agency. Incidence density sampling, with matching on age, gender, and calendar time, was used to select controls from the dynamic study population. Controls were sampled with replacement and therefore could have been sampled again as controls, or if diagnosed with any of the listed cancers, sampled as cases. Drug exposure data for the period between 1976 and 2000 were compiled from the Saskatchewan outpatient prescription drug database.

4.3 Source population

The source population consisted of all people aged between 5 and 82.5 years, living in Saskatchewan and registered with Saskatchewan Health for at least 5 years during the period January 1, 1981 to December 31, 2000 and eligible for outpatient prescription drug benefits, with no prior history of cancer (except for non-melanoma skin cancer and carcinoma in situ of the cervix, because of inconsistent reporting to cancer registries). Excluded from this study were children younger than 5 years of age, since antidepressants are rarely prescribed before that age, as well as individuals older than 82.5 years. Individuals entered the source population at the beginning of the study (January 1, 1981) if they were aged between 5 and 82.5 years, on their 5th birthday, or on the date of the earliest health coverage initiation if their age was between 5 and 82.5 years, whichever occurred latest. They left the source population at the end of the study (December 31, 2000), on the date of diagnosis with any cancer,

on the date of death, on the date when they reached 82.5 years, or on the latest date of coverage termination, whichever occurred first.

4.4 Identification of cases

The SCR identified cases of the 19 different cancer sites included in the original project. The cases were defined as all individuals in the SCR diagnosed between January 1, 1981 and December 31, 2000 with one of the cancers addressed by this study. The date of diagnosis for each cancer case, as recorded in the cancer registry, was recorded as the index date.

The specific cancer sites considered in this thesis (with the ICD-O codes) (Percy et al., 1990) were: female breast cancer (C50-C50.9), prostate cancer (C61.9), ovarian cancer (C56.9), and non-Hodgkin's lymphoma (C95.9, C96.7-C97.2). The remaining 15 cancer sites were: colorectal cancer, liver cancer, cancer of the pancreas, myeloid leukemia, skin melanoma, renal cell carcinoma, bladder cancer, uterus cancer, testicular cancer, stomach cancer, Hodgkin's disease, central nervous system tumors, retinoblastoma, nueroblastoma, and osteoscarcoma.

The choice of the 4 types of cancer was based on their high incidence, as well as the fact that they show variability in terms of their cell turnover rate.

4.5 Selection of controls

To be considered as a potential control for a specific case, the person should have been eligible to become a case, and should have been eligible to receive outpatient prescription drug benefits for at least five years prior to the date of diagnosis of the case.

For each case diagnosed with cancer in any of the 19 anatomic sites identified by the original project, the risk set in the source population was identified by age, gender, and calendar time for the purpose of selecting matched controls. Controls had to fall within the same age category as the case (at the time of diagnosis); age was divided into intervals of 2.5 years; from 5 to 82.5 years. Potential controls had to be of the same gender as the case. Finally, the controls had to be alive and free of cancer in the month that the case was diagnosed (index date). The date of diagnosis for the case was assigned to each of the potential controls as their index date, thereby matching cases and controls on sampling time as well.

Cases were categorized in one of the different "cells" defined by the 3 matching variables. In most of these "cells", there were cases of different cancer sites. One set of controls was selected for each "cell". To ensure at least 4 controls per case of each type of cancer in a "cell", a sufficient number of controls were randomly selected from the "cell" to have 4 controls for each case of the MOST

FREQUENT cancer site in that "cell". The selected controls were then used as controls for all the cases (of the 19 different sites) in the specified "cell".

Figure 5 provides an illustration of how controls were selected for <u>female</u> cancers according to the two other matching variables (age and time of diagnosis). For example, the cell defined by "females, 70-72.5 years of age in October 2000" included 10 breast cancer cases, 5 ovarian cancer cases, and fewer cases of uterus cancer, non-Hodgkin's lymphoma, and stomach cancer. Forty controls were selected from this "cell" based on a 4 controls per each breast cancer case (the most frequent cancer site). Thus, considering ovarian cancer in this specified cell, there were 8 potential controls available for each ovarian cancer case.

For a specific site of the four cancer sites studied, different cells would have different ratios of controls to cases, with a 4 controls per each case as a minimum. In the analyses for each cancer site, the smallest control: case ratio among all the different cells was used for all the other cells. For instance, in the example described above, the number of controls per case, in the ovarian cancer analyses, might range from 4 to 10 controls per each ovarian cancer case for different cells. Thus, 4 controls were randomly selected from the cells where the ratio was 5:1 or bigger resulting in a consistent 4:1 control: case ratio for all the ovarian cancer cases.

4.6 Exposure

4.6.1 Exposure assessment

Exposure to antidepressants data for both cases and controls was compiled from the outpatient prescription drug database for the period between January 1, 1976 or the first ever coverage initiation date (whichever came first) and the index date. For each antidepressant prescription the following data were made available: a unique subject study identification number, the dispensing date, the drug category (i.e., active ingredient for drugs of interest or the drug group for covariates), the number of units dispensed, (e.g., number of tablets), the dosage form (e.g, tablet or oral liquid), and the strength (e.g., mg/tablet). The daily dose and treatment duration pertaining to each prescription are not captured by the database. Using this information, for each subject, a profile of drug usage was constructed for up to 20 years in the past.

Data on drugs prescribed during hospitalizations or given as samples in physicians' offices are not captured in the database. They should, however, represent a small fraction of antidepressant exposure. Moreover, patients who receive antidepressants in hospitals or as samples in physicians' offices are very likely to continue treatment, and thus be identified as "exposed".

During the period of July 1, 1987 and December 31, 1988, information on drug prescriptions was incomplete because of administrative changes. As a

consequence, we considered all the cases and controls to be unexposed during this one and a half year period.

4.6.2 Exposure definition

Four different exposure definitions were used to assess the association between antidepressant drug use and the risk of cancer development at the four sites under study: ever/never exposure, cumulative exposure, average daily exposure, and duration. The first two use all available history and the third and fourth are based on predefined exposure windows.

Exposure to antidepressants in the year immediately preceding the date of diagnosis was excluded from the analyses. The first reason for doing so was the fact that most cancers have an average latency period of 10 years, and thus the effect of exposure to a carcinogen could not be detected a year later. Another reason for excluding the year prior to diagnosis was to avoid protopahtic bias (also called reverse causality bias). This type of bias is introduced into a study when an error is made in the time sequence between exposure and outcome. One might wrongly conclude that exposure to a certain drug is a risk factor for a specific outcome, when in fact the drug was prescribed because of the presence of the outcome. In our study, the early symptoms of the undiagnosed cancer (during the year prior to diagnosis) could have been the reason for the use of antidepressant drugs (because of depression).

Likewise, although some subjects had exposure histories of more than 20 years, the numbers of such patients were very small, and thus the period was not considered in the analyses.

4.6.2.1 Exposure during full period

The first two exposure definitions considered the full period of history available for each subject. Because of the variability in the length of history of each subject in the database (ranging between 5 and 20 years), we assessed the association between exposure to TCAs and risk of cancer development in four groups of subjects based on their available drug history prior to the index date (those having 5, 10, 15, or 20 years of history) (figure 6).

As for the SSRIs, the association was assessed in only two different groups of subjects (5 and 10 years of history prior to index date), since the first SSRI was listed in the Saskatchewan Formulary in 1989, and thus we could not assess the association for those having 15 and 20 years of history. For this same reason, in the analyses on SSRIs, we also excluded all the cases who were diagnosed before 1989.

4.6.2.1.1 Ever/never exposed

The first exposure index used to assess the association between antidepressants use and risk of development of cancer was "ever/never exposed" to

the drugs being studied. A subject was categorized as exposed if he/she filled *at least* one prescription of the drugs under study (index medication), and was categorized as unexposed if he/she did not fill any prescription of the index medication during the studied period.

4.6.2.1.2 Cumulative dosage exposure

The second exposure index used to assess the association between exposure to antidepressants and development of any of the four cancer sites was the cumulative exposure to antidepressants expressed in daily dose (moles). The aspect of drug dosage that we consider most pertinent to the development of cancer is the number of molecules that reach the target organ, which must be related to the number of molecules of each drug that was ingested. Because we had no information about which drugs were actually ingested, exposure was characterized in terms of amount of drug dispensed, calculated from the amount dispensed over the specified time period prior to the index date.

The effect of cumulative dosage was studied by calculating a measure of exposure from the number of moles of each drug dispensed (calculated from the molecular weight given in the Merck Index) (Budavari et al., 1989) and the quantity of units dispensed.

Cumulative exposure was used as a continuous variable and as a categorical one (low and high). Subjects who did not fill any prescription of the index antidepressants during the specified period were categorized as unexposed.

In addition, to assess whether exposure to antidepressants, in a specific time period prior to the index date, had an effect on the development of cancer we calculated the same cumulative dosage measures when restricting the follow-up period by five-year increment. For example, for those who had 20 years of follow-up, we calculated the cumulative dosage measures for the windows 2-20, 6-20, 11-20, and 16-20 years prior to the index date.

4.6.2.2 Exposure by time period

In order to study the effect of timing of exposure to antidepressants, the third and fourth exposure definitions represented exposure in different time periods preceding the diagnosis of cancer. Exposure history was divided into 4 successive periods (while excluding the prior year): 2-5 years, 6-10 years, 11-15 years, and 16-20 years (figure 6). The duration of these periods was decided a priori.

4.6.2.2.1 Average daily dose of exposure

The third exposure index used to assess the association between antidepressants use and risk of cancer development was also related to dosage of the

drugs dispensed. In this exposure index, as in the cumulative dosage exposure index, we considered the number of moles of each drug and the quantity of units prescribed. We used the duration of the imposed time periods to calculate the average daily dose of exposure in each of these 4 successive time periods.

In other words, we expressed the average daily dosage in terms of the average number of moles (gram molecular weights) of each drug per day. Because we analyzed drug exposure as classes of drugs, the number of moles dispensed of each drug in each class was summed and divided by the number of days in each time period to give the average number of moles dispensed/day for each class of drugs. For example, if a subject received imipramine for the first 6 months during the period 11-15 years before the index date, followed by clomipramine for the next 12 months, followed by amitriptyline for the next 36 months, followed by no antidepressant for the next 6 months, we added the numbers of moles of imipramine and clomipramine dispensed during the 5-year period and divided by 1,825 days to give the average moles/day of genotoxic TCAs dispensed during the period. Similarly, we would calculate the number of moles of amitriptyline dispensed and divide by 1,825 days to give the average moles/day of non-genotoxic TCAs dispensed during the period.

Within each time period, the average daily dose was represented by continuous and categorical variables: low, medium, and high. Subjects who did not fill any prescription of the index medication during the specified period were categorized as unexposed.

4.6.2.2.2 Duration of exposure

To estimate the duration of drug use, each time period before the index date was divided into 3-months intervals (91 days) and then the number of intervals during which a prescription was dispensed was counted. For example, a person who had a drug dispensed during 11 of 20 intervals of a specific time period (5 years) was considered to be exposed 55% of the time. This method of characterizing drug exposure was considered to be appropriate for antidepressants which are prescribed for continuous daily use over extended periods of time.

Similarly, within each time period duration of use was represented by continuous variables, as well as categorical variables: unexposed, short, medium, and long.

4.7 Adjusting for covariates

Matching at the design stage and carrying out matched analyses at the analysis stage were used to control for the effect of age and sex. We also controlled for the confounding effects of other drugs that may be related to the occurrence of cancer. In each of the four cancer sites analyses, the drugs which we controlled for were the ones thought to be associated with an increased or decreased risk of the cancer site under study. The drugs we controlled for were specific to each cancer site and information on their use was compiled from the outpatient prescription drug database.

These drug groups included estrogens, oral contraceptives, major and minor tranquilizers, systemic adrenal corticosteroids, disease modifying anti-rheumatoid drugs (e.g., azathioprine, methotrexate, etc.), gastro-protective agents (e.g., proton pump inhibitors, histamine 2 antagonists, etc.), anticoagulants, drugs used over the long term in treating cardiovascular disease (e.g., beta blockers, ACE inhibitors, etc.), and nonsteroidal anti-inflammatory drugs (NSAIDs).

In the breast and ovarian cancer analyses, we controlled for the possible confounding effect of estrogens and oral contraceptives (which are known to increase the risk of these cancers) and NSAIDs (which are thought to be protective) (Schottenfeld et al., 1996). As for the analyses carried out on prostate cancer and non-Hodgkin's lymphoma, NSAIDs was the only drug group that was controlled for in the analyses, since they could to decrease the risk of these cancers.

The level of detail compiled for the drug groups identified as possible covariates was less than that provided for the antidepressants. For each prescription dispensed to the subject as an outpatient before the index date, the following information was reported: the subject's unique study number, the date of dispense, and the drug category (e.g., NSAID, oral contraceptive, etc.). The number of units dispensed and the strength (e.g., mg/tablet) were not reported.

4.8 Statistical analysis

The OR was used as the estimator of the incidence density ratio of each cancer site in the exposed versus the unexposed. We analyzed exposure to antidepressants as classes of drugs (TCAs and SSRIs). Moreover, we analyzed exposure to TCAs as subclasses of drugs (genotoxic and non-genotoxic). The third class of antidepressants (MAOIs) was not analyzed since the number of exposed subjects was not adequate to carry out the analyses.

The following sections describe the analyses that were carried out for each of the cancer sites studied.

4.8.1 Exposure during full period

The association between exposure to antidepressants, as represented by the ever/never exposure and cumulative dosage exposure indices, and risk of cancer development was assessed for each of the TCAs and the SSRIs as a class of drugs. The reference group for these analyses included those who were not exposed to the index medication during the period under study. Moreover, another set of analyses was carried out when TCAs were categorized into genotoxic and non-genotoxic TCAs.

These analyses took the matching on gender, age at diagnosis, and index date into account but ignored the fact that the length of the exposure histories varied.

4.8.2 Exposure by time period

The risk of cancer development in association with the average daily dose and the duration of exposure was assessed for TCAs (genotoxic, non-genotoxic, and combined) and SSRIs. The same type of analyses were also carried out for exclusive exposure to either genotoxic or non-genotoxic TCAs, in reference with those who were not exposed to any of these drugs, in relation to cancer development, for each of the 4 periods prior to index date.

Two types of analyses (crude and adjusted) were carried out on each of the index medications. The crude analyses assessed the association between the exposure index and the development of each cancer site in each period independently of the other periods under study, i.e. taking into account the matching variables for that specific period only.

On the other hand, the adjusted analyses accounted for the effect of the matching variables as well as exposure during the other three time periods. This was done since successive time periods of exposure can be viewed as separate determinants of the outcome that can be mutually confounded, thus requiring separate representation in the same statistical model (Miettinen, 1985). The principles

proposed by Miettinen relating to temporal dimensions of drug exposure derive from the fact that duration of therapy, time between discontinuation of therapy and outcome, as well as previous use of the drug generally all affect the incidence of adverse events. We cannot assume that current users are first-time users, neither that subjects not currently exposed have never been exposed to the drug under study; previous use of the same drug should be considered as a potential confounder (Miettinen, 1985).

If the drug exposure history for a period was missing or incomplete due to the coverage initiation date (i.e. the patient entered the study during this period), the subject was assigned to a separate exposure category designated as "other" (Haberman et al., 1999; and Breslow et al., 1980). Since one of the inclusion criteria was that the subject having at least 5 years of Saskatchewan Health coverage prior to the index date, all the available cases of a specific cancer, along with their controls, were available for the analyses in the first period before diagnosis (2-5 years). The sample size used for the analyses in the other three periods decreased because of the categorization of some of the subjects in the "other" category. For example, for a specific cancer site, a case or a control that was categorized as "other" in the second period before diagnosis (6-10 years) would also be categorized as "other" in the third and fourth period (11-15, and 16-20 years respectively).

4.8.3 Statistical methods used

4.8.3.1 Descriptive analyses

Descriptive analyses were carried out on cases and controls, of each of the cancer sites, to identify the distribution of the subjects in terms of age and yearly incidence. The results were summarized either in the text or as histograms.

4.8.3.2 Multivariate analyses

To assess the effect of exposure to TCAs and SSRIs, as classes, on the risk of development of cancer, we calculated an incidence density ratio for the exposure to the index medication relative to those unexposed to any antidepressant. On the other hand, when we compared the effect of exposure to genotoxic TCAs with that of non-genotoxic TCAs, we calculated two incidence rate ratios: one for the exposure to genotoxic TCAs relative to those unexposed to any antidepressant, and another one for the exposure to non-genotoxic TCAs relative to those unexposed to any antidepressant.

Odds ratios were calculated, with 95% confidence intervals, to estimate incidence density ratios (Rate Ratios). Matched analyses were carried out to control for the potentially confounding effect of age, gender, exposure in other periods, and use of other drugs. This was achieved by using the conditional logistic regression approach, by means of the SAS PHREG procedure (SAS, 1999).

The statistical model that we used to represent the drug exposure history by time periods was:

$$Log (p/1-p) = \beta_0 + \beta_1 X_{2-5 \text{ years}} + \beta_2 X_{6-10 \text{ years}} + \beta_3 X_{11-15 \text{ years}} + \beta_4 X_{16-20 \text{ years}}$$

where p represented the probability of being diagnosed with the cancer under study, the values of β_i represented regression coefficients, and the values of X_i represented drug exposure during the successive periods of time preceding the index date.

Drug confounders were also represented by categorical variables describing their dispensing rates during successive periods of time.

Exposure measures calculated on a continuous scale were categorized into 2 or more categories. For each cancer site-specific analyses, the cut-off points used for categorizing the continuous variables were selected based on their distributions. This was done to increase the power by ensuring that the different categories have enough subjects.

Whenever continuous exposure was categorized into 2 or more categories (such as low, medium, high), we tested for linear trends, of the continuous variable itself, by examining the significance of the coefficients with a chi-squared test (p-trend).

We carried out the data management and analyses using SAS (version 8.0) statistical software (SAS, 1999).

4.9 Ethical issues

The ethics committee at the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Canada, approved the design and conduct of the study. The extraction of the data from the electronic databases pertaining to disease status and drug exposure was carried out by employees of the SCR and the Saskatchewan Health respectively, with the linkage between the two sources done by Saskatchewan Health. The data provided for analysis were devoid of any nominal information or any other information that could be used to identify any subject and were limited to only variables required for this analysis. Subjects were identified to the investigators by a study identification number only, which was assigned by Saskatchewan Health and is unique to this study and bears no resemblance to the health services number or any other personal identifier.

Chapter 5: Results

This chapter summarizes the results of the analyses carried out to assess the association between exposure to antidepressant drugs (TCAs and SSRIs) and the development of each of the four types of cancer under study (breast, prostate, ovarian, and non-Hodgkin's lymphoma). Because of the complexity of the results obtained from the analyses carried out on the different TCA exposure indices, in association with the four cancer types, the major results are summarized in tables 33 - 37.

The chapter is divided into four sections, each one covering the results pertaining to one of the types of cancer under study. Each section is then divided into two subsections covering the association between either TCAs or SSRIs and the development of each of the specific cancers. In each of these subsections, the four exposure indices (ever/never, cumulative dosage, average daily dose, and duration) are assessed separately. Appendix C summarizes the cut off points used for categorizing the 3 continuous exposure indices into categorical variables.

5.1 Female breast cancer

Between the years 1981 and 2000, 7330 breast cancer cases were identified among the eligible study population. Each breast cancer case was matched by age, gender, and time of diagnosis to four controls, resulting in 29,320 controls available for these analyses.

Figure 7 shows the yearly incidence of breast cancer cases from year 1981 till year 2000. The average number of cases accrued per year was 367 cases (sd = 54 cases). The lowest incidence during the 20-year period was in 1982 where 280 cases were identified, whereas the highest incidence was in year 1999 (433 cases) (figure 7).

The mean age at diagnosis was 61.0 years for both the breast cancer cases and their controls (sd = 12.4 and 12.3 years respectively). The youngest breast cancer case was 20.4 years old, whereas the oldest one was 82.5 years old. The age distribution of the breast cancer cases is also represented by a histogram shown in figure 8.

5.1.1 Tricyclic antidepressants

5.1.1.1 Effect of ever/never and cumulative dosage exposure

5.1.1.1.1 20-year history

Table 1 presents the results of assessing the association between breast cancer development and the two TCA exposure indices (ever/never and cumulative dosage exposure) for those having at least 20 years of history. Of the 7330 breast cancer cases, 1876 (25.6%) had at least 20 years of provincial health coverage prior to diagnosis, and thus were included in these analyses. As for the controls, 25.1% were included in these analyses (7362 out of 29320) (table 1).

The RRs for the development of breast cancer were close to 1 for the ever/never exposure index when all TCAs were combined and when the genotoxic and non-genotoxic TCAs were separated (table 1).

The RRs calculated when the cumulative dosage exposure index, of all TCAs combined, was used were not different, even when 5, 10, and 15 years were excluded from the 20-year period (table 1).

When exposure to genotoxic and non-genotoxic TCAs was categorized, a higher RR was found for the genotoxic TCAs at the high level of exposure (RR = 1.20, 95% CI = 0.91 - 1.57) as compared with that for the non-genotoxic ones (RR = 1.11, 95% CI = 0.86 - 1.43) for the 2-20 year period of cumulative dosage exposure prior to the index date (table 1). When the exposures in the 10 years prior to the index date were excluded from the analyses, the RR was higher for the non-genotoxic TCAs at the high level (RR = 1.21, 95% CI = 0.88 - 1.67) as compared with the genotoxic ones (RR = 1.02, 95% CI = 0.76 - 1.38) (table 1).

5.1.1.1.2 15-year history

The results of the analyses assessing the association between breast cancer and the two TCA exposure indices (ever/never and cumulative dosage exposure), among those having at least 15 years of history, are presented in table 2. Of the 7330

breast cancer cases, 3883 (53.0%) were included in these analyses, whereas 52.5% of the controls were included (15389 out of 29320) (table 2).

The RRs for the ever/never exposure index, when all TCAs were combined and when genotoxic and non-genotoxic TCAs were separated, ranged between 1.01 and 1.08 (table 2).

When the cumulative dosage exposure index of all TCAs combined was used, the RRs for the high level of exposure (ranging from 1.02 to 1.11) were higher than for the low levels of exposure (ranging from 0.91 to 0.98) when the last 1, 5, and 10, years were excluded from the 15-year period respectively (table 2).

The cumulative dosage exposure to genotoxic TCAs, during the period 2-15 years prior to the index date, was significantly associated with the incidence of breast cancer (RR = 1.20, 95% CI = 1.04 - 1.51). Although the RR remained higher for the cumulative dosage exposure to genotoxic TCAs as compared with the non-genotoxic ones, the RRs decreased when 5 and 10 years were excluded from the 15-year period (table 2). Another point to be noted is that the cumulative dosage exposure to TCAs (both genotoxic and non-genotoxic) at the high level showed a higher RR as compared with those at the low level.

5.1.1.1.3 10-year history

Table 3 presents the results of the analyses assessing the association between breast cancer and the two TCA exposure indices (ever/never and cumulative dosage exposure) for those having at least 10 years of provincial health coverage history. Of the 7330 breast cancer cases, 5689 (77.6%) were included in these analyses, whereas 77.7% of the controls were included (22775 out of 29320) (table 3).

When the ever/never exposure index was used, the RR of the association between exposure to genotoxic TCAs, 2-10 years prior to the index date, and breast cancer was significantly greater than 1 (RR = 1.12, 95% CI = 1.00 - 1.26), whereas that for exposure to the non-genotoxic TCAs was not significant (RR = 1.09, 95% CI = 0.98 - 1.22) (table 3).

The RRs at the high level of cumulative dosage of TCA exposure were significantly higher than those unexposed to any TCA when the 2-10 year period prior to index date was considered (RR = 1.13, 95% CI = 1.02 - 1.24) (table 3). When the 5 years prior to diagnosis were excluded from the analyses, the RR at the high level of cumulative dosage of TCA exposure was greater than 1, non-significant (RR = 1.07, 95% CI = 0.96 - 1.20).

The last section of table 3 presents the results of the analyses on the cumulative dosage exposure to genotoxic and non-genotoxic TCAs in association

with the incidence of breast cancer. The RR for the association between exposure to high levels of genotoxic TCAs, 2-10 years prior to the index date, and breast cancer was significantly greater than 1 (RR = 1.23, 95% CI = 1.04 - 1.44), as compared with that of the non-genotoxic TCAs (RR = 1.12, 95% CI = 0.96 - 1.32) (table 3). When the prior 5 years were excluded from the 10-year period, the RRs for both genotoxic and non-genotoxic TCAs were greater than 1 but were not significant (table 3).

5.1.1.1.4 5-year history

Finally, table 4 presents the results of the analyses, assessing the risk of breast cancer in relation to the two TCA exposure indices (ever/never and cumulative dosage exposure), carried out on those having at least 5 years of history. Since one of the inclusion criteria was that subjects must have at least 5 years of provincial health coverage prior to the index date, all of the 7330 breast cancer cases and the 29320 controls were included in these analyses (table 4).

The RR for the association between ever being exposed to any TCA, during the 2-5 year period preceding the index date, and the development of breast cancer was significantly greater than 1 (RR = 1.15, 95% CI = 1.07 - 1.24) (table 4). Although the association between ever being exposed to genotoxic or non-genotoxic TCAs and incidence of breast cancer were significant, the RR for the genotoxic TCA exposure (RR = 1.20, 95% CI = 1.06 - 1.35) was higher than that for the non-genotoxic ones (RR = 1.15, 95% CI = 1.03 - 1.28) (table 4).

Those with high cumulative exposure to any TCA in the 2-5 years before the index date had a significantly higher incidence of breast cancer than those who had no exposure to any TCA in this period (RR = 1.19, 95% CI = 1.08 - 1.31). Those who had low cumulative exposure during the same period also had a higher, but non-significant, incidence of breast cancer as compared with those who had no exposure to any TCA in that period (RR = 1.10, 95% CI = 0.98 - 1.23) (table 4).

Finally, a higher incidence of breast cancer was associated with the cumulative dosage exposure to genotoxic TCAs at the high level (RR = 1.29, 95% CI = 1.10 - 1.50), as well as with the cumulative dosage exposure to non-genotoxic TCAs at the high level (RR = 1.19, 95% CI = 1.02 - 1.38) (table 4). Nevertheless, the p-trend for the association between exposure to genotoxic TCAs and breast cancer was 0.02 for the 2-5 year period prior to the index date, as compared with 0.22 for exposure to non-genotoxic TCAs (table 4).

5.1.1.2 Effect of average daily dose of exposure by time period

The sample size used in the analyses to assess the effect of the average daily dose of exposure was different for the 4 different time periods. For the first period before diagnosis (2-5 years), all of the cases and the controls (7330 and 29320 respectively) were utilized in the analyses (tables 5-7). As for the second period (6-10 years), 1641 cases and 6545 controls were excluded from the specific analysis (categorized in the "other" category) and thus 5689 cases and 22775 controls were

utilized in the analyses for this period (tables 5-7). The numbers of cases and controls included in the analyses of the third and fourth period before the index date were 3883 and 1876 cases matched to 15389 and 7362 controls respectively (tables 5-7).

5.1.1.2.1 All TCAs combined

Table 5 presents the results of the analyses pertaining to the association between the estimated dosage of exposure to all TCAs and the development of breast cancer, for the 4 periods prior to the index date.

When the 2-5 years time period was considered, the adjusted RR for the association between breast cancer and exposure to any TCA, as compared with those unexposed to any TCA, increased from the low dosage level (adjusted RR = 1.12, 95% CI = 1.00 - 1.26) to the medium dosage level (adjusted RR = 1.20, 95% CI = 1.04 - 1.39) to the highest dosage level (adjusted RR = 1.19, 95% CI = 1.01 - 1.40), with a p-trend of 0.21 (table 5). On the other hand, the p-trend for the same association in the 11-15 years period was 0.05, although none of the adjusted RRs for the low, medium, and high dosage levels of exposure was significant (adjusted RR = 0.90, 1.02, and 1.10 respectively).

5.1.1.2.2 Genotoxic and non-genotoxic TCAs

The results of the analyses of the association between the estimated dosage of genotoxic and non-genotoxic TCAs, in each of the four time periods, and breast cancer are presented in table 6.

In the first period prior to the index date (2-5 years), the adjusted RRs calculated for the exposure to genotoxic TCAs and breast cancer were higher than those calculated for the non-genotoxic ones for the medium and high dosage level of exposure, but not for the low dosage level (table 6). The adjusted RRs for the genotoxic TCAs ranged between 1.06 and 1.19, whereas the ones for the non-genotoxic TCAs ranged between 1.06 and 1.11.

Considering the period 11-15 years before the index date, the p-trend for the association between exposure to genotoxic TCAs and incidence of breast cancer was 0.002 for an increase in the adjusted RR from 0.91 at the low dosage level to 1.04 at the medium level to 1.27 at the high level (table 6). The adjusted RRs for the association between exposure to non-genotoxic TCAs and breast cancer were as follows: 0.91 at the low dosage level, 1.07 at the medium level, and 0.91 at the high level.

5.1.1.2.3 Exclusive genotoxic and non-genotoxic TCAs

Table 7 presents the results of the analyses of the dosage of exclusive genotoxic or non-genotoxic TCA exposure, during the four periods before the index date, and incidence of breast cancer. A p-trend of 0.03 was found for the association between the incidence of breast cancer and the exclusive exposure to genotoxic TCAs during the first period before index. The adjusted RR at the medium dosage level of this association was 1.34 (95% CI = 1.07 - 1.68) and that at the high dosage level of exposure was 1.32 (95% CI = 1.04 - 1.67) (table 7).

When considering the third period (11-15 years prior to index date), a p-trend of 0.03 was calculated for the association between incidence of breast cancer and exclusive exposure to genotoxic TCAs, with a highest adjusted RR of 1.17 at the high dosage level of exposure (95% CI = 0.79 - 1.74) (table 7).

5.1.1.3 Effect of duration of exposure by time period

The sample size used for the estimated duration analyses was different for the 4 different time periods. Because the time periods in the duration analyses were not exactly the same as those constructed for the dosage analyses, the number of subjects excluded in each period were not identical to those excluded in the previous analyses. For the first period before diagnosis (2-5 years), all of the cases and the controls (7330 and 29320 respectively) were utilized in the analyses (tables 8 - 10). As for the

second period (6-10 years), 1637 cases and 6535 controls were excluded from these analyses (categorized in the "other" category), and thus 5693 cases and 22785 controls were kept for the analyses (tables 8 - 10). The number of cases used in the analyses of the third and fourth period was 3893 and 1899 respectively, whereas the number of controls was 15437 and 7450 respectively (tables 8 - 10).

5.1.1.3.1 All TCAs combined

Table 8 presents the results of the analyses carried out to assess the association between the estimated duration of TCA use, during the four time periods prior to the index date, and the incidence of breast cancer.

The p-trend for the exposure to TCAs during the first period (2-5 years prior to index date) was 0.0004, which reflected the following increase in the adjusted RRs; 1.06 at the short duration level (95% CI = 0.93 - 1.20), 1.22 at the medium duration level (95% CI = 1.07 - 1.39), and 1.32 at the long duration level (95% CI = 1.12 - 1.54) (table 8).

5.1.1.3.2 Genotoxic and non-genotoxic TCAs

The same trend was reflected in table 9, which shows the results of the analyses of the estimated duration of genotoxic and non-genotoxic TCA exposure, during the four periods prior to the index date, and incidence of breast cancer. The p-

trend for the association between genotoxic TCAs and breast cancer during the first period before index date (2-5 years) was 0.01 with a significant adjusted RR at the long duration level of exposure (adjusted RR = 1.30, 95% CI = 1.04 - 1.63). On the other hand, the p-trend for the association with the non-genotoxic TCAs was 0.03, with a significant adjusted RR at the medium duration level of exposure (adjusted RR = 1.21, 95% CI = 1.03 - 1.43) (table 9).

Similar to what was found with the average daily dose analyses, the RR for the association with the genotoxic TCAs during the third period (11-15 years before index date) increased from 0.90 at the short duration level to 1.34 at the long duration level (p-trend = 0.10) (table 9).

5.1.1.3.3 Exclusive genotoxic and non-genotoxic TCAs

The results of the analyses assessing the association between the estimated duration of exclusive genotoxic and non-genotoxic TCA exposure, during the four periods before the index date, and the incidence of breast cancer are shown in table 10. The p-trend for the estimated duration of exclusive exposure to both genotoxic and non-genotoxic TCAs during the first period (2-5 years) was found to be significant (0.001 and 0.008 respectively) (table 10). The adjusted RR for the association with the genotoxic TCAs was higher than that of the non-genotoxic TCAs, although both showed significant adjusted RR at the medium and long duration levels of exposure (table 10).

5.1.2 SSRIs

The sample size used for the analyses to assess the association between exposure to SSRIs and development of breast cancer was much smaller for that used in the TCA exposure analyses. Of the 7330 breast cancer cases, 4682 (63.9%) were included in the following analyses (since having an index date after the date when the first SSRI was introduced). Similarly, 18728 out of the 29320 (63.9%) controls were included in these analyses (tables 11 - 14).

5.1.2.1 Effect of ever/never and cumulative dosage exposure

5.1.2.1.1 10-year history

The observed associations between the two SSRI antidepressants exposure indices (ever/never and cumulative dosage exposure) and breast cancer development, for those having at least 10 years of history, are presented in table 11.

The association between ever being exposed to SSRIs, in the 2-10 year period prior to the index date, and incidence of breast cancer was not significant (RR = 1.09, 95% CI = 0.93 - 1.27) (table 11).

When the cumulative dosage exposure index was used, the association between the low level exposure to SSRIs and the incidence of breast cancer (RR =

1.14) was lower than that of the high level of exposure (RR = 1.02) when the 2-10 year period was assessed (table 11).

5.1.2.1.2 5-year history

The results of the association between breast cancer development in association with the two SSRI antidepressants exposure indices (ever/never and cumulative dosage exposure), for those having 5 years of history, are presented in table 12.

The ever use of SSRI drugs, during the 2-5 year period prior to the index date, was associated with an elevated incidence of breast cancer (RR = 1.13, 95% CI = 0.95 - 1.33) (table 12).

The cumulative dosage exposure to SSRI drugs, at the low level, was of borderline significance, when the 2-5 year period was considered (RR = 1.23, 95% CI = 0.99 - 1.54) (table 12).

5.1.2.2 Effect of average daily dose of exposure by time period

Table 13 presents the results of the analyses of the estimated dosage of exposure to SSRIs and the incidence of breast cancer for the 2 periods prior to the index date (2-5 years and 6-10 years).

The only significant association found in these analyses was for the association between exposure to SSRIs at the low dosage level 2-5 years prior to the index date and the incidence of breast cancer (adjusted RR = 1.26, 95% CI = 1.01 - 1.57). Exposure to SSRIs at the high level, during the 2-5 years period, yielded an adjusted RR of 1.24, which was not significant (95% CI = 0.78 - 1.98) (table 13).

5.1.2.3 Effect of duration of exposure by time period

The results of the analyses of the estimated duration to SSRI drugs and the incidence of breast cancer for the 2 periods prior to the index date (2-5 years and 6-10 years) are presented in table 14. Exposures to the SSRIs at the short and long duration levels, during the first period before diagnosis, were associated with an non-significant increase in the incidence of breast cancer (adjusted RR = 1.22 and adjusted RR = 1.22 respectively) (table 14).

5.2 Prostate cancer

The results of the analyses carried out to assess the association between antidepressant drug exposure and the incidence of prostate cancer are summarized in this section. The study data set included 7767 prostate cancer cases, and thus 31068 matched controls were selected based on a 4 controls per each case.

For the 20-year study period, the average number of prostate cancer cases accrued per year was 388 cases (sd = 108 cases). The yearly incidence of prostate cancer is presented in figure 9. The year 1984 was characterized with the lowest incidence of prostate cancer (247 cases), whereas the year 1993 was characterized with the highest incidence (577 cases) (figure 9).

The mean age at diagnosis for the prostate cancer cases and controls was 70.5 years (sd = 6.7 and 6.8 years respectively). Age of the prostate cancer cases ranged between 36.8 years and 82.5 years. Figure 10 shows the age distribution of the prostate cancer cases in the form of a histogram.

For reasons of brevity, the results of assessing the association between prostate cancer development and the two exposure indices of TCAs and SSRIs (ever/never and cumulative dosage exposure) are included in appendix E (E.1 - E.4).

5.2.1 Tricyclic antidepressants

5.2.1.1 Effect of average daily dose of exposure by time period

The number of cases used in the analyses on the effect of average daily dose of exposure, during the four periods prior to the index date, in association with prostate cancer development was: 7767, 6308, 4693, and 2234 respectively. As for the controls, there were 31068, 25143, 18655, and 8799 available controls for the four periods respectively (tables 15 and 16).

The results of the analyses of the average daily dose of exposure to all TCAs, during the 4 periods prior to the index date, and the development of prostate cancer are summarized in appendix E.5. The results of the analyses of the association between the average daily dose of exposure to genotoxic and non-genotoxic TCAs, as well as the exclusive exposure to these drugs, in each of the four time periods and incidence of prostate cancer are presented in this section (tables 15 and 16 respectively).

5.2.1.1.1 Genotoxic and non-genotoxic TCAs

In the first period prior to index date (2-5 years), exposure to low average daily dosage levels of the non-genotoxic TCAs was associated with a significant increase in the incidence of prostate cancer (adjusted RR = 1.25, 95% CI = 1.05 - 1.49), whereas it was exposure to medium levels of genotoxic TCAs that was

associated with a significant increase in the incidence (adjusted RR = 1.33, 95% CI = 1.02-1.74) (table 15).

The other period that showed some differences between the two types of TCAs was the second period before diagnosis (6-10 years). Exposure to genotoxic TCAs at the low average daily dose level was associated with a borderline significant p-trend (0.06) for a decrease in the adjusted RR of prostate cancer from 1.28 (95% CI = 1.06 - 1.56) to a RR of 0.66 (95% CI = 0.44 - 0.98) (table 15).

5.2.1.1.2 Exclusive genotoxic and non-genotoxic TCAs

Results of the analyses assessing the association between the average daily dose of exclusive genotoxic or non-genotoxic TCA exposure and the incidence of prostate cancer, presented in table 16, were similar to those in table 15.

When considering the first period prior to the index date (2-5 years), the adjusted RR was significantly higher for those exposed to exclusive low average daily dose levels of non-genotoxic TCAs as compared with those who were not exposed to any TCAs during that period (RR = 1.34, 95% CI = 1.12 - 1.62) (table 16). The ptrend for exclusive exposure to genotoxic TCAs was 0.08 which was reflected in an increase in the adjusted RR from 1.25 at the low average dose level of exposure (95% CI = 1.00 - 1.55), to 1.39 at the medium level (95% CI = 1.02 - 1.89), to 1.47 at the high level (95% CI = 1.06 - 2.03).

Higher average daily dose of exclusive genotoxic TCAs, during the period 6-10 years prior to diagnosis, was associated with a significant decreasing trend in incidence of prostate cancer (p-trend = 0.01) (table 16). The adjusted RRs decreased from 1.36 (95% CI = 1.10 - 1.68) to 0.48 (95% CI = 0.30 - 0.77) for the low to high average dose levels.

5.2.1.2 Effect of duration of exposure by time period

The number of cases used in the analyses to assess the effect of duration of TCA exposure, during the four periods prior to the index date, in association with the incidence of prostate cancer were: 7767, 6310, 4713, and 2251 respectively. As for the controls, there were 31068, 25153, 18734, and 8865 available controls for the four periods respectively (tables 17 and 18).

Appendix E.6 presents the results of the analyses of the exposure duration to all TCAs combined, during the 4 periods prior to the index date, and the incidence of prostate cancer.

5.2.1.2.1 Genotoxic and non-genotoxic TCAs

The same trend seen in the previous two tables was reflected in table 17, which shows the results of the analyses of the estimated duration of genotoxic and non-genotoxic TCA exposure, during the four periods prior to the index date, and the

incidence of prostate cancer. Exposure to short and medium duration levels of non-genotoxic TCAs, during the 2-5 years period prior to index date, was associated with a significant increase in the adjusted RR of prostate cancer development (1.24 and 1.31 respectively) (table 17).

5.2.1.2.2 Exclusive genotoxic and non-genotoxic TCAs

As in the previous analyses, the incidence of prostate cancer was affected by exposure to TCAs, 2-5 years and 6-10 years prior to the date of diagnosis (table 18). Higher duration of genotoxic TCA exposure was associated with an increase in the adjusted RRs (p-trend = 0.01) in the 2-5 years period prior to index, whereas it was associated with a decrease in the adjusted RRs (p-trend = 0.09) in the 6-10 years period.

5.2.2 SSRIs

Out of the total sample size, 5346 cases (69%) and 21384 controls (69%) were included in the following analyses pertaining the exposure to SSRIs and incidence of prostate cancer.

5.2.2.1 Effect of average daily dose of exposure by time period

The results of the analyses carried out on the estimated dosage of exposure to SSRIs and the incidence of prostate cancer are summarized in table 19. The prevalence of exposure to SSRIs among cases and controls, in the two periods studied (2-5, and 6-10 years), was relatively small. The number of exposed cases ranged from 50 at the low exposure level to 9 at the high exposure level for the 2-5 years prior to the index date, whereas the numbers were 24 and 1 for the 6-10 years prior to the index date (table 19). Exposure to SSRIs in the two periods, as compared with those unexposed to any SSRI, was not found to have a significant effect on the incidence of prostate cancer.

5.2.2.2 Effect of duration of exposure by time period

The results of the analyses carried out on the estimated duration of exposure to SSRIs and the incidence of prostate cancer, presented in table 20, were similar to those of the estimated dosage.

5.3 Ovarian cancer

The following section of this chapter covers the results of the ovarian cancer analyses in association with antidepressant exposure. The number of cases and matched controls used for the following analyses were 1090 and 4360 respectively (based on a 4 controls per each ovarian cancer case).

The distribution of the yearly incidence of the ovarian cancer cases is plotted in figure 11. The average number of ovarian cancer cases accrued per year, during the 20-year period, was 55 cases per year (sd = 9 cases). The minimum number of ovarian cancer cases accrued was 38, whereas the maximum number was 68 which corresponded to the years 1983 and 1994 respectively.

The mean age at diagnosis was 59.4 years (sd = 15.0 years) for the ovarian cancer cases, and 59.3 years (sd = 15.0 years) for the matched controls. Age of the ovarian cancer cases and controls ranged between 5.2 years and 82.5 years. The histogram summarizing the age distribution of the ovarian cancer cases is presented in figure 12.

For reasons of brevity, although the same analyses which were carried out on the breast cancer cases were carried out on the ovarian cancer cases, only the major tables are presented in this section, while the others are included in appendix F.

5.3.1 Tricyclic antidepressants

5.3.1.1 Effect of average daily dose of exposure by time period

The number of cases available for the analyses assessing the association between the average daily dose of exposure to TCAs and the incidence of ovarian cancer was 1090, 813, 553, and 241 cases, corresponding to the four periods prior to the index date (tables 21 and 22). The corresponding number of controls was 4360, 3268, 2216, and 1008 for the four periods respectively.

5.3.1.1.1 Genotoxic and non-genotoxic TCAs

The results of the analyses of the association between the average daily dose of genotoxic and non-genotoxic TCAs, in each of the four time periods, and incidence of ovarian cancer are presented in table 21.

Exposure to medium levels of the average daily dose of genotoxic TCAs, 2-5 years prior to diagnosis, was associated with the incidence of ovarian cancer with an adjusted RR of 1.66 (95% CI = 1.02 - 2.72). On the other hand, higher exposure to non-genotoxic TCAs 6-10 years prior to diagnosis was associated with an increase in the incidence of ovarian cancer with a p-trend of 0.0001 reflecting an increase up to an adjusted RR of 3.72 (95% CI = 1.79 - 7.75), at the high dosage level (table 21).

5.3.1.1.2 Exclusive genotoxic and non-genotoxic TCAs

Table 22 summarizes the results of the analyses assessing the association between the average daily dose of exclusive genotoxic or non-genotoxic TCA exposure and the incidence of ovarian cancer. An increased incidence of ovarian cancer was associated with exposure to TCAs, during the period 6-10 years prior to index date. Higher exposure to non-genotoxic TCAs was associated with an increase in incidence of ovarian cancer (p-trend of 0.0005) reflecting an increase in the adjusted RR up to 3.01 (95% CI = 1.34 - 6.77) at the high average daily dosage level of exposure (table 22).

5.3.1.2 Effect of duration of exposure by time period

The number of cases available for the estimated duration analyses of TCA exposure, during the four periods prior to the index date, and incidence of ovarian cancer was 1090, 813, 554, and 243 respectively (tables 23 and 24). The corresponding number of controls for the four periods was 4360, 3268, 2221, and 1015 respectively.

5.3.1.2.1 Genotoxic and non-genotoxic TCAs

In the analyses pertaining the duration of exposure to the two different types of TCAs and the incidence of ovarian cancer, higher duration of exposure to the non-

genotoxic TCAs, during the second period prior to the index date, was associated with a p-trend of 0.01 (table 23). In the same period, exposure to a long duration of non-genotoxic TCAs was associated with a non-significant increase in incidence of ovarian cancer (RR of 3.00).

5.3.1.2.2 Exclusive genotoxic and non-genotoxic TCAs

Along the same line of what was found in the previous analyses for the risk of ovarian cancer, exclusive exposure to the non-genotoxic TCAs, 6-10 years prior to the index date, was associated with a p-trend of 0.04 with a significant adjusted RR of 2.47 (95% CI = 1.04 - 5.89) at the long duration level of exposure (table 24).

5.3.2 **SSRIs**

The analyses pertaining the average daily dose and duration of exposure to SSRIs, for the two periods prior to the index date (2-5, and 6-10 years), in relation to the incidence of ovarian cancer are presented in tables 25 and 26. The sample size used for carrying out these analyses was 62% (672 cases and 2688 matched controls) of the original sample size. Although the results are presented in the two tables, the number of exposed cases and controls in the 2 periods prior to the index date was very small to rely on the found associations.

5.4 Non-Hodgkin's lymphoma

The last section of this chapter summarizes the results of the analyses on the non-Hodgkin's lymphoma cases. During the 20-year study period, the 1980 non-Hodgkin's lymphoma cases identified were matched to 7920 controls (4 controls per each case).

During the 20-year period, the yearly average number of non-Hodgkin's lymphoma cases accrued, during the 20-year period, was 99 cases (sd = 17 cases). The yearly incidence of non-Hodgkin's lymphoma was lowest in 1982 (59 cases) and highest in 1997 (130 cases) (figure 13).

The mean age at diagnosis was 61.3 years (sd = 14.6 years), for both the non-Hodgkin's lymphoma cases and their matched controls. The youngest case identified in this group was 5.4 years old and the oldest was 82.5 years. Males accounted for 54% of the non-Hodgkin's lymphoma cases and their matched controls. The histogram summarizing the age distribution of the non-Hodgkin's lymphoma cases is presented in figure 14.

The results that are not presented in this section are summarized in appendix G.

5.4.1 Tricyclic antidepressants

5.4.1.1 Effect of average daily dose of exposure by time period

The number of cases available for the analyses carried out to assess the association between average daily dose of TCA exposure and incidence of non-Hodgkin's lymphoma was 1980 for the first period before diagnosis, and 1541, 1030, and 502 for the second, third, and fourth periods respectively (tables 27 and 28). The number of controls was 7920, 6200, 4054, and 1970 for the four periods respectively.

5.4.1.1.1 Genotoxic and non-genotoxic TCAs

Table 27 presents the results of the analyses of the association between the average daily dose of exposure to genotoxic and non-genotoxic TCAs, in each of the four time periods, and the incidence of non-Hodgkin's lymphoma.

Exposure to the two types of TCAs considered in this study, during the third period before diagnosis (11-15 years), was found to have opposite effects on the incidence of non-Hodgkin's lymphoma (table 27). A p-trend of 0.01 was found for higher average daily dose of exposure to genotoxic TCAs during this period, with an adjusted RR of 3.01 at the high level (95% CI = 1.42 - 6.36). On the other hand, a significant protective effect was found for the exposure to non-genotoxic TCAs at the high average daily dose level with an adjusted RR of 0.29 (95% CI = 0.09 - 0.93) (table 27).

5.4.1.1.2 Exclusive genotoxic and non-genotoxic TCAs

Those with exposure to low and medium average daily dose levels of exclusive non-genotoxic TCAs, during the first period before diagnosis (2-5 years), had a significantly higher incidence of non-Hodgkin's lymphoma (adjusted RR = 1.41 and 1.71 respectively) (table 28). Moreover, an elevated incidence of non-Hodgkin's lymphoma (RR = 2.76, 95% CI = 1.15 - 6.61) was found for the high average daily dose level of genotoxic exposure during the 11-15 year period before the index date.

5.4.1.2 Effect of duration of exposure by time period

The results of the analyses of the association between the estimated duration of genotoxic and non-genotoxic TCAs, as well as the exclusive exposure to these drugs, in each of the four time periods and incidence of non-Hodgkin's lymphoma are presented in this section (tables 29 and 30). After excluding those with incomplete drug information, the number of available cases was 1980, 1541, 1033, and 508 for the four periods prior to the date of index, respectively. The number of controls available for the four periods was 7920, 6201, 4067, and 1993 respectively.

5.4.1.2.1 Genotoxic and non-genotoxic TCAs

The same results that were found in the analyses pertaining to the estimated average daily dose of TCAs and the incidence of non-Hodgkin's lymphoma were also found when the estimated duration of exposure was studied (table 29).

In the first period before diagnosis (2-5 years), higher average daily dose of exposure to non-genotoxic TCAs was associated with the incidence of non-Hodgkin's lymphoma (p-trend = 0.01), with the adjusted RR at the long duration level being 1.95 (95% CI = 1.23 - 3.10) (table 29).

Exposure to genotoxic and non-genotoxic TCAs during the third period (11-15 years prior to index date) was characterized with opposite effects on the incidence of non-Hodgkin's lymphoma (table 29). Higher duration of exposure to genotoxic TCAs in this period was associated with an increasing trend in incidence rates of non-Hodgkin's lymphoma (p-trend = 0.003), with a significant adjusted RR of 3.77 at the long duration level (95% CI = 1.61 - 8.85). On the other hand, higher duration of exposure to non-genotoxic TCAs in this period was associated with a decreasing trend in incidence rates of non-Hodgkin's lymphoma (p-trend = 0.03), with a significant adjusted RR of 0.19 at the long duration level (95% CI = 0.04 - 0.84) (table 29).

5.4.1.2.2 Exclusive genotoxic and non-genotoxic TCAs

Once again, the same effect of exposure to genotoxic and non-genotoxic TCAs, in the first and third period before the index date, on the incidence of non-Hodgkin's lymphoma was found when duration of exclusive exposure was studied (table 30).

Higher exclusive exposure to non-genotoxic TCAs, during the first period before diagnosis (2-5 years), was associated with an increasing trend in incidence rates of non-Hodgkin's lymphoma (p-trend = 0.002) (adjusted RR at long duration level = 2.28, 95% CI = 1.40 - 3.72) (table 30).

In the third period before diagnosis (11-15 years), higher exclusive exposure to genotoxic TCAs was associated with a significant trend towards an increasing incidence of non-Hodgkin's lymphoma (p-trend = 0.02) (adjusted RR at long duration level =3.72, 95% CI = 1.36 - 10.2), whereas higher exposure to exclusive non-genotoxic TCAs was associated with a trend towards a decreasing incidence of non-Hodgkin's lymphoma (p-trend = 0.06) (table 30).

5.4.2 SSRIs

The analyses pertaining the estimated average daily dose and duration of exposure to SSRIs, for the two periods prior to the index date (2-5, and 6-10 years), in

relation to non-Hodgkin's lymphoma are presented in tables 31 and 32. The sample size used for carrying out these analyses was 1243 cases and 4972 matched controls. Neither the estimated average daily dose of exposure to SSRIs, nor the estimated duration of exposure to these drugs was significantly associated with the incidence of developing non-Hodgkin's lymphoma.

Chapter 6: Discussion

Antidepressants are used to treat depression (a common illness) and other diseases (such as anxiety disorders, agoraphobia, panic attacks, obsessive-compulsive neurosis, migraine headaches, and chronic pain), and thus prolonged exposure to these drugs over extended periods of time is frequent. Cancer is the second leading cause of death, exceeded only by heart disease.

Although mechanisms have not been confirmed, animal and epidemiological studies suggest that antidepressants promote tumor growth in humans. In 1991, a study in fruit flies showed that some tricyclic antidepressants (TCAs) were genotoxic, as compared with others which were not found to be genotoxic (Van Schaik et al., 1991; and Van Schaik et al., 1993). Consistent results were found in humans in a large epidemiologic study on breast cancer (Sharpe et al., 2002).

It was based on these latest results that we developed our study to investigate the relationship between antidepressant drug use and the risk of cancer. The general hypothesis tested was that people exposed to genotoxic TCAs, relative to those exposed to non-genotoxic TCAs or unexposed to any antidepressants, were at increased risk of developing any of four different cancer types.

The following chapter summarizes and interprets the results, as well as addresses strengths and limitations of the study. The final conclusion is presented at the end of the chapter.

6.1 Summary of the results

Study results for the association between antidepressants exposure and cancer occurrence are summarized and discussed in this section. In the first subsection, results on the exposure to TCAs in association with each of the four cancer sites, as well as an overall summary, are presented. In the second subsection, effects of exposure to SSRIs, on each of the four cancer sites, are summarized.

6.1.1 TCA exposure

6.1.1.1 Female breast cancer

There was a tendency for those who had more exposure to any TCA, in the 2-5 year period prior to the index date, to have higher incidence rates relative to those unexposed to any TCA in this period (tables 33 and 34). Moreover, higher exposure to either genotoxic or non-genotoxic TCAs, during the same period, was also associated with a significant trend of increasing incidence rates of breast cancer (tables 35 and 36). The results of the analyses restricted by age did not show any different effects (appendices D.1 - D.3).

Exposure to TCAs in general, during the period 6-10 years prior to the index date, was not associated with any trend in incidence rates of breast cancer (tables 33 and 34). Similarly, higher exposure to either genotoxic or non-genotoxic TCAs, during the same period, was not associated with an elevated incidence of breast cancer, even when age restriction was applied (tables 35 and 36; appendices D.1 - D.3).

Higher exposure to any TCA (as a class), as well as to genotoxic TCAs, 11-15 years before the index date, was associated with a significant trend of increasing incidence of breast cancer (tables 33 - 36), whereas higher exposure to non-genotoxic TCAs, during the same period, was not associated with any trend in the incidence of breast cancer. Similar results were found when age restriction was done on the analyses (appendices D.1 - D.3).

Finally, higher exposure to any of the three groups of TCAs (TCAs as a class, genotoxic TCAs, and non-genotoxic TCAs), during the period 16-20 years before the index date, was not associated with elevated incidence of breast cancer (tables 33 - 36). Similarly, there was no observable trend in incidence in any of the age subgroups (appendices D.1 - D.3).

6.1.1.2 Prostate cancer

Exposure to TCAs in general, during the period 2-5 years prior to the index date, was not associated with any trend in incidence rates of prostate cancer (tables 33 and 34). On the other hand, it was exposure to genotoxic TCAs, during the same period, which was associated with a significant increasing trend (p-value = 0.01) in incidence of prostate cancer (tables 35 and 36).

Exposure to TCAs in general, during the period of 6-10 years prior to the index date, was not associated with an elevated incidence of prostate cancer (tables 33 and 34). On the other hand, during this period, and against the hypothesis, higher exposure to *genotoxic TCAs* was associated with a significant decreasing trend towards incidence of prostate cancer (p-trend = 0.01) (tables 35 and 36).

Finally, higher exposure to any of the three groups of TCAs (TCAs as a class, genotoxic TCAs, and non-genotoxic TCAs), during the periods 11-15 years and 16-20 years before the index date, was not associated with any trend in the incidence of prostate cancer (tables 33 - 36; and appendices E.1, E.2, E.5, and E.6).

6.1.1.3 Ovarian cancer

Those with higher exposure to any of the three groups of TCAs (TCAs as a class, genotoxic TCAs and non-genotoxic TCAs), during the period 2-5 years before the index date, were not at higher risk of ovarian cancer (tables 33 - 36).

Those with higher exposure to TCAs in general, during the 6-10 years prior to the index date, had significantly higher incidence rates of ovarian cancer (tables 33 and 34). Nevertheless, the increased risk was confined to exposure to the *non-genotoxic* TCAs during this period (p-trend less than 0.04) (tables 35 and 36).

Finally, higher exposure to any of the three groups of TCAs (TCAs as a class, genotoxic TCAs, and non-genotoxic TCAs), during the periods 11-15 years and 16-20 years before the index date, was not associated with any trend in the incidence of ovarian cancer (tables 33 - 36; and appendices F.1, F.2, F.5, and F.6).

6.1.1.4 Non-Hodgkin's lymphoma

Another unexpected association was found between exposure to TCAs, during the period 2-5 years prior to the index date, and the incidence of non-Hodgkin's lymphoma (tables 33 - 36). Among the three groups of TCAs, it was exposure to the *non-genotoxic* TCAs that was associated with a significant trend towards an increasing incidence of non-Hodgkin's lymphoma (p-trend = 0.002).

The incidence of non-Hodgkin's lymphoma was not related to the amount of exposure to any of the three groups of TCAs, during the period 6-10 years prior to the index date (tables 33-36).

Along the same line of the proposed hypothesis, higher exposure to genotoxic TCAs, during the period 11-15 years before the index date, was associated with a significant increasing trend in the incidence rate of non-Hodgkin's lymphoma, with a p-trend of 0.02 (tables 33 - 36).

Finally, none of the three groups of TCAs, during the period 16-20 years before the index date, was associated with any trend in the incidence of non-Hodgkin's lymphoma (tables 33-36; and appendices G.1, G.2, G.5, and G.6).

6.1.1.5 Summary

Across the four cancer types studied, our results did not show any consistent results in favor of the a priori hypothesis stating that exposure to genotoxic TCAs increases the risk of cancer development, as compared with exposure to nongenotoxic TCAs, which does not. Exposure to any of the three groups of TCAs (TCAs as a class, genotoxic TCAs, and non-genotoxic TCAs), at different times prior to the index date, was associated with either an increasing or a decreasing incidence of cancer (table 37). It is worth noting that although increased incidence of cancer was detected in some analyses, most of the instances the RR did not exceed 1.3,

which cannot be considered as a major increase in the risk of developing cancer. Nevertheless, most of the confidence intervals calculated around the rate ratios included values which are considered clinically significant, and thus the term "inconclusive" should be applied to these results.

Regarding TCAs, as a class, exposure 2-5 years and 11-15 years prior to the index date, was associated with the incidence of breast cancer (table 37). Similarly, exposure to TCAs in general, 6-10 years before index date, was associated with increasing incidence of ovarian cancer.

As for the genotoxic TCAs, exposure 2-5 years prior to the index date was associated with the incidence of both breast and prostate cancers (table 37). Genotoxic TCAs also increased the incidence of breast cancer and non-Hodgkin's lymphoma when exposure took place 11-15 years prior to the index date. Surprisingly, however, exposure to genotoxic TCAs 6-10 years prior to the index date was associated with a decreasing incidence of prostate cancer.

Exposure to non-genotoxic TCAs, 2-5 years before the index date, was associated with the incidence of breast cancer and non-Hodgkin's lymphoma (table 37). In addition, an increased incidence of ovarian cancer was associated with exposure to non-genotoxic TCAs, 6-10 years before the index date.

6.1.2 SSRI exposure

In most of the analyses, the numbers of exposed cases and controls available for the analyses of the SSRI antidepressants in relation to cancer incidence were too small to rely on the findings. Nevertheless, higher exposure to SSRI drugs, during the periods 2-5 years and 6-10 years prior to the index date, was not associated with any trend of incidence rates of any of the four cancer sites under study.

6.2 Consistency with published results

It is important to note that most of the studies carried out to assess the association between antidepressant drug use and risk of cancer were limited either by small sample size, self-reporting of use, failure to specify dosage, duration, or timing of use, or lack of control of confounding. These limitations, in addition to the short follow-up periods in most of the studies, make it difficult to compare our results to the ones reported in the literature. The much more extensive data used for this study, compared with the data used in other studies, and the considerably different methods of analyses make it more difficult to evaluate whether the results of this study are consistent with those of other studies.

The incidence of cancer (at the four different sites studied) increased with age, which reflects findings in the literature reporting that age is a risk factor for these cancers (figures 8, 10, 12, and 14) (Lenbard, 2001). The yearly incidence rate of each of the cancer sites studied increased slightly from 1980 to 2000 (figures 7, 9, 11, and 13), which suggests either an increase in the incidence of these cancers, or an enhancement in the identification of these cancers, yielding an increase in the number of cases diagnosed.

6.2.1 Female breast cancer

The association between TCA use and the development of breast cancer was assessed in different studies, most of which did not find any positive association (Friedman et al., 1980; Danielson et al., 1982; Friedman et al., 1983; Selby et al., 1989; Friedman et al., 1992; Kelly et al., 1999, and Wang et al., 2001).

In their 15-year follow-up studies, Friedman et al. found a breast cancer risk of 1.07 (95% CI: 0.92 – 1.23) among amitriptyline users (who filled at least one prescription during the follow-up period), whereas the risk was 0.77 (95% CI: 0.40 - 1.34) among the imipramine users (Friedman et al., 1980; Friedman et al., 1983; Selby et al., 1989; and Friedman, 1992). These findings are consistent with the results of our analyses carried out using the ever/never exposure index, for the period 2-15 years prior to index date, where the RR was 1.05 (95% CI: 0.97 – 1.15) (table 2).

In an attempt to avoid reverse causality, we excluded the year prior to cancer diagnosis. The results of the cohort study conducted by Danielson et al. were not comparable with our results since they defined exposure to antidepressants as having an antidepressant dispensed within the six-month period before the breast cancer was diagnosed (Danielson et al., 1982). Similarly, the short follow-up period (2 and a half years) of the study conducted by Wang et al. (Wang et al., 2001) makes it difficult to weigh their results against ours.

Similarly, no association between exposure to antidepressants and risk of breast cancer was found in the study carried out by Kelly et al. (Kelly et al., 1999). The assessment of exposure history through subject interviews was a major limitation, which might explain the discrepancy between our results and theirs.

On the other hand, a positive association between antidepressant drug use and risk of breast cancer was reported by few studies (Wallace et al., 1982; Cotterchio et al., 2000, and Sharpe et al., 2002).

Wallace et al. found a significant positive association between antidepressant drug use and risk of breast cancer (RR = 2.84, p-value < 0.04). However, it is difficult to compare these results to ours, since exposure data were obtained through interviews, and timing of use was not specified (Wallace et al., 1982). Similarly, the results of the case-control study carried out by Cotterchio et al. [OR = 2.5 (95% CI: 1.2 - 5.1)] were based on self-report of antidepressant exposure history, as well as the lack of timing specification, which adds to the difficulty of comparing them with our results (Cotterchio et al., 2000).

Finally, the major finding reported by Sharpe et al. was that higher exposure to genotoxic TCAs was associated with a trend towards an increasing risk of breast cancer 11-15 years later (p-trend = 0.0009), where at the highest exposure level the rate ratio was 2.47 (95% CI: 1.37 - 4.40). No association was found for exposure to non-genotoxic TCAs during the same time period. Table 38 presents a direct

comparison between the results reported by the current study and those reported by Sharpe et al. regarding the exposure to high level of genotoxic and non-genotoxic TCAs, 11-15 years before the date of diagnosis with breast cancer (table 38). Even though our results were consistent with what Sharpe et al. found, the effect of exposure to genotoxic TCAs on the development of breast cancer was not as strong. Although the same Saskatchewan health services databases were used in both Sharpe et al.'s study and our study to assess the effects of TCAs on the incidence of breast cancer, some differences could explain the discrepancy in the strength of the association. The first difference was the design of our study, which was a multiple site-specific case-control study using the same set of controls for the analyses of the different cancers. Because of the longer prescription histories in our study, the years 1981 to 2000 as compared with a 15-year period studied by Sharpe et al. (1981 -1995), our sample size was bigger (7330 cases as compared with 5882 cases) (table 39). Another aspect that differed between the two studies was the inclusion criteria of cases and controls. The age range of subjects ranged between 5 and 82.5 years in our study, whereas only subjects older than 35 years were included in the study that Sharpe et al. conducted. As a consequence, the two sets of data had 72.6% of all cases in common (74.2% of those 35-81 years old were in common) (table 39). Moreover, since the controls were selected randomly from the population of Saskatchewan, we had a completely different set of controls in our study as compared with Sharpe et al.'s study. Lastly, there were few differences in the analyses we carried out to assess the measures of estimates. In their study, Sharpe et al. did not consider any subject's antidepressant exposure in any specified time period if it overlapped with the period of incomplete recording of prescription information by the SPDP (July 1, 1987 and December 31, 1988). Whereas in our study, we assumed that all the subjects were unexposed during this year and a half period, and thus were able to use some valuable information that otherwise would be lost. Finally, in an attempt to replicate the results of Sharpe et al., by using the 72% common cases and applying the same analyses, we got results which were very similar to what was reported by the authors (results not presented). This provided evidence that the discrepancy between Sharpe et al.'s results and our results could be attributed to the differences summarized above.

6.2.2 Prostate cancer

The results of the analyses of the association between antidepressant drug use and risk of prostate cancer could not be compared with any previous studies reported in the literature since, to our knowledge, our study is the first to assess this association.

6.2.3 Ovarian cancer

Four published studies have assessed the association between antidepressant drug use and the risk of ovarian cancer. Two of these studies, carried out by the same group, reported a positive association with ovarian cancer (Harlow et al., 1995; and

Harlow et al., 1998), whereas the other two reported non-significant associations (Coogan et al., 2000; and Dublin et al., 2002).

The first study was conducted by Harlow et al. who found that use of antidepressants 10 or more years prior to date of diagnosis was associated with an increased risk of ovarian cancer [adjusted OR = 9.7 (95% CI: 1.2 - 78.8)] (Harlow et al., 1995). In our study, cumulative dosage exposure to antidepressant drugs 11-20 years prior to the index date was also associated with a relatively elevated non-significant risk of ovarian cancer (RR = 1.16, 95% CI: 0.70 - 1.93) (appendix F.1). The discrepancy of these risk estimates could be due to the very small sample size used by Harlow to calculate the risk (9 cases and 1 control). In their second study, Harlow et al. found that women who reported using any psychotropic medication, for 6 months or longer in the past, had a significantly greater risk of ovarian cancer than nonusers [OR = 1.6 (95% CI: 1.1 - 2.3)] (Harlow et al., 1998). Because the authors did not differentiate between antidepressants use and the use of other psychotropic drugs, it is difficult to compare their results to ours.

In their analyses, Coogan et al. reported that use of TCAs regularly 10 years before the index date was not significantly associated with the risk of ovarian cancer [odds ratio of 1.6 (95% CI: 0.6 - 4.6) when compared with cancer controls and 1.5 (95% CI: 0.5 - 4.10) when compared with non-cancer controls] (Coogan et al., 2000). These results could be compared with the results reported in appendix F.1 where we found that cumulative dosage exposure to TCAs 11-20 years prior to the index date

was associated with a RR of 1.16 (95% CI: 0.70 - 1.93). The elevated risk reported by Coogan et al. could be attributed to the recall bias that could have affected the results, because history of medication was obtained through interviews.

The most recent study cited to assess the association between antidepressant drug use and ovarian cancer reported an OR of 0.71 (95% CI: 0.47 – 1.1) for filling two antidepressant prescriptions in any 6-month period prior to the date of diagnosis (Dublin et al., 2002). The analyses of ours that was most comparable to the ones Dublin et al. carried out are presented in appendix F.2 (using ever/never exposure index in those having at least 15 years of history) where we found an non-significant RR of 1.05 for those who were ever exposed during the 2-15 year prior to the index date.

6.2.4 Non-Hodgkin's lymphoma

One published study has assessed the association between antidepressant drug use and the risk of non-Hodgkin's lymphoma (Dalton et al., 2000). The authors found an increased risk of non-Hodgkin's lymphoma among people with five or more TCA prescriptions [Standardized Incidence Ratio = 2.5 (95% CI: 1.4 - 4.2)] when followed for an average of 3.2 years. The analyses carried out by Dalton et al. could be compared with the ones we carried out for the ever/never exposure index (appendix G.4). We have found that ever being exposed to any TCA, in the 2-5 year period, was associated with a significant increase in the incidence of non-Hodgkin's

lymphoma (RR = 1.25, 95% CI: 1.06 - 1.47), not as strong as the estimate reported by the authors.

6.2.5 Overall results

Comparing our results with those published in the literature is a difficult task because of the difference in the data structure, as well as the different analyses used. Nevertheless, in general, the results are consistent with most studies found in the literature.

In our study, we found that exposure to any of the three groups of TCAs (TCAs as a class, genotoxic TCAs, and non-genotoxic TCAs), at different time periods prior to diagnosis, was associated with an increased incidence of different cancer sites (table 37). The period before diagnosis during which exposure to antidepressant drugs might have an effect on the development of cancer varied among different sites, as well as different types of TCAs.

The significant trend of an increasing incidence of cancer (breast, prostate and non-Hodgkin's lymphoma) in association with exposure to antidepressants, during the period of 2-5 years before the index date, could have two explanations. The first supports the promoting role contributing to the development of cancer, and the second considers a possible reverse causality. Because exposure occurred close in time to the index date, the possibility of reverse causality bias is more likely:

symptoms caused by the undiagnosed cancer might have resulted in exposure to antidepressants.

The observed differences in the effects of genotoxic and non-genotoxic TCAs on the four cancer sites could have one of two explanations. The observed associations could in fact be reflecting true effects of different types of antidepressants on different cancer sites, which are determined by pharmacological characteristics of the drugs, as well as the carcinogenesis process of each specific cancer (Angst J, 1992; and Miller L, 1993). This explanation is supported by the fact that some animal studies that assessed the relation between exposure to antidepressants and risk of cancer have found positive associations (Brandes et al., 1992; Miller, 1993; Iishi et al., 1993; Van Schaik et al., 1991; and Van Schaik et al., 1993). Moreover, some well conducted epidemiological studies studying this question have found antidepressants to increase the risk of developing cancer at different sites (Wallace et al., 1982; Harlow et al., 1995; Dalton et al., 2000; and Sharpe et al., 2002). Thus, the inconsistent results, in both animal and human studies, could be considered supportive of the hypothesis stating that exposure to antidepressants does in fact have an effect on cancer development, the specifics of which are still to be understood.

Another possible explanation for the observed differences in the effects of all TCAs combined on the four cancer sites might be the confounding effects of other determinants of cancer associated with antidepressant use. Such a factor might be

depression, since it is still believed that depression could be associated with the development of cancer as the result of immunologic and endocrine dysfunction (Linkins et al., 1990). Nevertheless, such an explanation is not fully supported by the results of our study, because we didn't find any association between exposure to SSRIs and risk of cancer development. If confounding by depression were responsible for the observed results on the association between TCAs and risk of cancer, then it would have been expected to find similar effects on the association between SSRIs and cancer.

6.2.6 Cell turnover

The selection of the four cancer sites that we studied was based on different criteria, one of which was the variability in terms of their cell turnover rate (the frequency of cell division). Cells in the prostate and the lymphatic system are long-lived and there is no cell division in postnatal life, whereas those in the breast and the ovaries are short-lived and cell division in postnatal life occurs frequently (Fawcet, 1986).

One of the objectives of our study was to test the hypothesis that the carcinogenic effect of the genotoxic antidepressants varies according to rates of cell turnover. The effects of antidepressant drugs was expected to be more apparent when cell division was high and the turnover was rapid, whereas, the effect was expected to be less obvious when the multiplication was low and turnover was slow (Fawcet,

1986). Accordingly, we expected to see bigger effects of exposure to genotoxic TCAs on each of the breast and ovarian cancer sites (high turnover), as compared with the prostate and non-Hodgkin's lymphoma sites (low turnover). Our study, as summarized in table 37, did not show any difference between sites of high and low cell turnover rates. In other words, we did not find enough evidence to support the hypothesis stating that the carcinogenic effect of genotoxic antidepressants vary according to cell turnover.

6.3 Strengths and limitations of the study

In order to interpret the study results, an overview of the strengths and limitations of this study is presented in the subsections below.

6.3.1 Strengths

6.3.1.1 Study design

The case-control approach adopted to study the association between antidepressant drug use and risk of cancer at different sites was the most efficient design to study the proposed question. Case-control design is suitable for studying the effects of a common exposure on an outcome, which is considered a rare disease.

- Large sample size:

The population-based case-control nature of this study was one of its major strengths. By definition, a geographic population-based study is a study where every case of illness occurring in a geographic area is included in the case series, and a representative sample of the base population is selected as controls (Rothman et al. 1998). In our study, every cancer case (of the four sites under study) diagnosed in the province of Saskatchewan, between the years 1981 and 2000, was potentially eligible for our analyses. Thus, the big sample size available for the analyses was another strength of our project, where the number of cases ranged between 1090 cases (ovarian cancer) and 7767 cases (prostate cancer).

- <u>High precision/power:</u>

For a given type of cancer, the statistical power to detect elevated incidence rates in those exposed to a certain group of drugs, versus those not exposed to any of these drugs, is a function of the numbers of cancer cases, the prevalence of the exposure of interest, and the true rate ratios. For any of the four cancer sites studied, we had a statistical power exceeding 95% to detect a rate ratio of 1.5 at an exposure prevalence of 8%. This is also reflected in the narrow confidence intervals calculated in almost all of the analyses.

- Matching:

Matching in case-control studies is done for two reasons: to prevent confounding and to provide a more efficient stratified analyses (Rothman et al., 1998). Controls were matched to cases on each of the following variables: age and sex. Control for the effect of confounding by these variables was achieved by carrying out matched analyses.

- Incidence density sampling:

Incidence density sampling is a procedure when for every case a number of controls are chosen from among those who have survived, remain under observation, and are free of the disease of interest at the time the corresponding case was diagnosed (MacMahon et al., 1996). When using incidence density sampling, controls are matched to cases on the follow-up time, and thus, time will be incorporated in the design. As a consequence, person-time is inherently accounted

for in the analyses and the odds ratio will be an unbiased estimate of the incidence rate ratio without any rare disease assumption (Miettinen, 1985). In our study, incidence density sampling was applied in the selection of cases and controls, which provided the strengths mentioned above.

- No recall bias:

Cases and controls by definition are people who differ with respect to their disease experiences. Recall bias (a type of information bias) is the result of having differences in recall of certain experiences between cases and controls. In our study, if we were to assess previous exposure history to antidepressants from cases and controls through interviews, recall bias might have been a major problem. This is because people who had developed a certain type of cancer would tend to recall exposures more thoroughly as compared with those who were not diagnosed with any cancer. Thus, another major strength of this study was the pre-recorded exposure history of each case and control, which was compiled from a provincial outpatient prescription drug database since 1976. Consequently, the potential of recall bias in terms of exposure to antidepressants was excluded from our study.

- Good control for selection bias:

Selection bias is the error due to systematic differences in characteristics between those who were selected for study and those who were not. Our study included almost all cases diagnosed in Saskatchewan, between the years 1981 and

2000, meeting the study criteria. In addition, the controls represented a random sample of population at risk, and therefore potential for selection bias was minimized.

6.3.1.2 Statistical analyses

- <u>Different exposure definitions:</u>

Another strength of our study was the assessment of the association between antidepressant drug use and the development of cancer using different exposure definitions. Each exposure index was used to cover one or more of the exposure aspects that are thought to be important (cumulative, dosage, duration, and timing).

The simplest definition was whether the subject had ever been exposed to any of the antidepressants under study for different periods (20, 15, 10, or 5 years). This exposure definition was a crude one, because it failed to account for the dosage, duration, and timing of exposure. The second exposure index used was the dosage of the cumulative exposure to the antidepressants being studied for each of the specified periods (20, 15, 10, or 5 years). The cumulative and dosage aspects were accounted for by using this exposure index, whereas the timing and the duration of exposure were not taken into consideration. The third and fourth exposure indices covered the dosage and duration aspects of antidepressants exposure respectively, for different periods before diagnosis, thus taking timing into consideration as well. Nevertheless, these two exposure indices did not account for the cumulative effect of exposure for more than the length of the period before diagnosis itself (4 or 5 years). The

unexposed during each period were the referent for that period. This was justified by the fact that ingested antidepressants are excreted and their pharmacologic effects cease when use stops.

Although none of the exposure indices integrated all the important aspects of exposure (cumulative, dosage, duration, and timing), we still carried out the analyses with each of the indices to have the chance to compare the results of each.

The four different methods of calculating exposure gave similar results, implying that they all managed to rank subjects according to an aspect of exposure that was relevant to the diagnosis of cancer.

The effect of using different exposure definitions on the measures of effect was illustrated in a study assessing the association between hormone replacement therapy (HRT) and colorectal cancer risk (Csizmadi et al., 2003). It was found that different definitions of HRT were valid attempts to quantify a complex exposure. The variation of the measures of effect, of different HRT exposure definitions and colorectal cancer risk, was similar to the variation reported in the literature for observational studies investigating the same association (Csizmadi et al., 2003).

- Using continuous and categorical exposures:

Furthermore, another strength of our analyses was the consideration of exposure as categorical variables, as well as continuous ones. The RRs calculated for

the association between exposure to different antidepressants and risk of cancer were based on categorizing the exposure into two or three ordinal variables. In addition, ptrends were also calculated to assess the association between the continuous exposure to the antidepressant drugs and risk of cancer.

- Controlling for possible confounding variables:

Considering exposure during different periods to represent separate determinants provided a simple way to represent the exposure history over time with multiple logistic regression, which permitted the study of the effects of the timing of exposure (Miettinen, 1985). As a consequence, multicollinearity could have been a problem in the regression models (which included exposure to the drugs in different periods), since exposure to antidepressants in one period could have been affected by exposure to the same or different antidepressants in other periods. However, the correlation between the exposure to antidepressants in the different periods was found to be low. This could be due to the fact that antidepressants are rarely taken continuously for very long periods of time (Peretti et al., 2000).

Since depression is the indication to use antidepressants (depression in turn might be associated with cancer) an imbalance in the underlying risk profile between the exposed and unexposed groups might generate biased results. One way to avoid confounding by indication is to compare two medications prescribed for the same indication (Strom, 2000). In this case, relative risk, as opposed to absolute risk, would be calculated. Thus, another strength of the study was the control for the effect

of confounding by indication, specifically for the hypothesis regarding TCA genotoxicity, where the effects of exposure to genotoxic TCAs, on the risk of cancer, were compared to the effects of exposure to non-genotoxic TCAs.

- Good control of exposure misclassification:

When exposure information for a period was incomplete, due to the subject's coverage initiation date, the subject was assigned to the "other" category of the exposure. This avoided overestimating exposure. Exposure may however be underestimated, biasing the results towards the null.

6.3.2 Limitations

An overview of the limitations of this study is summarized in the subsections below.

6.3.2.1 Study design

The variation in the length of the subjects' exposure records, ranging from 5-24 years, led us to divide exposure history into different time periods. As a consequence, the study was limited by having less statistical power to detect significant associations between exposure to antidepressants in the remote past and the diagnosis of cancer, as compared with recent antidepressant exposure in relation to the diagnosis of cancer.

6.3.2.2 Representation of outcomes

- Outcome misclassification:

The erroneous classification of an individual, a value, or an attribute into a category other than that to which it should be assigned is called misclassification (Last, 1995). Any outcome misclassification, including as a case a subject who did not have a certain cancer type and including as a control a subject who actually did have cancer, is expected to have an effect on the results.

In addition to the 98% of all new cancer cases that are reported to the SCR by physicians and by the submission of all malignant pathology reports, an additional 1-2% of cases are discovered through the biweekly review of death certificates (Parkin, 1997), so registration was likely to have been very nearly complete. Nevertheless, it is possible that a few controls had actually been diagnosed with cancer that went unreported before their index dates. In addition, it is possible that some controls may have received diagnoses of cancer that were reported but not found when the database of the SCR was searched for cancer diagnoses. Such failures of the linkage process would be expected to be rare events and independent of exposure status.

Potential study cases were subjects in the source population who were diagnosed with histologically proven invasive tumors and reported to the SCR. Thus, we cannot exclude the possibility that the diagnostic criteria could have changed somewhat from 1981 to 2000, since a pathologic review was not carried out

specifically for this study. In other words, it is possible that this could have led to some misclassification with respect to the invasiveness of the tumors; some tumors classified as "invasive" could have actually been in situ (i.e. non-invasive) or vice versa. Nevertheless, such a misclassification is believed to be non-differential in relation to exposure to antidepressants.

Potential study controls were defined as people in the source population who had not developed any cancer prior to the index dates of the cases to whom they were matched. The validity of such a definition depends on the completeness of registration of cancer cases by the SCR and the validity of the linkage procedures used to link the databases. The linkage process is believed to be valid, since each resident is assigned a unique personal identification number (Strom, 2000).

As long as any of the above mentioned outcome misclassification biases are non-differential with respect to antidepressant exposure, it would bias the RRs towards the null (Brenner et al., 1993). Pathologists do not consider antidepressant exposure when examining tissues and there is no evidence to date that antidepressant use alters the appearance of human tissues so as to make misdiagnosis more or less likely. On the other hand, failing to include few cases with the specified cancer site, because of incomplete registration of cancer, is expected to be a rare occurrence which is independent of exposure to antidepressants. Therefore, any resulting outcome misclassification would likely have no effect on the RRs, since there is no

reason to suspect that it would be differential with respect to exposure to antidepressants.

6.3.2.3 Representation of exposure

- Classes instead of individual drugs:

Exposure to antidepressants was characterized as a class of drugs rather than as individual drugs because the numbers of subjects with histories of filling prescriptions for any one drug were relatively small. We made the assumption that all the drugs in each class would have similar effects on the risk of cancer.

- Drug consumed versus drug dispensed:

Exposure to antidepressants was expressed in terms of dispensed antidepressants to outpatients as recorded in the Saskatchewan outpatient prescription drug database during specified periods of time. Although we may have underestimated exposure, because we had no information about some of the TCAs dispensed (subjects while hospitalized or as samples in physicians' offices), these amounts were probably small relative to the amounts used in calculating exposure.

Accurate estimation of the total amounts of antidepressants actually consumed over time could be a very difficult undertaking. Thus, the exposure definition used in this study did not refer to actual consumption of antidepressants, but rather to the dispensed antidepressant prescriptions. As a consequence, overestimation of

exposure might have occurred, because it is unlikely that all drugs dispensed were ingested, which could have affected the slope of the dose-risk relationship that we observed to be less than the true slope (MacMahon et al., 1996).

Nevertheless, prescription plans are thought to be reliable sources of drug exposure, as reported in the study carried out by Lau et al. (Lau et al., 1997). The authors assessed the validity of drug exposure based on pharmacy records, taking into account completeness of data and drug compliance. Data on drug prescription were collected from home inventories and community pharmacies in 115 elderly people. With the data on drug exposure in the home inventory taken as the gold standard, the specificity and positive predictive value were found to be generally high (0.93 – 1.00 and 0.67 – 1.00 respectively). The authors concluded that computerized pharmacy records that are collected for administrative and drug surveillance purposes could be a reliable reflection of the true drug exposure (Lau et al., 1997).

Although our exposure definition may be limited by compliance (subjects may have consumed less than the full amounts of antidepressants dispensed), it avoided some issues of exposure misclassification. For example, if a subject filled a prescription for an antidepressant on the last day of one period and consumed the drug during the next period, the timing of exposure defined in terms of dispensed prescriptions would not be misclassified, but it would be if exposure were defined in terms of actual drug consumption.

The main limitation in using dispensed prescriptions over periods of time 4-5 years long was that relatively brief periods of antidepressants use at high dosage levels became indistinguishable from low levels of exposure over prolonged periods. This situation could be remedied by representing exposure over time with more periods of shorter durations, but the number of regression coefficients to be estimated would increase and multicollinearity might develop.

Despite the above limitation, the approach used did capture the timing of the exposure to some extent, especially for the highest level of exposure. Subjects in the highest category of antidepressant exposure must have taken the drugs over prolonged periods, otherwise life-threatening toxicity would have occurred. Thus, the above limitation is believed to be of little consequence to the validity of the analyses.

- Missing drug information:

Another limitation of our study is the fact that information on drug prescription of all subjects (cases and controls) –between July 1, 1987 and December 31, 1988 – was not provided because the capture of outpatient prescription drug information was incomplete during this period.

Before June 1987, residents of Saskatchewan used to pay a portion of the drug fees directly to the pharmacy; whereas in July 1987, the government changed the program to a family-based deductible system in which the consumer paid the total cost of the prescription and submitted claims to the drug plan for partial

reimbursement when the family cost exceeded the deductible level. In January 1989, the deductible program continued but the claims processing system was changed, and pharmacies started submitting claims to the drug plan through a point of service computer terminal connected to a central database. Because of this change in systems, between July 1987 and Dec 1988, the drug plan did not capture a complete drug prescription profile for the residents of Saskatchewan since prescription drug data were not compiled on an individual basis.

As a consequence, we considered all the cases and controls to be unexposed during this one and a half year period. In other words, subjects who were in fact exposed to different levels of antidepressants during this period were classified as unexposed. Such an exposure misclassification is thought to be non-differential, since there is no reason to believe that the misclassification was related to the outcome studied (being a case or a control). The effect of non-differential misclassification on a measure of association is thought to bias the measure towards the null value (Brenner et al., 1993), hence to underestimate the true effect.

6.3.2.4 Statistical analyses

- Number of tests performed:

These results could have been affected by the number of tests performed in our analyses. Theoretically, if there were no association between TCA exposure and incidence of cancer, by using the 5% α level we would expect to find 5%, of the

number of tests performed, significant associations in the data. Thus, in our study, we would expect some positive associations between exposure to antidepressants and risk of cancer, if in fact there were no association. This is further supported by the results which provided inconsistent pattern in the effect of exposure to antidepressants and risk of cancer. Bonferroni correction (lowering the α level to a value less than 5%) could have been used to deal with limitation. But since the overall relationship between exposure to antidepressants and risk of cancer was not found to be significant at the 5% α level, we did not attempt to apply this correction to our analyses.

- Analyses not covered:

The average effects of exposure to antidepressants during different periods prior to diagnosis were estimated. The RR calculated for exposure during a particular period of time represented the ratio of the incidence of the specific cancer among those exposed to antidepressants during that period to the corresponding incidence among those unexposed during that period, while keeping the pattern of antidepressant exposure during all other periods identical. Nevertheless, we could not determine how the effect of antidepressant exposure during a given period depended on previous or subsequent exposures.

The unit of exposure in two major analyses in this study was the estimated dosage of antidepressants expressed in moles. For different time windows, we assessed the effect of exposure to different levels of antidepressants (low, medium,

and high) on the development of the different types of cancer. On the other hand, because of the complexity of the analyses we carried out, we did not attempt to assess whether similar effects exist for the same level of exposure but over a different time periods i.e. longer periods.

6.3.2.5 Control for potential confounding variables

In most of the analyses presented in this thesis, the only variables we controlled for were: age, gender, index date, and the effects of exposure during other periods of time prior to diagnosis. Although we controlled for the effect of exposure to different drugs in the different periods prior to diagnosis, we didn't present these results because the drugs we studied had no effect on the estimated RRs calculated.

Given the number and types of cancer sites addressed in this study, as well as the study design and database structure, we did not have information on the different possibly confounding variables. The effects of not controlling for these variables, on the results of the two different hypotheses tested, are discussed in the following subsections.

- Genotoxic versus non-genotoxic TCAs:

The conclusions drawn on the major hypothesis tested by this study (genotoxicity of TCAs) are believed to be valid unconfounded conclusions. Our primary hypothesis concerned the potential carcinogenic effects of genotoxic TCAs.

Two incidence rate ratios were calculated, one for exposure to genotoxic TCAs (relative to those unexposed to any antidepressant), and the second for exposure to non-genotoxic TCAs (relative to those unexposed to any antidepressant). Comparing these two incidence rate ratios, by calculating a ratio of these ratios, would indicate the relative risk of using genotoxic TCAs relative to non-genotoxic TCAs. Such an association would unlikely be affected by confounding because the choice of a specific group of TCAs was unlikely to be related to any of the risk factors for the cancers considered in this study. The initial choice of TCA prescription is usually based on the pharmacologic characteristics of the antidepressant (onset of action, elimination half-life, therapeutic blood level, side effects, drug interactions, toxicity associated with overdose, and efficacy), patient's characteristics, and cost (Kaplan et al., 1993; and Flint, 1998). Therefore we think that comparing the two estimated incidence rate ratios is a valid unconfounded comparison.

- Antidepressants as classes of drugs:

On the other hand, the conclusions drawn on the effects of TCAs and SSRIs, as classes of drugs, on the risk of cancer could have been affected by confounding bias. The reported results for these analyses could have been biased towards or away from the null, the direction of which being difficult to determine. Nevertheless, an attempt to assess the effects of few major confounders is presented in the following paragraphs.

Family history of cancer: For almost all tumors, the incidence of same-site cancer is increased in close relatives of persons with cancer (Schottenfeld et al., 1996). Two to threefold increased risk of breast cancer has been observed in first-degree relatives of breast cancer cases, and fivefold increased risk has been found for women with multiple first-degree relatives with breast cancer (Colditz et al., 1993; Brekelmans, 2003). As for ovarian cancer, of all the risk factors, the most significant one appears to be that of family history (7% to 10% of ovarian cancers are due to inherited susceptibility genes) (Frank et al., 1998). Available epidemiologic data support a familial tendency towards prostate cancer occurrence. It has been reported that men with one first-degree relative with prostate cancer had a twofold increase in risk, whereas a positive family history for a second-degree relative was associated with a 70% increase in risk (Steinberg et al., 1990). Finally, the risk of non-Hodgkin's lymphoma has been found to be associated with a threefold increase when a history of lymphoma in first-degree relatives was present (Zhu et al., 1998).

A family history of cancer might be considered to have a potential confounding effect on the association between the exposure to antidepressants and risk of cancer, if it is associated with antidepressant drug use. Although depression and cancer might be weakly associated (Shekelle et al., 1981; Penninx et al., 1998), there is no evidence for an association between family history of cancer and risk of depression. Thus, it is unlikely that family history of cancer could have confounded our results.

Diet: The nutrient content of diet, which has been reported to have the highest correlation with the risk of cancer, is fat intake. The most important sites for which associations have been suggested are cancers of the breast and the prostate (Schottenfeld et al., 1996; Key et al., 2002)). Much of the support for these relationships is based on the international correlations between per capita fat intake and rates of these malignancies. However, epidemiological studies within populations show little or inconsistent associations (Byrne et al., 2002). Taken together, the available evidence for a relation between dietary fat and cancer is weak (Zock, 2001; Smith-Warner et al., 2001).

As for the association between nutrient intake and occurrence of depression, there is no evidence supporting such a relationship. A study investigated the nutrient intake of depressed and non-depressed subjects, revealed that both groups consume similar amounts of dietary fats (Christensen et al., 1996). The lack of such an association would lead to a balanced distribution of subjects exposed to high and low dietary fats among the different exposure groups under study (antidepressant drugs). Thus, no bias in the reported results could be attributable to the difference in the dietary fat intake of the subjects in our study.

Alcohol consumption: Many studies have shown positive associations between alcohol use and the risk of breast cancer, with dose-response relationships (Rosenberg et al., 1993; Bowlin et al., 1997). In 1994, Longnecker et al. published a meta-analysis in which estimates of the RR as a linear function of daily alcohol

consumption were calculated for case-control and cohort studies (Longnecker et al., 1994). The risk of breast cancer was associated with the consumption of one, two, or three drinks per day, compared with non-drinkers, where the OR were as follows: 1.1 (95% CI: 1.07 – 1.15), 1.2 (95% CI: 1.5 – 1.34, and 1.4 (95% CI: 1.23 – 1.55).

Cross-sectional studies using community samples have consistently shown that alcohol use is associated with an elevated risk of depressive symptoms (Wang et al., 2002). On the other hand, longitudinal studies provide inconsistent results regarding the association between alcohol consumption and depression (Wang et al., 2001; Hasin et al., 2002). These inconsistencies could be explained by the use of different exposure indices (frequency of drinking, average daily alcohol consumption, etc.) and different definitions of depression, in the different epidemiological studies. Nevertheless, it is widely accepted that excessive alcohol consumption is associated with major depression.

Based on the above associations, we would expect that the results of the breast cancer analyses be biased by the potentially confounding effect of alcohol consumption. The effect of alcohol consumption might have partially accounted for the observed effects between exposure to antidepressant drugs and the risk of breast cancer. This bias could have been introduced because of the difference in the distribution of alcohol consumption in the different antidepressants exposure groups. In other words, subjects who were exposed to antidepressant drugs could have had

higher alcohol consumption levels, as compared to those who were not exposed to antidepressant drugs.

Physical activity: There is increasing consistency across studies that physical activity reduces the risk of breast cancer. In 2001, it was reported that 23 out of 35 studies have demonstrated a breast cancer risk reduction among those women who were most active in their occupational and/or recreational activities, as compared with inactive women (Friedenreich et al., 2001). It has been suggested that sustained activity throughout life, and particularly activity done later in life, may have the most benefit in reducing breast cancer risk (Friedenreich et al., 2001; Dorn et al., 2002). The association between physical activity and risk of ovarian cancer is not yet established. The authors of one of the studies that studied this association reported that increasing duration of moderate activity in pre- and postmenopausal women decreased the risk of ovarian cancer (Zhang et al., 2003). Up to our knowledge, no study has ever reported a relationship between physical activity and non-Hodgkin's lymphoma or prostate cancer.

It is also well accepted that physical activity has protective effects on depression (Dunn et al., 2001; Strawbridge et al., 2002). In 2001, Dunn et al. carried out a literature review to examine the scientific evidence for a dos-response relation of physical activity with depressive and anxiety disorders (Dunn et al., 2001). In their search, the authors reported that observational studies demonstrate that greater amounts of occupational and leisure time physical activity are generally associated

with reduced symptoms of depression, which was consistent across different cultures. Nevertheless, they concluded that there is little evidence for dose-response effect, which was due to a lack of studies rather than a lack of evidence (Dunn et al., 2001).

Taking this into consideration, we would expect a difference in the level of physical activity between cases and controls, as well as between exposed and non-exposed. Controls and subjects who were not depressed, and thus not exposed to antidepressants, would tend to have had a higher physical activity (as compared to cases and subjects who were exposed to antidepressant drugs). As a result, the conclusions drawn from the analyses pertaining to the effect of exposure to antidepressant drugs on the risk of breast and ovarian cancer could have been biased by the confounding effect of physical activity.

Early menarche and late menopause: Breast cancer risk is increased by early menarche and by late menopause (Pike et al., 1993). These relationships indicate that the high serum concentrations of estradiol and/or progesterone in premenopausal women cause a greater increase in breast cancer risk per year than the much lower concentrations of estradiol and prprogesterone in postmenopausal women. Neither estradiol nor progesterone is genotoxic but it is possible that the high serum concentrations of these hormones in premenopausal women increase breast cancer risk by increasing the mitotic rate of the breast epithelial cells (Pike et al., 1993). In general, an approximately 20% decrease in breast cancer risk results from each year that menarche is delayed. It has also been estimated that women who

experience menopause before age 45 have only one-half the breast cancer risk of those whose menopause occurs after age 55 (Schottenfeld et al., 1996).

As for the association between age at menarche and age at menopause and risk of ovarian cancer, no consistent findings have emerged from the studies that assessed these associations (Schottenfeld et al., 1996).

Psychiatric disorders often begin at adolescence, the reason why it has been thought that menarche marks a transition in the risk of depression and anxiety in girls. It has been reported that early menarche (prior to 11.6 years) was associated with elevated rates of depression (Stice et al., 2001). In a study that was carried out by Patton el al., the authors found that levels of depression and anxiety increased with secondary school years and menarchal status was found to be the strongest predictor for such an increase (Patton et al., 1996).

The menopause has been described as a deficiency disease associated with a wide variety of physical and psychological symptoms including hot flushes, night sweats, dyspareunia, urinary frequency, sleep disturbance, depression and anxiety (Neugarten et al., 1965; Studd et al., 1990; Sagoz et al., 2001). There are suggestive data that estrogen deficiency may increase the susceptibility for depression (Birkhauser, 2002; Maartens et al., 2002). It was estimated that the transition from pre to perimenopause and peri to postmenopause was significantly related to a high

increase in a depression score (OR = 1.8, 96% CI: 1.1 - 3.3 and OR = 1.8, 95% CI: 1.5 - 2.7 respectively) (Maartens et al., 2002).

Thus, the results of the breast cancer analyses could have been biased by the potentially confounding effect of the subjects' menarche and menopause status. In other words, the average ages at which subjects experienced menarche and menopause would differ between cases and controls, and between those exposed to antidepressants and those who were not. Breast cancer cases and subjects exposed to antidepressants would be expected to have had a lower average age at menarche and a higher average age at menopause.

Region: Another factor that could have had an impact on the validity of the results of the four cancers is the region in which the subjects resided. The availability and the utilization of screening and diagnostic services in rural areas could have affected the incidence rates of cancers identified by the Saskatchewan Cancer Agency. Nevertheless, studies carried out in the US have shown little difference in the cancer incidence and mortality rates of rural and urban populations (Montroe et al., 1992; Howe et al., 1992; Higginbotham et al., 2001).

In addition, both pharmacotherapy and psychotherapy treatment regimens for depression, which require frequent provider contact, could differ according to the place of residence of an individual (urban vs. rural). In a study carried out in the US,

it was found that travel barriers might prevent rural patients from making a sufficient number of visits to receive effective antidepressant treatment (Fortney et al., 1999).

Based on the above discussed associations, we would expect a higher proportion of urbanized subjects in the group exposed to antidepressants (relative to those unexposed to antidepressants) and in the case group (relative to the control group). As a result, the odds ratios and the confidence intervals reported for the association between exposure to antidepressants and risk of cancer (at any of the 4 anatomic sites) could have been biased by the confounding effect of geographical area of residence.

6.4 Conclusion and future research

TCAs were categorized into two groups, based on their genotoxicity in Drosophila, as well as in the results of a human epidemiological study. The non-genotoxic TCAs were amitriptyline, maprotiline, nortriptyline, and protriptyline, whereas the genotoxic ones included amoxapine, clomipramine, desipramine, doxepin, imipramine, and trimipramine (Van Schaik et al., 1991; and Van Schaik et al., 1993). Based on the epidemiological study carried out by Sharpe et al. (Sharpe et al., 2002), which found an increased risk of breast cancer associated with the use of genotoxic antidepressants but not with the non-genotoxic ones, we tested the hypothesis that exposure to genotoxic TCAs increases the risk of developing cancer at different sites relative to exposure to non-genotoxic ones.

Although some associations (between TCA exposure and cancer risk) were found to support this hypothesis, others did not support it, or even contradicted it. In general, our study did not find enough evidence for an increased risk of cancer development in association with TCAs and SSRIs drug use. Moreover, we did not find strong evidence to support the hypothesis which states that the genotoxic TCAs are responsible for the carcinogenicity of TCAs.

Because of the complexity of this association, as well as the contradictory results found in this study and in the literature, further research is required to shed more light on the effects of antidepressants on the incidence of cancer. Thus,

associations between different antidepressants and different cancer sites should be further explored.

Chapter 7: References

- Angst J. Epidemiology and depression. Psychopharmacology 1992; 106: 571-574.
- American Cancer Society. Cancer Facts and Figures. American Cancer Society 1993.
- Baserga R. The biology of cell reproduction. Cambridge MA, Harvard University Press, 1985.
- Beebe K, Trock B. Re: "Antidepressant medication use and breast cancer risk".

 American Journal of Epidemiology 2000; 152 (11): 1104-1105.
- Bendele RA, Adams ER, Hoffman WP, Gries CL, Morton DM. Carcinogenicity studies of fluoxetine hydrochloride in rats and mice. Cancer Research 1992; 52(24): 6931-6935.
- Berenblum I, Shubik P. A new, quantitative approach to the study of stages of chemical carcinogenesis in the mouse's skin. British Journal of Cancer 1947; 1: 383-386.
- Berenblum I. A speculative review: the probable nature of promoting action and its significance in the understanding of the mechanism of carcinogenesis.

 Cancer Research 1954; 14: 471.
- Birkhauser M. Depression, menopause and estrogens: is there a correlation?

 Maturitas 2002; 41(1): S3-8.
- Boring CC, Squires TS, Tong T. Cancer Statistics, 1994. Atlanta, Georgia: American Cancer Society 1994.

- Bowlin S, Leske C, Varma A, Nasca P, Weinstein A, Caplan L. Breast cancer risk and alcohol consumption: results from a large case-control study. International Journal of Epidemiology 1997; 26: 915-923.
- Brandes LJ, Arron RJ, Bogdanovic RP, Tong J, Zaborniak CLF, Hogg GR, Warrington RC, Fang W, Labella FS. Stimulation of malignant growth in rodents by antidepressant drugs at clinically relevant doses. Cancer Research 1992; 52: 3796-3800.
- Brandes LJ. Re: Depression, antidepressant medication, and cancer [letter].

 American Journal of Epidemiology 1992; 136(11): 1414-1417.
- Brandes LJ, Cheang M. Letter regarding "Response to antidepressants and cancer: cause for concern?" [letter; comment]. Journal of Clinical Psychopharmacology 1995; 15(1): 84-85.
- Brekelmans C. Risk factors and risk reduction of breast and ovarian cancer.

 Current Opinion in Obstetrics and Gynecology 2003; 15: 63-68.
- Brenner H, Gefeller O. Use of the positive predictive value to correct for disease misclassification in epidemiology studies. American Journal of Epidemiology 1993; 138: 1007-1015.
- Breslow NE, Day NE. Statistical methods in cancer research. Volume I The analysis of case-control studies. Lyon: International Agency for Research on Cancer 1980, p. 113-114.
- Budavari S, O'Neil M, Smith A, Heckelman P. The Merck Index. An Encyclpedia of Chemical Drugs. Eleventh Edition. Rahway, NJ: Merck, 1989.

- Byrne C, Rockett H, Holmes M. Dietary fat, fat subtypes, and breast cancer risk: lack of an association among postmenopausal women with no history of benign breast disease. Cancer Epidemiology, Biomarkers and Prevention 2002; 11: 261-265.
- Christensen L, Somers S. Comparison of nutrient intake among depressed and nondepressed individuals. International Journal of Eating Disorders 1996; 20(1): 105-109.
- Colditz G, Willett W, Hunter D, Stampfer M, Manson J, Hennekens C, Rosner B. Family history, age, and risk of breast cancer. Prospective data from the Nurses' Health Study. Journal of American Medical Association 1993; 270(3): 338-343.
- Collet JP, Sharpe C, Belzile E, Boivin JF, Hanley J, Abenhaim L. Colorectal cancer prevention by non-steroidal anti-inflammatory drugs: effect of dosage and timing. British Journal of Cancer 1999; 81(1): 62-68.
- Coogan P, Rosenberg L, Palmer J, Strom B, Stolley P, Zauber A, Shapiro S.
 Risk of ovarian cancer according to use of antidepressants, phenothiazines, and benzodiazepines (United States). Cancer Causes and Control 2000; 11: 839-845.
- Cotran R, Kumar V, Robbins S. Robbins pathologic basis of disease 6th edition.
 W.B. Saunders Company, 1999.
- Cotterchio M, Dreiger N, Darlington G, Steingart A. Antidepressant medication use and breast cancer risk. American Journal of Epidemiology 2000; 151: 951-957.

- Croyle RT. Depression as a risk factor for cancer: renewing a debate on the psychobiology of disease [editorial; comment]. Journal of the National Cancer Institute 1998; 90(24): 1856-1857.
- Csizmadi I, Benedetti A, Collet JP, Hanley J, Boivin JF. Health related behavior and use of hormone replacement therapy. Submitted to the 16th International Conference on Pharmacoepidemiology, August 20-23, 2000, Barcelona, Spain, (273).
- Csizmadi I, Collet JP, Benedetti A, Boivin JF, Hanley J. Defining hormone replacement therapy in longitudinal studies: impact on measures of effect. Submitted to Phamacoepidemiology and Drug Safety, 2003.
- Csizmadi I, Collet JP, Benedetti A, Hanley J, Boivin. Use of menopausal estrogens in Saskatchewan: 1981 to 1997. Phamacoepidemiology and Drug Safety 2000; 8(suppl. 2): S156.
- Csizmadi I, Collet JP. A systematic literature review of the effect of hormone replacement therapy on the risk of colon cancer in postmenopausal women.

 Canadian Journal of Clinical Pharmacology 1998; 5: 57.
- Dalton S, Johansen C, Mellemkjaer L, Toft Sorensen T, McLaughlin, Olsen J.

 Antidepressant medication and risk of cancer. Epidemiology 2000; 11: 171
 176.
- Damajanov I, Linder J. Anderson's Pathology, 10th edition. Mosby Year Book Inc, 1996, p. 514.
- Danielson DA, Jick H, Hunter JR, Stergachis A, Madsen S. Nonestrogenic drugs and breast cancer. American Journal of Epidemiology 1982; 11: 329-332.

- Dorn J, Vena J, Brasure J, Freudenheim J, Graham S. Lifetime physical activity and breast cancer risk in pre- and postmenopausal women. Medicine and Science in Sports and Medicine 2002; 35(2): 278-285.
- Downey W et al. Health databases in Saskatchewan. in Strom BL, ed., Pharmacoepidemiology, Third Edition. Chichester: John Wiley and Sons, Ltd, 2000: 325-345.
- Dublin S, Rossing MA, Heckbert SR, Goff BA, Weiss NS. Risk of epithelial ovarian cancer in relation to use of antidepressants, benzodiazepines, and other centrally acting medications. Cancer Causes and Control 2002; 13(1): 35-45.
- Dunn A, Trivedi M, O'Neal H. Physical activity dose-response effects on outcomes of depression and anxiety. Medicine and Science in Sports and Exercise 2001; 33(6): 587-597.
- Ernst P, Spitzer W, Suissa S, Cockcroft D, Habbick B, Horwitz R, Boivin JF, McNutt M, Buist S. Risk of fatal and near-fatal asthma in relation to inhaled corticosteroid use. Journal of the American Medical Association 1992; 268: 3462-3464.
- Farber E. Possible etiologic mechanisms in chemical carcinogenesis.

 Environmental Health Perspectives 1987; 75: 65-70.
- Fawcet D. A textbook of Histology. Eleventh edition. W. B. Saunders Company, 1986.
- Flint A. Choosing appropriate antidepressant therapy in the elderly. Drugs and Aging 1998; 13(4): 269-280.

- Fortney J, Rost K, Zhang M, Warren J. The impact of geographic accessibility on the intensity and quality of depression treatment. Medical Care 1999; 37(9): 884-893.
- Foulds L. Tumor progression and neoplastic development in cellular control mechanisms and cancer. Elsevier Publishing Co. New York, 1964: 242.
- Frank TS, Manley SA, Olopade OI, et al. Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk.

 Journal of Clinical Oncology 1998; 16: 2417-2425.
- Friedenreich C, Courneya K, Bryant H. Influence of physical activity in different age and life periods on the risk of breast cancer. Epidemiology 2001; 12: 604-612.
- Friedman GD, Ury HK. Initial screening for carcinogenicity of commonly used drugs. Journal of the National Cancer Institute 1980; 65: 723-733.
- Friedman GD, Ury HK. Screening for possible drug carcinogenicity: second report of findings. Journal of the National Cancer Institute 1983; 71: 1165-1175.
- Friedman GD. An editor comments. American Journal of Epidemiology 1992; 136: 1415-1416.
- Friedman GD. Psychiatrically diagnosed depression and subsequent cancer.

 Cancer Epidemiology, Biomarkers, and Prevention 1994; 3(1): 11-13.
- Gallo J, Armenian H, Ford D, Eaton W, and Khachaturian A. Major depression and cancer: the 13-year follow-up of the Baltimore Epidemiologic Catchment Area sample (United States). Cancer Causes and Control 2000; 11: 751-758.

- Greene H. Familial mammary tumors in the rabbit, the evolution of autonomy in the course of tumor development as indicated by transplantation experiments.

 Journal of Experimental Medicine 1940; 71: 305.
- Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. Cancer Journal for Clinicians 2000; 50: 7-33.
- Hahn RC, Petitti DB. Minnesota Multiphasic Personality Inventory-rated depression and the incidence of breast cancer. Cancer 1988; 61: 845-848.
- Hardman J, Limbird L. Goodman and Gilman's: The pharmacological basis of therapeutics. 9th edition. McGraw Hill, 1996: p. 445-446.
- Harlow R, Cramer DW. Self-reported use of antidepressants or benzodiazepine tranquilizers and risk of epithelial ovarian cancer: evidence from two combined case-control studies (Massachusetts, United States). Cancer Causes and Control 1995; 6: 130-134.
- Harlow B, Cramer D, Baron J, Titus-Ernstoff L, Greenberg R. Psychotropic Medication use and risk of epithelial ovarian cancer. Cancer Epidemiology Biomarkers and Prevention 1998; 7: 697-702.
- Higginbotham J, Moulder J, Currier M. Rural v. urban aspects of cancer: First year data from the Mississippi Central Cancer Registry. Family and Community Health 2001; 24(2): 1-9.
- Hirschfeld R. Antidepressants in long-term therapy: a review of tricyclic antidepressants and selective serotonin reuptake inhibitors. Acta Psychiatrica Scandinavica 2000; 101(Suppl. 403): 35-38.

- Hasin D, Grant B. Major depression in 6050 former drinkers: association with past alcohol dependence. Archives of General Psychiatry 2002; 59(9): 794-800.
- Howe H, Katterhagen J, Yates J, et al. Urban-rural difference in the management of breast cancer. Cancer Causes and Control 1992; 3(6): 533-539.
- IARC. Cancer: Causes, Occurrence and Control (L. Tomatis, ed). Lyon, France: International Agency for Research on Cancer, 1990.
- Iishi H, Tatsuta M, Baba M, Taniguchi H. Enhancement by the tricyclic antidepressant, desipramine, of experimental carcinogenesis in rat colon induced by azoxymethane. Carcinogenesis 1993; 14(9): 1837-1840.
- Iishi H, Tatsuta M, Baba M, Taniguchi H. Monoamine oxidase B inhibitor enhances experimental carcinogenesis in rat colon induced by azoxymethane.

 Cancer Letters 1994; 76(2-3): 177-183.
- Kaplan GA, Reynolds P. Depression and cancer mortality and morbidity: prospective evidence from the Alameda County study. Journal of Behavioral Medicine 1988; 11(1): 1-13.
- Kaplan H, Sadock B. Pocket Handbook of Psychiatric drug treatment.

 Maryland: Williams and Wilkins, 1993.
- Keller MB, Lavori PW, Mueller TI. Time to recovery, chronicity, and levels of psychopathology in major depression. A 5-year prospective follow-up of 431 subjects. Archives of General Psychiatry 1992; 49: 809-816.
- Kelly J, Rosenberg L, Palmer J, Rao S, Strom B, Stolley P, Zauber A, Shapiro S. Risk of breast cancer according to use of antidepressants, phenothiazines, and antihistamines. American Journal of Epidemiology 1999; 150(8): 861-868.

- Labella FS, Brandes LJ. Enhancement of tumor growth by drugs with some common molecular actions. [Review][91 references]. Molecular Carcinogenesis 1996; 16(2): 68-76.
- Last J. A dictionary of epidemiology. Third edition. International Epidemiological Association, Oxford University Press, 1995.
- Lawlor D. Re: "Antidepressant medication use and breast cancer risk".

 American Journal of Epidemiology 2000; 152 (11): 1104-1105.
- Lau H, De Boer A, Beuning K, Porsius A. Validation of pharmacy records in drug exposure assessment. Journal of Clinical Epidemiology 1997; 50(5): 619-625.
- Lenbard R, Osteen R, Gansler T. Clinical Oncology. The American cancer Society, Inc. Atlanta, Georgia, 2001.
- Linkins RW, Comstock GW. Depressed mood and development of cancer.

 American Journal of Epidemiology 1990; 132(5): 962-972.
- Maartens L, Knottnerus J, Pop V. Menopausal transition and increased depressive symptomatology: A community based prospective study. Maturitas 2002; 42: 195-200.
- MacMahon B, Trichopoulos D. Epidemiology: principles and methods. Little, Brown and Company, New York, 1996: p. 232.
- Magno Zito J, Safer D, DosReis S, Gardner J, Boles M, Lynch F. Trends in the prescribing of psychotropic medications to preschoolers. Journal of the American Medical Association 2000; 283: 1025-1030.

- Mamdani MM, Parikh SV, Austin PC, Upshur RE. Use of antidepressants among elderly subjects trends and contributing factors. American Journal of Psychiatry 2000; 157(3): 360-367.
- Mathews J. Concern over Prozac-induced tumor growth may dwindle following FDA study. Journal of the National Cancer Institute 1995; 87: 1285-1287.
- McGee R, Williams S, Elwood M. Depression and the development of cancer: a meta-analysis. Social Science and Medicine 1994; 38: 187-192.
- Mendlewicz J, Lecrubier Y. Antidepressant selection: Proceedings from a TCA/SSRI consensus conference. Acta Psychiatrica Scandinavica 2000; 101(Suppl. 403): 5-8.
- Miettinen OS. Theoretical epidemiology. principles of occurrence research in medicine. Albany: Delmar, 1985: p. 226-227.
- Miller L. Antidepressants and cancer: cause for concern? Journal of Clinical Psychopharmacology 1993; 13(1): 1-2.
- Minde K. The use of psychotropic medications in preschoolers: some recent developments. Canadian Journal of Psychiatry 1998; 43: 57-575.
- Monroe A, Ricketts T, Savitz L. Cancer in rural versus urban populations: A review: Journal of Rural Health 1992; 8(3): 212-220.
- Moolgavkar S. Carcinogenesis modeling: From molecular biology to epidemiology. Annual Review of Public Health 1986; 7: 151-69.
- Moossa A, Schimpff S, Robson M. Comprehensive textbook of oncology, 2nd edition. Baltimore: Williams & Wilkins, 1991.

- Murray CJ, Lopez AD. The global burden of disease. Geneva, Switzerland: World Health Organization, 1996.
- National Cancer Institute of Canada: Canadian Cancer Statistics. Toronto, Canada, 1997.
- Neugarten B, Kraines R. Menopausal symptoms in women of various ages.

 Psychosomatic Medicine 1965; 27: 266-273.
- Parchment R, Machado S, Balch A, Long-Bradley P, Faustino P, Volpe D, Flora K, Grieshaber C. Lack of stimulation of murine tumor growth by antidepressants and antihistamines (Meeting abstract). Proceedings of the American Association for Cancer Research 1996; 37: A1107.
- Pardee AB, Dubrow R, Hamlin JL, Kletzien RF. Animal cell cycle. Annual Review of Biochemistry 1978; 47: 715-750.
- Parkin DM, Laara E, Muir CS. Estimates of the worldwide frequency of sixteen major cancers in 1980. International Journal of Cancer 1987; 41: 184-197.
- Parkin D, Whelan S, Ferlay J, Raymond L, Young J. Cancer incidence in five continents. Volume VII. Lyon: International Agency for Research on Cancer, 1997.
- Patton G, Hibbert M, Carlin J, Shao Q, Rosier M, Bowes G. Menarche and the onset of depression and anxiety in Victoria, Australia. Journal of Epidemiology and Community Health 1996; 50(6): 661-666.
- Penninx BW, Gurallnik JM, Ferrucci L, Cerhan JR, Wallac RB, Havlik RJ. Chronically depressed mood and cancer risk in older persons. Journal of the National Cancer Institute 1998; 90(24): 1888-1893.

- Percy C, Van Holten, Muir C. International Classification of Diseases for Oncology (ICD-O), 2nd edition. World Health Organization, Geneva, 1990.
- Peretti S, Judge R, Hindmarch I. Safety and tolerability considerations: tricyclic antidepressants vs. selective serotonin reuptake inhibitors. Acta Psychiatrica Scandinavica 2000; 101(Suppl. 403): 17-25.
- Persky VW, Kempthorne-Rawson J, Shekelle RB. Personality and risk of cancer: 20-year follow-up of the Western Electric Study. Psychosomatic Medicine 1987; 49: 435-449.
- Pike M, Spicer D, Dahmoush L, Press M. Estrogens, progestogens, normal breast cell proliferation and breast cancer risk. Epidemiologic Review 1993; 15: 17-35.
- Pincus H, Tanielian T, Marcus S, Olfson M, Zarin D, Thompson J, Magno Zito
 J. Prescribing trends in psychotropic medications. Journal of the American
 Medical Association 1998; 279(7): 526-531.
- Potter W, Manji H, Rudorfer M. Tricyclics and tetracyclics. In Schatzberg A.F. and Nemeroff C.B. (eds). The American Psychiatric Press Textbook of Psychopharmacology, American Psychiatric Press, Washington DC, 1998: p 191-218.
- Prescott DM. Cell reproduction. International Review of Cytology 1987; 100: 93-128.
- Rapoport JL, Mikkelsen EJ, Zavail A. Childhood enuresis, II: psychopathology,
 tricyclic concentration in plasma, and antienuretic effect. Archives of General
 Psychiatry 1980; 37: 1146-1152.

- Ries LAG, Kosary CL, Hankey BF. SEER Cancer Statistics Review, 1973-1996. Bethesda, MD: National Cancer Institute, 1999.
- Richelson E. Pharmacology of antidepressants-characteristics of the ideal drug.

 Mayo Clinic Proceedings 1994; 69: 1069-1081.
- Risch HA, Howe GR. Menopausal hormone usage and breast cancer in Saskatchewan: a record linkage study. American Journal of Epidemiology 1994; 139: 670-683.
- Rosenberg L, Metzger LS, Palmer JR. Alcohol consumption and risk of breast cancer: a review of the epidemiologic evidence. Epidemiologic Review 1993; 15: 133-144.
- Rothman K, Greenland S. Modern Epidemiology: Second edition. Lippincott-Raven Publishers, 1998: p. 27 and p. 225-229.
- Rudorfer M, Potter W. Metabolism of tricyclic antidepressants. Cellular and Molecular Neurobiology 1997; 19(3): 373-409.
- Sagoz N, Oguzturk O, Bayram M, Kamaci M. Anxiety and depression before and after the menopause. Archives of Gynecology and Obstetrics 2001; 264: 199-202.
- SAS Institute Inc. The SAS system for windows software, release 8. Cary, NC, USA: SAS Institute Inc, 1999.
- Schottenfeld D, Fraumeni J. Cancer Epidemiology and Prevention, 2nd edition.

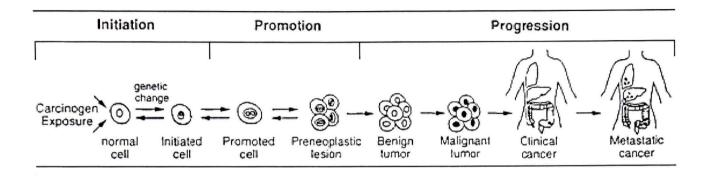
 New York: Oxford University Press, 1996: p 11.

- Selby JV, Friedman GD, Fireman BH. Screening prescription drugs for possible carcinogenicity: eleven to fifteen years of follow-up. Cancer Research 1989; 49: 5736-5747.
- Sell S, Pierce B. Biology of disease. Laboratory Investigation 1994; 70(1): 6-22.
- Sellick SM, Crooks DL. Depression and cancer: an appraisal of the literature for prevalence, detection, and practice guideline development for psychological interventions. [Review][44 refs]. Psycho-Oncology 1999; 8(4): 315-333.
- Sharpe C, Collet JP, McNutt M, Belzile E, Boivin JF, Hanley J. Nested case-control study of the effects of non-steroidal anti-inflammatory drugs on breast cancer: risk and stage. British Journal of Cancer 2000; 83(1): 112-120.
- Sharpe C, Collet JP, Belzile E, Hanley J, Boivin JF. The effects of tricyclic antidepressants on breast cancer risk. British Journal of Cancer 2002; 86(1): 92-97.
- Shekelle RB, Raynor WJ, Ostfeld AM, Garron DC, Bieliauskas LA, Liu SC.

 Psychological depression and 17-year risk of death from cancer. Psychosomatic

 Medicine 1981; 43: 117-125.
- Smith-Warner S, Spiegelman D, Adami H et al. Types of dietary fat and breast cancer: a pooled analysis of cohort studies. International Journal of Cancer 2001; 92: 767-774.
- Spiegel D. Cancer and depression. British Journal of Psychiatry 1996; 168(suppl. 30): 109-116.

- Stahl Sm. Selecting an antidepressant by using mechanism of action to enhance efficacy and avoid side effects. [Review] [21 refs]. Journal of Clinical Psychiatry 1998; 59 Suppl 18: 23-29.
- Steinberg GD, Carteer BS, Beaty TH, et al. Family history and the risk of prostate cancer. Prostate 1990; 17: 337-347.
- Steingart AB, Cotterchio M. Do antidepressants cause, promote, or inhibit cancers? [Review][43 references]. Journal of Clinical Epidemiology 1995; 48(11): 1407-1412.
- Stice E, Presnell K, Bearman S. Relation of early menarche to depression, eating disorders, substance abuse, and comorbid psychopathology among adolescent girls. Developmental Psychology 2001; 37(5): 608-619.
- Strawbridge W, Deleger S, Roberts R, Kaplan G. Physical activity reduces the risk of subsequent depression for older adults. American Journal of Epidemiology 2002; 156(4): 328-334.
- Strom B. Pharmacoepidemiology, Third edition. Chichester John Willey and Sons Ltd, 2000.
- Studd J, Watson N, Henderson A. Symptoms and metabolic sequel of the menopause. In: Drife J, Studd J (eds) HRT and osteoporosis. Springer, London; 1990: p 23-33.
- Thom TJ. Economic costs of neoplasms, arteriosclerosis, and diabetes in the United States. In Vivo 1996; 10: 255-260.
- Thomas D. Models for exposure-time-response relationships with applications to cancer epidemiology. Annual Review of Public Health 1988; 9: 451-482.


- Key T, Allen N, Spencer E, Travis R. The effect of diet on risk of cancer.

 Lancet 2002; 360: 861-868.
- Tomatis L, Aitio A, Wilbourn J, Shuker L. Human carcinogens so far identified. Japanese Journal of Cancer Research 1989; 80: 795-807.
- Van Schaik N, Graf U. Genotoxicity evaluation of five tricyclic antidepressants in the wing somatic mutation and recombination test in Drosophila melanogaster. Mutation Research 1991; 260(1): 99-104.
- Van Schaik N, Graf U. Structure activity relationships of tricyclic antidepressants and related compounds in the wing somatic mutation and recombination test of Drosophila melanogaster. Mutation Research 1993; 286(2): 155-163.
- Vogel E, Graf U, Frei H, Nivard M. The results of assays in Drosophila as indicators of exposure to carcinogens. IARC Scientific Publications No. 146;
 International Agency for Research on Cancer, Lyon, 1999: p. 427-470.
- Voirol P, Robert PA, Meister P, Oros L, Baumann P. Psychotropic drug prescription in a psychiatric university hospital. Pharmacopsychiatry 1999; 32(1): 29-37.
- Wallace RB, Sherman BM, Bean JA. A case-control study of breast cancer and psychotropic drug use. Oncology 1982; 39: 279-283.
- Wang P, Walker A, Tsuang M, Orav E, Levin R, Avron J. Antidepressant use and the risk of breast cancer: A non-association. Journal of Clinical Epidemiology 2001; 54: 728-734.

- Wang J, Pattern S. Alcohol consumption and major depression: findings from a follow-up study. Canadian Journal of Psychiatry 2001; 46(7): 632-638.
- Wang J, Pattern S. Prospective study of frequent heavy alcohol use and the risk of major depression in the Canadian general population. Depression and Anxiety 2002; 15: 42-45.
- Weissman MM, Olfson M. Depression in women: implications for health care research. Science 1995; 269: 799-801.
- Willis RA. The spread of tumors in the human body. London, Butterworth and CO, 1952.
- World Health Organization. Prevention of Cancer, Tech. Rep. Series No. 276, Geneva, Switzerland, 1964.
- Wright WC. Diseases of Workers. New York, Hafner Publishing CO, 1964.
- Wright S, Zhong J, Larrick J. Inhibition of apoptosis as a mechanism of tumor promotion. Journal of the Federation of American Societies for Experimental Biology 1994; 8: 654-660.
- Zhang M, Lee A, Binns C. Physical activity and epithelial ovarian cancer risk: a case control study in China. International Journal of Cancer 2003; 105(6): 838-843.
- Zhu K, Levine RS, Gu Y, Brann EA, Hall I, Caplan LS, Baum MK. Non-Hodgkin's lymphoma and family history of malignant tumors in a case-control study (United States). Cancer Causes and Control 1998; 9(1): 77-82.
- Zock P. Dietary fats and cancer. Current opinion in Lipidology 2001; 12: 5-10.

- Zonderman AB, Costa PT, McCrae RR. Depression as a risk for cancer morbidity and mortality in a nationally representative sample. Journal of the American Medical Association 1989; 262(9): 1191-1195.

Figure 1: Multistage process of carcinogenesis

Figure 2: Schematic version of experiments performed on mouse skin which allowed the distinction between initiation and promotion

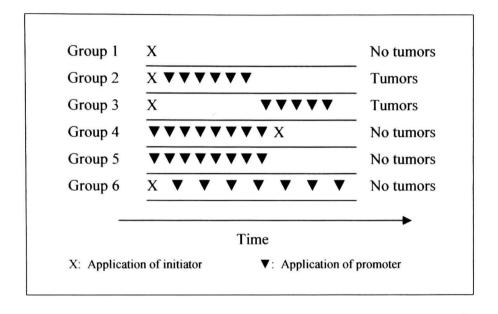
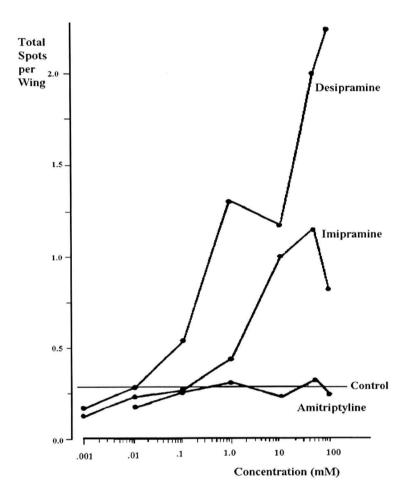
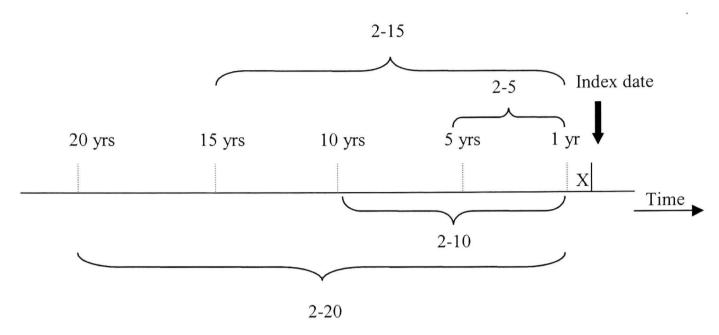
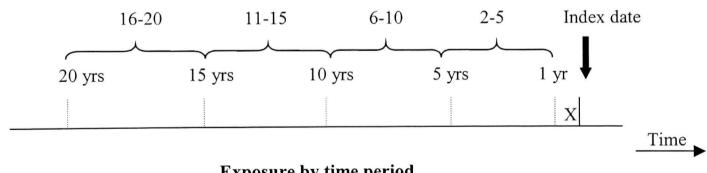



Figure 3: Structural formulas of TCAs amitriptyline and imipramine

Figure 4: The dose-response relationships for the TCAs amitriptyline, desipramine, and imipramine in an experiment carried out in Drosophila melanogaster to assess genotoxicity of TCAs (Van Schaik et al., 1991; and Van Schaik et al., 1993)


Figure 5: Illustration of how controls were selected for <u>female</u> cancers according to the two other matching variables (age and time of diagnosis)

		Month and year of diagnosis								
9		Jan / 80	Feb / 80	Mar / 80			-	Oct / 00	Nov / 00	Dec / 00
	5				:					
	7.5		-		ļ			! !		<u> </u>
	10		-	 				! !		
	12.5		-}	<u> </u>				¦ 		
	15		 	<u> </u>						
			-	<u> </u>						
	★ 70		-	ļ						
	72.5		-	<u> </u>						
	75		-							}
	77.5			 						
	80								· 	
	82.5									<u> </u>
				'	1	'		'		1
Females, 70-72.5 years of age in October 2000"							40 controls were selected from this cell, based on a 4 controls per each			
10 breast cancer cases							breast cancer case (the most frequent			
5 ovarian cancer cases						\rightarrow	cancer site)			
2 uterus cancer cases							Thus, considering ovarian cancer,			
1 non-Hodgkin's lymphoma case							there were 8 potential controls			


1 stomach cancer case

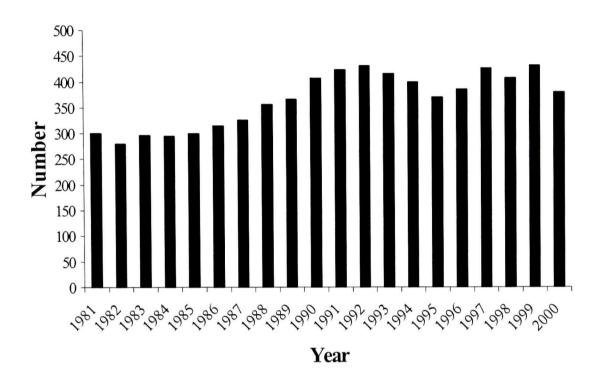
available for each ovarian cancer case

Figure 6: Illustration of how drug history (before the index date) was categorized for the two groups of exposure definitions (during full period and by time period)

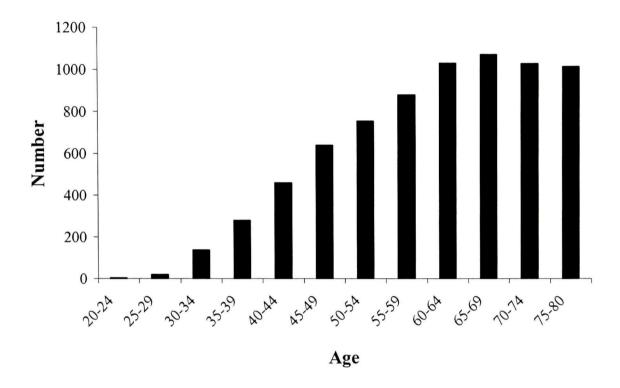
Exposure during full period

Exposure by time period

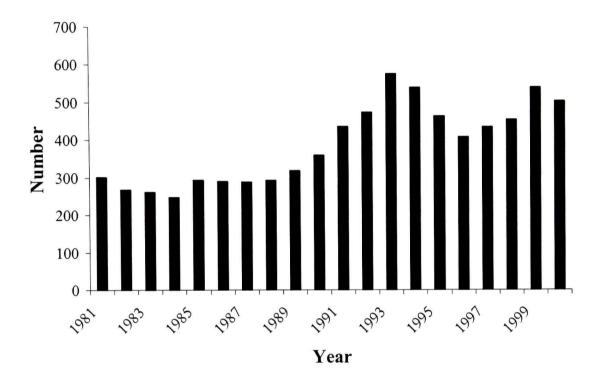
X:

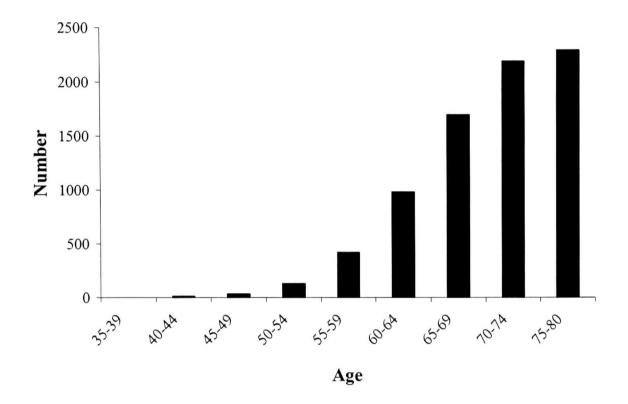

Exposure during the year prior to the date of diagnosis was excluded from the

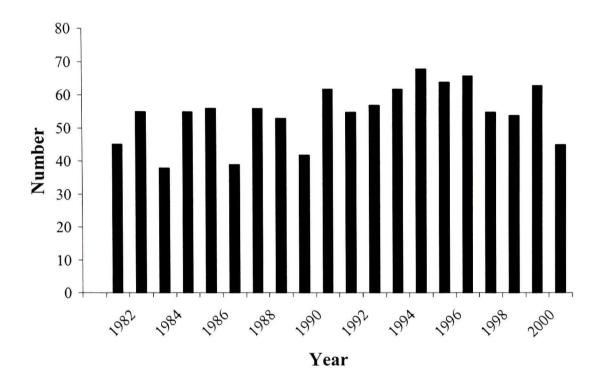
analyses

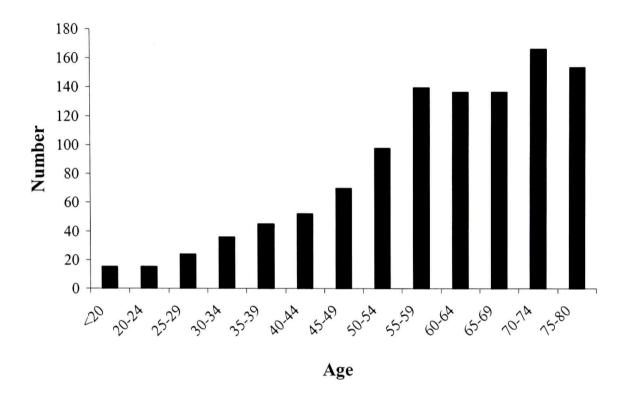

Index date:

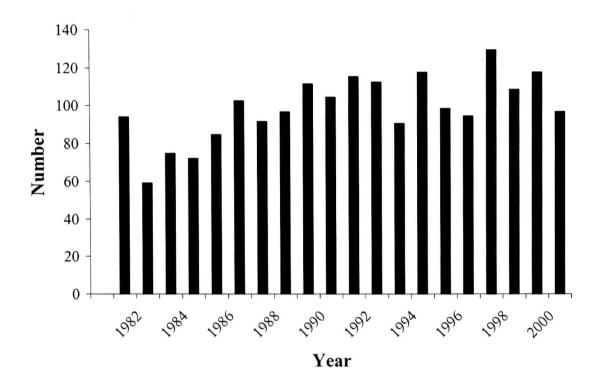
Date of diagnosis


Figure 7: Yearly incidence of breast cancer cases in Saskatchewan among people aged between 5 and 82.5 years


Figure 8: Age distribution of breast cancer cases in Saskatchewan between the year 1981 and 2000


Figure 9: Yearly incidence of prostate cancer cases in Saskatchewan among people aged between 5 and 82.5 years


Figure 10: Age distribution of prostate cancer cases in Saskatchewan between the year 1981 and 2000


Figure 11: Yearly incidence of ovarian cancer cases in Saskatchewan among people aged between 5 and 82.5 years

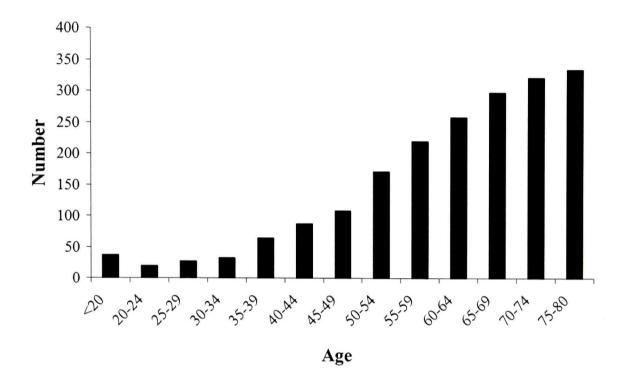

Figure 12: Age distribution of ovarian cancer cases in Saskatchewan between the year 1981 and 2000

Figure 13: Yearly incidence of non-Hodgkin's lymphoma cases in Saskatchewan among people aged between 5 and 82.5 years

Figure 14: Age distribution of non-Hodgkin's Lymphoma cases in Saskatchewan between the year 1981 and 2000

Table 1: Incidence of <u>breast</u> cancer, for those having at least 20 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

TCA exposure			Cases N=1876	Controls N=7362	RR	95% CI	
er/Never ex	posed						
	2-20 yea	re	Unexposed	1343	5227	1.00	Referent
bined	2-20 yea		Any	533	2135	0.97	0.86-1.08
			Unavnacad	1343	5227	1.00	Referent
			Unexposed Genotoxic	1545	638	1.00	0.86-1.26
egorized	2-20 yea	irs	Non-Genotoxic			1.04	0.90-1.26
				228	830	0.78	0.63-0.95
			Both	138	667	0.78	0.03-0.93
nulative d	osage exp	osure		i			
	g II		Unexposed	1343	5227	1.00	Referent
	2 20		Low	239	977	0.94	0.80-1.10
	2-20 yea	ırs	High	294	1158	099	0.86-1.14
			P-trend				0.58
			Unexposed	1433	5537	1.00	Referent
	(20		Low	203	833	0.93	0.79-1.11
	6-20 yea	IFS	High	240	992	0.93	0.80-1.09
			P-trend				0.71
nbined			Unexposed	1541	5993	1.00	Referent
	11 20		Low	156	640	0.94	0.78-1.14
	11-20 ye	ears	High	179	729	0.96	0.80-1.14
			P-trend				0.77
	16-20 years		Unexposed	1654	6428	1.00	Referent
			Low	117	454	0.98	0.79-1.21
			High	105	480	0.86	0.69-1.08
]		P-trend				0.99
<u> </u>							
tegorized			Unexposed	1343	5227	1.00	Referent
		Genotoxic	Low	87	352	0.95	0.74-1.22
		C C C C C C C C C C	High	80	286	1.20	0.91-1.57
	2-20		P-trend	10.40	5005	1.00	0.30
	years		Unexposed	1343	5227	1.00	Referent
		Non-	Low	135	513	1.03	0.84-1.27
		Genotoxic	High	93	317	1.11	0.86-1.43
			P-trend	1 122			0.25
			Unexposed	1433	5537	1.00	Referent
		Genotoxic	Low	91	350	1.02	0.79-1.30
			High	78	287	1.10	0.84-1.45
	6-20		P-trend	1422	653 5	4.00	0.19
	years	* *	Unexposed	1433	5537	1.00	Referent
		Non-	Low	101	399	0.96	0.76-1.21
		Genotoxic	High	74	248	1.12	0.84-1.48
			P-trend	1541	5003	1.00	0.41
			Unexposed	1541	5993	1.00	Referent
		Genotoxic	Low	83	294	1.08	0.83-1.39
			High	61	245	1.02	0.76-1.38
	11-20		P-trend				0.89
	years	_ =	Unexposed	1541	5993	1.00	Referent
		Non-	Low	69	289	0.94	0.71-1.24
		Genotoxic	High	56	170	1.21	0.88-1.67
			P-trend		<u></u>		0.56

	Genotoxic	Unexposed	1654	6428	1.00	Referent
		Low	55	222	0.92	0.67-1.25
		High	44	185	0.96	0.69-1.35
16-20		P-trend				0.80
years	Non-	Unexposed	1654	6428	1.00	Referent
	Genotoxic	Low	57	205	1.08	0.80-1.47
		High	28	140	0.78	0.52-1.19
		P-trend				0.68

RR: rate (incidence) ratio

All combined: both types of TCAs (genotoxic or non-genotoxic)
Genotoxic: exposure to genotoxic TCAs only
Non-genotoxic: exposure to non-genotoxic TCAs only

Both: exposure to both types of TCAs (genotoxic and non-genotoxic)

Table 2: Incidence of <u>breast</u> cancer, for those having at least 15 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

	TC	A exposure		Cases N=3883	Controls N=15389	RR	95% CI
er/Never ex	posed						
	2-15 yea	re	Unexposed	2920	11722	1.00	Referent
nbined	2-13 yea		Any	963	3667	1.05	0.97-1.15
						-	
			Unexposed	2920	11722	1.00	Referent
tegorized	2-15 yea	rs	Genotoxic	320	1203	1.06	0.92-1.21
iegor izeu	- 15 yea		Non-Genotoxic	399	1463	1.08	0.96-1.22
			Both	244	1001	1.01	0.87-1.18
7 7	<u> </u>		. <u>-</u>				
mulative de	osage exp	osure	Unawnood	2920	11722	1.00	Referent
			Unexposed	1			
	2-15 yea	ırs	Low	418	1678	0.98	0.87-1.10
			High	545	1989	1.11	1.00-1.24
			P-trend	21.12	10100	1.00	0.10
l 6-15 years			Unexposed	3143	12432	1.00	Referent
		ırs	Low	329	1357	0.95	0.84-1.08
nbined			High	411	1600	1.02	0.91-1.15
			P-trend				0.06
			Unexposed	3409	13495	1.00	Referent
	11-15 ye	ears	Low	201	886	0.91	0.77-1.07
	11-15 y	car s	High	273	1008	1.08	0.94-1.25
			P-trend				0.03
			TT	2020	11722	1.00	D.C.
			Unexposed	2920	11722	1.00	Referent
	Genotoxic	Low	153	661	0.91	0.76-1.10	
			High	167	542	1.20	1.04-1.51
	2-15		P-trend				0.18
	years		Unexposed	2920	11722	1.00	Referent
		Non-	Low	237	868	1.05	0.90-1.23
		Genotoxic	High	162	595	1.11	0.92-1.34
			P-trend				0.81
			Unexposed	3143	12432	1.00	Referent
		Genotoxic	Low	142	614	0.93	0.77-1.13
		COLOUME	High	144	516	1.10	0.91-1.34
tegorized	6-15		P-trend				0.06
acgor izeu	years		Unexposed	3143	12432	1.00	Referent
		Non-	Low	166	648	0.99	0.82-1.18
		Genotoxic	High	113	448	1.03	0.82-1.27
			P-trend				0.62
			Unexposed	3409	13495	1.00	Referent
		Genotoxic	Low	102	442	0.92	0.74-1.15
		Genotoxic	High	106	385	1.14	0.91-1.42
	11-15		P-trend				0.01
	years		Unexposed	3409	13495	1.00	Referent
	"	Non-	Low	88	394	0.90	0.71-1.14
		Genotoxic	High	80	298	1.04	0.81-1.35
	Genotoric		P-trend	1	-/-	1.01	0.81-1.55

Table 3: Incidence of <u>breast</u> cancer, for those having at least 10 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

	TCA exposure		Cases N=5689	Controls N=22775	RR	95% CI
er/Never ex	posed					
l	2-10 years	Unexposed	4554	18545	1.00	Referent
mbined	2-10 years	Any	1135	4230	1.09	1.01-1.17
						·
		Unexposed	4554	18545	1.00	Referent
itegorized	2-10 years	Genotoxic	406	1489	1.12	1.00-1.26
itegorizeu	2 10 years	Non-Genotoxic	493	1818	1.09	0.98-1.22
		Both	236	923	1.05	0.90-1.22
	ASGGA OVBACILHA				<u>.</u>	
imululive di	osage exposure	Unexposed	4554	18545	1.00	Referent
		Low	503	1929	1.04	0.94-1.16
	2-10 years	High	632	2301	1.13	1.02-1.24
]		P-trend	032	2501	1.13	0.07
mbined		Unexposed	4925	19817	1.00	Referent
		Low	328	1335	0.98	0.86-1.11
	6-10 years	High	436	1623	1.07	0.96-1.20
		P-trend				0.09
		Unexposed	4554	18545	1.00	Referent
	Genotoxic	Low	190	755	1.03	0.87-1.22
	Genotoxic	High	216	734	1.23	1.04-1.44
	2-10	P-trend				0.04
	years	Unexposed	4554	18545	1.00	Referent
	Non-	Low	277	1029	1.07	0.93-1.23
	Genotoxic	High	216	789	1.12	0.96-1.32
		P-trend				0.88
ategorized		Unexposed	4925	19817	1.00	Referent
		Low	142	591	0.95	0.79-1.15
	Genotoxic	High	163	628	1.04	0.87-1.24
	6-10	P-trend				0.05
	years	Unexposed	4925	19817	1.00	Referent
	Non-	Low	167	668	0.99	0.83-1.18
	Genotoxic	High	156	562	1.12	0.93-1.35
		P-trend				0.78

Table 4: Incidence of <u>breast</u> cancer, for those having at least 5 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

	TCA	A exposure		Cases N=7330	Controls N=29320	RR	95% CI
er/Never ex	posed			·	·		
l	2 5		Unexposed	6353	25858	1.00	Referent
mbined	2-5 years		Any	977	3462	1.15	1.07-1.24
			Unexposed	6353	25858	1.00	Referent
. 4	2.5		Genotoxic	386	1313	1.20	1.06-1.35
ıtegorized	2-5 years		Non-Genotoxic	468	1651	1.15	1.03-1.28
			Both	123	498	1.05	0.86-1.29
ımulative d	osage expos	sure					
			Unexposed	6353	25858	1.00	Referent
.1	3.5		Low	418	1532	1.10	0.98-1.23
mbined	2-5 years		High	559	1930	1.19	1.08-1.31
			P-trend				0.06
	<u> </u>		Unexposed	6353	25858	1.00	Referent
			Low	158	587	1.08	0.90-1.30
		Genotoxic	High	228	726	1.29	1.10-1.50
,	2-5		P-trend				0.02
ategorized	years		Unexposed	6353	25858	1.00	Referent
	_	Non-	Low	240	874	1.10	0.95-1.28
		Genotoxic	High	228	777	1.19	1.02-1.38
			P-trend				0.22

Table 5: Incidence of <u>breast</u> cancer as a function of <u>average daily dose</u> of \underline{TCA} exposure by time period before diagnosis

	TCA exposure			1.10,00			
riod before		Cases	Controls	C	rude	Adj	usted*
ignosis	Average daily dose	N=7330	N=29320	RR	95% CI	RR	95% CI
	······································						
	Unexposed	6353	25858	1.00	Referent	1.00	Referent
years	Low	414	1519	1.11	0.99-1.24	1.12	1.00-1.26
	Medium	263	902	1.19	1.03-1.37	1.20	1.04-1.39
	High	300	1041	1.18	1.03-1.34	1.19	1.01-1.40
1	P-trend				0.06		0.21
	Other	-					
	Т1.						
	Unexposed	4925	19819	1.00	Referent	1.00	Referent
	Low	359	1480	0.98	0.87-1.10	0.96	0.85-1.08
10 years	Medium	193	718	1.08	0.92-1.27	1.01	0.85-1.20
0 years	High	212	760	1.12	0.96-1.31	0.98	0.79-1.21
	P-trend				0.08		0.66
	Other	1641	6545				
	T	2400	12.105	4.00	~ ~ .	1.00	
	Unexposed	3409	13495	1.00	Referent	1.00	Referent
	Low	224	975	0.91	0.78-1.06	0.90	0.78-1.05
-15 years	Medium	124	475	1.04	0.85-1.27	1.02	0.83-1.26
J	High	126	444	1.13	0.92-1.38	1.10	0.85-1.42
	P-trend				0.04		0.05
	Other	3447	13931				
	Unexposed	1654	6428	1.00	Referent	1.00	Referent
	Low	129	497	1.00	0.83-1.24	1.00	0.81-1.22
	Medium	45	240	0.73	0.53-1.24	0.70	0.51-0.98
-20 years	High	48	197	0.73	0.69-1.31	0.70	0.51-0.38
	P-trend	40	177	0.55	0.09-1.31	0.02	0.53
	Other	5454	21958		0.93		0.55
	Other						

RR: rate (incidence) ratio

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 6: Incidence of <u>breast</u> cancer as a function of <u>average daily dose</u> of genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis

od bc	Avorage		Non-Genot	toxic TCAs			Genoto	ric TCAs	
re nosis	Average daily dose	Cases N=7330	Controls N=29320	Adjusted RR*	Adjusted 95% CI*	Cases N=7330	Controls N=29320	Adjusted RR*	Adjusted 95% CI*
	<u> </u>								
	Unexposed	6739	27171	1.00	Referent	6821	27509	1.00	Referent
	Low	297	1079	1.11	0.97-1.27	207	784	1.06	0.91-1.24
100 MC	Medium	146	540	1.06	0.87-1.28	142	495	1.16	0.95-1.41
/ears	High	148	530	1.08	0.87-1.35	160	532	1.19	0.96-1.47
	P-trend				0.85				0.26
	Other	<u>-</u>	<u>-</u>			-	-		
	Unexposed	5230	21036	1.00	Referent	5248	21047	1.00	Referent
	Low	249	995	1.00	0.86-1.16	210	876	0.94	0.80-1.10
	Medium	110	383	1.12	0.89-1.41	111	441	0.93	0.75-1.16
'S	High	100	361	1.08	0.81-1.43	120	411	0.97	0.74-1.26
	P-trend				0.55				0.41
	Other	1641	6545			1641	6545		
	Unevnesed	3617	14322	1.00	Referent	3577	14187	1.00	Referent
	Unexposed Low	144	616	0.91	0.75-1.10	148	654	0.91	0.75-1.09
.5	Medium	70	244	1.07	0.73-1.10	81	309	1.04	0.73-1.09
.5 *\$	High	52	207	0.91	0.63-1.30	77	239	1.04	0.80-1.33
3	P-trend	32	207	0.91	0.03-1.30	''	239	1.27	0.92-1.74
	Other	3447	13931		0.13	3447	13931		0.002
-	Unexposed	1753	6835	1.00	Referent	1739	6773	1.00	Referent
	Low	75	319	0.93	0.72-1.21	75	312	0.93	0.72-1.21
:0	Medium	27	128	0.85	0.55-1.31	31	162	0.73	0.49-1.09
:s	High	21	80	0.98	0.59-1.65	31	115	0.90	0.58-1.39
	P-trend				0.45				0.85
	Other	5454	21958			5454	21958		
			•						

RR: rate (incidence) ratio

Other: subjects with incomplete information during the specified period Non-genotoxic TCAs: regardless of any exposure to genotoxic TCAs Genotoxic TCAs: regardless of any exposure to non-genotoxic TCAs

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 7: Incidence of <u>breast</u> cancer as a function of <u>average daily dose</u> of <u>exclusive</u> genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis

			Cases	Controls		rude	Adjusted*		
eriod be	efore diagnosis	Average daily dose	N=7330	N=29320	RR	95% CI	RR	95% CI	
			1. ,000			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		Unexposed	6353	25858	1.00	Referent	1.00	Referent	
	Exclusive non-	Low	239	863	1.13	0.98-1.31	1.14	0.98-1.32	
	genotoxic	Medium	112	382	1.20	0.97-1.48	1.20	0.96-1.49	
	TCA exposure	High	117	406	1.18	0.96-1.45	1.21	0.95-1.53	
		P-trend	**/		1.10	0.18		0.21	
5 years		Low	156	586	1.09	0.91-1.30	1.10	0.92-1.31	
		Medium	107	335	1.30	1.05-1.62	1.34	1.07-1.68	
	Exclusive	High	123	392	1.28	1.04-1.57	1.32	1.04-1.67	
	genotoxic	P-trend				0.02		0.03	
	TCA exposure	Both	123	498	1.01	0.82-1.23	1.03	0.83-1.27	
		Other	-	-		:== 1.2 0		- ,	
	<u> </u>	<u>. </u>							
		Unexposed	4925	19817	1.00	Referent	1.00	Referent	
	Exclusive non-	Low	182	728	1.01	0.85-1.19	0.99	0.84-1.17	
	genotoxic	Medium	72	244	1.19	0.91-1.55	1.12	0.85-1.47	
	TCA exposure	High	69	258	1.08	0.82-1.41	0.99	0.71-1.38	
10		P-trend				0.97		0.54	
10 ars		Low	153	655	0.94	0.79-1.12	0.92	0.76-1.10	
ars	Fralmain	Medium	73	283	1.04	0.80-1.35	0.96	0.73-1.25	
	Exclusive	High	79	281	1.13	0.88-1.46	0.95	0.70-1.29	
	genotoxic TCA exposure	P-trend				0.04		0.23	
	1 CA exposure	Both	136	509	1.08	0.89-1.30	0.99	0.80-1.23	
	<u></u>	Other	1641	6545					
		Unexposed	3409	13495	1.00	Referent	1.00	Referent	
	Exclusive <u>non-</u>	Low	98	428	0.91	0.73-1.13	0.89	0.71-1.12	
	genotoxic	Medium	39	136	1.14	0.79-1.63	1.12	0.78-1.63	
	TCA exposure	High	31	128	0.96	0.65-1.43	0.95	0.61-1.48	
-15		P-trend				0.30		0.23	
ars		Low	112	479	0.93	0.75-1.14	0.92	0.75-1.14	
	Exclusive	Medium	53	204	1.03	0.76-1.40	1.01	0.74-1.39	
	genotoxic	High	43	144	1.19	0.84-1.67	1.17	0.79-1.74	
	TCA exposure	P-trend		275	1.04	0.02	1.00	0.03	
	1	Both	98	375	1.04	0.83-1.30	1.02	0.80-1.30	
		Other	3447	13931					
		Tinownasad	1654	6428	1.00	Referent	1.00	D - f -	
	E1	Unexposed	60	223	1.00	0.78-1.40	1.00	Referent 0.78-1.39	
	Exclusive non-	Low	60 14	73	0.75	0.78-1.40 0.42-1.34	0.71		
	genotoxic	Medium	14 11	73 49	0.75 0.87	0.42-1.34 0.45-1.68	0.71	0.40-1.28 0.41-1.59	
	TCA exposure	High P-trand	11	47	U.0/	0.45-1.68 0.65	0.61	0.41-1.59 0.54	
-20		P-trend Low	62	241	1.00	0.75-1.33	0.99	0.74-1.31	
ars		Low Medium	62 21	241 92	1.00 0.89	0.75-1.33 0.55-1.44	0.99 0.86	0.74-1.31 0.53-1.38	
	Exclusive	High	16	92 74	0.89	0.33-1.44	0.86	0.53-1.38 0.42-1.30	
	genotoxic	P-trend	10	/4	0.03	0.49-1.45 0.78	0.74	0.42-1.30 0.49	
	TCA exposure	Both	38	182	0.81	0.78	0.74	0.49	
		Other	38 5454	21958	0.01	0.57-1.10	0.74	0.51-1.07	
	i	1 A/INCI	ノサンサ	417.70					

^{*} Adjustment for the exposure in the other periods was carried out for each period Unexposed: no exposure to either type of TCAs (genotoxic and non-genotoxic)

Both: exposure to both types of TCAs (genotoxic and non-genotoxic)

Table 8: Incidence of <u>breast</u> cancer as a function of <u>duration</u> of <u>TCA</u> exposure by time period before diagnosis

	TCA exposure						
riod before		Cases	Controls	С	rude	Adj	usted*
gnosis	Duration	N=7330	N=29320	RR	95% CI	RR	95% CI
	·						
	Unexposed	6354	25862	1.00	Referent	1.00	Referent
years	Short	319	1245	1.04	0.92-1.19	1.06	0.93-1.20
	Medium	335	1141	1.20	1.06-1.36	1.22	1.07-1.39
	Long	322	1072	1.23	1.08-1.39	1.32	1.12-1.54
I	P-trend				0.0007		0.0004
	Other	-	-				
	T						
	Unexposed	4930	19830	1.00	Referent	1.00	Referent
	Short	373	1525	0.98	0.88-1.11	0.96	0.85-1.08
l0 years	Medium	214	750	1.15	0.98-1.34	1.04	0.88-1.23
u years	Long	176	680	1.04	0.88-1.23	0.83	0.66-1.04
	P-trend				0.27		0.21
	Other	1637	6535				
	TT:	2420	12540	1.00	Deferent	1.00	Deferent
	Unexposed	3420	13540	1.00	Referent	1.00	Referent
	Short	240	1035	0.92	0.79-1.06	0.91	0.79-1.06
-15 years	Medium	123	464	1.05	0.86-1.29	1.04	0.84-1.28
,	Long	110	398	1.10	0.89-1.36	1.08	0.82-1.43
	P-trend	2.425			0.36		0.53
	Other	3437	13883				
	Unexposed	1672	6502	1.00	Referent	1.00	Referent
	Short	138	545	0.99	0.81-1.20	0.97	0.80-1.19
	Medium	44	241	0.72	0.52-0.99	0.69	0.49-0.96
-20 years	Long	45	162	1.08	0.78-1.52	0.97	0.67-1.41
	P-trend	,,,	102	1.00	0.76-1.32	0.57	0.25
	Other	5431	21870		0.57		0.23
	Other		1 1 1 1	111			

RR: rate (incidence) ratio

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 9: Incidence of breast cancer as a function of duration of genotoxic and nongenotoxic TCA exposure by time period before diagnosis

d			Non-Geno	toxic TCAs	-	•	Genotox	cic TCAs	
e iosis	Duration	Cases N=7330	Controls N=29320	Adjusted RR*	Adjusted 95% CI*	Cases N=7330	Controls N=29320	Adjusted RR*	Adjusted 95% CI*
				<u> </u>	<u>. </u>				
	Unexposed	6739	27173	1.00	Referent	6822	27511	1.00	Referent
	Short	220	899	0.98	0.84-1.14	177	691	1.02	0.86-1.21
	Medium	215	698	1.21	1.03-1.43	180	624	1.16	0.97-1.38
ears	Long	156	550	1.18	0.95-1.46	151	494	1.30	1.04-1.63
	P-trend				0.03				0.01
	Other	-				•			
	Unexposed	5234	21046	1.00	Referent	5252	21064	1.00	Referent
	Short	263	1017	1.02	0.89-1.18	236	964	0.94	0.81-1.10
	Medium	114	407	1.05	0.84-1.32	121	421	1.01	0.81-1.26
3	Long	82	315	0.93	0.68-1.26	84	336	0.75	0.54-1.02
	P-trend				0.99				0.07
	Other	1637	6535			1637	6535	_,.	·
	Unexposed	3632	14371	1.00	Referent	3585	14234	1.00	Referent
	Short	146	647	0.87	0.72-1.06	165	735	0.90	0.75-1.08
5	Medium	69	231	1.11	0.84-1.49	83	275	1.23	0.94-1.60
S	Long	46	188	0.93	0.63-1.38	60	193	1.34	0.94-1.92
	P-trend				0.70				0.10
	Other	3437	13883			3437	13883	···································	
	Unexposed	1772	6917	1.00	Referent	1760	6851	1.00	Referent
	Short	81	353	0.91	0.71-1.17	86	356	0.92	0.72-1.18
0	Medium	30	110	1.11	0.71-1.17	28	158	0.52	0.72-1.18
0	1	16	70	0.88	0.72-1.09	25	85	0.05	0.42-0.98
S	Long <i>P-trend</i>	10	70	0.00	0.49-1.39	23	0,5	0.53	0.36-1.33
		5431	21870		0.00	5431	21870		0.20
	Other	3431	210/0			111	210/0		

RR: rate (incidence) ratio

Other: subjects with incomplete information during the specified period

Non-genotoxic TCAs: regardless of any exposure to genotoxic TCAs Genotoxic TCAs: regardless of any exposure to non-genotoxic TCAs

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 10: Incidence of <u>breast</u> cancer as a function of <u>duration</u> of <u>exclusive</u> genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis

iod before diagnosis			Cases	Controls	C	rude	Adjusted*	
	8	Duration	N=7330	N=29320	RR	95% CI	RR	95% CI
						, -2,0 02		<u> </u>
		Unexposed	6354	25862	1.00	Referent	1.00	Referent
	Exclusive non-	Short	180	715	1.03	0.87-1.21	1.03	0.87-1.22
	genotoxic	Medium	154	487	1.29	1.07-1.55	1.30	1.08-1.56
	TCA exposure	Long	134	447	1.23	1.01-1.49	1.27	1.01-1.60
	•	P-trend	10.	,	1.20	0.008		0.008
years		Short	135	517	1.06	0.88-1.29	1.07	0.89-1.30
<i>J</i>		Medium	124	405	1.25	1.02-1.53	1.29	1.05-1.59
	Exclusive	Long	126	389	1.32	1.08-1.62	1.44	1.14-1.83
	<u>genotoxic</u>	P-trend	120	307	1.52	0.003	1.77	0.001
	TCA exposure	Both	123	498	1.01	0.82-1.23	1.03	0.84-1.27
		Other	125	-	1.01	0.02-1.23	1.05	0.04-1.27
		Other						
	-	Unexposed	4930	19830	1.00	Referent	1.00	Referent
	Exclusive non-	Short	181	731	1.00	0.84-1.17	0.98	0.83-1.16
	genotoxic	Medium	74	256	1.16	0.90-1.51	1.08	0.83-1.42
	TCA exposure	Long	6 7	247	1.09	0.83-1.43	0.99	0.71-1.38
	•	P-trend			2.07	0.27	0.77	0.75
.0		Short	167	707	0.95	0.80-1.13	0.92	0.77-1.09
ars		Medium	77	266	1.17	0.90-1.51	1.05	0.80-1.37
	Exclusive	Long	60	243	0.99	0.75-1.32	0.76	0.54-1.09
	genotoxic	P-trend		2.5	0.23	0.75	0.70	0.19
	TCA exposure	Both	134	505	1.09	0.90-1.32	0.99	0.80-1.22
		Other	1637	6535		317 4 110 2	0.77	0.00 1.22
·	<u>l</u>							
		Unexposed	3420	13540	1.00	Referent	1.00	Referent
	Exclusive non-	Short	102	444	0.91	0.73-1.13	0.90	0.72-1.12
	genotoxic	Medium	33	120	1.09	0.74-1.61	1.04	0.71-1.56
	TCA exposure	Long	30	130	0.91	0.61-1.36	0.82	0.51-1.30
	_	P-trend				0.60		0.31
-15		Short	124	528	0.93	0.76-1.14	0.93	0.76-1.13
ars		Medium	51	171	1.19	0.86-1.63	1.17	0.85-1.63
	Exclusive	Long	37	132	1.12	0.77-1.61	1.14	0.74-1.75
	genotoxic	P-trend				0.46		0.48
	TCA exposure	Both	96	372	1.02	0.81-1.28	1.00	0.78-1.28
		Other	3437	13883				
		,						
		Unexposed	1672	6502	1.00	Referent	1.00	Referent
	Exclusive non-	Short	63	245	1.00	0.76-1.33	1.00	0.75-1.32
	genotoxic	Medium	14	61	0.90	0.51-1.62	0.90	0.50-1.62
	TCA exposure	Long	11	43	1.00	0.51-1.94	1.01	0.50-2.04
20		P-trend				0.79	_	0.81
-20		Short	70	262	1.04	0.79-1.36	1.03	0.78-1.35
ars		Medium	15	101	0.58	0.34-1.00	0.56	0.32-0.96
	Exclusive	Long	15	52	1.13	0.64-2.01	0.90	0.54-1.81
	genotoxic	P-trend				0.52		0.99
	TCA exposure	Both	39	184	0.83	0.58-1.17	0.78	0.54-1.12
		Other	5431	21870				

^{*:} Adjustment for the exposure in the other periods was carried out for each period Unexposed: no exposure to either type of TCAs (genotoxic and non-genotoxic)

Both: exposure to both types of TCAs (genotoxic and non-genotoxic)

Table 11: Incidence of <u>breast</u> cancer, for those having at least 10 years of history, as a function of two exposure indices of <u>SSRI</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

SSRI exposu	re	Cases N=4682	Controls N=18728	RR	95% CI
er/Never exposed				<u> </u>	
2 10 years	Unexposed	4468	17937	1.00	Referent
2-10 years	Any	214	791	1.09	0.93-1.27
mulative dosage exposure					
	Unexposed	4468	17937	1.00	Referent
2.10 years	Low	121	431	1.14	0.93-1.40
2-10 years	High	93	360	1.02	0.81-1.29
	P-trend				0.15
	Unexposed	4619	18462	1.00	Referent
6.10	Low	33	171	0.77	0.53-1.13
6-10 years	High	30	95	1.27	0.84-1.92
	P-trend				0.94

RR: rate (incidence) ratio

Unexposed: no exposure to any SSRI

Any: exposure to any SSRI

Table 12: Incidence of <u>breast</u> cancer, for those having at least 5 years of history, as a function of two exposure indices of <u>SSRI</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

SSRI expo	sure	Cases N=4682	Controls N=18728	RR	95% CI
r/Never exposed					
2.5	Unexposed	4497	18066	1.00	Referent
2-5 years	Any	185	662	1.13	0.95-1.33
ulative dosage exposure					
	Unexposed	4497	18066	1.00	Referent
2.5	Low	106	350	1.23	0.99-1.54
2-5 years	High	79	312	1.01	0.78-1.29
	P-trend				0.10

Table 13: Incidence of <u>breast</u> cancer as a function of <u>average daily dose</u> of <u>SSRI</u> exposure by time period before diagnosis

	SSRI exposure						
riod before		Cases	Controls	C	rude	Adj	usted [*]
gnosis	Average daily dose	N=4682	N=18728	RR	95% CI	RR	95% CI
iod before gnosis	Unexposed	4497	18066	1.00	Referent	1.00	Referent
	Low	106	346	1.23	0.99-1.54	1.26	1.01-1.57
years	Medium	50	222	0.91	0.67-1.24	0.91	0.67-1.26
	High	29	94	1.24	0.82-1.89	1.24	0.78-1.98
	P-trend				0.10		0.13
	Other		-				
	Unexposed	4619	18462	1.00	Referent	1.00	Referent
	Low	38	185	0.82	0.58-1.17	0.78	0.55-1.12
10	Medium	22	70	1.26	0.78-2.04	1.17	0.70-1.98
iu years	High	3	11	1.09	0.30-3.89	0.95	0.25-3.59
	P-trend				0.94		0.77
	Other	-	-				

RR: rate (incidence) ratio

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 14: Incidence of <u>breast</u> cancer as a function of <u>duration</u> of <u>SSRI</u> exposure by time period before diagnosis

	SSRI exposure						
iod before	D	Cases	Controls	C	rude	Adj	usted*
gnosis	Duration	N=4682	N=18728	RR	95% CI	RR	95% CI
						 	
	Unexposed	4497	18067	1.00	Referent	1.00	Referent
	Short	69	231	1.20	0.92-1.58	1.22	0.93-1.60
	Medium	76	293	1.05	0.81-1.35	1.06	0.82-1.38
years	Long	40	137	1.18	0.83-1.69	1.22	0.83-1.82
	P-trend			0.14			0.10
	Other		•			 	
	Unexposed	4619	18460	1.00	Referent	1.00	Referent
	Short	32	156	0.82	0.56-1.20	0.78	0.53-1.15
0	Medium	26	93	1.11	0.72-1.73	1.01	0.64-1.61
0 years	Long	5	19	1.05	0.39-2.81	0.90	0.32-2.52
	P-trend				0.50		0.80
	Other	_	_				

RR: rate (incidence) ratio

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 15: Incidence of <u>prostate</u> cancer as a function of <u>average daily dose</u> of genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis

riod	Awara		Non-Genot	oxic TCAs			Genotox	Genotoxic TCAs			
fore ignosis	Average daily dose	Cases N=7767	Controls N=31068	Adjusted RR*	Adjusted 95% CI*	Cases N=7767	Controls N=31068	Adjusted RR*	Adjusted 95% CI*		
	Unexposed	7454	30070	1.00	Referent	7489	30173	1.00	Referent		
	Low	177	545	1.25	1.05-1.49	134	424	1.19	0.98-1.46		
	Medium	83	248	1.27	0.98-1.64	77	227	1.33	1.02-1.74		
5 years	High	53	205	1.04	0.74-1.48	67	244	1.23	0.90-1.67		
	P-trend				0.68	1			0.50		
	Other		-			-	-				
	Unexposed	6058	24272	1.00	Referent	6054	24261	1.00	Referent		
	Low	150	511	1.07	0.89-1.30	148	426	1.28	1.06-1.56		
10	Medium	60	195	1.09	0.81-1.49	63	244	0.89	0.66-1.20		
ars	High	40	165	0.88	0.58-1.36	43	212	0.66	0.44-0.98		
	P-trend				0.70	Í			0.06		
	Other	1459	5925			1459	5925				
	Unexposed	4512	18030	1.00	Referent	4495	17960	1.00	Referent		
	Low	111	352	1.19	0.95-1.48	121	377	1.19	0.97-1.48		
15	Medium	40	165	0.88	0.61-1.27	44	192	0.85	0.60-1.19		
ars	High	30	108	1.10	0.68-1.77	33	126	1.08	0.69-1.69		
	P-trend				0.71	1			0.81		
	Other	3074	12413			3074	12413				
		T									
	Unexposed	2146	8508	1.00	Referent	2133	8456	1.00	Referent		
	Low	49	176	1.01	0.72-1.40	55	198	1.02	0.75-1.40		
5-20	Medium	30	67	1.65	1.04-2.61	28	73	1.39	0.88-2.12		
ears	High	9	48	0.74	0.34-1.59	18	72	0.96	0.55-1.69		
	P-trend				0.31	1			0.39		
	Other	5533	22269			5533	22269				

RR: rate (incidence) ratio

Other: subjects with incomplete information during the specified period Non-genotoxic TCAs: regardless of any exposure to genotoxic TCAs Genotoxic TCAs: regardless of any exposure to non-genotoxic TCAs

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 16: Incidence of <u>prostate</u> cancer as a function of <u>average daily dose</u> of <u>exclusive</u> genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis

Daried h	efore diagnosis	Avorogo doil-: d	Cases	Controls	C	rude	Ad	justed [*]
renou b	eiore diagnosis	Average daily dose	N=7767	N=31068	RR	95% CI	RR	95% CI
		Unexposed	7230	29361	1.00	Referent	1.00	Referent
	Exclusive <u>non-</u>	Low	156	459	1.39	1.15-1.67	1.34	1.12-1.62
	genotoxic	Medium	62	187	1.35	1.01-1.80	1.33	0.99-1.79
	TCA exposure	High	41	166	1.00	0.71-1.41	1.02	0.69-1.50
	·	P-trend				0.76		0.72
2-5 years		Low	109	347	1.28	1.03-1.58	1.25	1.00-1.55
	Exclusive	Medium	57	171	1.36	1.00-1.83	1.39	1.02-1.89
	genotoxic	High	58	191	1.24	0.92-1.66	1.47	1.06-2.03
	TCA exposure	P-trend				0.35		0.08
	1 Cri caposure	Both	54	186	1.18	0.87-1.60	1.21	0.88-1.65
		Other	-	<u>-</u>				
	 ·	T						
		Unexposed	5868	23618	1.00	Referent	1.00	Referent
	Exclusive <u>non-</u>	Low	116	391	1.19	0.97-1.47	1.11	0.90-1.38
	genotoxic	Medium	41	135	1.22	0.86-1.74	1.11	0.77-1.59
	TCA exposure	High	29	117	1.00	0.66-1.50	0.93	0.57-1.51
6-10	_	P-trend	4.50			0.69		0.99
years		Low	120	330	1.46	1.19-1.80	1.36	1.10-1.68
,	Exclusive	Medium	44	161	1.10	0.79-1.54	0.97	0.68-1.37
	genotoxic	High	26	163	0.64	0.42-0.97	0.48	0.30-0.77
	TCA exposure	P-trend				0.12	0.05	0.01
	•	Both	64	228	1.13	0.85-1.49	0.95	0.71-1.28
	<u> </u>	Other	1459	5925				
		Unexposed	4362	17490	1.00	Referent	1.00	Referent
	Exclusive non-	Low	88	281	1.25	0.99-1.60	1.19	0.93-1.52
	genotoxic	Medium	27	111	0.98	0.64-1.49	0.90	0.59-1.39
	TCA exposure	High	18	78	0.93	0.56-1.55	0.83	0.46-1.51
	2 Cil Cil Cil	P-trend	10	, 0	0.55	0.54	0.03	0.33
11-15		Low	99	312	1.27	1.01-1.60	1.21	0.96-1.52
years		Medium	29	142	0.82	0.55-1.22	0.78	0.52-1.17
	Exclusive	High	22	86	1.03	0.64-1.65	1.16	0.68-1.98
	genotoxic	P-trend			· - -	0.28		0.42
	TCA exposure	Both	48	155	1.24	0.90-1.72	1.15	0.81-1.62
		Other	3074	12413				
-	<u> </u>						_	
		Unexposed	2078	8262	1.00	Referent	1.00	Referent
	Exclusive non-	Low	32	122	1.04	0.70-1.55	0.99	0.66-1.48
	genotoxic	Medium	15	43	1.37	0.76-2.47	1.36	0.75-2.47
	TCA exposure	High	8	29	1.09	0.50-2.37	1.28	0.54-2.99
16 20		P-trend				0.56		0.75
16-20		Low	40	155	1.03	0.72-1.45	0.99	0.69-1.40
years	Fredrice	Medium	18	44	1.64	0.94-2.84	1.59	0.91-2.77
	Exclusive	High	10	47	0.85	0.43-1.68	0.86	0.42-1.78
	genotoxic	P-trend				0.17		0.16
	TCA exposure	Both	33	97	1.35	0.91-2.01	1.29	0.85-1.96
		Other	5533	22269				

^{*:} Adjustment for the exposure in the other periods was carried out for each period Unexposed: no exposure to either type of TCAs (genotoxic and non-genotoxic) Both: exposure to both types of TCAs (genotoxic and non-genotoxic)

Table 17: Incidence of <u>prostate</u> cancer as a function of <u>duration</u> of genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis

riod			Non-Genot	toxic TCAs			Genotox	cic TCAs	
fore agnosis	Duration	Cases N=7767	Controls N=31068	Adjusted RR*	Adjusted 95% CI*	Cases N=7767	Controls N=31068	Adjuste d RR*	Adjusted 95% CI*
			<u> </u>						
	Unexposed	7454	30073	1.00	Referent	7489	30174	1.00	Referent
	Short	144	454	1.24	1.02-1.50	123	389	1.21	0.98-1.48
E vicens	Medium	117	343	1.31	1.05-1.63	94	285	1.24	0.97-1.59
5 years	Long	52	198	1.01	0.70-1.44	61	220	1.19	0.86-1.65
	P-trend				0.64				0.16
	Other	-	-			-	-		
						,			
	Unexposed	6061	24288	1.00	Referent	6058	24274	1.00	Referent
	Short	158	534	1.09	0.91-1.32	152	492	1.14	0.94-1.38
10	Medium	54	208	0.90	0.65-1.23	63	218	1.02	0.76-1.37
ears	Long	37	123	1.12	0.71-1.78	37	169	0.75	0.49-1.16
	P-trend				0.79				0.22
	Other	1457	5915			1457	5915		
	Unexposed	4531	18105	1.00	Referent	4516	18036	1.00	Referent
	Short	122	409	1.12	0.90-1.38	131	434	1.12	0.91-1.37
1-15	Medium	39	140	1.00	0.69-1.46	47	174	0.97	0.69-1.37
ears	Long	21	80	0.88	0.50-1.56	19	90	0.73	0.41-1.31
	P-trend				0.86				0.43
	Other	3054	12334			3054	12334		
	Unexposed	2163	8577	1.00	Referent	2145	8522	1.00	Referent
	Short	58	192	1.06	0.78-1.46	68	222	1.14	0.86-1.52
6-20	Medium	22	60	1.36	0.81-2.27	25	76	1.23	0.76-1.99
ears	Long	8	36	0.90	0.39-2.07	13	45	1.30	0.65-2.59
	P-trend				0.45				0.73
	Other	5516	22203			5516	22203		

RR: rate (incidence) ratio

Non-genotoxic TCAs: regardless of any exposure to genotoxic TCAs

Genotoxic TCAs: regardless of any exposure to non-genotoxic TCAs

^{*:} Adjustment for the exposure in the other periods was carried out for each period Other: subjects with incomplete information during the specified period

Table 18: Incidence of <u>prostate</u> cancer as a function of <u>duration</u> of <u>exclusive</u> genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis

Davied by	afore diagnosis	Dunation	Cases	Controls	C	rude	Ad	justed [*]
rerioa bo	efore diagnosis	Duration	N=7767	N=31068	RR	95% CI	RR	95% CI
		Unexposed	7230	29365	1.00	Referent	1.00	Referent
	Exclusive non-	Short	127	377	1.38	1.21-1.69	1.35	1.10-1.66
	genotoxic	Medium	92	258	1.45	1.14-1.84	1.43	1.12-1.83
	TCA exposure	Long	40	174	0.93	0.66-1.31	0.87	0.59-1.29
	_	P-trend				0.47		0.79
2-5 years		Short	100	326	1.24	0.99-1.56	1.22	0.98-1.54
·		Medium	69	203	1.38	1.05-1.82	1.37	1.03-1.81
	Exclusive	Long	55	179	1.25	0.92-1.69	1.42	1.01-2.00
	genotoxic	P-trend				0.05		0.01
	TCA exposure	Both	54	186	1.18	0.87-1.60	1.19	0.87-1.63
		Other	-	-				
	<u> </u>				-			
		Unexposed	5872	23635	1.00	Referent	1.00	Referent
	Exclusive non-	Short	122	401	1.22	1.00-1.50	1.16	0.94-1.42
	genotoxic	Medium	36	147	0.99	0.68-1.42	0.88	0.60-1.28
	TCA exposure	Long	28	91	1.24	0.81-1.90	1.27	0.76-2.13
<i>(</i> 10		P-trend				0.40		0.70
6-10		Short	123	366	1.35	1.10-1.66	1.25	1.01-1.54
years		Medium	37	150	1.00	0.69-1.43	0.90	0.62-1.30
	Exclusive	Long	29	137	0.85	0.57-1.27	0.70	0.44-1.12
	genotoxic	P-trend				0.49		0.09
	TCA exposure	Both	63	226	1.12	0.85-1.49	0.98	0.73-1.32
		Other	1457	5915				
		Unexposed	4382	17565	1.00	Referent	1.00	Referent
	Exclusive non-	Short	94	320	1.18	0.93-1.49	1.12	0.88-1.41
	genotoxic	Medium	26	88	1.19	0.76-1.85	1.09	0.69-1.71
	TCA exposure	Long	14	63	0.89	0.50-1.59	0.72	0.37-1.40
	1	P-trend				0.70		0.74
11-15		Short	107	353	1.21	0.98-1.51	1.14	0.92-1.43
years		Medium	30	119	1.01	0.68-1.51	0.93	0.62-1.42
	Exclusive	Long	12	68	0.71	0.38-1.32	0.67	0.34-1.33
	genotoxic	P-trend	. —			0.52		0.39
	TCA exposure	Both	48	158	1.22	0.88-1.69	1.07	0.76-1.51
		Other	3054	12334				
	<u> </u>	1, =		-			<u> </u>	
	T	Unexposed	2090	8330	1.00	Referent	1.00	Referent
	Exclusive non-	Short	38	128	1.19	0.82-1.71	1.10	0.76-1.60
	genotoxic	Medium	9	39	0.91	0.44-1.88	0.88	0.42-1.84
	TCA exposure	Long	8	25	1.27	0.57-2.82	1.42	0.60-3.39
		P-trend				0.42		0.31
16-20		Short	52	172	1.20	0.88-1.64	1.16	0.85-1.60
years		Medium	14	42	1.34	0.73-2.46	1.31	0.71-2.43
	Exclusive	Long	7	33	0.85	0.38-1.92	0.97	0.40-2.33
	genotoxic	P-trend	•	<u> </u>		0.76		0.95
	TCA exposure	Both	33	96	1.37	0.92-2.04	1.36	0.90-2.0
		Other	5516	22203	1.01	0.52 2.01	2.50	0.70-2.00

^{*:} Adjustment for the exposure in the other periods was carried out for each period Unexposed: no exposure to either type of TCAs (genotoxic and non-genotoxic)

Both: exposure to both types of TCAs (genotoxic and non-genotoxic)

Table 19: Incidence of <u>prostate</u> cancer as a function of <u>average daily dose</u> of <u>SSRI</u> exposure by time period before diagnosis

	SSRI exposure						
Period before		Cases	Controls	C	rude	Adj	justed [*]
diagnosis	Average daily dose	N=5346	N=21384	RR	95% CI	RR	95% CI
	Unexposed	5255	21019	1.00	Referent	1.00	Referent
	Low	50	219	0.91	0.67-1.25	0.91	0.67-1.25
2-5 years	Medium	32	100	1.28	0.86-1.91	1.28	0.86-1.92
2-5 years	High	9	46	0.78	0.38-1.60	0.76	0.36-1.59
	P-trend				0.25		0.20
	Other		<u>-</u>				
	Unexposed	5313	21252	1.00	Referent	1.00	Referent
	Low	24	97	0.99	0.63-1.55	0.99	0.62-1.56
6-10 years	Medium	8	32	1.00	0.46-1.55	1.04	0.47-2.29
U-10 years	High	1	3	1.33	0.14-12.8	1.67	0.16-17.2
	P-trend				0.70		0.56
	Other	-	-				

RR: rate (incidence) ratio

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 20: Incidence of <u>prostate</u> cancer as a function of <u>duration</u> of <u>SSRI</u> exposure by time period before diagnosis

	SSRI exposure						
Period before	Duration	Cases	Controls	C	rude	Ad	justed [*]
diagnosis	Duration	N=5346	N=21384	RR	95% CI	RR	95% CI
	Unexposed	5255	21018	1.00	Referent	1.00	Referent
	Short	37	148	1.00	0.70-1.44	1.00	0.69-1.44
2 5 years	Medium	45	161	1.12	0.80-1.56	1.10	0.78-1.54
2-5 years	Long	9	57	0.63	0.31-1.28	0.59	0.29-1.21
	P-trend				0.63		0.48
	Other	-	-				
	Unexposed	5313	21252	1.00	Referent	1.00	Referent
	Short	19	95	0.80	0.49-1.31	0.81	0.49-1.34
(10 man	Medium	13	32	1.62	0.85-3.09	1.76	0.90-3.43
6-10 years	Long	1	5	0.82	0.10-7.01	0.95	0.11-8.30
	P-trend				0.42		0.26
	Other	-	-				ļ

RR: rate (incidence) ratio

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 21: Incidence of <u>ovarian</u> cancer as a function of <u>average daily dose</u> of genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis

eriod	Average		Non-Genot	toxic TCAs			Genotox	ic TCAs	
efore iagnosis	daily dose	Cases N=1090	Controls N=4360	Adjusted RR*	Adjusted 95% CI*	Cases N=1090	Controls N=4360	Adjusted RR*	Adjusted 95% CI*
						<u> </u>			
	Unexposed	1004	4019	1.00	Referent	1015	4095	1.00	Referent
	Low	37	165	0.90	0.62-1.31	30	126	1.08	0.71-1.63
-5 years	Medium	24	93	0.90	0.55-1.47	25	66	1.66	1.02-2.72
-5 years	High	25	83	0.79	0.44-1.42	20	73	1.48	0.84-2.72
	P-trend				0.90				0.55
	Other	<u> </u>				-			
	Unexposed	748	3011	1.00	Referent	756	3040	1.00	Referent
	Low	27	152	0.71	0.46-1.10	33	122	1.03	0.69-1.56
-10	Medium	14	59	1.05	0.56-1.97	18	63	0.95	0.53-1.71
ears	High	24	46	3.72	1.79-7.75	6	43	0.42	0.16-1.10
ears	P-trend				0.0001				0.18
	Other	277	1092			277	1092		
		T							
	Unexposed	522	2053	1.00	Referent	506	2052	1.00	Referent
	Low	16	95	0.59	0.34-1.04	30	85	1.51	0.96-2.38
1-15	Medium	7	35	0.53	0.21-1.32	13	45	1.33	0.69-2.55
ears	High	8	33	0.37	0.13-1.06	4	34	0.70	0.22-2.23
	P-trend	525	2144		0.82				0.30
	Other	537	2144			537	2144		
	T ,	1 224	027	1.00		221	007	1.00	
	Unexposed	224	937	1.00	Referent	221	927	1.00	Referent
	Low	12	41	1.22	0.61-0.02	11	40	1.18	0.59-2.37
6-20	Medium	1	20	0.19	0.02-1.58	8	27	1.32	0.54-3.24
ears	High	4	10	1.97	0.52-7.51	1	14	0.37	0.04-3.07
	P-trend	0.40	2252		0.75	0.40	2252		0.97
<u></u>	Other	849	3352	, ,1 ,3		849	3352		

RR: rate (incidence) ratio

Other: subjects with incomplete information during the specified period Non-genotoxic TCAs: regardless of any exposure to genotoxic TCAs

Genotoxic TCAs: regardless of any exposure to non-genotoxic TCAs

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 22: Incidence of ovarian cancer as a function of average daily dose of exclusive genotoxic and non-genotoxic TCA exposure by time period before diagnosis

Daried hef	ro diagnosis	Aveness deller der	Cases	Controls	C	rude	Ad	ljusted [*]
reriou bel	ore diagnosis	Average daily dose	N=1090	N=4360	RR	95% CI	RR	95% C
				<u></u>				
		Unexposed	954	3836	1.00	Referent	1.00	Referen
	Exclusive <u>non-</u>	Low	29	129	0.91	0.60-1.36	0.92	0.61-1.3
	genotoxic	Medium	12	61	0.79	0.42-1.48	0.76	0.40-1.4
	TCA exposure	High	20	69	1.17	0.70-1.93	0.89	0.47-1.6
		P-trend				0.19		0.73
2-5 years		Low	24	88	1.10	0.70-1.73	1.18	0.74-1.8
	Evolucion	Medium	14	47	1.20	0.66-2.19	1.24	0.67-2.3
	Exclusive	High	12	48	1.01	0.53-1.89	1.13	0.56-2.2
	genotoxic TCA exposure	P-trend				0.79		0.62
	TCA exposure	Both	25	82	1.23	0.78-1.94	1.31	0.81-2.1
	<u></u>	Other	-	-				
		Unexposed	706	2852	1.00	Referent	1.00	Referen
	Exclusive <u>non-</u>	Low	24	118	0.82	0.52-1.28	0.82	0.52-1.3
	genotoxic	Medium	10	39	1.03	0.51-2.08	1.13	0.54-2.3
	TCA exposure	High	16	31	2.10	1.14-3.85	3.01	1.34-6.7
6-10		P-trend				0.002		0.0005
		Low	25	90	1.12	0.71-1.75	1.05	0.66-1.6
years	Fyeluciya	Medium	12	44	1.11	0.58-2.11	1.11	0.56-2.1
I	Exclusive	High	5	25	0.81	0.31-2.12	0.86	0.29-2.5
l	genotoxic TCA exposure	P-trend				0.82		0.97
	1 CA exposure	Both	15	69	0.89	0.50-1.56	0.84	0.45-1.50
<u> </u>	<u> </u>	Other	277	1092				
		Unexposed	483	1944	1.00	Referent	1.00	Referen
	Exclusive <u>non-</u>	Low	13	69	0.76	0.41-1.39	0.72	0.39-1.3
	genotoxic	Medium	5	16	1.29	0.46-3.57	1.43	0.48-4.2
	TCA exposure	High	5	23	0.87	0.33-2.31	0.44	0.13-1.4
11-15		P-trend			·	0.45		0.96
years		Low	24	58	1.65	1.02-2.68	1.67	1.00-2.7
JUMIS	Exclusive	Medium	11	29	1.50	0.75-3.01	1.58	0.77-3.2
l	genotoxic	High	4	22	0.73	0.25-2.15	0.78	0.23-2.6
	TCA exposure	P-trend				0.41		0.23
	Lora Caposure	Both	8	55	0.58	0.27-1.24	0.44	0.19-1.0
	<u></u>	Other	537	2144				
		Unexposed	210	880	1.00	Referent	1.00	Referen
	Exclusive <u>non-</u>	Low	8	30	1.10	0.50-2.44	1.10	0.49-2.4
	genotoxic	Medium	-	10	<u>-</u>	-	-	-
	TCA exposure	High	3	7	1.74	0.45-6.77	2.17	0.48-9.8
16-20		P-trend				0.67		0.72
		Low	8	35	0.96	0.44-2.10	0.91	0.41-2.0
Junio	Exclusive	Medium	5	10	2.06	0.70-6.06	1.97	0.65-6.0
	genotoxic	High	1	12	0.35	0.05-2.71	0.33	0.04-2.6
		P-trend				0.91		0.88
	TCA exposure	Both	6	24	1.06	0.43-2.65	1.12	0.43-2.9

Adjustment for the exposure in the other periods was carried out for each period Unexposed: no exposure to either type of TCAs (genotoxic and non-genotoxic) Both: exposure to both types of TCAs (genotoxic and non-genotoxic)

849

3352

Other

Table 23: Incidence of <u>ovarian</u> cancer as a function of <u>duration</u> of genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis

eriod			Non-Genor	toxic TCAs			Genotox	cic TCAs	
efore iagnosis	Duration	Cases N=1090	Controls N=4360	Adjusted RR*	Adjusted 95% CI*	Cases N=1090	Controls N=4360	Adjuste d RR*	Adjusted 95% CI*
		<u> </u>		-					
	Unexposed	1005	4020	1.00	Referent	1015	4096	1.00	Referent
	Short	30	135	0.88	0.58-1.32	27	115	1.05	0.68-1.62
E	Medium	31	125	0.94	0.61-1.44	26	83	1.47	0.92-2.36
-5 years	Long	24	80	0.81	0.45-1.45	22	66	1.67	0.95-2.95
	P-trend				0.34				0.14
	Other	-	-			-	-		
	Unexposed	748	3012	1.00	Referent	756	3039	1.00	Referent
	Short	29	154	0.76	0.50-1.16	38	130	1.15	0.78-1.70
-10	Medium	17	62	1.30	0.72-2.35	12	62	0.65	0.33-1.27
ears	Long	19	40	3.00	0.77-2.20	7	37	0.58	0.22-1.54
	P-trend				0.01				0.16
= =	Other	277	1092			277	1092		
	Unexposed	522	2056	1.00	Referent	507	2056	1.00	Referent
	Short	19	99	0.67	0.40-1.13	30	100	1.34	0.85-2.09
1-15	Medium	4	42	0.23	0.08-0.70	14	43	1.55	0.79-3.04
rears	Long	9	24	0.76	0.27-2.13	3	22	0.66	0.17-2.54
	P-trend				0.24				0.98
	Other	536	2139			536	2139		
	_		. <u></u>			·			
	Unexposed	226	944	1.00	Referent	223	932	1.00	Referent
	Short	11	47	1.09	0.54-2.20	13	48	1.10	0.57-2.09
6-20	Medium	3	15	0.93	0.24-3.59	5	28	0.72	0.25-2.02
rears	Long	3	9	0.99	0.21-4.64	2	7	1.04	0.19-5.62
	P-trend				0.52				0.84
	Other	847	3345			847	3345		

RR: rate (incidence) ratio

Genotoxic TCAs: regardless of any exposure to non-genotoxic TCAs

^{*:} Adjustment for the exposure in the other periods was carried out for each period Other: subjects with incomplete information during the specified period Non-genotoxic TCAs: regardless of any exposure to genotoxic TCAs

Table 24: Incidence of <u>ovarian</u> cancer as a function of <u>duration</u> of <u>exclusive</u> genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis

Danie d L. C	dia	D //	Cases	Controls	(Crude	Ac	ljusted*
Period before diagnosis		Duration	N=1090	N=4360	RR	95% CI	RR	95% C
		Unexposed	954	3838	1.00	Referent	1.00	Referen
	Exclusive non-	Short	23	107	0.87	0.55-1.36	0.86	0.54-1.3
	genotoxic	Medium	20	86	0.94	0.57-1.54	0.99	0.60-1.6
	TCA exposure	Long	18	65	1.11	0.66-1.89	0.87	0.45-1.6
		P-trend				0.94		0.48
2-5 years		Short	20	80	1.01	0.61-1.65	1.09	0.66-1.7
•	.	Medium	17	55	1.25	0.72-2.15	1.36	0.77-2.3
	Exclusive	Long	14	47	1.20	0.66-2.17	1.40	0.70-2.83
	genotoxic	P-trend				0.62		0.38
	TCA exposure	Both	24	82	1.18	0.74-1.87	1.27	0.78-2.0
		Other	·	-	1110			
								
		Unexposed	706	2852	1.00	Referent	1.00	Referen
	Exclusive non-	Short	26	117	0.90	0.58-1.39	0.92	0.59-1.4.
	genotoxic	Medium	10	40	1.00	0.50-2.01	1.07	0.52-2.2
	TCA exposure	Long	14	30	1.88	0.99-3.58	2.47	1.04-5.89
C 10		P-trend				0.07		0.04
6-10		Short	30	92	1.32	0.87-2.02	1.27	0.82-1.9
years	Exclusive	Medium	7	44	0.65	0.29-1.44	0.56	0.24-1.3
		Long	5	24	0.86	0.33-2.25	0.69	0.21-2.2
	genotoxic	P-trend				0.64		0.40
	TCA exposure	Both	15	69	0.89	0.51-1.57	0.84	0.45-1.50
		Other	277	1092				
_								
	Exclusive non- genotoxic TCA exposure	Unexposed	484	1946	1.00	Referent	1.00	Referen
		Short	14	67	0.84	0.47-1.52	0.83	0.46-1.5
		Medium	3	23	0.53	0.16-1.77	0.49	0.14-1.69
		Long	6	20	1.20	0.48-3.03	0.71	0.22-2.3
11 15		P-trend				0.96		0.34
11-15		Short	23	67	1.37	0.84-2.22	1.36	0.83-2.24
years	Tamala :	Medium	12	25	1.90	0.95-3.82	1.82	0.87-3.83
	Exclusive genotoxic TCA exposure	Long	3	18	0.68	0.20-2.32	0.74	0.18-2.99
•		P-trend				0.75		0.69
		Both	9	55	0.66	0.32-1.35	0.57	0.26-1.2
		Other	536	2139				
		Unexposed	212	885	1.00	Referent	1.00	Referen
	Exclusive <u>non-</u>	Short	8	33	1.01	0.45-2.25	1.02	0.46-2.2
	genotoxic	Medium	1	8	0.51	0.06-4.10	0.58	0.07-1.8
	TCA exposure	Long	2	6	1.41	0.28-6.98	1.39	0.22-8.6
16 20	_	P-trend				0.43		0.41
16-20		Short	9	37	1.01	0.48-2.11	0.95	0.45-2.0
years		Medium	3	15	0.84	0.24-2.91	0.77	0.21-2.8
	Exclusive	Long	2	7	1.19	0.25-5.76	1.06	0.19-5.8
	genotoxic	P-trend				0.96		0.95
	TCA exposure	Both	6	24	1.04	0.42-2.60	1.08	0.41-2.8
		Other	847	3345		5 2 2.00	1.00	J. 11-2.0

^{*:} Adjustment for the exposure in the other periods was carried out for each period Unexposed: no exposure to either type of TCAs (genotoxic and non-genotoxic)

Both: exposure to both types of TCAs (genotoxic and non-genotoxic)

Table 25: Incidence of <u>ovarian</u> cancer as a function of <u>average daily dose</u> of <u>SSRI</u> exposure by time period before diagnosis

	SSRI exposure						
Period before		Cases	Controls	C	Crude	Ad	justed [*]
diagnosis	Average daily dose	N=672	N=2688	RR	95% CI	RR	95% CI
	Unexposed	652	2597	1.00	Referent	1.00	Referent
	Low	10	46	0.87	0.44-1.72	0.85	0.43-1.70
2 E wooms	Medium	7	28	1.00	0.42-2.35	0.91	0.37-2.22
2-5 years	High	3	17	0.69	0.20-2.42	0.19	0.02-1.5
	P-trend				0.70		0.49
	Other		-	· · · · · ·			
	Unexposed	663	2660	1.00	Referent	1.00	Referent
1	Low	5	21	0.98	0.37-2.63	1.18	0.43-3.21
6 10 waawa	Medium	2	6	1.33	0.27-6.61	2.26	0.39-13.3
6-10 years	High	2	1	7.99	0.72-88.2	42.4	1.71-105
	P-trend				0.14		0.04
	Other	<u>-</u>					

RR: rate (incidence) ratio

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 26: Incidence of <u>ovarian</u> cancer as a function of <u>duration</u> of <u>SSRI</u> exposure by time period before diagnosis

	2272 712 712 712 712 712 712 712 712 712							
Period before	Duration	Cases Controls		C	rude	Adjusted*		
diagnosis	Duration	N=672	N=2688	RR	RR 95% CI		95% CI	
	Unexposed	652	2597	1.00	Referent	1.00	Referent	
	Short	7	27	1.03	0.45-2.39	1.04	0.45-2.41	
2.5	Medium	8	43	0.74	0.34-1.58	0.64	0.29-1.41	
2-5 years	Long	5	21	0.94	0.35-2.51	0.51	0.14-1.84	
	P-trend				0.81		0.23	
	Other			-				
	Unexposed	663	2660	1.00	Referent	1.00	Referent	
	Short	3	18	0.67	0.20-2.31	0.74	0.21-2.58	
(10	Medium	4	7	2.29	0.67-7.81	3.44	0.86-13.7	
6-10 years	Long	2	3	2.62	0.44-15.7	4.73	0.60-37.6	
	P-trend				0.36		0.24	
	Other	-	-					

RR: rate (incidence) ratio

SSRI exposure

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 27: Incidence of <u>non-Hodgkin's lymphoma</u> as a function of <u>average daily dose</u> of genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis

eriod	Average Non-Genotoxic TCAs			Genotoxic TCAs					
efore iagnosis	daily dose	Cases N=1980	Controls N=7920	Adjusted RR*	Adjusted 95% CI*	Cases N=1980	Controls N=7920	Adjusted RR*	Referent 0.90-1.68 0.72-1.70 0.52-1.47 0.91 Referent 0.64-1.28 0.43-1.20 0.59-1.97 0.48 Referent 0.91-1.95 0.69-2.04 1.42-6.36 0.01 Referent 0.37-1.37 0.15-1.20 0.24-1.69 0.74
						**.			
	Unexposed	1849	7498	1.00	Referent	1867	7530	1.00	Referent
	Low	66	206	1.32	0.99-1.76	55	176	1.23	0.90-1.68
5 weeks	Medium	34	121	1.14	0.76-1.71	29	100	1.10	0.72-1.70
-5 years	High	31	95	1.28	0.98-2.53	29	114	0.88	0.52-1.47
	P-trend				0.28				0.91
	Other		-						
									-
	Unexposed	1455	5842	1.00	Referent	1453	5837	1.00	
	Low	50	218	0.90	0.65-1.25	44	186	0.91	
-10	Medium	22	73	1.12	0.67-1.88	19	100	0.74	
ears	High	14	67	0.84	0.43-1.67	25	77	1.08	
	P-trend				0.57				0.48
	Other	439	1720			439	1720		
	T					1			
	Unexposed	981	3846	1.00	Referent	955	3824	1.00	
	Low	28	117	0.88	0.57-1.35	39	131	1.33	
1-15	Medium	17	51	1.13	0.61-2.09	19	68	1.19	
ears	High	4	40	0.29	0.09-0.93	17	31	3.01	
	P-trend				0.12				0.01
	Other	950	3866			950	3866		
	Tynomagad	100	1960	1.00	Referent	170	1940	1.00	Defenset
	Unexposed	480	1869	1.00		478	1849	1.00	
C 20	Low	15	67 26	0.91	0.50-1.64	12	59 24	0.71	
6-20	Medium	4	26	0.63	0.21-1.93	5 7	34	0.43	
rears	High	3	8	2.97	0.62-14.2	'	28	0.64	
	P-trend	1470	5050		0.20	1.470	5050		0.74
	Other	1478	5950			1478	5950		- · · · - ·

P-trend was based on the continuous data rather than the categorical data RR: rate (incidence) ratio

Other: subjects with incomplete information during the specified period Non-genotoxic TCAs: regardless of any exposure to genotoxic TCAs Genotoxic TCAs: regardless of any exposure to non-genotoxic TCAs

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 28: Incidence of <u>non-Hodgkin's lymphoma</u> as a function of <u>average daily dose</u> of <u>exclusive</u> genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis

Cases Controls

Period before	ore diagnosis	Average daily dose	Cases	Controls		ruue	At	ijusteu
Teriou before diagnosis		Troinge daily dose	N=1980	N=7920	RR	95% CI	RR	95% (
		Unexposed	1765	7214	1.00	Referent	1.00	Refere
	Exclusive non-	Low	52	158	1.35	0.98-1.86	1.41	1.02-1.9
	genotoxic TCA exposure	Medium	23	79	1.33	0.74-1.90	1.41	0.77-2.0
		ļ	23 27	79 79	1.19	0.74-1.90	1.71	1.04-2.8
25	1CA exposure	High	21	79	1.41	0.91-2.19	1./1	0.14
		P-trend Low	38	120	1.20	0.43	1.21	0.84-1.7
2-5 years		Į .		130	1.20			0.85-2.2
	Exclusive	Medium	23	70	1.34	0.84-2.15	1.39	
	genotoxic	High	23	84	1.12	0.71-1.78	1.09	0.63-1.9
	TCA exposure	P-trend	20	106	1 12	0.44	1 15	0.67 0.74-1.7
		Both	29	106	1.13	0.74-1.70	1.15	0.74-1.7
		Other	-	-	·			
		Unexposed	1390	5590	1.00	Referent	1.00	Referer
	Exclusive non-	Low	36	151	0.96	0.66-1.39	0.90	0.61-1.3
	genotoxic	Medium	19	47	1.61	0.95-2.75	1.36	0.77-2.3
	TCA exposure	High	8	49	0.66	0.31-1.39	0.63	0.27-1.4
C 10	•	P-trend				0.76		0.80
6-10	,	Low	32	131	0.98	0.67-1.45	0.93	0.63-1.3
years	Exclusive genotoxic TCA exposure	Medium	15	69	0.87	0.50-1.53	0.78	0.43-1.3
		High	18	52	1.39	0.81-2.37	0.95	0.47-1.9
		P-trend				0.09		0.60
		Both	23	111	0.83	0.53-1.31	0.73	0.45-1.1
		Other	439	1720				
		Unexposed	928	3677	1.00	Referent	1.00	Referer
	Exclusive <u>non-genotoxic</u>	Low	20	90	0.88	0.54-1.44	0.86	0.53-1.4
		Medium	6	30	0.82	0.34-1.97	0.80	0.32-2.0
1	TCA exposure	High	1	27	0.15	0.02-1.10	0.17	0.02-1.3
11-15		P-trend				0.20		0.37
years		Low	28	100	1.11	0.72-1.69	1.19	0.77-1.8
Jears	Exclusive	Medium	13	48	1.07	0.58-1.97	1.13	0.60-2.1
	genotoxic	High	12	21	2.25	1.11-4.58	2.76	1.15-6.6
	TCA exposure	P-trend				0.03		0.06
	1 C/1 CAPOSUIC	Both	22	61	1.44	0.88-2.36	1.56	0.90-2.6
		Other	950	3866				
		Unexposed	465	1786	1.00	Referent	1.00	Referen
	Evalueiva non	Low	10	46	0.84	0.42-1.67	0.87	0.43-1.7
	Exclusive non- genotoxic TCA exposure	Medium	1	12	0.32	0.04-2.43	0.35	0.04-2.3
		High	2	5	1.52	0.29-7.83	1.80	0.30-10
16-20 years		P-trend	2	3	1.52	0.74	1.00	0.30-10
	Exclusive	Low	7	43	0.61	0.27-1.38	0.56	0.25-1.2
		Medium	3	18	0.64	0.27-1.38	0.50	0.23-1.2
			5	22	0.87	0.19-2.18	0.50	0.14-1.
	genotoxic	High P. trand	3	<i>LL</i>	0.07	0.33-2.31	0.32	
	TCA exposure	P-trend	9	38	0.02		0.60	0.22
		Both	-		0.92	0.43-1.93	0.68	0.30-1.
	<u> </u>	Other	1478	5950				

^{*:} Adjustment for the exposure in the other periods was carried out for each period Unexposed: no exposure to either type of TCAs (genotoxic and non-genotoxic)

Both: exposure to both types of TCAs (genotoxic and non-genotoxic)

Adjusted*

Crude

Table 29: Incidence of <u>non-Hodgkin's lymphoma</u> as a function of <u>duration</u> of genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis

Period			Non-Geno	toxic TCAs			Genoto	xic TCAs	
pefore liagnosis	Duration	Cases N=1980	Controls N=7920	Adjusted RR*	Adjusted 95% CI*	Cases N=1980	Controls N=7920	Adjuste d RR*	Adjusted 95% CI*
					·				
	Unexposed	1849	7502	1.00	Referent	1867	7531	1.00	Referent
).5 years	Short	54	170	1.32	0.96-1.81	44	160	1.06	0.75-1.50
	Medium	40	154	1.05	0.73-1.53	42	131	1.26	0.87-1.82
2-5 years	Long	37	94	1.95	1.23-3.10	27	98	0.94	0.55-1.63
	P-trend				0.01	1			0.93
	Other	-	-			-	_		
	Т	1				1			
	Unexposed	1454	5840	1.00	Referent	1454	5843	1.00	Referent
	Short	56	234	0.96	0.70-1.31	46	202	0.85	0.60-1.20
6-10	Medium	17	70	0.90	0.51-1.62	19	106	0.68	0.40-1.15
years	Long	14	57	0.89	0.44-1.81	22	50	1.27	0.64-2.49
	P-trend				0.91				0.69
	Other	439	1719			439	1719		
	Unexposed	984	3860	1.00	Referent	957	3837	1.00	Referent
	Short	31	121	0.94	0.62-1.41	44	159	1.23	0.86-1.76
11-15	Medium	15	53	0.93	0.49-1.78	18	50	1.65	0.91-3.00
years	Long	3	33	0.19	0.04-0.84	14	21	3.77	1.61-8.85
•	P-trend				0.03				0.003
	Other	947	3853			947	3853		
	Tinornocad	486	1890	1.00	Referent	484	1870	1.00	Referent
	Unexposed	16	75	0.87	0.49-1.55	14	68	0.71	0.38-1.33
17.20	Short	3	20	0.67	0.49-1.33	5	37	0.71	0.38-1.33
16-20	Medium	3	8	0.67	0.19-2.34	5	18	0.38	0.14-1.04
years	Long	3	٥	0.03	0.64-20.0 0.81)	10	0.40	0.12-1.34
	P-trend	1472	5927		0.01	1472	5927		0.00
	Other	14/2	3927			14/2	3921		_

RR: rate (incidence) ratio

Other: subjects with incomplete information during the specified period Non-genotoxic TCAs: regardless of any exposure to genotoxic TCAs Genotoxic TCAs: regardless of any exposure to non-genotoxic TCAs

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 30: Incidence of non-Hodgkin's lymphoma as a function of duration of exclusive genotoxic and non-genotoxic TCA exposure by time period before diagnosis

Doried her	ana diagnasia	Cases Controls Crude		Ad	Adjusted*			
rerioa dele	ore diagnosis	Duration	N=1980	N=7920	RR	95% CI	RR	95% (
				•				
		Unexposed	1765	7218	1.00	Referent	1.00	Refere
	Exclusive <u>non-</u>	Short	42	130	1.33	0.94-1.89	1.36	0.96-1.
	genotoxic	Medium	27	105	1.06	0.69-1.62	1.10	0.71-1.
	TCA exposure	Long	33	78	1.74	1.15-2.62	2.28	1.40-3.
		P-trend				0.02		0.002
2-5 years		Short	30	117	1.05	0.70-1.57	1.06	0.71-1.
	Exclusive	Medium	31	92	1.38	0.92-2.08	1.41	0.93-2.
	genotoxic	Long	23	75	1.25	0.78-2.00	1.11	0.62-1.
	TCA exposure	P-trend				0.29		0.76
		Both	29	105	1.14	0.75-1.73	1.21	0.78-1.
		Other	-	-				
		Unexposed	1390	5593	1.00	Referent	1.00	Refere
	Exclusive non-	Short	41	162	1.00	0.72-1.44	0.95	0.66-1
	genotoxic	Medium	13	44	1.02	0.64-2.23	0.95	0.49-1.
	TCA exposure	Long	10	44	0.92	0.46-1.83	0.73	0.32-1.
		P-trend	10	. 1	0.72	0.40-1.63	0.75	0.52-1.
6-10		Short	33	146	0.91	0.62-1.34	0.84	0.56-1.
years	Exclusive genotoxic TCA exposure	Medium	14	64	0.88	0.49-1.57	0.77	0.42-1.4
		Long	17	37	1.83	1.03-3.26	1.20	0.56-2.
		P-trend	- ,	<i>-</i> .		0.19	1.20	0.30 2
		Both	23	111	0.83	0.53-1.31	0.73	0.45-1.
		Other	439	1719	-	-	-	
	Exclusive non- genotoxic TCA exposure	Unexposed	930	3690	1.00	Referent	1.00	Refere
		Short	20	93	0.86	0.53-1.39	0.85	0.52-1.4
		Medium	6	32	0.77	0.32-1.84	0.72	0.28-1.
		Long	1	22	0.18	0.03-1.35	0.14	0.02-1.
11-15		P-trend				0.07		0.06
years		Short	32	122	1.03	0.69-1.53	1.09	0.73-1.0
Junio	Exclusive	Medium	12	34	1.40	0.72-2.70	1.51	0.75-3.0
	genotoxic	Long	10	14	2.82	1.25-6.36	3.72	1.36-10
	TCA exposure	P-trend				0.02		0.02
	1 CA exposure	Both	22	60	1.47	0.89-2.41	1.61	0.93-2.8
		Other	947	3853				
	T -	Unexposed	471	1806	1.00	Referent	1.00	D of
	Exclusive non-	Short	10	48	0.80	0.40-1.59	0.83	Referen
	genotoxic	Medium	10	12	0.80	0.40-1.39	0.83	0.41-1.0
	TCA exposure	Long	2	4	1.88	0.04-2.47	2.26	0.04-2.0 0.33-15
	1 CA caposure	P-trend	2	7	1.00	0.34-10.3	2.20	
16-20		Short	9	48	0.71	0.35-1.47	0.65	0.69
years		Medium	3	22	0.71	0.33-1.47	0.65	0.31-1.3
	Exclusive	Long	3	14	0.33	0.16-1.77		0.10-1.2
	genotoxic	P-trend	3	14	0.82	0.24-2.85 0.42	0.30	0.07-1.
	TCA exposure	Both	9	39	0.89		0.67	0.05
		Other	=		0.89	0.42-1.88	0.67	0.30-1.4
		Junei	1472	5927				

^{*:} Adjustment for the exposure in the other periods was carried out for each period Unexposed: no exposure to either type of TCAs (genotoxic and non-genotoxic) Both: exposure to both types of TCAs (genotoxic and non-genotoxic)

Table 31: Incidence of non-Hodgkin's lymphoma as a function of average daily dose of SSRI exposure by time period before diagnosis

	SSRI exposure						
Period before	Average daily dose	Cases	Controls	Crude		Adjusted*	
diagnosis	Average daily dose	N = 1243	N = 4972	RR	95% CI	RR	95% CI
	Unownood	1214	4022	1.00	D - C	1.00	Referent
	Unexposed	1214	4833	1.00	Referent	1.00	
	Low	16	73	0.87	0.51-1.50	0.88	0.51-1.5
2 5 years	Medium	9	46	0.78	0.38-1.59	0.82	0.40-1.70
2-5 years	High	4	20	0.79	0.27-2.32	0.90	0.30-2.74
	P-trend				0.60		0.93
	Other	-	<u>-</u>				
	Unexposed	1233	4918	1.00	Referent	1.00	Referent
	Low	7	38	0.73	0.32-1.65	0.77	0.34-1.73
6 10 magne	Medium	3	13	0.93	0.26-3.24	1.00	0.27-3.64
6-10 years	High	-	3	-	-	-	-
	P-trend				0.33		0.39
	Other	-	<u>-</u>				

Other: subjects with incomplete information during the specified period

RR: rate (incidence) ratio
*: Adjustment for the exposure in the other periods was carried out for each period

Table 32: Incidence of <u>non-Hodgkin's lymphoma</u> as a function of <u>duration</u> of <u>SSRI</u> exposure by time period before diagnosis

	<u> </u>						
Period before	Duration	Cases	Controls	Crude		Adjusted*	
diagnosis	Duration	N=1243	N=4972	RR	95% CI	RR	95% CI
	Unexposed	1214	4833	1.00	Referent	1.00	Referent
	Short	10	51	0.78	0.39-1.54	0.80	0.40-1.58
2 5 manua	Medium	13	62	0.83	0.46-1.53	0.87	0.48-1.60
2-5 years	Long	6	26	0.91	0.38-2.22	1.07	0.39-3.00
	P-trend				0.53		0.71
	Other	_					
	Unexposed	1233	4918	1.00	Referent	1.00	Referent
	Short	7	33	0.84	0.37-1.92	0.87	0.38-1.99
(10	Medium	2	17	0.47	0.11-2.03	0.48	0.10-2.20
6-10 years	Long	1	4	1.00	0.11-8.95	0.92	0.08-10.3
	P-trend				0.45		0.49
	Other	_	-				

P-trend was based on the continuous data rather than the categorical data RR: rate (incidence) ratio

SSRI exposure

Other: subjects with incomplete information during the specified period

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Table 33: Summary table of the incidence for each of the four cancer sites under study as a function of average daily dose of <u>TCA</u> exposure, by time period before diagnosis

		Time period before diagnosis						
Cancer site	Average daily dose	2-5 years	6-10 years	11-15 years	16-20 years			
	Low	1.12*	0.96	0.90	1.00			
_	Medium	1.20*	1.01	1.02	0.70			
Breast	High	1.19*	0.98	1.10	0.82			
	P-trend	0.21	0.66	0.05*	0.53			
	Low	1.31*	1.19*	1.18*	0.99			
-	Medium	1.33*	1.05	0.91	1.52*			
Prostate	High	1.20	0.76	1.04	0.99			
	P-trend	0.82	0.08	0.58	0.26			
	Low	0.95	0.93	1.13	1.13			
0 .	Medium	0.96	0.97	1.02	1.09			
Ovarian	High	1.23	1.53	0.53	0.88			
	P-trend	0.63	0.01*	0.79	0.79			
	Low	1.33*	0.93	1.03	0.73			
	Medium	1.26	0.87	1.10	0.58			
Non-Hodgkin's	High	1.37	0.74	1.57	0.69			
	P-trend	0.25	0.54	0.09	0.85			

RR: rate (incidence) ratio

P-trend was based on the continuous data rather than the categorical data

The referent group included those who were unexposed to any TCA

^{*:} Significant at the 0.05 level

Table 34: Summary table of the incidence for each of the four cancer sites under study as a function of <u>TCA</u> exposure, by time period before diagnosis

		Time period before diagnosis					
Cancer site	Duration	2-5 years	6-10 years	11-15 years	16-20 years		
		106		0.01	0.07		
	hort	1.06	0.96	0.91	0.97		
nst N	Aedium	1.22*	1.04	1.04	0.69		
L	Long	1.32*	0.83	1.08	0.97		
P	-trend	0.0004*	0.21	0.53	0.25		
	Short	1.29*	1.14	1.11	1.11		
	Aedium	1.35*	1.02	1.05	1.25		
tate							
	ong	1.12	0.93	0.74	1.34		
<i>P</i>	P-trend	0.13	0.27	0.55	0.28		
S	Short	0.93	1.05	1.10	1.11		
. N	Medium	0.97	0.76	0.78	0.66		
rian	Long	1.38	1.27	0.77	1.39		
	P-trend	0.55	0.59	0.34	0.52		
<u></u>	Short	1.23	0.91	1.03	0.75		
	Medium	1.31*	0.70	1.19	0.48		
-Hodokin's		1.44*	0.76	1.34	0.76		
	Long				0.76		
	P-trend	0.06	0.47	0.44			

RR: rate (incidence) ratio

P-trend was based on the continuous data rather than the categorical data

The referent group included those who were unexposed to any TCA

^{*:} Significant at the 0.05 level

Table 35: Summary table of the incidence for each of the four cancer sites under study as a function of average daily dose of exclusive genotoxic and non-genotoxic TCA exposure, by time period before diagnosis

				Time period	before diagnosis	
Cancer site	TCA group	Average daily dose	2-5 years	6-10 years	11-15 years	16-20 years
		Low	1.10	0.92	0.92	0.99
		Medium	1.34*	0.96	1.01	0.86
	Genotoxic	High	1.32*	0.95	1.17	0.74
_		P-trend	0.03*	0.23	0.03*	0.49
Breast		Low	1.14	0.99	0.89	1.04
	Non-	Medium	1.20	1.12	1.12	0.71
	genotoxic	High	1.21	0.99	0.95	0.81
	8	P-trend	0.21	0.54	0.23	0.54
	1,				0.20	
		Low	1.25*	1.36*	1.21	0.99
		Medium	1.39*	0.97	0.78	1.59
	Genotoxic	High	1.47*	0.48	1.16	0.86
		P-trend	0.08	0.01*	0.42	0.16
Prostate		Low	1.34*	1.11	1.19	0.99
	Non-	Medium	1.33	1.11	0.90	1.36
	genotoxic	High	1.02	0.93	0.83	1.28
		P-trend	0.72	0.99	0.33	0.75
	<u> </u>					
		Low	1.18	1.05	1.67*	0.91
	G 4	Medium	1.24	1.11	1.58	1.97
	Genotoxic	High	1.13	0.86	0.78	0.33
0		P-trend	0.62	0.97	0.23	0.88
Ovarian		Low	0.92	0.82	0.72	1.10
	Non-	Medium	0.76	1.13	1.43	-
	genotoxic	High	0.89	3.01*	0.44	2.17
		P-trend	0.73	0.0005*	0.96	0.72
		Low	1.21	0.93	1.19	0.56
	Genotoxic	Medium	1.39	0.78	1.13	0.50
	Genotoxic	High	1.09	0.95	2.76 [*]	0.52
Non-		P-trend	0.67	0.60	0.06	0.22
Hodgkin's		Low	1.41*	0.90	0.86	0.87
	Non-	Medium	1.25	1.36	0.80	0.35
	genotoxic	High	1.71	0.63	0.17	1.80
		P-trend	0.14	0.80	0.37	0.98

RR: rate (incidence) ratio

P-trend was based on the continuous data rather than the categorical data

The referent group included those who were unexposed to any TCA

*: Significant at the 0.05 level

Table 36: Summary table of the incidence for each of the four cancer sites under study as a function of <u>duration</u> of exclusive genotoxic and non-genotoxic <u>TCA</u> exposure, by time period before diagnosis

			Time period before diagnosis					
Cancer site	TCA group	Duration	2-5 years	6-10 years	11-15 years	16-20 years		
		Short	1.07	0.92	0.93	1.03		
		Medium	1.29*	1.05	1.17	0.56		
	Genotoxic	Long	1.44*	0.76	1.14	0.90		
		P-trend	0.001*	0.19	0.48	0.99		
Breast		Short	1.03	0.98	0.90	1.00		
	Non-	Medium	1.30*	1.08	1.04	0.90		
	genotoxic	Long	1.27*	0.99	0.82	1.01		
		P-trend	0.008*	0.75	0.31	0.81		
_		Short	1.22	1.25*	1.14	1.16		
		Medium	1.37*	0.90	0.93	1.31		
:	Genotoxic	Long	1.42*	0.70	0.67	0.97		
		P-trend	0.01*	0.09	0.39	0.95		
Prostate		Short	1.35*	1.16	1.12	1.10		
	Non-	Medium	1.43*	0.88	1.09	0.88		
	genotoxic	Long	0.87	1.27	0.72	1.42		
		P-trend	0.79	0.70	0.74	0.31		
		Short	1.09	1.27	1.36	0.95		
	Genotoxic	Medium	1.36	0.56	1.82	0.77		
	Genotoxie	Long	1.40	0.69	0.74	1.06		
Ovarian		P-trend	0.38	0.40	0.69	0.95		
O varian		Short	0.86	0.92	0.83	1.02		
	Non-	Medium	0.99	1.07	0.49	0.58		
	genotoxic	Long	0.87	2.47*	0.71	1.39		
	<u></u>	P-trend	0.48	0.04*	0.34	0.41		
		Short	1.06	0.84	1.09	0.65		
	Constant	Medium	1.41	0.77	1.51	0.36		
	Genotoxic	Long	1.11	1.20	3.72*	0.30		
Non-		P-trend	0.76	0.70	0.02	0.05*		
Hodgkin's		Short	1.36	0.95	0.85	0.83		
<u> </u>	Non-	Medium	1.10	0.95	0.72	0.34		
	genotoxic	Long	2.28*	0.73	0.14	2.26		
		P-trend	0.002*	0.55	0.06*	0.69		

RR: rate (incidence) ratio

P-trend was based on the continuous data rather than the categorical data

The referent group included those who were unexposed to any TCA

^{*:} Significant at the 0.05 level

Table 37: Summary of the general effects of genotoxic and non-genotoxic <u>TCAs</u> on the four types of cancer, for the four periods prior to the index date

Cancer site	Time period before diagnosis								
Cancer site	2-5 years	6-10 years	11-15 years	16-20 years					
Breast Cancer	- TCAs - Genotoxic - Non-Genotoxic		- TCAs - Genotoxic						
Prostate Cancer	- Genotoxic	- Genotoxic (Protective)							
Ovarian Cancer		- TCAs - Non-Genotoxic							
N-Hodgkin's Lymphoma	- Non-Genotoxic		- Genotoxic						

TCAs: Tricyclic antidepressants as a class

Genotoxic: Genotoxic TCAs
Non-Genotoxic: Non-Genotoxic TCAs

Table 38: Comparison of the results reported by the current study and those reported by Sharpe et al.'s study for exposure to high levels of genotoxic and non-genotoxic TCAs 11-15 years before diagnosis with breast cancer

	TCAs		RR (95% CI) p-trend
	High	Genotoxic	2.47 (1.37 – 4.40) 0.0009
	exposure	Non-genotoxic	0.99 (0.49 – 1.99) 0.58
Sharpe et al's study	High exclusive exposure	Genotoxic	1.92 (0.93 – 3.95) N/A
		Non-genotoxic	0.84 (0.36 – 1.93) N/A
		Genotoxic	1.27 (0.92 – 1.74)
	High exposure	Non-genotoxic	0.002 0.91 (0.63 – 1.30) 0.13
Current study	High	Genotoxic	1.17 (0.79 – 1.74) 0.03
	exclusive exposure	Non-genotoxic	0.95 (0.61 – 1.48) 0.13

High exposure:

the reference groups used for the analyses of the genotoxic and non-genotoxic

TCAs were different

High exclusive exposure: the reference groups used for the analyses of the genotoxic and non-genotoxic

TCAs were the same

Table 39: Overlap of data used by Sharpe et al.'s study and the current study

	Age group	Number of cases
	Younger than 35	None
Charma at alla atuda	Between 35 and 81	5324
Sharpe et al's study	Older than 82	558
	Total	5882
	Younger than 35	159
Current study	Between 35 and 81	7171
Current study	Older than 82	None
		7330

Appendix A.1: Tricyclic antidepressant drugs

Amitriptyline:

Chemical name: 3-(10,11-Dihydro-5H-dibenzo[a,d]cycloheptene -5-ylidene)-N,N-

dimethyl-1-propanamine

Chemical structure:

Empirical formula:

 $C_{20}H_{23}N\cdot \\$

Molecular weight:

277.39

Amoxapine:

Chemical name: 2-Chloro-11-(1-piperazinyl)dibenz-[b,f][1,4] oxazepine

Chemical structure:

Empirical formula:

 $C_{17}H_{16}ClN_3O\\$

Molecular weight:

Clomipramine:

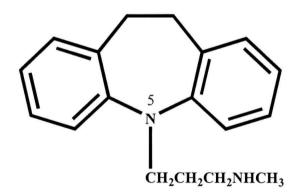
Chemical name: 3-Chloro-10,11-dihydro-N,N-dimethyl-5H-dibenz[b,f]azepine-5-

propanamine

Chemical strucure:

Empirical formula:

 $C_{19}H_{23}ClN_2$


Molecular weight:

314.87

Desipramine:

Chemical name: 10,11-Dihydro-N-methyl-5H-dibenz[b,f]azepine-5propanamine

Chemical structure:

Empirical formula:

 $C_{18}H_{22}N_2$

Molecular weight:

Doxepin:

Chemical name: 3-Dibenz[b,e]oxepin-11(6H)-ylidene-N,-N-dimethyl-1-

propanamine

Chemical structure:

Empirical formula:

 $C_{19}H_{21}NO$

Molecular weight:

279.37

Imipramine:

Chemical name: 10,11-Dihydro-N,N-dimethyl-5H-dibenz[b,f]azepine-5-

propanamine

Chemical structure:

Empirical formula:

 $C_{19}H_{24}N_2$

Molecular weight:

Maprotiline:

Chemical name: N-Methyl-9,10-ethanoanthracene-9(10H)-propanamine

Chemical structure:

Empirical formula:

 $C_{20}H_{23}N$

Molecular weight:

277.41

Nortriptyline:

Chemical name: 3-(10,11-Dihydro-5H-dibenzo[a,d]

cyclohepten-5-ylidene)-N-

methyl-1-propanamine

Chemical structure:

Empirical formula:

 $C_{19}H_{21}N$

Molecular weight:

Protriptyline:

Chemical name: N-Methyl-5H-dibenzo[a,d]cycloheptene-5-propanamine

Chemical structure:

Empirical formula:

 $C_{19}H_{21}N$

Molecular weight: 263.37

Trimipramine:

Chemical name: 10,11-Dihydro-N,N,β-trimethyl-5H-dibenz[b,f]azepine-5-

propanamine

Chemical structure:

Empirical formula:

 $C_{20}H_{26}N_2$

Molecular weight:

Appendix A.2: Monoamine oxidase inhibitor drugs

Isocarboxazid:

Chemical name: 5-Methyl-3-isoxazole-carboxylic acid 2-benzyl hydrazide

Chemical structure:

Empirical formula:

 $C_{12}H_{13}N_{3}O_{2} \\$

Molecular weight:

231.25

Moclobemide:

Chemical name: 4-Chloro-N-[2-(4-morpholinyl)-ethyl]benzamide

Chemical structure:

Empirical formula:

 $C_{13}H_{17}ClN_{2}O_{2} \\$

Molecular weight:

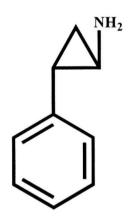
Phenelzine:

Chemical name: (2-Phenethyl)hydrazine

Chemical structure:

Empirical formula:

 $C_8H_{12}N_2$


Molecular weight:

136.19

<u>Tranylcypromine:</u>

Chemical name: Trans-(±)-2-Phenylcyclopropanamine

Chemical structure:

Empirical formula:

 $C_9H_{11}N$

Molecular weight:

Appendix A.3: Selective serotonin reuptake inhibitor drugs

Citalopram:

1-[3-(Dimethylamino)-propyl]-1-(4-fluorophenyl)-1,3-dizohydro-Chemical name:

5-isobenzo-furancarbonitrile

Chemical structure:

Empirical formula:

 $C_{20}H_{21}FN_2O$

Molecular weight:

324.39

Fluoxetine:

Chemical name: (\pm) -N-Methyl- γ -[4-(trifluoromethyl)phenoxy]

benzenepropanamine

Chemical structure:

Empirical formula:

 $C_{17}H_{18}F_3NO \\$

Molecular weight:

Fluvoxamine:

Chemical name: 5-Methoxy-1-[4-(trifluoromethyl)-phenyl]-1-pentanone O-(2-

aminoethyl)oxime

Chemical structure:

$$F_3C$$
 C $CH_2CH_2CH_2CH_2OCH_3$ N O $CH_2CH_2NH_2$

Empirical formula:

 $C_{15}H_{21}F_3N_2O_2$

Molecular weight:

318.35

Paroxetine:

Chemical name: Trans-(-)-3-[(1,3-Benzodioxol-5-yloxy)methyl]-4-(4-

fluorophenyl)piperidine

Chemical structure:

$$O-CH_2$$

$$O$$

$$O$$

Empirical formula:

 $C_{19}H_{20}FNO_3\\$

Molecular weight:

Sertraline:

Chemical name: (1S-cis)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-N-methyl-1-

nanphthalenamine

Chemical structure:

Empirical formula:

 $C_{17}H_{17}Cl_2N$

Molecular weight:

Appendix A.4: Atypical antidepressant drugs

Nefazodone:

Chemical name: 2-(3-(4-(3-chlorophenyl)-1-piperazinyl)propyl)-5-ethyl-2,4-

dihydro-4-(2-phenoxyethyl)-3H-1,2,4-triazol-3-one

Chemical structure:

$$\begin{array}{c} CH_2CH_2CH_2\\ N\\ N\\ N\\ N\\ N\\ N\\ CH_2CH_2 \end{array}$$

Empirical formula:

 $C_{25}H_{32}ClN_5O_2$

Molecular weight:

470.01

Trazodone:

Chemical name: 2-[3-[4-(3- Chlorophenyl)-1-piperazinyl]propyl]-1,2,4-triazolo[4,3-

a]pyridine-3(2H)-one

Chemical structure:

Empirical formula:

 $C_{19}H_{22}ClN_5O$

Molecular weight:

Venlafaxine:

Chemical name: $(\pm)-1-[a[(dimethylamino)methyl]p-methoxybenzyl]$ cyclohexanol Chemical structure:

$$H_3C$$
 OCH_3
 OH

Empirical formula:

 $C_{17}H_{27}NO_2$

Molecular weight:

Appendix B: Summary of the epidemiological studies assessing the association between antidepressant drug use and risk of cancer

Author	Drugs	Cancer site	Study design and sample size	Results
Friedman et al. 1980, 1983, and 1992 Selby et al. 1989	-215 drugs -TCAs: amitriptyline and imipramine	56 cancer sites	-Systematic screening, cohort study -143,574 subjects	-No significant association between TCAs and any cancer -Amitriptyline: SMR=1.07, 95% CI: 0.92–1.23 -Imipramine: SMR=0.77, 95% CI: 0.40–0.34
Danielson et al., 1982	-Nonestrogenic drugs -TCAs	Breast cancer	-Retrospective cohort -283,000 subjects	RR=0.5, 90% CI: 0.3–0.8
Wallace et al., 1982	-Psychotropic drugs -Antidepressants in general	Breast cancer	-Case-control -151 cases and matched hospital controls	RR=1.62, p-value > 0.2
Harlow et al., 1995	Antidepressants in general	Ovarian cancer	-Population-based case- control -450 cases and 454 matched controls	Women who initiated treatment before age 50: OR=3.5, 95% CI: 1.3-9.2
Harlow et al., 1998	Antidepressants in general	Ovarian cancer	-Population-based case- control -563 cases and 523 controls	-Use > 2years: OR=2.9, 95% CI: 1.3-6.6
Celly et al., 1999	-TCAs -SSRIs	Breast cancer	-Hospital-based case- control -5814 cases -5095 cancer controls -5814 non-cancer controls	No significant association between any antidepressant and breast cancer
2.1/	TO A	A 11 '1 1	D1-4' 1 1	T 1:10
Dalton et il., 2000	-TCAs -MAOIs -SSRIs	All possible cancer sites	-Population-based cohort study -Average of 3.2 years follow-up -30,807 users	-Increased risk of non- Hodgkin's lymphoma (≥5 prescriptions) -SIR=2.5, 95% CI: 1.4-4.2

Coogan et al., 2000	TCAs and SSRIs	Ovarian cancer	-Case-control study -748 cases -1496 cancer controls -1496 non-cancer control	No significant association between any antidepressant and ovarian cancer
Cotterchio et al., 2000	-TCAs -SSRIs	Breast cancer	-Population-based case- control -701 cases -702 controls	No significant association between any antidepressant and breast cancer
Wang et al., 2001	Antidepressants in general	Breast cancer	-Retrospective cohort -38,273 antidepressant users -32.949 non-users	No significant association between any antidepressant and risk of breast cancer, HR =1.04, 95% CI: 0.87-1.25
Dublin et al., 2002	TCAs	Ovarian cancer	-Population-based case- control -314 cases -790 matched controls	No significant association between any antidepressant and risk of ovarian cancer OR =0.64, 95% CI: 0.36-1.1
Sharpe et al., 2002	TCAs	Breast	-Population-based case-control -5,882 cases -23,517 population controls	-Heavy exposure to any TCA increased risk of breast cancer, 11-15 years later, RR=2.02, 95% CI: 1.34-3.04 -Heavy exposure to genotoxic TCAs increased risk of breast cancer 11-15 years later, RR=2.47, 95% CI: 1.37-4.40 as compared to non-genotoxic TCAs, RR=0.99, 95% CI: 0.49-1.99

Appendix C: Cut off points used for categorizing the 3 exposure indices, for the two classes of antidepressants (TCAs and SSRIs), for the four cancer sites

Exposure Index	Breast	Prostate	Ovarian	Non-Hodgkin's lymphoma
TCAs				
Cumulative dosage				
(moles)				
Low	0-0.015	0-0.015	0-0.025	0-0.02
High	0.015+	0.015+	0.025+	0.02+
Average daily dose (moles)				
Low	0-0.00001	0-0.00001	0-0.00001	0-0.00001
Medium	0.00001-0.00005	0.00001-0.00005	0.00001-0.00005	0.00001-0.00005
High	0.00005+	0.00005+	0.00005+	0.00005+
Duration				
(percentage)				
Short	0-10	0-10	0-10	0-10
Medium	10-40	10-40	10-40	10-40
Long	40+	40+	40+	40+
SSRIs				
Cumulative dosage (moles)				
Low	0-0.015	0-0.015	0-0.025	0-0.02
High	0.015+	0.015+	0.025+	0.02+
Average daily dose (moles)				
Low	0-0.00001	0-0.00001	0-0.00001	0-0.00001
Medium	0.00001-0.00005	0.00001-0.00005	0.00001-0.00005	0.00001-0.00005
High	0.00005+	0.00005+	0.00005+	0.00005+
Duration				
(percentage)				
Short	0-10	0-10	0-10	0-10
Medium	10-40	10-40	10-40	10-40
Long	40+	40+	40+	40+

Appendix D.1: Incidence of <u>breast</u> cancer as a function of <u>average daily dose</u> of genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis for those aged <u>50 years or younger</u>

Genotoxic TCAs

Non-Genotoxic TCAs

eriod

Average			UNIC I CAS			Genotox		
	Cases	Controls	Adjusted	Adjusted	Cases	Controls	Adjusted	Adjusted
ually dose	N=1539	N=6147	RR*	95% CI*	N=1539	N=6147	ŘR [*]	95% CI*
Unexposed	1415	5729	1.00	Referent	1457	5805	1.00	Referent
Low	83	211	1.63	1.25-2.14	41	167	0.95	0.67-1.36
Medium	30	123	0.98	0.64-1.50	23	104	0.86	0.54-1.39
High	11	84	0.53	0.27-1.04	18	71	1.01	0.55-1.83
P-trend				0.43				0.34
Other					-			
Unexposed	1069	4357	1.00	Referent	1094	4380	1.00	Referent
Low	64	193	1.37	1.02-1.86	31	156	0.76	0.50-1.14
Medium	16	69	0.96	0.54-1.72	17	73	0.89	0.50-1.56
High	8	41	1.08	0.47-2.51	15	51	1.16	0.58-2.31
P-trend				0.29				0.95
Other	382	1487			382	1487		
	r			received.				
_	l			i				Referent
Low								0.38-1.04
Medium								0.56-2.27
High	3	14	1.22		6	20	1.02	0.37-2.83
P-trend				0.57				0.53
Other	769	3086	-		769	3086		
	T				 			
1 -								Referent
								0.91-3.07
1	3		0.74	0.19-2.94	l			0.63-4.22
High	-	6	-	-	1	6	0.74	0.09-6.40
P-trend				0.32				0.64
Other _	1149	4623			1149	4623		
	Unexposed Low Medium High P-trend Other Unexposed Low Medium High P-trend Other Unexposed Low Medium High P-trend Other Unexposed Low Medium High P-trend Other	Unexposed 1415 Low 83 Medium 30 High 11 P-trend Other -	Average daily dose Cases N=1539 Controls N=6147 Unexposed Low 1415 5729 Low 83 211 Medium 30 123 High 11 84 P-trend - - Other - - Unexposed Low 64 193 Medium 16 69 High 8 41 P-trend 382 1487 Unexposed Low 21 102 Medium 12 32 High 3 14 P-trend 769 3086 Unexposed Low 377 1453 Low 10 53 Medium 3 12 High - 6 P-trend - 6	daily dose Cases N=1539 Controls N=6147 Adjusted RR* Unexposed Low 1415 5729 1.00 Low 83 211 1.63 Medium 30 123 0.98 High 11 84 0.53 P-trend 0ther - - Unexposed Low 64 193 1.37 Medium 16 69 0.96 High 8 41 1.08 P-trend Other 382 1487 Unexposed Low 21 102 0.79 Medium 12 32 1.59 High 3 14 1.22 P-trend Other 769 3086 Unexposed Low 377 1453 1.00 Low 10 53 0.68 Medium 3 12 0.74 High - 6 - P-trend - -	Cases Controls N=6147 RR* P5% CI*	Cases N=1539 Controls N=6147 RR* Adjusted S5% CI* N=1539	Cases N=1539 N=6147 Rr* Adjusted Ps% CI* N=1539 N=6147 Rr* Ps% CI* N=1539 N=6147 N=6147 N=6147 N=1539 N=6147 N=6147 N=1539 N=6147 N=6147 N=1539 N=6147 N=6147 N=1539 N=6147 N=6147 N=1539 N=6147 N=6147 N=1539 N=6147 N=6147 N=6147 N=1539 N=6147 N=61	Average daily dose Cases N=1539 Controls N=6147 Adjusted RR* Adjusted 95% CI* Cases N=1539 Controls N=6147 Adjusted RR* Unexposed Low 1415 5729 1.00 Referent 1457 5805 1.00 Medium 30 123 0.98 0.64-1.50 23 104 0.86 High 11 84 0.53 0.27-1.04 18 71 1.01 P-trend 0.43 - - - - - Other - - - - - - Unexposed Low 64 193 1.37 1.02-1.86 31 156 0.76 Medium 16 69 0.96 0.54-1.72 17 73 0.89 High 8 41 1.08 0.47-2.51 15 51 1.16 P-trend 0ther 382 1487 382 1487 Unexposed Low 734 2913 1.00 <t< th=""></t<>

P-trend was based on the continuous data rather than the categorical data RR: rate (incidence) ratio

Other: subjects with incomplete information during the specified period

Non-genotoxic TCAs: regardless of any exposure to genotoxic TCAs Genotoxic TCAs: regardless of any exposure to non-genotoxic TCAs

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Appendix D.2: Incidence of <u>breast</u> cancer as a function of <u>average daily dose</u> of genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis for those aged between <u>50 and 65 years</u> of age

eriod	Avorago		Non-Genot	oxic TCAs		Genotoxic TCAs			
fore	Average daily dose	Cases	Controls	Adjusted	Adjusted	Cases	Controls	Adjusted	Adjusted
agnosis	l and j	N=2670	N=10682	RR*	95% CI*	N=2670	N=10682	RR*	95% CI*
						,			
	Unexposed	2442	9876	1.00	Referent	2467	10054	1.00	Referent
	Low	103	411	1.02	0.81-1.28	77	266	1.21	0.93-1.57
5 years	Medium	61	203	1.17	0.87-1.59	57	169	1.40	1.02-1.92
3 years	High	64	192	1.38	0.99-1.94	69	193	1.48	1.06-2.08
	P-trend				0.42				0.44
	Other					-			
	Unexposed	1854	7451	1.00	Referent	1851	7443	1.00	Referent
	Low	88	366	0.95	0.74-1.21	80	331	0.94	0.73-1.21
-10	Medium	46	147	1.16	0.81-1.65	40	167	0.83	0.57-1.20
ears	High	37	138	0.89	0.56-1.40	54	161	1.04	0.69-1.57
	P-trend				0.15				0.19
	Other	645	2580			645	2580		
		·							
	Unexposed	1304	5109	1.00	Referent	1281	5096	1.00	Referent
	Low	53	258	0.76	0.55-1.04	57	227	1.03	0.76-1.40
1-15	Medium	24	106	0.78	0.48-1.26	31	123	1.02	0.67-1.56
ears	High	21	75	0.97	0.54-1.74	33	102	1.47	0.89-2.41
	P-trend]			0.49				0.02
	Other	1268	5134			1268	5134		
					<u>.</u>				
	Unexposed	651	2517	1.00	Referent	643	2494	1.00	Referent
	Low	28	115	0.95	0.62-1.45	33	118	1.07	0.72-1.61
6-20	Medium	13	51	1.02	0.53-1.95	13	52	0.96	0.50-1.84
ears	High	5	36	0.51	0.19-1.36	8	55	0.38	0.16-0.88
	P-trend	ļ.			0.48				0.11
	Other	1973	7963			1973	7963		

Other: subjects with incomplete information during the specified period Non-genotoxic TCAs: regardless of any exposure to genotoxic TCAs

Genotoxic TCAs: regardless of any exposure to non-genotoxic TCAs

RR: rate (incidence) ratio
*: Adjustment for the exposure in the other periods was carried out for each period

Appendix D.3: Incidence of <u>breast</u> cancer as a function of <u>average daily dose</u> of genotoxic and non-genotoxic <u>TCA</u> exposure by time period before diagnosis for those aged <u>65</u> years or older

eriod	Avonogo		Non-Geno	toxic TCAs			Genotox	ric TCAs	
efore iagnosis	Average daily dose	Cases N=3121	Controls N=12491	Adjusted RR*	Adjusted 95% CI*	Cases N=3121	Controls N=12491	Adjusted RR*	Adjusted 95% CI*
	Unexposed	2882	11566	1.00	Referent	2897	11650	1.00	Referent
	Low	111	457	0.96	0.78-1.20	89	351	1.02	0.81-1.30
-5 years	Medium	55	214	0.98	0.72-1.34	62	222	1.14	0.85-1.53
-5 years	High	73	254	1.04	0.75-1.45	73	268	1.08	0.79-1.49
	P-trend				0.74				0.61
	Other	_	-			-	-		!
							-		
	Unexposed	2307	9228	1.00	Referent	2303	9224	1.00	Referent
	Low	97	436	0.88	0.70-1.11	99	389	1.02	0.81-1.29
-10	Medium	48	167	1.13	0.80-1.60	54	201	1.02	0.74-1.42
ears	High	55	182	1.25	0.83-1.90	51	199	0.83	0.55-1.26
	P-trend				0.99				0.69
	Other	614	2478			614	2478		!
	Unexposed	1579	6300	1.00	Referent	1563	6202	1.00	Referent
	Low	70	256	1.11	0.84-1.47	72	313	0.93	0.71-1.22
1-15	Medium	34	106	1.23	0.81-1.88	38	148	1.01	0.69-1.49
ears	High	28	118	0.76	0.46-1.26	38	117	1.28	0.80-2.06
	P-trend				0.07				0.06
	Other	1410	5711			1410	5711		
	Unexposed	725	2865	1.00	Referent	730	2822	1.00	Referent
	Low	37	151	1.04	0.71-1.52	26	152	0.65	0.42-0.99
6-20	Medium	11	65	0.70	0.36-1.37	11	91	0.46	0.24-0.88
ears	High	16	38	1.63	0.84-3.16	22	54	1.37	0.78-2.50
	P-trend				0.91				0.40
	Other	2332	9372			2332	9372		
		1 1 .1		1 .1	-	1 1			· · · · · · · · · · · · · · · · · · ·

RR: rate (incidence) ratio

Other: subjects with incomplete information during the specified period

Non-genotoxic TCAs: regardless of any exposure to genotoxic TCAs Genotoxic TCAs: regardless of any exposure to non-genotoxic TCAs

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Appendix E.1: Incidence of <u>prostate</u> cancer, for those having at least 20 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

TCA exposure Ever/Never exposed All Unexposed				Cases N=2234	Controls N=8799	RR	95% CI
	2-20 years Unexposed Any		Unexposed	1841	7431	1.00	Referent
ombined	2-20 yea		Any	393	1368	1.17	1.03-1.32
			Unexposed	1841	7431	1.00	Referent
			Genotoxic	130	480	1.06	0.86-1.30
Categorized	2-20 yea	ırs	Non-Genotoxic	164	578	1.16	0.96-1.40
			Both	99	310	1.32	1.04-1.68
Cumulative de	osage exp	osure	T	1041	7421	1.00	D C .
			Unexposed	1841	7431	1.00	Referent
	2-20 yea	ars	Low	195	633	1.28	1.08-1.52
			High	198	735	1.09	0.92-1.30
			P-trend	1001	7.04	1.00	0.33
			Unexposed	1901	7634	1.00	Referent
	6-20 yea	ars	Low	155	546	1.18	0.98-1.43
A 11			High	178	619	1.15	0.96-1.38
All			P-trend	1077	7017	1.00	0.43
combined			Unexposed	1977	7917	1.00	Referent
	11-20 ye	ears	Low	116	399	1.19	0.96-1.48
			High	141	483	1.18	0.97-1.44
			P-trend	2078	9262	1.00	0.41
			Unexposed		8262		Referent
	16-20 years		Low	68	261	1.08	0.82-1.42
			High	88	276	1.24	0.97-1.59
			P-trend	-			0.35
Categorized			Unexposed	1841	7431	1.00	Referent
			Low	72	257	1.12	0.86-1.48
		Genotoxic	High	58	223	0.99	0.73-1.34
	2-20		P-trend				0.93
	years		Unexposed	1841	7431	1.00	Referent
	7 5 5	Non-	Low	106	330	1.35	1.07-1.70
		Genotoxic	High	58	248	0.92	0.68-1.24
		•	P-trend				0.29
			Unexposed	1901	7634	1.00	Referent
			Low	70	242	1.19	0.90-1.57
		Genotoxic	High	54	216	0.94	0.69-1.28
	6-20		P-trend			•	0.54
	years		Unexposed	1901	7634	1.00	Referent
	, , , , , ,	Non-	Low	73	267	1.16	0.89-1.53
		Genotoxic	High	52	194	1.07	0.78-1.47
		_ 5 5.0.10	P-trend			1.07	0.38
		_	Unexposed	1977	7917	1.00	Referent
			Low	53	198	1.08	0.79-1.48
		Genotoxic	High	47	185	0.98	0.79-1.46
	11-20		P-trend	- · ·	105	0.70	0.70-1.30
	1		Unexposed	1977	7917	1.00	Referent
	years	Non-	Low	56	173	1.00	
		Non- Genotoxic	Low High	42	173		1.01-1.89
		Genotoxic	U	42	140	1.18	0.83-1.69
			P-trend				0.47

		Unexposed	2078	8262	1.00	Referent
	O	Low	35	435	1.06	0.73-1.55
	Genotoxic	High	33	111	1.22	0.82-1.81
16-2	20	P-trend				0.19
yea	rs	Unexposed	2078	8262	1.00	Referent
	Non-	Low	29	112	1.09	0.71-1.66
	Genotoxic	High	26	82	1.20	0.77-1.88
		P-trend				0.55

RR: rate (incidence) ratio

All combined: both types of TCAs (genotoxic or non-genotoxic)

Genotoxic: exposure to genotoxic TCAs only

Non-genotoxic: exposure to non-genotoxic TCAs only

Both: exposure to both types of TCAs (genotoxic and non-genotoxic)

Appendix E.2: Incidence of <u>prostate</u> cancer, for those having at least 15 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

TCA exposure				Cases N=4693	Controls N=18655	RR	95% CI
Ever/Never ex	posed						
All			Unexposed	4008	16286	1.00	Referent
combined	2-15 yea	ırs	Any	685	2369	1.18	1.07-1.29
						-	
			Unexposed	4008	16286	1.00	Referent
			Genotoxic	258	894	1.16	1.00-1.34
Categorized	2-15 yea	irs	Non-Genotoxic	289	990	1.20	1.04-1.38
			Both	138	485	1.17	0.96-1.42
Cumulative de	osage exp	osure					
	<u> </u>		Unexposed	4008	16286	1.00	Referent
			Low	356	1114	1.32	1.16-1.50
	2-15 yea	ars	High	329	1255	1.07	0.94-1.22
			P-trend				0.87
			Unexposed	4173	16804	1.00	Referent
All			Low	264	872	1.24	1.07-1.43
combined	6-15 yea	ars	High	256	979	1.05	0.91-1.21
			P-trend				0.53
	-		Unexposed	4362	17490	1.00	Referent
			Low	174	557	1.24	1.04-1.48
	11-15 ye	ears	High	157	608	1.05	0.88-1.26
			P-trend				0.76
			Unexposed	4008	16286	1.00	Referent
			Low	150	458	1.33	1.09-1.61
		Genotoxic	High	108	436	0.99	0.80-1.23
	2-15		P-trend				0.36
	years		Unexposed	4008	16286	1.00	Referent
	J	Non-	Low	183	585	1.29	1.08-1.53
		Genotoxic	High	106	405	1.07	0.86-1.34
			P-trend				0.43
			Unexposed	4173	16804	1.00	Referent
	1		Low	133	391	1.37	1.12-1.67
	1	Genotoxic	High	84	386	0.87	0.68-1.11
_	6-15		P-trend			*	0.11
Categorized	years		Unexposed	4173	16804	1.00	Referent
	5552.5	Non-	Low	118	432	1.13	0.91-1.39
		Genotoxic	High	79	303	1.05	0.82-1.36
			P-trend		-		0.59
			Unexposed	4362	17490	1.00	Referent
			Low	94	275	1.34	1.06-1.71
		Genotoxic	High	56	265	0.84	0.62-1.12
	11-15		P-trend		200	0.01	0.24
	years		Unexposed	4362	17490	1.00	Referent
	years	Non-	Low	75	257	1.17	0.90-1.51
		Genotoxic	High	58	213	1.17	0.90-1.51
		Genotoxic	High P-trend	30	213	1.13	0.86-1.55 0.75
	l		1 -trenu				0.73

Appendix E.3: Incidence of <u>prostate</u> cancer, for those having at least 10 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

	TC	A exposure		Cases N=6308	Controls N=25143	RR	95% CI
Ever/Never exposed							
All	2 10 220		Unexposed	5621	22834	1.00	Referent
combined	2-10 year		Any	687	2309	1.21	1.10-1.32
			Unexposed	5621	22834	1.00	Referent
			Genotoxic	271	872	1.27	1.11-1.47
Categorized	2-10 year	rs	Non-Genotoxic	311	1021	1.25	1.09-1.42
			Both	105	416	1.02	0.82-1.28
0 1 1							
Cumulative d	osage expo	sure	Unovnosad	5621	22834	1.00	Referent
			Unexposed	351	1084	1.00	1.16-1.49
	2-10 year	rs	Low	331		1.31	0.99-1.28
All			High P-trend	330	1225	1.12	0.99-1.28
combined	-		Unexposed	5868	23618	1.00	Referent
	6-10 years		Low	220	691	1.29	1.10-1.50
			High	220	834	1.06	0.91-1.23
<u> </u>			P-trend				0.45
	Τ		Unexposed	5621	22834	1.00	Referent
			Low	139	431	1.31	1.08-1.59
		Genotoxic	High	132	441	1.24	1.02-1.52
	2-10		P-trend	132	771	1.24	0.83
	years		Unexposed	5621	22834	1.00	Referent
	years	Non-	Low	199	596	1.36	1.15-1.61
		Genotoxic	High	112	425	1.10	0.88-1.36
		General	P-trend		0		0.64
Categorized		·	Unexposed	5868	23618	1.00	Referent
		~ ·	Low	105	295	1.44	1.15-1.81
		Genotoxic	High	85	359	0.96	0.75-1.22
	6-10		P-trend				0.13
	years		Unexposed	5868	23618	1.00	Referent
		Non-	Low	110	358	1.24	1.00-1.54
		Genotoxic	High	76	285	1.10	0.85-1.42
			P-trend				0.67

Appendix E.4: Incidence of <u>prostate</u> cancer, for those having at least 5 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

	TCA	A exposure		Cases N=7767	Controls N=31068	RR	95% CI
Ever/Never ex	posed						
All	2.5 220000		Unexposed	7230	29361	1.00	Referent
combined	2-5 years		Any	537	1707	1.28	1.16-1.41
			Unexposed	7230	29361	1.00	Referent
Categorized	2-5 years		Genotoxic	224	709	1.30	1.12-1.52
Categorized	2-5 years		Non-Genotoxic	259	812	1.30	1.13-1.50
			Both	54	186	1.19	0.87-1.61
Cumulative de	osage expos	sure					
			Unexposed	7230	29361	1.00	Referent
All	2.5		Low	279	841	1.35	1.18-1.55
combined	2-5 years		High	258	866	1.22	1.06-1.41
			P-trend				0.98
			Unexposed	7230	29361	1.00	Referent
			Low	110	347	1.29	1.04-1.60
		Genotoxic	High	114	362	1.31	1.05-1.62
	2-5		P-trend			-	0.35
Categorized	years		Unexposed	7230	29361	1.00	Referent
	_	Non-	Low	158	465	1.39	1.16-1.68
		Genotoxic	High	101	347	1.19	0.95-1.49
			P-trend				0.74

Appendix E.5: Incidence of <u>prostate</u> cancer as a function of <u>average daily dose</u> of <u>TCA</u> exposure by time period before diagnosis

	TCA exposure			·			
Period before		Cases	Controls	C	Crude	Ad	justed [*]
diagnosis	Average daily dose	N=7767	N=31068	RR	95% CI	RR	95% CI
							
	Unexposed	7230	29361	1.00	Referent	1.00	Referen
	Low	276	835	1.34	1.17-1.54	1.31	1.14-1.5
2-5 years	Medium	141	428	1.34	1.11-1.62	1.33	1.09-1.6
2-5 years	High	120	444	1.10	0.90-1.35	1.20	0.94-1.53
	P-trend				0.98		0.82
	Other	<u>-</u>	-				
	Unexposed	5868	23618	1.00	Referent	1.00	Referent
l	Low	244	769	1.28	1.10-1.48	1.19	1.02-1.3
l	Medium	112	381	1.19	0.96-1.47	1.05	0.84-1.32
6-10 years	High	84	375	0.90	0.71-1.14	0.76	0.56-1.03
1	P-trend				0.48		0.08
	Other	1459	5925				
	Unexposed	4362	17490	1.00	Referent	1.00	Referen
	Low	193	620	1.25	1.06-1.47	1.18	1.00-1.40
1	Medium	76	310	0.98	0.76-1.27	0.91	0.70-1.19
11-15 years	High	62	235	1.06	0.80-1.40	1.04	0.74-1.4
	P-trend	-	- • -		0.72		0.58
	Other	3074	12413		- · 		
	Unexposed	2078	8262	1.00	Referent	1.00	Referen
	Low	77	295	1.04	0.80-1.34	0.99	0.77-1.2
	Medium	50	126	1.58	1.13-2.20	1.52	1.08-2.1
16-20 years	High	29	116	0.99	0.66-1.50	0.99	0.64-1.5
1	P-trend	2)	110	0.77	0.33	0.77	0.04-1.3
	Other	5533	22269		3.22		0.20

RR: rate (incidence) ratio

Other: subjects with incomplete information during the specified period

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Appendix E.6: Incidence of <u>prostate</u> cancer as a function of <u>duration</u> of <u>TCA</u> exposure by time period before diagnosis

	TCA exposure						
Period before		Cases	Controls	C	rude	Adj	usted*
diagnosis	Duration	N=7767	N=31068	RR	95% CI	RR	95% CI
	Unexposed	7230	29365	1.00	Referent	1.00	Referent
	Short	230	707	1.32	1.14-1.54	1.29	1.11-1.51
	Medium	192	566	1.38	1.17-1.63	1.35	1.14-1.61
2-5 years	Long	115	430	1.09	0.88-1.34	1.12	0.88-1.43
	P-trend	113	.50	1.05	0.09	• • • •	0.13
	Other	-	•		0.07		
	Unexposed	5872	23635	1.00	Referent	1.00	Referent
	Short	251	825	1.22	1.06-1.41	1.14	0.99-1.32
6-10 years	Medium	110	392	1.13	0.91-1.40	1.02	0.81-1.27
0-10 years	Long	77	301	1.03	0.80-1.33	0.93	0.68-1.28
	P-trend				0.85		0.27
	Other	1457	5915				
	Unexposed	4382	17565	1.00	Referent	1.00	Referent
	Short	209	710	1.18	1.01-1.38	1.11	0.95-1.31
	Medium	82	279	1.18	0.92-1.52	1.11	0.93-1.31
11-15 years	Long	40	180	0.89	0.63-1.26	0.74	0.49-1.12
	P-trend	40	100	0.09	0.64	0.74	0.43-1.12
	Other	3054	12334		0.04		0.55
	Unexposed	2090	8330	1.00	Referent	1.00	Referent
	Short	93	318	1.16	0.92-1.47	1.11	0.88-1.41
16 20	Medium	44	136	1.29	0.91-1.82	1.25	0.88-1.79
16-20 years	Long	24	81	1.18	0.75-1.86	1.34	0.80-2.25
	P-trend				0.39		0.28
	Other	5516	22203				

RR: rate (incidence) ratio

Other: subjects with incomplete information during the specified period

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Appendix E.7: Incidence of prostate cancer, for those having at least 10 years of history, as a function of two exposure indices of <u>SSRI</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

	SSRI exposure			Controls N=21384	RR	95% CI
Ever/Nev	er exposed					
	2 10 20000	Unexposed	5237	20942	1.00	Referent
	2-10 years	Any	109	442	0.99	0.80-1.22
Cumulati	ve dosage exposure			<u>.</u>		
		Unexposed	5237	20942	1.00	Referent
	2 10 22022	Low	61	266	0.92	0.69-1.22
	2-10 years	High	48	176	1.09	0.79-1.50
		P-trend				0.37
		Unexposed	5313	21252	1.00	Referent
	6 10 waara	Low	23	90	1.03	0.65-1.63
	6-10 years	High	10	42	0.94	0.47-1.87
		P-trend				0.70

RR: rate (incidence) ratio

Unexposed: no exposure to any SSRI Any: exposure to any SSRI

Appendix E.8: Incidence of <u>prostate</u> cancer, for those having at least 5 years of history, as a function of two exposure indices of <u>SSRI</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

	SSRI exposure		Cases N=5346	Controls N=21384	RR	95% CI
Ever/Never exposed						
	2 5 years	Unexposed	5255	21019	1.00	Referent
	2-5 years	Any	91	365	1.00_	0.79-1.26
Cumulati	ve dosage exposure					
		Unexposed	5255	21019	1.00	Referent
	2.5	Low	50	220	0.91	0.67-1.24
	2-5 years	High	41	145	1.13	0.80-1.60
		P-trend				0.25

Appendix F.1: Incidence of <u>ovarian</u> cancer, for those having at least 20 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

	TCA exposure		Cases N=241	Controls N=1008	RR	95% CI
Ever/Never ex	posed					
All	2-20 years	Unexposed	169	736	1.00	Referent
combined	2-20 years	Any	72	272	1.10	0.81-1.50
		Unexposed	169	736	1.00	Referent
		Genotoxic	25	71	1.33	0.81-2.20
Categorized	2-20 years	Non-Genotoxic	30	114	1.11	0.70-1.76
		Both	17	87	0.81	0.46-1.42
Cumulative de	osage exposure		160	726	1.00	D C .
		Unexposed	169	736	1.00	Referent
	2-20 years	Low	34	147	0.97	0.64-1.49
	•	High	38	125	1.23	0.81-1.86
		P-trend	170	774	1.00	0.03
		Unexposed	178	774	1.00	Referent
	6-20 years	Low	32	123	1.07	0.69-1.66
All		High <i>P-trend</i>	31	111	1.17	0.75-1.82 <i>0.19</i>
combined	-	Unexposed	196	826	1.00	Referent
		Low	22	97	0.92	0.56-1.51
	11-20 years	High	23	85	1.16	0.70-1.93
		P-trend		0.5	1.10	0.57
		Unexposed	210	880	1.00	Referent
	1.00	Low	19	69	1.13	0.65-1.95
	16-20 years	High	12	59	0.89	0.46-1.72
		P-trend				0.96
Categorized		Unexposed	169	736	1.00	Referent
	Genotoxio	Low	13	41	1.15	0.59-2.53
	Genotoxie	High	12	30	1.55	0.74-3.24
	2-20	P-trend				0.06
	years	Unexposed	169	736	1.00	Referent
	Non-	Low	17	88	0.85	0.48-1.50
	Genotoxic	0	13	26	1.87	0.85-4.08
		P-trend				0.03
		Unexposed	178	774	1.00	Referent
	Genotoxio	Low	12	41	1.08	0.55-2.13
		High	11	34	1.24	0.60-2.55
	6-20	P-trend				0.40
	years	Unexposed	178	774	1.00	Referent
	Non-	Low	16	69	0.93	0.51-1.71
	Genotoxic	9	9	20	1.87	0.77-4.53
		P-trend	1.5.5			0.07
		Unexposed	196	826	1.00	Referent
	Genotoxio	Low	12	43	1.01	0.52-1.96
]	High	9	28	1.24	0.55-2.80
	11-20	P-trend				0.70
	years	Unexposed	196	826	1.00	Referent
	Non-	Low	9	47	0.81	0.38-1.73
	Genotoxic	9	8	20	1.86	0.75-4.62
		P-trend				0.19

		Unexposed	210	880	1.00	Referent
	C	Low	9	37	0.92	0.43-1.95
	Genotoxic	High	5	20	1.07	0.38-3.03
16-20		P-trend				0.98
years		Unexposed	210	880	1.00	Referent
	Non-	Low	8	30	1.31	0.56-3.03
	Genotoxic	High	3	17	0.93	0.26-3.34
		P-trend				0.66

RR: rate (incidence) ratio

All combined: both types of TCAs (genotoxic or non-genotoxic)

Genotoxic: exposure to genotoxic TCAs only Non-genotoxic: exposure to non-genotoxic TCAs only

Both: exposure to both types of TCAs (genotoxic and non-genotoxic)

Appendix F.2: Incidence of <u>ovarian</u> cancer, for those having at least 15 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

TCA exposure Ever/Never exposed			Cases N=553	Controls N=2216	RR	95% CI
posed				<u> </u>		
2-15 yes	re	Unexposed	418	1697	1.00	Referent
2-13 yea		Any	135	519	1.05	0.84-1.30
		Unexposed	418	1697	1.00	Referent
2-15 vos	re.	Genotoxic	56	153	1.41	1.01-1.97
2-13 yea	11.5	Non-Genotoxic	49	218	0.96	0.68-1.35
		Both	30	148	0.87	0.57-1.33
osage exp	osure					
		Unexposed				Referent
2-15 vea	arc	Low		290		0.82-1.44
		High	57	229	1.03	0.75-1.42
		P-trend				0.25
		Unexposed	446	1800	1.00	Referent
6-15 yes	rc	Low	58	232	1.01	0.74-1.39
0-13 yea	115	High	49	184	1.07	0.76-1.50
		P-trend				0.33
11 15 voors		Unexposed	483	1944	1.00	Referent
		Low	42	152	1.14	0.79-1.64
11-15 ye	cais	High	28	120	0.91	0.59-1.39
		P-trend				0.58
		Unexposed	418	1697	1.00	Referent
Genotoxic 2-15 years Non- Genotoxic	C	Low	35	94	1.31	0.86-1.98
	Genotoxic	High	21	59	1.60	0.94-2.75
		P-trend				0.04
		Unexposed	418	1697	1.00	Referent
	Non-	Low	33	161	0.89	0.59-1.34
	Genotoxic	High	16	57	1.14	0.63-2.07
		P-trend				0.05
		Unexposed	446	1800	1.00	Referent
	Ca	Low	30	82	1.39	0.89-2.15
	Genotoxic	High	19	56	1.43	0.82-2.49
6-15		P-trend				0.09
years		Unexposed	446	1800	1.00	Referent
	Non-	Low	22	124	0.78	0.48-1.27
	Genotoxic	High	14	41	1.35	0.70-2.60
		P-trend				0.08
		Unexposed	483	1944	1.00	Referent
	Comment	Low	26	69	1.58	0.98-2.54
	Genotoxic	High	13	40	1.35	0.70-2.60
11-15		P-trend				0.39
			483	1944	1.00	Referent
, , , , , ,	Non-	- 1				0.47-1.55
						0.41-1.83
Genotoxic		P-trend		<u> </u>	0.07	0.64
	2-15 years 2-15 years 2-15 years	2-15 years 2-15 years 2-15 years 6-15 years Genotoxic 2-15 years Non- Genotoxic 6-15 years Non- Genotoxic 6-15 Years Odenotoxic Genotoxic Genotoxic Genotoxic Genotoxic Genotoxic	2-15 years 2-15 years Unexposed Genotoxic Non-Genotoxic Both Description 2-15 years Unexposed Genotoxic Both Description Unexposed Low High P-trend Unexposed Low High High High High High High High High	N=553 Posed	N=553 N=2216	N=553

Appendix F.3: Incidence of <u>ovarian</u> cancer, for those having at least 10 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

	TCA exposu	re	Cases N=813	Controls N=3268	RR	95% CI
Ever/Never ex	posed		11 010	1 1, 020	.	
All	2-10 years	Unexposed	665	2658	1.00	Referent
combined	2-10 years	Any	148	610	0.96	0.79-1.18
		Unexposed	665	2658	1.00	Referent
Categorized	2-10 years	Genotoxic	54	201	1.02	0.74-1.40
Caregorized	2 10 years	Non-Genotoxic	60	278	0.89	0.66-1.19
		Both	34	131	1.04	0.70-1.56
Completing						
Cumulative at	osage exposure	Unexposed	665	2658	1.00	Referent
		Low	78	348	0.90	0.69-1.17
	2-10 years		78 70		1.06	0.80-1.41
All		High	70	262	1.00	0.06
combined		P-trend	706	2852	1.00	Referent
combined		Unexposed				0.69-1.27
	6-10 years	Low	55 53	240	0.93	
		High	52	176	1.18	0.85-1.63
	<u></u>	P-trend			<u> </u>	0.03
		Unexposed	665	2658	1.00	Referent
		Low	33	119	1.03	0.69-1.54
	Genoto	xic High	21	82	1.04	0.63-1.72
	2-10	P-trend		02		0.67
	years	Unexposed	665	2658	1.00	Referent
	Non-	Low	37	194	0.82	0.57-1.19
	Genoto		23	84	1.06	0.65-1.71
		P-trend		-	• •	0.02
Categorized		Unexposed	706	2852	1.00	Referent
		Low	27	95	1.10	0.71-1.71
	Genoto	xic High	15	64	0.93	0.52-1.65
	6-10	P-trend				0.84
	years	Unexposed	706	2852	1.00	Referent
	Non-	Low	26	129	0.86	0.56-1.33
I	Genoto		24	59	1.69	1.03-2.78
		P-trend				0.004

Appendix F.4: Incidence of <u>ovarian</u> cancer, for those having at least 5 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

	TCA	A exposure		Cases N=1090	Controls N=4360	RR	95% CI
Ever/Never ex	posed				· · · · · · · · · · · · · · · · · · ·		
All	2 5 220 220		Unexposed	954	3836	1.00	Referent
combined	2-5 years		Any	136	524	1.04	0.85-1.28
			Unexposed	954	3836	1.00	Referent
			Genotoxic	50	183	1.07	0.77-1.47
Categorized	2-5 years		Non-Genotoxic	61	259	0.94	0.71-1.26
			Both	25	82	1.26	0.79-2.01
Cumulative de	osage expos	sure					
			Unexposed	954	3836	1.00	Referent
All	2-5 years		Low	66	297	0.89	0.67-1.17
combined			High	70	227	1.29	0.97-1.71
			P-trend				0.31
			Unexposed	954	3836	1.00	Referent
		~	Low	29	110	1.01	0.66-1.53
		Genotoxic	High	21	73	1.18	0.72-1.95
	2-5		P-trend				0.82
Categorized	years		Unexposed	954	3836	1.00	Referent
	*	Non-	Low	35	161	0.89	0.61-1.29
		Genotoxic	High	26	98	1.08	0.69-1.68
			P-trend			·	0.27

Appendix F.5: Incidence of <u>ovarian</u> cancer as a function of <u>average daily dose</u> of <u>TCA</u> exposure by time period before diagnosis

	TCA exposure			1			
Period before		Cases	Controls	C	Crude	Ad	justed [*]
diagnosis	Average daily dose	N=1090	N=4360	RR	95% CI	RR	95% C
							
	Unexposed	954	3836	1.00	Referent	1.00	Referen
	Low	54	229	0.95	0.70-1.28	0.95	0.70-1.2
2-5 years	Medium	34	142	0.96	0.66-1.41	0.96	0.64-1.4
2-3 years	High	48	153	1.26	0.91-1.76	1.23	0.82-1.8
	P-trend				0.31		0.63
	Other	-					
	Unexposed	706	2852	1.00	Referent	1.00	Referen
	Low	51	220	0.94	0.68-1.28	0.93	0.67-1.2
	Medium	26	109	0.97	0.63-1.49	0.97	0.61-1.5
6-10 years	High	30	87	1.40	0.92-2.14	1.53	0.88-2.6
ı	P-trend		•		0.02	-	0.01
<u> </u>	Other	277	1092				
	Unexposed	483	1944	1.00	Referent	1.00	Referen
ı	Low	39	135	1.17	0.80-1.70	1.13	0.77-1.6
I	Medium	19	71	1.17	0.64-1.81	1.02	0.77-1.0
11-15 years	High	12	66	0.73	0.39-1.36	0.53	0.25-1.1
I	P-trend	12	00	0.75	0.45	0.55	0.23-1.1
	Other	537	2144				
		210		1.00		1.00	
1	Unexposed	210	880	1.00	Referent	1.00	Referen
1	Low	18	67	1.13	0.65-1.95	1.13	0.65-1.9
16-20 years	Medium	8	33	1.02	0.46-2.24	1.09	0.49-2.4
10-20 jeurs 	High	5	28	0.75	0.29-1.95	0.88	0.32-2.4
ſ	P-trend				0.91		0.79
1	Other	849	3352				

RR: rate (incidence) ratio

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Appendix F.6: Incidence of <u>ovarian</u> cancer as a function of <u>duration</u> of <u>TCA</u> exposure by time period before diagnosis

	TCA exposure				•		
Period before	1	Cases	Controls	C	Crude	Ad	justed*
diagnosis	Duration	N=1090	N=4360	RR	95% CI	RR	95% C
	Unexposed	954	3838	1.00	Referent	1.00	Referen
	Short	43	189	0.92	0.66-1.29	0.93	0.66-1.3
	Medium	43	185	0.93	0.66-1.31	0.97	0.68-1.3
2-5 years	Long	50	148	1.36	0.98-1.90	1.38	0.92-2.0
	P-trend	- -			0.33		0.55
	Other	-	-				
	Unexposed	706	2852	1.00	Referent	1.00	Referen
	Short	58	224	1.05	0.78-1.42	1.05	0.77-1.4
	Medium	22	112	0.79	0.50-1.26	0.76	0.46-1.2
6-10 years	Long	27	80	1.37	0.88-2.15	1.27	0.69-2.3
	P-trend		-	- • - ·	0.29		0.59
	Other	277	1092				
	Unexposed	484	1946	1.00	Referent	1.00	Referen
	Short	40	142	1.14	0.79-1.64	1.10	0.76-1.6
-	Medium	17	82	0.83	0.49-1.42	0.78	0.44-1.3
11-15 years	Long	13	51	1.02	0.55-1.89	0.77	0.35-1.6
	P-trend				0.87		0.34
	Other	536	2139				
	Unexposed	212	885	1.00	Referent	1.00	Referer
	Short	19	72	1.10	0.64-1.87	1.11	0.64-1.9
16.00	Medium	6	40	0.62	0.26-1.48	0.66	0.27-1.6
16-20 years	Long	6	18	1.42	0.55-3.67	1.39	0.49-3.9
	P-trend				0.61		0.52
	Other	847	3345				

RR: rate (incidence) ratio

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Appendix F.7: Incidence of <u>ovarian</u> cancer, for those having at least 10 years of history, as a function of two exposure indices of <u>SSRI</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

SSRI exp	SSRI exposure		Controls N=2688	RR	95% CI
Ever/Never exposed					
2 10 years	Unexposed	648	2582	1.00	Referent
2-10 years	Any	24	106	0.90	0.57-1.42
Cumulative dosage exposure					
	Unexposed	648	2582	1.00	Referent
2 10	Low	16	67	0.97	0.56-1.70
2-10 years	High	8	39	0.79	0.36-1.72
	P-trend				0.44
	Unexposed	663	2660	1.00	Referent
(10	Low	5	22	0.90	0.34-2.39
6-10 years	High	4	6	2.59	0.73-9.19
	P-trend				0.14

RR: rate (incidence) ratio

Unexposed: no exposure to any SSRI

Any: exposure to any SSRI

Appendix F.8: Incidence of <u>ovarian</u> cancer, for those having at least 5 years of history, as a function of two exposure indices of <u>SSRI</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

	SSRI exposure		Cases N=672	Controls N=2688	RR	95% CI
Ever/Neve	Ever/Never exposed					
<u> </u>	2 5 voors	Unexposed	652	2597	1.00	Referent
	2-5 years	Any	20	91	0.87	0.53-1.44
Cumulati	ve dosage exposure					
		Unexposed	652	2597	1.00	Referent
	2-5 years	Low	12	54	0.91	0.48-1.72
		High	8	37	0.84	0.38-1.84
		P-trend				0.70

Appendix G.1: Incidence of <u>non-Hodgkin's lymphoma</u>, for those having at least 20 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

	TC	A exposure		Cases N=502	Controls N=1970	RR	95% CI
Ever/Never ex	cposed				,	· "	
All	2-20 year	re	Unexposed	403	1534	1.00	Referent
combined	2-20 year		Any	99	436	0.84	0.66-1.09
	_		Unexposed	403	1534	1.00	Referent
			Genotoxic	35	135	1.02	0.68-1.52
Categorized	2-20 year	rs	Non-Genotoxic	38	186	0.68	0.46-1.01
			Both	26	115	0.79	0.50-1.23
Cumulative d	osage expo	sure	TT	402	1504	1.00	
			Unexposed	403	1534	1.00	Referent
	2-20 year	rs	Low	49	227	0.82	0.58-1.16
			High	50	209	0.84	0.60-1.18
			P-trend	421	1500	1.00	0.70
			Unexposed	421	1598	1.00	Referent
	6-20 year	rs	Low	43	194	0.85	0.60-1.22
All combined			High <i>P-trend</i>	38	178	0.77	0.53-1.13 0.82
			Unexposed	435	1693	1.00	Referent
			Low	37	147	0.96	0.65-1.40
	11-20 ye	ars	High	30	130	0.85	0.55-1.29
			P-trend	30	150	0.05	0.32
			Unexposed	465	1786	1.00	Referent
	16 20		Low	19	96	0.73	0.44-1.21
	16-20 ye	ars	High	18	88	0.78	0.46-1.32
			P-trend				0.71
	T			402	1504	4.00	
Categorized			Unexposed	403	1534	1.00	Referent
		Genotoxic	Low	19	79 5.6	0.98	0.58-1.68
			High	16	56	1.08	0.60-1.94
	2-20		P-trend	402	1524	1.00	0.29
	years	.	Unexposed	403	1534	1.00	Referent
		Non-	Low	24	128	0.68	0.42-1.09
		Genotoxic	High	14	58	0.72	0.37-1.41
			P-trend Unexposed	421	1598	1.00	0.29 Referent
			Low	15	76	0.70	0.39-1.26
		Genotoxic	High	13	70 57	0.70	0.39-1.26
	6-20		P-trend	1-4	37	0.90	0.49-1.00
	1		Unexposed	421	1598	1.00	Referent
	years	Non-	Low	22	104	0.82	0.50-1.34
		Genotoxic	High	6	44	0.82	0.30-1.34
		GUIUTUAIC	P-trend	· ·	77	0.50	0.14-1.09
			Unexposed	435	1693	1.00	Referent
			Low	16	62	0.93	0.52-1.64
		Genotoxic	High	12	49	0.88	0.46-1.68
	11-20		P-trend		17	0.00	0.40-1.08
	11-20 years		Unexposed	435	1693	1.00	Referent
	Julis	Non-	Low	18	73	0.98	0.57-1.69
		Genotoxic	High	4	27	0.98	0.37-1.69
		COMOTOMIC	P-trend	•	<i>21</i>	U. T /	0.14-1.38

			Unexposed	465	1786	1.00	Referent
		~	Low	7	43	0.56	0.25-1.27
		Genotoxic	High	8	40	0.73	0.34-1.58
	16-20		P-trend				0.64
	years		Unexposed	465	1786	1.00	Referent
		Non-	Low	10	46	0.84	0.42-1.71
		Genotoxic	High	3	17	0.81	0.23-2.88
			P-trend				0.95

RR: rate (incidence) ratio

All combined: both types of TCAs (genotoxic or non-genotoxic)
Genotoxic: exposure to genotoxic TCAs only
Non-genotoxic: exposure to non-genotoxic TCAs only

Both: exposure to both types of TCAs (genotoxic and non-genotoxic)

Appendix G.2: Incidence of <u>non-Hodgkin's lymphoma</u>, for those having at least 15 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

	TC	A exposure		Cases N=1030	Controls N=4054	RR	95% CI
Ever/Never ex	posed						
All	2 15 200		Unexposed	833	3285	1.00	Referent
combined	2-15 yea	rs	Any	197	769	1.03	0.86-1.22
			Unexposed	833	3285	1.00	Referent
a	2.15		Genotoxic	76	282	1.08	0.83-1.41
Categorized	2-15 yea	rs	Non-Genotoxic	68	301	0.91	0.69-1.21
			Both	53	1886	1.10	0.79-1.52
<u> </u>	<u>.</u> .				1000		
Cumulative de	osage expe	osure		<u></u>			
			Unexposed	833	3285	1.00	Referent
	_		Low	98	386	1.02	0.81-1.30
	2-15 yea	rs	High	99	383	1.05	0.82-1.33
			P-trend		203	1.00	0.20
			Unexposed	881	3456	1.00	Referent
All combined			Low	73	298	0.97	0.74-1.28
	6-15 yea	irs	High	76	300	1.02	0.78-1.34
			P-trend	/0	300	1.02	0.24
			Unexposed	928	3677	1.00	Referent
	11-15 years		Low	53	205	1.07	0.78-1.47
			High	49	172	1.16	0.83-1.62
			P-trend	4 3	1/2	1.10	0.83-1.02
_	1.		r-irenu				0.17
	I		Unexposed	833	3285	1.00	Referent
			Low	43	158	1.06	0.75-1.50
		Genotoxic		33	124	1.00	0.75-1.30
			High	33	124	1.13	0.76-1.72
	2-15		P-trend	022	2205	1.00	
	years	3. 7	Unexposed	833	3285	1.00	Referent
		Non-	Low	42	197	0.86	0.61-1.23
		Genotoxic	High	26	104	1.00	0.64-1.58
			P-trend			4.00	0.10
			Unexposed	881	3456	1.00	Referent
		Genotoxic	Low	32	134	0.90	0.61-1.34
			High	33	113	1.17	0.78-1.75
Categorized	6-15		P-trend				0.09
So: 12ca	years		Unexposed	881	3456	1.00	Referent
		Non-	Low	33	139	0.97	0.65-1.45
		Genotoxic	High	12	81	0.59	0.32-1.10
			P-trend				0.12
			Unexposed	928	3677	1.00	Referent
		Genotoxic	Low	29	101	1.16	0.76-1.78
		Genotoxic	High	24	68	1.45	0.90-2.33
	11-15		P-trend				0.03
	years		Unexposed	928	3677	1.00	Referent
	*	Non-	Low	20	94	0.90	0.55-1.47
		Genotoxic	High	7	53	0.54	0.24-1.21
	1		P-trend				0.22

Appendix G.3: Incidence of <u>non-Hodgkin's lymphoma</u>, for those having at least 10 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

TCA exposure			Cases N=1541	Controls N=6200	RR	95% CI
Ever/Never exposed						
All	2 10	Unexposed	1305	5279	1.00	Referent
combined	2-10 years	Any	236	921	1.04	0.89-1.21
		Unexposed	1305	5279	1.00	Referent
Categorized	2-10 years	Genotoxic	93	343	1.08	0.85-1.37
Categorized	2-10 years	Non-Genotoxic	100	383	1.07	0.85-1.35
		Both	43	195	0.88	0.62-1.24
Cumulative d	osage exposure					
		Unexposed	1305	5279	1.00	Referent
	2-10 years	Low	122	480	1.04	0.84-1.29
	2 To years	High	114	441	1.04	0.83-1.29
All		P-trend				0.15
combined		Unexposed	1390	5590	1.00	Referent
	6-10 years	Low	80	319	0.99	0.77-1.28
	0-10 years	High	71	291	0.97	0.74-1.28
		P-trend				0.14
	<u>r</u>				,	
		Unexposed	1305	5279	1.00	Referent
	Genotoxic	Low	53	188	1.09	0.80-1.49
		High	40	155	1.04	0.73-1.50
	2-10	P-trend				0.02
	years	Unexposed	1305	5279	1.00	Referent
	Non-	Low	57	252	0.95	0.70-1.29
	Genotoxic	High	43	131	1.31	0.91-1.88
Categorized		P-trend				0.87
Cuttegorized		Unexposed	1390	5590	1.00	Referent
	Genotoxic	Low	33	135	0.92	0.62-1.36
	Genotoxic	High	32	117	1.05	0.70-1.57
	6-10	P-trend				0.13
	years	Unexposed	1390	5590	1.00	Referent
	Non-	Low	39	153	1.04	0.73-1.50
	Genotoxic	High	24	94	1.02	0.64-1.61
1		P-trend				0.72

Appendix G.4: Incidence of <u>non-Hodgkin's lymphoma</u>, for those having at least 5 years of history, as a function of two exposure indices of <u>TCA</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

TCA exposure Ever/Never exposed			Cases N=1980	Controls N=7920	RR	95% CI	
						*	
All	2.5		Unexposed	1765	7214	1.00	Referent
combined	2-5 years		Any	215	706	1.25	1.06-1.47
			Unexposed	1765	7214	1.00	Referent
			Genotoxic	84	284	1.20	0.93-1.54
Categorized	2-5 years		Non-Genotoxic	102	316	1.34	1.06-1.69
			Both	29	106	1.19	0.78-1.82
Cumulative d	osage expos	sure		<u>.</u> .			
			Unexposed	1765	7214	1.00	Referent
All	2-5 years	Low	106	350	1.25	1.00-1.57	
combined		High	109	356	1.28	1.03-1.61	
			P-trend				0.31
			Unexposed	1765	7214	1.00	Referent
		.	Low	42	146	1.14	0.80-1.61
		Genotoxic	High	42	138	1.26	0.88-1.80
Categorized	2-5 years		P-trend				0.39
			Unexposed	1765	7214	1.00	Referent
		Non-	Low	56	188	1.26	0.93-1.72
		Genotoxic	High	46	128	1.47	1.04-2.07
			P-trend				0.34

Appendix G.5: Incidence of <u>non-Hodgkin's lymphoma</u> as a function of <u>average daily</u> <u>dose</u> of <u>TCA</u> exposure by time period before diagnosis

	TCA exposure			t			
Period before		Cases	Controls	C	Crude	Ad.	justed [*]
diagnosis	Average daily dose	N=1980	N=7920	RR	95% CI	RR	95% CI
	Unexposed	1765	7214	1.00	Referent	1.00	Referen
	Low	95	302	1.29	1.02-1.63	1.33	1.04-1.6
2 E vicere	Medium	57	194	1.20	0.89-1.62	1.26	0.92-1.7
2-5 years	High	63	210	1.23	0.92-1.65	1.37	0.96-1.9
	P-trend				0.31		0.25
	Other	-	-				
	Unexposed	1390	5590	1.00	Referent	1.00	Referen
	Low	76	307	1.00	0.77-1.29	0.93	0.71-1.2
	Medium	39	160	0.98	0.69-1.40	0.87	0.60-1.2
6-10 years	High	36	143	1.01	0.70-1.46	0.74	0.46-1.1
	P-trend	50	• • •	1.01	0.14	0. , .	0.54
	Other	439	1720		V		*** ·
	- Cinci	147					
	Unexposed	928	3677	1.00	Referent	1.00	Referen
	Low	51	200	1.01	0.74-1.38	1.03	0.75-1.4
11 15	Medium	28	107	1.05	0.68-1.61	1.10	0.70-1.7
11-15 years	High	23	70	1.31	0.81-2.11	1.57	0.87-2.8
	P-trend				0.16		0.09
	Other	950	3866				
	Unexposed	465	1786	1.00	Referent	1.00	Referen
	Low	19	96	0.75	0.46-1.25	0.73	0.44-1.2
	Medium	8	48	0.64	0.30-1.36	0.58	0.27-1.2
16-20 years	High	10	40	0.96	0.48-1.92	0.69	0.32-1.5
	P-trend			0.50	0.75	0.03	0.85
	Other	1478	5950		V., v		V. U.

RR: rate (incidence) ratio

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Appendix G.6: Incidence of <u>non-Hodgkin's lymphoma</u> as a function of <u>duration</u> of <u>TCA</u> exposure by time period before diagnosis

	TCA exposure						
Period before		Cases	Controls	Crude		Adjusted*	
diagnosis	Duration	N=1980	N=7920	RR	95% CI	RR	95% C
	Unexposed	1765	7218	1.00	Referent	1.00	Referen
	Short	73	250	1.19	0.92-1.56	1.23	0.94-1.6
2.5	Medium	76	251	1.24	0.96-1.61	1.31	1.00-1.7
2-5 years	Long	66	201	1.35	1.02-1.80	1.44	1.01-2.0
	P-trend				0.04		0.06
	Other	_	-				
	Unexposed	1390	5593	1.00	Referent	1.00	Referen
	Short	82	337	0.98	0.76-1.26	0.91	0.70-1.1
	Medium	33	162	0.82	0.56-1.20	0.70	0.47-1.0
6-10 years	Long	36	109	1.32	0.90-1.93	0.96	0.58-1.5
	P-trend				0.37		0.47
	Other	439	1719				
<u> </u>	Unexposed	930	3690	1.00	Referent	1.00	Referen
	Short	57	225	1.01	0.75-1.36	1.03	0.76-1.4
44.4	Medium	27	94	1.15	0.74-1.78	1.19	0.74-1.9
11-15 years	Long	19	58	1.31	0.78-2.20	1.34	0.71-2.5
	Short				0.31	•	0.44
<u></u>	Other	947	3853				
	Unexposed	471	1806	1.00	Referent	1.00	Referen
	Short	21	103	0.78	0.48-1.26	0.75	0.46-1.2
	Medium	8	57	0.54	0.25-1.14	0.48	0.22-1.0
16-20 years	Long	8	27	1.14	0.52-2.51	0.76	0.31-1.8
	P-trend	-			0.59		0.19
	Other	1472	5927				

RR: rate (incidence) ratio

^{*:} Adjustment for the exposure in the other periods was carried out for each period

Appendix G.7: Incidence of <u>non-Hodgkin's lymphoma</u>, for those having at least 10 years of history, as a function of two exposure indices of <u>SSRI</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

SSRI e	Cases N=1243	Controls N=4972	RR	95% CI	
Ever/Never exposed					
2 10 years	Unexposed	1208	4805	1.00	Referent
2-10 years	Any	35	167	0.83	0.57-1.21
Cumulative dosage exposur	Sumulative dosage exposure				
	Unexposed	1208	4805	1.00	Referent
2 10 2200	Low	23	102	0.90	0.57-1.42
2-10 years	High	12	65	0.70	0.38-1.30
	P-trend				0.48
	Unexposed	1233	4918	1.00	Referent
(10 mg	Low	7	39	0.71	0.32-1.61
6-10 years	High	3	15	0.80	0.23-2.76
	P-trend				0.33

RR: rate (incidence) ratio

Unexposed: no exposure to any SSRI

Any: exposure to any SSRI

Appendix G.8: Incidence of <u>non-Hodgkin's lymphoma</u>, for those having at least 5 years of history, as a function of two exposure indices of <u>SSRI</u> drugs: <u>ever/never</u> and <u>cumulative dosage</u> exposure

SSRI exposure		Cases N=1243	Controls N=4972	RR	95% CI	
Ever/Never exposed		·				
2.5 years	Unavnosed		4833	1.00	Referent	
2-5 years	Any	29	139	0.83	0.55-1.25	
Cumulative dosage exposure					<u> </u>	
	Unexposed	1214	4833	1.00	Referent	
2.5	Low	19	87	0.89	0.54-1.46	
2-5 years	High	10	52	0.73	0.37-1.44	
P-trend					0.60	