
Floorplanning Optimization for

Three-Dimensional Integrated Circuits

Dima Al Saleh

Department of Electrical & Computer Engineering

McGill University

Montréal, Québec, Canada

September, 2024

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of

Master of Sciences in Electrical Engineering

©2024 Dima Al Saleh

i

Abstract

Three-dimensional integrated circuits represent a transformative approach to address the

challenges of interconnects in modern electronics. By stacking multiple heterogeneous dies

and utilizing through-silicon vias, 3D ICs enable efficient vertical connections, reducing the

need for long two-dimensional interconnects. Reducing the length of interconnects also

reduces the power consumed during communication. This innovative structure not only

improves performance but also facilitates the integration of diverse functions on different

layers, offering more heterogeneity in the system and becoming a promising avenue for

advanced electronic systems.

However, the unique design challenges of 3D ICs have hindered their widespread

adoption. Current electronic design automation tools, initially developed for 2D ICs,

struggle to address the intricacies of 3D ICs. One critical challenge is floorplanning.

Floorplanning is a crucial step in the design process of an IC affecting the area, wirelength,

power, delay, and temperature of the chip. During this step, the location and coordinates

of each macro to be included in the circuit are determined. Floorplanning becomes even

Abstract ii

more crucial for 3D ICs due to the exacerbated thermal problem. The poor thermal

conductivity of silicon dioxide in 3D ICs leads to heat buildup and a significant increase in

temperature. The power density within the 3D structure is beyond the cooling capacity of

conventional air-cooled heat sinks. This has negative consequences for performance and

may lead to technical failure.

Moreover, floorplanning in 3D considerably increases the solution space, and the

introduction of new optimization criteria, such as the number of through-substrate vias,

creates conflicting design objectives.

In this work, a novel P* admissible thermally aware floorplanning algorithm for 3D ICs

is presented. The data structures used to represent the floorplans during all stages of the

optimization process are matrices. The Matrix Floorplanner is based on manipulations

within matrices which support a polynomial optimization and packing time. The algorithm

is based on the relative horizontal and vertical relations among the blocks of each layer within

the 3D structure. Moreover, the algorithm employs a novel thermal-grid-based thermal cost

computation approach. This methodology for temperature computation enables polynomial

computation, evaluation, and optimization of solutions. The proposed algorithm meets all

criteria to satisfy the P* admissibility. In addition, this work distinguished itself from other

P* admissible floorplanners by allowing more types of perturbations, which promotes better

diversification during the simulated annealing process. It also simultaneously optimizes area,

wirelength, temperature, and the number of TSVs.

Abstract iii

The Matrix Floorplanner has been realized in C++ and evaluated on standard

floorplanning benchmarks (MCNC and GSRC). Results are compared to previous work and

exhibit a significant improvement across performance metrics with respect to similar

objective algorithms. For example, for the n100 benchmark, a reduction in area,

temperature, and runtime of, respectively, 10.1%, 17.7%, and 89.6% is observed, as

compared to previous work.

Furthermore, several netlists from industrial partners were evaluated and exhibited

excellent physical and runtime results. With respect to the smallest possible area (no white

spaces at all), the matrix floorplanner produces high-quality results with as low as 3.8%

white spaces.

The Matrix Floorplanner also outperforms other algorithms, that do not target thermal

and TSV optimization, in performance metrics for large floorplans.

iv

Abrégé

Les circuits intégrés (CI) tridimensionnels (3D) représentent une approche transformatrice

pour relever les défis des interconnexions dans l’électronique moderne. En empilant

plusieurs matrices hétérogènes et en utilisant des vias traversant le substrat (VTS), les CI

3D permettent des connexions verticales efficaces, réduisant ainsi la consommation

d’énergie et améliorant les performances. Cette structure innovante facilite également

l’intégration de diverses fonctions sur différentes couches, offrant plus d’hétérogénéité dans

le système. Cependant, les défis de conception des CI 3D ont entravé leur adoption

généralisée. Les outils d’automatisation actuels, initialement développés pour les CI 2D,

ont du mal à gérer la planification des étages, une étape cruciale qui affecte la surface, la

longueur du fil, la puissance et la température de la puce. Au cours de cette étape, les

coordonnées de chaque macro à inclure dans le circuit sont déterminés. La planification des

étages devient encore plus cruciale dans les CI 3D en raison du problème thermique

exacerbé. La faible conductivité thermique dans les CI 3D entrâıne une accumulation de

chaleur, ce qui peut affecter les performances et conduire à des défaillances. De plus, la

Abrégé v

planification des étages en 3D augmente considérablement l’espace de solution, et

l’introduction de nouveaux critères d’optimisation, tels que le nombre de VTS, crée des

objectifs de conception contradictoires.

Dans ce travail, un nouvel algorithme de planification des étages, P* sensible à la

température pour les CI 3D est présenté. Les structures de données utilisées pour

représenter les plans d’étage pendant toutes les étapes du processus d’optimisation sont des

matrices. Le Matrix Floorplanner est basé sur des manipulations au sein de matrices qui

prennent en charge une optimisation polynomiale et un temps de conditionnement.

L’algorithme est basé sur les relations horizontales et verticales relatives entre les blocs de

chaque couche au sein de la structure 3D. De plus, l’algorithme utilise une nouvelle

approche de calcul des coûts thermiques basée sur une grille thermique. Cette

méthodologie de calcul de la température permet le calcul polynomial, l’évaluation et

l’optimisation des solutions. L’algorithme proposé répond à tous les critères pour satisfaire

à l’admissibilité P*. De plus, ce travail s’est distingué des autres planificateurs d’étages

admissibles P* en autorisant davantage de types de perturbations, ce qui favorise une

meilleure diversification lors du processus de recuit simulé. Il optimise également

simultanément la surface, la longueur des fils, la température et le nombre de VTS.

Le Matrix Floorplanner a été réalisé en C++ et évalué sur des tests de performance de

planification d’étage standard (MCNC et GSRC). Les résultats sont comparés aux travaux

précédents et montrent une amélioration des mesures de performance par rapport à des

Abrégé vi

algorithmes objectifs similaires. Les résultats montrent une amélioration significative des

mesures de performance clés. Par exemple, pour le test n100, une réduction de la surface,

de la température et du temps d’exécution de respectivement 10,1%, 17,7% et 89,6% est

observée par rapport aux travaux précédents. De plus, plusieurs listes de connexions de

partenaires industriels ont été évaluées et ont montré d’excellents résultats physiques et de

temps d’exécution. En ce qui concerne la plus petite surface possible (aucun espace blanc

du tout), le Matrix Floorplanner produit des résultats de haute qualité avec seulement 3,8 %

d’espaces blancs. Le Matrix Floorplanner surpasse également d’autres algorithmes, qui ne

ciblent pas l’optimisation thermique et VTS, dans les mesures de performance pour les grands

plans d’étage.

vii

Acknowledgements

Studying at McGill University has been an incredible journey, for which I am deeply grateful.

None of this would have been possible without the unwavering support I received.

I may never find the words to fully express my sincere and profound gratitude to Professor

Boris Vaisband. He has been a beacon of hope and reassurance whenever I doubted myself or

my abilities. Always available to guide me through this tumultuous journey, his knowledge

is inspirational and empowering. He diligently and patiently guided the way of my research.

Working with him has been an honor that I will carry with me throughout my career.

I feel an enormous amount of gratitude for all the connections and bonds I have formed

with my lab friends. Going into this program, I expected to gain much, but I certainly did not

anticipate finding a home away from home. Meeting and getting to work with Yousef Safri,

Rezvan Mohammad Rezaee, Ataollah Saeed Monir, Scott Fulton, Fahad Rahman Amik,

Vincent Zhang, and Okyanus Gumus has been a privilege.

I am deeply grateful to my friends Miriam Boutros, Omar Itani, Nour Soudki, and Tamara

Rahmoun, whose inspiring and unique journeys have enriched my own. Though our lives

Acknowledgements viii

have taken different directions, their unwavering support and friendship have been a constant

source of strength throughout this experience.

I also would like to take this opportunity to thank my parents Rola Doueik and Bassam

Al Saleh. Even oceans away, their belief in me, encouragement, and love would resonate

with me making any challenge seem trivial and any mountain a mere hill. I also owe to them

my love for academia and research as they have always instilled the importance of curiosity

and asking questions. I would like to thank my sister, Tala Al Saleh, who somehow always

had the right words during the lows and the best cheers during the highs.

ix

Author Contribution

The research presented in this thesis is based on a previously published manuscript [1],

in which I was the first author and was solely responsible for the majority of the work.

Specifically, I conceptualized the data structure and designed the methodology, including the

initialization, P* admissibility, perturbations, and packing. I also designed the evaluation

of all metrics during the simulated annealing stage, in particular the fast thermal estimator.

Moreover, I implemented the entirety of the floorplanning algorithm in C++, analyzed the

data, and wrote the manuscript

The contributions from co-authors included integrating a thermal visualizer ARTSim [2]

into the floorplanner to illustrate the obtained solutions, as well as running simulations to

expedite the collection of results.

I confirm that the other co-authors have granted me permission to include this work in

my thesis and will not use this same manuscript in their respective thesis.

x

Contents

1 Introduction 1

1.1 Benefits of Three Dimensional Circuits . 2

1.2 Floorplanning Challenge of Three Dimensional Circuits 4

2 Background and Related Work 7

2.1 Metaheuristic Techniques in 3D IC Floorplanning 7

2.1.1 Core Concepts and Methods of Metaheuristics 7

2.1.2 Applications of Metaheuristics in IC Floorplanning 9

2.2 Machine Learning Techniques in 3D IC Floorplanning 10

2.2.1 Core Concepts and Methods of Machine Learning 11

2.2.2 Applications of Machine Learning in IC Floorplanning 11

3 Problem Statement 14

4 Proposed Matrix Floorplanner 16

xi

4.1 Matrix Data Structure . 16

4.2 Matrices Initialization . 18

4.3 P* Admissibility . 20

4.4 Perturbations . 22

4.5 Packing . 26

5 Computation of Performance Metrics 28

5.1 Computation of the Area . 29

5.2 Computation of the Wirelength . 29

5.3 Computation of the Number of TSVs . 30

5.4 Computation of the Temperature . 31

6 A Comparative Analysis and Performance Evaluation 35

6.1 Comparative Analysis . 36

6.2 Simulation Results . 38

7 Future work 44

8 Conclusion 48

A Equations 60

B Tables 62

xii

List of Figures

1.1 A comparative view of a 2D IC and a 3D IC in terms of area and wirelength. 3

1.2 A comparative view of a 2D IC and a 3D IC in terms of on-circuit temperature. 5

4.1 An eight-block example floorplan of layer k. (a) Relation matrix Mk, and (b)

corresponding layout. 18

4.2 An eight-block example of a row-initialized floorplan of layer k. (a) Relation

matrix Mk, and (b) corresponding layout. 19

xiii

4.3 Perturbations of the Matrix Floorplanner. Affected blocks and respective

changes in the relation matrix are grey-shaded. (a) Rotation of d. (b) Change

in the AR of c. (c) Swap between d and f. (d) Geometric relation flip

between a and d. (e) Geometric relation flip followed by swap between a

and g. (f) 3D (interlayer) swap between e (moved from shown layer to a

different, not shown, layer) and i (moved from different, not shown layer, to

shown layer). (g) 3D (interlayer) move of h (from different, not shown layer,

to shown layer). 25

4.4 An example of a packing procedure of the solution obtained in Figure 4.3.(g).

The same matrix is provided for convenience. An example of placement of

block a (step 7) is highlighted in the matrix. 27

5.1 A layer of the 3D stack divided into thermal cells 32

6.1 Thermal map visualization for the optimized layout of ami33 on a four-layer

3D IC; (a) layer 1 and (b) layer 4. 41

6.2 Thermal map visualization of a two-layer 30 blocks netlist obtained from an

industrial partner. Numbers on the map represent block names. 43

7.1 Proposed training of the SA hyperparameter optimization model. 45

xiv

List of Tables

6.1 Various state-of-art floorplanners, their cost functions, features, and drawbacks. 38

6.2 Results of the evaluation of area (m2) of the Matrix Floorplanner and

comparison to previous work, for a 4-layer 3D IC. 39

6.3 Results of the evaluation of wirelength (m) of the Matrix Floorplanner and

comparison to previous work, for a 4-layer 3D IC. 39

6.4 Results of the evaluation of the number of TSVs of the Matrix Floorplanner

and comparison to previous work, for a 4-layer 3D IC. 39

6.5 Results of the evaluation of peak temperature (°C) of the Matrix Floorplanner

and comparison to previous work, for a 4-layer 3D IC. 40

6.6 Results of the evaluation of runtime (s) of the Matrix Floorplanner and

comparison to previous work, for a 4-layer 3D IC. 40

6.7 Results of the evaluation of the proposed Matrix Floorplanner on netlists

obtained from industrial partners. 43

xvi

List of Acronyms

3D three-dimensional.

AC ant colony.

AI artificial intelligence.

AR aspect ratio.

BTBT band-to-band tunneling.

CBA combined bucket and 2D array.

CBA-T combined bucket and 2D array thermal.

CTE coefficient of thermal expansion.

GA genetic algorithms.

GAN generative adversarial network.

GIDL gate-included drain leakage.

GNN graph neural network.

HPWL half-perimeter wirelength.

IC integrated circuit.

List of Acronyms xvii

KOZ keep-out zone.

ML machine learning.

NN neural network.

NP nondeterministic polynomial.

PSO particle swarm optimization.

RL reinforcement learning.

SA simulated annealing.

SiO2 silicon dioxide.

SL supervised learning.

TCG transitive-closure-graph.

TSV through-substrate via.

TTSV thermal through-substrate via.

UL unsupervised learning.

1

Chapter 1

Introduction

Further down-scaling devices, to meet the ever-growing computing requirements, presents

several electrical and physical challenges that have become increasingly difficult to

overcome. Improvements in fabrication processes and the use of different materials, such as

high-K dielectric for better channel control, have reached their practical limit. Scaling

devices beyond a few tens of nanometers increases significantly parasitic gate currents,

gate-induced drain leakage (GIDL), band-to-band tunneling (BTBT), and drain current

degradation. Additionally, as devices are scaled down, carrier mobility is diminished,

threshold voltage shifts, and trans-conductance decreases [3], [4].

In particular, the increase in leakage current impedes Dennard scaling [5]. The reduction

of power density can no longer be achieved, effectively hitting the power wall, thereby causing

a plethora of reliability concerns for circuit devices [6]. The conventional practices of voltage

1. Introduction 2

scaling to increase transistor density are, therefore, no longer sufficient.

Amidst these challenges, a paradigm shift is evident, redirecting focus from device

scaling towards interconnect scaling. Packaging features have experienced only a 4x

scale-down since 1970, in stark contrast to silicon features, which have achieved a 1000x

scale reduction (from 10 um to 10 nm since 1970) [7]. This underscores the significant,

relatively untapped, potential for enhancements in package scaling. Three-dimensional

(3D) integrated circuits (IC) have become a solution with promising potential for this

bottleneck. Leveraging advancements in fabrication processes, 3D ICs are more feasible;

several companies have already begun commercializing them [8]. However, designing 3D

ICs remains a challenging task.

1.1 Benefits of Three Dimensional Circuits

3D ICs are formed by integrating heterogeneous die or wafers on top of one another, creating

multiple layers of active devices. These layers are generally connected using through-silicon

vias (TSVs) [9]. While monolithic 3D ICs and contactless 3D ICs do not use TSV-based

connections, this work will specifically center on TSV-based 3D ICs, as they remain the

most popular, feasible, and heterogeneous type of 3D ICs [10]. As depicted in Figure 1.1,

integrating blocks vertically increases the density of modules and reduces the need for lengthy

interconnects used in conventional two-dimensional platforms.

Decreasing the wirelength of circuit connections has a direct impact on power

1. Introduction 3

(a) (b)

Figure 1.1: A comparative view of a 2D IC and a 3D IC in terms of area and wirelength.

consumption and various other performance metrics of the 3D IC. Shorter interconnects

require less energy for signal propagation, resulting in a reduction in interconnect power

dissipation [11]. Key performance parameters, such as delay, power, and noise, are

predominantly dominated by interconnects rather than device technology [12], [13]. 3D ICs

effectively mitigate the interconnect challenge and alleviate interconnect-related

performance degradation. Likewise, TSV-based 3D ICs improve the heterogeneity of

systems by facilitating the integration of diverse functions, materials, technologies, and

processes across layers [14].

1. Introduction 4

1.2 Floorplanning Challenge of Three Dimensional

Circuits

A key challenge in 3D ICs is thermal management. Since silicon dioxide (SiO2) is a poor

thermal conductor, heat is trapped within the layers of the 3D IC, causing a significant

increase in temperature [15], [16]. As can be seen in Figure 1.2, the peak temperature

on the circuit increased by 53 K, when the ami33 circuit was modeled on a 3D IC rather

than a 2D IC. The power density within the 3D structure is beyond the cooling capacity of

conventional air-cooled heat sinks [17], [18], and [19]. At high temperatures, the mobility

of carriers, such as electrons or holes, decreases [20], thus reducing the current and the

frequency of operation. The threshold voltage is also affected by increased temperature,

leading to smaller noise margins and reliability concerns. These deleterious effects may lead

to performance degradation, technical failure, and increased power dissipation within the

IC [21].

Thermal TSVs (TTSVs) can be used to alleviate the thermal issue by acting as heat

conduits. However, adding TTSVs to the system limits the available area for devices. The

effective area that a TSV would take on a circuit including the TSV keep-out zone (KOZ) is

around 35µm [22]. Moreover, adding TTSVs that exceed 2% of the effective area can cause

chip deformation due to a mismatch between the coefficient of thermal expansion (CTE) of

the substrate and that of the TTSV. As demonstrated in [23], thermal-aware floorplanning

1. Introduction 5

(a) (b)

Figure 1.2: A comparative view of a 2D IC and a 3D IC in terms of on-circuit temperature.

and having a holistic approach to thermal optimization during the design of 3D ICs alleviate

the thermal issue. Floorplanning is an early step in the design optimization flow. It is the

process of finding coordinates for each block (macro or subchip) included in the IC.

Nonetheless, thermal-aware floorplanning of 3D ICs remains difficult since a thermal term

is added to the evaluation of the design. Multi-objective optimization is very challenging

given that different metrics are being targeted simultaneously such as area, number of TSVs,

and temperature. These objectives often create conflicting optimization goals, leading to

trade-offs that are hard to navigate in the solution space. Often, only a subset of these

metrics is optimized [24], [25], and [26], ignoring other objectives. Additionally, the solution

space of a floorplanning task increases exponentially with each added layer; exploring that

space is very time-consuming.

Moreover, dedicated power TSVs are needed to supply and meet the power needs of

1. Introduction 6

devices on upper layers in the 3D stack from power and ground nodes, placed at the bottom

layer (layer closest to the package or interposer). During floorplanning, power-dense blocks

are generally placed near the heat sink to minimize the thermal impact of the floorplan [23].

However, placing power-dense blocks near the heat sink, far from the package, requires more

dedicated power TSVs to supply the power needs of the blocks. While limiting the number

of TSVs required in the system, by placing power-hungry devices on lower layers, close to the

package and far from the heat sink exacerbates the thermal issue further. Therefore, careful

consideration should be given to the co-optimization of the number of TSVs and the junction

temperature during the floorplanning process. This issue does not exist in 2D floorplanning

since TSVs are not used. Therefore, a 2D floorplanner extended to floorplan in 3D would

ignore these key trade-offs and the thermal interactions in the system.

7

Chapter 2

Background and Related Work

2.1 Metaheuristic Techniques in 3D IC Floorplanning

Most optimization problems are considered nondeterministic polynomial (NP) hard

problems [27]. For this reason, several sophisticated optimization algorithms that enable an

efficient exploration of the solution space have been developed. These optimization engines

are referred to as metaheuristics. Metaheuristics have been developed to find an

“optimized” solution rather than an “optimal” one.

2.1.1 Core Concepts and Methods of Metaheuristics

Metaheuristics are approximation methods that can be used for different optimization

problems [28]. The two main principles behind any metaheuristic are diversification and

2. Background and Related Work 8

intensification. Examining the behavior and performance of a metaheuristic involves

analyzing the strategies employed to ensure a balance between these two concepts.

Diversification entails an expansive exploration of the design space, favoring breadth over

depth. Rather than thoroughly exploring a region in the solution space, the goal in the

diversification stage is to survey many regions. The entropy and randomness in the set of

obtained solutions are typically high. Diversification permits localizing good or promising

regions. On the other hand, intensification is the process that harvests the knowledge

obtained in the diversification stage to exploit the regions selected and investigate them

thoroughly. The randomness in the solutions decreases. A balance between these two

principles ensures a good solution is obtained in a relatively short time.

There are two major types of metaheuristics: trajectory-based and population-based

metaheuristics. Both approaches are iterative. With trajectory-based methods, after each

iteration, only one new solution is obtained; however, in population-based methods, several

new solutions are obtained at an iteration. In trajectory-based approaches, the starting point,

or current solution, is referred to as the transient state. The next state is obtained after a

perturbation (or perturbations) and is referred to as the neighbor solution [29]. However, in

population-based approaches, the current solutions are referred to as the population.

Parameters set before the optimization process begins are referred to as

hyperparameters. They control various aspects of the algorithm’s behavior, such as the

intensity of diversification and intensification, the rate of convergence, and the selection

2. Background and Related Work 9

criteria for solutions. Choosing suitable hyperparameters is crucial for achieving effective

optimization, as they influence the balance between searching broadly across the solution

space and refining promising areas in more depth [28].

2.1.2 Applications of Metaheuristics in IC Floorplanning

Several metaheuristics, such as simulated annealing (SA) [30], genetic algorithms (GA) [31],

ant colony (AC) [32], and particle swarm optimization (PSO) [33], have been used to

floorplan 3D ICs. These approaches use different cost functions, data structures, and

models. Moreover, they exhibit a wide range of runtime complexity. The data structure

used impacts the quality of the solutions generated and the runtime since the data

structure determines which solutions can theoretically be explored. The most popularly

used data structures are transitive graphs and sequence pairs [34], [35], and [36]. In [23], a

combined bucket and 2D array (CBA) floorplan representation is proposed. The 2D array

is composed of transitive closure graphs that store the 2D layouts. The bucket structure

stores the 3D relations between blocks. While intralayer perturbations are not constrained,

interlayer perturbations are only allowed between two neighboring blocks. This limits the

search engine, SA, during the floorplanning process. In this work, area, half-perimeter

wirelength (HPWL), TSVs, and peak temperature are optimized. The thermal

optimization in [23] is performed by evaluating the temperature within the layer that is

farthest from the heat sink. The horizontal and vertical heat paths are disintegrated, and

2. Background and Related Work 10

their impact on temperature is minimized separately. Several optimization procedures were

presented in [23] offering trade-offs between runtime and thermal optimization.

In other work, only a subset of performance metrics is typically optimized using various

techniques. This usually means that some of the parameters (e.g., temperature) will be

significantly worse as compared to a multi-objective optimization. For example, in [26], the

footprint of a 3D circuit, the total area of all layers, and HPWL are optimized. Although,

temperature gradients and peak temperature are targeted at a later stage, resulting

temperatures are significantly higher as compared to [23]. Another example is [25] where

area and HPWL are optimized, while the total number of TSVs and peak temperature are

only set as constraints.

2.2 Machine Learning Techniques in 3D IC

Floorplanning

Learning-based optimization is a rapidly evolving field that combines machine learning and

optimization techniques to tackle complex design problems efficiently. In recent

developments, artificial intelligence (AI), and more specifically, machine learning (ML),

have found application in the design process of 3D ICs.

2. Background and Related Work 11

2.2.1 Core Concepts and Methods of Machine Learning

ML models can be broadly categorized into three main types: supervised learning (SL),

unsupervised learning (UL), and reinforcement learning (RL). In SL, the algorithm is trained

on a labeled dataset, where input data consists of a set of pairs [37]. In traditional ML,

the model is only learning to imitate an expert, and consequently, the machine will never

be able to surpass the human. Alternatively, RL shatters this paradigm such that results

obtained by the machine can be better than those based on the human expert [38]. It is

used in scenarios where there is a need for decision-making over time. Unsupervised learning

does not use labeled data for training. Instead, it focuses on finding patterns, clusters,

or structures within the data. A special type of unsupervised learning algorithm is the

generative adversarial network (GAN). A GAN consists of two neural networks (NN), a

generator and a discriminator, which are trained adversarially. The generator attempts to

generate data (such as images, text, or other types of content) emulating the real input data,

while the discriminator tries to distinguish between the real data and the data generated by

the generator. Thus, GAN models are a set of back-to-back ML models where the goal of

one model is the opposite goal of the other [39].

2.2.2 Applications of Machine Learning in IC Floorplanning

More recently, an effort to replace non-learning-based metaheuristics in 3D IC design with

ML models has been observed. In [40], the use of RL for floorplanning is proposed. The

2. Background and Related Work 12

learning agent learns from previous trials about placements that were beneficial and also

about placements to avoid. To assist the agent, feed-forward neural network embedding

layers and graph convolutional layers are used to extract features. These features are then

passed to the policy network of the RL model. With many runs, the agent learns what

strategies and actions should be performed during state S to maximize the reward R. Training

the RL model is a lengthy process and does not generalize well. The placement policies

learned are only applicable to the specific dimensions of that chip and to the specified set

of blocks to place. Moreover, these policies depend on the cost function desired during

training. The learning process must restart from scratch if the user adds new parameters to

optimize. [40] proposes adding edge-based graph neural network (GNN) layers to facilitate

the generalization of the policies learned to other circuits. However, the same cost function

and chip dimensions must be maintained. Moreover, it is not possible to optimize area

with [40] since the RL agent must place the modules within a predefined space.

As pointed out in [40], floorplanning differs from typical ML problems since learning

to floorplan is similar to learning to play “a game with varying pieces, boards, and win

conditions” [40]. In this analogy, the pieces are the blocks to place on the circuit, the board

is the circuit, and the win conditions are the different cost functions that can be used. This

analogy highlights the generalization difficulty encountered by ML models in floorplanning.

Moreover, a clear disadvantage of NNs is the necessity to have a large learning training

dataset. In addition, a validation and testing dataset must also be available. Finally,

2. Background and Related Work 13

hyperparameters and the number of training iterations must be carefully chosen. The risk

of over-fitting or under-fitting are both relevant in NNs.

14

Chapter 3

Problem Statement

Although 3D ICs promise to deliver higher performance, reduced power consumption, greater

heterogeneity, and a smaller form factor, designing 3D ICs remains extremely challenging.

The early stages of 3D IC design, which include thermal optimization and floorplanning,

are complex tasks that require careful consideration. Floorplanning 3D ICs becomes more

complex with each added layer in the stack, due to the exponential increase in the design

space. Moreover, the thermal properties of the circuit and the number of TSVs must be

considered during the floorplanning stage to prevent degradation of the IC. The addition of

these terms creates many trade-offs in the cost function that are difficult to navigate.

Learning-based methods, in particular ML algorithms, are not often used in optimization

problems and suffer from a lack of datasets, vanishing gradients, and poor generalization.

Additionally, non-learning-based algorithms for 3D IC floorplanning often are not time-

3. Problem Statement 15

efficient, as each new solution needs to be evaluated using a complex thermal modeling

tool [41].

These challenges for 3D IC design need to be addressed to fully realize the potential of

this cutting-edge technology. A thermal modeling, a data structure for floorplanning, and

a floorplanning algorithm are presented in this work to address the challenges of the early

design of 3D ICs. Our work will be referred to as Matrix Floorplanner [1]. Given a list of

blocks with their dimensions, power requirements, and connectivity, this work provides the

coordinates of the blocks by simultaneously minimizing area, wirelength, temperature, and

number of TSVs in the 3D stack.

16

Chapter 4

Proposed Matrix Floorplanner

The proposed matrix-based thermal-aware floorplanning algorithm for 3D ICs is described

in this section. The matrix-based data structure is P* admissible, as discussed

in Section 4.3, and thus supports fast perturbations of the floorplan resulting in a valid

floorplan after each change. The data structure, perturbations, and packing are discussed

in detail in Sections 4.1 – 4.5. A novel methodology for thermal evaluation during every

iteration is described in Section 5.4. The algorithm utilizes the iterative SA engine in

which the hyperparameters (such as the cooling schedule), can be tuned by the user.

4.1 Matrix Data Structure

We developed the algorithm named Matrix Floorplanner which exploits matrices to represent

valid floorplans. An upper triangular matrix is used to represent the floorplan of each layer

4. Proposed Matrix Floorplanner 17

within the 3D structure. The matrix is symmetric of size mk × mk, where mk is the number

of blocks on layer k. A floorplan with n layers is represented by using n matrices of variable

size (determined by the number of blocks on each layer). The matrix that is used to represent

the layer k describes the horizontal and vertical relations among the blocks on the layer, and

is denoted Mk. Any two blocks on the same layer are horizontally or vertically related, and

have exactly one type of relation. Since blocks cannot be related to themselves, the diagonal

of the matrix is also populated with zeros. Blocks i and j are considered horizontally related,

if the right coordinate of i (or j) denoted xr
i (or xr

j) is smaller or equal to the left coordinate

of j (or i) denoted xl
j (or xl

i), and they are on the same layer k. The horizontal relation is

represented by the value ‘1’ in Mk[i][j] (or Mk[j][i]). Similarly, blocks i and j are considered

vertically related, if the yt
i (or yt

j), the top coordinate of i (or j) is smaller or equal to the yb
j

(or yb
i), the bottom coordinate of j (or i), and they are on the same layer k. The vertical

relation is represented by the value ‘0’ in Mk[i][j] (or Mk[j][i]). All blocks that meet the

coordinate conditions for both horizontal and vertical relations. i.e., diagonally related, are

considered only vertically related. This simplification does not limit the representation of

floorplans, but rather it supports greater compaction during the packing stage (if applicable).

Furthermore, similar to [34] and [35] in 2D, a single type of relation (horizontal or

vertical) between any two blocks is sufficient to maintain P* admissibility, as explained

in Section 4.3. A random eight blocks floorplan is depicted in Figure 4.1, note that the

asterisks are only shown in the figure for clarity, in the implementation, these cells are

4. Proposed Matrix Floorplanner 18

A

B
C

D

E

G H
F

Random layout – Fig. 1

a b c d e f g h
a ⁕ 0 1 0 1 1 1 1
b ⁕ ⁕ 1 0 1 1 1 1
c ⁕ ⁕ ⁕ 0 1 1 1 1
d ⁕ ⁕ ⁕ ⁕ 1 1 1 1
e ⁕ ⁕ ⁕ ⁕ ⁕ 0 0 0
f ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 0 0
g ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1
h ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕

(a)

a

b
c

d

e

g h
f

Random layout – Fig. 1

a b c d e f g h
a ⁕ 0 1 0 1 1 1 1
b ⁕ ⁕ 1 0 1 1 1 1
c ⁕ ⁕ ⁕ 0 1 1 1 1
d ⁕ ⁕ ⁕ ⁕ 1 1 1 1
e ⁕ ⁕ ⁕ ⁕ ⁕ 0 0 0
f ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 0 0
g ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1
h ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕

a b c d e f g h
a ⁕ 1 0 1 0 0 0 0
b ⁕ ⁕ 0 1 0 0 0 0
c ⁕ ⁕ ⁕ 1 0 0 0 0
d ⁕ ⁕ ⁕ ⁕ 0 0 0 0
e ⁕ ⁕ ⁕ ⁕ ⁕ 1 1 1
f ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1 1
g ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 0
h ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕

(b)

Figure 4.1: An eight-block example floorplan of layer k. (a) Relation matrix Mk, and (b)

corresponding layout.

never addressed (contain ‘-1’s). The ‘1’s (‘0’s) in each row in the matrix in Figure 4.1(a),

represent the horizontal (vertical) fan-out of the block listed on the left of that row (points

to the properties of each block). For example, in row b of the matrix Mk in Figure 4.1(a),

‘1’s appear for blocks (columns) c, e, f, g, and h, denoting that these blocks are

horizontally related to block b, i.e., located to the right of block b. Similarly, in row e of

Mk, ‘0’s appear for blocks (columns) f, g, and h, denoting that these blocks are vertically

related to block e, i.e., located above block e.

4.2 Matrices Initialization

The initial floorplan, prior to the start of the optimization process, can significantly affect

the performance of the algorithm. Initialization of the matrices is, therefore, a crucial step in

the algorithm. If the matrices are randomly initialized, the floorplanner may never converge

to a good result. Alternatively, a complex matrix initialization technique impedes runtime

4. Proposed Matrix Floorplanner 19

a
b

c
d

e gf

Layout in rows – Fig. 2

h

a b c d e f g h
a ⁕ 1 1 1 0 0 0 0
b ⁕ ⁕ 1 1 0 0 0 0
c ⁕ ⁕ ⁕ 1 0 0 0 0
d ⁕ ⁕ ⁕ ⁕ 0 0 0 0
e ⁕ ⁕ ⁕ ⁕ ⁕ 1 1 1
f ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1 1
g ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1
h ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕

(a)

a
b
c

d

e gf

Layout in rows – Fig. 2

h

(b)

Figure 4.2: An eight-block example of a row-initialized floorplan of layer k. (a) Relation

matrix Mk, and (b) corresponding layout.

and may lead to a local minimum.

The first step in the initialization process of the Matrix Floorplanner is to assign blocks to

a certain layer. The number of layers in the design is defined by the user and will not change

during optimization. The allocation of blocks to each layer is performed randomly and

during the optimization process, blocks may move across layers. Once blocks are allocated

to a certain layer, the corresponding matrix is created.

The matrix of each layer is populated in a directed manner to form rows of blocks.

The row-based initialization is depicted in Figure 4.2. Any block within the same row is

horizontally related to all other blocks in the same row, denoted with ‘1’s in the corresponding

cells of Mk. Any two blocks in different rows are considered vertically related and denoted

by ‘0’s in the corresponding cells of Mk. To keep the aspect ratio (AR) of the width over

the height of the initial floorplan close to 1, the number of blocks in each row is limited.

This matrix initialization has a runtime complexity of O(m2), where m = max{mk} for

4. Proposed Matrix Floorplanner 20

k = 0, ..., n − 1 (n is the total number of layers), i.e., m is the number of blocks in the most

populous layer.

4.3 P* Admissibility

P* admissibility is a metric to compare non-slicing floorplanning algorithms [35]. This metric

guarantees the fast generation of valid floorplans and is a desired property for floorplanning

algorithms. P* admissibility includes the following five conditions [35].

• The design space of the floorplanner must be finite. This condition is intrinsically

satisfied for every floorplanner, and also for the proposed matrix algorithm, as there

is a finite, albeit large, number of ways to place blocks within a practically limited

outline.

• The produced solution should be feasible. The Matrix Floorplanner satisfies this

condition since the packing step (described in Section 4.5) ensures that no overlap

among blocks is permitted.

• The runtime complexity of the packing and cost computation functions, must be at

most polynomial. This condition is also met by the Matrix Floorplanner, since both

the packing and cost computation functions exhibit a runtime complexity of O(m2),

as described in, respectively, Section 4.5 and Chapter 5.

4. Proposed Matrix Floorplanner 21

• The lowest cost solution that is generated by the algorithm, must represent an optimal

physical placement of the blocks, i.e., all possible placement solutions (including non-

slicing placements) must be accessible to the algorithm and could be theoretically

explored. This condition is also met by the Matrix Floorplanner since no feasible

solution is excluded from the solution space, in other words, the matrix algorithm is

non-slicing and allows for any valid placement of blocks [35]. The perturbations utilized

in the Matrix Floorplanner support the exploration of the entire design space as blocks

can not only move within a layer but also among layers.

• The geometric relation between any two blocks must be defined in the representation.

The Matrix Floorplanner is designed to accommodate this condition, as the relative

position of any two blocks within the netlist, is stored in the relation matrix Mk.

Similar to TCG [34], SP [36], and TCG-S [35], only one type of relation between a

pair of blocks is sufficient to fulfill this criterion. For example, in TCG-S, two blocks

cannot be related in both the horizontal and vertical transitive closure graphs.

The proposed Matrix Floorplanner is P* admissible as it satisfies all of the conditions for

P* admissibility. Proof that the runtime complexity of the perturbations, packing, and cost

computation functions, is polynomial, is provided in the following sections.

4. Proposed Matrix Floorplanner 22

4.4 Perturbations

As part of the iterative optimization process, the floorplan of the 3D ICs is perturbed to

generate a new floorplan with a new cost, enabling exploration of the solution space. To

maintain P* admissibility (as explained in Section 4.3), all perturbations must be of

polynomial runtime complexity, and all floorplans produced after perturbations must be

valid (no overlapping blocks).

Seven different perturbations are performed as part of the Matrix Floorplanner. These

perturbations either affect one layer (intralayer perturbations) or two layers (interlayer

perturbations) within the 3D IC. For all perturbations, the layer(s) are chosen randomly.

All perturbations are explained on the small eight-block netlist that was initialized as in

Figure 4.2. The resulting floorplan (after packing) for each perturbation, is shown in

Figure 4.3.

• Rotation (intralayer). Block d is randomly selected and rotated. The height and the

width of the block are switched. This perturbation does not change the relation matrix,

since the geometric relations between d and the rest of the blocks on the layer are not

impacted by the change in dimensions of d. The packing function will make sure that

blocks move to accommodate the new dimensions of d and ensure a valid floorplan.

This perturbation, therefore, is performed at a constant runtime complexity O(1).

• Aspect ratio (intralayer). This perturbation is only applicable to soft blocks, i.e.,

4. Proposed Matrix Floorplanner 23

blocks for which only the area is provided (not fixed width and height). During this

perturbation, a random soft block c is selected. The AR of c will be randomly chosen

from a range that is specified by the user, and the new width and height of block c

are calculated according to cheight =
√

carea · AR−1 and cwidth = carea · c−1
height. This

perturbation has a runtime complexity of O(1) since the only required change is in the

properties of the block.

• Swap (intralayer). Blocks d and f (from the same layer k) are randomly selected

and the coordinates are swapped. Block d inherits all geometric relations of f and

vice versa. The relation matrix Mk is updated by switching the order of the pointers

to the properties of the blocks (name, dimensions, connectivity, power, etc) in the

rows and columns. This operation maintains the validity of Mk, while only changing

the properties of the blocks. The runtime complexity of the swap perturbation is,

therefore, O(1).

• Geometric relation flip (intralayer). Two blocks a and d (from a same layer k)

are randomly selected and their relative geometric relation with respect to one another

is flipped. Previously, d was vertically related to a and after the geometric relation

flip perturbation, d is horizontally related to a. Since only one value in Mk has to be

changed (from ‘0’ to ‘1’), the runtime complexity of this operation is O(1).

• Geometric relation flip and swap (intralayer). This perturbation effectively

4. Proposed Matrix Floorplanner 24

consists of a geometric relation flip perturbation followed by a swap perturbation

(performed on the same pair of blocks). In Figure 4.3(e), blocks g and a are

perturbed. The runtime complexity of this operation is O(1) since the largest

runtime complexity of its constituents is O(1).

• 3D swap (interlayer). Unlike in intralayer swap, two blocks, e and i, are randomly

selected from different layers (k and l). Note that only layer k is shown in Figure 4.3(f).

These blocks will switch layers and inherit the relative geometric relations from each

other. This perturbation maintains the validity of Mk and Ml, while only changing

the properties of the blocks. This operation is performed with a runtime complexity

of O(1).

• 3D move (interlayer). Block j is randomly selected from source layer l (not shown in

Figure 4.3(g)) and moved to destination layer k. Unlike other perturbations, 3D move

changes the number of blocks that was allocated to each layer during the initialization

phase. If a layer contains only one block, it will never be selected as a source layer

for the 3D move perturbation. This operation is performed with a runtime complexity

of O(m), since removing a block from layer l entails adding and filling a column in Mk

(the relation matrix of the destination layer). Block j is always placed to the right

(i.e., in a horizontal relation) of all other blocks on layer k.

4. Proposed Matrix Floorplanner 25

a
b
c d

e gf

Rotation D

h

(a)

a
b c d

e gf

Change of aspect ratio of C

h

(b)

Swap d
and f

a
b c

de g

f

h

a b c f e d g h
a ⁕ 1 1 1 0 0 0 0
b ⁕ ⁕ 1 1 0 0 0 0
c ⁕ ⁕ ⁕ 1 0 0 0 0
f ⁕ ⁕ ⁕ ⁕ 0 0 0 0
e ⁕ ⁕ ⁕ ⁕ ⁕ 1 1 1
d ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1 1
g ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1
h ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕

(c) A
B C

DE G H

F

Flip a
and d

a
b c

de g

f

h

a b c f e d g h
a ⁕ 1 1 1 0 1 0 0
b ⁕ ⁕ 1 1 0 0 0 0
c ⁕ ⁕ ⁕ 1 0 0 0 0
f ⁕ ⁕ ⁕ ⁕ 0 0 0 0
e ⁕ ⁕ ⁕ ⁕ ⁕ 1 1 1
d ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1 1
g ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1
h ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕

(d)

A

B C

DE
G

H

F

Flip swap a and g

a

b c

de
g f

h

g b c f e d a h
g ⁕ 1 1 1 0 1 1 0
b ⁕ ⁕ 1 1 0 0 0 0
c ⁕ ⁕ ⁕ 1 0 0 0 0
f ⁕ ⁕ ⁕ ⁕ 0 0 0 0
e ⁕ ⁕ ⁕ ⁕ ⁕ 1 1 1
d ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1 1
a ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1
h ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕

(e)

A

B C

DI
G

H

F

Interlayer swap block e and i

g b c f i d a h
g ⁕ 1 1 1 0 1 1 0
b ⁕ ⁕ 1 1 0 0 0 0
c ⁕ ⁕ ⁕ 1 0 0 0 0
f ⁕ ⁕ ⁕ ⁕ 0 0 0 0
i ⁕ ⁕ ⁕ ⁕ ⁕ 1 1 1
d ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1 1
a ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1
h ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕

a

b c

di

g f

h

(f)

A

B C

DI
G

H

Interlayer
move j

F J

g b c f i d a h j
g ⁕ 1 1 1 0 1 1 0 1
b ⁕ ⁕ 1 1 0 0 0 0 1
c ⁕ ⁕ ⁕ 1 0 0 0 0 1
f ⁕ ⁕ ⁕ ⁕ 0 0 0 0 1
i ⁕ ⁕ ⁕ ⁕ ⁕ 1 1 1 1
d ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1 1 1
a ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1 1
h ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1
j ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕

a

b c

di

g f

h

j

(g)

Figure 4.3: Perturbations of the Matrix Floorplanner. Affected blocks and respective

changes in the relation matrix are grey-shaded. (a) Rotation of d. (b) Change in the AR

of c. (c) Swap between d and f. (d) Geometric relation flip between a and d. (e) Geometric

relation flip followed by swap between a and g. (f) 3D (interlayer) swap between e (moved

from shown layer to a different, not shown, layer) and i (moved from different, not shown

layer, to shown layer). (g) 3D (interlayer) move of h (from different, not shown layer, to

shown layer).

4. Proposed Matrix Floorplanner 26

4.5 Packing

The packing function determines the coordinates of all blocks in the netlist, based on the

information stored in the set of relation matrices (across the 3D IC). The packing step must

always follow any performed perturbations, since each perturbation is likely to impact the

coordinates of all blocks on the layer. For example, as shown in Figure 4.3(b), a seemingly

small change in the AR of c, affects the coordinates of blocks e, f, g, and h. The perturbation

function does not adjust the coordinates of all the impacted blocks; it is the job of the packing

function. It is not required to perform packing, however, after each perturbation.

The runtime complexity of the packing function is in O(m2). In practice, packing is

performed for each layer of the 3D IC, but since the number of layers n tends to be small

(n < 10) in any practical design, it can be accurately approximated as O(m2). To determine

the coordinates of the blocks on layer k, the packing function parses through the entire

Mk. To explain the packing process, an example is provided in Figure 4.4 which performs

packing on the same relation matrix as the one obtained in Figure 4.3(g). Packing of block a

(step 7) is highlighted. In this example, block a is on the right of blocks g, i, and d (‘1’s

in the matrix). Thus, the left coordinate of a is xl
a = max{xr

g, xr
i , xr

d} = xr
d. Similarly,

a is above blocks b, c, and f (‘0’s in the matrix). Thus, the bottom coordinate of a is

yb
a = max{yt

b, yt
c, yt

f} = yt
c.

The described packing scheme ensures that no overlaps occur since each newly placed

block is either to the right or above all other previously placed blocks in the layer. This is

4. Proposed Matrix Floorplanner 27

g b c f i d a h j
g ⁕ 1 1 1 0 1 1 0 1
b ⁕ ⁕ 1 1 0 0 0 0 1
c ⁕ ⁕ ⁕ 1 0 0 0 0 1
f ⁕ ⁕ ⁕ ⁕ 0 0 0 0 1
i ⁕ ⁕ ⁕ ⁕ ⁕ 1 1 1 1
d ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1 1 1
a ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1 1
h ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ 1
j ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕ ⁕

a

b c

di

g f

g

b cg f

a

b c

di

g f

h

bg

b c

i

g f

a

b c

di

g f

h

j

b cg

b c

di

g f

Packing order

a is on the right of g, i, and d.
a is above b, c, and f.

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Step 7 Step 8 Step 9

Figure 4.4: An example of a packing procedure of the solution obtained in Figure 4.3.(g).

The same matrix is provided for convenience. An example of placement of block a (step 7)

is highlighted in the matrix.

guaranteed by the requirement that all blocks be either horizontally or vertically related.

28

Chapter 5

Computation of Performance Metrics

SA is used as a multi-objective optimization engine. Several floorplan performance metrics

are combined using a weighted sum into a single cost parameter,

C =
warea

narea

· A +
wwl

nwl

· wl +
wtemp

ntemp

· TL +
wTSVs

nTSVs

· NTSVs (5.1)

where, C, A, wl, TL, and NTSVs are the, respectively, cost, area (of the largest layer), total

wirelength, thermal load, and total number of TSVs within the 3D IC. w and n are the,

respectively, weight and normalization parameters for each of the performance metrics. The

weights are used to scale the metrics according to their importance in a specific netlist,

such that the SA engine will focus on optimizing the important metrics. The normalization

parameters ensure that all metrics are evaluated on the same scale of values. Both w and

n of each metric can be controlled by the user to tune for a specific netlist. Each metric is

5. Computation of Performance Metrics 29

described in the following subsections.

5.1 Computation of the Area

During optimization, the area of the largest layer within the 3D IC is included in the cost

function. The largest layer varies throughout the SA process; at every iteration, a different

layer may exhibit the worst (largest) area. This ensures that all layers are targeted and

improved. It is not required to optimize the sum of the area of all layers in 3D ICs since

technological limitations do not support layers of different areas within a single 3D structure.

Moreover, for area-focused floorplanning, the largest layer may be directly targeted during

the layer selection step in all perturbations.

The AR of each layer is constrained within the floorplanning algorithm to control the

footprint of the design. A certain footprint (e.g., rectangle with high/low AR) can be also

targeted. The runtime complexity of area computation is O(m) (assuming that n is small,

since, in practice, 3D ICs are up to five layers only).

5.2 Computation of the Wirelength

Wirelength is computed as the HPWL of the bounding box among all blocks that are

connected to the same wire [42]. Two types of connections are typically described in a

netlist – blocks connected to other blocks, and blocks connected to external terminals. The

5. Computation of Performance Metrics 30

computation of block-to-block wirelength is performed by identifying the (x,y) coordinates

of all blocks connected to the same wire. For blocks that are located on different layers, the

HPWL is calculated for the smallest bounding box of the projections of all blocks to the

same plane, in other words, the z coordinate of the blocks is ignored as if they were all on

the same layer. In this case, TSVs are ignored in the computation of wirelength, since the

length of the TSVs is typically not provided at this stage. Alternatively, if TSV dimensions

are available, they can be included in this computation. Nonetheless, TSVs are accounted

for in the optimization of the number of TSVs, as described in Section 5.3.

The connectivity of blocks to external terminals is further divided into two groups, a

terminal connects to a single block or a terminal connects to multiple blocks. In the former

case, the terminal is assumed to be attached to the block and, therefore, the length of the

connecting wire is assumed to be zero. In the latter case, the terminal is assumed to be placed

in the location of the geometric center of the connected blocks on the bottom layer of the

3D IC (the layer that is closest to the connection to the package). The HPWL is computed

for every block connected to the terminal, using the same projection approach. The runtime

complexity of the computation of wirelength at each iteration of the SA, is O(m2).

5.3 Computation of the Number of TSVs

Optimization of TSVs is important in 3D ICs since TSVs add reliability concerns to the

system. Differences in the coefficient of thermal expansion between TSV material (typically

5. Computation of Performance Metrics 31

copper) and the substrate material (typically silicon), may lead to physical damage of the

platform [43]. TSVs also pose electrical reliability concerns, for example, noise coupling [43].

For two blocks in the floorplan, located on layers l1 and l2, the number of TSVs between

the blocks equals |l1 − l2| · n, where n is the number of connections between the two blocks.

This approach is used to determine the total number of TSVs in the floorplan.

It is reasonable to assume that all terminals of the 3D ICs are located in the bottom layer

of the stack. For every block connected to a terminal, therefore, the number of TSVs that are

required for the connection is calculated and added to NTSVs. The runtime complexity of the

computation of the number of TSVs in the floorplan at each iteration of the SA, is O(m2).

5.4 Computation of the Temperature

Heat is a significant challenge in 3D ICs, since it is trapped with the layer of SiO2 of the

3D stack, causing a plethora of issues, including a degradation in performance, mechanical

stress, and a decreased lifespan. For these reasons, estimating, predicting, and optimizing

the temperature is of paramount importance in 3D ICs. The proposed work regarding the

thermal issue would center around these three main topics.

Thermal-aware floorplanning alleviates the thermal issue of 3D circuits [23]. It entails

thermally evaluating floorplans during the floorplanning process and rejecting floorplans

with high temperatures. The number of iterations required to obtain a high-quality solution

can be very large, especially for large netlists. Moreover, thermal evaluation dominates

5. Computation of Performance Metrics 32

Figure 5.1: A layer of the 3D stack divided into thermal cells

the runtime of an iteration of floorplanning. Traditional thermal evaluators of floorplans

are inefficient. The floorplanner optimizes peak temperature during every iteration of the

simulated annealing process. As the number of iterations required to obtain a high-quality

solution can be very large, especially for netlists with a significant number of blocks, a fast

thermal evaluation procedure was developed. The fast thermal evaluation speeds up the

runtime without impeding the quality of the solution. This evaluator was used in [1].

In this procedure, the peak temperature of the 3D IC is estimated by considering three

main factors: the power density, the number of TSVs, and the distance to the heat sink.

The power density represents an estimation of the power dissipated within a region of the

IC. The distance from the heat sink estimates how efficiently heat is being dissipated by the

sink. Finally, the number of TSVs is also considered since TSVs act as thermal conduits,

that either dissipate heat away from a region in the IC towards the heat sink or bring in heat

from the lower layers of the 3D stack towards a region in the stack. Each layer of the 3D

IC is divided into a thermal grid, as can be seen in Figure 5.1. The size of each cell within

5. Computation of Performance Metrics 33

the thermal grid is determined according to the user-controlled number of cells Nc and the

area of each layer. In the next step, the power dissipated within each cell of the thermal

grid is determined. The power Pc dissipated in cell c is calculated from the power dissipated

within the blocks overlapping with cell c, prorated according to the ratio of overlap. For

example, if three blocks x, y, and z are overlapping with cell c by, respectively, rx, ry, and rz

(ratio of overlap), and the power of the blocks is, respectively, px, py, and pz, then the power

dissipated in cell c is Pc = px · rx + py · ry + pz · rz. The thermal load TL that is included

(minimized) in the overall cost function is, therefore

TL = max{Pc · dc ·
Nn−1

TSVs + 1

Nn
TSVs − 1

} (5.2)

where, dc is the distance of cell c to the heat sink, Nn
TSVs is the number of TSVs leaving

the cell (toward the heat sink), i.e., assist in removing heat from the cell, and Nn−1
TSVs is

the number of TSVs connecting to the cell from the previous layer, i.e., adding heat to

the cell from other cells (farther away from the heat sink). The runtime complexity of the

computation of the thermal cost at each iteration of the SA, is O(m · Nc). Note that from

experiments, Nc can be a relatively small number (similar to the number of blocks or smaller)

to obtain good thermal optimization. The runtime complexity can, therefore, be accurately

estimated as O(m2).

This thermal modeling is used during the floorplanning iterations since, during

5. Computation of Performance Metrics 34

floorplanning, many thermal evaluations are required to assess and compare different

solutions. After completion of the floorplanning stage, the final floorplan can be evaluated

using a FEM tool such as COMSOL [44] or other thermal modeling tools such as

ARTSim [2].

35

Chapter 6

A Comparative Analysis and

Performance Evaluation

This chapter presents a comprehensive analysis and performance evaluation of the Matrix

Floorplanner on different netlists. The first part of this chapter delves into the comparative

aspects, highlighting how the Matrix Floorplanner distinguishes itself from existing P*

admissible floorplanners, particularly in its ability to effectively handle 3D ICs challenges

(large design space and complex evaluation). In the subsequent section, the Matrix

Floorplanner’s practical performance is emphasized using standard benchmarks and

industrial netlists, showcasing its superiority in optimizing key metrics such as area,

wirelength, TSV count, and peak temperature, all while ensuring a reasonable runtime.

6. A Comparative Analysis and Performance Evaluation 36

6.1 Comparative Analysis

The matrix-based representation presented is similar to the transitive-closure-graph (TCG)

approach in [34], and [35], since all three are P* admissible. [34], and [35] are among the

most popular graph-based representations used in floorplanning. However, the matrix

floorplanner distinguishes itself from these existing graph-based floorplanners due to

several key advantages.

First, the matrix-based floorplanner is used to floorplan 3D ICs, contrary to

TCGs [34], and [35], which can only floorplan and represent 2D ICs. Moreover, the Matrix

Floorplanner eliminates the redundancy created by existing graph approaches in 3D. For

example, in [45] constraints on the z-dimension are not considered. Blocks are not given

discrete coordinates in the z-dimension which leads to unfeasible floorplans (if no

evaluation step follows) and creates a larger and more complex solution space to explore.

Furthermore, existing state-of-the-art graph-based approaches, such as the [23], do not

explore the solution space in 3D in an efficient manner. The intralayer perturbations

permissible in [23] are identical to the perturbation of [35], since [23] uses TCGs to

represent the 2D floorplans, creating a TCG for each layer of the 3D stack. However, the

interlayer perturbations, in particular inter-layer move, are limited to blocks that are

neighbors across the 3D layers (similar x, y coordinates, but different z). Therefore, the

bucket approach limits and weakens the diversification phase in the exploration of the

solution space. The CBA-based of [23] would require more iterations and a longer runtime

6. A Comparative Analysis and Performance Evaluation 37

to reach a solution easily accessible to the matrix-based floorplanner. Moreover, the

condition of P* admissibility is that each permissible solution is accessible to the

floorplanner. By limiting the perturbations, the P* admissibility of the [23] does not hold.

[46] uses B* trees to represent 3D floorplans. Yet, this data structure is also not P*

admissible the feasibility of the proposed solutions is also not guaranteed. During the packing

stage, a block’s intended location might be used by another block previously placed causing

overlaps. In addition, the geometric relation between any two modules is not defined in the

representation.

As summarized in Table 6.1 the Matrix Floorplanner distinguishes itself from other

P* admissible and non P* admissible floorplanning algorithms by allowing a broader range

of perturbations. These perturbations have a more significant impact on the layout, which

is important during the diversification stage of the SA engine. Moreover, the Matrix

Floorplanner, unlike other floorplanners, does not limit the types of perturbations in 3D to

accessible neighboring blocks. In addition, the Matrix Floorplanner simultaneously

optimizes four important metrics for 3D ICs: area, wirelength, number of TSVs, and peak

temperature, while maintaining acceptable runtime (detailed in Section 6.2). While, due to

the complexity of the simultaneous optimization of all mentioned metrics, many other

floorplanning algorithms constrain some metrics while optimizing only a subset.

6. A Comparative Analysis and Performance Evaluation 38

Paper Constraint
Optimized
metrics

Data
Structure

Drawbacks

[23]
Peak
temperature

Area, wire
length, TSVs

CBA based
on [35] limiting
perturbations in
3D

Incomplete
temperature
estimation (one
direction only)

[47]
Peak
temperature

Area, TSVs
Tile-based
floorplans (not
P* admissible)

Relies on carbon
nano-tubes
to cool down
circuit

[46]
Peak
temperature

Area, wire
length

B* Tree with
no z-direction
perturbations

No 3D
perturbations,
layer assignment
overhead

[45] N.A.
Area, wire
length

TCG-S
Non-discreet z-
coordinates

[40] Area
Wirelength,
congestion
density

Vectors
No temperature
reduction, Poor
generalization

Table 6.1: Various state-of-art floorplanners, their cost functions, features, and drawbacks.

6.2 Simulation Results

The proposed Matrix Floorplanner is evaluated on standard MCNC and GSRC benchmarks

obtained from [48]. The experiments were performed on a Lenovo machine, Intel Core

i5 (four cores) processor, at a frequency of 1.6 GHz. As part of the evaluation, area 5.1,

wirelength 5.2, thermal load 5.4, number of TSVs 5.3, and runtime, were obtained. To get an

accurate result for the peak temperature, the final floorplan was evaluated using a HotSpot

thermal model [41] that was adapted to accommodate non-slicing floorplans. The results of

the evaluation are compared to previously proposed thermal-aware floorplanners [23] and [49]

6. A Comparative Analysis and Performance Evaluation 39

and the results are listed in Table 6.2 – 6.6.

CBA-T [23] Li [49] Matrix Floorplanner [1]
ami33 4.14 · 10−7 3.61 · 10−7 3.97 · 10−7

ami49 1.84 · 10−5 1.24 · 10−5 1.38 · 10−5

n100 6.56 · 10−8 5.74 · 10−8 5.90 · 10−8

n200 6.91 · 10−8 6.83 · 10−8 5.61 · 10−8

n300 1.06 · 10−7 4.14 · 10−7 9.65 · 10−8

Table 6.2: Results of the evaluation of area (m2) of the Matrix Floorplanner and comparison

to previous work, for a 4-layer 3D IC.

CBA-T [23] Li [49] Matrix Floorplanner [1]
ami33 0.024442 0.033111 0.024234
ami49 0.477646 0.198711 0.392008
n100 0.092456 0.072622 0.092008
n200 0.190886 0.179565 0.206000
n300 0.253837 0.257049 0.255564

Table 6.3: Results of the evaluation of wirelength (m) of the Matrix Floorplanner and

comparison to previous work, for a 4-layer 3D IC.

CBA-T [23] Li [49] Matrix Floorplanner [1]
ami33 98 N/A 81
ami49 211 N/A 242
n100 1044 N/A 1207
n200 2021 N/A 1984
n300 2261 N/A 2144

Table 6.4: Results of the evaluation of the number of TSVs of the Matrix Floorplanner and

comparison to previous work, for a 4-layer 3D IC.

To accommodate for the disparity in thermal modeling of the cooling systems across

floorplans, an effort was made to match the thermal parameters in [23]. Specifically, matching

6. A Comparative Analysis and Performance Evaluation 40

CBA-T [23] Li [49] Matrix Floorplanner [1]
ami33 160 338 144
ami49 151 342 134
n100 158 273 130
n200 156 237 129
n300 167 270 113

Table 6.5: Results of the evaluation of peak temperature (°C) of the Matrix Floorplanner

and comparison to previous work, for a 4-layer 3D IC.

CBA-T [23] Li [49] Matrix Floorplanner [1]
ami33 466 1.6 144
ami49 521 6.1 114
n100 4322 21 451
n200 6843 86 1035
n300 17484 256 1957

Table 6.6: Results of the evaluation of runtime (s) of the Matrix Floorplanner and

comparison to previous work, for a 4-layer 3D IC.

the thermal parameters such that similar temperatures are obtained while floorplanning

benchmarks without any thermal optimization. Furthermore, an FEM simulation (using

COMSOL) was performed on a two-layer ami33 netlist and the thermal parameters (e.g.,

dimensions of heat sink and heat spreader) of the last computation of temperature (after

obtaining the final floorplan) were tuned accordingly. The temperature results obtained from

the thermal model of the Matrix Floorplanner were within 3% of the values obtained from

the FEM simulation.

It can be observed from the results in Tables 6.2, 6.5, and 6.6 that the proposed Matrix

Floorplanner produces improved solutions as compared to [23], in area, temperature, and

6. A Comparative Analysis and Performance Evaluation 41

(a) (b)

Figure 6.1: Thermal map visualization for the optimized layout of ami33 on a four-layer

3D IC; (a) layer 1 and (b) layer 4.

runtime. The algorithm produces comparable results in terms of TSVs and wirelength. Note,

that additional results are provided in [23] (for CBA-T-Fast and CBA-T-Hybrid), however,

these results exhibit significantly higher peak temperatures and therefore were not chosen

for comparison in this work. Nonetheless, the proposed Matrix Floorplanner also improves

on area and runtime (in addition to peak temperature), as compared to these algorithms.

Comparing the obtained results to [49], it can be observed that the Matrix Floorplanner

significantly outperforms with respect to temperature, due to their simple thermal model.

It is also interesting to note, that although the work in [49] exhibits superior area and

wirelength for small floorplans, the Matrix Floorplanner produces better results for large

netlists, in area (for n200 and n300) and in wirelength (for n300). Also, the work in [49]

does not target the optimization of TSVs.

6. A Comparative Analysis and Performance Evaluation 42

To support convenient analysis of the resulting floorplans, a thermal visualization tool

has been used [2]. The generated thermal maps of the four layers ami33 netlist (MCNC

benchmark) are illustrated in Figure 6.1. The generated thermal maps of the floorplan in

Figure 6.1 verify the thermal feasibility of the generated floorplan.

In addition to the standard MCNC and GSRC benchmarks, a few netlists from industrial

partners were obtained and then floorplanned and evaluated using the Matrix Floorplanner.

Listed in Table 6.7, are the simulation results of three netlists consisting of 10, 30, and 50 soft

blocks. Since the blocks are soft, the AR perturbation is activated during the optimization of

the floorplan. Standard thermal cooling parameters (similar to the ones used in HotSpot [41])

were used and the size of the heat sink and heat spreader were adapted according to the size

of the floorplan. Note that the sum of the area of all blocks without any white space is also

listed in Table 6.7 and is used as the theoretical minimum. The percent of additional white

space in the floorplans that are generated using the Matrix Floorplanner as compared to the

theoretical minimum is also listed.

A thermal visualization tool was also used for the netlists obtained from industrial

partners. The generated floorplan of the 30 blocks industrial netlist on two layers (from

Table 6.7) is shown in Figure 6.2. Visual inspection of the floorplan in Figure 6.2 verifies

that a high-quality solution was produced in terms of area (few white spaces are visible).

This result is confirmed by the low percentage of white space in this benchmark (3.8%).

6. A Comparative Analysis and Performance Evaluation 43

Layers Area w/o white space (m2) Area (m2) Percent of white space WL (m) TSVs T (C) Time (s)

10 blocks 2 2.89 · 10−5 3.09 · 10−5 6.9% 0.064178 11 76 15
30 blocks 2 7.76 · 10−5 8.06 · 10−5 3.8% 0.535507 56 94 168
30 blocks 4 3.88 · 10−5 4.39 · 10−5 13.1% 0.359770 95 133 68
50 blocks 4 6.40 · 10−5 7.57 · 10−5 18.3% 0.924614 206 135 67

Table 6.7: Results of the evaluation of the proposed Matrix Floorplanner on netlists

obtained from industrial partners.

In CelsiusIn Celsius

Figure 6.2: Thermal map visualization of a two-layer 30 blocks netlist obtained from an

industrial partner. Numbers on the map represent block names.

44

Chapter 7

Future work

A main challenge with non-learning-based approaches is the difficulty of selecting

hyperparameters. There are many hyperparameters in popular optimization metaheuristics

that are difficult to choose, for example, 27 HPs are used in the Matrix Floorplanner.

These hyperparameters can be, for example, the number of iterations, the starting

temperature of the simulated annealing process, the rate of acceptance of the bad solution,

and the probability of obtaining a particular perturbation at a certain temperature. A

human expert cannot test all combinations possible. These hyperparameters significantly

impact the quality of the floorplan obtained after optimization. A badly tuned floorplanner

can produce floorplans with considerably worse cost than a well-tuned one. Finally, these

hyperparameters are intrinsically dependent on the input netlist. To mitigate this issue,

many floorplanning iterations are required. [50] explains that “weeks of iterations” are

7. Future work 45

Figure 7.1: Proposed training of the SA hyperparameter optimization model.

needed to select the hyperparameters to use.

Therefore, we propose an ML model that would determine what hyperparameters to

use to alleviate the task of the human expert in testing and selecting the hyperparameters.

As shown in Figure 7.1, the input of the ML model is the complete netlist of the circuit

to floorplan. The output of the model is the set of hyperparameters to use to obtain an

optimized floorplan using a specific engine. The output of the ML model is the entire set

of hyperparameters required to run the SA engine for this netlist. A novel technique to

7. Future work 46

facilitate the selection of hyperparameters of the SA engine for different netlists is proposed.

The proposed technique is based on reinforcement learning (RL) policy network. The RL

network is trained on many types of netlists to determine the number of iterations, starting

temperature, and cooling rate of the SA engine. The training dataset of the RL network

consists of different circuit netlists with their blocks, dimensions, connectivity lists, and

terminal pins. The RL network is trained using Corblivar floorplanning tool [51]. A custom

reward function was developed for the training phase to reflect the performance of the SA

engine with respect to the hyperparameters. For a netlist, the ideal solution is a weighted

sum of the ideal area and wirelength. The ideal area represents the sum of each block’s

area. Meanwhile, the ideal wirelength is determined by doubling the square root of the ideal

area, reflecting the half perimeter wirelength. The performance of the SA engine with the

pre-trained hyperparameters on the validation data is within 5% of the state-of-the-art, with

respect to area.

L =
Area − AreaIdeal

AreaIdeal

+
WL − WLIdeal

WLIdeal
+

Temp − TempIdeal

TempIdeal

(7.1)

This loss function allows to measure the distance between the ideal solution and the

solution obtained using these hyperparameters. The dataset used for training was developed

to resemble ”real-world netlists”. The netlists have between 10 to 350 blocks. The dimensions

of the blocks are within the range of blocks from ami33 and n300 benchmarks, as well as the

same range for the aspect ratios of blocks. GSRC and MCNC benchmarks will be reserved

7. Future work 47

for testing purposes.

48

Chapter 8

Conclusion

In conclusion, 3D ICs are a promising solution to the escalating computing demands of

modern applications. They allow more heterogeneity in the circuit and reduce interconnect

delay. However, the transition to 3D ICs introduces its own set of challenges, particularly in

the realm of design optimization. Most optimization tools were designed for 2D ICs and do

not consider the unique challenges posed by 3D ICs in terms of thermal management and

floorplanning.

To address these challenges and improve the temperature optimization of a circuit, a fast

thermal evaluator was developed and published. This tool can be used when an iterative

process requires the modeling and thermal evaluations of many floorplans. This evaluator

is based on the unique thermal properties of 3D ICs including the behavior of TSVs as

heat conduits. This evaluator also uses the individual properties of the blocks and their

8. Conclusion 49

coordinates on the 3D circuit.

Moreover, a novel SA-based floorplanner named the ”Matrix Floorplanner” was

completed. This floorplanner outperforms state-of-the-art floorplanners and meets the

highest standard for floorplanning algorithms, P* admissibility.

The algorithm relies on the relative horizontal and vertical relationships among the blocks

within each layer of the 3D structure. These relationships are utilized by the data structure

to facilitate rapid manipulations and modifications to the layout during the iterative process.

The use of matrices for executing perturbations ensures that the resulting floorplans remain

feasible and free of overlaps. Additionally, the impacts of both intra-layer and inter-layer

perturbations are thoroughly examined.

The overall runtime complexity of the proposed algorithm, including initialization,

perturbations, packing, and cost computation, is O(m2), i.e., satisfies the P* admissibility

requirement of polynomial complexity.

The Matrix Floorplanner has been implemented in C++ and tested on standard

floorplanning benchmarks, including MCNC and GSRC. When compared to previous work,

the results show improvements across most performance metrics relative to similar

algorithms, such as CBA-T. Additionally, the matrix floorplanner outperforms other

algorithms that do not target thermal and TSV optimization in terms of area and

wirelength

Three netlists obtained from industrial partners were also evaluated using the proposed

8. Conclusion 50

algorithm. The Matrix Floorplanner delivers high-quality results, with as little as 3.8% .

For future work, we propose developing a machine learning model to automate the

selection of hyperparameters in optimization metaheuristics, such as simulated annealing,

for floorplanning. This approach aims to alleviate the significant challenge of manually

tuning hyperparameters, which are difficult to optimize due to their large number and

dependency on the input netlist. By doing so, we hope to improve the quality of the final

floorplan and reduce the time required for iterative testing by human experts.

51

Bibliography

[1] D. Al Saleh, Y. Safari, F. Amik, and B. Vaisband, “P* Admissible Thermal-Aware

Matrix Floorplanner for 3D ICs,” in Proceedings of the IEEE 36th International System-

on-Chip Conference (SOCC), pp. 1–6, 2023.

[2] Y. Safari, A. Corbier, D. Al Saleh, and B. Vaisband, “ARTSim: A Robust Thermal

Simulator for Heterogeneous Integration Platforms,” in Proceedings of the IEEE 73rd

Electronic Components and Technology Conference (ECTC), pp. 1187–1193, 2023.

[3] S. Chopra and S. Subramaniam, “A Review on Challenges for MOSFET Scaling,”

International Journal of Innovative Science, Engineering & Technology, vol. 2, no. 4,

pp. 1055–1057, 2015.

[4] W. McMahon, A. Haggag, and K. Hess, “Reliability Scaling Issues for Nanoscale

Devices,” IEEE Transactions on Nanotechnology, vol. 2, no. 1, pp. 33–38, 2003.

[5] T.-C. Chen, “Overcoming research challenges for cmos scaling: Industry directions,”

in 2006 8th International Conference on Solid-State and Integrated Circuit Technology

Bibliography 52

Proceedings, pp. 4–7, 2006.

[6] L. Eeckhout, “Heterogeneity in response to the power wall,” IEEE Micro, vol. 35, pp. 2–

3, July 2015.

[7] B. Vaisband and S. S. Iyer, “Global and Semi-Global Communication on Si-IF,” in

Proceedings of the 13th IEEE/ACM International Symposium on Networks-on-Chip,

Association for Computing Machinery, 2019.

[8] “Samsung Announces Availability of its Silicon-Proven 3D IC Technology for High-

Performance Applications.” Samsung Semiconductor Global, 2023.

[9] J. H. Lau, “Evolution, challenge, and outlook of TSV, 3D IC integration and 3d

silicon integration,” in 2011 International Symposium on Advanced Packaging Materials

(APM), pp. 462–488, 2011.

[10] K. Dhananjay, P. Shukla, V. F. Pavlidis, A. Coskun, and E. Salman, “Monolithic

3D Integrated Circuits: Recent Trends and Future Prospects,” IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 68, no. 3, pp. 837–843, 2021.

[11] A. Nahman, A. Fan, J. Chung, and R. Reif, “Wire-length Distribution of Three-

Dimensional Integrated Circuits,” in Proceedings of the IEEE 1999 International

Interconnect Technology Conference, pp. 233–235, 1999.

Bibliography 53

[12] B. Vaisband, 3-D ICs as a Platform for Heterogeneous Systems Integration. University

of Rochester, 2017.

[13] V. F. Pavlidis et al., Three-Dimensional Integrated Circuit Design, Second Edition.

Morgan Kaufmann, 2017.

[14] X. Dong and Y. Xie, “System-Level Cost Analysis and Design Exploration for Three-

Dimensional Integrated Circuits (3D ICs),” in Proceedings of the Asia and South Pacific

Design Automation Conference (ASP-DAC), pp. 234–241, 2009.

[15] B. Vaisband and E. G. Friedman, “Analysis of Thermal Paths in 3-D Structures,”

in Proceedings of the 37th Annual IEEE EDS/CAS Activities in Western New York

Conference, pp. 6–11, 2013.

[16] B. Vaisband, I. Savidis, and E. G. Friedman, “Thermal Conduction Path Analysis in

3-D ICs,” in Proceedings of the 2014 IEEE International Symposium on Circuits and

Systems (ISCAS), pp. 594–597, 2014.

[17] P. Zhou et al., “3D-STAF: Scalable Temperature and Leakage Aware Floorplanning for

Three-Dimensional Integrated Circuits,” in Proceedings of the IEEE/ACM International

Conference on Computer Aided Design (IC-CAD), pp. 590–597, November 2007.

[18] B. Shi and A. Srivastava, “Cooling of 3D-IC Using Non-Uniform Micro-Channels and

Sensor Based Dynamic Thermal Management (Allerton),” in Proceedings of the 49th

Bibliography 54

Annual Allerton Conference on Communication, Control, and Computing, pp. 1400–

1407, 2011.

[19] M. S. Bakir et al., “3D Heterogeneous Integrated Systems: Liquid Cooling, Power

Delivery, and Implementation,” in Proceedings of the IEEE Custom Integrated Circuits

Conference, pp. 663–670, 2008.

[20] N. Arora, J. Hauser, and D. Roulston, “Electron and Hole Mobilities in Silicon as a

Function of Concentration and Temperature,” IEEE Transactions on Electron Devices,

vol. 29, no. 2, pp. 292–295, 1982.

[21] J. Zhang et al., “Thermal Stresses in 3D IC Inter-Wafer Interconnects,” Microelectronic

Engineering, vol. 82, no. 3, pp. 534–547, 2005.

[22] Y. Sun, L. Jiangbo, and G. Ding, “Modeling and Analysis of TSV Arrays with Different

Ground and Signal Distributions in 2.5D/3D Integration Systems,” Journal of Physics:

Conference Series, vol. 1087, p. 052019, 2018.

[23] J. Cong, J. Wei, and Y. Zhang, “A Thermal-Driven Floorplanning Algorithm for 3D

ICs,” in Proceedings of the IEEE/ACM International Conference on Computer Aided

Design (IC-CAD), pp. 306–313, 2004.

Bibliography 55

[24] H. Y. Zhu et al., “Floorplanning for 3D-IC with Through-Silicon Via Co-Design

Using Simulated Annealing,” in Proceedings of the IEEE Asia-Pacific Symposium on

Electromagnetic Compatibility, pp. 550–553, 2018.

[25] L. Xiao et al., “Fixed-Outline Thermal-Aware 3D Floorplanning,” in Proceedings of

the IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-DAC),

pp. 561–567, 2010.

[26] F. Frantz et al., “3D IC Floorplanning: Automating Optimization Settings and

Exploring New Thermal-Aware Management Techniques,” Microelectronics Journal,

vol. 43, pp. 423–432, June 2012.

[27] M. Abdel-Basset, L. Abdel-Fatah, and A. K. Sangaiah, “Chapter 10 - Metaheuristic

Algorithms: A Comprehensive Review,” in Computational Intelligence for Multimedia

Big Data on the Cloud with Engineering Applications (A. K. Sangaiah, M. Sheng, and

Z. Zhang, eds.), Intelligent Data-Centric Systems, pp. 185–231, Academic Press, 2018.

[28] C. Blum and A. Roli, “Metaheuristics in Combinatorial Optimization: Overview and

Conceptual Comparison,” ACM Comput. Surv., vol. 35, p. 268–308, sep 2003.

[29] M. Z. Ali et al., “A Novel Hybrid Cultural Algorithms Framework with Trajectory-

Based Search for Global Numerical Optimization,” Information Sciences, vol. 334-335,

pp. 219–249, 2016.

Bibliography 56

[30] Y. Han, S. Roy, and K. Chakraborty, “Optimizing Simulated Annealing on GPU: A Case

Study with IC Floorplanning,” in Proceedings of the 12th International Symposium on

Quality Electronic Design (ISQED), pp. 1–7, 2011.

[31] B. Gwee and M. Lim, “A GA with heuristic-based decoder for IC floorplanning,”

Integration, vol. 28, no. 2, pp. 157–172, 1999.

[32] Q. Xu, S. Chen, and B. Li, “Combining the Ant system Algorithm and Simulated

Annealing for 3D/2D Fixed-Outline Floorplanning,” Applied Soft Computing, vol. 40,

pp. 150–160, 2016.

[33] G. Chen, W. Guo, H. Cheng, X. Fen, and X. Fang, “VLSI Floorplanning Based on

Particle Swarm Optimization,” in Proceedings of the 3rd International Conference on

Intelligent System and Knowledge Engineering (ISKE), vol. 1, pp. 1020–1025, 2008.

[34] J.-M. Lin et al., “TCG: A Transitive Closure Graph-Based Representation for Non-

Slicing Floorplans,” in Proceedings of the IEEE/ACM Design Automation Conference

(DAC), pp. 764–769, 2001.

[35] J.-M. Lin et al., “TCG-S: Orthogonal Coupling of P*-Admissible Representations for

General Floorplans,” in Proceedings of the IEEE/ACM Design Automation Conference

(DAC), pp. 842–847, 2002.

Bibliography 57

[36] H. Murata et al., “Rectangle-Packing Based Module Placement,” in Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design (IC-CAD), pp. 472–

479, 1995.

[37] S.-Z. Zhang, Z.-Y. Zhao, C.-C. Feng, and L. Wang, “A Machine Learning Framework

with Feature Selection for Floorplan Acceleration in IC Physical Design,” Journal of

Computer Science and Technology, vol. 35, pp. 468–474, 2020.

[38] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep

Reinforcement Learning: A Brief Survey,” IEEE Signal Processing Magazine, vol. 34,

no. 6, pp. 26–38, 2017.

[39] K. Wang et al., “Generative Adversarial Networks: Introduction and Outlook,”

IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 4, pp. 588–598, 2017.

[40] A. Mirhoseini et al., “A Graph Placement Methodology for Fast Chip Design,” Nature,

vol. 594, no. 7862, pp. 207–212, 2021.

[41] W. Huang et al., “HotSpot: A Compact Thermal Modeling Methodology for Early-Stage

VLSI Design,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 14, no. 5, pp. 501–513, 2006.

Bibliography 58

[42] X. Hao and F. Brewer, “Wirelength Optimization by Optimal Block Orientation,” in

Proceedings of the IEEE/ACM International Conference on Computer-Aided Design

(IC-CAD), pp. 64–70, 2005.

[43] B. Vaisband and E. G. Friedman, “Layer Ordering to Minimize TSVs in Heterogeneous

3-D ICs,” in Proceedings of the IEEE International Symposium on Circuits and Systems,

pp. 1926–1929, 2016.

[44] “COMSOL Multiphysics.”

[45] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “3-D Floorplanning: Simulated

Annealing and Greedy Placement Methods for Reconfigurable Computing Systems,”

in Proceedings of the 10th IEEE International Workshop on Rapid System Prototyping.

Shortening the Path from Specification to Prototype, pp. 38–43, 1999.

[46] T. Ni et al., “Temperature-Aware Floorplanning for Fixed-Outline 3D ICs,” IEEE

Access, vol. 7, pp. 139787–139794, 2019.

[47] S. Shi, X. Zhang, and R. Luo, “The thermal-aware floorplanning for 3d ics using carbon

nanotube,” in 2010 IEEE Asia Pacific Conference on Circuits and Systems, pp. 1155–

1158, 2010.

[48] “3-D IC Physical Design and 3-D Architecture Exploration.”

Bibliography 59

[49] X. Li, Y. Ma, and X. Hong, “A Novel Thermal Optimization Flow Using Incremental

Floorplanning for 3D ICs,” in Proceedings of the IEEE/ACM Asia and South Pacific

Design Automation Conference (ASP-DAC), pp. 347–352, 2009.

[50] Vidal-Obiols et al., “Multilevel Dataflow-Driven Macro Placement Guided by RTL

Structure and Analytical Methods,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 40, no. 12, pp. 2542–2555, 2021.

[51] J. Knechtel, E. F. Y. Young, and J. Lienig, “Planning massive interconnects in 3-

d chips,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 34, no. 11, pp. 1808–1821, 2015.

60

Appendix A

Equations

cheight =

√

carea

AR
(A.1)

cwidth =
carea

cheight

(A.2)

C =
warea

narea

· A +
wwl

nwl

· wl +
wtemp

ntemp

· TL +
wTSVs

nTSVs

· NTSVs (A.3)

Pc = px · rx + py · ry + pz · rz (A.4)

TL = max{Pc · dc ·
Nn−1

TSVs + 1

Nn
TSVs − 1

} (A.5)

A. Equations 61

L =
Area − AreaIdeal

AreaIdeal

+
WL − WLIdeal

WLIdeal
+

Temp − TempIdeal

TempIdeal

(A.6)

62

Appendix B

Tables

B. Tables 63

Paper Constraint
Optimized
metrics

Data
Structure

Drawbacks

[23]
Peak
temperature

Area, wire
length, TSVs

CBA based
on [35] limiting
perturbations in
3D

Incomplete
temperature
estimation (one
direction only)

[47]
Peak
temperature

Area, TSVs
Tile-based
floorplans (not
P* admissible)

Relies on carbon
nano-tubes
to cool down
circuit

[46]
Peak
temperature

Area, wire
length

B* Tree with
no z-direction
perturbations

No 3D
perturbations,
layer assignment
overhead

[45] N.A.
Area, wire
length

TCG-S
Non-discreet z-
coordinates

[40] Area
Wirelength,
congestion
density

Vectors
No temperature
reduction, Poor
generalization

Table B.1: Table with various several state-of-art floorplanners, their cost functions,

features, and drawbacks.

CBA-T [23] Li [49] Matrix Floorplanner [1]
ami33 4.14 · 10−7 3.61 · 10−7 3.97 · 10−7

ami49 1.84 · 10−5 1.24 · 10−5 1.38 · 10−5

n100 6.56 · 10−8 5.74 · 10−8 5.90 · 10−8

n200 6.91 · 10−8 6.83 · 10−8 5.61 · 10−8

n300 1.06 · 10−7 4.14 · 10−7 9.65 · 10−8

Table B.2: Results of the evaluation of area (m2) of the Matrix Floorplanner and

comparison to previous work, for a 4-layer 3D IC.

B. Tables 64

CBA-T [23] Li [49] Matrix Floorplanner [1]
ami33 0.024442 0.033111 0.024234
ami49 0.477646 0.198711 0.392008
n100 0.092456 0.072622 0.092008
n200 0.190886 0.179565 0.206000
n300 0.253837 0.257049 0.255564

Table B.3: Results of the evaluation of wirelength (m) of the Matrix Floorplanner and

comparison to previous work, for a 4-layer 3D IC.

CBA-T [23] Li [49] Matrix Floorplanner [1]
ami33 98 N/A 81
ami49 211 N/A 242
n100 1044 N/A 1207
n200 2021 N/A 1984
n300 2261 N/A 2144

Table B.4: Results of the evaluation of the number of TSVs of the Matrix Floorplanner

and comparison to previous work, for a 4-layer 3D IC.

CBA-T [23] Li [49] Matrix Floorplanner [1]
ami33 160 338 144
ami49 151 342 134
n100 158 273 130
n200 156 237 129
n300 167 270 113

Table B.5: Results of the evaluation of peak temperature (°C) of the Matrix Floorplanner

and comparison to previous work, for a 4-layer 3D IC.

B. Tables 65

CBA-T [23] Li [49] Matrix Floorplanner [1]
ami33 466 1.6 144
ami49 521 6.1 114
n100 4322 21 451
n200 6843 86 1035
n300 17484 256 1957

Table B.6: Results of the evaluation of runtime (s) of the Matrix Floorplanner and

comparison to previous work, for a 4-layer 3D IC.

Layers Area w/o white space (m2) Area (m2) Percent of white space WL (m) TSVs T (C) Time (s)

10 blocks 2 2.89 · 10−5 3.09 · 10−5 6.9% 0.064178 11 76 15
30 blocks 2 7.76 · 10−5 8.06 · 10−5 3.8% 0.535507 56 94 168
30 blocks 4 3.88 · 10−5 4.39 · 10−5 13.1% 0.359770 95 133 68
50 blocks 4 6.40 · 10−5 7.57 · 10−5 18.3% 0.924614 206 135 67

Table B.7: Results of the evaluation of the proposed Matrix Floorplanner on netlists

obtained from industrial partners.

