
The Word and Conjugacy Problems in
Classes of Solvable Groups

Svetla Vassileva

Master of Science

Department of Mathematics and Statistics

McGill University

Montreal,Quebec

August 2009

A thesis submitted to McGill University in partial fulfillment of the requirements of
the degree of Master of Science

©Svetla Vassileva, 2009



DEDICATION

To Valentin Prahov – my chess trainer, my grandfather, my friend.

ii



ACKNOWLEDGEMENTS

I would like to thank my supervisor, Alexei Miasnikov, for his vision and guid-

ance. I would also like to thank Jeremy Macdonald, for his patience with carefully

proof-reading this thesis and for his help with making it readable. Special thanks to

my family for their care and support throughout my studies.

iii



ABSTRACT

This thesis is a survey of certain algorithmic problems in group theory and their

computational complexities. In particular, it consists of a detailed review of the

decidability and complexity of the word and conjugacy problems in several classes

of solvable groups, followed by two original results. The first result states that the

Conjugacy Problem in wreath products which satisfy certain elementary conditions

is decidable in polynomial time. It is largely based on work by Jane Matthews, pub-

lished in [14]. The second result, based on ideas of Remeslennikov and Sokolov [17],

and Myasnikov, Roman’kov, Ushakov and Vershik [16] gives a uniform polynomial

time algorithm to decide the Conjugacy Problem in free solvable groups.

iv



ABRÉGÉ

Cette thèse est une synthèse de certains problèmes algorithmiques dans la théorie

des groupes et leur complexité computationnelle. Plus particulièrement, elle présente

une revue détaillée de la décidabilité et de la complexité des problèmes du mot et de

la conjugaison dans plusieurs classes de groupes solubles, suivie de deux nouveaux

résultats. Le premier résultat énonce que le problème de la conjugaison dans les

produits couronne qui satisfont certaines conditions élémentaires est décidable en

temps polynomial. Elle part d’une publication de Jane Matthews [14]. Le deuxième

résultat, basé sur des idées de Remeslennikov et Sokolov [17] et de Myasnikov, Ro-

man’kov, Ushakov et Vershik [16], présente un algorithme en temps polynomial uni-

forme pour décider le problème de conjugaison dans les groupes solubles libres.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Free Groups, Presentations and Cayley Graphs . . . . . . . . . . . . 4
2.2 Decidability and Complexity . . . . . . . . . . . . . . . . . . . . . . . 8

3 Algorithmic Problems in Group Theory . . . . . . . . . . . . . . . . . . . . 14

3.1 Free Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Automatic and Bi-automatic Groups . . . . . . . . . . . . . . . . . . 18
3.3 Hyperbolic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Wreath Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Solvable Groups and Algorithmic Problems Therein . . . . . . . . . . . . . 33

4.1 Finitely Generated Metabelian Groups . . . . . . . . . . . . . . . . . 34
4.2 Free Solvable Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Free Solvable Groups and the Magnus Embedding . . . . . . . . . . . . . . 41

5.1 Group Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Free Solvable groups and the Magnus Embedding . . . . . . . . . . 43
5.3 Fox Derivatives and Free Differential Calculus . . . . . . . . . . . . 47
5.4 The Magnus Embedding . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1 The Magnus-Fox equivalence . . . . . . . . . . . . . . . . . . . 55
5.4.2 The Image of the Magnus embedding . . . . . . . . . . . . . 60

vi



5.5 The Word Problem in Free Solvable Groups . . . . . . . . . . . . . . 66
5.5.1 Geometric interpretation of Fox derivatives . . . . . . . . . . 66
5.5.2 On Computing Fox Derivatives Efficiently . . . . . . . . . . . 72

6 Conjugacy in Wreath Products and Free Solvable Groups . . . . . . . . . 78

6.1 The Conjugacy Problem in Wreath Products . . . . . . . . . . . . . 78
6.1.1 A Conjugacy Criterion for Wreath Products . . . . . . . . 78
6.1.2 A polynomial Time Algorithm for Deciding the Conjugacy

Problem in Wreath Products . . . . . . . . . . . . . . . . . 86
6.2 The Conjugacy Problem in Free Solvable Groups . . . . . . . . . . 91

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

vii



CHAPTER 1
Introduction

The modern theory of solvable groups is full of new results and ideas and it boasts

a wide range of applications from computer vision to cryptography. All these require

powerful computational tools: to compute various related objects, solve equations,

find numerical invariants, run massive computer experiments. To put it shortly, a

robust algorithmic theory of solvable groups is needed.

Algorithmic results on solvable groups have been, for a long time, prized in com-

binatorial group theory, and have revealed remarkable relations with computational

commutative algebra and number theory. Recall for example, two polar outstanding

results: decidability of the Isomorphism Problem for polycyclic groups (Grunewald

and Segal) and the undecidability of the Diophantine problem for free nilpotent and

free metabelian groups (Romankov, Repin in [18], [19], [20], [21]).

Algorithmic problems in group theory were considered as early as 1910, when

Dehn introduced three now famous problems: the Word Problem, the Conjugacy

Problem and the Isomorphism Problem. At the time, people were fascinated with

the decidability of these problems and have left a rich heritage in this area. It is

known for example that it is impossible to have a unified decidability theory for

such problems. Miller constructed a group which has decidable Word Problem and

undecidable Conjugacy Problem [15]. Thus, the best one can do is to solve these

problems for specific groups or classes of groups. There have been many positive

1



results in this direction. To mention only a few, the decidability of the Word Problem

in braid groups [1], the Conjugacy Problem in hyperbolic groups (Gromov, [8]), the

Conjugacy Problem in wreath products (Matthews, [14]), the Word and Conjugacy

Problem in Grigorchuk groups ([7], [12]), and the Word and Conjugacy Problem in

free solvable groups ([17]).

However, the emphasis nowadays falls on the computational efficiency of the

solutions to these problems. Indeed, if an algorithm is to be used in practice, it is

crucial that it is within the power of technology to execute it in reasonable time.

While the available technology constantly evolves and time bounds computed in

terms of hours or days might become obsolete, there is an intrinsic notion of how ‘fast’

an algorithm is that allows one to compare algorithms (and problems) independent

of the current state of technology. It is therefore of crucial importance to improve

on the ground work done on decidability and focus on efficiency. In this spirit it is

worth mentioning the work of Lysenok, Miasnikov and Ushakov who showed that

the Conjugacy Problem in Grigorchuk groups is decidable in polynomial time, the

work of Gersten and Short on the decidability of the Conjugacy Problem in bi-

automatic groups, as well as the work of Marshall, Bridson and Haefliger, Epstein

and Holt which, through successively improving time bounds, culminates in showing

that the Conjugacy Problem in hyperbolic groups is decidable in linear time. Of great

importance, both as a powerful result and as an inspiring and promising approach,

is the work of Miasnikov, Roman’kov, Ushakov and Vershik, who use a fascinating

geometric view-point to show that the Word and Geodesic problems in free solvable

groups are decidable in cubic time.

2



In this thesis, we build on their results to show that the Conjugacy Problem

in free solvable groups is decidable in polynomial time. Chapter 5 gives a detailed

and complete account of the main techniques used – the Magnus embedding, Fox

derivatives and the computation thereof. In Chapter 6.1, we introduce Matthews’

result to decide the Conjugacy Problem in wreath products. We make a major mod-

ification, which makes the algorithm that she originally presented, which would have

unbounded complexity, into one that has polynomial time complexity. Finally, in

Chapter 6.2, we show that the Conjugacy Problem in free solvable groups is de-

cidable in polynomial time. The ideas of this result were inspired by the above

mentioned work of Miasnikov, Roman’kov, Ushakov and Vershik [16] and the work

of Remeslennikov and Sokolov [17]. Chapter 3 and Chapter 4 place these results in

context by giving a survey of the field. More precisely, Chapter 4 presents a compi-

lation of results pertaining to the word and conjugacy problems in some important

classes of solvable groups. Chapter 3 gives a more general survey of the results on

the complexity and decidability of the word and conjugacy problems in several large

classes of groups. All the basic notions needed to understand the material in this

thesis are briefly introduced in Chapter 2. With this we wish the reader a pleasant

and fruitful reading.

3



CHAPTER 2
Background

In this section are presented the basic notions used in the study of algorithmic

group theory and, in particular in this thesis.

2.1 Free Groups, Presentations and Cayley Graphs

Let X = {x1, . . . , xr} be any set. For each xi introduce another symbol x−1
i and

a bijection on X defined by xi ↦ x−1
i and (x−1

i )−1. Let X± = {x1, . . . , xr, x−1
1 , . . . , x

−1
r }.

A word, w, over the alphabet X± is a finite string w = xi1⋯xik , where each xij is in

X±. Sometimes one writes w(i) for the ith character of w. The word length, ∣w∣, of a

word w is the number of literals k in w. Denote by (X±)∗ the set of all words over

the alphabet X± including the empty word which will be denoted by 1.

Define the relation ∼ on (X±)∗ by setting w1 ∼ w2 if and only if one can transform

w1 into w2 by finitely many applications of the following transformations:

(T1) Deletion of a subword of the form xlx−1
l : for some j such that xij+1 = x−1

ij
,

replace w by xi1⋯xij−1xij+2⋯xik .

(T2) Insertion of a subword of the form xlx−1
l , for any l, at position j: replace w by

the word xi1⋯xijxlx−1
l xij+1⋯xik .

Lemma 2.1.1. The relation ∼ is an equivalence relation.

Proof. Let w,w1,w2,w3 ∈ (X±)∗. Reflexivity is obvious. Symmetry follows from the

fact that (T1) and (T2) are inverses of each other, in the sense that applying them

4



one after the other at the same position will have no net effect. To see that ∼ is

transitive, suppose that w1 ∼ w2 and w2 ∼ w3, i.e., w2 can be obtained from w1 by

a finite sequence of transformations and w3 can be obtained from w2 by another

finite sequence of transformations. Concatenating these two sequences, gives a finite

sequence of transformations which brings w1 into w3.

Let F = (X±)∗/ ∼ and denote the equivalence class of w by [w].

Proposition 2.1.2. Define a multiplication on F by [w1][w2] = [w1w2]. Then F is

a group, called the free group on X.

Proof. This multiplication is well-defined. Let w1 ∼ w2 and w3 ∼ w4. Then w1w3 ∼

w2w4, since w1w3 can be transformed in w2w3, which in turn can be transformed

in w2w4. Since concatenation is associative, so is the multiplication of equivalence

classes. The group identity is the empty word, ε. The inverse of [w] is [w−1]. Indeed,

let w = xi1⋯xik . Then [w]−1 = [w−1] = [x−1
ik
⋯x−1

i1
]. Then [w][w]−1 = [xi1⋯xikx−1

ik
⋯x−1

i1
]

which can readily be seen to reduce to ε. Similarly, [w]−1[w] = [ε].

Note that every word over the alphabet X± represents an element of the group

F (X). However, the same element in F (X) can be represented by different words.

For example, 1, xx−1, x2x−1x−3x2 all represent the identity.

Free groups are often defined through the universal property they satisfy.

Namely, given a group G and any map φ ∶ X → G, it extends to a homomorphism

π ∶ F (X) → G. If π is surjective, then X is a set of generators for the group G.

The word w is called a representative for the group element w = π(w). The notation

5



G = ⟨X⟩ is used when X generates G. It is easy to check that the two definitions are

equivalent.

It is often convenient to think of group elements as words. This is achieved

through a group presentation. In general, for any N ◁G, the epimorphism f ∶ G →

G/N , sending each g ∈ G to its coset gN ∈ G/N , is called the canonical epimorphism.

Definition 2.1.3. Let G be a group and let R ⊆ G. Denote by << R >> the normal

closure of R in G, i.e., the minimal normal subgroup in G containing R.

Definition 2.1.4. A group G is said to have presentation ⟨X ∣ R⟩, with R ⊆ F (X),

if G = ⟨X⟩ and

G ≃ F (X)/ << R >> .

In this case R is called the set of relators for the presentation.

A finite presentation for a group is one for which ∣X ∣ + ∣R∣ is finite. A group is

finitely presented if it has a finite presentation. A notion related to this is that of a

finitely generated group, i.e., one which has a presentation for which the generating

set is finite.

Note that every group has a presentation. This can easily be seen by letting

every element be a generator and taking the multiplication table as a set of relators.

More precisely, given a group G, construct a presentation X ∣R for it with X =

G and R = {ghk−1∣gh = k, g, h, k ∈ G}. If the group is infinite, this will give an

infinite presentation, though a finite presentation might exist. Presentations are

useful because they allow one to take a computation-oriented approach, namely to

think of group elements as words (or strings) without losing any information about

the group.

6



The Cayley graph of a group, being a geometric representation of a group, is

one of the basic tools to introduce the topological view point in group theory.

Definition 2.1.5. Let G = ⟨X⟩ be a group. Define the Cayley graph Γ(G) = Γ(G,X)

to be a directed labelled graph with vertex set G. There is an edge from vertex g to

vertex h if h = gx for some generator x ∈X. In this case, this edge is labelled by the

generator x.

Moreover, for every edge (g, h) labelled by x, the edge (h, g) labelled by x−1 is

also in Γ(G) (this corresponds to multiplying by the inverse of a generator). Note

that the Cayley graph contains all the information of the group. It is also worth

noting that a path of edges ei1 , . . . , eik in Γ(G) labelled by xi1 , . . . , xik corresponds

to the word w = xi1⋯xik . Conversely, starting at a vertex v there is a unique way

to ‘read’ a word w from there, i.e., there is a unique path starting at v which is

labelled by w. Thus, if one starts reading a word w at the vertex corresponding to

the group identity and ends back at the identity vertex, then the word w represents

the identity, i.e., w = 1 in the group. The converse is also true – if w = 1 in the group,

then the path it represents in the Cayley graph is a loop. Thus Cayley graphs are a

powerful tool to solve the Word Problem (defined in Section 2.2).

Observe that the Cayley graph of any group G can be turned into a metric

space by assigning length one to each edge and taking the distance between two

vertices to be the length of the shortest path between them. In other words, for

words u, v,w ∈ G, or equivalently, for vertices u, v,w in Γ(G), define

d(u, v) =min{∣w∣ ∣ u = vw.}

7



This is called the word metric on Γ(G). Of course, it depends on the set of generators

X, though the dependence is not significant for most theoretical results (it depends

on X up to quasi isometry). A word which realises the distance between two vertices

is called a geodesic. More precisely, w is a geodesic between two vertices u and v if

∣w∣ = d(u, v). A geodesic for an element g is a geodesic from 1 to g.

2.2 Decidability and Complexity

The study of algorithmic problems in group theory began in 1910 with Dehn’s

formulation of the three famous algorithmic problems in groups – the Word Problem,

the Conjugacy Problem and the Isomorphism Problem.

Word Problem. For a group G = ⟨X⟩, given two words u, v over X±, decide whether

u = v

as elements of G. Equivalently, given a word w ∈ G, decide, whether

w = 1

in the group G.

The second statement is equivalent, since given words u, v ∈ G, u = v if and only

if uv−1 = 1.

Conjugacy Problem. For a group G = ⟨X⟩, given words u, v in G, decide whether

u and v are conjugate in G, i.e., decide whether there exists g ∈ G such that

g−1ug = v.

8



Observe that if one can solve the Conjugacy Problem, then one can also solve

the Word Problem. For a given word w ∈ G, in order to check whether w = 1, it is

enough to check whether w is conjugate to the identity.

Isomorphism Problem. Given two group presentations G1 = ⟨X1 ∣ R1⟩ and G2 =

⟨X2 ∣ R2⟩, decide whether the groups G1 and G2 are isomorphic.

The above three problems, as formulated by Dehn, all implicitly referred to

finitely presented groups. Nowadays, not only are there many results about groups

which do not have finite presentations, but also it is sometimes preferable to work

with an infinite presentation even when there is a well-known finite one for the given

group.

Since Dehn drew interest to algorithmic group theory, many more important

decision problems have sprung up. The Bounded Geodesic Length Problem, Power

Problem and Membership Problem are but a few of these.

Definition 2.2.1. Let G be a group with a finite set of generators X = {x1, . . . , xn}

and let µ ∶ F (X) → G be the canonical epimorphism. The geodesic length lX(g) of

an element g ∈ G relative to X is defined by

lX(g) = min{∣w∣ ∣ w ∈ F (X), µ(w) = g}.

Bounded Geodesic Length Problem. Let G be a group with a finite generating

set X. Given a word w ∈ F (X) and a natural number k determine if lX(w) ≤ k.

This is a problem which very naturally emerges from topology and, while related

to the Word Problem, is not equivalent. More precisely, let Γ(G) be the Cayley graph

for a group G with generating set X. For a given word w in generators X, w = 1 in

9



G if and only if lX(w) = 1. Hence solving the Bounded Geodesic Length Problem

gives a solutions to the Word Problem.

Power Problem. Let G = ⟨X⟩ be a group. Given x, y over X±, determine whether

there is an integer n such that

y = xn.

Equivalently, decide whether

y ∈ ⟨x⟩.

A generalisation of the Power Problem is the Membership Problem.

Membership Problem. Let G = ⟨X⟩ be a group. Given words w1 . . . ,wn and w

over X±, let H = ⟨w1, . . . ,wm⟩ be the subgroup of G generated by those words, decide

whether w ∈H.

All the famous algorithmic problems being introduced, it is time to say a few

words on computation and decidability. First, one needs to have a model of com-

putation in mind. A commonly used model that is easy to reason about and hence

is useful for theoretical results, is the Turing machine. Briefly, a Turing machine

consists of a one-sided infinite memory tape and a head which can perform several

operations – read a symbol under the head, write a symbol under the head, move

the head left, move the head right, stay in place. Any such operation is called a

step in the computation. In this model, an algorithm is a program (represented

as a Turing machine), prescribing how to execute these operations. Running this

program corresponds to performing a sequence of steps. The algorithm is said to

terminate if after some finite number of steps the head stops performing operations.

Some authors require the sequence of operations to terminate in order to call it an

10



algorithm, but in the context of computational group theory, it is conventional to

call an algorithm any sequence of steps regardless of consistency and termination.

Thus there is a Turing machine associated to every algorithm.

Another model of computation, which is very similar to the Turing machine,

is a RAM (Random Access Memory) machine. It differs from a Turing machine in

that the head can move to any cell of the tape in constant time. This makes the

analysis and formal description of algorithms less tedious, and is more suitable for

our purposes. It does not affect decidability, or even polynomial time decidability

(to be defined later). However, the differences in complexity generated by using

the RAM model of computation rather than a Turing machine will be pointed out

throughout.

A decision problem is a problem which requires a yes/no answer. Of course not

all problems are of this form. The decision context is particularly good to compare the

hardness of problems. Using the same underlying computational model and requiring

the same type of answer puts all problems on an equal footing, thus concentrating

on the inherent hardness of the computation.

Definition 2.2.2. A decision problem, P , is said to be decidable if there is an

algorithm, A, which terminates and correctly answers the question posed in P .

Of course in practice, termination is crucial, but the time it takes to run an

algorithm is as important. This raises the question of how to measure ‘time’. Clearly,

the running time depends on the size of the input. One needs to measure ‘time’ in a

sense that is intrinsic to the algorithm. In order to say that algorithm A is ‘faster’

11



than algorithm B, one needs to make a statement about their behaviour on all inputs.

This leads to the notion of complexity.

Given an algorithm A, its time function, TA ∶ N → N ∪ {∞}, gives the number

of steps it takes its associated Turing machine to execute algorithm A, given an

input of n bits. Technically, the input of the time function is the number of bits

of the encoded input. Typically in group theory, one chooses a more meaningful

measurement, which varies linearly with the number of bits, e.g., the word length.

Thus, the analysis and comparison of algorithms is often done through their time

functions. It is therefore necessary to have a way of comparing time functions.

Definition 2.2.3. Let f, g ∶ R → R. Then f(x) ∈ O(g(x)) if there exist M ∈ R+ and

x0 ∈ R such that

∣f(x)∣ ≤M ∣g(x)∣,

for all x ≥ x0.

This means that for large enough inputs, f(x) is bounded by g(x). Note that

this defines a class of functions ordered by inclusion. Namely, if f(x) ∈ O(g(x)),

then O(f(x)) ⊆ O(g(x)). This order is transitive, since f(x) ∈ O(g(x)) and g(x) ∈

O(h(x)), means that f(x) is bounded by g(x), which in turn is bounded by h(x).

So f(x) ∈ O(h(x)).

Definition 2.2.4. A decision problem, P , is polynomial time decidable (or decid-

able in polynomial time, or has polynomial complexity) if there is an algorithm A,

with time function TA, which correctly solves P and a polynomial p(x) such that

TA ∈ O(p(x)).

12



In other words, a decision problem is polynomial time decidable if there is an

algorithm which solves it in time polynomial in the length of the input. An algorithm,

A, is linear if TA ∈ O(n).

Note that if p(x) and q(x) are polynomials, then p(q(x)) is also a polynomial.

This shows that a problem which is polynomial time decidable in terms of its sub-

routines is polynomial time decidable, as long as the subroutines can be computed

in polynomial time. Also, observe that, by virtue of the definition, kf(x) ∈ O(f(x))

for any constant k > 0. In particular, since any pre-computation is constant with

respect to the input, it will not contribute to the complexity of the algorithm.

All the decision problems above were defined for particular groups, so usually

one restricts oneself to solving the given problem in a fixed group. However, one

might try to solve an algorithmic problem for a class of groups. An algorithm is

uniform if it solves successfully all instances of a given problem in a class of groups.

In this case, some information about the group (for example a presentation, or a set

of generators) is part of the input. In the sequel, a uniform algorithm for solving the

Conjugacy Problem in the class of free solvable groups is presented.

13



CHAPTER 3
Algorithmic Problems in Group Theory

In this section, the decidability and time complexity of the Word and Conjugacy

Problems in several classes of groups will be discussed.

3.1 Free Groups

Free groups are in a sense the simplest example to be considered in the compu-

tational context, due to the minimal number of relations they have. Consequently,

the algorithms to solve problems there tend to be not only efficient, but also elegant

and simple to describe.

Let F be a free group on generators X = {x1, . . . , xr} as defined in Section 2.1.

A word w ∈ F is freely reduced if it contains no substrings of the form xx−1 or x−1x

with x ∈ X. It is usual to consider freely reduced words instead of just strings.

Hence we first present an efficient algorithm to freely reduce a word. In fact, for

rhetorical purposes, we present two algorithms – an elegant one, which has complexity

O(∣w∣ log ∣w∣) in the Turing (as well as in the RAM) model of computation, and one

which is linear in the RAM model of computation (but has complexity O(∣w∣ log ∣w∣)

with respect to a Turing machine).

Proposition 3.1.1. Let w be a word over X. One can find a freely reduced word w

over X such that w = w in F (X) in time O(∣w∣).

14



Proof. Let w = xε1i1⋯x
εn
in

be a word over generators X± (with εj = ±1). Start reading

w, keeping two ‘current’ pointers, p1 and p2. To the first character, xi1 , associate a

counter, N1 containing ε1, set the pointer p1 to xi2 and p2 to N1. Denote by xp1 the

character pointed to by p1 and by N(p2) the counter (and by xp2 the correspond-

ing generator) pointed to by p2. At every following step, move the pointer p1 one

character to the right. If xp1+1 = xp2 , replace the content of Np2 with Np2 + εp1+1.

Otherwise, create another counter Np2+1, whose content is εp1+1 and set the pointer

p2 to Np2+1. If during this process some counter Np2 is set to zero, delete it, set the

pointer p2 to Np2−1 and continue. If it is the first counter, N1 which is set to zero,

then create a new counter Np1 containing εp1 , set p2 to Np1 , move p1 one character to

the right and continue. This procedure repeats until the end of w is reached. Output

w = xN1
j1
⋯xNkjk , where xjl is the generator corresponding to Nl.

The following algorithm illustrates how reduction is typically thought of. It

does not have the best possible complexity in the RAM model, but the bound on its

complexity is tight with respect to a Turing machine. Moreover, it is more illustrative

of how reduction is intuitively thought of.

Proposition 3.1.2. Let w be a word over X. One can find a freely reduced word w

over X such that w = w in F (X) in time O(∣w∣ log(∣w∣)).

Proof. The idea is that since cancellation only happens locally, one can use a divide-

and-conquer technique. Let w ∈ F . The algorithm to compute w is given recursively

as follows:

If ∣w∣ = 1, then w is freely reduced and w = w.

15



If ∣w∣ = n > 1, let w = w1⋯wn. Split w into two words w′ = w1⋯wk and w′′ =

wk+1⋯wn, where k = ⌊n2 ⌋. Compute recursively w′ = w′
1⋯w′

m1
and w′′ = w′′

1⋯w′′
m2

. If

the word w̃ = w′w′′ is not freely reduced, the only place where cancellation can occur

is between the end of w′ and the beginning of w′′. For i = 1,⋯, n, check whether

w′
m1−i

= (w′′
1+i)−1. Stop as soon as there is an i for which this does not hold. Then

set w = w′
1⋯w′

m1−i
w′′
i+1⋯w′′

m2
.

Splitting w produces a tree of height logn. At level k in the tree, any two words

w(k1) and w(k2) are of length at most ⌊ n
2k

⌋ + 1. So combining them will involve can-

celling no more than ⌊ n
2k

⌋ + 1 terms. There are 2k words to be pairwise concatenated

on a given level k. Hence pairwise combining (concatenating and taking care of any

free cancellation in the middle) all the words on level k can be done in at most

2k (⌊ n
2k

⌋ + 1) = n + 2k steps. There are logn levels, so the overall complexity of this

procedure is

n logn +
logn

∑
k=1

2k = n logn + 2logn+1 = n logn + n ∈ O(n logn),

where n is the length of the input word.

Note that, for the Turing model of computation, this is a tight bound, i.e., one

cannot do better. To see this intuitively, it is enough to note that even adding two

numbers of length n takes O(logn) steps. Hence even finding normal forms in free

abelian groups, which must involve counting powers, cannot be done in less that

O(n logn) steps. Knowing how to compute normal forms renders solving the Word

Problem trivial.

16



Corollary 3.1.3. The Word Problem in free groups is decidable in time O(n), where

n is the length of the input word.

Proof. Given a word w, compute w, which by Proposition 3.1.1 can be done in time

O(∣w∣). It is obvious from the definition of F that w is the empty word if and only

if w = 1 in F .

Deciding the Conjugacy Problem in free groups also depends on computing

normal forms, but requires more work. However, the time complexity is the same.

Proposition 3.1.4. The Conjugacy Problem in free groups can be decided in time

O(n), where n is the length of the input word.

Proof. First one needs to introduce the notion of cyclically reducing a freely reduced

word. A freely reduced word u = u1⋯un is cyclically reduced if u1 ≠ u−1
n . Observe that

u is said to be cyclically reduced if and only if u2 is freely reduced. Indeed, if u1 ≠ u−1
n

and ui ≠ ui+1 for all 1 ≤ i ≤ n, then the word u2 = u1⋯unu1⋯un is freely reduced.

Conversely if u2 is reduced, it is obvious that no cancellation occurs and in particular

u1 ≠ u−1
n . Using this fact, it is easy to cyclically reduce u. Let k = 1

2
(2∣u∣ − ∣u2∣) and

let ũ = uk+1⋯un−k. This can be done in time O(n). Clearly, ũ is cyclically reduced,

since k is the length of the cancellation in u2.

Now, note that two cyclically reduced words u and v are conjugate if and only

if one is a cyclic permutation of the other. To see this, suppose that a−1ua = v for

some freely reduced word a ∈ F . Since v is cyclically reduced, then so is a−1ua, so

either u starts with a or ends with a−1, i.e., either u = au1, or u = u2a. In the case

17



where u = au1,

v = a−1ua = a−1au1a = u1a,

which is a cyclic permutation of u. The case where u = u2a is very similar.

Finally, it remains to check whether v is a cyclic permutation of u. The naive

approach of searching for the beginning of u in v and then checking whether the rest

of u appears in v will take quadratic time. This is a famous problem, known in the

literature as “string matching” and there exists an algorithm which can solve it in

time O(n), where n = ∣u∣ + ∣v∣.

3.2 Automatic and Bi-automatic Groups

As the name suggests, automatic and bi-automatic groups are related to finite

state automata. A quick review of automata will be followed by the definition of

automatic groups and the outline of polynomial time algorithms for solving the word

and conjugacy problems in them.

Definition 3.2.1. A finite state automaton is a tuple (S,X, δ, SA, s0), where

1. S is a finite set, calle the set of states,

2. X is a finite set, called the alphabet,

3. δ is a function S ×X → S, called the transition function,

4. SA ⊆ S is the set of accept states, and

5. s0 ∈ S is the initial state.

Given a word over the alphabet X, the automaton starts in state s0 and reads

the first letter x of the word. According to the transition function on that symbol, the

automaton moves to another state δ(s0, x) and continues reading the word, changing

state at every symbol. When the end of the word is reached, if the automaton is

18



in an accept state, the word is said to be accepted by the automaton. The notion

generalises to languages (which are simply sets of words) – a language is accepted by

an automaton if every word in the language is accepted by the automaton. Usually,

all inaccessible states (i.e., the ones to which there is no directed path starting at

s0) are deleted from the automaton. Further, all dead states (i.e., states which are

not in the domain of δ) are combined into one. This is sometimes referred to as a

normalised automaton. In the sequel, all automata are assumed to be normalised.

This is does not affect the complexity of the presented algorithms.

Definition 3.2.2. A language L is regular if it is recognised by a finite state au-

tomaton, i.e., if there is an automaton which accepts every word in L and does not

accept any word in LC (the complement of L).

Conversely, denote the language recognised by a finite state automaton, S, by

L(S). Thus every regular language has a finite state automaton associated with

it. Regular languages are closed under union, intersection and complementation,

which one proves by combining automatons. Sometimes, in order to do this sort of

construction, one needs some words to have the same length. This is usually achieved

through padding.

Definition 3.2.3. Let X1, . . . ,Xn be alphabets. Choose a character, $ ∉ Xi for all

i and add it to each Xi. Let Yi = Xi ∪ {$}. The padded alphabet P (X1 × . . . ×Xn)

corresponding to the alphabets X1, . . . ,Xn is

P (X1 × . . . ×Xn) = Y1 ×⋯ × Yn ∖ {($, . . . ,$)}.

19



Let w1, . . . ,wn be strings over the alphabets X1, . . . ,Xn, respectively and let ni = ∣wi∣.

Denote k = maxni=1{ni}. Then w = (w1, . . . ,wn) is a padded string if whenever

ni < k, wi(ni + 1), . . . ,wi(k) = $, i.e., whenever wi is shorter that the longest word, it

is padded to the same length.

For two alphabets X and Y , associate (X×Y )∗ with X∗×Y ∗ via componentwise

concatenation. In other words given a word (x1, y1), . . . (xn, yn) ∈ (X ×Y )∗, associate

with it the word x1⋯xny1⋯yn ∈X∗ × Y ∗.

Recall that we say a set X generates a group G if the map π ∶ F (X) → G is

surjective. Consider the more general case, where instead of F (X) one considers a

regular language L(X) over the alphabet X.

Definition 3.2.4. Given a regular language L(X), if the homomorphism π ∶ L(X) →

G, defined in the natural way is surjective, then G is said to be regularly generated

by L(X).

Definition 3.2.5. Let G be a group with a set of generators X. An automatic

structure on G consists of:

1. a finite state automaton W on X±, called the word acceptor, such that the map

π ∶ L(W ) → G is surjective.

2. for each x ∈ X± ∪ {1} an automaton Mx over (X±,X±), called multiplier au-

tomaton, such that, for x ∈X± ∪ {1}, (w1,w2) ∈ L(Mx) if and only if

(a) w1,w2 ∈ L(W ), and

(b) w1x = w2

M1 is called the equality recogniser. An automatic structure is typically denoted by

S = (X,L), without mention of W or M .

20



It is known (see for example, Theorem 2.4.1 in [5]) that if G admits an automatic

structure for one set of generators, it admits an automatic structure for any other

set of generators. Hence one can give the following definition.

Definition 3.2.6. A group G is automatic if there exists an automatic structure for

G.

Automatic groups satisfy a sort of Lipschitz property. This notion originates in

analysis but comes up very naturally in the context of Cayley graphs and the word

metric.

Lemma 3.2.7. Let S be an automatic structure for G. Then, there exists a constant

k such that if (w1,w2) ∈ L(Mx) for some x ∈X± ∪ {1}, then for any t ≥ 0

d(w1(t),w2(t)) ≤ k.

The constant k is called a Lipschitz constant for S.

A good proof can be found in [5]. It is worth pointing out at this point, that

the main reason why automatic, and by the same token bi-automatic (defined later

in this section), groups are of particular interest is that one can derive from the

structure many kinds of bounds. Of course, having a bound on word length, or on

distance, for instance, is helpful in obtaining a bound on complexity.

Lemma 3.2.8 (Bounded length property). Let S be an automatic structure for G.

There is a constant N such that if

1. w ∈ L is an accepted word, and

2. g ∈ G is a vertex in the Cayley graph of G, with d(w̄, g) ≤ 1,

then

21



1. there is a v ∈ L such that v̄ = g and ∣v∣ ≤ ∣w∣ +N , and

2. if there is some v′ ∈ L such that v̄′ = g and ∣v′∣ > ∣w∣ +N , then g has infinitely

many representatives in L.

Again, a proof of this can be found in [5]. In particular, this means that any

word w in generators X has a representative of length at most N ∣w∣ + n0, where n0

is the length of a representative of the identity.

Theorem 3.2.9. Let G = ⟨X⟩ be an automatic group. Then there is an algorithm

that decides the Word Problem in G in quadratic time.

Proof. Let S = (X,L) be an automatic structure for G. The idea is to get a ‘normal

form’ for the given word and then compare it to the identity. More precisely, let w

be a word over X±. Then one can find a string in L representing w in quadratic

time. This can then be compared to the identity using the equality recogniser and

thus getting a solution to the Word Problem.

Suppose that w = ux, where u ∈ L and x ∈X and proceed to find a representative

v for w. The pair (u, v) is accepted by Mx, so one can consider all possible transitions

in Mx to find v. Ignoring the second element of the labels in Mx, find a path

to an accept state labelled by u (in the first component only). Reading the second

component, going back along this path gives a representative for v. The crucial point

is finding this path in quadratic time, since simply considering all paths labelled by

u will give an exponential procedure. For this, one needs to build a data structure

as follows.

22



Let Mx = (S,X, δ, SA, s0). Define inductively S0 = {s0} and

Si = {Ri ∣ δ(Si−1, (xi, yi)) = Ri, yi ∈X},

where xi = u(i) if i ≤ ∣u∣ and xi = $ otherwise.

Let n ≥ ∣u∣ be the smallest number such that Sn ∩ SA ≠ ∅ (i.e., Sn contains an

accept state). Backtracking along the path from S0 to an accept state in Sn, read

the labels yn,⋯, y1. Let v = y1⋯yn after discarding all $ at the end of the string. In

the case w = ux−1, a representative can be found using the same procedure replacing

(xi, yi) by (yi, xi)

There are finitely many states and transitions, so the time taken in each induc-

tion step above is bounded by a constant, so the time taken to find a representative

is proportional to n (as defined above). Now, by Lemma 3.2.8, n ≤ ∣u∣ +N , where N

is a constant for the structure. Thus, one can find a representative of length at most

∣u∣ +N in time O(∣u∣).

Now repeat this process to get a representative of w of length at most N ∣w∣+n0,

where n0 is the length of a representative of the identity. This can be done in time

∣w∣

∑
i=1

(iN + n0) ∈ O(∣w∣2).

Finding a representative for the identity can be done using the same procedure.

Start with any accepted string xi1⋯xik and using the above procedure find consecu-

tively representatives for xi1⋯xik−1xikx−1
ik
, . . . , xi1⋯xik−1xikx−1

ik
⋯x−1

i1
. This is done as a

pre-computation for the algorithm deciding the Word Problem, so computing this is

done in constant time.

23



Finally, observe that, having a representative of the identity, one can obtain

a representative for any word w = w1⋯wk by using the above procedure to find

consecutive representatives of any word in the group.

Strangely enough, it is still unknown whether automatic groups have decidable

Conjugacy Problem. However, it has been shown by Gersten and Short in [6] that

bi-automatic groups have decidable Conjugacy Problem.

Definition 3.2.10. Let S = (X,W,{Mx}x∈X) be an automatic structure for the group

G. L(W ) is the language of a bi-automatic structure on G if in addition, for each

x ∈X, the language

Lx = {(u, v) ∈ L ×L ∣ u = xv}

is regular over the padded alphabet P (X ×X).

Bi-automatic groups can be thought of as automatic groups which also have

left-multipliers. This allows to consider multiplication on both sides, which is all

that is necessary to solve the Conjugacy Problem. The following theorems are due

to Gersten and Short and full proofs can be found in [6].

Lemma 3.2.11. Let L be the language of a bi-automatic structure for G = ⟨X⟩.

Then for any g, h ∈ (X±)∗, the language

L(g, h) = {(u, v) ∈ L ×L ∣ u = gvh}

is regular.

Theorem 3.2.12. A group G with bi-automatic structure has decidable Conjugacy

Problem.

24



Proof. Let G be a group with bi-automatic structure S = (X,L) and let g and h

be words over X. By Lemma 3.2.11, the language L(g, h) is regular. Now if the

elements g and h are conjugate in G, there is an element r ∈ G such that r−1gr = h,

i.e., gr = rh. Hence there is a word w ∈ L such that gw = wh. The latter is true if

and only if w = g−1wh. Equivalently, g and h are conjugate if and only if

L(g−1, h) ∩ {(w,w) ∣ w ∈ L} ≠ ∅.

An algorithm to decide whether the intersection of two regular languages is non-

empty is given in [9].

Unfortunately, the complexity of the algorithm described above is exponential

and no better one is known so far.

3.3 Hyperbolic Groups

Free groups are universally loved, not only because they have a universal prop-

erty, but also because many interesting algorithmic problems are easily solvable there.

The properties that entail this are captured by the geometry of their Cayley graphs.

Indeed the Cayley graph of a free group is a tree – a very special kind of graph.

Hyperbolic groups are a generalisation of free groups, in the sense that their Cayley

graphs “seen from far away” look like trees. Taking the geometric view-point, this

means that the Cayley graph of a hyperbolic group is quasi-isometric to a tree. A

more precise definition will follow. Thus the guiding idea is that anything that can

be done for free groups can, with some modifications and significantly more work,

also be done for hyperbolic groups. However, the class of hyperbolic groups is much

larger and includes a number of interesting groups such as finite groups, virtually

25



cyclic groups, most surface groups (the ones having negative Euler characteristic),

most triangle groups, fundamental groups of compact Riemannian manifolds with

strictly negative sectional curvature, and, more generally, groups that act cocom-

pactly and properly discontinuously on a CAT(k) space with k < 0.

Let G be group with generating set X and let Γ be its Cayley graph with the

usual metric. The basic building block of a tree is a tripod. The next best thing is

a triangle. However, while a tripod between three points is unique, a triangle need

not be. Hence one needs a more specific notion of a triangle.

Definition 3.3.1. A triangle is called geodesic if each of its sides is a geodesic in

the Cayley graph.

The idea of looking at the graph “from far away” is captured by the notion of

thinness of a triangle.

Definition 3.3.2. A triangle ABC is δ-thin if given any point P on any side AB

of the triangle, there is a point Q lying either on BC or on AC such that

d(P,Q) ≤ δ.

In other words, given a point on one of the sides, it must be within distance δ of

one of the other sides. Notice that the smaller δ is, the more the graph looks like a

tree. In fact, free groups are hyperbolic with δ = 0, since any geodesic triangle there

is a tripod.

A group G is called hyperbolic if it is δ-hyperbolic for some δ. As stated, the

definition of hyperbolicity depends on the set of generators, since it depends on the

geometry of the Cayley graph for this particular set of generators. However, it is

26



known that if a group is hyperbolic for some finite set of generators, it is hyperbolic

for any other finite set of generators (maybe with a different δ).

As hyperbolic groups can be thought of as a generalisation of free groups, it is

not surprisingly the general strategy for attacking algorithmic problems there is very

similar to the one in free groups – find suitable normal forms and use them to solve

the given problem.

There are various algorithms to solve the Conjugacy Problem in hyperbolic

groups. Notably, one that seems to work well in practice is due to Marshall (see

[13]). A better algorithm, in terms of theoretical complexity is a ‘linear’one presented

by Epstein and Holt in [4]. It is indeed linear with respect to a RAM model of

computation, but its complexity is O(n logn), where n is the size of the input,

in the Turing model of computation. It should be noted that the decidability of

the Conjugacy Problem in hyperbolic groups was already shown by Gromov in [8].

Moreover, since hyperbolic groups are known to be bi-automatic, the result of Gersten

and Short discussed in Section 3.2 also implies the decidability of the Conjugacy

Problem there. The later both have exponential time complexities. Bridson and

Haefliger also give a cubic time algorithm in Section 2.12 of Part III.Γ of [2] which

can be improved to a quadratic one. A related result is that of Inna Bumagin (see [3])

gives an algorithm to decide the Conjugacy Problem in relatively hyperbolic groups.

The algorithm due to Epstein and Holt is currently the one with the best time

complexity. Not surprisingly, the idea is to mimic the algorithm for free groups.

Given two words u and v, first one attempts to fin normal forms in the form of

short-lex geodesics. Then one tries to find a power of u in a power of v. The

27



former is obtained by using what the authors refer to as “Shapiro’s algorithm” to

find short-lex geodesics in linear time. Both parts are very technical, and involve a

careful adjustment of the constants that cannot be meaningfully summarised in a

few paragraphs.

3.4 Wreath Products

Let A and B be groups. Denote by A(B) the set fun(B,A) of functions from B

to A with finite support. In other words,

A(B) = {f ∶ B → A ∣ ∣supp(f)∣ < ∞},

where

supp(f) = {b ∈ B ∣ f(b) ≠ 1}.

Then A(B) is a group with multiplication given by

(fg)(b) = f(b)g(b).

The inverse f−1 ∈ A(B) is given by f−1(b) = (f(b))−1
and the identity in the group is

the map b↦ 1A for every b ∈ B. It is important to emphasise that functions in A(B)

need not be homomorphisms.

Definition 3.4.1. The restricted wreath product AwrB is the group formed by the

set of pairs

AwrB = {bf ∣ b ∈ B, f ∈ A(B)},

with multiplication defined by

bfcg = bcf cg,

28



where f c(x) = f(xc−1) for x ∈ B.

Letters b, c, d, . . . are used for elements of B and letters f, g, h, . . . for functions

in A(B). It is easy to see that AwrB is a group, with identity 1AwrB = 1B1A(B) and

inverses (bf)−1 = b−1(f−1)b−1 . Indeed,

bfb−1(f−1)b−1 = bb−1f b
−1(f−1)b−1 = 1B1A(B) ,

since for any c ∈ B,

(f b−1(f−1)b−1)(c) = f b−1(c)(f−1)b−1(c) = f(cb)f−1(cb−1) = 1A.

One can also view the restricted wreath product AwrB as the semi-direct prod-

uct A(B) ⋊B. However this line of thought is not pursued in the sequel. The unre-

stricted wreath product is defined in the same way as the restricted one, except that

the finite support requirement on the functions is removed. This makes it unsuitable

to be considered in the algorithmic context, as even writing down most functions

would be impossible.

As usual, in order to even formulate an algorithmic problem, one needs to have a

set of generators in mind. Let X = {x1,⋯, xn} and Y = {y1,⋯, ym} be the generating

sets for A and B, respectively.

Define functions fai,bi ∈ A(B) as

fai,bi(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ai if x = bi

1 otherwise.

29



For simplicity, we denote fai,1 by fai . Then any function f ∈ A(B) with supp(f) =

{b1,⋯, bk} and f(bj) = aj can be written as

f = ∏
bi∈supp(f)

fai,bi .

Observe that A embeds in A(B) via the map a ↦ fa. In the sequel, by abuse of

notation, A will be identified with its image under this map. Observe further that

b−1fab = fa,b, since

• (b−11A(B))(1fa)(b1A(B)) = (b−11A(B))(bf ba) = 1A(B)f
b
a in AwrB.

• f ba(x) = fa(b−1x) = fa,b(x).

Thus a function f ∈ fun(B,A) can be written as

f = ∏
bi∈supp(f)

fai,bi = ∏
bi∈supp(f)

f biai = ∏
bi∈supp(f)

abii .

Hence, AwrB is generated by X,Y . In particular, that means that if both A

and B are finitely generated, so is AwrB.

Note that the above reasoning works regardless whether the action is defined as

f b(x) = f(b−1x) or f b(x) = f(xb−1). In order to conform to other authors’ conven-

tions, the former is used in Section 5 and the latter in Section 6.1.

Usually, when dealing with algorithmic problems, the input word is given as a

product of generators. However, in the present case, it is not convenient to use this

presentation, so the input word is reprocessed in the first part of the algorithm. One

can rewrite a word w = y1x1⋯ykxk in generators X and Y as w = bf in polynomial

time. For simplicity, assume that yi and xi are single generators. In general, they will

be words in X and Y , but the proof is exactly the same. By applying conjugation

30



k − 1 times we may obtain

w = y1y2(y−1
2 x1y2)x2⋯ykxk = y1y2x

y2
1 x2y3x3⋯ykxk

= y1y2y3(y−1
3 x

y2
1 x2y3)x3⋯ykxk = y1y2y3(xy21 x3)y3x4⋯ykxk

= y1y2y3x
y2y3
1 xy32 x4⋯ykxk = ⋯

= y1⋯ykxy2⋯yk1 xy3⋯yk2 ⋯xykk−1xk.

The idea is that here b = y1⋯yk ∈ B and f = xy2⋯yk1 xy3⋯yk2 ⋯xykk−1xk ∈ A(B). However, the

powers represent the domain elements of the function. In order to have a well-defined

function, one needs to make sure none of the powers are secretly equal. Denote

Yi = yi⋯yk. For each 2 ≤ i < j ≤ k, check whether Yi = Yj. This amounts to solving

(k−1
2
) Word Problems in B. For each Yi1 = Yi2 = ⋯ = Yij , set f(Yi1) = xi1⋯xij . This

determines f completely and we can change presentations in time O(∣w∣2TWB(∣w∣)),

where TWB is the time function for the Word Problem in B.

Note that if a word is given as a product of generators, converting it to standard

(or pair) form gives an ordering for supp(f) = {Yi}i determined by the indices i.

More precisely, Yi < Yj whenever i < j.

With this, it is easy to solve the Word Problem in a wreath product AwrB.

Proposition 3.4.2. If the word problems in A and B are decidable in polynomial

time, so is the Word Problem in AwrB.

Proof. Let TWB and TWA be the time functions for algorithms which solve the Word

Problems in B and in A, respectively. Given a word w in generators X,Y , rewrite it

in the form w = bf , as described above. Then w = 1 if and only if b = 1 and f = 1. To

check the former requires time TWB. To see whether f = 1, one needs to check that

31



every image point is trivial, i.e., one needs to solve at most ∣w∣ word problems in A,

which can be done in time ∣w∣TWA. Thus, the Word Problem has complexity

O(∣w∣2TWB(∣w∣) + ∣w∣TWA(∣w∣)).

The Conjugacy Problem, however, is not quite so simple. Jane Matthews showed

in [14] that the Conjugacy Problem in wreath products is decidable. The complexity,

however, was not known until now. The proof Matthews gave is not presented here,

but rather in Section 6.1, where it is shown that the Conjugacy Problem is decidable

in polynomial time.

In fact the complexity of the Conjugacy Problem is not known in any of the

examples presented in Section 4. In the sequel, a polynomial time algorithm is given

to solve the Conjugacy Problem in free solvable groups.

32



CHAPTER 4
Solvable Groups and Algorithmic Problems Therein

Solvable groups are in a sense a generalisation of abelian groups. Thus one

would expect them to share many of their ‘nice’ properties. This is often the case

algebraically. However, with regard to computation, solvable groups present much

more variety. In this section several classes of solvable groups and the Word and

Conjugacy problems in them are discussed. We start with several basic definitions.

Definition 4.0.3. Let G be a group. The commutator of g, h ∈ G is

[g, h] = g−1h−1gh.

The elements g and h commute, i.e., gh = hg, if and only if [g, h] = 1.

Thus commutators, measure how far two elements are from commuting. Given

groups G and H, their commutator group is defined as [G,H] = ⟨[g, h] ∣ g ∈ G,h ∈H⟩.

Definition 4.0.4. Let G be a group. Define its derived series to be the normal series

G ≥ G′ ≥ G(2) ≥ ⋯ ≥ G(n) ≥ ⋯

where G′ = [G,G] and G(n+1) = [G(n),G(n)].

Definition 4.0.5. A group G is solvable if its derived series reaches the trivial group,

i.e., if there exists an n such that

G(n) = 1.

33



The smallest such n is called the degree of solvability of G.

Solvable groups present a large class of groups, and it is impossible to solve

most interesting algorithmic problems for the whole class. This follows from a result

of O. Kharlampovich. In [10] she exhibits a finitely presented solvable group which

has unsolvable Word Problem. Now, a solution to the Conjugacy Probem or to the

Bounded Geodesic Length Problem, gives a solution to the Word Problem (check

whether a word is conjugate to the identity, or check whether a word has a geodesic

of length 1). Thus, the undecidability of the Word Problem implies the undecidability

of many other interesting problems.

However, a great deal is known about various subclasses of solvable groups. The

rest of this section explores the word and conjugacy problems in several of them.

4.1 Finitely Generated Metabelian Groups

Just as a commutator is a measure of how far two elements are from commuting,

the length of the derived series determines how far a group is from being abelian. If

the series is of length one, the group is abelian. A group which has derived length

two is called metabelian.

Even this is in a sense the simplest non-trivial example of a class of solvable

groups, algorithmic problems here are not easy to solve. Denote by M the variety

of metabelian groups. Finitely generated metabelian groups are finitely presented in

this variety (a well-known result of P.Hall).

Moreover, metabelian groups are residually finite, i.e., for any metabelian group

M and for any g ∈ M , tehre is a homomorphism ψg ∶ M → Fg, where Fg is a finite

group, such that ψg(g) ≠ 1. It follows from the latter two facts that the Word

34



Problem for metabelian groups is decidable. Indeed, let M be a metabelian group

and let w be a word over its generators. Run the following two procedures:

(P1) Enumerate all finite quotients of M and for each check wether the image of w

is non-trivial.

(P2) Enumerate all consequences of the relations of M and compare each to w (as

strings of generators).

Note that no time complexity can be deduced from this algorithm, as there is

no way to bound the size of the enumerations in (P1) and (P2).

The idea for solving the Conjugacy Problem is to translate it in terms of module

theory. Then the result follows using some powerful tools available there. The proof

hinges on computing finite presentations of various submodules.

The notion of a finite presentation in a given variety of groups is a generalisation

of the definition of a presentation given in Section 2.1.

Definition 4.1.1. Let V be a variety of groups and let G be a finitely generated

group in this variety. Then G ≃ F /R, where F is a finitely generated free group in

V and R is some normal subgroup. If R is the normal closure in F of some finite

subset, then this gives a finite V-presentation of G.

One of the most common examples is the variety A of finitely generated abelian

groups. Consider the abelian group Z6 ×Z7 with presentation

⟨x, y ∣ [x, y] = x6 = y7 = 1⟩.

It is also the quotient of the free abelian group Z × Z by the normal closure of the

subset {(6,1), (1,7)}, i.e., Z7 ≃ Z/ << (6,1), (1,7) >>. Thus the presentation of

35



Z6 ×Z7 in the variety of finitely generated abelian groups is

⟨x, y ∣ x6 = y7 = 1⟩A.

Finitely generated metabelian groups are finitely presented in the variety of

metabelian groups and so lend themselves better to computation, as their presenta-

tions can be expressed in terms of matrices and questions can be reduced to equivalent

questions in module theory, where more machinery is available.

Proposition 4.1.2. Let G be a finitely generated metabelian group. Then G′ is a

(left) Z (G/G′)-module.

Proof. Note that since G is metabelian, its derived series is of length two and so G′

is abelian. Define a G/G′-action on G′ via g ⋅ a = gag−1. This action is well defined,

since if gG′ = hG′, then g = ha1 for a1 ∈ G′ and consequently

g ⋅ a = gag−1 = ha1aa
−1
1 h

−1 = hah−1 = h ⋅ a.

This action clearly extends to a Z (G/G′) which defines scalar multiplication for hte

module.

Now that groups have been translated into module language, the next step is to

be able to compute with modules.

Definition 4.1.3. A ring R is computable if its elements can be enumerated by a

Turing machine.

Definition 4.1.4. Let M be a finitely generated R-module, where R is a computable

ring satisfying max-n (the maximal condition on normal subgroups) and suppose M

36



is given by a finite presentation. Then M is submodule computable if there exist

algorithms to

1. find a finite R-presentation for the submodule N generated by a given finite

subset of M ;

2. decide whether an element w over generators of M is in the submodule N .

The submodule computability of certain modules is shown in [11] and is used

in the proof of some crucial lemmas, including the module theoretic version of the

Conjugacy Problem.

Lemma 4.1.5. Let Q be a finitely generated abelian group and let M be a finitely

generated ZQ-module. Then there is an algorithm which, given two elements x, y ∈

M , decides whether there is an element g ∈ Q such that x = g ⋅ y, where ⋅ denotes

scalar multiplication in the module (given by the action of Q).

A proof of this can be found in [11]. They also present a concise proof of Noskov’s

result. A slightly more detailed version of their proof is given here.

Theorem 4.1.6 (Noskov). The Conjugacy Problem in finitely generated metabelian

groups is decidable.

Proof. Notice that if x and y are conjugate in G, then for some g ∈ G, x = g−1yg and

so

xy−1 = g−1ygy−1 = [g, y−1] ∈ G′.

Check that xy−1 ∈ G′. This is equivalent to checking that xy−1 = 1 in G/G′, which is

abelian and so has decidable Word Problem. If xy−1 ∉ G′, they are not conjugate, so

assume xy−1 ∈ G′.

37



Observe also that x and y are conjugate in G if and only if they are conjugate

in G/[G′, x]. Indeed if x and y are conjugate in G/[G′, x], then there is some g ∈

G/[G′, x] and some a ∈ G′, such that

yg = g−1yg = x[x, a] = xx−1a−1xa = a−1xa = xa.

Now, by Proposition 4.1.2, G′ is a Z (G/G′) module and a finite Z (G/G′)-

presentation for it can be found (see for example Lemma 9.5.3 in [11]). Suppose that

G′ is generated by {g1, . . . , gm} as a Z (G/G′)-module. Then, since G′ is abelian,

[G′, x] is generated as a Z (G/G′)-module by {[g1, x], . . . , [gm, x]}. Hence a finite

presentation of G/[G′, x] can be found in the variety of metabelian groups. Thus,

assume without loss of generality that [G′, x] = 1 (otherwise, simply replace G by

G/[G′, x]).

Let M = ⟨x,G′⟩. Since G′ is normal and for any g ∈ G

g−1xg = g−1xgx−1x = [g, x−1]x ∈M,

so M is a normal subgroup of G. Moreover, G′ is abelian and [G′, x] = 1, so M

is also abelian. Note that y ∈ M , since xy−1 ∈ G′. Hence M is an abelian normal

subgroup of G, containing both x and y. Furthermore, M is a finitely generated

Z (G/G′)-module and a presentation for it can be obtained by adding all conjugates

of x by generators of G (and their inverses) to the presentation of A. Finally, by

applying Lemma 4.1.5 to M , one can decide whether x and y are conjugate in G,

since G/G′ is actually acting by elements of G.

38



4.2 Free Solvable Groups

Let F be the free group of rank r, i.e., let F = F (X) for X = {x1, . . . , xr}. Let

N be a normal subgroup of F . Recall that

N ′ = [N,N] = ⟨[g, h] ∣ g, h ∈ N⟩

is called the derived subgroup (or commutator subgroup) of N . Note that N ′ is itself

normal in F . Indeed, for any f ∈ F and for any [g, h] ∈ N ′,

[g, h]f = f−1ghg−1h−1f = f−1gff−1hff−1g−1ff−1h−1f

= gfhf(g−1)f(h−1)f

= [gf , hf ] ∈ N ′.

Consider the special case N = F . As shown above F ′ is normal in F . Thus one can

in turn take its derived subgroup. Recall that

F (d+1) = [F (d), F (d)].

The normal series

F ▷ F ′▷⋯▷ F (d)▷⋯

is called the derived series of F . Naturally, given a normal series one is tempted to

take the quotient of the terms. The group F /F (d) is called the free solvable group of

rank r and class d.

Remark. Note that F /F (d) is indeed a solvable group. To see this, observe that

taking the quotient of each term by F (d) the derived series of F by F (d) yields the

39



normal series

F /F (d)▷ F ′/F (d)▷⋯▷ F (d)/F (d) = 1.

Further, for each 1 ≤ i ≤ d, F (i)/F (d) ≃ (F /F (d))(i), since for any x, y ∈ F (i),

[xF (d), yF (d)] = xF (d)yF (d)x−1F (d)y−1F (d) = xF (d)yF (d)x−1F (d)y−1F (d)yy−1

= xF (d)yF (d)x−1F (d)y−1 = xF (d)yF (d)x−1y−1

= xF (d)yx−1y−1 = F (d)xyx−1y−1

= [x, y]F (d).

Here each step uses the normality of F (d) in F (i). It follows that F (i)/F (d) ≃

(F /F (d))(i) and the normal series becomes

F /F (d)▷ (F /F (d))′▷⋯▷ (F /F (d))(d−1)▷ 1.

The abelian group F /F ′ is called the abelianisation of F and F /F (2) is the free

metabelian group of rank r.

The Word Problem in free solvable groups was shown to have cubic complexity

by Miasnikov, Roman’kov, Ushakov and Vershik in [16] and Remeslennikov and

Sokolov showed in [17] that the Conjugacy Problem is decidable, though without

mentioning an analysis of time complexity. The former will be discussed in much

more detail in Section 5.5.1. It is worth noting that the cubic algorithm of [16] is

uniform for the class of free solvable groups. Both results provide an extensive source

of ideas for the present work.

40



CHAPTER 5
Free Solvable Groups and the Magnus Embedding

In this section we introduce the Magnus embedding and Free Differential Cal-

culus as well as the techniques used to compute them efficiently. With this, we solve

the Word Problem in free solvable groups in cubic time. The same methods are

used in the next chapter to solve the Conjugacy Problem in free solvable groups in

polynomial time.

5.1 Group Rings

Let G be a group and let R be a commutative ring with identity.

Definition 5.1.1. The group ring of G over R is the set of all functions of finite

support from G to R,

RG = fun(G,R) = {f ∶ G→ R ∣ ∣supp(f)∣ < ∞},

where supp(f) = {g ∈ G ∣ f(g) ≠ 0} together with addition and multiplication defined

as:

1. (f + h)(g) = f(g) + h(g)

2. (f ⋅ h)(g) = ∑
xy=g

f(x)h(y)

Note that multiplication is well-defined because the functions are of finite sup-

port, so the sums are finite.

41



Elements u ∈ RG are often written as u = ∑g∈G rgg with rg = 0 for all but

finitely many g ∈ G. This clearly corresponds to the function f ∈ fun(G,R) given by

f(g) = rg. Then for u = ∑
g∈G

rgg, v = ∑
g∈G

sgg ∈ RG:

(1) u + v = ∑
g∈G

(rg + sg)g,

(2) uv = ( ∑
g∈G

rgg)( ∑
h∈G

shh) = ∑
g,h∈G

rgshgh = ∑
xy=g

rxsyg.

It is clear from the above that RG is a ring with identity 1RG = 1R1G.

Lemma 5.1.2. A group homomorphism φ ∶ G → H induces by linearity a ring

homomorphism φ ∶ RG→ RH.

Proof. Given φ ∶ G→H, define φ ∶ RG→ RH by

φ( ∑
g∈G

rgg) = ∑
g∈G

rgφ(g).

It is easy to see that φ is a ring homomorphism.

Definition 5.1.3. The ring homomorphism ε ∶ RG→ R induced by φ ∶ G→ 1 is called

the trivialisation homomorphism. Its kernel, ∆ = kerε, is called the fundamental ideal

of RG.

Proposition 5.1.4. If X is a generating set for G, then ∆ = id({x − 1 ∣ x ∈ X}),

where id(Y ) denotes the ideal generated by Y .

Proof. Notice first that ∆ = id({g − 1 ∣ g ∈ G}). Indeed, if u = ∑g∈G rgg ∈ ∆, then

0 = ε(u) = ∑ rg, so

u = u − 0 = ∑ rgg −∑ rg = ∑ rg(g − 1).

Observe now that if g, h ∈ G, then

42



gh − 1 = gh − g + g − 1 = g(h − 1) + (g − 1). (5.1)

Using this, show by induction on the word length of elements g ∈ G that the

ideal {g − 1 ∣ g ∈ G} is generated by ∆̄ = {(x − 1), (x−1 − 1) ∣ x ∈X}.

The base case is g = x±1 for some x ∈ X, so g − 1 = x±1 − 1 and g ∈ ∆̄. Now

suppose that the statement holds for all elements of length less than n and take

g ∈ G of length n. Then g = hx±1 for some h ∈ G of length less than n and some

generator x ∈X. From equation (5.1),

g − 1 = hx±1 − 1 = h(x±1 − 1) + (h − 1).

Hence g − 1 is also in the set generated by ∆̄ and so ∆ = id({(x − 1), (x−1 − 1) ∣ x ∈

X}).

5.2 Free Solvable groups and the Magnus Embedding

Let F = F (X) be a free group of rank r. Throughout, the guiding idea is to

study F /N ′ via F /N . The following introduces the Magnus embedding, which gives

a way to embed a free solvable group of rank d+1 into a matrix group depending on

a free solvable group of degree d.

Denote by µ ∶ F → F /N the canonical epimorphism. Let T be the free Z(F /N)-

module with basis {t1, . . . , tr}, i.e., T ≃ Z(F /N) ⊕ ⋯ ⊕ Z(F /N). Then the set of

matrices

M(F /N) =
⎛
⎜⎜
⎝

F /N T

0 1

⎞
⎟⎟
⎠
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

g t

0 1

⎞
⎟⎟
⎠

RRRRRRRRRRRRRRR

g ∈ F /N

t ∈ T

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

43



forms a group with respect to matrix multiplication. Indeed,

⎛
⎜⎜
⎝

g1 u1

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

g2 u2

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

g1g2 g1u2 + u1

0 1

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

g t

0 1

⎞
⎟⎟
⎠

−1

=
⎛
⎜⎜
⎝

g−1 −g−1t

0 1

⎞
⎟⎟
⎠

The following lemma about the structure of the group M(F /N) is crucial to the

result on the Conjugacy Problem in free solvable groups in Section 6.2.

Lemma 5.2.1. M(F /N) ≃ F /F ′wrF /N .

Proof. Let K =
⎛
⎜⎜
⎝

1 T

0 1

⎞
⎟⎟
⎠

. Obviously, K ≅ T . The strategy is to first show that

M(F /N) = K ⋊ F /N (see points 1, 2, 3) and then show that the action of F /N by

conjugation on K corresponds to the action of F /N on fun(F /N,F /F ′) (see point

4).

1. K ◁M(F /N).

Indeed, for any

⎛
⎜⎜
⎝

g t

0 1

⎞
⎟⎟
⎠
∈M(F /N) and for any

⎛
⎜⎜
⎝

1 u

0 1

⎞
⎟⎟
⎠
∈K,

⎛
⎜⎜
⎝

g t

0 1

⎞
⎟⎟
⎠

−1
⎛
⎜⎜
⎝

1 u

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

g t

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

g−1 −g−1t

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

g t + u

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

1 g−1u

0 1

⎞
⎟⎟
⎠
∈K.

2. M(F /N)/K ≃ F /N .

44



To see this, define a homomorphism ψ ∶M(F /N) →
⎛
⎜⎜
⎝

F /N 0

0 1

⎞
⎟⎟
⎠
≃ F /N by

ψ

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

g t

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

g 0

0 1

⎞
⎟⎟
⎠
.

Obviously, ψ

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

g t

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

1 0

0 1

⎞
⎟⎟
⎠

if and only if g = 1. Moreover, ψ is

surjective, so kerψ = K and by the first isomorphism theorem, M(F /N)/K ≅

F /N .

3. K ≅ fun(F /N,F /F ′) (as groups).

Let F /F ′ = ⟨a1, . . . , ar⟩. Consider a function f ∶ F /N → F /F ′. Then, since

F /F ′ is an abelian group, one can write f(x) in the normal form

f(x) =
r

∑
i=1

n
(i)
x ai,

for some n
(i)
x ∈ Z

Consider the homomorphism λ ∶ fun(F /N,F /F ′) → T , given by

λ(f) =
r

∑
i=1

⎛
⎝ ∑
x∈supp(f)

n
(i)
x x

⎞
⎠
ti.

Clearly, λ(f) = 0 if and only if, for every 1 ≤ i ≤ r and for every x ∈ supp(f),

n
(i)
x = 0, i.e., λ(f) = 0 if and only if f = 0. Thus kerλ = 0 and hence λ is

injective.

To see that λ is surjective, note that, since T is a free Z(F /N)-module with

basis {t1, . . . , tr}, one can write every element t ∈ T as t =
r

∑
i=1
uiti, where ui ∈

45



Z(F /N). So one can in turn write ui = ∑
x∈F /N

n
(i)
x x with finitely many n

(i)
x ≠ 0.

Now define a function f ∈ fun(F /N,F /F ′) as

f(x) = ∑
x∈F /N

n
(i)
x ai.

This function is clearly well-defined, and

λ(f) =
r

∑
i=1

⎛
⎝ ∑
x∈supp(f)

n
(i)
x x

⎞
⎠
ti =

r

∑
i=1

uiti = t,

so λ is also surjective. Hence, λ gives an isomorphism of abelian groups.

4. The action of F /N on K is the same as the action of F /N on fun(F /N,F /F ′).

It is easy to see this intuitively. To write it down, one needs to first get over

the notation. The idea is to show the following diagram commutes.

fun(F/N,F/F ′)
F
/N↷//

λ
��

fun(F/N,F/F ′)
λ

��
K

F
/N↷ // K

Let f ∈ fun(F /N,F /F ′) be given by f(x) =
r

∑
i=1
n
(i)
x ai, and take g ∈ F /N .

On the one hand, f ↦
⎛
⎜⎜
⎝

1 λ(f)

0 1

⎞
⎟⎟
⎠

and then F /N acts by conjugation:

⎛
⎜⎜
⎝

g 0

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 λ(f)

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

g−1 0

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

g gλ(f)

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

g−1 0

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 gλ(f)

0 1

⎞
⎟⎟
⎠
,

46



where

gλ(f) = g
r

∑
i=1

⎛
⎝ ∑x∈F /N

n
(i)
x x

⎞
⎠
ti =

r

∑
i=1

⎛
⎝ ∑x∈F /N

n
(i)
x gx

⎞
⎠
ti

On the other hand, F /N acts on fun(F /N,F /F ′) by sending f to f g. Now,

since f g(x) = f(g−1x), it can be represented by
r

∑
i=1
n
(i)

g−1xai. Thus,

λ(f g) =
r

∑
i=1

⎛
⎝ ∑x∈F /N

n
(i)

g−1xx
⎞
⎠
ti.

It is easy to see that substituting y = g−1x makes gλ(f) = λ(f g).

Define a homomorphism ϕ ∶ F →M(F /N) on generators by

ϕ(xi) =
⎛
⎜⎜
⎝

µ(x) ti

0 1

⎞
⎟⎟
⎠
.

In the natural way, extend ϕ to a ring homomorphism, ϕ∗ ∶ ZF → Z(F /N). This

homomorphism will be used in the sequel, and will in fact describe the Magnus

embedding. But first, we describe some tools that will be needed for the Magnus

embedding.

5.3 Fox Derivatives and Free Differential Calculus

In this section we develop free differential calculus, which will be later used to

compute the Magnus embedding. Let G be a group and RG its group ring.

Definition 5.3.1. A map D ∶ RG→ RG is a derivation if the following hold for any

u, v ∈ RG and for all r ∈ R:

1. D(u + v) =D(u) +D(v)

2. D(uv) =D(u)ε(v) + uD(v)

47



3. D(ru) = rD(u)

Remark. D is completely determined by the values it takes on a generating set X

of G. Indeed, for u ∈ RG

D(u) =D(∑ rigi) = ∑(D(rigi)) = ∑ riD(gi),

so D is completely determined by its values on G. Now for g, h ∈ G,

D(gh) =D(g)ε(h) + gD(h) =D(g) + gD(h).

Thus D is determined by the values it takes on X ∪X−1. Finally,

D(1) =D(1 ⋅ 1) =D(1)ε(1) + 1D(1) =D(1) +D(1),

so D(1) = 0. Then for x ∈X,

D(1) =D(xx−1) =D(x)ε(x−1) + xD(x−1) =D(x) + xD(x−1),

hence D(x−1) = −x−1D(x). Thus D is completely determined by the values it takes

on X.

Theorem 5.3.2. For any x ∈ X there is a derivation, ∂
∂x ∶ ZF → ZF such that for

any y ∈X:

∂y

∂x
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if y = x;

0 otherwise.

Proof. As mentioned above, a derivation is completely determined by the values it

takes on generators, so one can define ∂
∂x as above and then extend it to a derivation

on ZF . The more elegant proof, presented here, involves using the map ϕ (with

48



N = {1}). Recall that ϕ∗ ∶ ZF →M(F /N) is such that

ϕ∗(u) =
⎛
⎜⎜
⎝

u ∑x∈X uxtx

0 ε(u)

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

α11(u) α12(u)

0 α22(u)

⎞
⎟⎟
⎠
.

Now, since ϕ∗ is a ring homomorphism, ϕ∗(uv) = ϕ∗(u)ϕ∗(v). Further,

ϕ∗(uv) =
⎛
⎜⎜
⎝

α11(uv) α12(uv)

0 α22(uv)

⎞
⎟⎟
⎠
, and

ϕ∗(u)ϕ∗(v) =
⎛
⎜⎜
⎝

α11(u) α12(u)

0 α22(u)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

α11(v) α12(v)

0 α22(v)

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

α11(u)α11(v) α11(u)α12(v) + α21(u)α22(v)

0 α22(uv)

⎞
⎟⎟
⎠
.

It follows that

α12(uv) = α11(u)α12(v) + α12(u)α22(v)

= uα12(v) + α12(u)ε(v).

Thus, the map u↦ α12(u) is a derivation. (That this map is linear follows from the

fact that it is defined via a ring homomorphism.)

Recall that T denotes the free ZF -module (we are considering N = 1) with basis

{tx ∣ x ∈ X}. Let ρx ∶ T → ZF be the projection on the x coordinate of T , i.e., for

u = ∑x∈X uxtx,

ρ(u) = ux.

49



Define Dx ∶ ZF → ZF , as Dx = ρ ○α12. Clearly, Dx is linear. Moreover, for u, v ∈ ZF ,

Dx(uv) = ρ(α12(uv)) = ρ(uα12(v) + α12(u)ε(v))

= uρα12(v) + ε(v)ρα12(u)

= vDx(v) + ε(u)Dx(v).

Thus Dx is a derivation. Finally, for any x, y ∈X,

Dx(y) = ρ(α12(y)) = ρ(ty) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if y = x

0 otherwise.

Hence Dx satisfies the original criterion.

This derivation is called a Fox partial derivative. Free differential calculus is

in spirit very similar to the calculus on the real line. This parallel will be pointed

out throughout the discussion of Fox derivatives, as, although not necessary, it gives

an idea of the general set-up and goals. It is not surprising then, that once partial

derivatives have been defined, the equivalent of the gradient comes up naturally.

Proposition 5.3.3. Let u ∈ F and let D ∶ ZF → ZF be a derivation. Then

D(u) = ∑
x∈X

∂u

∂x
D(x).

This is called the formula of the complete differential.

Proof. Recall that ∆ = ker ε = id({x − 1 ∣ x ∈ X}), where ε ∶ ZF → Z is the trivial-

isation map which maps an element to the sum of its coefficients. Hence, if u ∈ F ,

50



u − 1 ∈ ker ε and therefore,

u − 1 = ∑
x∈X

ux(x − 1). (5.2)

Applying the derivation D ∶ ZF → ZF to the above,

D(u − 1) = ∑
x∈X

(D(ux)ε(x − 1) + uxD(x − 1))

D(u) −D(1) = ∑
x∈X

D(ux) ⋅ 0 + ux(D(x) −D(1)).

Therefore,

D(u) = ∑
x∈X

uxD(x). (5.3)

Similarly, applying the derivation ∂
∂y with y ∈X to (5.2), gives

∂u

∂y
= ∑
x∈X

ux
∂x

∂y
= uy.

The last step follows from the fact that ∂x
∂y = 0, whenever x ≠ y. Now, one can

replace the mysterious coefficients ux in (5.3) to obtain the formula of the complete

differential:

D(u) = ∑
x∈X

∂u

∂x
D(x).

Theorem 5.3.4 (The Fundamental Theorem of (Fox) Calculus). Let u ∈ F . Then,

u − 1 = ∑
x∈X

∂u

∂x
(x − 1).

Proof. Notice that u↦ u − 1 with u ∈ F is a derivation. Indeed, for g, h ∈ F ,

gh↦ gh − 1 = gh − g + g − 1 = g(h − 1) + g − 1 = g(h − 1) + (g − 1)ε(h)

51



and linearity is obvious. The formula of complete differential applied to this partic-

ular derivation yields

u − 1 = ∑
x∈X

∂u

∂x
(x − 1).

Since Fox derivatives will be used throughout, we present a few useful formulae

analogous to the ones found in real calculus. Let X = {x1, . . . , xn}.

1. ‘Power’ Rule: For u ∈ F and x ∈X,

∂u−1

∂x
= −u−1∂u

∂x
.

Proof. Since 1 = uu−1,

0 = ∂

∂x
1 = ∂uu

−1

∂x
= ∂u
∂x

+ u∂u
−1

∂x
.

Thus,

∂u−1

∂x
= −u−1∂u

∂x
.

2. Chain rule: Let v = v(x1, . . . , xn) be a word in generators. Denote by

v(u1, . . . , un) with u1, . . . , un ∈ F the word obtained by replacing each xi by

ui in v. By analogy with real caclulus, one thinks of the xi as variables and of

the ui as values. Then

∂v(u1, . . . , un)
∂x

=
n

∑
k=1

∂v

∂uk

∂uk
∂x

.

52



Proof. We proceed by induction on m = ∣v∣. If m = 1, v ∈ X±, so by the Power

Rule and by definition of the derivation, the above formula holds.

Now suppose that v = v1xεr, where xr ∈X and ε ∈ {±1}. Then

∂v(u1, . . . , uk)
∂x

= ∂v1uεr
∂x

= ∂v1

∂x
+ v1

∂uεr
∂x

=
k

∑
i=1

∂v1(u1, . . . , uk)
∂ui

∂ui
∂x

+ v1
∂uεr
∂x

. (5.4)

Notice that

∂v

∂ui
= ∂v1

∂ui
+ v1

∂uεr
∂ui

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂v1
∂ui

if i ≠ r;
∂v1
∂ui

+ v1
∂uεr
∂ur

if i = r.

With this, (5.4), becomes:

∂v(u1, . . . , uk)
∂x

=
k

∑
i=1

∂v1(u1,⋯, uk)
∂ui

∂ui
∂x

+ v1
∂uεr
∂x

= ∑
i≠r

∂v

∂ui

∂ui
∂x

+ ∂v1

∂ur

∂ur
∂x

+ v1
∂uεr
∂x

= ∑
i≠r

∂v

∂ui

∂ui
∂x

+ ∂v1

∂ur

∂ur
∂x

+ v1
∂uεr
∂ur

∂ur
∂x

= ∑
i≠r

∂v

∂ui

∂ui
∂x

+ (∂v1

∂ur
+ v1

∂uεr
∂ur

) ∂ur
∂x

= ∑
i≠r

∂v

∂ui

∂ui
∂x

+ ∂v

∂ur

∂ur
∂x

=
k

∑
i=1

∂v

∂ui

∂ui
∂x

3. Special case of the product rule:

∂xε1i1⋯x
εk
ik

∂x
= ∑
xim=x
εm=1

xε1i1⋯x
εm−1
im−1 − ∑

xim=x
εm=−1

xε1i1⋯x
εm
im

= ∑
xim=x

εmx
ε1
i1
⋯x

1
2
(εm−1)

im
. (5.5)

53



5.4 The Magnus Embedding

Now that the basic free differential calculus has been developed, it is time to

use it. Namely, it turns out to emerge naturally in connection with the Magnus

embedding, in particular, in the module component.

Theorem 5.4.1 (Magnus theorem). The map ϕ ∶ F →M(F /N) has kernel kerϕ =

N ′ and hence ϕ ∶ F /N ′ ↪M is an embedding.

The proof is done later in this section. With this theorem in mind one can define

the long-awaited Magnus embedding.

Definition 5.4.2. The map ϕ ∶ F /N ′ →M(F /N) is called the Magnus embedding.

Since ϕ is not surjective, it is crucial to have a good grasp of its image.

Theorem 5.4.3. Let ϕ ∶ F →M(F /N) be as before. Then, for u ∈ F ,

ϕ(u) =
⎛
⎜⎜
⎝

µ(u) ∑
x∈X

µ (∂u
∂x

) tx

0 1

⎞
⎟⎟
⎠
.

Proof. Let u ∈ F and proceed by induction on the length, ∣u∣, of u. If ∣u∣ = 1, then

u ∈ X is a generator and the result follows trivially by the definition of ϕ. Now

suppose that ∣u∣ > 1, i.e., suppose u = vy, where v is reduced and y ∈ X. The case

where u = wy−1 is similar, so it will not be done in detail. Then,

ϕ(u) = ϕ(v)ϕ(y) =
⎛
⎜⎜
⎝

µ(v) ∑
x∈X

µ ( ∂v
∂x

) tx

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

µ(y) ty

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

µ(v)µ(y) µ(v)ty + ∑
x∈X

µ ( ∂v
∂x

) tx

0 1

⎞
⎟⎟
⎠

54



Recall that, by the product rule, for y ∈X:

1. If y ≠ x,

∂vy

∂x
= ∂v
∂x
ε(y) + v ∂y

∂x
= ∂v
∂x
.

2. If y = x,

∂vy

∂y
= ∂v
∂y
ε(y) + v∂y

∂y
= ∂v
∂y

+ v.

Now observe that,

µ(v)ty + ∑
x∈X

µ(∂v
∂x

) tx = µ(v)ty + µ(∂v
∂y

) ty + ∑
x≠y

µ(∂v
∂x

) tx

= (µ(v) + µ(∂v
∂y

)) ty + ∑
x≠y

µ(∂v
∂x

) tx

= µ(∂vy
∂y

) + ∑
x≠y

µ(∂vy
∂x

) tx = ∑
x∈X

µ(∂u
∂x

) tx.

With this,

ϕ(u) =
⎛
⎜⎜
⎝

µ(u) ∑
x∈X

µ (∂u
∂x

) tx

0 1

⎞
⎟⎟
⎠
.

5.4.1 The Magnus-Fox equivalence

This subsection is devoted to proving the Magnus Theorem. It is rather compli-

cated to prove this theorem directly. The strategy will be to show that it is equivalent

to Fox’s theorem, which is easier to prove.

Theorem 5.4.4 (Fox theorem). Let N be a normal subgroup of F . Denote by µ

the canonical epimorphism thereon, which is extended to the epimorphism µ ∶ ZF →

55



Z (F /N) in the natural way. For all u ∈ F ,

u ∈ N ′⇔ µ(∂u
∂x

) = 0 for all x ∈X.

Proof. ⇒. Suppose u ∈ N ′ = [N,N]. Then, keeping in mind that [x, y]−1 = [y, x],

one can write u = u1⋯uk, with ui = [ri, si] for some ri, si ∈ N . Compute for any

r, s ∈ N the formula

∂[r, s]
∂x

= ∂rsr−1s−1

∂x
= ∂r
∂x

+ r∂sr
−1s−1

∂x

= ∂r

∂x
+ r (∂s

∂x
+ s∂r

−1s−1

∂x
)

= ∂r

∂x
+ r ∂s

∂x
+ rs(∂r

−1

∂x
+ r−1∂s

−1

∂x
)

= ∂r

∂x
+ r ∂s

∂x
+ rs(−r−1 ∂r

∂x
) + rsr−1 (−s−1 ∂s

∂x
)

= ∂r

∂x
− rsr−1 ∂r

∂x
+ r ∂s

∂x
− rsr−1s−1 ∂s

∂x
.

Since r, s ∈ N , µ(r) = µ(s) = 1. Hence,

µ(∂[r, s]
∂x

) = µ(∂r
∂x

) − µ(∂r
∂x

) + µ(∂s
∂x

) − µ(∂s
∂x

) = 0.

Now, if k = 1, by the above, µ (∂u
∂x

) = 0. Suppose by induction, that

µ (∂u1⋯uk−1
∂x

) = 0. Then,

µ(∂u
∂x

) = µ(∂u1⋯uk−1uk
∂x

) = µ(∂u1⋯uk−1

∂x
) + u1⋯uk−1µ(∂uk

∂x
) = 0.

⇐. Suppose that u ∈ F is such that µ (∂u
∂x

) = 0 for all x ∈X. One shows that u ∈ N ′

by induction on the length ∣u∣ of u. If ∣u∣ = 0, then u = 1 ∈ N ′. Assume that the

result holds if ∣u∣ ≤ k − 1.

56



Suppose that u = xε1i1⋯x
εk
ik

with εm = ±1. Then, by the special case of the

product rule,
∂xε1i1⋯x

εk
ik

∂x
= ∑
xim=x

εmx
ε1
i1
⋯x

1
2
(εm−1)

im
.

Write cim = εmxε1i1⋯x
1
2
(εm−1)

im
. Now,

µ(∂u
∂x

) = ∑
xim=x

µ(cim) = 0.

But εm = ±1, so it must be the case that the cim cancel out in pairs, i.e., for

every cij , there is a cil such that

(a) µ(xε1i1⋯x
1
2
(εj−1)

ij
) = µ(xε1i1⋯x

1
2
(εl−1)

il
) in F /N

(b) εj = −εl.

Thus for each x ∈ X the set of indices {1, . . . , k} can be partitioned naturally

in a set of pairs {(p1, q1),⋯, (ps, qs)}, according to the above criterion. Order

this set so that pi < qi and that q1 < . . . < qs. For each x ∈ X, one gets such a

sequence of indices q1(x) < ⋯ < qs(x). Choose x ∈ X so that q1(x) ≤ q1(y) for

all y ≠ x.

Lemma. Let p, q be such that µ(cp) = µ(cq). Write

u = AxεpipA1x
εq
iq
A2 = AxεA1x

−εA2.

Then A1 ∈ N .

Proof. Recall that u = xε1i1⋯x
εk
ik

and cim = εmx
ε1
i1
⋯x

1
2
(εm−1)

im
. So in the above

situation,

57



(a) If ε = 1, cp = Ax and cq = −AxA1x−1. Since µ(cp + cq) = 0, then

µ(A −AxA1x
−1) = µ(A(1 − xA1x

−1)) = µ(A)µ(1 − xA1x
−1) = 0

in the group ring. Note that no element of F /N can be a zero divisor,

since otherwise, there would exist some h ∈ F /N such that g(kh) = kgh = 0

for some k ∈ Z. But this is clearly impossible. A is a group element, so

µ(A) ≠ 0 and hence µ(1−xA1x−1) = 0, i.e., Ax
−1

1 = 1 in F /N . So Ax
−1

1 ∈ N ,

but N is normal, so A1 ∈ N .

(b) If ε = −1, cp = −Ax−1 and cq = Ax−1A1. With this,

µ(−Ax−1 +Ax−1A1) = µ( −Ax−1(1 −A1)) = µ(−Ax−1)µ(1 −A1) = 0.

Since µ(−Ax−1) is a group element, it is not a zero divisor in Z(F /N), so

µ(1 −A1) = 0, and hence µ(A1) = 1 in F /N which means that A1 ∈ N , as

required.

Let q1 = l. As before q1 < ⋯ < qs. Recall that x ∈X was chosen to be such that

q1 is minimal among q1(y) for all y ∈X. Then one can write

u = AxεlA1x
−ε
l A2,

with A1 ≠ 1, since u is reduced. Let A1 = Bxνm. Since µ (∂u
∂x

) = 0 for any x ∈X,

in particular, µ ( ∂u
∂xm

) = 0, so x−νm must appear somewhere in u. But q1 was

chosen minimal, so x−νm must occur after x−εl , i.e. x−νm occurs in A2. One can

58



now write

u = AxεlBxνmx−εl Cx−νmD.

By the lemma,

(a) n1 = Bxνm ∈ N

(b) n2 = x−εl C ∈ N .

This yields:

u = Axεln1n2x
−ν
mD = Axεl(n1n2n

−1
1 n

−1
2 )n2n1x

−ν
mD

N ′
≡ Axεln2n1x

−ν
mD = Axεlx−εl CBxνmx−νmD

= ACBD

Thus u = ACBD mod N ′. Denote ACBD by v. Then u = v(modN ′), so there

exists u′ ∈ N ′ such that u = vu′ and ∣v∣, ∣u′∣ < ∣u∣ = k. Now,

∂u

∂x
= ∂vu

′

∂x
= ∂v
∂x

+ v∂u
′

∂x
.

But, since u′ ∈ N ′, by the first part of this theorem, µ (∂u′
∂x

) = 0. Hence,

0 = µ(∂u
∂x

) = µ(∂v
∂x

) + µ(v∂u
′

∂x
) = µ(∂v

∂x
+ 0) = µ(∂v

∂x
) .

Thus µ ( ∂v
∂x

) = 0 with ∣v∣ < k, so by induction hypothesis, v ∈ N ′. But then

u = vu′ ∈ N ′.

Finally, we show that Magnus’ and Fox’s theorems are equivalent.

Theorem 5.4.5. The following are equivalent:

59



1) kerϕ = N ′

2) For every element u ∈ F , u ∈ N ′ if and only if µ (∂u
∂x

) = 0 for all x ∈X.

Proof. On the one hand, assume that kerϕ = N ′ Recall that for u ∈ F ,

ϕ(u) =
⎛
⎜⎜
⎝

µ(u) ∑x∈X µ (∂u
∂x

) tx

0 1

⎞
⎟⎟
⎠
.

Assuming 1), u ∈ N ′ if and only if ϕ(u) = 1. This happens if and only if

∑
x∈X

µ(∂u
∂x

) tx = 0 and µ(u) = 1,

i.e., if µ (∂u
∂x

) = 0 for all x ∈X, so we have 2)

On the other hand, assume 2). Take u ∈ N ′. Then

µ(u) − 1 = ∑
x∈X

µ(∂u
∂x

)µ(x − 1) = 0.

Hence µ(u) = 1 and so u ∈ kerϕ.

Now take u ∈ kerϕ. Since ϕ(u) = 1,

∑
x∈X

µ(∂u
∂x

) tx = 0, so µ(∂u
∂x

) = 0 for all x ∈X.

From 2), it follows that u ∈ N ′.

5.4.2 The Image of the Magnus embedding

The Magnus embedding ϕ ∶ F /N ′ → M(F /N) is far from being surjective.

However, if we are to work with it, we need to know what its image is. It was

described by Remeslennikov and Sokolov in [17]. Since this is particularly important

60



for the main result, the proof of their result is given here for completeness. First, we

need a lemma.

Lemma 5.4.6 (Lyndon). Let u1, . . . , ur ∈ F . Then,

µ(
r

∑
i=1

ui(xi − 1)) = 0

if and only if there exists p ∈ N such that for all 1 ≤ i ≤ r,

µ( ∂p
∂xi

) = µ(ui).

Proof. The proof hinges on the Fundamental Theorem of Calculus.

⇐. Since p ∈ N , µ(p) = 1. Hence,

µ(
r

∑
i=1

ui(xi − 1)) =
r

∑
i=1

µ(ui)µ(xi − 1) =
r

∑
i=1

µ( ∂p
∂xi

)µ(xi − 1) =

= µ(
r

∑
i=1

( ∂p
∂xi

) (xi − 1)) = µ(p − 1) = 0.

⇒. Recall that µ ∶ ZF → Z(F /N) is a ring homomorphism.

Lemma. The kernel of µ is ZF (N − 1).

Proof. Clearly, for any f ∈ ZF,n ∈ N , µ(f(n−1)) = µ(f)(µ(n)−1) = 0. Hence,

ZF (N − 1) ⊆ kerµ. Conversely, suppose that µ(u) = 0 for some u ∈ ZF . One

can write u = ∑i εivi with εi ∈ {±1} as a linear combination of words vi ∈ F by

viewing an element of the form kvi with k ∈ Z as the sum v1+⋯+vr when k > 0

and −v1 −⋯ − vr, when k < 0. Then

µ(u) = µ(∑
i

εivi) = ∑
i

εiµ(vi) = 0,

61



so for each vi, there is a vi′ such that εiµ(vi) = −εi′µ(vi′), i.e., vi′ = vin for some

n ∈ N . With this,

2u = 2∑
i

εivi = ∑
i

(εivi + εi′vi′) = ∑
i

(εivi + εi′vin) = ∑−εi(n − 1)vi ∈ ZF (N − 1).

Thus kerµ = ZF (N − 1), proving the claim.

Now, let u = ∑ri=1 ui(xi − 1) and suppose µ(u) = 0, i.e., u ∈ kerZF (µ). Hence

u ∈ ZF (N − 1) and one can write

u =
r

∑
i=1

vi(ni − 1),

where ni ∈ N and vi ∈ ZF . Then

∂u

∂xj
=

r

∑
i=1

∂vi(ni − 1)
∂xj

=
r

∑
i=1

( ∂vi
∂xj

ε(ni − 1) + vi
∂(ni − 1)
∂xj

) =
r

∑
i=1

vi
∂ni
∂xj

.

On the other hand, by the Fundamental Theorem of Calculus,

u = (u + 1) − 1 =
r

∑
i=1

∂(u + 1)
∂xi

(xi − 1),

from which it follows that uj = ∂u
∂xj

. Hence

uj =
r

∑
i=1

vi
∂ni
∂xj

.

62



Now, take n =
r

∏
i=1
viniv−1

i . Then µ ( ∂n
∂xj

) = µ(uj). Indeed, observe that for any

g ∈ N ,

∂vgv−1

∂x
= ∂v

∂x
+ v ∂g

∂x
+ vg∂v

−1

∂x

= ∂v

∂x
+ v ∂g

∂x
− vgv−1 ∂v

∂x

⇒ µ(∂vgv
−1

∂x
) = µ(v)µ(∂g

∂x
) .

With this, keeping in mind that viniv−1
i ∈ N ,

µ( ∂n
∂xj

) = ∂

∂xj
(

r

∏
i=1

viniv
−1
i ) = µ(∂v1n1v−1

1

∂xj
) + µ (v1n1v

−1
1 )µ( ∂

∂xj
(

r

∏
i=2

viniv
−1
1 ))

= µ(∂v1n1v−1
1

∂xj
) + µ( ∂

∂xj
(

r

∏
i=2

viniv
−1
1 ))

= ⋯ = µ(∂v1n1v−1
1

∂xj
) +⋯ + µ(∂vrnrv

−1
r

∂xj
)

= µ(v1
∂n1

∂xj
) +⋯ + µ(vr

∂nr
∂xj

)

= µ(
r

∑
i=1

vi
∂ni
∂xj

) = µ(uj).

With this, we are ready to attack the main theorem of this subsection.

Theorem 5.4.7 (Remeslennikov-Sokolov). Let

M =
⎛
⎜⎜
⎝

u
r

∑
i=1
uiti

0 1

⎞
⎟⎟
⎠
∈M(F /N).

Then, M ∈ Im(ϕ) if and only if u − 1 =
r

∑
i=1
ui(µ(xi) − 1) in Z(F /N).

63



Proof. ⇒. Let u ∈ F . Then,

M = ϕ(u) =
⎛
⎜⎜
⎝

µ(u)
r

∑
i=1
µ ( ∂u

∂xi
) ti

0 1

⎞
⎟⎟
⎠
.

Hence, ui = µ ( ∂u
∂xi

). By the Fundamental Theorem of Calculus,

u − 1 =
r

∑
i=1

∂u

∂xi
(xi − 1) in ZF,

thus, in Z(F /N),

µ(u − 1) =
r

∑
i=1

µ( ∂u
∂xi

) (µ(xi) − 1) =
r

∑
i=1

µ(ui)(µ(xi) − 1).

⇐. Let M =
⎛
⎜⎜
⎝

u ∑ri=1 uiti

0 1

⎞
⎟⎟
⎠

with u ∈ F /N and ui ∈ Z (F /N) be such that

µ(u − 1) = µ(
r

∑
i=1

ui(xi − 1)) .

The goal is to show that M ∈ Im(ϕ). Since u ∈ F /N and µ is surjective, there

is some v ∈ F such that u = µ(v). The idea is to show that ϕ(v−1)M ∈ Im(ϕ)

and hence, since Im(ϕ) is a subgroup, M ∈ Im(ϕ). Now,

ϕ(v−1) =
⎛
⎜⎜
⎝

µ(v−1)
r

∑
i=1
µ (∂v−1∂xi

) ti

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

µ(v−1)
r

∑
i=1
µ (−v−1 ∂v

∂xi
) ti

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

µ(v−1) −µ(v−1)
r

∑
i=1
µ ( ∂v

∂xi
) ti

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

u−1 −u−1
r

∑
i=1
µ ( ∂v

∂xi
) ti

0 1

⎞
⎟⎟
⎠
.

64



From this, it follows that

ϕ(v−1)M =
⎛
⎜⎜
⎝

u−1 −u−1
r

∑
i=1
µ ( ∂v

∂xi
) ti

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

u
r

∑
i=1
uiti

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

1 u−1
r

∑
i=1
uiti − u−1

r

∑
i=1
µ ( ∂v

∂xi
) ti

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

1 u−1
r

∑
i=1

(ui − µ ( ∂v
∂xi

)) ti

0 1

⎞
⎟⎟
⎠
.

Observe that,

u−1µ(
r

∑
i=1

(ui −
∂v

∂xi
)(xi − 1)) = u−1 (

r

∑
i=1

ui(µ(xi) − 1) −
r

∑
i=1

( ∂v
∂xi

)(µ(xi) − 1))

= u−1 (u − 1 − (u − 1)) = 0.

Now by Lyndon’s lemma, there exists an n ∈ N such that for all 1 ≤ j ≤ r,

µ( ∂n
∂xj

) = u−1 (uj − µ( ∂v
∂xj

)) .

Thus,

ϕ(n) =
⎛
⎜⎜
⎝

µ(n)
r

∑
i=1
µ ( ∂n

∂xi
) ti

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

1 u−1
r

∑
i=1

(uj − µ ( ∂v
∂xj

)) ti

0 1

⎞
⎟⎟
⎠
= ϕ(v−1)M.

Thus, ϕ(v−1)M ∈ Im(ϕ) and hence M ∈ Im(ϕ).

65



5.5 The Word Problem in Free Solvable Groups

It is finally time to turn our attention to the Word Problem. It was shown

by Miasnikov, Roman’kov, Ushakov and Vershik in [16] that its time complexity is

cubic. Besides giving an algorithm to solve the Word Problem the authors do so by

using a fascinating geometric approach.

5.5.1 Geometric interpretation of Fox derivatives

The main idea is to consider flows on the Cayley graph Γ (F /N,X).

Definition 5.5.1. Let Γ = (V,E) be a directed edge-labelled graph with labels from

X. A network on Γ is a function

f ∶ E → Z.

Given a network as above, define the flow through a vertex v to be the function

f ∶ V → Z given by

f(v) = ∑
σ(e)=v

f(e) − ∑
τ(e)=v

f(e).

Definition 5.5.2. A flow network is a network, (Γ, f), satisfying Kirchhoff’s law:

f(v) = 0, (5.6)

for all v ∈ V , except for two designated vertices, the source s and the sink t.

In other words, in a flow network the net flow out of each vertex, except for the

source and sink, is zero.

Definition 5.5.3. A flow f is a circulation if f(v) = 0 for all v ∈ V , including the

source and the sink.

66



Let C(Γ) be the set of all circulations on the graph Γ . It forms an abelian

group with respect to addition, which is defined as:

(f + g)(e) = f(e) + g(e),

for every edge e ∈ E where f and g are circulations on Γ.

One would like to view the Cayley graph of F /N , Γ(F /N,X), as a flow network.

However, the fact that Γ does not have specific edges corresponding to the inverses

of generators presents a slight technical problem. We consider a modification Γ̃ of

Γ constructed in the following way: for every edge e ∈ E(Γ) labelled by x ∈ X,

introduce an edge, e−1 such that

1. σ(e−1) = τ(e),

2. τ(e−1) = σ(e),

3. e−1 has label x−1.

For a flow, f̃ on Γ̃ satisfying

f̃(e−1) = −f̃(e),

Kirchhoff’s law takes the form

f(v) = ∑
σ(e)=v

f(e) = 0, for all v ∈ V ∖ {s, t}.

While the idea behind the geometric interpretation is very intuitive, describing

it formally can be convoluted. This may lead to the occasional abuse of notation.

Recall that a word w = xε1i1⋯x
εk
ik
∈ F (X) corresponds to a path, pw = e1⋯ek, in

the Cayley graph, Γ. Here, σ(e1) = 1 and the label of ej is x
εj
ij

. Now, for every path

67



p in Γ there is a corresponding natural flow, given by the algebraic number of times

the path traverses an edge. More precisely, a path p = eε11 ⋯e
εk
k in Γ defines a flow

πp ∶ E(Γ) → Z in the following way:

πp(e) =
k

∑
i=1

δ(eεii , e) −
k

∑
i=1

δ(eεii , e−1),

where δ(eεii , e) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if eεii = e

0 otherwise.

For any path p in the Cayley graph, πp is indeed a flow, since every time p goes

into a vertex, by some edge it comes out of it through another one, except possibly

at the endpoints. Moreover, since a word is has finite length, p is a finite path and

hence ∣supp(πp)∣ < ∞.

Now that graph theory is slowly creeping in, in the shape of flows on a Cayley

graph, it is time to establish a link between flows and Fox derivatives.

Lemma 5.5.4. Let N be a normal subgroup of F and let w ∈ F . Denote by

Γ (F /N,X) the Cayley graph of F with respect to the set of generators X. Then, for

x ∈X,

µ(∂w
∂x

) = ∑
g∈F /N

(πw(g, gx))g,

where (g, gx) is an edge in the Cayley graph of F /N .

Proof. The statement is obviously true if ∣w∣ = 0. We proceed by induction on the

length of w. Let w = w1yε with y ∈X, ε = ±1 and suppose that the theorem holds for

w1. Recall that πw(g, gx) is the algebraic number of times the edge (g, gx) appears

in the path w. Since w1 is a subword of w, whenever an edge (g, gx) appears in w1, it

also appears in w. So the value of πw(g, gx) can differ from that of πw1(g, gx), only

68



for the edge (w1,w1yε). Thus πw(g, gx) = πw1(g, gx) for all g ∈ F /N ∖w1. Hence,

∑
g∈F /N

(πw(g, gx))g = ∑
g∈F /N∖w1

(πw(g, gx))g + πw(w1,w1x)w1

= ∑
g∈F /N∖w1

(πw1(g, gx))g + πw(w1,w1x)w1

1. If y ≠ x, then by the product rule,

∂w

∂x
= ∂w1

∂x
.

Moreover, since y ≠ x, the edge (w1,w1x) does not appear in w and so

πw(w1,w1x) = 0. The result follows from the induction hypothesis.

2. If y = x, then by the product rule,

∂w

∂x
= ∂w1

∂x
+ εw1y

1
2
(ε−1).

ε = 1. In this case the edge (w1,w1x) is indeed on the path w, so it contributes

+1 to the flow along this edge. Moreover, since the edge (w1,w1x) is not

on the path w1, πw1(w1,w1x) = 0, so πw(w1,w1x) = 1. Thus,

∑
g∈F /N

(πw(g, gx))g = ∑
g∈F /N∖w1

(πw(g, gx))g + πw(w1,w1x)w1

= ∑
g∈F /N∖w1

(πw(g, gx))g +w1

= µ(∂w1

∂x
) +w1 = µ(∂w

∂x
) .

ε = −1. Since w = w1y−1 and in the sum we only consider edges (g, gx) with x ∈X,

the last edge to consider is (w,wy). Furthermore, since the last edge is

69



oriented backwards, the flow along it is −1. Now,

∑
g∈F /N

(πw(g, gx))g = ∑
g∈F /N∖w

(πw(g, gx))g + πw(w,wy)w

= ∑
g∈F /N∖w1

(πw(g, gx))g −w

= ∑
g∈F /N∖w1

(πw(g, gx))g −w1y
−1

= µ(∂w1

∂x
) −w1y

−1 = µ(∂w
∂x

) .

Corollary 5.5.5. Let u, v ∈ F . Then πu = πv if and only if

∂u

∂x
= ∂v
∂x

for all x ∈X.

Proof. By Lemma 5.5.4, µ (∂w
∂x

) = ∑
g∈F /F (d)

πw(g, gx)g. Hence, if for all x ∈ X ∂u
∂x = ∂v

∂x ,

then

∑
g∈F /F (d)

πu(g, gx)g = ∑
x∈X

πv(g, gx)g.

It follows that for all x ∈X and for all g ∈ F /F (d) πu(g, gx) = πv(g, gx), i.e., πu = πv.

Conversely, if πu = πv, then for each x ∈X, ∂u
∂x = ∂v

∂x . Thus, if one is to check whether

πu = πv, it is enough to check that ∂u
∂x = ∂v

∂x .

Theorem 5.5.6. Let u, v ∈ F (X). Then u = v in F /N ′ if and only if

πu = πv,

where πu, πv are flows on Γ(F /N).

70



Proof. ⇒. Suppose that u = v in F /N ′, i.e., uv−1 ∈ N ′. Then by Fox theorem,

µ(∂uv
−1

∂x
) = 0.

Now, by the product rule,

∂uv−1

∂x
= ∂u
∂x

+ u∂v
−1

∂x
= ∂u
∂x

− uv−1 ∂v

∂x
.

Hence,

µ(∂uv
−1

∂x
) = µ(∂u

∂x
) − µ(∂v

∂x
) = 0.

This yields µ (∂u
∂x

) = µ ( ∂v
∂x

) and so by Lemma 5.5.4, for all x ∈X,

∑
g∈F /N

(πu(g, gx))g = ∑
g∈F /N

(πv(g, gx))g.

Since g ∈ F /N are linearly independent, this gives πu(g, gx) = πv(g, gx) for all x ∈X

and for all g ∈ F /N . Hence,

πu = πv.

⇐. Now suppose that πu = πv. Then for every g ∈ F /N and for every x ∈ X,

πu(g, gx) = πv(g, gx), so by Lemma 5.5.4, µ (∂u
∂x

) = µ ( ∂v
∂x

). By the Fundamental

Theorem of Calculus,

µ(u) − µ(v) = µ(u − 1) − µ(v − 1) = ∑
x∈X

µ(∂u
∂x

)(µ(x) − 1) − ∑
x∈X

µ(∂v
∂x

)(µ(x) − 1)

= ∑
x∈X

[µ(∂u
∂x

) − µ(∂v
∂x

)] (µ(x) − 1) = 0.

71



Thus µ(u) = µ(v) and hence µ(uv−1) = 1 in F /N . Differentiating on both sides gives

for all x ∈X

µ(∂uv
−1

∂x
) = 0.

Finally, by Fox’s theorem, this yields uv−1 ∈ N ′, i.e., u = v in N ′.

This theorem is the key to solving the Word Problem in free solvable groups.

The idea is that in order to check whether two words are equal, it is enough to check

whether their flows are equal, and this can be computed using Fox derivatives. What

remains to be done is to give an efficient algorithm to compute Fox derivatives.

5.5.2 On Computing Fox Derivatives Efficiently

As shown before, in order to compute the Magnus embedding of a word w ∈

F /N ′, one needs to compute its Fox derivatives ∂w
∂xi

in F /N with respect to each

generator xi ∈ X. The special case of the product rule (equation (5.5)) provides an

algorithm whose complexity is polynomial in that of the Word Problem in F /N , as

well as in word length. To wit, given a word w = xε1i1⋯x
εk
ik
∈ F /N , one only needs to

compute ∑
xim=x

εmx
ε1
i1
⋯x

1
2
(εm−1)

im
, i.e., one needs to combine like terms in this sum, so

one needs to recognise like terms. In other words, one needs to compare all terms

in the sum to each other and determine which are equal. This amounts to solving

O(k2) Word Problems in F /N . Our interest lies in free solvable groups F /F (d+1)

(i.e., N = F (d)). It is important to note here that suing the algorithm presented here

in order to solve a Word Problem in F /F (d), one needs to use the Magnus embedding.

Thus one needs to compute all the Fox derivatives again, “one level down”. One

can compute Fox derivatives in the abelianisation F /F ′ in linear time. Denote the

time function of solving the Word Problem in F /F (d) by Td(∣w∣). Considering that

72



T1(∣w∣) = ∣w∣, it is then easy to see that

Td+1 = r∣w∣2Td.

Solving this recursion gives an algorithm in O(rd∣w∣2d). While this algorithm is

polynomial, its complexity is not uniform over the rank r free solvable groups, since

its degree depends on the degree of solvability. This is why one wants a more subtle

method to compute Fox derivatives efficiently. Miasnikov, Roman’kov, Ushakov and

Vershik use in [16] certain data structures which enables them to give an algorithm

with uniform complexity for computing Fox derivatives, and hence for computing

the Magnus embedding.

Definition 5.5.7. Let G = ⟨X⟩ be a group and let D ⊆ F (X) be finite. A G-partition

of D is a partition of non-empty subsets Di of D, such that u, v ∈Di whenever u = v.

This partition is unique up to reordering of the factors. Observe that if

H is a quotient of G, the G-partition of D is finer than the H-partition. If

D = {w1, . . . ,wn} is ordered, then the G-partition of D can be represented by the

function P ∶ {0, . . . , n} → {0, . . . , n}, where P (j) = i, where i is minimal such that

wi = wj in G.

Given a word w = xε1i1⋯x
εn
in

in F (X), let

Dw = {1, xε1i1 , x
ε1
i1
xε2i2 , . . . , x

ε1
i1
⋯xεnin}.

Order Dw as follows: let w0 = 1, wn = w and in general, wk = xε1i1⋯x
εk
ik

and set wi < wj if

i < j. The first goal is to give an efficient algorithm to compute the F /F (d)-partition

of Dw, or equivalently, to compute efficiently the corresponding function P .

73



Lemma 5.5.8. The F /F (d)-partition of Dw can be computed in time O(rd∣w∣3).

Proof. The proof is done by induction on the degree d. Compute first the F /F ′-

partition of Dw. This is easily done, since it is the Word Problem in a free abelian

group and hence can be done in O(∣w∣). Now, suppose that the F /F (d−1) partition of

Dw has been computed in the form of the function Pd−1. Since F /F (d−1) is a quotient

of F /F (d), in order to obtain a partition for F /F (d), it is enough to refine the one

for F /F (d−1). In other words, one only needs to compare in F /F (d) elements which

are equal in F /F (d−1).

Suppose that ws,wt ∈ Dw with s < t are such that ws = wt in F /F (d−1). By

Corollary 5.5.5, in order to check whether ws = wt in F /F (d), it is enough to check

that ∂ws
∂xk

= ∂wt
∂xk

for all xk ∈X. For each 1 ≤ k ≤ r, using the special case of the product

rule (equation (5.5)), we get the following:

∂ws
∂xk

− ∂wt
∂xk

=
⎛
⎜⎜
⎝
∑

1≤j≤s
ij=k,εj=1

xε1i1⋯x
εj−1
ij−1 − ∑

1≤j≤s
ij=k,εj=−1

xε1i1⋯x
εj
ij

⎞
⎟⎟
⎠
−

⎛
⎜⎜
⎝
∑

1≤j≤t
ij=k,εj=1

xε1i1⋯x
εj−1
ij−1 − ∑

1≤j≤t
ij=k,εj=−1

xε1i1⋯x
εj
ij

⎞
⎟⎟
⎠

= ∑
s+1≤j≤t
ij=k,εj=−1

xε1i1⋯x
εj
ij
− ∑

s+1≤j≤t
ij=k,εj=1

xε1i1⋯x
εj−1
ij−1

= ∑
s+1≤j≤t
ij=k,εj=−1

wj − ∑
s+1≤j≤t
ij=k,εj=1

wj−1. (5.7)

Computing this as a formal expression (i.e., writing it out) can be done in linear

time. In order to check that the expression in equation5.7 is equal to zero as an ele-

ment of Z (F /F (d−1)), we represent it in the standard group ring form ∑g∈F /F (d−1)mgg

74



with m ∈ Z and check that all coefficients mg are equal to zero. First one needs to

describe a procedure for converting equation (5.7) in this form. The only obstacle to

doing so efficiently is recognising and collecting similar terms. Note that from the

way the function Pd−1 was defined,

∑
s+1≤j≤t
ij=k,εj=−1

wj − ∑
s+1≤j≤t
ij=k,εj=1

wj−1 = ∑
s+1≤j≤t
ij=k,εj=−1

wP (j) − ∑
s+1≤j≤t
ij=k,εj=1

wP (j)−1. (5.8)

Computing the latter as a formal expression can also be done in linear time. Now,

wp = wq if and only if p = q and so like terms can be recognised easily. Hence the

standard group ring presentation of the expression in equation (5.8) can be computed

in time O(∣w∣). Thus checking that ∂ws
∂xk

= ∂wt
∂xk

in F /F (d−1) takes time O(∣w∣). In order

to check that ws = wt in F /F (d), one needs to check that ∂ws
∂xk

= ∂wt
∂xk

for all 1 ≤ k ≤ r.

Hence, checking that ws = wt in F /F (d) can be done in time O(r∣w∣).

Now, given an F /F (d−1)-partition for Dw, compute the F /F (d)-partition of Dw

as follows: for each 1 ≤ s < t ≤ ∣w∣, for which ws = wt in F /F (d−1) decide whether

ws = wt in F /F (d). There are at most (∣w∣
2
) ∈ O(∣w2∣) such pairs (s, t) and checking

equality for each is done in time O(r∣w∣). Thus, given the F /F (d−1)-partition of Dw,

one can compute its F /F (d)-partition in O(r∣w∣3).

As mentioned in the beginning, in order to compute the F /F (d)-partition of

Dw, one computes iteratively, the F /F ′-partition, then the F /F (2), etc. There are

d iterations to be made in total, and each takes time O(r∣w∣3), so computing the

F /F (d)-partition of Dw can be done in time O(rd∣w∣3).

75



Proposition 5.5.9. Given a word w ∈ F and some 1 ≤ k ≤ r, the standard group

ring form of the Fox derivative ∂w
∂xk

in Z (F /F (d)) can be computed in O(rd∣w∣3).

Proof. Let w = xε1i1⋯x
εn
in
∈ F . First, using the product rule, compute

∂w

∂xk
= ∑
xim=xk

εmx
ε1
i1
⋯x

1
2
(εm−1)

im
in ZF.

In order to convert this expression to the standard group ring form in Z (F /F (d)), one

needs to combine terms which are equal in F /F (d). Compute the F /F (d) partition

of Dw. By Lemma 5.5.8 this can be done in time O(rd∣w∣3). Now for any two

summands, check whether they are in the same subset of the partition. If so, add

their coefficients. As there are (∣w∣
2
) pairs of summands to be compared, this can be

done in time O(∣w∣2). This yields the standard group ring form of ∂w
∂xk

in F /F (d) with

all computations done in time O(rd∣w∣3).

This has two useful corollaries.

Corollary 5.5.10. Given a word w ∈ F , the Magnus embedding ϕ(w) can be com-

puted in time O(r2d∣w∣3).

Proof. Recall that for w ∈ F ,

ϕ(w) =
⎛
⎜⎜
⎝

µ(w) ∑
x∈X

∂w
∂x tx

0 1

⎞
⎟⎟
⎠
.

By Proposition 5.5.9, ∂w
∂x can be computed for each x ∈ X in time O(rd∣w∣3), hence

computing ∂w
∂x for all x ∈X can be done in time O(r2d∣w∣3).

76



Another corollary of Proposition 5.5.9 is a polynomial time algorithm to solve

the Word problem in free solvable groups.

Corollary 5.5.11. The Word Problem in the free solvable group of rank r and degree

d, F /F (d) is decidable in time O(rd∣w∣3), where w is the input word.

Proof. By Theorem 5.5.6, two words u and v are equal in F /F (d) if and only if

πu = πv in the Cayley graph of F /F (d−1). Thus, in order to check whether a given

word w is the identity in F /F (d+1), it is enough to check that the flow induced by

w in the Cayley graph of F /F (d) is the same as that induced by the identity. By

Corollary 5.5.5, this amounts to checking whether ∂w
∂x = 0 for all x ∈ X. This can be

done in time O(rd∣w∣3), as it is enough to compute their group ring representation

as in Lemma 5.5.9 and to check whether each of them is zero.

77



CHAPTER 6
Conjugacy in Wreath Products and Free Solvable Groups

This section comprises the main results involving original work on the part of

the author.

6.1 The Conjugacy Problem in Wreath Products

As mentioned before, the decidability of the Conjugacy Problem in wreath prod-

ucts was shown by Jane Matthews in [14]. The algorithm presented here is based

on the one she gave, but a crucial part has been modified, in order to make its

complexity polynomial. The general idea, however is the same.

6.1.1 A Conjugacy Criterion for Wreath Products

Here we present work which is entirely due to Matthews, namely the derivation

of a good conjugacy criterion for a wreath product AwrB.

Let x = bf, y = cg ∈ AwrB, where b, c ∈ B and f, g ∈ A. Denote supp(f) =

{b1, . . . , bn} and supp(g) = {β1, . . . , βm} using the order described in Section 3.4.

Recall that all elements are given as words in generators. Let b̄ and β̄ be the longest

elements in supp(f) and in supp(g), and ā and ᾱ be the longest element in the range

of f and of g, respectively.

For each left ⟨b⟩-coset in B that intersects supp(f) ∪ supp(g), choose one coset

representative ti and let Tb = {ti}i∈I . Since bi, bj ∈ supp(f) ∪ supp(g) are in the same

coset if and only if bib−1
j = bk for some k, this is an instance of the Power Problem

in B. To find Tb one needs to check the Power Problem (n+m
2

) times (for all pairs

78



(bi, bj)). Hence it takes time (n+m
2

)TPB(2∣̄b∣ + ∣b∣), where TPB is the time function for

the Power Problem in B. Denote by t̄ the longest element in Tb. For each γ ∈ B and

i ∈ I, associate with Tb the map π
(γ)
i ∶ A(B) → A defined by

π
(γ)
i (h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N−1

∏
j=0

h(tibjγ−1) if b is of finite order N

∞

∏
j=−∞

h(tibjγ−1) if b is of infinite order

Note that in the above all the products are finite, since h has finite support.

Denote π
(1)
i by πi. With this, we are ready to give a conjugacy criterion.

Theorem 6.1.1. Let A, B be finitely generated groups. Two elements x = bf, y = cg

in AwrB are conjugate if and only if there exists d ∈ B such that for all ti ∈ Tb the

following hold:

(1) db = cd,

(2) when the order of b is finite, π
(d)
i (g) is conjugate to πi(f) in A,

(3) when the order of b is infinite, π
(d)
i (g) = πi(f) in A.

Before proving this theorem we need a few technical lemmas.

Lemma 6.1.2. Two elements x = bf, y = cg ∈ AwrB are conjugate via z = dh if and

only if

1. db = cd

2. gd = hbfh−1.

79



Proof. Note that

zx = dhbf = dbhbf, and

yz = cgdh = cdgdh.

Hence, zx = yz if and only if dbhbf = cdgdh. This is equivalent to

db = cd and gd = hbfh−1.

Lemma 6.1.3. Let b, d ∈ B and f, g, h ∈ A(B) be such that gd = hbfh−1. Then for all

coset representatives ti ∈ Tband for all integers n ≥ 0 and m:

m+n

∏
j=m

g(tibjd−1) = h(tibm−1)(
m+n

∏
j=m

f(tibj))h−1(tibm+n).

Proof. Fix i. Since gd = hbfh−1, then for any integer j,

g(tibjd−1) = gd(tibj) = hbfh−1(tibj) = hb(tibj)f(tibj)h−1(tibj)

= h(tibj−1)f(tibj)h−1(tibj).

80



Now taking the product over m ≤ j ≤m + n gives,

m+n

∏
j=m

h(tibj−1)f(tibj)h−1(tibj)

= h(tibm−1)f(tibm)h−1(tibm)h(tibm)f(tibm+1)h−1(tibm+1)⋯h−1(tibm+n)

= h(tibm−1)f(tibm)f(tibm+1)h−1(tibm+1)⋯h(tibm+n−1)f(tibm+n)h−1(tibm+n)

= h(tibm−1)(
m+n

∏
j=m

f(tibj))h−1(tibm+n).

Finally, we are ready to prove Theorem 6.1.1.

Proof of Theorem 6.1.1. ⇒. Suppose that x = bf and y = cd are conjugate in AwrB,

i.e., suppose there exists a z = dh such that zx = yz. By Lemma 6.1.2 this is true if

and only if db = cd and gd = hbfh−1. Hence condition 1) is satisfied.

First, suppose that b is of finite order N . By setting m = 0 and n = N − 1 in

Lemma 6.1.3 one obtains:

N−1

∏
j=0

g(tibjd−1) = h(tib−1)(
N−1

∏
j=0

f(tibj))h−1(tibN−1).

Since the order of b is N , bN−1 = b−1. Then recalling the definition of the maps π
(d)
i

and πi, the above equation becomes

π
(d)
i (g) = h(tib−1)πi(f)h−1(tib−1).

Hence π
(d)
i (g) and πi(f) are conjugate in A.

81



Now, suppose that the order of b is infinite. Since g and f are of finite support,

there exist numbers M and N ≥ 0 such that

π
(d)
i (g) =

M+N

∏
j=M

g(tibjd−1) and πi(f) =
M+N

∏
j=M

f(tibj).

Setting m =M and n = N in the formula from Lemma 6.1.3, it follows that

π
(d)
i (g) = h(tibM−1)πi(f)h−1(tibM+N). (6.1)

Claim that h(tibM−1) and h−1(tibM+N) must be the identity in A. Indeed, setting,

for all integers k ≥ 0, m =M − k and n = N + k in Lemma 6.1.3 yields

M+N

∏
j=M−k

g(tibjd−1) = h(tibM−k−1)
⎛
⎝
M+N

∏
j=M−k

f(tibj)
⎞
⎠
h−1(tibM+N).

Notice that M and N were chosen large enough that π
(d)
i (g) =

M+N

∏
j=M

g(tibjd−1) and

πi(f) =
M+N

∏
j=M

f(tibj). Hence, for all integers k ≥ 0,

π
(d)
i (g) = h(tibM−k−1)πi(f)h−1(tibM+N). (6.2)

Since h has finite support, there must be a k1 ≥ 0 for which h(tibM−k1−1) = 1 in A.

Thus, setting k = k1 in equation (6.2) gives

π
(d)
i (g) = πi(f)h−1(tibM+N)

= h−1(tibM−1)h(tibM−1)πi(f)h−1(tibM+N)

= h−1(tibM−1)π(d)i (g).

82



Hence, h(tibM−1) = 1. Similarly, setting for all integers k ≥ 0, m =M and n = N + k

yields
M+N+k

∏
j=M

g(tibjd−1) = h(tibM−1)(
M+N+k

∏
j=M

f(tibj))h−1(tibM+N+k),

i.e.,

π
(d)
i (g) = h(tibM−1)πi(f)h−1(tibM+N+k).

But, again there must be an integer k2 ≥ 0 for which h−1(tibM+N+k2) = 1. Then the

above equation becomes

π
(d)
i (g) = h(tibM−1)πi(f)

= h(tibM−1)πi(f)h−1(tibM+N)h(tibM+N)

= π
(d)
i (g)h(tibM+N).

Hence h−1(tibM+N) = 1 which proves the claim. Finally, we have that h(tibM−1) = 1

and h−1(tibM+N) = 1 and hence equation (6.1) gives π
(d)
i (g) = πi(f).

⇐. Now suppose that there is some d ∈ B, for which db = cd.

Suppose further that b is of finite order N and that π
(d)
i (g) and πi(f) are con-

jugate in A for all i via αi ∈ A, i.e., π
(d)
i (g) = αiπi(f)α−1

i . Define h ∈ A(B) by setting,

for any ξ = tibk ∈ B

h(ξ) = h(tibk) = (
k

∏
j=0

g(tibjd−1))
−1

αi (
k

∏
j=0

f(tibj))

Lemma. The function h ∶ B → A is well-defined.

Proof. One needs to show that the definition of h does not depend on the choice of

coset representatives. Let Tb = {si} be another set of coset representatives for ⟨b⟩ in

83



B and let ξ = tibk1 = sibk2 . Note that si = tibl for some l ∈ Z. The maps πi are defined

in terms of the set of coset representatives Tb, so to define h in terms of the new set

of coset representatives, one needs to define the maps πi in terms of this new set as

well. Let

π
(d)
i (g) =

N−1

∏
j=0

g(sibjd−1) =
N−1

∏
j=0

g(tibj+ld−1) =
N+l−1

∏
j=l

g(tibjd−1), and

πi(f) =
N−1

∏
j=0

f(sibj) =
N−1

∏
j=0

f(tibj+l) =
N+l−1

∏
j=l

f(tibj).

Now,

π
(d)
i (g) =

N−1

∏
j=0

g(tibjd−1) = (
l−1

∏
j=0

g(tibjd−1))
⎛
⎝
N+l−1

∏
j=l−1

g(tibjd−1)
⎞
⎠
(
N+l−1

∏
j=N

g(tibjd−1))
−1

= (
l−1

∏
j=0

g(tibjd−1))π(d)i (g)(
l−1

∏
j=0

g(tibjd−1))
−1

.

Similarly,

πi(f) =
N−1

∏
j=0

f(tibj) = (
l−1

∏
j=0

f(tibj))
⎛
⎝
N+l−1

∏
j=l−1

f(tibj)
⎞
⎠
(
N+l−1

∏
j=N

f(tibj))
−1

= (
l−1

∏
j=0

f(tibj))πi(f)(
l−1

∏
j=0

f(tibj))
−1

.

Denote
l−1

∏
j=0
g(tibjd−1) by γ1 and

l−1

∏
j=0
f(tibj) by γ2. Then, it follows from the above and

from the fact that π
(d)
i (g) and πi(f) are conjugate via αi that

π
(d)
i (g) = γ−1

1 π
(d)
i (g)γ1 = γ−1

1 αiπi(f)α−1
i γ1 = γ−1

1 αiγ2πi(f)γ2α
−1
i γ1.

84



Thus π
(d)
i (g) = αiπi(f)α−1

i , with

αi = (
l−1

∏
j=0

g(tibjd−1))
−1

αi (
l−1

∏
j=0

f(tibj)) .

With this, h(sibk2) is given by

h(sibk2) = (
k2

∏
j=0

g(sibjd−1))
−1

αi (
k2

∏
j=0

f(sibj))
−1

.

Keeping in mind that si = tibl and hence that k2 = k1 − l, the above becomes

h(sibk2) = (
k1−l

∏
j=0

g(sibjd−1))
−1

αi (
k1−l

∏
j=0

f(sibj))
−1

= (
k1−l

∏
j=0

g(sibjd−1))
−1

(
l−1

∏
j=0

g(tibjd−1))
−1

αi (
l−1

∏
j=0

f(tibj))(
k1−l

∏
j=0

f(sibj))
−1

= (
k1

∏
j=0

g(tibjd−1))
−1

αi (
k1

∏
j=0

f(tibj))

= h(tibk1).

Hence, h is well-defined.

Now for any ξ = tibk ∈ B,

(hbfh−1)(ξ) = hb(ξ)f(ξ)h−1(ξ) = h(tibk−1)f(tibk)h−1(tibk)

= (
k−1

∏
j=0

g(tibjd−1))
−1

αi (
k−1

∏
j=0

f(tibj)) f(tibk)(
k

∏
j=0

f(tibj))
−1

α−1
i (

k

∏
j=0

g(tibjd−1))

= (
k−1

∏
j=0

g(tibjd−1))
−1

αi (
k

∏
j=0

f(tibj))(
k

∏
j=0

f(tibj))
−1

α−1
i (

k

∏
j=0

g(tibjd−1))

= (
k−1

∏
j=0

g(tibjd−1))
−1

(
k

∏
j=0

g(tibjd−1)) = g(tibkd−1) = gd(tibk)

= gd(ξ).

85



Hence, hbfh−1 = gd and since db = cd, by Lemma 6.1.2, zx = yz, for z = dh with h

constructed as above.

Now, suppose that the order of b is infinite and that π
(d)
i (g) = πi(f). Define

h ∈ A(B) by setting

h(tibk) =
⎛
⎝∏j≤k

g(tibjd−1)
⎞
⎠

−1
⎛
⎝∏j≤k

f(tibj)
⎞
⎠
,

for all ti ∈ T and for all integers k. Showing that h is well defined is similar to the

case where b is of finite order. With this, for any ξ = tibk ∈ B,

(hbfh−1)(ξ) = hb(ξ)f(ξ)h−1(ξ) = h(tibk−1)f(tibk)h−1(tibk)

=
⎛
⎝ ∏j≤k−1

g(tibjd−1)
⎞
⎠

−1
⎛
⎝ ∏j≤k−1

f(tibj)
⎞
⎠
f(tibk)

⎛
⎝∏j≤k

f(tibj)
⎞
⎠

−1
⎛
⎝∏j≤k

g(tibjd−1)
⎞
⎠

=
⎛
⎝ ∏j≤k−1

g(tibjd−1)
⎞
⎠

−1
⎛
⎝∏j≤k

f(tibj)
⎞
⎠
⎛
⎝∏j≤k

f(tibj)
⎞
⎠

−1
⎛
⎝∏j≤k

g(tibjd−1)
⎞
⎠

=
⎛
⎝ ∏j≤k−1

g(tibjd−1)
⎞
⎠

−1
⎛
⎝∏j≤k

g(tibjd−1)
⎞
⎠
= g(tibkd−1) = gd(tibk)

= gd(ξ).

Hence, hbfh−1 = gd and by Lemma 6.1.2 x and y are conjugate with zx = yz, where

z = dh.

6.1.2 A polynomial Time Algorithm for Deciding the Conjugacy Prob-
lem in Wreath Products

In this section we present an algorithm to solve the Conjugacy Problem in wreath

products in polynomial time. It is largely based on the one given by Matthews in

86



[14]. In [14], the running time of the algorithm was not analysed. We analyse it and

show that by changing a main case, the original version of which ran in unbounded

time, we obtain a polynomial time algorithm.

Theorem 6.1.4. Let A and B be finitely generated groups such that the following

hold:

1) there are decision algorithms for the Conjugacy Problem in A and in B with

polynomial time functions, TCA, TCB, respectively;

2) there is a decision algorithm for the Power Problem in B with polynomial time

function TPB.

Then the Conjugacy Problem in AwrB is decidable with complexity

O(NTCA(N2) +NTCB(N) +N2TPB(N)),

where N = ∣x∣ + ∣y∣ is the length of the input pair x, y ∈ AwrB.

Since the conjugacy criterion discussed in Section 6.1.1 involves the maps πi, an

important subroutine is one for computing them effectively.

Lemma 6.1.5. There is a polynomial time algorithm which computes π
(γ)
i (f).

Proof. The algorithm is as follows:

Step 1: For each bk ∈ supp(f) check whether there is some j such that tibjγ−1 = bk, i.e.,

t−1
i bkγ = bj. This is an instance of the Power Problem in B and so can be done

in time TPB(∣̄b∣ + ∣t̄∣ + ∣b∣ + ∣γ∣). If such j exists, look up the corresponding value

ak = f(bk). Otherwise, ak does not occur in the product.

Step 2: There are n elements in supp(f) to perform computations on, so computing

π
(γ)
i (f) takes time nTPB(∣̄b∣ + ∣t̄∣ + ∣b∣ + ∣γ∣).

87



Note that ∣π(γ)i (f)∣ ≤ n∣ā∣, since each factor in the product π
(γ)
i (f) is in the

image of f . Thus, computing π
(γ)
i (f) can be done in time O(NTPB(N)) and the

output is of length N2. Observe that he same bounds hold for computing π
(d)
i (g),

since N = ∣x∣ + ∣y∣.

In particular, the above gives the complexity of the algorithm, which will be used

in the sequel. Finally, we present an algorithm to decide the Conjugacy Problem in

wreath products.

Proof of Theorem 6.1.4. The algorithm is as follows.

Step 1. Determine whether b and c are conjugate in B. This takes time TCB(∣b∣ + ∣c∣) ∈

O(TCB(N)). If not, x and y are not conjugate. If b and c are conjugate in B,

let d ∈ B be such that db = cd (it is not required to find this d).

Step 2. Recall that when B was partitioned in ⟨b⟩ left cosets, we only partition supp(f),

so that ti ∈ supp(f) and so in our estimations, ∣t̄∣ ≤ ∣x∣.

Case 1: g = 1. Then π
(d)
i (g) = 1, so x and y are conjugate if and only if πi(f) = 1. To

check this compute πi(f) as in Lemma 6.1.5 and solve the Word Problem in

A. This takes time

O(∣x∣(TPB(∣x∣) + ∣x∣) + TCA(∣x∣∣x∣ + 1)) ∈ O(NTPB(N) + TCA(N2)). (6.3)

Case 2: g ≠ 1, and πi(f) = 1 for all i. In order to check the latter, simply compute

πi(f) for all i. This will take time ∣x∣TPB(∣x∣). Then x is conjugate to y if and

only if π
(d)
i (g) = 1 for all i. We proceed to show that we need not know what

d actually is – its existence is enough. Since db = cd, g(tibjd−1) = g(tid−1cj).

Consider the maps π̄i(g) = ∏j g(sicj) where si is a set of coset representatives

88



of ⟨c⟩ in B. Clearly, if π̄i = 1 for some set of coset representatives it will be 1

for any set, since changing the set of coset representatives will only produce

a cyclic permutation of the factors in the product. The induced set of coset

representatives is {tid−1}, but in order to eliminate d, we choose another, say

Tc = {si}, the same way Tb was chosen. Then x and y are conjugate if and only

if π̄i(g) = 1 for all i. Finding Tc takes time (m
2
)TPB(∣c∣), as discussed before.

Thus checking that π̄i(g) = 1 takes time

O(∣y∣2TPB(∣y∣) + TCA(∣y∣2)) ∈ O(N2TPB(N) + TCA(N2)). (6.4)

Case 3: g ≠ 1 and some πi(f) ≠ 1. There are two subcases:

1) The order of b is finite. Let π̄i be as in Case 2 with coset representatives in {si}.

Observe that changing coset representatives amounts to a cyclic permutation

of the factors in the product, so π̄
(d)
i (g) is conjugate to π

(d)
i (g). Thus πi(f) is

conjugate to π
(d)
i (g) if and only if πi(f) is conjugate to π̄

(d)
i (g). Checking this

involves computing π̄i(g) and πi(f) and solving the corresponding Conjugacy

Problem in A. This takes time O(∣y∣2TPB(3∣y∣) + ∣y∣TPB(3∣y∣) + ∣x∣TPB(3∣x∣) +

TCA(∣y∣2 + ∣x∣2)). Simplifying this, we get a complexity of

O(∣y∣2TPB(∣y∣)+∣x∣TPB(∣x∣)+TCA(∣x∣2+∣y∣2)) ∈ O(N2TPB(N)+TCA(N2)). (6.5)

2) The order of b is infinite. Let k be a fixed integer such that πk(f) ≠ 1 (such

a k must be found already in the beginning of Case 3). We proceed to check

that πk(f) = π(d)k (g) without finding d. Claim that it suffices to check whether

π
(d)
i (g) = πi(f) for certain d to be described in detail later. If for some d,

89



π
(d)
k (g) = 1, then it will certainly not be equal to πi(f). Hence we only consider

d for which π
(d)
k (g) = ∏j g(tkbjd−1) ≠ 1. In this case, there is some integer l for

which g(tkbld−1) ≠ 1. Then tkbld−1 = βp for some βp ∈ supp(g) and so d = β−1
p tkb

l.

It would suffice to check, for all d of the form d = β−1
p tkb

l satisfying db = cd,

whether πi(f) = π(d)i (g).

In order to check the former, we need to check for all βp ∈ supp(g) whether

β−1
p tkb

lb = cβ−1
p tkb

l, i.e., it is enough to check whether β−1
p tkb = cβ−1

p tk, where l

no longer appears. This is a Word Problem in B, so it can be solved in time

TWB(2∣βp∣ + 2∣tk∣ + ∣b∣ + ∣c∣), where TWB is the time function for a solution to

the Word Problem in B (which is polynomial since TCB is polynomial). Thus

checking whether d satisfies db = cd can be done in time O(TWB(3(∣x∣ + ∣y∣))).

It remains to check whether πi(f) = π(d)i (g). Notice that

π
(d)
i (g) =

∞

∏
j=−∞

g(tibjd−1) =
∞

∏
j=−∞

g(tibjb−lt−1
k βp)

=
∞

∏
j=−∞

g(tibj−lt−1
k βp) =

∞

∏
j=−∞

g(tibjt−1
k βp) = π

(β−1p tk)

i (g).

So we need to check whether π
(β−1p tk)

i (g) = πi(f) for all βp ∈ supp(g) and for all

tk ∈ Tb. Using 6.1.5 this can be done in time O(∣y∣∣x∣(∣x∣TPB(∣x∣)+∣y∣TPB(∣y∣))) ∈

O(N3TPB(N)). Thus, the overall complexity is

O(∣y∣TWB(∣y∣ + ∣x∣) + ∣y∣∣x∣(∣x∣TPB(∣x∣) + ∣y∣TPB(∣y∣)) + TCA(∣y∣2 + ∣x∣2)), (6.6)

which after simplifying can be seen to be in

O(NTWB(N) +N3TPB(N) + TCA(N2)).

90



The complexity of the Conjugacy Problem in AwrB is

O(TCA(N2) + TCB(N) +NTWB(N) +N3TPB(N)),

which is clearly polynomial since TCA, TCB and TPB are polynomial.

6.2 The Conjugacy Problem in Free Solvable Groups

The decidability of the Conjugacy Problem in free solvable groups (with no

mention of complexity) was proved by Remeslennikov and Sokolov in [17]. The

main idea is to embed a free solvable group in a wreath product, and then by de-

cidability of the Conjugacy Problem there, deduce its decidability in free solvable

groups. In order to execute this idea, one needs to show that the Magnus embed-

ding is ‘conjugacy-preserving’, that it is computable in polynomial time and that the

Conjugacy Problem in the particular wreath product induced by the embedding is

decidable in polynomial time. In order to do the latter, one needs to show that a

certain Power Problem is decidable in polynomial time.

Theorem 6.2.1. The Power Problem in F /F (d+1) is decidable in time O(dr∣w∣3),

where r is the rank of F .

Proof. We will prove a slightly stronger version: given two elements x, y ∈ F /F (d)

one can, in time O(dr(∣x∣ + ∣y∣)), solve the Power Problem for x and y, and if x ∈ ⟨y⟩

find an n ∈ Z such that x = yn.

The proof is by induction on d. For d = 1, F /F ′ is a free abelian group, so the

elements x and y can be uniquely presented in the form x = xa1
1 ⋯xarr and y = xb11 ⋯xbrr ,

where X = {x1,⋯, xr} is the basis for F . Obviously, this decomposition can be found

in linear time. Then for each 1 ≤ i ≤ r set ni = ai/bi. If all ni are equal and integer,

91



then x = yn1 , as required. Otherwise, x /∈ ⟨y⟩ and we are done. Clearly, this can be

done in time O(r(∣x∣ + ∣y∣)).

By Theorem 5.5.11 there exists an algorithm A that solves the Word Problem

in F /F (d) in time O(dr∣w∣3), where w is the input word. For given x, y ∈ F /F (d+1)

do the following:

1) If one of x or y is equal to 1, checking whether x = yn reduces to a Word

Problem, since F /F (d+1) is torsion free.

2) Otherwise, since ϕ is an embedding, x = yn in F /F (d+1) if and only if ϕ(x) =

ϕ(y)n. Let

x↦
⎛
⎜⎜
⎝

µ(x) tx

0 1

⎞
⎟⎟
⎠

and y ↦
⎛
⎜⎜
⎝

µ(y) ty

0 1

⎞
⎟⎟
⎠
.

Notice that

ϕ(y)n =
⎛
⎜⎜
⎝

µ(y)n (µ(y)n−1 +⋯ + 1)ty

0 1

⎞
⎟⎟
⎠
.

Hence x = yn if and only if

⎛
⎜⎜
⎝

µ(x) tx

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

µ(y)n (µ(y)n−1 +⋯ + 1)ty

0 1

⎞
⎟⎟
⎠
,

which is equivalent to

µ(x) = µ(y)n and tx = (µ(y)n−1 +⋯ + 1)ty.

Since µ(x), µ(y) ∈ F /F (d), one can verify by induction in time O((d− 1)r(∣x∣ +

∣y∣)3) whether there exists n such that µ(x) = µ(y)n and, if so, find it. If no such

92



n exists then x /∈ ⟨y⟩ and we are done. Note that since F /F (d) is torsion-free,

such an n, if it exists, is unique. Indeed, if µ(x) = µ(y)n and µ(x) = µ(y)m,

then µ(y)n = µ(y)m and hence µ(y)n−m = 1, which is only possible if n =m.

Now, one has to check whether the equation tx = (µ(y)n−1+⋯+1)ty holds in T .

Since T is a free module, the latter holds if and only if it holds componentwise,

which can be verified in time O(dr∣w∣3) by the algorithm A. This solves the

Power Problem in F /F (d+1).

Note that all steps take time at most O(dr∣w∣3), as required.

Finally, one needs to make sure that the Magnus embedding is conjugacy pre-

serving. We give here the proof of the more general version as presented by Remeslen-

nikov and Sokolov in [17].

Proposition 6.2.2. Let N be a normal subgroup of the free group F and suppose

that F /N is torsion free. Two elements v,w ∈ F /N ′ are conjugate in F /N ′ if and

only if their images ϕ(v), ϕ(w) are conjugate in M(F /N).

Proof. ⇒. This is obvious. If there is some u ∈ F /N ′ such that u−1vu = w, then

certainly ϕ(u)−1ϕ(v)ϕ(u) = ϕ(w).

⇐. Now suppose that ϕ(v) and ϕ(w) are conjugate in M(F /N). There are two

cases to be considered.

93



Case 1: µ(v) = µ(w) = 1. Suppose that ϕ(v) and ϕ(w) are conjugate via the matrix

⎛
⎜⎜
⎝

u a

0 1

⎞
⎟⎟
⎠

. Let u ∈ F /N ′ be such that µ(u) = u. Then compute

ϕ(u)−1ϕ(v)ϕ(u) =
⎛
⎜⎜
⎝

µ(u)−1 −µ(u)−1tu

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 tv

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

µ(u) tu

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

µ(u)−1 −µ(u)−1tu

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

µ(u) tu + tv

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

1 µ(u)−1tu + µ(u)−1tv − µ(u)−1tu

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 µ(u)−1tv

0 1

⎞
⎟⎟
⎠
.

On the other hand, since ϕ(v) and ϕ(w) are conjugate,

ϕ(w) =
⎛
⎜⎜
⎝

u−1 −u−1au

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 tv

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

u au

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

u−1 −u−1au

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

u au + tv

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

1 u−1au + u−1tv − u−1au

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 u−1tv

0 1

⎞
⎟⎟
⎠
.

Thus, since u = µ(u), ϕ(w) = ϕ(u)−1ϕ(v)ϕ(u). It follows, since ϕ is injective

that w = u−1vu in F /N ′.

Case 2: µ(v) ≠ 1, µ(w) ≠ 1.

Lemma. Without loss of generality, ϕ(v) and ϕ(w) are conjugate via an idem-

potent matrix.

94



Proof. Let ϕ(v) and ϕ(w) be conjugate with the aid of the matrix

⎛
⎜⎜
⎝

u a

0 1

⎞
⎟⎟
⎠

.

Let u ∈ F /N ′ be such that µ(u) = u. Observe that the elements ϕ(v)ϕ(u) and

ϕ(w) are conjugate with the aid of an idempotent matrix. Indeed, suppose

that b−1ϕ(v)ϕ(u)b = ϕ(w). Then,

b−1(ϕ(u)−1ϕ(v)ϕ(u))b = ϕ(w)

⇔ (ϕ(u)b)−1
ϕ(v)(ϕ(u)b) = ϕ(w)

Now set

b = ϕ(u)−1

⎛
⎜⎜
⎝

u a

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

u−1 −u−1tu

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

u a

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 a − tu

0 1

⎞
⎟⎟
⎠
.

Note that ϕ(v) and ϕ(w) are conjugate if and only if ϕ(v)ϕ(u) and ϕ(w) are

conjugate. Thus one can assume, without loss of generality, that ϕ(v) and

ϕ(w) are conjugate with the aid of an idempotent matrix.

The idea is to show that the idempotent matrix b =
⎛
⎜⎜
⎝

1 tb

0 1

⎞
⎟⎟
⎠

, where tb =

∑ri=1 biti, with the aid of which ϕ(v) and ϕ(w) are conjugate, is in the image

of ϕ. By Theorem 5.4.7 this is the case if and only if
r

∑
i=1
bi(µ(xi) − 1) = 0 in

Z (F /N).

95



Now, since b−1ϕ(v)b = ϕ(w),

⎛
⎜⎜
⎝

µ(w) tw

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

1 tb

0 1

⎞
⎟⎟
⎠

−1
⎛
⎜⎜
⎝

µ(v) tv

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 tb

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

1 −tb

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

µ(v) tv

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 tb

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

µ(v) tv − tb

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 tb

0 1

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

µ(v) tv + (µ(v) − 1)tb

0 1

⎞
⎟⎟
⎠
.

It follows that µ(v) = µ(w) and that tv + (µ(v) − 1)tb = tw. Since µ(v) = µ(w),

then wv−1 ∈ N , so there exists z ∈ N such that wv−1 = z. Differentiating both

sides of this equation with respect to any generator x ∈X gives

∂z

∂x
=
∂(wv−1)
∂x

= ∂w
∂x

+w∂v
−1

∂x
= ∂w
∂x

−wv−1 ∂v

∂x
.

But µ(wv−1) = 1, so in Z (F /N), the above yields

µ(∂z
∂x

) = µ(∂w
∂x

) − µ(∂v
∂x

) .

96



Now, turning our attention back to the equation tv + (µ(v) − 1)tb = tw, we get

r

∑
i=1

µ( ∂v
∂xi

) ti + (µ(v) − 1)
r

∑
i=1

biti =
r

∑
i=1

µ( ∂w
∂xi

) ti

⇔ (µ(v) − 1)
r

∑
i=1

biti =
r

∑
i=1

[µ( ∂w
∂xi

) − µ( ∂v
∂xi

)] ti

⇔ (µ(v) − 1)
r

∑
i=1

bi(µ(xi) − 1) =
r

∑
i=1

∂z

∂xi
(µ(xi) − 1).

By the Fundamental Theorem of Calculus (Theorem 5.3.4),
r

∑
i=1

∂z
∂xi

(µ(xi)−1) =

µ(z) − 1. But z ∈ N , so µ(z) − 1 = 0 in Z (F /N). Thus,

(µ(v) − 1)
r

∑
i=1

bi(µ(xi) − 1) = 0 in Z (F /N) .

Since µ(v) ≠ 1 and Z (F /N) has no zero divisors (since F /N is torsion free), it

must be the case that

r

∑
i=1

bi(µ(xi) − 1) = 0 in Z (F /N) .

Thus, b ∈ Im(ϕ). Finally, this means that there exists s ∈ F /N ′ such that

ϕ(s) = b and we get ϕ(s)−1ϕ(v)ϕ(s) = ϕ(w). Since ϕ is an embedding, s−1vs =

w in F /N ′, so v and w are conjugate in F /N ′.

With this in mind, we are ready to apply the result from Section 6.1 to a wreath

product of free solvable groups.

Theorem 6.2.3. The Conjugacy Problem in the free solvable group F /F (d) is in

O(rd∣w∣6).

97



Proof. The proof is by induction on the degree of solvability, d. The base case is the

abelian group F /F ′, where the Conjugacy Problem is linear. Now suppose there is an

algorithm, which solves the Conjugacy Problem in F /F (d−1) in O(r(d − 1)∣w∣6). By

Proposition 6.2.2, one can reduce the Conjugacy Problem in F /F (d) to the Conjugacy

Problem in M(F /F (d−1)). Since M(F /F (d)) ≅ F /F ′wrF /F (d) and F /F ′ is abelian,

apply Theorem 6.1.4. In order to do this we need to compute the images of the

input elements under the Magnus embedding and then find polynomial bounds for

the Conjugacy Problems of F /F ′, the Word Problem in F /F (d−1) and the Power

Problem in F /F (d−1).

The Conjugacy Problem in F /F ′ is the same as the Word Problem and so

it is in O(∣w∣). By the induction hypothesis, there is an algorithm, which solves

the Conjugacy Problem in F /F (d−1) in O(r(d − 1)∣w∣6). By Theorem 6.2.1 there

is an algorithm which solves the Power Problem in F /F (d) in O(dr∣w∣3) and by

Corollary 5.5.11 there is an algorithm to decide the Word Problem in F /F (d−1) in

time O(r(d − 1)∣w∣3). Then from Theorem 6.1.4, the complexity of the Conjugacy

Problem in F /F (d) = F /F ′wrF /F (d−1) is

O(∣w∣2r(d − 1)∣w∣6 + ∣w∣r(d − 1)∣w∣3 + ∣w∣3r(d − 1)∣w∣3).

It is easily seen now that the complexity of the Conjugacy Problem in free

solvable groups is

O(rd∣w∣6).

98



CHAPTER 7
Conclusion

This thesis consisted of a survey of the decidability and computability of the

Word and Conjugacy Problems in various classes of groups, and more specifically in

solvable groups. It focused on the innovative approach of Myasnikov, Roman’kov,

Ushakov and Vershik for computing Fox derivatives efficiently. Their methods proved

very useful in constructing a polynomial time algorithm to solve the Conjugacy Prob-

lem in free solvable groups. An important property of this algorithm is that its com-

plexity is a polynomial whose degree does not depend on the degree of solvability

d. More precisely, one may consider the free solvable group itself, with rank r and

degree d, as part of the input along with the word w and the algorithm runs in time

O(rd∣w∣6). Here the complexity is computed with respect to the RAM model of com-

putation. If we consider the same algorithm within the Turing machine framework,

the complexity will be O(rd∣w∣6 log ∣w∣). The extra logarithmic factor appears due

to the fact that in a Turing model of computation, adding two integers requires time

O(logn), where n is the length of the integers encoded in binary. In RAM, addi-

tion takes constant time. Similarly, other results have slightly different complexities

when considered from the Turing point of view. Thus, the Conjugacy Problem in

free groups and in word-hyperbolic groups is decidable in time O(n logn), where n

is the length of the two input words (and is linear in the RAM model). The algo-

rithm presented for deciding the Word Problem in free solvable groups, as well as

99



the one for computing Fox derivatives and the Magnus embedding, has complexity

O(rdn3 logn), where n is the length of the input. In all of these cases, there is a

minor change in the exact complexity, but the algorithms still run in polynomial

time.

It is worth noting that the algorithm to decide the Conjugacy Problem in free

solvable groups is almost constructive. This suggests that an efficient solution to the

Conjugacy Search Problem, which asks to provide a conjugator for the two input

words, is at hand. Indeed, given two words x, y ∈ F /F d the computation of the

Magnus embedding ϕ(x) and ϕ(y) using Fox derivatives is constructive, the solution

to the Power Problem as described in this thesis produces a power n such that xn = y

and the conjugacy criterion for wreath products given by Matthews exhibits specific

functions as conjugators.

The result on wreath products is much more general and can potentially be

applied to deduce the polynomial-time decidability of the Conjugacy Problem in

many classes of groups. Indeed, for a group G, suppose one has an embedding

ψ ∶ G ↪ AwrB for some wreath product AwrB. If x and y are two words in G, the

fact that ψ(x) and ψ(y) are conjugate in AwrB is not enough to deduce that x and

y are conjugate in G, since the conjugator we find in AwrB might not have a pre-

image in G. There are two approaches to deal with this problem. The first consists

of finding other conjugators until one of them is in G. More precisely, if x and y are

conjugated in G, there is a conjugator d ∈ AwrB, such that dCG(x) ∩G ≠ ∅. This

suggests that being able to find centralisers and deciding the subgroup intersection

100



problem in polynomial time for a given group enables us to decide the Conjugacy

Problem there in polynomial time.

Another approach consists of finding a ‘good’ embedding. If the embedding ψ is

conjugacy-preserving, i.e., if any two words are conjugate in ψ(G) if and only if they

are conjugate in AwrB, then the decidability of the Conjugacy Problem in G will

follow directly from the decidability of the Conjugacy Problem inAwrB. The Magnus

embedding has this property, which enables us to decide the Conjugacy Problem

in free solvable groups. Unfortunately, of the groups which are known to embed

in wreath products, very few have embeddings which are known to be conjugacy-

preserving. Hence a possible goal, emerging from this new result, is to look for

groups with appropriate embeddings and deduce new results from the polynomial-

time decidability of the Conjugacy Problem in wreath products.

We hope that this thesis will serve as basis for many more interesting results in

this direction.

101



References

[1] E. Artin. Theorie der zopfe. Abh. Mth. Sem. Hamburg, 4:47–72, 1925.

[2] M. R. Bridson and A. Haefliger. Metric spaces of non-positive curnature.
Springer-Verlag, 1999.

[3] I. Bumagin. The conjugacy problem for relatively hyperbolic groups. Algebraic
and Geometric Topology, 4:1013 – 1040, 2004.

[4] D. Epstein and D. Holt. The linearity of the conjugacy problem in word-
hyperbolic groups. Internat. J. Algebra Comput., 16:287–305, 2006.

[5] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson,
and W. P. Thurston. Word processing in groups. Jones and Bartlett Publishers,
1992.

[6] S. Gersten and H. Short. Small cancellation theory and automatic groups II.
Invent. Math., 105:641–662, 1991.

[7] R. I. Grigorchuk. An example of a finitely presented amenable group not be-
longing to the class EG. Sbornik Math, 189:75–95, 1998.

[8] M. Gromov. Hyperbolic groups. Math. Sci. Res. Inst. Publ., 8:75–263, 1987.

[9] J. E. Hopcroft and J. D. Ulman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

[10] O. Kharlampovich. A finitely presented solvable group with unsolvable word
problem. Izvest. Ak. Nauk, Ser. Mat., 45(4):852–873, 1981.

[11] J. C. Lennox and D. J. S. Robinson. The Theory of Infinite Soluble Groups.
Oxford Science Publications, 2004.

[12] Yu. G. Leonov. The conjugacy problem in a class of 2-groups. Mat. Zametki,
64:573–583, 1998.

102



103

[13] J. Marshall. Computation problems in hyperbolic groups. Internat. J. Algebra.
Comput., 15(1):1 – 13, 2005.

[14] J. Matthews. The conjugacy problem in wreath products and free metabelian
groups. T. Am. Math. Soc., 121:329–339, 1966. English transl., Soviet Math.
Dokl. 8 (1967), 555–557.

[15] C. F. Miller III. On group-theoretic decision problems and their classification,
volume 68 of Annals of Mathematics Studies. Princeton University Press, 1971.

[16] A. Myasnikov, V. Roman’kov, A. Ushakov, and A. Vershik. The word and
geodesic problems in free solvable groups, 2008.

[17] V. N. Remeslennikov and V. G. Sokolov. Certain properties of Magnus embed-
ding. Algebra i Logika, 9(5):566–578, 1970.

[18] N. N. Repin. Equations with one unknown in nilpotent groups. (English trans-
lation) Math Notes, 34(1–2):582–585, 1983.

[19] N. N. Repin. Solvability of equations with one indeterminate in nilpotent groups.
(Russian) Izv. Akad. Nauk SSSR Ser. Mat., 48(6):1295–1313, 1984.

[20] V. A. Roman’kov. On equations in free metabelian groups. Siberian Math. J,
20(3):671–673, 1979.

[21] V. A. Roman’kov. Universal theory of nilpotent groups. (Russian) Mat. Zametki,
25(4):487–495, 1979.


