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Abstract

Information retrieval in large data spaces using formaI. structllre nrient.('<1 paH"rns of

features has many possible applications. \Ve devcloped and stu<1ie<1 a systt'm that cau

be used to localize code segments in a program. The system is huilt using a gen('ric

and extensible object oriented framework and uses the Viterbi dynamïe prograulluiug

aigorithm on simple "Iarkov models to calculate a similarity measure betwel'n an

abstractly describcd code segment and a possible instantiation of it in the progr:un.

The resulting system can be incorporatcd in a larger cooperative environment of

CASE tools and can be used during the design rccovery proces.., to perform concept

localization.
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Résumé

LI' ret.rait d' informat.ion dans de grands espaces de données utilisant des modèles de

trait.s forml'ls et. orientés st.ructure a bcacoup d'applications possibles. :"ous a\"Ons

dl'vc!opé et. ét.udié un systeme qui peut être utilisé pour localiser des segments de

code dans un programme, Le syst.ème est construit utilisant un structure générique

et extensible orienté-objet, et utilise l' algorithm de programmation dynamique de

Viterbi sur de simples modèles de Marko\' pour calculer une mesure de similarité

entre un segment de code décrit abstraitement et son instantiation possible dans le

programme. Le système resultant peut être incorporé dans un environment coopératif

plus large d'outils CASE et peut être utilisé lors du processus de remise en marche

du design pour perforrner la localisation de concepts.
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Chapter 1

Introduction

The time required to grasp the nature or the meaning of a newly created human

artifact. gi\'en some description of it. grows with the artifact's complexity and the

quality of its description. In our days human artifacts tend to be e.''<tremely complex,

and although there might not be lack of information describing them, comprehending

such products is alwa:ys a difficult task.

Information systems, and computer programs specifically, are among the most

intricate products one can come across today. To understand ho\\' such systems

function one has to recapture the design and decipher the requirements actually

satisfied and implemented by the subject system.

In order to comprehend how a program works three actions can be taken by an

analyst: read about it (e.g. read documentation); inspect the source code or run it

(e.g. watch execution, get trace data). Documentation is rarely e.'l:cellent; in most

cases it sirnply does not e.'I:ist or is inadequate and misleading. Studying the dynamic

beha~ior of an e.'l:ecuting program can be useful but unfortunately is not always

possible. That leaves the source code as the primary and sole trum..-orthy source of

information. The investigation process which the analyst has to undertake is akin to

l
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ùit'a prort·...... in!l [L3:' Th,' ~pal i:-; fI) tlhWt' frtHIl a Cit;hltic 1'\ll1"CtÎtltl ,l\" Iltlrt'!att'd Idt'a~

(0 an intpgratpd. nrdt·rly iI:tt'rprt·tatitltl Ilf tht':"" idpa:-o and tht'ir intl'l"ClltltH'Cli\III:".

:\owadays. mu' of t hl' tllain ll})st ;\c!t's filT an anal~'st is i lu' Sill' Ill' t lu' :-Io,Hl[\'I' (',hl".

For succl""Ssful SYStl'IllS. dl'\"('lnpl'd and t'tlhaIH't'd throllgh thl' YI'ars. tht' Sill' is "ftt'n

expressed in milliun,; of line,;. Th., n,'ed for tool,; which l'an a,;,;;,;1 th,' allaly,;t ill thi,;

non tri\'ial ta,;k is apparent,

This report dcscribcs our work creatillF; a fram.'work that l'an Ill' Il,;..d to hllil.1

tools capable of retrie\'ing information from larF;" data ';P:U"'S hy ...ltllpariu~ for­

maI. structure oriented p"t!ern,; of feature,;: partial a,; well as cOlIII'I"t., matdu'S an'

detected, The described framework was u,;ed to de\'elop a sy,;t.em whidt focu,;,'S ou

source code for a spccific programming language (namely C), The rt'SultillF; ,;y,;lt'lII l'ail

be integrated in a larger cooperatÏ\'e re\'erse engineering ell\'ironlllelll (REVENC E

[21]) consisting of \'arious powerful CASE tools, A possible application of th,' sys­

tem, when the input is source code in a programming language. is aiding software

engineers 1.0 rccapture and understand the design of a program,

1.1 Motivation

Program comprehension is an e\'ery day task for ail programmers, Underst.'Ulding

a picce of code can be a critical subtask of debugging, modifying or simply getting

familiar \\;th a system, Re\'erse engineering is a supporting technology for program

understanding and can be defined as the process of analyzing a subject !>')'Stem to :

• identify the systems components and their interrelationships,

• create representations of the system in another form at a higher level of ;lb­

straction [13],

The reverse engineering process involves extracting design artifacts and bllilding

or synthesizing abstractions that are less implementation dependent from a subject
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systcm: il. is " process of examination not a process of replication or change [13, 62].

Systcms that we do not know how 1.0 cope with but that are \"ital 1.0 an organiza­

tion are called legacy systems [2]. Legacy systems represent years of accumulated

experience and knowledge. Program ünderstandine;, and its subtask design reco\"ery,

become major maintenance actÏ\'ities when dealing with unstructured legacy systems.

Studies on how c.'(pert programmers remember code show they ~chunk~ code into

meaningful program segments and then mentally organize the chunks based on the

functional purpose of the code [65]. These chunks are often called mental plans,

clichés or concepts. Concepts are implemented by pieces of code consisting of a set

of program statements. We \\ill refer to these pieces of code as code segments.

In other words the analyst uses his or her prograrnming knowledge 1.0 recog­

nize high level concepts. Typically this knowledge includes stereotyped code pat­

terns of common prograrnming strategies, data structures and algorithms. Using this

heuristic-based know!edge the analyst skips tri"ial parts and looks only for things he

deems important. As a result a functional mode! of the prograrn is created and used

to guide maintenance activities.

Capturing J,:nowledge effective!y for the maintenance task is an open theoretic

problem. It is our be!ief that design recovery can not be fully automated. Whatever

substitute for a human maintainer, during the design reeovery process, has been

proposed is simply not as effective. This observation led us to focus our research in

creating tools capable of assisting the maintainer in his task interactive!y.

The system described in this document can be considered as a part of a hybrid

design recovery system. Initially the analyst supplies an abstract description of a

code segment, which implements a design concept, to the system which in turn,

after e."l:haustive code analysis, returns ail possible locations of this segment in the

source code. Partial match is aIlowed and for every discovered location, a measure of

the "distance" between the reported implementation of the concept and the segment
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description. is also calculated and reportcd. The maintainer can subsequently insl'ect

the results and if neccssary refine the concept"s description and fine tune the syst.t'Ill

in order to achie\"e imprO\'cd performance.

1.2 Goals and Objectives

The basic goal of this research is to evoh'e Ariadne, a prototype system built for the

REVENGE project [21] which detects programming patterns. Ultimately the re~mlt

of this effort is the creation of a generic framework which could be subsequentl)" used

to e.xtend REVENGE. Therefore our system shares a number of common features

\Vith Ariadne, the most significant ones are:

• the same core a1gorithm using Markov Models and the Vitcrbi dynamic pro­
gramming a1gorithm to calculate the best a1ignmcnt betwecn two code seg­
ments,

• the same sC'hema for intermediate code reprcsen~ation,

• the capability of being integrated in the cooperative environmcnt of CASE tools
developed for t.h~ REVENGE project,

• a subset of the abstract language introduced in the prototype to describe code
segments and

• it focuses on the same target language (C).

On the other hand the new system is significantly different from its predecessor

in the following aspects:

• it is implemented in a different programming language using a nèw design,

• it is platform independent,

• it has a flexible and intuitive user interface,

• it uses different input source and representation,

• it is extensible and easy to maintain and finally
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• it.s dcsign can be reused 1.0 handle source code from different languagcs.
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It was our belief that. the algorithm introduced in the prototype could be the

heart of a generic, reusable framework for information retrieval tools. Hence dcsign

recoyery is one of possibly many other tasks (i.e. simple code localization, pattern

matching based on a set of formally dcscribcd features) depending on the target

language, where the framework can be used. For this reason we consider the system

as an information retrievai 1.001 and not as a specialized design recovery 1.001. As a

;esult the main objective of this work is the creation of such a genera!izcd, reusable

and c.xtensible framework.

While building the system and writing this document the prototype build for

the REVENGE project was still undergoing testing as well as significant changes

and enhancements, because of this an e~'lÙuation bascd on quantitative or qualitative

comparisons of the two tools was not possible. We do not claim 1.0 have built a better

or more powerful system in respect 1.0 abstract language abilities, we can safely say

though that the new system is more generic and fle."cible than its prototype.

The theoretical background, presentcd in chapter four, is essentially the one de­

scribcd in [38, 25, 26]. Presentation improvements of theoretical issues were made

bascd on suggestions of the supervisors of this thesis.

The system built using the rcsulting framework focuses on code segment localiza­

tion and was testcd with severa! programs ranging from few hundred lines 1.0 severa!

thousand lines. We were able 1.0 describe code segments implementing both generic

and specifie concepts and localize them in the code. During the e.'"<Perimentation

phase we ,vere also able 1.0 realize a number of possible improvements that are re­

portcd in the future work section in the chapter sLx.
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In the next chapter we claboratc on design rccoycry process issues aud pn'Sl'nt. rl'lat.,'d

systcms both commercial and cxpcrimcntal. At. thc cnd of t.hc chapter t.herc is a hri,{

oycrvicw of the coopcratiyc cm·ironmcnt crcatcd for the REVENGE project. Char­

ters three and four contain dctailcd description of thc systcm dc\·cIopment proces.~

and its architecture. In chaptcr thrcc wc focus on systcm analysis is.~ues and in char­

ter four on design and implementation issues. Chaptcr liyc prescnts our cxpcrimcntaI

resuIts. Chapter sL'C discusses ideas for future work and prescnts a summary of our

conclusions. Finally appendL'C A presents a simplilied description of thc Abstract

Concept Language (ACL) we usc in Backus Normal Form (BNF), appcndix B con­

tains a few examples of concepts used in our cxpcriments and appcndix C prescnts a

detailed example of concept localization using thc describcd frarncwork.
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Chapter 2

Problem Description and Related

Work

Much of the software use<! today in critical tasks is 10 to 15 years old [4ï]. Main­

taining these usually successful systems involves a collection of puzzlc-solving skills.

It includes getting tools to do the software process right and being able to deal with

unknown software and unmaintainable systems. Software maintenance practices ac­

count for fifty to ninety per cent of totallifc-eycle costs[13] and around two per cent

of the gross national product in U.S according to a study publishe<! in 1990 [36].

Reverse engineering was the answer of the computer science community to the

high demand for a systematic approach to solve sucb problems. Chikofs)'.-y and Cross

in their influential work [13] adopt M.F.Rekoff's definition of reverse engineering as

"the process of developing a set of specifications for a comple.'C hardware system by

an olderly e.'Camination of specimens of that system". The subject system is software

and the objective is to gain sufficient design-Ievel understanding to aid maintenance,

strengthen enhancement or support replacement of the system.

We can divide reverse engineering in two major activities :

1. Re<!ocumentation and

ï
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2. Design recovery.

Redocumentar.ion is the l'rocess of creating a!tprnari\"(' mnlt.ipl,' \'i",,"s of t!,,' pru~ram

in order 1.0 c,tpture certain charac!eristics of the snbjpct system. Dpsi~n rt'cO\'pry fo­

cuses on creating abstractions in order 1.0 impose a "meaning" (ln a pro~ram s"~mpnt.

A!though there might be a slight disagrccment in termino!ogy il. is widely acccpt,·d

that reverse engineering is primarily a proccss oi examination and not a proc,'S.~ of

changing or enhancing the subject system [13. 62]. The proces.~ of introdndng new

functionality or restructuring the subjcct system is called functiona! rccnginccring or

simp!y reenb'Ïneering.

Our system is a pure ret'erse engineering too! designl'<l 1.0 aid the maintainer in

his task 1.0 retrieve information in order 1.0 decipher designs from finished prodnct.s.

Later the analyst might of course use the acquired know!edge 1.0 rccnginccr the snbjL'Ct

system while in the maintenance process. In the n('."{t sections of this chapter we will

present the basic concepts in design recovery and work of other researchers in the

field.

2.1 Design Recovery

Design recovery can be defined as a subset of reverse engineering in which domain

knowledge, extemal info and deduction with a sort of fuzzy reasoning are added 1.0

the observations of the subject system 1.0 identify meaningful higher !evel abstractions

beyond those obtained directly by examining the system itself [13]. Biggerstaff adds

that "design recovery recreates design abstractions from a combination of code, ('."{ist­

ing design documentation (if available), personal ('."{perience and general knowledge

about problem and application domains ...". Using design recovery is sorne times the

only way 1.0 salvage whatever we can from existing systems, il. lets us gel. a handie

of the system when we do not understand how they work or how their individual
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The initia! input for most. dcsign rccovcry syst.cms is sourcc codc in an cnhanced

abst.racted form. We cali cnhanced code, source code adorned wit.h hints relat.ed t.o t.he

code funct.iona!it.y. Thesc adornmcnts may havc thc form of commcnts, control and

data flow information, annotations in thc sourcc codc intcrrncdiatc rcpresentation,

1/0 commands or just idcntation. Using this input the analyst should try to construct

a highcr Icvcl description of thc program. The process is usually bottom up and

incremcntal, thc analyst dctccts low levcl constructs and replaces them \Vith their

high-Ievcl countcrparts.

Source Code
Identifie<!

·····TImodule :md Reeovered
data abstr.lction design Abstrnctionalo-. ....

Source Code groupings abstrnctions eode I1l3ppinp·····

..-..~.'

--- 0 00 0 00 ...' G' ........00..:· ........ .......~

( 1 1 1 1 .....).. ........ -----.--<$=

DQ DQ Q_......... .....~'.-.. :::::•••.•.. ........~
.........~

.ç<)roR'!~~.~~ !';!>.s.t;;Iflj9_~ .~!!>IT'!'Y.:

0 ~ ~ ~ ~
InformAI

Infonnll C""'""'" o..Ipo C....I Flow
Dilt'ftm." and relAtiom. Rad....

Figure 2.1: The design recovery process.

Given the actual program source code an analyst first looks for large-scaie orga­

nizational structures such as the subsystem structure and important data structures.

Useful design structures are also recovered and expressed in abstracted forms such

as design rationale, module structures and informai diagrams,concepts and relations.
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The next step in the process h; the population of n'USl' and n'co\"t'ry lihraril's in llnkr

ta facilitate further productÏ\·e use of the rl'co\"erl'd dl'si~n coml"llll'nts. In this Sll'p

ail recognized components go throu~h a ~eneraliz,ltion process so thl'y cau Ill' m;ull'

a\"aHable 1.0 a wider spectrum of applications. These ~l'nl'ralized Clllll'l'pts an' then

stored in a library forming a domain mode!. Finally the abstract dcsi~n l"OmpOnl'nts

in the domain model become the starting point for disco\"erin~ candidate realizations

of themsc1\"es in a new system's code. These basic steps of the desi~n reco\"ery process

arc shown in figure 2.1.

The most cornmon methods used in program understanding arc data and control

flow graph analysis.

Data flow analysis describes how information propagates from statement 1.0 statc­

ment and module to module. Control flow describes the sequence in which statements

are e:'i:ecuted and how control is passcd from one module 1.0 the other. Usually the

product of control flow analysis is a directed graph with annotations. Language

analyzers are used to recognize language constructs which implement data flow [31].

The ability to view the subject system from different perspectives is one of the

key objectives of reengineering [13]. An analyst can view the program from different

levels of detail [30]:

1. the implementation level view abstracts away a program's language and im­
plementation specifie features, typically an Abstract Synta.'I: Trec (AST) and a
symbol table of program tokens are the produccd artifacts,

2. the structure level view abstracts a program's language dependent details to
reveal its structure from different perspectives, the result is an c-'l:plicit repre­
sentation of dependencies among program components,

3. the function level view relates pieces of the code to their functions to reveal the
logical relations among them and finally

4. the domain level view further abstracts the function level view by replacing its
a1gorithmic nature \Vith concepts specifie to the application domain.
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:\11 t.lll' rpsulting "ipws arp llsually pres"nt"d 1.0 tlIP analyst a.' a graph. Graphs

han' 11I'pn adoptpd ;1.' an intuiti,'" and sound math"matica! formalism 1.0 r"pres"nt th"

st.rnct.urp of a comput"r program. Graph complexity can be a met rie for the main­

t.ainabilit.y of the code. Prior "xperiencc using graphs in forma! languages. compilers

and parsers W;l., used and several techniques were "ported" in the lield [58. 10. 23],

2.1.1 Representation Methods

In order to mo"e from the physical implementation of a system to high-Ie\'el abstrac­

tions of its modules and the 10gicaL implementation-independent. designs the analyst

must ignore allunneccssary details embodied in the initial input. The following sub­

section examines sorne commonly used representatiun methods to achieve this task

during the lirst step of the design recovery process (see ligure 2.1).

The lirst task of the analyst is the creation of module and data abstractions. In

this section wc present sorne of the most important solutions proposed.

Several researchers chose to directly divide the code to: data and methods acting

on the data, this is formally called the Data - Procedure code division. Describing

data structures can be done using tabularization [63]. For each data structure we

record its basic properties (i.e. name, position, typP., length) in a table entry. Sub­

sequent use of the resulting table as an input to transitive dosure algorithms can

compute data flow and variable dependen:::ies [49]. By introducing Relationship Ma­

trices the same technique can be used to capture relationships among procedures,

constants and variables of procedures within the same module. One of the main

advantages of this approach is that matrices cau be stored as tables in any relational

database. The analyst cau then perform severa! queries on the stored data using

advanccd features that database environments olfer.

Another way to abstractly represent source code is by mapping each basic ian­

guage construct to an object and capture Sj'1lta."\': as a list of attributes. This method
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was introduccd Da.." in [18] and repn'sents code as instances of th... l>:L"ic !an~ua~.·

construct. classes. Automatie creation of o1Jj,'cts. if a I3ackus :"ortllal Fom. (13:"1")

descript.ion of the language exist.s. was introducl'd in [371. EXll'nding th" sanll' con,·.'pt

led t.o representations of e\"Cn more comp!ex const.rnct.s (t'.g. functions or pro~r:uu

submodules) as abjects thus allowing great.t'r abstraction [-11. 271.

A weil accepted method for represt'nting source codt' is using Dt'composit.ion Hil'r­

archies [-12]. According to this framework ail single entry- singl,' exit. programs l'an h...

represented as a structure consisting only of primiti\"e program segment.s (seq\l{'nce.

conditionals. 100ps) also called normal forms. Using an equÎ\"alt'nCl' mapping ont'

can transform original source code 1.0 structured '·code.... Usualiy the source codt'

is parsed and an AST is formed. then with consecuti\"e tree 1.0 trce transformation

we can obtain a tree in the form of a directed graph which will contain only normal

forms.

Further use of dependency analysis toois cali enhance each source code represen­

tatioll with the necessary aC!ornI:lents for further analysis. As a result the analyst

will gel. several graphs showing:

• delinition dependencies,

• calling dependencies,

• functional dependencies and

• data flow dependencies.

Combining the information from these analyses with one of the previously de­

scribed methods the analyst cao complete the lirst step of the design recovery process

(see figure 2.1).

An e."\.-perienced programmer cao often reconstruct much of the hierarchy of a

program's design by recognizing commonly used data structures or algorithms and

knowing how they tj-pically implement higher levc\ abstractions. The higher the

abstraction the easiest the understanding of the generic program structure [14, 58].
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I3rit.d"'r uses rksign languages to model programs as st.ate machines (for data

abstraction) and canesian functions (for function abstraction) [i"j. The rcsulting

representation is translated in the design language prO\·iding the analyst with a pseu­

docodc description of the source code. This approach is significantly different from

other approaches that use condensed code listing because of its strong mathematical

background and formality.

Prcsenting the user with a set of generalized control. data and cali f10w graphs

is another approach [45]. The level of abstraction is usually controlled by the user.

Each graph can be divided into prime subgraphs which have sorne basic functionality.

Data f10w diagrarns and structure charts are used 1.0 model the data transformation

aspect of a software system, since they decmphasize implementation details of the

problem while focusing on the logical f10w of data and control [28].

Sm)"the [61] replaces the intermediate representation with logical comments trying

1.0 star!. deriving the meaning of small pieces of code. The ne.."t step is the recognition

of objects and object hierarchies, data are related 1.0 the procedures that operate upon

them. In the last phase application domains are mapped 1.0 objects and constraints

and system services 1.0 the user are identified (see figure 2.1).

Paul and Prakash proposed yet another approach in [51J, they transform the

original source code 1.0 a set of statie relations describing code features (e.g. variables

defines or used). Using this new intermediate representation the anal)"St can use

all the commonly defined relational operators (e.g. joins, projections) or define new

operators 1.0 aid in the analysis task he wants 1.0 perform.

Quilici [56] translates the original prograrn into an Abstract Synta."'i: Trec (AST)

with frames which are used 1.0 represent each prograrn action and its relationship 1.0

other actions. Actions are any units that the translator is capable of recognizing from

language constructs.

ASTs are one of the most popular forms of intermediate prograrn representation.
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The creation of an .-\ST i~ a three ~l.,p pron's.'. Inilially tl\(, prny;ralll'~ ~ourn' <"od.' is

parsed using a grammar and a dOlllainlllodel l"rl'alt'd for lh., progranllniny; langnagl' of

the subject sy~tem. \\'hile parsing lhe l'ode ~lrUl'lnTl'~. l"OrTl'~pondiny; 10 llH' langllaY;l'

basic constructs defined in its domain mode!. arl' l'Tl',uI'd. poplliall"! and pla<""d in a

tree like formation. The final ~tep in the creation of an AST i~ addiny; any additional

information in the form of annotations in the nodes of thl' lTl'I·.

Rigi [46J uses entity relationship diagrams to represent ~tatie progralll Tl'lation­

ships. A specifie format known as Rigi Standard Format (RSF) i~ ll~ed to st.orl' th"",'

diagrams. The ne:"t step is to analY"le the resulting RSF t.uples in order to (~reatl'

visual images to facilitate program understanding ,md aid further analysi~.

Abstract functionaI concepts can a1so be reprcsentcd by programming plans or

clichés. Possible components of a programming plan [22, 58, 19, ïlJ arc the building

components of an aIgorithm in terms of atomic program clements or other plans in

the proper sequence (l'vent path expression) [30J. Plan definitions arc translatcd by

a plan parser into inference mies as system's understanding knowlcdge. A pattern

directed inference engine is then used for recogni"ling plans in a program and the whole

understanding process is recorder by a Justification Tmth Maintenance System. The

effort here is the creation of a knowledge based system for program understanding.

Severa! interesting issues arise by this approach, defining system's knowledge as plans,

capturing ail variations of an aIgorithm and gnarantying completeness and corrcctness

of the knowledge base are still major challenges.

Wills in [ilJ uses a graphicai notation, caIled the Plan Calculus to facilitate un­

derstanding of comple.'\: annotated f10w graphs that are used for plan description

and recognition. This approach combines control and data f10w graphs and is very

descriptive but unfortunately not portable.

Hartman breaks down cliché recognition [31J to three major steps :

• a program representation or model,
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• prO!!;mllllllin!!; knowll'd~l' of standard plans. and

• s..arch and cOlllparison t.o find a plan instancp.
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Thl' n'ader l'an easily S''C t.hat. this dl'composit.ion is equivalent. t.o our design

rl'cO\·..ry pro..ess hreakdown (figurl' 2.1). Cliché recognit.ion is thus a significant stcp

t.owards lInderst.anding the programmer's intentions.

Ali the above mentioncd methods rely on the existence of an expert on the subject

system for this second step. Eve~'body will accept that the casier solution to any

problem is finding someone who knows the solution. Sorne claim that we are ve~' far

from a completely automated design recO\'e~' process [3]. A possible replacement of

human experts is the existence of sorne knowledge base - domain mode! that could

capture this necessary expertise. Biggerstaff [3] defines the domain model as "the

knowlcdge base of e.",pectations e.",pressed as a pattern of program structures, problem

domain structures, naming conventions and so forth, which provide a framework for

the interpretation of the code~. Building such a knowledge base is a non trh;al task;

it is the result of a process known as domain analysis during which information used

in developing software systems is identified, captured, structured and organized for

further use [54].

The main functionality of such a domain model is to include more information

than the analyst can find in the code alone and thus guide and assist the code

understanding process. Tools that respect the above mentioned guidelines e.xist and

will be brieRy presented in following sections.

The end of this second process step should leave the analyst \\;th a lib~' of

recognized design abstractions. The ne.'\."l step is mapping the acquired knowledge to

the source code (sec figure 2.1). The underl);ng assumption here is that the analyst

e.'\."pects these abstractions to occur in multiple places in the code. Of course tbis is

not guarantied. it is perfectly ,,-alid that the only occurrence of a concept will be on

just one point in the code. Never the less one thing the analyst knows a priori is that
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hi~ effort ln locatl' lht' ab~tral"tillIl in tht' :-'tHlrCt' endt' :-olhHlhl Olt it'a:"t yit'ld l'Ut' n'Suit

if pcrforrned in t.he salUt' piper' llf codp rhar \Va..... \1~(,(i hl "pri~inatt;' th.. ahstrat,tinl1.

2.1.2 Concept to code mapping

The final goal of tht' dt'Sign re{"o\"('ry pro{"l"'~ i~ tn l",·at., th., "'Tllrrt't\l't'~ uf n'{"u!,lliz,'d

ab~tractions in the ~ource codt'. The ta~k pn"'ent~ ~t',·.'ral ehal1"llg.", hlll e,'nainly th.,

most important one i~ the implcmcntal.Ïon nf an algorithm to l"lHllpan' int,'rm.'<.liate

code representation and plan description~.

The ideal scenario would be to be able to dcduce plan-~oufl'" {"od., fllnel.Ïonal­

logical equivalencc. This is an undecidable problem and in fl·ality th., 1Il0~t opt.ï­

mistic result any algorithm can daim is partial recognition. The expressiwness and

the frcedom prO\'ided ta the user by currently used programming langllag'''' mak,'

recognition of equivalent plans a "ery difficult task. Problems related to concept-t'l­

code matching are [58, il]:

• syntactic variations of the same concept,

• parts of the concept might not be adjacent in the code - scattercd concept,

• implementation variations,

• overlapping occurrences of a concept,

• unrecognizable code,

• variable aliasing and

• side effects.

Systems might also report incomplete together \\;th multiple or unsuceessful

recognition results. Using domain knowledge and information, besides the source

code and the concept description, the analyst should be able to resolve ambiguities.

If not, then incomplete bindings should be produced for further study.
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Comparison-matching algorithms depend on the intermediate representation used

to describe a concept. A quick look in the literature reveals a great diversity in the

intermediate representations used in design recovery system, we will just mention a

few.

The comparison algorithm in PROUST [35] matches synta:'I: trees with synta"'l:

tree templates. In TALUS [48] user supplied function are compared with reference

functions using heuristic similarity metrics. In CPU [40] comparison is donc by

applying unification and a matching algorithm on lambda calculus expressions.

Perhaps the closest approach to the one presented in this paper is the one used

for PAT [30]; the original program is parsed and a set of independent objects (also

caIled events) is created and stored in a repository caIled : the event base. These

objects are subsequently used to recognize higher level events and function oriented

concepts using a deductive inference engine.

In the Program Recognizer [58] a programming plan or concept is presented as a

hierarchical graph structure composed of boxes which denote operations and tests,

and arrows which represent control and data f1ow. Using this framework, plan (or

cliché) recognition cao be seen as a graph parsing problem which is the identification

of subgraphs inside a larger graph that represents the whole program. When a cliché

is recognized, its subgraph is substituted by a more abstract operation - node in the

program graph thns forniing an abstract and comprehensive image of the system.

For Quilici [56] programming concepts or plans are represented as data structures

with two main parts: a plan definition, which lists the attributes of the plan that are

filled in when instances of the plan are created, and a plan recognition rule, which lists

the components of the plan and the constraints on those components. lU! instance

of the plan is recognized in the AST, which serves as the program's intermediate

representation, when ail its components have been recognized without violating the

constraints. The diversity is obvions, more systems are described later in the state
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of the art section.

An interesting issue is also the initial selection of possible candidates for COIll­

parison. In most systems the comparison occurs between the source code abstract

representation and a plan e.-..:prcssed in the same abstraction formalism (graph, :\ST):

in these cases a search algorithm is invoked to locate possible comparison starting

points. Bottom-up approaches usually select al1 possible candidates found anywhere

in the prograrn's intermediate representation, while top-down approaches seek only

specific parts that can satisfy a given subgoal.

If the program and the plans are not represented using the same formalism than

hierarchical recognition control strategies are adopted. In this case comple.-..: plans are

recognized in terms of their subcomponents.

To facilitate the comparison prograrn, decomposition can be performed to producc

prograrn parts more likely to correspond to the plans. Program dccomposition can

be performed a priori before the selection starts or dynamically bascd on previous

comparison results.

2.2 State of the practice

A varlety of commercial tools capable of helping the analyst in his task of reverse

engineering a system are available today. In this section wc wil1 describe sorne wel1

known systems that focus on design recovery and prograrn understanding. Most of

these tools perform data and control f10w analysis of the system. The ultimate tool

for prograrn understanding would include ail the fol1owing fcatures :

• a user friendIy user interface,

• a local repository - knowledge base,

• severa! graphic editors,

• prograrn fragment localization capabilities,
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• redundant and duplicate code detection,

• dead code detection,

• powerful domain model browsing and editing,

• enhanced code browsing,

• simulation capabilities,

• on-Hne help and

• configuration and version management.
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Using a combination of several available tools an analyst can use most of these

features today.

The Software Relinery or simply Reline [39] is one of the most widely used tools in

the reverse engineering field. The package consists of three tightly integrated modules

1. a high level specification language,

2. an object oriented repository and

3. a language proccssing system.

There are a1so facilities for user interface extension. Refine currently supports four

popular programming languages: COBOL, Ada, C and Fortran. The system takes

the source code and parses it, using its language processing module. The result is an

annotated AST which is stored in the tool's local workspace-repository. Several data

and co~trol f10w analyses are otrered and various reports can be generated (i.e. coding

standards, variable and types reports). Using the specification language, which is a

Lisp dialect, the analyst can perform further queries on the repository and implement

a1gorithms to perform new analyses. The extensibility of the tool is one of its most

compelling fcatures.
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VIA/Center is a \ïasoft [12J product and focuses on COBOL systems. Olfl'red

analysis covers data structuring and relations as weil a.~ traditional control flow ana\­

ysis. The results are stored in a specialized database.

Cadre technologies [12] offers a set of applications which arc able to graphically

represent abstraction hierarchies and also provide statistical information about pro­

gram e;"ecution.

Design Recovery [8] is a product of Intersoh·. The system l'ail translate COBOL

code to diagrams that clarify the underlying structure. To generate the physical

models a local database of definitions is consulted and enhanced. The models l'an

be e.'"(amined, altered and then reused to generate new code. The tool has several

other features Iike: dead code detection and comple.'"(ity metric calculation for code

segments.

LogiCASE [66] by Logic Technologies is a CASE tool that supports the mainte­

nance and development of C programs and their corresponding detailed design. It l'an

be used for reverse and fonvard soft\vare engineering and it offers design recovery from

code as weil as code generation from design. Design recovery tools transform selected

code into a decision table. When the modification is complete, code is regenerated

from design.

The TXL Transformation System [16] developed in Queen's University is used by

Legasys Corporation for their products [17]. Legasys focuses on legacy code analysis

and design recovery systems, with an emphasis on large-scale systems implemented

in COBOL and C. The TXL Transformation System is presented in the next section.

FULCRUM 2000 is a product by Software AG [64], it is also an extension of the

FULCRUM Workbench environment for long-term applications and design recovery.

At the Palo Alto Research Laboratories of Lockheed [44], a system called InVision

is developed. It is used to renovate software, it was created to allow companies to

modernize their legacy software assets, while incorporating contemporary data access
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standards, performan~e, and reduced maintenance costs. At the heart of InVision is a

robust reverse engineering environment that uses object-oriented and c.xpert system

software design recovery technology.

lmagix produces Imagix4D [33] which is a program understanding tool. lmagix

4D, helps the analyst understand software that is complex, large, or unfamiliar. The

tool provides modules for automatic exploration and documentation of code and use

knowledge-based exploration and information visualization technologies.

Leverage Technologies [6ïJ offers off-the-shelf tools for C, FORTRAN, Cobol,

PL/l, and Ada based on the Software Refinery system. These tools can be used

for: redocumenting and extracting design from legacy systems.

Several packages that allow smart code browsing have also been developed (Hy-

persoft [12] for COBOL and X technology [12] for C).

Other commercial systems (source [1]) are :

• Ensemble by Cadre,

• AmdahI's Map Tool,

• lmagi."<- program understanding tools for C and C++,

• MORElRA Consulting a tool for reengineering Legacy Systems,

• Strategi.,,< Reengineering Information Systems,

• Reading CASE Services, Reverse Engineering Tools,

• ASMFLOW by Quantasm Corporation,

• Bachman Re-engineering Product Set,

• Ernst and Young Redevelopment Engineering Tool Set,

• Intercycle by Interport Software Corporation,

• PACREVERSE,

• PATHVU by XA Systems Corporation,

• rejNuSys by Scandura Intelligent Systems,
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• pSOSystem by l\lasterWorks.

• R..~VP by General Research Corporation and the

• Sneed Tooi Set.
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Unfortunately detailed information about implementation issues for most of thesc

systems is not publidy available.

All of the above systems although powerful can not carry through the whole

task of reverse engineering a given system. Several attempts 1.0 create an integmted

environment gain support and progrcss on domain analysis is probably the key 1.0

the problem. If a generic standard for an intermediate representation can be adopted

by different tools then we will be much doser 1.0 the desired solution. Currently the

analyst has 1.0 use several tools separately 1.0 achieve the results he aims for. Stepping

1.0 more e.'"perimental approaches we find a eonsiderably larger number of systems.

2.3 State of the art

A multitude of significantly different approaches have been pursued focusing on the

design recovery problem as part of the program understanding proccss. In this section

we present sorne of the most well known systems that emerged from various research

labs.

PROUST [35] can be viewed as an intelligent tutoring system for novice program­

ming students. The target language is Pascal and the user should initially crcate a

template describing the pattern he is looking for. PROUST uses a top-down control

strategy applied 1.0 a solution goal tree. The matching occurs betwccn templates and

source code. Heuristics and a set of transformations are used for ordering, compari­

son, evaluation and search space minimization.

The TXL Transformation System [16] is a general purpose source-to-source struc­

tural transformation system. According 1.0 its developers, TXL can be used for
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source code analysis and migration, to program restructuring and design reco\"Cry

tasks. Transformat.ions arc specified in the TXL programming language, a hybrid

fllnctional-rule based language with unification, implied iteration and deep pattern

mat.ch. Each transformation specification has two components : a description of

the structures to be transformed, specified as a grammar in unrestricted ambiguous

context free BNF;and a set of structural transformation rules, specified by c.,ample

using pattern-replacement pairs. TXL has been used to transform many popular

programming languages.

Another system using knowledge-base tools for reverse engineering legacy systems

is COGEN [43]. The system tries to capture and mode! the expert knowledge of

software engincc!'S in terms of conversion rules. COGEN uses an AST representation

and stores it into a deductive relational database. The data definitions are captured

in a symbol table. Queries can be entered into the database to obtain various kinds of

useful information about the program's structure and behavior in terms of data and

control 1I0w analysis. To convert the program, the translation rules are applied to

restructuring the program in the database, creating new facts describing the program

in the new environment and altering the original synta., tree with new statements

added and old statements commented out

Talus [9) is another system developed for intelligent tutoring. The target language

here is LISP. The system is capable of automatic program debugging by correcting

errors in LISP programs. To perform this task the source code is compared with

correct code which has the same functionality. Comparison OCCUrs betwccn user sup­

plied functions a.I:d reference functions from a library based on a heuristic similarity

measure. To locate comparison candidates the system uses a A* best first search

algorithm.

Letovsky's system called CPU [40) represents programs as lambda calculus c."I:pres­

sions and procedural plans. The system uses rewrite rules and a bottom-up control
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strateg}·. Top-Ie\"el control selects and transforms lambda calcnlns snh-expn'ssions

applying ail possible transformation rules until no more transformations arp possi­

ble. Comparing candidate segments in CPU is donp by applying a unification and

matching algorithm on lambda calculus expressions.

A rule based approach is also followed in the Program Analysis Tooi (PAT) impie..

mented by Harandi [30]. The heart of the recognition system is a de<!uctÏ\'e infercnel'

engine. Initially an object oriented representation of the system is creatcd after

parsing the original source code. Rules are then used 1.0 describe plans and higher

abstractions of objects and function oriented concepts.

abject oriented representations of code are also used in a number of systems

[2i, 41, 18]. The SAMS system [3i], for ('."ample is actually implemented on top of

an object oriented DBMS.

Systems that use an AST intermediate representation are the RECORDER [10]

and PECAN [Si]. PECAN is a smart code browsing system. Source code is parse<1

and an AST is created the source may be viewed in a number of dilferent ways. The

code itself may be pretty-printed with multiple fonts, as a structured flowchart, (\r as

a module interconnection diagram.

Using graphs as the main representation formalism led several researchers 1.0 de­

velop systems that are actually comparing graphs. The following sL" systems fall in

this category.

In UNPROG [32], the abstractions used have the form of control and data flow

graphs. The user specifies a programming plan in the same terms and then the

source code control and data flow relations are compared with the programming

plan's control and data flow graph relations. If we can prove that a subset relation

e:<ists then the user specified plan is recognized.

Quilici's system [56] tries 1.0 match stntcturally frame schema representations or:

C code. If the match is successful then data flow graphs are compared. Candidate
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plans ar~ sel('ct~d ba.,cd on an indcxing schcmc. Aftcr a succcssfui match semantic

abstractions occur by substituting t'Je sclected frame with the abstracted one. The

proccss r.ontinues until no further abstractions can be generated.

ln [20J a design recovery prototype is described. The system works on a subset

of Modula 2 and uses graphs. The original code is parsed into an intermediate form

called Program Analysis Graph (PAG). Further analysis of the PAG \Vith the aid of

a knowledgc basc lcads to a transformation into another more abstract PAG. Finally,

translation of this resulting abstract PAG into the user required form occurs. This

form can be a program in the original or in another programming language, or even

readable documentation.

Inlluential work on graph parsing is done also in the Programmer's Apprentice

Project [58], the Program Recognizer [iOJ and their successor GRASP [il]. Attributed

graphs arc used to represent programs and thus subgraphs represent programming

plans. The system performs bottom-up graph parsing using a conte;'i:t-free graph

grammar rcpresenting standard transformations between standard plans and seman­

tic abstractions for already recognized plan instances. Parsing checks ail possible

subgraphs thus ail possible interpretations can be found and be represented in a lat­

tice. The actual comparison is performed by matching subgraphs and by checking

constraints involving control dependencies and other program attributes. Ali three

last mentioned system depend on analysis of the low-level formai details and therefore

emphasize a full and exact match for recognition. The computational load required

suggests that scaling up to industrial sizes will be quite diflicult.

The \Vork by .l\rango [23] has solved the scaling up problem but can't create

abstractions as generic as other systems (see Desire).•l\rango's system (Draco) focuses

on the structure ofthe transformations and the operations on transformations trying

to completely automate the recovery process. To achieve this a1l informai information

is completely ignored.
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Desire [3] works on C l'ml!' and implenlPnts sl'\"{'ral of th" id":L' prl's,'ntt'd in t IH'

t.heoret.ical part. of t.his chaptl'r. In this systl'm C cod,' is parsl'll and sl'\wal pars"

trees are produced. A SN of postproCl'ssors USl' thl'sl' parsI' trl'es and a dil"tionary

containing higher le\'c! information abont fnnctions. files and global data is produc,',1.

The next. step is the creation of a plane-text web by postpron'ssing the abstract.ions.

The analyst l'an then write Prolog statements in ordl'r 1.0 ext.ract information from

the stored abstractions.

The SCRUPLE [51](Source Code Retrieval Using Pattern LmlguagEs) system

developed in the university of Mitchigan is based on a pattern qnery langnagl'. The

analyst uses this language 1.0 specify structural patterns of code. The degrcc of

precision l'an be adjusted be using different language mechanisms. The uSl'r spccified

pattern is checked against the parsed source code which has the form of an AST. To

allow users 1.0 e.'''press more powerful queries a source code algebra is defined. Qneries

can thus be optimized using algebraic transformations rules and heuristics.

However powerful analyses all these systems can perform none can daim efficient.ly

solving the main problem which is design recovery. Corbi stat.es that automatically

recapturing a design from source code is not considercd feasible task yet [15]. The

obvious question now is how can wc gel. the mast out of the c.'l:isting tools. The

answer is integration.

Tool integration and increased interoperability of tools represent major current

trends. This is l'vident from the c.'l:tensive efforts toward improvcd integration be­

t.\veen front-end tools and code level tools. Integration will enable more adequate

support for both fonvard and reverse enginccring[60]. The nc.'l:t section describes our

e.'l:pcrïence trying 1.0 build an integrated environment and how il. relates to the work

described in this report.
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y!anny Lehman observes that any software must continually change or become less

lIseful III the real world. This was exactly the problem with the Structured Query

Language/Data System or simply SQL/DS. SQL/DS is a large relational database

management system that has evolved since 19ï6. Based on a research prototype after

numerous revisions it was first released by IBM in 1982. The system was originally

written in PL/AS and then migrated to PL/X. PL/AS is an IBM proprietary system

programming language. The system now consists of more than three Million Lines Of

Code (MLOC). The target of the REVENGE project was to use several complemen­

tary reverse engineering technologies on this real world system to help its evolution

and maintenance.

During evolution inevitably the structure of a software system will degrade unless

remedial action is regularly taken. The problem is that for most legacy systems no

remedial action is ever taken and as a result the system after several evolution cycles

becomes completely unstructured [2].

Sorne of the initial goals of the project were:

• detecting uninitialized data, pointer errors and memory leaks,

• detecting data type mismatches,

• finding incomplete uses of record fields,

• finding similar code fragments,

• localizing algorithmic plans,

• recognizing inefficient or high complexity code,

• predicting the impact of change and

• creating a framework for the integration of the resulting systems.

The main constraints \Vere ensuring code correctness and performance p.nhance­

ment.
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System components

To achie\'e the gi\"Cn goals six syst.ems were selecte<1 or <1,'\"el0I','<1 by <1itferellt t.e:lms.

1. SCRUPLE from unh'ersity of ;\Iitchigall.

2. Rigi from uni\"ersity of Victoria.

3. Ariadne from McGill u'1h·ersity.

4. Telos from unh'ersity of Toronto.

5. a filtering detection system from IBM Toronto Labs and

6. a text redundancy recognition system from NRC.

Ali tools were testOO using C programs as subject systems but should also be able

to handle PL/AS code with little or no modification.

The IBM system [11Jperforms defect filtering using the commercial product Soft­

ware Refinery.

The NRC system [34] identifies the e.''(act repetition of te.''(t in huge source code.

The approach works by fingerprinting an appropriate subset of substrings in the

source te.''(t. A fingerprint is a shorter form of the original substring and leads to

more efficient comparisons and faster rOOundancy searches.

The three first systems foeus on pattern matching approaches of the subject sys­

tem in different levels. SCRUPLE was describOO in a previons section.

Rigi [46] was usOO to assist the system's rOOocumentation. The source code is

parsOO and the resulting artifacts are storOO in a local repository. Using these arti­

facts we can croate a fiat flow-resource graph of the system. This first fullyautomatOO

phase is followOO by a semiautomatOO phase in which the analyst explores interac­

tively the system using his/her pattern recognition skills and language-independent

subsystem composition techniques providOO by Rigi. The result is the creation of

subsystem hierarchies. A multitude of views of these hierarchies can then be creatOO.
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Evaluation anrlunderstanding of these views can aid efficient redocumentation of the

subject system.

The repository devcloped in the university of Toronto is called Telos [24]. The

group in Toronto was in charge of de"eloping an information schema - domain model

that could he "understood" and used by all the tools im'olved in the project. The

rcpository using this schema should be able to save ail the artifacts of the \'atious

analyses performed by the cooperating tools. Ta minimize the workload for this

global repository each tool only stores in it, data required by other tools. The rest

of the analysis information resides in the each tool's local workspace and can be sent

to the repository if requested.

Ariadne [38, 25] tries to address three important problems:

1. produce intermediate representations able ta capture structural and semantic

aspects of the S)'Stem,

2. automatically locate similar fragments of code (code cloning detection) and

3. partial recognition of programming plans or intents in the source code.

As we saw in previous sections a variety of intermediate representations e.."ists.

Ariadne uses an abject oriented annotated AST. The AST is created after source code

parsing using the Software Refinery's language processing module enhanced with our

domain model and grammar for the C language. The resulting AST is annotated with

important information computed by severa! data and control f10w analyses. Every

node in the AST is adomed, among other information, with :

• source code location,

• links between identifier references and corresponding variable and data defini­
tions,

• variables used and set,

• functions called,
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• variable scope information.

• input/output operations.

• a series of complexity and quality nll'trics (D-Comph-xity. fan-out. :\kCalll'.
Henry-Kafura's information lIo\\' qualit~· and .-\lbm:ht"s flllH"tion point qualily
metric)

In large legacy systems code duplication is a cammon probl,'m. ProgramnH-rs

trying to e:"tend the system's functionality tend ta "cut :U1d pastc" pi!'l"l'S of md.­

in order to reuse it somewhere cise in the syst!'m. As a n'Suit cod!' modularity is

destroyed and existing bugs in the initial code arc replicated. If the cod!' remains

unchanged then the NRC tool can trace it but if e\'en slight changes an' madc. th!'

fingerprint approach is no longer ef!"ectÏ\·e. The task of comparing functionality of t\Vo

code fragments is still an open theoretical issue. However applying heuristic rules can

provide us \Vith an initial answer which the analyst is subsequently called to validate.

The assumption we made for our heuristics is that similar picces of cod!' have similar

feature and metric values.

To implement our solution [26] for the second task (localization of similar code

fragments) the annotations in the enhanced AST \Vere used. The metries use<! as

heuristics are:

1. fan-out which is the number of functions called from a source segment,

2. the ratio of input - output variables to the fan out,

3. McCabe's cyclomatic comple.~ty,

4. Albrecht's Function Point quality metric and

5. Henry-Kafura's information flow quality metric.

Comparisons are made using the Euclidean distance defined in the five-dimensional

metric space and clustering thresholds defined on each individual measure axis. Fur­

ther grouping of code segments based on criteria snch as shared data references and

data bindings is also performed.
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The final task was plan localization, the solution implemented in this project was

the inspiration for the work reported in this document. As we saw earlier graph based

solutions to this problem result in computationally e.xpensive and comple.x algorithms.

On the other hand algorithms using plain te.xtual-Ie.\:Ïcal matching fail when plans are

delocalized or contain "noise" in the form of irrelevant statements. Aiso algorithms

in the last category cannot possibly capture any behavioral information about the

system.

We be!ieve that a fully automatic approach based on an incorporated library is not

fit for our task. Having to reengineer proprietary code one does not have the Iu.xury

of access to a vast collection of plans in this language. Our algorithm encourages

human assistance. Plans have the form of portions of the annotated AST and are

expressed in a rather powerfullanguage we cali Abstract Concept Language (ACL).

More details about our approach will be given in a following section.

Figure 2.2 shows a high leve! module decomposition of Ariadne. Main system

activities are depicted as separate modules, each module is described briefly in the

following paragraphs.

A typical session using Ariadne would be the following: the user chooses the piece

of C code he is interested in analyzing and then parses it using the built-in parsing

facilities of Refine in order to create an object-oriented AST which will be used for

further analysis. Refine provides a standard domain mode! for the C language which

is extensible and can be augmented to include any additional information the analyst

deems necessary.

The first step after the creation of the AST is the calculation of a series of metrics

which is done by the Metrics Calculation Module. Metrics are used in almost all

further analysis. For example the user can identify similar code fragments (also known

as clones), this is possible by comparing metric distances (absolute or euclidean) of

candidate code fragments. Using metrics which are actual real numbers instead of

:
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vectors of features simplifies and accelerates the whole process: code cloning detection

functions are part of Code Cloning Detection !'.Iodule. Several dataflow analyses of

the target piece of code are also possible (i.e. common referenccs. data bindings) as

parts of the Dataflow Analyses Module.

Another separate module is the one that constitutes the prototype based on which

we developed our system. The Programming Plan Recognition Module focnses on

identifying code abstractions described in an Abstract Concept Language (ACL) in C

programs. This module is based on the theoretical background describcd in chapter

four.

Finally Ariadne has the ability of storing analyses rcsults (and any other object

in its object-oriented AST) in a centralised object-oriented repository that can be

accessed by other cooperating tools. Communication with the repository is possible

through two modules that handle the downloading and uploading of the AST as weil

as other synchronization issues.

Implementing a way of integrating the various involved tools was a core require­

ment of the project. In CASCON'95, a conference organized by IBM's Center for

Advanced Studies laboratory in Toronto, we deJr.onstrated the final product and

showed the implemented capabilities. In the ne>.:t few paragraphs we will try to

present the environment's architecture and analyze how we implemented two way

tool communication.

Making tool interaction possible

Integrating different reverse :engineering tools to supply the analySt with enhanced

functionality is a major trend in the field. The key issue, in this effort to create such

an environment, is the adoption of sorne common source code representation to serve

as a communication standard. For us this standard was the global schema used by

the repository. The basic requirements for the global schema are :
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Figure 2.2: Ariadne's module decomposition.
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The schema should be able 1.0 capture artifacts from different cooperating 1.0015.

The main strategy 1.0 achieve thcse goals was creating object mctaclasses and cla.-<scs

for ail common objects in different tools as weil as specialized classcs for 1.001 dcpcn­

dent objects. For c.'l:ample both Rigi and Ariadne can have the notion of a function

and thus the creation of one class \Vith attributes that can capture ail possible infor­

mation generated by each 1.001 \Vas the solution. To capture objects particular 1.0 one

1.001 in the environment, tool-specific subschemas were designed and implcmented.

The nc.'l:t phase \Vas detecting possibilities of 1.001 cooperation. Each tool's func­

tionality can be complemented by sorne other tool's capabilities thus leading 1.0 new

analysis possibilities and generating novel vie\Vs of the subject system.

Telos being an object oriented repository provided an c.'l:cellent platform for the

resulting schema. Having achieved data integration using the schema we had 1.0 ensure

control integration. Control integration was made possible through a customizable

and c.'"rtensible message server named Telos Message Bus (TMB).

In order 1.0 send an object's description 1.0 the repository the s-expression formal­

ism was used. As wc already mentioned the repository's global schema describes ail

possible object classes. When an instance of a c1ass has 1.0 be stored its attribute

values are sent 1.0 the repository. An instance of a program with only two attributes

(the program directory location and name) described in s-expression format would

be:

(Program-1242 Token
(Program)
o (

( (programDirectory)
«"/reverse/data/src/list")))

( (programName)
«"list")))))
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Analysis of this s-expression reveals the following points: firstly an identification

string for the object (Program_1242) is given then the object's tier is specified. Tclos

allows three possible object ranks :

1. Mctaclass: objects of this rank are used as class generators,

2. Class : objects in this tier arc actual class definitions,

3. Token : token objects are instantiations of a class.

Having mctaclass and class tiers a1lows each tool to dynamically e.,pand the

schema by sending a new metaclass or class specification a1ways in the form of s­

e.,pressions. An e.'l:ample of such an s-e.,pression follows.

• Metaclass

(RefineClass M1Class
o
(ObjectClass)
( ( (attribute)

«refineNonTreeAttribute Proposition)
(refineTreeAttribute Proposition)))))

• Class

(ExtractionObject SClass
(ObjectClass)
(Object)
«(attribute setValue)

«allRelevantObjectsToAnalysis Object)))
«attribute singleValue)
«correspondingCode ProgrammingObjeet)
(analysisName String)
(dateOfAnalysis String)))))

Seconclly the s-e.xpression description for the program token references the base

class of the token (Program). Thirdly the pair of empty parenthesis that follows



• CH.4.PTER 2. PROBLEM DESCRiPTION AND REL.4.TED \\"ORX 3G

•

is resen'ed for the token 's ISA class. In our case is the same as the base dass

and thus omitted. Finally following these necessary basic fields. the names and t.he

corresponding values of each attribute for the object arc sent.. Attribute \'alues arc

classified in the following categories:

• single value attribute (String,proposition),

• set vaIue attributes (SetValue) and

• sequence vaIue attributes (default).

Another e.xample of an s-e.xpression follows, here the reader can sec the values

passed for sorne of the metries and attributes that we use for our analysis.

(Function_1243 Token
(Function)
o (
( (albrecht)
«23.0)))

«dComplexity)
« 1.5)))

«fanOut)
« 1.0)))

«functionDefBody)
«Block_1244)))

«functionDefParameters)
«DeclarationSubtree_1245)))

( (functionName)
«"elementcreate")))

«identifiersUsedNames)
«"i")
("_iob")))

«kafura)
«576.0)))

( (location)
«lelement.c:13,25")))

«mccabe)
« 2.0)))

«variablesSetInConstrNames)
( ("info")
("next")))))
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Figure 2.3: The system's architecture.
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In an implemented ~ccnario of meaning;fnltool intl'raet.ion Aria<!lIl' l'ro<!lIl'l'S anal­

y~i~ objeet~ which arc ~e!lt to the repo~itory, Rig;i downloa<!~ thl'se Ohjl'ltS. nSl'S t.hl'm

"to perform analy~e~ not ~upport.ed hy Ariadne and then lIploads the ohjl'elS l'nhalll'l'<!

with the new analysis informat.ion back to the repo~itory. Ariadnl' l'an thl'n rl'tril'\'l'

these objects and perform additional analy~i~. :\ delicate is.'ue herl' was mapping; thl'

retrieyed objects to objects back in :\riadne'~ local work~paCl'. The implementation

of a mechanism to accomplish this task and en~ure atomicity betwl'Cn the tran~ferred

objects, the eyolution of the u~er interface and the communication module for t.he

Ariadne system were the writer's contribution to the REVENGE project..

The oyerall system's architecture is shown in figure 2.3. Variou~ CASE tool~

(i.e. Ariadne, Rigi) arc running in different machines across the net.work performing;

analysis on the saIlle or different subject systems. Resulting information i~ passed t.o

the Data Server in s-c.,prcssion format, stored in the knowledge base and sent upon

requcst to any cooperating too\.

2.4.1 The influence of REVENGE

Our involvement with the REVENGE project had a major influence on the work

described in this report. The decisions WC took based on our c.,perience building and

using REVENGE are :

• adopting the algorithm for code segment 10ca1ization previously implemented
for Ariadne in Refine,

• making the new tool part of the REVENGE environment.

• using parts of the domain model for the global schema creatcd for REVENGE,

• keeping the s-c.xpressïon formalism for our communication with other tools in
the environment.

Studying the algorithm used for partial recognition of programming plans or in­

tents in the source code wc felt that a more generic version of the algorithm could be

used to achieve code segment localization in different programming languages.
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The key idea was ta keep the essence of algorithm but change the structures

upon which it operated. The methodology is thus the same but the o\"erall design

is different. Wc still represent nodes in the AST as objects but the design of the

ChL'iS hierarchy and the way the algorithm is implemented and distributed among the

classes make the new system generic enough to be used with different languages.

The approach for code segment localization resemblcs the one des;:ribcd in SCRU­

PLE [51J allowing for a similarity score to be computed between a query and are­

trie\"ed component, but offers significant enhancements in the query language and the

comparison method. The complete algorithm will be presented in the ne:l(t chapter

in the design section.

Our new tool can be part of the integrated reverse engineering environment we

describcd. Seing compatible with REVENGE means being able to receive our input

and send our output to other tools which respect the global schema. As we will show

in the ne:I:t chapter this fact presented several advantages.

We ,vant to make clear at this point that the work described in this document

is not merely "porting" the algorithm implemented in Ariadne to a new software

platform. The new system presents a major difference: it is based on new, fle.\:ible

and e."I(tensible framework and consequently its implementation is far more generic

than the one in Refine. To place our system in the generaJ design recovery process

shown in figure 2.1 we can say that it focuses on the last step of the process which is

mapping abstractions to the source code. The following chapter will make all these

statements more clear to the reader by documenting the whole process of building

the system.
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Chapter 3

Gathering System Requirements

This chapter discusses the lirst steps toward the creation of a generic framework

which will be used to implement a new system for code segment localization. The

new system is based on the algorithm used in the prototype built for the REVENGE

project. Motivation for building a new system will also be discussed. The purpose of

this work was to extend and generalize the prototype's functionality and domain. In

the following sections we explain in detail the process of capturing the core rcquire­

ments for this new system.

3.1 Adoption of macro process

One of the first rcquirements for the ne\V system \Vas to implement it in a platform­

independent, popular, object-oriented language. Having chosen C++ as the impie­

mentation language wc tried to find in the literaturc an appropriate framework that

would help us formalize the development process. The process adopted was the one

proposed by Booch [6]. In the next sections wc will describe our actions to accom­

plish each step of the process. The macro development process consists of live major

activities (sec figure 3.1) :

40
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Dcvclop:1 model of
~ the dcsired bchavior ......-
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E.'ôtabli~h core Cn::Ile an

\requircmcnts architecture
(conceplualizalion) (design)

{1
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Manage Post Dclivcry Evolve lhe,,
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'-
Figure 3.1: The macro development process.

1. Establish the core requirements for the software (conceptualization)

2. Develop a mode! of the system's desired behavior (analysis)

3. Create an architecture for the implementation (design)

4. Evolve the implementation through successive refinement (evolution)

5. Manage postdelivery evolution (maintenance)

-Il
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Although the formai definition of the macro process may seem trivial to every

e."\.llerienced deve10per we found it particularly useful as a mean of structuring this

chapter in a coherent way. In the lifetime of our system we had the chance to perform

ail the live activities mentioned and we are repeating the process tryi.ag to maintain

the system. Adding new features and porting the system to other platforms are the

activities currently performed.
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The main purpose of this acti\'ity is capturing t.he core n'quin'ment.s of t.he syst.elll. :\s

we mentioned earlier a functional prototype of our system was already developed for

the REVENGE project in a completely different implementation language (Rcfine).

The existence ofthis functional prototype made conceptmùization significantly casier.

wc no longer needed 1.0 spend time trying 1.0 prove that our algorithm can delh'cr

results. The main objective \Vas 1.0 prove that the algorithm can be improvcd by using

a whole new framework and design in a different implementation language. Based

on these ideas wc captured the major functional requirements for a system using this

new framework, the new system should:

• have al. least the core functionality of the prototype system,

• be developed in such a way so il. would be able 1.0 accept, as input, code from
various "programming" languages,

• be compliant with the main architectural conceI>ts of REVENGE so il. l'an be
part of this larger cooperative environment,

• add new features and e.."plore other possible improvements,

• be implemented in a commonly used object-oriented language,

• conform with various standards of object orientation (design and implemc..ta­
tion standards),

• be portable in all major hardware platforms.

Let us briefly analyze thesc core requiremcnts and e.'l:plain thcir rationale.

Duplicating the main functionality of the prototype system

Functional compatibility \Vith the prototype system was our primary objective, wc

dccided that in order 1.0 be able 1.0 evaluate our work a working system that could

be tested against our prototype should be developed.
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One main challenge \\"as to maintain the efficiency of the algorithm in this ne\\"

implementation. Refine has a \"ariety of built-in, optimized functions to manipulate

the AST that it creatcs. The algorithm for code segment localization is not \"ery

complex, the most critical functions are actually those that tra\"erse se\"eral different

structurcs and perform element retrie\"als or comparisons. Ob\'iously the most diffi­

cult part \\"ould be the dcsign of new structurcs and the implementation of algorithms

for their manipulation.

What e;'(actly we mean when we refer to the main functionality of our prototype

is the ability to localize segments of "code" based on an abstract description of these

segments.

Accepting different kinds of input-"source code"

Our prototype provccl the capabilities of the algorithm, the idea that stimulated this

research however was that the same algorithm based on a more generic framework

would be able to perform similar tasks with a variety of inputs. The initial input

is code in some "programming" language (C, Pascal or even HTML). The only con­

straint is the existence of some kind of structure in the language 50 it would be

feasible to create a meaningful intermediate representation fit to use with the algo­

rithm. When we refer from now on to "source code" we mean any possible structured

input and not only the artifact of a specific programming language. Thus the terms

input and "source code" are interchangeable.

The rising issue here is to find a formal way of representing the input, capable

of capturing aIl our target domains (languages). The use of various intermediate

representations is common practice in aIl reverse engineering systems that perform

design recovery as ";e saw in the previous chapter. The basic ad"'3lltage of any

intermediate representation is the ability to capture only the aspects of the "source

code" that are significant to the analysis performed while ignoring any other clements
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that may slow or clutter the analysis. l'nfonllnate!y tlH'r<' is no ("ons"nslls on ail

intermediate representation but there is a wide adoption of ASTs (:\bstract Sylll'LX

Trees) as a form of intermediate "source code" representation.

ASTs represent "code" in a structuree! way allowing on the same tÎm,' annotations.

Thus users can adorn each code clement. represented as a node in the AST. with th,'

attributes they deem necessary for their analysis. The s-expressions fornuùism was

used for describing the building blocks of our AST. The decision to use s-expressions

was unavoidable because of the next core requirement.

Compatibility with REVENGE

REVENGE, as we already described in the pre\ious chapter, is a powerful environ­

ment for cooperative reverse engineering. We share the common strong belief among

many researchers in the reverse engineering field [60, 69, 55] that in the future the

ability of any CASE tool to cooperate \\ith other tools as a part of a larger integrated

environment \\ill be a critical factor for its success.

Our e.'\.-perience building and using Rl-::VENGE proved that such cooperation is fea­

sible. Conformity \\ith a global schema and adoption of formalisrus for the c.'Cchange

of data between tools in the environment was the solution proposee! in the REVENGE

project. The e.'\.-periences we acquired from our involvement in this project led us to

choose the formalism to create our intermediate representation and also guidcd us to

severa! important decisions about the system design.

To create the object oriented AST, which will serve as our intermediate "source

code" representation, we had to have a parser for our input. It was clear to us that the

main focus of this research is not to build parsers for al! possible target languages (i.e.

C, Pascal or HTML). Other tools in the REVENGE environment, namely Ariadne,

provide specialized modules to accomplish this task.

Using Ariadne for the parsing permitted us to focus on our main research topic,

"
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the design of a generic framework. To create the AST wc need to get from Ariadne

directly, or indirectly from the repository (Telos), a description of each node using

the standard formalism in REVENGE (s-e;'(pressions) and then reconstruct an image

of Ariadne's AST. As we mentioned earlier the communication module used to send

and receive information from the global repository as weIl as the facility to dump

Ariadne's AST in s-e.'Cpression format already e.'Cisted and were parts of the writer's

work for the REVENGE project.

Extending our prototype

In addition to the conception of a system architecture that can handle severa! different

"code sources" we tried to e.'Cplore other possibilities for our system such as ways of

improving functionality, fle.'Cibiiity and user frienclliness.

AlI systems that perform concept recognition depend on some sort of feature

comparison, ours is not an e.'Cception to this rule. However the ability of adding new

features or changing the feature comparison method is not usually supported by most

systems mainly because of their rigid design. The design of our system allows such

changes by incorporation of add-on (plug and play) modules. Creating these modules

is a low effort programming task.

Another frustrating issue for end-users is usually the learning curve necessary

for a productive usage of the system. In most systems performing design recovery,

new language or formalism is introduced to describe patterns. This is of course a

necessity and can't be avoided in systems that need to have some sort of plan-concept

description. Learning te use ail these query:languages in an effective way can be a

time consuming task. To improve user frienclliness and ease-of-use a powerful and

intuitive user interface was built to be part of our system.
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The design of our cooperatiyc rcYcrsc cnginccring cm'ironment was based on a COIll­

mon domain modcl which was shared between all tools and also sen'ed as the schema

for the centralized repository, A substantial amount of work was devoted t.o the ef­

fort of creating this domain model and thc result was an cxtcnsiblc dcsign of scycral

metaclasses and classes toat could be uscd,

We spent time going through this design again and we fclt confidcnt that thc

ne\\' system in order not only 1.0 be compliant with REVENGE but also with CUITcnt

trends in software development should be implemented in a popular and powerful

object oriented language. We chose C++ mainly because of our prcvious e:I:perienec

with il..

Another concern for us was the development process itself. We considered a great

opportunity 1.0 put in action new methodologies for object oriented devdopment. We

decided 1.0 adopt a general framework for our proccss and adhere 1.0 coding standards

so we can ensure e.'\1:ensibility and maintainability of our system.

Portability was another related issue, one of our main concerns for the succcss of

our prototype was that being based on a commercial and not quite \Vide accepted yet

implementation platform (Refine) il. would be really hard 1.0 evolve and maintain. An

implementation of the system using an object oriented programming la:lguage like

C++ would help us 1.0 overcome these problems.

cThe above mentioned requirements are also the major constraints and measurcs

of success for our system. In the next sections we will describe how we attacked the

problem trying 1.0 satisfy au these core system requireme:lts.
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Among several methods 1.0 facilitate system analysis proposed in the literature, wc

chose 1.0 adopt the usc-case analysis method introduced by Jacobson because of its

intuitivencss and effectivencss.

According 1.0 the usc-case analysis method, ail affected project members come

up with possible scenarios fundamental 1.0 the system's operation. These scenarios

collectively describe the system functions. Analysis then proceeds by a study of these

scenarios 1.0 : identify primary function points of the system, group function points

into c1usters of functionally related behaviors and generalize primitive functions 1.0

create higher level abstractions.

The following section presents sorne possible scenarios for the system, mainly on

the design recovery rcaIm.

3.3.1 A view of the problem

The purpose of the following paragraphs is 1.0 present possible case.s where our system

could be uscd 1.0 handle problems which can't I:.e easily solvE:<1 using existing 1.0015.

Let us e.'l:amine a few possible scenarios.

F'irst scenario: ldentifying error prone code

In legacy systems when a part of code is identificd as error prone usually main­

tainers try 1.0 discover similar or identical code in other modules of the system. The

problem that arises in this case is that the identificd code might be slightly altercd

in other modules. Variable names might be changcd, comments addcd or even the

sequence of commands altercd.

Second scenario: Identifying common source code patterns

Il. is often the case that the legacy system wc need 1.0 reengineer is bascd on a

proprietary language. Usually in this case the maintainer has access 1.0 other forms

of code representation and secondary information about the system (i.e. control and
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data f10w diagrarns). The task is 1.0 understand the system module by module using

accumulated knowledg" of the system. Toois 1.0 aid engineers in t.heir task using

onl)" secondary information rel)" hem'ily on identifying common source code patterns

between modules.

Third scenario: Training

While learning a new prograrnming language students Icarn 1.0 catcgorize language

commands based on their functionality, they learn for e.'(ample that a while statcmcnt

is a special case of an iterative statement. High level algorithms arc consequently

introduced and the students are asked 1.0 implement them. Following this logic il.

would be beneficial for the student 1.0 have a 1.001 able 1.0 rccognize pieccs of code

that can be described by a certain abstract code pattern.

Fourth scenario: Software migration

In the process of changing the design of a system from procedural 1.0 object ori­

ented maintainers need 1.0 identify key data structures and functions that manipulate

these structures. Performing this kind of e.'(haustive searchcs in a multi-million line

legacy system is surely not a trivial task. If the analyst can come up with the ncccs­

sary information (i.e. data structure definition and key functions using this structure)

then he can explore possibilities for code parameterization and c1ass creation.

3.3.2 Use-case analysis

People in ail the above scenarios share a commOI: problem in different levels. Wc

will attempt 1.0 analyze these scenarios 1.0 detect common entitics and abstractions,

this is a common approach follo\ved for the creation of frarneworks. For this task we

adopted the process suggested by Schmid in [53], according 1.0 this method &ystematic

construction of frameworks cau be broken down 1.0 the following steps:

1. perform domain analysis with an aim 1.0 identify the fixed aspects that are
common 1.0 ail applications from the domain - called the frozen spots, and the
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variable aspects, in which different applications may differ - called the hot SPOt.5

of the framework,

2. derive a specialized model by an object-oriented analysis from a specifie appli­
cation or configuration of the domain,

3. generalize this model by a sequence of transformation steps one per hot spot.

The next paragraphs identify possible frozen and hot spots in the scenarios.

In ail the scenarios we have an initial source of information, but with sorne impor­

tant differences. In the first case our input is source code from a legacy system, the

maintainer is probably familiar with the language and if he is lucky the source code

is also weIl documented. We can say that it is a typical case of "rich" input which

suggests a lot of capabilities for analysis. The second case is different, the input is in

a proprietary language or may be in an intermediate representation of this language.

The analyst is not probably very familiar with neither, but he has access to a domain

e:l:pert and severa! analysis tools. In the third scenario the "analyst" is not familiar

with the language at ail and is actually going through a learning process. Lastly in

the fourth scenario the analyst is quite familiar with the source code language and

the functionality of the system.

The input or "source code" form is not the only interesting element in these

scenarios, let us observe the desired result. In the first and fouth case the analyst

has identified the part of the code that interests him/her and just wants to find ail

possible occurrences of functionally equivalent code. In the second case the analyst

has probably recognized a few critical parts of the code, each one has a discrete

functionality and combinations of them implement a larger logical task. The required

task in these cases is the localization of these code segments. In the third case the

"analyst" has for a informai description of a logical concept with which he could

locaIize and observe actual implementations of this task.

Finally the missing link in ail the scenarios is of course the system that could

deliver the desired results. We will try to summarize our observations from these
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1. \'Ilhat might be the input of the system: Any st.ructured "source codc". l'ithcr

complete logically and physically or even incomplete or partial (frozen spot).

2. What is the primitive tasks the system should perform : The basic functionality

is source code segmentation and 10calization of an abstractly dcscribed codc

segment in the code. Combining code segments will solve the more complex

cases of concept localization (frozen spot).

3. How does the user describe a segment : This is on purpose the only issue

not mentioned e.'(plicit1y in the scenarios presented. As wc can see in the first

scenario the user has the actual statements in front of him and can usc thelll

as guidelines to describe what he actually is looking for. In the second scenario

the analyst has only a partial description of what he wants. This partial

description most probably will focus on specific properties that the segments

or tasks should have iguoring small implementation details. In the third case

assuming a given example in natural language or pseudocode the "analyst"

should come up with a generic description of the task. The level of familiarity

with the language used in the programs also varies.

4. In what form are the results presented to the analyst : Since detcction of log­

ically equivalent code is not possible with absolute certainty, the analyst is

presented with a similarity measure indicating the system's belief that the ab­

stractly described code segment is logically equivalent with the rcported source

code segment. The calculation of tbis measure is based on fcature comparison

between the two picces of code (query and actual source code). Partial plan

recognition is also possible ancl acceptable.

It is obvious that the analyst should have the abillty to describe a segment either

in extreme detail or in various degrees of abstraction. A way to achieve this isto
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provide the analyst with an Abstract Concept Language (ACL) [26] ta describe the

code segment.s. The ACL language should use keywords similar ta the target (input)

language sa that il. would be easier for the analyst ta describe a concept just by

looking al. an instance of il. in the source code that implements il.. Thus the code

description varies depending on the target language and can be characterized as a

hot spot.

As Booch notices [6][p.252] analysis is impossible ta be completed before design

commences. With the information we have al. this point we can form a lirst generic

design of our system.

Code Absu:let
Concept

~
I.:lnguoge

'" l"l ~ Queryt'l
;!: r-

Ariadne 0-
- ....... _-------

-0-Pltsine module

Mediator
-0-

Global
-0- Graphical CodeRepository

User Segment
Interface Localizer

Rd;ults

~~~-g:: f10w of inf~nnation 1
ln .-expleSSlon fonnal

Figure 3.2: General view of the system.

We can c1ivide the system into !.WO major components. The fust component

is responsible for supplying the system with the necessary information 1.0 build the
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AST and an abstract description of the code segnll'nt wc want 1.0 localize. The seCllnd

component consists of the main program that illl j)len:ents our algorithm (muncly the

Code Segment T,ocalizer or simply CSL) and a graphicaluser interface (GUI).

3.3.3 Hardware and software requirements

The system was implemented in an IBM RS/6000 workstation using the AIX oper·

ating system. As the reader l'an sec in figure 3.2 the system uses several tools. The

vital part ofthe system however is the CSL module and the GUI. Both these modules

are developed using languages which are portable 1.0 ail commonly used platforms.

CSL is implemented in C++ and the GUI in Td/Tk.

Td/Tk was chosen as the GUI development language for two reasons: its portabil­

il.Y and most importantly our prior e.'"perience using il. in various projects. Wc found

Td/Tk 1.0 be an exce\lent rapid application development 1.001, using several library

e.\."tensions of Td/Tk wc built a robust and intuitive GUI 1.0 facilitate interaction

with the system.

The CSL module uses Le."I: and Yaee for the parsing of the input (s-e."I:pressions

describing the AST and the query describing the code segment we are looking for).

AlI the above mentioned third party programs are implemented for various platforms

and our modules do not have any specifie hardware requircments. As a result wc can

daim that our system os. nlatform independent.

3.3.4 Analysis conclusions

In order 1.0 test the frame\Vork wc built a system which cau be used 1.0 assist the ana­

Iyst in the design recovery process and the concept assignment problem (4). In other

\Vords the system assigns a physica1 location, in the source code, 1.0 an abstractly

described concept in a query. The process of recognizing large-grain, composite con­

cepts or plans requires that wc first recognize the e1emental concepts which form



• CHAPTER 3. GATHERlNG SYSTEM REQUIREMENTS 53

•

the larger concept. The system will have the ability to recognize this fine-grained

concepts and then, using an inclusion mechanism, put them together to form and

subsequently recognize larger-grained concepts (hierarchical recognition).

The primitive operation to complete the task we just described is code segment

locali::ation. The analyst supplies an abstract description of one or several code

segments c-xpressed in a language with the same low level representation as our inter­

mediate representation of the initial input-"source code". We reconstruct the AST,

which is the intermediate representation of our "source code" , given the s-expression

description of its initial nodes either from the global repository through our mediator

module or directly from Ari3~ne. The CSL module then tries to locate the specified

segment abstractions i:l the AST and reports successful attempts to the analyst using

the GUI module. Each result reported provides the analyst \Vith the c-xact location

of the code sp.gment in the ''source code" and a probability indicating our beiief that

the given abstract description matches the code reported. To calculate the result

our matching algorithm compares the formal, structura! features of the code segment

pattern described by the analyst with parts and their corresponding features of the

reconstructed AST.
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Chapter 4

Framework Design and

Implementation

In the previous chapter we described what a system based on our generic framework

will do. The purpose of this chapter is to analyze how the system performs the

specified task using the new frarnework. The major design issues which had to be

resolved, for this generic framework, are :

• the low level representation of the A5T and the query-concept description,

• the Abstract Concept Langnage,

• the main code localization algorithm,

• meaningful result forros and

• human interaction with the system.

We must rernind the user that our most important constraint was the second

core requirement specified in the analysis phase: the system should be capable of

performing its main task with inputs expressed in different languages with minimum­

effort changes in the code using the same framework. In the fol1owing sections wc

describe the adopted design strategy to resolve ail the main issues mentioned.

54
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Ever)' language consists of a set of basic constructs. In C for example we can have

iterative or conditional statements, in HTML on the other hand a paragraph or

a sentence Can be cOllsidered a basic construct. Using a domain model for each

language which captures the language's basic constructs and features, it is possible

to abstractly represent "source code" in this language.

We cali domain model a set of classes that capture these primitive-basic constructs

of a language. Using the domain model adopted for the REVENGE project, "source

code" is parsed in Ariadne and an annotated AST is constructed. Each node of the

AST is an instance of a class defined in the domain mode!. Examples for the C

language can be: a Function-Definition cl~ss or an If-Statement class.

Domain models are treated as hot spots in our framework. For each possible

target language for the system a new domain model should be created. The most

difficult part in creating the domain model is to identify the crucial basic constructs

of a language and possible abstractions of them. Virtual functions that need to be

implemented in the base classes of a new domain mode! will present similarities to

the ones implemented for the C domain mode!. As a resuIt we e....pect the necessary

amount of effort required to come up with a domain mode! for a new target language

to decrease significantly for any subsequent target language.

Assuming we have a parsing facility for the new target language, like the one

provided by Ariadne for C, one can use its domain model to ereate an AST for

"source code" in this language.

Our system receives a description of the nodes of the AST created by Ariadne

in 5-e.'\.-pression format and then reconstructs a simplified AST using a subset of the

original domain mode!. If the target language has few basic constructs then adopting

the whole domain mode! for concept recognition is not a problem. In cases like C or

Pascal, which have large domain models, wc can perform the task of concept recog-
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nition using a "Iighter" \'ersion of the domain model whil'h "i~non's" SOUll' da:;:;,'s hy

keeping their superclasses. The analyst can still refer to the missing dasses by Ilsin~

their superclass thus achie\"ing abstraction which is a key concept in design reco\"ery.

\\l'hen choosing which cla.."-~es can be omitted one should remember that a cert.ain

degree of e:"pressiveness is necessaIJ' in order to be able to ha\"e a me:ulingful inter­

mediate representation. The designer should make a compromise between a oolighter"

.. easier to use domain modcl and a more expressi\"e but less abstract domain mode!.

As we saw in chapter three the "source code" and queIJ'-code description gi\"en by

the analyst use the same low level representation.

Having the previous observations in mind, wc will now describe our frmnework

for the "source code" and query low level representations. The system implemcnted

using this framework accepts C code and thus ail the e.'(amples from he~e on will

be based on C and for sorne of them wc will show possible e.'(tensions with other

languages.

The basic framework superclass is called the State class and serves as the super­

class for the classes in ail domain modcls. The State class captures the necessary

common attributes of ail classes in a domain mode\. It has for e.'(ample an identifica­

tion attribute in which an identification string for every node in our AST is store<1 and

a type attribute used to indicate the domain model a descendant of this superclass

belongs. The State class also defines severa! virtual functions, implemented differ­

endy in l'very language domain model (i.e. the traverse_tree function whieh traverses

the reconstructed source code AST),

Each domain model should have one superclass which captures the common at­

tributes of its descendants for the specifie language, for C wc cali this superclass the

C-State class. Such a superclass serves mainlyas an abstract class capturing features

and functionality common to ail classes in its domain mode\. Member functions of

this superclass are mostly related to the code localization proccss. Descendants of this
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superclass are al! the classes in the domain model representing the basic constructs of

the language or their abstractions (Le. For-Statement class, Iterative_Statement

class).

In I)rder to describe and recognize a code segment or a concept we rely on sorne

formai, structure oriented pattern of features. The ne:'l:t few paragraphs describe how

our framework captures possible features. Every language might introduce its own

features, we can recognize two categories of features : features common to ail classes

in the domain model of a language and features particular to sorne classes only in the

domain model of the language. A class called Feature serves as an abstract c1ass for

ail classes describing features in any language.

For the C language we deline a new c1ass called C-Feature which is derived from

the Feature abstract base c1ass and acts as a feature container c1ass (see ligure 4.1).

Any object can have a number of features which are stored in a Iist. Each element of

this Iist (Le. a feature) belongs to a c1ass called the Feature_Item c1ass. Four classes

describing features common to ail C basic constructs, name!y Uses..Description,

Defines..Description, KeYllords..Description and Me~ics..Description. bstances

of the Uses..Description c1ass store the variable names used in a basic construct.

Defines..Description objects store the variable names set in a basic construct and

instances of the KeYllords..Description c1ass store ail identiliers occurring anJwhere

in the basic construct. FinallJ objects of the Metrics..Description c1ass capture

the values for the live metrics calculated by Ariadne for a basic construct. A feature

unique to only one class in the domain mode! will appear as an attribute of this c1ass.

If we wish to add a new feature for a language 've just have to create a new

c1ass for it, make this c1ass a descendant of the Feature_Item c1ass, and update

the feature comparison algorithm to include the new feature. If we introduce a

whole new language then in its domain we must specify a new abstract feature c1ass

(lITML..Feature for e.'C3IIlple) and then deline classes for its new features which will
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be subclasses of the Feature_Item cla."S. The feature comparison aigoritlull depends

on the low level representation of the features (i.e. simple string comparison) :Uld

can be the same as the one used for C or a1tered depending on the form of the new

features. Classes in resulting framework are grouped in libraries and can be reused

and incorporated to new systems.

In figure 4.1 we show part of the framework used for the low level representation

of the AST and the code segment abstract description using the Booch notation

described in [6].

4.2 Abstract Concept Language

In order to retrieve code segments based on the function they perform, a concept

language is introduced and used as a query language. This language can be either

generic, so that it could be used for any programming language, or specialized for

each target language. lt is our belief that in order to be able to capture the most

important features of various languages (e.g. HTML, C, Pascal) a specialized concept

language for every target language should be created. Thus the creation of a concept

language is a hot spot in our design. Languages Iike C and Pascal might of course

share the same concept language, or parts of it, as they resemble semantically and

syntactically. For reasons weil known in Information Retrieval, partial matching

should be possible when queries are formulated with such concept language.

Going through the literature one can sel' that there is no consensus on the way a

language capable of describing concepts should be created. Our experience with the

Refine prototype \Vas reported in [26], the elements of an Abstract Concept Language

(ACL) \ve deem necessary are:

• abstract statements (S) able to describe ail basic language construets,

• don't carl' statements (DeS) that can match any language construct and



• CH.4.PTER 4. FR.4.MEWORK DESIGN .4.ND IMPLEMENTATION 59

HTML Domain Modeld.]

, .......-- ..... ,"' ..... _, ....
'.Applet_Description~'

':. ........... "-,,,--'­-.

,...........- ........ _......-..
.. Link.".Description.'-- .....' ..... : ....... : ......

....... ... ...
,.... ... , __ , ...... 1

1 \ ... ,- " "
,HTML Fea~, \HTML_State)

... ... t jw ... _ ~

1 1 " V, ' ... "............._.•._ :.: Jl..~
.. --,01> L_ ...

~,Page_State ,;
........ 1_........ __ ,

'fi AbsU'3Ct a.:l.~<
--.. Inhcrit1nc:c

..- H:L< n::btion
~ U5ing n::1:ltion
, """, CI:L~<.. _ ..

N
... ,- ~ ... _... -... \

1 FealUre_ltem 1

" -, '

, ,State

-.
:'iieiriès-ÔescriPtion... _- ..... _-:_-, ... _--, ...

,-_ ...-.......-.. _--- ....
: Defines_Description •
............... --- ...-...'- ........-...

, ,
... -' ........
, Feature ,,'_, .... , w,

...._-~,

'w "\ ,,- "
" , '--'

,
...... .... ...

, ....... 1,- -,

,...............-... --------- ...
',KeywordsJ)escription '

... _--- ..... ---_......... _---'
C Lan a e Domain Model

, .............
, __ .... .,. 1 ............ ,,'_

C_State " ~ C FealUre :" -" .... ..r....) ....
ft) ),

Figure 4.1: Main system class design.
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Voie consider these to oc the minimum reqllirements for a sllflkiently expn'S.~i\·c

concept description language. The language can also be adorned with typcd \"ariablcs,

operators or any other features the dc\"eloper judgcs nscful.

Don't carl.' statements arc necessary hecausc they can be used as "gluing" matcrial

among fine-grained abstract concept descriptions in order to expres.<; a larger-grained

concept (hierarehical recognition), In our implementation for the C language wc

provide three don't carl.' mechanisms in the forro of two abstract statements:

1. the *-Statement,

2. the +-Statement and

3. the empty feature value.

The empty feature value denotes a match with any feature vcctor obtain....d from

a candidate code fragment to be matched. The *-Statement will match zero or more

code segments of any type, while the +-Statement Will match one or more code

segments of any type. If the anaIyst specifies features for these don't care statements

then only code segments of any type which have these features will be recognized.

Existence of macros in the language aIlows the anaIyst to refer to plans to be

included at parse time in a query, in order to describe a larger concept. For example

the anaIyst can say :

SOURCE: another-plan-filename

inside a query. This will resuIt in inclusion of the plan, described in the file with

the specified fiIename, inside the currently described plan. An example of a query in

ACL for C follows:

•
Iterative-Stmt

. abs-exp-desc
keyvords

{
[?element]
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*-Stmt
abs-gen-desc

empty;

Assignment-Stmt
abs-gen-desc

uses: [ list.?element],
defines : [head,?element]

}
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Using this quelS we can locate ail iterative statements which have an assignment

as the Iast statement in their body. We aIso specify that the assignment statement

should use a variable called list, define a v-<l.riable called head and both use and define

a variable, which should aIso appeso.r in the condition of the iterative statement and

has the symbolic name, ?element.

The use ofquery variables (identifiers preceded by a question mark aIso called bind

variables) is a feature we found quite useful in our prototype and which is aIso part

of our implementation of the ACL for the C language. A more detailed presentation

of ACL as well as severai example queries, can be found in appendices A and B.

4.3 Main code localization algorithm

Based on the requirements and decisioDS anaIyzed in previous paragraphs the design

of themain CSL module was completed. In Figure 4.2 we present a high level scheme

of the Code Segment Localizer module.

_The input to the CSL module, as shown in figure 4.2, is the location of two files.

The first file is the collection of s-expressiClDS describing the AST for the source code.

The second file contains the abstract description of the code segments we want to

locate e.'\.-presscd in ACL. The AST description file is passed to the s-e.'Cpression parser

submodule which parses the file and creates an object for eac!i s-expression in the file.
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Figure 4.2: The eSL Module.

These objects are then passed to the AST reconstruction subrnodulc. The purposc of

this submodule is the creation of the source code intennediate representation for our

tool which is again an AST. We will use the Tc symbol to refer to this AST. To create

the Tc AST we nccd to use the classes in the domain model of the target language.

The AST reconstruction module works in the following way. the s-expression file

describing the source code is parsed and for cach s-expression a generic object is

crcated. The resulting objects are stored in a "fiat" linked Iist. In the second phase

of the AST reconstruction process starting from the FunctiO"l Definition objects we

build the sub-AST for each function in the system and at the end we gather ail these

sub-ASTs in a \inked list which· is the simpli1ied AST we are going to use for our

computations.
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The creation of sub-ASTs is rather intercsting, starting from a generic object

describing a Function Definit70n object we create a new object using the constructor

of the corresponding class from the language domain model (i.e. Function-DeLState

c1ass). The next step after the creation of any object in the AST is to scan its

"source" generic object for attribute values and update the attributes of the new

object. If sorne attribute value is a reference to another generic object then a binary

search algorithm is used to loc:>te the referenced generic object in the linked list and

the process of object creation and update is invoked recursively. For e.'i:ample after

updating the simple feature values of a Function-Def-State c1ass we have to set the

function body attribute of the object; this attribute is a reference to another generic

object with a unique id. Using this unique id we retrieve this generic object and

create a new "specific" object depending on the generic object's type. The generic

object's type is specified as the value of its base c1ass in the domain model used to

<::reate the original AST. Having adopted a lighter version of this domain model we

can map aIl the originally used classes to sorne class in our domain mode!.

For large systems the AST reconstru<::tion process is by far the most e.'i:pensive

time wise. Let No be the total number of s-exprli>sions describing objects and Ne

be the total number of attributes of these No objects, then N = Ne + No is a

good approxilIlation of the total number of objects in our final AST. The cost of the

creation ofeach intermediate object is 0(1) (just a simple sequential read from a file).

The creation of the final AST object from its intermediate representation will cost

at most the number of the object's attributes multiplied by 10gNo , because logNo is

the cest of a binary search in the sorted list of intermediate objects already created.

Thus the worst case cost would be a binary search for every intermediate object for

aIl of its attributes, this bounds our algtlrithm to be O(No + Ne logNo)' In reality

the algorithm is much faster as it takes out of the remaining object list any object

that is located through the binary search and corresponds to an attribute. We are
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currently considering the possibility of avoiding the creation of illtcrmcdiatc (gclleric)

objects in order to speed up the whole proccss.

The file describing the query is parseà by the ACL query parser submodule. The

result of the parsing is again the creation of an AST (Ta). Crcatillg the Ta AST

requires the use of the classes in the same domain model useù for to form the :;'C

AST.

Both ASTs are then passed to the comparison engine submodule that performs the

actual localizatioil task. Figure 4.3 shows a simplified view of the T. and Tc A5Ts

formed for the query presented in the previous section and a possible "matching"

piece of code.

Source Code AST rrd

whiJc.con.JltiCln

1~S:-u":'blrCC"/_-;S:--tl~lcm"""'en":'\t

Qucry AST rr.1

1 IIIentive..CODdltilXl

1C:----::......~""\
SUblrCC_Stltcment

Lcgcnd

~ abject

--- Inheritencc
5-- Has-:l relation

Abstrne:t CI....

•
Figure 4.3: Example Ta and Tc ASTs.

The algorithm uscd to match an abstract pattern described in ACL with the
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intermediat.e represent.at.ion of our "source code" is essentially the one dcscribed in

[26J. \\ie will analyze the algorithm and focus on how il. was mapped on our object

orient.cd framework.

The main steps of the algorithm after the creation of the ASTs are:

1. creation of a StatiC Model (SCM) specifie 1.0 the target language domain model,

2. creation of a Markov Model from the ACL AST (Ta),

3. selection of candidate parts of the code 1.0 serve as initial points for the local­
ization process and finally

4. invocation of a Viterbi [68] algorithm 1.0 find the best fit between the code
segment described and an actual code sequence starting al. a candidate point.

4.3.1 The StatiC Model (SCM)

The SCM is a simple automaton that shows the possible decomposition of abstract

classes and "quantifies" the analyst's belief about the ability of the abstract class

1.0 "generate" a particular source code segment. A part of the SCM for the C lan­

guage is shown in figure 4.4. As we can see an object of the Iterative Statement

class can be decomposed, or simply allowed 1.0 match, any of the three classes (i.e.

For..statement,Do_Statement and While..statement classes), specified by the SCM.

Every possible decomposition is assigned a probability

where Si is a source code statement (i.e. For Statement) and Aj is an abstract

statement description in th~ ACL query (i.e. Iterative Statement), indicating the

analyst's belief about its possibility of appearing in the code. This probability can

be:

• given by the programmer as part of the query,
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• supplied by the system using a uniform distribution hasee! ou t.he nUlllh<'r of
cboices (current implementation) or

• it can he calculated dynamically at run time based on the matches ohtaiIwc\ so
far.

These probabilities on the SCM are used later in the calculation of the concept-to­

code distance or similarity measure ane! can be easily changed if necessary. In the

initial implementation of the algorithm, the SCrvI \Vas also used for type cbecking.

The ne\V implementation does not rely on the SCM for general type checking.

Iterative_Statement

FocStatement

0.33

While_Statement

•

Figure 4.4: Part of the SCM describing the Iterative Statement "decomposition".

4.3.2 The pattern matching process

The following three sections describe in detail the core methodology used to perform

pattern matcbing of features among nodes in the Tc and Ta ASTs.

Markov Model creation

The e.'"<istence of abstract (e.g. the Iterative Statement) and don't care statements

(e.g. *-Statement, +-Statement), in our ACL, allows generation of many possible

code segments from a given query expressed in ACL. Markov models provide ail

appropriate mechanism to represent these alternatives [52).

A Markov Model is a source of symbols cbaracterized by states and transitions.

Two special states exist: the starting state and the final state. The starting state has
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no incollling t.ransitions and the final state has no outcoming transitions. A mode!

can be in a 50ecific state with a certain probability. Each state has a fini te number of

transitions leading 1.0 other statèS each associated with a certain probability. Tran­

sition from one state 1.0 another state can only happen when a "symbol" associated

with a valid transition is recoguized and "consumed". Generating a Markov Model

for the query AST Ta allows the subsequcnt use of the Viterbi algorithm 1.0 calculate

the sequence of transitions which ma.'i:imizes the total probability of a path beginning

al. the starting node and ending al. the final node ofthe mode!. The path corresponds

1.0 the matching between Ta and Tc.

Using the query's AST (Ta), the Markov Model is created dynamically by simply

traversing the AST, the building algorithm is simple. A transition is allowed and

added from each basic construct description node 1.0 the next node in the AST.

Star and plus statements (*-Statement, +-Statement) need special handling. Each

of the latter statements always has an outcoming transition which returns 1.0 itself.

Also statements preceding a *·Statement should have additional transitions 1.0 the

statement following the *-Statement (see figure 4.5).

We calI the resulting Markov Model: Abstract Pattern Model or simply (APM).

The APM is actually implemented on top of the query's AST by adding possible

transitions 1.0 the nodes of the Ta AST. Thal. is the reason we refer 1.0 classes in the

domain model as States, as they also represent actual states in the APM.

An e.'i:ample of a simple APM is shown in figure 4.5, elements of the Ta AST are

omitted on purpose in order not 1.0 clutter the figure. For composite statements (i.e.

an If Statement \\ith then and else parts) the process of creating the APM is invoked

recursively. Each transition has an associated probabiIity; all transition probabilities

are initialized 1.0 -1 before the matching process and this is the reason we chose 1.0

omit then in figure 4.5.
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AssignmencStatement

*-Statement

Function_Call_Statement

Figure 4.5: Example of dynamically created APN!.

The localization algorithm

•

The first step for the algorithm is to locate the candidate starting points in the source

code AST Tc, this task is also known as source code segmentation or codc delincation

and the algorithm used is the one describcd in [26J. The code dclineation algorithm

has two main steps, first we locate ail possible starting points based on generic criteria

(i.e. type compatibility) and then we refine the initially selected set of candidates by

performing a series of feature comparisons. In our implementation this second step

of the source code segmentation process is the initial step of the main localization

algorithm.

For the first step of the segmentation process we choose the first "concrete" statc­

ment S ("concrete" means that S can not be a don't care statement) from our query

and locate ail occurrences of statements which are type compatible with S every­

where in Tc' In order to ensure that ail possible candidate points will be considered
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a gencric check is IIscd in t.his phase (Le. type compatibility between the first "COIl­

crete" st.aternent in the qllery and a node in the source code AST) while trayersing

recursively the source code AST. There arc however sorne special cases. If the query

consists only of various don't care statement then wc return all the logical bloeks

as possible starting points, this decision was taken after eareful consideration of the

most meaningful querics that can be constructed solely from don't care statements.

Dynamic Programming match between concept and code ASTs

At this point wc have all the neccssary input for our main loealization algorithm. The

Viterbi dynamic programming algorithm is used to find the path that ma.'àmizes the

overall generation probability among âll the possible alternatives formed by the APM

created for a given query. In the ne.,t paragraphs we describe the algorithm.

Let 5 h •., 5k be a sequence of program statements (represented as objects of the

Tc AST, occurring at a certain candidate starting point in our "source code~) and

.4.1, .., An be a possible sequence of states (also represented as objects of the T. AST)

in our APM. Then a possible recognition sequence would be of the type:

5j, .., S9" S9,+h .., S!J2, ,59,_,+h'" 59" ..., Sk-h .., Sk.. , .. ," .
Al;2 Âj Ân

meaning that abstract statement description Al matches statements : SI .. S9"

abstract statement description .'12 matches statements S9' +1 .. S!J2 and so on. We

cali statements S9" S!J2' ... ,Sk breakpoints.

The purpose of our algorithm is to find the most like1y statement sequence S9,_,+h

.., 59; that contributes to ma.'àmum similarity when combined with similar matches

of other states.

The matching proccss for a single statement and its abstract description cau be

broken down into three discrete checks, failure in any of these steps terminates the

comparison proccss for the curren;;~arting point and causes a transfer to the ne.'\.'t
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possible st.arting point.. Failur!' usually m!',\IlS that th,' prohability computt"\ is !l'ss

than a user-specified t.hreshold. Thc t.hrcc chccks pt'rforlllcd an' :

1. t.ype compat.ibility check.

2. metrie proximity check and

3. feature vector value comparison.

These steps performed for a candidate starting point arc actllally tlll' scconJ stcp

of the code delineation process described in [26]. The lIletric proximity check can

be used when the comparison granularity is al. the level of a begin-end block; the

formula used is described in the following section. For statement level grallularity

we use dynamic programming techniques 1.0 calculate the best alignlllent between

two code fragments based on insertion, deletion and c01llparison operations. Rather

than working directly with tc.'l:tual representations, source code statements arc ab­

stracted into feature sets that classify the given statelllent. The whole proccss is

described in detail in a following section (i.e. section 4.3.4). DYllalllic progmmming

is a more accurate method than the direct metric comparison based analysis because

the comparison of the feature vector is performed al. the statement leve\.

Checking type compatibility is accomplished using information in the domain

model and the SCM if necessary. The possible result is a boolean value indicating if

the statements checked have compatible types. Statement type compatibility is given

• for simple statements: by comparing the type attribute of each object il: the
query and the source code AST or

• by using the SCM if the query object is an instance of an abstract statemellt
class (i.e. Iterative-Statement class).

The euclidean distance of metrics is r.alculated and used as a comparison factor

in cases where the metrics are specified for the abstract dcscription. The distance

ca\culated should be less than a certain threshold which cau be set by the analyst.

The euclidean distance C is ca\culated using the following formula:
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1 ;)

C(P"Sj) = ~~(MdPil- Jh(Sj))2 (1)

\-,;"here P. is t.he i-th statement after the current starting point in the "sour,e

code", SJ is the j-th statement describcd in the query and Jh(S) is the k-th metric

value for a statement S. To compute C wc use the values ofthe five metrics computed

by Ariadne. If no metrics are specified in the abstract description of a statement in

the query then this check is omittcd.

The result of feature comparison is a similarity measure of the segments being

compared. If Si is a composite statement then recursive caUs oi the functions per­

forming feature comparison take place.

If for e.'i:ample Si is a while statement, first a type compatibility check with its

possible description ..l.j occurs. The n('xt step is to caiculate the euclidean distance C

between the metric values of .4j and Si, using the previous formula, and then compare

C with the given acceptable threshoid for metric distance. Absence of metrics for .4.j

is interpreted as a don't l'are value. Finally the similarity measure produccd by the

feature comparison for the while statement itself is "combincd" with the similarity

measures produccd by recursive calls to the matcbing functions for:

• the expression used in the while condition and

• the statement describing the body of the while loop

to produce the overall matcbing probability. The calculation of the similarity

measure is describcd in the foUowing paragraphs.

Similarity measure

Assuming a matcb between a sequence of source code statements SI, ..,Sk and a

sequence of abstract code descriptions .4h •. , .4n we necd to compute a measure of

our belief for this potential match. For convenience let us use the sante recognition

sequence as before :
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SI' ... Sp,. SPI"" ... S"., . .... 59,_,"1' ..• 59,' Sk-I' '" Sk.. '" . .... ..
.-\1 A:: A) A..

-.,,-

•

What we actually try t.o match is objects iu dll' t.wo :\STs (Tc and 7:.). Thus a

possible measure of similarit.y between Tc and Tu can be the following prohability:

where. (Tc, ....Tc, ....Tcr ) is the sequence of grammar ruiL's USl'd for genl'ratîng T,.

and (TaI' •••T.) •...TaJ ) is the sequence of mies used for generating Ta. \Ve will use an

approximation of this formula.

Using the Viterbi dynamic programming algorithm and the created :\Pl\1 wc l'an

compute the probability:

where

is a sequence of statements in Tc that can be matched by the valid al. the i-th com­

parison step abstract description .4f (i)' 1'0 find possible alternatives for .4f(i) one has

1.0 calculate the reachable transitions in the APM al. the i-th comparison step. this is

represented by the subscript f(i). In order 1.0 be able 1.0 match several actual code

statements .4f (i) must be a: don't carl' statement (Le *-Statement or +-Statement),

a composite statcment or a macro.

Using (3), an approximation of (2) is possible [29, 26]:

Pr(TcITa) ::::: Pr(SI; ..SkiAI; ...4n ) :::::

k

muxgt...,g. IIPr (Sg,.,+b'" Sg;IAf(i» (4)
i=l
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Formula (4) is essentially the rcslllt computed by the Viterbi algorithm. If .4.J(i)

is a reachablc statc in the APM at the i-th step, then:

9.

Pr(S9._,+" ",S9.IAJ(;») = II Pr(S/!A.J(i») (5)
1=9':_1+1

ln the case of a composite statement, a Markov model is considered for it and is

uscd in a similar way with the Viterbi algorithm. In general, the probability Pr (S;I,4.j )

has to be computcd.

The resulting probabi!ity e.'presses the i:lelief that the code segment S; in our

source code AST (Tc) can be describerl by the abstract statement AJ(i) in the query

AST (Ta). The actual value of the probability Pr for two statements is calculated

by multiplying the probability for the abstract description statement delincd in the

SeM and the value we get from the feature comparison of the two segments. The

feature ccmparison formula is presentcd in the ne.'\."t paragraph.

Feature Comparison

The features the analyst chooses to e.,amine depend mainly from the analysis he is

interested in. For the purpose of the analysis we perform in Ariadne we selected four

featurcs. The set of adopted features, for a e language statement S in our system,

consists of:

• the set of variable identiliers defined in S (1)),

• the set of variable identiliers used in S (U),

• the set of identiliers-keywords appearing in S (Je) and
. '-.,. ..~

• a set of live real numbers which are the valU"!Lfor the live metrics calculateè:i
by Ariadne.

Metrics comp~tisolJ. is used, if metrics are 5p<:t:ified in the abstract description,
'-

as an initial testing step. If the euclidean distar.ce calculated is bigger than a user
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specified threshold the segments arc consi<ier,'d dilferellt and t.llt, cllmparison ilrl,,"t'SS

stops.

Let A.j be a simple (i.e. non-composite) abst.ract. descript.ion of st.at.elllent. S, in

the Ta AST, then the probability Pr(Si!.4. j ) in (5) can be calcular.ed as follows:

p. (S
'I '.) _ ~ .~ card(.4bstractFcaturcJ •n n CodcFmturci.,,) )

conp ,."1.J - L . (6
v n=1 card(.4bstractFcaturcj.n U CodcFcaturci.,,)

We chose three features for C ( 7), U and /C) and thus 'V = 3 in thc aboyc formula.

The total probability is l'quai 1.0 the sum of threl' fractions. Each fraction for 7),

U and /C is computed as the number of common identifiers for each pair of code

segment-query segment, divided by the number of the total dilferent ideutifiers for

this pair. The final similarity measure for each transition

can then be computed as:

A full blown recognition e:'<ample is presented in appendbc C, the whole proccss

we just described is e.'\':plained in detail using a typical query.

4.4 Result form

In the case of successful recognition of a piece of code abstractly described in the

query the analyst gets as an answer a set of locations in the source code for each

abstract statement description in the query in the form :

filename: starting-line, ending-line.

For each occurrence of the concept reported the system also outputs the overall

similarity measure calculated. The analyst cao then manually inspect the code 1.0

determine false alarrns.



• CH:1PTER ·1. FR.·BJEWORK DESIGN .4.ND I./vIPLEMENTATION ï5

If in our ACL qlle:ry wc describcd an assignmcnt statcmcnt fo!lowed by a for

st.atcrucnt thcn a matching picce of code would be reported as follows :

~~TCH PRORABILITY : 0.34

LOCATED IN

LOCATED IN

MATCHING CODE

sa.c:1787,1788 is

sa.c:1787,1788 is

ExpressionStatement_7364

ForStatement_7365

•

The strinb'S following the location of the code (i.e. ExpressionStatemenLï364,

ForStatemenLï365) are the unique ids that identify the s-e.,,<pressil)nS used 1.0 describe

the matching source code.

4.5 Human interaction with the system

The analyst interacts with the system through an intuitive and e."<tensible graphical

interface. Using the interface the analyst can perform thrce operations:

1. create a query using a graphical or a tC)."tuaI editor,

2. adjust threshold values used by the localiz<l.tion a1gorithm and

3. inspect the reported results.

The GUI module is implemented in TcI/Tk and can easj)y he cxtended 1.0 achieve

greater functionality. An on-Hne help facility, in the form of e.,,<planatory balloons,

helps novice users 1.0 explore the interface.

4.6 System architecture

A generic view of the architecture of the main system modules is presented in the

ne.\."t figure.
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Thc archit.cctlirc of thc CSL module has been already analyzed. In this section

wc will briefly analyze the architecture of the GUI module and focus on the details

of the comparison engine submodule in the CSL.

4.6.1 The graphical user interface

The GUI module can be decomposed into three submodules :

1. the communication submodule,

2. the query building submodule and

3. the presentation submodule.

The communication module is implemented using the Expect package under

Tcl/Tk. When the GUI starts, this module takes control of the input and out­

put channels of the C++ program implementing the CSL module. Ali message and

data c.\':change between the GUI and the CSL module is performed using functions

in the communication submodule.

The query building submodule consists of a graphical and a textual editor. The

analyst can use either or both of these editors 1.0 create a new query. This submodule

is implemented using the TL\': package under Tcl/Tk. The graphical editor allows the

analyst 1.0 write queries without prior wide knowledge of the grammar of ACL.

Finally the presentation submodule is built in and contains the neccssary functions

that implement all graphies used in the user interface.

4.6.2 The comparison engine

Our initial idea and objective for the design of the comparison engine was 1.0 introduce

abstract base classes and virtual operations 50 that the comparison algorithm would

be dynamically determined al. run time based on the type of the entities compares (i.e.

Pascal programs, HTML pages, C programs). However the need for a comparison
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funetion specifie 1.0 sorne statements still exists beeause certain statement. (classes in

the domain model) ean ha\'e unique features. For <'-'l:ample 1.0 compare two ahjects

that belong 1.0 the Funetion-Definition class we nccd 1.0 compare not only their

standard features but their function names as well, the function name in this case

is the specifie feature that has 1.0 be eompared. Standard featnre eomparison is

implemented using one set of funetion for all the classes in a particular domain mode!.

Specifie feature eomparison is donc using specialized member funetions in the class

that defines this specifie feature (i.e. Funetion-Definition c1ass).

The design decisions adopted eoneerning the "distribution" of the algorithm among

the classes are:

• gather ail generie funetions (e.g. start..pattern_match, perfoTTTLpattern_matching)
in a submodule (we calI this submodule: the Comparison Engine),

• implement the language specifie funetions (e.g. compllte_probability,
check..type..compatibility, traverse..tree)as member funetions of the generie state
c1ass in the language's domain (e.g. C-State, HTML_State),

• implement eomparison operators for ail classes having special features.

Following the first decision a new c1ass was ereated and narncd : Pattern Match

Engine c1ass. The main goal was 1.0 implement member funetions for this c1ass """'

capable of performing ail the generie steps of the algorithm. If we eould achieve

this the c1ass could be used for ail target languages for which we have specified a

domain mode!. Thus member functions of this c1ass would implement the core of

our algorithm. The Pattern Match Engine c1ass uses the StatiC Model (SCM)

1.0 retrieve the PsCM probability (sec section 4.3.1) and the two ASTs (i.e. query

and source code ASTs). They key idea t:.>.kecp the Pattern Match Engine c1ass as

generic as possible is 1.0 achieve AST manipulation through a common standardizcd

interface, this is achievcd by allowing communication only with the State abstract

class which defines this uniform interface for ail classes in anY domain mode! (see

figures 4.1,4.7).
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Functions cri tical to the localization proccss arc calicd from member functions

in the Pattern Match Engine class. These critical function handle - among other

things - the feature comparison, the seiection of candidate starting points and the

calculation of the overall similarity measure. Ali these functions are hot spots in our

framework design, and as a resuli they will have a different implementation for each

target domain - language. Consequently if the source code is in Pascal the functions

defined in the domain model created for Pascal will be invoked where as if the analyst

focuses in C programs the appropriate function in C's domain model \\;11 be used.

The binding is done dynamically in every case.

Moreover the maintainer can define more than one functions to handle the above

tasks in each domain and choose which one to use at run time (plug and play capabil­

ity). Currently, for e:'l:ample, we have two ways of doing the feature comparison, the

one dcscribed previously and a simpler method that we use for testing and validation.

The analyst can define in the command !ine or at run time which one he wants to

use every time.

Figure 4.ï shows how the Pattern Match Engine class commullicates \vith the

two ASTs (Tc and Ta) through calls to virtual member functions of the State class.

Classes in any new domain model have to respect the interface defined in their ab­

stract superclass (i.e. the State class). Using dynamic binding functions in the

Pattern Match Engine class will invoke the correct function for the corresponding

domain model every time.

The two rnost critical member functions of thePattern Matcil Engine class are:

1. the start..pattern..match function and

2. the perform..pattern..match function.

The start..pattern..match function is responsible for the initia! steps of the algo­

rithm, it calls a function to find ail candidate starting points and then performs a
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Figure 4.ï: Simplified interaction diagram for the Pattern Match Engine c1ass.

•

loop over ail the possible starting points calling the perform..pattenLmatch function

for each one oi them.

In the perform..pattenLmatch function wc traverse the Ta AST, using the APM,

and the Te AST, and then cali a language specifie function (hot spot) to compute the

similarity measure of the active nodes in the two ASTs for every step of our traversaI.

If we reach a final node in the APM then our comparison was succcssfui and the

location and the total similarity measure are retumed; if not, failure is reported.

The State superclass (sec figure 4.1), used as an abstract c1ass for all domain

models, defines virtual functions implementing several parts of the locali:-.ation al­

gorithrn. The actual implementation of these function is located in the language

specifie superclass (e.g. C-State, HTML_State). The C-State abstract c1ass impie-
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ments functions to:

1. check for type compatibility,

2. compute the eucIidean distanceof the five metrics using formula (1),

3. rnanipulate the domain model specifie SCM,

4. calculate the similarity measure using formula (4) and

5. calculate the similarity measure for composite statements.

81
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AIl thcse functions are implemented for the C language specifie domain mode!. If

we choose another target language then in its domain model we should define similar

comparison functions which are specializations of the virtual functions (or operators)

defined in the State c1ass.

Finally for eaeh c1ass in the domain model a function ealled matclupecific..feature.s,

declared as virtual in the domain model superclass, is implemented to match unique

featurcs of a c1ass with their description in the APM state. For e.,ample an instance

of the Funetion..Call state c1ass will define the name of the function ealled by the code

segment it describes; this is eonsidered a unique feature and its eomparison is handled

by the implementation of the matciLSpecific..feature.s function for the Function..Call

stat.e c1ass.

A view of the design described in this section in the form of a class interaction

diagram is shown in figure 4.8. In the diagram the reader can see the message

e.,change between classes in the system. Note that messages in C++ are actually

function calls to c1ass mentber functions.

4.7 Evolution and Maintenance

The design reported in the previous section is the result of several iterations over

the initial requirements and ideas for plausible designs and their implementations.

Chronologically, the s-e.,pression parsing module was build first, followed by the the
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1 Number of Functions LOC Number of related classes

S-exprcssion parser 5 5K 2

AST reconstruction module 155 3K 26

Domain Model (C) 240 8K 32

Comparison Engine 24 3K 3

ACL Query parser 6 3K 2

Total 430 22 K 65

Table 4.1: Module sizes.

domain model for C and the AST reconstruction module. The implementation of the

ACL parser was the ne."l:t step. Finally the comparison engine was built and several

member functions were added to the domain model classes in order to complete the

localization algorithm. The GUI module was created after a reasonably stable version

of the system was available. Table 4.1 presents sorne approximate numbers related

to the system's size.

Recent work e."l:plores mainly two topics:

1. possibilities to improve the algorithm by introducing new low level comparison
methods and

2. adapting the design to accommodate new domains (Le. HTML, structured
te.\."t).

Ideas and work to achieve these goals are reported later in chapter si."\: section

one. Our e."l:perience during evolution and maintenance indicates that our approach

for the system's design was robust. Additional functions are easy to incorporate and

most importantly debugging is fairly easy because of the modularity achieved.
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Chapter 5

Experimental Results

This chapter discusses results obtained from our experiments. The lirst section brielly

describes the subject systems we used for testing the capabilities of the too!. The

ne:"t section focuses on the description of sorne concepts or plans we used. Finally in

the last section we present and discuss the results of our experimcnts.

5.1 The Subject Systems

Testing a design recovery tool presents a major difficulty, the developer has to play the

raIe of the analyst and recognize concepts in a subject system; to be able to validate

the output of the tool the analyst must have a good knowlcdge of the subject system

funetionality and design. To overcome the above mentioncd problem wc adoptcd the

following strategy. We chose as test cases :

• small size C programs for which we had complete knowlcdge of their design and
functionality ourselves,

• medium size programs for which we had access to their developers and

• large modular prograrns.

The two small systems are : a simple linkcd list manipulation program (around

two hundred Lines Of Code (LOC» and a program simulating the popular card gamc

84
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"blackjack" (uiue hundred and fifty LOC). These two programs although they are

small and simple they contain a number of programming plans (i.e. list tr<wersals,

reading from files) as weil as a number of "business rules" (i.e. how cards are dealt.

what is the value of the cards).

For the medium size programs we chose two systems created by the speech recog­

nition group in our lab. The first system is a speech decoder using the Viterbi

algorithm on Hidden Markov Models (HMMs) [52]. The size of the speech recognizer

(called simply Recognizer from here on) is around seven KLOC. The second sys~em

is the front end of a second speech recognition system developed in the labo The sys­

tem uses digitized speech sarnples as input to e.'l:tract features rele\'aIlt to the speech

recognition task, we calI this system the Feature Extraetor. The Feature Extractor

is around eight KLOC long. These two systems were selected because they contain a

number of mathematical computations and were typical representations of a specific

domain (Le. speech recognition).

The choice of larger systems to be used as test cases was more diflicult, we had to

find systems modular enough to ensure that a certain concept can be found only in

a small number of modules in order to facilitate validation of our results. Assuming

this fact we did not have to have a perfect understanding of the whole structure and

design of the system. To locate a concept we focused on ('Ine module, if the sarne

concept was reported found in other modules during our tests we checked the validity

of the result comparing the reported concept instantiation to the original concept

used to creatc our query.

The first system chosen is NASA's C Language Integrated Production System

or simply (CLIPS). CLIPS can be used as an expert system construction too!. We

found CLIPS modular enough for our needs and also familiar because of our e.'l:pe­

rience using it and analyzing it as a test case for •.:\.riadne. Using Ariadnc's anal)"Sis

capabilities. we had a fairly good knowledge of the system structure. The size of
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Subject system Cotie .'i=e Si=e of i1ltcnl",tiiClte r"l>rt'.'<'lliCltirm

List 181 LOC 50 KB

Twentyone 9-12 LOC 322 KB

Recognizer ïKLOC 2163 KB

Feature Extractor 8 HOC 101·1 KB

Clips 33 KLOC 8ïïO KB

Tcsh -15 KLOC 9661 KB

SG

•

Table 5.1: Physical size of subject system and their intermediate reprcsentations

CLIPS is approximately thirty threc KLOC. Finally we chose t.he popular lin:'" shell

Tcsh (Cornell version 6.06) as our second large subject system. Tcsh was also used

to test Ariadne and as a result we had a faidy good idea of its structure. The code

for Tcsh is forty five KLOC long. Both these systems are modular ellough for tcsting

purposes and contain a wealth of progr'lmming patterns both generic and domain

specifie.

Although the size of our test cases might seem small compared to a multimillioll

\ine legacy system we be\ieve that the design of our system can accommodate very

large systems as weil. The input to our system is not the subject system's code but

an intermediate representation of it using the s-expression fonnalism. The input can

be requested and sent from the global repository cr generated and sent dircctly from

Ariadne. The size of the files with this intennediate representation for the above

systems is reported in table 5.1.

For vel')' large systems the analyst can proeess the intennediate represcntation

of the system module by module. Sp\itting the intennediate representation file is

possible using a simple te.'I:t editor or directly by requesting from the repoSltory only

s-e."pressions deseribing a specifie system module. We have not eneountered problems
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might be better if the n~er ~plit~ the ~y~t<'m illtn "'\'t'raI mndnk~ and rlll'n r."'t~ l';]ch

one ~.'paratdy. The vital i~sne nf ~,alabilit~· ,an he n'~I)I\'t'd n~inp, thb 1I'chniql11'.

5.2 Measuring performance

Csing for aIl the subjcct system~ the queri~ that report,'d the minimnm ;ulll th.,

ma.ximum number of concept instantiations we obtained data regarding t.h., t.iml'

performance of our system. Results are presented in tables 5.2, 5.3 and 5.·!.

By far the most expensh'e part, in terms of time always, is the parsing of the

s-expression file, which describes the source code. and the rccon~trur.tion proCl'~S

that immediately follows the parsing. Imprcssiw numbers were reported for the r~t

of the acth"Ïties. AIl of the remaining reported acth'ities involve mainly navigation

through pointers which e.xplains the reported - satisfactory results. Morcover, the

most important part of our a1gorithm, the main localization and feature comparison

process, performs very weIl l'ven for our largest subjcct S)'Stem (sec table 5.4). Ba.~ed

on This latter fact wc believe that the main localization a1gorithm can be successfully

used for considerably larger subject systems.

5.3 Concepts and plans

This section analyzes our method of capturing and describing concepts used for our

e."\.-periments. As the degree of our familiarity with each subject system varieS wc had

to adopt different tactics for capturing plans.

For the smaller systems (Le. List and Twentyone) full understanding of the code

was possible. Going through the code wc discovered severa! pieces of code which

implement key concepts (e.g. the traversai of a list). Secing the actual code segment

which implements a concept the analyst can then use corresponding ACL abstract
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i Li"l QI 1 Li.,1 Q2 1

,
T'l'entyonc QI 1 Tu,enlyonc Q2

AST reconstruction
1

0.1 sec 1 0.1 sec 1 -.1 sec 1 4 sec 1

ACL Query parsing
1

0.1 sec 1 0.1 sec 1 0.1 sec 1 0.1 sec,

Find candidates
1 0.1 sec ~I sec 1 1 sec 1 0.1 sec

Localize code
1

0.1 sec 0.1 sec 1 1 sec! 0.1 sec

Candidates round 1 12 1 1 1 18

Concept instantiations 1 12 1 1 1 18

StmL~ in Qucry 5 31 61 2

Table 5.2: Time statistics (part I).

ss
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Recogni::er Q1 Recogni::er Q2 F.&traetor Ql F.Extractor Q2

AST reconstruction 31 sec 30 sec 14 sec 14 sec

ACL Query parsing 0.1 sec 0.1 sC': 0.1 sec 0.1 sec

Find candidates 0.1 sec 0.1 sec 0.1 sec 0.1 sec

wc,ùize code 2 sec 3 sec 1 sec 8 sec

Candidates round 204 204 103 689

Concept instantiations 1 iï 2 216

Stmts in Query 9 5 5 3

Table 5.3: Time statistics (part II) .
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0) s,',' i_. . 1

1- 1- i
~). j ~t'(' 1

1 curs QI 1 curs Q:! 1

! l:l66 scc 1 1367 s,'c 1A5T recon:-;truction

Find candidatcs
1

100 sc,' 1 99 sec. 1 312 ",,' 1 l~S :-;,'1." .

Localize code 1 153 sec 1 ., IS .• 1 111"'c\ 196 St'C_" ... St c.

Candidat~ round
1

1890 1 1890 ·1209 1 2730

Concept instantiations 91 233 2 1 199

Stmts in Qucry 71 8 91 3

1 .-\CL Query paC'ing

Table 5.-1: Time statistics (part III),

•

statements to dcscribe it. \Ve found that in most cases the use of the graphical query

builder spccds up the whole proccss significantly.

To locate and dcscribe concepts for the medium size programs we relied mostly ou

their developers. We asked the developers to show and explain to us code segments

implementing \'aI'ious key concepts. Morcover, we asked them to abstractly describe

these concepts in terrns of the query language and point aIl their occurrences in

the code they were a\\'aI'e of. The final step was to refine the developer's concept

description to make full use of ACL featurcs.

Probably the hardcst part was to identify concepts for the larger subjcct systems.

To accomplish this task we relied hcavily on system dccomposition perforrned by

Ariadne [21] and also on comments in the code itself. As we will sec in the next

section we need to know e.'"actly how many timcs a certain concept oceurs in the

whole system to report meaningful precision and rccall results. To overcome this

obstacle we relied on the subject system's modularity and checked reported concept

inst2.lltiations outside our target module manually.
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5.3.1 Hierarchical concept formation and recognition

90

I!i!'rarchical conc!'!,! r!'co~nil ion refers 10 the ahility of rec(lgnizing complex concepts

from simpl"r ones. In this section we present an example of macro usage to mo\'e

from fine.grain concept. or simple code segment. description to large-grain concept

description and localization. To illustrate this wc will use a concept from the Recog-

nizer.

The Recognizer uses a \ïterbi based algorithm on Hidden :'.larko\· :'.Iodels ta cal­

culate a ma.ximum likclihood transition sequence among the :'.larkO\· :'.lodcl states

that represent phonemes. The following picee of code performs the calculation of

a state's contribution in the resuIting path. The first line initializes the total con­

tribution of a transition to a constant minimum value. The loop starting in line

2 computes the contribution for ail possible transitions betwecn two states in the

Markov Model. Initially (line 3) a chcek occurs to sec if a probability for a certain

transition has already been computcd. If the resuIt of the check is negative then the

probability for this transition is computcd (line 4) and a f1ag is set (line 5). The

statement in line ï checks if the calculatcd contribution is greater than the accumu­

latcd total contribution, if 50 it updates the total contribution value (line 8). The

next line (9) advances the pointer to point to the ne.'\"t transition betwecn the two

states e.xamincd. Finally the last two statements (lines 11 and 12) kecp track if a set

of transitions has already becn processcd by setting an appropriate f1ag and using

the accumulatcd total transition probability.

•

1
2
3
4
5
6
7
8
9

p =LOCZERO;
do {

if (l(distTested[idx = TrP->Distrldx]» {
DistrVal [idx] = EvalDistr(tIlistrList [idx] •obs) ;
distTested[idx] = TRUE;

}

if (p«contribution=TrP->Prob+DistrVal [idx]»
p = contribution;

TrP++;
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10 } while(++i < *nextMix);
11 *mixTested = TRUE;
12 mix->Value = p;

Source codc implcmcnfing Cl plan in a subj""f sysf,'m iR"""I/ni=t"1
The abO\'e presented cod!' can be brok!'n down 1.0 sl'\'l'ral smalIPr (tilll~p;rain)

concepts or plans, Based on their fllnctionality lines :3 10 6 l'an Il.. consid.'r..d as

one srnalle.' concept (concept 1), The code segment starting From lin.. ï and l'ndin~

al. line 9 can be considered as a second plan and is called concept 2, Lastly thl'

assignrnents in lines 11 and 12 irnplernent another concept (concept 3), :\s.~llminp;

this decornposition the larger concept can be described by the following :\CL qll('ry:

Assignmen"t-S"tm"t
abs-gen-desc

defines [?p]:
I"tera"tive-S"tmt

(abs-gen-desc
uses : [?TrP].
defines : [?Dis"trVal])

(abs-exp-desc
Keyvords : [neX"tMix])

{

abs-gen-desc
emp"ty

SOURCE: "concep"tl"
*-S"tm"t

abs-gen-desc
emp-ey;

SOURCE : "concep"t2"
*-S"tm"t

abs-gen-desc
uses [IrP]

}

SOURCE "concep"t3"

ACL Query describzng a large-grain cxmcept
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()}'Sf'n"j' thr llsagp Ilf tlH' SOURCE macro as w('l1 a.s tllP IlSP of don', can~ staff'-

I!wnts (i.l'. ~-Stfllnl/f:nt.) <\..'" ~Illin~ rnalf'rial bp!w('Ptl tlw fine-grain COI1CPpts. Dis('rf'IP

d""'ription "f"ach stllalh'r plan l'xist in lhl' fi!Ps inc!ndl'd by thl' macros. TIl<' ('ontl'tlts

of t.1,,'sl' fill's (i.l'. ('oncl'pt.1-3) arl' prl'Sl't1tl'd belo\\'.

FiE" : ConœptI

If-Stmt
abs-gen-desc empty
abs-exp-desc empty

Then
{

abs-gen-desc
empty

Assignment-Stmt
abs-gen-desc

uses
defines

"-Stmt
abs-gen-desc

defines
}

[idx] •
: [?DistrVal];

[idx .distTestedl

•

A. CL Query describing first sub concept

File: Concept2

If-Stmt
abs-gen-desc empty
abs-exp-desc

keyvords [contribution,TrP,DistrVal,idx]
Then

Assignment-Stmt
abs-gen-desc

uses : [contribution],
defines : [?p]

ACL Query describing second sub concept
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Assignment-St:nt
abs-gen-desc

defines [rnixTestedl ;
Assignment-Strnt

abs-gen-desc
uses : [?pl.
defines : [:nix.Valuel

.-1. CL Qller!l describiTlg code sl'gmeTl!.' iTl li1lt'-' JJ fi J:!

The reader must notice that. the use of only one bind \~\riabh- in an ACL qu,'ry

docs not. make sense. Ho\\'eyer if we combine the t.hree queries we noti,'" that t.hen'

are no single bind \~riabll'S.

Using t.he lirst concept. only as input to our system wc fonnd !JI occurrences of it

in the code. The second sub-conccpt appears only 3 times in thc Rl'Co~nizer'scode

where as the third concept occurs only twice. Using the generic query Wl' managl'C(

to successfully locate the concept in question in the Recognizer's code.

This method of hierarchical plan recognition can be adoptcd to dcscribe and iden­

tify large-grain concepts in the code when smaller sub-concepts have bccn identilil'Cl.

5.4 Testing results presentation and analysis

We believe that the frarnework introduccd in this work can be uscd for information

retrieval in general and not only in the design recovery process. The focus of our

testing \Vas to estimate how effective a system using this new frarnework is. Our

secondary objective was to explore the process of creating a good concept description

using the query language we introduccd. During result analysis we will report our

conclusions on the later subject.
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/'nTl .... Z()7L [;jg]. Rpc..:.ll i:-- dpfiw'd a..... thp proportiun of rt'lt',·ant lnatt'rial:i.('. it m('a~Ur('

ho\\' \\,pll Tl,,' ponsi,iPrpc! sYStPlll rptril'\'ps ail 1.11<' rell'\'ant l'llmpOnl'nt.s, Prl'cision is

c!pfinl'c! a,; T,hp proporr.ion of rptril'vec! mat.l'rial whil'h is rl'levant: i,I',. il. ml"L'Url'S ho\\'

\\'d1 thp system n,r.rieves only th(' rele\Oint l'omponents. R(,l'all l'an also be inr.('rprN('c!

'L' !.11<' probabili!.y tha!. a r('le\omt component wil! b(' reuie\'Cd. and precision as the

prnbability that a retrie""d componenr.. \\'ill b(' rel('\'ant [.5).

Rel'al! and prl'cision l'an be defin('d more formally 'L' follows. Let C be the uni\'Crse

of possible retrieved clements, for a design reco\'ery system This would be the set of

ail design plans - concepts in a system. For each query. C can be partitioncd into

two disjoint sets, R. the set of rele\ant materiaI. and R. the set of irrele\'ant materiaL

The information retrie\-aI system will then retrie\'e a set of components c LIlàr. can

a1so be partitioned into relevant and irrele\'ant materiaL r and r respectÏ\·ely. Recall

and precision are then defincd as :

r
Recail =­

R

P" rreczswn = C

It is obvious that recall and precision measurement require the ability ta distin­

guish between rele\'ant and irrele\'aIlt material. Rele\'aIlce judgements are always

debatable. In our case the mast difficult task \\'aS ta find ail possible relevant ma­

teri<J in our input; Le. recognizing ail occurrences of a concept in a program 50 we

could accurately measure recalL For the smaller subject systems this tee!ious task

\\'aS possible but for the larger ones we had ta rely on the S)'Stem's modularity.

In arder ta produce meaningful diagrams we al50 had ta quantify in sorne way the

e.'q>ressiveness of each ACL query; ta achieve this we adoptee! a simple formula ta

calculate a weight for each query. The weight should be higher for precise queries and
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lower for ;-"lbstract \..)I1(':-'. As ('XjH'l't l'li t (':-'1 ing iUliieat ('s t 11al llsing t':,\;U"t st al t'UIt'llt s

instC'ad of don't l'arC' nr ahstract stall'nU'tIfS lt·.~. tht' ltr'ratit'(' Slatf'1llf'nt) ln dt'seriiH'

a spr'cific staf('t1wnt yÎl'lds hight'f prl'cbitll1 rl'sults. 1tH·ft,:l......cd pn'dSÎlHi was ()hSl't'Yt,d

a.." weil ",hru non abstract. [(':liUreS art.' HoSt'li In lit'scrill(' t lU' ft'atlln's of a cotit' St"~nlt .. tlt.

Cse of abstract features. in tlu' f,mu of hind yariahlt,s. n'suit, in lt,m'r pn'cj,iou for

well formed queries. These obSl'n~ltjous lt'd us to rrl'all' th,' followiup; simplt· wl'ip;ht

formula:

#.-\.bstracLFcaturcs· Cost3 (I)

Where Costl = 3, Cost2 = 2 and Cost3 = l.

For eyery subject system we located fiye concepts and for l'ach concept Wl' came

up with si., to ten different descriptions. These descriptions were formcd by \~lQ'ing

the:

• number of abstract and non abstract features.

• number and type of statements in the query.

As a result these thirty concepts were e-,pressed in two hundred and five different

queries. Querit's describing the same concept mainly differ in wright which indicates

the degree 0'; abstractness and e-,pressiveness. The series of diagrams that follows

focuses more on qualitative results rather than quantitative ones. It would be easy

to come up with several different ways of e-,pressing a concept each one yielding a

different predsion. However our major interest and objective was to capture the

genera! beha";or of ..he system when certain parameters change. For this reason

diagrams are e."q>ressed across severa! different queries describing different concepts

for each subject system.

The first set of diagrams presented in figure 5.1 presents the relation between

precision and the average similarity measure reported for-each query for a particular
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SIl!ljl'C! s~·stl'I11. As f'Xp,·("ti·d \\"P oi,s('ry(' aIl élnalog;y lH'tw"t'tl t!lPS(' two quautitips.

As oUf ql1l'rip:-; lH'nHlH' JlIt)[f' pn'cisp the' {l\"prag:(' similarity ilH'il.... llrp n'port pd also

of II", similari'Y m,'a.'lIrl' l'alculal<'d for l'ach reported instance of a l'onceJlt descri!Jed

!J~' an ,\CL qul':·Y. il is intert'stil~g ta notice that some til:ll'S precision remains

l'onslant ":!:Cil smail clifferencl's in the average similarity lIlea-,ure occur: lhe re,l-'on

for t.his is t.hat. aclding 1Il0re f('at.lIres t.o our description aft.er a certain point doc;;

not. bave a significanr. effect on precision but will 1Il0st certainly ch,Inge the average

similarity lIlea-'ure reported.

Additional conclu-,ions regarding the quality and effecti\'ene-'S of a query in ACL

can be drawn from our next diagram set (sec figures 5.2.5.3). These diagrams show

the relation among the query precision. the number of retrie\"Cd concept instantiations

in a -,ubject system and two main factors of the weight formula which also rellect the

expressivencss of the query. narnely the number of abstract and non abstract features

specified in the ACL query.

These diagrarns show sorne of the characteristics of the system. The general mie

is that the more abstract a que!:y is made the bigger the number of retrieved concept

instantiations and the lower the precision would be. Using ACL for C there is a

number of ways an analyst can makI' a query more precise, narnely the analyst can:

1. use specifie statements instead of generic "t don't care statements to describe
a particular code segment,

. 2. utilize more non abstract features to describe properties of a code segment and
lastly

3. a\'oid the use of abstract features (i.e. bind variables) as much as possible.

The follo\\ing points cau be verified by examining the diagrams in figures 5.2 and

5.3. We see that increasing the number of abstract statements and non abstract

features results in Jess concept instantiations reported and better precision. On the
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Figure 5.1: Precision - Average Similarity Measure Diagrams.
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/ltfwr band ÎIlITP;L-;ing tIIl' 11llmbt'r ofabstract [C'atllft'S lpads To an iIH·f('.l.....(' ofreportl'd

conn'pt iust.ant :'ttior"'.; and lo\\"('r precision.

Anorl,,'r intl'restinp; dl'pendency can be observed in the thire! sN of diagrams

shown in lip;nres ;:;..l and 5.5. The way wc defined the weight for an ACL query. a

p;r<'ater weight corresponds ta more precise thus less abstract queries (sec formula 1).

This rdation is shawn in the diagrams. For a well designed query increasing wdght.

should result in greater precision.

Finally our last set of diagrams shows the c.xisting relation betwccn Recall anù

Prcci..ion (figure 5.6). As expected these two quantities are dependent and asym­

metrical. The higher the Precision achieved by a query the lower the Recall "'ill be.

Making a query more abstract means that we specify less features and use the query

language in a less restrictive way. Ine\'itably less logical constraints will result in

more irrelev-ant components retrieved and lower precision. Partial match allo\Vs to

\'irtually rerrieve ail the rele\-ant info but usually this cornes \Vith a priee in precision.

Summarizing our results we l'an say that:

• precision is highly correlated \Vith the similarity measure. This result verifies
the correctness and elfectiveness of the comparison algorithm used,

• the number of features (abstract and non abstract) is highly correlated \Vith
the number of concepts retrieved,

• increasing the number of abstract statements, above a certain "threshold", in
the query seems not to affect significantly the number of retrieved concepts,

• queries using only abstract features );eld noisy results and consequently high
recall values,

• effective queries have to use both abstract and non abstract features in a bal­
anced number and specifie statements rather than abstract statements,

• \Vhen the precision drops the recall increases. This means that more abstract
queries that introduce more noisy results (lower precision) tend to capture more
instances of a concept in the system (higher recalI). Moreover recalI is rela­
tively stable for most queries and that verifies the completeness of the features
selected.
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Figure 5.2: Retrieved Concept Instantiations - Weight Factors Diagrams.
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• Figure 5.3: Retrieved Concept Instantiations - Weight Factors Diagrams.
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Precision - Weight Diagrams

Figure 5.4: Precision - Query Weight Diagrams.
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Precision - Weight Diagrams

Figure 5.5: Precision - Query Weight Diagrams.
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Figure 5.6: Precision - Recall Diagrams.
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Finally tWW u~er~ "an easily impro,"e their lOol u~age ~kill~ Ily taking ad\"antage of

t.he !;raphical interface and the query cditor ~upplicd" :\ ~crcen dump of the interface

i~ ~hown in fi!;tlre 5. ï .
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Figure 5.7: The Graphical User Interface.
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Chapter 6

Conclusions

In previous chapters we presentcd the framework created and adopted for our system

as weIl as the e."(perimental results wc obtaincd using the system to locate concepts

in various C programs. This chapter discusses possible directions for future research

in order to improve the system and presents a summary of our conclusions.

6.1 Future work

There are two major directions for future improvement of both the framework and

the system wc described. The first is enhancing the capabilities of the system and

. the second is e."(tending its scope. The following sections e."(plore these directions.

System enhancement

Significant performance improvement is possible by introducing paraIlelism in the

aIgorithm. The nature of the aIgorithm makes it an ideal candidate for paraIIelization.

To be more specifie what we suggest here is paraIIelizing the matching process after

the candidate starting points have been eomputed. Knowing how many distinct

cases have to be considere<! we can then "fork" as many processes to handle each

106
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case concurrently. This is of cours,' a non triyial task. Ol\l' must n'usi.!,·r l',,ssihh'

oyerhead and space requirements duc to massiw COl'yillp; of st ruet IIn's that is ~"ill~

to occur. Further more \\"e must estimate the elfect of IIsin~ l'arall,'lislll "" "110

frame\\"ork's complexity. Se\"Cral techniques for parallel prop;r<lmmillp; ill C++ an'

bcing proposed and wc arc currently going through tll\' Iiter,nun' ln estimat" tll<'

effort needed to accomplish this task.

Another possible improyement would be the implemelltatioll of se\"l'ral lo\\" 1<'\"('1

feature comparison methods. The analyst would then ha\"(' the opportullity to ehoose

the one he finds more suitable depending on the task the system has to al"Complish.

In the CUITent implementation feature comparison is donc using exact strillg compar­

ison and metric distance is calculated using the euclidean distance. One possibilit.y

would be to calculate Ic.xicographic distances [26] between code features alld their de­

scriptions in the ACL query. Wc could a1so use a different formula to compute IIIctric

distances. The analyst would have the opportunity to choose the desire<1 method of

feature comparison from a Iist of available methods in the graphical interface and

fine tune it by changing certain parameters or thresholds. For example in the current

version the user can adjust the threshold used to characterize a recognized statement

as a possible match as weil as the threshold used to check the metrics distance of

two code segments. If we use lexicographie distances for feature comparison the user

should be able to specify the minimum number of characters a feature should have

so that the comparison is meaningful.

In the prototype, implemented for the REVENGE project, the Abstract Concept

Language (ACL) is more powerful. The analyst cau specify the type of a variable

in the query and use logical operators to define the sequence of abstract statements.

Those fcatures were not included in our version of the system mainly due to time

constraints. We estimate that e.'CÏstence of these features is a1so a possible enhance­

ment. The e.'CÏstence of logical operators cau be particularly useful in order to solve
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sorne intNesting problems t.hat. arise from t.he possible implementation di\"ersit.y of a

concept.. ln every programming for example. the programmer can sometimcs inter­

ch,mge two statements that are not dependent on each other without changing the

functionality of the code segment containing these statements. To capture these cases

we could use the logical OR operator in ACL and describe our pattern as : AdlAj ,

this would result in the creation of two sequential models Al: .4.2 and A2: Al. The

one that ma.ximizcs the overall matching probability calculated would be chosen. In

our present implementation the only way to solve this problem is to use don't care

statements (i.e. the "'-Statement or the +-Statement).

A useful enhancement would be to graphically present our results. We are cur­

rently e.xploring ways of representing graphically the A5T and the matching results.

The A5T will be represented as a simple n-ary tree. Nodes in the tree correspond

to nodes in the A5T and thus to statements in the original code. The analyst \\ill

have the ability to click on any node and get information about the node's features.

Reeognized concepts can then be presented to the analyst as highlighted areas (set of

nodes) in the tree. Implementing this GUI enhancement is an interesting task. A new

e.,"tension to Tcl/Tk e.xists that allows the display of dynamically created trees. We

estimate that presenting the whole A5T can be time consuming, however it would be

possible for the analyst to choose between displaying the whole A5T, just the parts

of the A5T that contain rccognized results or onIy some preseleeted parts of it.

The design presented in chapter four is the result of severa! iterations over our

initial design ideas. Introducing new features to our system will inevitably lead to

further evolvement of the design.

System Extension

An important step toward the e\"Olution of the system design would aIso be the use of

the framework for a new target language. Possible target languages cao be HTML,
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Pascal or simply "structnred" tex!. .-\t lhe Illolllent Wl' find HT~lL and ··strul·tun',!'·

text the most interesting candidates Illainly b,'cans,' nsing th"1ll wnuld lll'Ip ns ln

further emluate the system from the iniormation retrieyal point of '·il'W.

Extending the tool with a new target language is a thn'C Stl:p pr'll"l'SS. First we

need 1.0 ereate a domain model for the new language able ta capture the langnagl"s

basic eonstructs and their main features. For HT;\IL pages. paragraphs. sentences.

applets and images l'an be considered basic constructs. Each basic constrnct has

partieular features and also shares sorne eommon features with other c1'I."Ses. Links

and referenees, maps or background and foreground information l'an be considered

features of an HTML document. The ne:"t step is the creation of a parser for the

language. This parser should produce an intermediate representation of the "source

code" in the form of an AST. Nodes of the AST would be objects of the c1a."Scs spcc­

ified in the domain model of the language. Finally wc need to implement meanillgfGl

feature comparison funetions for the language. By plugging the newly created cle­

ments to the existing framework we can then use our main code segment localization

algorithm 1.0 locate occurrence of a "code" segment in the input.

In terms of effort needed 1.0 accomplish these steps we have been able te confirm

that the creation of the domain model is the most time consuming and challenging

step. For most prograrnming languages publically available parsers c.'Cist. We found

particularly useful 1.0 have sueb a parser in our initial resources. Going through the

parser we can factorize entities and create primary abstractions that can subsequently

drive the creation of the domain mode!. We already have a parser for "structured"

text, whieb is plain te."\.1; with sorne simple tags 1.0 indicate end of paragraphs or pages.

HTML parsers are available and are also considered al. the moment as possible starting

points.

Finally il. would be usefu1 1.0 incorporate in the system a small knowledge base

where wc could store the reeognized concepts and create small libraries of plans for
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('a('h subj('eT sysTem w(' ('xamin('. The p;lobal rcpositor~·. currelJlly uscd 'L" a source for

our inpUT. is a possible candidaTe. Lsing The domain mode! of the target language We

can fortn s-expn'ssions describing a concept. and store them in thQ global repository.

Lsing t.he global reposit.ory will permit. the sharing of concept. descriptions among the

participating tools in the cooperative ell\·ironment.

6.2 Summary of conclusions

The purpose of the work reported in this document was the creation and USe of

a generalized framework for information retrie\-aI on large spaces containing struc­

tured data. The particular implementation is applied to the program understanding

domain.

The framework introduced was used to create a code segment localizer which can

be used for concept localization in C programs. In the heart of This framework is an

algorithm that performs information retrie\-aI based on complet" or partial matching

of structured features. Concept detection and localization is a crucial part of the

design recovery process which, in tum, constitutes a vital task of the maintenance

process. The resulting code segment localizer can be part of a larger cooperative en­

vironment of CASE tools created for the REVENGE project. The main components

of the framework are:

• a flexible and simplified domain model of the Target language,

• parsing facilities for conversion to an intermediate representation (AST) of both
the "source code" and the query describing the concept and

• a comparison engine implementing the main loealization algorithm using the
Viterbi dynamic programming algorithm and Markov Models.

An object oriented approach, and programming language (namely C++), was

chosen for the implementation of thp framework in order to achieve greater modu­

larity, e.,"tensibility and case of maintenance. After severa! iterations of introducing
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enhancement$ to the $Y$lem allowed \1$ 10 e,)nclud" lhat l'xll'n$ihility and mainlain­

ability \\-cre achie\"Cd.

Exten$i\"e te$ting pro\"ed tht' capabilitil'$ of our framl'work an,l prn\"idl'd saI isfae­

tory re$ults for a large range of subject $Y$tem$ and conCl'pts.

\Ve strongly belie\"e that the generie framework prt'sl'nted III this n'port l'an Il<'

used to perform information retrie\~ll in a \"ariety of fields a.< lon~ as information

in the search space prl'$ent$ $ome $tructure and i$ describl'<i Ilsin~ forma\' structnr"

oriented patterns of featurl'$.
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The Abstract Concept Language
grammar

In this appendb: we present the grammar of the Abstract Query Language we used
for C programs in Backus Normal Form. Reserved words of the language appear in
bold (a complete table for reserved words appear at the end), C-like synta" is used
for comments.

•

<query>
<stmt..states>

<stmt..state>

<stmt_descr>

ATSIGN <stmt..states> ATSIGN
r empty */
<stmt..state> <stmt..states>
SEMICOLON <stmt_descr>
<stmt_descr>
<if..stmt>
<include_plan>
<iter..stmt>
<while..stmt>
<do..stmt>
<for..stmt>
<ret..stmt>
<goto..stmt>
<cont..stmt>
<break..stmt>
<switch..stmt>
<label..stmt>
<assign..stmt>
<fnccall..stmt>
<block..stmt>

112
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<defines.descr>

<includc_plan>
<if.$tlllt>

<features_descr>
<uses_descr>

<pattem_descr>
<pattern..descrl>

\ <zpro_or_Ilwn~_"'t IIlI >
1 <011('_or_Innn~ _,ttnt >
i <fum'! iOIl.d,>f>
1 <expL'!lll!>
: SOURCE <STRI~G>

: IFSTlVIT <p;elul''Sl'r> <l"oIIlLdl'S"r> THEN <~!lllLd"''''r>

ELSE <~!lllLdl'Sl'r>

1 IFSTMT <gelu!l'Sl"f> <l'llll.Ldl"",r> THEN <~llllLdl'Sl"r>

: ITERSTl\1T <p;clull'Sl"f> <l'llll,Ld''Sl"f> <~tlllul''Sl'r>

: "\VHILESTMT <p;cn.ck'Sl'f> <l'llnd.d<'Scr> <~tlllt.d''Sl'r>

: DOSTMT <gen_descr> <cond.descr> <~tIllLdl'Sl'r>

: FORSTMT <gen_descr> LPAREN <pattenLdl'SCr>
SEMICOLON <pattern.descr> SEMICOLON<patt"rn_dl'SCr>
RPAREN <stmt.descr>

<ret.stmt> : RETSTMT <gen_descr>
<goto.stmt> : GOTOSTMT <gcn_descr>
<cont.stmt> : CONTSTMT
<break.stmt> : BREAKSTMT
<S\\itch.stmt> : SWITCHSTMT <gen.descr> <cond.descr> <stmLdescr>
<label.stmt> : LABELSTMT <gen_descr>
<assign.stmt> : ASSIGNSTMT <gen.descr>
<fnccall..stmt> : FNCCALLSTMT IDENTIFIER <gen.descr>
<block.stmt> : LCBRACKET <gen.descr> <stmt.states> RCBRACKET
<zero.or.more.stmt>: ZEROMORESTMT <gen.descr>
<one.or.more.stmt> : ONEMORESTMT <gen.descr>
<function.def> : FUNCTION IDENTIFIER <gen.descr> block.stmt
<e:l:pr.stmt> : EXPRSTMT <gen.descr> block.stmt
<gen.descr> : LPAREN <gen.pattem.descr> RPAREN

1 <gen_pattem_descr>
<gen_pattem.descr> : ABSGENDESCR <pattem.descr>l
<cond_descr> : LPAREN <pattem.descr> RPAREN

1<pattem.descr>
: ABSEXPRDESCR <pattem.descr>l
: EMPTY
1 <features..descr>
: <uses_descr> <defines_descr> <keywords_descr> <metrics.descr>
:/* empty */
1USES LBRACKET <identifier.seq> RBRACKET
1USES LBRACKET <identifier.seq> RBRACKET COMMA
:/* empty */
1DEFINES LBRACKET <identifier.seq> RBRACKET

<itcr.$tmt>
<whilc.$tmt>
<do.stmt>
<for.stmt>

•
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•

< keywords_dcscr>

<metrics_dcscr>

<identifier.seq>
<identifier.seql>

<identifier.seq2>

< Float>

1 DEFINES LBRACKET <identifier.seq> RBRACKET
COMMA
:/* empty */
1 KEYWOROS LBRACKET <identifier.seq> RBRACKET
1 KEYWOROS LBRACKET <identifier.seq> RBRACKET

COMMA
:/* empty */
1 METRICS LBRACKET <Float> COMMA <Float>

COMMA <Float> COMMA <Float> COMMA <Float>
RBRACKET

: <identifier.seql>
: <identifier.seq2> IDENTIFIER
1 <identifier.seq2> QUESTION IDENTIFIER
: /* empty */
1 <identifier.seq2> IDENTIFIER COMMA
1 <identifier.seq2> QUESTION IDENTIFIER COMMA
: FLOAT
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Reseroed Word Symbol Actual Re.<erocd Word
abs-cxp-dcsc

ABSEXPRDESCR Abs-Exp-Dcsc
ABS-EXP-DESC
abs-gcn-dcsc

ABSGENDESCR Abs-Gcn-Dcsc
ABS-GEN-DESC
Function-Dcf

FUNCTION function-dcf
FUNCTION-DEF
if-stmt

IFSTMT If-Stmt
IF-STMT
thcn

THEN Then
THEN
else

ELSE Eise
ELSE
iterative-stmt

ITERSTMT Iterative-Stmt
ITERATIVE-STMT
while-stmt

WHILESTMT While-Stmt
WHILE-STMT
do-stmt

DOSTMT Do-Stmt
DO-STMT
for-stmt

FORSTMT For-Stmt
FOR-STMT
retum-stmt

RETSTMT Retum-Stmt
RETURN-STMT
goto-stmt

GOTOSTMT Goto-Stmt
GOTO-STMT
expr-stmt

EXPRSTMT Expr-Stmt
EXPR-STMT

Table A.l: ACL's Reserved Words (I]
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Rcservcd Word Symbol Actual Reserved Word
continue

CONTSTMT Continue
CONTINUE
break

BREAKSTl\'IT Break
BREAK
switch-stmt

SWITCHSTMT Switch-Stmt
SWITCH-STMT
labelled-Stmt

LABELSTMT Labelled-Stmt
LABELLED-STMT
assignment-stmt

ASSIGNSTMT Assignment-Stmt
ASSIGNMENT-STMT
function-call

FNCCALLSTMT Function-Call
FUNCTION-CALL
*-stmt

ZEROMORESTMT *-Stmt
*-STMT
+-stmt

ONEMORESTMT +-Stmt
+-STMT
empty

EMPTY Empty
EMPTY
keywords:

J<EYWOROS Keywords:
KEYWOROS:
defines :

DEFINES Defines :
DEFINES:
uses :

USES Uses :
USES:

Table A.2: ACL's Reserved Words [II]
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Reseroed Word Symbol Actual Rcseroed Word
metrics :

METRlCS Metrics :
METRlCS:
source:

SOURCE Source:
SOURCE:

LBR."-CKET [
RBR."-CKET J
RBR."-CKET (
RPAREN )
LCBR."-CKET {
RCBRACKET }
ATSIGN @

COMMA ,
SEMICOLON ;
COLON :
QUESTION ?

Table A.3: ACL's Reserved Words [III]
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Examples of concepts

Subject System: Twentyone

Concept description
For each playcr check if he/she placed a bet and if so then deal a ne\\" card and

update the necessary variables.

G

Iterative-Stmt
(abs-gen-desc empty)
(abs-exp-desc

keyvords : [?playerJ)
{

abs-gen-desc empty
+-Stmt

abs-gen-desc
uses : [?playerJ.
defines : [?cardJ ;

+-Stmt
abs-gen-desc

empty;
Assignment-Stmt

abs-gen-desc
uses : [?cardJ ;

+-Stmt
abs-gen-desc empty

• }

G
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Examplc of rcportcd concept instllntilltioll

num_cards++ ] =

. , ..

[ player ]cards [ players
busted = 0 ;
split = 0 ;

for ( player = 0 ; player < num_players ; ++player )
{ card =players [ player] . bet ? deal_card ( )

( void) printf ( "\t7.c" • card) ;
players [ player] cards [ players [ player ]

card ;
players [ player ]
players [ player ]
players [ player ]

}

Subject System: List

Concept description
Check if memory allocation for an clement has failed and initializc clemcnt's fields.

III

If-Stmt
abs-gen-desc empty
abs-exp-desc

keywords : [elem]
Then
{

abs-gen-desc
empty

*-Stmt
abs-gen-desc

empty
};

*-Stmt
abs-gen-desc

uses : [elem]

Example of reported concept instantiation

if (elem =- NULL)
{

•
fprintf(stderr. "elementcreate: malloc failed. out of memory???\n");
return NULL;

}

elem->next • NULL;
elem->info • i;
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Subject System: Recognizer

120

•

Concept description
Part of the transition probability calculation. For each acti\'C transition check if

probability is already calculated if not calculate it; then check if this newly
calculated probability is bigger than the ma.x probability so far and if so update the

current ma.ximum. Finally perform sorne simple initializations.

III
Iterative-Stmt

(abs-gen-desc
uses : [?TrP].
defines : [?DistrVal])

(abs-exp-desc
empty)

{

abs-gen-desc
empty

If-Stmt
abs-gen-desc empty
abs-exp-desc empty

Then
{

abs-gen-desc
empty

Assignment-Stmt
abs-gen-desc

defines [?DistrVal];
*-Stmt

abs-gen-desc
empty

};

If-Stmt
abs-gen-desc empty
abs-exp-desc empty

Then
Assignment-Stmt

abs-gen-desc
empty;

*-Stmt
abs-gen-desc

uses [?TrP]
}
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Exampl" of n~porf.,·d conapf. in.<f.llnf.ill! ion

do {
if (!(distTested[idx = TrP->Distrldx])) {

DistrVal[idx] = EvalDistr(kOistrList[idx].obs);
distTested[idx] • TRUE;

}

if(p«contribution=TrP->Prob+DistrVal[idx]))
p = contribution;

TrP++;
} vhile(++i < *nextHix);
*mixTested = TRUE;
mix->Value = p;

Subject System: Peature Extmctor

1:?1

•

Concept description
Check the energy level and if is lcss than the current minimum update the

minimum; also if its lcss than a certain fil ter value replace the current thrcshold
\Vith this filter value.

III
Assignment-Stmt

abs-gen-desc
uses: [?enertmp];

If-Stmt
abs-gen-desc empty
abs-exp-desc empty

Then
Assignment-Stmt

abs-gen-desc
defines : [?enertmp];

If-Stmt
abs-gen-desc empty
abs-exp-desc

keyvords : [?enertmp]
Then
{

abs-gen-desc
empty

*-S=
abs-gen-desc

empty
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}

Examplc of reportcd concept in"tantiatioTl

122

•

enertmp /- MelWeight[j);
if (enertmp < min_energy) enertmp = min_energy;
if (enertmp < SilFilt[j) ) {

fprintf(stderr."REPLACING (1) 7.f vith threshold 7.f\n".enertmp.SilFilt[j);
FiltEnergy[j) - SilFilt[j);

}

Subject System : CLIPS

Concept description
Check the value of a pointer and if it is NULL then adjust the menu and code

variables.

III
If-Stmt

abs-gen-desc empty
abs-exp-desc

keyvords : [eptr)
Then
{

abs-gen-des~

empty
·-Stmt

abs-gen-desc
empty

If-Stmt
abs-gen-desc empty
abs-exp-desc

keyvords : [lptr)
Then
{

abs-gen-desc
empty

·-Stmt
abs-gen-desc

uses [lptr)
};

·-Stmt
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abs-gen-desc
empty

}

III

Example of reported COIlccl,t in.,tantiation

if (eptr == NULL)
{

.code = ND_TDPIC;
if (lptr->curT_menu != NULL)

{

*menu = lptr->curT_menu->name;
return(lptr->curT_menu->offset);

}

return(-l);
}

Subject System: Tcsh

Concept description
Part of the prompt printing code.

As"ignment-Stmt
abs-gen-desc

empty;
Iterative-Stmt

(abs-gen-desc
empty)

(abs-exp-desc
keyvords [vdp,vord)

{

abs-gen-desc
empty

·-Stmt
abs-gen-desc

empty
Assignment-Stmt

abs-gen-desc
uses : [vdp ,hp] ,
defines : [nev,prev ,next] ;

·-Stmt
abs-gen-desc
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empty;
Assignment-Stmt

abs-gen-desc
defines

*-Stmt
abs-gen-desc

empty

["dp ,next] ;

•

};
Assignment-Stmt

abs-gen-desc
uses : ["dp] ,
defines : [hp,next]

Example of reported concept instantiation

"dp - hp;
do {

register struct "ordent *ne,,;

ne" - (struct "ordent .) xmalloc«size_t) sizeof(."dp));
ne"->,,ord - 0;
ne,,->prev - "dp;
ne,,->next - hp;
"dp->next - nev;
"dp - ne,,;
"dp->vord - vord();

} vhile (vdp->"ord[O] !- '\n');
hp->prev - "dp;
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A recognition example

A full blown recognition e.'\(ample is presented in the following paragraphs in order

to clarify the process presented in chapter 5. Consider the following code segment

description :

The above query is used to locate an assignment statement that defines a variable

called "Features", followed by an iterative statement which uses the keyword-variable

[Features];

[Features.CosTable.FiltEnergy]

[Control] )
{

*-Stmt
abs-gen-desc

empty
Assignment-Stmt

abs-gen-desc
uses :

III
Assignment-Stmt

abs-gen-desc
defines :

Iterative-Stmt
(abs-exp-desc

keyvords

Ql
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Ql0
Qll
Q12
Q13
Q14
Q15 }
Q16 III

•
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"Control" in its condition. The iterative statement should have a block in its body.

Inside the block there should be at least one statement which would be an assignment

that uses three variables: namely "Featurcs", "CosTable" and ·'FiltEnergy". The

assignlllent statement should be the last statement in the block and can be preceded

by zero or more other statements.

Ci"en the query described. an APl\:! is formed (sce figure C.l). There are sorne

interesting issues in the creation of the AP~I; both the Iterative statement and the

Block statement arc composite objects 50 sub-APMs are created for each one of them,

as a result recognition will be possible through recursÏ\'e calls of certain functions for

each APl\:!.

O.16S~ ~I.ASUENTI1'<EL

Figure C.I: Resulting APM.

Locating candidate starting points is the initial step of the code segment local­

ization algorithm. Possible starting points for the given query are ail the assign­

ments statements in the code. For e\"cry possible starting point a cali to the per­

jonn..pattern-match funetion occurs.

We used this query on the Feature Extroctor and one possible result was the

following piece of code.
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Cl Features[i + n] .PM_mel[j] = 0.0; Jo try here oJ

C2 for (k = 0; k < Control.sa_nfilt; k++)

C3 {

C4 Features[i + n].PM_mel[j] += (CosTable[j][k] 0 FiltEnergy[k]);

CS }

1·,-- ,

•

\Ve will use this piece of code to explain th,' loc.ùization al~orithlll. TIll' loealiza­

tion process starts by considering the acti\"C state in the :\P~I and th,' acti\"l' "od,'

in the source code :\ST (Tc). The first state in the :\P~1. the .-I.<.<ig1l711''7.t Stat.'

described in !ines Q2 to Q4 in the query, will be comparcd with the first statelllent

in the AST; !ine Cl in the code. Initially we perform the thrce step check to ensure

that a comparison is possible. Statement type compatibility, Illetrics disuulce and

specific features are compared. Type compatibility is successful. metrics and specific

features are not checked as they are not specified in the query. :\ similarity lIIeasurc

is subsequently computed using formula (6) introduced in chapter 4. Assuming that

the statement in the code (line Cl) defines two variable names (Feature.. and PM_meC)

then:

Po ( CO l' ) _ l ~ card(.4bstractFeaturej.n n CodeFeature;,n) l 0 ­
COMP ':>Cl ."1Q' - -.L.- =- = .a

• V n=l card(.il.bstractFeaturej,n U CodeFeature;,n) 2

The value of v is one because only one feature is specified (i.e. variable names

defined). To ca1culate the final probability to be atU1ched to the transition for the

First Sentine! to the Assignment Statement in the APM, the similarity measure ca1cu­

lated is multiplied by the probability of statement type compatibility specified in the

SCM. Both statements are of the same simple type (Assignment) 50 this probability

is 1. Finally the product is multiplied by the maximum probability in the incoming
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transitions of thc prcvious statc in thc AP"-'!. Thc prc\'ious statc in this casc is thc

First Sentine! so this probability is again 1. As a result thc o\'crall similarity mcasurc

attachcd to thc first transition in the APl\{ is 0.5 . The formula just described is :

Where Pt is the transition probability, PSCM is the static probability given by

the static model based on statement type criteria and PMIP is the ma." incoming

probability attached in a transition to the previous state in the APM.

The ne.''i:t active state in the APM is the Iterative Statement state and the ne."t

active state in the code's AST corresponds to the For Statement in line C2. Type

compatibility, metric distance and specifie feature checks are ail succcssful so the

calculation of the similarity measure can proceed. The Iterative Statement is a com­

posite statement and in order to calculate its total similarity measure we first calculate

the similarity measure of its body by calling recursively the perform..pattern..match

function.

The active states now are: the Block Statement state in the APM and the Block

Statement state in the AST. The three initial checks are again succcssful and the

Block Statement being a composite statement causes a second recursive call to the

perform..pattern..match function in order to calculate the similarity measure for the

Block Statement.

From the APM we see that possible active states.are now both the "'-Statement

state and the Assignment Statement. The active code is the node in the Tc AST

corrcsponding to the assignment in line C4. Applying the three step check for the

'"-Statementand then calculating the similarity measure yields a transition probability

equal to one. A transition probability equalto one is calculated for the second active

state (i.e. the Assignment Statement too assuming that the corresponding node in

the Tc AST uses only the variables named "Features", "CosTable", and "FiIîEnergy".
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The active states in the APM for the ncxt localizat.ion st.ep arc:

1. the "'_Statement state (previous active state: "'_Slatemenl st.at.e ).

2. the Assignment Statement (previous active state: "'_Statcmcnt statc ) and

3. the Last Sentinel state ((previous active state: Assignmcnt Statcmcnt).

129

•

In the code there is no active state, as a result the !irst two possibilities (i.e.

the '"-8tatement and Assignment Statement fail the initial thrcc step check. On the

contrary the last case Last Sentinel is successful and the maximum probability from

the incoming transitions 1.0 the pre.ious active state (i.e. the Assignment Statcment)

is assigned 1.0 the transition 1.0 the Last Sentinel state.

The similarity measure calculated for the body of the Black Statement is equal

1.0 the transition probability 1.0 the Last Sentinel and is returned as the result of the

recursive cali 1.0 the perform..pattern..match function. Using formula (i) for the Black

Statement we have:

Pt =PCOMP(SC3IAQs) • PSCM • PM1P = 1· 1 . 1 = 1

This transition probability is again assigned 1.0 the transition 1.0 the Last Sentine!

state in the second sub-APM and then passed back as the result of the recursive cali

1.0 the perform..pattern..match function for the Iterative Statement. Formula (i) for

the Iterative Statement now looks as follows :

Pt = PCOMP(SC2IAQs) • PSCM • PM1P = 1 ·0.33·0.5 = 0.165

The probability given by the StatiC Model (SCM) is 0.33 (see figure 4.4) and the

previons maximum incoming transition probability is the one calculated for the first

Assignment Statement.
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A'isignmc:nt

Q12·Q14

• Statcment

Q9-QII

Black Slalement

Q8-Q15

•
•
•

•

llel:ltive Slalemenl -

~
• • •Q5-Q15 ,

1

, 0.33

Assignment °2~L • • • •,
Q2-Q4 1

1
1 0.5

0 2 3 4 5 Comparison
Step

Figure C.2: Comparison steps in the Viterbi algorithm for the e.-.:ample.

Finally the calculated probability is assigned to the final transition to the Last

Sentinel state of the "outermost" APM and a successful code segment localization is

reported. The described steps are shown in figure C.2, the dashed line presents the

reported path of recognition.
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List of Abbreviations

ACL : Abstract Concept Language

AST : Abstract Synta'l( Tree

APM : Abstract Pattern Model

BNF : Backus Normal Form

CLIPS : C Language Integrated Production System

CSL : Code Segment Localizer

GUI : Graphical User Interface

HMM : Hidden Markov Model

HTML : Hyper Text Markup Language

KLOC : Kilo Lines Of Code

LOC : Lines Of Code

MLOC : Million Lines Of Code

NRC : National Research Council of Canada

REVENGE : REVerse ENGineering Environment

SCM : StatiC Model

SQL/DS : Structured Query Language/Data System

TMB : Telos Message Bus
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