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ABSTRACT

f

me%cs and stability of curved pipes conveyin&yluid are /
studied in this Thesis. The pipes are usually supported at both ends,
with clamped or pinned supports, but some cases of cantilevered pipes <
are'also considered. ‘

’I{he goveming equations of smazll motion of the system are eerived
by the b;ewtmian approach, in a éenergl form that applies to all three
variants of the theory: '~ .

(1) the conventiocnal inextensible theory;

(1i) the extensible“theory;
(iii)k the modified inextensible theory.

"In all cases, the analysis is corhducted by the finite ‘element method

_ slide axially are also studied in this Thesis. Instabilities are predicted

According to the conventional inextensible theory, the centerline
remains inextensible and the steady-state stress resultant of flow/
pressure~irrduced forces.on the pipe does no work. As the flow is
increased, buckling is predicted for pipes supported at both ends. The
extensible theory does not make tbese‘assmrptions; as the flow is
increased, no buckling occurs acmrdiné to this theory. The new theery
dgveloped in tixis Thesis, the modified inextensible theory, retains the
assumption of zero deformmation of the centerline, but does take into

account the work done by the flm:r/pressure-indxced forces on the pipe.

Its predictions are close to those of the extensible theory, while

Being considei:ébly simpler and much more economical.
The case of cantilevered pipes and pipes with one end free to ~

by all three variants of the theory, but the threshold flow velocities

are different, depending on which theory is being used. -
\ -
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_ SOMMAIRE ' o

La dynamique et la stabilité des tubes courbés, ,transportant des
fluides‘ sont étudiées dans cette thése. Ces tubes sont‘ souvent
,Supportés aux extrémités avec dés supports encastrés ou appuyés, mais
des ‘cas de tubé‘s encastrés-libres sont aussi considérés.

Les équati'ons gouvernant les be{‘:its mouvements du §yst“eme ‘sont
derivées en ‘uti’:l isaﬁt 1'approche Newtonienne, dans une forme géneérale
applicable aux trois variantes de la théorie: |

i) 1a théorie corventionnelle inexténsible;

ii) " la théorie extensible; .

iii)  1a théorie inextensible modifiée.

N

Dans tous les cas, l'analyse est basée sur la methode des “€léments finis.,

D'apraés la théorie conventionnelle inextensible, la ligne centrale

du tube reste inextensible et les contraintes stationnaires resultant

des forces induites par l'écoulement et la pression interne ne font

aucun travail. Quand ‘le flux augmente, selon cette théorie les tubes

supportés aux extremités deviennent instables par flambage. Ces: ,

-

hypothéses ne sont pas ug:iiisées dans la théorie extensible, selon
laquelle le flhambage des tubes aux etrémités supportées n'a pas lieu.
La nouvelle théorie developpée dans cette thése, la théorie

inextensible modifiée, retient 1'hypothése d'une déformation nulle de

7 ‘
”,
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la ligpé centrale, mais elle tient compte du tra\}ail Fait par les
forces d'écoulement et de la pression interne. -Les piédictions ée
cette théorie sont proches a. celles de la théorie exténéible, mais les
calculs sont considerablement plus simpies et encor‘e plus éconémiques.

Le cas des tubes encastrés-libres et des tubes a une extrémité

-

igpportée mais libre 3 glisser dans la direction axiale est aussi
- -

étudié dans cette thése. Des instabilités sont)prédites par les trois
I
variantes de la theorie, mais les vitesses critiques du fluide sont”

différentes selon le cas. .
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NOMENCLATURE .
Ordinary Raman Symbols
A, Crpss-sectional area of the pipe (= w(Dg - Dzi)/4). ﬂ
Ai ) ' Intemnal cross-sectional area of the pipe.
Ay External cross-sectional area of the pipe. '
5f Fluid acceleration vector.
J
5t - Tube acceleration vector. B
a

Camponents of the fluid acceleration wvector referred

in the coordinate system (Xqe Yo zZ5) -

Camponents of the tube acceleration vector referred
in the coordinate system (x, y, 2).

c, ¢! Coefficient of viscous damping due to the

} surrounding fluid, associated with the transverse

and axial motions, respectively.

Di Internal diameter of the pipe.
Do External diameter of the pipe.
EI . Flexural rigidity of the pipe.

, e ,@é Unit vectors associated with the coordinate system

Xs Yo %
N
‘ (xo, Yo r zo).

~éx’ Ey, g, Unit vectors associated with the coordinate system
- (x, yr 2). e
GJ -~ - ) Shear rigidity of the pips.
G ,G ,G _Camponents of the effective gravity force of the

X Yo %o

pipe per unit length. g o



| Bl
{
Ge, + G, + G
0 £, B, Tz
P
G* ,G* , G*
’ Yo' zo
g
Iz .
- ’!x’. . —Mz
M , M M
xo YO zO

— g —

Camponents of the gravity force of the fluid per

unit length.

Camponents of the gravity force for the cambined

1Y

pipe-fluid system.
Acceleration due to gravity.
Mass—-rfanent of inertia of the pipe cross-section in
the zldirection

Stress couples arourd the axes (x,y,2)

Camponents arc'x.md the axes (x5, Y5+ 25) of the

!

resultant of the stress couples.

Added mass per unit length, in transverse and.axial

directions, respectively. &
Mass of empty pipe per unit léngth.

Mass of fluid conveyed per wnit length (= pcAc).
Shape functions of ‘n§, n§ and y*.

Number of finite elements. ’

Cambined force (= Ailﬁi - .Aope -Q,).

Steady state value of P. -

External fluid pxéegsure.
'Internal flui:d pressure.
Shear forces (Ox' Qy) and axial force (Qz)'
Canmponents of shear forces along the axes
(%7 Yor 20+~ ‘
Camponents of the reaction force per unit length
referred in the system (xo, Yor Z5). ¢

Radius of curvature of the pipe centerline.

° {

f r - ¥ii -
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S/

e

F

2

Displacet;ent vector of the pipe centerline whose
camwponents are u, v, W.

Di:ner;sionless parameter defined in equations
(2.74), or the total angle of the pipe for the case‘
of constant radius of curvature R, (= L/R,). .

Curvilinear coordinate directed along centerline of

pipe.
time. ' ]
Flow velocity of the internal fluid in the pipe.

Dimensionless form of U associated with

M
L= o L),

—-

Dimensionless form of U according to Chen, . _

Mg

. . _ $ ¢
associated with Ry (= (E:-I_ RU). _

Total, stat';ic‘ and perturbation displaceménts of the -
pipe in the x -direction. ‘
Vector og fluid velocity.

Vector of tube \}elocity. . - e

Total, static and perturbation displacem@fts of the
pii?e in the y -direction.

Total, static and perthrbation displacements of the
pipe in the zj -direction.  \ » ‘

Inert’tal Cartesian coordinates defined in section
(2.1).

Inertial Cartesian coardinates defined in gection
2.1). ﬂ

Frenet-Serret coordinates defined ' in Section (2.1).
Torsion-flexure coordinates defined in Section (2.1).
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Greek Symbols

a, r & ¢ G

b D
Aai,

1

B.c Ba: B;

Y

§

1)

K, k'

'
Kor Ko

Direction cosines of gravity acceleration vector.

Generalized coordinates for in-piane displacement

model. -

L]

Generalized coordinates for out-of-plane

1]
-

displacement model. .

Dimensionless mass parameters defined in equations
(2.74).

Dimensionless gravitational parameter.

Variational operator.
Centerlire strain. '

In-plane and out-of-plane nodal displace'nent
vectors. .

Nodal static displacement vectors. _
Dimensionless total displacements of (u,v,w) c;lefined
in equations (2.74). |

3

Dimensionless static displacement of (u o Vo! wo)
defined in equations (2.74).‘\
Dimensionless perturbation displacement of

(u*, v*, w*),

;o
Angle between the x5~ and z,-axes defined in Figs—
1(b).
Canponents of curvature about the x»- and y-axes of

the torsionflexure coordinate system.

Canponents of curvature about the x5~ and y,-axes of

the Frenet-Serret sSystem.

-ﬁv—
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Pfa’ Pgq

Eigenvalus (= iw).

Dimensionless resistance ooefficient.
Dimensionless fomm of s (- s}L). .
= 3.14159. - o

Dimensionlgss canbinsd-force and its st:atic value,

respectively.

Density of surrounding and internal fluid.
Dimensionless paranetsr defined in equations

p———

(2.74). )
Dimensionless t, defined in equations (2.74).
Twist of pipe around the strained centerline.

Twist of pipe around the initial centerline.

Rotation around the z-axis defined in Fig. 1(b).

Total, static and perturbation of rotation angle of

the pipe cross-section.

Rotation around the zy-axis.

Radian frequency of oscillation.

Dimensionless frequency associated with
L (= ( f é ar? ).

Dimensionless frequency according to Chen

e ),

Dimensioniess frequency of in-plane motion.

Dimensionless frequency of out-of—plane‘ motion.
Slenderness parameter, defined in equations (2.74).
{

Dimensionless &oefficient of viscous damping due to
the surrounding fluid on the tube, defined in .

eguations (2.74).
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CHAPTER 1
INTRODUCTION

1.1 LITERATURE REVIEW | ,

The dynamics of pipes conveying fluid has réceived cﬁnsid—
erable attention over the past thirty years, and continues to do so;
partly because it has applications to design of pipelines, reactor system
\ccmponents, punp discharge lines, .propellant lines, and so forth; hut
mainly because of its inherent interest as a fundamental problem in
applied mechanicg. Most studies to-date have been concemed with straight
tubes; relatively little effort was directed to curved tubes. :

e The study of t:he~ dynamics of straight tubes conveying

fluid began with an attempt by Ashley & Haviland (1950) to de:scribe the

. - vibrations observed in the Trans-Arabian pipeline. However, their
formulation of the problem was erroneous, as shown by Feodos'yev ( i§51) , )
whS derived the correct equation of motion for a tube conveying fluid

' and analysed the case of a tube with both ends simply supported. The
same problem was studied indepe;'xdently by'Housner (1952) u;inq a different
appraoch. Both Feodos'yev and Housner found that for sufficiently high

' flow velocities the tube may buckle, essentially like a column subjected
- to axial 1oadipg. The critical flow velocities for this buckling A
instability were shown to be directly related to the Euler buckling load
for colums. A ‘subsequent, elegant and more general study bv Niordson
(1953) led to the sam'e é;;uation of motion and essentially the same

e conclusions regarding stability for tubes with simply supported ends.

——
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o ‘ The case of jmbes with one end free,-i.e. tubular canti- .
levers, containing flowing fluid was first stulied theoretically in an

- . outstandin:; paper by Benjamin (1961), as a limiting case of a system of

articulated pipes conveyir.m; fluid, as the number of degrees of freedom

“ends _bo infinity, Benjamin was the first author to show chat the

dynamical problem is independent of the effect of -gluid friction. The

problem was further studied 'theoretically and experimentally by Gregory

‘ - Paidoussis (1966a,b) who considered the case of a continucusly flexi-

g | -.blle cantilever. It was-found that for sufficiently high’flow velocities '
the system is subjected to flexural oscillatory instability (flutter).

. The stability of twbular cantilevers conveying fluid was : ¢
further discussed by Nemat-Nasser, Prasad & Herrmann (1966), with °

emphasis on the effect on stability of velocity-dependent forces, such
v ’
o as dissipative and Coriolis forces; they showed that such forces may

destabilize the system, an effect also reported previously by Gregory
& Paidoussis (19256a,b) . Subsequent papers by Hermmann (1967) and
Hermmann & Nemat-Nasser (1967) stressed the connection between the
problem of a cantilever conveying fluid and the more general problem of

| Y

instability of a cantilever subjected Eo a "foillower"~ type force at the
free—;:l; i.e. a force .retaining the same angﬁla'r disposition relative
to the free end in the course of small motions of the 'cant}lever. .
An interesting variation was studied by Paidoussis (1970),

namel& that of a vertical tubular cantilever conveying fluid, with .the

' free end being either below the clamped one ('hanging’ cantilever) of .
;ﬁdbove +t ('standing' cantilever). Gravity forces in that study.are'mt
considered to be negligible, as was the case in most of the foregoi:ng.

o It is shown that, when the velocity of the fluid exceeds a certain value,-



b ' . 3
the cantilever in all cases becames subject to oscillatory instability
(Flutter). In the case of hanging cantilevers, buckling instability -
does not occur at all. Standing cantilevers, on the other hand, may
buckle under their own wéight; it was shown that in some cases, flow
(with:.l.n a certain range of flow velocities) fnay render stablewa system

which would have buckled in the absence of flow.
( Thuman & Mote (1969) presented'a non-linear analysis for
a pipe with simply-supported ends conveying fluid, usiné a perturbation
technique. They found that, in cie;.emining the natural frequenciés "of
the system, the importance of non-linear temms increases with flow velo-
city, and hence that the range °f. applicability of linear theory bécanes
more restricted. The non-linear aspects of the problem were further .
sﬁ:died, laj:er, by Holmes (1977, 1978) an;i Rousselet & Hernnahn (1981).

Chen (1971a) studied the stability of a pipe conveying -
flyid with the upstream end clamped and the downstream end constrained
by a l\inear spring, so that the boundary oonditions are infe;nmediate
between clamped-free and clamped-pinned; accordingly, both buckling
and oscillatory instabilities are possible m general, depending on the
spring constant. .

Paic‘:oussis & Denise (1971, 1972) studied the mcs of
very thin elastic pipes conveying fluid, by using thin-shell theory to
describe the pipe motions and potential flow theory to obtain the
fluid forces. They analyzed both canf:ilevered pipes and pipesl ;vith
" clamped ends., They found that, in addition to instabilities in the beam
modes of the system (corresponding to those found previously by beam
theory for thicker pipes), instabilities in the shell modes are also

possible, as verified by their experimgnts. Of particular interest was

—



o the finding that thin pipes with clamped ends are not oixly subject to
buckling (divergenﬁe) but also to coupled-mode flutter. Similar
theoretical results were obtained later by a different analytical
method by Weaver & Unny (1973), in the case of simply-supported ehells,
and by other investigators. \ : ' —

Most of the investigations were concerne‘d with pipes |
oconveying fluid at a constant‘flow velocity. Chen (l97lb)'seems to be
the first dne to have studied the case of pulsating flow. He investi-
gated the stability of simply supported pipes eonveying fluid, whose
flow velocity has a harmonic fluctuation abdut a mean value. However,
an error in his equation ef motion was found (l’aidoussis and Issid 1974).

, The same problem was also st11d3'.ed by Ginsbe:g (1973) , and by Paidoussis
‘ .& Issid (1974), the latter study not being confined to simply supperted

o gipes, but also dealing with pipes either clamped at both ends or canti-

- | levered. Although the fofego‘mg systems can generally have both para-

‘ metric and combj:nation resonances (instabilities), all the aforementioned

] studies were restricted to the examinat.lon of parametric resonance only.
However, Bohn & Herrmann (1974) considered a two degree-of-freedom .
articulated pipe, and stidied both parameteric and ccmbination resonances.
Moreover, the ivalent problem for a continuously flexible pipe was

‘studied by Paidoussis & Sundararajan (1975) 'Iwofmethods of analysis

were presented: Bolotin's method, which. can only give the boundaries

of regias of parax;\etric resonance, and a m:me‘gical Floquet analysis,
which gives also the boundaries of cambination resonanee. A number of

‘t:alcula'tions for cantilevered pipes showed that, generally, canbi;lation

resonance ls less important than parametric resonance, except for flow

o velocities near the critical (where the system loses stability in steady __



flow): parametric resonances are selectitvely associated' with only
scné” of the modes of the system, and combination resonances ‘involve only
the difference (not sum) of the eigenfrequencies.” For pipes clamped

at both ends, the behaviour of the system is sigtilar to that of a
colummn subjected to a pulsatiné load; combination resonances in this

case involve the sum of the eigenfrequencies. Good agreement with

theory was found in the-only experiments available in this area, by

Paidoussis & Issid (1976).
Recently, Hannoyer & Paidoussis (1978) studied the dynamics

and stability of cylindrical tubular beams conveying fluid and simul-
taneocusly subjected to axial external flow. .In deriving the equation, of
amall motions, inviscid hydrodynamic forces were obtained by slender-
t—aody theory, modified to account for the boundary-layer thickness of the
~ external flow; intemal-dissipat;‘en and gravity effects were also taken
0 into account. Solutions were obtnained‘ by means of a method similar to
Galerkin's method, with eigenfunctions approximated by Fourier series.
‘They found that, in the case of tubular beams supported at both ends,
the system eventually loses stability by divergence (buckling) , when
éither the internal or external flow velocity, or both, beccme sufficxer-tly
- large. In.the case of cantilevered tubular beams, the behav:.our of the
system is much more -camplex, depending on the shape of the downstream’ '
end. Cantilevered beams with a blunt free end can only lose stability
by flutter, in a process dominated by thé intemal flow; if the free
end is streamlined however, a complex sequence of buckling and flutter
instabilities ‘may result, where both internal and external flow effects
cane into play. ' ;o ’ ‘ y
More recently, Luu & Paidoussis (1983) examined the dynamics
o and stability of a long, vertically disposed, 4cantilevered_pipe, sub-
merged in and aspirating fluid from the free lower end, and conveying

+
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.
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it upwards to the supported upper end; thé pipe had a large mass
attached to its free end. The Buler-Bernoulli beam théory and a
Galerkin—liké method of solution -were used in the analysis. It was
found that the system is inherently‘uhstablze, in ‘tfie sense that, if
dissipation were 'toi:ally absent, it would lose stability ;zt infinitesi-
mally small intemal flow velocities.
The foregoing is a literature survey of some of the important
papers deal‘ing-with the. dynamics of straight tubes conveying f£luid. 'Nk;re .
camplete and extensive literature surveys are given by Chen (1977), ‘
Paidoussis (1980), and Paidoussis & Issid (1974) for beam-like (thick)
pipes conveying fluid; in the case of thin shell-like pipes and ?:oax_ial
’ shells-eonveying fluid,” a complete literature survey is found in a '

g

recent paper by Paidoussis, Chan & Misra (1984). - =

Let us now turn our &ttention to previous work in the area- -

™

of concem of this [Thesis, némely on the dynamics and stability of curved

pipes conveying fluid.

Geametrical considerations make the analysis of curved tubes

conveying fluid scmewhat more ”d;Lfficult. The natural frequencies of a

4

curved rod were studied by Den Hartog (1928), Archer (1960), Nelson

(1962) 5. aﬁd Ojalvo & Newman (1968)‘. Aﬁpng' the. first to study hydro- "% ¢
elastic vibrations of curved tubes was Svetlitskii (1966). He investi-

gated the out-of-plane motion of a fluid-conveying perfectly flexible .
hose with fixed ends, whose initial shape was a catenary. Unny et al.
(19709, qonéider'gd the in-plane buckling of initially-circular tubes

with fixed ends. The equations of motion were derived usin_g Hamilton's
principle, and critical flow velécities for instability ;nere obtained

for pinned and clamped ends, but the equations obtained were subéequently 5
found to be incomplete (Chen 1972a). s ‘ ’ <

7 -
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\ The same problem for tubes shaped in the form of circular

arcs \gas furtper studied by Chen (1972a, 1972b, 1973) .. ‘He derived v
equations governing the in-pﬂlane motion via a Newtonian formulation
(Chen 1972a) and via a Hamiltonian formulation (Ghen 1972b) and 1
equations governing the out-of-plane mot;ion form the Hamiltonian view-
point (Chen 1972b, 1973). In both cases, Chen made the assumptions -~
of inextensibility of the axis of symmetry, to simplify the équatio}ls
of motion. It was shown that in the case of in-plane motion the tube
becomes subject to-buckling-type instability for clamped-clamped, pinned- )
pinned, and clamped-pinned end conditions, when'the flow velocity or :
thé fluid pressure exceeds a certain value (Chen 1972a, 1972b); in the
case of out-of-plane mc;tion,' the tube also becomes subject to buckling-
type fiﬁstjc\l;ility for the clamped-;clam'ped and pinnedl-pinned end conditions,
but generally at lower flo‘:v vélocities than those necessary to cause

instability .for in-plane motions.
‘Chen also studied the 'stability of cantilevered curved

r

tu)bes. He found that for in-plane motions such tubes are generally
subject to both buckling and flutter instabilities, with buckling occurring )
at lower flow velocities; except in cases where the subtended angle is

very small, when only flutter was fo{md_.to arise (Chen 1972b). 1In the

-case of ocut-of-plane motions, only flutter was found to 6ccur, with

stability characteristics similar to.those for a straight tube (Chen 1973).
Earlier, Springfield (1970) had also presented an analysis of the in- |
plane and out-of-plane _hydmelastic vibration of unpressurized circular
arcs with ’clamped-clamped and clamped-free ends.

More recently Hill & Davis (1974) studied the dynamics

and stability of curved and clamped-clamped tubes conveying f£luid, -shaped

~ as circular arcs, S- and L-shaped tubes and spiral configurations. They

.
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o ] obtained the equations of motion by the Newtonian force-balance approach,
but with the follo;ving significant difference to Unny's et al.and Chen's
work: they included the effect of ini.tial forces (due to ssure and
centrifugal forces) in the';aquations of motion. The importance of these
tems was first brought to light by Svetliskii (otherwise transcribed
_as Svetlisky), in 1969 in Russian and later in English '(Svetlisky 1977).
Hill & Davis used the finite element technique to solve the problem,
whereas Svetliskii used a Gal.erkin-type solution. The interesting result
was obtained by both sets of investigators that, if these initial forces
are taken into account, then tubes with both ends supported will not lose
stability by buckling, no matter how high the flow velocity may be.

On the other hand, Svetliskii (1977) finds that canti?evéred tubes will

’ . lose stability by flutter at sufficiently; high flow velocities. .

0 Doll & Mote- (1974, 1976) also studied thee.same problem.

_ They obtained the equat:ions of motion for an even more general case, i.e.
that where the ytube is both curved and twis}:ed, via Hamilton's principle,
and obtained solugqns. by the finite element method. Doll & Mote considered
two fomms of the equations of motion: ¢ (i) an "initial curvature formu-
lation", which corresponds to Umy's et al. and Chen's inextensibility
assumpb.on, and (ii) an extens:.onal formulatlon, based on initial axjal
stres;;es induced by a oontmually varying equllibrwm curvatur’e’ - in this
case arising again from pressure ancl centrifugal forces. One of ‘the ~

' fGndamental Ndifferences in approach between Hill & Davis' and Doll &
Mote's work is that the former calculate the equilibrium configquration

(and forces) via a lmearized set of equations, on the assumption “that

o the initial form and the flow-deformed equilibrium’ form are close; the

latter,on the other hand, utilizes a cumlative application of a

9
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linearization for small flow velocity.increments, which is more
general. ' “

Dol & Mote (1974, 1976) althougﬁ using equations somewhat
different from those of Hill & Davis' or Svetliskii'\s nevertheless came
to the same basic oonclusions.lﬂ If the initi(al stresses induced by the
flow are taken into acoount, tubes support;eg at both ends are not subjectg)
to instabili"t.y—_,_:ﬁut cantilevers may lose stability by buckling and flutter.
For tubes suppq:i\'ted at both ends, their results are quite close to those
of Hill & Davis", showing that the ?igenfrequencies are not very sensi-
tive to flow velocity. On the other hand, if the initial stresses
induc;ad by the flow are neglected, then they obtain résults which are”
very similar, qualitatively and quantitatively, to Chen's.

» Doll & Mote also campare their results to experimental data
by'r Liu & Mote (1974); these experiments were conducted with very ¢
slightly curved tubes, supported at both ends. Surprisingly, either
the straight-tube theoretical results or, better, the iflexten’s'ible theory
gave better agreement with experimentp than the ex ible theory which
Doll & Mote consider to be the most/correct!

"F:Lnally, same very recent, important work on the dynamics '’
of curved pipes conveying flpid by Dupuis & Rousselet (1985) has come
to_the author's attention at the time of w:(;itnz_ng this Thesis. This study
deals with cantilevered curved pipes by using the transfer-matrix method,
in preference 'to either analyticél or ‘fipite element techniques. ‘Once
more, flutter instabilities are predicted for cantil.evere; curves tubes.

k The' above brief and selective review of literature is : -

intended to give the réader some idea of the develofxnents in the subject

of dynamics of cylindrical .pipes conveuy:?.ng fluid; no attempt has been

» w ©
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made to give an exhaustive list of all papers in this area. Moreover,
, . ,

vigorous research is being pursued on many other aspects of the problem,

which has not been mentioned and is out of the limited scope of the
N .
present work. - ’

1.2 OBJECTIVE AND QORGANIZATION OF THE THESIS

The objective of this thesis is to study, the-dynamics and
stability of curved pipes, conveying fluid (and submerged in fluidy.
One of the motivations of this work is related to the fact that the
previous studies of this top:.c (i.e."by Unny et al., (1970), Chen (1“972a,
b, 1973), Hill & Davis (1974) and Doll & Mote (1974 1976) obtained
signifiﬁco:antly different results by different approaches;. as mentioned
in tI:e foregoing literature survey. It is hoped to throw some light
on the reasons for the drastically different dynamical behaviour of the
system predicted by the aforementioned investigators, and hopefully
come up with a theoretical model which is more correct than any of the
foregoing, or at least one that is as correct as one of ‘them - in which

case, pin-pointing which one may be considered to be truly correct!

In this thesis the pipes are considered to be initially *.

planar'with arbitrary center-line shape. However, the radius of curva-

ture of the centerline and the overall length of t;he pipe are assumed
to be suff:.c:.ently large in comparison with the radius of p:.pe, thus,

according to Timoshenko & ‘von Karman (1961), the effects of shear

deformation and rotatory inertia can be neglected and plane sections may ‘

be considered to remain plane after deformation. In additlon, the fluid -

flow may be assumed to be appmxm\ately a plug flow, the fluid being

essentially an mf:x.nitely flexible "rod" travelling through the pipe’
V% .
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}(Paidoussis, Luu & Laithier 1986). Hence the effects of secondarly flow

o =

may be pegleqted. -

In line with the basic aims of this thesis, three set’s of
) ,_,eéuations are generated, and calcu,latior;s are conducted with all of them,
selectively. The first two are based on the assurption of inextensibility
of the centerline; in the first variant, the effect of the initial forces
is neglected,mthus being close to Chen's theory; jn the second, the
effect of the j.nitial} pressure = centrifugal foz.;c;s is taken into account.
The third formulation.is a‘truly extensible formulation, where the
a‘s;sinrption that the length of the centerline remains constant is no
longer made, ‘angi initial forces, are taken fully into account; thus this

L

formulation- is based on the same basic postulate as Hill & Davis' and

’ " Doll & Motk's.
G ’ . The structure of this thesis is as follows:

.

: s In Chapter II, the kinematic relations ofh deformati‘on of
the. plipe \ar:e' derived in tems of a three-dimensional rod theory. The
curved and sgraight f)ipe configurations result from specific simplifi-

. éaﬁ_:ions in the general development. Subsequently, the(:gipe geometry is
éatpletgly described b@ the curvature-torsion relationships in terms of
. three parameters (two curvatures and the twist). Then the equations

of motion of the system are derivied using the Newtonian approach.

Finally, the equatiohs of static equilibrium are cbtained by deleting -

the thne—éériva'tive terms . . | '

In Chapter III are presented (i) the analysis of the system
| ‘ for ’ the case where the centerline of the pipe is assumed to be ‘,
| o ; _inextensible, (ii) the discretiz:ation of the system using the finite

elemént technique, and (ii}) the wlcgl‘ation of the so-called .
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"combined force", which (s the name given in this thesis to the initial
forces ind;c;ed by the fluid ‘flcw and the gravity field.

“ In Chapter IV are discussed, the finite-elenent results
obtained for the inextensible case. Extensive calculations for-in-plene
and out-of-p m:ticns are pmented for various configurationg, with
the two variants of the theory, namely (a) ignoring the combined
force (initialforces) and (b} taking the cambined force into account.
Extensive testing of the theory against results obtained by other
researchers is gj,ven' in this Chapter.

In Chapter V is presented the analysis of the system for
the extensible case, followed by the discretization scheme, once more
utilizing the finite-—element technique. .

In Chapter VI are discussed the finite element results
obtained for the extensible case. Extensive calculations ‘for the in-
plane and out—of-planeo‘case are again presented for various configurations.
In this Chapter the results obtained by the different forms of the theory
and the different sets of equations of Chapter III and V are compared
among themselves,as well as to those obtained by the extensional
theories of Doll & Mote's and Hill & Davis'. -

Finally, in Chapter VII, general conclusions and some

suggestions for future work are,presented,

YRERITTRRE



2.1 KINBATICAL FORMULAE
Consider a pipé, curved in one plane only,conveving fluild, as shown
in Fig. 1. The kinematics of the curved pipe may be developed by the same
' approach as that used by Love (1944) for the curved "rod". This can be
accomplished easily, provided that the external diameter of the pipe is
’ ¢

_small campared to the radius of curvature of the pipe centerline and to

the overall length of the pipe (i.e., provided that the effect of shell~

type and shear deformation can be negleéted, and plane sections may, be

oconsidered to remain plane after der?onnation) . In order‘2 to describe

. the kinematics of the problem, we shall use the following referepce
0 frames: \

(XO'

]

c’r,ze) - In this reference frame, the oriqr‘h, Po’ is on the
: initial (unstrained) centerline, the z -axis is
directed along the tangent of the initial centerline,
" and the axes X, and y,_ are directed along the
principal nommal and bincrmal axes of this line,
- ' respectively, as shown in Fig. 1(a). When the |
or;:gin of this frame moves along the centerline °
with unit velogity, the triad of axes will-rotate °
with an angular velocity, the components oi;' v'ﬂhich,
referf:ed to the instantaneous position of .the axes,

o]
9 , ‘ ‘ are thg canponents of the initial curvature, and

T will be denoted by rco,k', and Ty Then, Ko and K‘é

' ‘ To is the initial twist. Moreover, since in this work



(x,y,2)

\XO,YO, Zol

-

1

ey »

the pfpe is considered to be initially plane and
A

untwisted, one can set Ko=0, Ké= l/Ro and T = 0.

This system is called the Frenet-Serret system,

and has unit vectors denoted by €_ ,.&. and €. .
X Yo %

';'his reference systen; has its org~in at P,, which
is the displaced position of P,. . Because the pipe
is not initially straight, its defommation will
generally introduce‘twisting and out-of-plane
deformation. The z-axis is tangential to the
defo'aﬁed (strained) centerline at Pl’ and the plane
(»,2) is the tangential plane of the surface made
up of the aggregate of particles, whi;:h, in the
initial state, lie in t&e plane of (xo,zo); the
y-axis is detemmined by thé condition that the
(x,v,2)~-axes form a right-handed system, as shown
in Fig. l(a). Therefore, the origin. Pl of this

reference system moves alongx the deformed center-

_ line, and the triad of axes will rotate with an

anqular velocity, the components of which', referred
in-*t{e instantaneous position Qf the axes, will be

L33

denoted by k, ' and t*. This system is called

the torsion-flexure system, and is associated with

unit vectors denoted by 'Ex, 'e';,, 'é'z. -

Thas is an 1inertial system, the ‘origin or which is

located at P_, and which is sometimes set to coin- ' -

cide with (xo,yo, zo) .
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(X,Y,2) This is another inertial systéfi, the origin of

which is located at P,, and sametimes it is set

to coincide with—(x,y,2).

M the pipe is slightly deformed, any particle P of the center-
line undergoes a small-displacément, the components of which, referred
to the system (xo»,yo,zo) with origin at Po' will be:ienoted by u,v,w.
th;themore, the orientation of tHe system (x,y,2) may be completely
determined by the three Eulerian angles y, 8§ and ¢ shown in Fig. 1(b).

U is the rotation arownd the z_-axis, § is the angle between the
z- and z-axes, while  is the rotation around the z-axis. Because
the angle 6 is assumed small in this work (small deformation assumption),

the angle between axes X5 and x may be written as

! 5
V=9 +4¢, ] (2.1)
. ]
where | may be considered as the angle through which a plane section
of the pipe is rotated around the centerline. Hence, the stressed state
of the pipe is detemmined by the generalized coordinates u,v,w and V.
The relative orientation of the two systems (Xyr¥Yqr2Zg) and (X,¥,2) -

may be determined by the following orthogonal transformation:

( i i -(9u , W
X l 1 » ] (aS +§;-) XO
] 3
J Y v = -‘p . 1 - ‘g‘é p yo\> ’ (2.2)
L, w, Ay

3

as shown in Appendices A and B, . Relation (2.2) implies the assumption

that the defomations are small.



0
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The canponents of curvature and twist in the degpmed state may
also be expressed in temms of the displacements, as derived in Appendix

-

C, as follows: ' .

. 52,
- g -y, “(2.3
as -
' 1 82u 1 ow |
k'=(E +== +3 22 - (2.4) -
R, " s TRy 39 |
= @y (2.5)

R as) B

Finally, to camplete the kinematic development,"i;he velocity and
acceleration of the intemal fluid ﬁll be’derived. The fluid flow
may be assumed to be apprboximatel'y a plug flow, the fluid being
essentially an infinitely flexible "rod" travelling through the pipe.
As it has been assumed that the radius of curvature is very large

. campared with the pipe radius, the effects of secondary flow are

neglected. : N
The displacement vector of the deformed centerline, expressed in

the inertial reference system that coincides with the system (xo,yo,zo) ’
is given by
s T=ug +vE + e . (2.6)
By differentiating equation (2.6), the welocity and acceleration

of the pipe may be written as

— Ju - 3V - oW e
V., =7 e +=gre, +3ice , . (2.7)
£79t % T oSy, T 5y -
2 2 2
- _Ju - 3 v - W —-—
a,=5e +- +—se, . (2.8)

Therefore, the absolute veldcd.Ey of the internal fluid is
Ve =V, + UEZ, ' (2.9
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o . where éz is the unit vector along the z-axis, which is tangential to

the strai/ned' centerline. From equation (2.2), one can obtain
r SR P BRSOy SR * (2.10)
- as as - L] Il

+ Cambining equations (2.7), (2.9), and (2.10) yields the velocity

i
4

U, gL W, Y, gAY, AW ‘ .
S M= B ugEe e, + 6 e+ Ugsley +{at+U]e D21
. . o) o) %o .
) i
To obtain the acceleration of the fluid, we differentiate the
fluid velocity i'lf, yielding .
v _» - - .
‘ AL S R a2
af - aT + (Vf‘ )V ? - ( .'1»2
where V is the gradient operator. , : §
’ Substituting equaticns (2.9) into equation (2.12), the accelera--
0 " tion of the fluid can be rewritten as follows:
7 o
ag =3¢+ U(e V)v + (v V)v \ (2.13)

' Now examining the last term on the fight—hand side of equation.

(2.13), we can rewrite it as

T SO ou 3 v 9 9w 3. '

a

then combining equatibons (2.11)-and (2.14), we can see that this temm
is of higher order, and can be neglected., In addition we note that

2N =9

e, Vv 3z !

5 3 (2.15)
' 32  93s ' '

where s is the coordinate measured along the pipe centerline.

0

o -

A R
25, ,
-
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HeIICé' W Obtain ’ - _,’.. - l s ]
~ . Ve AV , ‘
# =% "% - (2.6

Substituting equation (2.11) into equation (2.16), we can write

F 1
" the fluid acceleration in the X =¥~ and zo—directions, as follows:

2 2 ; )
3°u + L 3w 2 32 u 1 w
a = —= 4 2U( =) + U (— + --) (2.17)
fxo at2 T3S R ot asz R s o ’
2 2" 2
. =..__8\27 + 0 ¥ +U2—-3‘£, < (2.18)
fyo ot otas ax
2 2
3w, AW 1 3u u . w
a = =4 J— - =) - ( =) . {2.19)
fz‘p 8t2 It3s Ro ot RO 3s Ro

Details of the derivation of equations (2.1'7L)-(2.l9) may be fopnd in

Appendix/D. i .
- 2.2 'THE BEQUATIONS OF MOTION OF THE PIPE
The system under consideration is shown in Fiqg. 1(a). It consists

aof aimiform curved pipe of length L, cross sectional area A_, mass

£
per unit length M, flg)mral rigidity EI and shear modulus G; the pipg
is initially plane, with an arbitrary centerlihe shape (with a radius
of curvature not nécessarily constant along its length); it conveys a
stream of fluid of mass M_ per unit length and velocity U; furthemor‘e,‘
" the éipe' is considered to be fully subtmerged in a quiescent fluid.
éonsidér now an i.nfinitesin:.al element of the pipe, contained betWeen
'two cmss-sections nomal to the deformed centerline, and the forces and
ts acting on it, as shown, in Fig. 2. Balance of forces and moments

along the directions of Xyr¥qr2q yields

\

TR
"

N



, o %s- on '- TOQYO + K")on -c — + Rx + G - t"“a"‘u O, ' (2:20) |
-aa?oy -Kooz +Ton -c%—‘é+Ry +Gy (M+t4)aty\ ‘(2':21) b

. . - o o (o} o e (o]

% Oz = %ofx * %oy, ~ c'SE+ Re, * %, ‘“t a)3z = 0r (2.22)

2 M, - oMy; * K, + ¥ 0 =9 - (2.23) |

%5MYO - "o“zo + 'roMxo + on - (g‘; + -:) 0, 2 { =0, (2.24)

“ ' | 'g_sJMz - '%Mxo * KOMYO * (% + g;)oyo " %\é ?xo -1 -:'E% = 0. ,(—‘-2\"25)

Here O ,Q , Q, are components, along the axes (x ,ir '2g) ofthe’)
resultant ofot.he :ransverse shear forces Q . Q and of the combined

o ~ force OF arising from the axial force 0, and the external pressure
force AoPe; My M 2, are camponents around the axes (x ,yo,z ),
of the resultant of the bending maoments M, b& and the twisting couple -
Mg M, is the added mass per unit length, and’c the coefficient of

visoous damping due to the surrounding fluid; assoclated with the

- transveyse motion; ME'l and ¢' play similar roles in longitudinal motion;
’ Ry ’ Rzo are the camponents of the reaction force per unit length
arising fram the internal fluid, and Gxo, Gyo, Gzo are”the components
of the effective gravity force. Details of the derivation of equations
(2.20)-(2.25) may be found in Appendix E. T ) 3
‘ From the relatidn between the systems (x ¥ ,2z,) and (x,y,z) given’
by equation (2.2), one can obtain ] o
l O =0y - ioy+ @ }{;—)o; . L (2.26)
- e : . ' ' )
= I
< -
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2 ¢ 3
¢ [} 20
"o =g+, +&g - (2.27)
Yo Y x 9s “z' e
cor o LW LBV, b
Qz B Q; (as *R )ox as Qy' R (2.28) .
g © ) ° ’
u ., w -
M = -+ G-+ M, (2.29)
Xy X y as' Ro Z \ ) —_—
1,\4y0' - My + llMx * 38 My i ‘ (2.30) .
) W, W, A
o . "o
whefe . “my )
0r =g, + AP, | (2.32)

/ -
» Substituting equations (2.26)-(2.31) and the values of K'O,Ké and

T, into equations (2.20)~-(2.25), the equations of motion for the pipe .

AY

may be written in the form . -~ .
30 - U W l-me_ (90 L W, o _ 3V 4 _ 34
as[Qx wy”é)s * RO)Q;H Rofog (8 * Ro)ox as Qy] “3t

R +G - 1M )a,, =0, (2.33)

o Xo xo ' . c
as[Q‘*’Q"as z]-cat+Ry +c-:o (M+M)aty (2.34)
- g_ Wi~ _av au .w %aw
33 [03-G Ro)gx 35 Qy] [o wo +Eg * )o*] e
Vil
+R_. +G. - (M +M")a =0, (2.35)
2, 2, . t a tzo !
N s
a_ M . W 1 ,
35 M ‘”’Kj’( ¥R )M 1 + O[M ‘as M, My] =0, .
N (2.36)
) -
38 [My+t|M BS M)+ ox—woy =0, (2.37)°
3_ au _ 1 LYY
s My~ ( M, - Myl [M ‘““‘y"( + Ro)Mz]
2 ' . ’
+@B LWy W,y g 2W, © (2.38)°

9s oy s "x zatz

! t



O

- gcting on it, as shown in Fig. 3.
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2.3 THE BQUATIONS OI;‘ MOTION OF -THE FLUID

- Tew
-

Consider now an infinitesimal element of the fluid and forces =

area be Ai’ and the internal pressure P (s).

force Aipi' in the directions (x 1Yor2g ) can

Let the internal cross-sectional

L 8

Components of the pressure ..
be written in texms of

the direction cos;Lnes (L 1’L32’L 3) of the unit vector ez, referred

in the reference frame (x 1Yo 20 ), as follows:

p = ( w) -I
xo R :
= - v
A S = -
P = -A.P
z 1*1 .
(o] ¢ J

-By camparing Fig. 2(b) with Fig. 3, and the forces (Px , P

4

with (Q , O

yO (o]

A

(2,39)

o YO (o]

), and then using equations (2.20)-(2.22), the

equationg of motion of the fluid can be written in the fom

an , . v
Yo 25 X5 % 0
BPY . )
O = kP +1P .-R +G -M =.0 (2.40)

s . ° %5 ° X Yo fyo fafyo ’ r
aPz - \ . .

- kP +xkP =R +G - M =0
s 0'X, 0¥, z, - fyo fafz':> !

where 'Gfxo, nyo, szo' are can;?onexxts of the gravity force per unit

length on the fluid.
Combination of equations

i

W 1 .
=—)] == AP, -R
o} RO;ij" %o

iy

3 . au
3s [:11’1‘35*

(2.39)~(2.40) yields

+Gfx

Fo

-"M. ’ =0
- fafxo '
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4 & 22 §
S W -
. - | AiPi : B] RYo +Ggy Mfafy (2.42)
2 3s AP 1] ‘RO Aipi(g: +8) ~R, +Gp - Meag,
O 0 o
1 (2.43)
f \ &

2.4 THEREIATIQIBEIWEEN'IHE'IRANSVERSESHEAR~MANDTHE

-

DISPLACEMENTS

According to tfxe generalization of the Euler-Bernoulli beam théory,
the stress couples My /MM, in the beam when bent and twisted fram the
state expressed by KO,KC'),TO to that expressed by «k,k',t* would be given

by the formulae . " .
\D

~

jgzhf EL(k'~c}) > (2.44)
M

= GJ (T*"’To) .

q I 2

- , i
MX = EI(K"KO) ’

A

From the discretization to be introduced laterp the pipe is divided .

into a series of constant curvature e}enents, i.ed, within a given
*,

s beam element--

=2 =y, (2.45)

where the rumber of elements required will depen on the shape of the
pipe caxterfme and the accuracy desired.
Combining: equations (2.3), (2.5) and (2.44) yields

M = EI & iy .. ' (2.46)
- o " 9s A

}&:EI (-—-5+L-5;' ) | (2.47)

m=gm+1L ‘ . ‘ (2.48) |
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‘ o Then, s;lbsi:.imting equations V(2.46)-(.2.480) into (2.36)-(2.37), and
m ' neglecting the higher order temms, -oﬁe may obtain L
0, = v, - Ex - 33 éo ::‘2' . (2.49)
0, = -1|;Qx + EI(%—%—E- 2+ & —m + é g;’) . (2.50)

(o] as
We can see that, if we again combine equations (2.49) and (2. 50)
. and neglect higher order terms, the transverse shear fomes may he

‘written as follows:

" 53 5%

1 N
Q. ==-EI(Es + =2 ), (2.51)
X 853 Ro asz _
! 3
' S = Fr(d-3Y . 3V y _\2 i v,

- s
“ -
.
- .
<«
.~0 . . ‘ <

2.5 THE EQUATIONS OF MOTICN OF THE FLUID-PIPE SYSTEM
By adding equations (2.33), (2.34) and'(2.35) o (2.41), (2.42) and
) ) (2.43) respectively, one may obtain the equations Jf motion ;f the system,
~ which no longer depend on the reaction forees R_ Ry and R, bet:geen
the pipe and the flu:‘l.a, as follows:

9 u_ v
« . oo rds e B O AR APy + 3 R L APAPY)

~
g,

- g, W
CL -G +Roe
Rc»

v
a8 k7] Qy] + Gy

X 38 S .

= (MM )atx +igag, +o -3% , " (2.53)

\

£

] rlO N»O + +A°11 AiPi)]-!-G; MM )aty +Mfafy +c = at . (2 54)

SRR
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i
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A

X (Q +A P =A, Pi”*G*o —=‘- (Mt-i-Mé)a ,

QJIQJ

L
+(

where

are the camponents of the gfavity force for the combined pipe-fluid .

system.

Finally, utJ.l:innq equations (2 8), (2. l7) (2 19) '
(2.51)-(2.52) and (2. 53)-(2 56) and neglecting higher order terms, the

q:verning equations: of motion for the dynamic system may be obtained

namely:

4

854

+MUZ(3u

(M +Mf+M) - =

2u

o e

s

.

Cppdou 10
EI( +. R

+

g— [(Q+A P -A

W
Ro 254 T %8 *x

Q)

AL (35

X

3
N S
)+ (A

g3

1 aw
R 85

32u

ot

av

+ 9
Ro

v
10, - 55 0,1~ & R (0,0 S Ge +
' aw
+ M + ol
tz " Mz T Ot
[M -qmy+( M/]

% s

¢ ’

i i A'oPe—Q )(
a3 u 1l ow 2108
o)+mnfU( + = R at) +.C == T

0,

otads

+3)

"w
-ﬁ;)} (A 1>l -AP.—Q, )-G*

(2.55)

(2.56)

{2.57)

(2.46)~-(2.48)

O

(2.58)

‘ A“(‘ﬁ

24
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A

4 2. 2 2 . v
T (2 :lr_ fi“ 3 92)__ g_J_ @ gz + 1%" 37wy, _g_g [(a;P,-A P -0, )5] - G;,o
9s O 9s o 3ds o 3s
.2 2 L a2 o
v v oV ) _
+Mf02 o My 3L +c T o) i 0, (2.59)
g . 3 *.2
) ET u, 1 3w, , 1 du , w
- (A,P,-AP-Q) += (= + = —3)+ =(A,P,.-A P Q) (5= + =)
s "1'1 Vo'e ¥z Ro 353 RO?SZ Ro i*i “o"e ¥z’ '3s ‘Ro
2
M_U 2 2
£ 3u 3w 'l 3du ow Aw "
HGE = (S + ) MU~ - SR oS~ (M MM S5 = 0
z, R, s Ro . £7 '0tos R, at atg t 'f Ta atz ’ :
(2.60)
. 2 2 . 2 2
ey ey L B (g—-a‘z’)+xz§-l§=o. (2.61)
as o 3s O 3s -9t

These equations are, of course caupled, but similarly to the shell

equations, each may be identified as being principally related to motions

in one\particular direction; thus, the first is related to in-plane

.deformations, the second to _out-of-pl‘;ne deformations, the third to
defonnations along the pipe, and the last equation is related to twist
of the pipe. Hence, in-plane motions are governed %y equations (2,58)
and (2.60'), while out-of-plane motions by equations (2.59) and (2.61).
Note that, if the radius of curvature R, is made equal to infinmity,
the curved pipe becames a straight pipe. Moreover, if the p}.pg is

vertical and the axial motion is ignored, equations (2.58)-(2,60) cam

be reduced to / . -
EI—3—49+M(§—+U-L)2u3+(M+M)—3-2—‘5+c§2+-§-[(AP-AP-Q)§9-]—0
agd £at s tTa’ .2 .ot = 95 i1 “o"e ¥z, 98’ T '
(2.62)
‘ EIQ;“%X+;4(§-'-F+UE—)2v+(M+M)§3y-+c§-¥-+-a—[(AP-AP-Q)§y']-0
e ) asll«fat ‘a,s taatZ at as_iioe»zas"

(2.63)

v v
-
]
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which, it may be verified, are identical to Luu's (1983) equations of
rtbﬂtion for a straight pipe conveying fluid and fully éuhnérged in a-
quiescent flgid. It may be noted that equation (2.62) is identical
to equation (2.63), because for a straight pipe motions in the x O: and
y -directions are uncoupled and identical. Finally, if the surrounding
fluid has neqgligible effect on the dynamics of the system, settiné
Ma =0, ¢=0, and Pe =0 vis=a-vis the- étznospheric pressure,. then
these®quations reduce to those of Paidoussis' (1970).
-
2.6 THE BOUNDARY CONDITIONS ‘ .
The boundary conditions associated with the go;reming equatior{s of
motion for fhe system can be obtained, as follows:
(1) If an end is clamped, the deflection and the slope of the

deflection curve must, be zero, Therefore, one obtains
] . ,

ua=20,

v=20,

w=20, -
V=0, - ' (2.65)
v *

= =90.

3s . ) K

(1) If an end is pinned, the deflections, the bending moments -

and the twist couple are all zero. Therefore, c;ne obtains

u=0,
v=0, : .
- . \ ‘ )
w=0, s '
- 4

ra e
P



P

(144)

_zero. Therefore, one obtains (
s, 1 azw) .. - s
353 R as 2

3
@l_‘ﬂm - __E) + GJ 1 ._ﬂ l_._Xg =0 ,
R_9s 3 EI R 8 R ds

o as
Qz 0 .

a2

c 3s .

2 L]
Ju 1 9w ) ’
('—'— + ———) =90 ’ !
2s2 Ry 3s \'

Ced  Lodv, |
Gs * R, as) 0.

4

2 ', )
(W/Rohl-%) =0, > - _ SN
2 lasaw - ’
37u Lo
@8, L _,, x o
\ 382 Ro as \
—& 1 —a-Y- - .

*Roee "0

o (2.66)

If an end is free, the transverse shear forces, the axial

force, the bending moments and the twisting couple are.

2.7 THE EQUATIONS GOVERNING STATIC BQUILIBRIUM -

Lét U,V s Wy and ‘i’o be the displacements and twist of the pipe ats

)equilibrimn.
(2.61), the equations governing static equilibrium can be obtained as '

|
L 2

follows :

34
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st

AN
El(—~

5
j ¥

-
RT3t

O 3s

2

= ‘as +-—-)] + B_/R +MfUZ(

1 =
+R)"G; —01

) o o]

Ro as

(2.67)

w_ "

(2.68)

.27

By deleting the time-dependent temms in equations (2.58)-

-

M L - R
10y
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4 . 2 2 2
o 3 Vo 1 8 "’o GJ 3 ‘bo 1 8 -Vo 9 avo ;
B -2 )-r 7 *r3 ) *t5s B35
_ 39s, 9s o 3s o 3s
2
v
+, MfUz 20 - G* = 0, (2.69)
as Yo__
. 3 Ca2 2
' P " u 3w P ' Ju w M u w
-3 tE Tty 20”"“?22(3'0*59)*_5‘('5%2*%’*@* =0,
’ o 35 o 3s” "~ S o} o] (o} %
' . © (2.70)
2 2. 2
V% 3 3V et %o 2%
GJ( 3 +§— 5 ) 'ﬁ‘(ﬁ_— > ) =0, (2.71)
9s © 9s” O 0 23s -

where P ' is the steady (static) fom of the combined effect of the
internal and external pressure and axial forces, i.e. the steady fomm

of

o - . P=(P -AP -0 o 2.72)

»

Here it is implicitly assumed that the departures from the original
equilibrium state are small, ’sz‘o that these, linearjzed equations hold
true. .o

AN . ’
+ Moreover, if we eliminate u, and W, from equations (2.68) and (2.70),
we obtain the differential equation govermning the static value Po of

the combined force,

2 G* 9G3 2 )

a P° Po Xg ° MU ’
2 *T2° R T"Ts L2 (2.73) -
. 9s Ro o) Ron ‘ .

I}

' 2.8 THE DIMENSIONLESS BQUATIONS OF MOTION, STATIC BQUILIBRIUM EQUATIONS
AND THE CORRESPONDING BOUNDARY CONDITIONS
f "“The system may be expressed in dimensionless terms by defining the

o . following quantities: )
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O O O
£ =8/L, n =ulL n, =v/L, ng=wL, n =u/L, ny=v/L, N3 =w/Ly,

M
v = V2L 5 o 5V 2,k a/ETmgy) 1Y2,

2
\
M M! I
a a GJ Z

B, = B! =, A=g% ,0=——— , r =LR (2.74)
a Mf +Mtl a Mf+Mtl | EI ’ (Mf-‘}Mt) L2 ’ (o] o’

Mg _ . 3 ¥ = c'L2/(ET (M 41 )]1/2
B = Fd_f-:M:' Y = (Mfmt-AOpfe)gL /EII\ £t

- 2 _ - 2
A= AL /1, r[p = (A AP -A P, )L /EI and 1 (AiPi AP, Qz)L JEI .

~
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Substitution of these terms into equations (2.58)-(2.61), (2.65)=-(2.67)

- and (2.68)=(2.73) yieliis‘the dimensionless goverming equations of motion

(a4n1 a3n3 Mek + £ng) + 2.1 - 32 2+ 1y
=4+ + rngll + rg tr
st 0 953 5 3‘5 3 "o " 852 3% "o
2 2
9 n, Bn an
+231/2' g+ro ar) +J€aTl+(1+Ba) ;Tlf 0,
. ) ’ T
. (2.75)
2 2
—Ez- o—-m)-l\r (—&+r 2)+%~[H = Yoy +u2 2
Y3 9 © 2 ¢ ° 352
. "2
. - ] n ] n
+ 281/2 a,[.aé +x 2 + (1+Ba) .3_5.2_ = 0' - (2.76)
T
8 n 82n an an \
.Q_Il-i-r( 1., )+ (= ~L 4 )T+ +r;12(""]‘+r \
SGE ot Ry g )|
2 2 -
an an o an
S V-l AL Nl — =
2 2 |
9 nz 2 ] n 2
3k 3 13 T
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.wheremx,my and o, are the direction cosines of the gravity
o o Z .

o)
acceleration vector.

¢

The corresponding dimensionless boundary conditions are as follows: '

'(i) at a clamped end

\

(11) at a pinned end
LU W 0, - W
'ﬂ2 =0, \
Ny =0y - .
3 2
. Ny
xp~—5 =0, }
ok
2
G2 tw T
on
&y 2
3t o 3
" (1ii) at‘a free end
33'11 32n
13 .13 -
w _ O 2
(ro -35 - -;;-3- ) + roA (35* r,

(n - ) = 0,
“paz
)
(r¥ - 5";:2—) =0,

) = 0y

]
™ e

’

’

(2.79') L\

t“'

(2.80)
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(aznl M
+r =0, .
352 o BE
an, -
1} 2 - .
‘ag + ro 3 ) =07 ) )
The dimensionless equations of static equilibrimn are given by
40 30 (o] 20
S, 2T =3 (M o 4 2 )] 1+ 6 2y, )
— 4 + 2 ———+rn +rl + +r +r ).
agd 0 P 3 ToRE  ToE g2 ©d o
5 BE - Yaxo =0, . (2.82)
a"ng SR G ang ., 8°nJ
T3 " T2 ) T Mo 2)+3§[Ho 5 FT 5T v, =0
ag” . ° B¢ oec  © 3¢ 3 ¥s
o (2.83),
o (83@ azng’) (anl ) +ra (anl 2).
-+ +r +rn +rn +r + I n3l+ ya, =0
13 (e} aE3 aE2 o2 3 ’ 12 3 2, ’
,’ : . . C L (2.80)
| Mazwo 32ng) ' (r Y ) 0 - ' (2,85)
~=+r —=) -r(ry -—5=)=0, 5
. agz o 352 . 'oo'o 352 , '
and the corresponding boundary conditions are: ,
(1) at a clamped end ' B
v )
=0, ‘
. =0, . ‘
ng =0 . B | (2.86)
3 ‘Po =0, o !
an‘f
A
ang 0
e ) * ,
3



r\ﬂbo

T'IC{'= 0.
ng =0,
g =0,
82n°
2
(I-TO\PO - —5'5—2) = 0,
azn? and.
(—5=+ 85;)— 0,
13 o
v, an,
G * o ! =0
(1ii) at a free end
a3 0 i 2.0
n 3" g
9§ 13 '
o, 3 v
(rg Y 35;3) + roA(a&
(TIO - np) = 0 I3
; 32n°
: 2
(. y. - ) = 0,
o'o 852
azni’ ang
( agz +r, EE_) =0,
3, any
Bt T

Fmalxg, the dimensionless differential equation c'governing-the steady

value of the combined effect (in dimensionless notation ) is

BZHO 2‘
+ ]l =rya
352 oo .o

P

=

/

(2.88)

(2.89)

+
a—



CHAPTER III. \
ANALYSIS FOR THE INEXTENSIBLE @ASE
. _ | . |
In. Chapter II, tlte goverriing equations of motion of. the dynamic-
system have been derived in tems of. the dimensionless displacements
and twist (nl,nz,n3,\u) ' anc_:l the "combined force" M. It is r;acalled
that this combined force, defined in equation (2.74), is associated

with pressure of the internal and extemal fluid and the axial tgnsion.

"Solution of these equations may be very difficult, because the combined

force is generally unknown and hard to evaluate. Ih this chapter,
analysi§ of this pmbl?m' will be perfomed, using the following assgup—
‘tions: m g | |
(1) the centerline of the’éipe is inextensible “(when the p:i‘:pe
, 1s subjected to small displacements and twist);

(11) the pertyrbaftion‘to the c;cmbined farce I, due to departure
from the original equilibrium state, is small (i.é., I is
‘considered to remain constant and equal to M)«

Based on.the above assumptions; the combined é)force I may be found
f;gn equation (2.89), and then the governing equations of motion about
the equilibrium position may- also be obtained. Moreover, we sball see
later' on that these governing egquations will separate into in-plane and

out-of-plane motions,- which allows indepedent investigation of the

. dynamics of the system in these two planar directions. '
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3.1 mmmmswmmammmmnysm
Let “1' "2' n3 and Y* be the dinmsimlees perturbation displacements ]
' and twist from the equilibriun position. They may be expzessed in temms -
of the steady (static) “and total displacements and twist; as follm:
.-3‘/> F ’ ' ~ -
g =ny+nd, 1 \ o
Ny =mp+ g - .

> .- 3.1 . -
ng,'* ngl

3
w
|

<
|

. =y + U . ‘ | |
Substitgiing equation set (3.1) into equations (2.72)=(2.75),.
neglecting higher order temms, and cambining equatic'xf? (2.79)~(2.82)

one cbtains the dimensionless equations gongg the motion of the system

‘about the equilibrium position, r;amely , N _
4 3 . 2 2
3 n¥ 3n 3n* ‘3 n¥ an¥
_ 1 3 3 ol V2m L, _3
.35 35; 2 a'l’
‘ ant an* ny . .
. 1 3 .
- ~ ! ( 5 o aE ) + x .I (3.2) IS
4 2., 2
3 nk 2 3'n% an* a°’n%
—F-x, 3—%‘3 ) =A ro(—-"?- +r,—5h v &, 3521 +(148,) —5
~ 3k 1 . ag ot ) ) 81
Coae 2 2. ’
. a n B a n* an*
. 1/2 2 2 2 2 _
~ + 28 arat; é&;?‘. +Jea,c ) 0 ' (3.3)
oy, a2n3) (éni LR u;s 1—s3 i al/za(azn”
r_( + A + r, +r Al -
o) 353 852 ]2 3 a 1‘ 9Tag .
an} 32 . '8 nk. .
- —-—— »* - -—-— =
2 N 2 N
9 n* nX 2
A(-—“ﬁ+ro—)-r(rw*-—7—)-a 2 =0." - (3.5) .
35 35 aT n .
3 ; ——
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It is seen thatequations (3.2) and-(3.4) pertain to in-plane displace-
_.Emts, wh:l.ie equations (3.3) and (3.5) are associ,ated with out-of-plane'
displacement and twist. There is no . coupling between in-plane and out-
‘of-plane mttc;ms, as suggested earlier; therefore, they can be studied -
independently.. . ,

Furthermore, according to the assumption of in;axtensibility (1.e.,
the centerline strain ¢ = (3w/as - u/R ) shaild vanish), the di{rmsion-

less ‘displacements n and ny are related by

an, o
! a_g- - ron,]_ =0 o’ (3-6)
and hence
i anoA - o —_

3 o - '

-a—g— - ron]_ = O' ) \ . . (3-7)

) . oy -
. 3 _ * =
3E rohl 0. (3.8)

Then,OEIIIZINy &uations (3.2), (3.4) and (3.8), the equations of

" in-plane motion may be reduced to a single sixth order partial di fferen-
; t1al equation for n§; this equation is '

6 4 . 2 4 . 2
(----—a ng + ng ? ni + ro a ng) + 0 (a n‘:’ 2r§ —-a 25 + r§n§> + (1+Ba)
3 ] 13 1 ag
T A, 2 4,
3 “3 2 3"ng va, 2™, 2 ¥ dmy
X=5= 41 (1+Ba) —5 + 28 q (e 3 + o araz )
31 35 9T 9Tk

3, . .2 )2
adnx ant .2 32nx ng
3 2 3 9 3
+R—2 -2+ @ —3 +rn)]+r ( + %) = 0.
4 3523 oot aEZ 352 IB o3
) (3:9)

It is of interest to note tlmi:wlmtfxecmbinedforcelliéneqlécted
and ext:ernal fluid effects are absent (8, = B'-Je=-18'= 0), this equation
“reduces to that cbtained by Chen (1972) by Hamilton's principle.



The associdted boundary conditions are also reduced, as foliwa: -

(1) at a clamped end

n§=0« -

.——3-= 0 [ i (3.10)

(11) ata pinned end

=0, ' . (3.11)

-{ii1) at a free end
’ 3%4na 3nt
t 3 + 2 3‘
\ 4 ro 2’
3E af
. 3
aTn* an )
. (—3 + 2 553 0, : (3.13)
~ 5 23 33n# n 33n% .
. X 3 n 3 2 3 3 - ¢
i { 3+r2 3)+281/2 VAT 2 * %o 37 +(1+8a) 2

3 E5 o 4 E 979¢ 9T 3¢
2

* * ’ .
. N3 2
‘ *Jearae; *'*9&: (n, — o2 ¥ ropt)] =0, ‘ (3.14)

=0, - (3.12)

Details of the derivation of equation (3.14) may be found in Appendix
- F. Once more, these boundary oonditions are identical to Chen's (1972),:-
. ]
Similarly, the equations of out-of-plane motion are given by

4 a 2 2
.. 9 n5 2 82 - 9 n§ ang 2 3 n§
C -r )-Ar(-—‘L+r ﬁ.[ —t] + @ ‘
agd O agz o g2 o agz T 3¢ aci |
2 2 - 1
n an : ,
. +(1+B ) ——+ 231/2 .---..-.5 = o, (3.15) - N
n a't EES SE ' .
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, 37
2 2
: ‘ v 3%nA 2 b
- _JL —_2 au*_
ro(r¥* - 9—5) Al + ro 5 ) +o0o = =0, (3.16)
5 .- 13 a1 \
and the boundary conditions are as follows:
(1) at a clamped end i
=0
ﬂ5 ’ ,
L d lp* §= 0 ¢ o 57 (3-17)
WELE,
- 'a_t— - ) -
' (i1) at a pinned end ’ .
¥ na = 0 '
32n2 )
(r ‘P* - —'——) ' S (3.18)
35
' 3
) . PEL nz =0 ;
. 13 To BE L J
‘ | ¢ (it}) ata free end g ©
\
- 3 . 4
, o . " n% n%
. y* 2 1l 2, - .
‘ L S T Yo My TRy S0 -
[ ) N aznz ! '
) (roq.w - 352) =0, | ~ !.!(3.19) , ’
- < i L
;on%
: T Gl o
' . 35 +r, 5) 0. }

¢

" Once.again, it may be verified that if\tlzs\canbiped f{rce I, is

suppressed and extermal fluid effe\c.tsﬂare eliminated (Ba =J=0), then
the'equations of motion and bourary tions above are identical to
Chen's {1973) , obtained l;y the of Hamilton's principle. .

+

<



+ 3.2 AI‘IIALYSISOFR‘I-ﬁANEmI‘Imm'ME INEXTENSIBLE CASE

“In order to obtain the solution for in-plane motions, the finite-

B

~ L]
element method is applied. Accordingly, the variational statement used

for the finite-element. technique is utilized, i.e., N

N n Ei '* * * _ o
E, fo Sy a= o,

(3.20)

e

where Gng is an arbitrary variational displacement, AI (ng) represents

. the left-hand side of equation (3.9), n is the number of elements, and

E;i is the length of the ith

conditions » One obtains

B a3 *
a'n 9 8 nk an adn*
3 r‘3 3 3, .2 3 3.
2 fO\ {8¢ E + OQE E3+r°3§)+?[8€ (aé3+r<23
2, 'y é‘S"a s g, .
2 3
a n% afnk 9 nX on%
-2 - 3 1/2 _3 3 2 3.
-l 6n% (—= +rn)+26 (—=, + - —==)
oo 3” ' agz g o 31'85 o ,a'lt
~ 2.4 %* 3
36n3 ) n3 2emns an 86n3 ] n3

%

2 a3
+ ro (l-t-Bé) 5"1‘5 ';2'} da =0,

element.

.’eBy performing integrations by parts and using the boupdar.y

(3.21)

Details of the derivation of equation (3.21) may be found in Appendix

G.

Aocord.'lng to the finite element process, -solutions are being

soughkin, the appm:dmate fom
n§ = [Ny] {n)}®

’

\

(3.22)

-~
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where [N3] is a matrix of shape flnctions prescribed in terms of the space
¢coordinate £, and {nz}eis the element-displacement vector which depends

(Y

only on time. Thus, one may write °

sn% = (N3] 8{n}}®
m_, o ! A ‘
9 n3 [N3] e

= {n* ’ : (3.23)
2™ . diml« i
>
m
. X G dm[N3]-6{n* .

o g™ t
a3 o dne ]
— = [N,}" > .
aT’“ 3 d'rm J

Using equations (3.21);—(3.23) ’ the discretized equation of in-plane

b 4

motiocn may be written as .
A
eyl Gig}S + (of) -{A7)° + (x01%(nx)° = o, (3.24)
where - o ' -
. Eq

41 = sy [(18,) [N5) TING] '+ 22

e : o ,
041° = 2622 &1 ;) i) + 52 [N3])d€ o ey Ty

(1482) (N1 (N3} GE,  (3.25)

-

: ¥ rg.'le' tN3JT[N31]d£, ) . 7 (3.26)
e ge v 2 ' 7 o 2 '
®41® =7 (9] " 22 g1 TNy ) e 22 Ig] )
‘ . - g ‘

!
+

- e ' oo ] ! m
82 1t Tag)+ e2 i )-22 00 T () g1 jag

3
+

Ee 'Ta w 2
fo N3] 7 gp [N (N3] + zi[N,])1dE
E .

1.5 5 Moy eyl s sy G

T —————— Y
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Here, it is noted that the prime denotes differentiation with respect
to £, and the dot denotes differentiaticn with respect to 1 §, is the o
element length, | . |
3.3 NUMERICAL AMALYSIS oF m—m MOTTON INTHE INEXTENSIBIE CASE ..
The highest order of derivative of the shape function [N3] , which
exists in the integrands of equation (3.25) - (3 27), is the third: hence, '
it 1s necessaxy'to ensure that n3, n3' and ng" be continuous between -
elements., This is easily accomplished if the nodal displacenents at

each node are taken as the values of ng, n3' and n*" .\
. Thus for the jt'h node .
(
. “§j
* [} = 4 . - L
{ni}J : n3j ™! w _.(\3 28) ,
* ) . —L
n&d J. . ﬂ

as shewn in‘Fig\. 4 o
The shape function [N ] w:l:11 be éerived ne)'ct. If one- accepts f:hat
. in an elenent, two nodes (i.e., six degnees of freedan}eaeh/ge;ﬁmt)
' define the deflected shape, one may assu;ne&lﬂ/lected shape to be
given by a fifth-onder polyrﬁnial , -\
n§ 1t ng + a3g ‘+ a4€ + asg + aGg r ) ’(3.2?)

where a are the generalized qoopdinates, and the elément displaéeinent

[

vector is oo ] ' ' _ : "
'j . {n*},’ :
, {n} e _Jd10__[, (3.30) d

‘ Here £ is the local coordinate along the pipe element.‘

T
L T ™
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- Let ]
o feg) = gl e2eheY - @an |

f e . 3\ ) _ ’ @ ) s vy ' .
T T {Gi}T ={°‘1’°‘2’°‘3’°‘4'°‘5’°‘6}' (3.32)

Then, equation. (3.29) may be rewritten in the matrix foim‘

foe * = 11 /_ ‘ .
SR UL (3.33)
- and also i
o -nj§'= [¢5] {1, . (3.34)
X ' P n§"= [Q3] {ai}c b (3-35)
' Substituting equations (3.33)-(3.35) into equation-(3.30) yields
— 4
(‘ !
0 . [¢3]j . s
BRI CNP
‘ ) {n;}e = < 33 L {ag3. . (3.36)
b (93] 541 ’
. '
(03) 544
. . L[¢3]j+1) .
*

Using (3.31) and (3.3\6) , one may express the nodal displacements in

tems of the generalized coordinates {u;} as
. \
o e _ .
)™ = Al o ], : (3.37)

' where §
-

. R ]
- \
/ \ : [A] = 0. 0 .2 0 0 0 . (3.38)
e 2 3 4 5
. e Ee Ee Ee &e
0 - o 1 25, 32 ag) sgl

0 0 2 ek, 125;3_; 2015;“3
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]

‘ o Now invertin equation (3. 37), one obtains
{al = [A]” {n* ¥° ' (3.39)
\ 1 o . 0 o 0o 0 |
c
0 1 0 o . 0 0
a1t = o o0 12 ' 0 0 (3.40)
3 2 3,.-1 -3 2 1, -1
i ml08" ~6E, -38e 1057 —4ET 36
-4 . -3 3.-2 3 -
15€e4 85e3 2te '15;;9‘1 T8q _592
} -5 .- -3 =5 ..-4 1=
L- 68e -3Ee4 -%ge 68q -3€e4 %€e3 ]

Deta:ils‘of_ the calculation to obtain matrix [A] 1 can be found in

Apgendix H.

\o Utilizing equations (3.22), (3.33) and (3.39), one obtains the shape
function [N3]
- - ' “
[N3] = [¢3] [a] . o . (3.41) .

Then, substituting equation (3.41) into equations(3.25)-(3.27) yields

R Ee ' ' . -
C o 1® = T st ) Teg) '+ e Toy) 1) ag} 1T, o«
L - " (3.42)
ge ' " ’
' moy1® = 28Y/%5 (a1 o (931 Tit031 ¢ 221031 ag) (1"

£e - o
+ BT 1 (Jereq) Trog) +rl e 051 10, 10aE) (A1 7Y,

e (3.43)

o

(Ry® = I (ly1 +210,1 )T (loy] +22(051) aE (a1

. - - E ' "
, AT o) Tileg) 42 [¢31 y-x2(6,]" <[¢31 4 (¢31)}d£ (a1~

i e
O TS 0] TSm0y +e2tog)) s S e2n

+ 22 [¢3])d€} fA} - L . (3.44)

(9517 ([0,]"




.

0 To evaluate the last two integrals in [K’i*_]e, the combined force Oy .
and its derivative 3l /9E in each element are approximated by linear

functi_ons, ;or convenience, as shown in Fig. 5. Therefore, we mé.y

+

write
Ifo = a, t+a, g, ‘
ar[o it . (3:45)
Y, -3_5_ = bl + b2 £, . v \
where !
a, = Holj , — ‘
. ay =ty = Toly)/ B o (3.46)
- 3
all ’ '
b, = =2|. , ’
, L8 ]
\ ,
RN ‘ ol . oIl
by= (gl 5ol M/Eg -
e . ; A ‘

Substituting equation set (3.45) into equation (3.44), and then
evaluating the integrals in equations (3.42)-(3.44), one obtains the -
’ £

| S

element matrices

1% = 1748, 13,) + oase) 1)) (A7 (3.47)

op1® = 8™ 17 (1gg1+x2iaD) a1 ia) L)

.

: + 2233 a7 " (3.48)

17 131420 (961 + 1961 #2513, 1407 (3] #2313, 1-13,))
. ¢

U CARAICARCAIENC AN AR EAY

—
=
rx
o
il

4
%o

!
+a, (IR 1422 (13 01-19 ) D) -r3 13y 104, (19 42210, a1 7,

o‘ - ! (3.49)



where £
M3 =r
(3,1 = f%
[35] = fgg |
[3,] = fgg
[35] = Igg
(3] = fgg
(3,1 = f%
[Tg) = f%
[Tg] = f%
(g 10]: S e

o
E;e

Iy k=rg
£

£y _ e

e

o

g

—~
(o517 5] @t ,
(0, Trogvag ,
(051" Tlog) Qg ,
[0y) To,] & ,
(051 Treg1'ag ,

1 T

[0 Tr0] GE ,

3
T ll"

£lo,7 Toy)aE™
glog1700,1 GE ,
£l0,] Tlog] dE
glog1Tlo,) ag
£lo5] Tla,) AE

OT "
glog] Tl0,] af

—

which are evaluated in Appendix I.

(3.50)

44
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@

3.4 ANALYSIS OF OUT-OF-PLANE MOTION IN THE INEXTENSIBLE CASE
.Similarly to the case of in-plane motion, the variational statement

‘used for the finite-element model of out-of-plane motion is

Es
n °i
i}: T {6n% A%, (n%,4*) + Sp*A% (nz.w*)} dg =0, (3.51)
where 6n§ and §y* are the variations in the displacement and twist,

Asl(ng,\p*) and Aéz'(nﬁ,\p*) represent the left-hand sides‘of ‘
equations (3.15) and (3.16) réspectively,
n is the numper of elements, and

51 is the length of the ith element.

Perfoming integrations by parts and using the boundary conditions,

4

one obtains
n gi 826n§ 32n5 g 321']* 8(5712 aJ)—-
L5 _{ ( - r y*)+r Sy*(r y* - )+A[r
im]  © 352 8&:2 o o o 8& o ot 85
2
: an% 3°n% an_.  an% 32 n%
2 aoY* i =2 2 0 2 2
* Ioget e (o g ” YU 5+ ns G 5ty T2
ag” (12
2 L2
9 n% an* 3™ n% 2 .
v 26Y%G gy o2 rlesns =2 + (148_) 6ns —5 + osyx 2L} af =
2 383t 302 372

© (3.52)

~

Details of the derivation of equation (3.52) may be found in Appendix J.

Accordingly, applying the finite-element process, solutions will be
sought in the approximate form

n, = [Né] {n;;}e

3

v = N {nx)® (3.53)



46

where [N2] and [N4] are the shape functions prescribed in terms of the

space ocoordinate g, and {n;}e is the element ;iisplacarent vector which

depe;'nds only on tinme. ) ‘
Substituting equation set (3.53) into equation (3.52) yields

discretized equation of out-of-plane moetion, as follows: - \

-

) s [Mg]e {;';3} + [D;] e{\:\S}e + [Kg]e{ns}e = 6, ‘(3.54)
where - ‘
. . B8 Ly
81 = (1S o W,1T,) G + o 7, TN &, (3.55)
\ £y £y -
Dx1® = 28Y%r - T+ R T, (3.56)
£ ‘

RE1% =r _ {INy] T(IN,) = IN,]) + £ (N1 (e (- (9, )

+ AlrIN,) T(IN,) ZEARECARICARS 09, 1]

3%

+ ﬁ (N, [Nzl +[N ] (35 (N,) +H [N] )} ag . (3.57)

3.5 NthlERICAL ANALYSIS OF OUT-OF-PLANE MOTION IN THE WSEIE CASE
The highest order. of derivatives of the shape functions [N?_] and [N4] 'y

which exist in the integrands of equation (3.55)-(3.57), are second

and first respectively, and it is necessary to ensure that nﬁ,nﬁ’and Y

are continuous between elements.. Thus, one choses the nodal displ.ace-

ments as ( 3

ngly = Jdmy L, . (3.58)




- | | -
\ . ¢ ' C
0 .as shown in Fig. 6. n ' |
The shape functions [N,] and [N,] are now derived. If one also
accepts that in an element two nodes define the deflected shape one
may assume that -
ng = af * a3t +!a§§2 v, - - (3.59)
¥ = of + a¥E, . N ; (3.60)
where a;_ are the generalized coordinates, and /5 ié the local coordinate.
| The element displacement vector is
o {ns}:, ‘ ’ \
{n;} = = . . ' . (3.61)
{no}j+1 - -
' Let - “
O ST e 951 =11,58,8%, 0,00, - ‘ _ (3.62)
- [94] =10,0,0,0,1,E] , o . (3.63)
o} ={af,a8,08,0%, 65,08 , (.60

-

Then, equations (3.59) and (3.60) may be rewritten in the matrix form,

ng = [0,] {a1}, \ (3.65)
y* =T18,]{of). ) (3.66)
Substituting equations (3.65) and (3.66) into equation (3.61) yields
- ey
| CAR L
;. ' : ) = | o5 G} G.67)
. . [4>21j+lr \
: : ‘ [¢2]j+l ’ ] T
O . S LN - ,

e A T .
2
o
“
o
.
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generalized coordinates {a’;_} as -

where

'y

s
R
&

Now ipvertihg equation (3.68) , one obtains

‘where

O

48
Hence, one may express the nodal displacements in terms of the
e _ ’ . N
(n2)® = &l _tog}, . (.68
L}
_P}1 0. 0 0 0 0 ] .
-\ - \
0 1.0 0 0 O
6.0 0 0 17,0 _
2 3 L ,
Lok B & O 0 |+ 3.6
L a2
0 1 2. 3% o o 3
a . &
0 0o 0" d 1 g |
ot} = A e L @ "
{ag\}_— [al, {pg} ’ o (3:70) .
‘0 o o 0o 0]
1. 0 0 0 0 \ '
o 3.t o |- ¢ 3.7
-2 3 -2 S
g 0 -7 g7 0
0 1 0 0. 0
o 1 o o gt ’
e e | \

-

s

e kg N T
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Using equations (3.53), 63.65)-(3.66) and (3.70), one may write

" the shape functions as

- L
(N,] = [9,] (A]]} (3.72)

(N,] = (0,1 (AIZ", (3.73)

) '

e

| Then, substituting equations (3.72) and (3.73) into equations (3.55)

u )

(3.57) yields

ex1 €= (a1 1T (148.) fIE 19,1710 ]d'+ fte (¢,17(0,1a) (a1t
ol "=l 8a 2l 18pldE +af o 19,1710, 1ac) (Al
‘ ' (3.74)

~ - B : ; -
= 15T 18 10, 10,0 @ +Rr S 10,1 10,)cE) (a)7

X
®
[

(3.79)

“ir. Ee " o
® = s e, T, "x (10" Ti6,+10,fl0,1 Ieelio,1 710,11 g

0%
Yl
|

e | m] [«n]'+ <[¢1'Tt¢1+[¢JT[¢1 y+(6,] Tl6]'1d
A o [xg "2 2l * 5y tle, 4 g} 191 )+, 414

s & "
2 .0 T 4
‘+u I o (9170850 g
e B aH:: ' " Px 3=l :
oo [917 G [95] + Myl )de } (Al S . (3.76)

)
\‘

' Here, the combined force N, and its derivativedl/3E in each element
are agaﬁém,by linear functions, as given in equation set
(3.45) . By substituting equation set (3.45) into equations (3.74)-(3.76),
and evaluating the inteqrals in equations (3.74)-(3.76), one obtains s -

the element matrices, as follows:
B31% = (A10™ (48 1941 + o (gl AICY, NER)
(021 = (a7 (282 (og) + ety B2, L (3.7
- —
(K31® = _”‘]clT (9] (g1 + (g1 Ty 2 TG 4A L g e [J7]+{iT’+IJ§J ]
+ 92[J31+a1(agf+b1{a*1+a [J*0]+b2[u§3]i mazt, My
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where

&)

[3%)

[7%]

[Jal'

’ [J-*7]

(3]

(J*

10!

(9%

S o 1Tt

= 1% 10,0710,) a,
Ee

= 1% 19,]

IT ]
. Tlo,] @

ge «llT "
= 1% 19,) Tie,] <k,

- By
o)

Ty
Iy 10,1710,) & ,
g

e T '
J'O [(bz] [¢>2] dg ,
£

]

e "'T
12101 M0, a,

E;e IT L]
58 10,0 Tlegl A,

-

1]

Gy Ty |
Io(bg) o) e

e

E
o
E
o

[¢][¢]d€:

® £1e,1" [@21 &

which are evaluated in Appendix L.

4

.

Ee T .

(3.80)

£, 6 ;: e »
S A oL
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3.6 cncmnouornmnnm«smmfsmmmmm
‘INEXTENSIBLE CASE

Before célmlating the 'di;nensionless combined force in a piﬁ»e with

arbitrary shape, we' firet perform the calculation of this force 4n an
incq;\plete.. circular pipe, subtend;ng an angle‘ rsas shown 4in Fig. 7(a);
then,l t111 result of tl';is sinple case may be applied to obtain this force
in each finite element for the case of arbitrary shape. Since the

discretization has been introduced in the previous sections, the pipe is

divided into 3 series of constant curvature elemer;ts, each of which -

o

" Hmay be treated as an incomplete circular pipe.
' The differential equation of the dimensfonless combined force

derived in Chapter II, equation (2.89), will be re-written as

- - . " dzno 2 2‘ t adzo
5+ Tlly = ~r @ +y(re, +5F) 4 (3.81)

g
! N »0 % .

. ogwhex:v‘e Oy ‘and @, are the direction cosines of the gravity acceleration
o - ]
g along the X" and z axes, and which are only functions of £.

Fram Fig. 7(ap, if we assume that the pipe initially lies in a
verticdl plane, the angle Of the vectors 13;3?0 and. g can be written as

a

(P“' ,g) (£ g + Q) + K21r, L , . (3.82)

vhere K is a positive or. negative :.nteger, and o is the principal value
of the angle (11'5‘,9') which can be positive or negatlve depending on the

. positipn of the wector g, as shown m Fig. 7(b cl. Therefore, one can
.. (. 'y
’ write th"e direction cosines as’ follows

% = Cos (3% ,3)

4 ' . IR 5 Cos (rog +a),

TS— h
I . - (3.83)
e ' . % = Cos (P;Z,,/9) = Sin ‘.(,rog +a). |
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o . , Substitution of equation set (3.83) into equation (3‘”81) vields

[« e 2
dII 2

3 +rII --r2ﬁ2+2ry Oos(rE +a), (3.84)

. dE
which is a second order linear differential equation. Hence, one

obtains the general solution in the fom

- I, =c, Sin(rE;+C)-ﬁz+YESin(r€+u)p

. e : . - (3.85)
. where C, and C, are two integral constants which ¢an be detemined from
the boundary conditions. ]
. It is noted that when r, is set equal to zero (i.e. in the case of

an inclined straight pipe), the combined force can be reduced to
; Moo= (y SinaE+Cf « (3.86)
If the grévity effect is assymed to be negligible, the boundary
o' . conditions assoE:iated with equation (3.84) are as follows:
(1) fo’% a clamped-free incomplete circular pipe P

Ilo = I[pllucbs r, = (1-Cos r_)u’,

r[oll = ]-Ip|1 ’ ) (‘3087)
dn - '
.33911 =-%— (r- Sin r)(u2+ﬁp"| )2
o .

where, it is recalled that r[p (A 1PyRs P )L /EI, which :I.s the pressure-
related cawponent of N, Details of the derivation of equation set
(3.87) ,may be found in Appendices M, N and O. In these Appendices it
is assumed that (a) Tj:he pressure distribution ‘of'the‘ mfemal fluid

is a linear function ;long the length of the'pipe, and (b) the initial

centerline may be used as an approximate shape of the strained center-
line af\th:er static deformation.
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(11) for clamped-clamped, clamped-pinned and pinned-pimned incomplete

circular pipes e T, e

. Gee)

Details of the derivation of equation set (3.88) based on the same

assumptions as above may be found in Appendices P,Q and R. '
Combination of equations (3.85), (3.87) and (3.88) yields the

cambined force Il,. Hence, ’

(1) for a clamped-free incamplete circular pipe

.o - _ =2
_IIO = Cl Sin (rog + Cz) u” , (3.89)

0
"

-2 .
_ (lel +u)/sin (r  + C,) ,
+ N ¢ (3.90)
- _2 .
- Tan 1 ‘[rg/h:o-—sin ro) (u™+ np]l)] - i :

0O
L}

. ¢
(11) for clamped-clamped, clamped-pinned and pimned-pinned incamplete
circular pipes, '
| M = - G (3.91)

Finally, to obtain the dimensionless combined force in a pipe with
arbitra}:y shape, we procéed in a manﬁer similar to whgt was done in the
case of an incamplete circular pipe. First, the boundary conditions ,‘
on‘ oﬁe end are obtained. Second, the combined force in the finite-
e;emént at that boundary, where the conditions are specified, are
obtained based on discretization, whereby a pipe element may be treated
as an incamplete circular pipe, as mentioned earlier. Next, this force
in the a;lj;acent' finite element is obtained th;mgh the continuity
condition at the nodes.

L]
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3.7 THE VISCOUS DAMPING COEFFICIENT c
- The only undetermmined quantity‘ in equations (2.58)-(2.6(;) is the
viscous damping ccefficient ¢, associated with viscous resistance due
to the surrounding fluid. Assuming Stokes-flow conditions to hold,
Batchelor (1967) and Paidoussis s Luu (1985) estimated the viscous
d’amfa\ing coefficient for a circular cylinder in a quiescent fluid to be

c=21v/2¢Q Pte rgu (v/Qrgu)l/z, X (3.92)

4
6

b
where p fe is the fluid density, v the kinematic viscosity, the

Lou
cylinder outer radius and Q the radian frequency of oscillation. This
equation is identical in form to the experimental result obtained by

Ramberg and Griffin (1977) from extensive tests on stranded cableg.
, \ - .

L4

4.8 EIGENVALUE ANALYSIS OF THE PROBLEM FOR BOTH THE m-PLANEf.ND
OUT-OF-PLANE CASES ' - Q
In both cases of i.n—plan‘é and\out-of—plane motions the global equation
of motion may be written as follows:
‘ L BOGRL + 1A} + [KI(n) = {0}, . (3.93)
where (M], (D] and (K] are the gloﬁal mass, damping and stiffness ;
matrices, which are assembled from the corresponding matrices for an
elerent of the dynamic system (as given in equations (3.47)~-(3.49) or i
x(3.77)-(3.79), respecfively)'i{n} is the global displacement vector.

% , .

)= ---4, (3.94)



one obt";ins ' - ) .
[}, (011{2} = [[o], (1]] {¥}, -  (3.95)
‘and then equation (3.93) may be rewritten as -
(o], BMll{¥} = - (IK1,(B1{x}. . (3.96

.Finally, combination of equations (3.95) and (3.96) yields the
*  ‘equation of motion in the form of the first order'differential equation

(1} (o] | o1 (1 R
\ _ {¥;} = . {¥}- , (3.97)

(0] M ‘ -[K] -[D]

For solution of th)& eigenvalue problem, equation (3.97) may be cast

A3

into the general fomm
A [BI{X} = [al{X}. “ . (3.98)
ﬂ To implement the procedure, let
O (¥} = xpest, : (3.99)
o where w is a gﬂnensionles's frequency related to the circ;ular‘ frequency

of motion, 2, by
i

‘ M, +M S ‘
, w= hHY2 a1l . (3.100)

In_qenéral , W will be complex and the dynamic system will be stablg

or unstable accordingly as the imaginary part of w isPositive or

negative.
Substitution of equation (3.99) into'equation (3.97) leads to an
asymretrical eigenvalue problem or order 2N (N B;eing the total number

of degrees of freedom of the system) as follows:

(1] (o] © (1 o
A {X} = 1 {X}, (3.101)
0] M K] -[D] " '

¥

3
\

- ’

!
gy .



56

A = dw. ‘ ' (3.102)

| Irr;;lied in the above equation is the ~spbsequent reduction ofw the
system to order 2K < 2N from inclusion of the essential boundary conditions
and condensatiar of the inertialess degreds of freedom.

. For any given system the dimensionless parameters B, B,sByrA,0 and

I, are known. The camplex frequencies of the syste;n will be calculated v
for an’y value of the dimensionless flow velocity u,-and the Critical
velocity of the system will also be obtained. The method of com\;xxtatim
using the IMSL subroutine, EIGZF, from the McGill camputer lib;fary is
described #%the IMSL manual.
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CHAPTER IV
RESULTS AND DISCUSSIONS FOR THE INEXTENSIBLE CASE

¢

¥

This chapter presents the results of an investigation of dynamical -
in-plane and out-of-plane behaviour of curved pipes conveying fluid
under the effect of the internal flow, for the inextensible case.

These results were obtained by using the finite—élemenﬂﬁ‘method

discussed in the previolis Chapter III for both the in-plane and out-of-

\
A

‘plane motions. Two computer codes were developed to solve the eigen-

value problems, and a listing of these programs for in-plane and out~of-

plane motions may be found in Appendix S.

The computer programs were used to obtain the complex frequencies
of same typicag dynamic systems. The calculations in the programs
were conducted in double precision-. \

Two variants of the theory are used in' the calculations. In the
first, the steady-state, "initial" forces due to pressure and centri-
fugal forces are entirely suppressed; this is done by setting Qz =
Hence, this form of the theory is the traditiorial inextensible theory,
making the same assumptions as those made preyiously, for example by
Chen (1971c, 1972a,b, 1973). The second variant of the theory may be
referred to as the "modified inextensible theory", where, in effect, the
carbined force I (and hence the centrifugal and pressure-induced forces
therein) are taken into account -~ yet, retaining the assumptions of
inextensibility of the cel:xterline. Thus, this latter theory is inter-
mediate between the true extensible theory (to be presented in Chapter
V) and the traditional inextensible theory. Since there is no queétion
that T # 0 in any real physical system this second variant of the theory

is considered to be the more realistic of the two.
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Before calculating the rnew results, the finite element programs
o + are verified by considering several configurations of the tube and
camparing the results obtamed from the present programs with existing
results calculated by analytical or other methods as described in

9

Sections 4.1 to 4.3. ) B
4.1 VERIFICATION OF THE FINITE-ELEMENT PROGRAM FCOR THE CASE OF STRAIGHT

PIPES |, ‘

In this sécti‘on the finite-element programs are verified, in the
f.fLrst instance, by solving the problem of straight pipes, i.e, the case
of 1}0 =,L/R° set -equal to zero, and con{paring the complex frequencies
thereby obtained with existing results. *

Of course straight pipes have the same éigenfrequencies for in-

o plare and out-of-plane motions; hence, calculations may be conducted :
with either the in-plane or out-of-plane program. |

Y ! ¢

4,1.1 Straight Tubular Beams with No Internal Flow

Tables 1-4 show the natural frequencies of oscillation of a simple
tubular beam (no flow and neglecting the effect of gravity force)
obtained by the finite element methods for,in-plane and out-of-plane
mtion;',. It is seen that the displacement models used in the finite~-
element methods of in-plane and out-of-plane motions (quartic and cubic,
res ively) are satisfactory: thé finite element solutions obtained
by 2::3 model; converge to the exact solutions, the convergence being

_\}—e—fy—_f—ast; the in-plane calculations are generally more successful
than the cut-of-plane ones for the same number of finite elements,

o reflecting perhaps the higher-order polynomial displacement functions
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utilized in the former case. Only six or less elements are needed to
G’ get a high accuracy of results, as seen in the tables, namely to within
2.5% of the analytical results, and usually better, for the first to

" fifth modes of these systems.

4,.1.2 Horizontal Cantilevered Pipe Conveying Fluid

Figures 9 and 10 deal with horizontal cantilevers with y = 0 and
) B = 0.200 and 0.295 respectively, which were studied by Gregory and
Paidoussis (1966a). We note that, at u = 0 (no flow), the system
behaves as a simple cantilever beam. The effect of flow, for small
values of u, is to damp free motions of the system in all modes (i.e.,
the imaginary part of the eigenfrequencies, Im{(w), which is associated
when damping is positive). However, the system will lose stability by
flutter in the second mode, when the flow velocity exceeds a certain
0 ' value, referred to as the critical flow velocity.

We can see that the finite-element results, obtained by us;ing a
six~element discretization scheme in the program for out-of-plane motions,
are very close to the analytiddl results obtained by Gregory and
Paidoussis (1966a). As expected, the discrepancies became more pronounced
for the higher modes and at the higher flow velocities. As shgwn by
Gregory and Paidoussis (1966a), each mode contains higher beam—-mode
camponents, with the importance of these components increasing with
increasing values of u. Thus, the fourth mode shape at say = 9,
would contain appmciable ccmponents of the fifth and sixth beam modes,
which ocould evidently not be truly well represented by a six-element
discretization scheme - at least in the out-of-plane solution scheme

involving cubic displacement functions.
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4.1.3 Vertical Tubular Cantilevers Conveying Fluid

Figures 11 and 12 deal with hanging cantilevers with y = 100 and
B = 0.4 and 0.65. We can see that, in all cases, low velocities damp
the system in all modes (Im(w) > 0) and the effect of the flowing fluid
is to reduce the frequencies of oscillation, Re(w). As the flow
velocity increases, the locus of at ieast one mode crosses the Re (w) —axis,
and tlw:e systen loses.stability by flutter. '

In this case alst\l‘ae‘finite-elenent results obEajned by using
‘a Six-element discretizatigp scheme for the in-plane motion, are found
to agree very well with thé analytical results obtained by Paidoussis
(1970) . Indeed, camparatively to the results obtained in Figs. 9 and
.10 with the out-of-plane solutic;n, the agreement in this case is much
better, and very good even for the fourth mode, up to u = 14; the
reason is very likely related to the use of quintic displacement functions
in the iﬁ—plane solutioh, as compared to cubic ones in the out-of-plane

"

solution.

| Figure 13 deals with a standard cantilever (the free end above the
fixed one) with vy = -10 and 8 = 0.2. We note that with no flow both
the analytical and finite-element methods yield w = + 1.8524i for the
first mode; this implies that the cantilever is unstable due to its own
weight and that of the enclosed fluid. The instability is of the buckling
type, si.milal*ly to the case of a real colum. If the flow veloci‘ty
increases, the negative branch of the first mode locus eventually
becames positive and the system is stabilized. At still higher flow,
however, the system loses stability by flutter in the second mode. For
this problem also, the finite-element results (obtained by using the

program for in-plane motion) with six-element discretization agree well

with the analytical results of Paidoussis (1970).

A
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4.1.4 A Long, Vertical Cantilevered Pipe Conveying Fluid and
‘ 4

Submerged in a Quiescent Fluid
v ¢
Figure 14 shows the Argand diagram for the lowd8t three modes of’

the long vertical tubular cantilever studied by Luu and Paidoussis
(1985). An identical system v;ifh the following associated parameters
has been used for the calculation to be presented here:
(i) a steel tube with Young's modulus E = 200%10° kN/m? and
density p, = 7.83%10° kg/m’, conveying fluid and
submerged in a cguiescent fluid;
(ii) the length of the pipe L= 1,000 m; internai and
external diameters Dj= 0.45 m and D= ‘0.50 m, respectively;
(11i) a aonstant fluid density for both internal and external
fluid, equai to 998 kg/_m3. - (
" We note that, in the case of downward flow (here @ > 0), the

' system remains stable when the flow velocity increases, at least up to

the maximum values of U shown in Fig. 14. However, the system loses
stability by flutter in the case of tpward £low (@ < 0), when the £low
velocity exceeds a relatively small critical value. The shape of the
cu:rves In the case of upward intermnal flow is ve‘}y flat, as canpared

to the previous“cases, since in this case the tension on the pipe due

to its own weight (the pipe here being very long) is very large. There-

fore, the 1loci of all modes are essentially straight lines parallel to

1
>

the Im{w)-axes.

For this case, the progréms for in-plane and out-of-plane motion |
produce the same result by usirilg six- and seven-element discretizaticn
schemes, respectively. The f_inité%lement results are similar to those

obtained by Luu & Paidoussis (1985), but not as close to thém as in

previous cases (Figs. 9-13); one reason could be the effect of damping
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due to the surrounding fluid, which was not calculated in exactly the
same way as by Luu & Paidoussis. It is believed that the present

results are more self-consistent and accurate.

4.1.5 General Comments on the Straight-Pipe Results . ' !

Frond’ the‘ canpgrisoris conducted between the eigenfrequencies calculated -
by the finite element programs of this Thesis and those calculated by
* other analytical, semi-analytical or numerical schemes by other investi-
gators (Figs. 9-14), it may be concluded that, the agreement being
generally very'good, the finite element formulation and camputer programs
of this Thesis have been verified - at least ihsofar as the dynamics of
. straight pipes conveying fluid is concerned. *
_ We next tum our attention to the dynamics of é:ur\}ed pipes conveying
fluid, which is the topic of principal interest of this Thesis.
.42 VERIFICATION OF THE FINTTE ELEMENT PROGRAM FOR THE CASE OF ,
IN-PLANE BEHAVIOUR'OF CURVED PIPES, WHERE THE AXIAL FORCE 0,
IS NEGLECTED
In this section, calculatidna by means of the finite-element
method for in-plane motion are continued, to verify previously obtained - )

results for curved pipes conveying fluid. Here, the axial force Q,

is neglected, and £he internal pressure is constant. This is done, so

that the equations of motiont(3.2)-(3.5) then become identical to
those obtained by Chen (1972a,b) without implying that these equations
" are correct, fram the physical point of vfiewi. Therefore, the finite-

elemeht results of this case may be compared with the analytical results ‘



obtained by Chén (1972a,b), thereby testing the finite-element
formulation developed in this Thesis, for curved pipes (with the

" 1imiting condition of 0, = 0).

4.2.1 Semi-Circular Pipe Conveying F;luid

Figures 15-20 show the in-plane natural frequencies of clamped-
clamped, clamped-pinned and pinned-pinned semi-citrcular tubes conveying
fluid, as functions of flow velocity. At u = 0, the tube behaves as
a semi-circular ring. When the flow 'velocity increases, the natural
frequencies become smallexr according to this fommlation of the problem
(Qz‘ = 0) and if the flow velocity exceeds a certain value, the tube
becames unstable in the first mode, the instability being of thé
buckling type. With further increase in the flow velocity, instability
may occur in the higher modes aiso. ' | ‘

It can be seen in Figs. 15-20 that the finite-element resglts

-

(using an eight-element discretization scheme are very close to the

\_/lanalytical results of Chen (1972a).

.
£
Ly
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4.,2.,2 Natural Frequencies of 'a Semi-Circular Pj Conveving Fluid

as Functions of the Intermal Fluid Pres

Figures 21-22 show the natural frequencies of a clamped-clamped
semi-circular pipe conveyipg' fluid at a dimensionless flow velocity
u =", as a function of the internal fluid pressure. The effects of
the intemal fluid pressure are quite similar to those of the falow
;relocity; i.e., 'the natural frequencies monotonically decrease with
increasing fluid pressure, until buck{.ing instability occurs at t:.he {

critical pressure.

o
.
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- . .
. L # d A - -~




° 64

o For the total number of elements N > 7 the finite-element results
converge, and as can be seen in Figs. 21-22 the eigenfrequencies

£

then agree quite well with Chen's (1972a) analytical results. .

4.2.3 General Camrents on the Inextensible In-Plane Dynamics of Semi-

Circhlar Pipes Conveying Fluid

It may be concluded that the in=plane dynamical behaviour of semi-
circular pipes conveying fluid, when the 'initial' axial force due to
pressure and centrifugal forces represented by ch is neglected, is as
presented by Chen (1972a,b). : o ) -
This may be considered to be a verification of the basic finite'
element solution formulated in this Thesis, as the equations obtained in
Chapter III for this épecial case were shm to be identical to Chen'sr(1972a,b) .
O - : | (
| 4.3 VERIFICATION OF THE FINITE-ELEMENT PROGRAM FOR THE CASE OF .
OUT-OF-PLANE. MOTION OF UNIFCRMLY CURVED PIPES, WHEN THE COMBINED

* FORCE Il IS NBGLECTED

-

‘ .In this section, the finite-element program for out-of-plage motion

is verified by comparing with the analytical results obtained by Chen-

-

(1973), once again neglecting the axial force Qz as well as the internal

. pressure force (i.e. I = 0), as was done by Chen (1973).

L ]

- 4.3.1 gla;rped—Clarrmed Semi-Circular Pipe éonveying Flu;ld
Similarly to. the case of in-plane n\.otflon, Figs. 23-25 show the
natural fre'quencies of clamped-clanmped sani;circular pipes conveying
fluid,‘ as funcﬁjior'xs of the flow velécity. At u =0, ‘the pipé behaves
o as a semi-circular ri.ng.‘ when the ficw velocity increases, the natural

» ’ ~
z
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frequencies became smaller according to this formilatio of the problem
(0 = 0), and i“f the flow velocity exceeds the cri;:ical value, the pipe ~
becomes unstable in thé first mode, the instability being of the
buckling type. . With further increase in the fl::w velocity, instabilit;
may occur in higher modes also. We can see that the out-of-plane

frequencies are lower than the in-plane ones, and that the critical
. ¢ ‘ *

1]

flow’velc;City is also lower.

The finite-element results with an eleven;ele;nent A(or more than
eleven elements) discretization scheme are very clo‘sg to t;he analytical
results oiatainea by Chen §1973) , except for the second mode of Figs. 24-
25, where Chen's results were probably plotted incorrectly.

® ]

4.3.2 Clamped-<Free Semi-Circular Pipe Conveying Fluig\

Figure 26 shows the Argand diagram of the lowest four complex
frequenciés of a cantilevered semi-circular pipe. Theleffect of low '

flow velocities is to damp the system-in all modes. However, the system

will iose.;s@:ability bf flutter in the second mode, when the flow velocity

[

exceeds the critical value,

. The finite-element results (using’a ten-element discreﬁ?aﬁon -

. scheme) are similar, but numerically not very close to Chen's (1973)

“results, except for the second mode throughout and for the first mode

when @ > 1.5, where the results were found to be very different. Even

though the number of elements in the discretization scheme was increaséd
to fourteen elements, this discrei:ancy remains. It is possible that
. 4

blzen's,-éix-tem ‘solution routine is insuffi’cj,ently refined (note the. .
" , {

discrepancies at u = 0 for the third and fourth modes) , or that an error

¥



may have crept in, in his computer program; however, it is impossible

M}
of the system as obtained by two solutions is the same. °

¢

to pin-point.the source of the discrepancy at this point.

a

4.3.3 General Camments on the Inextensible QuE—of-Pl‘ane Djm'amics of

Semi~Circular Pipes Conveying Fluid

It may be concluded that the out-of-plane dynamical behaviour of
semi-circular pipes conveying fluid, when the combined force I is set
to zero, is as presented by Chen (1973) - at least for pipes supported
at both ends. This verifies the finite element formulation of this
Thesis fgr out-of-plane motions of curved pipe‘s. )

Thé.behaviour for cantilevered pipes, as predicted here/ is °
considerably different than that given by Chen (1973), despite the
fact that the equations of motion and boundary.conditions when I = 0
are identical. The discrepancy is substantial in quantitative temg,

and its source cannot be identified; however, the .quélitative behaviour

v

=

»

A
. ,

4.4 RESULTS FOR IN-PLANE MOTION OF A CURVED PIPE 'FOR THE INEXTENSIBLE

i

; /CASE AND INCLUDING THE COMBINED FORCE I

-
!

The work pfesehted so far verified the finite-element model for: -,
i\n—plane motion of curved pipes, when:the c;:nbined force I is neglectle‘d.
éalculations will now be conducted to obtain the in-plane eigenfrequencieé

of c::urved pipes conveying fluid in the inextensible case, when the
cambined axial force [ is properly taken into account. ;‘hus; thejw
calculations presented here are with the seconc{ variant of the inexten-

sible theory referred to at the beginning of this Chapter : the
modified inextensible theory.

o S SN
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4.4.1 Clamped-Clamped, C':'.‘lamped-Pinned and Pinned-Pinned Semi-Circular

ﬁ: Pipes Conveying Fluid
Figures 27-29 shéw the in-plane natural frequencies of clamped-

clamped, clamped-pinned and pinned-pinned semi-circular pipes conveying
fluid as functions of the flow velocity. 4

When the axial force Qz is neglected, the natural frequencies
monotonically decrease with ingreasing flow velocity or internmal
pressure, lﬁmtil buckling insta;)ility occurs a;t the critical flow velocity
or the crn(:tical pressure, as discussed in Sections 4.2.1 and 4.2.2. On
the other hand, if the axial force Qz is taken into account, ,the effect
of the fluid flow is less pronounced. .It tends to reduce the first-
mode nafural frequency, but éioes not cause buqkling in the flow range

investigated. It is also interesting to observe that the eigenfrequehcies

& of some of the higher modes actually increase with flow velocity. Thus,

S

whether Qz is taken into account or not is very important: in the first
case, where Qz is neglected,‘ the effect of internal flow on the 1

natural frequencies consists of the centrifugal and Coriolis forces,
_whereas in the second case (where Qz is not neglected), the intemal

flow exerts only a Coriolis force . This is because the terms associated )
with the dimensionless cambined force I given in equation (3.881‘)’, (i.e.
the terms in the equation of in-plane mation (3.44) involving this

forcé N) cancel out those arising from the centrifugalw force; it-is
recailed that it is the centrifugal forces that are responsibfe for

the buckling instability obtained before, in the case of pipes with

both,ends supported.
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4.4.2 Uﬁiformly Curved Clamped-Free Pipe Conveying Fluid

Figure 30 shows the Argand diagram for the eigenfrequencies of
in-plane vibrations of a clamped-free semi-circular pipe in the two
cases of not including and including the cambined axial force 1. Fér '
both the cases, we can see that, small flow velocities damp the system’
and result in a reduction of the frequencies of oscillation, Re(w). )
In the case of 1 =0, when the flow velocity is increased, the )
frequency of oscillation in the first mode becomes zero and the systc;_m
loses stability by buckling. If the flo‘w velocity is further increased,
the system becomes unstable by flutter in the third mode. In the case .
. of the same system, but including the combined axial force, I, we can
see that low v%].ocities damp the system in this case also. However,
| when the flow velocity is increased, the system 1oses stability by
buckling, not bnly in the first mode (at approximately the same flow rate
as fo;' IT = 0), but also in the second mode, at higher flow velocity .
If the flow velocity is further increased, the system becomes unstable
bx} flutter in the third mode, but at much lower flow velocity than for
m=0. ' , .
Figu:re 31 deals with the same system but with 8 = 0.25, instead
of é= 0;75. Here, it.is seen tixat this-system loses stability by
buckling and flutter in theﬁ same modes as the previous ;ystem (B = 0.79),
at similar critical flow xvelocipties.
Figure'32 shows the Argand diagram for the first two modes of a
uniformly curved pipe conveying fhiid with 8 = 0.25 and a total angle
r, = /2. By comparing these loci with the ones shown in Figs. 30 and
31", it becomes obvious that there exist significant differences: in

the previous case (ro = T), the system buckles in the first and second

-
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modes, whereas here the system loses stability by bucklifxg in the
first mode and by flutter in the second nodé; there is no'bucklinq
associated with the\/ecynd mode. Moreover, the crltical flow
velocities are higher in this case, as compared to the case of Iy =
The reason for this ig that the system in t‘pis&cqii}g: stiffer than
the previous case. Thus, the frequencies of this syst;an are higher,

and the locus of the second mode seems to be shifted far away from

the Im(w)-axis.

4.4,3 Effects of Total Angle r and Radius of Curvature Bc of a

Curved Pipe on Its Frequehcies

It is of interest to study the effects of total angle and radius
of curvature of a pipe on its frequencies, partly because it has:
application to design. e

Consider a clamped-clamped uniformly curved pipe, the radius of
curvature Ro of which remains constant. Figuré 33 shows the variation
of the in-plane frequencies Re(w) with the total angle ry of ;he pipe.
I\t is seenn that when the total angle ry decreases, the pipe becomes
stiffer (in other words less flexible), and hence the freq&encies
becane higher. Here, the finite-element results can be found to agree
with those of Chen's (1972a) for the case of U = 0, when the combined
force I has been neglected. '

Now consider another case, where the total length L of the pipe
remains fixed. Figqure 34 sixows the variation of the in-plane frequen-
cies with the radius of curvature R o° We can see that at small radius

of curvature Ro' the frequencies are sensitive to RO, while at large

radius of curvature the frequencies become insensitive to R,, and the
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nd frequency converges to the (n+1) frequency of a straight pipe.
Here, there is a difference in the mode nmnbér of straight and curved
pipes because the boundary conditions are different. In the present
case the axial displacement w (3w/3ds = G/Ro) is set equal to zero at
the boundaries, whereas in the‘ case of straight pipes these conditions
are not specified.

If one does not specify these conditions in the case of large radius
‘'of curvature the results in both cases are the same.

Perhaps an eaisier way of understanding this, at first sight
strange finding, is by considering the modél shapes involved. For the
inextensible theory, the total length of the pipe remains constant
during vibration, and it is easy to see that the equivalent of the first
'ymode of a strai;;ht beam, involving no nodal points other thdn the two
support points, is in -fact extensional; hence, in this theory it does
not exist. " The lowest inextensional mode of the circular pipe '
corresponds to the asymmetric shape which, as the radius of curvatvre

tends to infinity, converges to the second mode of a straight beam.

! )
N

-4.5 RESULTS FOR OUT-OF-PLANE MOTION FOR A CURVED PIPE CONVEYING FLUID
' FOR THE INEXTENSIBLE CASE, INCLUDING THE COMBINED AXIAL FORCE il
In Sections 4.1 and 4.3 it was shown that the finite-element method
for out-of-plane motion gave results in very good agreement with those
c;btained previously by' other methods in the cases of straight pipes
and curved pipes, when the axial ?orce I is n:aglected. The task of this -,
:section is to compute the out-of-plane eigenfrequencies of curved pipes

conveying fluid, when this force is taken into account.
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4.5.1 Clamped-Clamped Semi-Circular Pipe Conveying Fluid

Figure 35 shows the natural frequencies of a clamped-clamped semi-
circular pipe conveying fluid, as functions of the flow velocity.
Similarly to the in-plane motion, in the absence of the axial force II
the out-of-plane frequencies monotonically decrease with increasing
flow velocity, until buckling instability occurs at the critical velocity,
as previously discussed at greater length in Section 4.3. In the case

where the axial force Il is taken into account, on the other hand, the

- effect of intemal flow on the frequencies is small, and the system is

predicted to remainzstable.

4.5.2 Clamped-Free Semi—Circular Pipe Conveying Fluid

Figure 36 shows the Argand diagram of the four lowest out-%f-plane .
eigenfrequencies of a clamped-free semi-circular pipe conveying fluid.
Similarly to the case when the combined axial force [, 1s neglectkd,
the effect of the internal flow, for low velocities, is to damp free
motion of the sysz:em in all modes. However, the system loses stability
by flutter in the second mode at much lower flow velocities.

Figure 37 shows the Argand diagram of the two lowest out-of-plane
:frequencies of another c\lamped-free uniformly curved pipe conveying
fluid with B = 0.2538 and a total sllbtended angle r, = n/2. It is seen
that in the case E(> 0, this system is stable in the first mode and loses
stability by flutter in the second mode. On the other hand, in the
case u < 0 (i.e., when the pipe sucks fluid at the free end) the system
loses stability right away. However, the system is restablized in the

second mode if the flow velocity is increased enough.

Q

o
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4.6 GENERAL DISCUSSION UN THE TWO VARIANTS OF THE INEXTENSIBLE THEORY
’ The two variants of the inextensible theory, it is recalled are
(1) _the traditional inextensible theory, in which the gteady-state
initial force associated with centrifugal forces and pressure are
neglected (QZ =0); and (ii) the modified inextensible theory, where
this force is taken into account (I # 0), while still retaining the
assumption of inextensibility of the centerline of the pipe.

As was seen in the foregoing (Sections 4.4 and 4.5), the effect
of including Il is profound, insofar as the dynamics of the system is
concerned. Thus, for pipes supported at both ends, the system is no
longer subject to flow-induced instabilities; indeed, the natural
frequencies of the system are rather insensitive to increasing flow
velocity, increasing or decreasing somewhat, but remaining spnsibly
constant, This dynamical behaviour is similar to th\at predicted by the
extensible theories of Hill & Davis (1974) and Doll & Mote (1974, 1977),
which tends to suggest tl}a:t the main differences between these theories
and the traditional inextensible theory is not the extensibility of
the centerline at all, but rather whether the combined steady-state
axial forces (Il) are taken into account or not. This will be further
discussed, once the results of the extensible theory have been presented
in Chapter VI.

The effect of including \H& is also profound in the case of canti-
levered pipes (Figs. 30 and 36), albeit in this case the effect being
mainly quantitative, rather than altering the fundamental dynamical
behaviour of the system, Buckling and flutter instabilities occur in
both cases, whether T =0 or 1 # 0. However, inclusion of the combined
axial force in this case has a destabilizing effect on the system, and
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the critical flow velocities for buckling and especially for flutter

-

are substantially diminished. “‘-
‘ As previously discussed by Svetlisky (1977) and by Doll & Mote

(1974, 1977) and Hill & Davis (1974) the steady state force Il dqes

exist and, of course, it must do work in the course of vibration of T
the system - just as pn\a-stress would do in any structure. However,

unlike pre-~stress, which may be negligible, I increases in magnitude

with increasing flow velocity (1)-at the same rate as the destabilizing

. {centrifugal) forces do. Hence, in the case of pipes with l;otlu ends

supported, where the instability would occur when these centrifugal’

forces exceed the structural restoring forces, the inclusion of the

steady state forces continually counterbalances the destabilizing forces,

thus precluding the onset of instability.

-

In the case of cantilévered pipes, not discussed _;y Hill & Davis
and Doll & Mote, but briefly discussed by Svetlisky, the situation is
more camplex, since the system is nonconservative and the Coriolis
force also does work. As was shown by Paidoussis (1966), in connection
w.ith a similar dynamical system, tens’ion in this case may indeed he
destabilizing - and, indeed this-is what has been observed here.
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. CHAPTER V

ANALYSIS OF THE EXTENSIBLE CASE

In Chapter III, the centerline of -the pipe has been assumed to

be inextensible for the analysis of the problem. Then, elaborate

»

calculations were conducted to give resu{ts for various configurations, '
which were found to agree very well with tl\ﬁse obtained in previous
work. ,However, some researchers, e.g. Hill & D;avis (1974) and Doll &
Mote (1976), did not adopt this assumption; they proposed thfat

because the geometrical configuration of the pipe and the forces acting

on it are very complex, they may result in non-zero centerline strain.

s/

By this reasoning they proposed the following:

4

(i} the centerline of the pipe should not be considered to be

inextensible, i.e., the centerline strain in the pipe,
© e

S _R'; - (5.1)
does not vanishzx h -
(ii/) the axial force ’Qz is linearly dependent on centerline strain,
i.e.s | N
9, = EA, ¢, ~ (5.2)
> o, = Ea, ¥ - g;— : (5.3)
\

The objective of the present chapter is to present the analysis
.Qf the problem basedb on the above assumptions. One of the motivations
for this analysis is to study the difference between redults obtained
by the inextensible and extensible assumptions.

Based on the above assumptions, the dimensionless combined

force Il depends only on the dimensionless displacements Uty and n3-

+

F}
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2 If the pipe initialiy lies in a vertical plane, or the gravity effect

)

is neglected, we shall see later that again the governing equations of
motion about the equilibrium position will separate into in-plane a.qd
out-of-plane motions, which allows independent investigation of the
dynamics of the system in these two planar directions.

5.1 THE DIMENSIONLESS EQUATIONS OF STATIC EQUILIERIUM AND THE
ASSOCIATED BOUNDARY CONDITIONS IN THE EXTENSIBLE CASE

It should be noted that the dimensionless equations of static
equilibrium, equations (2.82)-(2.85) derived in Chapter II, are valid
for both cases of an inextensible and an extensible centerline.

' From equation (5.3), the dimensionless .combined force may be .

" written as ’ "

any #
T =NghlgE -t ), (5.4)

“where I, T_ and # are given in equation set (2.74).

P
Equation (5.4) implies that Ho' which is the steady (static)

form of the dimensionless combined force M, dpes not depend on the
s{:atic dimensionless displacement ng?, and the twist \IJO. Therefore,
the equations of in-plane static equilibrium (2.82) and (2.84) are
decoupled from the equations of out-of-plane static equilibrium (2.83)
and (2.85).

Moreover, if the gravity effect is neglected, or the pipe
initially ligs in a vertical plane, we can see that the forces acting'
on the pipe at the static equiiibrium oonfiguration are planar and
lie in this same plane. Then, static out-8f-plane deformation cannot

g
happen (i.e., the dimensionless displacement nc2> and the twist b
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should vanish), and the equations of out-of-plane static equilibrium

are satisfied autcmatically, or do not exist.

The equations of in-plane static equilibrium are very important

for the investigation of static deff)rmation of the system and also for

f\\
the calculation of the dimensionless combined force. Now let us

rewrite them, as follo{vs: -
4 o 3 2
— ") an‘;’) 9 (1 (ancl) O 4 e + e ] g )
+r + —= 4+ r'n +r +u +r =—=—+r
ag“ o 353 3f 03 P 3 oo ag2 o 3f o
- Yo =0, - (5.5)
alIo 33“3 azng ani' 0 -2 ani .0
- -a? + r, (—ar3-+ r, ——352 )+ rono (5_5— + r, n3) +Prou (-5-&-:- + r°n3)
+yo, = 0. (5.6)
- o i

Substituting equation (5.4)K into equations (5.5)-(5.6),.4nd

neglecting the higher order térms, we may write the lineatrized equatiﬁons

of in-plane static equilibrium in the form

Q
2-2 0™

L o B . =0
~ru (ag +ron3) + 3E Yo, 0_.

(e

4 © 30 (o} (o]
ny 3 N3 -3 ar‘l 0 an3 o
(-—Z- + r, —3) + 3 [Hp(?g'." + ron3)] -Jtro(-a—g— - ronl)

ag 13 ‘

32n0 Bno -
+3 L4 =) Fr (L +8D) -y =0
3 2 0 3t o} er X !
i £ (o]
L. T M. SR
"a(:(agz - I, -B—E_) - I (—;-5—3 +r F) - rOlTp (5'5- rn3 )
all

(5.7

(5.8)

1

also, from equations (2.86)~(2.88), the associated boundary conditions

are written as follows:

,
i
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9 (1) at a clamped end , -

e = 0, > (509)

(11)° at a pinned end
ng = 0 ’ - ’ )

ng = 0' L . -
azn‘{ ang ' | - ]
A +r ) =0; (5.10)
2 o ¢ .
ot : J

(111) at a Eree end L s

. ‘ azn‘i ang | / . W .
'1 ( —— +r — =0,
o & o B
| (a3n‘l’ i nc3)) 0, . / T (5.11)
+ r = . .
w0 © agd *
o -
- 8ng o _n
.G T T =0 \
N p.

5.2 THE GOVERNING EQUATIONS OF MOTION ABOUT THE BQUILIBRIUM POSITION A
. AND THE ASSOCIATED BOUNDARY CONDITIONS IN THE EXTENSIBLE CASE ’

Here again, similarly to Chapter III, we are interested in the A
motion éboqt the equilibrium position of the dynamic system. Accordingly,
the d:lmen‘sionless displacements and twist are also expressed in temms

of steady (static) and perturbation dimensionless displacements and

twist, as follows: .
. : \ - .
. _ 0 L * -
. ; ﬂl —-_1’1l + nl
e *
né = <2) + "\2,
. . o x. > (Sow
’ n, =10 + n 7 bl
% 3 3 3 _
i * .
i ~ b =~\U° + ¥, )

4,
&
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¥
2

Noting again that the governing equations of motion (2.75)-
(2.78), derived in Chapter II, are also valid for the extensible

case, substituting equations (5.4) and (5.12) into equations (2.75)-

., (2.78), and neglecting only the higher ofder tems of perturbation,

the equations of motion about the equiLibr}um position for the dynamic

\

system in the extensible case may be obtained, namely
\3
3 * * (@] * '

4 *
gt R 3 Y Ul * Tomd] - Agy T+ Iong) T - Tony)]

13 13
. * . 52 * 3 * '82 * ] *
<] * =2°M a3 1/2=2 M N3
A U U RS T A O T
; £ P
* 2 *
anl an .
+J—+ (1 +8,.) =0, (5.13)
8 812 -
* * * * *
34‘72 32\11 32¢ ’ 82n2 a oan, 3 anf,_’. ng
¥ 7~ % 2)-rA( 2+ro-——-7)+a€[no-§€] -J&EIE-E-(-;;E-
3E 3E gt - ° o : ;
<
7 82 * o 32 * a * 32 * i
I -2 9 M 1/2 =% M2 30°M2
rny)l +u 352'+ 2877 u 3Eat + R = 4 (148 ) 2 =0, . &\
| | P : (5.14) }\
* * * ) *

_ ny 2%ny iy — LA o 3y
To (53 * To 2 * Rl T RNy < Tk Gp * oy g < Tony)
32 s o an 32ne an
3 Ny =2 1/2 = 3 . 1

+ A 22 T3 ) * T U G *Iong) - BTN U gpmr < T, )
an; ' azn;
- ‘5?_ : (1+Ba ) ) 2 = 0, \ (5515) ‘/
° L ) .
* x * 2 *
e aznz) A (azw + aznz) Y © (5.16)
r_ . (r -—3) =A (—5 +tr, —3) +0 =0, ‘ .
oot g2 a2 0 ag? 372 . '
. where, zero-order temms have been absorbed in the static equilibriﬁn P

/

equat:.o'r’;s discussed previously.
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It can be seen that equations (5.13) and (S.15) pertain to
in-plane displacements, while equations (5.14) and (5.16)J are associated
with in-plane and out-of-plane dispacements and twist. There is
coupling between in-plane and ocut-of-plane motion. Hmv;r, in-plane
motion can still be studied independently. After investigating
in-plane motion, the fourth temm in equation (5.14) is campletely
determined (known), and then out-of-plane motion may be studied as a
linear problem of forced vibration.

Furthemore, if the gravity effect is neglééted or the pipe
initially liés in a vertical plane, the dimensionless displacment ng
and twist wo should vanish, and there is no coupling whatsoever between
in-plane and out-of-plane motions. In addition,the cambined force It
obtained in both cases of inextensibility and extensibility is very
close, as will be seen later, in Chapter VI; hence, equations (5.14)

and (5.16) can be verified +o be identical to the equations of out-
of-plane motion according to the modified inextensible theory (i.:a.,
whenJa Il is not amitted) and the results obtained in the two cases are
the same. Hence, we are only interested in studying the in-plane motion

for this case, and the equationsof in-plane motion are given by

84 * 83n * ans *
n .
1 3 3 d 1 *
(—g + 1,3 +3¢ (1 (ag +r n3)1 ~ASp lgp n3) (35 - rn)])
14 ag3
* 2 * 2 *
- an L, 3°n ang 3%n any
- ro'ﬁ'(_a'g}' - o"l) + & (—%.' I 3 50 + 282§ ('3—1—3'&% N il
2_* %
anl 9 Ny
+3€31_— + (1+6a) 312 =0, (5.17)
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2”ny a%n, any * ang o, M *
o - T f 353 *Io 352) -y Gt Ton) + ro’“ag * Ion3) (f = Iom)
32n, an. | . 320 any
n n n n
PR L _ ., =2 M *oel/2= 0
A( 852 - T 3 ) r,u ‘ag + ron3) + 8 Q, farae; I, e )
an; 32n§
=3 4 (14 = o. © (5.18)
It a 31’2

Fram equations (2.79)~(2.81) the associated boundary conditions
are written as follows:

i (1) at a clamped end

(5.19)

oy
1]
o

1
v

(11) at a pinned end

ny =0, (5.20)

2 *
9 nl 8n3
(—a?‘ + I, 3 ) = 0; J
(iii) at a free enfi

WK *
anl 3“3

5+ I3 ) =
3E 3
L3 ™

¢ nl R . n3)
+r —=) =

353 o] 352

an *

(-5?— - ronl) = 0.

‘ (

(5.21)

—— -

1
o
V¥

L

I
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5.3 ANALYSIS OF THE STATIC EQUILIBRIUM IN THE EXTENSIBLE CASE

In oxrder to obtain the solution for the in-plane static

deformation, the finite-element method is applied once again.
Accordingly, the variational statement used for the finite-element
technique is utilized, i.e.:

n § ’

[ Hen® A% (% D) + 6 m%,nD)} dg = (5.22)

Lol M A Ny mg) + SngATy (] n3 0 6.
where Gni and Gng are the variations in the dimensionless displace-

o o

ments n‘f and ng, Ail (n‘f,ng) and A?.B (ncl),n3) represent the leff:fhénd
sides of equations (5.7) and (5.8) respectively, n is the number of
finite elements utilized in the aiscretization, and Ei is the length
of the ith element.

By performing integrations by parts and using the boundary

conditions, one obtains

n J’E;i

Z

{Gn (n +rn )+6n [ [T, (nd +r n)]-r.&(no.
i=1 o 1M 3 19 Ve Tl 3 o'

=2

o o" o' 0 - -2
ronl) +u (anl + I ng )] + Gnl(ro(“p + u) ~Yux)

O

"

1 ! 4 1
+ Gng [.f(’.(ng - ron‘i) + ro(ncl’ + rong )] - rozpéng (n(i’

ail
o =2, 0, O o o P _ _
+ In3) -, utdny(ng + ron3) +éng (G yazo)} dg = 0.

{5.23) .
Here, it is noted that the-prime denotes differentiation with respect
to £, and details of the derivation of equation (5.23) may be found in

Appendix T.
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o According to the finite-element process, solutions will be
' sought in the fomm .
- o.e
ny = IN,) (n31%,
{5.24)

ng = 2,0 (0I5,
»
4

where [N:l] and | e3] are the shape functions prescribed in temms
of the space coordinate {, and {n?}e is the element d'j:splacement
'vector, which does not depend on either space or time variables.

Substituting equation set (5.24) into equation (5.23) yields -
the discretized equation of in-plane static equilibrium in the fori
9f linear algebraic equations

a K1 (31 = (7)°, ) (5.25)

. . .

where

Ee -
0.e "p " " ' Ly y
¢ B (K% = [ () (Ng,) * I NGy (1 '+ 0g;1 NG 1)

\

0T 01
) lT. l- T ' IT
+AING ] TING3) - r (NG, 1T INGS) + INGy) TT el D
2 04T
+xo w21 gy 1

( + 52 11T NS 1" £ 0251 - 00 T (1 ¢ x 0y0]
e T S 1 L 0] - e TR,
el Bcnp el o el To'p el el

+ r NG} d, (5.26)

)
o —
. ‘.
5 L . . . : S C s "
- . = . e v - wba +law ! » rar? 3 et F T Tt ol cabiy . L

P Y
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Ee -
s 32) - 0 e _ T
{vao“fo(ﬂp RIS 0T+ g - Yap ) g7} dE.
' ‘ ( (5-27) 4
- . . ﬁ

If the variation of the external pressure Pe along the center-
line is not very large and the internal pressure is assumed to be

linear along the centerline, we rilay write the dimensionltess pressure -

force as

= G2 E + 1 |a (5.28)
i Lig ,

* -~

*
where A has been derived in Appendix U.

At this step, proceeding in the same manner-as was done in the

numerical analysis Of out-of-plane motion in the inextensible case*,

the matrices are obtained, as follows: ’

(1% = WTT )+, (1)) + 90N+ 2Rl +ALITY]

- 1 (W3,) + 13,10 + 22 )

+ @ (13g) + 1 (13),) = WD) - 22 3

-

* 2 *
+ npl [[J ]+ r ([J12] - [g 31) - rg [J4]]

!
L]

* *
=" B19g) + (3] + x () +03),1-00),D)

. > . '-l
- 22 (3051 } (a1,

(5.29)

-

Note that in the inextensible case, the in-plane motion involved sixth
order derivatives after cambining the two equations for ”i and "‘3-

Corresponding shape functions are inappropriate here. One can, ¢,
however, use the shape functions used for the out-of-plane motion in
the inextensible case for the in-plane motion in the extensible.case,

since the maximum order of partial derivatives with respect to § -
match.
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(7)® = -a1S"T (@ + 1) Fy) - '8 (5 Ry} + (F3h) + (g},

a—

+ c;zc[‘i‘altfI

Eq r
(Fl=f,- Y(axo [4,]
VE . )
— - 2
~ |2 5‘3
g 1/3
{Fl} = I © [¢2]T ag =< / Ee
° 1/4 ¢
e'
¢ 0
{ 0
172 g2
g /3 g
: e T 4
(F,} = [ Eloy]” dg =41/4 &g
' 1/5 gg
0
{ 0
' 4
0
fa T 0
(Fy} = [ [44)" & = ) 3
fe
172 &
* ‘ge T “
(3,0 = [ (o) [0,) dE,
3 e

3 e " ) "
(9310 = [ leg] "lop) €& ,
te
(7] = [ (o417 10,1 < ,

* Ee T K
(9] '.j;é (0517 (0] <,

(3] = [ log] Tlog] &

Se

i
(951 = 1 (017leg) g o |

£

9

"’\ .

(5.30)

(5.31)

®



o

, 85
* . ‘e T
[7)0) = [ (6517 (8,) "gag,
* Ee T '
9,1 = [y (9,17 10) &, \ (5.32)
* Ee - T ' |
(7330 = [, (0417 1o, 4, _
® Ee T
(31,0 = [, (6517 (641 @ ,
te |
3g] = [, (6,1 Tlo )" aE, , T
(3] ] =?e (9,110, '€ @&
16 o 72 4 !
2
@31 =, tog)T to,) ok
17 o ‘94 2 S
i * fe. T
- 13,g) = [Tle,1 (e, 1E At J -

Details of the derivation of equations (5.29), (5.30) and (5.32) may be

”~

found in Appendices V and L.

5:5 ANALYSIS OF IN-PLANE MOTION IN THE EXTENSIBLE CASE

@

Aga:Ln similarly to the analysis of out—of-plane motion in the

inextensible case, the variational statement used for the finite-element
&

model of in-plane motion in the present case is

3 ' p
n i
1}:]_ I {Gnl Ail (nlr n3) + 57'\3 Ai3 (nl' r\3)} dE = 0: (5.33)

q

where GnI and Gn; are the variations in the dimensionless displacements'

ny and ny, Aj,(n}, ny) and Aj,(n),n;) represent the left-hand sides.
of equations (5.17) and (5.18) respectively, n is the number of elements
and €, is the length of the ith elanen‘t.

"By perfomming integrations by parts and using the boundary

. conditiohs, one obtéln—s ‘

'
dpan
-
.

s
L wnt
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g |
- B S Tt I LN 1 * x w1 . ?
151“ f°{5n1 (nl + ?on3)+r°6n3 (nl + ri?n3 )+ J(:[roénl (ronl' n3 )

'
t
3

\iw

+ 52 IGnI(n;"ﬂon’; )-roén; (n; +rqn;)]+6n1 %-gmo(nz +ron;')1
{

LANE A *
*+ 8y ny = rgny)] :
b
|

- v
LA
' - r01:106n3 (ﬂl + Z‘oﬂ3) “
t *x? *! * * *? *
, + A + xn3) [8ny (n3 = rony)+rdng(ng ~rony)]
- . ' . * " ' o*
+Bl/2 u(26n1(nz + ron;) + 6ny (n;r - ronl)l
* ok x n * ¥ . - )
+J€6n1nl +J€‘6n3 ng + (148,) 8ny ny + (1+8,) <Sn3n3)}df; = 0.
(5.34)

L]

. Here adain, it is noted that the prime denotes differentiation with "

reépect to g, and the dot denotes differentiation with respect to t.

“Details of the derivation of equation (5.34) may be found in Appendix

W. ' ) .
According to the finite-element process, solutions will be

e = e

sought in the approximate fom - /

* * * e
Ny = (N .) {n,} ,
¥ el MH (5.35)

* * *

n3 = [Ne3l {ni}e )
where [N;]_] and [N;3] are the shape functions prescribed in tems of
the space coordinate §, and {n;}e is the element-displacement vector

which depends only on time. :
Substituting equation (5.35)' into equation (5.34), the

. discretizéd equation of in-plane motion in the extensible case may

L

v
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be written in the form
M1 (7()° + 10]1%(A)° + K[1%{n})® = (0] , (5.36)
where™ ) ]
' »* ' E *
1€ = [ t(sy) 001" e ety ag, -
: : (5.37)
g, .
;1% =842 & [ 20T+ r N1 1IN TUING ) Srg INg D}
E * 4 . . l )
v 1, vant )T ]+ 3 )T e, (5.38)
* e ?e * "T T ' * | . T *
(K17 = - { [Ny [N ]+r ([Nel] [N 3 + N, 3] N, ] )+ro[Ne31 [N,

r -

* 'p ok 1, * T x * *
+ALIN ) TING) = oo (N 1T N, ) + N5 TIN ”*ro[Neﬂ N, 1}

+ 4G+ e LNG 1 TANG ) = IND e N7 (NS

-

*
~

5 LN T+ £ NGg) ) = rg N1 T ) 2 (NG5 1))

+ NGy )T SR m (g1 + r NG5 - i NG TONG T

*C
+ ro[Ne3])'} dg . (5.39)
To evaluate the integrals in the third and fifth-grcup of
tems in [K;_], the steady (‘static) parameters rto,anb/ag and (ncl>'+ rong).
in each element are appmxi:mated by linear fmctioqs for convenience,

-

as shown in Fig. 8, namely

]



Ho - al + a2€,
M, L :
% - by + byk, - (5.40)

[ ]
(n‘l’ + rong’) =c + czs, . : -

-~

where
a, =°H°]j, 0 ‘
5

a, = (nolj+l - rlolj)/*;e ’ .

i b, = ano/as;lj

) asno 'an{/l -
b, = *‘3‘5‘|j+1 - ‘a'g"j’/‘;e ,- (5.41)
c, = (ncl"+ ro“g)lj , ’

] o'
() + £ lyey = (0] = Tn3 978 - )

At this point, proceeding in the same way as was done in

-

the numerical analysis of out-of-plane motion in the inextensible

cagse, the element matrices are obtained, as follows:

7% = AT s 0] + eI B a2
(031® = (a1 (812 G2 (10f1+e, 0], D+ (0501 -r, 197,17
+R13])+ 3 (3D} RIET, . (5.43)
— : ’ «
/ N
>

A
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]e

where

*
_ 1

(330 = [, (0,1 Tloy) ak

* te T i ar
(30 =[ (0417 (0, S ,

(351 = f, 16,1T10,]" €,

- ge 'T ]
[J7] = IO [¢2] [¢4] d&l
* Ee ' ' "
[3g] = [ [0,) “lo,] &g,
£ B
T ”"
fo te,17 10, &g,

*
(73] =
(3301 = [ pt01 70" &,
[Jnl =J £l,] [¢2] dg, .

Tlel = fo (8,17 [¢41 dg, k

= [A]-rr

L4

(T3] + vy (1935)+ 1] 1 T+ (3g)) + AL15g) o

- * * 7 2 .
ro([J12) + [lel ) + xg [J.l])

+.A:[cl[[J;]-r°([J5] ~1350 1) -r2 (37 Tl (05,1 4, (3717 - [len

2
~r2 [J23]1H’

o

- - ‘ *
+ 32 [[35) + £ (19],1-13]5]) - £2 (3)]

%
+a)[[35) + 1 (137,1-13]31)-r2 1Ty ) 1+ by L135) + x (3],]]

+ ay[[3]g) + x (13]61-(3],0)-r2130g)) + byl (3] )4r (355003 RITY,
(5.44)

— ———

a
-”'
7

1= [0 (6,17 (6,) cE,

ry
1]

JTt
o

Ee
Ee ‘,

Le

o o,
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o ‘g
(37, = §o lo 7,1 Gk, '
o £ T
[314) = I (6,17 [0,] &, (5.45)
£ o '
[335] = Io Uyl "log] &k,
* Ee T [
¢ [3gg) = I El6317 (0, QE,
»* ‘ Ee T -l "
(3151 = fg 10417 [05) € E,
C . e o :
(T1g) = fo (8,07 (0408 & ,
* ?e T '
* ?e T ' g
(721) = Jo Elg1 (o) cE,
* . Ee ' '
(30 = J Eloy) "o &k,
* Se T
[J23] = IO E[¢2] [¢4] d&o J ®

AN

and [¢,] and [¢,] are défined by equations (3.62) and (3.63).
‘Details of the derivation of equations (5.42)-(5.45) may be found
&

in Appendices X and L.

-

5\.6 EIGENVALUE ANALYSIS OF THE PROBLEM FOR THE IN-PLANE EXTENSIBLE
CASE . <
Here again, similarly to the inexténsible case, thé global |
equation of motion may be written as ff:allcws: ‘
‘ B0 (R} + ) (A} + (K] (n} = o0}, (5.46)
whee [M], (D] and (K] are respectively,’the gicbal mass, damping and
stiffness matrices, which dre assembled fram the ‘corresponding matrices

-

R,

[ o8

N\
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for an element of the dynamic syét_:ax; (as given in equations (5.42)~
(5.45) respectively):; and {n} is thexglobal disblacetent vector .

We proceed by setting
. ¥ = {{a}l}» (5.47)

(¥} = (x} elvT, (5.48)

and

»

where w is a dimensionless frequency related to the circular frequency

of motion, 2, by -

°

M_+M
t £.1/2 2
BT ) QL™ .

w = ( (5.49) >

- In general, w will be complex and the dynamic system will be
stable or unstable accordingly as ﬂue imaginary ;:art of w is positive
or negative. .

Now proceedihg in a similar manner as was done in the eigen-
value analysis for the inextensible case, the stanc;azd eigenvalue
equation may be obtained as A )

(1] (0] ' 0] (1) -

- \ X} = ), (5.50)
. (0] M -K]  -[D]
where . g >
| A = iu. ‘ (5.51) - ™~ .

Pt
» I

Thus, the problém is reduced to one of solving the eigenvalue
equation which can easily be done with the IMSL subroutine EIGZF from

the McGill computer’ library. N ’ -

.
N
- . N
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CHAPTER VI
RESULTS AND DISCUSSION FOR THE EXTENSIBLE CASE

. In Chapter IV, the results for the inextensible case have been -
discussed. This Chapter presents the results of an investigation of
static and dynamic ‘in-plane behaviour of extensible curved pipes conveying
fluid under the effect of the internal flow.

These results were obtained by using the finite-element method
discussed in Chapter V. Camputer programs were developed to obtain both
the static displacement field and camplex frequencies‘ of the dynamic
system. The calculations in the programs were conducted in double
precision, and a listing of these programs may be found in Appendix Y.

)

6.1 STATIC RESULTS

Y

The task in this section is%o carpute the static equilibrium
displacements by solving the discret\i/zed equation of static equilibrium
(é.24) . Then the static axia;. force Qz is obtained, and this force is
used to reformulate the stiffness matrix [K;t_]e for use in the solution
<(>f the dynamic eigenvalue problem: Moreover, in the process of this
calculation, we can see whether the system buckles eor not depends on

whether the global stiffness matrix, which is assembled from the element

n———

7
6.1.1 Stressed Configuration of a Clamped-Clamped Semi-Circular Pipe

Conveying Fluid -
Figures 38-40 show' the stressed configqurations (i.e. the static

equilibrium confiqurations) of a clamped-clamped semi-circular pipe

l | » —_—
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o conveying fluid for various internal flow velocities for #= 10% and y =0,
These results are cbtained by using the finite element method discussed
in Section 5.3.
We can see that in the case of inviscid flow (Figs. 38-39), the
stressed shape is symmetric because the fluld force acting on the pipe is
only the centrifugal force and symmetric if the gravity force is neglected.

When the flow velocity increases, the pipe is deformed out of the unstressed

(initfaTl) shape by the centrifugal force, and then the stressed shape changes
according to the Flow velocity. On the other hand, in thé case of viscous !
flow (Fig. 40) the stresSed shape is no longer symmetric since the
pressurization effects of the friction force are not symmetric.
It is noted that for all cases the system sbes not buckle since
the determinant of the global stiffness matrix in the static case does not
o vanish, although the stressed configuration changes to various different
shapes. It will be verified later on, in the dynamic analysis of the
problem, that the real parts of the camplex frequencies do not Vanisth in
the range dof the flow velocity used in the calculation, implying that the
system does not buckle.

—6.1.2 Distribution of Static Cambined Force Along the Pipe

\
Figures 41-42 show the distribution of the static combined force
IIO along the clamped-clamped semi-circular pipe for various internal flow
velocities. It is seen that for the inyiscid flow, the results of the

extensible and inextensible* cases are very close. In thg case of viscous

* Recall that for the inextensible case, L= 3% for both inviscid and
viscous flow and is shown by center or lines 1in Figs. 41 and 42.

»
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flow, the results of inextensibility and extensibility can be canparea and
o the maximum difference between the two results can be seen to be less
than 10% (except for the flow velocity at 3w, when the difference can be

as high as 39% close to the midpoint of the tube).

6.2 DYNAMIC RESULTS
Using the results obtained in Section 6.1, the dynamic stiffness

matrices [KI]e are reformulated. - In this section, calculations are
conducted to compute the frequehcies of the dynamic system and to check

for buckling.

6n'.‘2,1 Convergence Study

. K Fiqures 43-45 show the convergence, with increasing number of finite

0 elements, of the lowest three natural frequencies associated with u = 0,

for various values of £#. It can be seen that the convergence is very
slow, and that it is affected by the slenderness p.aran;eber A(i.e. AtLZ/I) .
For a small number of elements, the results associated with various values
of this parameter are very different. However, with a large number of
elements the results are comparable. It is noted that a high value of
the parameter 4 is required to Satisfy one of the assumptions involved in
this theory*, but it results in high computational cost. 'I'flerefore, a
value of the parameter A which provides a good trade off between cost

> and accuracy, is used in this calculation ( # = 104) . .

“ In this theory, the radius of curvature of the centerline and the
total length of the pipe L are assumed to large in camparison with
the radius of the pipe. Therefore, this means that A, L2 must be

o much larger than I. .

-

Lo
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6.2.2. The In-Plane Behaviour of an Extensible CTamped-Clamped Semi-

o Circular Pipe Convéying Fluid (Neglecting the Cambined Force HO)

The calculations in this Section are conducted with no = 0,
-strictly to campare with the results of the first (conventional) form
of the inviscid theory, in ‘which no = 0 is assumed. The calculations
were conducted with thirty four finite elements.

Figures 46-47 show the—-i:-n-plane natural frequencies of clamped-
clamped pipes conveying fluid with A = lQ4, as functions of the flow
velocity. Similarly to the inextensible case, at-u = 0, the pipe behaves
as a semi-circular rigg. As the flow velocity is increased, the natural
frequencies become smaller, and if the flow velocity exceeds a ce@
value, the pipe is predicted to buckle in the first mode. With further
increase in the flow velocity, -instability may occur in the pigher modes

0. also. Comparing with Fig. 16, it can be seen in Fig. 46 that the finite i
’ element results for the extensible and inextensible cases are close
Moreover, in Fig. 47 the present results can be seen {0 agree\ulth the
result of Doll and Mote (1976)-. It must be ‘emphasized, however, that .
. these results are for I = 0, which is not realizable from ;;hysical
considerations.

\ o
- 6.2.3 The In-Plane Behaviour of an Extensible Clanped-Claxréd Semi-
AS M o

Circular Pipe Conveving Fluid (Including the Cambined Force Ho)

In this Section are présenbed results pbtained v;ith the proper

i form of the extensible theory, in which the cambined force M, is taken
into acceunt. However, several variants of this theory are investigated;
in one in order to assess the effect of steady-state (initial) deforma-

-
o tion on the dynamics of the system, calculations were conducted in which

v
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the terms involving A(n‘l"ar rn3) in equations (5.17) and (5.18) and
o hence in equation (5.44) are neglected; in another variant of the theory
the fluid is supposed to be im}iscid rather than viscous. i
. The calculations here have been conducted for a system with
. B =0.5,y=0 #A= 104, and for viscous flow (\* # 0). (,3
Figures 4‘8-50 show the variation of the in-plane frequencies of
the‘sfystem with increasing dimensionless flow velo-city U, and how they
compare with some previously obtained results, in this thesis or by
ot}'xer investigators.
Figure 48 shows the results obtained by this theory with the
terms involving A(ni' + rong) either taken into account or neglected,
in the case of mvigcid flow (A* = 0). It is seen that for 4 < 3 the
, effect of the "Hn(]D.'+ro”(3>) tems is not very important;- this agrees
o with the results shown in Fig. 38, where it is seen that the static
deformation of thé‘ pipe is small. However, for u > 3, these effects
became nio're pronounced, in the second and third modes particularly, which
again reflects the greater departure from the unstressed state of the pipe
shown in Fig. 39, as compared to a < 3.
The mest important feature of Fig. 48, hgwever, is thé fact that
extensible theory, properly taking into ac_cqmt the cambined force II,
predicts that no instability should occur, simil-arly to the modified
inextensible theory (also taking T into account), the resu'lts of which
f;ave been preqsented in Chapter IV. The frequencies of the system
change very little with increasing u, and none reach a zero value, unlike
1:hej case when [ = 0 (also shown in Fig. 48 for comparison). ) B
It is recalled that Hill & Davis (1974) and Doll & Mote (1974,

 1977) also presented extensible theories and reached the same general
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conclusion, namely that pipes with clamped (or otherwise supported) ends
will not buckle. Fig. 49 shows the results cbtained by these two
fi.rlvesti}gators, canpared to those obtained by this theory - when making
the assumption that the fluid is inviscid (.A* =0). It is seen that
the general character of the solutions is similar in all three cases,
albeit that the results are not identical.

Hill & Davis' equatiaons of motion are perhaps clé:sest to those
utilized here and the results fram these two theories should therefore

A
. be closest; same parameters are different nevertheless, namely B = 0.43 _

5, as campared to 0.5 and 104, respectively, used in

the calculations with .the present theory. Hill & Davis, similarly to

and A = 1.4 x 10

the present theory, considered motions about the deformed initial state
calculated in a linearized fashion. On the other hand, Doll & Mote
(1974, 1977) calculated the deformed state by a more sophisticated

algorithm, i.nvolv:l.ng a cumulative application of the linearizedc equations;

tlheir 8 was the same as in these calculations (8 = 0.5*) and A= 1.61r2x 103.

It should be noted that Doll & Mote's and Hill & Davis' work. .
was for effectively inviscid flow. The present theory, on the other
hanci, takes slightly different fomms, depending on whether the flow is

taken to be inviscid or viscous.

a

Note that this is so, despite what appears in their published work (e-l),

due to a typographical error (Paidoussis 1983).

b . -

—
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The results presented so far have been for inviscid theory.
Same results, for the same system as that of Figs, 48 and 49, for a pipe
conveying viscous flow are presented in Fig. 50. It is seen that
frictional effects are not very pW, 80 far as first-mode
frequencies are concerned, bt.lttl;e;(axe:lnportantinsofarasthese?éxq-
and third-mode frequenices are concemmed. The reason why this is sé is
not understood at present. The important point, however, is that even
with this, the most camwplete form of the extensible theory, it is
predicted that instability of pipes with both ends supported will not

occur.

6.2.4 The Case Where the Downstream End is Free to Slide Axially

Hete, it 18 of interest to present a result concerning the dynamical
behaviour of a semi-circular pipe conveying fluid, with one e;nd campletely
clamped and the other end clamped but free to slide axially. In many
practical sinfations, in orxder to allow for themmal stress relief, it
is not desirable to use totally clamped or pinnéd supports at two ends
of the pipe, using instead a sliding support.

The calculations here have been conducted for a system with g = 0.5,
y=0, £= 104, and for_,visoous flow: .

Figures 51 and 5la show the variation of the in-plane frequencies
of this system with mmg dimensionless flow velocity u. We can see
that the natural frequencies k(wci) monotonically decrease with increasing
3. (Figure 51); however, as seen in Figure 5la the system loses stability
not by divergence, but rather by flutter, iﬁthefirstmde,dmtleflcw
velocity exceeds the critical velocity (u_x 0.96). Moreover, if the flow
velocity is increased further, the system may lose stability in the higher



- ' . .
e modes also; here it should be menticned that, these calculations being
very expensive, they were not pursued to larger valves of i.
' The important thing to note is that, unlike the case of true
clamped-clanmped and.pinned-pinned pipes, the presence of a sliding end is

sufficient to permit an instability to occur.

»
: .
6.2.5 The Out-of-Plane Behaviour of an Extensible Cl -C1l Pi
Conveying Fluid (Including the Cambined Force no)
This Section is here for the sake of campleteness. As discussed

4n Chapter V the equations of motion in this case are identical to those

Q\f the modified inextensible theory (i.e., including the cambined force
N Eo)‘ Hence, the extensible results are the same as ?:ose preeented in
Fig. 35 with 1 # 0. ) —

o In Fig, 52 are presented thesesméresultscmparedwithﬂbse
of Hill & Davis and Doll & Mote, as obtained from the latter's work
(Doll & Mote 1974) in the case -of the first mode. It is seen that,
although not identical, the results are quite similar in these three
sets of calculations. The inpgrtant thing is that, if the cambined

force is properly taken into account, no instability occurs.

°
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- v CHAPTER VII
o * . CONCLUSION

The dynamics and stability of curved pipes c‘cmveying fluid were
 studied \in this Thesis. The pipe was assumed to have uniform physical
prc:-[;;rties and its initial shape was restricted to lie in one plan;.

The motions of the pipe in tﬁis plane, the so—called in-plane motions,
-and those nomal to this plane, the ou;:-of-plane motions, were consi-
dered separately. The pipes were usually supported at both ends, with
clamped or pinned supports, but same cases of cantilevered -pipes were
also oconsidered. In most cases, the curved pipes were sémi-circular,
i.e. the subtended angle between one end and the other was 180°, but,
sane cases with this angle being 90° were also investigated.
o ,The dynamics and st-abili'ty of this system have been studied by
three theoretical models, as follows:
(1) " the conventional inextensible theory;
(11) the modified inextensible theory;
 (111) the extensible theory; .
in the gbove, inextensible or extensible refers to whether the assump-
tion has been made that the centerl:t.ne of the pipe from one end to the
other is :Lnexltiensible or not.

The conventional inextensible theory is similar to that produced
by Chen (1972a,b, 1973), in which the pipe -at any flow velocity is
presumed to be unstressed,excluding the stresses introduced by the
oscillation. Thus, the initial or steady-state stresses introduced by
the flow without oscillation, i.e. the stress introduced by steady-

e ,state centrifugal forces and pressure forces are entirely neglected,

*
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which, as cammented upon by several investigators, is unrealistic.

The rrodified inextensible theory is entirely new and has not been
considered heretofore by other researchers. In this theory, the
assumption oﬁ\ inextensibility of the centerline is retained, but the
steady—state initial stresses are taken into account. 'I‘hese forces
are represented by the dimensmnless parameter M, so that in this theory
Il # 0, whereas in the conventional inextensible , theory 0, = 0. ‘

The extensible theory doeg not make thé aissmnption of inextensi-
bility of the centerliné, and hence the shape of the pipe under the
actioA of the forces represented by Il changes with flow velocity. More-
over, it should be noted that, in both forms of the inextensible theory,
it makes no difference whether the £luid is considered to be inviscid
or viscous - in the- latter case friction-induced tension in the pipe
being exactly counterbalanced by pressure-drop-induced tension, giving
a zero net effect, as was the case for straight pipes conveying fluid
(Benjamin 1961). In the extensible theory, however, it does make a
difference, aju_d in the general form of this theory the fluid is‘
Lconsidered to be viscous. Other forms of the extensible theory were \
generated previously by Hill 4 Davis (1974) and Doll & Mote (1974, 1977).

The general linearized equations of motion are obtained in Chapter
II, in a f<7n'n that‘ applies to all three variants of the _t;heory. These
are then modified and simplified, as the case may be, according to the -
particular assumptions pertinent to"each. Thus, in all cases the
theory is linear. For the two inextensible theories this is perfectly
legitimate since the pipe at any flow velocity has the same initial -
shape, or approximately so, and departures fram this initial state are

assoclated with vibration, which can be assumed to be small. On the
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other hand, in the extensible theory, the deformation at any given value.
of the dimensionless flow velocity a away from the initial state at

G = 0, under the action of the forces associated with M, can be large.
Accordingly, the state of a system at u # 0 should generally have been
obtained by means of nonlinear th , but this was not done here, and
is therefore a 11mitatio§1 of the péesent theory.

I.;'l all three cases the analysis was conciucted by(the finite element
method, which has the great advantage of being easily adaptable to
studying curved pipes of variable radius of curvature along their length,
e.g. S-shaped, U-shaped pipes and other practically important situations.

The major findings of this Thesis will be presented according to
which theory has been used to cobtain the eigenfrequencies of the system,
as will be discussed in the Se\ctions that follow. In each case, the
results qbtained will be canpared with. those of other investigators, and
a general discussion of the relative merits and correctness-of these

J
theories will be presented in Section 7.4. Finally, in'Section 7.5 will

, be presented same suggestions for future work.

7.1 THE CONVENTIONAL INEXTENSIBLE THEORY

The equatjions of both in-plane and out-of-plane motions bbtair:ed
in f:his)’mesis according to this theory, in Chapter III, were found 1;0”_
be identical to Chen's (1972a,b, 1973). Also, if the radius of curva-

* ture of the pipe is taken to be infinite, it was confirmed that these |

equations become identical to those for a straight pipe conveying fluid,
previocusly obtained by Gregory & Paidoussis (1966) and Paifiaassis (1970)
or those of Paid'qnssis & Luu (1985) for pipes immersed in a dense

fluid medium. Hence, the results obtained by this theory should be
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identical to those obtained by these earlier investigators. On the

other hand, since in all these earlier studies solutions were obtained\m
by analytical methods, it was possible to campare with ﬂmem the results
obtained by the methods of this Thesis, in order to verify the finite-
element formulation of the problem and the camputer programs based

thereSn. Before cammenting on this, however, a few words on the general
character of the dynamical behaviour of the system, as predic{:ed by

this theory would be useful.

For curved pipes with supg_o,rted ends, the effect of increasing the
flow velocity or the internal pressur;a is to reduce the natural frequencies
of both in-plane and cut-of-plane motions, in all modes of the system.

This effect is associated with the centrifugal force exerted on the

——

curved pipe, associated with flow or pressure, which acts in a similar

" way to a compressive load. For a sufficiently large u, this force

overcares the flexural restoring force and the pipe buckles in the first
mode "= corresponding to therpoint at which the first-mode natural
frequency vanishes; the same effect is produced by increasing intermal
pressure. Identical behaviour is obtained in the' in-plane and out-of-
plane motions, but the critical flow wvelocities (or pressureé) for out-
of-plane motions are lower. For higher flow velocities, buckling
instability may also occur in higher modes of the system, as well as
coupled-mode flutter. ' \ ‘

For cantilevered curved pipes, i.ncreasing flow induces a lowering
of the natural frequencies, but is also responsible for the appearance
of flow-induced damping, since the Coriolis forces in this case actually
do work, hence, the eigenfrequencies in this case are generally complex.

For in-plane motions it was found that bothfbuckling and flutter

o
_aplt
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instabilities are possible - buckling occurring at lower fBa
velocities than flutter. For out-of—plgne motions, only flutter was
found to occur, the behaviour of the system in this case being similar
t%o that of a c'a?xtileve/red straight pipe.

Indeed, apart fram the dynamical behavieur of cantilevered pipes in
.in-plane motions, the, d;mamics of the curved pipes acodrding to this
tl';eory are qualitatively the same as those of suzight pipes: pipes
with both ends supported are'gxbject to buckling and coupled-mode flutter
for sufficiently high flow velocities; cantilevered pipes, on the other
hand, lose stability only by flutter - the exception being for in-plane

" motidns of curved pipes, where buckling also occurs.

The results obtained by this theory exactly reproduced the resul'ts
previously obtained by Gregory & Paidoussis (1966) and Paidoussis (1970)
and were nearly the sarr‘% as those of Paidoussis & Luu (1985) in the case
-of cantilevered straighi: pipes. The eigenfrequencies were identical,
or almost identical. -

The results obtained for curved pipes, either semi-circular (with
-subtended angle, r,, equal to 180°) or with r, = 900, were found to
be 1denticai to those of Chen's (1972a;' 1973) for pipes witk; boti} ends
supported, but rather different in the case of cantilevered pipes. In
view of the fact that the results obtained in this Thesis were all

obtained with the same gamputer program, and thg‘Z: the equations of

" motion and boundary conditions were both the same as Chen's, whereas '

.be utilized different analytical methods for cantilevered pipes, it is

sgspectéd that there is an error in Chen's analysis or computer program
for cbtaining the eigenfrequencies of “cantilevered curved pipes.

——

9 -
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'Thenefore, in the overwhelming majof?it\y of cases investigated,
the earlier results of other investigators vbm reproduced with
excellent accuracy :and, hence, it may be concluded, that the finitg\ :
element formulation and computer programs developed in this Thesis
have been veri)fied, Moreover, the rate of convergence, with increasing
nurber of finite elements, was found to be very fast and the computer
t:tme necessary for the calculations very low. Thus, it was demonstrated
t;hat the finite element analysis is a useful tool for obtaining the
dynamical behaviour of both straight and curved pipes conveying fluid.

A final set of calculations was undertaken to study the effect of
the subtended angle r, aﬁd the radiﬁs of curvature Ro of the pipe on
its natural frequencies at u = 0. It was found that, for a constant

the natural frequencies decrease with r

R o

o’
for pipes with both enfls supported. However, for a pipe of fixed total

(and hence with length), \

length, at small RO the frequencies are very sensitive to RO, while at
large Ro the frequencies change little with varying radius of curvature.

th frequency cenverges to the (n+l)th

AsRo +'m, it was found that the n
frequency of a straight pipe, this being associated with the different
boundary gonditions in the two cases (oin the curved pipe, axial motion
at the support is specified to be zero, whereas for a straight pipe

this condit_icn does not exist and hence the pipe is not truly inexten-

~

sible in that sense).

*7.2 THE MODIFIED INEXTENSIBLE THEORY
As mentioned previously, the initial, steady~-state forces
associated with centrifugal and pi:essure forces are taken into account

~“in this case, i.e. the parameter 11 # 0. 'I‘hesefor@edoworkinthe
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course of free motions of the system, in the same way as initial stresses
do in any such problem - ’although extension of the centerline is still
presumed to be null, or at least negligible. Thus, this theory is ]
intermediate between the conventilonal inextensible theory and the ®
extensible theory. The motivation for undertaking the formulation of
this theory was within the 'general aim of the work of this Thesis, namely
to identify the source of the differences in behaviour predicted by the
‘conventional inextensible theory (Chen 1972a, 1973) and the extensible
theory (Doll & Mote 1974, 1976; Hill & Davis 1974); these differénces are
very profound, and it is recalled that extensible theory, for instance,
predicts that turved pipes conveying fluid do not lose stabilify, no
matter how high the flow velocity (when both ends of the pipe are ;upportgai .
The behaviour of curved pipes with supgorted ends ac¢cording to this
theory is similar to that predicted by the af tioned extensible
theories’ of Hill & Davis (1974) and Doll & Mote's (1974, 1976). With
increasing flow velocity, the natural frequencies are,found to either
decrease or increase slightly, depending on the mode number and system
parameters, but' these changes fram the zero-flow values are small. Thus,
the natural frequency does not vanish for any flow velocity, in any of
the modes of the system, and, moreover, the @e loci never coalesce
(at least for the cases investigated); accordingly, the system cannot
lose stabi}ity for either in-plane or out-of-plane motions. —
The physical interpretation of this dramatic change in predicted
behaviour when the forces associated with Il are taken into account is
simple. The destabiiizing forces that caused instability according to
the conventional inextensible theory are the centrifugal-type forces

proportional to ﬁz in equations (2.75)-“(2.78),jwhich may generally be
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denoted as f.(nl,n3)\-12, where ﬁ(nl,n? is a linear differential operator
involvir;g the dimensionless displacements n; and ny. Now, it has been
shown in the Appendices related to Chapter III, that for pipes suppofted
at both ends, the canbined force Il is simply 1T = -:\32. By referring

to equations (2.75)=(2.78) again, it may easily be verified that, in
all cases and for each £(n1,n3)1-12 term, there appears also a ﬁ(nl,n3)n ‘
tem: hence, since I = -Gz, the destabilizing centrifugal temms in the
equations of motion are exactly cancelled out by tensile-c'entripetal
tems associated with the increased tension in the pipe due to these

-

centrifugal forces. The net effect is zero, and the flow velocity (or ‘

- pressure) can neither stabilize nor destabilize the system.

For cantilevered pipes, the effect of [T is not so radical.n
Considering in-plane motions, the system is still predicted to be subject
to both buckling and flutter instabilities, whilst for out-of-planet
motions only to flutter (similarly to.a straight pipe). Quantitatively,
however, there are differences. When thé\n-related forces are taken

into account, the critical flow velocities for instability are diminished;

i.e,, in this case these forces are destabilizing.

The physical reasons for this are more difficult to assess in
this case, firstly because the cantileveréd system is nonconservative,
and secondly because 1 in this case is not as simple as T = -3, but
rather is as given by equations (3.89) and (3.90). In any event, the
destabilizing centrifugal fomés are not entirely cancelled out, and the
presence of I| is also felt in one of the boundary conditions.

It should nle&rexi'tlmeless be noted that the assumption of the pipe'
curvature not changing with @, which is implicit in all inextensible

theories, although justifiable rigorously or approximately for pipes
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supported at both ends, is rather wesk for cantilevered ones. Herde, the

~results obtained by this theory for cantilevered pipes must be viewed

with caution.
Finally, the degendence of natural frequencies on r, and Ro discussed

at’ the end of Section 7.1 for U = 0, is the same in this case also,
except that, since the frequency is but a weak function of 4, what was
concluded t’here applies in this case for all values of u,

The camparison of this theory to the extensible theory is deferred

to Section 7.4.

7.3 THE EXTENSIELE THEORY
In the extensible theory the initial shape of the pipe (at i = 0)
ch;nges under the action of the centrifugal forces acting on the system
‘at any given §, and, if the flow is realistically considered to be
visco(m, by the action of frictional forces also. In this case the
equations ,'of motion thus generally depend on thosg of static equilibrium
for any given flow velocity, which therefore must' be solved first and__

we—therr-used—for trg solution of the equations of motion. This is tme for

the in-plane equations of motion, whereas, at least with the approximations

"~ introduced in formulating this theory, out-of-plane motions are wnaffected

(Chapter V). Indeed, the interesting finding was made that the out-of-

_'plane motions are identical to those of the modified inextensible theory. —~

Hence, attention in Chapter VI, in which the calculations with the
extensible theory are presented, is confined to in-plane motions.
. Calculations with this theory were made with several
| variants of the theory depending on (i) whether the fluid was considered
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to be inviscid or visdbus, and (11) whether the deformation due to
initial, steady-state’forces is taken into accam——tﬂor not, It is of
inte that 1f this latter deformation is neélected, then the equations
of mqftion of the extensible theory may be cbtained from those of ‘the

modified inextensible one, simply by taking M =1, - Aan,/d - r.ny) s

as given by equation (5.4).

, It was shown that under the effect of intemal flow (i.e., the
effect ;af centrifugal force) a pipe supported at both ends is deflected
out of the initial, unstn;:-ssed configuration, and this stressed shape
changes continually with increasing flow (Figs. 38-40)., For inviscid
flow, the stressed shape changes symmetrically vis-a-vis the unstressed ,
one, but_this change is unsymmetrical if the flowing fluid is viscpus;
The cambined force 1 calculated in these two cases (inviscid and viscous
fluid) was foux:xd to be almost the same, and to be similar to that
obtained by the modified inextensible theory, but this does not apply
generally for all values of u.

As shown in Chapter VI, no matter which variant of the extensible ‘
theory is employed, the_results are qualitatively the same: the natural
frequencies of a pipe with supported ends do not change greatly with
increasing flow veloci‘;:y, and t:he system thus never loses stability.

The results were campared with those obtained previously by Hill
& Davis (’1974) and Doll & Mote (1974,1976). Bearing in mind ‘the differences
in same of the parameters in the calculatlcns of the other investigators
and differences in the method of solution (e.g., in calculating the
deformed steady-state shape of the pipe), the agreenmt between all
three theories, qualitative and qumtti.tative, is remarkably good.
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o 'mus the results obtained by the extensible theory are qualita-
tively similar to those obtained by the modified inextensible theory,
in the case of in-plane motions, and identical in the case of out—of-p‘lane

motions. Quantitative differences as well as a more general discussion

A

of these theories is undertaken in Section 7.4.
No calculations were conducted with the extensible theory for

cantilevered pipes conveying fluid.

.7.4 THE MODIFIED INEXTENSIBLE AND EXTENSIBLE THEORIES COMPARED i

It should first be sajd that the conventional inextensible theory
is left out of this discussion, because it is now considered to be
totally unrealistic. This is the opinion of not only the author, but all
‘researcher; who have ;ubsequently worked on this subjéct (Svetlisky,

Hill & Davis and Doll & Mote) . ~

As mentioned in the previous Sections, the dynamical behaviour of
the-sysi:em is similar or the same, whether caléulated by the modified
inextensible theory or the extensible one, at least for pipes supported
at both énds. In the case of out-of-plane motions the natural frequencies
at least as obtain.ed in this Thesis, are identical in the two cases. The
differences for the in-plane motions are also quite small, as may be

\

seen in Fig. 51 or Table 5). .
This shows that the main effect of "extensibility”, which produces

the profound differences in the dynamical behaviour as predicted by Doll
aMote (1974)"and Hill & Davis (1974), on the one hand, and Chen (1972a,b,
1973) on the other, is not the extensibility of the centerline of the pipe
at all! Rather, it is whether the steady-state initial stress is taken

into account or not; i.e., whether I # 0, as is the case of Doll & Mote
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and Hill & Davis, and-Svetlisky (1977), or I = 0, as in"the case of
Chen.

, Hence, although small differences in the freduencies are obtained
in the results obtained by the modified inextensible and extensible
theories it is shown in thig Thesis that the former may be used instead
of the latter for any practical purposds. One reason for doing so is
that obtaining solutions by the extensible theory is rather .caxpensivé.
As shown in Chapter VI (Figs. 43-45), to achieve convergent results by

the extensible theory, many finite elements are necessary - easily 20 to

30-~ this number increasing with increasing #&= A th/I. This contrasts

L3

with similar convergence being achieved by means of the (modified)
inextensible theery, with 5 to 10 elements.

Of course, the foregoing discussion applies provided that the
stressed centerliné remains close to the unstressed one. If it does
not, then the extensible theory must be used. However, generally
speaking, the deformed shape of the centérline in such cases must be
obtained by means of nonlinéar theory, in preference to the approximate
linear approach adopted in this Thesis.

. 7.5 ON THE EXISTENCE OF INSTABILITIES IN CURVED PIPES QONVEYING FLUID

The work presented in this Thesis makes it clear that, provided
the combined force is properly taken into account. - be it by means of
the modifie,d inextensible theory or the extensible theory - no instabili-
ties arise with increasing flow, provided that the ends of the pipe.
are supported.

»

However, as shown in Section 6.2.4, this is true only if the ends

‘of the pipe are campletely supported, i.e., so lang as u,v,w are all zero

”
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at the support. If sliding is pemmitted, !maever',‘tlm instability
(flutter) 1is possible, as shown for in-plane motions in Segtim 6.2.4,
This islﬁan entirely new result, not previougly reported by any of the

i

earlier investigators.
. Of course, if one end of the pipe is entirely free, then instabili-

[ ]

ties have been shown to be possible - both buckling and flutter.

7.6 SUGGESTIONS FOR FUTURE WORK
The physical system analyzed in this Thesis has been idealized

in many respects. Therefore, there are several possible directions in
which work can be extended.

Let us consider the fluid mechanics first. Throughout the wérk,
it was assumed that the internal flow is a plug flow and that the flow
velocity is constant. However, for the flow in a curved pipe, secondary
flow and even separation may ‘exist and the fldw velocity may also change
along the pipg and in temms of its distribution in a cross section of the
pipe. These effects may affect the dynamics of the system, yet.the work
presented in this Thesis camot account for them.

Now,™ let us consider large displacements and an arbitrary shape of
the centerline of the pipe, which lead t0 a nonlinear problem. In this

. work, the displacements were assumed to be small; then, the nonlinear

terms which couple in-plane and out~of-plane motions, as well as the
perturbations of the bending moments and twist couple, are neglected.
All these simplifications may cause the theory to lose accuracy.

Finally, because of the lack of experimental results the results
of this work are difficultnto confim. Hence, same experiments involving

curved pipes would be useful,
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-  TAHLE 1
\ MODE

1 3.5156
2 22.0340

. 3 \ 61.7010
4 120.9120
5 199.8500
6

298.4602

-

ANALYTICAL RESULTS FINITE
(in-plane)

3.5160

e

22.0368

61.8389

121.3581

204.5024

310.7852

Dimensionless Frequencies of a Clamped-Free

RESULTS*

Tubular Beam

FINITE-ELEMENT RESULTS*
(out-of-plane)

L

3.5160 b
22.0455

61.9168
\22.3196

203.0202

337.2727

* Note that four-element discretization scheme was used in the in-plane program,

i

\

and five-element discretization scheme was use in the out-of-plane program.
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< ' TABLE 2 Dimensionless Frequencies of a Clamped-Clamped Tubular Beam
MODE ANALYTICAL RESULTS ~ELEMENT RESULTS* FINITE-ELEMENT RESULTS* :
, ) ./ (in-plane) (out-of-plane)
\ 1 22.3729 ) 22.3733 . 22.3792 :
\ 2 . 61.6696 : 61.6739 61.7939 T
, . . .
3 120.9120 . _ 120.9214 - 121.7697 3
4 199.8545 200.0054 y 203.3525 .
5. 298 .5638 299.5346 305.1028 1

v

* Note that six-element discretization scheme ;das used in both the in-plane.
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TABLE 3' Dimensionless Frequencies of a Clamped-Pinned Tubular Beam

»

ANALYTICAL RESULTS FINITE-ELEMENT RESULTS* " FINTTE-ELEMENT RESULTS
. (in-plane) "~ (out-of-plane) .
15.4313 - 15.4182 15.4201
- 49.9310 . 49.9665 ’ 50.0295
104.2440 104.2796 104.8099
178.2759 178.5612 180.8799 ‘
272.0190 - 272.4762 ’ 279.5706

4 ¥

~
|

*Note that five-element discretization scheme was used in the in-plane program,

and six—é\.elenent discretization scheme was used in the out-of-plane program.
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TABLE 4 Dimensionless Frequencies of a Pinned-Pinned Tubular Beam

ANALYTICAL RESULTS

9.8696

'" 3

2
41° = 39.4784
9“2 = 88.8264
167° = 157,9136
2512 = 246.7401
3612 = 385.3057

-

FINITE-ELEMENT RESULTS*
{in—-plane)

9.8696
39.4812
88.8921

157.9604-
249.8259

366.5469

FINITE-ELEMENT TS*
{out-of-plane)

9.8706
39.5438
89.5318

161.5514
273.8613

395.3176

* Note that five-element discretization scheme was used in the in-plane and -

out-of-plane programs.
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The initial (unstrained) centerline

The strained centerline

5 P ITO ’ -
k! ¥y oy
Q o f
v ’ el
Y
“ x
X0
X

(a) ‘
U ° -

Fig. 1 (a) The system under consideration, showing a curved

pipe conveying fluid and submerged in a quiescent
fluid '

(b) The two systems of axes (xo,yo,zo) and (x,Y,2)
- and the corresponding angles of rotation.
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Fig. 2 Forces and Maments Acting on the Pipe Element Expressed
N (a) in the reference system (x,y,Zz)

(b) in the reference system (X5 Yor2o)
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Fig. 5 Linear Polyncmial Approximation Used in the
Finite-Element Formulation (inextensible
case) ‘
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Fig. 7 (a) An incamplete circular pipe conveying fluid .

' (b) The position of 3 associated with a < 0
(c) The position of '6 associated with a > 0
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Fig. 8 Linear Polynomial Approximation Used in the
Finite-Element Formulations (extensible case)
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Fig. 38 The Static Bquilibrium Configuration of a Clamped-Clamped
Extensible Semi~Circular Pipe Conveying' Inviscid Fluid:
3 = 21, 2.57, 31; A= 10%, y= 0. The dashed line represents
the undeformed pipe. (Deformation is magnified by a
factor of 28 approximately) ‘
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Fig. 39 The Static Bquilibrium Configuration of a Clamped-Clamped .
- Extensible Semi-Circular Pipe Conveying Inviscid Fluid:

U =3.2n, 3.6%, and 47; A= 10%, v = 0. The dashed line °
represents the undeformed pipe. (Deformation is magnified
by a factor of 30 Approximately)
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Fig. 40 The Static Bquilibrium Configuration of a Clamped-Clamped -
J Extensible Semi-Circular Pipe Conveying Viscous Fluid:
@ =2n, 2.57 and 3n; A = 10%, y = 0. The dashed line
represents the undeformed pipe. (Deformation has been.
magriified by a factor of 25 approximately)
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APPENDIX A
RELATTONSHIP BETWEEN THE SYSTEMS (x,y_,Z,) and (x,y,z) USED IN
CHAPTER IT

)
Let u, v and w be the displacements of a point Po on the initial
centerline, referred to in the system (xo,yo,'zo) centered at Po (Fig.
A.l) also, let Y be the angle between axes X, and x, P; be a point on

this centerline in the neighbimrhood of Po’ and §s tke arc PQPO, [-e}

_ that (Gxo,éyo,szo) are the coordinates of Po in the system (xo,yo,zo).

1
Furthermore, we define (f,n,g) to be the coordinates of P,, the displaced
] L} 1 1
position of Po referred to the system (xo,yo,zo): also, (U,v,W) are
defineé ~as the displacements of Po referred in (xo,yo,zo) as shown in

Fig. A.l. Each of the system (x,,y,,2,) and (x,y,2) is orthogonal.

Therefore, we can write ) .
X P Xy |
[ ) ) y - [Lij] yo s (Aol)
- z z,
where Lj_:j are’ the direction cosines of the axes x,y,z referred to in
the system (xo, o,zo) .

Consider now the vector POPC'). Where P; approa&:hes Py, Pi will

approach Pl' and the straight line P.,Pl will become the tangent of the

strained centerline at Pl' Hence, one cbtains

) e
B
6;-»113 s = € (A.2)
where Ez is the unit vector along the z-axis. y

From Fig. A.1, the camponents of the unit vector &, can be written

S
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Géfg 8s I"31’
o=V _
5;_{18 05 I"32’

L .
1im & =
38+0 as 33

On the other hand, we have
E = Gxo + U',

n=6Yo + v,

’

g =87, +W,
Sx Sy 8§z
—‘—"—9-= ___C_)= ——Q-= b d
s o, 35 0, and %S 1l as &s ~+ 0.

A-2

A.3)

(A.4)

(A.5)

(A.6)

(A7)

(A.8).

(A.9)

Cambination of equatitns (A.3) - (A.5) and (A.6) - (A.9) yields

L =lim — ,
31 3s+0

L,, = lim

32 §s+0
=lim —— + 1.

L
33 §s+0

(A.10)

(A.11)

(A.12)

From Appendix B and assuming that u, v, w and ¢ are small, one
#

can rewrite equations (A.10)-(A.12), as follows:

_du _ '
v Ig) =55 STVt Ky W
- — vV _
}[‘ =35 T KMt T

L33 =§'§-‘<<')“+Kov+ 1.

~
4

“

(A.13)

(A.14)

(A.15)

ol
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Similarly, the centerline strain is given by

- Wew Wi,
€ Géfg 8s _‘as Kot + KV

Since L31' L32, L33 are the direction cosines of the wnit vector

Ez, referred in the system (xo, o'zo)' we obtain
2 2 2 _
I3p * Ly + Ly = 1.

(A.16)

By neglecting squares and products of u, v and w, equation (A.16) leads

to
™~

w '
as ~ “o “o )

(A.17)

————Here, it is noted that if the quantities u, v, w and y are small,

and if the initial centerline lies in the plane (xo,zo) (i.e., Ko = o,

Kc') = %— and To = 0), the centerline strain can be written as
o ~

= 3% _
€ = (35 KOU)

(A.18)

Hence, equation (A.1l7) implies that the centerline is inextensible.

‘Consequently, in view of equation (A.17), we have

Ly = 1.

Furthémore, since { is small we can set

Lo=v,

(A.19)

(A.20)

and s.:ane the scheme of the transformation (A.l) is orthogonal, one

obtains
-1 _ T
[Lij ] = [Lij ] ’ *

~

li

(A.21)

(A.22)
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A-4

Finally, utilizing equations (A.13) - (A.15) and (A.18) - (A.21), \

o and noting that Ko
(x ) [ 1
1y =|
du
xz L(as +

=0, K‘é = l/Ro and Ty = 0, cne obtains

QU W]
'(as+R)

- v
9s

1

(A.22)

*q
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AFPPENDIX B

REIATIWSHIPBEIWEENIHEDERMNESWHHRESPMTOSASMEASM

M,-Y,Z) and (x,y,z) SYSTEMS ‘ %

=

Consider a vector quantity -ﬁ with camponents U*, V* and wW*

1

in the torsion-flexure reference frame (x,y,z) at Pl. When the

, origin of this frame moves along the deformed centerline, it will

\ )
rotate with the angular velocity5 (having campoents (k,k',1*), and

the vector R will change its direction as well as magnitude.

may be written as

-

2 3R > )
%5 = & + 4 xR (B.1)
X,Y,2) (x,y,2) .
~ 4 s
o If the inertial frame (X,Y,2) coincides with the system
(x,y,2) at Pl’ one may obtain the following relations:
* % . - -
S =3 - eyr e, JB.2)
' . <

=Tk e, (B.2)
- -g—:*— = —g—:—:— - k'U* + > ’ (B.4)

-

B-]1

The derivative of R as measured from the inertial frame (X,Y,2)

where §/8g denotes the partial &grivativ% as meagured from the inertial’

~frame (X,Y,2), and 3/3s denotés the partial derivative as measured .

4
from the frame (x,y,z).

*
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I;PPENDD( C ]
DERIVATION OF THE FORMULAE OF CURVATURE AND TWIST  ___
Let (x ,yo,z ) be a Frenet—Serret system at P on the initial
center-line, (x,y,z) be a torsion-flexure reference system at Pl on
the deformed center-line, and (X51¥o13,) be the inertial system Soin=
cident with (X,,¥5,2 ); as shown in'Fig. C.1l. - .
These systems are orthogonal. Therefore, one can write the

) “ —-

following interrglationshiis:

/

x| [ Ly Lyp Ly | %
— - Yy ¢ = L21 L22 L23 A (C.1)
o 12) = Bar B2 la3z | K
and ’ . .
o ¢ X [ 211 Y2 Y3 ] % ,
Y= f21 %" Yol, . (€2
2 ). | *a L3y A3 | 2 .

t

where Lj.j are the direction cosines of the axes xii, referréd to the
system (x or¥orZg ) and derived in Appendix A; and 9‘13 are the direst:ion
cost%es of the axes Xyio referred to the coincident inertial system
(XO,YO,ZO) . '
From equation (C.2), the unit vectors in the system (x,y,2z) '

" can be written’as T . .
o . - ‘ ‘
- o - , -
> | : g =g T+, T+, (C.5)
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£

whete T, J and k are the unit vectors in the system (K1Y 2 -

a given time t yields

[

Mgy Moy o 3R,
ur T, oy
as s s
v _ 39.21,_1_+ LN ., CLI -
as 3s ] 9s ’
T P £ 2
3s 3s ] 9s . *

«

b 57, .
(xo,x‘:,éo)' with the angular velocity

x 2 i 2
= e
13 K < K Ty

+ % e

->

Z 14

Differentiating equations (C.3)~(C,5) with respect to s at °

(C.6)
.7

(CIS)

On the other hand, sincé the system (x,y,z) rotates about

(C.9)

when its origin moves along the deformed center-line. then, we obtain

-
‘aex - .
38 - S Xey .
35 =§2xey,
=
L R -
-+ o - .+‘ -
Bynotingthatexxey-ez, eyxez

-+
= ex'

one can rewrite equations (C.10)-(C.12), as follows:

agx -+ >
FrRR AR
-

‘2::X='<3z'1* 3x ’
8, . "
'é‘s—=-nce +K§x .

’

-

s
andezxe

(C.10)
(C.11)
(C.12)

-
=e'

X '

(C.13)
(C.14) .
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f

R , S
b a C"3

v

I

.. swuﬁmmqmmumswahmirmm(muh¢4ayEMs
P ‘ ' )
(9,211*-9,3114' 11+ (&.221*-9,32K )TW‘;&”T* -% 33¢ "k ’ {C.16)

o+
x -

] @
R Ex
i

- - - J
&nkhfﬂf+mnxﬁfﬂ7+&$thfF (C.17)

LS N [

[5¥]
®

J

2 T 12 “
= (k" =y T + (056" )T + (21%K k. (C.18)

(<% ]
i ]

i

4 Cambining equations (C.6)-(C.8) and (C.16)-(C.18), one obtains

58 = R ™ T gk’

55 = g™ < Rkt . .

‘ L .
. 1_3_ -
38 - L™~ L

|

3¢/ )

*
[+%)
o] =
108
H
i

L3k = Lyp7*

) 3, .
e 5 = 9,32.< - 2,121 ’ L (C.20)
t 0Ln., 7
23 -0 J
38 - +33¢ T R
. L " / .
94 \
31
S R LY -~
- ‘ 3132 ! ~
— = ! - N
) oL : - ‘
! ’ 33 - (- —
s = 2-13'( 223‘(0 N ’ J

Multiplying the equations in—equation set (C.19) by foyr 299
and 2.23 respectively, and then adding the three equations, one obtains

3y Aiyq k) 2
t’ “n‘?‘*%zas*“n?ﬁ"’“u“nﬂn“*‘“n%l%f%f%ﬂn“'

(C.22)

samem- * -
& —



C+4

—

' HMer, each of the systems (x,y,z) and (xo,fo,zo) is orthogonal; ‘ ‘
. o hence, we have -
3 4 - °
. £, s ™ Sy
lxe;'e Gij is t;ie Kronecker de}ta.

Combining equations’ (C.22) and (C.23) yields
. v -

'

3% Y} 3%
_ 11 12 13
TN =) 35 Tl 55t A3 3 , (C.24)

/s ' ' We can proceed similarly for «, anq k'. In summary the

(4

expressions for «, k' and t* are

82,21 3222'

. 3223 N
K = 231 35 + 9.32 3 {C.25).

+9‘33 9s '/ !

3% 3 3%
- [ — 31 32 33
. ~k' =135 2 Ss T3 Tas e

O 3 ) e)) "
P 1] 12 13
L ™=y s T 5e T hey Es - - (C.27)

] 4

(C.26)

Using Appendix B, one can write the derivative of components

— - = ! ()"
of the unit vectors €, §y and €, measured in the system (X,,Y_,2,),

~

as folldws:  _. . ‘
. L., - .
_3_’;% = 38;1 = LT * Dygker \
- ' _ 'a—g'i'z' = 3;;'2' - L‘13'<o * LT s g (C.28)
v 9%, , 8L.. .
“5‘:,;’3' = ."'5%—3 = LyikG * Lygkg -




E ‘

(C 30) into equations (C.25)~(C.27), and then setting !Li

obtains

-~

M, 3

5;{2}' = “:%_' LyaTo + La3¥or
.., 3

_a_:g = % = Lygkg * Loy Tor
3%, ° 3L

‘3’5’3' = =522 - Lyl + Lppkey
My 3

=2t = _:%i = L3pTo + L33k
Mys ¢ 3 _
2= 7:73.2' = Lygkg™* Ly Tor
33 g,

35 = s - 3156 * I3Xo -

3L

—_—

L *(i'll--L STHpakl) + Lo (—22 22
3138 23K} + L3557 -

L 3L23

ﬂ + L}}T" 21"0+L

oo

1

/

K +L,.T ).

230 21 0

220 ¢

3

'Lij’ one'

(C.29)

(C.30)

Substituting the values of 3%, /ds from equation.sets (C.28)-

o P T PR EN Y +\'12 as " P33, T’ .
) - Ayy |
+ Ll3 as Ile'o + L32Ko) . ~ (C.32)
™ = Loy (g = LypTo + Dyakg) + Dop g5 = Lygkg + Lyt
: 3Ly \

¥

Nw,"substimtinig the valués»'of L, 19+ given in Appnedix A, and

the values of ,nc Tg into equation (C 31)-(cC. 33), and then neglecting

higher order temms, one may write the expressions for |c, k' and t* in

<

L



tems of u, v, wand y,.as follows:
- azv
’ K = (R _2- ) F4
. o 98 .
1 %1 aw
k' = =+ ==+ ¢ -3__5-_) '
(o} 98 o
@y, 1 av '
* = —— —
T (as *+ R as) *
. 0
Y
l *
™~
S .
m ¥

C-6

(C.34)

- b
il Y
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| of the vector of fluid acceleration can be written, as follows:

o ok oo T e e et TR L W e 0y e L ST Bl e & O
¥ v, ‘.- ST TR SN RN
: SO

.D=1

2y " APPENDIX D
- ’DMmmmcmrsoqmmmmmmm
. . .
Recall equation (2.16) in the main text
' + » - T - -
AL SNAL ‘ .1
£ 99t 7 3 ' - *
where’
»
R PR T VAT M2, ¥, 2 o
V*/f [8t+U(as+R)]e -5—+U 3 & *lhprule, . (.2
o] o (o]
By differentiating ﬁf with respect to t and s 3;ie1ds <7
a6’:’ [8211 + U(azu + L aw)]-é + [azv + U 32v 152+ 3_2__vg_ 2 (D.3)
¥ i .
at atZ atds R, ot Xs atZ atds” "y, atZ Z,,
—3-} = [—__azu + U(fll + L‘éﬂ) 18, + [‘azv' +U azvl-é 3‘2‘: e
[} atas 852 RO‘ "X, otos as2 Y, atds z
3é \, 08 38, .
+ ¥ 0 v, ‘o rw o
+ [—- +uly = E;”as + [ t*Usgl 55t g tU 557, B4
and frcm Appendix C, one obtains ’ .
ae Vo
0 - _1__ —é-
- 14
. .7 TR %,
Je Y . ’
== g, (D.5)
3e
o 1z,
3s Ro 2

Cambining equations (D.1), (D.3), (D.4) and (D.5), the comporients

Y



” D=2
a - 3% + 2U(82u 1 aw) + Uz(a u,l 3w L_; (D.6)
-— r .
fxo btz oatas R ot 852 Ro 3s R
2 2 2. :
v v 293°v .
a = - + 20 e=— + U 7 (D.7)
fyo ot tas ds
>
2 7.2 2 .0 :
3w oW 1l ou U” 3u , w
a = + U¢ - -5 (G + 3 (D.8)
£z at2 atds Ro ) Ro 3s Ro ’

which are equations (2.17)-(2.19) in the main text.

-

L 4
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APPENDIX E
DERIVATION OF EQUATIONS OF MOTION FOR THE PIPE

Consider an infinitesimal elemer;t of the pipe contairied between
the cross section through 1?1 and Pi on the straineq center-line, and
‘the forces and moments acti.ng on it, as shown in Fig. 2. By projecting
the forces and moments in Fig. 2(b) on the inertial system (Xo, O,Z ),

as shown in Fig. E.l, and balancing the forces and moments along axes

of XO,YO,Z , one obtains, the following:'
ﬁ . &, 55 . .
L ] -
5 11% +1219 +sz,3lozo) + IS (zllrx +9.21Fy *231 2 )ds =0 ,
S+6S —
m 20, +z 2% +9.320 ) + IS (2,5F, +122Fy +9,32Fz )Jd&S =0 , | (E.1)
S+S
1 1 P
6(2130 +223o 33020) + fs (24F, +9.23Fy +z33 2, )ds =0 ,
SR M MM S M )+ Y (0. a0 MO ) +S(R 0. om0 a0
11 Xy 21 Y, 31z 0" 13X 23 Y, 33 z, 13¥%, 23 Yo 33 z,

-82 {(zl..o +550, +z329 )+6(2 129 2Py +2320 )} +

S+8S

)azm +9,'F+9.'F)dS+J
12x02 32z ¢

s+8S ., .
. ] ] ]
[ (8Y) (L 3F, +2o)F

+9,
8 ° .xo y 3

)ds:ol
O

0+9,0

+9'2y 3

* . * * * * * * *
¢ +2 +2 )+82_{(2,,Q. +,.0  +0..0 )+8(2,.0 +2..0 +2,.0°)}
12% 22y T3ty 1*0%1 1y 0 Hp1Qy 3107 L%, 21%y 3%,

8% {(mno +23:0) +9.33o )+<s<z]30 +(;L23o +z330 )

J,S+‘SS
{Gzo ll X

*' \

)}ds+fs »12x

. *1 Rt *! *x
”“21 v, 4317z ) "o (L13Fx *e23Fy *33F,

-

L3

)dS= 0.,

+9,22 Y +!,32

)}

(2,1@
11 xo

\

(E.2



W

—— —

w * * * * * ) M * *
S(LaM  +L,.M_ +L Y X { (21,0 #2450 a0 )+ (2,40, +2,,0 +,,0 )}
G 13 % 237y, 33”zo ot 12%x 22%y 32z 12¥x, 227y, 3272

* »* * * * *
=8Y {(R.,0. +2,.,0. +2,.0 )=6(2,,0 +£,,0 +L..0 )} +
o711 X, gl Yo 31 z, 11 X, 21 Yo 31 z

[S+Gs{ax'(9.*'F IoIF MEIE )eSY' (WSIF. MIF HNF. )} dS (B.2)
+ +2. ) -
- ‘ 5 0712 Xo 22y, 32°zy o Wx, "2y, 3Lz Cont.'«
IS+<SS x * *
+ (2,29 +2.'® +0.'® ) ds =0,
) g . A3xy 237y, "33z " J
where
* * . L ,
zij and 13 are the direction cosines of g:he axes X, . and X017 referred

to the inertial system (Xo

IYZDIZO) H
. (on,oyo,ozo) are components, referred to the system (xo,yo,zo) , of the
resultant of the transverse shear forces Qx'oy and the
0 - axial force Q:;

(Mx ,Myv,mz ) are ;:drponents of the resultant of the bending moments Mx'

o ‘o "o ,
NS, and the twist couple M, in the directions of X ,Y,2;

(Fx 'FY ,Fz ) are* camponents, referred to the system (xé,yé,zé), of the
o) o) [o] . ™
force resultant at PE per unit length of the centerline.

which includes the inertial forces, the viscous-damping

force due to the surrounding fluid, the reaction force
arising from the intermal fluid, the gravity force, and the
force due to the pressun—:: distribution of the surrounding
fluid;
4 - ' ] )
(Oxo,oyo,ozo) are camponents, referred to the system (xo, o,zO), of

the moment resultant at P per unit length of the pipe *

g
centerline, which includes the moment of rotary inertia |

e - - ‘and extermal momernts if they exist.

v, v
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E-3

Now 5Lt is noted that when S + 0, the system (xg,yé,z('))

coincides with the system (xo, °,zo) . Therefore, cne obtains

* _ *'
R:ij - g‘ij ’ ‘(E|3)
+ IS+GS(9.*'F s NE o oNE as =R wh R wtE L (E.4)
8 g i"x, 217y, EERE S Uix "ty 3t .
L jS%S(-n*'e SO0 + e )AS =0..0 e @ +..8 ,(E.5)
&8s S 1i Xy 2i Yo 3i zZ, , 11 Xy 2i Yo 3i z, :
§X_ 8Y_ 82z ‘

o) O O
and F5 5 * T

§X_,8Y_,82 are camponents of the vector PIFi, as shown in Fig. E.2;:

become components of the unit vector -éz at P, because

»

and they are denoted by

<5Xo

T by =5 -
' Y
= -2 . - ®
by =35 4 S . (E.6)

SZO

b= )
Moreover, if the system X . coincides with the system x_, at P, then

2=Léll " ] - — —

1
9,2 = L32 ' | (E.7)
f3 = L33 .
where L3 i arr'e the direction cosines of the z-axis, refer(ed to the
. ' » '
referenceh frame (xo,yo,zo). A 1

Dividing the equation sets (E.l) and (E.2) by S, and taking
the' 1imit &S + 0, and then cambining equations (E.4)-(E.7) yields -’ ‘
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2 A _
35 ”'11°x°*“21° *“310 I+ 9‘11Fx + 259F, v, * 9‘31 z, =0

D (07,0, 5,0 3,0 1+ A1F, + R+ Ay F =0 (E.8)
35 1120 2% 320, | * L1fy * Rafy *haFp =0 -
afz;o +Q*Q.+9,*Q]+2*F +AF 4+ F =0

3s ""13 Xy 23 Yo 33 2, 13 Xy 23 Yo 33 Z, ’

A}

Mx +22 M

*
(2, My, 31

@
0

* 2'*
+ (9‘11°x + 210y

©

-

*
+.,0
Q

317z

o

)

=0’

* * *
+ (R..9 +L,,0 +,,® ) =0,
12 X 9?2 Yo 2342~ z,

-

s3]
0

+(2.

LS

*"23"y +338 z.)

?

*
[213°x°+“23° +3:0, J 07,0, *“229 +”32

= 0.

]+9.2(213Q *2230 +!L33Q )9.3(9.120 +9.220 +23ZQ )

\

3 * * * *
1M, +2’22My +"'32“ ) #y001,0, *2219 Fh3a% )y (30 30y 330, )

) -2 (lllQ +9,210 o lQ }

- (E.9)

« Fram Equations (C.19)~-(C.21) in Appendix C, or;xe can write the

derivatives of Q'ij' as follows:

*
3%y, g
3§ T la1To
a”

12 L1
3s ,” 220
ag”

* '
9,3 lKO ’

7
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N
*
0 Moy » * ‘
=35 = Y31% " 117 -
o
- 22 _ % * -
s s 'Q'32Ko 9’1210 ’ L -
(E.10)
e
23 _ % _ ¥ . )
38 = Ya3kg T 43T,
any
- 31 % * .
55 - M1% T Farko ¢
s
32 % ot
35 = Y12¢0 T Raxo v
¥ r
YR ’
' 33 — * ' o * - !
38 = P13¢0 T a3k - / '
. . .
- LY
o Substituting equation set (E.10) into equation sets (E.8)-(E.9),

and then setting the system X to coincide with the system x - at P

the equations of motlon for the pipe along the axes of x ,yo,z may

- ’

be written as
— ' - ’
TOQYO‘*KOQZ +Fx 0, . (E.11)
\ 3
=5 K0, V0 +F, =0, | (E.12)

€.13) ™

S
*
%
4
0
o

< Y -—'.—9- ' - =
) My +KJ M +.XO+L32.QZQ L330y° o, _(E.14)

&’; ’ ) _,». - , a——

| oM, ,
.0
. 4 ) 55 M P +L3——Qx T30, =0 (E15)



E-6
' -
aMz
L8) ] - -
. —_ «'M_ i+ #_ +L,0 -L..0 =0. (E.16)
o i | as OXy, 0¥y Z, 31 Yo 32 Xy .

We nov; .consider the force per unit length of the center-line due

':_f\‘,to the gravity force and the pre'ssure distribution of the surrounding fluid.

For convenience, the pressure distribution of the surrounding fluid

acting on the external lateral surface per unit length of the pipe may

be vxeglaced by the buoyancy force B (i.e. B = Aopfeg) and the tensions

Aope and Aopé applied on the top and bottom faces where Po and Pé are

the pressures at levels P, and Pi, as shown in Fig. E.3. The\ buoyancy

force § and the gravity force, can, be cambined into a single force, called

the effective gravity force 5, and the pressure force A oPe and the -

e

tension Qz can also be combined into a single term Q;. Let (G

X 7 y !
o ‘o
G, ) denote components, referred to the system (X,1¥yr25) s+ OF the
o .
0 effective gravity force é; then, we can write -
1 G, =M,_-Aop.)ga o (E.17)
, X, t‘ o"fe xo’ . '
Gz = (Mt - Aopfe)g dz ’ ~ ' (E.lg)
. o o) ,
* . ' s ‘
0, =0, +AR, ., — (E.20)

where Mt is the mass per unit length of the pipe, A° is the external
émss sectional area of the Ppipe, Pge is the density.of the surrounding
flu:l.d,~ g is the acceleratian due to gravity and dxo, ayo, azo are the -
direction c?sines, referred to the system (xo,yo,zo) of the gravitational

acceleration.
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o . Fér’,tl:xe pipe vibrating in a quiescent fluié, fluid damping
a.rises due to the fluid viscous effect and due to the energy carried
away by acoustic waves.. The damping force arising from these effects

may be considered to be proportional to the pipe velocity. Let (£

’

o)
. f,y ' fz ) denote the camponents of this force, referred to the system
(@) Q
(xo,yo,zp); -then we can write
u ) -
f = - C el ! ' (E.Zl)
— xo 3 . .
- g - e 2, y , (E.22)
o ' p—
. -7 fz = = c'g—g' Vi (E.%3) L e B
/ o .

where ¢ and c'are the coefficients of viscpus damping due to the
surrounding fluid, associated with lateral and axial motion of the pipe,
o respectively, and u,v,w are the displacements of the pipe along the
Xy~ Yo~ and z -axes.
, Finally, components of the force resultant per unit length

of the pipe center-line can be written as follows:

3u , ‘ ’
F =«M. +M)a - C =+ R +G . (E.24)
X Ta t txo at X, Xy ’ “
' v ) .
N YO a . t. tyO at YO Yo -
- F, =-M, +M)a, - 'g:;’ +R, +Gz—q , (E.26) T
o L o % % o :

where atx ’ aty ' atz are camponents of ;:he pipe af:celefation; M, or Mé is
theaddedmass per umt length, andR + R ,Rz are camponents of s

Y
*o o .%
the reaction foroe arising from the intemal fluid.

. . .
%Sv"f‘l,‘, . . - . L N . - EER L
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(2

Subject to the limitation that the dimensions of the cross -

section of the pipe are small as campared with the overall length of
the pipe, the rétatory inertia about axes x and y can be neglected.

I4

Y

\’mer'efore, if external moments-are absent one obtains

o =0, ’ . (E.27)
o] . Q
® =0, N (E.28)
Yo . _
e =1 « - @29
z "z .27 .
(o) ot

- where I, is th’e* pipe mament of inertia about the z axis.
Substituting equatIons (E.24)-(E.29) and the values of L, 13
obtained in Appendix A into equations (E 11)-(E.16), the equations of
\ .

motion for the pipe may be obtained, i. e.,

BQ
o ' au - _
o Lo} o .
30 : -
y-th HQ -caV+R + G (M+M)a =0 l ’(EBl)'
as o O O at YO YO ty S " .
30, ’
== 0, < 2 -c"g;’ +R 4G, - MMDa_ =0, .. (B.32)
o (o} (o} (o] ..
3Mx , :
0 A S .
—_— -t M M +:zQ -0 =0 : (E.33)
as oY, © 2z, S z, Yo re
3 . ,
-:-;9- "‘oMz ;l'robg( + Qx - (%% + yﬁ"-—)(?)z =0, ’ (E.34)
o] (o} O o “o -
+ Ey-3 - = . -
My ( R Qyo 3 on Iz at2 0 (E.35)
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APPENDIX F .
BOUNDARY" CONDITION ASSOCIATED WITH A FREE END FOR IN-PLANE
| INEXTENSIBLE MOTION
-

From equation (3 2), the relationship of ni and n* at the free

endmaybewrittenas’ .
3 ‘ 2 2

4
3 n* a3 n% an* 3 n¥* 3 n*
- '] 3 9 1 1/2- 1
(== +r —3) + = (I¢( +rn)l+(1+8) + 287 U=
354 o 853 :1% z»‘,' 31’2 a;ag
2, .
Ink 3n* on% an%
3 -2 1 3 l
# rg gz + U 352 +r, 5 ) + JC " (F.1)

!

On the other"hand, at the free end one has obtained [equation (2.81)]

that . ) ‘ 2
) . (a i e ) =0 ‘ (F.2)
L ‘ —5+r =) =0, /s .
. 852 .0 3¢ . "
0‘ . Cambining equations (F.1) ‘and (F.2) yields ‘
84n1 a3 g [ nt : azn’l'
(=t )+ II( +rn)+(L+B) . )
ad o 53 ag g a2 o
] 2 ‘ .
. . A ; an* ank *
1/2 1 3 any
) + 28 u(atag r, 3T ) + &€ -——a (F.3)‘

Hence, in the inextensible case, one has a modified 7umdan/ condit:.on

~ata free end, namely

5 2.
. 3 nk- 3 3nj
(____g.+rg 3)*'};““—"% )1+(1+6)—-—32
. 3, * 2%
ng T, 8n% .1}
£ 2872 3 (——2—3 ‘4 rg ar3) + K a3ﬁ 0 (F.4)
. g3t : Lo

) ’

DRI aob P g U 5 1)
e - 3
. .

i
e
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APPENDIX G

INTEGRATIONS BY PARTS ASSOCIATED WITH THE DERIVATION OF EQUATION (3.21)

14 - |9

Consider the equation

_n - ~
121 §nyAy(ny) 4 =0, - (G.1)
where .6 * 4 VI 4 2 2 %
x9Ny 23Ny 43My 533 53Ny 4a 32 3TNy
A; (ng)=(—7¢ +2r_ 7 1T, )+ u” (7 +2r 5 Nyl + (n(—z S 4T n3)]
3E 3L 3L 13 3 I 14 12
2_* 4 2% 4 * 2. *
am AL dny . 9 9 o
2 3 L2* 3 2 . 3 /2, 3 2
+ r (- +r_na)+(1+8.) -rc (148)) —5+2ug™ " (——, +r
.0 agz o3 a 612352 o a 352 31353 o axar,
* * .
83"‘3 2 o N3 e,
tR—m— -1, K 3% - (G.2)
- 3E™d ;
Performing integrations by parts, one obtains the following:
4% -2 6,* 4. *
n § 8 3 n a°n n a n a'n
D7 en—3 n3 3 +rg D = I (f ién —2 e —yae
i=l o 56 13 i=1l o 13 13
4 * 2 *
an a’n
N 1‘51 ot 23 2 213 g, o
o 3 0 3;‘; 4 "o 352
. * * 3 * )
? et 2°ny 2y 2’y o 3”3) a5,5“3(34“3 2 32”3)+ 3%8ny 23,2 ﬁ;:}gi
= 7 {8n,f *r, —3 r 3 0
i=1 3 8&5 o] ag *To ot Y3 ag4 o. 352 ‘ 36;2 8&',3 o 23§
3 * 3
n g, n an, a°n an
-t G R P el &,
i=l o 14 1 \
3 3 *
n i a3’n on. an an
=1 | (sl ) i)}
"i=1 o g 3 :
5 _#: 3 * * * 2 * 2 3
fén (a N3 +2r2 a7n, o 3n3) 36n3 (a Ny +r2 a_n%) . 3 an (3 ng
. 2
3 g2 o a§3 o 3L T a8 O g 22 ag \
d . f
n
‘ +r2 23, ‘ (G.3)
1 Y ) P
= u ~
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£ 4 _* 2% * £, 4% 2 * .
R e WP T S o N JLl e -
o 3k 3t 4=l 00 7 3k 3t
I IEJ’L—'ZG *<32n; 20"y aE -
+ N, (—= + rn
=1 ©° 3 3,52 o3 ’
}
* * * * *
n ., 33n3 5 N3 Ei_ 2[51 3dn, 33n3 5 N3
= LUt g o i ol 3 T e
i=1 .14 : '}
2.% ’
B P Pt D g
Lot 3 2 o3 '
3
* 3k 2 *
S S RN i O *(——33 3 201 a
=- +r r —= +rn
=] o 13 a€3 o BE o '3 ag o3
3 * *
T M3y | G.4)
+ n + I.' § " .
3753 T e
* * *' *
z Igi 5 *(34n3 2 o3 g r Igl e (33n3 w2 o) 4
n r r o
0 i=1 ‘o 3 3533 0 3&dT j=] ‘© 9§ 8528 O 9T
{ 33k a1
3 2°'3 (G.5)
+ {51'\ ( +r- =) } [}
3 8&231 O aTt | o} .
* *
en g, 3%n 2 2 3 ;e 36n, 83n3 « azn;
z I 3 ( 2 2" ro 2)d§ =-.Z I( ag 2 +r 6713 z)dg
i=1 o 9E"? T i=l o dE3T ot
N , 33n; L. .
\\ + {8n s lo , _ (G.6)




. £, 3 * * 3 * *
n ~i an3 28n38n3 23n3

t vt
1o} -~

- )
It is noted that in equation (G.3)-(G.8), the following replacement
was made ' . I ,

Ei 1 . ‘
~ 2 { } { }o f R “ (Gcg)
'l' l » ’\ v

£i-1
because of the cont:muity condition (i.e. the value of { } at the

ith(node in the (i—-l) element is equal to the value of { }O at the
th elementf, as shown in Fig. G.l. ,
- ¢

same node in the i

Substituting equations (G.3)-(G.8) into equation (G.l) yields

36* 3 * 3* 2 *
-2,90N3 873 5 ANy 5, 3TNy

g I8¢ +r ) ( 417 ===+ U" [ (— +r7 —==)-rZ8n (
—- 2 * C 2 * * 3 %
adn an o n ' aén 3 n
L2 3.3 3 2% 2 %03 /2 = °°M3 3
+r N )1 + =5 == +r'na) }=-ronén, (—= +rn )+28 —_(—
3 , a€ & 852 o'3 o} 3 35;2 3 BE aTag
5 ’ 36ns 2%n an* 38 330, N
2”3 N3 ¢ Ny 2 3 N3 9Ny 20 oy, %203 -
+ri-—=)+ —_— r: ,]Co +r l-rs Yén, —=)1df
O at 3¢ 9713 a’ af angZ o~ a v’ aTZ
* *
S g @y e 2P, ey ’ny  9n i ny
+ 8ng {5 41y 2B ul——ptry (M) —5F T + Sl
-3 3 3T3E 33T 3
2001, {36n3 a%ny an;;}l {826n3133n3 S an) }1 » *(a3n3
+ron +r2 + +r + U°{6n, (—=
o3 T 8 o 2o E2 3e3 0 98 3750
, Ny 1 3%na any 1 -
N n n ~
3 2 3, 293 _
o 3E )} +r, {6n3 (— 853 + 15 3 ) }o = 0. (G.JLO)

f
»

i

From the boundary conditions, equations (3 10)-(3 14), one can

see that the mtegrated terns vanish. Therefore, one obtains



3 _*
3n3

\‘ 3.
0 ~g,{’zi{[6\an3

=l-0 .

rony

an
. .+r23

36n3
o n3)l + —_ 3E

36n3

0 31 )+

B Pat-au i
A

Ty e 51‘:

3

-

—

ag>

3'03

+r J€6n3

v -

3
5t )+(l+Ba) 85

n
+r n3)] -r H6n3( 2 +r h3'r+28

which is equation (3.21), appearing in the main text.
)

]
G-4
LY
* * % -
36113 83n3 2 an 2 % 321'13
. 3% N
1/2_ 86n3 d n3
T
. 9T ag
* *
o’ 3 2 a2‘"3
""_2+Ib(l+8 )6n3
8681’ 81
(G.11)
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Fig. G.1 Two Finite Elements of the Pipe, Illustrating the
Condition of Continuity Across a Node s



APPENDIX H ‘ '
THE INVERSE OF MATRIX [A]; Eotmxms/i}.ss) AND (3.40)

+

\
o Let the square matrix
[a) = [aj.j] (H.1)
of order n and its inverse
. [_B] = [bij] (H.2)
be partitioned into sutmatrices as indicated below:
r - ¢
A Y. _
(
) : (p x P) : exaq |, (H.3)
_______ i - - — —— -
X A | Ay ,
(q x p) : {q x q
and )
- | -
By . B2
P x P) : (p x q) ' (H.4)
_____ o — - B
Bo1 ! B2 ;
g x p) | q x q J
where | i ‘P+q=n. ‘ o~ ' © "(H.5)
Because )
(Al (8] = (B] (A] =1, \  (H.6)
where I is ah identity 'matrix, one obtai'ns' '
¢ . \
"‘111512 + Alz 1322 =0, . . (H.8)
321 An + 1322 A21 =0, (H.9)
/ 321 -Alz + 922 A22 = Iq . ) (H.10)

then, provided A,, is non-singular, cne can rewrite equation (H.9) as



0

°l4

H=2"
B =%u B A—l (;i 11)
. 21 23 Ba1 Py - .
. Substituting equation (H.11l) into equation (H.10) yields
- -1
Bya = (Byy = ByAyy AT (H.12)
again subs'tituting equation (H.12) into equation (H.8) and (H.1ll)
yields ~ 7
. <1 )
Bjp = ~AjAy; By - Az 1A (H.13)
- o -1 -1
821 = (A 21 ll 12) AZlAll (H.14)
Finally, combining equation (H.7) and (H. 14), one may writ:e
-1,
By = 11 + AT]A ) (Bgy= A AT ) AYRTT. (HA1S)

Hence, one obtains the following expressions for the.submatrices

kY

of the inverse matrix B: °
~1 l -1 -1

Bir = A1 * 21780y PPy

Bi2 = Ali ALY _
By = Y LAyATT / (H.16)

ny =yt .
where . )
- Y= (Byy = AyATTA L) (H.17)
By applying formulae (H.le_ one can ;nvert the matrix
10 0 0o 0o ‘o | - N
) 1o 1 0 0o 0. 0

‘‘@= |0 0 2 0 0 0 , (H.18)

2 3 4 5.
bre €2 @ &
0 1 2, 3¢ 45 Sea
0 0 2 s6g 12 203

where, as previously defined, - _ _ )

. .
v -~
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H-3
L 4 { ——
o 1 Qo 0]
A ;7% 0 1 ol ’ (H.19)
. {o 0 2] !
™ [0 0 0]
a \\\
A e 0 0 0 : (H.20)
12 \
: 0 -0 0]
r 2
“ 1 §e Ee
By = o1 o2 ) (H.21)
C )
- [ 3 4 5
Ee. ge . Ce
' 2 3 .4 | :
v A22. = s 3€e 459—— Sge 7 (H{ZZ)
. 2 .3
(¢ | . 68, 1267 205
From equations (H.19) and (H.22), one can write
a 1 0 0 |
Aﬁ = o 1 o |, (H.23)
0 0 1/2
. . [ . -3 =2 1.1 ]
l : 10g," -4&, -A%Ee
Ay = | -wset o - \ (H.24)
. " 6. -3, 32

"~ yields




hhad
Y = Ay '
-l
B2 =gy
-3 -2 3 _-1]
10653 6522 -3 ¢]
_ -4 -3 3 _-2
B21 - ISEe 8€e 2 %e |
-5 -4 1 -3
| -6Eg e -5 &
0 0 0
By, 0o 0 o],
0 0 0
) .
-l
By =2y -
Hence, the inverse matrix of A is given by
[ 0 0 0 0 0
o0 1 0 0 0 0
wlt=] 0 o 12 0 0o -
-3 . -1 -2 -
-10€e3 -6582 -'%ie loge3 -4Eg % Eel
-4 . - 3 =2 - -
lsge4 8-ge3 - 3be —15€e4 7€e3 -Cez
-5 .4 1,-3 - -4 1.-3
-GEes' =34 '%Ee* GEe5 ":*’Ee‘1 7%e

H-4

(H.25) .
(H.26)

(H.27)

(H.29)

. (H&30)
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DERIVATION OF THE MATRICES [J,] = [J5]
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Cclearly,

(0] =

.1, 2,382, 43, sgh,

(0] =

(1.2)

(0, 0, 2, 6, 1262, 20€°] ,

[¢3] b=

(0, 0, 0, 6, 24, 60c%] ,

Therefore, °

where the prime denotes differentiation withl respect to E.

we obtain the following:
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APPENDIX J
INTEGRATIONS BY PARTS ASSOCIATED WITH THE QERIVATICN OF EQUATION (3.52)
: \
Consider the equation a
gk % % C ak x
I AL npsb ) + SY Ay W)l dE=0, (3.1)
o i=-1 ©
where a4n* azn an
* * ¢
Byp(geb ) = ¢ i—r ——‘1’—)-Ar Q& \D §)+ ag[n 52]
T a? xag? 3E
- 3%y 3%n {\Ln/ ]
, n n n
~ 452_—2 2 1/ 2
- +(148,) 5 +287" 0 —= JC—- (J.2)
T ar/ oTet ' X
5 4 ) % .
L’ * Kk ok * 31’12 ’3]{1 3712‘ 32*
- -~ ag, a§ 13 0T
; 7 w‘*‘lserfo;.‘sm:u*ig integrations by parts yields )
o 341’1; 3'2 x n *-3371; * Ei
T P I r 2Logar = 1 {on, ¢ -r -r )}
i=1 o 354 o 852 Fiel 2 353- o 3§ o) o
«, * 2 *
! o n: Ei azsnz aznz %
.+ —5 (—%5 - r ¥ )&,
i=l ‘o 3E° 3t
no g, a%n, afny - . 3 "z
= I A 2(———-r\p)d€+{6n2
izl o 3§ ‘r;
2 * o
36n2 anz « 1 ) )
- —5— —5 roll»' )}O ' (J.4)
n E n 2 % a * n *
i “2 ay" I
z sn<—i§-+r» )d-—-Z T == dz+z {an
i=1 fo 2 45l o 98 % o 3T i=1. 2 9%
8n
_2
*r, T O} i*,
n E * *
A i 36n on * o, 1
=- 30 2ay” 2 L. " <5
e 1.—2.1 ];o 3 (g +r 'y£+{6n2 3t +1:o 35)} ’ (J.%)
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E * 2 * E; * * *

n i an n i an .
__\l'_ 2y4r = - Il —2

i=1 e s o a€ 2% 151 I° 9 (35 MR )d§ T

* an 1 ‘
+ {3W (_\g_ r 3&;2 } (J.6)

It is noted that in equations (J.4)—-(J.6), the following replace-

ment was made .
. Q

« = ¥ ' (J.7)
. i=1 . Ei"l

. th

because of the continuity condition: the value of { }. at the i~ node

in the (i-l)th element is equal to the value of { }O at the same node in

the ‘1th element, as shown in Fig. G.1l.
Substituting equations (J.4)-(J. ;5) into equation (J.1) yields
n %1 a%n, 3%, 36 an, ot a2yt
P2 L2 n2 ~r p" )+ nz QY L 2y, goran X2, 0
oo T e o3t Br Mot oMb '\52
2_* 2 _* 2 *
9 n, 3°n Bn L 3N
-2 . * 1/2= SR 2 _ 2
+H1“ 8&n 5 +28™ “uén +RSns +(1+B )6n, } dg
2732 2 3E3T 2,2 232
k3 2 *x *
n i x % 3 asta 9Ny
D {rsy - —Si ‘1’(“’ + )4 GO —-‘L}df;
i=] o © o 852 of 9§ 0 9§ »
3w X 2 * *
o'n * 3dn, 9n 1 an * ]
#O M2 sy, M2 M2 Ny By
+Hny —3 3" 5% 3 ) 5E —5 -, \P ) lo={Ar, enz 0Tt A ) 1o
13 13
* an 1
- __\L —2) - ‘
Ar {6\1} ( + I, 3 3 } 0. " (J.8)

Fram the boundai'y conditions (i.e. equations (3.17)=(3.19)), one
can see Ehat the integrated terms vanish. Therefore, equation (J.8)

-

may be reduced to the final form o

.
ar




O

2 *
gy demp atn x % 9y
Z J‘y { ( 5 row ) +r06\j) (ro\p - )+A[r°
i=] ‘o ag ag 85
3 . 3%n, an*
n
m 59" 2.,.=2, %3 M " on
i ity el T DA oy —5 o tony3r 3E ¢
* 2
an . 3%n 2 *
any 2 * 3%y _
+J€5n2 It + (l+B ) an _——812 + odyP 312 =0

s

which is equation (3.52).

aénz 3
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2*
an2

g

2)+I2i3

T

. *
Iny

+
rO

kE

2*
1/2-. % 2

u‘3"2 3TaE

' (J.9)
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APPENDIX K

[y

-- THE INVERSE OF MATRD{"[A]O;’"EEEETIQNIS (3.69) AND (3.71)

Consider the matrix

@2l = 0 o0 : o. 0o 1 0], (K. 1)
‘ 2 3
1 g } £ g 0 0
Cae2
) i 0 1 :zge 3, 0 0
|
L o 0 1o 0 1 £,
.. - 1 J
and partitioning it into submatrices as shown above, one obtains
1 o
A* =
0 . i oo 1, (K.2)
. o 0 0 o
A* = ,
12 _te—:0 o o, (K.3)
[0 o
I3 . l e | L3
agy =0 1}, (K.4)
B L
/ [0 0o 1 o]
2
— 2 82 o0 o
) A, =26, 32 0 0 (K.5)
o 0o 1 g

From equations (K.2) and (K.5), one has

. S Ve I [l o], " (K.6)
- il 10 1 - ‘ ‘ .6)




N N . - P X = PR .. ® LES AR < J
-~ oty . - - - R i “'42";

-
-2 -

0 3Ee -Eel 0

- - *al 0 ‘25;3 5;2 0 -
»# Boy = 0 (K.7)
1 0 0 °
b o 0 e
TN

To obtain the inverse of the matrix [A] o' €quation set (H.16)

derived in Appendix H is applied. Substitution of equations (K.2)-(K.7)

into (H.16)-(H.17) yields

I
a Y =8y | (K.8) |
’ a7l (K.9) '
By = Ay ‘
S AN |
Byy =Y Ay AT, (K.l‘O)
roy
[ “2 -l - 7 ’
0 3 -g O o |
-3 =2
0 =287 & 0 te -
By, =~ 1 0 0 0 1 , (K1)
—1 » _l
. - 0 0 £ | 0 |
' A\
[ -2 =17
-3¢ ~2¢
_ -3 -2
= 267 2 |, (K.12)
0 « 0
o A
0 0 - |
. 0 O : .
_ 1 -1 _ .-
B2 = Ay A12Y = [o 0 }' o &ID :
- B = *e] A*..]_
1 =By A, Ale A21 11 ’
a1
- 11 . (K.l4)
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o .1 o o o0 0 .
1 _ | _ap™2 _p-1 =2 _.-1 “
(A" = [-3g7 =265 0 387 -£ 0 4, . (K15
. '~2 =3 -,
223 2 o -2 2 o
- 0 0 1 0 0 o {.
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o»-—— ) APPENDIX L '
. DERIVATION OF MATRICES [J}] - (35,
Consider the vectors,
[‘pz] = [lr £, 521 531 Ol OI )
) (L.3),
[¢4] = [01 0,0,0,1,¢8]:
] K Cléarly’
 Ie,) =10, 1, 2, 3%, 0, 0], \
\ * LU - -
(0,1 =0, 0, 2, 6, 0, O], (L.2)
[ ]
[4’4] = [01 Or 0, O;MOI 1] ’

obtains the following:

t. Fe Fe T 0
R H OB oo
CART R S SO o
R R E K
0 .0 0 0 0
' 0 o 0 0 0
_ (0 o o 0 0
: o & 8 i 0.
e lo e % e o
1550 = [ F 19y) Tlo,) a = o g i 3 0
0 0 .0 0 0
0 0 0 0 0

! h

where the prime denotes differentiation with respect to §.

Therefore, one

T (L.3)

L.4)



%
%

.

2 L-2

: oo 0o o0 0. 0 0]
0 ' ' o 0o 0 0o 0 0
A ' 2
[7,) = Ié [¢,] "K,] & = 0 0 4, 65, 0 0 (L.5)
‘ 2 inp3
0 ©0 65i2xk] 0 0
o o0 0 0 o0 .0
- o o 0o o0 o0 0]
@ o o o o ol
0 0 0 0 0 0]
-—_ 0. 0 0 o0 o0 ©
‘ * !Ee T ) 0 "
S = T (8] (e, A = o 6 o o0 o0 O (L.6)
: o
1,2
o 0o 0 0 g, 3¢
' 1.2 1.3
o o 0 0 3 3t
- - \
y , - 2 .3 .
0 0 £ Eg &g 0 0
\ 1.2 2.3 3.4
. 0 'Z'Ee‘ '3'Ee Tge 0 0
x  Be om0 1,3 1.4 3,5 '
(3] = ,fo 0,17 [0,] A # 0 3 Fe Fo O O (L.7)
. ' nl 1.4 2,5 1,6
) . 0 Z8e T 2%e 0 O
0 o 0o 0 0. 0 \
, o 0 o 0 0 0]
0 o o0 0o o o)
0o ‘0.0 00
o * Ee ’ "T ) ' 2
. g) = Io [0,) 18, & = 0 o0 0 0 25, &g (L.8)
2 ..3
\o 0 0 0 3gg 2
- 0 O 0 6 O0 0
@ ° C Lo 0 00 o0 o0 : .
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o ' S APPRNDIX M )
x .. BOUNDARY CCNDITIONS ASSOCIATED WITH BQUATION (3.84) FOR A CLAMPED-
FREE INCQMPLETE CIRCULAR PIPE IN THE CASE OF ‘INEXTENSIBILITY

T Consider a —olamped-free incamplete ciréula: pipe conveying
S . fluid, under static equilibrium, as shown in Fig. M.I. According to the
’ " " dimensionless equation of static equilibr:l.mn in the zo-direction (i.e.

equati&u (2.84) derived in Chapter II), one can obtain the derivative
{

of I'Io at the free end, as follows:
o ' 30 20
ﬂﬂ =[r(n+ﬁz)(an+rnx+r(anl ran3)+ya 1| .
& 17 Yo' af 3 28> © g2 2.0y
M.1) T

»

Substituting the boundary condition at the free end given in

equation set (2.88), 1i.e.
2.0

o
‘ i (--—3- + ro )|l . . (M.2)
ot 3.‘; . Lo
< i - - ! . N
into equation (M.l) and neglecting the effect of gravity, one obtains
’ O N
M.3)

an . am
01 = -2, 31 o
T2 1 = Ty + ) G + r°n3)ll..

-~

) may be written as
~ and
e : S=gErrly - e

It is noted that the rotation é\t‘nthe free end about the Y,-axis

' On the other hand, from equations (0.10) an&\ (0.17) of Appendix O,
' ' o R » o - --l.'-. -.2 ‘ ' *
. 8 =3 (r, - sin 1) W+ le1> ' (M.5)
e _ A -
5 T )G M. 6)

. "o'o'“’éll.ws I, - (1 - cos r)u” .



Y M=2
¥ ~’ N ,
o Carbining equations (M.3) , (M.4) and (M.5) yields the value of
dIIo/dg at the free end v
dHO

S R R CEATC LR S LR

Here, use has beeh made of the fact that Ha'l = npll, since 0, = 0 at the
free eﬁd. Therefore, the boundary conditions associated with equation

{(3.84) are as follows:

IIol].=Hp|/l’ ,
Ho'o=nplj!, cos r, - (1 - cos r)i° , (M.8)
Tl _ 1 / .

__1 _ -2 2
o T L : (r, - sinr ) ( +erll) '

* which is equation set (3.87), appearing in the main text.
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i Fig. M.1 A Clamped-Free Incamplete Circular Pipe Conveying
é a Fluid and Submerged in a Quiescent Fluid Under
‘ Static Equillibrium
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APPENDIX N
DERIVATION OF COMPONENTS ALONG THE %_ AND z_-AXES OF ‘THE RESULTANT
OF* FORCES PER mmmhnoummm& CIRCULAR
" preE UNDER 'STATIC Eouﬁ.mam

By evaluating the reactions Rx and Rz from the internal fluid
(o] (e}
on the wall of an incomplete circular pipe under static equilibrium, the
equations of motion of the intemal fluid in this-case can be written

from equations (2.41) and (2.43) derived in Chapter II, as follows:

qu W AP, \
9 *) o} iti
- —_[Ap t=—+<)] +—=—=-+R -G + M =0
35 i 53 R, R, X, X fafxo
gu. w . F(N'])
L wmpy -+ ~ AP 55 =2+ +R -G, +Ma =0 |
35 A 38 TR, 2y | £z fazon J
° where 5 |
uau w
- 1l s 9
o v Bgy _UZ(R+ > ‘R | )
o oS (N.2)
. U2 au w '
8¢, T oR BS +§;) ‘ o

"o
are the f:ime-independerlt camponents of equations (2.17) and (2. 19)

In order to evaluate the approximate reactions at the. ends of
an inccmplete circular pipe and accordinq to the _assumption of small
deformations, one may use the undeformed centerline of the' pipe as an
approximate shape of the strained centerline of the pipe after static
deformation. Therefore, équat:fon set (N.l) is reduced to ’

Aipi/Ro + Rxo - GfXO'.+ MfUZ/Ro = ‘
- 3Q4Py) ‘ | RN . D)

as “+Rzo‘sz°‘ o =0.



N-2
0 Hence, one obtains the reaations Rx and R, per unit length
o] (o)
on the wall of an incamplete circular pipe under static equilibrium due
to the internal fluid, as follows: "
' 1 2
R, =-g (P, +MUT) +G -
. Xo Ro iti fxo .
id~ ’ 1] (N.4)'
R, =-3z (AP,) +G_ .
zZg a "i'i fzo

If it is assumed that the pres:suz:e distribution of the internal

flL_lid is linear along the length of the pipe (i.e., assuming a constant

3 preésure drop per unit length), one may write.
d(AiPi)
AP, =AP | +|-—-——|Rbe. (N.S)

i1 i"i'L ds

Moreover, the pressure-distribution of "the surrounding fluid acting on

0 the external lateral surface of the pipe may be replaced by the buoyancy
he™
force and the tensions A oPelo and AP elL applied on the faces at the
ends of the pipe, as shown in Fig. N.1l. .
Finally, camponents along the X" and 2z o-axes of. the resultant

\ for forces per unit length acting on an incomplete circular pipe under

s'tatic‘equilibrimn may be obtained as follows 2\

‘ A.D.) ;
i i *
=- & mp | +m? v |22 1 rR@)+ G
‘ - qxo o 1i7i'L f o X, !
S aap) F (N-6)
. q, =-—iL 4 \
2z, as 2, ! ’ J
* *
‘ where ‘Gxo and Gzo are 'defined by equation set (2.57) »in Chapter II.
. For convenience, we set |
=1
o _ %= r Byl vMh) L
L ° - (N.7)
, - d(@a,P .
o q = 1288
‘® S

g ¢



which are ‘ccnstants. @erefore, we can rewrite cmponents‘y qxo and qzo
* in another fom, )
G T et G L
T . C (N.8)
qzo =qg + Gzo . . > |
Y ‘ "

Because the coordinate system has been chosen, then the

resultant of forces per unit length acting on an incamplete circular

) ~
pipe under static equilibrium condition is as shown in Fig. N.1.

-

s e
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Fig. N.1 Fbrces Acting on the Incanplete Ci:cular Pipe Under
Static BEquilibrium
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Consider a clamped-free incamplete circular pipe under static
equilibrium as shown in Fig. O.1. Thg resultant of forces per unit
lengtl;1 acting on it has been derived in Appendix N. JIf the effect of
gravity is neglected, the components along the X5 and z,-axes of this

resultant of forces can be written as follows:

q == (g +a® -0 _ 9
s ° B (0.1)
9 =%

where ' ‘
i U
% =& (APyyg, * Mfuz )

-- a (0.2)
d@pP,)

9% = 17as | /

- and @ and @" are the angles defined in Fig. O.1.
To obtain the rotation at the free end using Castigliano's
- theorem, we place a moment M; around the yo-axis as shown in Fig. O.1,
which is finally going to be set equal to zero. In this case the
, ‘
+ bending mament around the yo-axis at any cross-section C is given by
I
' e 2 * *
=M +RAP| (l-cos 8) + R%(1-cos 6 )de .
Myolc o "ooe L, 5 qzo o
. - 0 2 *k . * ‘
+ f RS sin@ @9 .. ‘ (0.3)
| . I %

Substituting equation set (0.l) into equation (0.3) yields

'

1



T
}'\ .

. 0-2
- ) 8 5 S e .
M, | = M +R AP (1-cos 8) + [ q RS (1-cos 6 )48 .
oC o .
. '6 2 * . * *:
Ty - ‘f"Ro [q(= +q, (6-8)] sin @ de. (0.4)
o) N .

Therefore, by evaluating the above integrals, one obtains *the’ kending ‘
moment M, | as ' ;

M, i = M, + R (AopelL,- qR,) (1 = cos 8) . (0.5)
. o¢ L]

The total strain energy of the pipe is

U=z R_de , . (0.6 .
g Myolc O ’

’ whel:e‘ X, is the total angle subtended by the incomplete "ring (Fig. 0.1). 5
According to the Castigliano theorem, the rotation of the cross-section

of the pipe at the free end abmttheyo—axiscanbewtittenas
" ‘ (

' A1 . :
? $ fmo . | . (0.7)
Cambining equations (0.5), (0.6) and (0.7), and evaluating the
mte:grél,meobta.insthemtatim . | ’ oo o8
R, :
§ = g7 M, + Ro(Adpe[L - R4 (r, = sin r )] . (0.8)
Now, setting M, equal to zero (since no moment is actually
applied at the free end) and substituting equation set (0.2) infx; (0.8)

yields | 2
‘R
0
) § = -5 MQU“+AP,| - AoP.lr) (r, - sin ) (0.9) ‘
or .
- 2o \ .
§= - (u“ + J(r.-sinr) . , (0.10)
% "p 1" o o
&
. &

fad 2

]

LT J



To obtain the axial force 0, at the clamped end, a force
(o) 4

axis yields \ i

balance along the'Az'--

"
= = [e] . " e
AP o+ A Pealp, cos £ + ‘j; qzo cos (Az}, Pz )R d8.

r J
+I°-qx cos(?z.é&;)l!odﬁ, (0.12)
o

- (o]

and from Fig. O.1 one can write

L
\
B ’ "; cos(ﬁo,ﬁfb) = sin (r, -8 ,
j — _ L,
- 5 — -
) cos(Azl, Pz ) =cos (r,-8), {0.12)
- * '
e\\ = e - 9 .
’ o’

Canb@ing equations (O. 11), (0.12) and (0.1) and evaluating
the integrals, one obtains the axial force

ozl

o =-ap.|, + AoPeIL cos r, + R q.'(1-cos r) + rRq. (0.13)

On the other hand, we note that the value of AiPi at 1”:he clamped end
can be written as !
AP |, = AP [ +ag (KR, o (0,14)

Finally, ccmbining equations (0.2), (0.13) and (0.14) yields.

onlo ( 1Py~ APe) | = B4y - AP cos £, + Mf"’2 (1~cos £y),
” s , 0.15)
and the canbined force at this ends is given by L '
. Pl =-+&p; - AR cosr, -MU® (1-cosr). (0.16)
Therefore, the dinensionless conbined force at £ = 0 1s ‘
‘ 1| T[pllcosr -3 (1 -cos x). (0:17)
Y
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APPENDIX P

BOUNDARY CONDITIONS ASSOCIATED WITH BQUATION (3.84) FOR A CLAMPED-CLAMPED

INCOMPLETE CIRCULAR PIPE UNDER STATIC EQUILIBRIUM CONDITION

Consider a clamped-clamped incomplete circular pipe conveying
fluid dnder static equilibrium, as shown in ;Fig. P.l. According to

Appendix M (BEgq. M.l), the derivative of I, at the end (£ = 1) can be

‘ .
written as —~ - = )
0. 30 2 o’
-an an an
_0o - =2, 1 o 1 3
T 117 [Folly + 8D g~ + xn3) + 5 2 | 0 a2
' . + Yo, ]Il . - (P.1)
o

Substituting the boundary condition at the clamped end (£ = 1)

given in equation set (2.86)) i.e.,

an° ‘
1l O, _
(ag + ron3) =0, \ (P‘-Z)
into equation (P.1), and neglecting the &ffect of gravity, one obtains
dHo 33n§ - a?ng
T =5 23 | To g2 ) (P.3)
“ It is noted that equation (2.51) in Chapter II can be written
in dimensionless form as '
L%, 20 9%
P 1
9g™ ]2

On the other hand, based on the .small-deformation assumption, we may
use the initial centerline of the pipe as an’ approximate shape of the
deformed centerline aftsr static deformatioh. Then, we obtain the
forces Qx and Qz at the jlam?ed end (£ = 1), as follows: _

wh



p-2

: °'L’“f”2+‘A11 ”L' | -
’ (P.5)
Qx,L = 0.
)
as shown in Appendix Q. -
By cambining equations Q(P .3), (P 4) and (P 5), one obtains
the derivative of I, at the end § = /
| dII' ‘ o
a—Ep- ll =0. . . ' (P.6)

b‘ence, the boundary conditions associated with equation ('3.84) for a

clamped-clamped incamplete circular pipe are as follows:

r[o|l== 3‘-12 ’ i
. e
v o . ' -
& h=°0. ) ’

L

‘which is .equation set (3. 88), appearing in the main text, and Wthh

applies when gr:avity is neglected
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APPENDIX Q ] '
@ICUIATIQVOFIHEFWESQxAM)QZATmEﬂDOFACLAMPED-CLAMPED
INCOMPLETE CIRCULAR PIPE (INEXTENSIBLE CASE)

o %

Consider the free-body didgram of a clamped—clamped inoanblete

circular pipe conveying fluid, as ‘shown in Fig. 0.1. The forces and

maments acting on it consist of the. reactions applied at the ends and the
resuitant of forces per unit length acting on the pipe.which is derived

N

in Appendix N. . !
If the effect of gravity is assumed to be negligible, one may
write the components along the x - and z_-axes of this resultant of

forces as o . )
§x°=-<qc +g, (0 - 8" 4
' .o T (©.1)
. ‘_:Izof.qs'g ’
" ‘where N '

9e = %’ (APl + Mfuz) 2

Q -

' : - ©.2)
d@,P,) .
= ,_(_1_1, | -

qS ds [

) . ) ,

and 6 and " are defined in Fig. 0.1. . ) .

Fram Fig. Q.1 thé bending mament around the y -axis at any

cross-section ¢ is given by

8
. . 2 » * ok
+
Myolc +R°(Qz AOPe)l (1-cos 8) + RonlL sin 6 + (j; q’zo Ro(l-cos e lde

+j'q Rsin9 ae” .. —0.3)

O




8]

. 5
- Q-2
- f- ) )
o . Substituting equation set (Q.1) into (Q.3) and evaluating the
integrals yields the moment Lo -
Myolc = MR (Q A P.) II“(l-cos 8 +RYQ |, sin® |
. T gR2 ‘
{ RS a, (1-cos 8). (Q.4)
v - n - ’/ . - -
) Therefore, the total strain energy of thé pipe can b€ written as
ro v _\\ )
N = 1 - 2 ~,
U=g53" | My0|c R, d8 \.(Q.S)

e !

According to the Castigliano theorem, and the conditions at
the clamped end (i.e., the deflection and the slope of the deflecticn

curve must be zero), one obtains the following:

]

a0 _ ]

BMO !

0, >

ST NG

[

o . 20 g, (©.6) -

aQZlL ‘ .

oU

= = 0.

aQxIL

p

Carbining equations (Q.4), (Q.5) and (Q.6) yields

r
[ m+R (0 *AR,) | (1~cos 6) + RO, |, sin 6 - qR:(l<cos 6)1d8 = 0,
0 M - .

(1~cos 8) + RonIL sin 8 - quc(l—cos 8)]

‘T .
o I s
({ l’Mo"'Ro (gz+AoPe) I L

(l1-cos 8)d8 = 0 , : 6}
>

r » -
o 2
c{ [M°+RO(QZ+AOPe)lL (1-cos 8) + RonIL sin 8 - Roqc(l-oos 8)) Q \

sin © do = 0. | C©.7)

~

Then, evaluating the integrals, one obtains
. :

~




-3
— l ! A. 2 _ [N
Ty + 3R, (0, A P,) 'L * l:'Roox.IL - &R, 49, =0,
Lo . : . >,
2 , o
aM_ + R (O +AP)[, + RO | -cRo.q =0, r o 10.8)
) . . : 2 —’ 8 ¢
b, + dRo‘Qz":Aope)'lL + eRonlL’" R, 9, =0, *
3 .
where
o ) u
a= (ro - sin 'ro)_,
L= (1 - COS.ro)* ',
- (3, - gin (B0 4
- ¢= (r,-2sinr, +7sin 2r)) , ' (Q.9)
\ - - . "
- ‘ o d=71-cos r, -3 sin 1..0) '
"1' _ .L _ l . -~ 0.
‘ . . e=3 (r,-3sin (2 rq)).‘ 1 J.
By solving equation set (0.3), one 6bta}ins the reactions, as
follows: '
: 0 I =0,
L .
¢ X S ,
Qlp = Afelp *Rodo v - o - R
& . £ & ' . -
N % = 0 , ' - 'J ’ .
: . ']:‘.l'serefqre,'°comb:'mabtioni of equationé, (Q.2) and (Q.10) yields '
\ e : \ :
° Qle =0 ’ - ) '
. . Qz'L = Mfuz* +"(Aipi = Bofe) IL rr | (Q‘l})
o M =0.
R )
$ ]
"i . M . N
,\1 @, ° ° ¥

badiR e ot A T I I
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i to show the reaction forces and maments acting-on it)
j 3
?
[
:.‘.,\ . \A



o'

t

R-1

i APPENDDt R. ,
BOUNDARY CONDITIONS ASSOCIATED WITH EQUATION” @. 84) FOR \exmm-pmm
OR PINNED-PINNED mcom.m'z CIRCULAR PTPES UNDER STATIC Eoun.maxm
: CONDITION -

-5 »

Consider a clamped-pinned incamplete pipe conveying fluid under
static equilibrium, as shown in Fig. R.l. Using equations (M.1l), (M.4)
and (2.51), the derivative of I at the pinned end, £ = 1, can be written ’

as

dn, . 1.2
dE- Il =[x,y + 06 =15 57

= Ig) " (R.1)
where § and Qle are the rotation and the shearing force in the x-direction
at the pinned end. The effect of gravity has been neglected.

' - Prom Fig. R.1 anq Appendix Q0 the moment around the yQ-axis at

any cross—-section c¢ is given by

M, | =R, (Q+Ap)l (1-cose) +RQ [; sin @ - Rq (1~cos @), (R.2)
oc

where in this case M = 0 because the end is pinned.

The total strain energy of the pipe is -
r .
Q :
5L 2
U= %5 I MYolc R, de . R.3) ‘
Using Castigliano$ theorem and the conditions at the pinned end’

(i e. the deflection must vanish) one obtains as follows:

30 ;

s =0

Ol ‘ :

- ’ R.4
20 s > » (R.4)
aole N *
L J

Prad : ,



R-2

< v

E By-c&nbining equations (R.2), (R.3) and (R.4) and,e\}aluating

the lnteqrals, one obtains - )

2 -
R, (Q, A P) IL + dRonlL - R, q, =0, .
“ 2 o o (R.5)
. R, (Q,*A;Pe) IL * e‘RoniL - &R, qc_—r'-O ’ ‘
where i ° o
_ .3 ) } '
\ c-(-é-ro-ZSinro&zsm (ZrO)). ‘
d= (1-cos r,-3sin’r,) , i (R.6)
Ce=d 1
e=35 (ro 5 sin (2ro)) .
" From equation set (R.5), we obtain the forces 0, and 0 at
the pinned end \ o
Q I =0,
X L 2 [ 38 _ (Ro7)
O,lp =M™ + AP, - AR ;- . L

To obtain the rotation at the pinned end (£ = 1) we place a

fictitious moment M, around the yo-axis at this end. In this case the

‘mament around the y axis at any cro®s-section ¢ is given by

— \ | \ 2
‘ Myolc =M, +R, (szAoPe) lLl(l-cos 9)\+ROQXIL sin 6-Ryq_(l-cos )

‘ o N (R.8)
The total strain energy of the pipe‘is again give by “
0= -2%—1- gro Msz'olc' Ry, - - (R.9)
and the rotation at the pinned end ’ o
s=3 . | (R.10)
o . :

Finally, cambining equations (R.7), (R.8), (R.9) and (R.10)

yields the rotation at the pinned end
) . ‘ ' .
§ =0. (R.11)

¢

=



~R-3 -
o Hence, the boundary conditions associated with equation (3.88) are
any | -]
, & 1 _ ,
. PRI
i _ =2
Tl = .
/
L. It is noted that these boundary conditions alsg apply to a
pinned-pinned i.ncanplete circular pipe. . .
¢
C *
J
. , .
— > ) /
y ,
1
N\ : 2, N )
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Fig. 1 (a) A Clamped-Pirmed Incamplete Pipe éonveying Fluid
| (b) Forces Actinq on the Pipe in (a).




LEVEL 1.4.0 (OCT 1984) VS FORTRAN
RE“ST!D OPTIONS  (EXECUTE): Nooecx.musr.opﬂz),Norxps,msp,m,eosm.cosm,yorssr.mrr,msm

APPENDIX S -

v COMPUTER PROGRAMS FOR THE s
INEXTENSIBLE " THEORY .

-

DATE: AIB 25, 1986 TIME: 13:41:31

WTIGB IN EFFECT: NOLIST MAP EF  GOSTMT NODECK SOURCE TERM OBJECT FIXED NOTEST NOTRMFLG

ISN
1SN
ISN
ISN
ISN
ISN
ISN
1SN
ISN
ISN
ISN

. ISN

ISN

ISN

IsN

ISN

ISN

I8

ISN
ISN
ISN
ISN
L4 -

NGOSYM NORENT NOS| AUTODBL.{NONE)  NOSXM

OPT{2) LANGLVL(77) NOFIPS  FLAGII) "NAME(MAIN ) LINECOUNT(60) E;HARLEN(SOO

n

L IR JR SR I T TR JE Y - TI £ ITTTAN |

c 00013

c FINITE ELEMENT PROGRAM OF INEXTENSIBLE THEORY 00014

c FOR IN-PLANE MOTION 00015

¢ { CURVED PIPE CONVEYING FLUID ) 00016

c 0017

c 00018

c MAIN PROGRAM 00019

c * 00020

1 IMPLICIT REAL®8(A-H,0-Z) 00021
4 OIMENSION ems.s).En(s.s),exts.é).moeu.m) RO(10),ELENG(10) 00022
3 DIMENSION GH(Z?.Z?),GD(27;27),GK(27;27):011(54;56):0&&(54»56) 00023
[ DIMENSION BETA(54),WK(7600) b 00024%
5 COMPLEX#16 EIVALU(54),EIVECT(54,54) . 0002%
6 COMMON /EMDK/EM,ED ,EK 00026
7 COMMON /COEF/XPHIA ,XPHI ,XH . 00027
8 DATA RO /10%3.1415926500/7 00028
9 00 9999 LtL=22,2 _ 00029
10 NOT =27 . ’ 00030
11 NET =8 : 00031
12 NODPE=6 00032
13 NOT2=2#NDT . 00033
Czazugxzzaz ! 0003&%

C NODE DATA 5\ 00035
Csssazxzuxss . 00036

16 —— PRINT 100 00037
15 100  FORMAT('Y‘,8X,'IN PLANE MOTION (CLAMPED-CLAMPED)', 00038
» /7> 8X,'ELEMENT CONNECTIVITY:*, . 00039

» /7 20X, 'ELEMENT NUMBER®, 20X, *NODE',//) 00040

16 00 101 I=1,NET . . 00041
(.azsm=ua N 00042

C OATA FOR LENGHT OF ELEMENT 00043
CEXEEREXIIRATIRTIIIIAICTTRIIR s . 00064

17 ELENG(I)=1.D0/0FLOAT(NET+2) . 00045
18 DO 102 J=1,NDPE « 00046
19 102 HODE(J,I)=3%(I-1)+J 00047
20 HRITE(6,103)X,(NODE(L,I),L=1,NOPE) ! 00048
21 101 CONTIMUE . 00049
22 103 FORMAT(29X,12,10%,6(13,2X)/) 00050
CINNEZEARIEIITR B ITNIASRTIIENIZITTTRNSAY . 00081

C FORMING THE DIMENSIONLESS PARAMETERS . 00052
CAIAEERAIRANAEAREIZITINCRTIRINEZATIZRTNIISS s 00053

23 VELU 2RO 1 }%OFLOAT( LLL) 00054
24 XPHIA®0.000 00055
25 XPHI =0.5D0 » 00056
26 XN 20.0D0 00057
27 PI  =0.000 00058
28 KRITE(6,106 IVELU,XPHIA, XPHI ,XH,PI,RO(1} . ° 00059
29 106 FORMAT(//,10X, 'DIMENSIONLESS PARAMETERS:',///10X, 'DIMENSIONLESS ',00060

#*VELOCITY=",012.5,//,10X, 'BETAA2',D12.5,"',', '*BETA=",012.5,',"', 'H=:00061
%,012.5,//7 510X, 'PI=* ,012.5,'5 ', 'RO=*,D012.5,/) 000%

13



ax”

LEVEL 1.4.0 (OCT I384)

= ISN

70
71
72

7%
75

*....'-..1...-..-.-z.--......s.....-...‘-o.......5---.--.-.‘.....-o--7.i...---.l

VS FORTRAN

- €

=82 t 2BAXIRNALLREABEN

c,

C ESSAMBLY OF ELEMENT MATRIX YIELDS GLOBAL MATRIX

c=

107
Cxzaxx

00 107 II=1,NDT
00 107 JJ=1,NOT
eM(1I,JJ)30.000
6011I,JJ)=0.000
6K(IX,{J)=0.000
CONTI

XELENG=ELENG(1)

ROQ  =RO(1)

CALL ELMDKM(XELENG,YELU,RO00)

00 333 JG=1,3 >
JE23+JG

00 333 KG*1,3

* KE23+KG

GM( JG ,KG )=GM( JG,KG J+EMI JE ,KE )

GOl JG,KG )=GD( JG,KG)+EDI JE,KE) ,

333

Cxxxxx

109

Cz=x

134

6K JG,KG)3GK( JGKG ) +EK(JE KE) X,
CONTINUE N

D0 109 Lal,NET

XELENG=ELENG( L)

ROG =RO(L)

CALL ELMDKM(XELENG,VELU,R00)

D0 109 JL3l,NDPE

00 109 KL=1,NDPE

. JG=NODE (JL,L)

KG=NODE (KL,L)
GM( JG ,KG )3GM( UG, KG ) +EMIJL ,KL )
GD(JG,KG )=GD(JG,KG)+ED( JL ,KL)
GK{JG,KG )3GK(JG,KG )+EK(JL ,KL)

CONTINUE

XELENG=ELENG( NET)

ROO  =RO(NET)

CALL ELMOKM(XELENG,VELU,RCO)
00 334 JE=21,3

JGaNDT+JE-3

00 334 KE=1,3

KGaNDT+KE~-3

GM{ JG ,KG }2GM{ JG ,KG ) +EM( JE ,KE )
60( JG,KG )2GD( JG,KG ) +ED( JE ,KE )
6K( JG ,KG )3GK( JG ,KG }+EK( JE ,KE )
CONTINUE '

Czmzazzxa

C FORMING THE AUGMENTED MATRIX OF M,D,K c

c

120

: c’.l’l:=8"’=’ll====:3:’:HSSSSSHISSISIBSIICII-l'c

00 120 I=1,NDT2
00 120 J=1,NDT2
GMLI,J)=0.000
6KK( I ,J)=0.000
00 121 Il=1,NOT
II=NDT+I1

*

DATE: AUG 25, 1986

TIME: 13:41:31

00063
0006¢
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
000758
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085,
00086
00087
00088
00089
00090
00091
00092
00093
000%
00095
00096
00097
00098
00099
00100

‘" 00101

00102

» 00103

00104
0ol08
00106
00107
00108
00109
00110
00111
00112

00113"

00114
00115
00116
00117
00118

N\

L

NAME: MA
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v
LEVEL 1.4.0 (OCT 1964) VS FORTRAN DATE: AU 25, 1986 TIME: 13:41:31 ~ ~NAME: MA
y .-600.000100000000CZO0.0'I‘.0300‘00I.."..lb..t.lsi.llOl.lo"..".l'."'.'lcl'c'
\( . *

ISN 76 GMM(I1,11)=1.00 00119 .

ISN 77 GKK(X1,1I)=1.00 00120

ISN 78 00 121 J1=1,NOT 00121

ISN ~ 79 JJENDT+J1 - 00122

ISN 80 GXX(1X,J1)=-GKI(I1,J1) ' * 00123 .

ISN 81 RMIII,JJ)2GM(I1,J1) 00124

ISN 82 GKKEIX,JJ)2-GDII1,J1) 00125

ISN 83 121 CONTINVE 00126
CESSRIE2XTIRTIZXIIN 00127
C CALCULATING EIGENVALUES AND EIGENVECTORS 00128
CRESIEEEEINTILILIRLINTLIENSIANIAARERRIZINN - 00129

ISN 84 IA=NOTZ 00130

ISN 85 1BsNOT2 00131

ISN T 86 1ZaNDT2 00132

ISN 87 N =NDT2 00133

ISN 83 1JoB=2 00134

ISN 89 CALL EIGZF(GKK,IA,GMM,IB)N,IJ0B,EIVALYU,BETA,EIVECT,I2Z,HK,IER) . 00135
Caznzszsxzan _ . 00136 .
C EIGENVALUES ) 00137
CE=SSsEz32ESIZTSINSRRAIISN * 001338

15N 90 00 165 J=1,NDT2 . 00139

ISN 9 EIVALUGJ )SEIVALULJ )/BETA(J) 00140

ISN 92 145 CONTINUE _ ‘ 00141

ISN 93 CALL ARRANG(NOTZ,EIVALU,EIVECT) 00142

ISN % CALL OUTEIGINOTZ,3,EIVALU,EIVECT) 00143

ISN | 95 9999 CONTINUE 00144

ISN 9% sToP ¢ 00145

ISN 97 END . 00146

) -
4 A




i}

VS FORTRAN DATE: AUS 25, 1986

GOSTMYT NOOECK  SOURCE
NOSXM

TIME: 13:41:32
TERM  OBJECT FIXED NOTEST NOTRMFLS |

LEVEL 1.4.0 (OCT 1984)

OPTIONS IN EFFECT: NOLIST MAP  XREF
: - NOSYM NORENT NOSOUMP AUTODBL ({NONE )

' OPTI2) LANGLVLI77) NOFIPS FLAGIXI) NAME(MAIN ) LINECOUNT(60) CHARLEN( 300
LITRS I SIS JIPI R PO [ JU Y T TR 25 TT Ty )
ISN 1l SUBROUTINE ELMOKM(ELENG,VELU,R0) 00147 -
c 00148%n2
C SUBROUTINE ESTIMATING -MASS MATRIX 00149
c \ -DAMPING MATRIX 00150
c ~STIFFNESS MATRIX h 00151
c - Co 00152
ISN 2 IMPLICIT REAL®S(A-H,0-Z) . N 00153
ISN 3 DIMENSION EM(6,6),ED(6,6),EK(6,6) ‘ 00154 '
ISN 4 DIMENSION RJ1(6,6),RJ2(6,6),RJ3(6,6),RIN(6,56),RI5(6,6), 00155
2 RJ6(6,6),RJIB(6,6),AINVEL 656 ),AINVET16,6) 00156
ISN 5 COMMON /EMDK/EH;RD »EK - 00157
ISN 6 COMMON /COEF/PHIAYPHI,VISDAH 00158
ISN 7 COMMON /MAJ/RJL,RJZIRJI3Z,RIG,RIS,RI6 ,RIS 00159
ISN 8 COMMON /INV/AINVE ,AINVET 00160
ISN 9 ROZ=RONN2 ", B 00161
ISN 10 RO4=ROM*G *Q0162
ISN 1 . PHI12=0SQRT(PHI) , 00163
ISN 12 VELU2aVEL 2 00164
c . ot - 00165
C CALL MATRICES J1-8 00166
c 00167 \
ISN " 13 CALL GENMAJ(ELENG) 00168
c 00169
’ C CALL INVERSE OF THE MATRIX A \ 00170
c - 00171
ISN 14 CALL INVERS(ELENG) B} .o 00172
C323AIIIXIITLIITITITIIII=N N P 00173
C FORMING ELEMENT MATRICES .. 00174
CIEEZZNITXATIITBIIZIZXITDATIRIAESN : 00175
ISN 15 DO 80 I=1,6 00176
ISN 16 Q0 80 J=1,6 . 00177
ISN 17 ED(Y,J)=RJ2(I,J)+RO2¥RJILLI,J) 00178
IsN pt.} EM(I,J)=(1.D0+PHIA IXEDII,J) . 00179
ISN 19 ED(I,J)=(2.D0%VELURPHIL2 )IR(RJS(I,J ) +ROZRRIG(X,J) )+ 00180
» VISDAHXED(I,J) - oolsl
ISN 20 EK(I,J)3(RIBII,JI+ROZHRIO( T ,JI4RI61JH1) I4ROMNRIZIT ) ) e 00182
L] VELU2%(RJS(I,J)+RO2%(RIZ2( X ,J I~RJB(I,J))~ROGHRILITI,JI)) 00183 e
» ~VELU2M(RJE6(TI,J)+ROZ2H(RJ2(I,J)-RJIB(I,J)-RO2¥RJIL(I,J})) 00184
15} 21 8o CONTINUE 00185
c 00186
- C ELEMENT MASS MATRIX 00187
c . ° 4 00138
ISN 22 CALL PRODMA(6,6,6,AINVET,EM,RJ4) ’ 00189
ISN 23 CALL PRODMA(6,6,6,RJ4,AINVE,EM) 3 00190
. ¢ . 00191
C ELEMENT DAMPING MATRIX 00192
¢ 00193
ISN 2% CALL PRODMAL6,6,65AINVET ,ED,RJS) 00194
<ISN s CALL PRODMA( 6,656 ,RJS5,AINVE ,ED) - 00198
¢ - 00196
C ELEMENT STIFNESS MATRIX : ‘ 00197
c , 00198
5
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LEVEL 1.4.0 (OCT 1984) VS FORTRAN . OATE: AUS 25, 1986  TIME: 13:41:32 - NAME: EU
'y'..‘ll.:l:!'l.!l'z..".l..‘!!""l'l".'i!'.l'isilti.‘Q.Qilll\i.'l'070*ti'\\‘°l0°

ISN CALL PROOMA(6,6,6,AINVET ,EK,RJ4 ) 00199 ",
IsN 27 CALL PRODMA(6,6,6,RJ4 ,AINVE,EK ) 00200
ISN . RETURN . . 00201
ISN 29 END . 00202

- * \/

’ v "
L
L]

o




LEVEL 1.4.0 (OCT 1984) VS FORTRAN

.
i

DATE: AUG 25, 1986 TIME: 13:41:32

OPTIONS IN EFFECT: NOLIST MAP XREF  GOSTMT NODECK SOURCE TERM OBJECT FIXED noTEST NOTRMFLG

ISN

ISN
ISN

ISN
ISN

IsN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
N
ISN
ISN
ISN

ISN
ISN
SISN
ISN

I

me wWwe

L)

10
1
12

13

14

16
17
18
19
20
21
4

23

. %

26
27
28
29
30
3

32

' 33

38

NOSYM NORENT NOSDUMP AUTQDBLINONE)  NOSXM

OPT(2) LANGLVLI77) NOFIPS FLAG(XI) NAME(MAIN ) LINECOUNT(60)

.ooc-'-.alco-u--o.chaoccococ3|on.---o-90n-cu-0005-.ooono-a‘---o-o-un?t.aooooota

SUBROUTINE ' GENMAJ(ELENG)
SUBROUTINE GENERATING MATRICES J1-J13

o000

IMPLICIT REAL¥8(A-H,0-2)

DIMENSION RJL(6,6),RJ216,6),RIZ(6,6),RI4(6,6),RJ5(6,6) :RJGN;G )s

- " RJB(6,6),AJ2(6,6),AJ3(6,6),AUS5(6,6)
COMMON /MAJ/RJL,RJZ,RJI3,RJ4,RJI5,RJ6,RIS
DATA AJ2/7%0.0D00 ,5#1.00,0.000,1.00,4.00,1.500,1.600,5.00,

» 0.000,1.00,1.500,1.800,2.00,15.00,0.000,1.00,1.600,
* 2.00,16.00,2.500,0.000,1.00,5.00,15.00,2.500,25.00/
DATA AJ3/21%0.000,36.00,72.00,120.00,3%0.000,72.00,192.00,
» 360.00,3%0.000,120.00,360.00,720.00/

DATA AJ5/13%0.000,5%2.00,0.000,3.00,%.00,4.500,4.800,5.00,
» 0.000,%.00,6.00,7.200,8.00,60.00,0. 000.5 00,8.00
» »10.00,80.00,12.500/

00 56 I31,6

00 56 Jz1,6 e

RJ21I,J)3AJ2(1,J)

RJ3(I,J)3AJ3(1,J)

RJIS(I,J)2AJ5(1,4)

RJ6(I,J)=0.000
RJ811,J)20.000

56 CONTINUE

- RJ2(3,3)3RJ2(3,3)/3.00
RJ2(3,612RJ2(3,6)/3.00 .
RJ216,3)3RJ2(3,6) - ’ .

* RJI21G,6)3RI2(4%,6)/7.D0 )

RJ206,4)2RJI214,6)
RJ215,5)2RJ2(5,5)/7.D0
RJ2(6,6)2RJ2(6,6)/9.00 .

c

c GENERATIW MATRICES J1,J2

111 oo 1 I=1,6 ‘
Do 2 Js=},6 ' .
’ < Kaled-1 . -
2 RJL( I ,J)3ELENGH®{ K }/DFLOATIK !

IF(I¢EQ.1) GoTO 1

00 S JJ=2,6 o

KK2I+JJ~3

RJ2(T ,JJ)=RJI2( X , JJ IRELENG™#( KK }
CONTINUE

GENERATING MATRICES J3

(s Ny Ke RN ]

00 10. I24,6
DO 10 J=4,6
Kzl+J=-7
10 RJ3(1,J)3RJI3C T ,J IRELENGH(K )
c

C GENERATING MATRICCES J& AND JS

CHARLEN(500

00203
00204
00208
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
aQ2la
00219
00220
00221
00222
00223
00224
00228
00226
00227
ao228
00229
00230

00231 -

00232
boass
00234

00236
00237
00238
00239
00240
00261
00242
00243
00244

" Q0245

00246
00247
00248

© 00249

00250
00251
00252
00253
00254



NAME: GEI

LEVEL 1.4.0 (OCT 1964) VS FORTRAN OATE: AUG 25, 1986 TIME: 13:641:32
nnx.zgsosarna
- ¢ ' . . . 00255
ISN 36 RJ4(1,1)=0.0D0 00256
1SN 37 RJS5(5,6)=RJ5(5,6)/7.00 00257
' ~ ISN 38 RJ5(6,5)=RJ5(6,5)/7.00 00258
1SN 39 DO 12 1 = 2,6 00259
ISN 40 RJ4(1,11)20.000 00260
ISN 41 DO 14 J1 = 1,6 00261
4 ISN 42 KaIl-1 - . 00262
ISN 43 KK=I1+J1-2 00263
ISN % 14 - RJA(11,J1)=( DFLOAT(K I#ELENGH{ KK ) )/DFLOAT(KK ) 00264
ISN 45 DO 18 J2 23,6 00265
ISN 46 K 3I1+J2-4 00266
ISN 47 18 RJ5(I1,J2)sRJ5( n,.:z INELENGW(K ) 00267
ISN 48 12  CONTINUE 00268
7 c 00269
C GENERATING MATRICES J8 AND Jé6 . 00270
- c . 00271
1SN 49 00 16 II=1,6 00272
ISN 50 K1 aIX+l . 00273
ISN 51 K2 sIIe¢2 . . 00274
. ISN 52 K3x II+3 -  __ _po27s
ISN 53 RJS(IT,3)%2. DONELENG( I )}/DFLOAT(II) 00276
' 1SN 54 RJB(IL,4 )26 . DONELENG( K1 )/DFLOAT(KL) 00277
" "ISN 55 RJS(II,5)312. DORELENGR®(K2)/0FLOATIK2) 00278
g’ ISN 56 RJB(II,6)220. DOXELENGH*(K3 )/DFLOAT(K3) 00279
o ISN . 87 IFi12.6Q.1) GOTOl6 . / 00280
ISN < 58 K 2XIX-1 00281
o ISN 59 KK=IX+1 . . 00282
ISN 60 RJ6(IX,4)%6. DONELENGHH(K ) 00283
ISN 61 RJG(TY,5)=( 24.DONOFLOAT (K JnELENGHM( nn/on.om II) 00284
IsN - 62 RJ6(IX,6)3160.DODFLOAT{K JRELENG##{ KK ) )/DFLOAT{KK ) 00285
IsN- 43 16  CONTINUE 00286
ISN 64 RETURN 00287
1SN 68 END ] 00288

3

e BT Y TR, -

A
*
,

:




T T
A
A

LEVEL 1.64.0 (OCT 1984) VS FORTRAN

- - - ¢ 1 v « e T Mg MW TR,
- LIRS ¢ wr e . . ., . LR 1 .
B < *
1 CE

-

OATE: AUG 25, 1986 TIME: 13:41:33

OPTIONS IN EFFECT: NOLISY. - MAP XREF GOSTMT NODECK SOURCE TERM OBJECT FIXED NOTEST NOTRMFL

ISN

IS
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN

ISN °

ISN
ISN
ISN

ISN

ISN
IN
IsN
ISN
ISN
ISN

e un

NOSYM NORENT NOSOUMP AUTODBLINONE )  NOSXM

0PT(2) LANGLVL(77) NOFIPS FLAGII) NAME(MAIN ) LINECOUNT(60) CHARLEN( $00
Moo i denneeinseZuoeneeeseBenneeneee®urierenesBeiieeroecbuorennseeid®eennne
. SUBROUTINE INVERS{ELENG) 00289
c. ‘ 00290
¢ SUBROUTINE INVERTING THE MATRIX A 00291
c . 00292
IMPLICIT REAL¥S8(A-H,0-Z) 00293
DIMENSION AINVE!6,6),AINVET(6,6),AL16,6) 00294 ¢
COMMON /INV/AINVE AINVET o 00295
DATA AI/1.00,2%0.000,-10.00,15.00,-6.00,0.000,1.00, 00296
1 0.000,-6.00,8.00,~3.00,2%0.000,.500,-1.500,1.500, 00297
2 -.500,3%0.000,10.00,-15.00,6.00,3%0. ooo.-ro 00,7.00, 00298 .
3 ~3.00,3%0.000,. suo.-l 00, .500/ : 00299
00 54 Isl,6 00300
00 56 J=1,6 . 00301
54  AINVE(I,J)3AL(T,J) 00302
00 50 I=4,6 00303 .
00 50 Js1,3 00304 .
JJ=Js3 00304
K 2=(I~J) . 00306 -
X 3ELENGH#(K) : 00307
AINVE(I,J )SAINVE( T ,J %X 00308
o AINVE(T ,JJ )3AINVE( X ,JJ WX 00309
50  CONTINUE ° 00310
. 00 51 I=1,6 . o . 00311
« 00 51 J=21,6 00312 .
AINVET(I,J )=AINVE(J,1) 00313
51  CONTINUE - 00314
RETURN 00315°
END . . 00316
» -
? «
| ; .
, .
s -
.-
» .
. . -
——————— -

s L

.
5
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. .
. \ '
) LEVEL 1.4.0 (OCT 1984) VS FORTRAN DATE: AUG 25, 1986
) ) , L ‘
OPTIONS IN EFFECT: NOLIST XREF  GOSTMT NODECK SOURCE  TERM
' NGSYM NORENT\NOSDUMP AUTOOBLINONE ) , NOSXM

TOPTIZ) LANGWL(77) NOFIPS  FLAG(I) NAME(MAIN )

L4 . +

ISN B O

SUBROUTINE PRODMA(M,L,N;A,8,C) v
c .
C SUBROUTINE MULTIPLYING MATRICES )\
. . . c .
ISN 2 . " IMPLICIT ' REALMS(A-H,0-Z) - -
ISN R DIMENSION A(M,L)},B(L,N),C(M,N) v
4 D0 90 1Is=1,M ,
8 DO 90 Js=1,N . .
.6 > C(1,J)=0.000 iy
7 DO 90 K=],L L Y
8 ) CILI J)ISCII JI+A(I K )HB(K,J)
” 9% CONTINUE .
10 *  RETURN
L1 END
L - >
4
: . ,;%
el - - P
° ' N < \
¢ i " .
. . ° o ’
, * ;4 . " R ! -
) . p ) -
Ay . ‘ R A ‘1 . /0«
N ' i ' A * ' ! -
v} ' ) 5 ) R4 ¢ '
I “ » ‘a
3 ) \ ’ [ s \ ¢ °
Y " < * » € " e
- ‘ !
o v ' \ - *
* * I o | . L
LA _‘ ¢ . " * .
: . R [ .- ¢ ) .
| - ° Y ¥ | { l
- . . " . o8
& @ ' . L
: N ™ ) '.‘ ¢ » - ) r
. v e ', 7 B
. ) " -
’ l,! ¢ o -
' 'y v i R o °
1 v

JIME: 13:41:33

OBJECT FIXED NOTEST NOTRMFLG

LINECOUNT(60)

00317
00318
00319
00320
00321
00322
00323
. 00324
00325
00326
00327
00328
00329
00330

LIXTRE JETP TRRPRPIPRY FPPRRPFITE IEERRTRTTL. IRRTPPPRRY. PRRPPRRREEY TRPRRRTIRY £1 JPPEa

4
q

CHARLEN( 500



a !

LEVEL 1.4.0 (OCT 1984)

OFTIUG IN EFFECT: NOLIST MAP  XREF
NOSYM NORENT NOSDUMP AUTODBL(NONE )

«

VS FORTRAN

OPT(2) LANGLVL(T77) NOFIPS

GOSTMT NODECK  SOURCE

DATE: AUG 25, 1986

NOSXM |
FLAGII) NAME(MAIN

)

.

TIME: 13:141:33

LINECOUNT{60)

TERM -0BJECT FIXED NOTEST NOTRMALS

CHARLEN( 500

‘.II.‘I..I.I.l.....z.l..."l‘3.llc.'..'Q.l....'..S!.l..0".6..Oﬂﬂill.l’l..".'..‘

1SN T -
Cc
c
¢
c

ISN 2

ISN 3

ISN- 4

ISN 5

ISN 6

ISN 7 -

ISN 8

ISN 9

ISN 10

ISN 11

ISN 12

IsN 13

ISN 14

SN 15

ISN 16

ISN 17 501

ISN 18

ISN 19

1SN 20

ISN 21

ISN 22

IsN . 23

ISN 2% 533

1SN 25 2001

ISN 26

ISN 27

SUBROUTINE ARRANGIN,X,PHI)

IMPLICIT REAL®8LA-H,0-2Z)

COMPLEX¥16 X,PHI,PHIN,EIMIN,XEX - |,

DIMENSION XU(N),PHI(N,N)
LA =N=)s

DO 2001 I=1,LA
EIMIN=X(I)

MIN=0IMAGI EIMIN!

JMI® =X

JF 3]+l .
00 501 MaJF,N

XEI 3X(M)

T

PR

IF(DABS{XHIN).LE.DABS( DIMAGIXEZI ))) 6OTO 501

JHI=M

AMIN=DIMAGI XEI )

EIMIN=XEI

CONTTINUE

XOJMI )=X(1)

X(I) =EIMIN

00 533 Lz1,N

PHIN 2PHI(L,JMI )
PHILL,JMI)2PHI(L,1)
PHITL,I) =PHIN
CONTINUE

CONTINUE

RETURN

END

SUBROUTINE ARRANGING EIGENVALUES FROM SMALL TO BIGGER
AND ARRANGING EIGENVECTORS CORRESPONDING TO EIGENVALUES

&

00331
00332
00333
00334
00338
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345 -
00346 -
00347 .
00348
00349
00350 -
00351 CoL
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361



‘e
P e

LEVEL 1.4.0 (OCT 1984)
NOLIST MAP XREF  GOSTMT NODECK SOURCE TERM OBJECT FIXED NOTEST NOTRMFLG

AP0 ESBTAR T e R e B

OPTIONS IN EFFECT:

ISN

ISN
ISN
ISN
ISN
13N
IsN
1SN
1SN
ISN
ISN
ISN
IN

ISN

ISN

ISN
ISM
ISN

]
1SN
IN
TSN
ISN
TSN
1SN

14
15
16
17
18
19

20
4]
22
a3
2%
L]
26

El

NOSYM NORENT NOSOUMP AUTODBLINONE)  NOSXM
OPT(2) LANGLYL(77) NOFIPS  FLAGII) NAME(MAIN ) LINECOUNT(60)

ST TR ER T L ATy AT AT e T
R .

VS FORTRAN DATE: AUG 25, 1986 TIME: 13:41:

5-11

33

CHARLEN(500

..l.-.'..1..0!....02!."'...'3.........‘.'....l"s......0..6'....l.'l7.'..".l.a

“€

SUBROUTINE OUTEIG(NOTT,N,X,PHI)

/

C SUBROUTINE TO PRINT EIGENVALUES AND EIGENVECTORS

c

N,
AN
-

540

"~ 550

541
Csas
c?
Casn

IMPLICIT REAL8(A-H,0-2)
DIMENSION X(NDTT),PHI(NDTT,NOTT)
COMPLEX¥16 X,PHI
PRINT 540
--FORMAT(/// 16X, ' 333 3FREQUENCIES2xan// )
H=NDTT/3
00 541 J131,M , ‘
J2=MaJ1 . . -
J3x2wteJl ‘
WRITE( 6,550 1J1,X(J1),J2,X(J2),J3,X1J3)
FORMAT(/,4X,12, 'TH' ;2D18.8,13, ' TH' ,2018.8,13, ' TH" ,2018.8)
CONTINUE
RBBVXIETVIND
*(3,2*) 3 IS VECTOR -
RABEXXXIZAINIIBIIIXIN
NN= NOTT/2
00 551 -JA=1,N,3
JB3JA+1

s JCaJA+2

560

562
561
551

WRITE(6,560)JAJB,JC
FORMAT(//,9%,I2,'TH Exsauvecron°.zox,xz.'ru EIGENVECTOR' ,32X,
» 12,'TH EINGVECTOR') §

DO 561 I=l,NN

HRITE(6.562)PHI(I.JA),PHI(I,JS),PHI(I:JC)
FORMAT(/4X,3(2018.8,2X))

CONTINUE

CONTINUE ©

RETURN

END .

-

00362
00363
00364
00365
00366
00367
00368
00369
00370 ’
00371
00372
00373
00374
00375
00376
00377
00378

00379

00380 .
00381 .
00382

00383 o
00384

00385

00386 ’

- 00387

00388 :

- 00389

00390

‘00391

00392
00393 3

. 0039%
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, X . . i bk 5 B 7 o
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LEVEL 1.4.0 (OCT 1984) ¥S FORTRAN DATE: AUG 25, 1986 TIME: 13:41:30

OPTIONS IN EFFECT: jMI.IST MAP XREF GOSTMT NODECKX SOURCE TERM  OBJECT FIXED NOTEST NOTRMFLO

ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

-~ ¢

VONCTVDLUWNW

- NOSYM NORENT NOSOUMP AUTOUBLINONE)  NOSKXM
OPT(2) LANGLYL(77) NOFIPS FLAG(I) NAME(MAIN ) LINECOUNT(60) CHARLEN( 500

*.--.‘-..1.-.......2.-.......3.-..u...Q........-5.4u..-..6......-..7.'.....:.8

00395

c ~ .
c SUBROUTINE TO PRINT MATRIX - 00396
c — \ - 00397
SUBROUTINE PRINT(N,A) 00398
IMPLICIT REAL*8(A-H,0-2) S . 00399
DIMENSION A(6,6) _. 00400
NRITE(6,22) N . 00601
22 FORMAT(//7,10X, ‘MATRIX J°,12,//) . , 00402
NRITE(6,23)((A(X,J),J51,6),I21,6) . 00403
23 FORMAT(/,6(4X,012.5),/) 0040%
RETURN ) 00405 N
END 00406 ¢ -
k)
-~ ,
A
¢ J
i E]
.
!
- ,0 } SN - -



o .

- : ELEMENT CONNECTIVITY:

o~

2TH
3TH
4TH
5TH
6TH

8TH

10TH

e,

LN

IN PLANE MOTION (CLAMPED-CLAMPED)

ELEMENT MUMBER

10
13
16
19

O N & wm & U N M

22

OIMENSIONLESS PARAMETERS:

OIMENSIONLESS VELOCITY= 0.62832D+01

PI= 0.000000+00,R0= 0.314160+01

=axaFREQUENCIES====

-0.42126077D-06
-0.42120077D-06
-0.50586683D-07
-0.505866730-07
0.118672090-05
0.118002080-05
0.108929560-05
0.108929560-05
0.207502600-04

0.207502600-04

11
14
17
20
23

0.403000080+02 19TH

=0.403000080+02 20TH

0.95835131D+02 21TH

-0.95835131D+02 22TH

0.175553090+03 23TH

~0.175553090+03 24TH

0.275228710+03 25TH

-0.275228710+03 26TH

0.39312542D+403 27TH

~0.39312542D0+03 28TH

NODE

.
3 4 5
6 7

12 13 14

18 19 20
21 22 23
2% 25

BETAA= 0.000000+00,BETA= 0.50000D0+00,H= 0.000000+00

-0.110727240~-03
-0.1107272¢0=03
-0.202390030-03
-0.20239003D~03
0. 1560315?0-0‘0
0.156031520-04
0.249056980-03
0.249056980-03
0.616793092-04%

0.614798090-04

26,

12

18
21

26
27 -

0.T29440580+0%
~07I29140530+0%
0.153566830+04
-0.153566830+404
-0.180719890+04.
0.180719890+04
-0.210375200+04
0.210375200404
-0.264320157D+04
0.243201570+0%

]

a



11TH
12TH
13TH
14T

16TH
17™
18TH

1TH EIGENVECTOR

0.122477470-04
0.313106040-03
0.416309370-02
0.582887650-04
0.52194101D-03
-0.825096160-03
0.957716060-04
0.134283440-03
-0.631691510-92
0.752580240-04
-0.53862977D-03
-0.596755680-02
0.174458630-10
-0.865329130-03
-0.431959110-09
-0. 75257993004
-0.538629850-03
0.59675562D-02
-0. 95771585D-00

0.134283330-03

.

0.340860180-04
0.945094160-03
0.157913310-01

0.210806040-03

0.25505736D-02
0.13557792D-01
0.51234712D-03
0.322988490-02
-0.127096290-02
0.79978064D-03
0.224065460-02
-5.177606329-01
0.9177608i0-03
0.761542540~11
-0.248138900-01
0.79978064D-03
-0.224065460-02
-0.17760632D-01
0.512347120-02

-0.322988490-02

s

\

2TH EIGENVECTOR

0.122677470-04
0.313106040-03
0.41630937D-02
0.562887650-04
0.521941010-03
-0.825096160-03
0.957716060-04
0.134283440-03
-0.631691510-02
0.752580240-04
-0.538629770-03
-0.596755680-02
0.17445863D-10
-0.865329130-03
-0.431959110-09
-0.752579930-04
-0.538629850-03
0.596755620-02
-0.957715850-04
0.13¢283330-03

-0.34086018D-04
-0.96509%4160-03
-0.15791331D-01
-0.210806040-03
-0.255057360-02
-0.13557792D-01
-0.512347120-03
-0.322988490-02

6:127096290-02
-0.799780640-03
-0.224065460-02

0.177606320-01
-0.917760810-03
~0.761542540-11

0.268138900-01
-0.799780640-03

0.22406546D-02

0.177606320-01
-0.512347120-03
no.szz9asa9n-oz

TETTTEE TN T T e
i . v
)

0.131943370-04  -0.532951310403 29TH  =-0.684317000-064  ~0.279028330404
0:1319@337D~04 0.532951310+03 30TH ~0.684317000-09 0.279028330+04
-0.61011173D-064 0.690573860+03 31fu‘ =0.382665180-04 0.318047160+04

, -0.610111730-04 -0.690573860+0% 32TH -0.382665180-04 :0.31804716000Q
-0.281598210-0% 0.872021250+03 33TH  -0.242999400-04 -0.3586§2£59f9§__
~0.281598210-04 -0.872021250+03 34TH _ —0.262699“?0-04 0.35866812D+04
0.172604640-03 0.106650290+04 35TH 0.12263305D-05 -0.394608130004
0.17260464D0-03 -0.106650290+04 36TH 0.122652650-05 0.39%4608100+04

-

P - T ras——

TR, e TRy < ey pase
.

.

S-14

—~



. s-15

0.631691500-02 =0,127096290-02 0.631691500-02 0.127096290-02
-0,582887560-04 0.210806050~-03 -0.582887560-04 ~0.210806050-03
0.521940900-03 -0.255057360-02 (1] .521940900-93 0. 2.5505736;02
0.825096500-03 0.135577920-01 0.825096500-03 -0,135577920~-01
=0,12267765D-04 0.340860190-04 =0.122477450~-0% -0, 340&60190-0‘0
0.313106000-03 =0.94509%$180-03 0.313106000-03 0.945094180-03
-0.416309280-02 ' 0.15791331D-01 -0.416309280-02 -0.157913310-01
7
’ N
4 .
- N / ’ ’
? ,4
. [
:’ [ 1
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‘ LEVEL 1.4.0 (OCT 1984) VS FORTRAN DATE: AUG 25, 1986 TIME: 14:24:46

REQUESTED OPTIONS (EXECUTE ): NODECK,NOLIST,0PT(2),NOFIPS,XREF,MAP,GOSTMT ,GOSTMT ,NOTEST ,NOTF ,NOSOUMP

TR

14

S-16

OPTIONS IN EFFECT: NOLIST MAP XREF GOSTMT NODECK SOURCE TERM  OBJECT FIXED NOTEST NOTRMFLG

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

o =
L S

ISN
ISN

ISN

ISN
ISN
ISN
ISN
ISN

“ISN

VAN PUNE

16

17
18
19
20

22

NOSYHM NORENT NOSOUMP AUTODBLINONE)  NOSXM

OPT(2) LANGLVLI77) NOFIPS  FLAGII) NAME({MAIN ) LINECOUNT(60) CHARLEN( 500)

R P S N R R [T OIpasy PPN 1 O

[~ ’ 00013
CHHHHHHINHEHHEHIHEHHHHBHHOHHEHEHHHHHHEHHHEHHEHHEHEHOHEHENEHHAHHROHHH 000 1 6
(> FINITE ELEMENT PROGRAM OF INEXTENSIBLE THEORY . 00015
c FOR OUT-OFF-PLANE MOTION 00016
c (CURVED PIPE CONVEYING FILUID) - 00016
£ HHHHHHEHBRRHHHHHHHHREHHHHOOEHHAHHHHHHHHHHHHHRHHHAHHERHHARHHRHHOHH 000 1 7
c 00019
c " MAIN PROGRAM 00018
c . 3 00019
. IMPLICIT REAL®8(A~H,0-Z) 00020
DIMENSION EM(6,6 ),ED(6,6 },EK(6,6),NODE(6,15),R0(15),ELENG(15) 00021
DIMENSION GM(45,45),60(45,45},6K(45,45),GMM4( 90,90 ) ,6KK{90,90) 00022
DIMENSION BETA(90),MHK(9900),PL(15) 00023
COMPLEX»16 EIVALU(90),EIVECT(90,90) 00024
COMMON /EMDK/EM,ED,EX Qoo2s
COMMON /COEF/XPHIA ,XPHI , XH,SIMA,CAPA 00026

DATA RO/15%#3,.1415926500/ Qo027

DO 9999 LLL=2,2 00028

NOT =45 , - 00029

NET =14 ¢ ' ‘ 0003Q
NDPE=6 00031
NOT2=2NOT 00032
fzzaxz=z=zzss=3 Id 00033
C NODE DATA 00034
C=3. s==333=3==Sy 009035
PRINT 100 , 00036

100 FORMAT( '1',8X, 'OUT~0F PLANE MOTION (CLAMPED-CLAMPED)®, 00037
% /7 ,9%, 'ELEMENT CONNECTIVITY: ', ! . 00038

» /720%, 'ELEMENT NUMBER',20%, 'NQDE! ,//) 00039

00 101 I=1,NET . . 00040
Cz=z=z3=2ax e . 00041
C DATA FOR LENGHT OF ELEMENT b 00042
Caazs323333==S33II=3==IT333 00043
ELENGII )=1.D0/DFLOAT(NET+2) p 00044

DO 102 J=1,NDPE . 00045

102 NODE(J,I)=3%(I-1)+J 00046
HRITE(6,103)I,(NODE(L,I),L=1,NOPE} - T, 00047

101 - CONTINUE . 00048
103 FORMAT( 29X,12,10X,6(13,3X1)/) . 00049
CzzzsxsIsssssxzos3lacIIssaa3zssI=sII3s 00050
C FORMING THE DIMENSIONLESS PARAMETERS 00051
C23233332323 22333382 IIISIITITIRITANS 00052
VELU =RO(1)%DFLOAT(LLL) 00053
XPHIA=0.000 00054

XPHI =.500 ’ 00055

SIMA =0.000 00056

CAPA =1.D00/(1.00¢.300) 00057

XH =0.000 000588
Czzazszx . 00059
XMF  3162.600 " 00060

L

ye



e <

AN

«nt

S-17
- “\ 2 3
‘ \ .
0 . LEVEL 1.6.0 (OCT 1984) - VS FORTRAN DATE: AUG 25, 1986 TIME: 14:24:46 NAME: MA:
.lcOc.cntlnoccll---zlD-oooc.os-ocllt‘t--600..-0..0590..0--oo‘ocl.o..nn?-'...culcs !
ISN 30 MT  =299.300 00061
ISN 3 XLEN =1000.00 00062
ISN 32 GRAV =9.8100 00063
ISN 33 EI  =221.30+06 00064
ISN 34 DENSIF=998.00 00065
ISN 35/ XMASOI=3,141500%0ENSTF*( , 253%x2 ) 00066
ISN 36 GZEQ =(XMT+XMF~-XMASDI }¥GRAV 00067
ISN 37 PI1 ={GZEONXLENH3 )/ET h 00068
C wuen TEST FOR MR. CHEN'S CASE ) 00069
/\ ISN 38 PI1  =0.000 s 00070
ISN 39 P10=-PI1 00071
ISN 40 00 105 I=1,NET 00072
ISN 41 PIO=PIO+PIIXELENGII) v 00073
ISN %2 ' PILI)=PIO 08074
ISN @3 105 CONTINUE 00075
c 00076
Caxzxzas 00077
ISN G4 HRITE( 6,106 )VELU;XPHIA,XPHI ,XH,SIMA,CAPA,RO(1) 00078
ISN 45 106 FORMAT(//,10X, ' DIMENSIONLESS PARAMETERS: ' ,///10X, ' OIMENSIONLESS ',00079
#'VELOCITY=',012.5,//,10X, 'BETAA=*,D12.5,',"','BETA=',012.5,"', "', 'H='00080
#,012.5,//,10%, 'PI (INCLUDING)',',"',' SIMA 3',012.5,','//,10X, 00081
- » ‘CAPA=',D12.5,'»"','R02',012.5,/) 00082
Cemazsgxzzzxs=233asss=as 00083
C ESSAMBLY OF ELEMENT MATRIX YIELDS GLOBAL MATRIX 00084
C13s2u2323AXAIIRIIATITZARNIIIITIAIIIZIIZIAIZIZIAITIIR v 00085 N
c 00086
ISN 46 00 107 II=1,NDT aoos7
ISN 47 DO 107 JJ=1,NDT oooss
0 ISN <8 GM(IT,JJ )=0.000 00089
ISN %9 GO(1X,JJ)=0.000 00090
ISN 50 GXiIX,JJ)20.000 ¢ 00091
: ISN 51 107 CONTINUE ~ 00092
c 00093
ISN 52 PI0O  =-PIl ¥ ) 00094
ISN 53 XELENG=ELENG(1) ! 00098
ISN 54 ROO=zRO( 1) . 00696
ISN 55 CALL ELMOKMIXELENG,VELU,PI10,PI1,R00) , 00097
ISN 56 00 115 JG=1,3 ' 00098
ISN 57 JE=3+JG - 00099
ISN 58 D0 115 KG=1,3 00100
ISN 59 KE23+KG 00101
ISN 60 GMIJGKG 13GM( JG,KG J+EMIJE ,KE } ¢ 00102
ISN 61 G0 JG,KG )2G0(JG,KG )+ED(JE ,KE) ) 00103
I5N 62 GK(JG,KG )36K{ JG,KG J+EK(JE ,KE) ' \ 00104
“ISN 63 115  CONTINUE i g " 00108
c 00106
ISN 64 00 109 L=1,NET 00107
ISN 65 XELENG=ELENG(L ) 00108
ISN 66 ROO =RO(L) 00109
ISN 67 PIX =PI(L) , , : 00110
ISN 68’ CALL ELMOKM(XELENG,VELU,PIX,PIl1,R00) - " 00111
ISN 69 D0 109 JL=1,NOPE . 00112
=ISN 70 00 109 KL=1,NOPE 00113
ISN 71 JGINQDE(JL,L) 00114
\ ISN 72 XGaNODE(KL,L) - 00115
ISN 73 00llé

SM(JG,KG )=26MI JG,KE ) +EM(JL,KL ) .
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LEVEL 1.4.0 (OCT 1984) . VS FORTRAN

76
75
76
124
78
79
80
81
82
83
84
85
86
a7
ISN 88
1SN 89
ISN 90
ISN 91
ISN 92
1SN 93
ISN, 9%
ISN 95
ISN 9%
ISN 97
ISN 98
ISN 99
ISN 100
ISN 101
ISN .102
ISN 103
ISN 106
ISN 105
ISN 106
IsN . 107
-
ISN 108
ISN ~ 109
ISN 110
ISN - 111
ISN 112
ISN 113
ISN © 114
SIsN - 118
ISN 116
ISN 117
ISN 118

A

£ B e ECF S NIE LS AT TS IR IS T

DATE: AUG 25, 1986 TIME: 14:26:96

NAME: MA]

.......¢-1.....--..Z........-3.-..--...“-........5...--....6.........7-......-.°

109

199
C

60(JG,KG )3GD( JG ,KG }4ED( JL ,KL )

_ GKIJG,KG 36K JG ,KG )+EK L JL,KL) ~
CONTINUE )
XELENG=ELENGINET) :

ROO=RO(NET ) "
CALL ELMOKM(XELENG,VELU,PI0,PX1,R00)

00 199 JEx1,3

JG=NDT+JE-3

¢ DO 199 KE=1,3

KG=NDT+KE-3

GM{ JG,KG )2GM( JG,KG ) +EMI JE ,KE )
GD{ JG,XG)=GD{ JG ,KG I+ED( JE ,KE)
GK{ JG,KG )=GK( JG,KG ) +EK( JE ,KE }
CONTINUE .

CIIIIIII!=3====33::3:38:3!8533!888’:3’

C FORMING THE AUGMENTED MATRIX OF M,0,K

c3138333SI:::::2:::335383:3383833!88388'

C

120

121

C=23sz333m3zTasaIz=ITI

0O 120 I=1,NDT2
DO 120 J=1,NDT2
GMM(I,J)=0.0D0
GKK(I,J)=0.0D0
00 121  I1=1,NOT
II=NDT+I1
GMM(I1,I1)=1.00
GKK(I1,II)=1.00
00 121 J1=1,NOT
JJ=NDT+J1
GKK(II,J1)2-6GK(11,J1) . ‘
GMMUII,JU)=GHII,J1)

a(x«n,u)a-cmnz.m

q

¢

CONTINUE

C CALCULATING EIGENVALUES AND EIGENVECTORS

c:I:::I!===x====:===83:=338:3'!83!8’2"3’8.

IA=NDT2

IB=NDT2

IZ=NDT2

N =NDT2

IJoB=2

CALL EIGZF(GKX,IA,Gt®,IB,N,IJOB,EIVALU,BETA,EIVECT,IZ,HK,IER)

C=zaazazzz=ag

C EIGENVALUES

C3uz2323II3233ITITTTAIIIT

139
145

9999

00 145 J4=1,NDT2

IF(DABS(BETA(J)).LT.1.0-8) GOTO139
EIVALULVIZEIVALULJI/BETALJ)

GOTO 145

EIVALU(J)SEIVALU(J )»]1.007 - : :

CONTINUE
CALL ARRANG(NDT2,EIVALU,EIVECT)
CALL OUTEIGINDT2,22,EIVALU,EIVECT)

CONTINUE

sToP

END

00117
00118
00119
00120
oo0121,
00122
00123
Qo124
00128
00126
00127
00128+
00129
00130
00131
00132
00133
00134
00135

00136 -

00137
00138
00139
00140
0014l
00142
00143
00144
00145
00146
00147
00148 .
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
Q0165
00166
00167
00168
00169
Qag170
00171
00172



’ | 5-19

CALL PRCDMA(6,6,6,RJS4,AINVE ,EK) \

LEVEL 1.4.0 (QCT 1984)

VS FORTRAN

[+

DATE: AUG 25, 1986

TIME: 14:24:47

NAME :

~
LEVEL 1.4.0 (OCT 1984) ¢ VS FORTRAN DATE: AUG 25, 1986 TIME: 14:26:47
4
G OPTIONS IN EFFECT: NOLIST HMAP XREF GOSTMT NODECK SOURCE  TERM OBJECT FIXED NOTEST NOTRMFLG
NOSYM NORENT NOSDUMP AUTODBL { NONE ) NOSXM
OPT(2) LANGLVL(77) NOFIPS FLAGI(X) NAME(MAIN ) LINECOUNTL(60) CHARLEN( 500
L DI S D . J Y T - P T 3 T -
ISM 1 SUBROUTINE ELMDKM(ELENG,VELU,PIX,PY1,R0) 00173
. CEasNEsZEINSE3IIIRIINTZIZIILEZIIIIITTIZIIITTITIIITTISTINIEAITITZazaz33nxx33200174 -
C SUBROUTINE ESTIMATING -MASS MATRIX 00175
. 9 c -0AMPING MATRIX 00176
B c ‘ ~STIFFNESS MATRIX 00177
CREESESREEIZEREEINIIRRRAILEIIILIZIITIIIIAIZIXIITIAIIRTIRNNITIAIEITIRNIZTINTIZI=S 222200178
. c 00179
ISN ) z - IMPLICIT REAL®8(A-¥,0-2) 00180
ISN 3 DIMENSION EM(6,6),ED(6,6),EK(6,6) ° 00181
ISN 4 DIMENSION RJS1(6,6),RJSS2(6,6),RJS316,6),RJIS4(6;6),RIS5(6,6), 00182
- . . 2 RJS6(6,6),RJISB(6,6),RIS10(6,6),RISILI6,6),RIS12(6,6), 00183
3 AINVE(6,6),AINVET(6,6) 0018%
b ISN 5 COMMON /EMDK/EM,ED,EK 00185
ISN 6 COMMON /COEF/PHIA,PHI,VISDAH ,SIMA,CAPA 00186
ISN 7 COMMON /MAJS/RJSL,RJISZ2,RJIS3,RIS4,RIS5,RISE6,RISE,RIS10,RJIS11,RIS12 00187
ISN 8 COMMON /INV/AINVE ,AINVET 00188
ISN b4 RO2=ROM2 00189
ISN 10 PHI12=0SQRT(PHI) 00190
ISN 11 VELUZ2VELW2 00191
c 00192
C CALL MATRICES Ju1-Jm12 00193
c 00194
‘IS 12 CALL GENMAJIELENG) 00195
c 00196
C CALL INVERSE OF THE MATRIX A 00197
c 00198
0 ISN 13 CALL INVERS(ELENG) 00199
3 CENZINTARIRATRIITIZB=TIIN 00200
N C FORMING ELEMENT MATRICES 00201
CIZIRZTRAILAITAACILINIITITIIIN 60202
ISN 14 DO 280 I=1,6 00203
ISN 15 00 2080 Ja21,6 00204
ISN 16 EMII,J)=(1.004PHIA)RRISI(I ,J )+SIMANRISG(I,J) 00205
ISN 17 ED(I,J)=(2.DORVELUXPHI12 }%¥RJISS(I,J ) +VISDAHXRISL(I,J) 00206
1SN - 18 EK(I,J)=(RJISII,J)-ROM(RISH(T,J)+RIS6(J,1))I+RO2HRISAH(TI,J) )+ 00207
% CAPAX(ROZNRJISZ(I,J)+RORIRISB(I ,J I+RISB(J,1))I+RIS1I0(I,J)) 00208
ISN 19 280 CONTINUE 00209
c goz210
C ELEMENT MASS MATRIX Qo211
c L 00212
“ISN 20 CALL PRODMA(6,6,6,AINVET,EM,RJSS) 00213
ISN 21 CALL PROOMA(6,6,6,RJIS4,AINVE ,EM) ° 00214
c 00215
C ELEMENT DAMPING MATRIX © 00216
. c 00217
ISN 22 CALL PRODMA(6,6,6,AINVET,ED,RJSS) Qo218
ISN 23 CALL PRODMA(6,6,6,RJS5,AINVE ,ED) 00219
c . 00220
C ELEMENT STIFNESS MATRIX 00221
c 00222
ISN 2% CALL PRODMA(6,6,6,AINVET ,EK,RJS4) 00223
ISN 25 0022¢

ELM

veeesedBiiiiiine TR0, 8

LIRS S S R R R L L EE TR T IR TL. T rIrury

ISN
ISN

26
44

RETURN
END

00225
00226



LEVEL 1.4.0 (OCT 1984}

VS FORTRAN

DATE: AUG 25, 1986

TIME: 14:26:47

OPTIONS IN.EFFECT: MNOLIST MAP XREF GOSTMT NODECK SOURCE TERM  OBJECT FI)‘(ED NOTEST NOTRMFLG

ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN’
ISN
ISN
ISN
ISN

vy SN

ISN
ISN
ISN
ISN
ISN

IsN
ISN
ISN
ISN
ISN
JIN
ISN
ISN

. ISN

ISN
ISN
oIS
ISN

"

i8
19
20

I 2 4
22

3
2%

26
27
28
29
30
31

32
33
3%
35

NOSYM NORENT NOSDUMP AUTODBL(NONE )
FLAGI(I) NAMEIMAIN )

OPT(2) LANGLYL(77) NOFIPS

NOSXM

LINECOUNT(60) CHARLEN( 500

LTRSS DRPPOR R S e XTI RETY] IRTTT TR TOArra 28 TR . |

c

SUBROUTINE GENMAJ(ELENG)

€ SUBROUTINE “GEN

cI-IIIIIIIISSIISI

c

Cxz33zs3sTa33==338

400 CONTINUE 3
Cc
€ GENERATING MATRIX Jnl .
<
DO 402 I=1,64
DO 402 Jzl,4
KzX+Jd-1
RJS1(X,J)=ELENGH®(K )/DFLOATIK) *
402 CONTINUE
c
C GENERATING MATRIX J=2
c
DO 410 1I=2,4
DO 410 JJ=2,4
KK=ITI+JJ-3
RJS2(IX,JJ)=ELENGM*(KK )
410 CONTINUE .

IMPLICIT REAL#8(A-H,0-Z)

DIMENSION RJB1(6,6),RJIS2(6,6),RJISI(6,561,RIS4(6,6),RIS5(6,58),
» RJP6(6+6),RISBL 6,6 ),RIS1016,6),RIS11(6,6),RIS12(6,6)

00227

2!sd::::=:==:::-:a:::a::::;ll:a:-t.a--l:aaa!aalllllloozza

RATING MATRICES Jwl-Jnll

R2IZTIIITRXZIXXITTAIITIIAZTANITAARSARICRIZAneneazanssxx(0230

00229

00231
00232
00233
00234

COMMON /MAJSYRJS1,RJISZ,RJS3,RISG,RJISE»RIS6,RISERIS1O,RIS1L,RISIZ 00235

DO 400 I=1,6
DO 400 J31,6
RJSIII.J)=0.gDO
RJS211,J)=0.000
RJS3(1,J)20.000
RJS4( X,J)20.000
RJSS(I,J)20.000
RJS6(I,J)=0,000
RJS8(I,J)30.000
RJS10(I,J4)=0.000
RJS11(I,J)20.000
RJS12(1,4)=0.000

RJS2(3,3)=4.00#RJS2(3,3)/3.D
RJS2( 3,4)=1.500#RJ52(3,4)
RJS2(4,3)=RJS213,4)
RJS2(4,%4)=1.8D0%RJS2{ 4, 4%)

c
C GENERATING :MATRICES J»u3
c

no.

RJS3L3,3)=4.00%ELENG
RJS3(3,4)26.00ELENGH®( 2)
RJS3(4%,3)=RJS3(3,4)
RJS3(4,4)=12,DOXELENGH(3 )

GENERATING MATRIX Ji4

00236
00237
00228
00239
00240
00241
00242
00243
00244
002458
00296
00247
00248
00249
. 00250
00251
00252
00253
‘ 00254 ,
00255
00256
00257
00258
00259
00260
00261
00262
00263
00269
00265
00266
00267
00268
00269
00270
- 900271
00272
00273
00274
00275
00276
00277
00278



§-21
LEVEL 1.4.0 (OCT 1984) VS FORTRAN _ DATE: AUG 25, 1986  TIME: 14:26:47 . NAME: GE!
'-ooa‘o-oloa-no--c0200'0009000301.1000.r’.oooa.oonSo-oo- -..-6.........7.‘........3
e & 00279
ISN 36 RJS4(5,5)=ELENG . 00280
ISN 37 RJISA( 5,6 )u. SDONELENGH#( 2) . 00281
ISN 38 RJISAH( 6,5)2RJS4(5,6) 00282 -
IsN 3 - RJSA( 6,6 )SELENG*#(3)/3.00 00283
) 00284
c GENERATING MATRIX Jx§ . 00265
c 00286
LJISN %0 00 420 Is1,4 00287
TTISN . el 00 420 J=2,4 ° , 00288
ISN 42 - K2 ==l 00289
1SN 43 k3= I+J-2 G 00290 .
ISN 4 - RJSS( I,J )sOFLOAT(K2 )-ﬂemmxs )/DFLOAT(K3) . 00291
IsN 45 420 CONTINUE, 00292
c , - 00293
” € GENERATING MATRIX RJUSé . 002%
c 00295
. ISN %% RJS6(3,5)2. DORELENG 0029
ISN. 47 RISH(3,6)3ELENGM™(2) - e 00297
ISN 48 RJISE(4,5)33.DONRIS6(3,6)- 00298
IsN 49 RJIS6(4,6 )32, DONELENG*#(3) ' ' 00299
c . 00300
C GENERATING MATRIX Jw8 00301
. c 00302
ISN 50 00 430 L32,4 003903
ISN 51 AL=L-1 P 00304
. IsN 52 RJSBIL,6 13ELENGH(LL )’ 00305
o 1SN 53 430 CONTINUE ‘ , 00306
- . 00307
C GENERATING MATRIX J#10 00308
c 00309
ISN 54 RJS10( 6,6 )=ELENG 00310
‘ ¢ 00311
C GENERATING MATRICES J¥1l AND Jw12 00312 !
: c 00313
ISN 58 00 440 JJs1,4 . 00314 |
ISN 56 RIS11(JJ,3)=2.00XELENGH*( JJ )/DFLOAT(JJ) 00315
ISN 57 JlzlJel 00316
) ISN 58 RIS11(JJ,4 )26 . DOPELENGH*( J1 )/DFLOATIJ1) 00317
ISN 59 RJS12(JJ,3)22.DONELENGw( J1 )/DFLOAT(JL) 00318 -
ISN . 60 RJS12(JJ,% )36 . DOXELENGH#( JJ+2 )/DFLOAT( JJ+2) 00319
ISN 61 440 CONTINUE 00320
ISN 62 RETURN . 00321
JISN o3 END 00322
i - .
A 1 °
. / - :
4
. ‘ ) \
% | .
L



LEVEL 1.4.0 (OCT 1984)

R L

P e 12 U N S A S S Y
AR d

vs FORTRAN DATE: AUG 25, 1986  TIME: 14:26:48

OPTIONS IN EFFECT: NOLIST - MAP XREF  GOSTMT NOOECK SOURCE  TERM  OBJECT FIXED NOTEST NOTRIFLS

ISN

ISN
ISN
ISN
IsN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
1SN
ISN
ISN
ISN
ISN
ISN

.ISN
ISN

SN

ISN
IsN
ISN
ISN
ISM
ISN

-

—_

VY- R0 3 W-RTE Y

..

NOSYM NORENT NOSOUMP AUTODBL(NONE) ~ NOSXM -
OPT(2) LANGLVLI77) NOFIPS  FLAGII) NAHE(HAIN ) LINECOUNTt60)

P TS VOORDURIT SDDUURIRE SRRUIN-Y\ SUPUIN SIPTSURY TOURPIDRE X TORPRY

SUBROUTINE INVERSUELENG) 00323
CE2333232223232XARIZZ3TTFRAILRARZIZIRTIIAIE=EISATITRNIINGRTTSRZA3asssna (03264
C SUBROUTINE INVERTIm THE MATRIX A 00328
C= == =Illlllllllll.ll:.ltlllllllﬂlllllllllllloosz‘
c © oos27

IMPLICIT REAL*8(A-H,0-2Z) 00328

DIMENSION AINVE(6,6),AINVETL6,4) . 00329

| COMMON /INV/AINVE, AINVET , 00330

DO 500 I=1,6. 00331

00 500 J=1,6 . . 00332

AINVE(I,J)=0,000 00333
500 CONTINUE : i - 00334

AINVE(1,1)=1.00 00338

AINVE(2,2)%1.00 - w 00336

AINVE(5,33=1.00 N : 00337

AINVE(3,1)=-3,D0/ELENGH*(2) 00338

AINVE(3,2)=-2.00/ELENG - 0p339

"AINVE(3,4 )=-AINVE(3,1) 00340

AINVE(3,5)=-1.00/ELENG 00341

AINVE(4,1)=2 DO/ZELENGW{3) : . 00362

AINVE(G5 2 IRELENGHN( ~2) * 00343

AINVE(4,4 )u-AINVE(G,1) 00344

AINVE(G,5)=A1 (4,2) ) Q03458

AINVE(6,6 )x1,0B/ELENG _»00306

AINVE(6,3 )!-AINVE( 6,6) 00347
Caaszaax . . 00348

0O 505 I=1,6 E ’ . 00349

DO 505 Jal,6 - , ' 00350

AINVET(I,J )=AINVELJ .I ) 00351 .
508 CONTINUE . 00352

RETURN , 00353

END . B 00354

- -
* \ /
1
! -~
f
' \ - Q, .
\ n
Vi - ' .
11 ' ' 1 il - )
b i
P e e
- "i ‘

CHARLEN( 300!
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P

LEVEL 1.4.0 (OCT 1984 ) VS FORTRAN DATE: AUG 25, 1986 TIME: 14:29:48

“ OPTIONS IN EFFECT: NOLIST MAP  XREF GOSTMT NODECK SOURCE TERM OBJECT FIXED NOTEST. NOTRMFLG

NOSYM NORENT NOSOUMP AUTQDBLINONE]  NOSXM

QPT(2) LANGLYL(77) NOFIPS  FLAGII) NAME(MAIN ) LINECOUNT(60) CHARLEN( 500

SN T AN SUAUIS: S R - Y S 7.%.0.....8
ISN 1 SUBROUTINE PROOMA{M,L,N:A,B4C) 00355

¢ 00356

€ SUBROUTINE MULTIPLYING MATRICES 00357 \ "

c . 00358 ®
ISN 2 IMPLICIT  REAL*S(A-H,0-Z) 00359
ISN 3 OIMENSION A(M,L),B(L,N),C{M,N} 00360 .
ISN 3 0O 590 I=1,M 00361
ISN 5 DO 590 J=1,N - 00362
ISN 6 Ct1,J)20.000 00363
ISN 7 00 590 K=1,L 00364
ISN 8 CtI,J)2C1T,J14A(1,K)%B(K,J) , 60365
ISN 9 590 CONTINUE 00366
ISN 10 RETURN ' 00367
ISN 11 END . 00368

R — -
v
4
1
- r Y



‘ 5-24

LEVEL 1.4.0 (OCT 1984) VS FORTRAN DATE: AUG 25, 1986 - FIME; 14:24:48

L]
OPTIONS IN EFFECT: NOLIST MAP XREF GOSTMT NODECK  SOURCE TERM OBJECT FIXED NOTEST NOTRMFLG
NOSYM NORENT NOSDUMP AUTODBL(NONE) NOSXM

QPT(2) LANGLVLI77) NOFIPS FLAG(II) NAME(MAIN ) LINECOUNT{60) CHARLEN( 500)
PR SS PN SRS SEY SR -SRI T T ....8
ISN 1 SUBROUTINE ARRANG( N,X,PHI ) 00369
c 00370
C SUBROUTINE ARRANGING EIGENVALUES FROM SMALL TO BIGGER 00371
C AND ARRANGING EIGENVECTORS CORRESPONDING TO EIGENVALUES 00372
c . ! 00373 ——
ISN 2 IMPLICIT REALB(A-H,0-Z) , 00374
ISN 3 COMPLEX®16 X,PHI ,PHIN,EIMIN,XEI 00375
ISN 4 DIMENSION X(N),PHI{N,N) 00376
ISN 5 LA =N-1 - 00377
ISN 6 00 600 I=l,LA 00378 *
 ISN 7 EIMINEXI T ) / 00379
ISN 8 XMIN:OIMAG( EIHIN ) 00380
ISN 9 JMI 3L 00381
ISN ., 10 JF 3l+l 00382
ISN 11 DO 601 M=JF,N 00383 ‘
ISN 12 XEI =X(M) 00384
SN 13 IF(DABS{XMIN).LE. DABSIDIMAG(XEI))) GOTO 601 ' 00385
ISN 14 JMI=M 00386
ISN 15 SXMINZDIMAG( XEI ) 00387
ISN 16 EIMINSXET 00388
ISN 17 601 CONTINUE . 00389
ISN 18 X(JML)=X( T ) 00390
ISN 19 X(I) sEIMIN 00391
ISN 20 DO 633 L=1,N 00392
ISN 21 PHIN 2PHI(L »JMI) 00393
ISN 22 PHI(L,JMI )=PHI(L,X) 00394
ISN 23 PHIIL,I) =PHIN . 00395
ISN 24 633 CONTINUE 00396
ISN 25 600 CONTINUE 00397
ISN 26 RETURN 00398 :
ISN 27 END 00399



» -
£

LEVEL 1.4.0 (OCT 1984) VS FORTRAN DATE: AUG 25, 1986 TIME: 14:24:48 .

'

OPTIONS IN EFFECT: NOLIST MAP XREF GOSTMT NODECK SOURCE TERM  OBJECT FIXED NOTEST NOTRMFLG
NOSYM NORENT NOSDUMP AUTOOBLINGONE)  NOSXM

OPT(2) LANGLVLI(77) NOFIPS FLAGII} NAME(MAIN * T~ LINECOUNT!0) CHARLEN( 500

L JUPUN M DR 23U A SRS N S R % TURRRAN |
ISN 1 SUBROUTINE OUTEIGINDTT ,N,X,PHI) 00400

c - - 00401

C SUBROUTINE TO PRINT EIGENVALUES AND EIGENVECTORS 00402

c 00403
ISN 2 IMPLICIT REAL®*8(A-H,0-2) 00404
ISN 3 DIMENSION (X(NDTT ),PHI(NOTT,NDTT ) 00408
ISN 4 .COMPLEX%16 X,PHI 00406
ISN 5 PRINT 740 © 00407
ISN (] 740 FORMAT(///,14X, * 2332FREQUENCIESaz=3'//) 00408
ISN 7 M=NDTT/3 ‘ 00409
ISN 8 D0 741 Jl=1,M 00410
ISN 9 J2=M+J1 ' ,f 00411
ISN 10 J3z2xM+Jl 00412
ISN 11 WRITE( 6,750)J1,XtJ1),J2,X(J2),J3,X(J3) 00413
ISN 12 750 FORMAT(/,4X,I2,'TH',2D018.8,13,'TH',2018.8,13,'TH' ,2D18.8) 00419
ISN 13 741 CONTINUE 00415

CzazZ2a3nI===3 goale

C I=(9') @ IS VECTOR 00417

C=z=s=z33=z=3=II3sI====s 00418
ISN 14 NN= NDTT/2 , 00419
ISN 15 D0 751 JA=21,N,3 00420
ISN 16 JBsJA+Ll 00421 -
ISN 17 JC3JA+2 00422
ISN 18 HRITE( 6,760)JA,JB,JC 00623
ISN 19 760 FORMAT!(//,9%X,12,'TH EIGENVECTOR® ,30X,12, 'TH EIGENVECTOR' » 32X, 00424

» I12,'TH EINGVECTOR' 00425 *

ISN 20 DO 761 I=1,NN 00426 ;
ISN 21 NRITE(6,762)PHI(I,JA),PHI{I,JB),PHII I,JC ) - 00427
ISN 22 762 FORMAT( /4X,3(2018.8,2X)) 00428
ISN 23 761 CONTINUE Qo429
ISN 26 751 CONTINUE 00430
ISN 25 RETURN N 00431
ISN 26 END 00432
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LEVEL 1.4.0 tOCT 1984) - FORTRAN DATE: AUG 25, 1986  TIME: 16:264:48 ‘
OPTIONS IN EFFECT: NOLIST MAP XREF  GOSTMT NODECK SOURCE TERM OBJECT FIXED NOTEST NOTRMFLG

NOSYM NORENT NOSODUMP AUTODBLINONE)  NOSXM .
OPT(2) LANGLVL({77) NOFIPS FLAG(I) NAME(MAIN ) LINECOUNT(60) CHARLEN( 500

TR B . Y TR Y A T A 25 T

ISN 1 SUBROUTINE PRINTIN,A) 00433
® v Ch 00436
C SUBROUTINE TO PRINT MATRIX - . 00435
c 00436
ISN 2 IMPLICIT REALX8(A-H,0-2) 00437
ISN . 3 DIMENSION A(6,6) 00438
ISN % HWRITE(6,822) N A 00439
ISN 5 822 FORMAT(///,10X,'MATRIX J',12,//) . 00440
ISN 6 KRITE(6,823)({AIX,J),J31,6),131,6) - 00441
ISN 7 823 FORMAT(/,6(4X,012.5),/) 00442
ISN 8 -’ RETURN 00443
ISN 9 ENO 00444
s M
. Y
) .
& ' )
\ t . .
\M___. ¢ .
o ek} P
/ ‘ 4 T
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- [ 4 c
OUT-OF FLANE MOTION (CLAMPED-CLAMPED) , ) ‘ i
ELEMENT CONNECTIVITY: - '
ELEMENT NMBER ’ NODE ’
¥ [ 4 ) [
3 1 1z 3 4 5 6 : \
2’ 4 B 6 7 8 9 )
3 7 8 9 10 10 12
' D 16 ®m 12 13 1 15 9 -
3 13 1 15 16 17 18
6 1% 17 18 19 20 21 ]
I A 19 20 2 22 23 2 i
8 22 23 2 25 26 27 3 )
9 25 26 27 28 -2? 30 ' .
: 10 28 29 0 m sz 33 .. '
11 31 32 33 3% 35 36 ) )
12 3% 35 36 37 38 39 .
. 13 37 3P 39 40 41 62 .
1% 40 41 42 43 4% 45 ! < .
DIMENSIONLESS PARAMETERS: ‘
DIMENSIONLESS VELOCITY= 0.628320D+01 ) ‘
BETAA= 0.000000+00,BETA= 0.50000D+00,H= G.000000+00 ..

PI (INCLULING), SIMA = 0.000000¢00, . ~
CAPA= 0.76923D+00,R0= 0.31416D+01

L

#2==FREQUENCIES====

t
-0.100000000+08 0.000000000+00 31TH 0.190757900-10  -0.15340493D+02 61TH 0.258412070-07 —0.290004%1D+04

-0.100000000+08 0.000000000+00 32TH 0. 1907&6‘650-10 0.153404930+02 62TH 0.258407050-07 0.298084910+04

~

0.100000000+08 0.000000000+00 33TH -0.248815400-09 -0.542101850+02 63TH 0.227088420-07 0.334670470+00

{2-S



Qo

4TH

6TH

7TH
aTH
U
10TH
11TH
12TH
1378
164TH
15TH
16TH
17TH
18TH -
19TH
20TH
21TH
22TH
23TH
24TH
25TH
26TH
27TH
28TH
T9TH

30TH

\

0.100000000+08
-0.100000000+08
0.100000000+08
-0.100000000¢08
~0.257442990+10
~0.100000000+08

-0.178191230+10

' -0.100000000+08

0.14879235D+10
-0.100000000+08
-0.134127710+10
-0.1000p000D+08
-0.125332900+10
-0.100000000+08
~0.119469960+10
-0.10000000D+08
-0-115282830+10
-0.10000000D+08
-0.11214406D+10
-0.10000000D+08
~0.63067413D+09

0.19301314D+10

0.12873496D+10
~0.149793300+10

0.150918570+10

0:56;65107D§09

~0.937776510+08

™

0 .000000000 +00
0.00036000D0+00
0.000000000+00
0.000000000400
0.000000000+00
0.000000000+00
2.000000000000
0.00000000D+00
0.00000000D+00
0.00000000D¢00
0.000000000+00
- 0.000000000+00
0.000000000+00
0.00000000D0+00
0.000000000+00
0.00000000D+00
0.00000000D+00
0.000000000+00
0.00000000D+00
0.00000000D+00
0.00000000D+00
0.00000000D0+00
0.00000000D+00
0.00000000D+00
0. 00000000D+00
0.00000000D0+00

0.00000000D0+Q0

34TH
35TH
36TH
37TH
38TH
39TH
4O0TH
41TH
42TH
43TH
44TH
45TH
46TH
47TH
48TH
49TH
50TH
S1TH
52TH
53TH
54TH
55TH
56TH
S7TH
58TH
59TH

60TH

-0.248811810-09
0.356079980-09
0.356079100-09

-0.35(756880-09

-0.35775957D-09
0.142686290-08
o.i@zsa797n-oa
0.887695410-09
0.887685520-09
0.23442163D-08
0.23442160D-08

-0.43268914D-08

-0.432692760-08

-0.271058920-08

~0.27105461D-08

-0.124650120-05

-0.12444250D-08
0.13298778D-08
o.1szqgsaan—oa
0.127658570-07
0.127661580-07

-0.433972720-08

~0.43400801D-08

-0.18342318D0-07
0.183422670-07
-0.53326565D~12

-0.609%470730-12

"G4TH

0.542101850+02
-0.112436500+03
0.112426500+03
0.191154900+03
-0.191154900+03
~0.290195940+03
0.2901959%4D+03
0.409509180+03
-0.409509180+03
0.54924673D+03
~0.54924673D+03
-0.709721560+03
0%.709721560+03
0.891409080+03
-0.891409080+03
0.109494020+04
-0.10949402D+04
0.13210547D+0%
-0.132105470+04
0.157041640404
-0.15704k64D+04
-0.18429290D+04%
0.18429290D+04
0.213457810+04
-0.21345781D+04
-0.24156293D+404

0.241562930404

65TH
66TH
67TH
68TH
69TH
70TH
7174
72TH
73TH
74TH
75TH
76TH

77TH

-78TH

79TH
80TH
81TH
82TH
83TH
84TH
85TH
86TH
87TH

88TH

‘89TH

90TH

0.227088260-07
0.481502450-07
0.481503280-07
-0.532068110-08
-0.532135960-08
~0.128043450-07
-0.12804374D-07
~0.940948360-07
~0.94093854D-07
0.241196920-07
0.241193020-07
0.215975490-06
0.21597545D-06
-0.16423430D-07
-0.164234930-07
0.155216900-06
0.155217100-06

b
0.286317300-06
\

0.286318430-06

0.610525480-06

t

0.61052569D-06
-0.4866813;5—06
-0.48668184D-06
-0.184391380~06
-0.184391840-06
-0.26603283D-06

~-0.26603293D0-06

~0.334670470+04

~0.37860959D+04
.0.37860959D+04

0.42800683D¢04%

* -0.42800683D+04

~0.48291112D+04
0.482911120+04%
0.543752i0000§
-0.543752100404
0.61105;}70*04
-0.61105667D+04
‘0.685301350‘0;
0.68530135D40%
"0.76671678D0+04
~0.76671678D+04
-0.85495856D404
0.85495856D+04

-0.94856839D+04

0.94856839D+06 °

~0.10441956D+05

0.10441956D+05
0.113573180+05

E

~0.113573180+05

0.12139280D+05
-0.12139280D+05
-0.126754090+05

0.126754090+05

v

.

8e-S’
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/' APPENDIX T
INTEGRATIONS BY PARTS ASSOCIATED WITH THE DERIVATION OF BEQUATION (5.23)

-

Consider the equation

1

13 . -
n °i .
0,0 , 0 O 0,0 , 0 O _
where )
4 o 3o - o " O. 20
, an o n an . an an
0o ,0 o 1 3 9 1 o 3 0, ,=2 1
A, (N, n@=—z+r —=)+ == _(z== + r . nJ) AL (7= -r_n;)H° (—=
11 (N1 g@,’,\ PrER v S X R R A 32
* o :
AL -2 '
- +r, -é?)+ro(r[p+ u’) - vyax |, . (T.. 2)
s 2.0 o ‘3.0 - 2.0 (o)
3'n an a™n a’n an
0,0 © 3 1 1 3 1 o
A ni,ny)=-Al—= -1 Y=r_( +r Y Il (== +r n3)
i3V'17°73 352 o ot fo} 8&3 o 352 opo3E . 03
(o]
an . all
- el o . _P_
. ru '(85 + ron3) + 3T Yazo . (T.3)
By perfonﬁing integrations by parts, one obtains the fol lgwi'r'xg: ' °
N N T L
IJ T en—g i, — = I {&n(—F Hr, —F S —3
=l o 1 9t i=1 & 3t A13 .14
ang & n 51 azn‘i 82(12 ang 4 ' T
Tow Mot Lo fGR Sa T e ™0
{8 o(aBni’ 82’1(3)) G(BniHazng ang )}1
= n +r - +r ==
1 853 o 352 3E 352 o 3E o
20 .20 o] “
n £ a3 n;y 9n an .
+ L [T —5 + 1, 5 ) & == - .5
=1 o 3E° 3 ) .
2 2,0 o | o “n & g
n i a“n an. . ] an 1 n °i an
3 o 3 *
) en0—2 -r b1t = (== -t} - L] &)
1=] o 3 ag2 © 3 3% o°l'’o i=1 © 13
an® \
3 o, - . -

; 3
3



T-2
£ 30 2 0 20 O n § (o}
L ; 6n§(a Ly i 3)a5 = (5 ‘;(a T 4r, zis)}:, - 26@:%3-)
q i=] g g 3 1‘ i=
20 ’
- a ny Bng .
(—5 + r, 5-5'—) ag \ (T.7)
ot ‘

P

It is noted that in'equations (T.5)-(T.7), the following replace-
] .
ment was made

) - ' . 1 , .
. —~— I {l,=1 1. yd | (T.8)
because of the continuity condition, as mentioned in Appendix J.
Substituting equations (T.5)~(T.7) "into equation (T.l) yields

: JEL {a(azni) <32ni an:‘) 6n° (2=1n ¢ i ng)+a (azﬂ(I an3
Y +0n +u
jh’ 0. 052 T2 o B 1ag“pas/ e an_',
' - (?-'11- ©)4r_(1_+ T - 15(83)(:«8“% ) T
G ~Ar 3E rn;)+r, (H u Ya %, 5 5 AN
20 - ’ (o) ]
3%n an an 3l
- 1 3 1 oy ., P
+r (—5 352 T 3E ]+<Sn3[ I, (H +1 )( 5E *ro”3). M T Yozzol} dg
, 33 ‘i azng anl 82n an° o angJ
| _+{ong (——-5 "o 32 —3) -8 (5~ )(—52' —5-—)} ~ {83 [ Ay~
) ‘ 32“1 an3 1
_ -r n1)+r (—5 852 O 8&']} (T.9) B

From the boundary conditions, equations (5.9)-(5.11), one can see

* that the integrated tems vanish. ‘I‘hérefore , one obtains

n & 32 2 329 8 <3D o -an§ o
+ - e -
LElof A N ”‘p(ag Tony) 1o G5g~ = Tony)
R . A2 0 (o)

5+, g;h)] Gnl(r ny +3 )-Ya )+6(-23) [A(—gl —r )+, (——l

: o . 12 352
- an o - 3 i
3 o o
+ B 85 =] - (Iléyu )én3 (% tron3)+ins (522 - yazo)} d& =0, (T.10)

e

_ ! /
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which is equation.(5.23), appearing in the main text. .
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__ APPENDIX U

—

THERESISMWECDEEFICIENPMTURBULENI:EWNACURVEDPIPE

Consider turbulent flow in a curved pipe. The influence of
gentrifug&l force is to increase the jictional resistance coefficient
for tubulent flow in a curved pipe vis-a-vis that of a straight pipe.
According to the theory of White (1979), this resistance coefficient
(for turbulent flow in a curved pipe) can be represented by the
f.’ollowing equation ,
’ A=), (L+0.075 Re3"% (%—)U'S)Z W

(o]
- a o

i3 ]

where xo is the resiétance coefficient of a straight pipe, Red is the

,Réynolds number (i.e. UDy/v), Dy is the internal diameter of pipe and
) s S ' !

'Ro is the radius of curvature of the pipé .

4

A

In general, )‘o is a function of éeynolds number and the \

c;imensionless roughness of the pipe, andgits value can be obtained from |

Moody's diagram. Therefore, the pressure q::acj\ent in the pipe can be

written as
., R ~
) - 2 ’
i U '
Ev-mliali %— Pe 3 - (U.2)
1 -~
Finally, the dimensionless form of equation (T.2) is
' L
| 3(p,A,LY/ET) "

- "—"3_5""—— e R Vi (U.3)

”

where »
» A* = %g_i , (U.4)
and, 'L is the total length of the pipe. Bquation (U.3) is used in

obtaining equation (5.28).

s



inextensible case, one obtains the fonwing"_relations

/ » V-1

APPENDIX V
r o B
DERIVATI@IOFTHEEI.B&ENI‘ STIFFNESS MATRIX AND THE ELEMENT FORCE
' VECIOR IN THE CASE OF STATIC EQUILIBRIUM
Consider equations (5.26) and (5.27) in the main text. The
highegt order of derivatives of the shape functions [Ngl] and [Ng3] in

the integrands of these equations are second and first, respectively,

and it is-pecessary to ensure that ni’, ncl)'and ng are continuous at the .
1 ‘ ‘ ,
element daries. Thus the nodal displacements chosen are .
o] l ’
niJ .
oy = O .
ngly =.<en5 0 (V.1
. . o -
n3j +

as shown in Fig. V.1, and the element displaceme‘nt vector can be written .

¢ »

, as
. {ng}j o
¥ = e (V.2)
i - o \J,'
N {ni}3+l

Accordingly, displacement f\;nctions associated w;th ncf and ng
can be <chosen to be the same as for the out-of-plane.motion in the*
’; . - ‘ N .
inextensible case. Therefore, proceeding in the same way that was

followed in the numerical analysis of the out-of-plane motion in the

o) = (9,]A17
Looel T e w3 .

- =1
m231 = [0,1 Al 7,

-



O

V=2

where 802], [¢4] “and [l-\.]"1 have been defined in equations (3.62), (3.63)

and (3.71) in Chapter III.
By substituting equation (U.3), into equatw.ons (5.26) and (5.27)

L]

in the main text yields ' -

g - 5 " " iy 1 m - '
) = [A]olT{g ®(10,1 T10,) + r_(10,) 10,1 + [0,] T10,1) + r2(e,] T (8,]

*»

1] J ‘ ! ! - {
+£({0,] Tlog] = 1o (1017 (0,) + 10,1 Tlo,D+ 2] (0,17 10,)

+ 110 (10,0 + £ 10,1") - x 10,17 (10,1 "+ x_l0,1))

TJ ' ‘ 6 1T ' -1
+ 10,17 Z=I1(10,]'¢ T (0,11 ]-r T 0,17 ([0, "+ £ (8,10} &g }ial}t,
(V.4)
all

-]T ® - T
{F} (al, I ® mp + )_—_ya >[<z;2 + ‘aT;E - yazg (0,1 #de.
Fj.nany,‘ substituting equation (5.28) into (V.4) and then.

evaluating the integrals, one obtains the element matrices, i.e.,

*

®21® = 17T ((15])+ ([J151+w15ﬁ+r 9511+ #1751 x, (135,1+13] 1)
+ 2 [Jlll

+ 52 [[J 1+r, ([lel [13]) -, [J 11

+ﬂp|o[[J9]+ro([J12]-[J1]) 2 : (V.5) .

—x*ﬁz ( w"‘nw‘{om (19761 +17 41 =193, 1) 213711} @13E,

{p} = -l {z, @ +np| ) {F} = AR e (R} +{FyD+ (Fg),

-

' b

where

Y . - ' - . N _
. « =




N

2y

| ]

.} = ~y(oy [6,1T + o
o . G o xoz z
N
./
.

{F}—j’ﬂbz & = W
(

{F}-]ge (0,17 at =
ot =l meleplhdg =

o

0. \

o

{F } "J' [¢4 dg = ‘,

T =
(6,1 at ,

o
S

1/2 gé

1/3 ¢2

1/4 €2

1/2 €2

e

1382

1/4 £

1/5 ¢

o o

o O O O

g

3

-

(V.6)
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¢

‘ G T W= cffe (0,1710,) & ,
gy = (Ije (9,1 T10,)" dE
[3,] = cffe (9317 (0,) 4 ,
gl = (Ifé 0,1T10,) " € , |
9] = fe[%]"rt%l' d ;
[3,] = f (0, 1091 c,
(93} = (If [0,1710,1 ¢ & , .7
(33,] = c;fe (6,1 (0,1 < , P
(3)3) = c{g 0 10,0 a, o
¢ [3],] = (Ifew 10,1 at
(335] = f 0,1 [0,) G , T
, 0 tJ’{J-— fe\mleml'a d
a},) = fgeml'rmz)'s‘ds : \ ' |
(93] = § 10,17 (0,0€ &€ ,

/

N which are evaluated in Appendix L. It is noted that equation set (V.5)

corresponds to equations (5.29) and (5.30) in the main text.
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1 v | 1341
o) - vy @ ]
{n% "ng; 2 SRGHEIR S
ij £ ] 15+1
nO © El o]
3] N33+1
(a)
/N i+
’, * 3 . W
M3 - N)j+i
* y * ¥ n © Ei {n*} Jn*'
Ingdy =My 3+ 9 5a
* -— *
M3 M35+1
/
(b)

Fig. V.1l Two-Node Pipe Element for the Case of

(a) In-plane extensible static deformation

(b) -In-plane extensible motion
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APPENDIX W

INTEGRATIONS BY PARTS ASSOCIATED WITH THE DERIVATION OF EQUATION (5.34)

' Consider the equation

Es
n 1
& I {6n] Ay, (n,ny) + 6ny Ajs(ny,m)} dE =0, 0.1)

where, as given by equations (5.17) and (5.18),

4 * 3 * * ' *
an an an an an
l 3,, 3 _ 1 d 1 (o) 3 *
A_i_l_(ni..n3)~( ag +r 53)+ ag[ o ag +r n3)] *ag“ag + rons) ('S'E_ = rony)l
I 2 * * 2 * *
- Tkl - g (3 ¥ £+ 8 g+ )
any A
n n
m 1
+J€ar + (148, 2l ) w.2)
3 * 2 * * %
L 3 n 3 N, 3711 * anl 3 N
A} (ny,ng) = -ro(—-a—g‘3-+ o 52) Lol (G HoN3) +rg 4(36 )(9€ - ny)
2 * * * * 2 * *
37ny . M x 0 o1/2= %3 oy
"‘“‘a‘g" 0 3F )TN GEm * rong) UGy - r )
8n3 an;
+J€'a—,l.—' + (l+B ) —5— < W.3)
— ST -

By performming intergrations by parts, one obtains the f&1 lowing:

; fgi (a4n;_ 83n3 n { a3n;_ 32113 anl aznl an;
Gn —)dg = I Gn ( +r, ) 6( +r
o' M NI ag> =1 1 ag3, © 2 % g2 0 %

2% 2% * ‘
nog 9any 3 m 3

' .o+ 7 s ) (—5 +r
i=1 0 agz agz o 3f

* 2
% 3N AR
={dny 3 +x, 2)°5‘ag A 5_)} )

CIA 1 3 32
n & %" 32”;. Sn;
ik 2 CF ) & W.4)
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£ N o

n >5i anl 3 * x 9Ny
I n3)(ag = Iy 1dE = {8n) =

o =

*

an
o 3 ¥ 1
"'1'0713) (st— “r M } o

~ n & an; anl ‘ a - *
- ii]_ jo § (= 3 (-5-?- +r n3) (ae; =rn) a W.5)
n Iéi . *(33 azn;)dg { ,(aznz ény b o Igi ony,
z n +r = {dn +r === z $ (==
j=1° © 3 ag3 o 352 3 agf o 3 ‘o i=1 .13
32rq 8n3
t + —— .
x 2o ) &g, ] (W.6)
n £ e an ane ‘Ei‘ any an
i *°M3 M e ® M3 w1 ”3 "3 *
121{3 8N, o2 T, 3¢ )8 =(6my b7 -ronl)}O - z j 8 (g™ (3p~ T )dE -

s ) _ \ W.7)

It is noted that in equations (W.4)-(W.7), the following subsﬁltu-—

tJ_on was made

o ' [ 4 . . gi 1
(= {3 (.:8)

. . (o] o
1] . ll,

e

because of the continuity condition across the finife elements.
A Y
From the boundary conditions, equations (5.19)-(5.21), one can
see that the integrated temms Vanish. Therefore, -one obtains

n gi TR Kt k0 *'\ *'Q R
- - iil ] o {<Snl (nl +r n3 )+r 6n3 (ny +r, n3 )+f€[r <Sr11(ranl n3 )+6n3 Ny 0nl)l
N

L]

F— * Kt * Lk ( *'+ * *( *'+ *
. #80ny 0y +rng )=r Sng (g +Eny) 14y 3g Mg (ny +Tgn3) =E T8Ny (g +55n5)
%, .
0" Oy et * ) 1/2=
+.:4.(n1 +ron3) [cSnl (n3 -r nl)+r 6n3 (n3 r nl)fe

. I

GU26n; () +5 )
S o -
+(5-n; (n; - ronl)]+-3€5ﬂlﬁl +3 0“3“3

- Kotk * ek _ ’ , . wW.9)
o + (148)80)n, + (148 1) 6nyny} ‘dE =0,

which is equation (5.:;1)', appearing in the'main text.
) N
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APPENDIX X
DERIVATION OF THE ELEMENT MASS, DAMPING AND STIFFNESS P’H\;[‘RICES

-——

Consider equations (5.37)-(5.39) in the main text. The highest

order of derivatives of the shape functions [N;l] and [N;3],’which exist
in the-integrands of these equatioﬁs are second and first respectively,

— N 1
and it is-necessary, to erisure that n?, n‘i and ng are continuous at the
element boundaries. Thus nodal displacements choW

(o
nlj -

¥

* o
{ni}j\ - & nlj A (X.l)

(¢}

as shown in Fig. U.l and the element displacement wvector can be written

\

as
.
*

{ng}4 \

*}® = 4o - o . '

i . \ (X.2)
| nihsa
7 3

— ~

Similarly to tThe case of static equilibrium, the ‘displacement
functions associated with n;l and n;3 can be -chosen the same as for the
out-of-plane motion J.n the inextensible case. Therefore, from the;
nm\;rfcal anal;sis of out-of-plane motiotn in the ipextensible case one
can write the following relations

- - %
N, ]

(0,121, '
) (X.3)

* oo -1
) = (o) A1

where [¢,], [¢,] and [A];l have been defined in equations (3.62) (3.63),
and (3.71). in Chapter III.

«




X=2
. . ° ]
By substi,g.lting equation (W.3) into equations (5.36)-(5.39)

yields ' .- '
- E (:"‘\ N -
;1€ = a1 [Ter(isy) 10,17 10,1+ (1482 10,1 10,1} ag-a17Y,
o ,
- ' E b N .
*1e _a)IT [regl/2g
[D;1" = [al, Rt 200,17 (16,) +r01¢41)+[¢41 ([0,) -r_[0,])]
+ J€[¢3]T[¢2] +3' 10,17 10,11} a8 12},

1® = wgt 7€ (10,00, " (16, 0,1+ (0,1 Tt0,) W01 10,01

s L0, Tloy) = x (10,110, + (0,) Tlo 1) +5210,1T (0,11

o' 0o ' T ' T ',
+A:(n} +rong) (@17 (10,1 —r [e, 1) +r (0,17 ([¢,] -r_[¢,])]

+ @ 110,)T (loy) +x 0,1 ") - £ 10,07 (10,1 "+ £_[8,1))

+ [8,)" %g[ﬂo\(wz]'+ro[¢4])-ronoT¢4lT([¢>2]'+ r lo,)} dealst

Finally, substituting equation set (5.41) into equation set (W.4)
and then evaluating the integrals, one obtains the element matrices

* o 1T * . K ) -1 ‘ ,
[M; ] {48 ) [3,] + (1+82) (3,1} (A] ) - ‘ (X.5)

071° = (158 2602 (9514 1], 1)+ (19501, () ) D+ Bt Doty ) HiaI S

(X.6)

’

(K]1€ = [Al‘lT {[[J I+ ([J151+[J T2 13510+ ALy —x (1] )+, T2 1]

+A[’c1[[J71’-r (T =ty =215 114, [ (T (131710 1) - 213,511
+ 0 [[39]+r (13 121" [J ;- 2 [J4]]

+ 2y 0y 14, (37,110 3102 (31 140, (195 e (37,11

+ a (137,14 (13 1-13] 1) x5 91 140 [13) e (35311 115 x.7)

P (X,




©

< where
g
o) g J ® 10,17 (e,) 4 &,
193] = I (0,1 Tlo,)" &

e
(331 = {8 10,17 [e,) A &,

*, - Ge T
5] = [o [0,17(0,] &g,

* Ee 'T '
[J7] = IO [¢2] [¢4] d&l

« £
(Jg) = fo [0,
. e

[3) =I (0, 16,1, GE,

S
. b6,17 10,0

(33,! =

3},) = Ir'e Fio,1710,)"
(37,] Ize (017 0) 6k
133,) = Iie 0,1%00,) " aE
[97,] Iie (0,1 0,1 &t ,
(931 = fie (0,1 T1o,] aE
(33! - Iie gto,) 10,1 G,
193, = % (0,17l0,) " £ct,

ge

(37g)= fo° log1 710,08 Gk
[33g] = [ 16417 10,) £
[35,) = § 2 101 10,0 aE

e - :
[95,] = o© Elog1Tie,) a

3 o
tagzl - ; g E[¢2] Tlog) ' ,

™

X-3

+ (X.8)

)

Details of the manipulations. leading to .equation (X.6) may be foun@m

p)
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.Appendix L. It should also be noted that equations (X.S5)-{X.7) are

equations (5. -(5.4mof the main text.
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0 * APPENDIX Y

) COMPUTER PROGRAMS FOR THE , X ,
J : EXTENSIBLE THEORY
LEVEL 1.6.0.(0CT 1984) VS FORTRAN DATE: AUG 25, 1986 TIME: 14:37:24

REQUESTED OPTIONS (EXECUTE ): NODECK,NOLIST »OPT(2),NOFIPS,XREF ,MAP ,GOSTMT ,GOSTMT ,NOTEST , NOTF ,NOSDUMP

OPTIONS IN EFFECT: NOLIST. MAP XREF GOSTMT NODECK SOURCE TERM OBJECT FIXED NOTEST NOTRMFLG
‘NOSYM NORENT NOSDUMP AUTODBLINONE)  NOSXM ' .
OPT(2) LANGLVL(77) NOFIPS FLAG(I) NAME(MAIN ) LINECOUNT(60) CHARLEN! 500
UK. FIPUE DO JUiP - S S TR TR RN - TR TY T A JE SR -
c , 00013
C MIHHHEHHHHHHHHHHEHHHHHHHHHHEHHHHHHHOEHHEUEHHHEIHHEHEIHEHERBHEHHHHRHEEE 0 00 14
c FINITE-ELEMENT PROGRAM OF EXTENSIBLE THEORY C00015
C FOR THE CASE OF STATIC EQUILIBRIUM C00016
c { CURVED PIPE CONVEYING FLUID ) €e0017
C M IMHNHHEHEHEHHEHHHEHHBHEHHHEHEHHBHHEHHHHHHHHHHEHHHHRHEHHHHHIHIBHEHEREHHt 00018
c 4 00019
c MAIN PROGRAM 00020
- c 00021
ISN. 1 IMPLICIT REAL®S(A-~H,0-2Z) 00022
ISN 2 DIMENSION'EK(6,6),EFOR(6,1),NODE(6,38),RO(38),ELENGI38) 00023
- ISN 3 DIMENSION GK(105,105),GF(105),G6KN( 105,105 ), NKAREA( 18200) 00024
‘ ISN 4 DIMENSION PINOD(37),COFPI(36),TOROT(37),COFTO(36), ' 00025
» DISN3(37),0EVN3(37) 00026
G ISN 5 COMMON /EMDK/EK ,EFOR . 00027
ISN 1 COMMON /COEF/XPHIA,XPHI ,XH :SIH‘,CAPA -- 00023
‘ISN 7 DATA RO/38%3 . 1415926500/ ' 00029
c 00030
ISN 8 * NOT =105 ° Qo031
ISN 9 NET = 34 00032
ISN 10 NOPE = 6 00033
' Cumzsszsazsmaas - 00034
C NODAL DATA 00035
—— CEaassszzzExzIIER 00036
ISN 1. PRINT 100% 00037
" ISN 12 100" FORMAT( ‘1',8X, *IN-PLANE STATIC DEFORMATION (CLAMPED-CLAMPED)', 00038
\ » ¥ //,9%, *ELEMENT CONNECTIVITY:', 00039
L /720X, *ELEMENT NUMBER',20X,'NCDE’,//) 00040 N
ISN 13 00 101 Is),NET 00041 '
Czm=m=usuass 00062
C DATA FOR LENGHT OF ELEMENT ! 00043 4
CEEREEREEEETIIRINTATCILITLISS - 00044
> ISN 14 ELENGt I )=1.00/DFLOAT(NET +2) 00045
ISN 15 DO 102 J=1,NODPE ' s 00046
ISN 16 102 _NODE(J,I)a3w(I-1)e¢J : 00047
ISN 17 WRITE( 6,103)1, (NODE(L, I)’LlI.NDPE) . 00048 =-— ,
ISN 18 101 - CONTINUE . 00049 i
< ISN 19 103 FORMAT( 29X,12,10X,6(13,3X)/) 00050 |
i ° CERRESEZITATZANLIZAXTTISRASTZIR ' 00051 J
€ FORMING THE DIMENSIONLESS PARAMETERS 00052 ‘
. CRESSEiEEIRIENESEIRIEIZTIRITIIZZAXTIRIRRS 00053 !
ISN 20 . VELU =RO(1)%OFLOAT(2) — 00054
ISN 21 XPHIA =0.000 1Y 000S5
ISN 22 . XPHI =.500 00056
ISN 23 SIMA =0.000 00057
ISN 2¢ CAPA =1.00/(1.00+.300) . 00058
ISN 25 xH =0, 000 00059
o ISN 26 AA =1.004 ? 0006¢"
ISN b7 XLAMDA=]. 300 00061
ISN 28 —“PI10 sXLAMDARVELUmN2 00062

*



LEVEL 1.4.0 {OCT 1984)

ISN
ISN

- 63

VS FORTRAN DATE: AUG 25, 1986

TIME: 14:37:

24

Y-2

NAME: M2

L P O DY S FUP N | IR U S YO 21, T

Caz2aTANTREZIIZIZTSIIIBSRS

/Cszzszngasas R
/ C- SOLVING EQUATION GK»U=F
70

7/1/ c

29 NRITE( 6,106 )VELU , XPHIA,XPHI ,XH,SIMA ,CAPA,RO( 1)
30 106 FORMAT(//,10X, 'DIMENSIONLESS pnsfzg
#'VELOCITY=',012.5,/7,10X, '8ETAAY ' ,D12 § ',*
#,012.5,//5,10%, PT (INCLUDIMG)',",",* SIMA
- 'CApr'.nxz.s,-,-.-:7 1,012.5,/)
c".'."’l.'-"’-SIII'-S’
C ESSAMBLY' OF ELEMENT MATRIX YIELDS GLOBAL MATRIX
c3”":”:".33'333:::::==3=3:===¥===3888"28!3’3
c
3 DO 107 TI=1,NOT .
32 GF(II)20.000
33 00 107 JJ=1,NDT
3% GK(II,JJ }=0.000
35 107 CONTINUE
c .
% XELENG*ELENG(1) -
37 ROO=RO(1)
38 CALL ELMOKM(XELENG ,VELU,RO0,AA,P10,XLAMDA)
39 0Q 115 JG=1,3 // ‘
40 JE234J6 g
a1 GF(JG)=GF ( JG 14EFOR(JEL )
42 DO 115 KG=1,3 \ )
KE=34KG o
o GK I JG,KG 126K JG/KG ) 4EK( JE ,KE )
45 115 CONTINUE -
Co-- "
a6 00 109 Lsz,N? N
47 XELENGELENG( L)
48 PIO 3PION(1/00-L*XELENG)
49 ROO— 3RO( L .
50 CALL ELMDKM(XELENG,VELU,RO0,AA,RI0,XLAMDA )
51 DO 109 JKZT;NOPE )
52 00 119 K{=1,NOPE
53 G=NODE(JL »L )
s KG=NODE(KL 5L )
55 LBK1JG,KB 1=GK( JG,KG J+EK(JL KL )
56 119 °°"’é E
57 GF (JG=GF( JG)+EFOR(JL,1)
58 109 CONTINUE
59 XELENG=ELENGINET )
60 PIO =PION(1.000-OFLOAT(NET+1 MXELENG )
61 00=ROINET) '
62 . ALL ELMOKM(XELENG ,VELU,RO0 , AA,PI0, XLAMDA)
63 ///oo 199 JEs1,3 "4
6% JG=NDT+JE-3 .
65 /' GF(JG)2GF(JG )+EFOR(JE,1)
66 00 199 KEsl1,3
67 KG=NDT+KE-3
68 © GKIJG,KG )3GKI JG,KG ) +EK( JE ,KE )
69 199 CONTINUE —

[

IDGT =8
CALL LEQT2F(GK,1,NOT,NOT,GF, I0GT ,WKAREA,IR)

"

.

00063

TERS:',//710%, 'OIMENSIONLESS *,00064
s 'BETA=' ,012.5,',
=',012.5,",'//7,10X%,

'y 'H='Q0065

00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082,
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00096
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
co108
00109
00110
00111 -
00112
00113
00114
00118
00116
00117
00118

9



$

JLEVEL 1.4.0 (OCT 1984)

86
a7
89

91
92
93
9%
95

97

100
101
lo2
103
104
105
106

107
108
109

110
111

112
113
114
115
116
117

‘..‘......1....-....-2..--.....3......-..‘0.--

VS FORTRAN DATE: AUG 25, 1986 _

-

-

C CALCULATING THE COMBINED FORCE .
¢ ' .
WRITE(6,239)
239  FORMAT(///,T10, *NODE',T20,'DIM. LATERAL DISPL. ',
" T45,'SLOP OF °*, .
" T62,'0IM. AXIAL OISPLACEMENT',//)
NE2INET+2 -
NE3aNET+3
DISN3(1 )=0.000
DISN3(NE3)20.000
00 230 JK32,NE2 '
JK3 2{JK~1)n3
DISN3( JK )=GF(JK3)
230  CONTINUE
Ce=
DEVN3(1)=DISN3( 2 }#DFLOAT(NE2) & - - -&, —_—
DEVNS(NE3 )=~DISN3(NEZ )%OFLOAT(RE2)
DO 231 JL=2,NE2
DEVN3( JL )=(DISN3( JL+1)-DISN3(JL-1) }*OFLOAT(NE2)/2.00
231 CONTINUE J
Cm=e
PINOD(1)=PI0-AARDEVN3(1) ° .
PINOD(NES )3-AARDEVN3(NE3 ) N
00 235 JH=2,NE2
JMELe(JH-2 }¥3
PREMO=PIO#(1.00~ELENG( 1)#OFLOAT{ JH-1))
ELONGA=DEVN3 ( JH ) -RO( JH InGF ( JM)
. PINGD( JH )2PRENO-AARELONGA
7.235  CONTINUE
TOROT( 1)=0.000
TOROT(NE2 )3GF (NDT-1 )+RO(NET J%GF (NOT )
TOROT(NE3 )20.000
J920 ’
NO3=NDT-3 ‘
D@ 499 JJ=1,ND3,3
J9=J9+1
J91249+1
JJ12Jdsl .
JJ2sdJ1+l
JU334J2+3
TOROT{ J9L J2GF (JJ1 )4RO( J9L JHGF(JJ2)
c-- . ;
HRITE( 65261)J9,6FJJ),GF(JJ1),GF1JJ2)
261  FORMAT(10X,I2,T22,012.5,T42,012.5,T66,012.5,/)
499  CONTINUE
[ 22
WRITE(6,251).
251 FORMAT(///,T5,'NODE',T12, 'DIM. COMB. FORCE®,T32,
» 'SL. OF COMB. FORCE',T58,'TOTAL SLOP’,T82,
» 'SL. OF TO. SLOP‘'//)
0O 255 IIs1,NE2
COFPI(IT )(PINOD( IT+1)-PINGDCIT ) INDFLOATINE2)
COFTO( IX )=( TOROT{ IX+1)-TOROT(II) }#DFLOATINE2)
MRITE(6,259)11,PINOD(1I),COFPI{II), TOROT(IX ),COFTO(IX)
259  FCRMATITS,I2,T14,012.5,736,012.5,760,012.5,784,012.5/)
255  CONTINUE

~

ceesssBiteaseasab.

TIME: 16:37:26

AN TR

oo119
00120
00121
gol22
oo123
00124
00125

,00126

00127
00128
go129
00130
oo131
00132
00133
00134
00135
00136
00137
oco138
00139
00140
00141
00142
00143
400144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155

' 00156

00157

00158
00159

00160
00161

. 00162

00163

* 00164

00165
00166
00167
00168
00169
00170

00171

00172
00173
00174

Y-3
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ik N

Al

"t

LEVEL 1.4.0 (OCT 1984)

ISN
ISN
IsN
ISN

118
119
120
121

VS FORTRAN

DATE: AUG 25, 1986

)
‘....l...la.-......2.........3.........b.........s.........6.........7.'.......8

‘899

WRITE( 2,899 )PINCO,COFPI,TOROT ,COFTO
FORMAT(020.101)

sToP -

END

Y-d
TIME: 14:37:24 NAME: W8
00175
0017¢
00177
00178
" +
. Y
L 4



Y-5
% . 'd
¢ » i
LEVEL 1.4.0 (OCT 1984) VS FORTRAN DATE: AUG 25, 1986 TIME: 14:37:25 l ’
+ \-
OPTIONS IN EFFECT: NOLIST MAP  XREF GOSTMT NODECK  SOURCE TERM OBJECT FIXED MTEJST NOTRMFLG
NOSYM NORENT NOSDUMP AUTODBLINONE)  NOSXM
OPT(2) LANGLYLI77) NOFIPS FLAG(ITI) NAME(MAIN ) LINECOUNT(60) CHARLEN(500
'a'uo.tlollloooct'ozvontol.nnS.c.."‘.nu-“.qtnlanloS'.l.ttl.lsvu-uooclc7-.iuo.l-ca
ISN 1 SUBROUTINE ELMOKM(ELENG,VELU,R0,AA,PIO0,XLAMOA) 00179
~ CEsEsEREERTAISINITAINAATAXRNTIAXISIXXRIRZIIAII=C Q0180
‘ C SUBROUTINE ESTIMATING ~STIFFNESS MATRIX C 00181
CEREEEINRREIRIXTTIAIRXZIXINITIITIIISINIZI=22C 00182
Cc Cc 00183 1}
ISN 2 IMPLICIT REAL¥8(A-H,0-Z) ¢ 00184
ISN 3 OIMENSION EK{6,6),EFOR(6,]1) 00185
ISN % DIMENSION RJS1(6,6),RJS216,6),RIS3(6,6),RJS4(6,6),RIS5(6,6), 00186
2 ' RJS616,6),RIS8(6,6),RIS10(6,6),RIS1116,6),RISI2(6,6), oolaz
3 RJS15(6,6),RJIS16(6,6),RIS17(6,6),RJS18(6,6),RJIS19(6,6), 00188
4 RJS20( 646 ),RJS2116,6),EF1(6),EF2(6),EF3(6), 00189
5 EFI(65,1),AINVE(6,6),AINVET(6,6) 00190
ISN 5 COMMON /EMDK/EK,EFOR 00191
ISN 6 COMMON /COEF/PHIA,PHI ,VISDAH,SIMA,CAPA 00192
ISM 7 ’ comou MAJS/RIS1,RISZ,RJS3 ,RISH,RISS , RIS6,RISE, RJSIO,RJSII. 00193
RJS12,RJIS15,RJS16,RJIS17,RIS18,RIS19,RJIS20,RIS21 00194 o
1SN 8 comou /MAFORC/EF1,EF2,EF3 00195
ISN 9 COMMON /INV/AINVE ,AINVET 00196
ISN 10 ROZ=RON»2 00197
ISN 11 PHI1230SQRT(PHI) 00198
ISN 12 VELU2sVELU#2 . * 00199
c . 00200 .
C CALL MATRICES J#l-Jw2l &P 00201
c o v 00202
IsN 13 CALL GENMAJTELENG) 00203
c 00204
, C CALL INVERSE OF THE MATRIX A go205
c 00206
IsN 16 CALL INVERS(ELENG) : § 00207
cII:I:I:::I::I::::::{:::: e o 00208
C FORMING’ ELEMENT MATRICES ) 0QR09
CEIZEZESERSARIAXVAIINLIRINI=NS N ~ . ! zio
ISN 15 00 280 Is1,6 : 00211
ISN 16 00 280 J=1,6 00212
ISN 17 EK(I,J)3(RJISI(I,J)+ROM{RISLIS( T ,J )FRUS1IS(J,1))+ROZ¥RIS1IO(T,J)) 00213 )
® +AARIRJISLO(I,J)-RO#IRIS16(I ,J }+RIS16(I>1))+RO2HRISLII,J)) 00214 *
#  +PIOMRJISLIL(I,J)I+RONIRISLIE( T ,J)=RIS1I7(T,J))rRO%RISH{ I ,J)) 00215
#  $VELUZ®{ RJS1I1(I,J )+RO*(RIS16(X,J)-RJISI7(I .ﬁ'; )-RO2*RISAH(I,J)) 00216
#  =VELU2#XLAMDAM(RJSS(X,J)+RJS12(1,J)-ROZHRIS21(I,J} _ 00217
- » +ROM RIS18(I,J)+RIS1INI,J )~RJS20(I,J))) » 00218
ISM 18 280 CONTINUE . - 00219
c / 00220
C THE FORCE VECTOR OF ELEMENT e 00221
c , . 00222~ -
« ISN 19 00 309 JJ=1,6 00223
ISN 20 EFI1JJ,1)2-ROMVELUZ+PIO INEFL( JJ)+. 00224
", XLAMDA'WELUZM ROMEF2{ JJ)+EF3LJIJ)) 00225
_I_SN 21 309 CONTINUE . 00226
«ISN - 22 c CALL PROOMAL66,1,AINVET, EFI »EFOR) 00227
00228
¢ ugmm STIFNESS MATRIX 00229
- c - 00230



fo

LEVEL 1.4.0 (OCT 1984)

ISN
ISN
ISN

23
29
25

26

; § ] - xﬂ
, Y-6
P ™
1
VS FORTRAN DATE: AUG 25, 1966 TIME: 16:37:28 NAME: BL
L NP J - S . S Y T T 1 TR

CALL PROOMA(6,6,6,AINVET ,EK,RJSA) ) > 00231

CALL PRODMA(6,6,6,RJIS%4;AINVE,EK) Py 00232
/RETURN 00233

END 00234

; >
»
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LEVEL 1.4.0 (OCT 1984) VS FORTRAN DATE: AUG 25, 1986 TIME: 14:37:25

OPTIONS IN EFFECT: NOLIST MAP XREF  GOSTMT NODECK  SOURCE TERM  OBJECT FIXED NOTEST NOTRMFLG

NOSYM NORENT NOSDUMP AUTODBLINONE)  NOSXM
OPT(2) LANGLVL(77) NOFIPS FLAG(I) NAME(MAIN ) LINECOUNT(60) CHARLEN( 500

-

;Y - SUPRR N - FEP Y TS . TR IS

L TN N N I TR

. ISN R ¢ SUBROUTINE GEMNMAJ(ELENG) 00235
c . . 00236
C SUBROUTINE GENERATING MATRICES J%1-J%23 00237
c b 00238
C 00239
ISN 2 IMPLICIT REAL®8(A-H,0-Z) 00240
ISN 3 DIMENSION RJUS1(6,6),RJS2(6,6),RJS3(6,6),RISA416,6),RISS5(6,6), 00241
» RJIS6(6,6),RISBL6,6),RISL0(6,6),RIS1ILLI6,6),RIS12(6,6), 00242
» RJS15(6,6),RJIS16(6,6),RIS17(6,6),RIS18B(6,6),RIS1916,6)) 00243
» RJS20(6,6),RJIS2116,6),EF1(6),EF2(6),EF3(6) 0024%
. ISN % COMMON /MAJS/RJS1 S2,RJS3 ,RIS4,RIS5,RIS6,RIS8,RIS10,RIS1L, 00245 .
" RJS12,RJS15,RJS16,RJS17,RJS18,RIS19,RIS20,RIS2] 00246
ISN 5 COMMON /MAFORC/EF1,EF2,EF3 00267
FEZRIXXIXIZTZIRIRIZI 00248
ISN 6 ” DO 400 I=1,6 00249
ISN 7 DO %00 J=1,6 00250
ISN 8 RJSL1(I,J)=0.000 00251
ISN 9 RJS21I,4)20.000 00252
ISN 10 RuS3{I,J)=0.000 P 00253 &
ISN 11 RJS#(I,J)=0.000 0025%
ISN 12 RJSS5(I,J4)=0.000 00255
ISN 13 RJS6LI,J)=0.000 00256
ISN 1o RJSS(I,J)=0.000 + 00257
ISN 15 RJS10(X,J)=0.000 . 00258
ISN 16 RJS11(1,J)=0.000 00259
ISN 17 _ RJS12(I,J4)=0.000 r 00260
ISN 18 RJS15(1,J)=0.000 00261
ISN 19 RJS16(1,J)=0.000 00262
ISN 20 RJS17(1,J4)=0.000 00263
ISN 21 RJS18(1,4)=0.000 00264
ISN 22 RJS19(I,J4)=0.000 ‘ 00265 '
ISN 23 RJS20(1,J4)30.000 ’ 00266
R ISN 24 RJS21(I,J)=20.000 00267
ISN 25 400 CONTINVE 00268
I ~ 00269
C GENERATING MATRIX J#1 . 00270
c o 00271
ISN 26 00 402 X=1,4% . 00272 v
ISN 27 DO 402 J=1,4 . 00273 '
_ISN 28 Kal+J-1 N 00274
ISN 29 RJS1(I,J)=ELENGH( K )/DFLOAT(K) » 00275
ISN 30 402 CONTIMUE 00276
} c , 00277
C GENERATING MATRIX Jw2 00278
. c ) . ° 00279
ISN 31 00 410 II=2,4 00280
- ISN 32 DO 410 JJ=2,4 ’ 00281
-ISN 33 KK=II+4J-3 00282
«ISN 34 RJS2(1I,JJ )2ELENGW*( KK ) ’ 00283
ISN 35 410 CONTINUE . 00284
ISN 36 RJS2(3,3 )=4.D0#RJS2(3,3)/3.00 ! 00285
ISN . 37 R.{SZ( 3,4)=1 ,500%RJS2(3,4) 00286

Ly
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1
o LEVEL 1.4.0 (OCT 1984) VS’ FORTRAN DATE: AYG 25, 1986 TIME: 14:37:25 NAME : ©F
N L ZRTS TS PR SN . JU R R R T 21 TR
ISN 38 RJS2(% 53 )=RIS2( 3,4 ) . 00287
ISN 39 RJS2(% % )=1,8D0%RIS2(4,4 ) 00288
{ , ¢ 00289
C GENERATING MATRICES J#3 00290
c 00291
TSN 40 RJS3(3,3 )=4.00%ELENG . 00292
ISN 61 _ RJS313,4)=6.D0NELENGHH(2 ) . ’ 00293
ISN 42 ' RJIS3(4,3 )=RIS3(3,4) 00294
ISN 43 RJIS3(4,%)=12.DORKLENGH*( 3 ) 002985
. c - 00296
C GENERATING MATRIX J¥% , 00297
c 00298
ISN “% RJS4(5,5 )=ELENG 00299 .
ISN 45 RJSG(5,6 )=, 500%ELENGH*(2) 00300
ISN 46 RJS4( 6,5 )=RIS4(556) 00301
ISN 47 RJSA( 6,6 )ZELENG®( 3 )/3.D0 - , 00302
c - 00303
C GENERATING MATRIX J%5 - 0030%
c 00305
ISN %8 . DO 420 I=1,4 00306
ISN 49 ~ 7 DO 420 4=2,4 . 00307
ISN 50 K2 2J-1 00308
ISN 51 K3a I+J=2 00309
ISN 52 RJSS(I,J }=DFLOAT( K2 )XELENG®®#(K3 )/DFLOATIK3) 00310
ISN 63 420  CONTINUE 00311
. ) c 00312
: C GENERATING MATRIX RJS6 00313
. ¢ 00314 -
ISN 54 RJS6({3,51=2,00%ELENG 00315 .
ISN 55 RJS6(3,6 )=ELENG™*( 2) 00316
ISN 56 . RJS6(4,5)=3,D0%RJIS6(3,6) . 00317
ISN 57 RJS6(% 56 122, D0%E LENG™#(3 ) 00318
c N 00319
C GENERATING MATRIX Jx8 - 00320
c 00321
ISN 58 D0 430 L=2,4 00322
. ISN 59 LLaL-1 00323
ISN 60 RJSSB(L,6 )ZELENG™®(LL ) ) 00326
ISN 61 430  CONTINUE 00325 )
¢ ‘ -— 00326
C GENERATING MATRIX J»*10 00327
‘ ¢ 00328
. ISN 62 RJS10( 6,6 )=ELENG 00329
c ~ , ' 00330 ,
C GENERATING MATRICES J¥11 AND J®12 00331
[ 00332
1SN 63 00 440 JJ=1,4 00333
ISN T 64 RJS11(JJ,3 )32, DONELENG**( JJ )/DFLOAT(JJ) . 00334
ISN 65 J12JU+1 00338
ISN 66 RJS11(JJ 5% 126, DONELENGH#( J1 }/OFLOATIJY) - 00336
ISN 67 RJS12(JJ,3)22. DORELENGH*( J1 }/DFLOAT{J1) 00337
ISN 68 RJS12( JJ »% )36, DONELENGHH( JJ+2 )/DFLOAT(JJ42) 00338
', "2ISN 69 44U  CONTINUE - 00339
c 00340 .
C GENERATING MATRIX R#*15 00341
¢ .. 00342

L4




J

_ LEVEL 1.4.0 (OCT 1984) - VS FORTRAN , DATE: AUG 25, 1986 , TIME: 14:37:25 NAME: GEl
OIS ST SUDEUE SUUDOY YU -UPPRY SRR A% JRTRITRT
ISN 70 RJS15(3,6)=2.DONELENG 00343
ISN 7 RJIS15(4,6)=3 . DOXELENG 2 00344
c ¢ 00345
C GENERATING MATRICES R%16 , R¥18 AND RW19 ° .- 00366
. c » . 00347
ISN 72 00 443 1521,4 00348
ISN 3 RIS16(15,6 )ELENGWS( I5)/DFLOAT(I5) 00349
Caxs 00350
ISN 7% RUS18( 15,55 =ELENGH*( I5)/DFLOAT(I5) 00351
ISN 75 RJS18(15,6 )=ELENGH#( I5+1)/DFLOAT(I5+¢1) 00352
Cas= 00353
ISN 76 RJS19(15,6 ) =ELENG*#( I5+1)/OFLOAT{I5+1) 00354
ISN ., 77 443 CONTIME 00355 _
c . - 00356
R ' C GENERATING MATRICES R®17 AND R%20 00357
< c ) , . 00358
ISN 78 00 446 J5=22,4 ! ) . 00359
ISN .79 - . J51 =J5-1 00360
ISN 80 RJS17(5,J5) =ELENG®( J51) . 00361
ISN 81 . RJS1716,J57 =DFLOAT(JS1)XELENGR(JS)/DFLOAT(JIS) 00362
Cxax 00363 :
ISN 82 RJIS20(5,J5 ) =DFLOAT{ J51 )#ELENG¥*{ J5 )/DFLOAT(JS ) 00364
ISN 83 RJS201 6,J5 ) =DFLOAT{ JS1 }¥ELENGY*#( J5+1 ) /DFLOAT(JS+1) 00365
ISN 84 ~ 466 CONTINUE 00366
. c . ' 00367
. C GENERATING MATRIX R¥21 00368 -
c @ 00369
ISN 85 . DO 947 122,3 00370
ISN 86 1 =341 00371
ISN 87 RJS21(5,1J )=ELENG*#( I }/DFLOAT{(I ), 00372
ISN 88 RUS21(6,1J )SELENG*#( T +1)/DFLOATII+1) 00373
ISN 89 647 CONTINUE 00376
c (\ 00375
‘ C GENERATING FORCE VECTOR OF ELEMENT . 00376
] c . 00377
ISN 90 00 449 IF1=1,6 A 00378
1SN 971 EF1(IF1)=0.000 . 00379
ISN - 92 . EF2(1F1)=0.000 ) 00380
ISN 93 - EF3(IF1)%0.000 00381. :
. ~IsN 9% 449 CONTINUE — 00382
ISN 95 00 S01 L*1,4% 00383 “\
ISN 9% EF1¢L)SELENGw®( L )/OFLOAT(L) v 00384
ISN ' 97 EF21 L )ELENG®»( L +1)/DFLOAT(L+1) 00385
SN 98 501 CONTINUE ‘ 00386
TSN .99 EF31 5 )2ELENG 00387,
ISN 100 EF3( 6 )ELENGHN( 2)/2.D0 . 00388
ISN 101 RETURN 00389

ISN 102 . END 00390 ,

v - .
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' 4

LEVEL 1.4.0 (OCT 1984) VS FORTRAN OATE: AUG 25, 1986 TIME: 14:37:2¢ s

OPTIONS IN EFFECT: NOLI MAP XREF. GOSTMT NODECK  SOURCE TERM  OBJECT FIXED NOTEST NOTRMFLG
NOSYM NORENT NOSOUMP AUTODBL {NGNE) NOSXM .

T{2) LANGLYLI77) NOFIPS FLAG(I) NAME(MAIN ) LINECOUNT!60) CHARLENI 500

T TR T PP N SRR S TETTTITERY PRIy 21 PSRN

ISN 1 SUBR NE INVERS(ELENG) 00391
\ c 00392
c SUBROUTINE INVERTING THE MATRIX A 00393
’ c 0039
C ' 00395
ISN 2 IMPLICIT REAL®8{A-H,0-2) . 00396
ISN 3 DIMENSION AINVE( 6,6 ),AINVET(6,6) - , 00397
ISN 4 COMMON /INV/AINVE ,AINVET . 00398
ISN 5 DO 500 I=1,6 - 00399
" ISN 6 D0 500 J=1,6 g 00400
ISN 7 AINVE(],J3)=0.0D0 00401
ISN 8 500 CONTINUE N " 00402
ISN 9 AINVE(1,1)=1,D0 N 00403
ISN 10 AINVE(2,2)21.D0 0040%
ISN 11 AINVE(5,3 )21.00 00405
ISN 12 AINVE(3,1)=3-3.00/7ELENGH*( 2 ) 00406
ISN 132 AINVE(3,2)=-2.00/ELENG * 00407

ISN 14 AINVE(3,4 }3-AINVE(3,1] 00408 '
ISN 15 AINVE(3,5)2-1.00/ELENG 00409
ISN 16 AINVE(4%,1 322 . DO/ELENGW*(3 ) 004lo0
ISN 17 AINVE( G, 2 )SELENGH®( ~2) 00411
ISN 18 AINVE(4,% )=-AINVE(S,1) » 00412
ISN 19 AINVE!G,5)=AINVE( &,2) - 004132
ISN 20 AINVE( 6,6 )=1.00/7ELENG 00414
ISN 21 AINVE(6,3)=-AINVE( 6,6]) 00415
N Czszm==zz - 00416
IsN | 22 00 505 I=1,6 00617
ISN - 23 DO 505 J=1,6 00418
ISN 2% . AINVETI(I »J)=AINVE( J,1) 00619
ISN 25 505 CONTINUE , 00420
ISN 26 . RETURN 006421
ISN 27 ENO - 00422

. . (
r” / N
b} '
x

e



-
Ty s

LEVEL 1.6.0 (OCT 1984)
NOLIST MAP XREF GOSTMT NODERX

OPTIONS IN EFFECT:

ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

NP WN

»
s
~o

-....-,..1.........z.........3...’......4....,.....5.........e....,.....7.n.......a-

o000

590

VS FORTRAN

NOSYM NORENT NOSOUMP AUTODBLINONE)
OPT(2) LANGLYL(77) NOFIPS FLAG(I)

SUBROUTINE PRODMA(M,L,N,A,8,C)
SUBROUTINE MULTIPLYING MATRICES

IMPLICIT  REAL®8(A-H,0-Z)
DIMENSION A(M,L3,B(L,N),CIM,N)
00 590 I21,M .
00 590 J=1,N

€(1,J)=0.000

00 590 Ksl,L
ClI,J)=CII,J)+AL,KIB(K,J)
CONTINUE

V ‘RETURN

END

b

LINECOUNT(60)

14:37:26

Y-

TERM  OBJECT FIXED NOTEST NOTRMFLS

CHARLEN( 500
A

00423
00424
00425
00426
00427
00428
00429
00430
006431
00432
00433
00434
+ 00435
00436
00437




LEVEL 1.4.0 (OCT 1984) VS FORTRAN DATE: AUG 25,°1986 TIME: 14:37:26
OPTIONS IN EFFECT: NOLIST MAP  XREF GOSTMT NODECK SOURCE TERM OBJECT FIXED NOTEST NOTRMFLG
NOSYM NORENT NOSOUMP AUTODBL(NONE)  NOSXM
OPT(2) LANGLVL(77) NOFIPS  FLAG(I) NAHE,(HAIN ) LINECOUNT(60) CHARLEN( 500

’.........1.........2.....¢...3....a.--.4........-5.........‘.--.....-7.........8

ISN 1 SUBROUTINE PRINT(v,Al 00438
c - 00439
C-SUBROUTINE TO PRINT MATRIX 00440
c . sy 00441
ISN 2 IMPLICIT REAL®8(A-H,0-2) “ 006442
ISN 3 DIHENSI?‘ AL 656) 00443
ISN L WRITE(65822) N 00444
ISN 5 822 FORMAT(///,10X, 'MATRIX J',12,7/) 00445
ISN 6 WRITE(6,823)( (A(I,J)5J21,6),121,6) 00446
ISN 7 823 FORMAT(/,6(4X,012.5),/) 00447 .
ISN 8 RETURN 00448
ISN 9 END 00449

4
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b P U R E S

16
1?7
18
19
20
21
22

23

24

26
27

T
10
13
16
19
22

28
31
36
37
40
a3
,46
49
52
55

61

67
70

76
79

11
14
17
20

23

26
29
32
35
38

4l

12

18
21
2%
27

30

33
36
39
42.
45

51

57
60
63
66.
69

72

75

81

10
13
16
19
22

28
31
34
37

43
46
49
52
55

61

67

79

76
79
82

11
14
17
20
23
26
29
32
35
38
al

47

53
56
59
62

12

18
21
26
27
30
33
36
39
%2

45

51

57

60

66
69
72
75
78

81



Y-14

28 82 83 & & 8% & o
29 85 8 87 8 8 %
30 88 89 90 9 9% 93
n “91 9z 93 M 95 %
32 ° . 9% 95 9% 97 8 9
33 97 98 99 100 101 102
. 34 100 101 102 103 104 108
. e -~
DIMENSIONLESS PARAMETERS:
DIMENSIONLESS VELOCITYs 0.628320+01 _
BETAA® 0.000000+00,BETA= 0.500000+00,H= 0.00000D+00
PL (INCLUDING), SIMA = 0.000000400,
CAPA= 0.769230400,R0= 0.314160+01 - .

NODE DIM. LATERAL DISPL. SLOP OF PIM. AXIAL OISPLACEMENT
1 -0.391620-06 -o. 283380-02 0. 249015-93
2 -0.157120-03 . =0.565300-02 0.487260-03
3 -0.351450-03 -0.831340-02 0.707940-03
4 -0.615870-03 ~0.106810-01 0.904%650-03
.5 -0.940590-03 -0.12641D-01 0.107170-02
- -0.131290-02 -0.141000-01 0.1206430-02
7 -0.171800-02 -0.149930-01 0.1298%0-02
8 © =~0.213970-02 -0.15287D-01 0.135350-02
9 -0.256100-02 . ~0.1649770-01 0.136730-02
10 -0.296570-02 ~0.140870-01 0.134100-02
1n -0.333810-02 -0.126690-01 0.127680-02
12 -0.366470-02 ~0.107940-01 0.117810-02
13 -0.39339%0-02 \ -0.855350-02 ) 0.106940-02 .



o W P w N

e,

14

16
17
18
19
20
21
22
23
2%

26
27
28
29
30
31
32
33
34

NODE DIM. COMB. FORCE

~0.413700~-02

-0.426820-02

-0. 4\3%50-02
~-0. 630610-02
-0.‘02‘1580-02
-0.40591D-02

-0.28434D0-02

_-0.357780-02

~0.327270-02
~0.293920-02
-0.258850-02
-0.223160-02
~0.187910-02
~0.154040-02
-0.122380-02
~0.936310-03
-0.683300-03
-.0.668610-03
-0.294510-03
-?. 161790-03
-0.698620~04

SL.

-0.604800-02

-0.338540-02
-0.67408D-03
0.198180-02
0.44868D-02
0.675790-02
0.872680-02
0.105420-01
0.115690-01
0.123920-01
0.128100-01
0.12838D-01
0.125040-01
0.118480-01
0.109170-01
0.976260-02
0.844180-02
0.70111D%02
0.552580-02
0.40379D-02
0.25%460-02

OF COMB. FORCE

0.896160-03

0.724320-03
" 0.540350-03

0.350790-03

0.162040-03
-0.198640-04
-0.189%430-03
-0.341920-03
-G.473430-03
-0.580990-03
-0.662620-03
-0.717310-03
-0.744990-03
-0. 746450-03
-0.723290-03
-0.677740-03
-0.612600-03
-0.531040-03
-0.436520-03
-0.332630-03
-0.222960-03

TOTAL SLOP

-0.383230+402
=0.39041D0+02
-0,.390720+02
=0.391260+02
~0.391990+02
-0.392680+02

£
.

-0.258350+402
-0.11407D+01
=0.192840+01
=0.26311D+01
~0.321130+01
-0.36407D+01

0.000000+00
-0.205150-02
-0.412230-02
-0.608940-02

-0.783920-02°

=-0.927400-02

———
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e+ e

£

SL. OF T0. sLop

-0. 738550-01
-0. 745460-01
-0.708150-01
-0.629960-01
-0.516510-01
-9.375190-01



10
1
12
13
14

16
17
18
19
20
21
22
23
2%

26
27
28
29
30
;’1
32

133"

15
36

-0.393890+02
-0.394%980+02
-0.396080+02
-0.397170+02
-0.398180+02
-0.399080+02

-0.39984D+02 .

-0.400430+02

~0.40084D+02

|
~0.40106D0+02

-0.401100+02
-0.400950+02
-0.40064D+02
-0.400190+02
~0.399630+02

. =0.39897D+02

-0.398260+02
-0.397510+02
id .396750+02
-0.396010+02
-0.:"531D+02
-0.394670+02
+0.3941004C2
-0.393610+02

-0.393200+02

-0.392870+02 .

-0.392630+02

~0.392480+02

-0.392390402
-0.392370+02

%

-0.390140401
-0,398560 +01
-0.389580+01
-0.364370+01
-0.32686D+01
-0.273600+01

-0.213510+01

-0.167760+01
-0,795390+00
~0.118920+00
0.526130+00
0.111000+01
0,16197D+01
0.20394D+01
0.236030+01
0.257910+01
0.269690+01
0:271910+01
0.265460+01
0.251460+01
0.231230+01
0.206200+01
0.177810+01
0.147470+01
0.116480+01
0.860210+00
0.570960+00
0.305230+00
0.692530-01
-0, 258550002

&

-0.103160-01
-0.109120-01
-0.110350-01
-0.106810-01
-0.987430-02
-0.86576D~02
-0.709310-02
~0.52566D-02
-0.[323260-02
-0.1190980-02
p.1oz§so-oz
0.308380-02
0.499590-02
0.66955D-02
0.813160-02
0.926770-02
0.100820-01
,0.105660-01
0.107280~01
0.105840-01
0.181640-01
0.950320-02
0.864450-02
0.763340-32

0.651730-02

. 0.534280-02

0.415450-02
0.299290-02

0,189%20-02.

0.888%450-03

-1

-0.218640-01
-0.440710-02
0.127240-01
0.290540-01
0.438020-01
0.563200-01
0.661140-01
0.728640-01
0.764200-01
0.768000~-01
0.761720-01
0.688340-01
0.611860-01
0.517010-01
0.408970-01
0.293060-01
" 0.174490-01
0.581260-02
-0.517030-02
-0.151330-03
-0.237850-01
-0.309160-01
-0.363980-01
-(; .401800-01
-0,422800-01
-0.427810-01
-0.418150-01
*0.395560-01
-0.362060-01
-0.315;60-01

~
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LEVEL 1.4.0 (OCT 1984) VS FORTRAN DATE: AUG 25, 1986, TIME: 15:03:39
REQUESTED OPTIONS (EXECUTE): NODECK ,NOLIST,0PT( 2),NOFIPS,XREF ,MAP ,GOSTMT ,GOSTMT ,NOTEST ,NOTF ,NOSDUMP

OPTIONS IN EFFECT: NOLIST MAP XREF GOSTMT NODECK SOURCE TERM  OBJECT FIXED NOTEST NOTRMFLG
NOSYM NORENT NOSDUMP AUTODBL{NONE) NOSXM ’

OPT(2) LANGLYL(77) NOFIPS FLAG(I) NAME(MAIN ) LINECOUNT(60) CHARLENI( 500
P TS DO DI SRR SO JERPIR SO OF R : |
CIHHHHHHHHHHEHHHHHHHHHEHOHHHHEHEHEHHEHHHEHSHHPHHHHEHPHRHEHEHEHHHOHORHEN 000 13
c FINITE ELEMENT PROGRAM OF EXTENSIBLE {HEORY 00014
c FOR IN-PLANE MOTION 00015
c (CURVED PIPE CONVEYING FLUID) 00016
CIHBHHHRHHEHHHHIHHEHHHHHHHHHHHEHHEHHHHEHHHHHEHHEOHHEHEHEHEOHEEHEHHOHEOHH000 1 7 -
c 00018
. c MAIN PROGRAM 00019
c 00020
ISN 1 IMPLICIT REAL®8(A-H,0-Z) N 00021
ISN 2 DIMENSION EM(6,6),ED(6,6),EK(6,6),NODE( 6,38),R0(038),ELENG(38) ooco22
ISN 3 DIMENSION GM(105,105),6D0(105,105),GK(105,105) 00023
ISN L DIMENSION GMM(210,210),G6GKKi{210,210) ~ 00024
ISN 5 DIMENSION BETA(210),HK(47000),PI(38) 00025
ISN 6 DIMENSION PINOD(37),COFPI(36),TORQTI(37),COFTO(36) 00026
ISN 7 COMPLEX#16 EIVALU(210),EIVECT(210,210) ! 00027
ISN 8 COMMON /EMDK/EM,ED,EK 00028
ISN 9 COMMON /COEF/XPHIA,XPHI ,XH,SIMA,CAPA,ALI ' 00029
ISN 10 coMMON /COPI/PINGD ,COFPI, TOROT,COFTO 00030 -
ISN 11 DATA RO/38%3 1415926500/ “ 00031
Cazmazn DATA RO/38%1.570796325D0/ 00032
ISN 12 ] READ( 02,1 }PINOD,COFPI,TOROT ,COFTO - 00033
ISN 13 1 FORMAT(D20.10} 00034
ISN 14 00 9999 LiL=1,1 - . 00035
ISN . 15 NOT =105 .o, . 00036
ISN 16 NET =36 . 00037
~~ , ISN 17 NDPE=6 00038
ISN . 18 NDT2=2%NDT 00039
‘ Cazmusszxzx2as 00040
C NODE DATA ' ’ 00041
CEEEEERINEITIIRR 00062
ISN 19 PRINT 100 00043
ISN 20 100 FORMAT( '1*,8X, "IN-PLANE MOTION (EXTENSIBLE & CLAMPED-CLAMPED)', 00044
! * /7,9%, 'ELEMENT CONNECTIVITY:®, 00045
*, - //20%, 'ELEMENT NUMBER',20X,'NODE’,//) 00046
_ _ISN 21 DO 101 I=1,NET 00047
R Casm=zzxzaz’ . 00098 .
. G DATA FOR LENGHT OF ELEMENT - 00049
. - CREEENRIRANIRIRITIZSIBZLINS - 00050 o
"ISN 22 ELENG( I )=1.D0/DFLOAT(NET+2) - 00051
- . ISN 23 DO 102 J=1,NDPE e 00052
ISN 2% 102 NODE(J,I)=33%(I~1)+J 00053
. ISN 25 NRITE(G;IOS)I.(NODE(L.I)pL=1;NDPE) ‘ 00054
ISN 26 101  CONTINUE - ° 00055
ISN 27 103 FORMAT( 29%,12,10X,6(13 ,SX ) 00056
R Cszzsnszxa IITTSWIBSLEX ’ 00057
- C FORMING THE DIMENSIONLESS PARAMETERS . ) 00058
- Cazs i 00059.
ISN 28 VELU =RO(1)%2.D0’ ) ¢ i 00060
' " ISN 29 XPHIA=0.000 N : 00061
o ISN 30 XPHI =.,5D0 . ' . 00062
, . ' hS ©

) — e



NAME: MA

Y-18
- . -
\\-r‘\‘ ) '
LE(;EL 1.4.0 (OCT 1984) + VS FORTRAN DATE: AUG 25, 1986 TIME: 15:03:39
O - . I R R IR TR L IE TR Y A% TN -
¥
ISN 31 " SIMA =0.0D0 00063
ISN 32 . CAPA =1.00/(1.D0+.300) 00064
ISN 33 X4  =0.0D0 00065
ISN 36 - ALI =1.004 00066
C=a=as== 00067
ISN 35 XMF  =3162.600 00068 °
ISN® 36 T 3299.300 00069
ISN 37 XLEN =1000.80 00070
ISN 38 GRAV =9.81D0 o . 00071
ISN 39 EI =221.3D+06 . - 00072
ISN 40 DENSIF=998.00 00073
ISN 41 KMASDI=3, 1415DOMDENSIF*( , 253%%2 ) 00074
ISN 42 GZEO =(XMT+XMF-XMASDI )%GRAV 00075
, ISN 43 PI1 =(GZEO*XLEN¥%3)/EL 00076 .
€ weee TEST FOR MR. CHEN'S CASE 00077
ISN 4% PIZ =0.000 S 00078
ISN 45 PIO=-PI1 p 00079
ISN %6 DO 105 I=1,NET o 00089
ISN 47 PIO=PIO+PI1*ELENG(I) 00081
ISN 48 PI(I)=P10 . % 00082
ISN 49 105 CONTINUE } 00003
c 00084
Cazazzz=xz 00085
ISN 50 WRITE( 6,106 )VELU,XPHIA »XPHI ,XH,SIMA,CAPA,RO(]) 00086
ISN 51 106 FORMAT(//,10X, 'DIMENSIONLESS PARAMETERS:',///10X, 'DIMENSIONLESS ',00087
#'VELOCITY=',D12.5,//»,10X, 'BETAA="',D12.5,"',"','BETA="',D12.5,',','H='00088
%,012.5,//,10X,'AA =2 10,000 *»>'s»',' SIMA =',D12.5,','//,10X%, 00089
» 'CAPA=',D12.5,"',','R0O=",012.5,/) 000490
' C== ISI=I3=a=== s==3 00091
C ESSAMBLY OF ELEMENT MATRIX YIELDS GLOBAL MATRIX 00092
C= = ARSI IIRSISZASITITIRSSESINISTI 00093
B 00094
ISN 52 DO 107 II=1,NDT . 00095
ISN 53 DO 107 JJ=1,NOT 00096
ISN 5% GM(IX,J4J)=0.0D0 - 00097,
ISN 55 GD(IX,JJ)=0.0D0 " 00098
ISN 56 GK(ITX,JJ)=0.0D0 . , . N 00099
ISN 57 107 CONTINUE A 00100
- c--- ° 00101
ISN, 58 PIO  =-PI1 — 00102
ISN 7~ 59 XELENG=ELENG(1) - T~ 00103
ISN 60 IEL =1 ' N 00104
ISN 61 ROO=ROI 1) ‘ . ’ 00105
ISN 62 CALL ELMDKM{XELENG,VELU,PIO0,PI11,R00,IEL) 00106
1SN 63 - 00 115 J6s1,3 s . 00107
ISN 6% JEx34JG ; 00108
ISN 65 DO 115 KG=1,3 00109 .
ISN 66 KE=34KG . 00110
ISN 67 GM( JG,KG )=GM( JG ,KG ) +EM( JE ,KE ) . 00111
ISN 68 GDUJG,KG)=GD(JG,KG )+ED( JE ,KE) - 00112
ISN s 69 GK{ JG,KG )3GK ( JG,KG J+EK( JE ,KE ) ~ 00113
ISN \ 70 115 CONTINUE . 00114
- c 00115
ISN ‘7T D0 109 L=x1,NET ° 00116
ISN 72 XELENG=ELENG(L) 00117
ISN 73 IEL =L+1 A . 00118
- B



{-19
LEVEL. 1.4.0 (OCT 1984) vS FORTRAN : AUG 25, 1986 TIME: 15:03:39 NAME: MA]
l....“...1.........Z.........!.........4.........5.........6.........7.*.......8
ISN 7% ROO =RO(L) 00119 —_
ISN 75 PIX sPI(L) 00120
ISN 76 CALL ELMOKM(XELENG,VELU,PIX,PI,R00,IEL) oolzl
ISN 7 DO 109 JL=1,NDPE f 00122
ISN 78 . DO 109 KiL=1,NDPE go0123
ISN 79 JG=NODE(JL,L) 00124
, ﬁ 80 KG=NODE (KL,L) 00125
8l GM( JG,KG )36M{ JG,KG )+EMIJL ,KL) 00126
ISN 82 GD{(JG,KG )=GD( JG ,KG )+ED( JL ,KL) 00127
ISN 83 GK(JG K& )=GK( JG ,KG )+EK( JL ,KL) 00128
ISN . 84 109 CONTINUE . 00129
ISN 85 XELENG*ELENGINET) 00130
ISN ‘ 86 ROO=RO(NET) - 00131
ISN 87 IEL =NET+2 ) 00132
ISN 88 CALL ELMDKM(XELENG,VELU,PI0,PI1,R00,IEL) ~ 00133
ISN 89 ’ D0 199 JE=1,3 ® 00134
ISN 90 JG=NDT+JE-3 ¢ 00135
ISN 91 D0 199 KE=1,3 00136
ISN 92 KGaNDT+KE=-3 v . 00137
ISN 93 GM( JG,KG )=GM( JG ,KG ) +EMU JE ,KE ) 00138
ISN 9% GD( JG,KG )*GD{ JG,KG )+ED( JE ,KE ) 00139
ISN 95 6K ( JG,KG )=6K(JG,KG }+EK JE,KE ) 00140
ISN 96 199 CONTIMUE . 00141
c 00142
. C== = zZRIRIN 3 o= 00143
C FORMING THE AUGMENTED MATRIX OF M,D,K 00144
c-n- = IESBETITTINZNS = aETIE=T 00145
c ' 00146
ISN 97 - DO 120 I=1,NDT2 00147
ISN 98 DO 120 J=1,NDT2 00148
ISN | 99 GMML I ,J)=0.000 00149
ISN 100 120 GKK(I,J)=0.000 v 00150
ISN 101 p0 121 11=1,NOT 00151
ISN 102 II=NDT+I1 : . 00152
ISN 103 GMM(I1,I1)=1.00 00153
ISN 104 GKK(I1,II)=1.00 \ » 00154
ISN 105 DO 121 J1=1,NDT - - 00155
ISN 106 - JJ=NDT+J1 00156
ISN 107 GKK(II,J1)2~GK(I1,J1) ) 00157
_. ISN 108 GMMITII,JJ)I=GM(IX,J1) 00158
ISN 109 ' GKK(IX,JJ)==-G0(I1,J1) 00159
ISN 110 121 CONTINUE . 00160 .
CXZ3IDZRTXITII2ITAI = . 00161
) « CALCULATING EIGENVALUES AND EIGENVECTORS ) 00162
= Ca~-szmzea=z 00163
ISN 1 IA=NDT2 . 00164
ISN 112" §. IB=NDT2 00165
ISN A13 IZaNDT2 . ) 00166
ISN 114 N =NDT2 00187 !
ISN 115 1JOB=2 v 00168
ISN 116 . CALL EIGZF(GKK,IA,GHM,IB;N,IJOB,EIVALU,BETA,EIVECT ,IZ,NK,IER) 00169
o Cazzxasazszss 00170
o C EIGENVALUES 00171
. c 18 ¢ 4 ESEEER 00172
ISN 117 00 145 J=1,NDT2 " 00173
ISN 118 EIVALU(J)=EIVALU(J)/BETALJ) 00174
., ' . 1
LEVEL 1.4.0 (OCT 1984) VS FORTRAN DATE: AUG 25, 1986  TIME: 15:08:39 NAME: MA.
AN ‘-nbc.o-oloccc-ovoOZ-o'ao-oo-3-.0......4'......ons'o.oooooubo..ooun--7o*co-o.-n8
[4
ISN 119 145 CONTINUE : < 00175
H ISN 120 CALL ARRANGINDT2,EIVALU,EIVECT) 00176
5 - ISN 121 EALL QUTEIGINDOTZ2,1,EIVALU,EIVECT) 0Q177
= ISN 122 9999 CONTINUE . 00178
ISN 123 sTOR : 00179
ISN 124 N - . - 00180
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LEVEL 1.4.0 (OCT 1984) VS FORTRAN DATE: AUG 25, 1986 TIME: 15:03:39
“
OPTIONS IN EFFECT: NOLIST MAP XREF  GOSTMT NODECK SOURCE TERM  OBJECT FIXED NOTEST NOTRMFLG
NOSYM NORENT NOSDUMP AUTODBL ( NONE ) NOSXM
OPT(2) LANGLVL(77) NOFIPS = FLAG(I) NAME(MAIN ) LINECOUNT(60) CHARLENI S00
i ]
P NN T PROURRTE NN S S - P R TIPS S TR ¥
ISN 1. SUBROUTINE E£LMDKM( ELENG,VELU,PIX,PX1,R0,IEL) 00181
[ === =az=x IZTITITIISTTTIITXIIITRTIzaI=aIITAINI=ANIIC 00182
C SUBROUTINE ESTIMATING -MASS MATRIX c 00183
C =DAMPING MATRIX . € 0018%
c -STIFFNESS MATRIX c 00185
CasarEsssszses=3SIa=SRIRSINSIIIINIITIITTIITIZISIzSIzII=zae==z3ws=C 00186
c c 00187
ISN 2 IMPLICIT REAL®8{A-H,0-Z) 00188
~ ISN 3 DIMENSION EM(6,6 },ED(6,6),EK{6,6) 00189
ISN 3 DIMENSION RJSL(6,6),RJ52(6,6),RIS3(6,6),RIS4(6,6),RIS5(6,6), 00190 '
: 2 RJS616,6),RJISBI656),RIS10(6,6),RIS1116,6), 00191
3 RJS12( 6,6 ),RIS15(6,6),RIS16(6,6),RIS1716,6),RJS18(6,6), 00192
(3 RJS19( 6,6 ),RJS2016,6),RIS21(6,6),RIS22(6,6), 00193 \
5 RJSSI(6:6),R5$41(6,§I,RJ542(6,6)pRJS‘QSI(nb). 00194
6 - AINVE( 6,6 ),AINVET(6,6), 00195
7 PINOD(37),COFPI(36),TOROT(37),COFTO!36) ~ 00196
ISN 5 /EMDK/EM,ED ,EK 00197
ISN 6 c /COEF/PHIA,PHI,VISDAH ;SIMA,CAPA,ALI 00198
SN 7 COMMON /MAJS/RJS1,RJUS2,RJIS3 ,RJIS4,RJIS5,RIS6,RIS8,RIS1O, 00199
» RJSli »RJS12,RJS15,RJISL1E,RIS17,RIS18,RIS19,RIS20, 00200
#* , RJS21,RJS22,RJS31,RJS41,RJIS42,RJS43 00201
ISN 8 COMMON /INV/AINVE ,AINVET - 00202
ISN -9 COMMON /COP1/PINOD ,COFPI,TOROT,COFTO /L 00203
ISN 10 RO2=ROM¥#2 * 00204
ISN 11 PHI12=DSQRT(PHI) . 00205
ISN ps VELU2=VELU**2 . . 00206
' OISN 13 Al =PINOD(IEL) 00207
ISN 14 . A sCOFPI(IEL) 00208
ISN 15 Cc =TOROT(IEL) 00209
ISN 16 c =COFTO(IEL) 00210
c —_— 00211 .
C CALL TRICES J¥l-J¥12 00212 N
c -, 00213 -
ISN 17 +CALL GENMAJ(ELENG) 00214 P
' c 00215
C CALL INVERSE OF THE MATRIX A 00216
c ; : 00217
ISN 18 CALL INVERS(ELENG) 00218
c . 00219
Cxaz==ssassssssSsSsazagsss opzzo
' C FORMING ELEMENT MATRICES 00221
CazzzzInszzzzsSIazaas==and o 00222
ISN 19 DO 280 I=1,6 v 00223
° . ISN 20 DO 280 J=1,6 R «® 24 00224
/ ) ISN 21 EM(I,J)=( 1.00+PHIA IR(RISL(T ,J)+RISG(T,J)) - 00225
ISN 22 , ED(X,J)32.D0%VELUXPHI12%{ RISS(I,J }+RONRJIS1IBII,J) )+ - °~ 00226
‘ * VELU*PHI12%(RJS22(1,J)-ROXRJSL8(J,1))+ 00227
» VISDAHM®(RJSLII ,JI+RJSG(I,J)) 00228
SISN 23 EK(X,J)=(RJS3(I,J )+RO%(RJSI5(T,J)+RJIS15(J,X ) )+RO2*RJISIO(T,J}) 00229 |
#*  +ALI¥(RJSLO(I,J)~-ROM(RJIS16(I,J)+RJIS1I6(J,1) }+RO2¥RJISI(],J)) 00230
- . *  +VELU2%(RJSI1(X,J )+RON(RJIS16(I,J)~RISI7(I,J) )-RO2¥RISAHII,J)) 00231
. * +AL%( RJS12(I,J )+RO%(RJIS16( I.J‘)-RJSUI 1,J))-R0O2#RJIS4(1,J)) 00232
A -
,
I\ , .
° 1)
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LEVEL 1.4.0 (OCT 1984 ) VS FORTRAN DATE: AUG 25, 1986 TIME: 15:03:39 NAME: ELNM

L T - Y TR EEY TR - PRI 4% TR - |

» +A2Z%(RJSE(1,J )+RJIS12( I ,J }-RO2¥RIS2L(I,J )+ o, 00233
" RO%( RJSIB(I ,J ) #RIS19( 1 ,J )-RIS20(T,J))) , , 00234

% +ALI®(C1%IRJSBII,J )-RO¥(RJSS(J,1)-RJIS22(T,J))-ROZ¥RIS1B(JS,I)) 00235 '
% 4C2%(RJS42(I,J)-ROX(RJIS31(J,I)-RJIS41(I,J))-ROZXRISAG3(I,J))) 00236
ISN 26 &0 CONTINUE : 00237
. c 00238

C ELEMENT MASS MATRIX ) 00239

c 00240
ISN 25 CALL PRODMA(6,6,6 ,AINVET ,EM,RJISG) 00241
ISN 26 CALL PRODMA(6,6,6 ,RJS4,AINVE ,EM) 00242
c ] . 00243
C ELEMENT DAMPING MATRIX 00244
c 00245
ISN 27 CAtL PRODMA( 6,66 ,AINVET ,ED ,RJS5 ) A, 00246
ISN 28 CABL PRODMA( 66,6 ,RJS5,AINVE ,ED) o 00247
c ) Y 00248
C ELEMENT STIFNESS MATRIX . 00249
c 4 00250
ISN 29 . cu.? PRODMA( 6,66 , AINVET ,EK ,RJSG ) 00251
ISN 30 CALL PRODMA( 6,656 RJS4,AINVE ,EK ) 00252
ISN 3 RETURN ) ) ‘ 00253
ISN 32 END ‘ 00254

: .
3 PSR
&ﬁmh . S L . ) . Y .
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LEVEL 1.4.0 (OCT 1984)

OPTIONS IN EFFECT:

ISN

ISN
ISN

ISN

ISN
ISN

WNNNNNNRNNRN et et e e
VONGCOLUNHOVOINCURPUHUNIFOOVENTWN

30
31

32

34

35
36

®,,,..%, 1. ..00002000,

om0

|

OO0

00

402
c

C GENERATING MATRIX J»2

c

NOLIST MAP  XREF
0PTI23 LANGLYL(77) NOFIPS FLAG(X) NAME(MAIN ) LINECOUNT(60}

VS FORTRAN

)

DATE: AUG 25, 1986 .

TIME: 15:03:39

GOSTMT NODECK SOURCE TERM  OBJECT FIXED NOYEST NOTRMFLG
NOSYM NORENT NOSDUMP AUTODBL { NONE ) NOSXM

..... K S e I T IR I

SUBROUTINE GENMAJU(ELENG)

SUBROUTINE GENERATING MATRICES Jul-Jw23 11

IMPLICIT REAL#8(A~H,0-Z)

DIMENSION RJS1(6,6),RJS2(6,6),RIS3(6, 6l,R S4(6,61,RISE(6,6))

RJS6(6,6),RJISB(6,6),RIS1I0(6,6),RIS11I6,6),

RJS12(6,6) ,RJS15(6,6),RIS1616,6),RIS17(6,6),RIS18( 6 6),

»*

*

* RJS19(6,6),RJIS20(6,6 ),RIS21( 6,6 ),RIS22(6,6),

* RJS31(6,6),RJS41(6,6),RIS42(6,6),RISG3(6,6)
COMMON /MAJS/RJS1 ,RJS2,RJIS3 ,RJIS4,RISE,RIS6 ,RJISS,RIS1O,

* RJS11,RJS12,RJS15,RJIS16,RJIS17,RIS18,RIS19,RIS20,

»* RJS21,RJS22,RJS31 ,RJSQJ. RJSG2,RJS43

DO 400 I=1,6
DO 400 J=1,6
RJS1(I,J)=0.000
RJS2(1,J)=0.000
RJS3(1,4)=0.000
RJS4{I,41=0.0D0
RJS5(I,J)=0.000
RJS6(I,41=0.0D0
RJS8(I,J)=0.000
RJS10( X ,J)=0.000
RJS11(I ,J)=0.000
RJS12(I ,J)=0.000
RJUS15( I ,J)=0.000
RJS16( I ,J)=0.0D0
RJS17(I ,J)=0.000
RJS18(I,J)=0.000
RJS19(I ,J)=0.000
RJS20( T ,J)=0.0D0
RJS21(I ,J)=0.000
« RJS22(1,J4)=0.000
RJS31(I ,J)=0.0D0
RJS41(X ,J)=0.0D0
RJS42(1 ,J)=0.0D0
RJS43(I ,J)=0.0D0
CONTINUE

GENERATING MATRIX J»1l

DO 402 I=1,%
00 402 J=1,%
K=I+J-1

RJS1(I,J)=ELENG**(K )/OFLOAT(K)

CONTEINUE

D0 410 II=2,4
D0 410 JJ=2,4

{

-

ve 7M. ....8

00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
09273
0d274
00275
00276
00277
00278
00279
00280
00281
00282

-00283
0028%
00285
00286
00287
00288
00289
00290
00291
00292
00293
0029%
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306

-

)

CHARLEN( 500



Y-23

15:03:39

00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334 .
00335
00336
00337
00338
00339
00340
00341
00342
00343
0034%
00345
00346
00347
00348
00349
00350
00351
00352
00353
00354
» 00355
00356
00357
00358
00359
00360
003561

NAME: GEM

G ‘
LEVEL 1.4.0 (OCT 1984) - VS FORTRAN DATE: AUG 25, 1986
*l1a23\6567*8
ISN 37 KK=II+JJ-3
ISN 38 RJS2( 1T ,JJ }=ELENGH (KK )
ISN 39 610 CONTINUE
1SN 40 RJS2(3,3)=4.DOXRIS2( 3,3 1/3.D0
ISN 41 RJ532(3,4)31.5D0%RIS2(3,4)
ISN 42 RJIS2(4,3 )FRIS2(3,4)
1SN 43 & RJIS2(4,4)=1.8D0%RIS2(4,4)
c
C GENERATING MATRICES Jx3
c e {
1SN 4% “RJS3(3,3)34 . DOXELENG
ISN 45 RJS3(3,4)=6 . DORELENGH*( 2 )
ISN 46 RJS3 (4,3 )=RIS3(3,4)
ISN 47 RIS3 (4,4 )a12 . DOMELENG*(3)
- c
- C GENERATING MATRIX Jw4
c .
ISN 48 RJSG(5,5)=ELENG
ISN 49 RJSG(5,6 )=, SDOXELENG¥( 2)
ISN 50 RJSG( 6,5 )=RJISGH(5,6) i
ISN 51 RJSG( 6,6 )=ELENG**(3)/3.D0 -
c
C . GENERATING MATRIX J*5 ,
c . .
ISN 52 DO 420 I=1,4
1SN 53 DO 420 J=2,4 .
. ISN 54 K2 =J-1
Q,: 1SN 55 K32 I+J-2
ISN 56 RUSS( I,J )=DFLOAT(K2 )*ELENGW¢(K3 )/DFLOAT (K3 )
. I5N 57 420 CONTINUE
C .
C GENERATING MATRIX RJS6
< 1 _
ISN 58 RJIS6(3,5)22. DOXELENG ‘
ISN 59 RJS6( 3,6 )ZELENGH*(2)
ISN 60 RJISE(4,5)=3.DOXRIS6(3,6 )
ISN 61 RJIS6( 4,6 )=2. DORELENGR*( 3 )
c
C GENERATING MATRIX J*8
c
Y ISN 62 DO 430 L=2,4
, ISN 63 LL=L-1
ISN 6% RJISBL L6 )=ELENG™H(LL )
ISN 66 430 CONTINUE .
1
C GENERATING MATRIX Jx10
c
ISN 66 RJS10(6,6)=ELENG
cA. o
C GENERATING MATRICES J#1l AND Jx12
c “
JIsN 67 00 440 JJ=1,4
TISN 68 RUS11(JJ,3 )=2. DOXELENG*#( JJ )/DFLOATIJJ )
ISN 69 J13JJg+l ‘
ISN 70 RJIS11 (JJ>4 )26 . DORELENG¥#( J1)/DFLOAT(J1)
ISN 71

RJSL2(JJ,3 )22, DOXELENGI#( J1 )/DFLOAT(J1)

00362



.’ . Y~24

‘ »
’ -
o LEVEL 1.4.0 (OCT 1984) VS FORTRAN DATE: AUG 25, 1986 TIME: 15:03:39  _ NAME: GE
. YT SN DU JUIN: JURPURY SR - ST S 21 S - :
ISN 72 RJS12(JJ,% )6, DONELENGHH( JJ+2 }/DFLOAT(JJ+2 ) 00363
ISN 73 440  CONTINUE 00369
c . 00365
C GENERATING MATRIX R¥15 00366
¢ 00367
ISN 7% RJS15(3,6)=2.DO¥ELENG 00368
ISN 75 - RJIS15(4 ,6 )=3.DOXELENG#2 00369
c : 00370
C GENERATING MATRICES R¥16 , R®18 AND R¥19 / 00371
c . - 00372
ISN 76 DO 443 I5=1,4 00373
ISN v 77 RJS16(15,6 )SELENG**( 15 )/DF LOAT(I5) 00374
» C=a= 00375
ISN 78 .° RJS18(15,5 )=ELENGM®*( I15)/DF LOAT(1I5) 00376.
ISN 79 RJS18(15,6 ) ~ELENG**( I5+1)/DFLOAT(I5+1 )’ 00377
. Cas== 00378
ISN 80 RJS19115,6 )=ELENG®#( I5+1)/DFLOAT( I5+1 ) 00379
ISN 81 443  CONTINUE , 00380
¢ ’ {00381
C GENERATING MATRICES R%17 AND R%20 . ) ,00382
c - 00303
ISN 82 DO 446 J552,4 . 00384
ISN 83 J51 =J5-1 00385
ISN 86 RJS17(5,J5) =ELENG*#(J51) . 00386
& : ISN 85 RJS1716,J5) =DFLOAT(J51)%ELENG**({J5 )/DFLOAT( J5) 00387
C=a= \ 00288
ISN 86 RJS20(5,J5 )=0FLOAT( J51)*ELENG**( JS5 )} /DFLOAT( JS ) 00389 .
ISN | 87 RJS20( 6 »J5 )2DFLOAT (451 I#ELENGH*( J5+1 )/DFLOAT (J5+1) b0390
o ISN 88 46  CONTINUE " 00291
< 00392
- C GENERATING MATRICES R%21 AND R»22 00393
) c * 00394
T ISN 89 DO 447 I=2,3 - 00395
-ISN 90 1J =341 _ 00396
ISN 91 © RJS21(5,TJ)=ELENG*(I )/DFLOAT(I) 00397
ISN 92 RJS21(6,IJ )SELENG*(I+1)/DFLOAT(I+1) a0398
ISN 93 447  CONTINUE 00399
ISN 9% RJ322(5,6 )=ELENG . 00400
ISN 95 RJS2216,6), =.5DOXELENGN®2 00401
c ‘ 00402
C GENERATING MATRICES R%31,R¥41,R%42 AND R*43 00403 )
¢ . . 00404
ISN 96 RJSG1(5,6 1=0.5D0%E LENG*#2 : 00405
ISN 97 RJUSG1(656 V=ELENG*#3/DFLOAT(3) 00406
s ] 98 -+ RJS%2(2,6 )SELENG*#2/DFLOAT( 2) - 00407 :
ISN 99 RJSG2(3,6)=2.D0%RJ54116,6) 004908 .
ISN 100 RJS42(4 6 )=3 , DOME LENG¥*4/DF LOAT(4 ) - 00409
ISN 101 DO_480 JI=1,4 "ot 00410
ISN- 102 JI1=0I+1 * 00411
ISN 103 JI2=JI+2 5 . 00412
ISN 7106 JI3=2J143 00413
: ISN 105 RJS43(JI ,5)=ELENG**JI1/DFLOAT(JI1) oo . 00414
SISN 106 RJS31(JI ,2)=RJIS43( JT,5) 00415
ISN 107 RJSG3(JT ,6 )=ELENG##JI2/DFLOAT(JI2) . 00416
v ISN ~ " 108 * RJS3LIJI ,3)22.00¥RISH3(JI,6) 00417
ISN 109 RJS31(JI ,4 1213, DOXELENG**JIS }70FLOAT( JI3) 00418
3 ’ ' s :
1 h - ' . 5
LEVEL 1.4.0 (OCT 1984) VS FORTRAN DATE: AUG 25, 1986  TIME: 15:03:39 HAME: GEM
o *.-.-'...1.....-.-..Z......--.Sh........4....{_.....5.........6.........7.*..-....8 '
ISN 110 480 CONTINUE - ' 00419
. Isn 5 & W  RETURN . ~ 00420

v ISN 112 END . - L 00421

A}



7 Y25

LEVEL 1.4.0 (OCT :784) VS FORTRAN | DATE: AUG 25, 1986  TIME: 15:03:40
FIXED. NOTEST NOTRMFLG

OPTIONS IN EFFECT: NOLIST MAP XREF GOSTMT NODECK  SOURCE
: NOSYM NORENT NOSDUMP AUTODBLINONE)  NOSXM !

_ OPT(2) LANGLYL(77) NOFIPS FLAG(I) NAME(MAIN } LINECOUNT(60) CHARLEN( 500)
LIRS S B . Y S TR TIPS 23 T
a2 4
ISN 1 SUBROUTINE INVERS!ELENG ) 00422
c 00423
c SUBROUTINE INVERTING THE MATRIX A 004624
c : 00625
c . ‘ 00426
ISN 2 JIMPLICIT REAL¥8(A-H,0-Z) . 00427
ISN 3 DIMENSION AINVE( 6,6 ),AINVET(6,6) . 00628
ISN 4 COMMON /INV/AINVE ,AINVET 00629
ISN ., 5 DO 500 I=1,6 00430
ISH 6 DO 500 J=1,6 00631
ISN 7 AINVE( X ,J)=0.0D0 00432
ISN. 8 500 CONTINUE o : 00433
ISN® 9 AINVE( 1,1)=1.00 | - 00636 ..
ISN 10 . AINVE( 2,2)21.00 |- : 00435 '
ISN « 11 AINVE( 5,3)21.D0 00436
ISN 12 AINVE(3,1)2-3,D0/ELENGH#*( 2 ) . 00437
ISN 13 AINVE( 3,2)3-2.D0/ELENG / 00438
ISN 14 * AINVEC 3,4)=-AINVE(3,1) 00439
ISN 15 “AINVE( 3,5)=-1.00/ELENG 00640
ISN 16 AINVE( 4,1)22,D0/ELENG*%( 3} © 00441
ISN 17 AINVE( G, 2 )=ELENG*%{ ~2) 00642
ISN 18 AINVE( G ,4)2=AINVE{4,1) \ 00443
ISN 19 AINVE( 4 ,5)38INVE( 4,2) / 00444~ .
ISN 20 AINVE( 6 ,6)21.D07ELENG ! 00445
ISN 21 AINVE( 6,3 )3-AINVE(6,6) | \ ' 00446
Czagamnz . 00447
ISN 22 DO 505 I=l,6 00448
ISN 23 DO 505 J=1,6 - - 00449
ISN . 26 AINVET(X,J)sAINVE(J,1) } . 00450
ISM 25 505 CONTINUE & . 00451
ISN 26 RETURN - 00452
ISN 27 END . 00453
G
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OPTIONS IN EFFECT: NOLXST MAP  XREF  GOSTMT NODECK SOURCE TERM OBJECT FIXED
v NOSYM NORENT NOSDUMP AUTODBLINONE) NOSXM

Y-26

LEVEL 1.4.0 (OCT 1984) VS FORTRAN DATE: AUG 25, 1986 , TIME: 15:03:40

NOTEST HOTRMFLG

OPT(2) LANGLVLI77) NOFIPS  FLAG(I) NAME(MAIN ) LINECOUNT!60) CHARLEN( 500
. TR VOO RO JUN: A AT FARY RS 2 S
IsN 1 SUBROUTINE PRODMA(M,L,N>4,8,C ) . 00454
c 00455
C SUBROUTINE MULTIPLYING MATRICES 00456
c ‘ 00457
*c - 00458
ISN 2 IMPLICIT  REAL¥8(A-H,0-2) 00459
ISN 3 DIMENSION A(M,L),B(L,N),CIM;N) - 00460
ISN 4 DO 590 I=1,M . 00461
ISN 5 DO 590 J=1,N - 00662
ISN 6 C(I,J)=0.000 00463
ISN 7 DO 590 K=1,L 00464
ISN 8 CUI,J)=CIT I 4ALT,K IBIK,J) 00465
ISN 9 590  CONTIMUE 00466
ISN 10 - RETURN 00467
ISN 11 END 00468"
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LEVEL 1.4.0 (OCT 1984) ‘ VS FORTRAN DATE: AUG 25, 1986 TIME: 15:03:40 <
. OPTIONS IN EFFECT: NOLIST  MAP XREF, GOSTMT NODECK SOURCE TERM OBJECT FIXED NOTEST NOTRMFLG
- NOSYM NORENT NOSDUMP AUTODBL(NONE)  NOSXM .
: OPT(2) LANGLYL(77) NOFIPS FLAGIX, NAME(MAIN ) LINECOUNT(60) CHARLEN( 500)

R PP O P TS N F TR SN R TR 28 TTUDRY

©

ISN 1 SUBROUTINE ARRANGIN,X,PHI) . 00469

c - 00470

c SUBROUTINE ARRANGING EIGENVALUES FROM SMALL TO BIGGER AND 00471

c ARRANGING EIGENVECTORS CORRESPONDING TO EIGENVALUES 00672

(" 00473

¢ , 00474

ISN ‘2 IMPLICIT REAL®8({A-H,0-2) ) 00475

ISN k4 COMPLEX%16 X,PHI ,PHIN,EIMIN,XEI 00476
ISN o DIMENSION X(N),PHI(N,N) . 00477 )

ISN [ LA aN-1 00478

ISN é 00 600 I=1,LA 00479

. ISN 7 EIMINSX(X) , 00480

ISN 8 XMINsDIMAG(EIMIN) y 00481 )

ISN 9 JMI =I . 00482 .

ISN 10 JF =X+l 00483

. ISN 11 00 601 M=JF,N 00486

ISN 12 XEI sX(i1} . _ 00485

N 1SN 13 IF(DABS¢ XMIN).LE.DABS(DIMAGE XEI))) GOTO 601 00486 ¢

ISN 1% JMI=N . ' 00487

ISN. | 15 XMIN=DIMAG(XEI)" ’ 00488

) © ISN 16 EIMIN=XEX 00489

ISN 17 601 CONTINUE 00490

ISN 18 X(JMI)=X(T) 00491

IsN | 19 X(I) =EIMIN 00492

ISN 20 DO 633 L=1,N 00493

ISN 21 PHIN =PHI(L ,JMI ) *00494

ISN 22 PHI{L,JMX )=PHI(L,XI) t 00495

ISN . 23 . PHI(L,I) =PHIN 00496

ISN 26 633  CONTINUE , 00697

ISN 25 600 CONTINUE ' 00698

ISN 26 RETURN 00499

ISN 27 END 00500
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LEVEL 1.4.0 (OCT 1984) VS FORTRAN
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« NOSYM NORENT NOSDUMP AUTODBLINONE )  NOSXM

OPT(2) LANGLVL(77) NOFIPS FLAGI{I) NAME(MAIN ) LINECOUNT(60)

Y-28

DATE: AUG 25, 1986 TIME: 15:03:40

<

OPTIONS IN EFFECT: NOLIST MAP XREF GOSTMT NODECK SOURCE TERM  OBJECT FIXED NOTEST NOTRMFLG
CHARLEN( 500!

e ¥ leeeenreseZeocernerseBaceacsnee@®ereiiesneBranrnncesbiveeneneel®r,nn. 8

P

SUBROUTINE OUTEIGINDTT,N,X,PHI)
SUBROUTINE TO PRINT EIGENVALUES AND EIGENVECTORS

OO0

IMPLICIT REAL#8(A-H,0-Z)
DIMENSION X(NDTT ),PHI{NDTT,NDTT)
COMPLEX*16 X,PHI
PRINT 740
760  FORMAT(///,14X, * 2332FREQUENCIES==3='//)
- M=NDTT/3
00 761 J1=1,M %
J2=M+J1
LT J3=2uMeal o
HRITE( 6,750 )J1,X(J1),J2,X(J2),J3,X(J3)
750  FORMAT(/,4X,12,'TH',2018.8,13, 'TH",2D18,.8,I3,'TH' ,2018.8)
741 . CONTINUE °
=EEZI=ZSSazSa==S
C 9=(2,9') ? IS VECTOR
c======================= L4
NN= NOTT/2 f
00 751 JA=1,1,1 "
JB=JA+L -
. JCzJA+2
WRITE( 65760 JJA »JB,JC
760  FORMAT(//,9%X,I2, 'TH EIGENVECTOR® ,30%,I2,'TH exsenvscron',szx,
» I2,'TH EINGVECTOR® )
DO 761 I=1,NN ‘
WRITE( 6,762 JPHI(I,JA),PHI(1,J8),PHL(I,JC)
762  FORMAT(/4X,3(2D18.8,2X))
761  CONTINUE
751  CONTIMUE
RETURN ‘ x
END

00501
00502
00503
00504
00505
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00508
00509
00510
00511
00512
00513
00514
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00516
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00518
00519
00520
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00522
00523
00526
00525
00526
00527
00528
00529
00530
00531
00532
00533
00534
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LEVEL 1.4.0 (OCT 1984)
NOLIST MAP XREF 'GOSTMT NODECK SOURCE - TERM OBJECT FIXED NOTEST NOTRMFLG

OPTIONS IN EFFECT:

ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN -
ISN

SeENOBmLWN

.

T - Y S I NN T 1 TP

OO0

822

823

VS FORTRAN

NOSYM NORENT NOSDUMP AUTODBL{NONE ) ‘
OPT(2) LANGLVL(77) NOFIPS FLAG(I) NAME(MAIN

©

SUBROUTINE PRINT(N,A)
SUBROUTINE TO PRINT MATRIX

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION A(656)

HWRITE( 6,822) N

FORMAT(///,10X, "MATRIX J',I2,//)
KRITE( 6,823 M (A(I,J4),J=1,61),1I21,6)
FORMAT(/,6(4%X,D12.5),/)

RETURN

END

DATE: AUG 25, 1986

¥-293

LINECOUNT(60)

TIME: 15:03:40

CHARLEN(500)

00535
00536
00537
00538
dosz9
00540
00541
00542
00543
00544
00545
00546
00547




s

IN-PLANE MOTION {( EXTENSIBLE & CLAMPED~CLAMPED)

ELEMENT CONNECTIVITY:
ELEMENT NUMBER

0 ® N & ! S NN e

< o
W N ~ o

8 T

16
17
18
1‘9
X7 20
21
22
23
24

26
27

10
13

19
22

25

31
34
37

.40
43
46
49
52
55

61
64
67

70

76
79

NODE
2 3.
[ 6
8 9
11 12
1 15
17 18
20 21
23 24
26 27
29 30
32— 33
35 .36
8" 39
41 42
44 45
47 48
50 5L
53 54
56 57
59 60
62 63
65 66
68 69
n 72
7% 75
77 718
80 81

10
13
16
19
22
25
28
31
34
37
40
a3
46
%9
52
55
58
61
6%
67
70

76

79"

82

11

. 16

17
20
23
26
29
32
35

38

41

47
50
53

56

59

62
65
68
71

77
80
a3

27
30
33,
36
39
42
45

51

57
60
63
66
69

72

5.

78

8l

e



1TH
2TH
3TH
4TH
5TH

* 6TH

8TH
9TH
10TH

11TH

12TH
13TH

DIMENSIONLESS PARAMETERS:

DIMENSIU: | ESS VELOCITY= 0.628320+01

28 82
29 85
30 88
3 91
32 %
33 97
34 100

A

86
89
92
95
98
101

-

R A R

87 88 89
90 91 92
93 9% 95
96 97 .98
99 100 101
102\ 103 104

BETAA= 0.00000D+00,BETA= 0.500000+00,H= 0.000000+00

AA = 10,000

» SIMA

CAPA= 0.76923D+00,R0= 0.31416D+01

1

n=szFREQUENCIES== =2

-0.15750822D+00 0.42172437D+02
-0.15750822D+00 -~0.421724370D+02
0.11358792D+00 0.96652755D+02
0.113587920+00 -0.96652755D+02
0.742006790-01 0.173771180+03
0.742006790-01 -0.17377118D+03
=0.906152310-01 -0.25896990D+03
-0.906152310-01 | 0.258969900+03
.0"114075080000 0.30719172D+03
0.114075080+00 -0.30719172D+03
-0.186525250+00 0.39009733D+03
-0.186525250+00 ~0.39009733D+03
0.131621900+00 0.43962450D+03

2 0.000000+00,

71TH
72TH
73TH
4TH
75TH
76TH
77TH
78TH
79TH
80TH
81TH
82TH
83TH

-0.564023430-01
-0.564023430-01
0.53295924D-01
0.53295924D-01
-0.368049060-01
-0.368049060~01 _
0.344123320-01
0.344123320-01
-0.128984610-01
-0.128984610-01
0.119414870-01
0.119414870~01

-0.937183870-02-

87

93
9%
99
102
105

0.502767400+04
-0.502767400+04
0.50732216D+04
=07507322160+0%
0.544888050+0%
-0.544-888050+04
0.550452680404
-0.550452680404
0.58466242D404
-0.584662420+04
-0.599071820+04
0.599071820+04
0.625125790+06



: ‘ " Y-32.

14TH 0.131621900+00 -0 .63962‘;500003 84TH -0.93718387D-02 -0.62512579D+04

15TH ~0.775953310-01 0 .55{721530+03 85TH 0.13156205D-01 -0 :65018557000"0

16TH  -0.77595331D-01 -0:551721530003 86TH 0.131562050-01 0.65018557D+0%

17TH 0.118096160+00 ' 0.673532560+403 87TH  -0.14601354D~01 , -0.66645774D+06

18TH 0‘.118096‘160000 -0.67353256D0+03 88TH -0.14601354D0-01L 0.56645774D+06

19TH ~0.113253240400 0. 726‘093796003 89TH 0.592856250-01 0.70356267D+0¢

20TH -0.113253240+00 -0.726493790+03 90TH 0.59285625D-01 -0.70356267D+0¢
21TH 0.506089290-01 0.88107906D+03 91TH ~0. 626520010-01‘ -0 1?087350‘0000& -

22TH 0.506089296:-‘;2;5’ -0.881079060+03 92TH -0.62652001D-01 0.70873504D+0¢

23TH ~0.65242202D~-01 ~0.99167602D+03 93TH 0.590244949D-01 0.75142061D+0¢

26TH  ~=0.65242202D-01 0.99167602D+03 94TH 0.590244490-01 -0.75142061D+00

25TH 0.432978750-01 0.108359910+04 9STH ' -0. 6434‘0176[)‘-01 0.75967927D+0¢

\\ 26TH 0.432978750-01 -0.10835991D+04 96TH -0. 6'03“0‘01 760-01 -0.75967927D+0"

27TH ~0.105500340+00 0.12833078D+04 97TH 0.337214650-01 . 0.79513535D+04

28TH -0.10550034D+00 «0.12833078D+0% 98TH 0.337214650-01 -0.79513535D+04

o 29TH - 0.987682030-01 £ 0.13149566D+04 ‘99TH  -0.43800307D-01 0.81779118D+04

30TH 0.987682030-01 -0.131‘095;6000‘0100“! -0~. 438005070-01  -0.81779118D+0¢

31TH -0.438343610-01 0.15342376D+04101TH 0.34678154D-01 0.83937219D+04

32TH -0. 45836361[5-91 -0.153423760+04102TH 0.346781540-01  -0.839372190+04

. 33TH 0.413254790-01 -0. 1615092‘100‘0103“! -0.838122300~-01 -0.87781674D+0%

34TH = 0.413254790-01 L 16150926D+041047TH  -0.83812230D0-01 0.877816740+04

35TH -0.31510958D-01 -0. 179339590#041 O5TH 0.798200570-01 0.88440451D40¢

36TH =0.315109580-01 0.179339500+04106TH 0.79820057D-01  ~0.88440451D+06
37TH 0.308645320-01 -0.19329265D+04107TH  -0.370293580~01 -0.927687640+0¢

38TH 0.308645320g01 0.19326265D+04108TH -~0.37029358D-01 0.92768764D+04
‘ 39TH  -0.300389700-01  ~0. 20715743D+0‘0109+H 0.43228081D-01 0.94189752D+04
4OTH -0.30032°700-01 0.20715743D+04110TH 0.435280810-01 , =0. 941897520964
41TH Q. 298611;930-01 Q. 225582‘030&61%17" -0.36338484D-01 -0.97195664D+04
42TH 0.298611930-01 - -0.225582430+04112TH  -0.363384840-01 0. 971;75664'40 +04%

& —
9

43TH  -0.31164856D-01 -0.23695674D+04113TH 0.151202810+00 -0.10066352D+05

ew . e



