An Information Retrieval Tool for
Reverse Software Engineering

Christos Magdalinos
School of Computer Science
MeGill University. Montreal

A Thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfilment of the requirements for the degree of M.Sc. in Computer Science.

Copyright © Christos Magdalinos 1996.

l & I Natonai Library

of Canada

Acquisitions and

Bibhotheque natonale
du Canada

Direction des acquisitions et

Bibhographic Services Branch des services bibliographiques

395 Wellington Street
Onawa, Ontano
K1A ONG K1A QNG

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

335, rue Wellington
Ottawa (Ontano)

Your Nie VIR rMAEIG e

Our tie oM retpnrnce

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéresseées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celleci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-19834-0

Canad'z’i

Abstract

Information retricval in large data spaces using formal. structure oriented patterns of
features has many possible applications. We developed and studied a system that can
be used to localize code segments in a program. The system is built using a generic
and extensible object oriented framework and uses the Viterbi dynamic programming
algorithm on simple Markov models to calculate a similarity measure between an
abstractly described code segment and a possible instantiation of it in the program.
The resulting system can be incorporated in a larger cooperative environment of
CASE tools and can be used during the design recovery process to perform concept

localization.

Résumé

Le retrait d’ information dans de grands espaces de données utilisant des modeles de
traits formels et orientés structure a beacoup d’ applications possibles. Nous avons
developé et étudié un systeme qui peut étre utilisé pour localiser des segments de
code dans un programme. Le svstéme cst construit utilisant un structure géndérique
ct extensible orienté-objet, et utilise 1" algorithm de programmation dynamique de
Viterbi sur de simples modeéles de Markov pour calculer une mesure de similarité
entre un segment de code décrit abstraitement et son instantiation possible dans le
programme. Le systéme resultant peut étre incorporé dans un environment coopératif
plus large d’ outils CASE et peut étre utilisé lors du processus de remise en marche

du design pour performer la localisation de concepts.

..

n

Acknowledgements

First of all I would like to thank my thesis advisor. professor Renato De Mori, for his
trust, support and advice during the period eof this work.

[am also thankful to all the members of the speech lab for their help and co-
operation. [have to explicitly express my gratitude to Charles Snow and Matteo
Contolini for their advice in crucial times. their help during the testing phase of the
system and most importantly their friendship.

I gratefully acknowledge the contribution of insightful ideas from all the people
involved in the REVENGE project.

I am also grateful to my friends Luiza and Yiannis, for providing many happy
distractions and constant encouragement.

Finally I would like to thank my friend and co-supervisor Kostas Kontogiannis
for his continuous support, guidance and help. Without his valuabie insights and
suggestions the completion of this work would not be possible.

I dedicate this work to my family and especially to my father for being a constant

inspiration throughout my life. —

iti

Contents

Abstract

Résumé

Acknowledgements

List of Figures

List of Tables

1

Introduction

1.1 Motivation ot
1.2 Goals and Objectives
1.3 Thesisoutline

Problem Description and Related Work

21 DesignRecovery.
2.1.1 Representation Methods
2.1.2 Concept to code mapping
State of the practice
Stateof theart
The REVENGE project
2.4.1 The influence of REVENGE

(RN
o o b0

Gathering System Requirements

3.1 Adoption of macroprocess

3.2 Conceptualization

33 Analysis o oo,
331 Aviewoftheproblem
332 Usecaseanalysis
3.3.3 Hardware and software requirements
3.3.4 Apalysis conclusions

iv

...............

...............

...............

...............

ooooooooooooooo

...............

i1
iii

vi

CONTENTS

4

91}

A
B
C

Framework Design and Implementation
41 Code and Query low level representations 0oL L,
4.2 Abstract Coneept Language0 oo
4.3 Main code localization algorithm
4.3.1 The SratiC Model (SCNM) 0. oo oL
4.3.2 The pattern matching process
44 Resultform
4.5 Human interaction with the svstem
4.6 Svstem architecturc L e
4.6.1 The graphical user interface 0oL
4.6.2 Thecomparisonengine v v v v v vttt
4.7 Evolution and Maintenance

.......................

Experimental Results
5.1 The Subject Systems e
3.2 Measuring performance L. 0.
3.3 Conceptsandplans

5.3.1 Hierarchical concept formation and recognition
5.4 Testing results presentation and analysis

.........

................

Conclusions
6.1 Futurework e e e e
6.2 Summary of conclusions

The Abstract Concept Language grammar
Examples of concepts

A recognition example

List of Abbreviations

Bibliography

ad
a8
Gl
6o
66
Tl
g
™

[

S1

106
106
110

112
118
125
131

131

List of Figures

2.1 The design recovery process. 0 0o oo e e i e e 9
2.2 Ariadne’s module decomposition. o000 o000 33
2.3 The svstem's architecture.o 0oL 37
3.1 The macro development process. . .« .« . . v v v v e e v et s e 11
3.2 General viewof thesystem.o oo o oo a1
4.1 Mainsystemelassdesign. oL 39
42 TheCSL Module. ittt it 62
4.3 ExampleT,and T, ASTs. it 64
4.4 Part of the SCM describing the Iterative Statement “decomposition™. 66
4.5 Example of dynamically created APM., 68
4.6 Generic architectural view of thesystem. 76
4.7 Simplified interaction diagram for the Pattern Match Engine class. . . 80
4.8 Simplified system interaction diagram. 82
5.1 Precision - Average Similarity Measure Diagrams. 97
5.2 Retrieved Concept Instantiations - Weight Factors Diagrams. 99
5.3 Retrieved Concept Instantiations - Weight Factors Diagrams. 100
5.4 Precision - Query Weight Diagrams. 101
5.5 Precision - Query Weight Diagrams. 102
5.6 Precision - Recall Diagrams. e 103
5.7 The Graphical User Interface. e e e e e e e e 105
Cl Resulting APM.ttt it 126
C.2 Comparison steps in the Viterbi algorithm for the example. 130

vi

List of Tables

4.1 MNodule sizes.

5.1 Physical size of subject system and their intermediate representations 86
5.2 Timestatistics (part I).. oL o0 L 88
3.3 Time statistics (part II). o o 0L 88
34 Timestatistics (part III). 89
Al ACLsReserved Words 1} 115
A2 ACLsReserved Words [II] 116
A3 ACL'sReserved Words [III] 17

Chapter 1

Introduction

The time required to grasp the nature or the meaning of a newly created human
artifact, given some description of it, grows with the artifact’s complexity and the
quality of its description. In our days human artifacts tend to be extremely complex,
and although there might not be lack of information describing them, comprehending
such products is always a difficuit task.

Information systems, and computer programs specifically, are among the most
intricate products one can come across today. To understand how such systems
function one has to recapture the _dcﬁign and decipher the requirements actually
satisfied and implemented by the subject svstem.

In order to comprehend how a program works three actions can be taken by an
analyst: read about it (e.g. read documentation); inspect the source code or run it
(e.g. watch execution, get trace data). Documentation is rarely excellent; in most
cases it simply does not exist or is inadequate and misleading. Studying the dynamic
behavior of an executing program can be useful but unfortunately is not always
possible. That leaves the source code as the primary and sole trustworthy source of

information. The investigation process which the analyst has to undertake is akin to

. CHAPTER 1. INTRODUCTION 2

idea processing 115, The goal is to move from a chaotie colleetion of purelated wdeas
to an integrated, orderly interpretation of these deas and their interconnections.

Nowadays. one of the main obstacles for an analvst i the size of the souree code.
For successful systems. developed and enhanced throngh the vears, the size is often
expressed in millions of lines. The need for tools which ean assist the analvst in this
non trivial task is apparent.

This report describes our work creating a framework that can be used to build
tools capable of retrieving information from large data spaces by comparing, for-
mal, structure oriented patterns of features: partial as well as complete matches are
detected. The described framework was used to develop a system which focuses on
source code for a specific programming language (namely C). The resulting svstem can
be integrated in a larger cooperative reverse engineering environment (REVENGE
[21]) consisting of various powerful CASE tools. A possible application of the sys-
tem, when the input is source code in a programming language, is aiding software

engineers to recapture and understand the design of a program.

1.1 Motivation

Program comprehension is an every day task for all programmers. Understanding
a piece of code can be a critical subtask of debugging, modifving or simply getting
familiar with a system. Reverse engineering is a supporting technology for program

understanding and can be defined as the process of analyzing a subject system to :

¢ identify the systems components and their interrelationships,

e create representations of the system in another form at a higher level of cb-

straction [13].

The reverse engineering process involves extracting design artifacts and bunilding

. or synthesizing abstractions that are less implementation dependent from a subject

CHAPTER 1. INTRODUCTION 3

svsteni: it is a process of examination not a process of replication or change [13, 62).
Systems that we do not know how to cope with but that are vital to an organiza-
tion are called legacy svstems [2]. Legacy systems represent years of accumulated
experience and knowledge. Program understanding, and its subtask design recovery,
become major maintenance activities when dealing with unstructured legacy systems.

Studics on how expert programmers remember code show they “chunk” code into
meaningful program segments and then mentally organize the chunks based on the
functional purpose of the code [65]. These chunks are often called mental plans,
clichés or concepts. Concepts'a.re implemented by pieces of code consisting of a set
of program statements. We will refer to these pieces of code as code segments.

In other words the analyst uses his or her programming knowledge to recog-
nize high level concepts. Typically this knowledge includes stereotyped code pat-
terns of common programming strategies, data structures and algorithms. Using this
heuristic-based know!ledge the analyst skips trivial parts and looks only for things he
deems important. As a result a functional model of the program is created and used
to guide maintenance activities.

Capturing knowledge effectively for the maintenance task is an open theoretic
problem. It is our belief that design recovery can not be fully automated. Whatever
substitute for a human maintainer, during the design recovery process, has been
proposed is simply not as effective. This observation led us to focus our research in
creating tools capable of assisting the maintainer in his task interactively.

The system described in this document can be considered as a part of a hybrid
design recovery system. Initially the analyst supplies an abstract description of a
code segment, which implements a design concept, to the system which in turn,
after exhaustive code analysis, returns all possible locations of this segment in the
source code. Partial match is allowed and for every discovered location, a measure of

the “distance” between the reported implementation of the concept and the segment

-

CHAPTER 1. INTRODUCTION 1

description, is also calculated and reported. The maintainer can subsequently inspect
the results and if necessary refine the concept’s description and fine tune the svstem

in order to achieve improved performance.

1.2 Goals and Objectives

The basic goal of this research is to evolve Ariadne, a prototype system built for the
REVENGE project [21] which detects programming patterns. Ultimately the result
of this effort is the creation of a generic framework which could be subsequently used
to extend REVENGE. Therefore our system shares a number of common features
with Ariadne, the most significant ones are:

o the same core algorithm using Markov Models and the Viterbi dynamic pro-

gramming algorithm to calculate the best alignment between two code seg-
ments,

¢ the same schema for intermediate code representation,

¢ the capability of being integrated in the cooperative environment of CASE tools
developed for the REVENGE project,

o a subset of the abstract language introduced in the prototype to describe code
segments and

it focuses on the same target language (C).

On the other hand the new system is significantly different from its predecessor
in the following aspects:

it is implemented in a different programming language using a new design,

it is platform independent,

it has a flexible and intuitive user interface,

it uses different input source and representation,

it is extensible and easy to maintain and finally

CHAPTER 1. INTRODUCTION 3

e its design can be reused to handle source code from different languages.

It was our belief that the algorithm introduced in the prototype could be the
heart of a generic, reusable framework for information retrieval tools. Hence design
recovery is one of possibly many other tasks (i.e. simple code localization, pattern
matching based on a sct of formally described features) depending on the target
language, where the framework can be used. For this reason we consider the system
as an information retrieval tool and not as a specialized design recovery tool. As a
result the main objective of this work is the creation of such a generalized, reusable
and extensible framework.

While building the system and writing this document the prototype build for
the REVENGE project was still undergoing testing as well as significant changes
and enhancements, because of this an evaluation based on quantitative or qualitative
comparisons of the two tools was not possible. We do not claim to have built a better
or more powerful system in respect to abstract language abilities, we can safely say
though that the new system is more generic and flexible than its prototype.

The theoretical background, presented in chapter four, is essentially the one de-
scribed in [38, 25, 26]. Presentation improvements of theoretical issues were made
based on suggestions of the supervisors of this thesis.

The system built using the resulting framework focuses on code segment localiza-
tion and was tested with several programs ranging from few hundred lines to several
thousand lines. We were able to describe code segments implementing both generic
and specific concepts and localize them in the code. During the experimentation
phase we were also able to realize a number of possible improvements that are re-

ported in the future work section in the chapter six.

CHAPTER 1. INTRODUCTION G

1.8 Thesis outline

In the next chapter we claborate on design recovery process issues and present related
svstems both commercial and experimental. At the end of the chapter there is a brief
overview of the cooperative environment created for the REVENGE project. Chap-
ters three and four contain detailed description of the svstem development process
and its architecture. In chapter three we focus on system analysis issues and in chap-
ter four on design and implementation issues. Chapter five presents our experimental
results. Chapter six discusses ideas for future work and presents a summary of our
conclusions. Finally appendix A presents a simplified description of the Abstract
Concept Language (ACL) we use in Backus Normal Form (BNF), appendix B con-
tains a few examples of concepts used in our experiments and appendix C presents a

detailed example of concept localization using the described framework.

Chapter 2

Problem Description and Related
Work

Much of the software used today in critical tasks is 10 to 15 vears old [47]. Main-
taining these usually successful systems involves a collection of puzzle-solving skills.
It includes getting tools to do the software process right and being able to deal with
unknown software and unmaintainable systems. Software maintenance practices ac-
count for fifty to ninety per cent of total life-cycle costs[13] and around two per cent
of the gross national product in U.S according to a study published in 1990 [36].

Reverse engineering was the answer of the computer science community to the
high demand for a systematic approach to solve such problems. Chikofsky and Cross
in their influential work [13] adopt M.F.Rekoff’s definition of reverse engineering as
“the process of developing a set of specifications for a complex hardware system by
an olderly examination of specimens of that system”. The subject system is software
and the objective is to gain sufficient design-level understanding to aid maintenance,
strengthen enhancement or support replacement of the system.

We can divide reverse engineering in two major activities :

1. Redocumentation and

-1

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 8

2. Design recovery.

Redocumentation is the process of creating alternative multiple views of the program
in order to capture certain characteristics of the subject system. Design recovery fo-
cuses on creating abstractions in order to impose a “meaning”™ on a program segment.

Although there might be a slight disagreement in terminology it is widely accepted
that reverse engineering is primarily a process of examination and not a process of
changing or enhancing the subject system [13, 62]. The process of introducing new
functionality or restructuring the subject system is called functional reengineering or
simply reengincering.

Our system is a pure reverse enginecring tool designed to aid the maintainer in
his task to retrieve information in order to decipher designs from finished products.
Later the analyst might of course use the acquired knowledge to reengineer the subject
system while in the maintenance process. In the next sections of this chapter we will

present the basic concepts in design recovery and work of other researchers in the
field.

2.1 Design Recovery

Design recovery can be defined as a subset of reverse engineering in which domain
knowledge, external info and deduction with a sort of fuzzy reasoning arc added to
the observations of the subject system to identify meaningful higher level abstractions
beyond those obtained directly by examining the system itself [13]. Biggerstaff adds
that “design recovery recreates design abstractions from a combination of code, exist-
ing design documentation (if available), personal experience and general knowledge
about problem and application domains ...” . Using design recovery is some times the
only way to salvage whatever we can from existing systems, it lets us get a handle

of the system when we do not understand how they work or how their individual

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 9

programs interact as a system.

The initial input for most design recovery systems is source code in an enhanced
abstracted form. We call enhanced code, source code adorned with hints related to the
code functionality. These adornments may have the form of comments, control and
data flow information, annotations in the source code intermediate representation,
1/O commands or just identation. Using this input the analyst should try to construct
a higher level description of the program. The process is usually bottom up and
incremental, the analyst detects low level constructs and replaces them with their

high-level counterparts.

Source Code
Identificd
module and Recovered TD:D
data abstraction design Abstraction-to- .|
Source Code groupings abstractions code mappings™ % =

Q0| |00 |@0el g
e O O = e

!

Informal Concepts Design
and relations Rational

Cootrol Flow

Figure 2.1: The design recovery process.

Given the actual program source code an analyst first looks for large-scale orga-
nizational structures such as the subsystem structure and important data structures.
Useful design structures are also recovered and expressed in abstracted forms such

as design rationale, module structures and informal diagrams,concepts and relations.

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 10

The next step in the process is the population of reuse and recovery libraries in order
to facilitate further productive use of the recovered design components. In this step
all recognized components go threugh a generalization process so they can be made
available to a wider spectrumn of applications. These generalized concepts are then
stored in a library forming a domain model. Finally the abstract design components
in the domain model become the starting point for discovering candidate realizations
of themselves in a new system’s code. These basic steps of the design recovery process
are shown in figure 2.1.

The most common methods used in program understanding are data and controi
flow graph analysis.

Data flow analysis describes how information propagates from statement to state-
ment and module to module. Control flow describes the sequence in which statements
are executed and how control is passed from one module to the other, Usually the
product of control flow analysis is a directed graph with annotations. Language
analyzers are used to recognize language constructs which implement data flow [31].

The ability to view the subject system from different perspectives is onc of the
key objectives of reengineering [13]. An analyst can view the program from different
levels of detail [30):

1. the tmplementation level view abstracts away a program’s language and im-

plementation specific features, typically an Abstract Syntax Tree (AST) and a
symbol table of program tokens are the produced artifacts,

2. the structure level view abstracts a program’s language dependent details to
reveal its structure from different perspectives, the result is an explicit repre-
sentation of dependencies among program components,

3. the function level view relates pieces of the code to their functions to reveal the
logical relations among them and finally

4. the domain level view further abstracts the function level view by replacing its
algorithmic nature with concepts specific to the application domain,

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 11

All the resulting views are usually presented to the analvst as a graph. Graphs
have been adopted as an intuitive and sound mathematical formalism to represent. the
structure of a computer program. Graph complexity can be a metric for the main-
tainability of the code. Prior experience using graphs in formal languages. compilers

and parsers was used and several techniques were “ported” in the field [38, 10. 23].

2.1.1 Representation Methods

In order to move from the physical implementation of a system to high-level abstrac-
tions of its modules and the logical, implementation-independent, designs the analyst
must ignore all unnecessary details embodied in the initial input. The following sub-
section examines some commonly used representativn methods to achieve this task
during the first step of the design recovery process (see figure 2.1}.

The first task of the analyst is the creation of module and data abstractions. In
this section we present some of the most important solutions proposed.

Several rescarchers chose to directly divide the code to: data and methods acting
on the data, this is formally called the Data - Procedure code division. Describing
data structures can be done using tabularization [63]. For each data structure we
record its basic properties (i.e. name, position, type, length) in a table entry. Sub-
sequent use of the resulting table as an input to transitive closure algorithms can
compute data flow and variable dependencies [49]. By introducing Relationship Ma-
trices the same technique can be used to capture relationships among procedures,
constants and variables of procedures within the same module. One of the main
advantages of this approach is that matrices can be stored as tables in any relational
database. The analyst can then perform several queries on the stored data using
advanced features that database environments offer.

Another way to abstractly represent source code is by mapping each basic ian-

guage construct to an object and capture syntax as a list of attributes. This method

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 12

was introduced Das in [18] and represents code as instances of the basic language
construct classes. Auntomatic creation of objects. if a Backus Normal Form (BNF)
description of the langnage exists, was introduced in {37]. Extending the same concept
led to representations of even more complex constructs (e.g. functions or program
submodules) as objects thus allowing greater abstraction [{1. 27].

A well accepted method for representing source code is using Decomposition Hier-
archies {42]. According to this framework all single entry- single exit programs can be
represented as a structure consisting only of primitive program segments (sequence,
conditionals, loops) also called normal forms. Using an equivalence mapping one
can transform original source code to structured “code”™. Usualiy the source code
is parsed and an AST is formed, then with consecutive tree to tree transformation
we can obtain a tree in the form of a directed graph which will contain only normal
forms.

Further use of dependency analysis toois can enhance each source code represen-
tation with the necessary adorniaents for further analysis. As a result the analyst
will get several graphs showing:

e definition dependencies,

e calling dependencies,

e functional dependencies and

e data flow dependencies.

Combining the information from these analyses with one of the previously de-
scribed methods the analyst can complete the first step of the design recovery process
(see figure 2.1).

An experienced programmer can often reconstruct much of the hierarchy of a
program’s design by recognizing commonly used data structures or algorithms and
knowing how they typically implement higher level abstractions. The higher the
abstraction the easiest the understanding of the generic program structure [14, 38].

CHAPTER 2. PROBLEXN DESCRIPTION AND RELATED WORK 13

Britcher uses design languages to model programs as state machines (for data
abstraction) and cartesian functions (for function abstraction) [7]. The resulting
representation is translated in the design language providing the analyst with a pseu-
docode description of the source code. This approach is significantly different from
other approaches that use condensed code listing because of its strong mathematical
background and formality.

Presenting the user with a set of generalized control. data and call flow graphs
is another approach [43]. The level of abstraction is usually controlled by the user.
Each graph can be divided into prime subgraphs which have some basic functionality.
Data flow diagrams and structure charts are used to model the data transformation
aspect of a software system, since they deemphasize implementation details of the
problem while focusing on the logical flow of data and control [28].

Smythe [61] replaces the intermediate representation with logical comments tryving
to start deriving the meaning of small pieces of code. The next step is the recognition
of objects and object hierarchies, data are related to the procedures that operate upon
them. In the last phase application domains are mapped to objects and constraints
and system services to the user are identified (see figure 2.1).

Paul and Prakash proposed yet another approach in [51], they transform the
original source code to a set of static relations describing code features (e.g. variables
defines or used). Using this new intermediate representation the analyst can use
all the commonly defined relational operators (e.g. joins, projections) or define new
operators to aid in the analysis task he wants to perform.

Quilici [56] translates the original program into an Abstract Syntax Tree (AST)
with frames which are used to represent each program action and its relationship to
other actions. Actions are any units that the translator is capable of recognizing from
language constructs.

ASTs are one of the most popular forms of intermediate program representation.

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK B

The creation of an AST is a three step process. Initiallv the program’s souree code is
parsed using a grammar and a domain model created for the programming language of
the subject system. While parsing the code structures. corresponding to the language
basic constructs defined in its domain model. are ereated. populated and placed in a
trec like formation. The final step in the creation of an AST is adding any additional
information in the form of annotations in the nodes of the trece.

Rigi [46] uses entity relationship diagrams to represent static program relation-
ships. A specific format known as Rigi Standard Format (RSF) is used to store these
diagrams. The next step is to analyvze the resulting RSF tuples in order to create
visual images to facilitate program understanding and aid further analysis.

Abstract functional concepts can also be represented by programming plans or
clichés. Possible components of a programming plan [22, 38, 19, T1] are the building
components of an algorithm in terms of atomic program elements or other plans in
the proper sequence {event path expression) [30]. Plan definitions are translated by
a plan parser into inference rules as system’s understanding knowledge. A pattern
directed inference engine is then used for recognizing plans in a program and the whole
understanding process is recorder by a Justification Truth Maintenance System. The
effort here is the creation of a knowledge based system for program understanding.
Several interesting issues arise by this approach, defining system’s knowledge as plans,
capturing all variations of an algorithm and guarantying completeness and correctness
of the knowledge base are still major challenges.

Wills in [71] uses a graphical notation, called the Plan Calculus to facilitate un-
derstanding of complex annotated flow graphs that are used for plan description
and recognition. This approach combines control and data flow graphs and is very
descriptive but unfortunately not portable.

Hartman breaks down cliché recognition [31] to three major steps :

e a program representation or model,

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 15

e programming knowledge of standard plans. and

e search and comparison to find a plan instance.

The reader can easily see that this decomposition is equivalent to our design
recovery process breakdown (figure 2.1). Cliché recognition is thus a significant step
towards understanding the programmer’s intentions.

All the above mentioned methods rely on the existence of an expert on the subject
svstem for this second step. Evervbody will accept that the easier solution to any
problem is finding someone who knows the solution. Some claim that we are very far
from a completely automated design recovery process [3]. A possible replacement of
human experts is the existence of some knowledge base - domain mode! that could
capture this necessary expertise. Biggerstaff [3] defines the domain model as “the
knowledge base of expectations expressed as a pattern of program structures, problem
domain structures, naming conventions and so forth, which provide a framework for
the interpretation of the code™. Building such a knowledge base is a non trivial task;
it is the result of a process known as domain analysis during which information used
in developing software systems is identified, captured, structured and organized for
further use {54].

The main functionality of such a domain model is to include more information
than the analyst can find in the code alone and thus guide and assist the code
understanding process. Tools that respect the above mentioned guidelines exist and
will be briefly presented in following sections.

The end of this second process step should leave the analyst with a library of
recognized design abstractions. The next step is mapping the acquired knowledge to
the source code (see figure 2.1). The underlying assumption here is that the analyst
expects these abstractions to occur in multiple places in the code. Of course this is
not guarantied. it is perfectly valid that the only occurrence of a concept will be on

Jjust one point in the code. Never the less one thing the analyst knows a prioriis that

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK {8

his effort to locate the abstraction in the source code shonld at least vield one result

if performed in the same piece of code that was used 1o “originate”™ the abstraction,

2.1.2 Concept to code mapping

The final goal of the design recovery process is to locate the occurrences of recognized
abstractions in the source code. The task presents several challenges but certainly the
most important one is the implementation of an algorithm to compare intermediate
code representation and plan descriptions.

The ideal scenario wouid be to be able to deduce plan-source code functional-
logical equivalence. This is an undecidable problem and in reality the maost opti-
mistic result any algorithm can claim is partial recognition. The expressiveness and
the freedom provided to the user by currently used programming languages make
recognition of equivalent plans a very difficult task. Problems related to concept-to-

code matching are [58, 71]:
e syntactic variations of the same concept,
e parts of the concept might not be adjacent in the code - scattered concept,
e implementation variations,
e overlapping occurrences of a concept,
e unrecognizable code,
e variable aliasing and

e side effects.

Systems might also report incomplete together with multiple or unsuccessful
recognition results. Using domain knowledge and information, besides the source
code and the concept description, the analyst should be able to resolve ambiguities.

If not, then incomplete bindings should be produced for further study.

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 17

Comparison-matching algorithms depend on the intermediate representation used
to describe a concept. A quick look in the literature reveals a great diversity in the
intermediate representations used in design recovery system, we will just mention a
few.

The comparison algorithm in PROUST [35] matches syntax trees with syntax
tree templates. In TALUS [48] user supplied function are compared with reference
functions using heuristic similarity metrics. In CPU [40] comparison is done by
applying unification and a matching algorithm on lambda calculus expressions.

Perhaps the closest approach to the one presented in this paper is the one used
for PAT [30]; the original program is parsed and a set of independent objects (also
called events) is created and stored in a repository called : the event base. These
objects are subsequently used to recognize higher level events and function oriented
concepts using a deductive inference engine.

In the Program Recognizer [58] 2 programming plan or concept is presented as a
hierarchical graph structure composed of boxes which denote operations and tests,
and arrows which represent control and data flow. Using this framework, plan (or
cliché) recognition can be seen as a graph parsing problem which is the identification

of subgraphs inside a larger graph that represents the whole program. When a cliché
. is recognized, its subgraph is substituted by a more abstract operation - node in the
program graph thus forming an abstract and comprehensive image of the system.

For Quilici [56] programming concepts or plans are represented as data structures
with two main parts: a plan definition, which lists the attributes of the plan that are
filled in when instances of the plan are created, and a plan recognition rule, which lists
the components of the plan and the constraints on those components. An instance
of the plan is recognized in the AST, which serves as the program’s intermediate
representation, when all its components have been recognized without violating the

constraints. The diversity is obvious, more systems are described later in the state

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 18

of the art section.

An interesting issue is also the initial selection of possible candidates for com-
parison. In most systems the comparison occurs between the source code abstract
representation and a plan expressed in the same abstraction formalism (graph, AST):
in these cases a search algorithm is invoked to locate possible comparison starting
points. Bottom-up approaches usually select all possible candidates found anywhere
in the program'’s intermediate representation, while top-down approaches seck only
specific parts that can satisfy a given subgoal.

If the program and the plans are not represented using the same formalism than
hierarchical recognition control strategies are adopted. In this case complex plans are
recognized in terms of their subcomponents.

To facilitate the comparison program, decomposition can be performed to produce
program parts more likely to correspond to the plans. Program decomposition can
be performed a priori before the selection starts or dynamically based on previous

comparison results.

2.2 State of the practice

A variety of commercial tools capable of helping the analyst in his task of reverse
engineering a system are available today. In this section we will describe some well
known systems that focus on design recovery and program understanding. Most of
these tools perform data and control flow analysis of the system. The ultimate tool
for program understanding would include all the following features :

e 2 user friendly user interface,

® a local repository - knowledge base,

e several graphic editors,

e program fragment localization capabilities,

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 19

e redundant and duplicate code detection,

e dead code detection,

¢ powerful domain model browsing and editing,
e cnhanced code browsing,

o simulation capabilities,

e on-line help and

s configuration and version management.

Using a combination of several available tools an analyst can use most of these
features today.

The Software Refinery or simply Refine [39] is one of the most widely used tools in
the reverse engineering field. The package consists of three tightly integrated modules

1. a high level specification language,
2. an object oriented repository and

3. a language processing system.

There are also facilities for user interface extension. Refine currently supports four
popular programming languages : COBOL, Ada, C and Fortran. The system takes
the source code and parses it, using its language processing module. The result is an
annotated AST which is stored in the tool’s local workspace-repository. Several data
and control flow analyses are offered and various reports can be generated (i.e. coding
standards, variable and types reports). Using the specification language, which is a
Lisp dialect, the analyst can perform further queries on the repository and implement
algorithms to perform new analyses. The extensibility of the tool is one of its most
compelling features.

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 20

VIA/Center is a Viasoft [12] product and focuses on COBOL syvstems. Offered
analysis covers data structuring and relations as well as traditional control flow anal-
vsis. The results are stored in a specialized database.

Cadre technologics [12] offers a set of applications which are able to graphically
represent abstraction hierarchies and also provide statistical information about pro-
gram execution.

Design Recovery [8] is a product of Intersolv. The system can translate COBOL
code to diagrams that clarify the underlying structure. To generate the physical
models a local database of definitions is consulted and erhanced. The modecls can
be examined, altered and then reused to gencrate new code. The tool has several
other features like: dead code detection and complexity metric calculation for code
segments.

LogiCASE [66] by Logic Technologies is a CASE tool that supports the mainte-
nance and development of C programs and their corresponding detailed design. It can
be used for reverse and forward software engineering and it offers design recovery from
code as well as code generation from design. Design recovery tools transform seclected
code into a decision table. When the modification is complete, code is regenerated
from design.

The TXL Transformation System [16] developed in Queen’s University is used by
Legasys Corporation for their products [17]. Legasys focuses on legacy code analysis
and design recovery systems, with an emphasis on large-scale systems implemented
in COBOL and C. The TXL Transformation System is presented in the next section.

FULCRUM 2000 is a product by Software AG {64], it is also an extension of the
FULCRUM Workbench environment for long-term applications and design recovery.

At the Palo Alto Research Laboratories of Lockheed [44], a system called InVision
is developed. It is used to renovate software, it was created to allow companies to

modernize their legacy software assets, while incorporating contemporary data access

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 21

standards, performance, and reduced maintenance costs. At the heart of InVision is a
robust reverse engineering environment that uses object-oriented and expert system
software design recovery technology.

Imagix produces Imagix4D [33] which is a program understanding tool. Imagix
4D, helps the analyst understand software that is complex, large, or unfamiliar. The
tool provides modules for automatic exploratior and documentation of code and use
knowledge-based exploration and information visualization technologies.

Leverage Technologies [67] offers off-the-shelf tools for C, FORTRAN, Cobol,
PL/I, and Ada based on the Software Refinery system. These tools can be used
for: redocumenting and extracting design from legacy systems.

Several packages that allow smart code browsing have also been developed (Hy-
persoft [12] for COBOL and X technology [12] for C).

Other commercial systems (source [1]) are :

e Ensemble by Cadre ,

e Amdahl’s Map Tool,

e Imagix- program understanding tools for C and C++,
s MOREIRA Consulting a tool for reengineering Legacy Systems,
o Strategix Reengineering Information Systems,

e Reading CASE Services, Reverse Engineering Tools,

e ASMFLOW by Quantasm Corporation,

e Bachman Re-engineering Product Set,

e Ernst and Young Redevelopment Engineering Tool Set,
e Intercycle by Interport Software Corporation,

o PACREVERSE,

e PATHVU by XA Systems Corporation,

e re/NuSys by Scandura Intelligent Systems,

(&
Lo

. CHAPTER 2. PROBLEMN DESCRIPTION AND RELATED WORK

e pSOSystem by MasterWorks,
e RXVP by General Rescarch Corporation and the
e Sneed Tool Set.

Unfortunately detailed information about implementation issues for most of these
systems is not publicly available.

All of the above systems although powerful can not carry through the whole
task of reverse engineering a given system. Several attempts to create an integrated
environment gain support and progress on domain analysis is probably the key to
the problem. If a generic standard for an intermediate representation can be adopted
by different tools then we will be much closer to the desired solution. Currently the
analyst has to use several tools separately to achieve the results he aims for. Stepping

to more experimental approaches we find a considerably larger number of systems.

> 2.3 State of the art

A multitude of significantly different approaches have been pursued focusing on the
design recovery problem as part of the program understanding process. In this section
we present some of the most well known systems that emerged from various research
labs.

PROUST [35] can be viewed as an intelligent tutoring system for novice program-
ming students. The target language is Pascal and the user should initially create a
template describing the pattern he is looking for. PROUST uses a top-down control
strategy applied to a solution goal tree. The matching occurs between templates and
source code. Heuristics and a set of transformations are used for ordering, compari-
son, evaluation and search space minimization.

"The TXL Transformation System [16] is a general purpose source-to-source struc-
. tural transformation system. According to its developers, TXL can be used for

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 23

source code analysis and migration, to program restructuring and design recovery
tasks. Transformations are specified in the TXL programming language, a hybrid
functional-rule based language with unification, implied iteration and decp pattern
match. Each transformation specification has two components : a description of
the structures to be transformed, specified as a grammar in unrestricted ambiguous
context free BNF;and a set of structural transformation rules, specified by example
using pattern-replacement pairs. TXL has been used to transform many popular
programming languages.

Another system using knowledge-base tools for reverse engineering legacy systems
is COGEN [43]. The system tries to capture and model the expert knowledge of
software engineers in terms of conversion rules. COGEN uses an AST representation
and stores it into a deductive relational database., The data definitions are captured
in a symbol table. Queries can be entered into the database to obtain various kinds of
uscful information about the program’s structure and behavior in terms of data and
control flow analysis. To convert the program, the translation rules are applied to
restructuring the program in the database, creating new facts describing the program
in the new environment and altering the original syntax tree with new statements
added and old statements commented out

Talus [9] is another system developed for intelligent tutoring. The target language
here is LISP. The system is capable of automatic program debugging by correcting
errors in LISP programs. To perform this task the source code is compared with
correct code which has the same functionality. Comparison occurs between user sup-
plied functions ard reference functions from a library based on a heuristic similarity
measure. To locate comparison candidates the system uses a A* best first search
algorithm.

Letovsky’s system called CPU [40] represents programs as lambda calculus expres-

sions and procedural plans. The system uses rewrite rules and a bottom-up control

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 24

-~

strategy. Top-level control selects and transforms lambda caleulus sub-exprossions
applying all possible transformation rules until no more transformations are possi-
ble. Comparing candidate segments in CPU is done by applying a unification and
matching algorithm on lambda calculus expressions.

A rule based approach is also followed in the Program Analysis Tool (PAT) tmple-
mented by Harandi [30]. The heart of the recognition system is a deductive inference
engine. Initially an object oriented representation of the system is created after
parsing the original source code. Rules are then used to describe plans and higher
abstractions of objects and function oriented concepts.

Object oriented representations of code arc also used in a number of systems
[27, 41, 18]. The SAMS system [37], for example is actually implemented on top of
an object oriented DBMS.

Systems that use an AST intermediate representation are the RECORDER (10}
and PECAN [57]. PECAN is a smart code browsing system. Source code is parsed
and an AST is created the source may be viewed in a number of different ways. The
code itself may be pretty-printed with multiple fonts, as a structured flowchart, or as
a module interconnection diagram.

Using graphs as the main representation formalism led several researchers to de-
velop systems that are actually comparing graphs. The following six systems fall in
this category.

In UNPROG [32], the abstractions used have the form of control and data flow
graphs. The user specifies a programming plan in the same terms and then the
source code control and data flow relations are compared with the programming
plan’s control and data flow graph relations. If we can prove that a subset relation
exists then the user specified plan is recognized.

Quilici’s system [56] tries to match structurally frame séhema representations of-
C code. If the match is successful then data flow graphs are compared. Candidate

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 25

plans are sclected based on an indexing scheme. After a successful match semantic
abstractions occur by substituting the selected frame with the abstracted one. The
process continues until no further abstractions can be generated.

In [20] a design recovery prototype is described. The system works on a subset
of Modula 2 and uses graphs. The original code is parsed into an intermediate form
called Program Analysis Graph (PAG). Further analysis of the PAG with the aid of
a knowledge basc lcads to a transformation into another more abstract PAG. Finally,
transiation of this resulting abstract PAG into the user required form occurs. This
form can be a program in the original or in another programming language, or even
rcadable documentation.

Influential work on graph parsing is done also in the Programmer’s Apprentice
Project [58], the Program Recognizer [70] and their successor GRASP [71]. Attributed
graphs are used to represent programs and thus subgraphs represent programming
plans. The system performs bottom-up graph parsing using a context-free graph
grammar representing standard transformations between standard plans and seman-
tic abstractions for already recognized plan instances. Parsing checks all possible
subgraphs thus all possible interpretations can be found and be represented in a lat-
tice. The actual comparison is performed by matching subgraphs and by checking
constraints involving control dependencies and other program attributes. All three
last mentioned system depend on analysis of the low-level formal details and therefore
emphasize a full and exact match for recognition. The computational load required
suggests that scaling up to industrial sizes will be quite difficult.

The work by Arango [23] has solved the scaling up problem but can’t create
abstractions as generic as other systems (see Desire). Arango’s system (Draco) focuses
on the structure of the transformations and the operations on transformations trying
to completely automate the recovery process. To achieve this all informal information

is completely ignored.

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 26

Desire [3} works on C code and implements several of the ideas presented in the
theoretical part of this chapter. In this svstem C code is parsed and several parse
trees are produced. A set of postprocessors use these parse trees and a dictionary
containing higher level information about functions. files and global data is produeed.
The next step is the creation of a plane-text web by postprocessing the abstractions,
The analyst can then write Prolog statements in order to extract information from
the stored abstractions.

The SCRUPLE [51](Source Code Retrieval Using Pattern LanguagEs) system
developed in the university of Mitchigan is based on a pattern query language. The
analyst uses this language to specify structural patterns of code. The degree of
precision can be adjusted be using different language mechanisms. The user specified
pattern is checked against the parsed source code which has the form of an AST. To
allow users to express more powerful queries a source code algebra is defined. Queries
can thus be optimized using algebraic transformations rules and heuristics.

However powerful analyses all these systems can perform none can claim cfficiently
solving the main problem which is design recovery. Corbi states that automatically
recapturing a design from source code is not considered feasible task yet [15]. The
obvious question now is how can we get the most out of the existing tools. The
answer is integration.

Tool integration and increased interoperability of tools represent major current
trends. This is evident from the extensive efforts toward improved integration be-
tween front-end tools and code level tools. Integration will enable more adequate
support for both forward and reverse engineering[60]. The next section describes our
experience trying to build an integrated environment and how it relates to the work

described in this report.

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 27

2.4 The REVENGE project

Manny Lehman observes that any software must continually change or become less
usefu!l 1n the real world. This was exactly the problem with the Structured Query
Language/Data System or simply SQL/DS. SQL/DS is a large relational database
management system that has evolved since 1976. Based on a research prototype after
numerous revisions it was first released by IBM in 1982. The system was originally
written in PL/AS and then migrated to PL/X. PL/AS is an IBM proprietary system
programming language. The system now consists of more than three Million Lines Of
Code (MLOC). The target of the REVENGE project was to use several complemen-
tary reverse engineering technologies on this real world system to help its evolution
and maintenance.

During evolution inevitably the structure of a software system will degrade unless
remedial action is regularly taken. The problem is that for most legacy systems no
remedial action is ever taken and as a result the system after several evolution cycles
becomes completely unstructured [2].

Some of the initial goals of the project were:

e detecting uninitialized data, pointer errors and memory leaks,

e detecting data tvpe mismatches,

¢ finding incomplete uses of record fields,

o finding similar code fragments,

» localizing algorithmic plans,

s recognizing inefficient or high complexity code,

¢ predicting the impact of change and

e creating a framework for the integration of the resulting systems.

The main constraints were ensuring code correctness and performance enhance-

ment.

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 28

-

System components

To achieve the given goals six systems were selected or developed by different teams.

1. SCRUPLE from university of Mitchigan,

[
H

Rigi from university of Victoria.

Ariadne from McGill university.

@

Telos from university of Toronto,

.Ul

a filtering detection system from IBM Toronto Labs and

6. a text redundancy recognition system from NRC.

All tools were tested using C programs as subject systems but should also be able
to handle PL/AS code with little or no modification.

The IBM system [11] performs defect filtering using the commercial product Soft-
ware Refinery.

The NRC system [34] identifies the exact repetition of text in huge source code.
The approach works by fingerprinting an appropriate subset of substrings in the
source text. A fingerprint is a shorter form of the original substring and leads to
more efficient comparisons and faster redundancy searches.

The three first systems focus on pattern matching approaches of the subject sys-
tem in different levels. SCRUPLE was described in a previous section.

Rigi {46] was used to assist the system’s redocumentation. The source code is
parsed and the resulting artifacts are stored in a local repository. Using these arti-
facts we can create a flat flow-resource graph of the system. This first fully automated
phase is followed by a semiautomated phase in which the analyst explores interac-
tively the system using his/her pattern recognition skills and language-independent
subsystem composition techniques provided by Rigi. The result is the creation of

subsystem hierarchies. A multitude of views of these hierarchies can then be created.

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 29

Evaluation and understanding of these views can aid efficient redocumentation of the
subject system.

The repository developed in the university of Toronto is called Telos {24]. The
group in Toronto was in charge of developing an information schema - domain medel
that could be “understood™ and used by all the tools involved in the project. The
repository using this schema should be able to save all the artifacts of the various
analyses performed by the cooperating tools. To minimize the workload for this
global repository each tool only stores in it, data required by other tools. The rest
of the analysis information resides in the each tool’s local workspace ard can be sent
to the repository if requested.

Ariadne [38, 25] tries to address three important problems:

1. produce intermediate representations able to capture structural and semantic

aspects of the system,

X

automatically locate similar fragments of code (code cloning detection) and
3. partial recognition of programming plans or intents in the source code.

As we saw in previous sections a variety of intermediate representations exists.
Ariadne uses an object oriented annotated AST. The AST is created after source code
parsing using the Software Refinery’s language processing module enhanced with our
domain model and grammar for the C language. The resulting AST is annotated with
important information computed by several data and control flow analyses. Every

node in the AST is adorned, among other information, with :
e source code location,

o links between identifier references and corresponding variable and data defini-
tions,

e variables used and set,

e functions called,

. CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK RiY

e variable scope information,
» input/output operations.

e a series of complexity and quality metrics (D-Complexity. fan-out. McCabe,
Henry-Kafura's information flow quality and Albrecht’s function point quality
metric)

In large legacy systems code duplication is a common problem. Prograummers
trving to extend the system’s functionality tend to “cut and paste™ pieces of code
in order to reuse it somewhere else in the system. As a result code modularity is
destroyed and existing bugs in the initial code are replicated. If the code remains
unchanged then the NRC tool can trace it but if even slight changes are made, the
fingerprint approach is no longer cffective. The task of comparing functionality of two
code fragments is still an open theoretical issue. However applying heuristic rules can
provide us with an initial answer which the analyst is subsequently called to validate,
The assumption we made for our heuristics is that similar pieces of code have similar
feature and metric values.

To implement our solution [26] for the second task (localization of similar code
fragments) the annotations in the enhanced AST were used. The metrics used as

heuristics are:

1. fan-out which is the number of functions called from a source segment,
2. the ratio of input - output variables to the fan out,

3. McCabe’s cyclomatic complexity,

4. Albrecht’s Function Point quality metric and

5. Henry-Kafura's information flow quality metric.

Comparisons are made using the Euclidean distance defined in the five-dimensional
metric space and clustering thresholds defined on each individual measure axis. Fur-

ther grouping of code segments based on criteria such as shared data references and
. data bindings is also performed.

)

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 31

The final task was plan localization, the solution implemented in this project was
the inspiration for the work reported in this document. As we saw earlier graph based
solutions to this problem result in computationally expensive and complex algorithms.
On the other hand algorithms using plain textual-lexical matching fail when plans are
delocalized or contain “noise” in the form of irrelevant statements. Also algorithms
in the last category cannot possibly capture any behavioral information about the
system.

We believe that a fully automatic approach based on an incorporated library is not
fit for our task. Having to reengineer proprietary code one does not have the luxury
of access to a vast collection of plans in this language. Our algorithm encourages
human assistance. Plans have the form of portions of the annotated AST and are
expressed in a rather powerful langnage we call Abstract Concept Language (ACL).
More details about our approach will be given in a following section.

Figure 2.2 shows a high level module decomposition of Ariadne. Main system
activities are depicted as separate modules, each module is described briefly in the
following paragraphs.

A typical session using Ariadne would be the following: the user chooses the piece
of C code he is interested in analyzing and then parses it using the built-in parsing
facilities of Refine in order to create an object-oriented AST which will be used for
further ana.lyms Refine provides a standard domain model for the C language which
is extensible and can be augmented to include any additional information the analyst
deems necessary.

The first stép after the creation of the AST is the calculation of a series of metrics
which is done by the Metrics Calculation Module. Metrics are used in almost all
further analysis. For example the user can identify similar code fragments (a156 known

as clones), this is possible' by comparing metric distances (absolute or euclidean) of

candidate code fragments. Using metrics which are actual real numbers instead of

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 32

vectors of features sirnplifies and accelerates the whole process: code cloning detection
functions are part of Code Cloning Detection Module. Several dataflow analyses of
the target piece of code are also possible (i.c. common references, data bindings) as
parts of the Dataflow Analyses Module.

Another separate module is the one that constitutes the prototype based on which
we developed our system. The Programming Plan Recognition Module focuses on
identifying code abstractions described in an Abstract Concept Language (ACL) in C
programs. This module is based on the theoretical background described in chapter
four.

Finally Ariadne has the ability of storing analyses results (and any other object
in its object-oriented AST) in a centralised object-oriented repository that can be
accessed by other cooperating tools. Communication with the repository is possible
through two modules that handle the downloading and uploading of the AST as well
as other synchronization issues.

Implementing a way of integrating the various involved tools was a core require-
ment of the project. In CASCON’95, a conference organized by IBM’s Center for
Advanced Studies laboratory in Toronto, we demonstrated the final product and
showed the implemented capabilities. In the next few paragraphs we will try to
present the environment’s architecture and analyze how we implemented two way

tool communication.

Making tool interaction possible

Integrating different reverse-engineering tools to supply the analyst with enhanced
functionality is a major trend in the field. The key issue, in this effort to create such
an environment, is the adoption of some common source code representation to‘ serve
as a communication standard. For us this standard was the global schema used by
the repository. The basic requirements for the global schema are :

. CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 33

Aradne ..
! Refine Extensions — '
v LT =" Code Cloning :
1
1 Detection AST :
! | Domain
. Model Module Download/Upload |
: Module :
: Metrics :
X Calculation :
' Module ,
1 1
: N Communication | |
: Source ll:;'ogrammmg Modul :
. an ule t
| Code Recognition < '
! | Parsing Module | Module =7 \
I " 1
————————————————————————————— h e L L L L T
t . l---o---
\‘ q
“
G 8 Y
A Y -
Mediastor #5773,
Source #
Code Repository
{Telos)

=0~ :Flow of information in
s-expression format

Figure 2.2: Ariadne’s module decomposition.

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 34

e completeness and

o flexibility - extensibility.

The schema should be able to capture artifacts from different cooperating tools.
The main strategy to achieve these goals was creating object metaclasses and classes
for all common objects in different tools as well as specialized classes for tool depen-
dent objects. For example both Rigi and Ariadne can have the notion of a function
and thus the creation of one class with attributes that can capture all possible infor-
mation generated by each tool was the solution. To capture objects particular to one
tool in the environment, tool-specific subschemas were designed and implemented.

The next phase was detecting possibilities of tool cooperation. Each tool’s func-
tionality can be complemented by some other tool’s capabilities thus leading to new
analysis possibilities and generating novel views of the subject system.

Telos being an object oriented repository provided an excellent platform for the
resulting schema. Having achieved data integration using the schema we had to ensure
control integration. Control integration was made possible through a customizable
and extensible message server named Telos Message Bus (TMB).

In order to send an object’s description to the repository the s-expression formal-
ism was used. As we already mentioned the repository’s global schema describes all
possible object classes. When an instance of a class has to be stored its attribute
values are sent to the repository. An instance of a program with only two attributes

(the program directory location and name) described in s-expression format would
be:

(Program_1242 Token
(Program)
O (
((programDirectory)
(("/reverse/data/src/list")))
((programName)
(("1ist™))))

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 35

Analysis of this s-expression reveals the following points : firstly an identification

string for the object (Program_1242) is given then the object’s tier is specified. Telos

allows three possible object ranks :

1. Metaclass : objects of this rank are used as class generators,
2. Class : objects in this tier are actual class definitions,

3. Token : token objects are instantiations of a class.

Having metaclass and class tiers allows each tool to dynamically expand the
schema by sending a new metaclass or class specification always in the form of s-

expressions. An example of such an s-expression follows.

+ Metaclass

(RefineClass MiClass
0O
(ObjectClass)
(((attribute)
((refineNonTreeAttribute Proposition)
(refineTreeAttribute Proposition))})))

e Class

(ExtractionObject SClass

(ObjectClass)

(Object)

(((attribute setValue)
((allRelevantObjectsToAnalysis Object)))

((attribute singleValue)
({correspondingCode ProgrammingObject)
(analysisName String)
(dateOfAnalysis String)))))

Secondly the s-expression description for the program token references the base

class of the token (Program). Thirdly the pair of empty parenthesis that follows

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 36

is reserved for the token's ISA class. In our case is the same as the base class
and thus omitted. Finally following these necessary basic fields, the names and the
corresponding values of each attribute for the object are sent. Attribute values are

classified in the following categories:
e single value attribute (String,proposition),
e set value attributes (SetValue) and

e sequence value attributes (default).

Another example of an s-expression follows, here the rcader can see the values
passed for some of the metrics and attributes that we use for our analysis.

(Function_1243 Token
(Function)
0 (
((albrecht)
((23.00))
({dComplexity)
(¢ 1.5
{(fanOut)
(€ 1.0))
((functionDefBody)
((Block_1244)))
((functionDefParameters)
((DeclarationSubtree_1245)))
((functionName)
({"elementcreate")))
((identifiersUsedNames)
(("i")
("_iob")))
((kafura)
((576.0)))
((location)
(("element.c:13,25")))
((mccabe)
(€ 2.000
((variablesSetInConstrNames)
((!l info ll)
("next™)))))

CHAPTER 2. PROBLEMN DESCRIPTION AND RELATED \WORK 37
Local Local Local
' Workspace ' Workspace Workspace
1
Ariadne Rigi Ariadne
Machine A
= {0~ <o
r SCHEMA | |
y 1 (Telos)
Data Serve Rc::lpository
(TMB) Object Base ool
i Control Intergration ObjectStore Data Intergration
g Machine B
=== Local
Workspace
Ariadne
Machine C

--Ore- :Flow of information in
S-cxpression format

J

Figure 2.3: The system’s architecture.

° CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 38

In an implemented scenario of meaningful tool interaction Ariadne produces anal-
vsis objects which are sent to the repository, Rigi downleads these objects, uses them
to perform analyses not supported by Ariadne and then uploads the objects enhanced
with the new analysis information back to the repository. Artadne can then retrieve
these objects and perform additional analysis. A delicate issue here was mapping the
retrieved objects to objects back in Ariadne’s local workspace. The tmplementation
of a mechanism to accomplish this task and ensure atomicity between the transferred
objects, the evolution of the user interface and the communication module for the
Ariadne system were the writer's contribution to the REVENGE project.

The overall svstem’s architecture is shown in figure 2.3. Various CASE tools
(i.e. Ariadne, Rigi) are running in different machines across the network performing
analysis on the same or different subject systems. Resulting information is passed to
the Date Server in s-expression format, stored in the knowledge base and sent upon

request to any cooperating tool.

2.4.1 The influence of REVENGE

Our involvement with the REVENGE project had a major influence on the work

described in this report. The decisions we took based on our experience building and
using REVENGE are :

e adopting the algorithm for code segment localization previously implemented
for Ariadne in Refine,

e making the new tool part of the REVENGE environment.
e using parts of the domain model for the global schema created for REVENGE,

o keeping the s-expression formalism for our communication with other tools in
the environment.

Studying the algorithm used for partial recognition of programming plans or in-
tents in the source code we felt that a more generic version of the algorithm could be

. used to achieve code segment localization in different programming languages.

CHAPTER 2. PROBLEM DESCRIPTION AND RELATED WORK 39

The key idea was to keep the essence of algorithm but change the structures
upon which it operated. The methodology is thus the same but the overall design
is different. We still represent nodes in the AST as objects but the design of the
class hierarchy and the way the algorithm is implemented and distributed among the
classes make the new system generic enough to be used with different languages.

The approach for code segment localization resembles the one described in SCRU-
PLE [51] allowing for a similarity score to be computed between a query and a re-
trieved component, but offers significant enhancements in the query language and the
comparison method. The complete algorithm will be presented in the next chapter
in the design section.

Our new tool can be part of the integrated reverse engineering environment we
described. Being compatible with REVENGE means being able to receive our input
and send our output to other tools which respect the global schema. As we will show
in the next chapter this fact presented several advantages.

We want to make clear at this point that the work described in this document
is not merely “porting” the algorithm implemented in Ariadne to a new software
platform. The new system presents a major difference: it is based on new, flexible
and extensible framework and consequently its implementation is far more generic
than the one in Refine. To place our system in the general design recovery process
shown in figure 2.1 we can say that it focuses on the last step of the process which is
mapping abstractions to the source code. The following chapter will make all these
statements more clear to the reader by documenting the whole process of building

the system.

Chapter 3

Gathering System Requirements

This chapter discusses the first steps toward the creation of a gencric framework
which will be used to implement a new system for code segment localization. The
new system is based on the algorithm used in the prototype built for the REVENGE
project. Motivation for building a new system will also be discussed. The purpose of
this work was to extend and generalize the prototype’s functionality and domain. In
the following sections we explain in detail the process of capturing the core require-

ments for this new system.

3.1 Adoption of macro process

One of the first requirements for the new system was to implement it in a platform-
independent, popular, object-oriented language. Having chosen C++ as the imple-
mentation language we tried to find in the literature an appropriate framework that
would help us formalize the development process. The process adopted was the one
proposed by Booch [6]. In the next sections we will describe our actions to accom-
plish each step of the process. The macro development process consists of five major

activities (see figure 3.1) :

40

CHAPTER 3. GATHERING SYSTEM REQUIREMENTS 41

Develop a mode! of
the desired behavior

(znalysis)
Establish core Create an
requirements architecture
(conceptualization) (design)
4

Evolve the
implementation
{cvolution)

\ Manage Post Delivery
~ - 4cvolution
{maintenance)

Figure 3.1: The macro development process.

1. Establish the core requirements for the software (conceptualization)

[

. Develop a model of the system’s desired behavior (analysis)
3. Create an architecture for the implementation (design)
4. Evolve the implementation through successive refinement (evolution)

5. Manage postdelivery evolution (maintenance)

Although the formal definition of the macro process may seem trivial to every
experienced developer we found it particularly useful as a mean of structuring this
chapter in a coherent way. In the lifetime of our system we had the chance to perform
all the five activities mentioned and we are repeating the process tryiag to maintain
the system. Adding new features and porting the system to other platforms are the

activities -currently performed.

CHAPTER 3. GATHERING SYSTEM REQUIREMENTS 2
3.2 Conceptualization

The main purpose of this activity is capturing the core requirements of the system. As
we mentioned earlier a functional prototype of our svstem was already developed for
the REVENGE project in a completely different implementation language (Refine).
The existence of this functional prototype made conceptualization significantly casier,
we no longer needed to spend time trying to prove that our algorithm can deliver
results. The main objective was to prove that the algorithm can be improved by using
a whole new framework and design in a different implementation language. Based
on these ideas we captured the major functional requirements for a system using this

new framework, the new system should:

o have at least the core functionality of the prototype system,

¢ be developed in such a way so it would be able to accept, as input, code from
various “programming” languages,

e be compliant with the main architectural concepts of REVENGE so it can be
part of this larger cooperative environment,

e add new features and explore other possible improvements,
¢ be implemented in a commonly used object-oriented language,

e conform with various standards of object orientation (design and impleme..ta-
tion standards),

¢ be portable in all major hardware platforms.

Let us briefly analyze these core requirements and explain their rationale.

Duplicating the main functionality of the prototype system

Functional compatibility with the prototype system was our primary objective, we
decided that in order to be able to evaluate our work a working system that could
be tested against our prototype should be developed.

CHAPTER 3. GATHERING SYSTEM REQUIREMENTS 43

One main challenge was to maintain the efficiency of the algorithm in this new
implementation. Refine has a variety of built-in, optimized functions to manipulate
the AST that it creates. The algorithm for code segment localization is not very
complex, the most critical functions are actually those that traverse several different
structures and perform element retrievals or comparisons. Obviously the most diffi-
cult part would be the design of new structures and the implementation of algorithms
for their manipulation.

What exactly we mean when we refer to the main functionality of our prototype
is the ability to localize segments of “code™ based on an abstract description of these

segments.

Accepting different kinds of input-“source code”

Qur prototype proved the capabilities of the algorithm, the idea that stimulated this
research however was that the same algorithm based on a more generic framework
would be able to perform similar tasks with a variety of inputs. The initial input
is code in some “programming” language (C, Pascal or even HTML). The only con-
straint is the existence of some kind of structure in the language so it would be
feasible to create a meaningful intermediate representation fit to use with the algo-
rithm. When we refer from now on to “source code” we mean any possible structured
input and not only the artifact of a specific programming language. Thus the terms
input and “source code” are interchangeable.

The rising issue here is to find a formal way of represeﬁt'mg the input, capable
of capturing all our target domains (languages). The use of various intermediate
representations is common practice in all reverse engineering systems that perform
design recovery as we saw in the previous chapter. The basic advantage of any
intermediate representation is the ability to capture only the aspects of the “source

code” that are significant to the analysis performed while ignoring any other elements

CHAPTER 3. GATHERING SYSTEM REQUIREMENTS -

that may slow or clutter the analysis. Unfortunately there is no consensus on an
intermediate representation but there is a wide adoption of ASTs (Abstract Syntax
Trees) as a form of intermediate “source code™ representation.

ASTs represent “code” in a structured way allowing on the same time annotations.
Thus users can adorn each code clement, represented as a node in the AST. with the
attributes they deem necessary for their analysis., The s-expressions formalism was
used for describing the building blocks of our AST. The decision to use s-expresstons

was unavoidable because of the next core requirement.

Compatibility with REVENGE

REVENGE, as we already described in the previous chapter, is a powerful environ-
ment for cooperative reverse engineering. We share the common strong belief among
many researchers in the reverse engineering field [60, 69, 55] that in the future the
ability of any CASE tool to cooperate with other tools as a part of a larger integrated
environment will be a critical factor for its success.

Qur experience building and using REVENGE proved that such cooperation is fea-
sible. Conformity with a global schema and adoption of formalisms for the exchange
of data between tools in the environment was the solution proposed in the REVENGE
project. The experiences we acquired from our involvement in this project led us to
choose the formalism to create our intermediate representation and also guided us to
several important decisions about the system design.

To create the object oriented AST, which will serve as our intermediate “source
code” representation, we had to have a parser for our input. It was clear to us that the
main focus of this research is not to build parsers for all possible target languages (i.e.
C, Pascal or HTML). Other tools in the REVENGE environment, namely Ariadne,
provide specialized modules to accomplish this task.

Using Ariadne for the parsing permitted us to focus on our main research topic,

CHAPTER 3. GATHERING SYSTEM REQUIREMENTS 45

the design of a generic framework. To create the AST we need to get from Ariadne
directly, or indirectly from the repository (Telos), a description of each node using
the standard formalism in REVENGE (s-expressions) and then reconstruct an image
of Ariadne’s AST. As we mentioned earlier the communication module used to send
and receive information from the global repository as well as the facility to dump
Ariadne’s AST in s-expression format already existed and were parts of the writer's

work for the REVENGE project.

Extending our prototype

In addition to the conception of a system architecture that can handle several different
“code sources” we tried to explore other possibilities for our system such as ways of
improving functionality, flexibility and user friendliness.

All systems that perform concept recognition depend on some sort of feature
comparison, ours is not an exception to this rule. However the ability of adding new
features or changing the feature comparison method is not usually supported by most
systems mainly because of their rigid design. The design of our system allows such
changes by incorporation of add-on (plug and play) modules. Creating these modules
is a low effort programming task.

Another frustrating issue for end-users is usually the learning curve necessary
for a productive usage of the system. In most systems performing design recovery,
new language or formalism is introduced to describe patterns. This is of course a
necessity and can’t be avoided in systems that need to have some sort of plan-concept
description. Learning to use all these query:languages in an effective way can be a
time consuming task. To improve user friendliness and ease-of-use a powerful and

intuitive user interface was built to be part of our system.

CHAPTER 3. GATHERING SYSTEM REQUIREMENTS 16

Implementation language, portability, conformity with standards

The design of our cooperative reverse engineering environment was based on a com-
mon domain model which was shared between all tools and also served as the schema
for the centralized repository. A substantial amount of work was devoted to the ef-
fort of creating this domain model and the result was an extensible design of several
metaclasses and classes that could be used.

We spent time going through this design again and we felt confident that the
new system in order not only to be compliant with REVENGE but also with current
trends in software development should be implemented in a popular and powerful
object oriented language. We chose C++ mainly because of our previous experience
with it.

Another concern for us was the development process itself. We considered a great
opportunity to put in action new methodologies for object oriented development. We
decided to adopt a general framework for our process and adhere to coding standards
so we can ensure extensibility and maintainability of our system.

Portability was another related issue, one of our main concerns for the success of
our prototype was that being based on 2 commercial and not quite wide accepted yet
implementation platform (Refine) it would be really hard to evolve and maintain. An
implementation of the system using an object oriented programming language like
C++ would help us to overcome these problems.

"The above mentioned requirements are also the major constraints and measures
of success for our system. In the next sections we will describe how we attacked the

problem trying to satisfy all these core system requiremeats.

CHAPTER 3. GATHERING SYSTEM REQUIREMENTS 47

3.3 Analysis

Among several methods to facilitate system analysis proposed in the literature, we
chose to adopt the use-case analysis method introduced by Jacobson because of its
intuitiveness and effectiveness.

According to the usc-case analysis method, all affected project members come
up with possible scenarios fundamental to the system’s operation. These scenarios
collectively describe the system functions. Analysis then proceeds by a study of these
scenarios to : identify primary function points of the system, group function points
into clusters of functionally related behaviors and generalize primitive functions to
create higher level abstractions.

The following section presents some possible scenarios for the system, mainly on

the design recovery realm.

3.3.1 A view of the problem

The purpose of the following paragraphs is to present possible cases where our system
could be used to handle problems which can’t Le easily solved using existing tools.
Let us examine a few possible scenarios.

First scenario: Identifying error prone code

In legacy systems when a part of code is identified as error prone usually main-
tainers try to discover similar or identical code in other modules of the system. The
problem that arises in this case is that the identified code might be slightly altered
in other modules. Variable names might be changed, comments added or even the
sequence of commands altered.

Second scenario: Identifying common source code patterns

It is often the case that the Iegé.cy system we need to reengineer is based on a
proprietary language. Usually in this case the maintainer has access to other forms

of code representation and secondary information about the system (i.e. control and

CHAPTER 3. GATHERING SYSTEM REQUIREMENTS 4

7 /]

data flow diagrams). The task is to understand the system module by module using
accumulated knowledge of the system. Tools to aid engineers in their task using
only secondary information rely heavily on identifving common source code patterns
between modules.

Third scenario: Training

While learning a new programming language students lcarn to categorize language
commands based on their functionality, they learn for example that a while statement
is a special case of an iterative statement. High level algorithms arc consequently
introduced and the students are asked to implement them. Following this logic it
would be beneficial for the student to have a tool able to recognize picces of code
that can be described by a certain abstract code pattern.

Fourth scenario: Software migmti'on

In the process of changing the design of a system from procedural to object ori-
ented maintainers need to identify key data structures and functions that manipulate
these structures. Performing this kind of exhaustive searches in a multi-million linc
legacy system is surely not a trivial task. If the analyst can come up with the neces-
sary information (i.e. data structure definition and key functions using this structure)

then he can explore possibilities for code parameterization and class creation.

3.3.2 Use-case analysis

People in all the above scenarios share a common problem in different levels. We
will attempt to analyze these scenarios to detect common entities and abstractions,
this is a common approach followed for the creation of frameworks. For this task we
adopted the process suggested by Schmid in [53], according to this method systematic
construction of frameworks can be broken down to the following steps:

1. perform domain analysis with an aim to identify the fixed aspects that are
common to all applications from the domain - called the frozen spots, and the

. CHAPTER 3. GATHERING SYSTEM REQUIREMENTS 49

variable aspects, in which different applications may differ - called the hot spots
of the framework,

2. derive a specialized model by an object-oriented analysis from a specific appli-
cation or configuration of the domain,

3. gencralize this model by a sequence of transformation steps one per hot spot.

The next paragraphs identify possible frozen and hot spots in the scenarios.

In all the scenarios we have an initial source of information, but with some impor-
tant differences. In the first case our input is source code from a legacy system, the
maintainer is probably familiar with the language and if he is lucky the source code
is also well documented. We can say that it is a typical case of “rich” input which
suggests a lot of capabilities for analysis. The second case is different, the input is in
a proprietary language or may be in an intermediate representation of this language.
The analyst is not probably very familiar with neither, but he has access to 2 domain
expert and several analysis tools. In the third scenario the “analyst” is not familiar
with the language at all and is actually going through a learning process. Lastly in
the fourth scenario the analyst is quite familiar with the source code language and
the functionality of the system.

The input or “source code” form is not the only interesting element in these
scenarios, let us observe the desired result. In the first and fouth case the analyst
has identified the part of the code that interests him/her and just wants to find all
possible occurrences of functionally equivalent code. In the second case the analyst
has probably recognized a few critical parts of the code, each one has a discrete
functionality and combinations of them implement a larger logical task. The required
task in these cases is the localization of these code segments. In the third case the
“analyst” has for a informal description of a logical concept with which he could
localize and observe actual implementations of this task.

Finally the missing link in all the scenarios is of course the system that could

. _ deliver the desired results. We will try to summarize our observations from these

. CHAPTER 3. GATHERING SYSTEM REQUIREMENTS 30

scenarios by answering some simple questions :

—

. What might be the input of the system : Any structured “source code”, either

complete logically and physically or even incomplete or partial (frozen spot).

o

. What is the primitive tasks the system should perform : The basic functionality
is source code segmentation and localization of an abstractly described code
segment in the code. Combining code segments will solve the more complex

cases of concept localization (frozen spot).

3. How does the user describe a segment : This is on purpose the only issue
not mentioned explicitly in the scenarios presented. As we can sce in the first
scenario the user has the actual statements in front of him and can use them
as guidelines to describe what he actually is looking for. In the second scenario
the analyst has only a partial description of what he wants . This partial
description most probably will focus on specific propertics that the segments
or tasks should have ignoring small implementation details. In the third case
assuming a given example in natural language or pseudocode the “analyst”
should come up with a generic description of the task. The level of familiarity

with the language used in the programs also varies.

4. In what form are the results presented to the analyst : Since detection of log-
ically equivalent code is not possible with absolute certainty, the analyst is
presented with a similarity measure indicating the system’s belief that the ab-
stractly described code segment is logically equivalent with the reported source
code segment. The calculation of this measure is based on feature comparison
between the two pieces of code (query and actual source code). Partial plan

recognition is also possible ana acceptable.

It is obvious that the analyst should have the ability to describe a segment either
. in extreme detail or in various degrees of abstraction. A way to achieve this is to

CHAPTER 3. GATHERING SYSTEM REQUIREMENTS 51

provide the analyst with an Abstract Concept Language (ACL) [26] to describe the
code segments. The ACL language should use keywords similar to the target (input)
language so that it would be easier for the analyst to describe a concept just by
looking at an instance of it in the source code that implements it. Thus the code
description varies depending on the target language and can be characterized as a
hot spot.

As Booch notices [6]{p.252] analysis is impossible to be completed before design
commences. With the information we have at this point we can form a first generic

design of our system.

Abstr
Code Concent
3 = Language
|l al|d
INE Query

'";J;LL;...TuL""?l
Mediator —
1 LA
—

Global

) Graphical Code
Repository rﬁgerc <*——e{Segment
Interface Localizer]
Results

=g : Flow of information] @
in s-expression format

Figure 3.2: General view of the system.

We can divide the system into two major components. The first component

is responsible for supplying the system with the necessary information to build the

CHAPTER 3. GATHERING SYSTEM REQUIREMENTS 32

AST and an abstract description of the code segment we want to localize. The second
component consists of the main program that implentents our algorithin (namely the

Code Segment Localizer or simply CSL) and a graphical user interface (GUT).

3.3.3 Hardware and software requirements

The system was implemented in an IBM RS/6000 workstation using the AIX oper-
ating system. As the reader can see in figure 3.2 the system uscs several tools. The
vital part of the system however is the CSL module and the GUIL Both these modules
are developed using languages which are portable to all commonly used platforms.
CSL is implemented in C++ and the GUI in Tel/Tk.

Tcl/Tk was chosen as the GUI development language for two reasons: its portabil-
ity and most importantly our prior experience using it in various projects. We found
Tcl/Tk to be an excellent rapid application development tool, using several library
extensions of Tcl/Tk we built a robust and intuitive GUI to facilitate interaction
with the system.

The CSL module uses Lex and Yacc for the parsing of the input (s-expressions
describing the AST and the query describing the code segment we are looking for).
All the above mentioned third party programs are implemented for various platforms
and our modules do not have any specific hardware requirements. As a result we can

claim that our system ’<.vlatform independent.

3.34 Anélysis conclusions

In order to test the framework we built a system which can be used to assist the ana-
lyst in the design recovery process and the concept assignment problem [4]. In other
words the system assigns a physical location, in the source code, to an abstractly
described concept in a query. The process of recognizing large-grain, composite con-
cepts or plans requires that we first recognize the elemental concepts which form

CHAPTER 3. GATHERING SYSTEM REQUIREMENTS 53

the larger concept. The system will have the ability to recognize this fine-grained
concepts and then, using an inclusion mechanism, put them together to form and
subsequently recognize larger-grained concepts (hierarchical recognition).

The primitive operation to complete the task we just described is code segment
localization. The analvst supplies an abstract description of one or several code
segments expressed in a language with the same low level representation as our inter-
mediate representation of the initial input-“source code”. We reconstruct the AST,
which is the intermediate representation of our “source code”, given the s-expression
description of its initial nodes either from the global repository through our mediator
module or directly from Ariadne. The CSL module then tries to locate the specified
segment abstractions in the AST and reports successful attempts to the analyst using
the GUI module. Each result reported provides the analyst with the exact location
of the code segment in the “source code” and a probability indicating our belief that
the given abstract description matches the code reported. To calculate the result
our matching algorithm compares the formal, structural features of the code segment
pattern described by the analyst with parts and their corresponding features of the
reconstructed AST.

Chapter 4

Framework Design and

Implementation

In the previous chapter we described what a system based on our generic framework
will do. The purpose of this chapter is to analyze how the system performs the
specified task using the new framework. The major design issues which had to be

resolved, for this generic framework, are :

o the low level representation of the AST and the query-concept description,

the Abstract Concept Language,

the main code localization algorithm,

meaningful result forms and

human interaction with the system.

We must remind the user that our most importaut constraint was the second
core requirement specified in the analysis phase: the system should be capable of
performing its main task with inputs expressed in different languages with minimum-
effort changes in the code using the same framework. In the following sections we

describe the adopted design strategy to resolve all the main issues mentioned.

54

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 55

4.1 Code and Query low level representations

Every language consists of a set of basic constructs. In C for example we can have
iterative or conditional statements, in HTML on the other hand a paragraph or
a sentence can be considered a basic construct. Using a domain model for each
language which captures the language’s basic constructs and features, it is possible
to abstractly represent “source code” in this language.

We call domain model a set of classes that capture these primitive-basic constructs
of a language. Using the domain model adopted for the REVENGE project, “source
code” is parsed in Ariadne and an annotated AST is constructed. Each node of the
AST is an instance of a class defined in the domain model. Examples for the C
language can be : a Function.Definition cl~ss or an If_Statement class.

Domain models are treated as hot spots in our framework. For each possibie
target language for the system a new domain model should be created. The most
difficult part in creating the domain model is to identify the crucial basic constructs
of a language and possible abstractions of them. Virtual functions that need to be
implemented in the base classes of a new domair model will present similarities to
the ones implemented for the C domain model. As a result we expect the necessary
amount of effort required to come up with 2 domain model for a new target language
to decrease significantly for any subsequent target language.

Assuming we have a parsing facility for the new target language, like the one
provided by Ariadne for C, one can use its domain model to create an AST for
“source code” in this language.

Our system receives a description of the nodes of the AST created by Ariadne
in s-expression format and then reconstructs a simplified AST using a subset of the
original domain model. If the target language bas few basic constructs then adopting
the whole domain model for concept recognition is not a problem. In cases like C or

Pascal, which have large domain models, we can perform the task of concept recog-

CHAPTER 4. FRAMEWORK DESIGN AND INPLEMENTATION 56

nition using a “lighter” version of the domain model which “ignores™ some classes by
keeping their superclasses. The analyst can still refer to the missing classes by using
their superclass thus achieving abstraction which is a key concept in design recovery.
When choosing which classes can be omitted one should remember that a certain
degree of expressiveness is necessary in order to be able to have a meaningful inter-
mediate representation. The designer should make a compromise between a “lighter”
- easier to use domain model and a more expressive but less abstract domain model.
As we saw in chapter three the “source code” and query-code description given by
the analyst use the same low level representation.

Having the previous observations in mind, we will now describe our framework
for the “source code” and query low level representations. The system implemented
using this framework accepts C code and thus all the examples from here on will
be based on C and for some of themn we will show possible extensions with other
languages.

The basic framework superclass is called the State class and serves as the super-
class for the classes in all domain models. The State class captures the necessary
common attributes of all classes in a domain model. It has for example an identifica-
tion attribute in which an identification string for every node in our AST is stored and
a type attribute used to indicate the domain model a descendant of this superclass
belongs. The State class also defines several virtual functions, implemented differ-
ently in every language domain model (i.e. the treverse_tree function which traverses
the reconstructed source code AST).

Each domain model should have one superclass which captures the common at-
tributes of its descendants for the specific language, for C we call this superclass the
C_State class. Such a superclass serves mainly as an abstract class capturing features
and functionality common to all classes in its domain model. Member fuﬁctions of

this superclass are mostly related to the code localization process. Descendants of this

=1

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 5

superclass are all the classes in the domain model representing the basic constructs of
the language or their abstractions (i.c. For_Statement class, Iterative_Statement
class).

In order to describe and recognize a code segment or a concept we rely on some
formal, structure oriented pattern of features. The next few paragraphs describe how
our framework captures possible features. Every language might introduce its own
features, we can recognize two categories of features : features common to all classes
in the domain model of a language and features particular to some classes only in the
domain model of the language. A class called Feature serves as an abstract class for
all classes describing features in any language.

For the C language we define a new class called C_Feature which is derived from
the Feature abstract base class and acts as a feature container class (see figure 4.1).
Any object can have a number of features which are stored in a list. Each element of
this list (i.e. a feature) belongs to a class called the Feature_Item class. Four classes
describing features common to all C basic constructs, namely Uses_Description,
Defines_Description, Keywords_Description and Metrics_Description. Instances
of the Uses Description class store the variable names used in a basic construct.
Defines_Description objects store the variable names set in a basic construct and
instances of the Keywords_Description class store all identifiers occurring anywhere
in the basic construct. Finally objects of the Metrics_Description class capture
the values for the five metrics calculated by Ariadne for a basic construct. A feature
unique to only one class in the domain model will appear as an attribute of this class.

If we wish to add a new feature for a language we just have to create a new
class for it, make this class a descendant of the Feature_Item class, and update
_ the feature comparison algorithm to include the new feature. If we introduce a
whole new language then ir its domain we must specify a new abstract feature class

(HTML Feature for example) and then define classes for its new features which will

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION

I
o

be subclasses of the Feature.Item class. The feature comparison algorithm depends
on the low level representation of the features (i.c. simple string comparison) and
can be the same as the one used for C or altered depending on the form of the new
features. Classes in resulting framework are grouped in libraries and can be reused
and incorporated to new systems.

In figure 4.1 we show part of the framework used for the low level representation
of the AST and the code segment abstract description using the Booch notation
described in [6)].

4.2 Abstract Concept Language

In order to retrieve code segments based on the function they perform, a concept
language is introduced and used as a query language. This language can be either
generic, so that it could be used for any programming language, or specialized for
each target language. It is our belief that in order to be able to capture the most
important features of various languages (e.g. HTML, C, Pascal) a specialized concept
language for every target language should be created. Thus the creation of a concept
language is a hot spot in our design. Languages like C and Pascal might of course
share the same concept language, or parts of it, as they resemble semantically and
syntactically . For reasons well known in Information Retrieval, partial matching
should be possible when queries z;.re formulated with such concept language.

Going through the literature one can see that there is no consensus on the way a
language capable of describing concepts should be created. Our experience with the
Refine prototype was reported in {26], the elements of an Abstract Concept Language
(ACL) we deem necessary are:

e abstract statements (S} able to describe all basic language constructs,

e don’t care statements (DCS) that can match any language construct and

. CHAPTER 4. FRAMEWORK DESIGN AND iMPLEMENTATION 39

W Abstract Class
—ae [nheritance
®—— Has relation
O—— Using rclation

’
L3

_; "t Class

Ay
! Feature

o

= R

! l‘-\’ N

_‘ I
"‘.'—-.

$: AR PR IR i <
\\ C_Feare \HTML_Feature, * State®,
- - - -

o -~ .r < - ,
r’) wﬁﬁ/ J) ________ ! W-{"
- T~

' erurc Item , e RaNLTTN

N - * Page__ Statc:
/ \""l_'"‘..-'
v Usvis Dcscnpnon, NPT ATL ALY
TN ,Paragraph_State /
rmr e Swmal Traaems 7T

'_Mctncs Dcscnpnom PR T
AR L F S \Lmk_Dc§cnpuom
-6&3&‘6&6566:. { N s
bt sl PN Tl -Applct Dcscnpnon-
'KcyVers_D;s:c;lpuon \ AT
__C Language Domain Model ___HTML Domain Model

Figure 4.1: Main system class design.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 60

e macros (M) to facilitate hierarchical plan recognition {13].

We consider these to be the minimum requirements for a sufficiently expressive
concept description language. The language can also be adorned with typed variables,
operators or any other features the developer judges unseful.

Don’t care statements are necessary because they can be used as “gluing” material
among fine-grained abstract concept descriptions in order to express a larger-grained
concept (hierarchicel recognition). In our implementation for the C language we

provide three don’t care mechanisms in the form of two abstract statements:

1. the *-Statement,
2. the +.Statement and

3. the empty feature value.

The empty feature value denotes a match with any feature vector obtained from-
a candidate code fragment to be matched. The *-Statement will match zero or more
code segments of any type, while the +-Statement will match one or more code |
segments of any type. If the analyst specifies features for these don’t care statements
then only code segments of any type which have these features will be recognized.

Existence of macros in the language allows the analyst to refer to plans to be
included at parse time in a query, in order to describe a larger concept. For example
the analyst can say :

| SOURCE : another-plan-filename

inside 2 query. This will result in inclusion of the plan, described in the file with
the specified filename, inside the currently described plan. An example of a query in
ACL for C follows:

Iterative-Stmt

. abs-exp-desc

keywords : [7element]
{

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 61

*-Stmt
abs-gen-desc
empty;

Assignment-Stmt
abs-gen-desc
nuses : [list,?element],
defines : [head,?element]

Using this query we can locate all iterative statements which have an assignment
as the last statement in their body. We also specify that the assignment statement
should use a variable called list, define a variable called head and both use and define
a variable, which should also appe~ar in the condition of the iterative statement and
has the symbolic name, 7element.

The use of query variables (identifiers preceded by a question mark also called bind
variables) is a feature we found quite useful in our prototype and which is also part
of our implementation of the ACL for the C language. A more detailed presentation

of ACL as well as several example queries, can be found in appendices A and B.

4.3 Main code localization algorithm

Based on the requirements and decisions analyzed in previous paragraphs the design

of the main CSL module was completed. In Figure 4.2 we present a high level scheme

of the Code Segment Localizer module.

. The input to the CSL module, as shown in figure 4.2, is the location of two files.
The first file is the collection of s-expressions describing the AST for the source code.
The second file contains the abstract décription of the code segments we want to
ldc_ate expressed in ACL. The AST description file is passed to the s-expression parser
submodule which parses the file and creates an object for each s-expression in the file.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 62

Code Segment Localizer

Input & Query S-expression Parser
Filenames Module
T - : T
} Y Domain
AST Reconstruction Modcls

'
: Y] :
L 4 Pascal Domain
| ("ACL Query Parser |

N Module e ——
""""" mam
: C Query Parser Model
| pemrccenmensnaccmensnsens
! | Pascal Query Parser
R S gt b it
: i | HTML Query Parser |
1Code : 1
| Segment =t
1Localization .
'Results -

Comparison Engine

Figure 4.2: The CSL Module.

These objects are then passed to the AST reconstruction submodule. The purpose of
this submodule is the creation of the source code intermediate representation for our
tool which is again an AST. We will use the T, symbol to refer to this AST. To create
the T, AST we need to use the classes in the domain model of the target language.
The AST reconstruction module works in the following way, the s-expression file
describing the source code is parsed and for each s-expression a generic object is
created. The resulting objects are stored in 2 “fAat” linked list. In the second phase
of the AST reconstruction process starting from the Function D;eﬁnition objects we
build the sub-AST for each function in the system and at the end we gather all these
sub-ASTs in a linked list which is the simplified AST we are going to use for our -

computations.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 63

The creation of sub-ASTs is rather interesting, starting from a generic object
describing a Function Definition object we create a new object using the constructor
of the corresponding class from the language domain model (i.e. Function_Def _State
class). The next step after the creation of any object in the AST is to scan its
“source” generic object for attribute values and update the attributes of the new
object. If some attribute value is a reference to another generic object then a binary
search algorithm is used to locate the referenced generic object in the linked list and
the process of object creation and update is invoked recursively. For example after
updating the simple feature values of a2 Function_Def_State class we have to set the
function body attribute of the object; this attribute is a reference to another generic
object with a unique id. Using this unique id we retrieve this generic object and
create a new “specific” object depending on the generic object’s type. The generic
object’s type is specified as the value of its base class in the domain rnodel used to
create the original AST. Having adopted a lighter version of this domain model we
can map all the originally used classes to some class in our domain model.

For large systems the AST reconstruction process is by far the most expensive
time wise. Let N, be the total number of s-expressions describing objects and N,
be the total number of attributes of these N, objects, then N = N, + N, is a
good approximation of the total number of objects in our final AST. The cost of the
creation of each intermediate object is O(1) (just a simple sequential read from a file).
The creation of the final AST object from its intermediate representation will cost
at most the number of the object’s attributes multiplied by logV, , because logN, is
the cost of a binary search in the sorted list of intermediate objects already created.
Thus the worst case cost would be a binary search for every intermediate object for
all of its attributes, this bounds our algorithm to be O(N, + N, logN,). In reality
the algorithm is much fasi;er as it takes out of the remaining object list any object
that is located through the binary search and corresponds to an attribute. We are

CHAPTER 4. FRAMEWORK DESIGN AND INPLEMENTATION 64

currently considering the possibility of avoiding the creation of intermediate (generic)
objects in order to speed up the whole process.

The file describing the query is parsed by the ACL query parser submodule. The
result of the parsing is again the creation of an AST (T,). Creating the T, AST
requires the use of the classes in the same domain model used for to form the T,
AST.

Both ASTs are then passed to the comparison engine submodule that performs the
actual localization task. Figure 4.3 shows a simplified view of the T, and T, ASTs
formed for the query presented in the previous section and a possible “matching”

piece of code.

Source Code AST [T] Legend

) Object
~—+# Inheritence
€~ Has-a relation

W Abstract Class

while_condition

G) | =D | SXD |

Query AST [T}

ST |

Figure 4.3: Example T, and T, ASTs.

The algorithm used to match an abstract pattern described in ACL with the

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 65

intermediate representation of our “source code™ is essentially the one described in
[26]. We will analyze the algorithm and focus on how it was mapped on our object
oriented framework.

The main steps of the algorithm after the creation of the ASTs are :

1. creation of a StatiC Model (SCM) specific to the target language domain model,
2. creation of a Markov Model from the ACL AST (7,),

3. sclection of candidate parts of the code to serve as initial points for the local-
ization process and finally

4. invocation of a Viterbi [68] algorithm to find the best fit between the code
segment described and an actual code sequence starting at a candidate point.

4.3.1 The StatiC Model (SCM)

The SCM is a simple automaton that shows the possible decomposition of abstract
classes and “quantifies” the analyst’s belief about the ability of the abstract class
to “generate” a particular source code segment. A part of the SCM for the C lan-
guage is shown in figure 4.4. As we can see an object of the Iterative Statement
class can be decomposed, or simply allowed to match, any of the three classes (i.e.
For_Statement,Do_Statement and While_Statement classes), specified by the SCM.

Every possible decomposition is assigned a probability

Pscum = Pscam(SilAz)

where S; is a source code statement (i.e. For Statement) and A; is an abstract
statement description in the ACL query (i.e. Iterative Statement), indicating the
analyst’s belief about its possibility of appearing in the code. This probability can
be :

e given by the programmer as part of the query,

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 66

¢ supplied by the system using a uniform distribution based on the number of
choices (current implementation) or

e it can be calculated dynamically at run time based on the matches obtained so
far.

These probabilities on the SCM are used later in the calculation of the concept-to-
code distance or similarity measure and can be casily changed if necessary. In the
initial implementation of the algorithm, the SCM was also used for type checking.

The new implementation does not rely on the SCM for general type checking.

Iterative_Statement

33 V0.33 0.3

0. i 3N
For_Statement While_Statement Do_Statement

Figure 4.4: Part of the SCM describing the Iterative Statement “decomposition”.

4.3.2 The pattern matching process

The following three sections describe in detail the core methodology used to perform

pattern matching of features among nodes in the 7, and 7, ASTs.

Markov Model creation

The existence of abstract (e.g. the Iterative Statement) and don’t care statements
(e.g. *-Statement, -+-Statement), in our ACL, allows generation of many possible
code segments from a given query expressed in ACL. Markov models provide an
appropriate mechanism to represent these alternatives [52].

A Markov Model is a source of symbols characterized by states and transitions.
Two special states exist: the starting state and the final state. The starting state has

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 67

no incoming transitions and the final state has no outcoming transitions. A model
can be in a snecific state with a certain probability. Each state has a finite number of
transitions leading to other states cach associated with a certain probability. Tran-
sition from onec state to another state can only happen when a “symbol” associated
with a valid transition is recognized and “consumed”. Generating a Markov Model
for the query AST 7, allows the subsequent use of the Viterbi algorithm to calculate
the sequence of transitions which maximizes the total probability of a path beginning
at the starting node and ending at the final node of the model. The path corresponds
to the matching between 7, and T..

Using the query’s AST (T,), the Markov Model is created dynamically by simply
traversing the AST, the building algorithm is simple. A transition is allowed and
added from each basic construct description node to the next node in the AST.
Star and plus statements {*-Statement, +-Statement) need special handling. Each
of the latter statements always has an outcoming transition which returns to itself.
Also statements preceding a ¥-Statement should have additional transitions to the
statement following the *-Statement (see figure 4.5).

We call the resulting Markov Model: Abstract Pattern Model or simply (APM).
The APM is actually implemented on top of the query’s AST by adding possible
transitions to the nodes of the T, AST. That is the reason we refer to classes in the
domain model as States, as they also represent actual states in the APM.

An example of a simple APM is shown in figure 4.5, elements of the T, AST are
omitted on purpose in order not to clutter the figure. For composite statements (i.e.
an If Statement with then and else parts) the process of creating the APM is invoked
recursively. Each transition has an associated probability; all transition probabilities
are initialized to -1 before the matching process and this is the reason we chose to

omit then in figure 4.5.

CHAPTER 4 FRAMEWORK DESIGN AND IMPLEMENTATION 68

Sentinel_Node
Function_Call_S@

Assignment_Statement
Sentinel_Node

Figure 4.5: Example of dynamically created APM.

The localization algorithm

The first step for the algorithm is to locate the candidate starting points in the source
code AST T, this task is also known as source code segmentation or code delincation
and the algorithm used is the one described in [26). The code delineation algorithm
has two main steps, first we locate all possible starting points based on generic criteria
(i.e. type compatibility) and then we refine the initially sclected sct of candidates by
performing a series of feature comparisons. In our implementation this second step
of the source code segmentation process is the initial step of the main localization
algorithm.

For the first step of the segmentation process we choose the first “concrete” state-
ment S (“concrete” means that S can not be a don’t care statement) from our query
and locate all occurrences of statements which are type compatible with S every-

where in T,. In order to ensure that all possible candidate points will be considered

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 69

a generic check is used in this phase (i.c. type compatibility between the first “con-
crete” statement in the query and a node in the source code AST) while traversing
recursively the source code AST. There are however some special cases. If the query
consists only of various don’t care statement then we return all the logical blocks
as possible starting points, this decision was taken after careful consideration of the

most meaningful queries that can be constructed solely from don’t care statements.

Dynamic Programming match between concept and code ASTs

At this point we have all the necessary input for our main localization algorithm. ‘The
Viterbi dynamic programming algorithm is used to find the path that maximizes the
overall generation probability among all the possible alternatives formed by the APM
created for a given query. In the next paragraphs we describe the algorithm.

Let Sy, .., Sk be a sequence of program statements (represented as objects of the
T, AST, occurring at a certain candidate starting point in our “source code”) and
A1, .., An be a possible sequence of states (also represented as objects of the T, AST)

in our APM. Then a possible recognition sequence would be of the type:

§17 -y Sgljts'gr{-l! - ng‘: sy Sg.'_:-l-la ey Sgn weey §k—1! ey S’i

Al A A An

meaning that abstract statement description 4; matches statements : 5; .. S,
abstract statement description A4, matches statements Sy, 41 .. S, and so on. We
call statements S,,, Sq., ... ,Sk breakpoints.

The purpose of our algorithm is to find the most likely statement sequence S;,_, .1,
.., Sg; that contributes to maximum similarity when combined with similar matches
of other states.

The matching process for a single statement and its abstract description can be
broken down into three discrete checks, failure in any of these steps terminates the

comparison process for the curreni starting point and causes a transfer to the next

CHAPTER 4. FRAMEWORK DESIGN AND INMPLEMENTATION it

possible starting point. Failure usually means that the probability computed is less

than a user-specified threshold. The three checks performed are :

1. type compatibility check.

1o

metric proximity check and

3. feature vector value comparison.

These steps performed for a candidate starting point are actually the second step
of the code delineation process described in {26]. The metric proximity check can
be used when the comparison granularity is at the level of a begin-end block; the
formula used is described in the following scction. For statement level granularity
we use dynamic programming techniques to calculate the best alighment between
two code fragments based on insertion, deletion and comparison operations. Rather
than working directly with textual representations, source code statements are ab-
stracted into feature sets that classify the given statement. The whole process is
described in detail in a following section (i.e. section 4.3.4). Dynamic programming
is a more accurate method than the direct metric comparison based analysis because
the comparison of the feature vector is performed at the statement level.

Checking type compatibility is accomplished using information in the domain
model and the SCM if necessary. The possible result is a boolean value indicating if

the statements checked have compatible types. Statement type compatibility is given

o for simple statements: by comparing the type attribute of cach objcct in the
query and the source code AST or

e by using the SCM if the query object is an instance of an abstract statement
class (i.e. Iterative_Statement class).

The euclidean distance of metrics is ralculated and used as a comparison factor
in cases where the metrics are specified for the abstract description. The distance
calculated should be less than a certain threshold which can be set by the analyst.
The euclidean distance C is calculated using the following formula :

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 7l

5

|
C(P,.Sj) = | S (M(Py) = Mi(S)))? (1)

k=1
Where P, is the i-th statement after the current starting point in the “source

code”, §; is the j-th statement described in the query and Mg (S) is the k-th metric
value for a statement S. To compaute C we use the values of the five metrics computed
by Ariadne. If no metrics are specified in the abstract description of a statement in
the query then this check is omitted.

The resuit of feature comparison is a similarity measure of the segments being
compared. If S; is a composite statement then recursive calls of the functions per-
forming feature comparison take place.

If for example S; is a while statement, first a type compatibility check with its
possible description A; occurs. The next step is to calculate the cuclidean distance C
between the metric values of 4; and 5;, using the previous formula, and then compare
C with the given acceptable threshold for metric distance. Absence of metrics for 4;
is interpreted as a don’t care value. Finally the similarity measure produced by the
feature comparison for the while statement itself is “combined” with the similarity
mcasures produced by recursive calls to the matching functions for:

e the expression used in the while condition and

o the statement describing the body of the while loop

to produce the overall matching probability. The calculation of the similarity

measure is described in the following paragraphs.

Stmilarity measure

Assuming a match between a sequence of source code statements S;,..,S; and a
sequence of abstract code descriptions A,,.., 4, we need to compute a measure of
our belief for this potential match. For convenience let us use the same recognition

sequence as before :

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION T

-

S]. s Sg,. S_q‘-'.[. TS S‘_‘ cven Sy._,.}.]. ama S'_q_q .--.Sk-l. asn S
S— P S - — M ~ — -
A Az R

) Aa

What we actually try to match is objects in the two ASTs (77 and 7,). Thus a

possible measure of similarity between 7, and T, can be the following probability:

PTTo) = Pi(rey. o oTeyoooiTey |70y« wTq,. wTay) (2)

where, {r,...1r¢,...7¢,) is the sequence of grammar rules used for generating 7T,
and (ra,, ...7q,: ---Ta,) is the sequence of rules used for generating T,. We will use an
approximation of this formula.

Using the Viterbi dynamic programming algorithm and the created APM we can

compute the probability:

Pr(Sqioytts o Sldrw) (3)

where

Ss.'-:-i-lv "TSQi

is a sequence of statements in T, that can be matched by the valid at the i-th com-
parison step abstract description A ;). To find possible alternatives for A;(Z) one has
to calculate the reachable transitions in the APM at the i-th comparison step, this is
represented by the subscript f(z). In order to be able to match several actual code
statements As(7) must be a : don’t care statement (i.c *-Statement or +-Statement),
a composite statement or a macro.

Using (3), an approximation of (2) is possible [29, 26]:

Po(T.|T.) = Po(S1; .Sl A1 .. An) =

k
MaZg,,..g 1:.'; Po(Sg._ 1415 -+ Syil A0iy) (4)

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 73

Formula (4) is essentially the result computed by the Viterbi algorithm. If 44

is a reachable state in the APM at the i-th step, then:

gl
Pr(Sg 41y SglArwy) = H P (SiAsm) (3)

I=gi—1+1

In the case of a composite statement, a Markov model is considered for it and is
used in a similar way with the Viterbi algorithm. In general, the probability P.(S;|.4;)
has to be computed.

The resulting probability expresses the belief that the code segment S; in our
source code AST (T.) can be described by the abstract statement Ay in the query
AST (T,). The actual value of the probability P, for two statements is calculated
by multiplying the probability for the abstract description statement defined in the
SCM and the value we get from the feature comparison of the two segments. The

feature cocmparison formula is presented in the next paragraph.

Feature Comparison

The features the analyst chooses to examine depend mainly from the analysis he is
interested in. For the purpose of the analysis we perform in Ariadne we selected four
features. The set of adopted features, for a C language statement S in our system,
consists of:

e the set of variable identifiers defined in S (D),

e the set of variable identifiers used in S {U/),

o the set of identifiers-keywords appearing in S (X) and

e a set of five real numbers which are the values-for the five metrics calzﬁiz?eﬁ

by Ariadne.
Metrics comparisoa is used, if metrics are sp_s:?_:?ﬁed in the abstract description,

as an initial testing step. If the euclidean dxst.ar;:e calculated is bigger than a user

CHAPTER {. FRAMEWORK DESIGN AND IMPLEMENTATION T4

specified threshold the segments are considered different and the comparison process
stops.

Let A; be a simple (i.e. non-composite) abstract description of statement S, in
the T, AST, then the probability F,(5;|4;) in (5) can be calculated as follows:

Proomp(Si|A4;) = 1 i card{Abstract Feature;» N CodeFeature; ,,)
comp\i|15) = card{ AbstractFeaturc;, U CodeFeature,)

v n=1

(6)

We chose three features for C { D, U and X) and thus v = 3 in the above formula.
The total probability is equal to the sum of three fractions. Each fraction for D,
U and K is computed as the number of common identifiers for each pair of code
segment-query segment, divided by the number of the total different identifiers for

this pair. The final similarity measure for cach transition
P.(Si|4;)

can then be computed as:

P.(5i|4;) = Poomp(Si|4;) - Pscar(SilA4;)

A full blown recognition example is presented in appendix C, the whole process

we just described is explained in detail using a typical query.

4.4 Result form_

In the case of successful recognition of a piece of code abstractly described in the
query the analyst gets as an answer a set of locations in the source code for cach
abstract statement description in the query in the form :
filename: starting-line, ending-line.
For each occurrence of the concept reported the system also cutputs the overall
similarity measure calculated. The analyst can then manually inspect the code to -

determine false alarms.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION (]

If in our ACL query we described an assignment statement followed by a for

statement then a matching picce of code would be reported as follows :

MATCH PRORABILITY : 0.34

MATCHING CODE
LOCATED IN : sa.c:1787,1788 is ExpressionStatement_7364
LOCATED IN : sa.c:1787,1788 is ForStatement_7365

The strings following the location of the code (i.e. ExpressionStatement 7364,
ForStatement_7365) are the unique ids that identify the s-expressions used to describe

the matching source code.

4.5 Human interaction with the system

The analyst interacts with the system through an intuitive and extensible graphical
interface. Using the interface the analyst can perform three operations:

1. create a query using a graphical or a textual editor,

2. adjust threshold values used by the localization algorithm and

3. inspect the reported results.

The GUI module is implemented in Tcl/Tk and can easily be extended to achieve
greater functionality. An on-line help facility, in the form of explanatory balloons,

helps novice users to explore the interface.

4.6 System architecture

A generic view of the architecture of the main system modules is presented in tke

next figure.

‘WAISAS 3YJ JO MIIA [RINIDIFIYIIR DWAUAL) :9'F NI

/""" "Ariadne or Mediator "~ . —
‘o \ O+ : Flow of information
AST decomposition) ' in s-expression format |
oe in s-expressions ..’
sLd- rd it - -
GraphicalUser Interface _Code Segment Localizer
S-expression Parser
Communication E Module
_— e e mm = | <G i
. Module i Y - Domain
o ' AST Reconstruction Moxels

" Module CCneman)

I 7 : e

________] 1 N

P HE- ' ' Y 3 Pascal Domain

¥ L | : i | ACL Query Parser Model
N e N (e

Tl Query - ! f o ECARST Model
Presentation : | Pascal Query Parser
Buildin :
uriding Module | cote + (HTML Query Parser)
Module ! Segment b

1 Localization | 11
Besdls 1ot Comparison Engine

- -
- i Y &
- -

"Analyst=~<% s,
. Interacting with GUI or)
v __ Just specifying query file- -

i T e ey o -

NOILVINIINITJINT ANV NDISIA NYHOMANYYHS T HILdYHD

9L

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION T

The architecture of the CSL module has been already analyzed. In this section
we will briefly analyze the architecture of the GUI module and focus on the details

of the comparison engine submodule in the CSL.

4.6.1 The graphical user interface

The GUI module can be decomposed into three submodules :

1. the communication submodule,

[

. the query building submodule and

[

. the presentation submodule.

The communication module is implemented using the Expect package under
Tci/Tk. When the GUI starts, this module takes control of the input and out-
put channels of the C++ program implementing the CSL module. All message and
data exchange between the GUI and the CSL module is performed using functions
in the communication submodule.

The query building submodule consists of a graphical and a textual editor. The
analyst can use either or both of these editors to create a new query. This submodule
is implemented using the Tix package under Tcl/Tk. The graphical editor allows the
analyst to write queries without prior wide knowledge of the grammar of ACL.

Finally the presentation submodule is built in and contains the necessary functions

that implement all graphics used in the user interface.

4.6.2 The comparison engine

Our initial idea and objective for the design of the comparison engine was to introduce
abstract base classes and virtual operations so that the comparison algorithm would
be dynamically determined at run time based on the type of the entities compares (i.e.

Pascal programs, HTML pages, C programs). However the need for a comparison

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 7

L7

function specific to some statements still exists because certain statement (classes in
the domain model) can have unique features. For example to compare two objects
that belong to the Function_Definition class we need to compare not only their
standard features but their function names as well, the function name in this case
is the specific feature that has to be compared. Standard feature comparison is
implemented using one set of function for all the classes in a particular domain medel.
Specific feature comparison is done using specialized member functions in the class
that defines this specific feature {i.e. Function Definition class).

The design decisions adopted concerning the “distribution” of the algorithm among

the classes are:

e gather all generic functions (e.g. start_patiern_match, perform_pattern_matching)
in a submodule (we call this submodule: the Comparison Engine),

e implement the language specific functions (e.g. compute_probability,
check_type_compatibility, traverse_tree}as member functions of the generic state
class in the language’s domain (e.g. C_State, HTML_State),

e implement comparison operators for all classes having special features.

Following the first decision a new class was created and named : Pattern Match
Engine class. The main goal was to implement member functions for this class
capable of performing all the generic steps of the algorithm. If we could achicve
this the class could be used for all target languages for which we have specified a
domain model. Thus member functions of this class would implement the core of
our algorithm. The Pattern Match Engine class uses the StatiC Model (SCM)
to retrieve the PsC M probability (see section 4.3.1) and the two ASTs {i.e. query
and source code ASTs). They key idea to keep the Pattern Match Engine class as
generic as possible is to achieve AST manipulation through a common standardized
interface, this is achieved by allowing communication only with the State abstract
class which defines this uniform interface for all classes in any domain model (sece
figures 4.1,4.7).

Y

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 79

Functions critical to the localization process are called from member functions
in the Pattern Match Engine class. These critical function handle - among other
things - the feature comparison, the sciection of candidate starting points and the
calculation of the overall similarity measure. All these functions are hot spots in our
framework design, and as a resuli they will have a different implementation for each
target domain - language. Consequently if the source code is in Pascal the functions
defined in the domain model created for Pascal will be invoked where as if the analvst
focuses in C programs the appropriate function in C’s domain model will be used.
The binding is done dynamically in every case.

Moreover the maintainer can define more than one functions to handle the above
tasks in each domain and choose which one to use at run time (plug and play capabil-
ity). Currently, for example, we have two ways of doing the feature comparison, the
one described previously and a simpler method that we use for testing and validation.
The analyst can define in the command line or at run time which one he wants to
use every time.

Figure 4.7 shows how the Pattern Match Engine class commuaicates with the
two ASTs (T, and T;) through calls to virtual member functions of the State class.
Classes in any new domain model have to respect the interface defined in their ab-
stract superclass (i.e. the State class). Using dynamic binding functions in the
Pattern Match Engine class will invoke the correct function for the corresponding
domain model every time.

The two most critical member functions of thePattern Match Engine class are:

- 1. the stert_pattern_match function and

2. the perform_pattern_match function.

The start_pattern.match function is responsible for the initial steps of the algo-
rithm, it calls a function to find all candidate starting points and then performs a

CHAPTER 4. FRAMEWORK DESIGN AND INPLEMENTATION

Feature Companson Function
1
-/ ‘ .\ L Canddate Selection Function
Siml;

ity meanure Calculation Function

[r)
fa

Pattern Match Engine

d s-\ ’-‘,,—‘\'—‘l
! \\ LY \\
ll w Stalc "
¥ L4
2 Ay E; - A -
' \‘
P’ ka ™~

| StatiC Model (SCM)] | ACL Query AST | Source Code AST

\, —

Figure 4.7: Simplified interaction diagram for the Pattern Match Engine class.

loop over all the possible starting points calling the perform_pattern_match function
for each one of them.

In the perform_pattern.match function we traverse the T, AST, using the APM,
and the T, AST, and then call a language specific function (hot spot) to compute the
similarity measure of the active nodes in the two ASTs for every step of our traversal.
If we reach a final node in the APM then our comparisoh was successful and the
location and the total similarity measure are returned; if not, failure is reported.

The State superclass (see figure 4.1), used as an abstract class for all domain
models, defines virtual furnctions implementing several parts of the localization al-
gorithm . The actual implementation of these function is located in the language
specific superclass (e.g. C_State, HTML State). The C_State abstract class imple-

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 81

ments functions to:

1. check for type compatibility,

o

compute the cuclidean distance of the five metrics using formula (1),
3. manipulate the domain model specific SCM,
4. calculate the similarity measure using formula (4) and

. calculate the similarity measure for composite statements.

[+1]

All these functions are implemented for the C language specific domain model. If
we choose another target language then in its domain model we should define similar
comparison functions which are specializations of the virtual functions (or operators)
defined in the State class.

Finally for each class in the domain model a function called match_specific_features,
declared as virtual in the domain model superclass, is implemented to match unique
features of a class with their description in the APM state. For example an instance
of the Function_Call state class will define the name of the function called by the code
segment it describes; this is considered a unique feature and its comparison is handled
by the implementation of the mntch_speciﬁc..features function for the Function_Call
state class.

A view of the design described in this section in the form of a class interaction
diagram is shown in figure 4.8. In the diagram the reader can see the message
exchange between classes in the system. Note that messages in C++ are actually

function calls to class member functions.

4.7 Evolution and Maintenance

The design reported in the previous section is the result of several iterations over
the initial requirements and ideas for plausible designs and their implementations.
. Chronologically, the s-expression parsing module was build first, followed by the the

)
o

CHAPTER 4. FRAMEWORK DESIGN AND INMPLEMENTATION

] 1 I t]]]
t I] I]] 1
1 | 1 I i ynvw uried foysioiy |
1 ' I . [' [[
1 ' [. | 1 | !
| | | I 1 L]
I I i ﬂ 1 | '
i ot (wod uE:.w#Lﬁ.ﬂ:ﬁE:uﬁ:- ::h__uat . ' | '
) ' ' e 1 ! ! '
i 1 1 °]] [}]
] [1 Y I]] I
I KN JO pPUIT0U JI TS u.ﬂ._ﬂ p0dashxaupuyy 1 1] t
1 1
“ “ aJnsequ Uity [F0) JIEN3(EI) “ " “
1) mEaw Durpuns T Ty [} 1 I
I ! ' I |)
nEIW AIUT(IUITS anIES ' (' i i
XU SANITIP YIS
“Xarmeag a1 ads 3y ! ! ! | ! 1
] 1] |] 1 [}
I asuepip ueopijsns 3 ! !) ! 1
I “ ™ ﬁoﬁ-. 1] ! 1]
Aiiquedwos 3di) 3 1 i
“ " v -ﬂﬂ: PANK PO o‘.__.uumliuﬂ.: Ajueprwrs aindwod “ “ "
1 FIE}S 3a11€ puE 3po3 Jafxe, "1 1 1 '
| ' w_ﬂﬂ PUE 3p02 211 pulj ") ,
! i {utod Fundersyyaew waned wiopad | ! ! |
' | iiod Fumies aicpipur. ! | !
] e .2._. ! — -
']]
1 1]
I 1)
! ' t JlIA_FI.-
(! 1 i 1 | _lawreusily 2pod Jponnnsuay
SWHUNPIS) awgTy g Sy ynelywaney ndu 1Y induj“oy wesdarg upeyy

Figure 4.8: Simplified system interaction diagram.

CHAPTER 4. FRAMEWORK DESIGN AND IMPLEMENTATION 83

| Number of Functions | LOC | Number of related classes
S-expression parscr 5| 5K
AST reconstruction module 155 | 3K 26
Domain Model (C) 240 8K 32
Comparison Engine 24| 3K
ACL Query parser 6| 3K
Total 430 | 22 K

Table 4.1: Module sizes.

domain model for C and the AST reconstruction module. The implementation of the
ACL parser was the next step. Finally the comparison engine was built and several
member functions were added to the domain model classes in order to complete the
localization algorithm. The GUI module was created after a reasonably stable version
of the system was available. Table 4.1 presents some approximate numbers related
to the system’s size.

Recent work explores mainly two topics:

1. possibilities to improve the algorithm by introducing new low level comparison
methods and

2. adapting the design to accommodate new domains (i.e. HTML, structured
text).

Ideas and work to achieve these goals are reported later in chapter six section
one. Qur experience during evolution and maintenance indicates that our approach
for the system’s design was robust. Additional functions are easy to incorporate and

most importantly debugging is fairly easy because of the modularity achieved.

Chapter 5

Experimental Results

This chapter discusses resuits obtained from our experiments. The first section briefly
describes the subject systems we used for testing the capabilities of the tool. The
next section focuses on the description of some concepts or plans we used. Finally in

the last section we present and discuss the results of our experiments.

5.1 The Subject Systems

Testing a design recovery tool presents a major difficulty, the developer has to pIa._y the
role of the analyst and recognize concepts in a subject system; to be able to validate
the output of the tool the analyst must have a good knowledge of the subject system
functionality and design. To overcome the above mentioned problem we adopted the
following strategy. We chose as test cases :

e small size C programs for which we had complete knowledge of their design and
functionality ourselves, ‘

e medium size programs for which we had access to their developers and

e large modular programs.

The two small systems are : a simple linked list manipulation program (around

two hundred Lines Of Code (LOC)) and a program simulating the popular card game

84

\ ‘;\\

CHAAPTER 5. EXPERIMENTAL RESULTS S5

“blackjack” (nince hundred and fifty LOC). These two programs although they are
small and simple they contain a nuinber of programming plans (i.c. list traversals,
reading from files) as well as a number of “business rules” (i.e. how cards are dealt.
what is the value of the cards).

For the medium size programs we chose two svstems created by the speech recog-
nition group in our lab. The first system is a speech decoder using the Viterbi
algorithm on Hidden Markov Models (HMMs) [52]. The size of the speech recognizer
(called simply Recognizer from here on) is around seven KLOC. The second system
is the front end of a second speech recognition system developed in the lab. The sys-
tem uscs digitized speech samples as input to extract features relevant to the speech
recognition task, we call this system the Feature Extractor. The Feature Extractor
is around eight KLOC long. These two systems were seclected because they contain a
number of mathematical computations and were typical representations of a specific
domain (i.e. speech recognition).

The choice of larger systems to be used as test cases was more difficult, we had to
find systems modular enough to ensure that a certain concept can be found only in
a small number of modules in order to facilitate validation of our results. Assuming
this fact we did not have to have a perfect understanding of the whole structure and
design of the system. To locate a concept we focused on one module, if the same
concept was reported found in other modules during our tests we checked the validity -
of the result comparing the reported concept instantiation to the original concept
used to create our query.

The first system chosen is NASA’s C Language Integrated Production System
or simply (CLIPS). CLIPS can be used as an expert system construction tool. We
found CLIPS modular enough for our needs and also familiar because of our expe-
rience using it and analyzing it as a test case for Ariadne. Using Ariadne’s analysis

capabilities we had a fairly good knowledge of the system structure. The size of

CHAPTER 5. EXPERIMENTAL RESULTS 86

Subject system Code size | Size of intermediate representation
List 181 LOC 30 KB
Twentyone 942 LOC 322 KB
Recognizer T KLOC 2163 KB
Feature Extractor | 8§ KLOC 1014 KB
Clips 33 KLOC §7T70 KB
Tcsh 45 KLOC 9661 KB

Table 5.1: Physical size of subject system and their intermediate representations

CLIPS is approximately thirty three KLOC. Finally we chose the popular Unix shell
Tcsh (Cornell version 6.06) as our second large subject system. Tesh was also used
to test Ariadne and as a result we had a fairly good idea of its structure. The code
for Tesh is forty five KLOC long. Both these systems are modular enough for testing
purposes and contain a wealth of programming patterns both generic and domain
specific.

Although the size of our test cases might seem small compared to a multimillion
line legacy system we believe that the design of our system can accommodate very
large systems as well. The input to our system is not the subject system’s code but
an intermediate representation of it using the s-expression formalism. The input can
be requested and sent from the global repository cr generated and sent directly from
Ariadne. The size of the files with this intermediate representation for the above
systems is reported in table 5.1.

For very large syvstems the analyst can process the intermediate representation
of the system module by module. Splitting the intermediate representa.t:ion file is
possible using a simple text editor or directly by requesting from the repository only

s-expressions describing a specific system module. We have not encountered problems

CHAPTER 5. EXPERIMENTAL RESULTS ST

even with our largest subject system but we helieve that for performitnee reasons it
might be better if the user splits the svstem into several modules and then tests cach

one separately. The vital issue of scalability can be resolved using this technigue.

5.2 Measuring performance

Using for all the subject systems the queries that reported the minimum and the
maximum number of concept instantiations we obtained data regarding the time
performance of our system. Results are presented in tables 5.2, 5.3 and 5.4.

By far the most expensive part, in terms of time always, is the parsing of the
s-expression file. which describes the source code. and the reconstruction process
that immediately follows the parsing. Impressive numbers were reported for the rest
of the activities. All of the remaining reported activities involve mainly navigation
through pointers which explains the reported - satisfactory results. Moreover, the
most important part of our algorithm, the main localization and feature comparison
process, performs very well even for our largest subject system (see table 5.4). Based
on this latter fact we belicve that the main localization algorithm can be successfully

used for considerably larger subject systems.

5.3 Concepts and plans

This section analyzes our method of capturing and describing concepts used for our
experiments. As the degree of our familiarity with cach subject system varies we had
to adopt different tactics for capturing plans.

For the smaller systems (i.e. List and Twentyone) full understanding of the code
was possible. Going through the code we discovered several pieces of code which
implement key concepts (e.g. the traversal of a list). Seeing the actual code segment

-

which implements a concept the analyst can then use corresponding ACL abstract -

CHAPTER 5. EXPERIMENTAL RESULTS

List Q1 | List Q2 | Twentyone Q1| Twentyone Q2
AST reconstruction 0.1 sec | 0.1 sec 4 sec 4 sec
ACL Query parsing 0.1 sec | 0.1 sec 0.1 sec 0.1 sec
Find candidates 0.1 scc | 0.1 sec 1 sec 0.1 sec
Localize code 0.1 sec | 0.1 sec 1 sec 0.1 sec
Candidates found 1 12 1 18
Concept instantiations 1 12 1 18
Stmts in Query 5 3 6 2

Table 5.2: Time statistics (part I).

Recognizer Q1 | Recognizer Q2 | F.Eztractor Q1 | F.Eztractor Q2
AST reconstruction 31 sec 30 sec 14 sec 14 sec
ACL Query parsing 0.1 sec 0.1 ser 0.1 sec 0.1 sec
Find candidates 0.1 sec 0.1 sec 0.1 sec 0.1 sec
Localize code 2 sec 3 sec 1 sec 8 sec
Candidates found 204 204 103 689
Concept instantiations 1 7 2 216
Stmts in Query 9 5 5 3

Table 5.3: Time statistics (part II).

CHAPTER 5. EXPERIMENTAL RESULTS

CLIPS Q1 | CLIPS Q2 | Tesh Q1 | Tesh Q:‘]
AST reconstruction | 1366 sec 1367 see | 1347 see | 1552 see
ACL Query parsing 2 see I sec 2 sec 2 see
Find candidates 100 sec 99 see | 312 xec | 188 sec |
Localize code 153 sec 28 see | 111 sec | 196 sec
Candidates found 1890 1890 1209 2730
Concept instantiations 9 233 2 199
Stmts in Query T 3 9 3

Table 3.4: Time statistics (part [H1).

statemnents to describe it. We found that in most cases the use of the graphical query
builder speeds up the whole process significantly.

To locate and describe concepts for the medium size programs we relied mostly on
their developers. We asked the developers to show and explain to us code segments
implementing various key concepts. Moreover, we asked them to abstractly describe
these concepts in terms of the query language and point all their occurrences in
the code they were awarc of. The final step was to refine the developer's concept
description to make full use of ACL features.

Probably the hardest part was to identify concepts for the larger subject systems.
To accomplish this task we relied heavily on system decomposition performed by
Ariadne [21] and also on comments in the code itself. As we will sce in the next
section we need to know exactly how many times a certain concept occurs in the
whole system to report meaningful precision and recall results. To overcome this
obstacle we relied on the subject system’s modularity and checked reported concept

instantiations outside our target module manually.

CHAPTER 5. EXPERIMENTAL RESULTS 90

5.3.1 Hierarchical concept formation and recognition

Hierarchical coneept recognition refers to the ability of recognizing complex concepts
from simpler ones. In this section we present an example of macro usage to move
from fine-gratin concept. or simple code segment. description to large-grain concept
description and localization. To illustrate this we will use a concept from the Recog-
nizer.

The Recognizer uses a Viterbi based algorithm on Hidden Markov Models to cal-
culate a maximum likelihood transition sequence among the Markov Model states
that represent phonemes. The following piece of code performs the calculation of
a state’s contribution in the resulting path. The first line initializes the total con-
tribution of a transition to a constant minimum value. The loop starting in line
2 computes the contribution for all possible transitions between two states in the
Markov Model. Initially (line 3) a check occurs to see if a probability for a certain
transition has already becn computed. If the result of the check is negative then the
probability for this transition is computed (line 4) and a flag is set (line 5). The
statement in line 7 checks if the calculated contribution is greater than the accumu-
lated total contribution, if so it updates the total contribution value (line 8). The
next line (9) advances the pointer to point to the next transition between the two
states examined. Finally the last two statements (lines 11 and 12) keep track if a set
of transitions has already been processed by setting an appropriate flag and using
the accumulated total transition probability.

p = LOGZEROD;
do {
if (!(distTested[idx = TrP->DistrIdx1)) {
DistrVal([idx] = EvalDistr(&DistrList[idx],obs);
distTested[idx] = TRUE;
}
if (p<(contribution=TrP->Prob+DistrVal [idx]))

p = contribution;
TrP++;

W~ b WN

CHAPTER 5. EXPERIMENTAL RESULTS ai

10 } while(++i < =nextMix):
11 *mixTested = TRUE;
12 mix->Value = p;

Source code implementing a plan in a subject system [Recognizer|
The above presented code can be broken down to several smaller (fine-grain)
concepts or plans. Based on their functionality lines 3 to 6 can be considered as
one smalle: concept (concept 1). The code segment starting from line 7 and ending
at line 9 can be considered as a second plan and is called concept 2. Lastly the
assignments in lines 11 and 12 implement another concept (concept 3). Assuming

this decomposition the larger concept can be described by the following ACL query:

Q
Assignment-Stmt
abs-gen~desc
defines : [?7p];
Iterative-Stmt
(abs-gen-desc
uses : [?TrP],
defines : [?DistrVall)
(abs-exp-desc
Keywords : [nextMix])
{
abs-gen-desc¢
empty
SOURCE : “conceptl"
»=Stmt
abs-gen-desc
emptys;
SOURCE : "concept2"
»=5Stmt
abs-gen-desc
uses : [TrP]
}
SOURCE : "concept3"

ACL Query describing a large-grain concept

CHAPTEDR 50 EXPERIMENTAL RESULTS 92

Observe the usage of the SOURCE maero as well as the use of don’t care state-
ments (e, -Statement} as ghiing material between the fine-grain concepts. Discrete
deseription of each smaller plan exist in the files included by the macros. The contents

of these files (i.e. concept1-3) are presented below.

File : Conceptl!

e
If-Stmt
abs-gen-desc empty
abs-exp-desc empty
Then
{
abs-gen-desc
empty
Assignment-Stmt
abs-gen-desc
uses : [idx],
defines : [?DistxrVall:
=-5Stmt
abs-gen-desc
defines : [idx,distTested]
}
Q
ACL Query describing first sub concept
File : Concept2
@
If-Stmt
abs-gen-desc empty
abs~exp-desc
keywords : [contribution,TrP,DistrVal,idx]
Then
Assignment-Stmt
abs-gen-desc
uses : [contribution],
defines : [?p]
Q

ACL Query describing second sub concept

CHAPTER 5. EXPERIMENTAL RESULTS a3

Fie o Coneepts
Q
Assignment-Stmt
abs-gen-desc
defines : [mixTested]:
Assignment-Stmt
abs-gen-desc
uses : [?p],
defines : [mix,Value]
e

ACL Query describing code seqments in lines 11 & 12

The reader must notice that the use of only one bind variable in an ACL query
does not make sense. However if we combine the three queries we notice that there
are no single bind variables.

Using the first concept only as input to our system we found 91 occurrences of it
in the code. The second sub-concept appears only 3 times in the Recognizer's code
where as the third concept occurs only twice. Using the generic query we managed
to successfully locate the concept in question in the Recognizer’s code.

This method of hierarchical plan recognition can be adopted to describe and iden-

tify large-grain concepts in the code when smaller sub-concepts have been identified.

5.4 Testing results presentation and analysis

We believe that the framework introduced in this work can be used for information
retrieval in general and not only in the design recovery process. The focus of our
testing was to estimate how effective a system using this new framework is. Our
secondary objective was to explore the process of creating a good concept description
using the query language we introduced. During result analysis we will report our

conclusions on the later subject.

CHAPTER 5. EXPERIMENTAL RESULTS 04

The most widely nsed measures for evaluating retrieval effectiveness are Recall and
Precision 591, Recall is defined as the proportion of relevant materialiie. it measure
how well the considered svstem retrieves all the relevant components. Precision is
defined as the proportion of retrieved material which is relevant: t.e.. it measures how
well the svstem retrieves only the relevant components. Recall can also be interpreted
as the probability that a relevant component will be retrieved. and precision as the
probability that a retrieved component will be relevant [3].

Recall and precision can be defined more formally as follows. Let € be the universe
of possible retrieved elements, for a design recovery system this would be the set of
all design plans - concepts in a svstem. For each query. C can be partitioned into
two disjoint sets, R. the set of relevant material, and R. the set of irrelevant material.
The information retrieval system will then retrieve a set of components ¢ thar can
also be partitioned into relevant and irrelevant material, r and T respectively. Recall

and precision are then defined as :

Recall =

|

. . T
Precision = ol
It is obvious that recall and precision measurement require the ability to distin-
guish between relevant and irrclevant material. Relevance judgements are always
debatable. In our case the most difficult task was to find all possible relevant ma-
terial in our input; i.e. recognizing all occurrences of a concept in a program so we
could accurately measure recall. For the smaller subject systems this tedious task
was possible but for the larger ones we had to rely on the system’s modularity.
In order to produce meaningful diagrams we also had to quantify in some way the
expressiveness of each ACL query; to achieve this we adopted a simple formula to
calculate a weight for each query. The weight should be higher for precise queries and

;

CHAPTER 5. EXPERINENTAL RESULTS o)

fower for abstract ones. As expected testing indicates that using exact statements
instead of don’t care or abstract statements (e the fterative Statement) to deseribe
a specific statement vields higher precision results, Inereased precision was observed
as well when non abstract features are used to deseribe the features of i code segment.
Use of abstract features. in the form of bind variables, results in ower precision for
well formed queries. These observations led us to create the following simple weight

formula:

Weight = #Statements - Costl + # Non_Abstract _Features - Cost2+

iV

Abstract_Features - Cost3 (I

Where Costl = 3, Cost2 = 2 and Cost3 = 1.
For every subject system we located five concepts and for each concept we came
up with six to ten different descriptions. These descriptions were formed by varving

the:

e number of abstract and non abstract features.

¢ number and type of statements in the query.

As a result these thirty concepts were expressed in two hundred and five different
queries. Queries describing the same concept mainly differ in weight which indicates
the degree ol abstractness and expressiveness. The series of diagrams that follows
focuses more on qualitative results rather than quantitative ones. It would be casy
to come up with several different ways of expressing a concept cach one yiclding a
different precision. However our major interest and objective was to capture the
general behavior of the svstem when certain paramecters change. For this reason
diagrams are expressed across several different queries describing different concepts
for each subject system. -

The first set of diagrams presented in figure 5.1 presents the relation between

precision and the average similarity measure reported for each query for a particular

. CHAPTER 50 EXPERIMENTAL RESULTS 96

subijject svstem, As expected we observe an analogy between these two quantities,
As our queries become more precise the average similarity measure reported also
increases and viceversa, The average stmilarity measure is calenlated as the average
of the similarity measure caleulated for each reported instance of a concept described
bv an ACL querv. It is interesting to notice that some times precision remains
constant whei small differences in the average similarity measure occur: the reason
for this is that adding more features to our description after a certain point does
not have a significant effect on precision but will most certainly change the average
similarity measure reported.

Additional conclusions regarding the quality and effectiveness of a query in ACL
can be drawn from our next diagram set (see figures 5.2.5.3). These diagrams show
the relation among the query precision, the number of retrieved concept instantiations
in a subject svstem and two main factors of the weight formula which also reflect the
expressiveness of the query, namely the number of abstract and non abstract features
specified in the ACL query.

These diagrams show some of the characteristics of the system. The general rule
is that the more abstract a query is made the bigger the number of retrieved concept
instantiations and the lower the precision would be. Using ACL for C there is a

number of ways an analyst can make a query more precise, namely the analyst can:

1. use specific statements instead of generic ot don’t care statements to describe
. a particular code segment,

~ 2. utilize more non abstract features to describe properties of a code segment and
lastly

3. avoid the use of abstract features (i.e. bind variables) as much as possible.

The following points can be verified by examining the diagrams m figures 5.2 and
5.3. We see that increasing the number of abstract statements and non abstract

. features results in less concept instantiations reported and better precision. On the

— e

CHAPTER 5. EXPERIMENTAL RESULTS

Precision - Average Similarity Measure
Diagrams

Figure 5.1: Precision - Average Similarity Measure Diagrams.

rZ

CHAPTER 5. EXPERIMENTAL RESULTS 9

other hand inereasing the number of abstract features leads to an inerease of reported
concept instantiatiors and lower preciston.

Another interesting dependency can be observed in the third set of diagrams
shown in figures 5.4 and 5.5, The wayv we defined the weight for an ACL query. a
greater weight corresponds to more precise thus less abstract queries (see formula I).
This relation is shown in the diagrams. For a well designed query increasing weight.
should result in greater precision.

Finally our last set of diagrams shows the existing relation between Recall and
Precision (figure 5.6). As expected these two quantities are dependent and asym-
metrical. The higher the Precision achieved by a query the lower the Recall will be.
Making a query more abstract means that we specify less features and use the query
language in a less restrictive way. Inevitably less logical constraints will result in
more irrelevant components retrieved and lower precision. Partial match allows to
virtually rewrieve all the relevant info but usually this comes with a price in precision.

Summarizing our results we can say that:

= precision is highly correlated with the similarity measure. This result verifies
the correctness and effectiveness of the comparison algorithm used,

o the number of features (abstract and non abstract) is highly correlated with
the number of concepts retrieved,

» increasing the number of abstract statements, above a certain “threshold”, in
the query seems not to affect significantly the number of retrieved concepts,

e queries using only abstract features yield noisy results and consequently high
recall values,

e effective queries have to use both abstract and non abstract features in a bal-
anced number and specific statements rather than abstract statements,

e when the precision drops the recall increases. This means that more abstract
queries that introduce more noisy results (lower precision) tend to capture more
instances of a concept in the system (higher recall). Moreover recall is rela-
tively stable for most queries and that verifies the completeness of the features
selected.

. CHAPTER 5. EXPERIMENTAL RESULTS SR

Figure 5.2: Retrieved Concept Instantiations - Weight Factors Diagrams.

. CHAPTER 5. EXPERIMENTAL RESULTS 100

— —_ —_—— — — - D — e
C e — aem - — - ‘- - T T T T R
'
e — — e e—
1
o —

Figure 5.3: Retrieved Concept Instantiations - Weight Factors Diagrams.

I

CHAPTER 5. EXPERIMENTAL RESULTS 101

Precisio on - Welght Dlagrams

EnERbw 3-1,-. Rl

Figure 5.4: Precision - Query Weight Diagrams.

CHAPTER 5. EXPERIMENTAL RESULTS

Precision - Weight Diagrams

Figure 5.5: Precision - Query Weight Diagrams.

. CHAPTER 5. EXPERIMENTAL RESULTS 103

Precision - Recall Diagrams

DAL ITRITT L RTINS
By LT R CL P e LA S

W7 oW

Figure 5.6: Precision - Recall Diagrams.

. CHAPTER 5. EXPERIMENTAL RESULTS 104

Finally new users can easily improve their tool usage skills by taking advantage of
the graphical interface and the query editor supplied. A screen dump of the interface

is shown in figure 5.7.

105

CHAPTER 5. EXPERIMENTAL RESULTS

...n.hgqu?}b YA ENI LR Fginioe Se, Ok
pR. ._tiatDE:.- SR b7 Pl <) YALY U)
202 sy # {EPETINIR NI QALYI0T |

0231”08 0O NIHOLY Y QW04 .,
.~

-.....-.....--.-lu--......t--..0...0.......O.t‘.......D....t........ M 4

YOIl BUAMSUEGIY S ACTCIMIR NI Q1LYI0T i
LI RRRINGH oI B N 02Lv01 i
3000 DNHILYW !

520: ALUBYBOUd HILYW

15207008 300 BN HOLYW ¥ G041
ZAVSH w :
. S .
SEOSPRRFRRONIGIIRRRERY (L1l ’..-..
Fie T S o 2262 R M) GALY0)
L 21} HOZLIywrsas NI GALYD0T |43
3000 BNHOLYA il
AL1iBYBOYd HOLYW |riA
121105 SO0 B NI KoL Y oo

SAVRERRRPRIN RN RN SRR tn et bl Attt bbbt i

5 S2S 0L 135 Boud 101

1 =%

y

74

" o =
ST

i
¢
¢
‘
b
=Y i
K " 4
i oo \ M_
15950 i
4 sopvsboi |
A oS-+ H
J Hdu ;
e 2%9p-Ub-TR w
5 wag-,
] HaHL
¢ (fwarag): spaomay N
Wm 262p- b -5q0) :
£ 250p-Uab-squ) f
s-a “

The Graphical User Interface.

Figure 5.7

Chapter 6

Conclusions

In previous chapters we presented the framework created and adopted for our system
as well as the experimental results we obtained using the system to locate concepts
in various C programs. This chapter discusses possible directions for future research

in order to improve the system and presents a summary of our conclusions.

6.1 Future work

There are two major directions for future improvement of both the framework and
the system we described. The first is enhancing the capabilities of the system and

. the second is extending its scope. The following sections explore these directions.

System enhancement

Significant performance improvement is possible by introducing parallelism in the
algorithm. The nature of the algorithm makes it an ideal candidate for parallelization.
To be more specific what we suggest here is parallelizing the matching process after
the candidate starting points have been computed. Knowing how many distinct

cases have to be considered we can then “fork” as many processes to handle each

106

CHAPTER 6. CONCLUSIOXNS 107

case concurrently., This is of course a non trivial task. One must consider possible
overhead and space requirements due to massive copyving of stractures that is going
to occur. Further more we must estimate the effect of using parallelistn on our
framework’s complexity. Several techniques for parallel programming in C++ are
being proposed and we are currently going through the literature to estimate the
cffort needed to accomplish this task.

Another possible improvement would be the implementation of several low level
feature comparison methods. The analyst would then have the opportunity to choose
the one he finds more suitable depending on the task the system has to accomplish.
In the current implementation feature comparison is done using exact string compar-
ison and metric distance is calculated using the cuclidean distance. One possibility
would be to calculate lexicographic distances [26] between code features and their de-
scriptions in the ACL query. We could also usc a different formula to compute metric
distances. The analyst would have the opportunity to choose the desired method of
feature comparison from a list of availﬁble methods in the graphical interface and
fine tune it by changing certain parameters or thresholds. For example in the current
version the user can adjust the threshold used to characterize a rccdgnizcd statement
as a possible match as well as the threshold used to check the metrics distance of
two code segments. If we use lexicographic distances for feature comparison the user
should be able to specify the minimum number of characters a feature should have
so that the comparison is meaningful.

In the prototype, implemented for the REVENGE project, the Abstract Concept
Language (ACL) is more powerful. The analyst can specify the type of a variable
in the query and use logical operators to define the sequence of abstract statements.
Those features were not included in our version of the system mainly due to time
constraints. We estimate that existence of these features is also a possible enhance-

ment. The existence of logical operators can be particularly useful in order to solve

CHAPTER 6. CONCLUSIONS 108

some interesting problems that arise from the possible implementation diversity of a
concept. In every programming for example. the programmer can sometimes inter-
change two statements that are not dependent on each other without changing the
functionality of the code segment containing these statements. To capture these cases
we could use the logical OR operator in ACL and describe our pattern as : A;[{; .
this would result in the creation of two sequential models Al; A2 and A42: A1, The
one that maximizes the overall matching probability calculated would be chosen. In
our present implementation the only way to solve this problem is to use don’t care
statements (i.e. the *-Statement or the +-Statement).

A useful cnhancement would be to graphically present our results. We are cur-
rently exploring ways of representing graphically the AST and the matching results.
The AST will be represented as a simple n-ary tree. Nodes in the tree correspond
to nodes in the AST and thus to statements in the original code. The analyst will
have the ability to click on any node and get information about the node’s features.
Recognized concepts can then be presented to the analyst as highlighted areas (set of
nodes) in the tree. Implementing this GUI enhancement is an interesting task. A new
extension to Tcl/Tk exists that allows the display of dynamically created trees. We
estimate that presenting the whole AST can be time consuming, however it would be
possible for the analyst to choose between displaying the whole AST, just the parts
of the AST that contain recognized results or only some preselected parts of it.

The design presented in chapter four is the result of several iterations over our
initial design ideas. Introducing new features to our system will inevitably lead to

further evolvement of the design.

System Extension

An important step toward the evolution of the system design would also be the use of
the framework for a new target language. Possible target langnages can be HTML,

CHAPTER 6. CONCLUSIONS 109

Pascal or simply “structured” text. At the moment we find HTML and “structured”
text the most interesting candidates mainly because using them wonid help us to
further evaluate the system from the information retrieval point of view,

Extending the tool with a new target language is a three step process. First we
need to create a domain model for the new language able to capture the language’s
basic constructs and their main features. For HTML pages, paragraphs, sentences,
applets and images can be considered basic constructs. Each basic construct has
particular features and also shares some common features with other classes. Links
and references, maps or background and foreground information can be considered
features of an HTML document. The next step is the creation of a parser for the
language. This parser should produce an intermediate representation of the “source
code” in the form of an AST. Nodes of the AST would be objects of the classes spec-
ificd in the domain mode! of the language. Finally we need to implement meaningful
feature comparison functions for the language. By plugging the newly created cle-
ments to the existing framework we can then usc our main code segment localization
algorithm to locate occurrence of a “code” segment in the input.

In terms of effort needed to accomplish these steps we have been able to confirm
that the creation of the domain model is the most time consuming and challenging
step. For most programming languages publically available parsers exist. We found
particularly useful to have such a parser in our initial resources. Going through the
parser we can factorize entities and create primary abstractions that can subsequently
drive the creation of the domain model. We already have a parser for “structured”
text, which is plain text with some simple tags to indicate end of paragraphs or pages.
HTML parsers are available and are also considered at the moment as possible starting
points.

Finally it would be useful to incorporate in the system a small knowledge base

where we could store the recognized concepts and create small libraries of plans for

CHAPTER 6. CONCLUSIONS 110

cach subject svstem we examine. The global repository. currently used as a source for
our input. is a possible candidate. Using the domain model of the target language we
can form s-expressions describing a coneept and store them in the global repository.
Using the global repository will permit the sharing of concept descriptions among the

participating tools in the cooperative environment.

6.2 Summary of conclusions

The purpose of the work reported in this document was the creation and use of
a generalized framework for information retrieval on large spaces containing struc-
tured data. The particular implementation is applied to the program understanding
domain.

The framework introduced was used to create a code segment localizer which can
be used for concept localization in C programs. In the heart of this framework is an
algorithm that performs information retrieval based on complet. or partial matching
of structured features. Concept detection and localization is a crucial part of the
design recovery process which, in turn, constitutes a vital task of the maintenance
process. The resulting code segment localizer can be part of a larger cooperative en-
vironment of CASE tools created for the REVENGE project. The main components

of the framework are:

e a flexible and simplified domain model of the target language,

o parsing facilities for conversion to an intermediate representation (AST) of both
the “source code” and the query describing the concept and

e a comparison engine implementing the main localization algorithm using the
Viterbi dynamic programming algorithm and Markov Models.

An object oriented approach, and programming language (namely C++), was

chosen for the implementation of the framework in order to achieve greater modu-

larity, extensibility and ease of maintenance. After several iterations of introducing

CHAPTER 6. CONCLUSIONS 111

enhancements to the syvstem allowed us to conclude that extensibility and maintain-
ability were achieved.

Extensive testing proved the capabilities of our framework and provided satisfie-
tory results for a large range of subject svstems and concepts.

We strongly believe that the generic framework presented in this report can be
used to perform information retrieval in a variety of fields as long as information
in the search space presents some structure and is described using formal, structure

oriented patterns of features.

Appendix A

The Abstract Concept Language
grammar

In this appendix we present the grammar of the Abstract Query Language we used
for C programs in Backus Normal Form. Reserved words of the language appear in
bold (a complete table for reserved words appear at the end), C-like syntax is used

for comments.

<query>
<stmt_states>

<stmt_state>

<stmt_descr>

: ATSIGN <stmt.states> ATSIGN

: /* empty */

| <stmt.state> <stmt.states>
: SEMICOLON <stmt._descr>

| <stmt.descr>
: <if.stmt>

| <include_plan>
| <iter.stmt>

| <while.stmt>
| <do.stmt>

| <for_stmt>

| <ret_stmt>

| <goto.stmt>

| <cont_stmt>

| <break stmt>
| <switch_stmt>
| <label stmt>

| <assign_stmt>
| <fnccall stmt>
| <block stmt>

APPENDIX A.

<include_plan>
<ifstme>

<iter.stme>
<whilestmt>
<do.stmt>
<for_stmt>

<ret.stmt>
<goto_stmt>
<cont.stmt>
<break_stmt>
<switchstmt>
<label.stmt>
<assign_stmt>
<fnccall stmt>
<block.stmt>

<zero_or_.morestmt> :
<one.oranore_stmt>

<function_def>
<expr.stmt>
<gen_descr>

THE ABSTRACT CONCEPT LANGUAGE GRAMMAR 113

| <zero.ormore stmr>

| <one.vrmorestmt >

| <function_def>

| <exprstmt>

: SOURCE <STRIXNG>

: IFSTMT <gen_descr> <cond_descr> THEN <stmt. deser>
ELSE <stmt_descr>

| IFSTMT <gen.descr> <cond.descr> THEN <stmt_deser>

: ITERSTMT <gen_deser> <cond_deser> <sunt_deser>

: WHILESTMT <gen.descr> <cond.deser> <stmt.deser>
: DOSTMT <gen.descr> <cond.deser> <stmt_deser>

: FORSTMT <gen_descr> LPAREN <pattern_deser>

SEMICOLON <pattern.descr> SEMICOLON <pattern_descr>
RPAREN <stmt.descr>
: RETSTMT <gen._descr>

: GOTOSTMT <gen.descr>
: CONTSTMT
: BREAKSTMT

: SWITCHSTMT <gen.descr> <cond.descr> <stmt.descr>

: LABELSTMT <gen._descr>

: ASSIGNSTMT <gen._descr>

: FNCCALLSTMT IDENTIFIER <gen_descr>

: LCBRACKET <gen_descr> <stmtstates> RCBRACKET
ZEROMORESTMT <gen_descr>

: ONEMORESTMT <gen.descr>

: FUNCTION IDENTIFIER <gen_descr> block_stmt
: EXPRSTMT <gen.descr> block_stmt

: LPAREN <gen_pattern.descr> RPAREN
| <gen._pattern_descr>

<gen_pattern.descr> : ABSGENDESCR <pattern_descr>1

<cond_descr>

<pattern_descr>
<pattern_descrl>

<features_descr>

<uses_descr>

<defines_descr>

: LPAREN <pattern.descr> RPAREN

| <pattern.descr>

: ABSEXPRDESCR <pattern_descr>1

: EMPTY

| <features_descr>

: <uses_deser> <defines_descr> <kevwords_descr> <metrics.deser>
:/* empty */

| USES LBRACKET <identifier seq> RBRACKET

| USES LBRACKET <identifier seq> RBRACKET COMMA

:/* empty */

| DEFINES LBRACKET <identifier.seq> RBRACKET

APPENDIX A. THE ABSTRACT CONCEPT LANGUAGE GRAMMAR 114

<keywords_descr>

<metrics_deser>

<identifier seq>
<identifier_seql>

<identifierseq2>

<Float>

| DEFINES LBRACKET <identifier seq> RBRACKET

COMMA

:/* empty */

| KEYWORDS LBRACKET <identifier seq> RBRACKET

| KEYWORDS LBRACKET <identifier seq> RBRACKET

COMMA

:/* empty */

| METRICS LBRACKET <Float> COMMA <Float>
COMMA <Float> COMMA <Float> COMMA <Float>
RBRACKET

: <identifier.seql>

: <identifier seq2> IDENTIFIER

| <identifier seq2> QUESTION IDENTIFIER

1 [* empty */

| <identifierseq2> IDENTIFIER. COMMA

| <identifierseq2> QUESTION IDENTIFIER COMMA

: FLOAT

APPENDIX A.

THE ABSTRACT CONCEPT LANGUAGE GRAMMAR

Reserved Word Symbol

Actual Reserved Word

ABSEXPRDESCR

abs-exp-desc
Abs-Exp-Desc
ABS-EXP-DESC

ABSGENDESCR

abs-gen-desc
Abs-Gen-Desc
ABS-GEN-DESC

FUNCTION

Function-Def
function-def
FUNCTION-DEF

IFSTMT

if-stmt
If-Stmt
IF-STMT

THEN

then
Then
THEN

ELSE

else
Else
ELSE

ITERSTMT

iterative-stmt
Tterative-Stmt
ITERATIVE-STMT

WHILESTMT

while-stmt
While-Stmt
WHILE-STMT

DOSTMT

do-stmt
Do-Stmt
DO-STMT

FORSTMT

for-stmt
For-Stmt
FOR-STMT

RETSTMT

return-stmt
Return-Stmt
RETURN-STMT

GOTOSTMT

goto-stmt
Goto-Stmt
GOTO-STMT

EXPRSTMT

expr-stmt
Expr-Stmt
EXPR-STMT

Table A.1: ACL’s Reserved Words [I]

APPENDIX A.

THE ABSTRACT CONCEPT LANGUAGE GRAAMMAR

Reserved Word Symbol

Actual Reserved Word

CONTSTMT

continue
Continue
CONTINUE

BREAKSTMT

break
Break
BREAK

SWITCHSTMT

switch-stmt
Switch-Stmt
SWITCH-STMT

LABELSTMT

labelled-Stmt
Labelled-Stmt
LABELLED-STMT

ASSIGNSTMT

assignment-stmt
Assignment-Stmt
ASSIGNMENT-STMT

FNCCALLSTMT

function-call
Function-Call
FUNCTION-CALL

ZEROMORESTMT

*_stmt
*Stmt
*STMT

ONEMORESTMT

+-stmt
+-Stmt
+-STMT

EMPTY

empty

Empty
EMPTY

KEYWORDS

keywords :
Keywords :
KEYWORDS :

DEFINES

defines :
Defines :
DEFINES :

USES

uses :
Uses :

USES :

Table A.2: ACL’s Reserved Words [I]]

APPENDIX 4.

THE ABSTRACT CONCEPT LANGUAGE GRAMMAR

Reserved Word Symbol

Actual Reserved Word

metrics :
METRICS Metrics :
METRICS :
source :
SOURCE Source :
SOURCE :
LBRACKET
RBRACKET]
RBRACKET (
RPAREN)
LCBRACKET {
RCBRACKET }
ATSIGN @
COMMA ,
SEMICOLON]
COLON :
QUESTION ?

Table A.3: ACL's Reserved Words [I11]

117

Appendix B

Examples of concepts

Subject System : Twentyone

Concept description
For cach player check if he/she placed a bet and if so then deal a new card and
update the necessary variables.

¢
Iterative-Stmt
(abs-gen-desc empty)
(abs-exp-desc
keyvords : [?player])
{
abs-gen-desc empty
+-Stmt
abs-gen-desc
uses : [?player],
defines : [?card];
+-5tmt
abs-gen-desc
empty;
Assignment-Stmt
abs-gen-desc
uses : [?card];
+-Stmt
abs-gen-desc empty
}
Q

118

APPENDIX B. EXAMPLES OF CONCEPTS 119

Ezample of reported concept instantiation

for (player = 0 ; player < num_players ; ++player)
{ card = players [player] . bet ? deal_card () : ’ * ;
(void) printf ("\tlc" , card) ;
players [player] . cards [players [player 1 . num_cards++] =
card ;
players [player] . cards [players [player] . mum_cards] = '\0’ ;
players [player] . busted = 0 ;
players [player] . split =0 ;

Subject System : List

Concept description
Check if memory allocation for an element has failed and initialize element’s fields,

e

If-5tmt

abs-gen-desc empty

abs-exp-desc

keywords : [elem]
Then
{
abs-gen-desc
empty
*-Stmt
abs-gen-desc
empty

}

w==Stmt

abs-gen-desc
uses : [elem]

Ezample of reported concept instantiation

if (elem == NULL)
{

fprintf (stderr,"elementcreate: malloc failed, out of memory??7\n");
return NULL;
}

elem->next = NULL;
elen->info = i;

APPENDIX B. EXAMPLES OF CONCEPTS 120

Subject System : Recognizer

Concept description
Part of the transition probability calculation. For cach active transition check if
probability is already calculated if not calculate it; then check if this newly
calculated probability is bigger than the max probability so far and if so update the
current maximum. Finally perform some simple initializations.

Iterative-Stmt
(abs~gen-desc
uses : [?TxP],
defines : [?DistrVall)
(abs-exp-desc
empty)
{
abs-gen-desc
empty
If-Stmt
abs-gen-desc empty
abs-exp-desc empty
Then
{
abs-gen-desc
empty
Assignment-Stmt
abs-gen-desc
defines : [?DistrVall;
»*=3tmt
abs-gen-desc
empty
};
If-Stmt
abs-gen-desc empty
abs-exp-desc empty
Then
Assignment-Stmt
abs-gen-desc
empty;
=~Stmt
abs—-gen-desc
uses : [?TrP]

APPENDIX B. EXAMPLES OF CONCEPTS

Erample of reported concept instantiation

do {
if (!1(distTested[idx = TrP->DistrIdx])) {
DistrVal[idx] = EvalDistr(&DistrList[idx],obs);
distTested[idx] = TRUE;
}
if (p<{contribution=TrP->Prob+DistrVal [idx]))
p = contribution;
TrP++;
} while(++i < *nextMix);
smixTested = TRUE;
mix->Value = p;

Subject System : Feature Eztractor

Concept description

Check the energy level and if is less than the current minimum update the

121

minimum; also if its less than a certain filter value replace the current threshold

with this filter value.

Assignment-Stmt
abs-gen-desc
uses : [?enertmp];
If-Stmt
abs-gen-desc empty
abs-exp-desc empty
Then
Assignment-Stmt
abs-gen-desc
defines : [Yenertmp];
If-Stmt
abs—gen-desc empty
abs—-exp-desc
keywords : [Zenertmp]
Then
{
abs-gen-desc
empty

»=Stmt
abs-gen-desc
empty

APPENDIX B. EXAMPLES OF CONCEPTS

Ezample of reported concept instantiation

enertmp /= MelWeight[j];
if (enertmp < min_energy) enertmp = min_energy;
if (emertmp < SilFilt[j]l) {
fprintf(stderr,"REPLACING (1) %f with threshold %f\n",enertmp,SilFilt([j]l);
FiltEnergyl[jl = SilFilt[jl;

Subject System : CLIPS

Concept description
Check the value of a pointer and if it is NULL then adjust the menu and code

variables.

If-Stmt
abs-gen-desc empty
abs-exp-desc
keywords : [eptr]
Then
{
abs-gen—desE
empty
==Stmt
abs-gen-desc
empty
If-Stmt
abs-gen-desc empty
abs-exp-desc
keywords : [lptr]
Then
{
abs-gen-desc
empty
w-Stmt
abs-gen-desc¢
uses : [1ptr]

*==Stmt

[)
[2]

APPENDIX B. EXAMPLES OF CONCEPTS

abs-gen-desc
empty

Ezample of reported concept instantiation

if (eptr == NULL)
{
=code = NO_TOPIC;
if (iptr->curr_menu '= NULL)

{
*menu = lpty->curr_menn->name;
return(lptr->curr_menu->offset);
}

return{-1);

}

Subject System : Tcsh

Concept description
Part of the prompt printing code.

Assignment-Stmt
abs-gen~desc
empty;
Iterative-Stmt
(abs-gen-desc
empty)
(abs-exp-desc

keywords : [wdp,word])

{

abs-gen-desc

empty
==Stmt
abs-gen—-desc
empty
Assignment-Stmt
abs-gen-desc
uses : [wdp,hpl,

defines : [new,prev,next];
—_ »-Stmt

abs-gen-desc

123

APPENDIXN B. EXAMPLES OF CONCEPTS

empty;
Assignment-Stmt
abs-gen-desc
defines : [wdp,next];
*=-Stmt
abs-gen-desc
empty
3
Assignment-Stmt
abs-gen-desc
uses : [wdpl,
defines : [hp,next]

Ezample of reported concept instantiation

wdp = hp;
do {
register struct wordent *new;

new = (struct wordent *») xmalloc{(size_t) sizeof(*wdp));
new->word = Q;
new->prev = wdp;
new->next = hp;
wdp—>pnext = new;
wdp = new;
wdp->word = woxrd();
} while (wdp->word[0] != *\n’);
hp->prev = wdp;

Appendix C

A recognition example

A full blown recognition example is presented in the following paragraphs in order
to clarify the process presented in chapter 5. Consider the following code segment

description :

QL @

Q2 Assigoment-Stmt

Q3 abs-gen-desc

Q4 defines : [Features];
Q5 Iterative-Stmt

Q6 (abs-exp-desc

Qr keywords : [Control])}
8 {

Qs *=Stmt

Q10 abs-gen-desc

Qi1 empty

Q12 Assignment-Stmt

Q13 abs-gen-desc

Q14 uses : [Features,CosTable,FiltEnergy]
Qs %

Q16 @

The above query is used to locate an assignment statement that defines a variable

called “Features”, followed by an iterative statement which uses the keyword-variable

125

APPENDIX C. A RECOGNITION EXAMPLE 126

“Control” in its condition. The iterative statement should have a block in its body.
Inside the block there should be at least one statement which would be an assignment
that uses three variables: namely “Features™, “CosTable” and “FiltEnergy™. The
assignment statement should be the last statement in the block and can be preceded
by zero or more other statements.

Given the query described, an APM is formed (see figure C.1). There are some
interesting issues in the creation of the APM; both the Iterative statement and the
Block statement are composite objects so sub-APMs are created for each one of them,
as a result recognrition will be possible through recursive calls of certain functions for

cach APM,

.@: 0s .w 0.165 w 0.165 .@
LA)
" Vi
Y

“a
-

Eem--Eoammet b (e

~
it

- "'-...,l
- hadC
- —~
4 o “‘

|

Figure C.1: Resulting APM.

Locating candidate starting points is the initial step of the code segment local-
ization algorithm. Possible starting points for the given query are all the assign-
ments statements in the code. For every possible starting point a call to the per-
Jorm_paltern_match function occurs.

We used this query on the Feature Eztractor and one possible result was the
following piece of code.

APPENDIX C. A RECOGNITION EXAMPLE 127

C1 Features[i + n].PM_mel(j] = 0.0; /+ try here +/

C2 for (k = 0; k < Contrel.sa_nfilt; k++)

€3 {

C4 Features[i + n].PM_mel[j] += (CosTablelj][k] = FiltEnergy(kl);
cs }

We will use this piece of code to explain the localization algorithm. The localiza-
tion process starts by considering the active state in the APM and the active code
in the source code AST (7.). The first state in the APM. the Assignment State
described in lines Q2 to Q4 in the query, will be compared with the first statement
in the AST; line C1 in the code. Initially we perform the three step check to ensure
that a comparison is possible. Statement type compatibility, metrics distance and
specific features are compared. Tvpe compatibility is successful, metrics and specific

features are not checked as they are not specified in the query. A similarity measure

Peoap(Ser|4q2)

is subsequently computed using formula (6) introduced in chapter 4. Assuming that
the statement in the code (line C1) defines two variable names (Features and PM_mel)

then :

i card(AbstractFeature;, N CodeFeature;,)

1
.4. 9} = =—- -
Peomr(Sc1lAe2) v =4 card(AbstractFeature;, U CodeFeature;)

% =0.3
The value of v is one because only one feature is specified (i.e. variable names
defined). To calculate the final probability to be attached to the transition for the
First Sentinel to the Assignment Statement in the APM, the similarity measure calcu-
lated is multiplied by the probability of statement type compatibility specified in the
SCM. Both statements are of the same simple type (Assignment) so this probability
is 1. Finally the product is multiplied by the maximum probability in the incoming

APPENDIX C. A RECOGNITION EXAMPLE 128

transitions of the previous state in the APM. The previous state in this case is the
First Sentinel so this probability is again 1. As a result the overall similarity measure

attached to the first transition in the APM is 0.5 . The formula just described is :

P, = Peomp(ScilAqs) - Pscar - Parp (7)

Where P, is the transition probability, Pscys is the static probability given by
the static model based on statement type criteria and Ps;p is the max incoming
probability attached in a transition to the previous state in the APM.

The next active state in the APM is the Iterative Statement state and the next
active state in the code’s AST corresponds to the For Statement in line C2. Type
compatibility, metric distance and specific feature checks are all successful so the
calculation of the similarity measure can proceed. The Iterative Statement is a com-
posite statement and in order to calculate its total similarity measure we first calculate
the similarity measure of its body by calling recursively the perform_pattern_.match
function.

The active states now are: the Block Statement state in the APM and the Block
Statement state in the AST. The three initial checks are again successful and the
Block Statement being a composite statement causes a second recursive call to the
perform_pattern_match function in order to calculate the similarity measure for the
Block Statement. i

From the APM we see that possible active states.are now both the *.Statement
state and the Assignment Statement. The active code is the node in the T, AST
corresponding to the assignment in line C4. Applying the three step check for the
*_Statement and then calculating the similarity measure yields a transition probability
equal to one. A transition probability equal 0 one is calculated for the second active
state (i.e. the Assignment Statement too assuming that the corresponding node in
the 7. AST uses only the variables named “Features”, “CosTable”, and “FiltEnergy”.

. APPENDIX C. A RECOGNITION EXAMPLE 129
The active states in the APM for the next localization step are:

1. the *_Statement state (previous active state : *_Slatement state),

[gv]

. the Assignment Statement (previous active state : *.Statement state) and

3. the Last Sentinel state ((previous active state : Assignment Statement),

In the code there is no active state, as a result the first two possibilities (i.c.
the *_Statement and Assignment Statement fail the initial three step check. On the
contrary the last case Last Sentinel is successful and the maximum probability from
the incoming transitions to the previous active state (i.c. the Assignment Statement)
is assigned to the transition to the Last Sentinel state.

The similarity measure calculated for the body of the Block Statement is equal
to the transition probability to the Last Sentinel and is returned as the result of the
recursive call to the perform_pattern_match function. Using formula (7) for the Block

Statement we have :

P, = Peomp(ScslAqs) - Pscm - Purp=1-1-1=1

This transition probability is again assigned to the transition to the Last Sentinel
state in the second sub-APM and then passed back as the result of the recursive call
to the perform_pattern_match function for the lterative Statement. Formula (7) for

the fterative Statement now looks as follows :

P, = Peomp(Sca|Ags) - Psca - Purp = 1-0.33-0.5 = 0.165

The probability given by the StatiC Model (SCM} is 0.33 (see figure 4.4) and the
preﬁous maximum incoming transition probability is the one calculated for the first

Assignment Statement.

APPENDIX C. A RECOGNITION EXAMPLE 130

Assignment @
Q12-Q14
-1
* Statement 1 ®
Q9-Ql1l
Block Statement ®
Q8-Q15
Iterative Statement ®
Q5-Q15
Assignment ®
Q2-Q4
i : ; } ; : ".
0 1 2 3 4 5 C°g‘tﬂ:“5°“

Figure C.2: Comparison steps in the Viterbi algorithm for the example.

Finally the calculated probability is assigned to the final transition to the Last
Sentinel state of the “outermost” APM and a successful code segment localization is
reported. The described steps are shown in figure C.2, the dashed line presents the
reported path of recognition.

List of Abbreviations

ACL
AST

BNF
CLIPS
CSL
GUI
HMM
HTML
KLOC
LOC
MLOC
NRC
REVENGE :
SCM
SQL/DS
TMB

: Abstract Concept Language

: Abstract Syntax Tree

: Abstract Pattern Model

: Backus Normal Form

: C Language Integrated Production System
: Code Segment Localizer

: Graphical User Interface

: Hidden Markov Model

: Hyper Text Markup Language

: Kilo Lines Of Code

: Lines Of Code

: Million Lines Of Code

: National Research Council of Canada

REVerse ENGineering Environment

: StatiC Model
: Structured Query Language/Data System
: Telos Message Bus

131

Bibliography

(1] J.B. Arseneau. Software Reengineering & Maintenance Tools.
http://www.erg.abdn.ac.uk/users/brant/sre/tools.html.

[2] K. Bennett. “Legacy systems : Coping with success”. IEEE Software, January
1995.

[3] T.J. Biggerstaff. “Design recovery for maintenance and reusc”. JEEE Computer,
pages 3644, July 1989.

[4] T.J. Biggerstaff, B.G. Mitbander, and D.E. Webster. “Program understanding

and the concept assignment problem”. Communications of the ACM, 37(5):72-
82, May 1994.

[5] D.C. Bliar and S.D. Lee. “An evaluation of retieval effectiveness for a full-
textdocument retrieval system”. Communications of the ACM, 28(3):289-299,
1985.

[6] G. Booch. Object-Oriented Analysis and design. The Benjamin/Cummings Pub-
lishing Company ,Inc, 1994.

[7] B. Britcher and J. Craig. “Upgrading aging software using modern software
engineering practices”. In IEEE Conference on Software Maintenance, pages
162-170, 1985.

[8] Intersolv Sales Brochure. Design Recovery for Ezcelerator. 1991.

[9] D.C. Brotsky. An Algorithm for Parsing Flow Graphs. Master’s thesis, MIT,
1984.

[10] E. Bush. “The automatic restructuring of cobol”. In IEEE Conference on Soft-
ware Maintenance, pages 3541, 1985.

[11] E. Buss and J. Henshaw. “A software reverse engineering experience”. In CAS-
CON, pages 55-73. IBM Canada Ltd, October 1991.

[12] CASE. “Reengineering and maintenance”. In CASE Outlook, 1989.

132

BIBLIOGRAPHY 133

[13] E.J. Chikofsky and J.H. Cross II. “Reverse enginnering and design recovery a
taxonomy”. IEEE Software. pages 13-17. January 1990.

[14] N. Cooke and W, Schvaneveldt. “Effects of computer programming experience
on network representation of abstract programming concepts™. International
Journal of Man Machine Studies, 29:407-427, 1988.

[15] T.A. Corbi. “Program understanding:challenge for the 1990°s™. IBM Systems
Journal, 28(2):294-306, 1989.

[16] J.R. Cordy and I.H. Carmichael. The TXL Programming Language. Syntar and
Informal Semantics - Version 7. Technical Report Technical Report 93-355,
Dept. of Computing and Information Science, Queen’s University, 1993.

[17] Legasys Corporation. TXL Transformation System.
http://www.qucis.queensi.ca/home/cordy /legasys.html.

[18] B.K. Das. “A knowledge based approach to the analysis of code and program
design language”. In JEEE Conference on Software Maintenance, pages 290-296,
1989.

[19] S. Davies. “The naturc and development of programming plans”. International
Journal on Man Machine Studies, 32:461-481, 1990.

[20] R. Dekker and F. Ververs. A design recovery prototype. Technical report, Delft
University of Technology, 1995.

[21) E. Buss et al. “Investigating reverse engineering technologies for the cas program
understanding project.”. IBM Systems Journal, 33(3):477-499, 1994.

[22] F.W. Callics et al. “A knoweldge based system for software maintenance”. In
IEEE Conference on Software Maintenance, pages 319-324, 1988.

[23] G. Arango et al. “Maintenace and porting of software by design recovery”. In
IEEE Conference on Software Maintenance, pages 42-49, 1985.

[24] J. Mylopoulos et al. “Telos: Representing knowledge about information sys-
tems”. ACM Transactions on Information Systems, pages 325-362, October
1990.

[25] K. Kontogiannis et al. “The development of a partial design recovery system for
legacy systems”. In CASCON, pages 206-216, October 1993.

[26] K. Kontogiannis et al. “Pattern matching for clone and concept detection™.. In
Journal of Automated Software Engineering, pages 275-307, 1995.

BIBLIOGRAPHY 134

[27] L.D. Landis et al. “Documentation in a software maintenance environment”. In
IEEE Conference on Software Maintenance, pages 66-73, 1988,

[28] P. Benedusi et al. “A reverse engincering methodology to reconstruct hierarchical
data flow diagrams for software maintenance™. In JEEE Conference on Software
Maintenance, pages 180-189, 1989.

[29] P. Brown ¢t al. “Class-based n-gram models of natural language™. Journal of
Computational Linguistics, 18(4):467-479, December 1992,

{30] M.T. Harandi and J.Q. Ning. “Knowledge-based program analysis”. IEEE Soft-
ware, pages 74-81, January 19380.

[31] J. Hartman. Automatic Control Understanding for Natural Programs. PhD
thesis, University of Texas at Austin, May 1991.

(32] J. Hartman. “Understanding natural programs using proper decomposition™.
Proceedings of the 13th International Conference of Software Engineering, May
1991.

[33] Imagix. Jmagiz 4D. http://www.teleport.com/ imagix/.

[34] J.H. Johnson. “Identifying redundancy in source code using fingerprints”. In
CASCON, pages 171-183. IBM Canada Ltd., November 1992.

[35] W.L. Johnson and E. Soloway. “Proust: Knowledge-based program understand-
ing”. IEEE Transactions on Software Engineering, pages 267-275, March 1985.

[36] V. Karakostas. “The use of application domain knowledge for effective software
maintenance”. In JEEE Conference on Softwere Maintenance, pages 170-176,
1990.

[37] M.A. Ketabchi. “Object oriented intergrated software abalysis and mainte-
nance”. In IEEE Conference on Software Maintenance, pages 60-62, 1990.

[38] K. Kontogiannis. “Toward program representation and program understanding
using process algebras”. In CASCON, pages 299-317, November 1992.

[39] G.B. Kotik and L.Z. Markosian. Automating Software Analysis and Testing
Using a Program Transformation System. Technical report, Reasoning Systems
Inc., 1989.

[40] S. Letovsky. Plan Analysis of Programs. PhD thesis, Yale University Dept. of
Computer Science, December 1988.

BIBLIOGRAPHY 135

[41] K.J. Lieberherr and 1.\ Holland. “Tools for preventing software maintenance”,
In IEEE Conference on Software Maintenance, pages 213, 1989.

[42] R.C. Linger. “Software maintenance as engincering discipline™. In JEEE Con-
Jerence on Software Maintenance. pages 292 -297, 1988.

[43] Z.Y. Liu, M. Ballantyne, and L. Seward. An Assistant for Re-Engineering Legacy
Systems. http://www.spo.eds.com/edsr/papers/asstreeng.htl.

[44] Lockheed. InVision,
http://www.Imsc.lockheed.com/newsburecau/pressreleases/9522.heml, 1996.

[45] J. Meekel and M. Viala. “Logiscope : A tool for maintenance™. In IEEE Con-
ference on Software Maintenance, pages 328-334, 1988.

[46] H.A. Muller. Rigi - A Model for Software System Construction, Intergration and
Evolution Based on Module Interface Specifications. PhD thesis, Rice University,
August 1986.

[47) W.M. Osborne and E.J. Chikofsky. “Fitting picces to the maintenance puzzle”.
IEEE Software, pages 11-12, January 1990.

[48] D. Ourston. “Program recognition”. IEEE Ezpert, 4(4):36—49, Winter 1989.

[49] M.C. Overstreet, J. Chen, and F. Byrum. “Program maintenance by safe trans-
formations”. In IEEE Conference on Software Maintenance, pages 118-123,
1988.

[50] G. Parikh and N. Zvegintzov. The World of Software Maintenance, chapter 1,
pages 1-3. CSPress, Los Alamitos, 1983.

[51] S. Paul and A. Prakash. “Source code retrieval using programming patterns”.
In JEEFE Transactions on Software Engineering, pages 227-242, 1994.

[52] J. Picone. “Continuous speech recognition using hidden markov models”. IEEE
ASSP MAGAZINE, pages 26-41, July 1990.

[63] W. Pree, D. Gangopadhyay, and A. Schappert. “Report on the workshop
framework-centered software development™. In Addendum to the Proceedings
OOPSLA ’95, pages 100-103, October 1995.

[54] R. Prieto-Diaz. “Domain anlysis an introduction”. Software Engineering Notes,
15(2):47-54, April 1990.

[55] A. Quilici. “Reverse engineering of legacy systems: A path toward success”. In
International Conference on Software Engineering, pages 333-336, 1995.

BIBLIOGRAPHY 136

{56] A. Quilici and J. Khan. "Extracting objects and operations from ¢ programs™. In
Workshop Notes, Al and Automated Program Understanding, AAAL92. pages
93 97. 1992.

[57] S.P. Reiss. “Pecan: Program development systems that support multiple views”™,
In ICSE-7. pages 324-333, 1984.

[58] C. Rich and L.M. Wills. “Recognizing a program’s design : A graph-parsing
approach™. IEEE Software, pages 82-89, January 1990.

[59] G. Salton and M.J. McGill. Introduction to Modern Information Retrieval
McGraw-Hill, New York, 1983.

[60] D.B. Smith and P.W. Oman. “Software tools in context”. IEEE Software, pages
15-19, May 1990.

[61] C. Smythe, A. Colbrook, and A. Darlison. “Data abstraction in a software
reengineering reference model”. In IEEE Conference on Software Maintenance,
pages 2-11, 1990.

(62] H.M. Snced. “Planning the reengincering of legacy systems”. IEEE Software,
pages 24-34, January 1995.

[63] H.M. Sneed and G. Jandrasics. “Software recycling”. In IEEE Conference on
Software Maintenance, pages 82-90, 1987.

(64] AG Software. FULCRUM 2000. http://www.saguk.co.uk/web/year2000.html.

[65] E. Soloway and K. Ehrlich. “Empirical studies of programming knowledge”.
IEEE Transactions on Software Engineering, pages 595-609, 1984,

[66] Logic Technologies. LogiCASE. http://www.provantage.com/DE_08063.HTM.
[67] Leverage Technologists. Tools. http://stout.levtech.com/home html.

[68] A.J. Viterbi. “Error bounds for convolutional code and asymptotic optimum
decoding algorithm”. IEEE Transactions on Information Theory, 13(2):336-
342, 1967.

[69] W.B. Weide, D.W. Heym, and E.J. Hollingsworh E.J. “Reverse engineering of
legacy code exposed”. In International Conference on Software Engineering,
pages 327-331, 1995.

[70] L.M. Wills. Automated Program Recognition. Master’s thesis, MIT, 1987.

. BIBLIOGRAPHY 137

[71] L. Wills. “Automated program recognition: Breaking out of the toy program
rut”. In Workshop Notes, AT and Automated Program Understanding, AAA71°82,
pages 129-133. 1992.

