
Improving Food Recognition for Mobile
Applications via Convolutional Neural

Networks and User Habits

Mete Aykul

Master of Engineering

Department of Electrical and Computer Engineering

McGill University

Montreal, Canada

2019-07-05

A thesis submitted to McGill University in partial fulfillment of the requirements of
the degree of Master of Engineering

c© 2019 Mete Aykul

DEDICATION

This document is dedicated to my parents, and to my brother, without whose

love and support I would not be where I am today.

ii

ACKNOWLEDGEMENTS

I would like to thank Professor Zeljko Zilic for his supervision and advice, which

was crucial in allowing this thesis to come to fruition. I would also like to thank

Jianing Sun, a colleague at IML, for her assistance in formulating ideas and experi-

ments. Lastly, I would like to thank all my friends who’ve either shown me support,

or provided me with countless, instrumental pieces of advice in passing.

iii

ABSTRACT

This thesis aims to take a step toward mitigating the growing concern of poor

dietary health, and associated conditions like obesity and diabetes; it focuses on using

runtime-efficient convolutional neural networks (CNNs) to improve the accuracy and

efficiency of food recognition on mobile devices. In general, it is hoped that the

methods and findings presented here help facilitate quality-of-life improvements to

the mobile dietary health applications that many rely on today. First, the DenseNet

and MobileNetV2 architectures are trained on the UEC Food datasets, and achieve

up to 82% top-1 single-crop accuracy using significantly-less parameters than similar

work. Their performance was found to be state-of-the-art in parameter-efficiency,

and their on-mobile advantages in runtime speed and memory-usage were highlighted

with respect to competing approaches. In exploring the training space, the success

of atypical choices – such as minimal data augmentation and fine-tuning all weights

– are highlighted and discussed, particularly the implication that smaller networks

may in general be easier and faster to train than larger counterparts. Second, a

novel user habit system is proposed, that increases food recognition accuracy by

leveraging users’ dietary history – or user context – to personalize and augment

top-5 classifier predictions. The scheme increased top-1 accuracy by 14% on a proof-

of-concept evaluation with respect to no user context, up to 82%, despite increasing

classification difficulty through the inclusion of background noise and multi-class

images – which the proposed system does not explicitly handle. Third, guidelines for

future effort are provided by identifying important, related, orthogonal areas-of-focus

iv

– like calorie estimation –, and deeply exploring the scope of their challenges and

approaches – both present and prospective; the findings were then used to generate

guidelines through the contribution of domain-specific and -agnostic discussions, that

could lead to practical implementations of other core features in a dietary health

application. Overall, automatic food recognition may be a promising avenue for

developing novel methods to mitigate the growing concerns associated with poor

dietary health; the larger hope is that this work provides practical insights into the

development of a closer-to-ideal mobile food recognition system that is realizable,

and capable of providing benefit to those that need it.

v

ABRÉGÉ

Cette thèse vis de faire un pas en avant pour atténuer l’inquiétude croissante que

suscitent les problèmes de santé liées à l’alimentation et les problèmes associés tels que

l’obésité et le diabète; Il se concentre sur l’utilisation de réseaux de neurones à convo-

lution (CNN) efficaces pour l’exécution afin d’améliorer la précision et l’efficacité de

la reconnaissance des aliments sur des appareils mobiles. En général, on espère que

les méthodes et les résultats présentés ici contribueront à améliorer la qualité de vie

des applications de santé diététique mobiles sur lesquelles beaucoup s’appuient au-

jourd’hui. Premièrement, les architectures DenseNet et MobileNetV2 sont formées

sur les jeux de données UEC Food et permettent d’atteindre une précision pou-

vant aller jusqu’à 82 % top-1 pour une seule culture en utilisant beaucoup moins

de paramètres que des travaux similaires. Leurs performances se sont avérées être

à la pointe de l’efficacité en termes de paramètres, et leurs avantages sur mobile en

termes de vitesse d’exécution et d’utilisation de la mémoire ont été mis en évidence

par rapport aux approches concurrentes. Dans l’exploration de l’espace de forma-

tion, le succès de choix atypiques - tels que l’augmentation minimale des données

et le réglage précis de toutes les pondérations - est mis en évidence et discuté, en

particulier le fait qu’il peut être généralement plus facile et plus rapide de former

des réseaux plus petits que des homologues plus grands.Deuxièmement, un nouveau

système d’habitudes d’utilisateur est proposé, qui augmente la précision de la re-

connaissance des aliments en exploitant l’historique alimentaire de l’utilisateur - ou

vi

son contexte - pour personnaliser et augmenter les prédictions du top 5 des classifi-

cateurs. Le schéma a permis d’augmenter la précision du premier niveau de 14%

sur une évaluation de la validation de principe par rapport à l’absence de contexte

utilisateur, jusqu’à 82%, en dépit de la difficulté croissante de classification en raison

de l’inclusion du bruit de fond et des images multi-classes - qui le système proposé

ne gère pas explicitement. Troisièmement, des lignes directrices pour les efforts fu-

turs sont fournis en identifiant les domaines d’intervention orthogonaux importants,

connexes, comme l’estimation des calories, et en explorant en profondeur la portée

de leurs défis et leurs approches - actuelles et prospectives; Les résultats ont ensuite

été utilisés pour générer des lignes directrices via l’apport de discussions spécifiques

à un domaine et diagnostiques, qui pourraient conduire à la mise en œuvre pra-

tique d’autres fonctionnalités essentielles dans une application de santé alimentaire.

Dans l’ensemble, la reconnaissance automatique des aliments pourrait être un moyen

prometteur de développer de nouvelles méthodes pour atténuer les préoccupations

croissantes liées à une mauvaise alimentation. Le plus grand espoir est que ces

travaux fournissent des informations pratiques sur la mise au point d’un système de

reconnaissance des aliments mobiles plus proche de l’idéal, réalisable et susceptible

de procurer des avantages à ceux qui en ont besoin.

vii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ABRÉGÉ . vi

LIST OF TABLES . xi

LIST OF FIGURES . xii

KEY TO ABBREVIATIONS . xiii

1 Introduction . 1

1.1 Context and Motivation . 2
1.2 Contribution and Thesis Outline 3

2 Convolutional Neural Networks . 7

2.1 Introduction . 7
2.2 Historical Overview . 7
2.3 Architectures . 9

2.3.1 ILSVRC Entries . 10
2.3.2 Components and Methodologies 12

2.4 DenseNet . 16
2.4.1 Dense Connectivity . 16
2.4.2 Growth Rate . 17
2.4.3 Dense Blocks . 18
2.4.4 Transition Layers . 18
2.4.5 Overall Structure . 19

2.5 MobileNetV2 . 20
2.5.1 Depthwise Separable Convolutions 21

viii

2.5.2 Linear Bottleneck . 23
2.5.3 Inverted Residuals . 23
2.5.4 Width Multiplier . 24
2.5.5 Structure . 25

2.6 Frameworks . 27

3 Food Recognition . 29

3.1 Introduction . 29
3.2 Related Work . 30
3.3 Challenges in Class Variation . 33
3.4 Diet-Tracking Systems . 35

3.4.1 Calorie Estimation . 36
3.4.2 Classifier Scalability . 38
3.4.3 Continuous Training . 40
3.4.4 Object Detection . 40
3.4.5 Dietary Analysis . 41
3.4.6 Edge Computing . 42

3.5 Summary . 44

4 Design and Methodology . 45

4.1 Introduction and Overview . 45
4.2 Dataset Choice . 47
4.3 Architecture Choice . 47

4.3.1 DenseNet . 48
4.3.2 MobileNetV2 . 49
4.3.3 Mobile Wide-Slice Branch 49

4.4 Training . 52
4.4.1 Image Pre-Processing . 53
4.4.2 Image Augmentation . 54
4.4.3 Transfer Learning and Fine-Tuning 56
4.4.4 Optimization . 57

4.5 User Habit System . 58
4.5.1 System Description . 59
4.5.2 Similar Approach . 64

4.6 Mobile Benchmarks . 65

ix

5 Experiments, Results and Discussion . 67

5.1 Experimental Setup . 67
5.2 Transfer Learning . 67
5.3 Image Augmentation . 69
5.4 Fine-Tuning . 74
5.5 Final Results . 76
5.6 Efficiency and Performance Comparisons 81
5.7 User Habit Integration . 88
5.8 Mobile Performance . 91
5.9 Summary . 93

6 Conclusion . 99

References . 103

x

LIST OF TABLES
Table page

4–1 Sample proof-of-concept diet . 62

5–1 Summary of final training approach up to this point, given transfer
learning results . 69

5–2 Summary of final training approach up to this point, given image
augmentation results . 73

5–3 Summary of final training approach up to this point, given fine-tuning
results . 76

5–4 Final top-1 single-crop accuracies for the proposed networks 79

5–5 Comparison of various CNN-based results with respect to the proposed
approaches . 82

5–6 Single-crop accuracies on sample diet 88

5–7 Top-1 accuracies (%) given differing strength coefficients 89

5–8 Benchmark measurements for the various CNNs on the given mobile
device . 92

xi

LIST OF FIGURES
Figure page

2–1 Dense Connectivity . 17

2–2 DenseNet Structure . 20

2–3 Depthwise Separable Convolutions . 22

2–4 Inverted Residual Connections . 24

2–5 MobileNetV2 Structure . 26

3–1 Wideslice Wide Residual Network . 32

3–2 Layered Foods . 33

4–1 User Habit System . 61

5–1 Transfer Learning . 68

5–2 Augmentation Schemes on UEC100 using DenseNet 70

5–3 Augmentation Schemes on UEC256 using DenseNet 71

5–4 Augmentation Schemes on UEC100 using MobileNetV2 71

5–5 Augmentation Schemes on UEC256 using MobileNetV2 72

5–6 Fine-tuning on UEC100 . 75

5–7 Fine-tuning on UEC256 . 75

5–8 Final Accuracy of Proposed Networks on UEC100 77

5–9 Final Accuracy of Proposed Networks on UEC256 78

5–10 UEC100 Performance Efficiency . 86

5–11 UEC256 Performance Efficiency . 86

xii

KEY TO ABBREVIATIONS

API Application Programming Interface

BN Batch Normalization

CNN Convolutional Neural Networks

CVPR Conference on Computer Vision and Pattern Recognition

FAO Food and Agricultural Organization of the United Nations

FC Fully Connected

FV Fisher Vector

GPU Graphics Processing Unit

ILSVRC ImageNet Large Scale Visual Recognition Competition

JSON JavaScript Object Notation

MB Megabyte

ms Millisecond

NNAPI Neural Networks API

ReLU Rectified Linear Units

ResNet Residual Neural Networks

RMSProp Root Mean Square Propagation

SIFT Scale Invariant Feature Transform

SVM Support Vector Machine

tanh Hyperbolic Tangent

xiii

TPU Tensor Processing Unit

UEC100 UEC Food-100

UEC256 UEC Food-256

USDA United States Department of Agriculture

WHO World Health Organization

WRN Wide Residual Network

XML eXtensible Markup Language

xiv

CHAPTER 1
Introduction

Health is an extremely precious commodity that is often overlooked in the busy-

ness of life. Dietary health in particular is easy to neglect; as life constantly hustles

people from one thing to another, the prospect of a quick-and-convenient meal often

trumps that of a proper-and-balanced one. The unfortunate reality is that a poor

diet can lead to obesity, diabetes, and cardiovascular diseases [1], to name a few;

it is extremely important to avoid such complications as they can further lead to

mortality – for example, diabetes was the 11th leading cause of death in 2002, and

projected to be the 7th by 2030 [2]. Many have taken to diet tracking applications

in a bid to facilitate a healthier lifestyle [3], and while they have been somewhat

effective, they are still often abandoned – prior to meeting set goals – for both un-

specified reasons and for a lack of features [3]; coupled with the growing prevalence

of diabetes [4], there is a clear need for novel solutions to mitigate this growth [5].

Recently, mobile device-based food recognition has been of interest to the scien-

tific community, for its potential to significantly reduce user-made errors – such as

typos or wrong measurements when making manual calorie entries – and improve the

quality-of-life of diet tracking applications. With the re-emergence of convolutional

neural networks (CNNs) [6] facilitating breakthroughs in virtually all computer vision

tasks, food recognition has similarly seen a substantial advancement of its state-of-

the-art results across numerous datasets. In addition, the use of mobile devices as

1

a primary platform is of increasing interest; their growing ubiquity, camera access,

portability, and modest computational capabilities, make them an ideal platform in

many regards. When considered together, these factors make the inception of an

ideal mobile food recognition platform less distant and more realizable.

This thesis takes a step toward an ideal mobile food recognition platform by

exploring numerous methods for further improving food recognition performance;

specifically, various schemes are scrutinized to maximize accuracy while respecting

the memory-and-time constraints a mobile system may impose.

1.1 Context and Motivation

The primary motivation stems from poor dietary health being linked to a myr-

iad of diseases and conditions [1], and that the concern is only growing; current ap-

proaches have been demonstrated to be largely ineffective at mitigating the growth

[3], signifying a need for new and novel methods. In addition, the numerous, worry-

ing trends and statistics that substantiate the growing concern are staggering, and

introduces a sense of urgency in the development of new approaches:

• The number of people with diabetes has grown from 108 million in 1980 to 422

million in 2014; furthermore, there is a more rapid rise in prevalence in middle-

and low-income countries [4].

• Diabetes was the 11th leading cause of mortality in 2002, and projected to be

the 7th by 2030 [2]; it was already estimated to be the 7th leading cause in

2016 [4].

• A healthy diet can delay or even prevent the onset of type 2 diabetes; if already

afflicted, a healthy diet can treat it [4].

2

• Obese subjects consistently under-report their caloric intake by a substantial

degree [7].

More generally, it is the author’s opinion that health is among the most precious

of commodities a person can possess. Certain conditions can cause a large degree of

suffering in those who are afflicted, and may be long-term in duration; treatments

can often be very expensive, with some diseases not having any treatment or cure

as well. To make matters worse, those close to the individual may be negatively

impacted too, where additional stress and worry can be commonly observed. It is

hoped that the findings in this thesis can be of use, however significant or marginal, in

furthering the efficacy and wide-spread adoption of diet tracking applications; more

generally, it is hoped that these findings can demonstrate and advance the perception

that technology can have a large, positive impact on health.

A special mention is made that the approach in this thesis was heavily motivated

by the contributions in [8]. However, while [8] focused on object detection and

segmentation of food items, this work focuses more on image classification techniques,

and in boosting the accuracy of single-item recognition; food items can be inherently

difficult to classify, especially when using parameter-constrained models on mobile

devices.

1.2 Contribution and Thesis Outline

This thesis tackles the problem of poor dietary health by exploring the improve-

ment of on-device food recognition, to further facilitate improvements to the mobile

dietary health applications that many currently rely on. There are several primary

reasons for this approach: first, mobile devices are an ideal candidate platform on

3

which food recognition could be performed, and accommodated to a varying degree

of lifestyles on a global scale, given its portability, ubiquity, and on-device camera;

second, the accurate automation of manual food-entry in diet-tracking applications

would not only improve overall quality-of-life, but also accuracy – primarily from the

elimination of user-made errors; third, the quality-of-life improvements to existing

applications would be non-trivial, and it may have a significant effect on reducing

application abandonment for unspecified reasons, or for lack of application features

[3]; fourth, the accurate-and-efficient implementation of food recognition may serve

as a launchpad for automating other features, such as calorie estimation, that would

further non-trivially enhance the quality-of-life of dietary health applications.

A large portion of this thesis focuses on CNNs for improving food recognition,

which several other works have also explored; in addition, like this work, several

of these also emphasize the importance of using mobile devices. However, they

seldom discuss the prohibitively-high computational cost of standard CNNs, focusing

most often instead on maximizing solely the accuracy at whatever cost, and rarer-

still explore the computational constraints imposed by mobile devices; this work

uniquely places a strong consideration on efficiency by exploring the use of DenseNet

[9] and MobileNetV2 [10], two relatively-recent architectures that explicitly feature

design elements aimed at maximizing both accuracy and computational efficiency –

by utilizing components that also aim to minimize memory-usage and inference-time.

Another major contribution of this thesis includes a novel user habit system that

utilizes dietary history – or user context – to further increase accuracy, by exploit-

ing the uniquely regular and habitual nature of meal consumption. The proposed

4

approach leverages each user’s dietary history – personalizing predictions according

to that user –, and the top-5 classifier predictions, to make a prediction that is most

likely for that particular user. The visual properties of food can make them ex-

tremely challenging to classify – best exemplified by how coffee and Coca Cola are

indistinguishable – and so the proposed method is very important for addressing the

challenges of these cases.

Finally, this thesis proposes guidelines for future effort by considering its ap-

proaches within the larger context of a diet tracking system; the goal of advancing

food recognition is to, at least in part, enable a superior diet tracking application

to what is currently available. In this regard, numerous features, like the aforemen-

tioned calorie estimation, are critical to its efficacy; these orthogonal areas-of-focus

are deeply explored to identify both the scope of their challenges, and their ap-

proaches – present and prospective. Guidelines for future effort are then generated

by contributing both domain-specific and -agnostic discussions based on these find-

ings.

Regarding structure, the thesis is organized by chapter as follows:

• Chapter 2 aims to give background on CNNs, and discuss the DenseNet [9] and

MobileNetV2 [10] architectures – which are employed in this work – at greater

depth.

• Chapter 3 provides background on food recognition, discussing related works

and highlighting CNN-based approaches that constitute the state-of-the-art.

The class variation properties of food are also discussed in detail, to illustrate

5

how they make food recognition more challenging, and how they strongly moti-

vate the proposed user habit system. Chapter 3 further discusses diet tracking

systems at a higher level, identifying and deeply-exploring a subset of relevant

orthogonal topics; while the thesis explores various methods for improving mo-

bile food recognition, it does not discuss much how these tie into an overall

food recognition system. This section complements the approach in this thesis

by providing a reference starting point for the multidisciplinary effort that the

inception of such a system demands.

• Chapter 4 focuses on the methodology of this thesis. It highlights how there is

a lack of practical consideration and exploration in choice of CNN for mobile

food recognition, and proposes various methods to maximize the accuracy of

DenseNet [9] and MobileNetV2 [10]. It also discusses the rationale for the user

habit system in greater detail, and highlights the proof-of-concept experiment

that evaluates and quantifies its advantages. Finally, the runtime-performance

evaluation on mobile devices is discussed for the proposed architectures.

• Chapter 5 provides the corresponding experimental quantification to Chapter

4, along with an appropriate discussion of the results.

6

CHAPTER 2
Convolutional Neural Networks

2.1 Introduction

Convolutional Neural Networks (CNNs) have seen a resurgence in recent times,

outperforming all prior conventional methods in accuracy, and are largely consid-

ered state-of-the-art across a myriad of image recognition tasks. The DenseNet [9]

and MobileNetV2 [10] architectures in particular are noteworthy in regards to food

recognition, due to architectural designs that make them both suitable for mobile de-

ployment and highly accurate at their parameter costs. This section has two primary

aims: the first is to provide the reader with background on CNNs at a more general

level by discussing architectures, components, and techniques that constitute best

practices today – and is motivated by the rapid advancement of the state-of-the-art

from year-to-year; the second is to analyze the design of DenseNet and MobileNetV2

at a deeper level, and highlight how it makes them ideal for performing inference

on mobile devices. These architectures constitute the core CNN approach proposed

in this thesis, and so it is hoped that the background provides sufficient context for

their utilization.

2.2 Historical Overview

CNNs are multi-layered computational models that excel at learning representa-

tions in raw data, and their unprecedented accuracy has largely established them as

state-of-the-art for almost all image classification tasks [6]. While they found their

7

success recently, the foundations of CNNs were developed decades ago. As the name

suggests, CNNs are biologically-inspired pattern recognition architectures with basic

principles drawn heavily from the works of Hubel and Weisel in 1962, whose exper-

iments shed light on how brain cells process vision [11]. The findings, particularly

regarding pattern recognition, were explicitly stated as inspiration by Fukushima in

1980, who introduced the Neocognitron – one of (if not) the first architectures resem-

bling modern feedforward CNNs – as a means to understand how humans recognize

patterns [12]; he created a model that closely resembles the modern CNN in how it

is layered and organized, how it supports unsupervised learning, and how it captures

patterns in a position-invariant way. Shortly after, in 1989-90, LeCun et al. demon-

strated how real image recognition problems can be tackled with such networks; the

backpropagation learning algorithm was incorporated, and a system was designed

that could read handwritten digits in zip codes [13]. In 1998, gradient-based learn-

ing was incorporated in the LeNet CNN, and the system was implemented by banks

to read checks following its successful employment in document recognition [14].

While these contributions helped demonstrate the capability of CNNs, the lack of

computing power and training data proved to be large hurdles until recently, and so

they largely fell out of favor. In 2004, graphics processing units (GPUs) were shown

to significantly improve the speed of neural network implementations by efficiently

performing parallel operations [15], specifically the vector and matrix multiplica-

tions that are critical in CNNs, and helped address the lack of computing power. In

2010, the first ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was

ran [16] in which the public was challenged to minimize image classification error on

8

the large ImageNet dataset [17]; the competition provided a stage to showcase new

developments, while the large dataset addressed the lack of training data.

In 2012, the AlexNet architecture [18] of Krizhevskiy et al. marked the first time

a CNN was entered in the ILSVRC [16]; by significantly outperforming conventional

methods – it had a top-5 error rate of 15.3% versus the runner-up at 26.2% – it played

a large role in the renewed interest in CNNs. Since then, not only have results gotten

significantly better – 2.3% error rate in 2017 ILSVRC – but the state-of-the-art has

also been pushed in other areas such as object detection [19], speech recognition [20],

and semantic segmentation [21]. Additionally, large companies like Microsoft [20],

Google [22, 23], Facebook [24], and Amazon [25] have shown interest in practical

systems with CNNs at the core, and have aided in reinforcing both their commercial

and research relevancy.

2.3 Architectures

A quick search reveals that there are a staggering number of distinct CNN

architectures in literature, with most advancing the state-of-the-art in some way

such as lower error rate and improved memory efficiency. However, arguably the

most influential have been the past ILSVRC entries: they provided key insights into

how CNNs work, and improved both architecture – leading to record results with less

memory and computations – and training techniques – most of which constitute best

practices today. The main contributions of several notable entries will be examined

to contextualize the development of DenseNet and MobileNetV2; specifically, it is

hoped that the discussion demonstrates the evolution of the state-of-the-art, and how

the various findings serve as a design foundation for the aforementioned architectures.

9

2.3.1 ILSVRC Entries

As previously mentioned, AlexNet [18] swept the 2012 ILSVRC, improving the

top-5 error rate of the runner-up by 10.9%, and was instrumental in renewing interest

in CNNs; as a result, although its architecture is largely outdated now, it is still a

basis for many subsequent ones. It promoted the use of several components and

techniques that are still effective today, including Rectified Linear Units (ReLU)

[26], dropout [27], image augmentation, image pre-processing by subtracting mean

activity, and softmax classification with cross-entropy loss. It also granted the base

intuition for transfer learning [28] and further visualization efforts, by providing filter

visualization for the general nature of shallower learned features.

The following year, Zeiler and Fergus [29] published key findings based on re-

finements for their 2013 entry. They eased the burden of training by successfully

using substantially-less data augmentation, and greatly contributed to filter visual-

ization with the Deconvolutional Network; the provided insight was instrumental to

improving filter design, and the authors themselves improved the filter design of the

first layer in AlexNet.

In 2014, two notable entries were made in VGGNet [30] – the runner-up, and

GoogLeNet [31] – the winner. The former showcased the importance of depth by

solely using 3x3 convolutions to maximize it, which in turn demonstrated their effi-

cacy both in reducing parameters and increasing non-linearities for a given receptive

field – a concept the authors introduce. Today, a ubiquitous use of 3x3 convolu-

tions can still be seen, and VGGNet is still occasionally used as a core due to its

relatively simple, but effective, design. Regarding GoogLeNet, its impact remains

10

in how it greatly utilized 1x1 convolutions [32] to improve computational efficiency

by reducing the number of intermediate feature maps, and reduced the number of

parameters by replacing fully-connected layers with global average pooling. It also

introduced the inception module, a unique and efficient design that extracts features

at different scales, which serves as a basis for high-performing architectures including

ever-improving Inception derivatives [33], and Xception [34]. A final note is made

that both entries demonstrated the efficacy of scale jittering in image augmentation,

improving final accuracies by a notable degree.

The following year saw a huge breakthrough with ResNet [35], marking the

first time a single model exceeded human performance [36] with a top-5 error rate

below 5%. The authors developed and used residual skip connections to resolve the

problem of degrading performance with increasing depth; they showcased the ability

to go orders of magnitude deeper than anything to this point – exceeding 1000

layers – and achieved exceptionally-good results with various designs utilizing these

skip connections. The motivating principle stems from explicitly re-mapping the

function the network is expected to learn; instead of learning an underlying mapping

of H(x), it learns the residual. Specifically, the original mapping is reformulated as

H(x) = F (x)+x, and the network is made to learn F (x). The authors hypothesized

that this reformulation may be easier for the network to learn, and possible in that

if the former mapping can be asymptotically-approximated by the network, so too

should the latter. The performance was further improved using pre-activations [37],

especially for the over-1000-layers design; the authors additionally demonstrated the

importance of identity mappings in these skip connections, an important finding in

11

recent literature. Interestingly, despite the ubiquitous use of these skip connections

today, the exact reasoning of why they are so effective remains elusive; there are

many claims [38, 39, 40] that are contrary to the authors’, in particular that improved

gradient flow is an unlikely explanation.

The 2016 ILSVRC saw largely refinements relative to the prior year with ResNeXt

[41] and Wide ResNet [42]; their main contribution was improving performance

through increased width, or the number of filters per layer, due to the diminish-

ing gains of depth. In particular, the former introduced cardinality – splitting the

number of filters in a layer evenly into multiple branches, similar to inception – to out-

perform näıve increases to either depth or width; the authors claim that cardinality

allows layers to learn more powerful representations, and show superior performance

in non-residual counterparts as well. Finally, in 2017, the winning entry utilized

Squeeze-and-Excitation blocks [43] as a modular and cost-effective way of increasing

the representational power of a network; the authors incorporated them into archi-

tectures like ResNet [35] and MobileNet [44] to achieve state-of-the-art performance

at small computational increase, superior to increasing either depth or width.

2.3.2 Components and Methodologies

The namesake of CNNs, the convolutional layer is at the core of any architecture,

and learns effective feature extractions using trainable weights – also called kernels

or filters – that are slid across the input volume; though it typically involves taking

dot products between the weights and the input patch, alternatives such as octave

convolutions [45] are being proposed to improve computational efficiency. For filter

size, most architectures usually have a larger initial one to extract more expressive

12

initial feature maps, with the rest of the network using 3x3 filters to maximize depth,

non-linearities, and minimize parameter usage for a given receptive field [30]; 1x1

convolutions [32] are also commonly seen to cheaply increase depth [35], or increase

computational efficiency by reducing the number of input feature maps [31].

Most architectures halve the height and width of feature maps at deeper layers

using either stride-2 pooling [14] or convolutions [35]; the number of filters in subse-

quent layers are then doubled to maintain a similar level of complexity throughout.

Although pooling is ubiquitously seen, and is relatively cheap to compute, there are

discussions that pooling may be unnecessary and serve to needlessly complicate net-

work architecture [46]. Another important component to almost all architectures is

batch normalization (BN) [47], a trainable layer that performs intermediate normal-

ization; they significantly improve network performance at minimal or no cost, as

the learned parameters can often be folded into preceding convolutional layer weights

[42]. Global average pooling [31, 32] has also largely replaced fully-connected layers

[18, 29] to drastically improve parameter-efficiency, and is usually included once prior

to the final softmax layer.

Explicit inclusion of non-linearity is critical to increasing the representational

capability of a network, as it is only capable of learning linear features otherwise. The

Rectified Linear Unit (ReLU) [26] is by far the most favored due to its often strictly-

superior performance [18] over the conventional hyperbolic tangent (tanh) [48] or

sigmoid [49]; it also mitigates the exploding and vanishing gradient problems [50, 51,

52] which the latter two are susceptible to, with non-saturation often argued as the

primary reason why. While largely advantageous, ReLU neurons can potentially fail

13

if they begin to output zero, since it would be incapable of updating its weights from

the gradient also being zero [53]; thus, alternatives like leaky [53] and parametric

[54] ReLU have been suggested. Despite these suggestions, ReLU remains the most

popular choice, and has empirically continued to perform reliably and effectively.

Beyond architecture, many training techniques have been proposed to mitigate

the difficulty in acquiring the best possible set of weights for a target task; in addition

to convergence challenges, CNNs have a tendency to overfit [18], and so significant

efforts have been made in ensuring a generalized set of weights. Data augmentation

has proven very effective, and is almost always used; common ones include a variety

of photometric distortions [18], and scale variation [30, 31]. Image pre-processing is

typically minimal, with the most common being the subtraction of mean activity per

pixel to “center” the data [18, 35]. Numerous regularization approaches have also

been recommended to address overfitting, including dropout [27] – where neurons are

randomly deactivated – and L1/L2 regularization [55] – to regulate weight updates.

Although it is argued that BN somewhat marginalizes the necessity of regularization

techniques, they continue to prove effective, and newer methods have developed such

as DropBlock [23] and stochastic depth [56] – which can also substantially reduce

training time.

Convergence is another important topic, and without proper initialization, many

networks struggle to converge well; as such, schemes have been suggested to avoid

poor convergence, or in some cases no convergence at all [51, 54]. Recently, transfer

learning – where a network is initialized with previously-trained weights – has proven

extremely effective at accelerating and improving convergence [28], and is widely

14

recommended in all cases that the option is available; it is quite common as there

is a high availability of ImageNet pre-trained weights in circulation, particularly

for most popular architectures like ResNet [35]. Furthermore, it drastically reduces

subsequent training time as the available weights are usually well-converged, as they

are usually derived from extensive training sessions; they also usually facilitate a more

generalized set of final weights, and the fact that most weights are for a different task

is typically advantageous. The base intuition stems largely from visualizations that

initial features are often more generic [18, 29], while deeper features are more specific

to the original task [57]; as such, while one may expect fine-tuning on the target task

to improve performance – especially for the deeper weights, transfer learning has

proven effective even in cases where the weights remain frozen, and is sometimes

advantageous as the network is more generalizable.

A final thing to discuss is in various training process optimizations; it is ubiqui-

tous to see training data processed in batches and mini-batches for time-efficiency,

and the use of an algorithm to optimize the weight update process for better conver-

gence. Updates using vanilla gradient descent, in conjunction with momentum [58],

consistently performs well [18, 35], and usually serves as a basic optimizer; adaptive

methods in root mean square propagation (RMSprop) [59], AdaGrad [60], and Adam

[61] have also seen increased adoption, and success on certain tasks [44]. However,

gradient descent remains the most consistent as the adaptive methods have been

criticized for having marginal value due to not generalizing as effectively [62].

15

2.4 DenseNet

The DenseNet [9], which won best paper at the 2017 Conference on Computer

Vision and Pattern Recognition (CVPR), is noteworthy not just for its superior ac-

curacy over ResNet [35], but also its superior parameter-efficiency. While some prior

approaches considered efficiency, most focused solely on maximizing accuracy [63];

for example, many authors utilized techniques like ensemble methods and multi-crop

testing [35] when reporting their results, and although effective, they are highly im-

practical and expensive. There are several unique design elements to the DenseNet

that facilitate its high accuracy and efficiency; this section aims to highlight these,

and contextualize the choice of DenseNet-121 for the proposed food recognition ap-

proach.

2.4.1 Dense Connectivity

A key contribution to the success of DenseNet is its dense connectivity struc-

ture, illustrated in Figure 2–1. The core intuition involves maximizing efficiency

through re-using intermediate feature maps as much as possible, and is achieved by

concatenating all preceding feature maps at every intermediate layer. The authors

were heavily inspired by the success of ResNet [35], specifically with how identity

connections were instrumental to its success [37] – a finding that is well-corroborated

[39, 40]; by extending the idea, the authors aimed to further improve gradient flow,

and so ease the training process. In addition to improving feature re-use and reduc-

ing redundancy [56], the dense connections improve parameter efficiency by allowing

layers to be made thinner – or in other words, reducing the number of filters per

16

layer. Finally, the authors note that the resulting architecture has a regularizing

effect, and they discuss how it generalizes better on smaller datasets.

Figure 2–1: Illustration of dense connectivity structure. Left: Residual connections
for a residual block, where the feature maps are added after feeding-forward a single
time. Right: Dense connections, where the feature maps are concatenated and fed-
forward to every subsequent block; note that these conv layers are usually thinner –
have less filters – as constant concatenation substitutes for the reduction in number
of feature maps.

2.4.2 Growth Rate

Due to the concatenation of feature maps at each layer, one can think of the

network as having a global state which progressively grows as each layer adds its

17

contribution to it. Thus, a growth rate hyperparameter, k, is defined, and is used

to set layer width – represented by the number of filters – and regulate the rate at

which new information is added to the global state.

2.4.3 Dense Blocks

Dense blocks are separated groupings of layers, which are connected using the

aforementioned dense connectivity scheme. Layers are defined to be of width k, and

implement three consecutive operations resembling pre-activation [37]: BN, ReLU,

and 3x3 convolution. Bottleneck layers are also used to improve computational

efficiency, and are comprised of a 1x1 pre-activation convolution layer of width 4k,

followed by the regular 3x3 convolution layer.

2.4.4 Transition Layers

Transition layers are used to separate dense blocks, and perform down-sampling

of feature maps. A compression factor, 0 < θ ≤ 1, is introduced as a means of

reducing the number of feature maps at the output of a dense block; if the dense

block produces m features maps, the following transition layer reduces it to [θm]

feature maps. By reducing the depth – or number of feature maps – , the network

addresses computational blow-up that arises from constant concatenation of feature

maps, which would otherwise be infeasible in practice.

Transition layers are composed of a 1x1 convolution layer that produces [θm]

feature maps, where θ is the compression factor, and a 2x2 average pooling layer

of stride 2; these operations are used to reduce the depth, and both the height and

width, respectively, of the input.

18

2.4.5 Overall Structure

For this thesis, the DenseNet-121 architecture is explored for its balance between

accuracy and parameter-efficiency, based on ImageNet performance. The overall

structure is depicted in Figure 2–2. The network has a growth rate k = 32, com-

pression factor θ = 0.5, and uses zero-padding to match dimensions. It comprises

an initial 7x7 convolution layer of stride 2 and width 2k, followed by a pooling layer

to further reduce feature map height and width. This is followed by four bottleneck

dense blocks, with 6, 12, 24, and 16 layers respectively, and are all separated by

transition layers. The final classification layer implements 7x7 global average pool-

ing to reduce feature map height and width to 1, and a fully-connected softmax layer

to produce a class prediction. The particular pre-trained weights that are used in

this thesis achieve a 25.03% top-1 single-crop error on ImageNet with 7.0 million

parameters, excluding the softmax layer [64].

19

Figure 2–2: DenseNet-121 structure, with k = 32 and θ = 0.5. Each conv layer is an
implementation of BN-ReLU-convolution, and the initial 7x7 convolution has width
2k. Adapted from [9].

2.5 MobileNetV2

MobileNetV2 [10] is one of the few architectures designed specifically with mo-

bile applications in mind; with this thesis exploring mobile food recognition, the

architecture is of immediate interest. This section highlights the critical design el-

ements that enable the success of MobileNetV2, and discusses the rationale behind

the final choice of architecture.

20

2.5.1 Depthwise Separable Convolutions

Similar to MobileNet [44], MobileNetV2 replaces standard convolution layers

with depthwise separable convolution layers [65] – depicted in Figure 2–3 – to dra-

matically increase parameter and computational efficiency. Convolutions are first

factorized into a depthwise component followed by a pointwise component, and they

learn to capture same-channel and cross-channel features respectively. To illus-

trate how the factorization closely approximates a standard convolution, consider

how standard convolutions sample patches along the height, width, and depth con-

currently; instead of performing these in a single step, the factorization breaks it

down into two – where the depthwise convolution first samples along the height and

width, followed by the pointwise convolution that samples along the depth. As pre-

viously mentioned, depthwise convolution layers are used to improve computational

efficiency; to highlight the performance gains, the computational cost of standard,

depthwise, and pointwise convolutions are given, respectively, by [44]:

DK ·DK ·M ·N ·DF ·DF

DK ·DK ·M ·DF ·DF

M ·N ·DF ·DF

where stride one and padding is assumed, DK is the kernel size, DF is the feature map

size, M is the number of input channels, and N is the number of output channels.

The computational reduction, represented by the ratio between depthwise separable

21

and standard convolutions, is thus given by [44]:

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF

DK ·DK ·M ·N ·DF ·DF

=
1

N
+

1

D2
K

Considering a kernel size of 3, there is approximately 8 to 9 times less computa-

tion with depthwise separable convolutions, with only a small reduction in accuracy

[44].

Figure 2–3: Comparison between standard and depthwise separable convolutional
layers. Left: Standard 3x3 layer, with batch normalization (BN) and ReLU. Right:
Depthwise separable 3x3 layer, which first performs 3x3 depthwise convolution fol-
lowed by 1x1 pointwise. The former is followed by BN and ReLU6 [66]; the latter
by BN and regular ReLU. Adapted from [8].

22

2.5.2 Linear Bottleneck

Bottleneck layers typically utilize 1x1 convolutions [32] to improve computa-

tional efficiency by reducing the depth of an input volume [31, 35]. Most approaches

also use these layers to introduce more non-linearities in the network – including a

ReLU either before or after the convolution – to increase its overall representational

power. However, the authors [10] claim that the additional non-linearity is actually

detrimental to performance, and instead opt for linear bottlenecks by removing the

ReLU. In addition to empirical evidence [10, 67], they also provide a supporting

explanation; generally, one can think of bottleneck layers as transforming the input

information such that it is represented in a lower-dimensional subspace, where the

subspace has a lower depth. When the difference in depth is sufficiently large, the use

of ReLU – which sets all negative values to zero – can instead destroy a significant

amount of information such that it leads to impaired performance. Interestingly, they

note that the reduction is less noticeable when shortcut connections are present.

2.5.3 Inverted Residuals

The ground-breaking results of ResNet [35, 37] demonstrated the importance of

identity shortcut connections in improving performance; thus, they are also used in

MobileNetV2. However, instead of conventional residual blocks, the shortcut connec-

tions are made between bottleneck layer outputs instead, as depicted in Figure 2–4;

these connections not only improve the memory efficiency of the network, but also

the accuracy [10]. The primary motivation stems from the fact that the reduced,

23

linear output of the bottleneck layers contain all the necessary information with re-

spect to their unreduced input, and so the inverted residual block can be used to

greater success.

Figure 2–4: Comparison of standard and inverted residual blocks. Left: Standard
block featuring identity shortcuts between expansion outputs. Right: Inverted block
featuring identity shortcuts between bottleneck outputs.

2.5.4 Width Multiplier

A width multiplier, α, is introduced – originally used in MobileNet [44] – to

modify the output depth of each layer to αN , where N is the original depth; another

view is that the width multiplier adjusts the number of filters per layer. Reducing

the width has the effect of increasing computational and parameter efficiency by

approximately α2 [10], but at the cost of accuracy; likewise, increasing the width

24

improves accuracy at the cost of efficiency. The original network is retained with

α = 1.

2.5.5 Structure

MobileNetV2 uses bottleneck residual blocks as its primary building block; it

first performs 1x1 convolutions to expand the depth from k to tk – where t is the

expansion factor, followed by 3x3 depthwise convolutions to capture same-channel

features, and final 1x1 convolutions to both capture pointwise features and apply

bottlenecks. The former two introduce non-linearity specifically with ReLU6 [66]

instead of ReLU, for its robustness in low-precision calculations [44], while the latter

remains linear as discussed in Section 2.5.2. The full structure is depicted in Figure 2–

5; excluding the very first layer, the network is built using bottleneck residual layers,

with all but the first one using an expansion factor t = 6. The first layer in each

sequence of layers is responsible for downsampling via strided convolution.

For this thesis, the network is as discussed but with a width multiplier α = 1.4

applied; the higher width allows for greater accuracy that makes it more comparable

to DenseNet-121. The pre-trained weights that are used achieve a 24.77% top-1

single-crop error on ImageNet with 4.4 million parameters, excluding the softmax

layer [64].

25

Figure 2–5: Full MobileNetV2 structure, adapted from [10]. t denotes the expansion
factor, c the number of output channels, n the number of layers in the sequence, and
s the stride of the first convolution in the sequence of layers. The depicted structure
has width multiplier α = 1.

26

2.6 Frameworks

Numerous frameworks are available for developing and training CNNs, including

Caffe [68], TensorFlow [69], Keras [64], and PyTorch [70]. TensorFlow has been a

notably popular framework, developed by Google, and it implements many perfor-

mance optimizations through its focus on building static computational graphs; as

such, it is also well-suited for distributed training paradigms. However, many have

felt that the barrier to entry is quite high, and the static, low-level nature makes it

relatively difficult to debug and iterate quickly; as a result, Keras – a higher-level

API that often functions as a TensorFlow wrapper – has risen in popularity for its

ability to greatly simplify the process of creating and training a network – to the

extent that TensorFlow has further built on top of Keras. PyTorch, which is devel-

oped by Facebook, has also recently risen in popularity, and its focus on dynamic

graphs eases the debugging process and facilitates faster iteration; that said, Tensor-

Flow now also has an eager execution mode which runs more dynamically, and offers

similar benefits to PyTorch.

While there are implementational differences between the various frameworks,

the choice was widely thought to come down to personal preference, with many claim-

ing that there were only small differences in either the training process or network

performance at inference time. However, recent benchmarks [71] have revealed that

there are notable performance differences between them, depending on the hardware

and architecture used; while such differences may be relatively unimportant for re-

search purposes, it can matter in real-world deployment – especially if the CNN is

used for real-time classification. Additionally, various hardware may further restrict

27

choices due to lack of compatibility, such as with Google’s tensor processing units

(TPUs) [72] – although support is growing for other frameworks like PyTorch and

Keras, and not just for TensorFlow. Finally, it is important to consider that not

all frameworks officially support mobile deployment, making it prudent to choose a

framework that would simplify the process. TensorFlow Lite [73] supports deploy-

ment and inference on both Android and iOS devices, while CoreML [74] supports it

on iOS; as such, the model should be convertible into these formats when developed

using the chosen framework.

28

CHAPTER 3
Food Recognition

3.1 Introduction

The World Health Organization (WHO) found that diet is a key factor in nu-

merous complications including obesity, diabetes, and cardiovascular diseases [1];

as such, a significant effort has been made in studying how to encourage people

to adopt healthy diets. In particular, interest has been shown in understanding the

potentially-positive effect of technology on managing these conditions, and numerous

studies have been conducted to analyze how to maximize user adoption of associated

applications [3, 75, 76]. In the specific case of diet-tracking applications, there is a

prevalent reliance on manual self-reporting to record the food intake of users [77, 78],

which unfortunately introduces a significant source of human error; the result is large

inconsistencies from potential misinputs of measurements, typos, or simply no inputs

at all, all of which can drastically reduce the efficacy of the associated applications.

As a result, food recognition has long been of interest to the scientific community,

largely for its potential in improving both the performance and overall quality-of-life

of diet tracking applications. Two general types of approaches can be commonly

seen: one focuses largely on object detection methods to facilitate fast, accurate

classification of numerous food items in a single image [8]; the second – which this

thesis explores – focuses on improving the accuracy of single-item classification, which

in turn serves as a backbone for the former. While convolutional neural networks

29

(CNNs) have greatly improved food recognition accuracy, most approaches have

not fully considered their employment with mobile devices in mind – particularly

in terms of runtime performance and efficiency. Thus, the following sections have

several aims: the first is to provide context and background by discussing various

works that demonstrated state-of-the-art performance using CNNs; the second is

to highlight the difficult nature of food classification given inherent class variation

properties; the third is to analyze, at greater depth, a variety of research areas –

their current and future approaches – that would facilitate a wide-scale improvement

to dietary health. Regarding the second in particular, it will be demonstrated in

Chapter 4 how the proposed user habit system – which incorporates contextual user

information to improve classification accuracy – is highly effective at addressing the

problem, and how it has the potential to yield substantial accuracy gains.

3.2 Related Work

Prior to the resurgence of CNNs, food recognition – and image classification in

general – relied significantly on the use of hand-crafted methods for feature extrac-

tion; Scale Invariant Feature Transform (SIFT) [79], Fisher Vectors (FV) [80], and

bag-of-features [81] could be commonly seen in conventionally-successful approaches

[82, 83, 84, 85], and a large problem pervaded these efforts in that there exists a

strong dependence on domain-specific knowledge to maximize the strength of these

extracted features.

Following its success in 2012, many in the food recognition community began

taking note of the efficacy of CNNs in not only learning to extract strong features

30

automatically, but in using them to outperform manual methods in classification ac-

curacy. With transfer learning [28] – and the release of public food datasets including

Food-101 [86], UEC Food-100 [87], and UEC Food-256 [88] – serving as enablers for

further investigations in the food recognition domain, numerous approaches have

since been proposed that demonstrated the efficacy of CNNs over these traditional,

manual methods. In [89], the AlexNet [18] architecture was used to improve classifi-

cation between ten food classes acquired from public images, while in [90], it served

as a superior feature extractor, on both UEC datasets, for training one-vs-rest lin-

ear classifiers; its effectiveness was further improved following pre-training on an

extended 2000-class subset of ImageNet [17].

With the efficacy established, more approaches shifted focus toward other CNN

architectures for improving accuracy: GoogLeNet was used in [91] to improve accu-

racy on the UEC and Food-101 datasets; the Inception-v3 architecture [33] pushed

accuracy even further in [92] for these same datasets; Nutrinet [93], a CNN archi-

tecture specific to food, was inspired by AlexNet, and showed competitive results

with other architectures like ResNet [35] on a custom dataset; the wide ResNet [42]

was adapted with a wide-slice branch in [94], comprised of a domain-specific design

aimed at capturing layered food traits, and was coupled with ten-crop testing [18] to

further improve accuracy on the UEC and Food-101 datasets.

In tandem to these efforts, increasing interest is being shown toward utilizing

mobile devices for food recognition [82, 83, 91, 95, 96]; these devices are ideal for the

task as they are typically equipped with a camera, have increasing computational

capacity, and are both ubiquitous and portable. Although the aforementioned works

31

Figure 3–1: Wide-slice Residual Network, adapted from [94].

32

Figure 3–2: Examples of food items in the UEC Food-100 dataset [87] comprising a
layered structure

successively utilized novel CNN architectures to improve accuracy, they do not em-

phasize the importance of computational efficiency – which is important to consider

given the computational limitations of mobile devices. To illustrate, while the wide-

slice residual network [94] substantially improves upon accuracy, it does so at a large

increase in parameters and computational operations, as well as the employment of

ten-crop testing. These are highly demanding options, and the limited capabilities

of mobile devices render them infeasible in most practical scenarios. Nonetheless,

great strides continue to be made in the domain, such as with the release of new

datasets like ChineseFoodNet [97] and the consideration of food recognition systems

at a larger scope [95, 98].

3.3 Challenges in Class Variation

Food items are inherently difficult to classify due to their class variation prop-

erties. First, to highlight the issue of low intra-class variation [94], oftentimes the

only difference between burger and cheeseburger is a single slice of cheese; without

proper training, representational power, or computational capacity, a CNN may be

33

unable to consistently differentiate between these classes. Even if the classifier is suf-

ficiently trained to do so, the high similarity between these classes may lead to a top

prediction that is marginally incorrect, leading to an overall guess that is incorrect.

However, by far the most problematic consideration is that certain items are visually

indistinguishable, such as coffee or Coca Cola, making it virtually impossible for the

CNN classifier to differentiate these without an external form of accommodation.

Second, to highlight the issue of high inter-class variation [93], numerous meals

and dishes – represented as classes in CNNs – can be cooked in a myriad of differing

ways, and a single class can thus exhibit a large amount of variation in its repre-

sentation. As such, there is a need to account for numerous variations of a single

class, and having to account for all of them is exceedingly difficult; it is almost im-

possible to train on all the different home-cooked representations of numerous meal

classes – such as stew or sandwich – and the difficulty is accentuated by how such

representations are constantly evolving with time.

Thus, it is clear that a scheme is required to address these class variation prop-

erties if large advances are to be made in food recognition accuracy. Personalization

constitutes one such scheme, and the nature of meal consumption makes it more-

easily exploitable; by using contextual information – such as the user’s dietary history

– to limit the expected classes to those that are common for the particular user, it

is less likely that the classifier incorrectly predicts the depicted food item. The user

habit system proposed in Chapter ref4 demonstrates the potential efficacy of such

a scheme, and presents a step toward a more ideal system that is generalizable to a

myriad of different lifestyles.

34

3.4 Diet-Tracking Systems

While this thesis explores various avenues for improving mobile food recognition,

it is important to reiterate that it is just one facet of facilitating dietary improvement;

current approaches rely primarily on mostly-manual diet tracking processes, which

are not very effective – as previously discussed [7, 75]. Thus, it is likely that several

critical features – including automatic calorie estimation and mobile food recognition

– will need to be consolidated in order to sufficiently-improve diet-tracking proce-

dures, such that they facilitate larger-scale dietary improvement. In exploring current

approaches, there is an evident trend that diet-tracking applications, such as MyFit-

nessPal [77] and MyFoodDiary [78], are seeing some widespread use and adoption;

this observation reinforces the notion that automatic food recognition alone may be

insufficient in creating a large impact. In addition, there are several considerations

– such as the scalability of the proposed classifiers, or the emergence of potentially-

enabling technologies like edge computing [99] – that are important to discuss when

considering practical diet-tracking systems, due to a high likelihood of them being

vital to practical implementations.

This section will demonstrate how the challenge of building an ideal diet-tracking

system is ongoing, multi-faceted, and arduous; it will also alleviate some of the chal-

lenge by identifying significant works – across a variety of domains – that are critical

to enabling future diet-tracking systems. Specifically, this section discusses how these

advancements are excellent starting points for future work in each respective domain,

and contributes its own practical considerations and recommendations that should

be kept in mind when moving forward.

35

3.4.1 Calorie Estimation

Calorie tracking is necessary to all current diet tracking applications; as such,

automatic calorie estimation is of interest as it pairs naturally-well with automatic

food recognition, and alleviates the general tedium associated to current calorie-

tracking processes. In addition, the automation of calorie estimation also eliminates

sources of human error, similar to the case of food recognition. The feature is itself

a composite of several others, which will be discussed below.

Volume Estimation

To estimate the calorie content of a depicted meal, a common method involves

pairing its apparent volume with its dietary information to calculate the correspond-

ing caloric value; however, the process of volume estimation remains very challenging.

Most current methods require a 3D reconstruction of the food item to facilitate vol-

ume estimation, which typically requires additional steps than just a single image:

DietCam [82] mandates the use of three images spaced about 120 degrees apart; [100]

defines templates from pre-defined models of common shapes like cylinders, and spe-

cific irregular shapes like pears, to apply to the depicted food item; [101] utilizes a

video recording to extract multiple views of the food at different angles; and [102]

requires two images, in addition to the food on an elliptical plate and a credit card-

sized reference next to it. A commonality among these methods is that the extra-step

required is some form of external calibration, which adds a layer of inconvenience

to them; in this regard, [96] takes a large step toward mitigating inconvenience by

demonstrating how a mobile phone alone is sufficient for calibration. However, with

that said, trade-offs still have to be made as very specific steps are required, and there

36

still exists inconvenience to the end-user; however, these nonetheless serve as a start-

ing point toward an ideal implementation, and effectively highlights the continued

efforts to push the efficacy of volume estimation techniques.

Nutritional Information

As previously discussed, automatic calorie estimation is widely considered a two-

part process of pairing volume and nutrition information; as such, a food database is

vital for retrieving the latter for a myriad of food items. Numerous entities includ-

ing the Food and Agricultural Organization of the United Nations (FAO) [103], the

United States Department of Agriculture (USDA) [104], and Health Canada [105],

have published official nutritional information based on their own findings; addition-

ally, commercial databases such as those by Nutritionix [106] and MyNetDiary [107]

are also provided, and can be accessed via provided application programing interfaces

(APIs).

Although nutritional information is widely available, there are several challenges

to utilizing it properly; for one, the nutritional content of food can vary depending

on the region and country from which they are sourced. Additionally, some classes

such as cheeseburger can be composed of a differing variety of ingredients, which can

complicate accurate-estimations due to the need to account for multiple valid rep-

resentations of a single class. That said, these issues may not be significant for the

purposes of a rougher estimate – or for loosely keeping track of calorie consumption

– especially when considering the problematic nature of manual entry [7]; however,

some users may still prefer manual correction for more fine-tuned control, and a

consideration should be made in the implementation of post-estimate modifications.

37

Another effective option may include pre-defining numerous caloric values for differ-

ent incarnations of a class of food, giving the user more control should they desire

without introducing problems from manual entry.

Finally, there is consideration to be made in how database queries may lead to a

large latency bottleneck, and a dependence on the availability of mobile data – which

a mobile food recognition approach aims to avoid, or at least mitigate. A strategy

then could be to implement an offline database of the classifiable food items directly

on the mobile device – perhaps saving the data as text in an easy-to-parse format

such as eXtensible Markup Language (XML) or JavaScript Object Notation (JSON)

– and periodically revise it through application updates; although a full nutritional

database may be extremely large, a limited selection constituting classifiable foods

is likely lightweight, and can feasibly be locally-stored on the device itself.

3.4.2 Classifier Scalability

An ideal classifier should be capable of recognizing any depicted food item,

leading to an implication that it be capable of discriminating between thousands of

classes comprising all food items and dishes across the globe – spanning a variety of

different cultures and countries; for instance, when considering just Chinese, Indian,

and Italian cuisines, each has hundreds if not thousands of different dishes, not taking

into account basic items like fruits and vegetables, while further not accounting

for the numerous valid representations of a single meal. As the number of classes

increases, so too may the classification difficulty; after all, a CNN aims to learn

an accurate representation of the underlying relationship in a given task, and it is

reasonable to assume that this gets more difficult as the number, and variation, of

38

classes increases. In addition, from the results provided in Chapter 5, it is likely that

there may be a limit in the complexity a parameter-efficient CNN may be capable

of learning; as such, there is a trade-off to consider between increasing the capacity

of the network to accommodate the increase in difficulty, and reducing computation

to keep the network efficient.

As a result, it is prudent to investigate other avenues to extend the capabilities

of mobile classifiers. First, there is the straightforward consideration of develop-

ing even more efficient architectures, aiming to improve upon current ones such as

MobileNetV2 [10], and increasing the number of parameters to accommodate the

increased difficulty in learning representations. Second, a post-classification scheme

such as the proposed user-habit system (see section 4.5) can bolster accuracy without

relying as heavily on learned-representation strength. Third, classes can be carefully

curated and bundled such that they are sufficiently discriminable, to perhaps re-

duce the complexity of the learnable-representation; for example, all burgers and all

rice-based dishes could be trained into their own single classes, reducing the need to

discriminate between a large number of similar-looking classes. Lastly, several spe-

cialized classifiers could be trained for pre-defined subsets of food categories, such as

one for fast food and another for Chinese dishes, to once again manage the under-

lying complexity; however, it is non-ideal in that a large amount of storage may be

needed for numerous sets of specialized weights.

A final note is made to acknowledge the difficulty in actually acquiring a suffi-

cient amount of training data, and curating them appropriately. A manual approach

is very time-consuming and expensive, while a programmatic method – where images

39

are searched up for pre-chosen classes – may likely come with noisy images, and the

requirement of legal procedures to ensure the usability of the chosen images. Perhaps

an ideal method involves the union of manual and programmatic approaches, with

varying amounts of each depending on the target use case.

3.4.3 Continuous Training

To briefly expand upon classifier scalability, the food classifier needs to be con-

stantly trained to maintain, or even increase, its accuracy; as such, it is prudent to

consider schemes that can continually train said classifier. A powerful server may be

utilized, equipped with the appropriate hardware – such as a cluster of GPUs, for

example – that would come with a large, one-time cost; however, the server might

also need to be maintained, and may come with a longer-term monetary and time

cost. A cloud-based approach like Google Cloud [108] – which also provides access

to TPUs [72] for considerable training-time speedups – may also be taken, but may

be more expensive in the long-term; there may also be associated privacy concerns

when keeping data in the cloud. Regardless of the approach, weight updates can be

periodically made at pre-determined training epochs, and deployed to users through

application updates.

3.4.4 Object Detection

In an ideal scenario, a user should be able to take a single picture of their meal

– comprising all its dishes and side-dishes – and have each component accurately

recognized and classified. As such, it is prudent to investigate various object detection

methods, which is critical to enabling such functionality [8]; the approach proposed

in this thesis is highly relevant as it can be very-naturally extended to substantiate

40

the core, or backbone, of most object detection methods. Two-stage methods such

as Faster R-CNN [109] and R-FCN [110] have typically exhibited high accuracy on

various object detection datasets, and are also computationally-improved compared

to older methods [111]. On the other hand, single-stage methods are usually much

more computationally-efficient, and may thus be better suited to mobile deployment;

that said, while YOLO [19, 112] and SSD [113] are significantly faster and more

lightweight than two-stage methods, they do suffer a bit with reduced accuracy. More

recently, SSDLite [10] has been proposed to further push computational efficiency

at additional, marginal accuracy cost, while RetinaNet [114] sacrifices some of the

computational efficiency of single-stage methods for accuracy comparable with two-

stage methods.

Although object detection naturally extends the food recognition capabilities

of the classifier, consideration must be made with respect to volume estimation,

where most proposed approaches are specific to a single food item. The presence

of multiple food items may complicate the procedure, and as such, it would be

necessary to investigate schemes to extend volume estimation by adapting them to

multiple items; a straightforward method involves performing volume estimation for

each isolated item following their segmentation.

3.4.5 Dietary Analysis

While diet tracking constitutes the core of food diary applications [78], they

usually provide a host of other attractive features, which users may find enticing,

that also serve to facilitate increased usage and adoption of said application. As these

features presently are, they typically perform some form of dietary analysis which

41

serves to provide metrics, encouragement, and goals to the user; it is readily-apparent

that all such features would naturally extend the capabilities of the improved diet

tracking system as previously discussed. To illustrate, caloric intake reduction could

be calculated, and presented to the user on a week-by-week basis; the availability

of such a metric, and consequently its improvement over time, may facilitate the

encouragement of users who take proactive steps to improve their diet. Similarly,

another example includes healthier food recommendations that may be provided to

users based on their consumption habits, to facilitate an easier transition into a

healthier diet; however, more influential recommendations like this should be done

with care, and likely by a nutritionist or someone similar, as such recommendations

should be made with caution, and dietary norms in mind.

3.4.6 Edge Computing

Mobile devices are inherently limited in computational capacity due to their

portable nature, and so cloud computing is a natural consideration when deploying

a CNN classifier; in this thesis, it was noted that both the increase in latency, and

reliance on data-availability, are undesirable, while the accuracy and parameter-

efficiency of the proposed CNNs makes them a superior option. That said, increasing

interest in edge computing [99, 115] and mobile edge computing [116, 117] reveals

a lower-latency alternative, as it aims to bring cloud-like computational capabilities

closer to network edges, and the finding that parameter-constrained networks may

be too limited in representational strength opens consideration toward the possibility

more. When coupled with the need to ensure the scalability of the classifier, an edge

computing-based paradigm may offer sufficient advantages over mobile deployments.

42

The benefits of edge infrastructures are largely the same as the cloud: there is

increased computational budget that enables the use of not only larger CNNs, but

also expensive methods like ensembles and multi-crop testing to boost accuracy; the

potential availability of specialized hardware may lead to faster inference times by

optimizing numerous CNN operations; benefits may be observed in battery life by

offloading a good portion of computations; and the dietary history of a user may

be simultaneously stored in the cloud when sending pictured meals to the server for

recognition.

With that said, there remain problematic aspects to the approach. First, it is

more expensive than the embedded approach, which may only have cost associated

to training the CNN; in this scenario, there is additional cost both in terms of data

usage for the user, and server upkeep for the service provider. Second, the reliance

on network-availability is re-introduced, and it may be a burden on the user to

maintain; the issue of increased latency may also remain if the inference time is

not sufficiently reduced, or if the edge server is still too physically distant from the

network edge. Third, security concerns are introduced as personal data needs to be

sent to the server for classification. Finally, there is a burden on the service provider

to ensure that numerous user requests may be simultaneously served as their devices

will no longer be used for classification; the greater concern is when considering how

meal consumption creates periods of high network traffic – like lunch or dinner –

while remaining almost non-existent at other times. As such, it is likely that further

research needs to be done before opting into an edge-based approach.

43

3.5 Summary

This section provided context and background for food recognition, and dis-

cussed various other CNN-based approaches; the inter- and intra-class variation

properties of food items were also highlighted, along with how they lead to inher-

ent classification difficulties. In addition, future orthogonal areas of focus were also

discussed in how they may benefit diet-tracking as a whole, and fully leverage the

advantages that automatic food recognition enables. There are several things to note

before proceeding to the following chapters: the first is that the wide-slice structure

[94] is further explored within the context of mobile food recognition, as it achieved

the highest accuracy on the UEC Food datasets [87, 88] and is purposefully designed

to learn layered features inherent to many food classes; the second is that the class

variation properties serve, in part, as motivation in the development of the user habit

system. To elaborate on the latter, it is likely that the classifier’s accuracy may be

misleadingly low due to incorrect classifications by a small margin; in other words,

although the correct class may not be its most confident guess, it is likely present

among the top ones. As such, with user context to facilitate, there is a very accessible

option to not only simply, but effectively improve classifier accuracy; this observation

is leveraged by the user habit system, and is discussed in greater detail in Chapter

5.

44

CHAPTER 4
Design and Methodology

4.1 Introduction and Overview

The convolutional neural network (CNN) is now core to almost all image clas-

sification tasks, due to its outperforming of conventional methods by a significant

margin; some of these previous methods include Scale Invariant Feature Transform

(SIFT) [79] and Fisher Vectors [80] – for feature extraction and representation [118]

– and support vector machines (SVMs) – for classification [119]. Although CNN ar-

chitectures, and training techniques, are studied extensively in literature, relatively

little has been done in the context of food recognition. Current methods for diet reg-

ulation – such as manual-entry food diaries [78] – have been ineffective at combating

dietary health concerns that only continue to grow [5]. As such, there is a clear need

for novel improvements to current approaches, which food recognition facilitates with

its potential to drastically reduce user error, and improve quality-of-life, for associ-

ated applications (see Chapter 3). In particular, there is much interest in exploring

mobile food recognition [82, 83] due to the ubiquity of mobile devices – and their

access to a camera, portability, and modest computational capabilities.

Before proceeding, a special note is made that for this chapter, the denotation of

“I” will be used to indicate specific contributions made by the author; the purpose is

to explicitly highlight author contributions, and to avoid ambiguity that may result

from third-person phrasing.

45

That said, while numerous efforts have emerged to demonstrate how CNNs

considerably improve food recognition accuracy [91, 92, 94, 93], there is scarce fo-

cus on mobile feasibility; specifically, CNN approaches are, often and inherently,

computationally-expensive to implement, and there are considerations – such as

runtime efficiency, or optimal performance on less-powerful hardware – that need

to be appropriately made. Thus, I identify and focus on several of these consider-

ations, and devise various methods to address them. First, I propose a user habit

system to improve the accuracy of food classifiers; to briefly elaborate, I recognize

and explore the potential of user context for addressing extreme difficulties – which

others have noted [93, 94] – that may arise in food recognition, such as with visually-

indistinguishable classes like coffee and Coca Cola. Second, I propose the use of

DenseNet [9] and MobileNetV2 [10] architectures for mobile food recognition, to

improve the parameter-efficiency of CNN-based classifiers without losing much ac-

curacy – which the aforementioned user habit system further supplements; current

approaches rarely consider the former, which is necessary to facilitating practical

and immediate utilization on mobile devices. I also explore various approaches for

common training techniques, such as image augmentation and fine-tuning, to max-

imize accuracy; to briefly elaborate, I was motivated to do so by the intuition that

the smaller parametric capacity may lead to less overfitting tendencies, and thus a

different set of best practices that diverge from conventional approaches. Lastly, I

run the proposed architectures on a mobile device, and quantify and highlight their

46

runtime benefits. In terms of organization, this focuses primarily on the methodol-

ogy and rationale, while Chapter 5 provides the corresponding results, evaluations,

and discussions.

4.2 Dataset Choice

To evaluate the accuracy of the proposed networks, I train and validate them

on the UEC Food-100 (UEC100) [87] and UEC Food-256 (UEC256) [88] datasets;

I choose these for their abundance of labelled food images, and their use in similar

evaluations across several related works [91, 93, 94, 82, 120] – which I utilize for direct

comparisons to better highlight the advantageous of my proposed approach. Other

benefits of the datasets include the provisioning of corresponding training-validation

splits – which I organize the datasets by, in order to improve the consistency of

reported results – and the inclusion of bounding box information, the importance of

which is elaborated on in image pre-processing.

4.3 Architecture Choice

Diet-tracking applications are naturally moving toward mobile-based platforms

due to the advantages of mobile devices in ubiquity, portability, camera access, and

(modest) computational capacity; as such, there is a strong need to explore on-mobile

CNN usage to facilitate local food classification. In addition, although computational

capacity continues to improve at a rapid rate, mobile devices are inherently limited

in this regard due to their portable nature; thus, CNNs need to respect the compu-

tational constraints of mobile devices while also remaining highly accurate.

Unfortunately, as CNN accuracy continues to increase, so too does the compu-

tational cost – typically via increased depth or width [42, 94] – as it is often required

47

to facilitate the improved performance. Additionally, numerous approaches predom-

inantly focus on maximizing accuracy by whatever means; as such, it is common to

observe the use of impractical techniques like ten-crop testing [94] – which length-

ens inference by roughly a factor of 10 – or ensemble methods [31] – which greatly

increases parameter usage from requiring multiple CNN instances. Therefore, in

addition to pursuing accuracy, I explore the use of parameter-efficient architectures

to help bridge the gap between current approaches, and practical implementation; I

specifically investigate DenseNet [9] and MobileNetV2 [10], which are explicitly de-

signed for both accuracy and efficiency, and briefly elaborate on these choices in the

following sections. In addition, I note that detailed information on the architectures

is provided in Chapter 2.

4.3.1 DenseNet

I choose to explore the DenseNet [9] for mobile food recognition as it is one of

the most parameter-efficient architectures for which pre-trained weights are avail-

able – the importance of which I elaborate further in the training methodology; I

specifically begin with the Keras 121-layer DenseNet, which has roughly 7 million

parameters excluding the final softmax layer, and a top-1 single-crop error rate of

25.03% on ImageNet [64]. To briefly highlight its key design elements, a significant

enabler for its parameter-efficiency is its densely-connected structure which, in ad-

dition to improving information flow – as discussed in section 2.4 –, also greatly

reduces parameter usage by enabling the use of thinner layers – meaning to have

less learnable filters – throughout the network. The reduction of learned feature

maps is compensated by the dense connections, which feed-forward all intermediate

48

feature maps such that the input volume to every subsequent layer is richer and

more-expressive; the result is a network that maintains its competitive accuracy de-

spite being more parameter-efficient. Its strong performance is best encapsulated by

how it outperforms ResNet [35], with superior accuracy and less parameters, across

numerous datasets when trained identically [9].

4.3.2 MobileNetV2

I choose to explore the MobileNetV2 [10] architecture for similar reasons to

the DenseNet; it is one of (if not) the most parameter-efficient architectures for

which pre-trained weights are available. I specifically choose the MobileNetV2 with

width multiplier α = 1.4; it features a parameter count of about 4.4 million when

excluding the final softmax layer, and a top-1 single-crop error rate of 24.77% on

ImageNet [64]. While a lower width multiplier would be more runtime efficient, this

particular incarnation is more accurate and closer in parameter-cost to the DenseNet-

121; as such, this particular choice also allows for a fairer comparison between the

two. It is important to note that the pre-trained MobileNetV2 actually strictly

outperforms the DenseNet on ImageNet, and so its use is of particular interest. To

briefly discuss its design, its efficiency stems from design choices that specifically

target mobile applications; these elements include depthwise separable convolutions,

inverted bottleneck residual connections, and linear bottlenecks – as discussed in

section 2.5.

4.3.3 Mobile Wide-Slice Branch

While I primarily explore DenseNet and MobileNetV2, I also explore the wide-

slice branch [94] for extracting features more relevant to food; the primary motivation

49

stems from its contribution to one of (if not) the highest reported classification

accuracies on the UEC Food datasets [87, 88]. To elaborate, it employs the use

of a wide-slice kernel design to explicitly learn layered features that are inherent

and indicative of numerous food classes like burger ; although its wide-slice design

is highly atypical in literature, it is demonstrably-successful for food recognition,

and so I decide to explore the wide-slice branch further. Additionally, the branch

is utilized by affixing it in parallel to a main network – in the case of [94], the

wide residual network (WRN) [42] – and so I attempt to similarly replicate and

analyze its success. In implementing the branch, I discover that its parameter cost

is, unfortunately, prohibitively expensive, and thus I propose an efficient re-design;

to illustrate its expense, we first consider the number of parameters in the wide-slice

convolutional layer that has 320 kernels of width 224, height 5, and 3 input channels:

320 · (224 · 5 · 3) = 1, 075, 200

where when affixed to DenseNet and MobileNetV2, would increase network size by

about 15% and 24% respectively. In addition, as the feature vector (FV) output of

the wide-slice branch is concatenated with that of the main branch, it also increases

the parameter usage of the following fully-connected (FC) layer. To determine this

amount, we first consider the size of the FV following the max-pooling layer of width

1, height 5, and stride 3 – which further has an input volume of width 1, height 222,

and depth 320. Each feature map outputted by the max-pooling layer has a width

of 1, and a height given by:

1 +
222− 5

3
= 73.33

50

which is either rounded to 73 – by ignoring the leftover pixels, or 74 – by padding

for the missing values. As a height of 73 is stated, the total size of the (flattened)

FV is given by:

320 · 73 = 23, 360

which is then subsequently concatenated with the FV of the main network, and

fed into the following fully-connected layer. The original design uses a 2048-neuron

fully-connected (FC) layer following the concatenation operation, and thus has a cost

of:

23, 360 · 2048 = 47, 841, 280

which is several times larger than either the DenseNet or MobileNetV2, and infeasible

for mobile deployment. Even if we assume the omission of the 2048-neuron FC layer,

and a best-case of feeding directly into a 100-class FC layer, we still get a cost of:

23, 360 · 100 = 2, 336, 000

which remains a significant increase to either proposed networks. While I consider

omitting the FC layer and investigating the branch as is, I do not find the benefits to

be sufficiently-significant to warrant the cost; to elaborate, I find the benefits of the

wide-slice branch to likely stem from a regularizing effect to the core network. [94]

evaluates the wide-slice branch performance and reports a low standalone accuracy

for it; however, they also demonstrate that it increases the top-1 accuracy of the

WRN by about 3%. The results indicate that while the wide-slice branch may

not necessarily learn strong and discriminative representations, they still facilitate

an improvement to accuracy when coupled with a core network that does; these

51

results are more-easily explainable by a regularizing effect to the main network that

improves generalizability, and overall accuracy on the validation set. As such, I am

motivated to propose a computationally-efficient re-design that is more suited to

mobile deployment.

I first halve the number of filters to 160 in the convolutional layer, which in

turn halves its parameter cost; while I consider smaller sizes, reduction by a larger

amount may degrade performance too significantly – especially given the very-large

receptive field of the filters. Next, noting the presence of overlap in pooling to

be much-less significant than computational feasibility, I increase the max pooling

stride from 3 to 5, and further reduce the height of the pooling layer output to 44.

Finally, I use two average pooling operations of height 22 and width 1, to condense

the resulting FV of size 44 into an FV of size 2; I thus obtain a final (flattened)

FV of size 320. I use global average pooling to condense each feature map into

a single value due to its common employment for such tasks – as in the case of

DenseNet and MobileNetV2; however, I use two due to concerns that averaging 44

values would dilute the information too significantly, and to avoid shrinking the FV

size too drastically such that its representation is too insignificant a component in

the final concatenated FV. I evaluate the efficacy of this proposed scheme by affixing

it in parallel to both proposed networks to create wide-slice variants, and evaluate

these in tandem with their vanilla variants.

4.4 Training

The accuracy of the CNN classifier is highly dependent on the training process;

however, the procedure is often complicated as CNNs typically exhibit a strong

52

tendency to over-fit, commonly learning to predict their inputs perfectly while failing

to be as accurate on the validation set. Thus, I explore the use of various training

techniques - guided by best-practices as discussed in Chapter 2 – to maximize the

accuracy of the proposed networks on the UEC datasets.

4.4.1 Image Pre-Processing

Following the common trend in numerous publications [9, 18, 35], I pre-process

the images by removing the mean pixel activity and normalizing their values. To

remove the mean – which serves to lessen the potential impact of factors like image

brightness – I calculate per-pixel channel means across the training dataset, explicitly

excluding the validation set to keep the data fully separated; to normalize – which

may hasten convergence, though is not strictly required – I divide by 128 to acquire

a range of 2. In addition, I note that I consider normalizing by dividing by 256,

but opt to avoid any possible precision issues, however likely, that may arise from

limitations in floating point representation.

I further pre-process each image by extracting ground-truth crops using the

provided bounding box information, due to the presence of multiple food items in

numerous images that may negatively impact training and evaluation. I also serialize

the resulting data into .tfrecords format to speed up the training process – by not

having to pre-process multiple times, and to input the data more efficiently; in seri-

alizing, I include both the pre-processed ground-truth crops, and their corresponding

labels. I further segment these into five distinct files, corresponding to the provided

dataset splits, and use the val4 split for validation and the remainder for training.

53

4.4.2 Image Augmentation

Image augmentation has been empirically demonstrated to improve accuracy

in virtually all cases, improving network generalization and supplementing training

data [18, 35, 94]. I propose and evaluate three different approaches:

1. The image is first randomly (50% of the time) flipped horizontally to acquire

reflection invariance, and the smaller side is resized to 256 pixels to facili-

tate random sampling. The brightness, contrast, and saturation are randomly

adjusted with a delta of 0.15, 0.2, and 0.3, respectively, to apply desirable pho-

tometric distortions as per [18, 35]. Five central patches are then sampled at

five different scales, evenly distributed from 40-88% of the image, and resized to

the original image dimensions; this introduces scale and resolution invariance,

and is motivated by previous success [31, 121]. Then, a random 224x224 crop

is taken for each of the five samples, followed by three random 224x224 crops of

the original image, to introduce translation invariance and to capture all edge

data in non-square images [18, 94]. The post-flip, pre-distortion image is finally

cropped and padded as necessary to 224x224 to actually train on undistorted

data, and results in a total of nine training images.

2. The second approach is identical to the first, excluding scale augmentation.

Specifically, the image is also randomly flipped, resized to have smaller side 256,

and photometrically-distorted. However, instead of sampling at five different

scales, eight total 224x224 random crops are taken – to mimic the successful

scheme in [94]; as with the prior approach, the original image is resized via

crops and pads, and also results in nine total training images.

54

3. The third approach is based on [122], which successfully trains using only a

single augmented image comprising all transformations. Specifically, this ap-

proach extends the first by also randomly-flipping, resizing, and photometrically-

distorting the original image; five samples are then also produced at multiple

scales. However, only a single one of these is chosen at random, and added to

the training dataset. This scheme is of particular interest as it manages to train

the network on all desired transformations while only increasing dataset size

by a factor of 2. Additionally, it is hypothesized that a milder augmentation

scheme may be beneficial, as the proposed architectures have significantly-

smaller parametric capacity with respect to counterparts [18, 30, 35], and may

not struggle as much with overfitting.

To include a baseline result, I also train without augmentation. Finally, I also

note that I performed preliminary experiments where scheme 1 originally sampled

eight multi-scale samples, instead of the proposed five-with-three-random-crops; I

omit these results due to extremely-poor accuracy. To briefly discuss, since scale

sampling was much more aggressive by starting at 20% instead of 40%, I may have

introduced too much distortion due to significant noise when scaling-up these small

samples to the original image size. The issue may have been further exacerbated by

the fact that some original images were of very-small size, from 60 to 80 pixels per

side, and are already very-distorted when scaling up. As such, the choice of starting

at 40% scale sampling is largely motivated by this result. Furthermore, the result

partly-motivates my proposal of scheme 3 as well, since I felt that overfitting – in

55

this case – may not be as significant a concern as it typically is; thus, I was interested

in exploring and quantifying the intuition further.

4.4.3 Transfer Learning and Fine-Tuning

I considered the availability of pre-trained ImageNet weights to be of paramount

importance in the selection of architecture, as the benefits of transfer learning are

ubiquitously documented in literature [28, 91, 94]; it is a critical component to not

only converging to a good set of weights, but also to do so significantly quicker.

I begin with pre-trained weights using the Keras [64] applications package, and

use TensorFlow [69] for implementation as its flexibility facilitates investigation of my

data augmentation schemes. I replace the ImageNet fully-connected (FC) softmax

classification layer with new 100- and 256-output ones, corresponding to UEC100

and UEC256 respectively, and initialize them using the He normal initializer [54];

I note, however, that initialization is less important here as it is only for a single

layer, since the rest of the network is already pre-trained. I then train solely the

new layers to complement the pre-trained weights in acquiring good, discriminative

features. I report the corresponding training and validation accuracies, with respect

to a randomly-initialized network, in Chapter 5 – over a predetermined number of

epochs.

Once the networks are trained, I further explore fine-tuning an increasing num-

ber of weights by unfreezing their values – starting with the deepest 25% of weights,

up to 100% of them; the motivation stems from the observation that shallower layers

typically learn more generic features, while deeper ones specialize [29, 57]. I am fur-

ther motivated by noting that the small parametric capacity of the proposed networks

56

may indicate less difficulty in overfitting, and that their parameter-efficiency may per-

haps be due to more inherently-generalized representations that the corresponding

architectures enable; as such, full fine-tuning – which may typically lead to overfit-

ting – remains of interest to explore. I also note that I only explore fine-tuning after

training the new classification layer, as gradient updates from a randomly-initialized

layer may completely undo the well-learned representations of transfer learning; that

said, full fine-tuning can technically be done as soon as the accuracy begins converg-

ing well, and without waiting for it to plateau as in this case. I share the resulting

accuracy of a variety of fine-tuning prescriptions in Chapter 5.

4.4.4 Optimization

To make my methodology more consistent with related works, I use a similar

optimization scheme as [94]. Specifically, weight updates are performed using batch

gradient descent with momentum 0.9, initial learning rate 0.1, and learning rate de-

cay 0.0005. Furthermore, the learning rate was step-decayed to 0.002 and 0.0004 at

epochs 25 and 45 respectively, with training occurring over either 50 or 60 epochs.

The network is trained using a tensor processing unit (TPU) [72] via Google Colab-

oratory [123], to facilitate less time-consuming exploration of the various proposed

training schemes. Regarding batch size, although a setting of 64 is chosen, its re-

sulting size is 512; to explain, TPUs are optimized for larger ones by design, and it

further multiplies the chosen size by eight – one for each core – to perform training

more efficiently.

57

4.5 User Habit System

Food items are inherently difficult to classify due to challenging class variation

properties as mentioned in section 3.3. To demonstrate, examples from the UEC256

dataset include the presence of numerous classes of rice dishes that vary slightly

from one another, such as chicken rice, fried rice, and pilaf, while classes like sashimi

can include numerous different cuts of fish including salmon, tuna, and butterfish,

which can increase the difficulty of learning good, discriminative features. The class

variation issue is further highlighted in considering that there are an innumerable

number of ways to cook a dish, making it almost impossible to comprehensively train

a network to detect every possibility. To highlight the extent to which this issue may

be problematic, certain items in real-life may look virtually identical, such as Coca

Cola and coffee, and it is impossible to consistently classify such items from visual

information alone.

To address the issue, I propose a novel user habit system that utilizes user

context – specifically, their dietary history – to improve accuracy, by biasing and

personalizing classifier predictions based on the specific user. The method is pri-

marily inspired by two observations: first, that top-5 predictions for most CNNs are

often very accurate – DenseNet121 and MobileNetV2 (α = 1.4) exceed 92% on Ima-

geNet [64], while [94] illustrates how most CNNs exceed 90% on the UEC datasets;

and second, that meal consumption is uniquely habitual in nature, with people often

exhibiting preferences to certain meals at different times of day – oft-repeated on a

week-to-week basis. To further clarify, there is usually an observable pattern in the

58

timing, and the contents, of a user’s meal consumption. Specifically, regarding tim-

ing, most people eat their meals at set times of day that correspond to the popular

denotations of breakfast, lunch, or dinner; regarding contents, people often favour

certain dishes over another, and may not consume some foods at all. Additionally,

there are further habitual considerations in the restaurants a person may like to fre-

quent, the dishes they typically cook at home, and the consumption of previous-day

leftovers, for example. Considering these factors as an aggregate, especially over the

course of a period of time like a month, it is very likely that there exists an under-

lying pattern for every individual that is both observable and exploitable, such that

it can be leveraged for increasing food recognition accuracy.

4.5.1 System Description

Based primarily on the above, the proposed approach comprises a system –

depicted in Figure 4–1 – that first builds a dietary history for the user; it does so by

recording the label, mealtime (such as breakfast or lunch), and day-of-week, whenever

food recognition is performed. As the system is increasingly utilized, this history

becomes progressively rich and detailed such that it more accurately encapsulates

the user’s habits, and provides sufficiently-meaningful context for personalizing food

predictions. The system then utilizes this information by modifying the prediction

scores of the classifier such that the contextual information is accounted for, and

chooses a final prediction corresponding to the best resulting score. Specifically,

context multipliers are computed for each of the top-5 classes following a classification

request; each context multiplier is then applied to each corresponding softmax value

to obtain the new set of scores, and the system chooses the class corresponding to

59

the highest score. The following paragraphs will further elaborate on the context

multiplier, and discuss several implications of the proposed system.

The context multiplier, c, is applied to softmax scores via multiplication in order

to modify their values, and is computed as follows:

c = 1 + s(i1 · fday,mealtime + i2 · fmealtime + i3 · fothers), i1 + i2 + i3 = 1

where 1 is included to account for the original softmax score, s is the strength

coefficient which modulates the multiplier’s impact, the various i are importance

coefficients that sum to 1 and determine how indicative their associated frequencies

are to the user’s habits, and the various f are frequencies that represent how often

a predicted food class appears in the user’s diet on the same day and mealtime, the

same mealtime, and the other mealtimes, respectively. Generally, the interplay of i

and f are used to facilitate profiling different types of habitual users, with values for

i chosen such that they are representative of users that may consistently eat fried

rice on Wednesdays, or consume leftovers for lunch the following day, for examples.

To elaborate, the proof-of-concept experiment features a hypothetical user that

follows a repeated weekly pattern in meal consumption; specifically, they consume the

same food items repeated every seven days. A full depiction of their diet can be found

in Table 4–1. For this profile of user, the frequency of a certain food class previously

appearing on the same day and mealtime is an important indicator to their eating

habits; as such, it follows that a higher importance coefficient should be assigned

to this frequency. Similarly, the hypothetical user also exhibits a regularity to food

items consumed for each meal; for example, food items consumed at breakfast (meal

60

Figure 4–1: Overview of the proposed food recognition system incorporating user
habits, where c is the context multiplier. Top-5 predictions are utilized by modifying
their softmax scores as per c, and dietary history is progressively built with each
food classification request – where the mealtime (time), day-of-week (day), and label
are recorded.

1) are not seen being eaten for dinner (meal 2), and vice versa. It follows that the

importance coefficient for the same-mealtime frequency should thus be high as well,

but not as much as the previous frequency. In addition, the frequency of the food

class appearing at different mealtimes should still offer an impact, albeit minimal, as

there remains a chance that they may break from routine for a day or two moving

forward. This hierarchy of importance is the primary motivation for ensuring they

sum to 1, as it is the ratios between them that are important – as opposed to the

raw magnitude. Thus, the final derived form is as follows:

c = 1 + s(0.8 · fday,mealtime + 0.15 · fmealtime + 0.05 · fothers)

61

Although the above accurately captures the hypothetical user, it is reasonable

to assume that most people would not follow a similar, strict routine, and it is

important to be able to finetune the various importance coefficients to fit different

profiles of users. While non-ideal, it may be prudent to allow users to adjust these

settings in a convenient way; for example, they may pick from pre-defined profiles

for which corresponding importance coefficients are pre-determined, or can be asked

to select slider values for certain questions like, “how often do you eat the same

dish, the same day, on a weekly basis?”. Alternatively, the use of an algorithm

to retroactively analyze various properties of the dietary history may be effective

in determining optimal settings in an automated, programmatic way, that avoids

having to rely on manual user entry. These are discussed further in the results and

conclusions.

Meal Day1 Day2 Day3 Day4 Day5 Day6 Day7

1
sushi miso

soup
miso
soup

teriyaki
grilled
fish

teriyaki
grilled
fish

egg roll sushi
bowl

udon
noodle

sashimi sashimi chicken
rice

chicken
rice

green
salad

mixed
rice

2
tempura
udon

beef
noodle

mixed
rice

pilaf fried
rice

pilaf fried
rice

sushi
bowl

chicken
cutlet

sirloin
cutlet

sirloin
cutlet

sashimi
bowl

beef
noodle
soup

chicken
cutlet

Table 4–1: Sample proof-of-concept diet

62

Proceeding to the proof-of-concept, the considered week-long diet is as depicted

in Table 4–1, as previously mentioned; it features the hypothetical user consuming

two meals a day, each consisting of two different food dishes, for a total of 28 different

food items. This week-long diet is repeated 4 times to extend it to a month-long

sample, and includes a large degree of repetition to properly simulate a habitual user.

For pre-processing each image, the bounding box is not considered in the evaluation

despite being trained with them, in order to increase the difficulty and challenge in

classifying the images; however, the per-pixel channel means are subtracted from

each image to be consistent with how the CNNs were trained. To input the images

to the CNN, they are resized such that the smaller side is scaled, and the larger

centrally-cropped to 224 pixels; in addition to compatibility, it also incorporates a

degree of practical consideration as this is a likely implementation method for feeding

inputs into the classifier. For image selection, only images in the validation set are

chosen to ensure the classifier was not trained on them, and high-similarity groups

of classes, such as rice and cutlet classes, are intentionally selected to increase the

classification difficulty via low inter-class variation. In addition, several of the chosen

images feature several food classes per single image, and are purposefully chosen to

make the recognition task more difficult.

Regarding the classifier, the top-N results of the CNN will be considered, for both

N=5 and N=10. Regarding the choice of strength coefficient, s, various values are

considered to determine how much biasing is required to improve the top-1 accuracy;

while it is clear that larger s would increase the amount of bias, it is prudent to

consider the minimum required amount for high accuracy to ensure the classifier

63

output does not become largely-negligible, and unable to account for deviations in

eating habits. The results are reported and discussed in Chapter 5.

4.5.2 Similar Approach

A special section is dedicated to discussing a comparable finding made in parallel

to devising this system, and to highlight differences and advantages in my proposed

approach. [98] also demonstrates the importance of context for boosting classification

accuracy, specifically using factors like time-of-day; it reports results that indicate

how context and, to a degree, personalization of the classification results is highly

effective for increasing accuracy. It shares similar motivations – such as addressing

the challenge of visually-indistinguishable items like regular and diet Coca Cola – to

further emphasize the necessity of context, and even notes the importance of similar

factors like food consumption frequencies, as I do in this work.

That said, [98] deviates in its methodology with respect to what I propose. For

example, they emphasize meals with multiple food items, and rely on co-occurrence

statistics between food items to increase confidence in certain classes; interestingly,

as my approach is specific to single-item classification while theirs seems more suited

to object detection methods, both can be used in conjunction with each other for

further gains. In addition, they relieve the user of any required inputs, which is

ideal and may not necessarily be true for my proposition – as discussed in the prior

section. However, my system is advantageous in that it is more lightweight, simpler

to implement, more flexible, and more modular. Specifically:

• Their system requires an explicit learning model to learn the user preference

over time. This imposes larger restrictions on the mobile device.

64

• Their system is not fully offline on the mobile device, requiring network con-

nectivity. As such, it is also less flexible and portable.

• Their system is tailored to a controlled environment, further reducing flexibility.

• Their system is much more complex and computationally intensive, which may

be non-ideal for on-device mobile classification.

4.6 Mobile Benchmarks

As the goal is to facilitate mobile deployment of CNNs, I specifically evaluate

the runtime performance on a mobile device; in this regard, the runtime memory and

inference time of the classifier is of notable importance, and I thusly evaluate both

the DenseNet and MobileNetV2. It is important to note that since they are typically

not as accurate as larger architectures, they need to be sufficiently advantageous

in these regards. As such, I also similarly evaluate the runtime performance of the

Inception-v3, which serves as an apt direct comparison – for reasons I make clear

throughout Chapter 5 – to provide a baseline comparison to alternatives.

In the choice of device, there are numerous developments that are significant

to the runtime performance of the classifier; namely, of current significance is the

availability of the Neural Networks API (NNAPI) [124], and a GPU – with the

former being specific to Android devices. Like non-mobile systems, a GPU is critical

to computational speed-ups from hardware that facilitates optimization of vector

operations that are often performed in CNNs, while the NNAPI implements many

optimized operations that drastically speed-up computations. As such, I specifically

consider the use of a CPU-only device, as it is ideal for inferring more-generalized

conclusions that are relevant to present times; it is likely that most devices today

65

would not feature the availability of the NNAPI or GPU, as they require newer

smartphones as a pre-requisite. I fully detail the experimental setup, including the

device details, in Chapter 5, where I also discuss the results of the benchmark.

66

CHAPTER 5
Experiments, Results and Discussion

5.1 Experimental Setup

This chapter discusses the various experiments and results that quantify the

methodology as outlined in Chapter 4. All convolutional neural network (CNN)

experiments were run using Google Colaboratory [123] on the tensor processing unit

(TPU) backend to have access to the hardware for dramatic speed-ups in iteration

time. All code pertaining to the CNNs were written in Python 3.6.2 using both

graph-based and eager-execution TensorFlow [69], version 1.13.1, and TensorFlow-

wrapped Keras [64], version 2.2.4-tf, respectively. Numpy [125], version 1.16.2, was

also used to facilitate the image pre-processing and augmentation. For the mobile

evaluation, experiments were conducted on a Samsung Galaxy S7 device, model SM-

G930W8, running on Android Version 7.0 and at API level 24; in addition, it is

explicitly noted that this device did not have access to the Neural Networks API

(NNAPI) [124], nor a GPU, for computational speed-ups.

5.2 Transfer Learning

To empirically, and briefly, verify the positive affects of transfer learning, the

DenseNet was randomly initialized using He initialization [54] and trained for the

same number of epochs as a pre-trained network using ImageNet weights [64] on

the UEC Food-100 (UEC100) dataset. For both approaches, scheme 1 was used for

67

image augmentation (see section 4.4.2), and the optimizer settings were identical

for both (see section 4.4.4). The results are shown in Figure 5–1.

Figure 5–1: Accuracies for pre-trained and random-weight DenseNet on UEC100,
using augmentation scheme 1

As can be easily observed, the accuracy converges to a much better value with

transfer learning than with random initialization of weights, in the same amount of

time. The observation is consistent with the well-documented benefits of transfer

learning, and is not a surprising outcome. The rate-of-increase for random initial-

ization is significantly slower than in the case of the pre-trained weights, and may

be exacerbated by scheme 1 – which will be later shown to be non-ideal for either

proposed network. The training accuracy curves are a bit strange in shape as well,

in particular for transfer learning which has a rapid plateau that dips a bit when the

learning rate drops; the augmentation scheme may again be a factor, as a similar

shape is seen in the other results to follow.

68

Summary of training approach

Transfer learning ImageNet weights

Image augmentation ?

Fine-tuning ?

Table 5–1: Summary of final training approach up to this point, given transfer
learning results

5.3 Image Augmentation

To evaluate the image augmentation schemes as discussed in Section 4.4.2,

each scheme was used to train the FC softmax layer of the pre-trained DenseNet

and MobileNetV2. The wide-slice versions of each of these were omitted due to

time concerns with the training process, and so just two networks were evaluated for

each scheme. The networks were trained on both UEC datasets, and the results are

depicted in figs. 5–2 to 5–5. Additionally, it should be noted that several experiments

are not depicted that investigated these schemes in tandem with the various fine-

tuning approaches proposed in the following section; these undepicted experiments

are consistent with, and thus also somewhat encourage, the discussion to follow.

The most striking observation is that both networks trained well with no image

augmentation, facilitating second-best and best validation accuracies on UEC100

and UEC256, respectively. The high training accuracy indicates that the network

did indeed begin overfitting on the training dataset, as expected, but still achieved

top-two validation accuracies despite this. In terms of image augmentation, scheme

3 performed the best by achieving the highest validation accuracy on the UEC100

dataset, albeit by a small margin; however, it allowed the networks to generalize

69

Figure 5–2: Training and validation accuracies for DenseNet121 on UEC100 for each
image augmentation scheme.

better, and can be seen by how the training accuracies more closely followed the

validation accuracy curves.

Surprisingly, the networks performed much more poorly with more image aug-

mentation, and can be seen by how scheme 1 and scheme 2 – both with a total of 8

augmentations – achieved the lowest validation accuracies by about 5 to 10 points.

In addition, scheme 2 exhibited a large amount of overfitting with its high training

accuracy across all configurations, though scheme 1 generalized better with its lower

training accuracy and even dropped below its validation accuracy on UEC100.

There are several ways to interpret these results; for one, the architectures may

have less overfitting tendencies to begin with, as evidenced by their competitive

70

Figure 5–3: Training and validation accuracies for DenseNet121 on UEC256 for each
image augmentation scheme.

Figure 5–4: Training and validation accuracies for MobileNetV2 on UEC100 for each
image augmentation scheme.

71

Figure 5–5: Training and validation accuracies for MobileNetV2 on UEC256 for each
image augmentation scheme.

accuracy on ImageNet despite having less parameters. In fact, the findings here were

later found to be consistent with those in [44], where less data augmentation was

used to successfully train MobileNet; in addition, the authors claim that this was due

to smaller models having less trouble, in general, with overfitting. Interestingly, they

corroborate their observations further by noting how they found distortions from

small crops to be troublesome as well, similar to the preliminary iterations of scheme

1 (see section 4.4.2). It is also important to consider how the use of pre-trained

weights may have set the network at a highly generalized baseline to begin with,

meaning less need to combat overfitting to start with; this may also aid in explaining

the degraded performance of the network when employing the heavier augmentation

72

schemes, as further generalizing the already-generalized weights may not allow the

smaller network to fit on the target task sufficiently-well.

A second consideration should be made in how the training procedure was not

fully explored. For instance, training may have benefitted from different augmen-

tation schemes, where perhaps a single image encompassed a single augmentation,

such as solely positional-translation or brightness-shift. In addition, other optimizers

such as RMSProp [59] may have been more effective at increasing convergence, as

it was in [10, 44] for training MobileNet and MobileNetV2; thus, the exploration of

various hyperparameter settings for each of these optimizers is important as well.

Finally, it is possible that different combinations of optimizer-augmentation pairings

may yield greater gains, though it would be fairly time-consuming to fully explore.

It is prudent to consider all these factors, but it is left to future work due to time

constraints.

Nonetheless, the proposed networks seem to be capable of being trained effec-

tively with minimal augmentation following the use of pre-trained weights, which

is highly desirable due to the implications in reduced training time and faster ex-

perimental iteration; there is reduced burden on expensive hardware for training

purposes, and more time is granted toward exploring optimizations for the target

task.

Summary of training approach

Transfer learning ImageNet weights

Image augmentation Scheme 3

Fine-tuning ?

Table 5–2: Summary of final training approach up to this point, given image aug-
mentation results

73

5.4 Fine-Tuning

To further bolster the benefits of transfer learning, some amount of fine-tuning is

usually required on the target task. Conventionally, the shallowest layers are usually

kept frozen as the learned representations are typically more generic in nature [29],

and this greatly assists in preventing the network from overfitting and experiencing

accuracy degradation. As a result, these weights are almost always left untouched,

while the deeper layers are sometimes fine-tuned to better capture the features in the

datasets of interest. However, due to the possible implications of the smaller param-

eter usage in the chosen networks, they may atypically benefit from fully unfreezing

all layers and allowing the weight updates to propagate throughout the network.

To evaluate these different fine-tuning prescriptions, the DenseNet model was

fine-tuned on both UEC100 and UEC256; however, it should be noted that the fully-

connected softmax layer was already partially trained to avoid gradients from its

random initialization from destroying good pre-trained weights. The results can be

found in Figure 5–6 and Figure 5–7 for both UEC100 and UEC256 respectively.

It should be noted that although MobileNetV2 was not fully evaluated due to time

concerns, several unmentioned experiments were conducted on them to verify the

consistency in observed behaviour across all networks.

From the results, there is a clear trend of increasing validation accuracy as more

weights are unfrozen in the network, up to 100% of them, on both datasets. The

observation here is consistent with prior discussions and observations, where the

smaller parametric capacity may explain the observed tendency to not struggle as

much with overfitting, and has implications in the choice of training techniques that

74

Figure 5–6: Ratio of layers fine-tuned for DenseNet on UEC100 with no augmentation

Figure 5–7: Ratio of layers fine-tuned for DenseNet on UEC256 with no augmentation

75

would typically be problematic for larger networks. The additional fact that transfer

learning initializes the weights to good, more-generalized representations may also

play a factor in why full fine-tuning is beneficial for DenseNet.

Summary of training approach

Transfer learning ImageNet weights

Image augmentation Scheme 3

Fine-tuning All weights

Table 5–3: Summary of final training approach up to this point, given fine-tuning
results

5.5 Final Results

The networks were trained to acquire their accuracies for comparisons to other

approaches; as such, the prescription used was based on the best results from the

preceding sections. All models were trained using transfer learning, starting from

the ImageNet pre-trained weights; the final FC-softmax layer, and wide-slice branch

convolutional layer, had weights initialized using He initialization [54]. The networks

were first trained using image augmentation scheme 3 with the pre-trained weights

frozen – to train for non-random values in the initialized parameters –, and the

optimizer as defined in section 4.4.4. Following this, the networks were fully fine-

tuned, where all the weights were unfrozen, using the same procedure. It should

be noted that a more efficient training scheme could technically be used, but due

to the process of acquiring results for the various section, some redundancies in

the training process resulted; as such, there were intermediate saved weights that

allowed for training to proceed more quickly, which was a large concern due to time

constraints. To elaborate, training with the weights frozen could have been done in

76

less epochs, and unfreezing the weights could have been incorporated into a single

training procedure instead of starting-and-stopping twice. Regardless, the single-

crop accuracy plots are reported for each network on both UEC100 and UEC256 in

Figure 5–8 and Figure 5–9 respectively, with final values reported in Table 5–4.

Figure 5–8: UEC100 single-crop validation accuracies for proposed networks

Regarding accuracy curves, the DenseNets consistently converged faster than

both MobileNetV2s, with the wide-slice variant converging notably sooner in the case

of the latter on the UEC100 dataset; other than this, there is not much difference

between the vanilla and wide-slice flavors of the networks. The DenseNets appear

to have converged quickly on UEC100, while the MobileNetV2s seem to require

additional epochs as the curves only just begin to plateau, indicating that there

may be more performance gains given longer training. Additionally, the learning

77

Figure 5–9: UEC256 single-crop validation accuracies for proposed networks

curve was much smoother for the DenseNets, especially in the first 10 epochs, while

the MobileNetV2s possess more sporadic curves that are not as monotonic. On

UEC256, the DenseNets once again converged fairly quickly, but interestingly, so do

the MobileNetV2s – as indicated by the larger plateau. Additionally, although the

DenseNet curves are a bit more sporadic initially, the validation curves are generally

quite smooth. In general, it seems that the MobileNetV2s may have had a harder time

learning than the DenseNets; a possible implication is that the smaller parametric

capacity mandated learning more specific representations than the ImageNet weights

provided, and with greater specificity than DenseNet required, which would further

imply the need for MobileNetV2 to have more-strongly fine-tuned weights.

78

Dataset DenseNet MobileNetV2 Wide-slice
DenseNet

Wide-Slice
MobileNet

UEC100 82.6% 79.5% 82.1% 79.5%
UEC256 68.2% 66.5% 68.5% 66.8%

Table 5–4: Final top-1 single-crop accuracies for the proposed networks

Regarding final accuracies, the DenseNet, wide-slice DenseNet, MobileNetV2,

and wide-slice MobileNetV2, achieved 82.6%, 82.1%, 79.5%, and 79.5% on UEC100

respectively, and 68.2%, 68.5%, 66.5%, and 66.8% on UEC256 respectively. In gen-

eral, the DenseNets outperformed the MobileNetV2s, although the accuracies are

only 2-3% less; this result can be explained by the higher parametric capacity of the

DenseNets, where larger networks typically converge to better accuracies [94]. On

UEC100 however, the MobileNetV2s only just began converging as described above,

and the discrepancy may be reduced given longer training time. The models per-

formed notably worse on UEC256, being 12% lower in final accuracy; this may be

explained by a need for increased parameters to capture a more complex underly-

ing relationship from the introduction of challenging classes to differentiate between,

such as pork loin cutlet and pork fillet cutlet, and the presence of more classes in

general that may further complicate the underlying relationship.

Regarding the wide-slice branch, it is important to reiterate that it is thought to

improve classification accuracy of food items due to its purposeful design in capturing

wide-layered features that are indicative of food classes like burger. Despite the strong

results in [94], it did not seem to yield much benefit here; on UEC100, it actually

reduced DenseNet accuracy by 0.5% and had no effect on MobileNetV2, while on

79

UEC256, it only increased accuracy by 0.3% on both architectures. As a result, there

are several implications that are important to consider.

First, the efficient re-design proposed in this thesis – which is necessary as the

original is too computationally-demanding – may have rendered the branch ineffective

due to reducing the convolutional layer width and output feature vector size too

drastically; thus, either it is necessary to craft the re-design more carefully, or simply

consider it an option too demanding for mobile deployment. Second, it should be

reiterated that although [94] reported strong results, the accuracy for the standalone

branch was very low; in addition, it is well-established that most large CNNs exhibit

overfitting concerns, and the efficacy of various generalization methods including

batch normalization, dropout, and image augmentation, help further cement this

claim. With these observations, and the reasonable suggestion that the success of

the wide-slice branch may come primarily from a regularizing effect as opposed to the

strength of its extracted features (as per section 4.3.3), it is likely that the benefits

were marginal due further to the findings that smaller networks in general do not

struggle as much with overfitting; to reiterate, the claim is corroborated in [44]. As

for the performance increases on UEC256, it may have come simply from a general

increase in the number of parameters available to the networks; the larger number

of classes may require a more complicated representation to be learned, which the

increased parametric capacity may have accommodated to show a beneficial increase.

The results in [94] help support the observation; for example, the reported accuracy of

Inception-v3 on UEC100 is very similar to the results in this thesis, but the disparity

on UEC256 is notably larger. These observations may indicate that it is likely the

80

size of the network should be chosen based on the modelling difficulty of the target

task, and it has important general implications for the mobile deployment of CNNs:

1. There is a need for even more parameter-efficient architectures that are capable

of learning stronger, more discriminative features.

2. There is a need for greater computational capacity on mobile devices. Larger

memory capacity would enable the use of larger CNNs to model more com-

plex tasks, and although processing was not discussed, it would enable faster

inference.

3. There is a need for schemes that can leverage the superior top-5 accuracies of

CNNs.

5.6 Efficiency and Performance Comparisons

While larger networks may perform better on food recognition [94], their signif-

icantly larger memory cost makes them non-ideal for mobile deployment, which has

limited computational capacity. Thus, a large consideration in the use of DenseNets

and MobileNetV2s comes from the advantages they offer in parameter reduction,

and increased parameter-efficiency; that said, the classifier still needs to be accurate,

and so these not coming at a large accuracy cost is important to consider as well. To

facilitate discussion of these factors, the parameter count of similar approaches are

obtained, and listed alongside the published accuracy and architecture of the respec-

tive works in Table 5–5. The following paragraphs will first detail the procedure

employed in acquiring these values – as they were not always provided –, discuss how

they are used to quantify the parameter-efficiency of the various networks, and dis-

cuss the final results altogether. A note should be made that the wide-slice variants

81

are not evaluated in this section, primarily due to the negligible impact they had

and to streamline the comparisons to follow.

Network Top-1
(UEC100)

Params
(UEC100)

Top-1
(UEC256)

Params
(UEC256)

AlexNet [120] 57.9% 58.7M N/A N/A
GoogLeNet [91] 77.2% 6.1M 63.8% 6.2M
AlexNet+OVA
[90]

78.8% 58.7M+ 67.6% 59.3M+

Inception-v3
[92]

81.5% 22.0M 76.2% 22.3M

ResNet-200
[94]

86.3% 67.1M 79.1% 67.4M

WRN [94] 86.7% 40.0M 79.8% 40.1M
WISeR [94] 89.6% 90.3M 83.2% 90.7M
DenseNet-121
(proposed)

82.6% 7.1M 68.2% 7.3M

MobileNetV2
(proposed)

79.5% 4.5M 66.5% 4.8M

Table 5–5: Comparison of various CNN-based results with respect to the proposed
approaches

To calculate the parameter cost of a network, the most common process involves

computing parameters primarily for three layer types: convolutional (conv), batch

normalization (BN), and fully-connected (FC). BN is typically ignored in estimates

as their cost is relatively negligible, and optimization techniques such as “folding”

can be used to incorporate them into preceding or following conv layers such that

they have no associated cost at inference time. The cost of a conv layer is given by:

(k2 · di + 1) ·N

82

where k is the conv filter size assumed to be symmetric, di is the depth of the input

feature maps, N is the number of filters, and 1 is for the bias term; however, it should

be noted that bias can usually be omitted for most modern networks due to the use

of BN layers. In addition, the parameters in an FC layer is given by:

ni · (no + 1)

where ni is the size of the input feature vector, no is the number of neurons corre-

sponding to the number of output classes, and 1 is for the bias term in each neuron.

Although most modern networks have dropped typical FC layers in favor of global

average pooling, the final softmax layer is typically comprised of an FC layer, with

a number of neurons equal to the number of output classes; thus, in this case, no

would usually be equal to 100 and 256 for UEC100 and UEC256 respectively for this

final layer.

For convenience and time-saving purposes, the parameter values are obtained

from the following sources, in chronological order, when available: the original publi-

cation, Keras [64] pre-trained models, and manual calculations as per aforementioned

equations. Furthermore, the use of bias is assumed for all conv layers unless BN is

used, and for all FC layers in general.

There are several factors to note when obtaining these parameter values. First,

parameter costs for less-common layer types such as inception [31] or depthwise-

separable conv [65] are not explicitly included in this text, but were inferred in a

similar fashion. Second, although the parameters for GoogLeNet [31] are listed in

the original publication, there were discrepancies – albeit slight – when verifying the

83

reported values via manual calculations; as such, the ones reported here are based

on manual calculations. Additionally, the initial 7x7 conv layer is assumed to be

factorized into 7x1 and 1x7 as their provided value implies as such – with a large

discrepancy in computed value otherwise. Third, for WISeR [94], it is assumed that

the wide-slice branch produces a flattened feature vector of size 320 · 73 = 23360

prior to concatenation, as nothing specific is mentioned in terms of handling it. It

is also assumed that the last 2048-FC layer in the depicted architecture actually

corresponds to the softmax output layer as it is otherwise not explicitly mentioned

or depicted, and such an assumption would produce a more optimistic estimate that

is not as excessive in terms of number of parameters.

While the raw number of parameters provides a good overview comparison

of the various architectures, it is beneficial to directly quantify and visualize the

parameter-efficiency to facilitate further discussion on this point; thus, the accuracy-

per-parameter is computed for each network. Since it provides a measure of each pa-

rameters’ contribution to the accuracy, it is important when considering parameter-

efficiency. This value is computed as follows:

p =
acc

nparams

where p is the accuracy per parameter of the network, nparams is its number of

parameters, and acc is its accuracy. However, this raw value is somewhat meaningless

in that the relative performance of each network is what is truly of interest. As

such, pMobNetV 2 is arbitrarily chosen as a reference point, and all other networks are

84

compared against it to acquire a relative performance metric; in other words:

prelative =
pnetwork

pMobNetV 2

where prelative is the parameter-efficiency of the network with respect to MobileNetV2,

pnetwork is its per-parameter accuracy, and pMobNetV 2 is the per-parameter accuracy

of MobileNetV2. In addition, another benefit is that the metric is a lot cleaner in

this form, as the non-relative version would be comprised of numerous, extremely-

small values from dividing by the number of parameters, which is several orders of

magnitude larger than the accuracy.

To provide a more comprehensive visualization, prelative is plotted against the

parameter count and accuracy for both datasets in Figure 5–10 and Figure 5–11.

The graphs facilitate an understanding of how the parameter-efficiency measures

up to these factors, and more clearly highlights the trade-offs between the two. For

mobile deployment, the chosen network should ideally have high parameter-efficiency,

low parameter count, and high accuracy; when discussing which network is better, it

is primarily with this context in mind. Finally, it should be noted that both of the

AlexNet approaches are omitted as there are readily-apparent strictly-better options

in both parameter-usage and accuracy, such as Inception-v3 and DenseNet.

From the results, it is evident that the proposed architectures are indeed more

parameter-efficient than the alternatives; however, this excludes GoogLeNet, which

is slightly more efficient than DenseNet. With that said, on the two datasets, Mo-

bileNetV2 is strictly-better than GoogLeNet; it is consistently more efficient, has less

parameters, and has higher accuracy. In addition, although GoogLeNet possesses less

85

(a) (b)

Figure 5–10: Relative performance-efficiency with respect to (a) parameters and (b)
accuracy on UEC100

(a) (b)

Figure 5–11: Relative performance-efficiency with respect to (a) parameters and (b)
accuracy on UEC256

parameters and is slightly more efficient, it is about 5% less accuracy than DenseNet

across both datasets – which is non-negligible. Additionally, in a more general vein,

there seems to exist a trend where the less a network’s parameters, the more efficient

it tends to be.

86

On UEC100, the proposed architectures perform very well; DenseNet is 1.1%

more accurate than Inception-v3 despite having 3-times less parameters, while Mo-

bileNetV2 only lags by 2.0% despite having almost 5-times less parameters. In ad-

dition, although the various ResNet-based architectures from [94] outperform the

proposed architectures by a maximum of 10.1%, they also have up to about 20-times

more parameters; in addition, WISeR explicitly utilizes ten-crop testing [18] to im-

prove its reported results, and it is likely that both the ResNet-200 and WRN do

as well – although it is not explicitly clarified, these are likely contributions by the

same authors as there are no acknowledgments to their results elsewhere in literature

(only the original publications), and so it is likely that they used the same experi-

mental set-up for these evaluations. Keeping this in mind, there would likely be less

disparity in single-crop accuracies between them and what is proposed, and helps

further cement the claim that both MobileNetV2 and DenseNet perform well on this

smaller dataset despite their relative limitation in parameters.

On UEC256, however, the proposed architectures are noticeably less accurate;

for example, in this case, Inception-v3 actually achieves 8.0% and 9.7% higher accu-

racy than DenseNet and MobileNetV2 respectively. In addition, there is a peak accu-

racy gap of 16.7% with respect to the top-performer, 6.6% larger than on UEC100.

Interestingly, this may indicate potential limitations in representational power in

these smaller networks, likely coming from the lack of parameters leading to reduced

representational capacity; although it seems sufficient for UEC100, it may not be for

UEC256 – which may have a more complex underlying representation from both the

increase in number of classes, and the properties of said classes. However, it must

87

be noted that training optimization was not fully explored, and it may be prudent

to do so to improve results on UEC256; methods to consider may include alternative

image augmentation schemes or training optimizer like RMSProp [59], which was

successfully used in training MobileNetV2 on ImageNet [10].

5.7 User Habit Integration

To evaluate the efficacy of the proposed user habit system, the vanilla DenseNet

and MobileNetV2 are considered as classifiers; once again, the wide-slice variants are

not investigated due to the marginal differences they provide. To facilitate discus-

sions, the top-1, top-5, and top-10 accuracies are first reported in Table 5–6 for both

networks; since the proposed system relies on the top-N prediction scores to bolster

their accuracies, it is important to quantify and list these target values.

Model Top-1 Top-5 Top-10

DenseNet 64.286% 78.571% 82.143%
MobileNetV2 71.429% 82.143% 85.714%

Table 5–6: Single-crop accuracies on sample diet

As expected, the top-5 accuracy is much higher than the top-1, with 14% and

11% improvements for the DenseNet and MobileNetV2 respectively. The accuracy

only increases by about 3.6% for top-10, which accounts for a single additional correct

guess due to the low sample size of 28 images; as such, this makes its performance gain

marginal in comparison. Thus, to also maximize efficiency, only the top-5 predictions

are utilized to bolster performance.

Interestingly, the MobileNetV2 performs better than the DenseNet in classifying

the chosen samples in the sample diet; however, the top-5 and top-10 accuracy

88

discrepancy can be explained by a mis-classification of a single image – which the

MobileNetV2 classified properly on its 9th-best guess – and the top-1 discrepancy

explainable by the presence of several multi-class images where its weights favor the

target class more than the others. As a result, the top-5 difference between the two

CNNs is accounted for by the single aforementioned mis-classified example.

Incorporating the user-habit system, the resulting top-1 accuracy is reported

in Table 5–7. For both CNNs, the accuracy eventually reaches the ceiling of the

top-5 accuracy, resulting in an increase in top-1 accuracy of about 14% and 11% for

DenseNet and MobileNetV2 respectively. For the former, a strength coefficient value

of 0.7 is required, while the latter required 0.4. However, the accuracy was only

3.6% off, or a single example, with coefficients of 0.2 and 0.1 respectively, showing

a significant improvement even if the scheme is only slightly used. Interestingly, the

MobileNetV2 did not require as much biasing as the DenseNet, indicating that it

may be relatively better at discriminating between the represented similar-looking

classes.

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DenseNet 67.86 75.00 75.00 75.00 75.00 75.00 78.57 78.57 78.57 78.57

MobV2 78.57 78.57 78.57 82.14 82.14 82.14 82.14 82.14 82.14 82.14

Table 5–7: Top-1 accuracies (%) given differing strength coefficients

The proof-of-concept overall demonstrates the importance of context for boost-

ing food recognition accuracy, as well as its efficacy in doing so. In addition, the

method is completely modular, and can be independently applied to the classifica-

tion results of not just CNN-based approaches, but in general to any approach that

89

produces a vector of predictions and their corresponding scores. In addition, it is im-

portant to highlight that the top-1 accuracy rises to a maximum of 82.143% despite

several difficulties that were preserved in this evaluation. To reiterate, these con-

stitute the use of images that are not ground-truth cropped, and that may contain

several different food items in a single image. This adds a measure of encouragement

to these results, and indicates that the proposed scheme remains effective despite

difficulties that may arise from a user capturing difficult and highly-cluttered images

that may conventionally reduce the classifier’s accuracy by a noticeable degree.

However, to reiterate some discussions in section 4.5, there are numerous pa-

rameters that were tuned according to the sample diet; as such, it is difficult to claim

that these results will be generalizable to an unknown or generic user diet. Thus,

benefits may be found in allowing users to tune the various parameters according

to their lifestyle. An easy, user-friendly method of doing so may involve the use of

simple sliders, where a user is asked to rank how indicative a certain factor is to

their diet in a questionnaire format. For example, if the user consistently sticks to

a weekly schedule similar to this proof-of-concept, they may slide to a selection of

9 or 10 out of 10 when asked, “how often do you consume the same food on a

weekly basis?”, where higher values indicate higher frequencies. These answers can

be used to adjust the importance coefficients to the context multiplier, aiming to

maintain a ratio of 1 between these to preserve the hierarchical relationship between

the various food frequencies. In addition, a user could be asked to indicate how

indicative such habitual contexts are to their diet, and the strength coefficient can

be adjusted correspondingly. It is also prudent to consider automated alternatives to

90

reduce user input, in an effort to eliminate potential avenues for user error; such an

alternative may involve an algorithm that occasionally examines a users dietary his-

tory retroactively, to profile the user based on their eating habits and utilize a good

set of hyperparameters for their particular profile. These settings could be manually

pre-determined such that they are simply applied as-is for the user, or adaptive and

tuned such that they match certain criteria based on the algorithm employed.

5.8 Mobile Performance

While the proposed networks have been discussed extensively in regards to effi-

ciency and benefits to mobile deployment, it remains useful to quantify these claims

by performing actual evaluation on a mobile platform, specifically for runtime mem-

ory and inference time. A Samsung Galaxy S7 SM-G930W8 was chosen as the target

device, as discussed in section 4.6. The code at [126] was then used as a base, and

modified to support inference using the proposed models; these were included in

the application after converting them into TensorFlow Lite FlatBuffer .tflite files

using the TensorFlow Lite converter [127], and the modified application was finally

built using Android Studio. The runtime memory was captured using the Android

Profiler native to Android Studio, while the inference time was obtained using the

modified application. In addition to the proposed networks, the Inception-v3 [33]

CNN was also evaluated to provide a baseline comparison; it was chosen largely due

to the closeness in performance to the proposed networks, as discussed in section

5.6. These results can be found in Table 5–8.

To reiterate, it is important to note that this evaluation does not consider the

use of the Neural Networks API (NNAPI) for Android, nor the use of GPUs for

91

Architecture Runtime Memory (MB) Inference Time (ms)

MobileNetV2 107 225
DenseNet121 121 720
Inception-v3 200 1080

Table 5–8: Benchmark measurements for the various CNNs on the given mobile
device

computational speed-ups; this choice is motivated primarily by the observation that

users may not have access to newer phones with such improvements, making it pru-

dent to perform evaluations using solely the CPU of the chosen mobile device. With

that said, the MobileNetV2 and DenseNet121 have runtime memories of 107MB and

121MB, and inference times of 225ms and 720ms, respectively. As expected, the

MobileNetV2 runs more efficiently than DenseNet121; its runtime memory is about

20MB lower, but its inference time is about 500ms faster – a significant difference.

While the difference in runtime memory is relatively small, the large gap in inference

indicates that the MobileNetV2 architecture may be much better suited for infer-

ence when considering solely a CPU, and not parallel-operation optimizations which

NNAPI or GPUs may introduce. Although the DenseNet does not measure up to the

MobileNetV2, it is still better than Inception-v3 by about 80MB in runtime memory,

and 300ms in inference time. Coupling these findings with the fact that DenseNet is

more accurate than MobileNetV2, there is a trade-off to consider primarily between

inference times and accuracy, due to the smaller differences in runtime memory.

However, there are several caveats to these findings that are important to em-

phasize. First, it should be noted that the accuracy of the two proposed networks

92

suffer on the more-difficult UEC256 dataset than Inception-v3; as such, it is reason-

able to claim that they may also suffer on more-difficult datasets in general. While

their advantages in runtime efficiency are desirable, the lack of accuracy may make

them hard to effectively utilize when the target task is sufficiently difficult to model.

In this regard, the use of the user habit system in section 5.7 would be key to bolster-

ing their accuracies, since the incorporation of context has been shown to be critical

in improving accuracy. This scheme would serve to not only reduce the accuracy-gap

significantly, but also enable the advantages in runtime efficiency at the same time.

Second, these results are also only true when using solely the CPU of the mobile

device. As previously mentioned, it is important to consider performance on devices

that are more ubiquitous by present-day standards. Moving forward, the ubiquity

of newer Android devices, which are capable of supporting NNAPI or GPUs for

computational speed-ups, will increase; at that time, it is important to re-evaluate

the performance of various networks on mobile platforms. These measurements are

likely to change since certain operations can be optimized and implemented more

efficiently depending on both the API and hardware. Nonetheless, in general, these

measurements remain good guidelines to consider for effectively deploying trained

CNN classifiers to mobile devices in present-times.

5.9 Summary

In this chapter, the efficacy of DenseNet and MobileNetV2 for mobile food recog-

nition is evaluated and quantified. The effort is split largely into three parts: ex-

ploring different training approaches to maximize accuracy, evaluating the proposed

93

user-habit system for further bolstering accuracy, and evaluating their runtime per-

formance on mobile devices.

The networks are first trained on the UEC Food-100 and -256 datasets, including

the wide-slice variants as per section 4.3.3, and consider evaluations of various

training methodologies to achieve highest accuracy. Transfer learning was found to

be a highly effective prescription for all proposed networks, and was instrumental

in achieving good performance. Thus, weights were initialized with ImageNet pre-

trained weights when possible, and He initialization [54] otherwise.

Then, the fully-connected softmax layer was trained by exploring different image

augmentations schemes according to section 4.4.2. The major finding here was that

strong results are achievable using minimal data augmentation; specifically, the aug-

mentation scheme of using a single image comprising all desired augmentations and

distortions not only facilitated the acquisition of good weights, but also performed

the best of all the schemes evaluated. The finding is similar to that in [44], where it

was found that smaller networks in general do not struggle as much with overfitting

as larger counterparts. Thus, an additional benefit and general takeaway is that

the proposed networks seem to be capable of being trained effectively with minimal

augmentation following the use of pre-trained weights, which is highly desirable due

to the implications in reduced training time and faster experimental iteration.

Following the evaluation of various data augmentation schemes, various fine-

tuning procedures were evaluated, from unfreezing the weights of the deepest 25%

of layers up to 100% of them. It was shown that fine-tuning across all weights was

the most effective method, and as such, all of the networks’ weights were further

94

fine-tuned to improve accuracy, and the best achieved accuracies were reported and

discussed.

The DenseNet, wide-slice DenseNet, MobileNetV2, and wide-slice MobileNetV2,

achieved 82.6%, 82.1%, 79.5%, and 79.5% on UEC100 respectively, and 68.2%, 68.5%,

66.5%, and 66.8% on UEC256 respectively. The DenseNets outperformed the Mo-

bileNets by 2-3%, but can be partially explained by the larger amount of parameters

instead of just an inherent ability to learn better representations from architectural

differences. They achieve 12% less accuracy on the larger dataset, which may be

explained by the increase in classes leading to an increased need for stronger learned

representations. The re-designed wide-slice variants were found to bring negligible

benefits, and is possible that the benefits it demonstrated in [94] were due to how

computationally-intensive the branch is; the efficient variant was incapable of bolster-

ing performance in a similarly-observed way. It was then discussed that the branch

may have needed to retain more of its original size and computational complexity,

and was minimized too drastically in this work. An alternative view was also dis-

cussed that the branch may remain too computationally-intensive for the purposes

of mobile deployment; if the excellent performance is contingent on the use of a large

number of parameters, then it may not be suited for mobile deployment due to the

computationally-constrained nature of mobile devices. Nonetheless, a larger note is

made that its published results indicate that its observed benefit may come from a

regularizing effect, which is not compatible with smaller networks in general given

that they do not require much in terms of regularization, especially at an excessive

computational cost; to clarify, the published accuracy of the standalone branch was

95

very low, while it facilitated excellent results only when coupled with a wide ResNet

(WRN) – a larger network that is known to exhibit overfitting tendencies similar to

most CNNs [42].

Noting that the benefits of the wide-slice branch were negligible, the results of

the DenseNet and MobileNetV2 are then compared to other published results on the

same datasets in section 5.6. It was demonstrated that the proposed networks are

indeed more parameter-efficient, excluding the finding that GoogLeNet is slightly

better than DenseNet in this regard, albeit less accurate. In addition, MobileNetV2

was found to be strictly better than GoogLeNet given its higher accuracy, higher

parameter-efficiency, and lower parameter-cost, making it the superior option in al-

most all circumstances. In terms of accuracy, the proposed networks performed very

well on UEC100, with DenseNet exceeding the accuracy of Inception-v3 despite it

having 3-times the parameters at 22 million. MobileNetV2 only lagged by about 3%,

but has about 5-times less parameters. The other networks performed better, but

are significantly larger with the next closest having 40 million parameters, making

Inception-v3 the best direct comparison. On UEC256, the proposed networks per-

form noticeably worse, highlighted by the observation that the DenseNet is 8% less

accurate than Inception-v3. An explanation was provided that the reduced paramet-

ric capacity may introduce limitations when the target task is sufficiently-complex to

model and represent. This finding makes it prudent to explore other avenues in terms

of training methodologies and optimizations; for example, it may be beneficial to ex-

plore more image augmentation schemes, and other optimizers – and corresponding

96

hyperparameter settings – like RMSProp [59] may yield increased benefits, as it was

successfully used to train MobileNetV2 on ImageNet [10].

Following the evaluation of training procedures, the proposed user-habit system

was evaluated and found to be effective; on the sample diet, several challenging classes

– in that they are visually similar to other classes on the same dataset, like fried

rice and pilaf – were classified both ignoring and using this contextual information.

Performance gains were seen up to 14% and 11% for DenseNet and MobileNetV2

respectively, and effectively highlights the importance of context when performing

food recognition. An additional measure of encouragement was found in how these

results were achieved despite purposeful increases in difficulty to the task, where

ground-truth crops were not extracted, and several pictured food items contained

the presence of multiple food classes for which the classifiers were trained. However,

it was noted that for the proof-of-concept experiment, the hyperparameters were

tuned to fit the sample diet, which was created to be highly consistent and exhibit

a good degree of regularity and routine; this may however not be true for all users.

Thus, several options to improve the flexibility and modifiability of the system are

discussed, although their evaluations are left largely for future work; that said, these

are very important considerations to keep in mind when it comes to inferring general

conclusions, or proceeding with practical deployment.

Finally, the runtime performance on mobile devices were evaluated for the

DenseNet, MobileNetV2, and Inception-v3 – which served largely to establish a base-

line since it was the closest competitor across all similar work in section 5.6. They

had runtime memories of 121MB, 107MB, and 200MB, and inference times of 720ms,

97

225ms, and 1080ms, respectively. It was found that the MobileNetV2 architecture

may be much better suited for inference when considering the use of solely a CPU.

In addition, although the DenseNet is notably inferior in inference time, it is still

more accurate than MobileNetV2, and improves on Inception-v3 by about 80MB

and 300ms in runtime memory and inference time, respectively. As such, there is a

serious trade-off to consider between significant improvements to inference time, and

higher accuracy. It was further noted that DenseNet and MobileNetV2 suffered in

terms of accuracy on the UEC256 dataset, and although their advantages in runtime

performance are desirable, the lack of accuracy may make it difficult to use them

when the target task is difficult to model. As such, the importance of NNAPI or GPU

availability is highlighted, as is the importance of the user habit system proposed in

this work.

98

CHAPTER 6
Conclusion

This thesis proposed, and investigated, various approaches that improve the

runtime efficiency and accuracy of current food recognition approaches, that in turn

facilitate their real-world deployment on mobile devices. The first main contribution

is training the DenseNet [9] and MobileNetV2 [10] convolutional neural networks

(CNNs) to achieve state-of-the-art performance, in parameter-efficiency, on the UEC

Food-100 (UEC100) [87] and UEC Food-256 [88] (UEC256) datasets; they are also

especially accurate in the case of UEC100 – achieving 82.6% and 79.5% respectively

– where the DenseNet notably outperforms Inception-v3 by 1.1% despite having 3.1

times less parameters. In addition, their runtime performance on mobile devices is

quantified and shown to be highly efficient, where they use 39.5% and 46.5% less

memory, and perform 33.3% and 79.2% faster inference, respectively, compared to

the baseline of Inception-v3.

There are several important considerations to reiterate regarding these results.

First, while MobileNetV2 is most parameter-efficient by a larger margin, GoogLeNet

[31] slightly outdoes DenseNet on both datasets; however, it is strictly outperformed

by MobileNet, and is 5.4% and 4.4% less accurate than DenseNet on UEC100

and UEC256 respectively. Second, the networks are noticeably-less accurate on

UEC256, despite still being state-of-the-art in parameter efficiency; DenseNet and

MobileNetV2 achieve 68.2% and 66.5% respectively, with the highlight comparison

99

of Inception-v3 now outperforming DenseNet by 8.0% with a 76.2% accuracy. It

was discussed that the poorer accuracy may be due to limitations in representational

capabilities as a consequence of less parameter usage, and that it may be necessary

to explore other avenues, like the RMSProp [59] optimizer – which was used in the

successful training of MobileNetV2 on ImageNet [10] –, for accuracy gains. Third,

the wide-slice branch [94] was found to be of marginal benefit – increasing accuracy

by a maximum of 0.3% – following a proposed efficient re-design that enabled mobile

feasibility. It was discussed that its benefit was likely through a regularizing effect on

the core network, which the proposed networks – by virtue of being highly parameter-

efficient as is – do not seem to struggle as much with, and thus benefit from either.

Fourth, numerous training approaches are explored for the proposed networks, and

an atypical set of best practices – involving the use of single-image augmentation and

full fine-tuning of pre-trained weights – is recommended by this thesis; this atypi-

cal set may lend credence to the observation that the smaller networks have less

inherent difficulties with overfitting – a claim corroborated in [44] – which may have

implications in easier and faster training. Lastly, the mobile benchmarks pertain to

CPU-only devices, and does not account for developments such as the NNAPI [124]

and on-device GPU – which are highly contingent to runtime performance due to

optimizations they provide; thus, as these enabled-devices become more ubiquitous,

it is important to re-evaluate the provided benchmarks to take them into account.

The second main contribution is the proposal of a novel user habit system that

utilized user context to increase the accuracy of DenseNet and MobileNetV2, by

14.3% and 10.7% respectively, on the proof-of-concept evaluation; in addition to

100

improving accuracy, it was explicitly designed to be suited for mobile applications

by virtue of being relatively simple and extensible. That said, the results do not

necessarily generalize to all users as the evaluation was conducted on a proof-of-

concept user – whose diet was highly regimented, strict, and habitual – with several

of the parameters fine-tuned for this particular profile. To generalize, it is important

to adjust these parameters to different profiles; the first of two primary approaches

involves allowing the user to tune them at their own discretion. A user-friendly

format for doing so may involve a questionnaire, which can include setting a slider

value for a series of statements such as, “I often eat the same dishes for breakfast”;

alternatively, the user may select from a pre-defined list of profile pre-sets that best

correspond to their particular habits. While simple, these methods rely on user

input, which is a source for human error; as such, the second approach involves

algorithmically, and retroactively, analyzing the user’s diet to determine optimal

settings. A simple option may involve profiling the user into several pre-sets, as

before; alternatively, a more complex one may target the user’s habits with more

specificity, using a more sophisticated algorithm. Nonetheless, these are important

factors to explore further in future works.

The third main contribution is the consideration of practical diet-tracking sys-

tems to guide the development of future work. As dietary improvement is, presently

and largely, being addressed with manual diet-tracking processes, food recognition

likely only constitutes a single facet to an improved process; more realistically, a

fully realized diet-tracking system is necessary for seeing larger-scale dietary im-

provement. This thesis identifies several key features, including automatic calorie

101

estimation, and explores many such relevant topics to highlight current-and-future

efforts to their development; the thesis then formulates its own discussions that are

critical to it providing guided recommendations for launching future efforts into each

respective domain.

In addition to these contributions, the thesis also provides a brief background

on both CNNs and food recognition. The former focuses on elaborating the pro-

posed architectures, and providing context for their use – and for the use of certain

techniques in this thesis; the latter highlights challenges in food class variation, and

provides a brief overview of related work.

Ultimately, there is a growing concern of diet-based health complications, such

as obesity and diabetes, in the world at large; as such, it is crucial to continue

developing novel methods to mitigate these. To reiterate, it is a firm belief of the

author that health is a very precious commodity that people often neglect; with the

unrelenting busyness of life – which only seems to grow day-by-day – it is all the

more imperative that new and convenient ways are developed to help maintain a

healthy lifestyle. It is hoped that the contributions of this thesis toward mobile food

recognition facilitate such convenience; its continued development, and subsequent

practical employment, would undoubtedly improve the diet tracking processes that in

turn enhance the wide-scale self-management and regulation of dietary intake. It is

further hoped that the findings presented here can pave the way to the development

and deployment of a readily-available and highly-useful application, and it is the

author’s sincere wish that the efforts presented here can facilitate a reduction, if not

elimination, to the growing health concerns that stem from diet.

102

