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ABSTRACT 
 

The objective of the dissertation is to develop advanced econometric frameworks to address 

methodological gaps in safety literature while employing these models developed to study 

important empirical issues. Crash severity analysis has evolved on examining the influence of 

several factors, comprising of driver characteristics, vehicle characteristics, roadway attributes, 

environmental factors and crash characteristics on traffic crash related severities. These associated 

risk factors are critical to assist decision makers, transportation officials, insurance companies, and 

vehicle manufacturers to make informed decisions to improve road safety, thereby providing 

empirical evidence regarding the critical factors would allow us to suggest remedial measures to 

reduce the negative consequences of crash outcomes. To that extent, the current dissertation 

contributes to the severity analysis with a specific focus on driver injury severity analysis.  

Road safety researchers have employed several statistical formulations for analyzing the 

relationship between injury severity and crash related factors. However, there are still several 

methodological and empirical gaps in safety literature. The specific emphasis of the current 

dissertation is to contribute substantially towards methodological gaps in the state of the art for 

driver injury severity analysis along six directions: (1) appropriate model framework, (2) 

underreporting issue in severity analysis, (3) exogenous factor homogeneity assumption (4) 

multiple dependent variables in severity analysis, (5) continuum of fatal crashes and (6) data 

pooling from multiple data sources. In the dissertation, several econometric models are formulated, 

estimated and validated to address the aforementioned methodological issues through five different 

empirical studies.  

The relevance of alternate discrete outcome frameworks for modeling driver injury severity 

is examined by empirically comparing several ordered (ordered logit, generalized ordered logit 

and mixed generalized ordered logit) and unordered outcome (multinomial logit, nested logit, 

ordered generalized extreme value logit and mixed multinomial logit) models. The research also 

explores the effect of potential underreporting on alternative frameworks by artificially creating 

an underreported data sample from the driver injury severity sample. The performance of the 

alternative frameworks are examined in the context of model estimation and validation (at the 

aggregate and disaggregate level) by using a host of comparison metrics. Further, the performance 

of the model frameworks in the presence of underreporting is explored – with and without 

corrections to the estimates. The results from these extensive analyses point towards the emergence 

of the mixed generalized ordered logit framework as a strong competitor to the mixed multinomial 

logit model in modeling driver injury severity. 

In addressing the exogenous factor homogeneity assumption, a latent segmentation based 

generalized ordered logit model is formulated, estimated and validated in the context of driver 

injury severity. The proposed model probabilistically allocates drivers (involved in a crash) into 

different injury severity segments based on crash characteristics to recognize that the impacts of 

exogenous variables on driver injury severity level can vary across drivers based on both observed 

and unobserved crash characteristics. The results clearly highlight the need for segmentation based 

on crash characteristics. Overall, the comparison exercise supports the hypothesis that latent 

segmentation based generalized ordered logit model is a promising ordered outcome framework 

for accommodating population heterogeneity and for relaxing the fixed threshold assumption in 

examining driver injury severity. 

An analysis is conducted to examine the hypothesis that collision type fundamentally alters 

the injury severity pattern under consideration. Towards this end, we propose a joint modeling 
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framework to study collision type and injury severity sustained as two dimensions of the severity 

process. We employ a copula based joint framework that ties the collision type (represented as a 

multinomial logit model) and injury severity (represented as an ordered logit model) through a 

closed form flexible dependency structure to study the injury severity process. The proposed 

approach also accommodates the potential heterogeneity (across drivers) in the dependency 

structure. Further, the study incorporates collision type as a vehicle-level, as opposed to a crash-

level variable as hitherto assumed in earlier research, while also examining the impact of a 

comprehensive set of exogenous factors on driver injury severity. The findings of this study 

provide a more complete picture of injury severity profile associated with different collision type, 

thus target based countermeasures could be devised to address the entire profile of collision 

mechanism. 

Another study contributes to continuing research on fatal crashes. Specifically, rather than 

homogenizing all fatal crashes as the same, our study analyzes the fatal injury from a new 

perspective by examining fatality as a continuous spectrum based on survival time ranging from 

dying within thirty days of crash to dying instantly (as reported in the Fatality Analysis Reporting 

System database). The fatality continuum is represented as a discrete ordered dependent variable 

and analyzed using the mixed generalized ordered logit model. We also propose to estimate a two 

equation model that comprises of a regression equation for emergency medical response time and 

mixed generalized ordered logit model for fatality continuum with residuals from the emergency 

medical response time model to correct for endogeneity bias on the effect of exogenous factors on 

the timeline of death. Such research attempts are useful in determining what factors affect the time 

between crash occurrence and time of death so that safety measures can be implemented to prolong 

survival. The model estimates are augmented by conducting elasticity analysis to highlight the 

important factors affecting time-to-death process. 

Finally, a study focuses on developing a framework for pooling of data from Fatality 

Analysis Reporting System and Generalized Estimates System databases. The validation of the 

pooled sample against the original Generalized Estimates System sample (un-pooled sample) is 

carried out through two methods: univariate sample comparison and econometric model parameter 

estimate comparison. The validation exercise indicates that parameter estimates obtained using the 

pooled data model closely resemble the parameter estimates obtained using the un-pooled data. 

After we confirm that the differences in model estimates obtained using the pooled and un-pooled 

data are within an acceptable margin, we also simultaneously examine the whole spectrum of 

injury severity on an eleven point ordinal severity scale – no injury, minor injury, severe injury, 

incapacitating injury, and seven refined categories of fatalities ranging from fatality after 30days 

to instant death – using the pooled dataset. We also demonstrate how our approach can be 

employed to identify factors affecting potentially fatal crashes (non-instantaneous) and improving 

the chances of survival of motor vehicle occupants involved through the elasticity exercise. 

The econometric models developed in the dissertation are estimated using police reported 

crash databases at the regional and the national level from different industrialized countries. 

Specifically, the dissertation research is undertaken employing General Estimates System and 

Fatality Analysis Reporting System of the United States and the Victoria crash database of 

Australia. In addition to making the aforementioned methodological contributions, the dissertation 

also makes a substantial empirical contribution to the existing safety literature. Specifically, 

several policy measures in terms of engineering, enforcement, education and emergency response 

strategies are identified to improve safety situation and to reduce road crash related fatalities. 
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RÉSUMÉ 

 

Cette dissertation vise à développer des modèles économétriques avancés afin d’adresser des 

lacunes méthodologiques dans la littérature sur la sécurité routière, tout en employant ces modèles 

afin d’étudier des questions empiriques importantes. L’analyse de la gravité des collisions routières 

a évolué afin d’examiner l’influence de nombreux facteurs, comprenant les caractéristiques des 

chauffeurs, des véhicules, des chaussées, des facteurs environnementaux ainsi que des collisions 

routières elles-mêmes, sur les fatalités résultant de ces collisions. Ces facteurs de risque associés 

sont cruciaux afin d’informer les décideurs politiques, les responsables des transports, les 

compagnies d’assurance ainsi les fabricants de véhicules afin qu’ils puissent prendre des décisions 

éclairées pour améliorer la sécurité routière. Ainsi les résultats d’analyses empiriques concernant 

ces facteurs critiques nous permettraient-ils de suggérer des mesures de remédiation qui pourraient 

réduire les conséquences négatives des collisions routières. Dans ce contexte, cette dissertation 

contribue à la littérature sur l’analyse de la sévérité des collisions routières tout en portant une 

attention particulière à l’analyse de la sévérité des blessures des conducteurs. 

 Les chercheurs en sécurité routière ont employé de nombreuses formulations statistiques 

afin d’analyser les liens entre la gravité des blessures et les caractéristiques des collisions. 

Cependant, il existe encore de nombreuses lacunes méthodologiques et empiriques dans la 

littérature. L’objectif principal de cette dissertation est de contribuer à corriger ces lacunes 

méthodologiques dans les approches d’analyse de sécurité routière de pointe, en adressant six 

thèmes principaux : (1) cadre de modélisation approprié, (2) problèmes liés à la sous-déclaration 

dans l’analyse de sévérité, (3) hypothèse d’homogénéité des facteurs exogènes, (4) variables 

dépendantes multiples en analyse de sévérité, (5) continuum de collisions fatales et (6) 

regroupement de données de sources multiples. Dans cette dissertation, de nombreux modèles 

économétriques sont formulés, estimés et validés afin d’adresser les lacunes méthodologiques 

susmentionnées à travers cinq études empiriques distinctes. 

 La pertinence de divers cadres statistiques discrets dans la modélisation de la gravité des 

blessures des conducteurs est examinée à travers la comparaison de nombreux modèles ordonnés 

(logit ordonné, logit ordonné généralisé, logit ordonné généralisé mixte) et non-ordonnés (logit 

multinomial, logit imbriqué, logit ordonné généralisé à valeur extrême, logit multinomial mixte). 

Notre recherche examine également les effets de la sous-déclaration potentielle sur les divers 

cadres statistiques employés à travers la création d’un échantillon de données artificiel à partir de 

l’échantillon portant sur la gravité des blessures des conducteurs. Les performances de ces cadres 

divers sont examinées dans le contexte de l’estimation et de la validation des modèles (aux niveaux 

agrégés et désagrégés) en utilisant une large gamme d’outils de comparaison. De plus, la 

performance des cadres de modélisation en présence de sous-déclaration est investiguée – avec et 

sans correction des estimations. Les résultats de ces analyses étendues démontrent que le logit 

ordonné généralisé mixte pourrait rivaliser avec le logit multinomial mixte dans le cadre de la 

modélisation de la gravité des blessures des conducteurs. 

 Afin d’adresser l’hypothèse d’homogénéité des facteurs exogènes, un logit ordonné 

généralisé  à base de segmentation latente est formulé, estimé, et validé dans le contexte de 

l’analyse de gravité des blessures des conducteurs. Le modèle proposé alloue de façon probabiliste 

les conducteurs (victimes d’une collision) dans divers segments de gravité des blessures basé sur 

les caractéristiques de la collision afin de reconnaître que l’impact des variables exogènes sur le 

niveau de gravité des blessures des conducteurs peut varier selon le conducteur en fonction de 

caractéristiques observées et non-observées des collisions. Les résultats démontrent clairement le 
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besoin de segmentation basée sur les caractéristiques des collisions. Globalement, l’exercice de 

comparaison soutien l’hypothèse que le logit ordonné généralisé basé sur la segmentation latente 

est un cadre ordonné prometteur afin d’accommoder l’hétérogénéité de la population, ainsi que 

pour assouplir l’hypothèse de seuils fixes lors de l’analyse de la gravité des blessures des 

conducteurs.  

 Une analyse est menée afin de déterminer si le type de collision a un impact fondamental 

sur les types de blessures encourues. Dans ce contexte, nous proposons un cadre statistique 

combiné afin d’examiner le type de collision et les blessures encourues comme deux dimensions 

de l’analyse de gravité. Nous employons un cadre combiné à base de copules qui relie le type de 

collision (représenté à travers un modèle logit multinomial) et la gravité des blessures (représenté 

à travers un modèle logit ordonné) à travers une structure dépendante flexible à forme fermée afin 

d’étudier le processus de gravité des blessures. L’approche proposée adresse également 

l’hétérogénéité potentielle (des conducteurs) dans la structure dépendante. En outre, l’analyse 

considère que les caractéristiques d’une collision dépendent du type de véhicules plutôt que du 

type de collision elle-même, comme il est généralement considéré dans la littérature sur le sujet; 

tout en examinant l’impact d’un ensemble complet de variables exogènes sur la gravité des 

blessures des conducteurs. Les conclusions de cette étude permettent une meilleure compréhension 

des profils de gravité des blessures associés aux divers types de collision ainsi que le 

développement de contre-mesures ciblées afin d’adresser toute la gamme des mécanismes de 

collisions. 

 Une autre étude contribue à la recherche sur les collisions fatales. Spécifiquement, plutôt 

que d’homogénéiser toutes les collisions fatales en une catégorie unique, notre analyse propose 

une nouvelle approche qui considère les collisions fatales comme un spectre continu basé sur le 

temps de survie, qui va de décès dans les trente jours suivant la collision à décès immédiat (tel que 

rapporté dans la base de données « Fatality Analysis Reporting System Database »). Le spectre de 

décès est représenté comme une variable dépendante ordonnée discrète et est analysé en utilisant 

un modèle logit ordonné généralisé. Nous proposons également d’estimer un modèle à deux 

équations qui comprend une équation de régression représentant le temps de réponse de l’équipe 

médicale et d’un logit ordonné généralisé mixte pour le spectre de décès, avec les résiduels du 

modèle pour le temps de réponse de l’équipe médicale qui corrigent pour les distorsions endogènes 

sur les effets des facteurs exogènes sur les délais de décès. Ces efforts de recherche sont utiles afin 

de déterminer les facteurs qui affectent le délai entre la collision et l’heure du décès, dans le but 

de concevoir des mesures de sécurité qui puissent prolonger la survie des victimes. Les résultats 

de l’analyse sont  complémentés par une analyse des élasticités afin de souligner les facteurs 

importants qui affectent l’heure du décès. 

Enfin, nous présentons une analyse  portant sur le développement d’un cadre de mise en 

commun des données des bases de données « Fatality Analysis Reporting System » et « 

Generalized Estimates System ». La validation de l’échantillon regroupé comparé à l’échantillon 

original de « Generalized Estimates System » (échantillon non regroupé) est effectuée en utilisant 

deux méthodes : comparaison des échantillons univariés et comparaison des estimations de 

paramètres de modèles économétriques. L’exercice de validation indique que les estimations de 

paramètres obtenues en utilisant les données regroupées sont très similaires aux estimations 

obtenues en utilisant les données non regroupées. Une fois confirmé que les différences des 

estimations de paramètres obtenues à partir des données regroupées et non-regroupées sont dans 

des marges acceptables, nous examinons simultanément tout le spectre de gravité des blessures sur 

une échelle de gravité à onze niveaux – aucune blessure, blessure légère, blessure grave, blessure 
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incapacitante, et sept niveaux de décès allant de décès dans les trente jours suivant l’accident à 

décès immédiat – en utilisant les données regroupées. Nous démontrons également comment cette 

approche peut être utilisée afin d’identifier les facteurs affectant les collisions potentiellement 

fatales (décès non-immédiat) et améliorer les chances de survie des passagers à travers l’exercice 

d’analyse des élasticités.  

Les modèles économétriques développés dans cette dissertation sont estimés grâce aux 

données contenues dans les bases de données de police aux échelles régionales et nationales de 

divers pays développés. Plus précisément, cette recherche est basée sur les bases de données 

« General Estimates System » et « Fatality Analysis Reporting System » des États-Unis et la base 

de données « Victoria crash database » de l’Australie. En plus des contributions méthodologiques 

susmentionnées, cette dissertation constitue également une contribution empirique importante à la 

littérature de sécurité routière. Spécifiquement, de nombreuses mesures politiques liées à la 

conception, la mise en vigueur, l’éducation et les stratégies de réaction d’urgence sont identifiées 

afin d’améliorer la sécurité des passagers et de réduire les décès liés aux collisions routières.  
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CHAPTER 1 Introduction 

 

1.1 Background 

Road traffic crashes and their consequences such as injuries and fatalities are acknowledged to be 

a serious global health concern. These incidents result in physical and emotional trauma as well as 

huge financial losses for the individuals involved, their families and the society at large. Across 

the world, these crashes account for 18 deaths and 1,136 disability-adjusted life years (DALY) lost 

per 100,000 individuals annually (WHO, 2013a; WHO, 2013b). The death toll of road traffic 

crashes is expected to become the fifth (currently eighth) leading cause of death by the year 2030 

(WHO, 2013b) if appropriate remedial measures are not implemented. Researchers and 

practitioners are constantly seeking remedial measures to reduce the burden of these unfortunate 

events. In fact, most developed countries, through coordinated multi-sectoral responses to road 

safety issues, have been able to achieve a reduction in the crash related fatalities. For example, 

between 1970 and 2011, the annual road fatality rate of the United States (US) declined from 25.7 

deaths per 100,000 population to 10.4 deaths per 100,000 population, while at the same time the 

fatality rate declined from 30.4 to 5.6 fatalities per 100,000 population in Australia (IRTAD, 2013). 

In spite of these strides in improving road safety, traffic crashes still lead to substantial economic 

(approximately 2.3% and 2.6% of Gross Domestic Product of the US and Australia, respectively 

(IRTAD, 2013)) and emotional losses to the society.  

Given the import of the consequences of motor vehicle crashes, the issue has received 

significant attention from researchers and practitioners. In particular, the focus is on identifying 

and gaining a comprehensive understanding of the factors that contribute to the negative 

consequence (property damage, injuries and fatalities) of crash. However, road  traffic  crashes  

occur  due  to  the  complex  interactions  among  several  factors, comprising of driver 

characteristics, vehicle characteristics, roadway design attributes, environmental factors and crash 

characteristics. To identify the factors and their influence on the severity of crashes, researchers 

have formulated and employed several modeling frameworks. The current chapter provides an 

overview of the methodological developments in examining the crash injury severity outcome. 

Finally, a description of the objectives of the dissertation and its organization are provided. 

The remainder of this chapter is organized as follows. The role of severity analysis in road 

safety and the importance of driver injury severity are briefly discussed in Section 1.2 and 1.3, 
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respectively. Section 1.4 provides a methodological overview of driver injury severity, while 

Section 1.5 presents and discusses the gaps in existing safety literature. In Section 1.6 we discuss 

objectives of the dissertation. Section 1.6 provides outlines of the rest of the dissertation. 

 

1.2 The Role of Severity Analysis in Road Safety 

The historical background of road safety has initiated with the motor age. In fact, concern with the 

road traffic crashes goes back to the nineteenth century, when for the first time a person was killed 

in a fatal car crash (Offaly History, 2007). With the increase in road transportation and 

motorization, the issue has received significant attention. In today’s context, road traffic crashes 

are identified as a national health problem since these incidents affect the society as a whole both 

emotionally and economically (Subramanian, 2006; Blincoe et al., 2002). Given the societal 

impact of road crashes, safety research has mostly been developed based on national crash 

databases in order to monitor the consequences of road crashes and to develop effective 

countermeasures both at the local and the national level. These national crash databases are usually 

compiled from the police reported crash records. However, in police reported crash databases 

many property damage and minor injury crashes might go underreported since lower crash severity 

levels make reporting to authorities less likely (Savolainen and Mannering, 2007). Given the 

limitations of traditional police reported crash databases, a number of proactive (conflict 

technique, driving simulation) and reactive (crash reconstruction) approaches has been proposed 

and employed in safety research. While these approaches and the traditional crash analysis are 

complimentary to one another, the statistical analysis using police reported crash databases has 

been so far the most prevalent method in traffic safety research. Moreover, it is very challenging 

and expensive to compile collision data by using other resources. Hence, safety researchers 

continue to use police reported collision data for safety analysis.  

The domain of literature in transportation safety using police reported crash database has 

evolved along two major streams: the first stream of research is focused on identifying attributes 

that result in traffic crashes and propose means to reduce the occurrence of traffic crashes (see 

Lord and Mannering, 2010 for a review of these studies); the second stream of work examines 

crash events and identifies factors that impact the crash outcome and suggests countermeasures to 

reduce crash related consequences (injuries and fatalities) (see Savolainen et al., 2011 for a 

review). The analysis of crash-frequency analysis is predominantly based on non-crash-specific 
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attributes and is focused on identifying the effective countermeasure to improve the roadway 

design and operational attributes. While improving road infrastructure design to reduce traffic 

crash occurrence is essential, it is also important to provide solutions to reduce the consequences 

in the unfortunate event of a traffic crash. To that end, crash severity analysis has evolved on 

examining the influence of several factors, comprising of driver characteristics, vehicle 

characteristics, roadway attributes, environmental factors and crash characteristics on traffic crash 

related severities. These associated risk factors are critical to assist decision makers, transportation 

officials, insurance companies, and vehicle manufacturers to make informed decisions to improve 

road safety. In summary, the severity analysis studies contribute to road safety by identifying the 

various factors that affect the crash severity to assist policy makers in developing appropriate 

remedial measures. 

 

1.3 Importance of Driver Injury Severity Analysis 

In crash severity analysis, researchers have considered and investigated severity by considering 

outcomes at different levels of crash victims: severity level of each person involved in the crash, 

most severely injured person of the crash, most severely injured person of each vehicle, driver of 

the vehicle, pedestrian, bicyclist or user of motorized two/three wheeler vehicles. Among these 

road user groups, pedestrian, bicyclists and user of motorized two/three wheeler vehicles bear the 

major burden of road traffic crash related fatalities in low- and middle-income countries of the 

world (WHO, 2013b). On the other hand, in high-income countries, occupants of four wheeled 

motorized vehicle, specifically drivers, constitute the highest proportion of crash related fatalities. 

For example, drivers of passenger vehicles (sedans and light vehicles) represent approximately 

50% and 47% fatalities among all road user groups in the US and Australia, respectively (FARS, 

2010; Ministry of Infrastructure and Transport, 2010).These statistics clearly indicate that driver 

safety of passenger vehicles is of great concern for high income countries. Any effort to reduce 

the social burden of these crashes and enhance driver safety would necessitate the examination of 

factors that contribute significantly to crash likelihood and/or driver injury severity in the event of 

a crash. 
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1.4 Methodological Overview of Driver Injury Severity Studies 

A number of research efforts have examined driver injury severity to gain a comprehensive 

understanding of the factors that affect injury severity. In our review of earlier research we focus 

on studies examining severity at a disaggregate accident or individual level models of driver injury 

severity. Within these approaches, we specifically focus on econometric models that employ a 

discrete variable representation for injury severity analysis. A summary of earlier research on 

driver injury severity analysis from the perspective of the various ordered and unordered outcome 

econometric models is provided in Table 1.1. The information presented in the table includes 

model structures employed for the analysis and identifies the variable categories considered in the 

analysis from the five broad categories of variables as presented in the table. The following 

observations may be made from the table. First, the most prevalent mechanisms to study driver 

injury severity are logistic regression1 and ordered outcome models (twenty four out of thirty one). 

The number of studies employing unordered models has been steadily increasing in recent years. 

Second, the most prevalent unordered outcome structure considered is the multinomial logit 

model. Third, it is evident from the analysis that very few studies (except Abdel-Aty, 2003; Ye 

and Lord, 2011) have empirically examined the different frameworks for modeling injury 

severity2. Fourth, only few studies have addressed the effect of observed and unobserved 

heterogeneity in examining driver injury severity outcomes. Finally, the maturity of the 

transportation safety community in examining driver injury severity is highlighted by the fact that 

a majority of studies (seventeen out of thirty one) have considered exogenous variables from all 

broad categories of variables. 

 

1.5 Gaps in Existing Safety Literature 

The preceding section of the driver injury severity studies clearly indicates that literature in 

severity analysis is vast and growing. These studies offer many useful insights on what factors 

affect crash severity outcomes. However, there are still several methodological and empirical gaps 

                                                           
1 To be sure, the logistic regression with two alternatives can be regarded as an ordered logit model with two 

alternatives. 
2 To be sure, Ye and Lord (2011) have compared the ordered probit, multinomial logit and mixed logit model in terms 

of underreported data. The authors conclude that all the three models considered in the study perform poorly in the 

presence of underreported data. The exact impact of underreporting on these model frameworks needs further 

investigation. The study employs data simulation; however, the models are estimated with just one parameter and for 

a particular aggregate sample share. 
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(as highlighted recently in the article by Mannering and Bhat, 2014), suggesting continual needs 

to develop advanced econometric frameworks to address these gaps in safety literature. In the 

subsequent discussion, various methodological gaps in the state of the art for driver injury severity 

analysis are presented and discussed along six directions: (1) appropriate model framework, (2) 

underreporting issue in severity analysis, (3) exogenous factor homogeneity assumption (4) 

multiple dependent variables in severity analysis, (5) continuum of fatal crashes and (6) data 

pooling from multiple data sources.  

 

1.5.1 Appropriate Model Framework 

The commonly available traffic crash databases compile injury severity data, primarily, as an 

ordinal discrete variable (for example: no injury, minor injury, major injury, and fatal injury). 

Naturally, many earlier studies examining the influence of exogenous factors employ ordered 

discrete outcome modeling approaches to evaluate their influence on crash severity (for example 

O’Donnell and Connor, 1996; Renski et al., 1999; Eluru et al., 2008). However, researchers have 

also employed unordered discrete outcome frameworks to study the influence of exogenous 

variables (for instance Shankar et al., 1996; Chang and Mannering, 1999; Khorashadi et al., 2005). 

The ordered outcome models represent the decision process under consideration using a single 

latent propensity. The outcome probabilities are determined by partitioning the uni-dimensional 

propensity into as many categories as the dependent variable alternatives through a set of 

thresholds. Unordered discrete outcome frameworks offer a potential alternative to the analysis of 

ordered discrete variables. These models are characterized, usually, by a latent variable per 

alternative and an associated decision rule. The unordered models, usually, allow for additional 

parameter specification because they are tied to alternatives as opposed to a single propensity in 

the ordered models. The applicability of the two frameworks for analyzing ordinal discrete 

variables has evoked considerable debate on using the appropriate model for analysis. Yet, there 

is little research on empirically examining the differences between the ordered and unordered 

frameworks, specifically in the context of crash injury severity.  

 

1.5.2 Underreporting Issue in Severity Analysis 

Another issue that has received little attention in road safety literature is the influence of 

underreporting associated with conventional crash databases on alternative model frameworks. 
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The estimation of injury severity models correspond to the assumption of random sampling of 

severities from a population, where the probability of occurring for each individual crash is equal 

(Savolainen et al., 2011). However, the unknown population shares of such outcome-based crash 

severity data make the estimation of parameters even more challenging. Moreover, most of the 

crash data are sampled from police reported crash database. Several previous studies (Elvik and 

Mysen, 1999; Yamamoto et al., 2008) have provided evidence of underreporting issues related to 

the police-reported crash database. In such cases, the application of traditional econometric 

frameworks may result in biased estimates (Yamamoto et al., 2008). In the presence of 

underreported data, the unordered outcome framework is considered to be more effective 

compared to the ordered response framework. In the case of an underreported decision variable, 

the traditional multinomial logit (MNL) model provides estimates that are unbiased i.e. the 

elasticity effects of the variables are not affected by the underreported data. This is often 

considered as a strong reason for promoting the use of unordered models over ordered models in 

modeling injury severity. It is important to recognize that the potential advantage applies only to 

MNL models under the condition that the dataset under examination satisfies the Independence of 

Irrelevant Alternatives (IIA) property (Ben-Akiva and Lerman, 1985). Hence, the nested logit and 

other advanced logit models that relax the IIA property are unlikely to yield unbiased estimates in 

the presence of underreporting. Moreover, the comparison of these two frameworks has mostly 

been undertaken in the context of traditional ordered models. The Generalized Ordered Logit 

(GOL) framework with its improved flexibility will provide the true benchmark for a fair 

comparison. Therefore, it is also essential to examine how alternative modeling frameworks are 

impacted by underreporting; thus allowing us to adopt frameworks that are least affected by 

underreporting. 

 

1.5.3 Exogenous Factor Homogeneity Assumption 

The widely employed discrete outcome formulations (ordered, generalized ordered, or unordered 

frameworks) typically restrict the impact of exogenous variables to be the same across the entire 

population of crashes (Eluru et al., 2012; Xie et al., 2012; Yasmin et al., 2014). But, the impact of 

control variables on crash injury severity might vary across individuals based on different crash 

attributes. Ignoring such heterogeneous impact of variable might result in incorrect coefficient 

estimates.  
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One approach to extend these formulations to allow heterogeneity effects (variations in the 

effects of variables across the population) is to specify random coefficients (rather than impose 

fixed coefficients) (for example, see Eluru and Bhat, 2007; Paleti et al., 2010; Srinivasan, 2002; 

Morgan and Mannering, 2011; Kim et al., 2013). But, while the mean of the random coefficients 

can be allowed to vary across drivers based on observed crash-specific variables, the random 

coefficients approach usually restricts the variance and the distributional form of a random 

coefficient to be the same across all drivers. Thus, in a crash context, the impact of a rear-end crash 

(relative to an angular crash) may lead to a certain distribution of injury risk propensity due to 

unobserved factors. This distribution may be tight for low speed crashes (that is, the injury risk 

may be negative in the mean and tightly distributed about this mean), but more variant for high 

speed crashes (that is, the injury risk may be quite volatile in high-speed situations, with rear-end 

collisions leading to high injury severity in some cases and low injury severity in some other 

cases). This is a case of the distribution on the rear-end crash variable being dependent on another 

variable (low speed or high speed crashes). Such possibilities cannot be easily accommodated in 

random coefficients models. Besides, an a priori distribution form has to be imposed on the 

random coefficients, and the normal distribution assumption is usually imposed even though there 

is no reason why other distribution forms may not be more appropriate. 

A second approach to allow heterogeneity effects is to consider segmenting the population 

based on exogenous variables (such as collision type, initial impact point of collision, speed, and 

location of impact) and estimate separate models for each segment (see Aziz et al., 2013 for 

segmentation based on location; Islam and Mannering, 2006 for segmentation based on driver 

demographics). However, because there may be many variables to consider in the segmentation 

scheme, the number of segments (formed by the combination of the potential segmentation 

variables) can explode rapidly. This causes problems in estimation because of very small sample 

sizes in some of the segments, and thus analysts tend to fall back to segmenting along 2-3 variable 

utmost (see Bhat, 1997 for a good discussion of these issues). To address this limitation, more 

advanced approaches such as clustering techniques that allow to segment based on a multivariate 

set of factors have been employed (Mohamed et al., 2013; Depaire et al., 2008). However, the 

approach still requires allocating data records exclusively to a particular segment, and does not 

consider the possible effects of unobserved factors that may moderate the impact of observed 

exogenous variables. 
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A third approach to accommodate heterogeneity is to undertake an endogenous (or 

sometimes also referred to as a latent) segmentation approach (see Bhat, 1997). In this approach, 

the drivers involved in collisions are allocated probabilistically to different segments, and segment-

specific injury severity models are estimated for each segment. At the same time, each segment is 

identified based on a multivariate set of exogenous variables. Such an endogenous segmentation 

scheme is appealing in many respects: (a) each segment is allowed to be identified with a 

multivariate set of exogenous variables, while also limiting the total number of segments to a 

number that is much lower than what would be implied by a full combinatorial scheme of the 

multivariate set of exogenous variables, (b) the probabilistic assignment of drivers to segments 

explicitly acknowledges the role played by unobserved factors in moderating the impact of 

observed exogenous variables, and (c) there is no need to specify a distributional assumption for 

the coefficients (Greene and Hensher, 2003).  

This third approach may be viewed as a combination of the two earlier approaches, in that 

it considers a multivariate set of exogenous variables in the segmentation and also allows 

unobserved variable effects to moderate the impact of exogenous variables. In fact, the third 

approach is equivalent to specifying a (discrete) non-parametric distribution on the coefficients 

(rather than the continuous parametric distribution assumption of the first approach), while also 

allowing the non-parametric distribution shape to be a function of a multivariate set of exogenous 

variables. The approach has been employed recently in the safety literature (Eluru et al., 2012; Xie 

et al., 2012; Xiong and Mannering, 2013; Yasmin et al., 2014). But these studies have employed 

either traditional ordered (ordered logit/ordered probit) or traditional unordered (multinomial logit) 

outcome frameworks in examining injury severity levels within latent segmentation based 

approach. However, the traditional ordered response formulation imposes a restrictive monotonic 

assumption regarding the impact of exogenous variables on the injury severity levels and the 

unordered outcome model does not recognize the inherent ordering of the crash severity outcome. 

To recognize the ordinality of the injury severity levels, as well as to provide as much flexibility 

as the unordered response formulation, Eluru et al. (2008) proposed the generalized ordered 

outcome formulation that bridges the divide between the traditional ordered outcome and the 
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traditional unordered outcome formulations. Thus, the severity analysis would benefit from 

employing GOL framework in the latent segmentation based approach3. 

 

1.5.4 Multiple Dependent Variables in Severity Analysis 

The most commonly identified exogenous factor that significantly affects traffic crash injury 

severity outcome is the collision type variable. Most of the earlier studies consider the collision 

type as an explanatory variable in modeling injury severity (except Ye et al., 2008 and Rana et al., 

2010). In this approach, the analyst imposes the assumption that the injury severity profile for 

vehicle occupants in all types of crashes is the same and any potential differences between different 

collision types can be accurately captured by employing the collision type variable as an 

explanatory variable. However, it is possible that various collision types might lead to distinct 

vehicle occupant injury severity profiles i.e., the overall manifestation of injury severity is different 

by collision type. For example, consider the impact of the gender variable in injury severity 

models. It is possible that males due to their higher physiological strength are more equipped to 

resist severe injuries in crashes. However, in a head-on crash due to the greater dissipation of 

kinetic energy, the physiological advantage might be inadequate. At the same time, the additional 

strength might be beneficial for male occupants to avoid severe injury in the event of other collision 

types such as side-swipe. This is an example of how a collision type variable moderates the impact 

of gender. It is plausible to visualize that collision type variables might similarly affect multiple 

exogenous variables – indicating that the injury severity profile itself is moderated by the collision 

type. Thus, estimating a single injury severity model, when such distinct profiles of injury severity 

exist, will result in incorrect and biased estimates. In fact, several studies have recognized this in 

safety literature and estimated injury severity focused on a specific type of collision - Head-on 

collision: Gårder, 2006; Conroy et al., 2008; Zuxuan et al., 2006; Zhang and Ivan, 2005; Rear-end 

collision: Khattak, 2001; Yan et al., 2005; Das and Abdel-Aty, 2011; Abdel-Aty and Abdelwahab, 

2003; and Angular collision: Jin et al., 2010; Chipman, 2004. These studies provide evidence that 

collision type has a fundamentally distinct effect on injury severity sustained in the crash. 

                                                           
3 The more recent work of Xiong and Mannering, (2013) proposes a latent segmentation model that further specifies 

unobserved heterogeneity in each segment-level injury severity model using a continuous multivariate normal 

distribution for the coefficients. This is tantamount to a discrete mixture-of-normals approach. Though, GOL does not 

account for unobserved heterogeneity in the segment level models in this paper, GOL can accommodate the more 

realistic case of injury reporting in more than two injury severity levels (the study by Xiong and Mannering, (2013) 

on the other hand, was a binary choice model of injury severity). 
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Given the possibility of distinct injury severity profiles – the estimation of separate injury 

severity models for various collision types seems the appropriate solution. At the same time, it is 

also important to investigate the factors that result in crashes of a particular collision type. This 

necessitates a model for collision type; an unordered outcome variable that can be studied using a 

multinomial logit model. Within this system, it is possible that the collision type and resulting 

injury severity are influenced by the same set of observed and unobserved factors. Accommodating 

for the impact of observed factors is relatively straightforward within the traditional discrete 

outcome models by estimating distinct outcome models for collision type (multinomial logit) and 

injury severity (ordered logit). The process of incorporating the impact of unobserved factors poses 

methodological challenges. Essentially, accommodating the impact of unobserved factors 

recognizes that the two dimensions of interest are realizations from the same joint distribution. 

Traditionally, in econometric literature, such joint processes are examined using simulation based 

approaches that stitch together the processes through common unobserved error terms (see Eluru 

and Bhat 2007; Abay et al., 2013 for examples in safety literature). In this direction, Ye et al. 

(2008) propose a simulation based simultaneous equation framework to study the collision type 

and injury severity dimensions. The framework employs maximum simulated likelihood approach 

and requires simulation in the order of the dimension of collision type variables. The process of 

applying simulation for such joint processes is likely to be error-prone in model estimation as well 

as inference – particularly the estimation of standard errors (see Bhat, 2011 for a discussion). At 

the same time, ignoring the presence of such potential jointness may lead to biased and inconsistent 

parameter estimates in modeling injury severity outcome (Chamberlain, 1980; Eluru and Bhat, 

2007; Washington et al., 2003).  

More recently, a closed form approach that obviates the need for simulation has been 

proposed in transportation literature for examining joint decision processes. The approach, referred 

to as Copula Approach, allows for flexible dependency structures across joint dimensions while 

retaining the closed form structure (see Bhat and Eluru, 2009). In fact, Rana et al., (2010) employed 

a copula based approach to consider the crash type and injury severity as a joint process with 

success. However, both of these studies (Ye et al., 2008, Rana et al., 2010) that jointly model the 

collision type and injury severity outcome describe the collision type as a crash level variable. But, 

depending on the position of driver and the initial point of impact, it is possible that the individual 

vehicle might have different effects in the manner of collision for the same type of collision (see 
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Khattak, 2001 for a discussion in the context of rear-end collision). Moreover, the earlier approach 

considers the dependency parameter in the copula model to be the same across the entire crash 

database. However, it is possible that several exogenous factors might actually affect the 

dependency profile. In other words, the correlation between collision type and injury severity 

might be stronger or weaker depending on the various attributes of the particular crash. Allowing 

for such flexibility in the dependency profile allows for more accurate model estimation.  

 

1.5.5 Continuum of Fatal Crashes 

In identifying the critical factors contributing to crash injury severity, safety researchers have 

focused on either examining fatal crashes (involving at least one fatally injured vehicle occupant) 

or traffic crashes that compile injury severity spectrum at an individual level (such as no injury, 

possible injury, non-incapacitating injury, incapacitating injury and fatality). In the US, the former 

category of studies predominantly use the Fatality Analysis Reporting System (FARS) database 

(see Evans and Frick, 1988; Preusser et al., 1998a; Zador et al., 2000; Gates et al., 2013) while the 

latter group of studies typically employ the General Estimates System (GES) database (see 

Kockelman and Kweon, 2002; Eluru and Bhat, 2007). FARS database compiles crashes if at least 

one person involved in the crash dies within thirty consecutive days from the time of crash. Further, 

FARS database reports the exact timeline of the fatal occurrence within thirty days from the time 

to crash.  

A number of research efforts have examined the impact of exogenous characteristics 

associated with fatal crashes employing FARS. These studies offer many useful insights on what 

factors affect crash related fatality, particularly in the context of fatal vs. non-fatal injury 

categorization. However, there is one aspect of fatal crashes that has received scarce attention in 

the traditional safety analysis. These studies assume that all fatal crashes in the FARS dataset are 

similar. Keeping all else same, a fatal crash that results in an immediate fatality is clearly much 

more severe than another crash that leads to fatality after several days. In fact, there is evidence 

from epidemiological studies (Tohira et al., 2012; Sauaia et al., 1995) that the risk factors 

associated with early and late trauma deaths of crash victims are different from the risk factors 

associated with late trauma deaths. For instance, Tohira et al. (2012) reported that older drivers 

(aged 65 years or older) and/or crash victims with a depressed level of consciousness were at 

increased risk of late trauma death. Research attempts to discern such differences are useful in 
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determining what factors affect the time between crash occurrence and time of death so that 

countermeasures can be implemented to improve safety situation and to reduce road crash related 

fatalities. Early EMS (Emergency Medical Service) response is also argued to potentially improve 

survival probability of motor vehicle crash victims (Clark and Cushing, 2002; Clark et al., 2013). 

In fact, Meng and Weng (2013) reported 4.08% decrease in the risk of death from one minute 

decrease in EMS response time, while Sánchez-Mangas et al. (2010) reported that a ten minutes 

EMS response time reduction could decrease the probability of death by one third. Given the 

import of this variable, it is also important to explore the effect of EMS response time in examining 

crash fatalities. Moreover, the first hour after crash occurrence – most popularly known as the 

“golden hour” (Cowley et al., 1973; Stewart, 1990) – is the most important phase in trauma care 

to ensure the best chance of a crash victim survival. Besides, identification of critical crash 

attributes that contribute to major trauma is crucial not only for preclinical trauma care but also for 

the optimal use of emergency medical service (EMS) resources (such as selecting appropriate 

patient transport method from the accident scene) (Weninger and Hertz, 2007; Meng and Weng, 

2013). The detailed information available in FARS provides us a continuous timeline of the fatal 

occurrences from the time of crash to death. This allows for an analysis of the survival time of 

victims before their death. To be sure, earlier research efforts focused on examining the factors 

influencing the time period between road accident and death (Golias and Tzivelou, 1992; Marson 

and Thomson, 2001; Feero et al., 1995; Al-Ghamdi, 1999; Gonzalez et al., 2006; Gonzalez et al., 

2009; Brown et al, 2000). These studies demonstrated that nature of injury, EMS response time 

and prehospital trauma care were the main factors affecting the time till death and concluded that 

timely EMS response with proper prehospital trauma care may improve the survival outcome. For 

analysis of the time to death data, these studies employed univariate statistical analysis (such as 

descriptive analysis or Fisher’s exact test, Student t test). Most recently, Ju and Sohn (2014) 

analyzed the factors that are potentially associated with variation in the expected survival time by 

using Weibull regression approach and identified that survival probabilities and expected survival 

times are related to changes in delta V, alcohol involvement, and restraint systems. But, none of 

these studies investigate the timeline of death at the disaggregate level as a function of exogenous 

characteristics for a crash victim. 
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1.5.6 Data Pooling from Multiple Data Sources 

The FARS database is a census (not a sample) of all fatal crashes in the US; i.e., crashes that lead 

to at least one fatality within thirty consecutive days from the time of crash, as discussed in the 

preceding section. The GES database, on the other hand, comprises a sample of road crashes across 

the US involving at least one motor vehicle travelling on a roadway and resulting in property 

damage, injury or death to the road users. The two datasets employed in the safety literature have 

their own advantages and limitations. The FARS focuses exclusively on fatal crashes. Therefore, 

one cannot reliably use this data to analyze the factors that increase or decrease the probability of 

fatality (because the data does not include crashes that do not lead to fatalities). The GES fills this 

gap by compiling data on a sample of roadway crashes involving all possible severity 

consequences (no injury, possible injury, non-incapacitating injury, incapacitating injury and 

fatality) providing a more representative sample of traffic crashes in the US. One of the advantages 

of FARS, however, is that the collected information includes the date and time of occurrence of 

the fatalities resulting within a 30-day time period from the crash. This detailed information 

provides us a continuous timeline of the fatal occurrences from the time to crash (instead of 

considering all fatalities to be the same). This allows for an analysis of the survival time of victims 

before their death. The GES, on the other hand, does not offer such detailed information except 

identifying who died in the crash. Examining the impact of various exogenous factors on all levels 

of injury severity as well as on the survival time of fatalities can potentially play a critical role in 

field triage - screening process to determine the more severe cases. While using the FARS data is 

very helpful for understanding the differences across different fatal crashes, it inherently excludes 

crashes with other possible, non-fatal injury severity outcomes. This makes it difficult to generalize 

the findings to the overall crash population. Besides, while analyzing the survival time of only 

fatal crash victims (using FARS data) helps in deriving the influence of various exogenous factors 

on survival time conditional upon the occurrence of a fatality, it doesn’t allow the analyst to derive 

the influence of those factors in increasing the chances of survival. This is because the FARS data 

doesn’t provide a representative sample of non-fatal crashes. One way to address this issue is 

combining information from both the FARS and GES datasets into a single, disaggregate crash-

level database. This will bring together the strengths of both datasets – the representativeness of 

crashes with all injury severity outcomes from the GES data and the detailed information on fatal 

crashes from the FARS data. However, none of the earlier studies pooled FARS and GES datasets 
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into a single, disaggregate crash level database that combines information from both the datasets. 

A pooled dataset would allow us to examine the whole spectrum of injury severity ranging from 

no injury to fatality, along with differentiating fatal crashes based on survival time. Moreover, the 

simultaneous interpretation of information would allow researchers to provide recommendations 

using a single modeling framework, rather than making inferences from the results of separate 

econometric models from different datasets4. 

 

1.6 Objectives 

Literature in severity analysis is vast and growing. However, there are still several methodological 

and empirical gaps as has been discussed in the preceding section. The objective of the current 

dissertation is to develop advanced econometric frameworks to address these gaps in safety 

literature while employing these models developed to study important empirical issues. The 

specific objectives of the current dissertation are fivefold as discussed below: 

 

The first objective is to evaluate the performance of alternate outcome frameworks for modeling 

driver injury severity. Specifically, the study provides a comprehensive comparison of ordered and 

unordered outcome models for examining the impact of exogenous factors on driver injury severity 

by using an observed and an underreported data samples. Further, we also evaluate the 

performance of model frameworks in the presence of underreporting – with and without 

corrections to the estimates.  

 

The second objective is to formulate, estimate and validate econometric models accounting for 

systematic heterogeneity in the context of driver injury severity. Specifically, the study formulates 

and estimates latent segmentation based generalized ordered logit model. Moreover, it also 

compares the performance of the formulated model with its traditional counterparts to demonstrate 

the advantages of accommodating the effect of both observed and unobserved heterogeneity in 

examining driver injury severity. 

 

                                                           
4 To be sure, the reader would note that there have been compilation of GES and FARS datasets to obtain the Annual 

Traffic Safety Facts (see NHTSA, 2012). However, in these efforts, there is no attempt to pool data from the two 

sources. The report provides trends separately for FARS and GES datasets.  
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The third objective is to apply and validate a multiple dependent variable model for 

accommodating endogeneity in the context of driver injury severity. Specifically, we develop a 

copula based joint modeling framework to study collision type and injury severity sustained as two 

dimensions of the severity process. Moreover, we enhance the copula based methodology by 

incorporating parameterization of dependency profile in an unordered and ordered joint structure. 

 

The fourth objective is to examine fatality as a continuum rather than a single discrete state.  

Specifically, rather than homogenizing all fatal crashes as the same, we analyze the fatal injury 

from a new perspective and examine fatality as a continuous spectrum based on survival time 

ranging from a death occurring within thirty days of the crash up to instantaneous death. The 

disaggregate level models are estimated for the discrete representation of the continuous fatality 

timeline, while also accounting for endogeneity bias of EMS arrival time using ordered outcome 

modeling framework with endogeneity treatment. 

 

The fifth objective is to develop a framework for pooling data from two crash datasets. 

Specifically, we propose and test the efficacy of a simple yet statistically valid approach to fuse 

two different datasets into a single, disaggregate crash level database that combines information 

from both the datasets. We also simultaneously examine the whole spectrum of injury severity by 

considering a very refined categorization of fatal crashes along with other non-fatal crashes.  

 

1.7 Outline of the Dissertation 

The remainder of the dissertation is divided into five chapters structured as follows: 

 

Chapter two contributes to objective one and focuses on the relevance of alternate discrete outcome 

frameworks for modeling driver injury severity. The ordered outcome and unordered outcome 

models are empirically compared in the context of driver injury severity in traffic crashes. The 

alternative modeling approaches considered for the comparison exercise include: for the ordered 

outcome framework- ordered logit (OL), generalized ordered logit (GOL), mixed generalized 

ordered logit (MGOL) and for the unordered outcome framework - multinomial logit (MNL), 

nested logit (NL), ordered generalized extreme value logit (OGEV) and mixed multinomial logit 

(MMNL) model. A host of comparison metrics are computed to evaluate the performance of these 
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alternative models. A comprehensive comparison exercise of the performance of ordered and 

unordered outcome models are provided for examining the impact of exogenous factors on driver 

injury severity. The effect of potential underreporting on alternative frameworks is also explored 

in this chapter by artificially creating an underreported data sample from the driver injury severity 

sample. The empirical analysis is based on the 2010 General Estimates System (GES) database of 

the US. The performance of the alternative frameworks are examined in the context of model 

estimation and validation (at the aggregate and disaggregate level). Further, the performance of 

the model frameworks in the presence of underreporting is explored – with and without corrections 

to the estimates. The empirical examination of alternative approaches in the context of injury 

severity analysis would allow us to determine the preferred model frameworks. 

 

Chapter three contributes to objective two by formulating, estimating and validating an 

econometric model, referred to as the latent segmentation based generalized ordered logit 

(LSGOL) model, for examining driver injury severity. The proposed model probabilistically 

allocates drivers (involved in a crash) into different injury severity segments based on crash 

characteristics to recognize that the impacts of exogenous variables on driver injury severity level 

can vary across drivers based on both observed and unobserved crash characteristics. The model 

is estimated using Victorian Crash Database from Australia for the years 2006 through 2010. 

 

Chapter four contributes to objective three by examining the hypothesis that collision type 

fundamentally alters the injury severity pattern under consideration. Towards this end, a copula 

based joint framework is employed that ties the collision type (represented as a multinomial logit 

model) and injury severity (represented as an ordered logit model) through a closed form flexible 

dependency structure to study the injury severity process. The proposed approach also 

accommodates the potential heterogeneity (across drivers) in the dependency structure. Further, 

the chapter incorporates collision type as a vehicle-level, as opposed to a crash-level variable as 

hitherto assumed in earlier research, while also examining the impact of a comprehensive set of 

exogenous factors on driver injury severity. The proposed modeling system is estimated using 

collision data from the province of Victoria, Australia for the year 2006 through 2010. 
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Chapter five focuses on objective four and examines fatality as a continuous spectrum based on 

survival time ranging from dying within thirty days of crash to dying instantly by using FARS 

database for the year 2010. The fatality continuum is represented as a discrete ordered dependent 

variable and analyzed using the mixed generalized ordered logit (MGOL) model. By doing so, we 

expect to provide a more accurate estimation of critical crash attributes that contribute to death. 

We also propose to estimate a two equation model that comprises of a regression equation for EMS 

response time and MGOL for fatality continuum with residuals from the EMS model to correct for 

endogeneity bias on the effect of exogenous factors on the timeline of death. Such research 

attempts are useful in determining what factors affect the time between crash occurrence and time 

of death so that safety measures can be implemented to prolong survival. The model estimates are 

augmented by conducting elasticity analysis to highlight the important factors affecting time-to-

death process.  

 

Chapter six contributes to objective five. This chapter focuses on developing a framework for 

pooling of data from FARS and GES data. The validation of the pooled sample against the original 

GES sample (unpooled sample) is carried out through two methods: (1) univariate sample 

comparison and (2) econometric model parameter estimate comparison. Generalized Ordered 

Logit (GOL) model (also referred to as Partial Proportional Odds model) is employed on the 

pooled dataset to analyze the influence of a variety of exogenous factors on traffic crash injury 

severity, while considering a very refined characterization of fatal crashes along with other, non-

fatal injury severity outcomes. Finally, elasticity measures are also computed to identify important 

factors affecting vehicle occupant injury severity outcomes. 

 

Chapter seven concludes the dissertation by summarizing the findings, and identifies directions 

for future research. 
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Table 1.1: Summary of Existing Driver Injury Severity Studies 

 

Paper 
Methodological 

Approach 

Driver injury 

Severity Representation 

Crash Attributes Considered 

Driver 

Characteristics 

Vehicle 

Characteristics 

Roadway 

Design 

& Operational 

Attributes 

Environmental 

Factors 

Crash 

Characteristics 

Shibata and 

Fukuda (1994) 

Logistic 

Regression 
Fatal; Non-fatal Yes ˗ ˗ ˗ Yes 

Krull et al. 

(2000)  

Logistic 

Regression 

Fatal/Incapacitating 

Injury; Non-

incapacitating/ Possible/ 

No injury 

Yes Yes Yes Yes Yes 

Toy and 

Hammitt 

(2003) 

Logistic 

Regression 

Serious injury/Death; 

Non-fatal 
Yes Yes ˗ ˗ Yes 

Conroy et al. 

(2008) 

Logistic 

Regression 
Severe injury Yes Yes ˗ ˗ Yes 

Fredette et al. 

(2008) 

Logistic 

regression 

Fatality, Major injury 

(hospitalized) 
Yes Yes Yes ˗ Yes 

Bédard et al. 

(2002)  

Multivariate 

Logistic 

Regression 

Fatal; Non-fatal Yes Yes ˗ ˗ Yes 

Dissanayake 

and Lu (2002) 

Sequential 

Binary Logistic 

Regression 

No injury; Possible 

injury; Non-incapacitating 

injury; Incapacitating 

Injury; Fatality  

Yes ˗ Yes Yes Yes 
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Huang et al. 

(2008) 

Bayesian 

Hierarchical 

Binomial 

Logistic 

Regression 

Fatal/Severe injury; 

Slight/No injury 
Yes Yes Yes Yes Yes 

Khattak et al. 

(2002) 
Ordered Probit 

Fatality; Incapacitating 

injury; Evident injury; 

Possible injury 

Yes Yes Yes Yes Yes 

Kockelman 

and Kweon 

(2002)  

Ordered Probit 
No injury; Minor injury; 

Severe injury; Fatal injury 
Yes Yes ˗ Yes Yes 

Abdel-Aty 

(2003) 

Ordered Probit, 

Ordered Logit, 

Multinomial 

Logit, Nested 

Logit 

Property damage only, 

Possible injuries, Evident 

injuries, Severe/fatal 

injuries 

Yes Yes Yes Yes Yes 

Khattak and 

Rocha (2003) 
Ordered Logit 

No injury; Minor injury; 

Moderate injury; Serious 

injury; Severe injury; 

Critical injury; Max 

injury 

Yes Yes Yes ˗ Yes 

Kweon and  

Kockelman 

(2003)  

Ordered Probit 

& Poisson 

Model 

No injury; Not severe 

injury; Severe injury; 

Fatal injury 

Yes Yes ˗ ˗ ˗ 

Khattak et al. 

(1998) 

Binary Probit & 

Ordered Probit 

Fatal; Severe injury; 

Moderate Injury; Minor 

injury 

Yes Yes Yes Yes ˗ 

Yamamoto 

and Shankar 

(2004) 

Bivariate 

ordered-

response probit 

Property damage only, 

Possible injury, Evident 

injury, Disabling injury, 

Fatality 

Yes Yes Yes Yes Yes 
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Yamamoto et 

al. (2008) 

Sequential 

Binary Probit 

Model; 

Ordered- Probit 

Model 

Property damage only; 

Possible injury; Evident 

injury; Disabling injury; 

Fatality 

Yes Yes Yes Yes Yes 

Xie et al. 

(2009) 

Bayesian 

Ordered Probit  

No injury, Possible injury, 

Non-incapacitated 

injury, Capacitated injury, 

and Fatal injury 

Yes Yes Yes Yes Yes 

Eluru and 

Bhat (2007) 

Mixed Joint 

Binary Logit-

Ordered Logit 

No injury; Possible 

injury; Non-incapacitating 

injury; Incapacitating 

injury; Fatal injury 

Yes Yes Yes Yes Yes 

Paleti et al. 

(2010) 

Random 

Coefficients 

Heteroscedastic 

Ordered-Logit 

No injury; Possible 

injury; Non-incapacitating 

injury; 

Incapacitating/Fatal injury 

Yes Yes Yes Yes ˗ 

de Lapparent 

(2008) 

Bivariate 

Ordered Probit 

No injury; Light injury; 

Severe injury; Fatal injury 
Yes ˗ Yes Yes Yes 

Srinivasan 

(2002) 

Ordered Logit; 

Ordered Mixed 

Logit 

No Injury/ Property 

Damage; Moderate injury; 

Severe injury; Fatal injury 

Yes Yes ˗ Yes Yes 

Ulfarsson and 

Mannering 

(2004) 

Multinomial 

Logit 

No injury; Possible 

injury; Evident injury; 

Fatal/Disabling injury 

Yes Yes Yes Yes Yes 

Rana et al. 

(2010)   

Copula-based 

Joint Ordered 

Logit–Ordered 

Logit; Copula-

Based Joint 

Multinomial 

No injury; Possible 

injury; Non-incapacitating 

injury; Incapacitating 

injury; Fatal injury 

Yes Yes Yes Yes Yes 
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Logit–Ordered 

Logit 

Eluru et al. 

(2012)  

Latent  

Segmentation  

Based  Ordered 

Logit   

No  injury; Injury; Fatal  

injury 
Yes Yes Yes Yes ˗ 

Eluru et al. 

(2010) 

Copula Based 

Approach 

No injury; Possible 

injury; Non-incapacitating 

injury; Incapacitating/ 

Fatal injury 

Yes Yes Yes Yes Yes 

Khorashadi et 

al. (2005) 

Multinomial 

Logit 

No injury; Complaint of 

pain; Visible injury; 

Severe/Fatal injury 

Yes Yes Yes Yes Yes 

Islam and  

Mannering 

(2006) 

Multinomial 

Logit 
No injury; Injury; Fatality Yes Yes Yes Yes Yes 

Awadzi et al. 

(2008)  

Multinomial 

Logit 
No injury; Injury; Fatality Yes Yes Yes Yes Yes 

Schneider et 

al. (2009)  

Multinomial 

Logit 

Property damage only; 

Possible injury; Non-

incapacitating injury; 

Incapacitating injury; 

Fatal 

Yes Yes Yes Yes Yes 

Morgan and 

Mannering 

(2011) 

Mixed 

Multinomial 

Logit 

Severe injury, Minor 

injury, No injury 
Yes Yes Yes Yes Yes 

Kim et al. 

(2013) 

Mixed 

Multinomial 

Logit 

Fatal injury, Severe 

injury, Visible injury, 

Complaint of pain/no 

injury 

Yes Yes ˗ Yes Yes 
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Xie et al. 

(2012) 

Latent  Class  

Logit 

No injury; Possible 

injury; Non-incapacitating 

injury; Incapacitating 

injury; Fatal injury 

Yes Yes Yes Yes Yes 
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CHAPTER 2 Evaluating Alternate Discrete Outcome Frameworks for Modeling Crash 

Injury Severity 

 

2.1 Introduction 

The applicability of ordered and unordered frameworks for analyzing ordinal discrete variables 

has evoked considerable debate on using the appropriate model for analysis. Yet, there is little 

research on empirically examining the differences between the ordered and unordered frameworks, 

specifically in the context of crash injury severity. There are many strengths and weaknesses for 

the ordered framework vis-à-vis the unordered framework (Eluru, 2013). The ordered outcome 

models explicitly recognize the inherent ordering within the decision variable whereas the 

unordered outcome models neglect the ordering or require artificial constructs to consider the 

ordering (for example the ordered generalized extreme value logit model). On the other hand, the 

traditional ordered outcome models restrict the impact of exogenous variables on the outcome 

process to be same across all alternatives while the unordered outcome models allow the model 

parameters to vary across alternatives (see Eluru et al., 2008 for a discussion). The restricted 

number of parameters ensures that ordered outcome models have a parsimonious specification. 

The unordered outcome models might not be as parsimonious but offer greater explanatory power 

because of the additional exogenous effects that can be explored. In fact, several studies highlight 

the advantages of multinomial logit model over the ordered outcome models (see for example Bhat 

and Pulugurta, 1998). Hence, an empirical examination of alternative approaches in the context of 

injury severity analysis will allow us to determine the preferred model. Yet, there is little research 

on empirically examining the differences between the ordered and unordered frameworks (except 

Abdel-Aty, 2003; Ye and Lord, 2011). Further, the recent revival of generalized ordered logit 

(GOL) model (proposed by Terza, 1985) offers an ordered framework that allows the analyst to 

estimate the same number of parameters as the multinomial logit for an ordinal discrete variable. 

Hence, an exercise comparing the alternative frameworks is incomplete without considering GOL. 

The GOL framework with its improved flexibility will provide the true benchmark for a fair 

comparison. 

An accurate estimation of the associated risk factors is critical to assist decision makers, 

transportation officials, insurance companies, and vehicle manufacturers to make informed 

decisions to improve road safety. Yet, there is little research on empirically examining the 
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differences between the ordered and unordered frameworks. Further, the influence of 

underreporting on alternative model frameworks has also received little attention. Given the 

significance of examining the influence of exogenous variables on injury severity it is important 

that we undertake a comparison based on the performance of alternative frameworks. Towards that 

end, the current chapter proposes a framework to compare and contrast the alternative frameworks 

available for modeling driver injury severity. However, the conventional police/hospital reported 

crash databases may not include precious behavioural, physiological and psychological 

characteristics of individual involved in collisions. Due to the presence of such unobserved 

information, the effect of exogenous variables might not be the same across individuals in the 

event of a crash (see for example Srinivasan, 2002; Eluru et al., 2008; Morgan and Mannering, 

2011; Kim et al., 2013). For example, careful driving on behalf of a safe driver might moderate 

the severity outcome of a crash during night-time and while less cautious driving of an aggressive 

driver might exacerbate the crash severity in the same situation. In non-linear models, neglecting 

the effect of such unobserved heterogeneity can result in inconsistent estimates (Chamberlain, 

1980; Bhat, 2001). Our study also incorporates the influence of unobserved heterogeneity in both 

the ordered and unordered outcome frameworks. Further, the chapter also incorporates the 

underreporting issue associated with traditional crash databases. Specifically, the current research 

examines the performance of alternative modeling frameworks in the context of estimation from 

an observed sample and also in the context of an artificially created underreported data sample. In 

doing so, the study generates elasticity measures for the true and underreported samples to 

illustrate the influence of underreporting. The parameters from these model estimations are also 

used on a validation hold-out sample to evaluate model predictions (in the true as well as 

underreported case). The alternative modeling approaches considered for the exercise include: for 

the ordered outcome framework - ordered logit (OL), generalized ordered logit (GOL), mixed 

generalized ordered logit (MGOL) and for the unordered outcome framework - multinomial logit 

(MNL), nested logit (NL), ordered generalized extreme value logit (OGEV) and mixed 

multinomial logit (MMNL) model. We generate a series of measures to evaluate model 

performance in estimation and prediction thus allowing us to draw conclusions on model 

applicability for injury severity analysis.  

In summary, the current chapter contributes to literature on driver injury severity in 

multiple ways. First, it provides a comparison exercise of the performance of ordered and 
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unordered outcome models by employing a host of comparison metrics for examining the impact 

of exogenous factors on driver injury. Second, we compare the performance of the various models 

in the presence of underreporting. Finally, we undertake the examination of driver injury severity 

using a comprehensive set of exogenous variables.  

The rest of the chapter is organized as follows. Section 2.2 provides details of the various 

econometric model frameworks used in the analysis. In Section 2.3, the data source and sample 

formation procedures are described. The model comparison results, elasticity effects and validation 

measures are presented in Sections 2.4 and 2.5. Section 2.6 concludes the chapter. 

 

2.2 Econometric Framework 

In this section, we provide a brief description of the methodology of all the models considered for 

examining driver injury severity in this research. 

 

2.2.1 Standard Ordered Logit Model 

In the traditional ordered models, the discrete injury severity levels (𝑦𝑖) are assumed to be 

associated with an underlying continuous latent variable (𝑦𝑖
∗). This latent variable is typically 

specified as the following linear function:   

𝑦𝑖
∗ = 𝑿𝑖𝜷 + 𝜀𝑖, for 𝑖 = 1,2, … … … , 𝑁 (2.1)  

where, 

𝑖 (𝑖 = 1,2, … … … , 𝑁) represents the drivers 

𝑿i is a vector of exogenous variables (excluding a constant) 

𝜷 is a vector of unknown parameters to be estimated 

𝜀 is the random disturbance term assumed to be standard logistic 

Let 𝑗 (𝑗 = 1,2, … … … , 𝐽) denotes the injury severity levels and 𝜏𝑗 represents the thresholds 

associated with these severity levels. These unknown 𝜏𝑗s are assumed to partition the propensity 

into 𝐽 − 1 intervals. The unobservable latent variable 𝑦𝑖
∗ is related to the observable ordinal 

variable 𝑦𝑖 by the 𝜏𝑗 with a response mechanism of the following form: 

𝑦𝑖 = 𝑗, 𝑖𝑓 𝜏𝑗−1 <  𝑦𝑖
∗ < 𝜏𝑗, for 𝑗 = 1,2, … … … , 𝐽 (2.2)  
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In order to ensure the well-defined intervals and natural ordering of observed severity, the 

thresholds are assumed to be ascending in order, such that 𝜏0 < 𝜏1 <  … … … < 𝜏𝐽 where 𝜏0 = −∞ 

and 𝜏𝐽 = +∞. Given these relationships across the different parameters, the resulting probability 

expressions for individual 𝑖 and alternative 𝑗 for the OL take the following form: 

𝜋𝑖𝑗 = 𝑃𝑟(𝑦𝑖 = 𝑗|𝑋𝑖) = 𝛬(𝜏𝑗 − 𝑿𝒊𝜷) − 𝛬(𝜏𝑗−1 − 𝑿𝒊𝜷) (2.3)  

where Λ(. ) represents the standard logistic cumulative distribution function. 

 

2.2.2 Generalized Ordered Logit Model 

The GOL model relaxes the constant threshold across population restriction to provide a flexible 

form of the traditional OL model. The basic idea of the GOL is to represent the threshold 

parameters as a linear function of exogenous variables (Maddala, 1983; Terza, 1985; Srinivasan, 

2002; Eluru et al., 2008). Thus the thresholds are expressed as: 

𝜏𝑗 = 𝑓𝑛(𝑍𝑖𝑗) (2.4)  

where, 𝑍𝑖𝑗 is a set of exogenous variable (including a constant) associated with 𝑗 th threshold. 

Further, to ensure the accepted ordering of observed discrete severity (−∞ < τ1 < τ2 <  … … … <

τJ−1 < +∞), we employ the following parametric form as employed by Eluru et al. (2008): 

𝜏𝑗 = 𝜏𝑗−1 + 𝑒𝑥𝑝(𝜹𝒋𝒁𝒊𝒋) (2.5)  

where, 𝜹𝑗 is a vector of parameters to be estimated. The remaining structure and probability 

expressions are similar to the OL model. For identification reasons, we need to restrict one of the 

𝜹𝒋 vectors to zero. 

 

2.2.3 Mixed Generalized Ordered Logit Model 

The MGOL accommodates unobserved heterogeneity in the effect of exogenous variable on injury 

severity levels in both the latent injury risk propensity function and the threshold functions 

(Srinivasan, 2002; Eluru et al., 2008). Let us assume that 𝜶𝑖 and 𝜸𝑖𝑗 are two column vectors 

representing the unobserved factors specific to driver 𝑖 and his/her trip environments in equation 

2.1 and 2.5, respectively. Thus the equation system for MGOL model can be expressed as: 
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𝑦𝑖
∗ = (𝜷 + 𝜶𝑖)𝑿𝑖 + 𝜀𝑖, for 𝑖 = 1,2, … … … , 𝑁 (2.6)  

and 

𝜏𝑖,𝑗 = 𝜏𝑖,𝑗−1 + 𝑒𝑥𝑝 [(𝜹𝒋 + 𝜸𝑖,𝑗) 𝒁𝑖,𝑗] (2.7)  

In equations 2.6 and 2.7, we assume that 𝜶𝑖 and 𝜸𝑖𝑗 are independent realizations from 

normal distribution for this study. Thus, conditional on 𝜶𝑖 and 𝜸𝑖𝑗, the probability expressions for 

individual 𝑖 and alternative 𝑗 in MGOL model take the following form: 

𝜋𝑖𝑗 = 𝑃𝑟(𝑦𝑖 = 𝑗|𝜶𝑖, 𝜸𝑖𝑗) 

       = 𝛬[𝜏𝑖,𝑗−1 + 𝑒𝑥𝑝 ((𝜹𝑗 + 𝜸𝑖,𝑗) 𝒁𝑖,𝑗) − (𝜷 + 𝜶𝑖)𝑿𝑖] − 𝛬[𝜏𝑖,𝑗−2

+ 𝑒𝑥𝑝 ((𝜹𝑗−1 + 𝜸𝑖,𝑗−1) 𝒁𝑖,𝑗) − (𝜷 + 𝜶𝑖)𝑿𝑖] 

(2.8)  

The unconditional probability can subsequently be obtained as: 

𝑃𝑖𝑗 = ∫ [𝑃𝑟(𝑦𝑖 = 𝑗|𝜶𝑖, 𝜸𝑖𝑗)] ∗ 𝒅𝑭(𝜶𝑖 , 𝜸𝑖𝑗)𝒅(𝜶𝑖 , 𝜸𝑖𝑗)
𝜶𝑖,𝜸𝑖𝑗

 (2.9)  

In this study, we use a quasi-Monte Carlo (QMC) method proposed by Bhat (2001) for 

discrete outcome model to draw realization from its population multivariate distribution. Within 

the broad framework of QMC sequences, we specifically use the Halton sequence (200 Halton 

draws) in the current analysis (see Eluru et al., 2008 for a similar estimation process).  

 

2.2.4 Multinomial Logit Model 

Let us consider the probability of a driver 𝑖 ending in a specific injury-severity level 𝑗. The 

alternative specific latent variables for MNL take the form of: 

𝑈𝑖𝑗 = 𝜷𝒋𝑿𝒊𝒋 + 𝜀𝑖𝑗 (2.10)  

where 

𝜷𝒋 is a vector of coefficients to be estimated for outcome 𝑗 

𝑿𝒊𝒋 is a vector of exogenous variables 

𝑈𝑖𝑗 is a function of covariates determining the severity  

𝜀𝑖𝑗 is the random component assumed to follow a  gumbel type 1 distribution. 

Thus, the MNL probability expression is as follows: 
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𝑃𝑖(𝑗) =
𝑒𝑥𝑝 [𝜷𝒋𝑿𝒊𝒋]

∑ 𝑒𝑥𝑝 [𝜷𝒋𝑿𝒊𝒋]𝐽
𝑗=1

 (2.11)  

 

2.2.5 Nested Logit Model 

The NL model allows the incorporation of correlation across alternatives and results in two kinds 

of alternatives: those that are part of a nest (i.e. alternatives that are correlated) and alternatives 

that are not part of nest. The crash severity probabilities for the nested alternatives in the NL are 

composed of the nest probability as well as the alternative probability (same structure as the MNL 

applies).  

In the first step, the probability of choosing the nest is determined followed by the 

probability of choosing alternative within the nest 

𝑃𝑖(𝑗) =
𝑒𝑥𝑝 [𝜷𝒋𝑿𝒊𝒋 + 𝜽𝒋𝑳𝒊𝒋]

∑ 𝑒𝑥𝑝 [𝜷𝒋𝑿𝒊𝒋 + 𝜽𝒋𝑳𝒊𝒋]𝑗∈𝐽
 

    

𝑃𝑖(𝑘|𝑗) =
𝑒𝑥𝑝 [𝜷𝒌|𝒋𝑿𝒊𝒋]

∑ 𝑒𝑥𝑝 [𝜷𝒌|𝒋𝑿𝒊𝒋]𝑘∈𝐾
 

(2.12)  

where, 

𝑃𝑖(𝑗) is the unconditional probability of 𝑖th crash falling in nest 𝑗 

𝑃𝑖(𝑘|𝑗) is the conditional probability of 𝑖th crash having severity outcome 𝑘 (lower level) 

conditioned on the nest 𝑗 (higher level) 

𝐽 is the actual severity and 𝐾 is the alternative represented by the nest 

𝑳𝒊𝒋 is the inclusive value (log sum) representing the expected value of the attributes from 

the nest j 

𝜽𝒋 is the nesting coefficient  

The alternative probabilities for non-nested alternatives take a form similar to the MNL 

probabilities while considering the utility of the nested alternatives as a composite alternative. To 

be consistent with the NL derivation, the value of the 𝜽𝒋 should be greater than 0 and less than 1 

(McFadden, 1981). If the estimated value of 𝜽𝒋 is not significantly different from 1, then the NL 

model collapses to a simple MNL model. 
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2.2.6 Ordered Generalized Extreme Value Model 

Injury levels of a crash are typically progressive (ranging from non-injury to fatal). MNL and NL 

models do not account for any inherent ordering in the outcomes. Small (1987) proposed the 

OGEV model for such ordered discrete outcomes. The OGEV model allows for the correlations 

between the error terms of outcomes which are close to each other in the ordered scale.  

We employ the structure proposed in Wen and Koppelman (2001) for the OGEV model 

with 𝑗 alternatives as follows: 

𝑃𝑖(𝑗) = ∑ 𝑃𝑖|𝑚. 𝑃𝑚

𝑖+𝐿

𝑚=𝑖

 

 

= ∑ [
(𝑤𝑚𝑖. 𝑒𝑈𝑖𝑗)1/𝜇𝑚

∑ (𝑤𝑚𝑗. 𝑒𝑈𝑖𝑘)1/𝜇𝑚
𝑘𝜖𝑁𝑚

∗
{∑ (𝑤𝑚𝑗. 𝑒𝑈𝑖𝑘)1/𝜇𝑚

𝑘𝜖𝑁𝑚
}

𝜇𝑚

∑ {∑ (𝑤𝑠𝑗. 𝑒𝑈𝑖𝑘)1/𝜇𝑠
𝑘𝜖𝑁𝑠

}
𝜇𝑠𝐽+𝐿

𝑠=1

]

𝑖+𝐿

𝑚=𝑖

 

(2.13)  

The probability of alternative 𝑗 in a crash for driver 𝑖 is computed as the sum of probability 

computed from all nests to which 𝑖 belongs. In the above notation, 𝐿 is the number of contiguous 

alternatives considered in a nest, 𝑤𝑚𝑖 represents the allocation weight for each alternative 𝑖 to nest 

𝑚, The total number of nests is given as a combination 𝐶
𝐽

𝐿. The allocation parameter satisfies the 

property ∑ 𝑤𝑚𝑖𝑖 =1. 𝜇𝑚 represents the log-sum parameter for nest 𝑚. Nm represents the set of 

alternatives in nest 𝑚. In our analysis we set 𝐿 = 1 i.e. we consider the following nests 1, 1 2, 2 3, 

3 4, and 4 (where 1= No Injury, 2= Possible Injury, 3= Non-incapacitating Injury and 4= 

Incapacitating/Fatal Injury). 

 

2.2.7 Mixed Multinomial Logit Model 

The MMNL is a generalized version of traditional MNL model. It allows the parameters for 

exogenous variables to vary across individual involved in the collision by accommodating 

unobserved heterogeneity on the utility functions for different injury severity levels. Let us assume 

that 𝝎𝑖𝑗 is a column vectors representing the unobserved factors specific to driver 𝑖 and his/her 

trip environments in equation 2.10. Thus the equation system for MMNL model can be expressed 

as: 
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𝑈𝑖𝑗 = (𝜷𝒋+𝝎𝑖𝑗)𝑿𝒊𝒋 + 𝜀𝑖𝑗 (2.14)  

In equation 2.14, we assume that 𝝎𝑖𝑗 is an independent realization from normal distribution 

for this study. Thus, conditional on 𝝎𝑖𝑗, the probability expression for individual 𝑖 and alternative 

𝑗 in MMNL model take the following form: 

𝑃𝑖𝑗|𝝎𝑖𝑗 =
𝑒𝑥𝑝 [(𝜷𝒋+𝝎𝑖𝑗)𝑿𝒊𝒋]

∑ 𝑒𝑥𝑝 [(𝜷𝒋+𝝎𝑖𝑗)𝑿𝒊𝒋]𝐽
𝑗=1

 (2.15)  

The unconditional probability can subsequently be obtained as: 

𝑃𝑖𝑗 = ∫ (𝑃𝑖𝑗|𝝎𝑖𝑗)
𝝎𝑖𝑗

∗ 𝑑𝐹(𝝎𝑖𝑗)𝑑𝝎𝑖𝑗 (2.16)  

To estimate the MMNL model, we apply the QMC simulation techniques in a similar 

fashion as described in MGOL model section. 

 

2.3 Data 

2.3.1 Data Source 

The data for the current chapter is sourced from the “General Estimates System (GES)” database 

for the year 2010. The GES database is a nationally representative sample of road crashes collected 

and compiled from about 60 jurisdictions across the US. The data is obtained from the US 

Department of Transportation, National Highway Traffic Safety Administration’s National Center 

for Statistics and Analysis (ftp://ftp.nhtsa.dot.gov/GES/GES10/). The data includes information of 

reports compiled by police officers for crashes involving at least one motor vehicle travelling on a 

roadway and resulting in property damage, injury or death to the road users. The GES crash 

database has a record of 46,391 crashes involving 81,406 motor vehicles and 116,020 individuals 

for the year of 2010. A five point ordinal scale is used in the database to represent the injury 

severity of individuals involved in these crashes: 1) No injury; 2) Possible injury; 3) Non-

incapacitating injury; 4) Incapacitating injury and 5) Fatal injury. Further, the dataset compiles 

information on a multitude of factors (driver characteristics, vehicle characteristics, roadway 

design and operational attributes, environmental factors and crash characteristics) representing the 

ftp://ftp.nhtsa.dot.gov/GES/GES10/
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crash situations and events. Accordingly, a number of crash-related factors are extracted from this 

database in order to explore the variables that might influence the driver injury severity.  

 

2.3.2 Sample Formation and Description 

The main focus of this study is injury severity of drivers of passenger vehicles (passenger car, 

sport utility vehicle, pickup or van). Thus, the following criteria were employed for sample 

formation: 

 The crashes that involve only non-commercial (private) passenger vehicle drivers are 

selected (to avoid the potential systematic differences between commercial and non-

commercial driver groups). 

 The passenger vehicle crashes that involve another passenger vehicle or a fixed object are 

examined. 

 The crashes that involve more than two vehicles are excluded from the analysis. 

The final dataset of non-commercial driver of passenger vehicles, after removing records 

with missing information for essential attributes consisted of about 30,371 records. In this final 

sample of crashes the percentage of fatal crashes sustained by drivers is extremely small (0.7%). 

Therefore, both the fatal and incapacitating injury categories are merged together to ensure a 

representative share for each alternative crash level. From this dataset, a sample of 12,170 records 

is sampled out for the purpose of model estimation and 18,201 records are set aside for validation. 

In the final estimation sample, the distributions of driver injury severities are: no injury 65.9%, 

possible injury 15.1%, non-incapacitating injury 12.1 % and incapacitating/fatal injury 6.9%. 

 

2.4 Empirical Analysis 

2.4.1 Variables Considered 

In our analysis of this chapter, we selected a host of variables from five broad categories: Driver 

characteristics (including driver gender, driver age, restraint system use, alcohol consumption and 

drug use), Vehicle characteristics (including vehicle type and vehicle age), Roadway design and 

operational attributes (including roadway class, speed limit, types of intersection and traffic control 

device), Environmental factors (including time of day and road surface condition) and Crash 

characteristics (including driver ejection, vehicle rolled over, air bag deployment, manners of 
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collision and collision location). It should be noted here that several variables such as presence of 

shoulder, shoulder width, point of impact, number of lanes, lighting condition could not be 

considered in our analysis because either the information was entirely unavailable or there was a 

large fraction of missing data for these attributes in the dataset. To be sure, we employ the manner 

of collision and time of day variables to act as surrogates for point of impact and lighting condition, 

respectively. In the final specification of the model, statistically insignificant variables were 

removed (95% confidence level). Further, in cases where the variable effects were not significantly 

different, the coefficients were restricted to be the same.  

 

2.4.2 Overall Measures of Fit 

In the research effort of this chapter, we estimated seven different models: 1) OL, 2) GOL, 3) 

MGOL, 4) MNL, 5) OGEV, 6) NL and 7) MMNL model. After extensively testing for different 

nesting structures for NL and parametric assumptions for OGEV models we found that these 

models collapsed to the MNL model. Hence, the entire comparison exercise is focussed on five 

models: OL, GOL, MGOL, MNL and MMNL. Prior to discussing the estimation results, we 

compare the performance of these models in this section.  

The log-likelihood values at convergence for the various frameworks are as follows: (1) 

OL (with 29 parameters) is -10617.51; (2) GOL (with 50 parameters) is -10517.83, (3) MGOL 

(with 55 parameters) is -10506.97, (4) MNL (with 57 parameters) is -10517.59 and (5) MMNL 

(with 61 parameters) is -10508.76. The corresponding value for the “constant only” model is -

12164.58. We can compare the ordered models (OL, GOL and MGOL) among those by using 

likelihood ratio (LR) test for selecting the preferred model. Similarly, the MNL and MMNL 

models can be compared using LR test.  However, to compare the ordered approaches with the 

unordered approach, the LR test is not appropriate because these structures are not nested within 

one another. Hence, to undertake the comparison we employ a two-step process. In the first step, 

we use the LR test to determine the superior model within each framework. Subsequently, we 

compare the best model from each framework using the non-nested measures applicable for such 

comparison.   

 

2.4.2.1 Comparison within Ordered and Unordered Frameworks 

The LR test statistic is computed as:  
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𝐿𝑅 =  2[𝐿𝐿𝑈 − 𝐿𝐿𝑅] (2.17)  

where 𝐿𝐿𝑈 and 𝐿𝐿𝑅 are the log-likelihood of the unrestricted and the restricted models, 

respectively. The computed value of the LR test is compared with the ℵ2 value for the 

corresponding degrees of freedom (dof). The resulting LR test values for the comparison of 

OL/GOL, OL/MGOL and GOL/MGOL models are 199.36 (21 dof), 221.08 (26 dof) and 21.72 (5 

dof), respectively. The LR test values indicate that MGOL outperforms the OL model at any level 

of statistical significance. The MGOL outperforms the GOL model at the 0.001 significance level 

indicating that MGOL offers superior fit compared to both OL and GOL models. In the unordered 

context, the LR test value (17.66, 4 dof) for the comparison of MNL/MMNL indicates that MMNL 

offers superior fit over MNL model at the 0.001 significance level. 

 

2.4.2.2 Comparison between Ordered and Unordered Frameworks - Non-nested Test 

To evaluate the performance of the ordered and unordered models, we employ different measures 

that are routinely applied in comparing econometric models including: 1) Bayesian Information 

Criterion (BIC), 2) Akaike Information Criterion corrected (AICc)5  and 3) Ben-Akiva and 

Lerman’s adjusted likelihood ratio (BL) test. The BIC for a given empirical model is equal to: 

𝐵𝐼𝐶 =  − 2𝐿𝐿 +  𝐾 𝑙𝑛(𝑄) (2.18)  

Also, the AICc values are computed for each of the four models as: 

𝐴𝐼𝐶𝑐 =  2𝐾 − 2𝑙𝑛 (𝐿𝐿)  +
2 𝐾(𝐾 + 1)

(𝑄 − 𝐾 − 1)
  (2.19)  

where 𝐿𝐿 is the log-likelihood value at convergence, 𝐾 is the number of parameters, and 𝑄 is the 

number of observations.  The model with the lower BIC and AICc values is the preferred model. 

The BIC (AICc) values for the final specifications of the MGOL and MMNL models are 21531.31 

(21124.45) and 21591.33 (21140.14), respectively.  

The BL test statistic (Ben-Akiva and Lerman, 1985) is computed as:   

𝜆 =  Φ {− [√−2(�̅�2
2 − �̅�1

2)𝐿(𝐶) + (𝑀2 − 𝑀1) ]}  (2.20)  

                                                           
5 AICc is a more stringent version of the AIC [AIC = 2K− 2ln(L)] in penalizing for additional parameters 
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where
2

 represents the McFadden’s adjusted rho-square value for the model. It is defined as �̅�2
2 =

1 − 
𝐿𝑖(𝛽)−𝑀𝑖

𝐿(𝐶)
, where 𝐿𝑖(𝛽) represents log-likelihood at convergence for the ith model, L(C) 

represents log-likelihood at sample shares and Mi is the number of parameters in the model 

(Windmeijer, 1995). The Φ(.) represents the cumulative standard normal distribution function. The 

resulting 𝜆 value for the comparison of MGOL and MMNL is 0, clearly indicating that MGOL 

offers superior fit compared to MMNL model. The comparison exercise clearly highlights the 

superiority of the MGOL in terms of data fit compared to MMNL model. In the subsequent section, 

we discuss the results from MGOL and MMNL frameworks. 

 

2.4.3 Estimation Results 

Table 2.1 presents the results of the MGOL and MMNL models. The reader would note that the 

interpretation of the MGOL is slightly different from the MMNL model. In MGOL, when the 

threshold parameter is positive (negative) the result implies that the threshold is bound to increase 

(decrease); the actual effect on the probability is quite non-linear and can only be judged in 

conjunction with the influence of the variable on propensity and other thresholds. MMNL 

represents the effect of exogenous variables on each injury category relative to the base category. 

In the following sections, the estimation results are discussed by variable groups. 

 

2.4.3.1 Driver Characteristics 

In safety research, driver demographics, particularly driver’s age and gender have always been 

considered to have a significant influence on injury severity. In the current research, the effects of 

these variables are found to be significant. In particular, MGOL estimates indicate that compared 

to the female drivers, the latent injury propensity is lower for male drivers, while the negative sign 

of threshold demarcating the possible and non-incapacitating injury indicates a higher likelihood 

of non-incapacitating and incapacitating/fatal injuries for the male drivers. It is important to note 

that the variable impacts in propensity and thresholds are counteracting one another and the exact 

impact realized is specific to every individual. Corresponding results from MMNL indicate that 

male drivers are more likely to evade injury relative to their counterparts. The estimates associated 

with driver age, from both the MGOL and MMNL, suggest a reduction in the likelihood of severe 

injuries for the young drivers (age<25) compared to middle-aged drivers (age 25 to 64). However, 
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the parameter characterizing the effect of older age (age≥65) on driver injury severity is found 

significant in the MMNL model only. The result suggests that the odds of suffering an 

incapacitating/fatal injury are significantly higher for the older drivers compared to the middle-

aged drivers.  

Seat belt use is found to have a significant influence on driver injury severity. Consistent 

with several previous studies (Preusser et al., 1991; Janssen, 1994; Eluru and Bhat, 2007), our 

analysis showed an unequivocal benefit for employing seat belts. MGOL model estimates for the 

driver not wearing safety belts results in a parameter that is normally distributed with a mean 1.528 

and standard deviation 0.844, which indicates that almost 96% of the drivers involved in the 

collision cannot evade injury if they do not wear seat belts at the time of crash. MMNL model 

estimates indicate that the likelihood of suffering from possible, non-capacitating and 

incapacitating/fatal injuries is higher for the unrestrained driver and these effects are fixed.  

As expected, drivers under the influence of alcohol are likely to have a higher injury risk 

propensity compared to the sober drivers. Positive sign of the latent propensity of MGOL model 

estimate indicates that the latent injury risk propensity is higher for drivers who are impaired by 

alcohol, while the negative sign of threshold demarcating the non-incapacitating and 

incapacitating/fatal injury indicates a higher likelihood of incapacitating/fatal injury for this group 

of drivers. MMNL model estimates also reveal that the odds of suffering incapacitating/fatal injury 

are higher for non-sober drivers. The effect of impairment by drugs is found significant in MMNL 

model only and the result shows that the drivers are more likely to suffer an incapacitating/fatal 

injury when they are impaired by drugs. The MGOL model is unable to pick such an effect of 

drugs involvement on driver injury severity and the reason might be attributed to a small share 

(0.9%) of drivers under the influence of drug in the dataset. 

 

2.4.3.2 Vehicle Characteristics 

With respect to driver’s vehicle type, the MGOL model results indicate that the latent injury 

propensity is higher for the driver of a passenger car compared to the driver of other passenger 

vehicles (sports utility vehicle (SUV), pickup and vans). This is expected because in collisions 

with other vehicles or fixed objects, the drivers in passenger cars are usually the most likely to be 

severely injured (Mayrose and Jehle, 2002; O’Neill and Kyrychenko, 2004; Fredette et al., 2008). 

The corresponding results from MMNL suggest that the likelihood of sustaining possible, non-
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capacitating and incapacitating/fatal injuries is higher for the drivers in a passenger car relative to 

drivers in other passenger vehicles. 

The vehicle age result of MGOL model demonstrates that the drivers in older vehicles (6-

10 years and above 10 years) have a higher injury risk propensity compared to the drivers in newer 

vehicles (vehicle age<6 years). The MMNL model estimates indicate that the drivers in older 

vehicles (6-10 years old and above 10 years old) have a higher likelihood of suffering from 

possible, non-capacitating and incapacitating/fatal injuries relative to the drivers in newer vehicles. 

The higher injury risk of older vehicle’s driver might be attributed to the mechanical defect, lack 

of safety equipment, exposure of younger driver to these vehicles or the involvement of suspended 

and unlicensed drivers of these vehicles (Lécuyer and Chouinard, 2006). The lower injury risk for 

the driver of new vehicles may reflect the advancement in the vehicle-based safety equipment 

(such as airbag, antilock braking system, center high-mounted stoplight, crash cage, shatter 

resistant windshield).  

 

2.4.3.3 Roadway Design and Operational Attributes 

With respect to the roadway functional class, the MGOL model estimates show that the injury risk 

propensity of drivers is higher when the crash occurs on an interstate highway. Again, the effect 

of “interstate highway” variable on the threshold demarcating non-incapacitating and 

incapacitating/fatal injuries shows a higher likelihood of incapacitating/fatal injuries of the drivers 

during crashes on an interstate highway. The MMNL model estimates show that the likelihood of 

both possible and incapacitating/fatal injury increases when crash occur on interstate highway. The 

MGOL results for speed limit indicate that latent injury propensities are higher for crashes 

occurring on roads with medium (26 to 50 mph) and higher (above 50 mph) speed limits relative 

to crashes on lower speed limit (less than 26 mph). The effect of speed limit variables on the 

threshold indicates increased likelihood of non-incapacitating and incapacitating/fatal injuries at 

higher speed limits. The corresponding results from MMNL suggest that the likelihood of 

sustaining possible, non-incapacitating and incapacitating/fatal injuries is higher for crashes on 

both the medium and higher speed limit roads compared to the crashes on lower speed limit roads. 

As is expected, within the two speed categories considered the higher speed category has a larger 

impact relative to the medium speed limit category. 



37 

 

With respect to the types of intersection, only four way intersections are found to have 

significant influence on driver injury severity. The MGOL model estimates reflect the higher 

injury risk propensity to drivers on a four-way intersection. The MMNL results also indicate very 

similar impact of four-way intersection on injury severity. The four way intersection reduces the 

likelihood of no injury crashes and in turn increases the likelihood of a driver sustaining severe 

injury. The presence of traffic control device is also found to have significant effect on the severity 

of crashes. MGOL estimates reveal that the presence of a traffic signal/stop/yield sign reduces the 

likelihood of injury risk propensity of the drivers relative to the absence of a control measure. The 

MMNL estimates show that the likelihood of non-incapacitating injury reduces with the presence 

of a traffic signal/stop/yield sign. However, MGOL estimates also indicate that the injury risk 

propensity increases when there are other traffic control system or a warning sign present on the 

roadway. The corresponding result of MMNL specify that the odds of suffering an 

incapacitating/fatal injury increase significantly with the presence of these control measures 

relative to uncontrolled measure. 

 

2.4.3.4 Environmental Factors 

Time-of-day and surface condition are two of the environmental factors that are found to 

significantly influence driver injury severity. Compared to the evening peak, the likelihood of 

injury risk propensities are found to be higher for both the morning peak and off-peak periods in 

the MGOL estimates. At the same time, the effect of night-time variable on the threshold 

demarcating possible and non-incapacitating injuries shows a higher likelihood of non-

incapacitating and incapacitating/fatal injuries. The MMNL estimates reveal that the drivers are 

less likely to evade no injury during morning peak and off-peak period. However, the effect of 

night-time variable results in an estimate that is normally distributed with 0.032 and standard 

deviation 0.772. But, the mean coefficient for night-time is not significantly different from zero, 

while the standard deviation is highly significant. This result indicates that driver injury severity 

outcome varies widely during night-time crash and the exact nature of injury severity is determined 

by the unobserved factors specific to the crash.   

The findings of MGOL estimates indicate that if collisions occur on a snowy road surface, 

the consequence is likely to be less injurious as compared to the accident on dry road surface. The 

MMNL results also indicate very similar impacts of snowy road surface on driver injury severity. 
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On a snowy road the drivers are more likely to evade serious injury relative to crashes on a dry 

surface. The effect of wet road surface condition is found significant only in the MMNL model 

estimates and the result indicates a lower likelihood of non-incapacitating injury on wet roads. The 

reduced risk of injury on snowy/wet road can be attributed to more careful driving and reduced 

speeding possibility (Edwards, 1998; Mao et al., 1997; Eluru and Bhat, 2007). 

 

2.4.3.5 Crash Characteristics 

Several crash characteristics considered are found to be significant determinants of driver injury 

severity. Among those, the injury risk propensities are observed to be higher in MGOL estimates 

when a driver is ejected out from his/her vehicle or when the vehicle rolled over. At the same time, 

the positive values of the first thresholds of driver ejection reflect an increase in possible injury 

probability. But, the first threshold of vehicle rolled over is found to be random with a statistically 

insignificant mean and a highly significant standard deviation. The result indicates that while 

injury risk propensity is likely to increase the impact on crash severity, the threshold is determined 

by unobserved factors specific to the crash.     

The likelihood of injury risk propensity for the deployment of air bag is also found to be 

significant and normally distributed in the MGOL model estimate. The result implies that air bag 

deployment increases the probability of injury in almost 97% cases. At the same time, the positive 

values of the first thresholds of air bag deployment reflect an increase in possible injury 

probability. The corresponding results from the MMNL model estimates indicate that the drivers 

are less likely to avoid serious injury when the vehicle rolled over or an air bag deployed during a 

crash. However, none of the aforesaid two variable estimates are found to be random, while the 

effect of driver ejection is found to be insignificant both as fixed and random parameter in MMNL. 

With respect to the collision object, MGOL and MMNL model estimates indicate very 

similar effects indicating that the odds of suffering serious injury is higher when a vehicle strikes 

a stationary object (such as: pole, guard rail, tree and post) compared to the crashes with a moving 

vehicle. However, the threshold demarcating non-incapacitating injury to incapacitating/fatal 

injury of MGOL is distributed normally. With the estimated parameter, 39.36% of the distribution 

is greater than zero and 60.64% of the distribution is less than zero. At the same time, MMNL 

model also results in a random parameter for incapacitating/fatal injury category, which indicates 

that 82.12% of the distribution is above zero and only 17.88% is less than zero. The parameters 
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characterizing the effects of manner of collision in Table 2.1, for both MMNL and MGOL models, 

suggest that the drivers are less likely to evade serious injury in the event of head-on or angular 

collision relative to the rear-end collision. Side-swipe collisions with vehicles travelling in the 

same direction and rear to sideswipe collisions are less severe than rear-end collision. 

Finally, both the MGOL and MMNL model estimates indicate that collision location has a 

significant influence on injury severity profile. Specifically, collisions at an intersection or 

entry/exit ramp or driveway access or intersection related collisions are less likely to result in 

injuries to the drivers in the event of a crash relative to non-intersection location. At the same time, 

the latent propensity of MGOL and the possible/non-incapacitating injury coefficient of MMNL 

for intersection related collision indicate the presence of significant unobserved heterogeneity in 

those estimates. The driveway access related variable also results in a random parameter for 

incapacitating/fatal injury category in only MGOL model. Further, the MGOL estimates show that 

collision on driveway access or entrance/exit ramp has a reduced likelihood of severe injury, while 

railway grade crossing has a positive impact on possible injury outcome. In the MMNL model, the 

variable representing through roadway results in a higher likelihood of possible and non-

incapacitating injuries, while the variable representing other location reduces the likelihood of 

possible and non-incapacitating injuries. 

The broad characterization of exogenous variable effects across the MGOL and MMNL 

model systems is similar with some differences. These differences can be attributed to the different 

model structures and different outcome mechanism. The reader would note that in both systems, 

the impact of exogenous variables was moderated by unobserved effects resulting in statistically 

significant standard deviation parameters. 

 

2.5 Model Comparison 

In the preceding section, we have presented a discussion of model results for the MGOL and the 

MMNL model. To investigate the comparison further, we examine the model performance under 

two contexts: (1) presence of underreporting and (2) validation on a hold-out sample. 

 

2.5.1 Underreporting 

In police reported crash database, many property damage and minor injury crashes might go 

underreported since lower crash severity levels make reporting to authorities less likely 
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(Savolainen and Mannering, 2007). Researchers have argued that underreporting of data will have 

minimal impact on the model estimation result of standard MNL model (Kim et al., 2007; Shankar 

and Mannering, 1996; Savolainen and Mannering, 2007; Islam and Mannering, 2006). On the other 

hand, ordered response models are particularly susceptible to underreporting issue (Savolainen and 

Mannering, 2007; Ye and Lord, 2011) and can result in biased or inconsistent parameter estimates. 

However, recent evidence on examining underreporting suggests that none of the models 

(including unordered response systems) are immune to the underreporting issue (Ye and Lord, 

2011). This is expected because the presence of underreporting would not affect the unordered 

systems only when the dataset under consideration satisfies the independence of irrelevant 

alternatives (IIA) property. Hence, even the MNL model will yield biased estimates if the IIA 

property does not hold for the dataset. To reinforce this, we undertake a comparison in the context 

of underreported data. For this purpose, we generate an underreported data set by randomly 

removing 50% of no injury crash records from the estimation sample. This reduced dataset is used 

to re-estimate MGOL and MMNL models. To compare the differences between the estimates from 

“true” and “underreported” dataset we compute elasticity effects for a selected set of independent 

variables - Male, Age less than 25, Passenger car, High speed limit, Snowy road surface and Head-

on collision (see Eluru and Bhat, 2007 for a discussion on computing elasticities). The elasticity 

estimates are presented in Table 2.2. For the ease of presentation, we focus on the elasticity effects 

for the two severe injury categories. The results from the “true” sample and underreported sample 

indicate that the underreported sample consistently obtains the wrong elasticities, as expected. The 

percentage error in computing elasticity for the selected variables for the two injury severity 

categories has an average of (33.69, 19.11) and (31.81, 25.96) while the range of the errors is (2.97, 

75.99) and (5.85, 57.83) for MGOL and MMNL models, respectively. From the estimated 

measures we can argue that neither of the models results in unbiased estimates in the 

underreporting context. 

 In addition to direct comparison in the context of underreporting, we also undertake a 

comparison of the elasticity effects with corrections to the MMNL and MGOL models. The 

correction exercise for altering constants estimated from an underreported sample is relatively 

straight forward. Specifically, all parameter estimates are kept the same and the constants are 

altered to match the population shares in the “true” sample. A trial and error approach to alter the 

constants is employed to generate “corrected” constants for the MMNL model. Further, we employ 
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a similar approach to correct the threshold parameters for the MGOL model. In the MGOL model 

the population share can be influenced by altering the threshold constants thus achieving the same 

correction process as the MMNL model. In both correction exercises, adequate care is taken to 

ensure that the population shares match with the “true” shares after the parameters are corrected. 

Subsequent to the constant and threshold corrections, the elasticity values are recomputed for the 

updated estimates. The results are presented in the last block of rows in Table 2.2.  

The elasticity errors reduce substantially for both MGOL and MMNL models as a result 

of the parameter corrections. The average percentage errors in computing elasticity for the selected 

variables ranges are (15.73, 12.12) and (18.80, 11.27) for MGOL and MMNL models with a range 

of (0.74, 38.41) and (1.2, 35.89), respectively. We can argue that both the unordered and ordered 

frameworks perform almost equivalently with underreported dataset and the performance for both 

of these structures can be improved with the correction measure if the true population share is 

available to the analyst. 

  

2.5.2 Validation Analysis 

A validation experiment is also carried out in order to ensure that the statistical results obtained 

above are not a manifestation of over fitting to data. For testing the predictive performance of the 

models, 100 data samples, of about 4000 records each, are randomly generated from the hold out 

validation sample consisting of 18,201 records. We evaluate both the aggregate and disaggregate 

measure of predicted fit by using these 100 different validation samples. For these samples, we 

present the average measure from the comparison, and also the confidence interval (C.I.), of the 

fit measures at 95% level.  

At the disaggregate level we computed predictive log-likelihood (computed by calculating 

the log-likelihood for the predicted probabilities of the sample), AICc, BIC, predictive adjusted 

likelihood ratio index, probability of correct prediction, and probability of correct prediction >0.7. 

The results are presented in Table 2.3. In terms of disaggregate validation measures, the MMNL 

model consistently outperforms the MGOL model (except for probability of correct prediction 

>0.7). At the aggregate level, root mean square error (RMSE) and mean absolute percentage error 

(MAPE) are computed by comparing the predicted and actual (observed) shares of injuries in each 

injury severity level. We compute these measures for each set of full validation sample and specific 

sub-samples within that validation population - Driver age less than 25, Air bag deployed, Off-
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peak hour crash, Snowy surface and Passenger car. The results for aggregate measure computation 

are presented in Table 2.4.  

The comparison of MGOL and MMNL model at the aggregate level is far from conclusive. 

However, it is clear that MGOL and MMNL models perform very well at the aggregate level. For 

the full sample, both the MAPE and RMSE values are very close for both models. The RMSE and 

MAPE values show that the predicted performance for the MGOL model is superior to that of the 

MMNL model for sub-samples air bag deployed and off-peak hour crash while the MMNL model 

is superior to that of the MGOL model for driver age less than 25, snowy surface and for passenger 

car. Thus, we can argue that the differences in the validation measures at aggregate level are not 

as conclusive as the measures at disaggregate level.  Further, the differences in the aggregate level 

characteristics between the models are very small. 

 We extend the validation exercise to examine the performance of underreported sample 

estimates (uncorrected and corrected) as well on the 100 randomly selected validation samples. 

We compute these measures only for each of the full validation samples (results are presented in 

Table 2.5). Clearly, based on the underreported sample estimates, the overall errors at disaggregate 

and aggregate levels are much larger than previously for both systems. In the uncorrected system, 

MGOL has lower AICc and BIC values, but MMNL has lower RMSE and MAPE values. But in 

the corrected system, MGOL consistently outperforms the MMNL model (except for RMSE) and 

the aggregate predicted shares from MGOL model is closer to the actual shares for three out of 

four injury categories compared to those from MMNL model. 

In summary, from the host of validation statistics we can argue that neither the ordered nor 

the unordered frameworks exclusively outperforms each other both at the aggregate and the 

disaggregate levels. The relatively close performance of the two model systems is further 

illustrated through the computation of the validation measures for various sub-samples of the 

population. Overall, the results indicate that MGOL and MMNL offer very similar prediction for 

the various sub-samples at the aggregate and disaggregate level. The results reinforce that MGOL 

model performs very close to the MMNL model in examining driver injury severity. 

 

2.6 Summary 

This chapter focuses on the relevance of alternate discrete outcome frameworks for modeling 

driver injury severity. The most prevalent framework employed to model injury severity is the 
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ordered response mechanism. However, unordered response models were also employed in the 

past to model crash injury severity. The applicability of the two frameworks for analyzing ordinal 

discrete variables has evoked considerable debate on using the appropriate framework for analysis. 

An empirical examination of alternative approaches to modeling injury severity would enable us 

to determine the preferred model framework between the two modeling approaches. 

Further, the two frameworks are also influenced by the underreporting issue associated 

with crash data sample. Most of the crash data are sampled from police reported crash database, 

where many property damage and minor injury crashes might go underreported. In the case of an 

underreported decision variable, the application of traditional econometric frameworks may result 

in biased estimates. Unfortunately, the unknown population shares of such outcome-based crash 

severity data make the estimation of parameters even more challenging. In this context, it is 

essential to examine how alternative modeling frameworks are impacted by underreporting; thus 

allowing us to adopt frameworks that are least affected by underreporting. 

The current chapter addressed the aforementioned issues of identifying the more relevant 

framework to model crash injury severity by empirically comparing the ordered and unordered 

outcome models. The performances of these models were also tested in the presence of 

underreported crash data by creating an artificial reduced dataset. Elasticity measures were 

generated for the “true” dataset and the artificial underreported dataset to compare the predicted 

elasticities for the different models. Thus, the current research contributes to the safety analysis 

literature from both the methodological and empirical standpoint. 

The alternative modeling approaches considered for the exercise include: for the ordered 

outcome framework - ordered logit, generalized ordered logit, mixed generalized ordered logit and 

for the unordered outcome framework - multinomial logit, nested logit, ordered generalized 

extreme value logit and mixed multinomial logit model. The empirical analysis was based on the 

2010 General Estimates System (GES) database. The focus in the analysis was exclusively on non-

commercial passenger vehicle driver crash-related injury severity. Several types of variables were 

considered in the empirical analysis, including driver characteristics, vehicle characteristics, 

roadway design and operational attributes, environmental factors and crash characteristics. The 

empirical results indicated the important effects of all of the above types of variables on injury 

severity. The model comparison for the estimation sample clearly indicated that the MGOL model 

outperforms the MMNL model.  
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To investigate the comparison further, we studied the model performance under two 

contexts: (1) presence of underreporting and (2) validation on a hold-out sample. We generated a 

series of measures to evaluate model performance in estimation and prediction thus allowing us to 

draw conclusions on preferred model frameworks for injury severity analysis. In the context of 

underreporting, the comparison between the elasticity estimates from “true” and “underreported” 

sample indicated that the underreported sample consistently obtained the wrong elasticities for 

both MGOL and MMNL models. The most striking finding was the fact that the MMNL model 

did not perform any better in the underreporting context than MGOL. Moreover, the correction 

measures for the thresholds/constants based on the true aggregate shares reduced the elasticity 

errors substantially for both MGOL and MMNL models. In the context of validation analysis at 

the aggregate and disaggregate level, we argued that neither the ordered nor the unordered 

frameworks exclusively outperforms each other. The relatively close performance of the two 

model systems was further illustrated through the computation of the validation measures for 

various sub-samples of the population and in the presence of underreporting. Overall, the results 

of the empirical comparison provided credence to the belief that an ordered system that allows for 

exogenous variable effects to vary across alternatives and accommodates unobserved 

heterogeneity offer almost equivalent results to that of the corresponding unordered systems in the 

context of driver injury severity.  
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Table 2.1: MGOL and MMNL Estimates 

Variables 

MGOL MMNL 

Latent 

Propensity 

Threshold 

between 

Possible and 

Non-

incapacitating 

Injury 

Threshold between 

Non-incapacitating 

and 

Incapacitating/Fatal 

Injury 

No Injury 
Possible 

Injury 

Non-

incapacitating 

Injury 

Incapacitating/ 

Fatal Injury 

Constant -1.819 0.208 0.624 − -2.239 -2.989 -5.215 

Driver Characteristics 

 Driver gender (Base: Female) 

  Male -0.565 (0.046) -0.258 (0.046) − − 
-0.656 

(0.057) 
-0.540 (0.064) -0.500 (0.090) 

 Driver age (Base: Age 25 to 64) 

  Age less than 25 -0.441 (0.050) − − 0.411 (0.051) − − − 

  Age above 65+ − − − − − − 0.403 (0.137) 

 Restraint system use  (Base: Restrained) 

  Unrestrained 1.528 (0.142) − − − 1.303 (0.065) 1.695 (0.073) 2.127 (0.101) 

  SD Unrestrained 0.844 (0.223) − − − − − − 

 
Under the influence of 

alcohol 
0.489 (0.130) − -0.353 (0.122) − − − 0.887 (0.166) 

 
Under the influence of 

drug 
− − − − − − 0.776 (0.293) 

Vehicle Characteristics 

 Vehicle Type (Base: SUV, pickup and vans) 

  Passenger car 0.269 (0.046) − − -0.262 (0.047) − − − 

 Vehicle age (Base: Vehicle age less than 6) 
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  Vehicle Age 6 to 10 0.144 (0.052) − − − 0.122 (0.057) 0.122 (0.057) 0.308 (0.111) 

  Vehicle age above 10 0.405 (0.055) − − − 0.312 (0.067) 0.444 (0.073) 0.684 (0.111) 

Roadway Design and Operational Attributes 

 Interstate Highways 0.303 (0.088) − -0.246 (0.090) − 0.224 (0.092) 0.224 (0.092) 0.672 (0.163) 

 Speed limit (Base: Speed limit less than 26 mph) 

  
Speed limit 26 to 50 

mph 
0.462 (0.072) -0.127 (0.046) − − 0.268 (0.088) 0.541 (0.105) 0.985 (0.172) 

  
Speed limit above 

50mph 
0.715 (0.089) − − − 0.616 (0.107) 0.767 (0.123) 1.122 (0.196) 

 Types of Intersection 

  Four way intersection 0.177 (0.062) − − -0.172 (0.060) − − − 

 Traffic Control Device (Base: Non traffic control device) 

  
Traffic 

signal/Stop/Yield sign 
-0.119 (0.059) − − − − -0.252 (0.073) − 

  
Other traffic control 

device 
0.376 (0.142) − − − − − 0.567 (0.239) 

Environmental Factor 

 Time (Base: 3 pm to 6 pm) 

  6 pm to 6 am − -0.141 (0.048) − − − 0.032 (0.091) 0.032 (0.091) 

  SD 6 pm to 6 am − − − − − 0.772 (0.211) 0.772 (0.211) 

  6 am to 9 am 0.173 (0.069) − − -0.214 (0.073) − − − 

  9 am to 3 pm 0.195 (0.048) − − -0.244 (0.052) − − − 

 Surface condition (Base: Dry) 

  Wet − − − − − -0.179 (0.087) − 

  Snowy -0.648 (0.120) − − − 
-0.592 

(0.123) 
-0.592 (0.123) -1.041 (0.263) 

Crash Characteristics 
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Driver ejected out of the 

vehicle 
6.040 (2.655) 1.583 (0.751) − − − − − 

 Vehicle rolled over 2.111 (0.209) 0.177 (0.220) − − 1.923 (0.224) 1.923 (0.224) 2.877 (0.286) 

 SD Vehicle rolled over − 0.989 (0.343) − − − − − 

 Air bag deployment 1.595 (0.066) 0.270 (0.073) − − 1.303 (0.065) 1.695 (0.073) 2.127 (0.101) 

 SD Air bag deployment 0.844 (0.223) − − − − − − 

 Collision object (Base: Another moving vehicle) 

  
Collision with 

stationary  object 
0.774 (0.081) -0.283 (0.074) -0.226 (0.087) − 0.416 (0.097) 0.936 (0.098) 1.203 (0.257) 

  
SD Collision with 

stationary  object 
− − 0.847 (0.233) − − − 1.310 (0.379) 

  
Collision with other 

object 
-1.174 (0.189) -1.162 (0.313) − − 

-1.774 

(0.329) 
-0.647 (0.233) − 

 Manner of collision 

  Head on 0.966 (0.100) − -0.393 (0.100) − 0.805 (0.109) 0.805 (0.109) 1.974 (0.175) 

  Angular 0.382 (0.063) -0.150 (0.061) -0.244 (0.067) − 0.317 (0.068) 0.317 (0.068) 1.153 (0.155) 

  
Side swipe-same 

direction 
-0.534 (0.097) − 0.316 (0.151) − 

-0.334 

(0.122) 
-0.512 (0.150) -1.206 (0.330) 

  Rear to side collision − -3.683 (0.717) 2.309 (0.182) − − − − 

  
Other manners of 

collision 
-1.258 (0.627) − 1.651 (0.178) − − − − 

 Collision location (Base: Non-intersection) 

  Intersection − 0.227 (0.061) − − − − -0.369 (0.141) 

  Intersection related -0.255 (0.071) − − − 
-0.430 

(0.155) 
-0.430 (0.155) -0.530 (0.170) 

  
SD Intersection 

related 
0.007 (0.002) − − − 0.915 (0.323) 0.915 (0.323) − 

  Driveway access -0.477 (0.243) − − − − − − 
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Entrance and exit 

ramp 
-0.323 (0.150) − − − − − − 

  
Railway grade 

crossing 
− 1.181 (0.421) -3.981 (0.987) − − − − 

  
Driveway access 

related 
-0.427 (0.087) − − − 

-0.335 

(0.090) 
-0.335 (0.090) -2.649 (1.210) 

  
SD Driveway access 

related 
− − − − − − 2.332 (0.896) 

  Through roadway − − − − 0.913 (0.428) 0.913 (0.428) − 

  Other location − − − − 
-0.768 

(0.375) 
-0.768 (0.375) − 
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Table 2.2: Elasticity Effects 

Variables 

MGOL MMNL 

Non-

incapacitating 

injury 

Incapacitating 

/Fatal injury 

% of error in 

Non-

incapacitating 

injury 

% of error in 

incapacitating 

/Fatal injury 

Non-

incapacitating 

injury 

Incapacitating 

/Fatal injury 

% of error in 

Non-

incapacitating 

injury 

% of error in 

Incapacitating/

Fatal injury 

Estimation sample 

Male  -17.28 -20.35 ˗ ˗ -25.26 -14.51 ˗ ˗ 

Age less than 25 -24.07 -29.69 ˗ ˗ -19.97 -14.72 ˗ ˗ 

Passenger car 15.23 18.76 ˗ ˗ 13.02 9.50 ˗ ˗ 

High speed limit 43.77 57.44 ˗ ˗ 38.41 63.82 ˗ ˗ 

Snowy surface -32.69 -38.40 ˗ ˗ -24.20 -44.32 ˗ ˗ 

Head-on collision 27.54 153.04 ˗ ˗ 20.27 173.52 ˗ ˗ 

Underreported sample without corrections 

Male  -11.33 -12.06 34.44 40.74 -16.42 -7.07 35.00 51.25 

Age less than 25 -18.47 -25.14 23.26 15.31 -18.80 -13.62 5.85 7.49 

Passenger car 12.25 16.76 19.60 10.65 11.08 6.03 14.89 36.47 

High speed limit 36.23 55.73 17.23 2.97 28.37 47.52 26.15 25.54 

Snowy surface -22.36 -28.92 31.61 24.70 -11.83 -34.33 51.13 22.53 
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Head-on collision 6.61 121.98 75.99 20.30 8.55 151.89 57.83 12.46 

Average Error ˗ ˗ 33.69 19.11 ˗ ˗ 31.81 25.96 

Underreported sample with corrections 

Male  -15.57 -17.32 9.88 14.87 -23.19 -12.78 8.17 11.90 

Age less than 25 -20.96 -26.24 12.93 11.62 -23.14 -17.43 15.88 18.39 

Passenger car 13.95 17.49 8.43 6.78 17.69 10.42 35.89 9.70 

High speed limit 43.44 58.88 0.74 2.51 38.87 57.10 1.20 10.53 

Snowy surface -24.85 -29.97 23.99 21.96 -16.83 -37.70 30.46 14.94 

Head-on collision 16.96 130.13 38.41 14.96 24.56 177.21 21.19 2.13 

Average Error ˗ ˗ 15.73 12.12 ˗ ˗ 18.80 11.27 
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Table 2.3: Disaggregate Measures of Fit in Validation Sample 

DISAGGREGATE MEASURE OF FIT IN VALIDATION SAMPLE 

Summary statistic MGOL predictions MMNL predictions 

Number of observations 3993.9900 3993.9900 

Number of parameters 55 61 

Log-likelihood at zero -5536.8458 -5536.8458 

Log-likelihood at sample shares -3962.5600 -3962.5600 

Predictive Log-likelihood -3671.0702 -3643.0636 

 C.I. -3685.6638/-3656.4766 -3657.3289/-3628.7984 

AICc 7453.7050 7410.0514 

 C.I. 7424.5207/7482.8892 7381.5246/7438.5782 

BIC 7798.2252 7791.9668 

 C.I. 7768.9357/7827.5147 7763.3179/7820.6156 

Predictive adjusted likelihood ratio index 0.0597 0.0652 

 C.I. 0.0578/0.0615 0.0638/0.0667 

Average probability of correct prediction 0.6649 0.6663 

 C.I. 0.6636/0.6662 0.6650/0.6677 

Average probability for chosen probability>0.70 0.4787 0.4620 

 C.I. 0.4774/0.4799 0.4609/0.4632 
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Table 2.4: Aggregate Measures of Fit in Validation Sample 

AGGREGATE MEASURE OF FIT IN VALIDATION SAMPLE 

Injury categories/Measures of fit Actual shares MGOL predictions MMNL predictions 

No injury 66.4311 65.8805 65.9509 

 C.I.* - 65.8118/65.9492 65.8842/66.0174 

Possible injury 15.0667 15.1281 15.0362 

 C.I. - 15.1034/15.1528 15.0139/15.0583 

Non-incapacitating injury 11.3647 12.0757 12.0754 

 C.I. - 12.0449/12.1064 12.0476/12.1032 

Incapacitating/Fatal injury 7.1375 6.9157 6.9376 

 C.I. - 6.8823/6.9492 6.9029/6.9722 

RMSE - 0.6319 0.6105 

 C.I. - 0.5883/0.6756 0.5667/0.6544 

MAPE - 3.7679 3.6586 

 C.I. - 3.7651/3.7706 3.6558/3.6613 

D
ri

v
er

 a
g

e 
le

ss
 t

h
a

n
 2

5
 

No injury 69.1630 67.9434 67.8363 

C.I. - 67.8059/68.0809 67.71094/67.9617 

Possible injury 12.8669 14.1267 13.3549 

C.I. - 14.0783/14.1751 13.3131/13.3967 

Non-incapacitating injury 11.2528 11.3173 11.7434 

C.I. - 11.2599/11.3747 11.6869/11.7999 

Incapacitating/Fatal injury 6.7173 6.6126 7.0653 

C.I. - 6.5453/6.6799 6.9988/7.1319 

RMSE - 1.1199 1.0354 

C.I. - 1.0377/1.2023 0.9641/1.1067 

MAPE - 6.6456 6.1554 

C.I. - 6.6408/6.6505 6.1509/6.1600 

Predictive Log-likelihood - -1028.3794 -1015.5878 

C.I. - -1036.0795/-1020.6794 -1023.1219/-1008.0537 

A
ir

 b
a

g
 

d
ep

lo
y

ed
 

No injury 34.6793 34.8052 34.4638 

C.I. - 34.6797/34.9307 34.3658/34.5619 

Possible injury 23.7389 23.7988 23.4669 

C.I. - 23.7434/23.8541 23.4176/23.5162 
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Non-incapacitating injury 23.1525 23.0632 24.1901 

C.I. - 22.9902/23.1361 24.1354/24.2449 

Incapacitating/Fatal injury 18.4293 18.3329 17.8792 

C.I. - 18.2296/18.4362 17.7821/17.9762 

RMSE - 1.2129 1.2902 

C.I. - 1.1276/1.2984 1.1869/1.3934 

MAPE - 4.2884 4.6403 

C.I. - 4.2852/4.2915 4.6364/4.6441 

Predictive Log-likelihood - -1385.1886 -1318.6118 

C.I. - -1394.7695/-1375.6077 -1327.2064/-1310.0172 

O
ff

-p
ea

k
 p

er
io

d
 

No injury 66.9671 65.8187 65.6960 

C.I. - 65.7138/65.9236 65.5950/65.7969 

Possible injury 15.8240 16.1584 16.4015 

C.I. - 16.1176/16.1993 16.3655/16.4375 

Non-incapacitating injury 10.9846 11.9150 11.8761 

C.I. - 11.8676/11.9624 11.8398/11.9123 

Incapacitating/Fatal injury 6.2242 6.1078 6.0265 

C.I. - 6.0606/6.1550 5.9774/6.0755 

RMSE - 0.9911 1.0427 

C.I. - 0.9119/1.0703 0.9637/1.1218 

MAPE - 5.7662 6.0102 

C.I. - 5.7612/5.7711 6.0054/6.0150 

Predictive Log-likelihood - -1226.6454 -1207.2053 

C.I. - -1234.7771/-1218.5138 -1215.5970/-1198.8135 

S
n

o
w

y
 s

u
rf

a
ce

 

No injury 
73.0563 71.9579 71.7287 

C.I. - 71.6597/72.2560 71.4244/72.0330 

Possible injury 10.7654 12.2862 11.4324 

C.I. - 12.1692/12.4032 11.3389/11.5259 

Non-incapacitating injury 11.6573 9.9632 11.6253 

C.I. - 9.8255/10.1009 11.4894/11.7612 

Incapacitating/Fatal injury 4.5210 5.7927 5.2135 

C.I. - 5.6498/5.9356 5.0748/5.3523 

RMSE - 2.1626 1.8423 

C.I. - 1.9874/2.3379 1.6628/2.0217 

MAPE - 20.8766 16.7887 
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C.I. - 20.8500/20.9033 16.7651/16.8122 

Predictive Log-likelihood - -150.5851 -149.2434 

C.I. - -153.9116/-147.2586 -152.4695/-146.0173 

P
a

ss
en

g
er

 c
a

r
 

No injury 
63.3983 62.5658 62.6231 

C.I. - 62.4731/62.6584 62.5320/62.7141 

Possible injury 16.4833 16.3340 16.5008 

C.I. - 16.3018/16.3661 16.4707/16.5309 

Non-incapacitating injury 12.3735 13.2977 13.3121 

C.I. - 13.2583/13.3371 13.2753/13.3489 

Incapacitating/Fatal injury 7.7449 7.8026 7.5640 

C.I. - 7.7552/7.8499 7.5178/7.6102 

RMSE - 0.8573 0.8286 

C.I. - 0.7917/0.9229 0.7598/0.8974 

MAPE - 4.6446 4.5066 

C.I. - 4.6412/4.6479 4.5029/4.5102 

Predictive Log-likelihood - -2311.8055 -2301.2185 

C.I. - -2322.8512/-2300.7599 -2313.0902/-2289.3468 

*C.I. =Confidence Interval 
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Table 2.5: Measures of Fit in Validation for Underreported sample 

MEASURE OF FIT IN UDERREPORTED SAMPLE 

Injury categories/Measures of fit Actual shares MGOL predictions MMNL predictions 

No injury 66.4311 52.4731 52.6582 

C.I.* - 52.4051/52.5411 52.5779/52.7386 

Possible injury 15.0667 21.6642 21.5562 

C.I. - 21.6359/21.6925 21.5045/21.6079 

Non-incapacitating injury 11.3647 17.0554 16.9202 

C.I. - 17.0207/17.0901 16.8876/16.9528 

Incapacitating/Fatal injury 7.1375 8.8073 8.8653 

C.I. - 8.7683/8.8463 8.8277/8.9029 

RMSE - 8.2760 8.1565 

C.I. - 8.2049/8.3470 8.0806/8.2324 

MAPE - 34.7376 34.3961 

C.I. - 34.7334/34.7418 34.3918/34.4005 

Predictive Log-likelihood - -4080.7320 -4089.1194 

C.I. - -4096.0726/-4065.3915 -4104.0381/-4074.2008 

AICc - 8264.8098 8293.9191 

C.I. - 8234.1313/8295.4884 8264.0853/8323.7529 

BIC - 8584.3790 8650.9086 

C.I. - 8553.6005/8615.1576 8620.9523/8680.8649 

MEASURE OF FIT IN UDERREPORTED SAMPLE WITH CORRECTION 

Injury categories/Measures of fit Actual shares MIXGOL predictions MIXMNL predictions 

No injury 66.4311 69.4232 69.4094 

C.I. - 69.3574/69.4889 69.3349/69.4839 

Possible injury 15.0667 13.7549 13.8957 

C.I. - 13.7262/13.7835 13.8526/13.9389 

Non-incapacitating injury 11.3647 10.9293 10.8844 

C.I. - 10.8999/10.9586 10.8553/10.9135 

Incapacitating/Fatal injury 7.1375 5.8926 5.8105 

C.I. - 5.8599/5.9253 5.7786/5.8423 

RMSE - 1.7944 1.7827 

C.I. - 1.7256/1.8633 1.7119/1.8536 

MAPE - 8.6295 8.7599 
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C.I. - 8.6266/8.6325 8.7569/8.7629 

Predictive Log-likelihood - -3853.4807 -3881.9877 

C.I. - -3869.9209/-3837.0405 -3898.5934/-3865.3820 

AICc - 7810.3072 7879.6556 

C.I. - 7777.4290/7843.1853 7846.4471/7912.8641 

BIC - 8129.8764 8236.6451 

C.I. - 8096.9087/8162.8441 8203.3327/8269.9575 

*C.I. =Confidence Interval 
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CHAPTER 3 A Latent Segmentation based Generalized Ordered Logit Model – 

Heterogeneity in Driver Injury Severity Modeling 

  

3.1 Introduction 

Road safety researchers have employed several statistical formulations for analyzing the 

relationship between injury severity and crash related factors. But, as indicated earlier, the most 

prevalent formulation to study injury severity is the ordered outcome formulation. The traditional 

ordered outcome formulation imposes a restrictive monotonic assumption regarding the impact of 

exogenous variables on the injury severity levels (Eluru et al., 2008). To address this limitation, 

researchers have employed the unordered outcome formulation that allows the impact of 

exogenous variables to vary across injury severity levels. The most common model used under the 

unordered outcome formulation is the multinomial logit model (Khorashadi et al., 2005; Islam and 

Mannering, 2006; Awadzi et al., 2008; Schneider et al., 2009; Ulfarsson and Mannering, 2004). 

However, the unordered model does not recognize the inherent ordering of the crash severity 

outcome and, therefore, neglects vital information present in the data. To recognize the ordinality 

of the injury severity levels, as well as provide as much flexibility as the unordered model 

formulation, Eluru et al., (2008) proposed the GOL formulation that bridges the divide between 

the traditional ordered-response and the traditional unordered-response formulations (Eluru, 

2013).  

The current chapter contributes to the safety literature methodologically and empirically 

by building on the GOL formulation.  In terms of methodology, we formulate and estimate a latent 

segmentation based generalized ordered logit (LSGOL) model. The LSGOL model relaxes the 

traditional GOL formulation assumption that the effects of exogenous variables on the injury risk 

propensity, and on the thresholds that map the risk propensity to injury severity outcomes, are 

fixed across all drivers involved in collisions. Empirically, the LSGOL model is estimated using 

driver injury severity data from the state of Victoria, Australia, employing a comprehensive set of 

exogenous variables.  

The rest of the chapter is organized as follows. Section 3.2 provides details of the 

econometric model framework used in the analysis. In Section 3.3, the data source and sample 

formation procedures are described. The model comparison results, elasticity effects and validation 
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measures are presented in Section 3.4, 3.5 and 3.6, respectively. Section 3.7 concludes the chapter 

by summarizing the major findings of the study. 

 

3.2 Model Framework 

The analysis in this chapter is undertaken at the level of drivers involved in a crash. That is, we 

focus on driver-level injury severity in a crash. Thus, in the case of a crash involving a single 

vehicle with an object, there is one driver record with the corresponding injury severity level 

sustained by the driver. In the case of a crash involving multiple drivers, each driver contributes a 

record, along with the injury severity level sustained by the driver.  

The framework used for modeling driver-level injury severity assumes that drivers can be 

implicitly sorted into S relatively homogenous (but latent to the analyst) segments based on 

characteristics of the crash. Within each segment, the effects of exogenous variables are fixed 

across drivers in the segment. Let s be the index for segments (𝑠 = 1,2, … 𝑆)), i be the index for 

drivers (𝑖 = 1,2, … , 𝑁), and 𝑗 be the index for driver injury severity levels (𝑗 = 1,2, … … … , 𝐽). The 

crash outcomes are analyzed using a GOL model within each segment. Across segments, the 

parameters of the GOL model vary. In the GOL model, conditional on driver i belonging to 

segment s, the discrete injury severity levels (𝑦𝑖) are assumed to be a mapping (or partitioning) of 

an underlying continuous latent variable (𝑦𝑖
∗) as follows: 

𝑦𝑖
∗|(𝑖 ∈ 𝑠) = 𝑿𝑖𝜷𝑠 + 𝜀𝑖𝑠 ,   𝑦𝑖𝑠 = 𝑗, 𝑖𝑓 𝜏𝑖,𝑗−1,𝑠 <  𝑦𝑖

∗ < 𝜏𝑖,𝑗,𝑠 (3.1)  

where,  

𝑿𝑖 is a row vector of exogenous variables 

𝜷𝑠 is a corresponding column vector of unknown parameters specific to segment 𝑠  

𝜀𝑖𝑠 is a segment-specific idiosyncratic random disturbance term assumed to be identically 

and independently standard logistic 

𝜏𝑖,𝑗,𝑠  (𝜏𝑖,0,𝑠 = −∞ , 𝜏𝑖,𝐽,𝑠 = +∞) represents the segment-specific upper threshold 

associated with driver i and severity level j, with the following ordering conditions: 

(−∞ < 𝜏𝑖1,𝑠 < 𝜏𝑖2,𝑠 <  … … … < 𝜏𝑖𝐽−1,𝑠 < +∞) ∀  𝑠 = 1,2, … 𝑆.    

To maintain the ordering conditions and allow the thresholds to vary across drivers within 

each segment, Eluru et al. (2008) propose the following non-linear parameterization of the 

thresholds as a function of exogenous variables:  
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𝜏𝑖𝑗,𝑠 = 𝜏𝑖𝑗−1,𝑠 + 𝑒𝑥𝑝(𝜹𝒋𝒔𝒁𝒊𝒔) (3.2)  

where 𝜹𝑗𝑠 is a segment-specific and injury level-specific row vector of parameters to be estimated 

and 𝒁𝒊𝒔 is a corresponding column vector of segment-specific exogenous variables (𝒁𝒊𝒔 includes a 

constant as its first element, with the corresponding coefficient being 𝜹𝑗𝑠,1; for identification, we 

need 𝜹1𝑠,−1  to be a row vector of zero values, where 𝜹1𝑠,−1 is a sub-vector of the vector 𝜹1𝑠 minus 

the first element). The traditional ordered logit (OL) model assumes that the thresholds 𝜏𝑖,𝑗,𝑠 remain 

fixed across drivers (𝜏𝑖𝑗,𝑠 = 𝜏𝑗,𝑠  ∀  𝑖) for each segment; that is, it assumes that 𝜹𝑗𝑠,−1  has all zero 

elements for all  𝑗 values and all 𝑠 values.  

Given the above set-up, the probability that driver 𝑖 suffers an injury severity outcome 𝑗, 

conditional on driver 𝑖 belonging to segment 𝑠, may be written as: 

𝑃𝑖(𝑗)|𝑠 = 𝛬(𝜏𝑖𝑗−1,𝑠 + 𝑒𝑥𝑝(𝜹𝒋𝒔𝒁𝒊𝒔) − 𝑿𝑖𝜷𝑠) − 𝛬(𝜏𝑖𝑗−2,𝑠 + 𝑒𝑥𝑝(𝜹𝒋−𝟏,𝒔𝒁𝒊𝒔)

− 𝑿𝑖𝜷𝑠) 
(3.3)  

where 𝛬(. ) represents the standard logistic cumulative distribution function.  

Of course, the analyst does not observe the segment to which driver 𝑖 belongs. So, the 

analyst specifies this segment assignment to be a function of a column vector of observed crash 

factors 𝜼𝒊. To also acknowledge the presence of unobserved factors that may influence this 

assignment, the analyst develops an expression for the probability of driver 𝑖 belonging to segment 

s. While many parametric expressions may be used for this probability expression (the only 

requirement is that the probabilities sum to one across the segments for each driver 𝑖), the most 

commonly used form corresponds to the multinomial logit structure (see Bhat, 1997; Greene and 

Hensher, 2003; Eluru et al., 2012):  

𝑃𝑖𝑠 =
exp[𝜶𝒔 

𝜼𝒊]

∑ exp[𝜶𝒔 
𝜼𝒊]𝑠

 (3.4)  

where 𝜶𝒔 is a row vector of parameters to be estimated. Then, the unconditional probability of 

driver 𝑖 leading up to injury severity level 𝑗 can be written as: 
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𝑃𝑖(𝑗) = ∑(𝑃𝑖(𝑗)|𝑠) × (𝑃𝑖𝑠)

𝑆

𝑠=1

 (3.5)  

The log-likelihood function for the entire dataset can be written as: 

𝐿 = ∑ 𝑙𝑜𝑔 [∑(𝑃𝑖(𝑗)|𝑠) × (𝑃𝑖𝑠)

𝑆

𝑠=1

]

𝑁

𝑖=1

 (3.6)  

The parameters to be estimated in the LSGOL model are the segment parameters 

(𝜷𝑠 & 𝜹𝑗𝑠), the class probability parameters (𝜼𝒊) for each 𝑠, and the appropriate number of 

segments 𝑆. For identification reasons, we need to restrict one of the 𝜹𝒋𝒔 vectors to zero. It is 

worthwhile to mention here that the estimation of latent segmentation based models using Quasi-

Newton routines can be computationally unstable (see Bhat, 1997 for a discussion). The estimation 

of such models requires employing good starting values for the estimation procedure. Hence, for 

our analysis, the log-likelihood function and its corresponding gradient function were coded in the 

Gauss Matrix programming language. The coding of the gradient function ensures the reduction 

in instability associated with such an estimation process. 

 

3.3 Data 

3.3.1 Data Source 

Data for our empirical analysis of this chapter is sourced from the Victoria crash database of 

Australia for the years 2006 through 2010. The data includes information reported by Victorian 

police officers for crashes involving at least one motor vehicle travelling on a roadway and 

resulting in property damage, injury or death, which are then compiled by VicRoads (a statutory 

body responsible for road transport in the state of Victoria). For the five years, the crash database 

has a record of 67,809 crashes involving 118,842 motor vehicles and 166,040 individuals, resulting 

in 1,550 fatalities and 87,855 injuries to the crash victims. A four point ordinal scale is used in the 

database to represent the injury severity of individuals involved in these crashes: 1) No injury; 2) 

Minor injury; 3) Serious injury and 4) Fatal injury.  
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3.3.2 Sample Formation and Description 

This study is focused on the injury severity outcome of drivers, who are involved in either a single 

or a two passenger vehicle collisions. The crashes that involve more than two passenger vehicles 

are excluded from the analysis (about 9.9% of the sample). The crashes that involve commercial 

vehicles are also excluded to avoid the potential systematic differences between the crashes 

involving commercial and non-commercial driver groups. The final dataset, after removing records 

with missing information for essential attributes, consisted of 42,812 driver records. The final 

sample had a very small percentage of records that involved a fatally injured driver (about 1% of 

total crashes). Therefore, both the fatal and serious injury category levels are merged together in 

the current analysis.  

From the dataset of 42,812 driver records, a sample of 5,132 records is randomly drawn 

for the purpose of estimating models and 37,680 records are set aside for the purpose of validation. 

In the final estimation sample, the distribution of driver injury severity levels is as follows: no 

injury 41.8%, minor injury 36.9% and serious/fatal injury 21.3%. Table 3.1 offers a summary of 

the sample characteristics of the exogenous factors in the estimation sample. From the descriptive 

analysis, we observe that a large portion of crashes involve short-side angular collisions (22.1%), 

and at locations with no traffic control (60.1%), in a medium speed zone location (66.5%), during 

the off peak period (33%), in clear weather (84.4%), in daylight (69.3%) and in the presence of at 

least one passenger in the vehicle (88.4%). The majority of drivers are adult (63.9%), use seat-

belts (96.5%) and drive a sedan (71.4%). The drivers are somewhat more likely to be male than 

female (male 52.8% versus female 47.1%). It is also quite interesting to note that the share of 

vehicles that are more than 10 years old is quite large (43.4%). 

 

3.4 Empirical Analysis 

3.4.1 Variables Considered 

The collision attributes considered in this empirical study can be grouped into six broad categories: 

crash characteristics, driver characteristics, vehicle characteristics, roadway design attributes, 

environmental factors and situational factors.  

The crash characteristics examined were collision object (small object, large object, 

animal, and moving vehicle), trajectory of vehicle’s motion (going straight or other movement), 

and manner of collision. As one would expect, the manner of collision, whether it is a head-on or 
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a sideswipe, has significant implications for injury severity sustained. For example, the greater 

dissipation of kinetic energy associated with a head-on collision is likely to result in severe injuries 

compared to a side-swipe crash. Most of the earlier studies define the manner of collision as a 

crash level variable (rear-end, sideswipe, angular, and head-on) – by assigning one collision type 

for all vehicles involved in the same collision. But, depending on the initial point of impact it is 

possible that different vehicles involved in the same crash might have significantly different crash 

profiles. For example, in a rear-end collision involving two vehicles, one of the vehicle will be 

rear-ended and the other one will be the rear-ender. The driver of the rear-ended vehicle is likely 

to be pushed backward into the seat when struck by the rear-ender vehicle leading to a high 

probability of whiplash or neck injury due to the continuous movement of the neck at a different 

speed relative to the head and the rest of the body (Khattak, 2001; Chiou et al., 2013; Nordhoff, 

2005). Due to the biomechanics of this type of crash, the driver in the rear-ended vehicle is likely 

to be more seriously injured in a rear-end crash compared to the driver in the rear-ender vehicle. 

Hence, it is incorrect to assign the same collision type variable to all vehicles involved in the same 

crash in analyzing vehicle occupant injury severity6. The study of the current chapter addresses 

this inconsistency and define a vehicle level manner of collision variable using a combination of 

collision type and the initial point of contact. A schematic diagram of the initial point of impact 

relative to the driver’s seat position is shown in Figure 3.1 (the collision type and the initial point 

of impact are computed relative to the position of driver in the vehicle). Based on the collision 

type and the point of impact, we identified seven categories for the “manner of collision”:  Rear-

ender (the rear vehicle that is involved in a rear-end collision), Rear-ended (the front vehicle that 

is involved in the rear-end collision), Near-sideswipe (sideswipe/near-side), Near-angular 

(angular/near-side), Short-side angular (angular/front and rear side), Far-side (angular and 

sideswipe/far-side) and Head-on (head-on/front side).  

The driver characteristics included are driver gender, age and seat belt use information. 

Vehicle characteristics considered are vehicle type (characterized as sedan, station wagon, utility 

and panel van) and vehicle age. The roadway design attributes considered in the analysis are road 

surface type, presence of traffic control device, and presence of a speed zone (speed zone is a 

length or an area of road along which a signposted regulatory speed limit applies). The 

                                                           
6 To be sure, Abdel-Aty and Abdelwahab (2003) examine the crash occurrence and Khattak (2001) examine the driver 

injury outcome by considering the manner of collision as a vehicle level variable, but only for rear-end collision.   
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environmental factors included are season, time of day, weather condition, and lighting condition. 

Finally, the situational factors included in the model are the number of passengers and whether or 

not the driver was ejected. The final specification of the model development was based on 

combining the variables when their effects were not statistically different and by removing the 

statistically insignificant variables in a systematic process based on statistical significance (90% 

significance level). For continuous variables, linear, polynomial and spline forms were tested.  

 

3.4.2 Variable Considered for Segmentation of Crashes 

The proposed modeling approach in this chapter theoretically can accommodate classification of 

segments based on the universal set of variables. However, in our analysis, we consider 

segmentation based only on traffic crash characteristics for two reasons. First, while it is plausible 

to consider all attribute sets in the latent segmentation consideration, the estimation of latent 

segmentation models with the entire attribute set is likely to result in convergence challenges as 

well as difficulty in interpreting the results (see Sobhani et al., 2013 and Eluru et al., 2012 for 

discussions on challenges associated with latent segmentation models). Second, in the safety 

literature, there has been substantial interest in exploring the impact of crash characteristics on 

injury severity. In fact, many previous injury severity studies have focused only on a specific type 

of crash, which is tantamount to specifying separate injury severity models for each crash type (as 

discussed in section 1.5.4). While these research attempts are very useful, the approach results in 

models where injury severity records are exclusively allocated to about various segments (defined 

by crash type) and analysed through separate severity models for each segment. However, doing 

so implies that the model estimation is undertaken on a relatively small sample of the accident 

records for at least some crash types. In this chapter, we offer an alternate approach by examining 

segmentation on the basis of crash characteristics (collision object, the trajectory of vehicle’s 

motion, and manner of collision), and analyze driver-level injury severity within each segment 

using other crash attributes. The approach allows us to retain a smaller number of segments while 

assigning individuals probabilistically. In this manner, we ensure that the entire sample is utilized 

in model estimation for each segment. Thus, the latent segmentation based model provides an 

elegant and effective approach to study the influence of crash characteristics through segmentation, 

while acknowledging the need for separate injury severity models for each segment. 
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3.4.3 Model Specification and Overall Measures of Fit 

The empirical analysis involves the estimation of four models: (1) the ordered logit (OL) model, 

(2) the generalized ordered logit (GOL) model, (3) the latent segmentation based ordered logit 

(LSOL) model, and (4) the latent segmentation based generalized ordered logit (LSGOL) model. 

Prior to discussing the estimation results, we compare the performance of these models in this 

section. The model comparisons are undertaken in two stages. First, we determine the appropriate 

latent segmentation scheme for the OL and GOL models. Second, we compare the traditional 

(unsegmented) OL and GOL models with the more general latent models (LSOL and LSGOL) 

obtained from the first step.  

 

3.4.3.1 Determining the Appropriate Latent Segmentation Model 

The estimation of the latent segmentation based model involves the probabilistic assignment of 

the drivers involved in collisions into a given number of segments (𝑆) based on the available 

exogenous variables. In the application of these models, determining the appropriate number of 

segments is a critical issue with respect to interpretation and inferences. Therefore, we estimate 

these models with increasing numbers of segments (𝑆 = 2, 3, 4, … ) until an addition of a segment 

does not add value to the model in terms of data fit. Many of the earlier studies suggest that the 

Bayesian Information Criterion (BIC) is the most consistent information criterion (IC) among all 

other traditionally used ICs (AIC, AICc, adjusted BIC) for segment analysis (Nylund et al., 2007; 

Bhat, 1997; Collins et al., 1993). The advantage of using the BIC is that it imposes substantially 

higher penalty than other ICs on over-fitting. Thus, in the current study context, the most 

appropriate number of segments in the LSOL and LSGOL models is determined based on the BIC 

measure.  

We estimated the LSOL and LSGOL models with 𝑆 = 2 (LSOL II and LSGOL II models) 

and 3 (LSOL III and LSGOL III models) segments and computed the BIC values for each of these 

models. The model with the lower BIC is the preferred model. For the LSOL model, the computed 

BIC values with 2 and 3 segments are 10049.72 (37 parameters) and 10257.93 (34 parameters), 

respectively. The BIC values for the LSGOL model with 2 and 3 segments are 10024.01 (41 

parameters) and 10385.26 (31 parameters), respectively. Thus, we selected two segments as the 

appropriate number of segments for both the LSOL and LSGOL models in current study context. 
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3.4.3.2 Comparison across All Models - Non-nested Test 

To evaluate the performance of the estimated OL, GOL, LSOL and LSGOL models, the 

BIC values are computed as shown in equation 2.18. Also, the AICc values are computed for each 

of the four models as shown in equation 2.19. Model with lower BIC and AICc values are preferred 

to models with higher values for these ICs. The BIC (AICc) values for the final specifications of 

the OL, GOL, LSOL and LSGOL models are 10086.40 (9929.59), 10048.06 (9769.44), 10049.72 

(9808.17) and 10024.01 (9756.42), respectively. The comparison exercise clearly highlights the 

superiority of the LSGOL model in terms of data fit compared to all the other models.  

 

3.4.4 Estimation Results 

In presenting the effects of exogenous variables in the model specification, we will restrict 

ourselves to the discussion of the LSGOL model. Table 3.3 presents the estimation results. 

Following Bhat (1997), we first present some descriptive characteristics of the two segments in 

the LSGOL model, before proceeding to a discussion of the variables that impact segmentation 

and the injury severity levels of drivers within each segment. 

 

3.4.4.1 Descriptive Characteristics of the Segments in the LSGOL Model 

To delve into the characteristics that delineate the segments and to understand the characteristics 

of each segment, the model estimates are used to generate information on: (1) the population share 

of each of the two segments and (2) the overall injury severity level shares within each segment. 

These estimates are presented in Table 3.2. The population share or the size of each segment is 

computed as: 

𝐺𝑠 =
∑ 𝑃𝑖𝑠𝑖

𝑁
 (3.7)  

where 𝑁 is the total number of drivers in the estimation sample. From the first row of Table 3.2 

labeled “Driver population share”, it is evident that a driver is more likely to be assigned to segment 

2 than to segment 1. Further, the driver injury severity outcome probabilities, conditional on 

assignment to a segment, are obtained using equation 3.3. The segment-specific injury outcome 

shares are then computed by taking the average (across all drivers) of the driver-specific 

probabilities associated with each injury outcome level. The results are presented in the second 
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row panel of Table 3.2. It is clear that a driver, if allocated to segment 1, is likely to be involved 

in a more severe crash than if allocated to segment 2.  Thus, we may label segment 1 as the “high 

risk segment” and segment 2 as the “low risk segment”.  

 

3.4.4.2 Latent Segmentation Component 

The latent segmentation component determines the relative prevalence of each class, as well as the 

probability of a driver being assigned to one of the two latent segments based on the crash 

characteristics. In our empirical analysis, the crash characteristics that affect the allocation of 

drivers to segments include collision object, trajectory of vehicle’s motion, and manner of 

collision. The results in Table 3.3 provide the effects of these crash characteristics, using the high 

risk segment (segment one) as the base segment. Thus, a positive (negative) sign for a variable 

indicates that crashes with the variable characteristic are more (less) likely to be assigned to the 

low risk segment relative to the high risk segment, compared to crashes that correspond to the 

characteristic represented by the base category for the variable. The positive sign on the constant 

term does not have any substantive interpretation, and simply reflects the larger size of the low 

risk segment compared to the high risk segment.  

The results for the “collision object variables” indicate an increased likelihood of drivers 

being assigned to the high risk segment in case of a collision with stationary objects (small or large 

object) compared to a collision with another moving vehicle. In terms of the trajectory of the 

vehicle’s motion, the driver of a vehicle traveling straight through just prior to a crash is at a higher 

risk of severe injury relative to drivers making other turning movements. This result is to be 

expected because straight-through drivers are likely to be travelling at higher speeds.  

Consistent with several previous studies (Chiou et al., 2013; Khattak, 2001), our analysis 

also shows that being the driver of the rear-ended vehicle in a rear-end collision increases the 

probability of a high risk crash. The driver of the vehicle is likely to be pushed backward into the 

seat when struck by the following vehicle, which results in higher probability of whiplash or neck 

injury due to the continuous movement of the neck at a different speed than the head and the rest 

of the body (Khattak, 2001; Krafft et al., 2000; Nordhoff, 2005). Thus, the biomechanics of this 

type of collision explains the increased probability of a high risk crash. 

The result associated with a head-on collision also reflects an increased likelihood of 

assigning the drivers involved in the crash to the high risk segment. Head-on collisions are often 
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caused by drivers violating traffic rules, crossing the centerline by mistake and losing control of 

their vehicles (Zhang and Ivan, 2005). The pre-impact speed vectors of motor vehicles are directed 

in opposing directions during a head-on collision, resulting in greater dissipation of kinetic energy 

and heavier deformation of motor vehicle bodies (Prentkovskis et al., 2010), resulting in higher 

risk of injury (Tay and Rifaat, 2007; Gårder, 2006). The drivers who are involved in a near-angular 

collision also are likely to be assigned to the high risk segment. These crashes impose more risk 

on the driver due to the angle of impact (Jin et al., 2010) and the greater force of impact (Tay and 

Rifaat, 2007). Moreover, there is less collapsible structure between the striking force and the 

drivers, which might result in significant passenger compartment intrusion and the direct loading 

of impact resulting in serious chest and abdominal injury (Mackay et al., 1993; McLellan et al., 

1996).  

For the far-side manner of collision, the result indicates that this kind of collision reduces 

the propensity of drivers being in the high risk segment. The significant gap between the collision 

impact point and driver position might lessen the direct impact of force as a large amount of kinetic 

energy is absorbed by the vehicle (Sobhani et al., 2011), thereby reducing the risk of high injury 

severity. 

 

3.4.4.3 Injury Severity Component: High Risk Segment (Segment 1) 

The injury severity component within the high risk segment (segment 1) is discussed in this 

section. The two columns of the corresponding segment in Table 3.3 represent the latent injury 

risk propensity and the threshold demarcating the minor injury level from the serious/fatal injury 

level, respectively. 

 

Driver Characteristics: The age of drivers involved in the collision has a significant influence on 

crash severity. The estimation results indicate a reduction in the risk propensity for young drivers 

(age less than 25). But the impact of driver age on the threshold demarcating the minor injury and 

serious/fatal injury levels indicates that the distance between these thresholds get contracted for 

young drivers relative to other adult drivers (age 25 to 64). The net implication is that young drivers 

in this first segment have a higher probability of sustaining no injury, and a lower overall 

probability of some kind of an injury (minor injury or serious/fatal injury). But the contraction of 

the distance between the thresholds implies that the effect of age on the minor injury and 
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serious/fatal injury categories is crash and driver-specific; for some contexts, the minor injury 

probability can increase with a concomitant decrease in the serious/fatal injury probability, while 

for other contexts the reverse can hold. This highlights the advantage of a GOL framework that 

allows for flexible exogenous variable impacts. The lower probability of injury among young 

adults may reflect the higher physiological strength of young drivers in withstanding crash impacts 

(Xie et al., 2012; O'Donnell and Connor, 1996; Castro et al., 2013), while the higher probability 

of serious/fatal injuries in some crashes may represent the lack of driving experience of young 

drivers because of which they do not take evasive maneuvers to reduce the impact of a crash in the 

making. Of course, other explanations are also possible. The parameter characterizing the effect 

of old age (age≥65) on driver injury severity suggests a higher injury risk propensity for this group 

of drivers relative to other adult individuals. As indicated in earlier studies (Bédard et al., 2002; 

Kim et al, 2013; Williams et al., 2003), older drivers tend to be slow in reacting to hazardous 

situations, may not be able to withstand crash impact forces well, and may suffer cognitive 

impairment and other medical conditions; all or some of these factors might contribute to their 

higher injury severity risk. It is interesting to note here that driver gender has no significant 

influence on crash severity outcome for segment 1. A plausible reason for this effect may be the 

additional physiological strength of male drivers (compared to female drivers) is less likely to 

lessen the effect of a more severe crash. Finally, in the category of driver characteristics, seat belt 

use significantly influences driver injury severity. The negative effect of this variable on the 

threshold separating the minor injury and serious/fatal injury levels indicates an increased 

likelihood of serious/fatal injuries for the drivers not wearing seat belts. The result can be explained 

by the reduction in restraint as well as possible high-risk driving behavior of those not using 

seatbelts (Obeng, 2008; Yau, 2004; Yasmin et al., 2012; Eluru and Bhat, 2007). 

 

Vehicle Characteristics: The only vehicle characteristic influencing driver injury severity for the 

high risk segment is vehicle type. Table 3.3 shows that drivers in panel vans are associated with a 

lower injury risk propensity than drivers in other vehicle types, presumably because panel vans 

are larger and may offer more protection (Kockelman and Kweon, 2002; Xie et al., 2009; Eluru et 

al., 2010; Wang and Kockelman, 2005; Fredette et al., 2008).  
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Roadway Design Attributes: The roadway design attributes indicate a lower injury risk propensity 

for crashes occurring (a) on unpaved roads (perhaps because of very low speeds on such roads), 

(b) at intersections with some form of control for pedestrian movement and at roundabouts 

(relative to other types of intersections). The last result regarding roundabouts may be the 

consequence of moderated vehicle speeds and the angular movements at these locations, which 

can result in safer impact angles at the time of collision (Retting et al., 2001; Persaud et al., 2001; 

Chipman, 2004). On the other hand, crashes at stop-sign controlled intersections seem to increase 

injury severity risk relative to crashes at other intersections, attributable perhaps to non-compliance 

to stop signs and judgment problems (Chipman, 2004; Retting et al., 2003). Also, crashes occurring 

on very high speed roads, not surprisingly, lead to a high probability of serious/fatal injuries.  

 

Environmental Factors: Time-of-day and lighting conditions are two of the environmental factors 

that significantly influence driver injury severity for the high risk segment. Injury risk reduces 

during the evening, but increases during the late night. The former effect may be a result of traffic 

congestion and slow driving speeds, because of which, when a crash does happen, the injury 

sustained tends to be rather mild. The latter result associated with late night crashes is well 

established in the literature; attributable to reduced visibility, fatigue, higher incidence of alcohol 

use, longer emergency response times, higher driver reaction time, and increased traffic speed 

(Plainis et al., 2006; Arnedt et al., 2001; Helai et al., 2008; Hu and Donnell, 2010; Kockelman and 

Kweon, 2002; de Lapparent, 2008). The lighting condition effect show a higher probabilty of no 

injury crashes during dark-lighted conditions, perhaps due to more cautious driving relative to 

broad daylight. As with the young driver effect, the impact of this variable on the other two injury 

severity categories is context-dependent.  

 

Situational Factors: The presence of one or more passengers increases the probability of no injury, 

relative to the case of driving alone. This may be associated with public self-consciousness, where 

individuals behave and drive more responsibly with others around (Eluru et al., 2010). As 

expected, drivers who are ejected out of their vehicle during a crash have a high probability of 

sustaining serious/fatal injuries for the high risk segment. 
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3.4.4.4 Injury Severity Component: Low Risk Segment (Segment 2) 

The injury severity component within the low risk segment (segment 2) is discussed in this section. 

The impact of exogenous variables within the low risk segment is different (for some variables) in 

magnitude as well as in sign from the impact of exogenous variables within the high risk segment. 

Also, the number of variables moderating the effect is different across the two segments. 

 

Driver Characteristics: For the low risk segment, the influence of driver age on crash severity is 

along expected lines. We find that older drivers are associated with higher likelihood of severe 

crashes compared to other adult drivers as also seen in the other segment. Unlike the high risk 

segment, driver gender has a significant influence on driver injury severity outcome for low risk 

segment. The coefficient corresponding to driver gender of passenger vehicle reflects higher injury 

risk propensity for female drivers compared to male drivers perhaps because females are less 

capable of bearing physical and mental trauma compared to males (Evans, 2004; Sivak et al., 2010; 

Xie et al., 2009;  Chen and Chen, 2011). As expected, our analysis showed an unequivocal benefit 

from employing seat belts.  It is interesting to note that the seat belt variable affects the driver 

injury severity in different ways for the two segments. 

 

Vehicle Characteristics: In the low risk segment, the results for the vehicle type reveal that the 

drivers of both station wagon and utility vehicles have a lower injury risk propensity, perhaps due 

to the larger weight of these vehicles. The vehicle age estimate demonstrates that drivers in older 

vehicles (Vehicle age 11 and above) have a higher risk propensity compared to the drivers in newer 

vehicles (vehicle age ≤ 10 years). The higher injury risk of drivers from older vehicles might be 

attributed to the absence of safety features, presence of mechanical defects, and/or the involvement 

of suspended and unlicensed drivers in these vehicles (Lécuyer and Chouinard, 2006, Kim et al, 

2013; Islam and Mannering, 2006).  

 

Roadway Design Attributes: The presence of traffic control devices significantly affect the severity 

of crashes. For both stop and yield sign variables, the corresponding latent propensity coefficients 

are negative indicating a lower injury risk; reduced travelling speed of drivers might be a plausible 

reason for such result. However, the effect of stop sign is strikingly different in the low risk 

segment compared to the impact of stop sign in the high risk segment. The different impacts in the 
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two segments for stop sign highlight how the same variable can have distinct influence on injury 

severity based on the segment to which the driver is allocated.  

The results for speed zone indicate that the injury propensity is higher for crashes occurring 

in zones with medium and higher speed limits relative to crashes occurring in lower speed limit 

zones. As is expected, within the two speed categories considered the higher speed category has a 

larger impact relative to the medium speed category. Such rapid increase in severity with 

progressive increase in speed limit has also been documented empirically by many earlier studies 

(Eluru et al., 2010; Chen et al., 2012; Tay and Rifaat, 2007). 

 

Environmental Factors: The findings of the low risk segment indicate that if collisions occur in the 

winter season, the consequence is likely to be more injurious as compared to the accident in non-

winter seasons (spring, summer and autumn). The prevalent adverse and damp weather conditions 

in winter might pose such risk on Victorian drivers. With respect to weather condition, the results 

presented in Table 3.3 indicate that the rainy/snowy weather condition results in more severe 

crashes compared to the clear weather, which may be attributed to the unfavourable driving 

conditions resulting from reduced visibility and reduced friction of the road surface. The results 

also reveal that injury propensity is higher for drivers in the presence of high wind compared to 

crashes occuring during clear weather. It is possible that under high wind conditions drivers 

suddenly lose vehicle control and sideswipe or run-off from their designated routes (Jung  et al., 

2011; Young and Liesman, 2007; Khattak and Knapp, 2001). With respect to lighting condition, 

the likelihood of driver injury risk propensity is found to be higher during dawn/dusk compared to 

other lighting conditions. This may be associated with sunglare during dawn/dusk period (Jurado-

Piña et al., 2010; Gray and Regan,2007).  

 

Situational factors: With respect to the situational factors, none of the variables are found to affect 

injury severity in the low risk segment.  

 

3.5 Elasticity Effects 

The parameter estimates of Table 3.3 do not directly provide the impact of exogenous variables on 

injury severity categories. On the other hand, the aggregate-level elasticity effects quantify the 

effects of these variables on driver injury severity outcomes. For this purpose, we compute the 



72 

 

aggregate level “elasticity effects” for all independent variables and present the computed 

elasticities in Table 3.4. The effects are presented by injury severity categories for both the LSOL 

and LSGOL models for comparison purpose. The results in the table can be interpreted as the 

percentage change (increase for positive sign and decrease for negative sign) in the probability of 

the crash severity categories due to the change in that specific exogenous variable. 

The following observations can be made based on the elasticity effects of the variables 

presented in Table 3.4. First, the most significant variables in terms of increase in serious/fatal 

injury (from both models) for drivers are driver age above 65, driver ejection, not wearing seat 

belts, and collision in high speed zone. In terms of serious/fatal injury reduction, the important 

factors are presence of pedestrian control, presence of roundabout, driving a panel van, unpaved 

road condition and presence of passengers. Second, the segmentation variables exhibit significant 

influence on injury severity profile with struck object collisions having the most significant 

contribution to increase in serious/fatal injury. Third, there are substantial differences in the 

elasticity effects of LSOL and LSGOL models. For instance, the LSOL model predicts an increase 

in minor injury for young driver while LSGOL model predicts a decrease in the same category. 

Such differences can also be observed for other variables − collision in dark-lighted condition, in 

the presence of one passenger and for pedestrian control.  

 

3.6 Validation Analysis 

We also carried out a validation experiment in order to ensure that the statistical results obtained 

above are not a manifestation of over fitting to data. 100 different data samples of about 2,500 

records were generated randomly from the hold out validation sample consisting of 37,680 records 

to test the predictive performance of the estimated models. We evaluate both the aggregate and 

disaggregate measure of predicted fit by using these 100 different validation samples and present 

the average measure from the comparison, and also the confidence interval (C.I.), of the fit 

measures at 90% level. 

At the disaggregate level we compute predictive log-likelihood (computed by calculating 

the log-likelihood for the predicted probabilities of the sample), predictive adjusted likelihood ratio 

index and probability of correct prediction (defined as an indicator if the observed outcome has 

the highest predicted probability). The results for disaggregate measures are presented in Table 3.5 

(top row panel). At the aggregate level, root mean square error (RMSE) and mean absolute 
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percentage error (MAPE) are computed by comparing the predicted and actual (observed) shares 

of injuries in each injury severity level for each set of full validation sample. The results for 

aggregate measure computation are also presented in Table 3.5 (bottom row panel). The 

comparison of LSOL and LSGOL model at the disaggregate level is far from conclusive with a 

slight edge to the LSGOL model. This is not surprising because the difference in BIC values for 

the two models is relatively small. The LSGOL model represents a clearly superior performance 

compared to that of the LSOL model at aggregate level. 

 

3.7 Summary  

This chapter formulates and estimates an econometric model for examining driver injury severity 

that accommodates systematic heterogeneity based on crash characteristics and relaxes the 

constant threshold assumption of traditional ordered logit model. The model is referred to as the 

latent segmentation based generalized ordered logit model. In traffic crash reporting, injury 

severity is typically characterized as an ordered variable resulting in application of the ordered 

response model for identifying the impact of exogenous variables. However, ordered systems 

impose a uni-directional impact of exogenous variables on injury severity alternatives. On the 

contrary, the generalized ordered logit model relaxes the restriction by allowing for the estimation 

of individual level thresholds as a function of exogenous variables. The widely employed ordered 

outcome model also restricts the impact of exogenous variables to be same across the entire 

population – homogeneity assumption. An alternative approach, referred to as latent segmentation 

approach, accommodates systematic heterogeneity by allocating the drivers probabilistically to 

different segments and by estimating segment specific models for each segment. The current 

chapter contributes to safety literature empirically by building on the GOL model − by formulating 

and estimating a latent segmentation based generalized ordered logit (LSGOL) model.  

The empirical analysis was conducted using the Victoria crash database from Australia for 

the years 2006 through 2010. The model was estimated using a comprehensive set of exogenous 

variables - crash characteristics, driver characteristics, vehicle characteristics, roadway design 

attributes, environmental factors and situational factors. The empirical analysis involved the 

estimation of models using six different statistical frameworks: 1) OL, 2) GOL, 3) LSOL with two 

segments, 4) LSOL with three segments, 5) LSGOL with two segments and 6) LSGOL with three 

segments. The comparison exercise, based on information criterion metrics, highlighted the 
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superiority of the LSGOL model with two segments on the estimation sample in terms of data fit 

compared to the other ordered outcome models. In the LSGOL approach, drivers were assigned 

probabilistically to two segments – high risk segment and low risk segment - based on a host of 

crash characteristics. In our empirical analysis, the crash characteristics that affected the allocation 

of drivers into segments include: collision object, trajectory of vehicle’s motion and manner of 

collision. According to our results, the impact of exogenous variables in the low risk segment was 

different (for some variables) in magnitude as well as in sign from the impact of exogenous 

variables in the high risk segment.  

In our research, to further understand the impact of various exogenous factors, elasticity 

effects were estimated for both the LSOL and LSGOL models for comparison purpose. The 

elasticity effects indicated that the most significant variables in terms of increase in serious/fatal 

injury (from both models) for drivers were driver age above 65, driver ejection, not wearing seat 

belts, and collision in high speed zone. In terms of serious/fatal injury reduction, the important 

factors were presence of pedestrian control, presence of roundabout, driving a panel van, unpaved 

road condition and presence of passengers. Further, the performance evaluation of these models 

on a validation sample revealed that the LSGOL model represents a clearly superior performance 

compared to that of the LSOL model at an aggregate level. But, the comparison of LSOL and 

LSGOL model at a disaggregate level was far from conclusive with a slight edge to the LSGOL 

model. In summary, the comparison exercise supports the hypothesis that LSGOL is a promising 

ordered outcome framework for accommodating population heterogeneity and for relaxing the 

fixed threshold assumption in the context of driver injury severity. 
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Figure 3.1: Schematic Diagram of Initial Point of Impact Relative to the Drivers’ Seat 

Position 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 

1 3 

4 

Far side 

Near side 

 

F
ro

n
t S

id
e 

R
ear sid

e 

Key: 

1=Driver 

2=Front seat passenger 

3 &4=Rear seat passenger 



76 

 

 

Table 3.1: Crash Database Sample Statistics 

Variables 
Sample Share 

Frequency Percentage 

Crash characteristics 

Collision object 

Small Object 120 2.338 

Large object 710 13.835 

Collision with animals 207 4.034 

Collision with Moving vehicle 4095 79.793 

Trajectory of vehicle’s motions 
Going Straight 2689 52.397 

Other movement 2443 47.603 

Manners of collision 

Rear-ender 469 9.139 

Rear-ended 582 11.341 

Near-sideswipe 96 1.871 

Near-angular 729 14.205 

Short-side angular 1133 22.077 

Far-side 783 15.257 

Head-on 303 5.904 

Other collisions (Struck object) 1037 20.207 

Driver characteristics 

Driver age 

Age less than 25 1350 26.306 

Age 26 to 65 3282 63.952 

Age above 65+ 500 9.743 

Driver gender 
Female 2420 47.155 

Male 2712 52.845 

Restraint system use 
Seat belt not used 179 3.488 

Seat belt used 4953 96.512 

Vehicle characteristics 

Vehicle Type 

Sedan 3666 71.434 

Station wagon 900 17.537 

Utility 447 8.710 

Panel van 119 2.319 

Vehicle age 
Vehicle age less than 11 2907 56.645 

Vehicle age 11 and above 2225 43.355 

Roadway design attributes 

Type of road surface 
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Paved 4901 95.499 

Unpaved 231 4.501 

Traffic Control Device 
No control 3088 60.171 

Signal 1107 21.571 

Pedestrian control 34 0.663 

Roundabout 181 3.527 

Stop sign 171 3.332 

Yield sign 473 9.217 

Other traffic control 78 1.520 

Speed zone 
Low speed zone 961 18.726 

Medium speed zone 3412 66.485 

High speed zone 759 14.790 

Environmental factors 

Season 

Summer 1305 25.429 

Autumn 1346 26.228 

Winter 1265 24.649 

Spring 1216 23.694 

Time of day 
Morning peak 691 13.465 

Off peak 1695 33.028 

Evening peak 1250 24.357 

Late evening 1160 22.603 

Late night 336 6.547 

Weather condition 

Clear 4332 84.412 

Rain/snow 646 12.588 

High wind 85 1.656 

Other weather condition 69 1.345 

Lighting condition 
Daylight 3558 69.330 

Dusk/dawn 361 7.034 

Dark-lighted 942 18.355 

Dark-unlighted 271 5.281 

Situation factors 

Presence of passengers 

No passenger 598 11.652 

One passenger 2395 46.668 

Two passengers 1136 22.136 

More than two passengers 1003 19.544 

Driver ejected out of the vehicle 

Ejected out 39 0.800 

Did not Ejected out 5093 99.200 
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Table 3.2: Segment Characteristics and Mean Values of Segmentation Variables for LSGOL model 

Segmentation Characteristics 

Components 
Segments 

Segment 1 Segment 2 

Driver population share 0.418 0.582 

In
ju

ry
 

S
ev

er
it

y
 Property damage only 0.102 0.640 

Minor injury 0.578 0.239 

Serious Injury and Fatal Injury 0.320 0.121 
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Table 3.3: LSGOL Estimates 

Segmentation Components 

Variables 
Segment 1 Segment 2 

  Estimate t-stat 

Constant − − 1.435 5.679 

Crash characteristics 

Collision object (Base: Other moving vehicle and animals) 

Small Object − − -3.531 -4.552 

Large object − − -4.035 -8.342 

Trajectory of vehicle’s motions (Base: Other movement) 

Going Straight − − -0.480 -3.423 

Manner of collision (Base: Rear-ender and short side-angular) 

Rear-ended − − -1.574 -7.172 

Near-angular − − -0.826 -4.427 

Head-on − − -1.055 -4.402 

Far-side − − 0.530 2.197 

Injury Severity Components 

Variables 
Latent Propensity Threshold Latent Propensity Threshold 

Estimates t-stat Estimate t-stat Estimates t-stat Estimate t-stat 

Constant 3.859 7.962 1.468 13.571 -1.746 -6.237 0.307 2.650 

Driver characteristics 
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Driver age (Base: Age 25 to 64) 

Age less than 25 -0.734 -2.478 -0.137 -1.643 − − − − 

Age above 65+ 0.885 3.779 − − 0.432 2.629 -0.498 -2.533 

Driver gender (Base: Male) 

Female − − − − 1.189 8.003 0.316 2.740 

Restraint system use  (Base: seat belt used) 

Seat belt not used − − -0.197 -2.161 0.717 2.472 − − 

Vehicle characteristics 

Vehicle Type (Base: Sedan) 

Station wagon − − − − -0.744 -4.452 − − 

Utility  − − − − -0.939 -3.313 − − 

Panel van -1.109 -2.495 − − − − − − 

Vehicle age (Base: Vehicle age less than 10) 

Vehicle age 11 and above − − − − 0.349 3.309 − − 

Roadway design attributes 

Type of road surface (Base: Paved) 

Unpaved -1.338 -1.901 − − − − − − 

Traffic Control Device (Base: None traffic control and other control device) 

Pedestrian control -2.135 -1.974 − − − − − − 

Roundabout -1.292 -3.016 − − − − − − 

Stop sign 0.900 2.579 − − -1.326 -3.273 − − 

Yield sign − − − − -0.471 -2.527 − − 
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Speed zone (Base: Low speed ≤50 km/h) 

Medium speed (60-90 

km/h)  
− − − − 0.356 2.469 − − 

High speed (≥100 km/h) − − -0.189 -4.468 1.244 5.934 − − 

Environmental factors 

Season (Base: Spring, Summer, Fall) 

Winter − − − − 0.332 2.886 − − 

Time of day (Base: Morning peak, Off peak and Late evening) 

Evening peak -0.751 -4.61 − − − − − − 

Late night 0.586 3.146 − − − − − − 

Weather condition (Base: Clear) 

Rain/snow − − − − 0.314 2.069 − − 

High wind − − − − 0.736 2.174 − − 

Lighting condition (Base: Daylight) 

Dusk/dawn − − − − 0.488 2.711 − − 

Dark-lighted -0.897 -2.932 -0.408 -4.124 − − − − 

Situational factors 

Presence of passengers (Base: No passenger) 

One passenger -0.532 -4.040 − − − − − − 

Two passengers -2.201 -5.877 -0.426 -3.947 − − − − 

Driver ejected out of the 

vehicle 
− − -0.929 -2.624 − − − − 
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Table 3.4: Elasticity Effects 

Variables 

LSOL LSGOL 

No injury Minor injury 
Serious/Fatal 

injury 

No 

injury 
Minor injury 

Serious/Fatal 

injury 

Crash characteristics 

Rear-ended -42.536 30.199 30.639 -38.906 28.750 26.138 

Near-sideswipe -18.587 13.139 13.488 − − − 

Near-angular -24.690 17.491 17.850 -19.507 14.382 13.162 

Head-on -31.219 22.105 22.591 -25.717 18.958 17.357 

Far-side − − − 11.630 -8.488 -7.998 

Small Object -68.129 48.024 49.677 -68.894 50.634 46.768 

Large object -82.773 56.013 64.419 -81.995 57.905 59.764 

Going Straight -12.860 9.054 9.396 -10.607 7.776 7.234 

Driver characteristics 

Age less than 25 3.170 4.548 -14.126 12.339 -7.676 -10.800 

Age above 65+ -20.643 -16.127 68.500 -17.328 -22.938 73.855 

Female -32.773 21.423 26.821 -33.961 27.437 18.742 

Seat belt not used -19.413 -4.348 45.571 -20.767 -4.876 49.151 

Vehicle characteristics 

Station wagon 18.506 -12.480 -14.478 19.257 -12.312 -16.277 

Utility  23.853 -16.822 -17.378 23.021 -15.277 -18.486 

Panel van 13.191 6.629 -37.366 11.199 8.029 -35.904 
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Vehicle age 11 and above -8.629 5.284 7.684 -9.667 5.566 9.241 

Roadway design attributes 

Unpaved 15.147 5.989 -40.081 14.465 7.321 -41.066 

Pedestrian control 22.987 2.511 -49.365 27.860 -0.111 -54.360 

Roundabout 16.863 6.004 -43.463 13.554 8.069 -40.585 

Stop sign 24.148 -35.585 14.733 24.694 -36.275 14.788 

Yield sign 12.034 -7.910 -9.772 12.339 -7.676 -10.800 

Medium speed zone -8.934 5.619 7.697 -9.555 5.667 8.846 

High speed zone -39.029 4.574 68.420 -36.141 0.485 69.923 

Environmental factors 

Winter -7.986 4.794 7.279 -9.299 5.214 9.133 

Evening peak 6.299 7.697 -25.740 6.238 8.905 -27.715 

Late night -4.434 -10.787 27.471 -3.696 -9.685 24.095 

Rain/snow -7.323 4.335 6.780 -8.852 4.861 8.873 

High wind -21.818 11.163 23.256 -21.333 10.121 24.155 

Dusk/dawn -15.040 8.381 14.835 -13.939 7.298 14.592 

Dark-lighted -2.359 -4.079 11.724 7.797 -17.138 14.563 

Situation factors 

One passenger -1.491 10.792 -15.884 4.042 7.282 -20.590 

Two passenger 10.557 9.688 -37.540 24.627 -8.417 -33.573 

Driver ejected out of the vehicle -1.010 -32.988 16.292 0.000 -47.556 82.777 
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Table 3.5: Measures of Fit in Validation Sample 

Disaggregate Level (100 Validation Samples) 

Summary statistic 
LSOL  LSGOL  

Predictions C.I. Predictions C.I. 

Number of observations 2547.540 − 2547.540 − 

Number of parameters 37.000 − 41.000 − 

Log-likelihood at zero -2798.759 -2807.853 | -2789.665 -2798.759 -2807.853 | -2789.665 

Log-likelihood at sample shares -2696.838 -2706.066 | -2687.609 -2696.838 -2706.066 | -2687.609 

Predictive Log-likelihood -2438.553 -2447.559 | -2429.546 -2433.249 -2442.324 | -2424.174 

Predictive adjusted likelihood ratio index 0.082 0.081 | 0.083 0.083 0.082 | 0.084 

Average probability of correct prediction 0.531 0.529 | 0.533 0.531 0.529 | 0.532 

Aggregate Level (100 Validation Samples) 

Injury categories/ 

Measures of fit 
Actual shares 

LSOL LSGOL 

Predictions C.I. Predictions C.I. 

No injury 42.522799 42.309 42.247 | 42.371 42.364 42.300 | 42.428 

Non-incapacitating 

injury 
36.518347 36.595 36.559 | 36.629 36.492 36.452 | 36.531 

Incapacitating/Fatal 

injury 
20.958854 21.096 21.049 | 21.142 21.144 21.099 | 21.189 

RMSE − 0.821 0.753 | 0.888 0.817 0.753 | 0.882 

MAPE − 2.352 2.351 | 2.354 2.343 2.341 | 2.345 
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CHAPTER 4 Examining Driver Injury Severity in Two Vehicle Crashes – A Copula Based 

Approach 

 

4.1 Introduction 

The most commonly identified exogenous factor that significantly affects traffic crash injury 

severity outcome is the collision type variable. Most of the earlier studies consider the collision 

type variable as an explanatory variable in modeling injury severity (except Ye et al., 2008 and 

Rana et al., 2010). In this approach, the analyst imposes the assumption that the injury severity 

profile for vehicle occupants in all types of crashes is the same and any potential differences 

between different collision types can be accurately captured by employing the collision type 

variable as an explanatory variable. However, it is possible that various collision types might lead 

to distinct vehicle occupant injury severity profiles i.e., the overall manifestation of injury severity 

is different by collision type. Thus, estimating a single injury severity model, when such distinct 

profiles of injury severity exist, will result in incorrect and biased estimates. Moreover, it is 

possible that the collision type and resulting injury severity are influenced by the same set of 

observed and unobserved factors. To resolve such an issue, this chapter endeavours to develop a 

closed form copula based framework to accommodate the impact of observed and unobserved 

effects on collision type and injury severity. The approach allows for flexible dependency 

structures across joint dimensions while retaining the closed form structure (see Bhat and Eluru, 

2009). The proposed model is estimated using driver injury severity data for two vehicle crashes 

from the state of Victoria, Australia for the years 2006 through 2010 employing a comprehensive 

set of exogenous variables − driver characteristics, vehicle characteristics, roadway design 

attributes, environmental factors and crash characteristics. In summary, the current chapter 

contributes to safety literature on driver injury severity both methodologically and empirically. In 

terms of methodology, we formulate and estimate a copula-based multinomial logit-ordered logit 

framework to jointly analyze the collision type and injury severity outcome in a two-vehicle crash. 

Our study also accommodates the potential heterogeneity (across drivers) in the dependency effect 

of collision type and injury severity outcome within a closed form copula framework. In terms of 

empirical analysis, our study incorporates collision type as a vehicle level variable and addresses 

the inconsistency from earlier research while also examining the impact of a comprehensive set of 

exogenous variables on driver injury severity.  
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The rest of the chapter is organized as follows. Section 4.2 provides details of the 

econometric model framework used in the analysis. In Section 4.3, the data source and sample 

formation procedures are described. The model results and elasticity effects are presented in 

Section 4.4. Section 4.5 concludes the chapter and presents directions for future research.  

 

4.2 Model Framework 

The focus of the current chapter is to jointly model the collision type and injury severity outcome 

of drivers involved in a two vehicle collisions using a copula-based joint multinomial logit-ordered 

logit modeling framework. The analysis in this chapter focuses on driver injury severity in a crash. 

In this section, econometric formulation for the joint model is presented.   

 

4.2.1 The Collision Type Outcome Model Component 

Let 𝑞 (𝑞 = 1,2, … … , 𝑄) and 𝑘 (𝑘 = 1,2, … … , 𝐾) be the indices to represent driver and collision 

type, respectively. Let 𝑗 be the index for the discrete outcome that corresponds to the injury severity 

level 𝑗 (𝑗 = 1,2, … … , 𝐽) of driver 𝑞. In the joint framework, the modeling of collision type is 

undertaken using the multinomial logit structure. Thus, the propensity of a driver 𝑞 involving in a 

collision of specific collision type 𝑘 takes the form of: 

𝑢𝑞𝑘
∗ = 𝛽𝑘𝑥𝑞𝑘 + ξ

𝑞𝑘
 (4.1)  

where, 𝑥𝑞𝑘 is a column vector of exogenous variable, 𝛽𝑘 is a row vector of unknown parameters 

specific to collision type 𝑘 and 𝜉𝑞𝑘 is an idiosyncratic error term (assumed to be standard type-I 

extreme value distributed) capturing the effects of unobserved factors on the propensity associated 

with collision type 𝑘. A driver 𝑞 is assumed to be involved in a collision type 𝑘 if and only if the 

following condition holds: 

𝑢𝑞𝑘
∗ > max

𝑙=1,2,…,𝑘,   𝑙≠𝑘
𝑢𝑞𝑙

∗  (4.2)  

The condition presented in equation 4.2 can be equivalently represented as a series of 

binary outcome models for each collision type, 𝑘 (see Lee, 1983). For example, let 𝜂𝑞𝑘 be a 

dichotomous variable with 𝜂𝑞𝑘 = 1 if a driver 𝑞 ends up in a collision type 𝑘 and 𝜂𝑞𝑘 = 0 

otherwise. Now, let us define 𝑣𝑞𝑘 as follows: 
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𝑣𝑞𝑘 = ξ
𝑞𝑘

− { max
𝑙=1,2,…,𝑘,   𝑙≠𝑘

𝑢𝑞𝑙
∗ } (4.3) 7 

By substituting the right side for 𝑢𝑞𝑘
∗  from equation 4.1 in equation 4.2, we can write: 

𝜂𝑞𝑘 = 1  if  𝛽𝑘
′ 𝑥𝑞𝑘 + 𝑣𝑞𝑘 > 0 (4.4)  

The system in equation 4.4 represents the multinomial discrete outcome model of collision 

type as an equivalent series of binary outcome model formulation, one for each collision type 𝑘. 

In equation 4.4, the probability expression of collision type outcome is dependent on the 

distributional assumption of 𝑣𝑞𝑘, which in turn depends on the distributional assumption of 𝜉𝑞𝑘. 

Thus an assumption of independent and identical Type 1 Gumbel distribution for 𝜉𝑞𝑘 results in a 

logistic distributed 𝑣𝑞𝑘. Consequently, the probability expression for the corresponding discrete 

outcome (collision type) model resembles the multinomial logit probability expression as follows: 

𝛬𝑘(𝛽𝑘𝑥𝑞𝑘) = 𝑃𝑟(𝑣𝑞𝑘 > −𝛽𝑘𝑥𝑞𝑘) =
∑ 𝑒𝑥𝑝 (𝛽𝑘𝑥𝑞𝑙)𝑙≠𝑘

𝑒𝑥𝑝 (𝛽𝑘𝑥𝑞𝑘) + ∑ 𝑒𝑥𝑝 (𝛽𝑘𝑥𝑞𝑙)𝑙≠𝑘
 (4.5)  

 

4.2.2 The Injury Severity Outcome Model Component 

In the joint model framework, the modeling of driver injury severity is undertaken using an ordered 

logit specification. In the ordered outcome model, the discrete injury severity levels (𝑦𝑞𝑘) are 

assumed to be associated with an underlying continuous latent variable (𝑦𝑞𝑘
∗ ). This latent variable 

is typically specified as the following linear function:   

𝑦𝑞𝑘
∗ = 𝛼𝑘𝑧𝑞𝑘 + 𝜀𝑞𝑘 ,   𝑦𝑞𝑘 = 𝑗𝑘, 𝑖𝑓 𝜏𝑘,𝑗−1 < 𝑦𝑞𝑘

∗ < 𝜏𝑘,𝑗 (4.6)  

where, 𝑦𝑞𝑘
∗  is the latent injury risk propensity for driver 𝑞 if he/she was involved in a collision type 

𝑘,  𝑧𝑞𝑘 is a vector of exogenous variables, 𝛼𝑘 is a row vector of unknown parameters and 𝜀𝑞𝑘 is a 

random disturbance term assumed to be standard logistic. 𝜏𝑘,𝑗 (𝜏𝑘,0 = −∞ , 𝜏𝑘,𝐽 = ∞) represents 

                                                           
7 The reader would note that the 𝑣𝑞𝑘 term applied here is different from the Lee’s transformation. If one uses a 

symmetric distribution, that allows both positive and negative dependencies (such as the Gaussian copula proposed 

by Lee), then Lee’s formulation would be adequate. However, when testing various copulas, some of which allow 

asymmetric and only positive dependencies, it is important to test our version as well as Lee’s formulation to ensure 

we capture the dependencies in asymmetric copulas. We formulate the model in this form because we expect that the 

dependency for collision type and subsequent injury to be positively correlated (due to unobserved factors, see 

Portoghese et al., 2011 for a similar formulation in a different context). 



88 

 

the threshold associated with severity level 𝑗 for collision type 𝑘, with the following ordering 

conditions: (−∞ < 𝜏𝑘,1 < 𝜏𝑘,2 <  … … … < 𝜏𝑘,𝐽−1 < +∞). Given these relationships across the 

different parameters, the resulting probability expressions for driver 𝑞 sustaining an injury severity 

level 𝑗 in a collision type 𝑘 take the following form: 

𝑃𝑟(𝑦𝑞𝑘 = 𝑗𝑘) = 𝛬𝑘(𝜏𝑘,𝑗 − 𝛼𝑘
′ 𝑧𝑞𝑘) − 𝛬𝑘(𝜏𝑘,𝑗−1 − 𝛼𝑘

′ 𝑧𝑞𝑘) (4.7)  

where, 𝛬𝑘(. ) is the standard logistic cumulative distribution function. The probability expression 

of equation 4.7 represents the independent injury severity model for a collision type 𝑘.  

 

4.2.3 The Joint Model: A Copula-based Approach 

The collision type and the injury severity component discussed in previous two subsections may 

be brought together in the following equation system: 

𝜂𝑞𝑘 = 1  if  𝛽𝑘𝑥𝑞𝑘 > 𝑣𝑞𝑘 

𝑦𝑞𝑘
∗ = 𝛼𝑘𝑧𝑞𝑘 + 𝜀𝑞𝑘 ,   𝑦𝑞𝑘 = 1[𝜂𝑞𝑘 = 1]𝑦𝑞𝑘

∗  
(4.8)  

However, the level of dependency between the underlying collision type outcome and the 

injury severity level of driver depends on the type and extent of dependency between the stochastic 

terms 𝑣𝑞𝑘 and 𝜀𝑞𝑘. These dependencies (or correlations) are explored in the current study by using 

a copula-based approach. A copula is a mathematical device that identifies dependency among 

random variables with pre-specified marginal distribution (Bhat and Eluru (2009) and Trivedi and 

Zimmer (2007) provide a detailed description of the copula approach). In constructing the copula 

dependency, the random variables (𝑣𝑞𝑘 𝑎𝑛𝑑 𝜀𝑞𝑘) are transformed into uniform distributions by 

using their inverse cumulative distribution functions, which are then coupled or linked as a 

multivariate joint distribution function by applying the copula structure. Let us assume that 𝛬𝑣𝑘(. ) 

and 𝛬𝜀𝑘(. ) are the marginal distribution of 𝑣𝑞𝑘 and 𝜀𝑞𝑘, respectively and 𝛬𝑣𝑘,𝜀𝑘(. , . ) is the joint 

distribution of 𝑣𝑞𝑘 and 𝜂𝑞𝑘. Subsequently, a bivariate distribution 𝛬𝑣𝑘,𝜀𝑘(𝑣, 𝜀) can be generated as 

a joint cumulative probability distribution of uniform [0, 1] marginal variables 𝑈1 and 𝑈2 as below: 

𝛬𝑣𝑘,𝜀𝑘(𝑣, 𝜀) = 𝑃𝑟(𝑣𝑞𝑘 < 𝑣, , 𝜀𝑞𝑘 < 𝜀) 

= [𝛬𝑣𝑘
−1(𝑈1) < 𝑣, 𝛬𝜀𝑘

−1(𝑈2) < 𝜀 ]  
(4.9)  
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= [𝑈1 < 𝛬𝑣𝑘(𝑣), 𝑈2 < 𝛬𝜀𝑘(𝜀) ] 

The joint distribution (of uniform marginal variable) in equation 4.9 can be generated by a 

function 𝐶𝜃𝑞(. , . ) (Sklar, 1973), such that: 

𝛬𝑣𝑘,𝜀𝑘(𝑣, 𝛿2) = 𝐶𝜃𝑞(𝑈1 = 𝛬𝑣𝑘(𝑣), 𝑈2 = 𝛬𝜀𝑘(𝜀)) (4.10)  

where 𝐶𝜃𝑞(. , . ) is a copula function and 𝜃𝑞 the dependence parameter defining the link between 

𝑣𝑞𝑘 and 𝜀𝑞𝑘. It is important to note here that, the level of dependence between collision type and 

injury severity level can vary across drivers. Therefore, in the current study, the dependence 

parameter 𝜃𝑞 is parameterized as a function of observed crash attributes as follows: 

𝜃𝑞 = 𝑓𝑛(𝛾𝑘𝑠𝑞𝑘) (4.11)  

where, 𝑠𝑞𝑘 is a column vector of exogenous variable, 𝛾𝑘 is a row vector of unknown parameters 

(including a constant) specific to collision type 𝑘 and 𝑓𝑛 represents the functional form of 

parameterization. Based on the dependency parameter permissible ranges, alternate 

parameterization forms for the six copulas are considered in our analysis. For Normal, Farlie-

Gumbel-Morgenstern (FGM) and Frank Copulas we use 𝜃𝑞 = 𝛾𝑘𝑠𝑞𝑘, for the Clayton copula we 

employ 𝜃𝑞 = 𝑒𝑥𝑝 (𝛾𝑘𝑠𝑞𝑘), and for Joe and Gumbel copulas we employ 𝜃𝑞 = 1 + 𝑒𝑥𝑝 (𝛾𝑘𝑠𝑞𝑘). 

 

4.2.4 Estimation Procedure 

The joint probability that the driver 𝑞 gets involved in a collision type 𝑘 and sustaining injury 

severity level 𝑗, from equation 4.5 and 4.7, can be written as:  

𝑃𝑟(𝜂𝑞𝑘 = 1, 𝑦𝑞𝑘 = 𝑗𝑘) 

= 𝑃𝑟 {(𝛽𝑘𝑥𝑞𝑘 > 𝑣𝑞𝑘), ((𝜏𝑘,𝑗−1 − 𝛼𝑘𝑧𝑞𝑘) < 𝜀𝑞𝑘 <  (𝜏𝑘,𝑗 − 𝛼𝑘𝑧𝑞𝑘))}   

= 𝑃𝑟 ((𝛽𝑘𝑥𝑞𝑘 > 𝑣𝑞𝑘), (𝜀𝑞𝑘 < 𝜏𝑘,𝑗 − 𝛼𝑘𝑧𝑞𝑘))

−  𝑃𝑟 ((𝛽𝑘𝑥𝑞𝑘 > 𝑣𝑞𝑘), (𝜀𝑞𝑘 < 𝜏𝑘,𝑗−1 − 𝛼𝑘𝑧𝑞𝑘))    

= 𝛬𝜀𝑘(𝜏𝑘,𝑗 − 𝛼𝑘𝑧𝑞𝑘) −  𝛬𝜀𝑘(𝜏𝑘,𝑗−1 − 𝛼𝑘𝑧𝑞𝑘) − (𝑃𝑟[𝑣𝑞𝑘 < −𝛽𝑘𝑥𝑞𝑘 , 𝜀𝑞𝑘 <

 (𝜏𝑘,𝑗 − 𝛼𝑘𝑧𝑞𝑘)] − 𝑃𝑟[𝑣𝑞𝑘 < −𝛽𝑘𝑥𝑞𝑘 , 𝜀𝑞𝑘 <  (𝜏𝑘,𝑗−1 − 𝛼𝑘𝑧𝑞𝑘)] ) 

(4.12)  

The joint probability of equation 4.12 can be expressed by using the copula function in 

equation 4.10 as: 
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𝑃𝑟(𝜂𝑞𝑘 = 1, 𝑦𝑞𝑘 = 𝑗𝑘)

= 𝛬𝜀𝑘(𝜏𝑘,𝑗 − 𝛼𝑘𝑧𝑞𝑘) − 𝛬𝜀𝑘(𝜏𝑘,𝑗−1 − 𝛼𝑘𝑧𝑞𝑘)

−  [𝐶𝜃𝑞(𝑈𝑞,𝑗
𝑘 , 𝑈𝑞

𝑘) − 𝐶𝜃𝑞(𝑈𝑞,𝑗−1
𝑘 , 𝑈𝑞

𝑘)]  

(4.13)  

where 𝑈𝑞,𝑗
𝑘  = 𝛬𝜀𝑘(𝜏𝑘,𝑗 − 𝛼𝑘𝑧𝑞𝑘), 𝑈𝑞

𝑘 = 𝛬𝑣𝑘(−𝛽𝑘𝑥𝑞𝑘)  (4.14)  

Thus the likelihood function with the joint probability expression in equation 4.13 for 

collision type and driver injury severity outcomes can be expressed as: 

𝐿 = ∏ [∏ ∏{𝑃𝑟(𝜂𝑞𝑘 = 1, 𝑦𝑞𝑘 = 𝑗𝑘)}
 𝜔𝑞𝑘𝑗

𝐽

𝑗=1

𝐾

𝑘=1

]

𝑄

𝑞=1

  (4.15)  

where, 𝜔𝑞𝑘𝑗 is dummy with 𝜔𝑞𝑘𝑗 = 1 if the driver 𝑞 sustains collision type 𝑘 and an injury severity 

level of 𝑗 and 0 otherwise. All the parameters in the model are then consistently estimated by 

maximizing the logarithmic function of 𝐿. The parameters to be estimated in the model are: 𝛽𝑘 in 

the MNL component, 𝛼𝑘 and 𝜏𝑘,𝑗 in OL component, and finally 𝛾𝑘 in the dependency component.  

In our analysis we employ six different copulas structure - the Gaussian copula, the Farlie-Gumbel-

Morgenstern (FGM) copula, and set of Archimedean copulas including Frank, Clayton, Joe and 

Gumbel copulas (a detailed discussion of these copulas is available in Bhat and Eluru, 2009). 

 

4.3 Data 

4.3.1 Data Source 

Data for our empirical analysis of the current chapter is sourced from the Victoria crash database 

of Australia for the years 2006 through 2010.  The dataset has been briefly described in Section 

3.3.1 of Chapter 3.   

 

4.3.2 Sample Formation and the Dependent Variables 

This study is confined to the injury severity outcome of drivers, who are involved in a two 

passenger vehicle collisions. Crashes involving only one vehicle or more than two vehicles are not 

included in the analysis. The crashes that involve commercial vehicles are also excluded to avoid 

the potential systematic differences between the crashes involving commercial and non-

commercial driver groups.   
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In our analysis, the crash outcome is defined as the injury severity level sustained by the 

driver in each vehicle of the two vehicle collisions. The final dataset, after removing records with 

missing information for essential attributes consisted of about 34,278 driver records. In this final 

sample of drivers, the percentage of fatal crashes sustained by drivers is extremely small (0.40%). 

Therefore, both the fatal and serious injury categories are merged together. From this dataset, a 

sample of 8,509 driver records is randomly selected for the purpose of estimating models. In the 

final estimation sample, the distributions of the three driver injury severity levels are as follows: 

no injury 49.50%, minor injury 34.50% and serious/fatal injury 16.00%.  

As discussed in section 3.4.1, depending on the initial point of impact it is possible that the 

different vehicles involved in the same crash might have significantly different crash profiles. 

Hence, it is incorrect to assign the same collision type variable to all vehicles involved in the same 

crash in analyzing vehicle occupant injury severity. Therefore, in estimating driver injury severity 

model, we compile the types of collision at a high level of disaggregation, and as a combination 

of collision type (rear-end, sideswipe, angular, and head-on) and the initial point of contact8.  

A schematic diagram of the initial point of impact relative to the driver’s seat position is 

shown in Figure 3.1 of the preceding chapter. Based on the collision type and the point of impact, 

we identified eight categories for the “collision type”:  Rear-ender (the rear vehicle that is involved 

in rear-end collision), Rear-ended (the front vehicle that is involved in the rear-end collision), 

Near-sideswipe (sideswipe/near-side), Far-sideswipe (sideswipe/far-side), Near-angular (angular/ 

near-side), Far-angular (angular/far-side), Short-side angular (angular/front and rear side) and 

Head-on (head-on/front side). In the final estimation sample, the distribution of collision type 

variable is as follows: rear-ender 11.91%, rear-ended 14.29%, near-sideswipe 2.49%, far-

sideswipe 3.04%, near-angular 17.95%, far-angular 16.61%, short-side angular 26.80% and head-

on 6.92%.  

Table 4.1 offers a summary of the sample characteristics of collision type and injury 

severity level sustained by drivers. From the descriptive analysis, it is evident that the injury 

severity distributions vary substantially by collision type. More interestingly, we observe that for 

                                                           
8 It is worthwhile to mention here that several previous studies (Tsui et al., 2009; Schiff and Cummings, 2004; Loo 

and Tsui, 2007) have examined the reliability of crash related factors documented in police-reported crash databases. 

The unreliability in reporting is mostly observed for casualty of crash, occupant position in the vehicle, demographics 

and seat-belt. Compiling crash details based on collision type and initial point of impact are less likely to be error 

prone. More importantly, the incompleteness of these variables in the Victorian crash database is approximately zero 

(zero for collision type and 0.3% for initial point of impact). 
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collision types within the same accident, rear-ender vs. rear-ended, near-sideswipe vs. far-

sideswipe exhibit huge differences in the injury severity distribution. These observations highlight 

the need to define the collision type variable at a vehicle level rather than at the crash level. The 

descriptive analysis identifies head-on as the most serious collision type in terms of severe injuries 

while far-sideswipe crashes result in the least severe injuries. Further, Table 4.2 offers a summary 

of the sample characteristics of explanatory variables across different collision types. It can be 

observed from Table 4.2 that the proportions of different variables vary substantially across 

different collision types.   

 

4.4 Empirical Analysis 

4.4.1 Variables Considered 

The collision attributes considered in the empirical study can be grouped into the following five 

broad categories:  

 Driver characteristics including driver age, gender, seat belt use and local driver 

information; 

 Vehicle characteristics including vehicle type (characterized as sedan, station wagon, 

utility and panel van) and vehicle age; 

 Roadway design attributes including type of road surface, presence of traffic control 

device, speed zones and type of intersection; 

 Environmental factors including time of day, day of week, weather condition, surface 

condition and lighting condition; and 

 Crash characteristics including presence of passenger and trajectory of vehicle’s motion.  

The final specification of the model development was based on combining the variables when their 

effects were not statistically different and by removing the statistically insignificant variables in a 

systematic process based on statistical significance (90% confidence level). The coefficient 

estimates across different collision types were also restricted to be same when the effects were not 

significantly different.    
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4.4.2 Model Specification and Overall Measures of Fit 

The empirical analysis involves estimation of models by using six different copula structures: 1) 

Gaussian, 2) FGM, 3) Clayton, 4) Gumbel, 5) Frank and 6) Joe (a detailed discussion of these 

copulas is available in Bhat and Eluru, 2009). The empirical analysis involved a series of model 

estimations. First, an independent copula model (separate MNL and OL models) was estimated to 

establish a benchmark for comparison. Second, 6 different models that restricted the dependency 

parameters across the eight collision types and injury severity models to be the same were 

estimated. Third, based on the copula parameter significance for each collision type, copula models 

that allow for different dependency structures for different collision type and injury severity 

combinations were estimated (for example Frank copula for the first three collision types Clayton 

copula for other collision types). Finally, to determine the most suitable copula model (including 

the independent copula model), a comparison exercise was undertaken. The alternative copula 

models estimated are non-nested and hence, cannot be tested using traditional log-likelihood ratio 

test. We employ the Bayesian Information Criterion (BIC) to determine the best model among all 

copula models (see Trivedi and Zimmer, 2007; Quinn, 2007; Eluru et al., 2010). The BIC values 

are computed as shown in equation 2.18. The model with the lower BIC is the preferred copula 

model. With exclusively a single copula dependency structure, the best model fit is obtained with 

Clayton. However, the lowest BIC value was obtained for a combination model of Frank-Clayton 

copulas (Frank copula structure for rear-ender and head-on collision and Clayton dependency 

structure with the remaining collision type). The copula model BIC comparisons confirm the 

importance of accommodating dependence between collision type and injury severity outcome in 

the analysis of driver injury severity. 

 

4.4.3 Estimation Results 

In presenting the effects of exogenous variables in the joint model specification, we will restrict 

ourselves to the discussion of the Frank-Clayton specification. For the ease of presentation, the 

collision type component (Table 4.3) and injury severity component (Table 4.4) are presented and 

discussed separately. The copula parameters are presented in the last row panel of Table 4.3. 
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4.4.3.1 Collision Type Component 

The coefficients in Table 4.3 represent the effect of exogenous variables on each collision type 

category relative to the base category. In the following sections, the estimation results are 

discussed by variable groups. 

 

Driver Characteristics: The impact of driver age on collision type indicates that young drivers are 

more likely to be the rear-ender and are less likely to be rear-ended in crashes relative to the adult 

drivers, perhaps reflecting a lack of driving experience and/or poor judgement and/or a greater 

risk-taking/aggressive driving propensity. The likelihood of being rear-ended or being involved in 

a far-sideswipe collision is lower for the older drivers. However, the older drivers are also more 

likely to be involved in angular collision (far- or near-angular) compared to the adult drivers, which 

might be a manifestation of longer time requirements for older drivers in complete turning 

movements (Alexander et al., 2002). Female drivers are more likely to be rear-ended or involved 

in a near-angular collision, while the odds of involving in a head-on collision is lower for female 

drivers compared to their male counterparts. The results also highlight that drivers who do not 

wear seat-belts are more likely to hit another vehicle from behind, a possible reflection of inherent 

aggressive personality of these drivers. 

 

Vehicle Characteristics: The effects of the vehicle characteristics indicate that the drivers of utility 

and panel van are more likely to be the rear-ender, while the likelihood of being involved in head-

on collisions are also higher for the driver of utility vehicle compared to other drivers. These results 

point towards aggressive attitude in driving and a false sense of security among large vehicle 

owners. The vehicle age variables suggest that compared to the drivers of newer vehicles (vehicle 

age less than 6), the drivers of older vehicles (vehicle age 6-10 or vehicle age 11 and above) are 

less likely to be rear-ended or involved in any form of sideswipe or angular collision (the effect of 

vehicle age 6-10 is insignificant for far-sideswipe collision).  

 

Roadway Design Attributes: Among the roadway design attributes, the effect of roadway surface 

type is significant only for the head-on collision with positive coefficient for the gravel road 

surface compared to the paved and unpaved roads. Usually, gravel roads are associated with fewer 

lanes increasing the odds of head-on collisions as the lanes are unlikely to be median separated. 
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The estimation results corresponding to the presence of traffic control device highlight that the 

presence of traffic signal is associated with less sideswipe and head-on collision. Drivers are more 

likely to be rear-ended or involved in near-angular collision in the presence of roundabout. In the 

presence of a stop sign, the likelihood of rear-end, far-sideswipe and head-on collisions are lower, 

whereas the likelihood of near-angular collision is higher. The presence of yield sign has positive 

association with rear-ended and near-angular collision and negative association with sideswipe 

and head-on collision.  

With respect to speed zone, the medium speed limit zone indicator increases the likelihood 

of rear-end collision; while the high speed limit zone indicators reveal increased likelihood of rear-

ended, side-swipe and head-on collisions. The presence of T-intersection increases the odds of all 

collision types (except for short-side angular). Five or more legged intersection is positively 

correlated with the occurrence of rear-end and far-sideswipe collision. The variable representing 

the location as a non-intersection is associated with higher crash propensity for all collision types 

except for far- and short side-angular collision. 

 

Environmental Factors: The effects of environmental factors indicate that the occurrence of far-

angular collision is less at late night compared to the other times of day. Crashes occurring on wet 

surface are more likely to be head-on collision than those occurring on the dry surface condition. 

Far-sideswipe collision is less likely to occur at dawn/dusk period relative to the daylight period. 

Dark-lighted condition results in reduced likelihood of rear-end collision. However, dark-

unlighted condition is associated with high risk of head-on collision. During weekend, drivers are 

less likely to be involved in rear-ended crashes, but are more likely to be involved in far-sideswipe 

and head-on crashes. 

 

Crash Characteristics: Among the crash characteristic variables considered, none of the variables 

show significant impact on collision type occurrence.  

 

4.4.3.2 Dependence Effects 

As indicated earlier, the estimated Frank-Clayton copula based MNL-OL model provides the best 

fit in incorporating the correlation between the collision type and injury severity outcome. An 

examination of the copula parameters presented in the last row panel of Table 4.3 highlights the 
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presence of common unobserved factors affecting collision type and injury severity. The Frank 

copula dependency structure is associated with the rear-ender and head-on collision types, while 

the Clayton dependency structure is associated with the rest of the six collision types. Further, 

except for far-angular collision type, all other copula dependencies are characterized by at least 

one additional exogenous variable. This provides support to our hypothesis that the dependency 

structures are not constant across the entire database. The various exogenous variables that 

contribute to the dependency include Female (rear-ender), medium speed limit (near-angular and 

head-on), yield sign (rear-ended), utility vehicle (near-sideswipe), late night (far-sideswipe) and 

high wind (near-angular and short-side angular). The Frank copula offers a symmetric dependency 

structure i.e. a positive coefficient represents a positive dependency while negative coefficient 

represents negative dependency. The exact nature of the dependency for the Frank copula is based 

on the realized coefficient for rear-ender and head-on crash types considering all significant 

variables. For the Clayton copula, the dependency is entirely positive and the coefficient sign and 

magnitude reflects whether a variable increases or reduces the dependency and by how much. The 

proposed framework by allowing for such parameterizations allows us to improve the model 

estimation results. 

 

4.4.3.3 Injury Severity Component 

The coefficients in Table 4.4 represent the effect of exogenous variables on injury severity 

outcome of drivers for each collision type category. The results suggest that the impact of 

exogenous variables vary (for some variables) in magnitude as well as in sign across collision 

types. The impacts of these variables are also substantially different from the estimates of the 

independent MNL-OL model (the results are not presented here to conserve on space). For 

instance, the differences in variable estimates (independent MNL-OL model and copula based 

MNL-OL model) are more than 20% in rear-ender for high wind and T-intersection; in rear-ended 

for high wind, presence of one passenger and two passenger; in far-angular for medium speed limit 

and high speed limit; in short-side angular for medium speed limit and high speed limit; and in 

head-on collision for weekend and morning peak-period.     

In the following sections, the estimation results for injury severity component of the joint 

model are discussed by variable groups. 
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Driver Characteristics: The impacts of driver characteristics reveal significant variations based on 

driver age, gender, seat-belt use and driver knowledge of local conditions. The results indicate that 

the likelihood of being severely injured is lower for the young drivers compared to the adult 

drivers, particularly for rear-ended and short side-angular collisions, perhaps indicating the higher 

physiological strength of young drivers. Compared to the adult drivers, older drivers are more 

likely to sustain serious injury across a range of collision type, a result also observed in several 

previous studies (Bédard et al., 2002; Kim et al, 2013; Williams et al., 2003). Female drivers are 

consistently associated with higher injury risk propensity across all collision type presumably 

because of their lower physiological strength compared to their male counterparts. The negative 

impact of not using seat-belt is found significant only for near-angular collision type. The driver 

knowledge of local conditions characterized as local versus non-local drivers reveals that non-

local drivers are likely to sustain serious injury for rear-ended, far-sideswipe and near-angular 

collisions. Driver unfamiliarity with the driving environment and road rules might contribute to 

such outcome. 

 

Vehicle Characteristics: With respect to driver’s vehicle type, the results indicate that drivers in 

station wagon are less likely to be severely injured compared to other drivers for seven of the eight 

collision types. The finding is consistent with the notion that heavier vehicles provide increased 

protection to drivers from severe injury. The positive effect of driving larger vehicles is significant 

in short side-angular and head-on collision for drivers of SUV and panel van. Consistent with 

several previous studies (Kim et al, 2013; Islam and Mannering, 2006) for most of the collision 

types, drivers in older vehicles (either vehicle age 6-10 or vehicle age 11 and above) have higher 

injury risk propensity compared to drivers in newer vehicles (vehicle age < 6 years); this can be 

attributed to the absence of advanced safety features in older vehicles. 

  

Roadway Design Attributes: In terms of roadway design attributes, the estimates indicate that 

crashes on gravel road surface tend to be less severe compared to crashes on paved and unpaved 

surfaces for head-on collision. On gravel road surfaces, drivers are compelled to drive cautiously 

at a slower speed contributing to a reduction in the severity of crash outcomes. It is very interesting 

to note that the presence of signal decreases the injury propensity for rear-ender collision, and 

increases the injury propensity for both angular collisions (near- and far-angular). Injury 
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propensity reductions are observed for the presence of pedestrian control (for rear-ended and short 

side-angular), roundabouts (for near- and short side-angular), stop sign (for short side-angular) and 

yield sign (for rear-ender and short side-angular).  

The results for speed zones indicate that drivers are likely to sustain severe injuries for 

crashes occurring in zones with medium and higher speed limits highlighting that the probability 

of sustaining severe injuries increases with the increasing speed limits – a surrogate for vehicle 

speed at the time of crash. Among the type of intersection variables, T-intersection leads to higher 

injury propensity for rear-ender collisions and lower injury propensity for far-sideswipe collisions. 

Five or more legged intersection reflects reduced injury risk propensity for rear-ended collision. 

The reduction is also observed for non-intersection location in rear-ended and short side angular 

collision propensities.  

 

Environmental Factors: In the category of environmental factors; time of day, weather condition 

and lighting condition have significant influence in moderating the driver injury severity across 

different collision types. With respect to the time of day, higher severity levels are associated with 

head-on collision during morning peak period. As expected, the injury severity for drivers is higher 

during late night. This is particularly so for rear-ender, short side-angular and head-on collision. 

The injury risk propensities of near-sideswipe and far-angular collision reflect higher severities for 

rainy/snowy/foggy weather. This may be due to unfavourable driving conditions resulting from 

the reduced visibility during adverse weather conditions. For high wind condition, rear-end 

collision propensities (rear-ender and rear-ended) indicate lower likelihood of severe injuries. The 

parameter characterizing the effect of weekend suggests lower injury severity level for head-on 

collision. The result is quite interesting and the reasons for the effect are not very clear. It is 

possibly a manifestation of unobserved information that is not considered in our analysis and 

warrants additional investigation in the future. 

 

Crash Characteristics: Presence of passenger and trajectory of vehicle’s motions are the crash 

characteristics that are found to affect driver injury severity. A higher injury risk propensity is 

observed for the presence of one passenger in the vehicle for the rear-ended and far-angular 

collision. However, the result associated with two passengers has a more uneven effect across 

different collision types indicating lower and higher likelihood of severe injury in the effect of 



99 

 

rear-ender and rear-ended propensities, respectively. But presence of more than two passengers 

indicates lower likelihood of severe injury for rear-ender and short side-angular collision. Overall, 

the drivers with the presence of more passengers are less likely to be severely injured presumably 

a reflection of more responsible driving behavior in the presence of passengers (the same effect is 

observed in Eluru et al., 2010). Finally, the coefficients corresponding to the vehicle movement 

reveal that straight vehicle movement of the driver increases the injury risk propensity compared 

to other turning movements for far-sideswipe, near-, far- and short side-angular collisions. The 

result is expected because the drivers are likely to be travelling at a higher speed while travelling 

straight. 

 

4.5 Elasticity Effects and Validation Analysis 

The parameter estimates of Table 4.3 and 4.4 do not provide the magnitude of the effects of 

exogenous variables on the probability of involving in a specific type of collision or sustaining a 

specific injury severity category for drivers, respectively. For this purpose, we compute the 

aggregate level “elasticity effects” for all independent variables. The effects are computed for both 

the collision type and injury severity components and are presented in Table 4.5 and 4.6, 

respectively. However, to conserve on space, we present the elasticity effects only for the highest 

injury severity level (serious/fatal injury severity category) across all collision types.  

The following observations can be made based on the results presented in Table 4.5 and 

4.6. First, the most significant variables in terms of collision type are: crashes at non-intersection 

location, crashes on gravel roads, presence of pedestrian control, driving a panel van, driver age 

less than 25, medium speed limit zone and not wearing seat-belt. Second, the most significant 

variables in terms of increase in serious/fatal injury for drivers are crashes in high speed limit zone 

and driver age 65 and above. In terms of serious/fatal injury reduction, the important factors are 

driving a station wagon, presence of roundabout and presence of pedestrian control. Third, the 

impacts, in magnitude, are substantially different in injury severity for several variables (driver 

age 65+, non-local driver, high speed limit road and collision during late-night) across different 

collision types. The effects are also different in direction (sign) for presence of signal and collision 

at T intersection. These differences clearly highlight that each collision type has a fundamentally 

distinct injury severity profile underscoring the importance of examining the effect of various 

exogenous variables on driver injury severity outcome by different collision types. 
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In an effort to further assess the performance of the joint model, a validation experiment is 

also carried out. For testing the predictive performance of the models, 50 data samples, of about 

5,000 records each, are randomly generated from the hold out validation sample consisting of 

25,769 records. For these samples, we present the average measures of predictive log-likelihood 

and BIC values along with the 95% level confidence band. The average predictive log-likelihood 

measure for the copula model and independent model are -13,277.24 [(-13326.17) — (-13228.30)] 

and -13280.37 [(-13329.306) — (-13231.438)], respectively. The BIC values for the copula model 

and independent model are 27714.26 [27615.130 — 27813.394] and 27720.13 [27621.79 — 

27818.47], respectively, further highlighting the enhanced performance of the copula model. 

 

4.6 Summary 

The focus of the current chapter was to jointly model the collision type and injury severity outcome 

of drivers involved in a two vehicle collisions using a copula-based joint multinomial logit-ordered 

logit modeling framework. The closed form copula based framework was formulated to 

accommodate the impact of observed and unobserved effects on collision type and injury severity 

while also incorporating parameterization of dependency profile in an unordered and ordered joint 

structure. The proposed model was estimated using driver injury severity data for two vehicle 

crashes from the state of Victoria, Australia for the year 2006 through 2010 employing a 

comprehensive set of exogenous variables − driver characteristics, vehicle characteristics, roadway 

design attributes, environmental factors and crash characteristics.  

The empirical analysis involved estimation of models by using six different copula 

structures: 1) Gaussian, 2) FGM, 3) Clayton, 4) Gumbel, 5) Frank and 6) Joe. The most suitable 

copula model was obtained for a combination model of Frank-Clayton copulas (Frank copula 

structure for rear-ender and head-on collision and Clayton dependency structure with the 

remaining collision type). Further, the comparison between copula and the independent models 

confirmed the importance of accommodating dependence between collision type and injury 

severity outcome in the analysis of driver injury severity. The model estimation results presented 

in the current chapter suggested that the impact of exogenous variables vary (for some variables) 

in magnitude as well as in sign across collision types. The variables in moderating the effect of 

different collision types also reveal varying effects.  
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In this research, to further understand the impact of various exogenous factors, elasticity 

effects were estimated for both the collision type and injury severity components. The elasticity 

effects clearly highlighted that each collision type has a fundamentally distinct injury severity 

profile underscoring the importance of examining the effect of various exogenous variables on 

driver injury severity outcome by different collision types. In summary, the findings of this chapter 

provided a more complete picture of injury severity profile associated with different collision type, 

thus target based countermeasures could be devised to address the entire profile of collision 

mechanism. 
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Table 4.1: Sample Characteristics of Collision Type and Injury Severity Level Sustained by Drivers 

Injury Severity 

Collision Type 

Rear-ender Rear-ended Near-sideswipe Far-sideswipe Near-angular Far-angular 
Short-side 

angular 
Head-on 

No injury 
612 422 101 183 701 803 1211 175 

(60.41%)* (34.70%) (47.64%) (70.66%) (45.91%) (56.83%) (53.11%) (29.71%) 

Minor injury 
261 659 72 59 526 432 718 210 

(25.77%) (54.19%) (33.96%) (22.78%) (34.45%) (30.57%) (31.49%) (35.65%) 

Serious/Fatal injury 
140 135 39 17 300 178 351 204 

(13.82%) (11.10%) (18.40%) (6.56%) (19.65%) (12.60%) (15.39%) (34.63%) 

Total 1013 1216 212 259 1527 1413 2280 589 

 

*The numbers in parenthesis correspond to column percentages 
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Table 4.2: Sample Characteristics of Explanatory Variables across Different Collision Types 

Variables Rear-ender Rear-ended Near-sideswipe Far-sideswipe Near-angular Far-angular 
Short-side 

angular 
Head-on 

Driver characteristics 

Driver age         

Age less than 25 306 (30.21)* 212 (17.43) 57 (26.89) 55 (21.24) 343 (22.46) 332 (23.50) 556 (24.39) 131(22.24) 

Age 25 to 64 612 (60.81) 913 (75.09) 133(62.73) 190 (26.65) 952 (62.35) 885 (62.63) 1473 (64.6) 401 (68.08) 

Age above 65+ 91(8.98) 91 (7.48) 22 (10.38) 14 (5.41) 232 (15.19) 196 (13.87) 251 (11.01) 57 (9.68) 

Driver gender          

Female 439 (43.34) 693 (56.99) 92 (43.40) 113 (43.63) 790 (51.74) 648 (45.86) 1049 (46.01) 205 (34.80) 

Male 574 (56.66) 523 (43.01) 120 (56.60) 146 (56.37) 737 (48.26) 765 (54.14) 1231 (53.99) 384 (65.20) 

Restraint system use   

Seat belt not used 38 (3.75) 32 (2.63) 9 (4.25) 11 (4.25) 35 (2.29) 31 (2.19) 61 (2.68) 22 (3.74) 

Seat belt used 975 (96.25) 1184 (97.37) 203 (95.75) 248 (95.75) 1492 (97.71) 1382 (97.81) 2219 (97.32) 567 (96.26) 

Locality of driver         

Non-local driver 119 (11.75 ) 147 (12.09) 33 (15.57) 36 (13.90) 145 (9.50) 121 (8.56) 199 (8.73) 109 (18.51) 

Local Driver 894 (88.25) 1069 (87.91) 179 (84.43) 223 (86.10) 1382 (90.50) 1292 (91.44) 2081 (91.27) 480 (81.49) 

Vehicle characteristics 

Vehicle Type         

Car 688 (67.92) 887 (72.94) 154 (72.64) 182 (70.27) 1099 (71.97) 1013 (71.69) 1684 (73.86) 378 (64.18) 

Station wagon 177 (17.47) 219 (18.01) 34 (16.04) 50 (19.31) 285 (18.66) 248 (17.55)  395 (17.32) 118 (20.03) 

Utility 108 (10.66) 85 (6.99) 17 (8.02) 21 (8.11) 108 (7.07) 118 (8.35) 159 (6.97) 80 (13.58) 

Panel van 40 (3.95) 25 (2.06) 7 (3.30) 6 (2.32) 35 (2.29) 34 (2.41) 42 (1.84) 13 (2.21) 

Vehicle age  

Vehicle age less than 6 282 (27.84) 404 (33.22) 75 (35.38) 88 (33.98) 496 (32.48) 439 (31.07) 636 (27.89) 172 (29.20) 

Vehicle age 6-10 297 (29.32) 333 (27.38) 57 (26.89) 87 (33.59) 373 (24.43) 383 (27.11) 651 (28.55) 158 (26.83) 

Vehicle age 11 and above 434 (42.84) 479 (39.39) 80 (37.74) 84 (32.43) 658 (43.09) 591 (41.83) 993 (43.55) 259 (43.97) 

Roadway design attributes         

Type of road surface (Base: Paved) 

Paved 990 (97.73) 1189 (97.78) 206 (97.17) 254 (98.07) 1483 (97.12) 1385 (98.02) 2231 (97.85) 531 (90.15) 

Unpaved 1 (0.10) 1 (0.08) 0 (0.00) 1 (0.39) 1 (0.07) 0 (0.00) 2 (0.09) 6 (1.02) 

Gravel 22 (2.17) 26 (2.14) 6 (2.83) 4 (1.54) 43 (2.82) 28 (1.98) 47 (2.06) 52 (8.83) 

Traffic Control Device  
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No Control 622 (61.40) 730 (60.03) 177 (83.49) 211 (81.47) 587 (38.44) 638 (45.15) 957 (41.97) 566 (96.10) 

Signal 237 (23.40) 304 (25.00) 23 (10.85) 34 (13.13) 319 (20.89) 437 (30.93) 764 (33.51) 4 (0.68) 

Other traffic control 13 (1.28) 29 (2.38) 0 (0.00) 4 (1.54) 26 (1.70) 24 (1.70) 40 (1.75) 8 (1.36) 

Pedestrian control 11 (1.09) 12 (0.99) 1 (0.47) 0 (0.00) 4 (0.26) 2 (0.14) 7 (0.31) 0 (0.00) 

Roundabout 30 (2.96) 44 (3.62) 8 (3.77) 6 (2.32) 70 (4.58) 65 (4.60) 86 (3.77) 4 (0.68) 

Stop sign 14 (1.38) 13 (1.07) 0 (0.00) 1 (0.39) 157 (10.28) 60 (4.25) 125 (5.48) 1 (0.17) 

Yield sign 86 (8.49)  84 (6.91) 3 (1.42) 3 (1.16) 364 (23.84) 187 (13.23) 301 (13.20) 6 (1.02) 

Speed zone  

Low speed (≤50 km/h) 118 (11.65) 141 (11.60) 30 (14.15) 42 (16.22) 326 (21.35) 298 (21.09) 461 (20.22) 74 (12.56) 

Medium speed (60-90 km/h) 783 (77.30) 952 (78.29) 141 (66.51) 164 (63.32) 1057 (69.22) 1016 (71.90) 1664 (72.98) 314 (53.31) 

High speed (≥100 km/h) 112 (11.06) 123 (10.12) 41 (19.34) 53 (20.46) 144 (9.43) 99 (7.01) 155 (6.80) 201 (34.13) 

Type of intersection         

Cross intersection 282 (27.84) 293 (24.10) 34 (16.04) 43 (16.60) 654 (42.83) 701 (49.61) 1108 (48.60) 16 (2.72) 

T intersection 263 (25.96) 361 (29.69) 52 (24.53) 66 (25.48) 569 (37.26) 471 (33.33) 832 (36.49) 69 (11.71) 

Y intersection 5 (0.49) 4 (0.33) 0 (0.00) 0 (0.00) 6 (0.39) 6 (0.42) 10 (0.44) 2 (0.34) 

Five and more legged 
intersection 

28 (2.76) 43 (3.54) 2 (0.94) 9 (3.47) 39 (2.55) 43 (3.04) 78 (3.42) 1 (0.17) 

Non-intersection 435 (42.94) 515 (42.35) 124 (58.49) 141 (54.44) 259 (16.96) 192 (13.59) 251 (11.01) 501 (85.06) 

Environmental factors         

Time of day  

Morning peak 138 (13.62) 168 (13.82) 36 (16.98) 44 (16.99) 229 (15.00) 194 (13.73) 311 (13.64) 82 (13.92) 

Off peak 358 (35.34) 440 (36.18) 69 (32.55) 97 (37.45) 514 (33.66) 489 (34.61) 774 (33.95) 183 (31.07) 

Evening peak 291 (28.73) 352 (28.95) 54 (25.47) 52 (20.08) 419 (27.44) 368 (26.04) 588 (25.79) 148 (25.13) 

Late evening 197 (19.45) 233 (19.16) 49 (23.11) 54 (20.85) 324 (21.22) 329 (23.28) 532 (23.33) 144 (24.45) 

Late night 29 (2.86) 23 (1.89) 4 (1.89) 12 (4.63) 41 (2.69) 33 (2.34) 75 (3.29) 32 (5.43) 

Weather condition 

Clear 863 (85.19) 1058 (87.01) 183 (86.32) 228 (88.03) 1343 (87.95) 1270 (89.88) 1981 (86.89) 446 (75.72) 

Rainy/Snowy/Foggy 131 (12.93) 138 (11.35) 24 (11.32) 26 (10.04) 168 (11.00) 128 (9.06) 271 (11.89) 127 (21.56) 

High wind 19 (1.88) 20 (1.64) 5 (2.36) 5 (1.93) 16 (1.05) 15 (1.06) 28 (1.23) 16 (2.72) 

Surface condition          

Dry 837 (82.63) 1025 (84.29) 178 (83.96) 226 (87.26) 1297 (84.94) 1230 (87.05) 1906 (83.60) 403 (68.42) 

Wet 170 (16.78) 187 (15.38) 34 (16.04) 33 (12.74) 226 (14.80) 182 (12.88) 371 (16.27) 175 (29.71) 

Muddy 3 (0.30) 1 (0.08) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.07) 1 (0.04) 6 (1.02) 

Snowy 3 (0.30) 3 (0.25) 0 (0.00) 0 (0.00) 4 (0.26) 0 (0.00) 2 (0.09) 5 (0.85) 

Lighting condition  
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Day 760 (75.02) 933 (76.73) 153 (72.17) 197 (76.06) 1139 (74.59) 1033 (73.11) 1617 (70.92) 412 (69.95) 

Dusk/dawn 79 (7.80) 78 (6.41) 18 (8.49) 10 (3.86) 92 (6.02) 88 (6.23) 166 (7.28) 29 (4.92) 

Dark-lighted 137 (13.52) 173 (14.23) 38 (17.92) 43 (16.60) 267 (17.49) 269 (19.04) 446 (19.56) 74 (12.56) 

Dark-unlighted 30 (2.96) 27 (2.22) 3 (1.42) 8 (3.09) 27 (1.77) 16 (1.13) 43 (1.89) 72 (12.22) 

Other lighting condition 7 (0.69) 5 (0.41) 0 (0.00) 1 (0.39) 2 (0.13) 7 (0.50) 8 (0.35) 2 (0.34) 

Days of Week         

Weekend 221 (21.82) 222 (18.26) 52 (24.53) 80 (30.89) 351 (22.99) 359 (25.41) 548 (24.04) 198 (33.62) 

Weekday 792 (78.18) 994 (81.74) 160 (75.47) 179 (69.11) 1176 (77.01) 1054 (74.59) 1732 (75.96) 391 (66.38) 

Crash characteristics         

Trajectory of vehicle’s motions         

Going straight 742 (73.25) 311 (25.58) 75 (35.38) 110 (42.47 ) 687 (44.99) 702 (49.68) 1655 (72.59) 418 (70.97 ) 

Other movement 271 (26.75) 905 (74.42) 137 (64.62) 149 (57.53) 840 (55.01) 711 (50.32) 625 (27.41) 171 (29.03) 

Presence of passenger         

No passenger 2 (0.20) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.17) 

One passenger 559 (55.18) 689 (56.66) 121 (57.08) 139 (53.67) 797 (52.19) 676 (47.84) 1081 (47.41) 258 (43.80) 

Two passenger 256 (25.27) 305 (25.08) 53 (25.00) 64 (24.71) 363 (23.77) 393 (27.81) 655 (28.73) 157 (26.66) 

More than two passengers 196 (19.35) 222 (18.26) 38 (17.92) 56 (21.62) 367 (24.03) 344 (24.35) 544 (23.86) 173 (29.37) 

 

*The numbers in parenthesis correspond to column percentages within each category 
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Table 4.3: MNL (Collision Type) Model Estimates and Copula Parameters 

Variables Rear-ender Rear-ended Near-sideswipe Far-sideswipe Near-angular Far-angular 
Short-side 

angular 
Head-on 

Constant — -1.957(0.090)ǂ -1.617(0.106) -2.750(0.153) -2.705(0.132) -0.846(0.072) -0.352(0.056) -3.846(0.276) 

Driver characteristics 

Driver age (Base: Age 25 to 64)         

Age less than 25 0.361(0.077) -0.424(0.085) — — — — — — 

Age above 65+ — -0.416(0.125) — -0.711(0.286) 0.311(0.076) 0.311(0.076) — — 

Driver gender (Base: male)         

Female — 0.463(0.068) — — 0.239(0.060) — — -0.264(0.106) 

Restraint system use  (Base: seat belt used) 

Seat belt not used 0.378(0.180) — — — — — — — 

Vehicle characteristics 

Vehicle Type (Base: Sedan)         

Utility  0.310(0.100) — — — — — — 0.310(0.100) 

Panel van 0.609(0.184) — — — — — — — 

Vehicle age (Base: Vehicle age less than 6) 

Vehicle age 6-10 — -0.181(0.064) -0.341(0.074) — -0.341(0.074) -0.181(0.064) — — 

Vehicle age 11 and above — -0.169(0.076) -0.391(0.151) -0.474(0.142) -0.140(0.058) -0.140(0.058) — — 

Roadway design attributes         

Type of road surface (Base: Paved) 

Gravel — — — — — — — 1.361(0.250) 

Traffic Control Device (Base: No traffic control and other control device) 

Signal — — -0.7095(0.163) -0.709(0.163) — — — -2.8209(0.547) 

Pedestrian control 1.381(0.356) 1.381(0.356) — — — — — — 

Roundabout — 0.309(0.182) — — 0.494(0.148) — — — 

Stop sign -0.894(0.282) -1.261(0.301) — -2.406(1.017) 1.070(0.118) — — -2.657(1.162) 

Yield sign — 0.314(0.126) -2.094(0.426) -2.094(0.426) 0.937(0.80) — — -1.692(0.442) 

Speed zone (Base: Low speed zone ≤50 km/h) 

Medium speed (60-90 km/h)  0.616(0.073) 0.616(0.073) — — — — — — 

High speed (≥100 km/h) — 0.575(0.116) 0.575(0.116) 0.671(0.186) — — — 0.934(0.133) 

Type of intersection (Base: Cross intersection )       

T intersection 0.217(0.092) 0.438(0.082) 0.4378(0.082) 0.634(0.182) 0.143(0.075) -0.136(0.071) — 1.384(0.296) 
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Five and more legged 
intersection 

0.449(0.215) 0.708(0.181) — 1.184(0.375) — — — — 

Non-intersection 1.807(0.077) 1.807(0.077) 2.141(0.137) 2.141(0.137) 0.768(0.093) — — 3.864(0.277) 

Environmental factors         

Time of day (Base: Morning peak, Off peak and Late evening) 

Late night — — — — — -0.3816(0.196) — — 

Surface condition (Base: Dry )         

Wet — — — — — — — 0.933(0.113) 

Lighting condition (Base: Daylight) 

Dusk/dawn — — — -0.557(0.339) — — — — 

Dark-lighted -0.407(0.101) -0.243(0.091) — — — — — — 

Dark-unlighted — — — — — — — 0.969(0.176) 

Days of Week         

Weekend — -0.278(0.083) — 0.406(0.145) — — — 0.504(0.111) 

Copula Parameters 

 Frank Clayton Clayton Clayton Clayton Clayton Clayton Frank 

Constant 3.047(1.667) 1.423(0.383) 0.495(0.625) 0.636(0.602) 0.772(0.511) 2.661(0.582) 1.473(0.414) 1.783(1.046) 

Female Driver 0.971(0.540) — — — — — — — 

Medium Speed limit — — — — 1.482(0.228) — — 0.943(0.527) 

Yield Sign — 1.651(0.285) — — — — — — 

Utility Vehicle — — 3.978(0.737) — — — — — 

Late night — — — 5.079(0.904) — — — — 

High wind — — — — 2.783(0.599) — 2.318(0.497) — 

 

ǂStandard errors are presented in parenthesis 
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Table 4.4: OL (Injury Severity) Model Estimates 

Variables Rear-ender Rear-ended Near-sideswipe Far-sideswipe Near-angular Far-angular 
Short-side 

angular 
Head-on 

Threshold 1 1.970(0.406)ǂ 1.405(0.207) 1.405(0.207) 2.122(0.192) 1.405(0.207) 3.010(0.343) 2.122(0.192) 0.332(0.400) 

Threshold 2 3.413(0.347) 4.021(0.163) 2.947(0.172) 4.021(0.163) 2.947(0.172) 4.593(0.294) 3.685(0.164) 1.904(0.319) 

Driver characteristics         

Driver age (Base: Age 25 to 64)         

Age less than 25 — -0.437(0.131) — — — — -0.195(0.086) — 

Age above 65+ 0.454(0.107) — 1.182(0.385) — 0.569(0.080) 0.454(0.107) 0.569(0.080) — 

Driver gender (Base: Male)         

Female 0.7714(0.046) 0.7714(0.046) 0.7714(0.046) 0.7714(0.046) 0.7714(0.046) 0.7714(0.046) 0.7714(0.046) 0.7714(0.046) 

Restraint system use  (Base: seat belt used) 

Seat belt not used — — — — 0.616(0.288) — — — 

Locality of driver (Base: Local driver)        

Non-local driver — 0.272(0.103) — 0.718(0.384) 0.272(0.103) — — — 

Vehicle characteristics         

Vehicle Type (Base: Sedan)         

Station wagon -0.4827(0.071) -0.237(0.079) — -1.100(0.508) -0.483(0.071) -0.237(0.079) -0.483(0.071) -0.237(0.079) 

Utility  — — — — — — -0.690(0.178) — 

Panel van — — — — — — — -0.846(0.491) 

Vehicle age (Base: Vehicle age less than 6) 

Vehicle age 6-10 0.214(0.059) — 0.214(0.059) — — 0.214(0.059) 0.214(0.059) — 

Vehicle age 11 and above 0.297(0.047) 0.297(0.047) 0.297(0.047) 0.297(0.047) 0.297(0.047) — 0.297(0.047) — 

Roadway design attributes         

Type of road surface (Base: Paved) 

Gravel — — — — — — — -0.558(0.332) 

Traffic Control Device (Base: None traffic control and other control device) 

Signal -0.392(0.148) — — — 0.228(0.113) 0.572(0.101) — — 

Pedestrian control — -0.969(0.440) — — — — -0.969(0.440) — 

Roundabout — — — — -1.227(0.188) — -1.227(0.188) — 

Stop sign — — — — — — -0.409(0.165) — 

Yield sign -0.942(0.275) — — — — — -0.317(0.113) — 

Speed zone (Base: Low speed  zone ≤50 km/h) 
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Medium speed (60-90 km/h)  — — — — — 0.343(0.117) 0.419(0.096) — 

High speed (≥100 km/h) 0.844(0.102) — 0.844(0.102) 0.844(0.102) 0.844(0.102) 1.187(0.132) 1.187(0.132) 0.844(0.102) 

Type of intersection         

T intersection 0.248(0.137) — — -1.231(0.423) — — — — 

Five or more legged intersection -1.007(0.510) — — — — — — — 

Non-intersection — -0.254(0.079) — — — — -0.254(0.079) — 

Environmental factors         

Time of day (Base: Morning peak, Off peak and Late evening) 

Morning peak — — — — — — — 0.694(0.211) 

Late night 1.202(0.231) — — — — — 0.504(0.184) 1.202(0.231) 

Weather condition (Base: Clear)         

Rainy/Snowy/Foggy — — 0.727(0.139) — — 0.727(0.139) — — 

High wind -0.807(0.339) -0.807(0.339) — — — — — — 

Lighting condition (Base: Daylight)        

Dusk/dawn — — — — — — 0.281(0.141) 0.621(0.359) 

Dark-lighted — — — — — — 0.307(0.094) — 

Dark-unlighted — — — — — -1.005(0.518) — — 

Days of Week         

Weekend — — — — — — — -0.442(0.172) 

Crash Characteristics         

Presence of passenger (Base: No passenger) 

One passenger — 0.876(0.137) — — — 0.300(0.091) — — 

Two passenger -0.342(0.122) 0.421(0.144) — — — — — — 

More than two passengers -0.342(0.122) — — — — — -0.265(0.086) — 

Trajectory of vehicle’s motions (Base: Other movement) 

Going Straight — — — 0.505(0.063) 0.312(0.089) 0.505(0.063) 0.505(0.063) — 

 

ǂStandard errors are presented in parenthesis 
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Table 4.5: Elasticity Effects for Collision Type Component 

Variables Rear-ender Rear-ended Near-sideswipe Far-sideswipe Near-angular Far-angular Short-side angular Head-on 

Driver characteristics         

Driver age (Base: Age 25 to 64)         

Age less than 25 40.052 -36.538 0.811 0.888 0.653 0.667 0.731 0.124 

Age above 65+ -2.373 -36.715 -0.452 -53.674 25.389 26.211 -7.004 2.607 

Driver gender (Base: Male)         

Female -9.030 36.468 -8.155 -7.794 13.883 -9.601 -9.606 -29.141 

Restraint system use  (Base: seat belt used)        

Seat belt not used 36.388 -5.688 -6.026 -6.029 -4.373 -4.443 -4.466 -6.411 

Vehicle characteristics         

Vehicle Type (Base: Sedan)         

Utility  25.514 -6.913 -8.598 -8.698 -4.668 -4.571 -4.588 18.495 

Panel van 63.287 -9.834 -10.378 -10.395 -7.638 -7.763 -7.805 -11.037 

Vehicle age (Base: Vehicle age less than 6)        

Vehicle age 6-10 11.740 -6.122 -21.807 11.030 -19.612 -5.395 12.873 9.223 

Vehicle age 11 and above 9.808 -6.815 -28.154 -35.500 -4.457 -4.685 9.346 9.712 

Roadway design attributes         

Type of road surface (Base: Paved)         

Gravel -15.978 -14.490 -21.988 -22.344 -7.502 -6.705 -6.714 137.276 

Traffic Control Device (Base: None traffic control and other control device)      

Signal 17.724 15.759 -43.360 -43.319 8.339 7.798 7.796 -98.954 

Pedestrian control 114.393 111.707 -46.430 -46.886 -37.835 -38.792 -39.048 -46.820 

Roundabout -13.374 17.187 -13.015 -12.459 37.679 -14.206 -14.138 -10.784 

Stop sign -54.852 -70.433 24.128 -92.304 157.516 -7.493 -7.133 -90.032 

Yield sign 0.846 -28.630 -95.608 -95.711 110.263 -11.532 -11.315 -78.830 

Speed zone (Base: Low speed ≤50 km/h)        

Medium speed (60-90 km/h)  39.964 39.521 -18.763 -18.811 -12.982 -13.048 -13.139 -19.165 
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High speed (≥100 km/h) 27.923 28.489 22.347 33.058 -19.898 -19.922 -20.066 47.918 

Type of intersection (Base: Cross intersection)         

T intersection -6.852 14.867 5.415 24.146 -2.274 -27.260 -14.652 96.935 

Five and more legged intersection 18.932 51.882 -25.865 136.337 -17.955 -18.533 -18.744 -27.104 

Non-intersection 76.774 74.714 103.364 96.499 -24.854 -83.150 -82.944 220.728 

Environmental factors         

Time of day (Base: Morning peak, Off peak and Late evening)       

Late night 4.898 4.921 4.290 4.265 6.109 -27.427 6.525 2.695 

Surface condition (Base: Dry)         

Wet -9.591 -8.540 -13.453 -13.741 -4.305 -3.780 -3.765 80.177 

Lighting condition (Base: Daylight)         

Dusk/dawn 1.660 1.652 2.153 -42.425 0.984 1.043 1.067 2.577 

Dark-lighted -28.355 -14.310 9.538 9.565 6.756 6.863 6.928 9.638 

Dark-unlighted -10.604 -9.515 -14.745 -15.028 -4.866 -4.309 -4.304 89.813 

Days of Week (Base: Weekdays)         

Weekend -2.347 -26.895 -4.597 39.239 0.062 0.337 0.357 41.697 
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Table 4.6: Elasticity Effects for Serious/Fatal Injury Severity Category 

Variables Rear-ender Rear-ended Near-sideswipe Far-sideswipe Near-angular Far-angular Short-side angular Head-on 

Driver characteristics         

Driver age (Base: Age 25 to 64)         

Age less than 25 — -35.757 — — — — -16.532 — 

Age above 65+ 48.599 — 128.737 — 54.896 48.825 59.236 — 

Driver gender (Base: Male)         

Female 72.080 65.571 64.029 71.814 63.669 72.314 68.000 58.566 

Restraint system use  (Base: seat belt used)         

Seat belt not used — — — — 63.399 — — — 

Non-local driver — 27.496 — 81.777 24.752 — — — 

Vehicle characteristics         

Vehicle Type (Base: Sedan)         

Station wagon -38.650 -20.505 — -71.215 -36.310 -20.673 -37.388 -16.409 

Utility  — — — — — — -47.841 — 

Panel van — — — — — — — -48.777 

Vehicle age (Base: Vehicle age less than 6)         

Vehicle age 6-10 20.437 — 18.066 — — 20.804 19.551 — 

Vehicle age 11 and above 27.753 28.177 24.822 28.376 25.345 — 26.529 — 

Roadway design attributes         

Type of road surface (Base: Paved)         

Gravel — — — — — — — -35.466 

Traffic Control Device (Base: None traffic control and other control device)      

Signal -32.734 — — — 20.103 59.027 — — 

Pedestrian control — -60.601 — — — — -59.060 — 

Roundabout — — — — -68.876 — -69.494 — 

Stop sign — — — — — — -31.320 — 

Yield sign -61.729 — — — — — -25.443 — 
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Speed zone (Base: Low speed ≤50 km/h)         

Medium speed (60-90 km/h)  — — — — — 30.204 34.311 — 

High speed (≥100 km/h) — — 80.545 89.029 89.666 174.732 153.362 64.888 

Type of intersection (Base: Cross intersection)         

T intersection 23.907 — — -79.906 — — — — 

Five and more legged intersection -62.106 — — — — — — — 

Non-intersection — -22.965 — — — — -20.703 — 

Environmental factors         

Time of day (Base: Morning peak, Off peak and Late evening)       

Morning peak — — — — — — — 55.937 

Late night 177.750 — — — — — 53.022 106.305 

Weather condition (Base: Clear)         

Rain/snow/FOG/Smoke/Dust — — 70.554 — — 87.743 — — 

High wind -53.838 -53.830 — — — — — — 

Lighting condition (Base: Daylight)         

Dusk/dawn — — — — — — 27.162 50.379 

Dark-lighted — — — — — — 28.979 — 

Dark-unlighted — — — — — -62.290 — — 

Crash Characteristics          

Presence of passenger (Base: No passenger)        

One passenger — 75.635 — — — 28.133 — — 

Two passenger — 43.947 — — — — — — 

More than two passengers — — — — — — -22.103  

Days of Week (Base: Weekdays)         

Weekend — — — — — — — -30.567 

Trajectory of vehicle’s motions (Base: Other movement)        

Going Straight — — — 46.105 26.585 47.230 40.339 — 
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CHAPTER 5 Analyzing the Continuum of Fatal Crashes: A Generalized Ordered 

Approach 

 

5.1 Introduction 

A number of research efforts have examined the impact of exogenous characteristics (such as 

driver characteristics, vehicle characteristics, roadway design attributes, environmental factors and 

crash characteristics) associated with fatal crashes employing crash data with at least one fatality. 

These studies employed two broad dependent variable categorizations – (1) fatal/non-fatal or (2) 

fatal/serious injury. The binary categorization was analyzed employing descriptive analysis or 

logistic regression methods for identifying the critical factors affecting fatal crashes (for example 

see Zhang et al., 2013; Al-Ghamdi, 2002; Helai et al., 2008; Travis et al., 2012). Several studies 

have also investigated the factors affecting the involvement in a fatal crash as a function of 

individual characteristics. The important individual behavioral determinants of fatal crashes 

include excessive speed, violation of traffic rules and lack of seat belt use (Siskind et al., 2011; 

Valent et Al., 2002; Sivak et al., 2010; Viano et al., 2010). Other driver attributes such as 

aggressive driving behavior, unlicensed driving and distraction during driving are identified to be 

the most significant contributors of fatal crashes for young drivers (Lambert-Bélanger et al., 2012; 

Hanna et al., 2012, Preusser et al., 1998b; Chen et al., 2000; Williams, 1985). Studies have also 

examined the effect of race/ethnicity in fatal crashes (Braver, 2003; Romano et al., 2006; Campos-

Outcalt et al., 2003; Harper et al., 2000). On the other hand, most critical factors identified from 

earlier research for older drivers in fatal crashes are frailty and reduced driving ability (Baker et 

al., 2003; Preusser et al., 1998a; Lyman et al., 2002, Thompson et al., 2013). Gates et al., (2013) 

investigate the influence of stimulants (such as amphetamine, methamphetamine and cocaine) on 

unsafe driving actions in fatal crashes. Stübig et al., (2012) investigate the effect of alcohol 

consumption on preclinical mortality of traffic crash victims (see also Fabbri et al., 2002; Tulloh 

and Collopy, 1994).  

Many of the earlier studies also focused on the vehicular characteristics of fatal crashes 

(Evans and Frick, 1994; Fredette et al., 2008) and demonstrated that the relative risk of fatality is 

much higher for the driver of lighter vehicle (sedan, compact car) compared to those in the heavier 

vehicle (SUV, Vans, Pickups). Among the environmental factors, it was found that collision during 

night time (Arditi et al., 2007) has the most significant negative impact on fatality risk in a crash. 
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In terms of crash characteristics, head-on crash and crashes on high speed limit road locations 

increased the probability of fatalities in a crash (Fredette et al., 2008; Shibata and Fukuda, 1994; 

Bédard et al., 2002).  

These studies offer many useful insights on what factors affect crash related fatality, 

particularly in the context of fatal vs. non-fatal injury categorization. However, there is one aspect 

of fatal crashes that has received scarce attention in the traditional safety analysis. The studies that 

dichotomize crashes into fatal versus non-fatal groups assume that all fatal crashes are similar. 

Keeping all else same, a fatal crash that results in an immediate fatality is clearly much more severe 

than another crash that leads to fatality after several days. To address this issue, the objective of 

the current chapter is to identify the associated risk factors of driver fatalities while recognizing 

that fatality is not a single state but rather is made up of a timeline between dying instantly to dying 

within thirty days of crash. 

The data for the current study is sourced from the Fatality Analysis Reporting System 

(FARS) database for the year 2010. FARS database compiles crashes if at least one person 

involved in the crash dies within thirty consecutive days from the time of crash. Further, FARS 

database reports the exact timeline of the fatal occurrence within thirty days from the time to crash. 

The detailed information available in FARS provides us a continuous timeline of the fatal 

occurrences from the time of crash to death. This allows for an analysis of the survival time of 

victims before their death. This chapter builds on existing fatality analysis research by developing 

disaggregate level model for the discrete representation of the continuous fatality timeline using 

the FARS dataset. The fatality timeline information obtained through FARS is categorized as an 

ordered variable ranging from death in thirty days to instantaneous death in seven categories as 

follows: died between 6th-30 days of crash, died between 2nd-5 days of crash, died between 7th-

24 hours of crash, died between 1st-6 hours of crash, died between 31st-60 minutes of crash, died 

between 1st-30 minutes of crash and died instantly. We employ the mixed generalized ordered 

logit (MGOL) framework to examine driver fatalities characterized as an ordinal discrete variable 

of an underlying severity continuum of fatal injuries.  

In modeling the discretized fatality timeline, the EMS response time variable is an 

important determinant. However, it is possible that the EMS response time and fatality timeline 

are influenced by the same set of observed and unobserved factors, generating endogeneity in the 

outcome model of interest. In fact, it was identified that EMS response time are affected by several 
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external environmental and regional factors (Brodsky, 1992; Meng and Weng, 2013). Such 

correlations impose challenges in using the EMS response variable as an explanatory variable in 

examining fatality outcome of crashes. For example, consider two potential crash scenarios. In 

scenario 1 a relatively major crash occurs and in scenario 2 a minor crash occurs. When the 

information of a crash is provided the urgency with which the EMS teams are deployed for the 

first scenario is likely to be higher than the urgency for the second scenario. So, we potentially 

have a case where EMS time for arrival is lower for scenario 1 but potentially the consequences 

of the crash for scenario 1 are much severe i.e. survival time is much smaller. So, in a traditional 

modeling approach one would conclude that lower EMS arrival times are associated with smaller 

survival times. This is a classic case of data endogeneity affecting the modeling results. Hence, it 

is necessary to account for this endogeneity in the modeling process. In this chapter, we propose 

to apply an econometric approach to accommodate for this. Specifically, we propose to estimate a 

driver-level fatal injury severity model while also accounting for endogeneity bias of EMS arrival 

time using ordered outcome modeling framework with endogeneity treatment. In doing so, the 

correction for endogeneity bias is pinned down in the ordered outcome models by employing a 

two-stage residual inclusion (2SRI) approach. 

In summary, the current chapter makes a three-fold contribution to the literature on vehicle-

occupant injury severity analysis. First, our study is the first attempt to analyze the fatal injury 

from a new perspective and examine fatality as a continuous spectrum based on survival time 

ranging from dying within thirty days of crash to dying instantly. Second, we propose and estimate 

a two equation model that comprises of regression for EMS response time and MGOL with 

residuals from the EMS model to correct for endogeneity bias on the effect of exogenous factors 

on the timeline of death. Finally, we compute elasticity measures to identify important factors 

affecting survival time after motor vehicle crash.  

The rest of the chapter is organized as follows. Section 5.2 provides details of the 

econometric model framework used in the analysis. In Section 5.3, the data source and sample 

formation procedures are described. The model estimation results and elasticity effects are 

presented in Section 5.4 and 5.5, respectively. Section 5.6 summarize the major findings of the 

chapter. 
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5.2 MODEL FRAMEWORK  

The focus of this chapter is on examining the driver-level fatal injury at a disaggregate level while 

also accounting for endogeneity bias of EMS arrival time by using a MGOL model framework 

with endogeneity treatment. In doing so, the correction for endogeneity bias is pinned down in 

MGOL model by employing a 2SRI approach9 (as opposed to the two-stage predictor substitution 

approach). The framework used for MGOL model with endogenous treatment consists of a two-

stage procedure. In the first stage, the residuals are computed from the linear regression estimates 

of the endogenous variable (EMS arrival time). In the second stage, MGOL model is estimated by 

including the first-stage residuals as additional regressor along with the endogenous variable in 

examining the outcome of interest. In this section, econometric formulation for MGOL model with 

the 2SRI treatment is presented. 

 

5.2.1 First Stage 

Let 𝑖 (𝑖 = 1,2, … … , 𝐼) and 𝑗 (𝑗 = 1,2, … … , 𝐽) be the indices to represent driver and the time 

between crash occurrence and time of death for each fatally injured driver 𝑖. In this chapter, index 

𝑗 takes the values of: died between 6th to 30 days of crash (𝑗 = 1), died between 2nd to 5 days of 

crash (𝑗 = 2), died between 7th to 24 hours of crash (𝑗 = 3), died between 2nd to 6 hours of crash 

(𝑗 = 4), died between 31st to 60 minutes of crash (𝑗 = 5), died between 1st to 30 minutes of crash 

(𝑗 = 6) and died instantly (𝑗 = 7) for all fatally injured drivers. Let us also assume that 

𝑦𝑖 represents the discrete levels of time to death, 𝒙i is a column vector of observable exogenous 

variables, 𝒖𝑖 is a set of 𝑒 (𝑒 = 1,2, … … , 𝐸) endogenous variables and 𝒒𝑖 is a 1 × 𝐸 set of 

unobservable endogenous variables possibly correlated with both the outcome and the endogenous 

variables, generating endogeneity bias in the outcome model. In our analysis, we hypothesize that 

EMS arrival time may be correlated with the unobservable determinants of fatal injury severity of 

drivers, thus we have 𝑒 = 1 in the current study context. Following Terza et al. (2008), we present 

the endogeneity of 𝒖𝑖 by assuming an idiosyncratic influence of the same latent variables 𝒒𝑖 on 

both the outcome and endogenous variables as a linear regression model as:    

𝐿𝑖 = 𝜌𝒘𝑖 + 𝒒𝑖  (5.1)  

                                                           
9 The reader is referred to Terza et al. (2008) for a detailed discussion of why the two stage residual inclusion method 

provides consistent estimates in non-linear models, while the two stage predictor substitution method does not. 
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where,  

𝒘𝑖 = [𝒙𝑖  𝒗𝑖] and 𝒗𝑖 is a set of at least 𝐸 instrumental variables 

𝜌 is a corresponding row vector of parameter estimates 

The residuals of endogenous variables can be computed as:  

𝑞𝑖
𝑅 = 𝒖𝑖 − 𝑃𝑟(𝒖𝑖|𝒘𝑖)  (5.2)  

where, 𝑃𝑟(𝒖𝑖|𝒘𝑖) is the predictor of 𝒖𝑖. 

 

5.2.2 Second Stage 

In the proposed two-stage model, the modeling of discrete levels of fatal crashes is undertaken 

using MGOL specification. The MGOL accommodates unobserved heterogeneity in the effect of 

exogenous variable on injury severity levels in both the latent injury risk propensity function and 

the threshold functions (Srinivasan, 2002, Eluru et al., 2008). In the MGOL model, the discrete 

levels of time to death (𝑦𝑖) are assumed to be a mapping (or partitioning) of an underlying 

continuous latent variable (𝑦𝑖
∗) as follows: 

𝑦𝑖
∗ = (𝛽 + 𝛼𝑖)𝒙𝑖 + 𝜎𝒖𝑖 + 𝜆𝒒𝑖 + 𝜀𝑖  ,   𝑦𝑖 = 𝑗, 𝑖𝑓 𝜏𝑖,𝑗−1 <  𝑦𝑖

∗ < 𝜏𝑖,𝑗  (5.3)  

where,  

𝛽, 𝜎 and 𝜆 are corresponding row vectors of associated parameters for 𝒙𝑖, 𝒖𝑖 and 𝒒𝑖, 

respectively. 

𝛼𝑖 is a row vector representing the unobserved factors specific to driver 𝑖 and his/her trip 

environments  

𝜀𝑖 is a random disturbance term assumed to be standard logistic 

𝜏𝑖,𝑗  represents the thresholds 

Once the linear regression for the endogenous variable is estimated, we can insert the 

computed residuals of equation 5.2 as additional regressors in equation 5.3 for the outcome of 

interest. Thus, substituting the residuals for the unobservable latent factors, we can re-write 

equation 5.3 as: 

𝑦𝑖
∗ = (𝛽 + 𝛼𝑖)𝒙𝑖 + 𝜎𝒖𝑖 + 𝜆𝑞𝑖

𝑅 + 𝜀𝑖 ,   𝑦𝑖 = 𝑗, 𝑖𝑓 𝜏𝑖,𝑗−1 <  𝑦𝑖
∗ < 𝜏𝑖,𝑗  (5.4)  



119 
 

In the above setting, the endogeneity of 𝒖𝑖 will be absent if 𝜆 turns out to be zero. Moreover, 

in equation 6.4, 𝜏𝑖,𝑗  (𝜏𝑖,0 = −∞ , 𝜏𝑖,𝐽 = ∞) represents the upper threshold associated with driver i 

and time scale j, with the following ordering conditions: (−∞ < 𝜏𝑖,1 < 𝜏𝑖,2 <  … … … < 𝜏𝑖,𝐽−1 <

+∞). To maintain the ordering conditions and allow the thresholds to vary across drivers, Eluru et 

al., (2008) propose the following non-linear parameterization of the thresholds as a function of 

exogenous variables:  

𝜏𝑖,𝑗 = 𝜏𝑖,𝑗−1 + 𝑒𝑥𝑝 [(𝛿𝑗 + 𝛾𝑖,𝑗)𝒛𝑖,𝑗]  (5.5)  

where, 𝒛𝑖𝑗 is a set of exogenous variable associated with 𝑗 th threshold; 𝛿𝑗 is a time to death-

specific row vector of parameters to be estimated (we need to restrict 𝛿1 to be a row vector of zero 

values for identification reason) and 𝛾𝑖𝑗 is another row vector representing the unobserved factors 

specific to driver 𝑖 and his/her trip environments. The traditional OL model assumes that the 

thresholds 𝜏𝑖,𝑗 remain fixed across drivers (𝜏𝑖,𝑗 = 𝜏𝑗   ∀  𝑖); that is, it assumes that 𝛿𝑗  has all zero 

elements for all  𝑗 values (except for the constant). Thus, the model will collapse to a simple OL 

model if 𝛼𝑖 turns out to be zero in equation 5.4 and 𝜏𝑖,𝑗 remain fixed across driver in equation 5. 

On the other hand, if 𝛼𝑖 and 𝛾𝑖,𝑗 terms of equation 5.4 and 5.5 are found to be zero in model 

estimation, then the model will collapse to simple GOL model.  

In equations 5.4 and 5.5, we assume that 𝛼𝑖 and 𝛾𝑖𝑗 are independent realizations from 

normal distribution for this study. Thus, conditional on 𝛼𝑖 and 𝛾𝑖𝑗, the probability expression for 

individual 𝑖 and alternative 𝑗 in MGOL model with the 2SRI treatment take the following form: 

𝜋𝑖𝑗 = 𝑃𝑟(𝑦𝑖 = 𝑗|𝛼𝑖, 𝛾𝑖𝑗) 

       = 𝛬[𝜏𝑖,𝑗−1 + exp ((𝛿𝑗 + 𝛾𝑖,𝑗) 𝒛𝑖,𝑗) − {(𝛽 + 𝛼𝑖)𝒙𝑖 + 𝜎𝒖𝑖 + 𝜆𝑞𝑖
𝑅}] −

           𝛬[𝜏𝑖,𝑗−2 + exp ((𝛿𝑗−1 + 𝛾𝑖,𝑗−1) 𝒛𝑖,𝑗) − {(𝛽 + 𝛼𝑖)𝒙𝑖 + 𝜎𝒖𝑖 + 𝜆𝑞𝑖
𝑅}] 

(5.6)  

The unconditional probability can subsequently be obtained as: 

𝑃𝑖𝑗 = ∫ [𝑃𝑟(𝑦𝑖 = 𝑗|𝛼𝑖, 𝛾𝑖𝑗)] ∗ 𝑑𝐹(𝛼𝑖, 𝛾𝑖𝑗)𝑑(𝛼𝑖, 𝛾𝑖𝑗)
𝛼𝑖,𝛾𝑖𝑗

 (5.7)  

The parameters to be estimated in the MGOL model with the 2SRI treatment are: the 

parameters corresponding to the linear regression (𝜌), the parameters corresponding to the 

propensity (𝛽, 𝜎, 𝜆 𝑎𝑛𝑑 𝛼𝑖) and the parameters corresponding to thresholds (𝛿𝑗 𝑎𝑛𝑑 𝛾𝑖,𝑗). In this 



120 
 

study, we use a quasi-Monte Carlo (QMC) method proposed by Bhat (2001) for discrete outcome 

model to draw realization from its population multivariate distribution. Within the broad 

framework of QMC sequences, we specifically use the Halton sequence (4,000 Halton draws) in 

the current analysis (see Eluru et al., 2008 for a similar estimation process).  

 

5.3 DATA  

5.3.1 Data Source 

The data for the current chapter is sourced from the FARS database for the year 2010. FARS data 

is a census of all fatal crashes in the US and compiles crashes if at least one person involved in the 

crash dies within thirty consecutive days from the time of crash. The FARS database has a record 

of 30,196 fatal crashes with 32,885 numbers of fatalities for the year 2010. This database is 

obtained from the US Department of Transportation, National Highway Traffic Safety 

Administration’s National Center for Statistics and Analysis (ftp://ftp.nhtsa.dot.gov). The FARS 

dataset provides a continuous timeline of the fatal occurrences from the time to crash until thirty 

days. It also provides information on a multitude of factors (driver characteristics, vehicle 

characteristics, roadway design and operational attributes, environmental factors, crash 

characteristics and situational variables) representing the crash situation and events. 

 

5.3.2 Sample Formation and Description 

This study is focused on fatality outcome of passenger vehicles’ drivers who were involved in 

either a single or two vehicle crashes. The crashes that involve more than two vehicles are excluded 

from the dataset. Commercial vehicles involved collisions are also excluded to avoid the potential 

systematic differences between commercial and non-commercial driver groups. From the dataset, 

only the drivers who were fatally injured are considered for the current study. The final FARS 

dataset, after removing records with missing information for essential attributes consisted of about 

5,102 driver records. The continuous timeline (computed as the difference between declared death 

time and crash time) provided in FARS was then discretized as a seven point discrete ordinal 

variable to represent the scale of fatal injury severity of drivers involved in these crashes - from 

least severe to most severe fatal crashes as follows: 1) Died between 6th to 30 days of crash, 2) 

Died between 2nd to 5 days of crash, 3) Died between 7th to 24 hours of crash, 4) Died between 
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2nd to 6 hours of crash, 5) Died between 31st to 60 minutes of crash, 6) Died between 1st to 30 

minutes of crash and 7) Died instantly. The distributions of driver fatalities over the fatality scale 

in our final estimation sample are presented in Table 5.1. We adopted a seven alternative discrete 

spectrum for our analysis based on observed frequencies and time to death groupings of policy 

interest. It is important to note that, within an ordered outcome structure, it would be relatively 

easy to incorporate a larger number of alternative categories, if needed, while still retaining a 

parsimonious specification. From Table 5.1 we can see that more that 60% drivers died within one 

hour of crash and almost one third of these crash victims are reported to die instantly. Also, only 

5.9% of the drivers can evade mortality more than five days of crashes.  

Table 5.2 offers a summary of the sample characteristics of the exogenous factors in the 

estimation dataset. From the descriptive analysis, we observe that a large portion of crashes occur 

on high speed limit road (54.5%), on rural road (62.8 %), during dry weather condition (70.6%) 

and at non-intersection location (75.9%). The majority of drivers are aged between 25 and 64 

(57.1%). In addition to the variables describing the crash situation and events presented in Table 

5.2, FARS database also provides information on crash notification time, EMS response time and 

time of EMS arrival at hospital. From this information, it is possible to compute EMS response 

time (as the difference between EMS arrival time at the crash scene and crash time) and hospital 

arrival time (as the difference between EMS arrival at hospital and EMS arrival at crash scene). 

However, EMS arrival time at hospital is available only for the crash victim who arrived first at 

hospital among all other crash victims (if present) for that specific crash. Therefore, hospital arrival 

time is not available for all fatal records of driver, and, hence is not considered in our final 

estimation sample. On the other hand, the sample we use in the current study provides information 

about the EMS response time. From the descriptive statistics of this variable we observe that EMS 

response time exceeds one hour – most popularly referred to as the “golden hour” – only for 3.1% 

of records. The median EMS response time is about 11 minutes, with a range of 0 minute to 

approximately 9.5 hours.  

 

5.4 Empirical Analysis 

5.4.1 Variables Considered 

In our analysis, we selected a host of variables from six broad categories: driver characteristics 

(including driver age, alcohol consumption and previous driving conviction records), vehicle 
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characteristics (including vehicle age ), roadway design and operational attributes (including speed 

limit, traffic control device, roadway functional class and land use), environmental factors 

(including time of day, lighting condition and weather condition), crash characteristics (including 

manner of collision and collision location) and situational variable (including driver ejection, 

number of passengers and EMS response time). The final specification of the model development 

was based on combining the variables when their effects were not statistically different and by 

removing the statistically insignificant variables in a systematic process based on statistical 

significance (95% confidence level). For continuous variables, linear, polynomial and spline forms 

were tested. 

 

5.4.2 Model Specification and Overall Measures of Fit 

In the research effort, initially we estimated three different models: 1) OL, 2) GOL and 3) MGOL, 

by considering EMS response time as an explanatory variable in our empirical analysis. In our 

initial specifications of all the three aforementioned models we obtained a counterintuitive result 

for EMS response time indicating that the likelihood of early death decreases with an increase in 

EMS response time. Therefore, to further explore the effect of this indicator variable, several 

specifications (log transformation, dummy categories) of EMS response time have been explored 

in OL, GOL and MGOL frameworks. However, for all the aforesaid specifications, we observe 

that a longer EMS response time has negative impact on the survival probability of drivers in the 

current study context. The result could be a manifestation of endogeneity between crash 

seriousness and EMS response time i.e. severe crashes are likely to have shorter EMS times while 

less severe crashes are likely to have longer EMS times. So, in such scenarios the early arrival of 

EMS coincides with early death causing a non-intuitive parameter estimate. Thus, to control for 

the endogeneity of EMS response time with fatal crash outcomes, we include a residual variable 

through 2SRI method in examining the fatality spectrum. To that extent, we have further estimated 

the following three ordered outcome models with endogenous treatment: 1) OL with the 2SRI 

treatment, 2) GOL with the 2SRI treatment and 3) MGOL model with the 2SRI treatment. After 

controlling for the endogeneity, the coefficient on the logarithm of EMS response time is found 

out to be positive in all three model specifications indicating that the likelihood of early death 

increases with an increase in EMS response time. 
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Prior to discussing the estimation results, we compare the performance of these models in 

this section. At first, the exogeneity of regressors 𝒖𝑖 in equation 5.4 is tested for 𝜆 = 0 by using 

likelihood ratio (LR) test within each set of models. The equation for LR test statistic is presented 

in equation 2.17. The computed value of the LR test is compared with the 𝜒2 value for the 

corresponding degrees of freedom. These estimates are presented in Table 5.3. From the first three 

rows of LR test values in table 5.3 we can see that all three models with 2SRI treatment outperform 

the corresponding models without 2SRI treatments at any significance level. The LR test 

comparisons confirm the importance of accommodating endogoneity between EMS response time 

and fatal injury outcome in the analysis of driver fatalities. Further, we also compare the estimated 

ordered models with 2SRI treatments by using LR test for selecting the preferred model among 

those. The results are presented in last three rows of Table 5.3. The LR test values indicate that 

MGOL model with 2SRI treatment outperforms the OL model with 2SRI treatment at any level of 

statistical significance. The MGOL model with 2SRI treatment outperforms the GOL model with 

2SRI treatment at the 0.05 significance level. The comparison exercise clearly highlights the 

superiority of the MGOL model with 2SRI treatment in terms of data fit compared to all the other 

ordered models.  

 

5.4.3 Estimation Results 

In presenting the effects of exogenous variables in the model specification, we will restrict 

ourselves to the discussion of the MGOL model with 2SRI treatment. Table 5.4 presents the 

estimation results. To reiterate, the dependent variable under consideration is the 7 point ordinal 

variable defined as: died between 6th-30 days of crash, died between 2nd-5 days of crash, died 

between 7th-24 hours of crash, died between 1st-6 hours of crash, died between 31st-60 minutes 

of crash, died between 1st-30 minutes of crash and died instantly. Estimation results of Table 5.4 

has six different columns. The first column corresponds to the propensity and represents the 

estimates of the parameters of equation 5.4. From second to sixth columns of estimation results in 

Table 5.4 corresponds to the thresholds and represent parameters of equation 5.5. In MGOL model, 

when the threshold parameter is positive (negative) the result implies that the threshold is bound 

to increase (decrease); the actual effect on the probability is quite non-linear and can only be judged 

in conjunction with the influence of the variable on propensity and other thresholds. In the 

following sections, the estimation results are discussed by variable groups. 
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Driver Characteristics: The effect of driver age is found to have significant impact on the length 

of hospital stay before death. The parameter characterizing the effect of young driver (age 24 & 

less) suggests that the likelihood of dying earlier is lower for young driver compared to middle-

aged (age 25-64) driver. The negative sign of latent propensity associated with old driver (age 65 

& above) suggests that the likelihood of dying earlier is lower for older driver compared to middle 

aged driver. On the other hand, the impacts of old driver on both of the fourth and fifth thresholds 

are negative. The results suggest an increased probability of dying within 6th-30 days of crash and, 

also in general, a decreased possibility of instant death, presumably due to the declined wound 

healing and immune competence of drivers with advancing age after surviving the early phase of 

trauma (Tohira et al., 2012).  

As expected, MGOL model estimates related to alcohol impairment indicate a higher 

likelihood of early mortality risk of alcohol impaired drivers compared to the sober drivers. At the 

same time, the positive values of the second threshold of alcohol impaired driver reflects an 

increase in the probability of dying within 2nd-5 days of crash. Intoxicated drivers are identified 

to be less immune to post traumatic response and suffer from more severe abdominal injuries 

(Zeckey et al., 2011; Stübig et al., 2012). Furthermore, higher impact speed differential due to the 

risk taking disposition of alcohol intoxicated driver presumably reduces the time to death of this 

group of drivers (Soderstrom et al., 2001).  

Previous driving records also have significant influence on time to death after crash. The 

results associated with previous recorded suspension and revocation of driving licence indicates 

that an increase in number of previous recorded suspension and revocation deceases the likelihood 

of early mortality. The result is perhaps indicating more cautious driving of this group of driver to 

avoid any further conviction while driving. Also, the result indicates that drivers are less likely to 

evade early mortality with an increasing record of other previous record of harmful motor vehicle 

convictions (other than previous recorded suspension and revocation of driving licence, previous 

recorded crashes, previous drinking convictions and previous speeding convictions). However, the 

effect of other previous record of harmful motor vehicle convictions variable results in an estimate 

that is normally distributed with mean 0.104 and standard deviation of 0.208 implying that almost 

71% of the drivers with higher records of earlier harmful motor vehicle convictions involved in 

the collision sustain early death.  
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Vehicle Characteristics: Among different vehicle characteristics explored in this study, only 

vehicle age is significant in the final model specification. Vehicle age result does not have any 

effect on the propensity of time to death after crash, but demonstrates a higher likelihood of death 

within 1st-30 minutes of crash for the driver of old vehicles (vehicle age≥11 years) and in general, 

a higher probability of instant death in a crash. The result highlights the advantages of newer 

vehicle fleet  presence of advanced safety technologies (electronic stability control, improvement 

in air bag design, crash cage, energy-absorbing steering columns, crash-resistant door locks and 

high-penetration-resistant windshields) and designs of newer vehicle with improved crash 

worthiness (O'Neill, 2009; Ryb et al., 2011). 

 

Roadway Design and Operational Attributes: The results for speed limit indicate that the 

propensities to die earlier are higher for crashes occurring on roads with medium or higher speed 

limit roads relative to crashes on lower speed limit roads. As is expected, within the two speed 

categories considered, the higher speed category has a larger impact relative to the medium speed 

category, which underscores the fact that the probability of early mortality risk increases with the 

increasing speed limits of roadways. MGOL model estimates for higher speed limit results in a 

parameter that is normally distributed with a mean 0.359 and standard deviation 0.447, which 

indicates that almost 78% of the drivers cannot evade early death for the crashes occurring on 

higher speed limit roads. Higher speed, representing average driving speed, significantly increases 

the kinetic energy of crashes (Elvik, 2004; Sobhani et al., 2011) resulting in medical complications 

with multiple injuries and traumatic brain injury to the victims (Weninger and Hertz, 2007). 

Further, the cabin intrusion caused by high mechanical force of such crash might also increase the 

extrication time of victims from the damaged vehicle (Weninger and Hertz, 2007). Crashes at stop-

sign controlled or other traffic controlled (such as warning sign, regulatory sign, railway crossing 

sign) intersections seem to increase the likelihood of early death relative to crashes at other 

locations, possibly suggesting non-compliance with these traffic control devices and judgment 

problems (Chipman, 2004; Retting et al., 2003).. 

 

Environmental Factors: With respect to time of day, the latent propensities for off peak and evening 

peak periods (related to morning peak and nigh-time) are found negative, indicating lower 
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likelihood of early mortality, may be a result of traffic congestion and slow driving speeds during 

these periods. At the same time, the effect of off peak period on the threshold indicates a lower 

probability of dying between 1st-30 minutes after crash. The weather condition effects simplified 

to a simple binary representation of cloudy condition. The result indicates that if collisions occur 

during cloudy weather (relative to those during other weather conditions) the drivers are less likely 

to evade early death, perhaps because of the reduced visibility, which presumably results in 

reduced perception-reaction and reduced ability to take evasive actions at the crash incident (Tay 

et al., 2011). The effect of cloudy weather condition on the threshold also indicates increased 

likelihood of death between 2nd-5 days of crash. 

 

Crash Characteristics: With respect to manner of collision, the time to death propensity is observed 

to be lower for front-to-rear collision relative to other manners of collision. The results associated 

with a head-on collision reflect a higher probability of death between 1st-6 hours of crash and in 

general indicate the anticipated increased likelihood of early death. Head-on collisions are often 

caused by drivers violating traffic rules, crossing the centerline by mistake and losing control of 

their vehicles (Zhang and Ivan, 2005). The pre-impact speed vectors of motor vehicles are directed 

in opposing directions during a head-on collision, resulting in greater dissipation of kinetic energy 

and heavier deformation of motor vehicle bodies (Prentkovskis et al., 2010), resulting in higher 

risk of injury.  

As observed in several previous studies (Al-Ghamdi, 2002), the results related to crash 

location of our study reflect an increased injury risk propensity for collision at non-intersection 

location (related to crashes at intersection and other locations). However, the effects of “non-

intersection location” indicator in threshold parameterization are relatively complex. It has a 

positive impact on the threshold between 1st-6 hours and 31st-60 minutes crash outcome 

categories; while it has a negative impact on the threshold between 31st-60 minutes and 1st-30 

minutes categories. In general, the net implication is that collision at non-intersection location has 

a higher probability of sustaining early death (the specific impact of other fatal crash categories on 

driver fatalities are context-specific). 

 

Situational Variables: As identified in several previous studies (Palanca et al., 2003), the result 

related to driver ejection indicate an increased early death propensity. Number of passenger in 
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vehicle at the time of collision is also found to have significant impact on the time to death of 

driver. The results related to presence of more passengers reflect an increased early death 

propensity, perhaps indicating inattentiveness to the driving task due to distraction caused by in 

vehicle interactions among occupants. 

The last two rows of estimation results in Table 5.4 represent the associated results of: (1) 

the logarithm of EMS response time and (2) the residual obtained from regressing the logarithm 

of EMS response time variable on morning peak, late-night, dark-not lighted, rain, snowy, rural, 

principle arterial and minor arterial indicator variables10. The role of the residual variable is to 

control for the endogeneity of the EMS response time variable in examining the time to death.  

From Table 5.4, we can see that after controlling for endogeneity, the coefficient on the logarithm 

of EMS response time is positive and statistically significant indicating that EMS response time 

has the expected impact on severity once we control for the endogeneity bias. Specifically, as can 

be observed from the coefficient of the residual term, the non-intuitive impact of EMS time was a 

result of the correlation between EMS time and unobserved determinants. Through our approach, 

by accounting for the endogeneity we were able to differentiate between the observed impact of 

EMS time and the spurious effect due to the unobserved factors. 

 

5.5 Elasticity Effects 

The parameter effects of the exogenous variables in Table 5.4 do not provide the magnitude of the 

effects on time to death of drivers. For this purpose, we compute the aggregate level “elasticity 

effects” for all categories of independent variable (see Eluru and Bhat, (2007) for a discussion on 

the methodology for computing elasticities) and present the computed elasticities in Table 5.6. The 

effects are computed for all categories of fatal crashes. The results in the table can be interpreted 

as the percentage change (increase for positive sign and decrease for negative sign) in the 

probability of the fatal severity categories due to the change in that specific exogenous variable.  

The following observations can be made based on the elasticity effects of the variables 

presented in Table 5.6. First, the results in Table 5.6 indicate that there are considerable differences 

in the elasticity effects across different fatal crash categories, suggesting that fatality is not a single 

state but rather is made up of multiple discrete states from dying instantly to dying within thirty 

                                                           
10 The estimation results for the linear regression model are presented in Table 5.5. 
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days of crash. Second, the most significant variables in terms of lower survival probability for 

drivers are crashes on high speed limit roads, crashes on medium speed limit roads and head-on 

crashes. Third, in terms of longer survival probability, the important factors are old driver, front-

to-rear crash and crashes during off peak period. Fourth, elasticity estimates of EMS response time 

in Table 5.6 emphasize the importance of early EMS response. Finally, the elasticity analysis 

assists in providing a clear picture of attribute impact on driver time-to-death variables. The 

elasticity analysis conducted provides an illustration of how the proposed model can be applied to 

determine the critical factors contributing to reducing the survival time.  

 

5.6 Summary 

The focus of this chapter was to identify the associated risk factors of driver fatalities while 

recognizing that fatality is not a single state but rather is made up of a timeline between dying 

instantly to dying within thirty days by using Fatality Analysis Reporting System (FARS) database 

for the year 2010. In the US, safety researchers have focused on examining fatal crashes (involving 

at least one fatally injured vehicle occupant) by using FARS dataset. FARS database compiles 

crashes if at least one person involved in the crash dies within thirty consecutive days from the 

time of crash along with the exact timeline of the fatal occurrence. Previous studies using FARS 

dataset offer many useful insights on what factors affect crash related fatality, particularly in the 

context of fatal vs. non-fatal injury categorization. However, there is one aspect of fatal crashes 

that has received scarce attention in the traditional safety analysis. The studies that dichotomize 

crashes into fatal versus non-fatal groups assume that all fatal crashes in the FARS dataset are 

similar. Keeping all else same, a fatal crash that results in an immediate fatality is clearly much 

more severe than another crash that leads to fatality after several days. Research attempts to discern 

such differences are useful in determining what factors affect the time between crash occurrence 

and time of death so that countermeasures can be implemented to improve safety situation and to 

reduce crash related fatalities. 

To that extent, the current chapter makes a three-fold contribution to the literature on 

vehicle occupant injury severity analysis. First, our study is the first attempt to analyze the fatal 

injury from a new perspective and examine fatality as a continuous spectrum based on survival 

time ranging from dying within thirty days of crash to dying instantly. For the empirical analysis, 

the fatality timeline information obtained through FARS was categorized as an ordered variable 
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ranging from death in thirty days to instantaneous death in seven categories as follows: died within 

6th-30 days of crash, died within 2nd-5 days of crash, died within 7th-24 hours of crash, died 

within 1st-6 hours of crash, died within 31st-60 minutes of crash, died within 1st-30 minutes of 

crash and died instantly. Second, we estimated two-equation model that comprises of regression 

for EMS response time and ordered outcome model with residuals from the EMS model to correct 

for endogeneity bias on the effect of exogenous factors on the timeline of death. In doing so, the 

correction for endogeneity bias was pinned down in the ordered outcome models by employing a 

two-stage residual inclusion (2SRI) approach. In the research effort, we estimated the following 

three ordered outcome models with endogenous treatment: 1) OL with the 2SRI treatment, 2) GOL 

with the 2SRI treatment and 3) MGOL model with the 2SRI treatment while employing a 

comprehensive set of exogenous variables (driver characteristics, vehicle characteristics, roadway 

design and operational attributes, environmental factors, crash characteristics and situational 

variables). The comparison exercise highlighted the superiority of the MGOL model with the 2SRI 

treatment on the sample in terms of data fit compared to the other ordered outcome models in the 

current study context. Finally, we computed elasticity measures to identify important factors 

affecting survival time after motor vehicle crash. In our research, to further understand the impact 

of various exogenous factors, elasticity effects were estimated. The elasticity effects indicated that 

there were considerable differences in the elasticity effects across different fatal crash categories, 

suggesting that fatality is not a single state but rather is made up of multiple discrete states from 

dying instantly to dying within thirty days of crash. The most significant variables in terms of 

lower survival probability for drivers were crashes on high speed limit roads, crashes on medium 

speed limit roads and head-on crashes. In terms of longer survival probability, the important factors 

were old driver, front-to-rear crash and crashes during off-peak period. Moreover, the elasticity 

analysis assisted in providing a clear picture of attribute impact on driver time-to-death variables. 

 

 

 

 

 

 

Table 5.1: Distribution of Fatal Injury Severity Categories 
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Fatal Crash Categories Frequency Percentage 

Died between 6th to 30 days of crash 302 5.9% 

Died between 2nd to 5 days of crash 270 5.3% 

Died between 7th to 24 hours of crash 233 4.6% 

Died between 2nd to 6 hours of crash 1175 23.0% 

Died between 31st to 60 minutes of crash 824 16.1% 

Died between 1st to 30 minutes of crash  1086 21.3% 

Died instantly 1212 23.8% 

Total 5102 100.0% 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2: Crash Database Sample Statistics 
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Categorical Explanatory Variables 
Sample Share 

Frequency Percentage 

Driver Characteristics 

 Driver age  

  Age 24 & less 1144 22.423 

  Age 25-64 2915 57.134 

  Age 65 & above 1043 20.443 

 Under the influence of alcohol 1778 34.849 

Vehicle Characteristics 

 Vehicle age   

  Vehicle age<11 years 2822 55.312 

  Vehicle age≥11 years 2280 44.688 

Roadway Design and Operational Attributes 

 Speed limit  

  Speed limit less than 26 mph 261 5.116 

  Speed limit 26 to 50 mph 2059 40.357 

  Speed limit above 50mph 2782 54.528 

 Traffic control device 

  No traffic control, traffic signal and yield sign 4271 83.712 

  Stop sign 401 7.860 

  Other traffic control device 430 8.428 

 Roadway functional class   

  Principal Arterial 1680 32.928 

  Minor Arterial 997 19.541 

  Collector 1208 23.677 

  Local Road 1217 23.853 

 Land use   

  Rural 3206 62.838 

  Urban 1896 37.162 

Environmental Factors 

 Time of day   

  Morning Peak 548 10.741 

  Off-peak 1266 24.814 

  Evening peak 828 16.229 

  Late evening 1311 25.696 

  Late night 1149 22.521 

 Lighting condition 

  Daylight and other lighting condition 2910 57.036 

  Dark-not lighted 1430 28.028 

  Dark-lighted 762 14.935 

 Weather condition 
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  Dry 3601 70.580 

  Rain 422 8.271 

  Snowy 210 4.116 

  Cloudy 850 16.660 

  Other weather condition 19 0.372 

Crash Characteristics 

 Manner of collision  

  Front to rear 124 2.430 

  Head-on  897 17.581 

  Other type of collision 4081 79.988 

 Collision location 

  Non-Intersection   75.931 75.931 

  Intersection 15.759 15.759 

  Other Location 8.310 8.310 

Situational Variables 

 Driver ejection   

  Ejected 1197 23.461 

  Not ejected 3905 76.539 

Ordinal/Continuous Explanatory Variables Mean 

 Previous Recorded suspensions and revocations 0.444 

 Previous record of other harmful motor vehicle convictions 0.323 

 Number of passengers 0.400 

 Logarithm of EMS response time (in minute) 2.473 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3: Measures of Fit in Estimation Sample 
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Summary Statistic OL GOL MGOL 

Log-likelihood at zero -9928.0 -9928.0 -9928.0 

Log-likelihood at sample shares -9016.3 -9016.3 -9016.3 

Number of observations 5102 5102 5102 

Summary Statistic Without 2SRI Treatment 

Log-likelihood at convergence -8844.8 -8794.9 -8793.7 

Number of parameters 18 28 30 

Summary Statistic With 2SRI Treatment 

Log-likelihood at convergence -8839.8 -8790.8 -8787.4 

Number of parameters 19 29 31 

Log-likelihood (LR) test LR Test Values 

OL without 2SRI/OL with 2SRI  9.9 (1 degree of freedom) 

GOL without 2SRI/GOL with 2SRI  8.2 (1 degree of freedom) 

MGOL without 2SRI/MGOL with 2SRI  12.6 (1 degree of freedom) 

OL with 2SRI/GOL with 2SRI 98.1 (10 degrees of freedom) 

OL with 2SRI/MGOL with 2SRI 104.8 (12 degrees of freedom) 

GOL with 2SRI/MGOL with 2SRI 6.8 (2 degrees of freedom) 
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Table 5.4: MGOL Estimates 

Variables Latent Propensity 𝝉𝟐 𝝉𝟑 𝝉𝟒 𝝉𝟓 𝝉𝟔 

Constant -1.712(-5.229) -0.441(-6.101) -0.854(-13.236) 0.141(2.296) -0.104(-1.386) 0.069(1.915) 

Driver Characteristics 

 Driver age (Base: Age 25-64) 

  Age 24 & less -0.147(-2.207)* − − − − − 

  Age 65 & above -1.015(-10.966) − − -0.281(-4.334) -0.182(-2.071) − 

 Under the influence of alcohol 0.488(3.488) 0.434(3.261) − − − − 

 
Previous Recorded suspensions and 

revocations 
-0.068(-3.264) − − − − − 

 
Previous record of other harmful motor 

vehicle convictions 
0.104(2.598) − − − − − 

 SD 0.208(3.596) − − − − − 

Vehicle Characteristics 

 Vehicle age (Base: Vehicle age<11 years)   

  Vehicle age≥11 years − − − − -0.157(-2.689) − 

Roadway Design and Operational Attributes 

 Speed limit (Base: Speed limit<26 mph) 

  Speed limit 26 to 50 mph 0.251(2.117) − − − − − 

  Speed limit above 50mph 0.359(2.981) − − − − − 

  SD 0.447(2.707) − − − − − 

 Traffic control device (Base: No traffic control, traffic signal and yield sign) 

  Stop sign 0.223(1.975) − − − − − 

  Other traffic control device 0.171(2.148) − − − − − 

Environmental Factors 

 Time of day (Base: Morning Peak, Late evening and Late Night)    

  Off peak  -0.218(-3.157) − − − − -0.161(-2.323) 
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  Evening peak -0.151(-2.012) − − − − − 

 Weather condition (Base: Dry, Rain, Snowy and Other weather condition) 

  Cloudy 0.467(2.987) 0.276(1.872) − − − − 

Crash Characteristics 

 Manner of collision (Base: Other type of collision) 

  Front to rear -0.317(-1.765) − − − − − 

  Head-on 0.661(5.312) − − 0.261(3.781) − − 

 Collision location (Base: Intersection and Other location) 

  Non-intersection 0.362(3.741) − − 0.217(3.346) -0.234(-3.168) − 

Situational Variables 

 Driver ejection (Base: Not ejected)       

  Ejected  0.267(3.651) − − − 0.145(1.963) − 

 Number of passengers 0.159(4.874) − − − − − 

 EMS response time       

  
Logarithm of EMS response time (in 

minute) 
0.247(1.993)      

  

Residual from regression of 

Logarithm of EMS arrival time (in 

minute) on morning peak, late night, 

dark-not lighted, rain, snowy, rural, 

principle arterial and minor arterial 

-0.363(-2.929) − − − − − 

 𝜏2= Threshold between 1st-5 days/ 7th-24 hours; 𝜏3= Threshold between  7th-24 hours/ 1st-6 hours; 𝜏4 = Threshold between  1st-6 hours/ 31st-60 minutes; 𝜏5 = Threshold between  

31st-60 minutes/ 1st-30 minutes; 𝜏6 = Threshold between  1st-30 minutes/ Died Instantly 

* t-stats are presented in parenthesis 
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Table 5.5: Linear Regression Estimates 

Variables Coefficient t-stat 

Constant 2.190 80.670 

Roadway functional class (Base: Collector and Local road 

Principal Arterial -0.074 -2.709 

Minor Arterial -0.118 -3.699 

Land use (Base: Urban)   

Rural 0.363 14.183 

Time of day (Base: Off-peak, Evening peak and Late evening) 

Morning Peak 0.070 1.794 

Late night 0.213 6.877 

Lighting condition (Base: Daylight and other lighting condition and Dark-lighted) 

Dark-not lighted 0.120 4.161 

Weather condition (Base: Dry, Cloudy and Other weather condition) 

Rain 0.088 2.052 

Snowy 0.145 2.419 
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Table 5.6: Elasticity Effects 

Variables 
Died between 6-

30 days 

Died between 2-5 

days 

Died between 7-24 

hours 

Died between 2-6 

hours 

Died between 31-

60 minutes 

Died between 1-

30 minutes 
Died instantly 

Driver Characteristics  

 Driver age (Base: Age 25-64)  

  Age 24 & less 13.694 11.328 9.375 6.150 0.648 -4.202 -10.384 

  Age 65 & above 108.781 93.747 74.488 2.099 -18.729 -17.964 -35.615 

 Under the influence of alcohol -39.798 22.427 -7.732 -5.153 -0.658 3.421 8.611 

 
Previous Recorded suspensions and 

revocations 6.270 5.246 4.367 2.871 0.312 -1.950 -4.823 

 
Previous record of other harmful 

motor vehicle convictions -6.784 -6.263 -5.725 -4.674 -2.074 1.511 8.782 

Vehicle Characteristics  

 Vehicle age (Base: Vehicle age<11 years)    

  Vehicle age≥11 years 0.000 0.000 0.000 0.000 -15.654 3.016 7.977 

Roadway Design and Operational Attributes  

 Speed limit (Base: Speed limit<26 mph)  

  Speed limit 26 to 50 mph -22.181 -18.747 -15.721 -10.576 -1.590 6.632 18.132 

  Speed limit above 50mph -25.631 -23.452 -21.341 -16.467 -5.703 7.403 28.948 

 Traffic control device (Base: No traffic control, traffic signal and yield sign)  

  Stop sign -18.668 -15.959 -13.637 -9.645 -2.112 5.457 16.739 

  Other traffic control device -14.440 -12.444 -10.636 -7.420 -1.487 4.369 12.715 

Environmental Factor  

 Time of day (Base: Morning Peak, Late evening and Late Night)      

  Off peak  20.164 17.115 14.241 9.234 0.793 -18.852 -4.193 

  Evening peak 14.059 11.726 9.714 6.322 0.590 -4.386 -10.591 

 Weather condition (Base: Dry, Rain, Snowy and Other weather condition)  

  Cloudy -36.654 1.822 -14.118 -9.567 -1.671 5.906 16.468 

Crash Characteristics  
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 Manner of collision (Base: Other type of collision)  

  Front to rear 31.998 25.907 20.893 12.738 -0.027 -9.992 -21.155 

  Head-on -49.427 -44.114 -39.224 4.763 -1.926 7.301 19.919 

 Collision location (Base: Intersection and Other location)  

  Non-intersection -34.151 -29.006 -24.066 12.236 -24.944 7.878 17.758 

Situational Variables      

 Driver ejection (Base: Not ejected)        

  Ejected  -22.368 -19.547 -16.760 -11.686 12.997 4.252 11.816 

 Number of passenger -13.339 -11.499 -9.842 -6.893 -1.428 4.007 11.851 

 EMS response time -2.410 -2.001 -1.706 -1.157 -0.227 0.690 2.033 
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CHAPTER 6 Pooling Data from Fatality Analysis Reporting System (FARS) and 

Generalized Estimates System (GES) to Explore the Continuum of Injury Severity 

Spectrum 

 

6.1 Introduction 

A number of studies have explored the impact of various factors on vehicle occupant injury 

severity at disaggregate level (see Bédard et al., 2002; Fredette et al., 2008 for a detailed review). 

These studies can broadly be categorized as: a) studies that focus exclusively on crashes involving 

only fatalities (employing a sample of crashes involving fatalities) and b) studies that examine 

crashes that involve all levels of injury severity – ranging from no injury to fatality (employing a 

random sample of traffic crashes that compile different levels of injury severity). In the US, the 

former category of studies predominantly use the Fatality Analysis Reporting System (FARS) 

database (see Evans and Frick, 1988; Preusser et al., 1998a; Zador et al., 2000; Gates et al., 2013) 

while the latter group of studies primarily employ the General Estimates System (GES) database 

(see Kockelman and Kweon, 2002; Eluru and Bhat, 2007).  

The FARS database is a census (not a sample) of all fatal crashes in the US; i.e., crashes 

that lead to at least one fatality within thirty consecutive days from the time of crash. The GES 

database, on the other hand, comprises a sample of road crashes across the US involving at least 

one motor vehicle travelling on a roadway and resulting in property damage, injury or death to the 

road users. The two datasets employed in the safety literature have their own advantages and 

limitations. The FARS focuses exclusively on fatal crashes. Therefore, one cannot reliably use this 

data to analyze the factors that increase or decrease the probability of fatality (because the data 

does not include crashes that do not lead to fatalities). The GES fills this gap by compiling data on 

a sample of roadway crashes involving all possible severity consequences (no injury, possible 

injury, non-incapacitating injury, incapacitating injury and fatality) providing a more 

representative sample of traffic crashes in the US. One of the advantages of FARS, however, is 

that the collected information includes the date and time of occurrence of the fatalities resulting 

within a 30-day time period from the crash. This detailed information provides us a continuous 

timeline of the fatal occurrences from the time to crash (instead of considering all fatalities to be 

the same). This allows for an analysis of the survival time of victims before their death. The GES, 
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on the other hand, does not offer such detailed information except identifying who died in the 

crash.  

Examining the impact of various exogenous factors on all levels of injury severity as well 

as on the survival time of fatalities can potentially play a critical role in field triage - screening 

process to determine the more severe cases. Preclinical trauma care is one of the most important 

factors affecting the outcome of motor vehicle crash (MVC) victims (Chalya et al., 2012; Palanca 

et al., 2003). In pre-hospital setting, along with the anatomic and physiological conditions of MVC 

victims, different mechanism-of-injuries (vehicle intrusion, occupant ejection, vehicle telemetry 

and death in same passenger compartment) are also considered by emergency medical service 

(EMS) personnel as conditions for trauma triage of victims (Sasser et al., 2012; Isenberg et al., 

2011). In fact, it is evident from previous studies (Stewart, 1990) that prolonging survival beyond 

the first hour can potentially help avoid fatality with proper preclinical care. Hence, a refined 

specification of fatality might allow us to identify potential survivors that might benefit by 

providing emergency treatment. 

In an effort to identifying exogenous factors that help in prolonging survival time, using 

detailed information available in FARS data, we examined fatal crashes from a new perspective in 

the preceding chapter. We identified that fatality is an aggregation of a continuous spectrum 

ranging from dying instantly to dying within thirty days of crash (as reported in the FARS data). 

Keeping all else same, a fatal crash that results in an immediate fatality is clearly much more severe 

than another crash that leads to fatality after several days. Therefore, it is useful to explicitly 

recognize the different levels of severity among fatal crashes. Such refined definition of fatal 

crashes, as opposed to lumping all fatal crashes into a single category, allows one to differentiate 

fatal crashes based on the survival time and to derive insights on factors that can prolong survival 

time. While using the FARS data is very helpful for understanding the differences across different 

fatal crashes, it inherently excludes crashes with other possible, non-fatal injury severity outcomes. 

This makes it difficult to generalize the findings to the overall crash population. Besides, while 

analyzing the survival time of only fatal crash victims (using FARS data) helps in deriving the 

influence of various exogenous factors on survival time conditional upon the occurrence of a 

fatality, it doesn’t allow the analyst to derive the influence of those factors in increasing the 

chances of survival. This is because the FARS data doesn’t provide a representative sample of 

non-fatal crashes.  
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One way to address this issue is combining information from both the FARS and GES 

datasets into a single, disaggregate crash-level database11. This will bring together the strengths of 

both datasets – the representativeness of crashes with all injury severity outcomes from the GES 

data and the detailed information on fatal crashes from the FARS data. The challenge, however, 

lies in combining the two datasets in a statistically appropriate way. Since FARS is a census of all 

fatal traffic crashes in the US, all fatal crashes in the GES sample for a year should be available in 

the FARS data for that year. Now, if one could identify these crashes directly, it would be easy to 

augment the fatal crash records in GES with the detailed information from FARS. However, there 

is no mechanism to easily link crashes across these two databases because the datasets do not have 

a common identifier. Hence, an alternative, statistically valid method needs to be used for fusing 

information from both the datasets.   

The approach is a proof of concept investigation of data pooling from two datasets while 

ensuring statistical validity. While, there could be various other alternative datasets for such 

investigation, given the extensive use of GES and FARS datasets in safety literature, they serve as 

good candidates for the research exercise.  In this context, this chapter is geared towards addressing 

the challenge of pooling data from GES and FARS. While several approaches exist in the literature 

to fuse information from different data sources without a common identifier (Konduri et al., 2011; 

Sivakumar and Polak, 2013), a simple approach is to replace fatal crashes from the GES sample 

by a random sample from the FARS census of crashes. We conduct statistical tests to assess if this 

approach suffices for the purpose of developing a database that allows us to examine the whole 

spectrum of injury severity ranging from no injury to fatality, along with differentiating fatal 

crashes based on survival time. Moreover, the simultaneous interpretation of information would 

allow researchers to provide recommendations using a single modeling framework, rather than 

making inferences from the results of separate econometric models from different datasets.  

In summary, the current chapter makes a three-fold contribution to the literature on driver 

injury severity analysis. First, we propose and test the efficacy of a simple yet statistically valid 

approach to fuse the FARS and GES datasets into a single, disaggregate crash level database that 

combines information from both the datasets. Second, the Generalized Ordered Logit (GOL) 

                                                           
11 To be sure, the reader would note that there have been compilation of GES and FARS datasets to obtain the Annual 

Traffic Safety Facts (see NHTSA, 2010). However, in these efforts, there is no attempt to pool data from the two 

sources. The report provides trends separately for FARS and GES datasets. Further, in our research, we examine the 

effect of exogenous variables on severity in pooled and un-pooled data. 
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model (also referred to as Partial Proportional Odds model) is employed on the pooled dataset to 

analyze the influence of a variety of exogenous factors on traffic crash injury severity, while 

considering a very refined characterization of fatal crashes along with other, non-fatal injury 

severity outcomes. Finally, we compute elasticity measures to identify important factors affecting 

driver injury severity outcomes.  

The rest of the chapter is organized as follows. The data source and sample formation are 

presented in Section 6.2. Section 6.3 provides details of the approach used for pooling data from 

FARS and GES. Section 6.4 presents the empirical analysis along with a statistical assessment of 

the proposed approach to fuse information from both data sources. The estimation results of the 

GOL model are described in section 6.5. The elasticity effects are presented in section 6.6 and 

section 6.7 concludes the chapter. 

 

6.2 Data Source and Sample Formation 

The data for the current study is sourced from the FARS and GES databases for the year 2010.  

The datasets are briefly described in Section 2.3.1 and Section 5.2.1, respectively. The reader 

would note that the exogenous variable information available in FARS and GES datasets are very 

similar making it relatively easier to fuse the fatality information from FARS into the GES data. 

 This chapter is focused on injury severity outcome of passenger vehicles’ drivers who were 

involved in either a single or two vehicle crashes. The crashes that involve more than two vehicles 

are excluded from both FARS and GES datasets. Commercial vehicles involved collisions are also 

excluded in order to avoid the potential systematic differences between commercial and non-

commercial driver groups. In order to prepare the final FARS dataset, crash records involving non-

motorized road users (19,670 records), commercial vehicles (17,795 records), records with 

passenger and more than two vehicles (18,073 records), non-fatal crash records of drivers (8,012 

records) and records with missing information for essential attributes (2,468 records) are deleted. 

Thus, the final FARS dataset consisted of 8,845 records. From the continuous timeline of the fatal 

occurrences, a seven point discrete ordinal variable is created to represent the scale of fatal injury 

severity of drivers involved in these crashes - from least severe to most severe fatal crashes (and 

their proportions): 1) Died between 6th-30 days of crash (6.0%), 2) Died between 2nd-5 days of 

crash (5.2%), 3) Died between 7th-24 hours of crash (4.4%), 4) Died between 2nd-6 hours of crash 

(21.6%), 5) Died between 31st-60 minutes of crash (14.5%), 6) Died between 1st-30 minutes of 
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crash (20.1%) and 7) Died instantly (28.3%). In order to prepare the final GES dataset, crash 

records involving non-motorized road users and commercial vehicles (34,808 records), records 

with passenger and more than two vehicles (32,824 records), and records with missing information 

for essential attributes (23,094 records) are deleted. Thus, the final GES dataset consisted of about 

25,294 records. From this dataset, a sample of 6,062 records is randomly sampled out for the 

purpose of estimating models. The reader would note that the sampling process was employed to 

reduce the computational time necessary to estimate and compare the models described 

subsequently. A five point ordinal scale is used in the database to represent the injury severity of 

individuals involved in these crashes. In the estimation sample, the distributions of driver injury 

severities are as follows: No injury 63.7%, Possible injury 14.0%, Non-incapacitating injury 

13.1%, Incapacitating injury 8.2% and Fatal injury 1.0%.   

 

6.3 Research Framework 

In the current research effort, we employ the Generalized Ordered Logit (GOL) or the partial 

proportional odds logit model (in Chapter 2 we provide a detailed description of the econometric 

framework) to examine the driver injury severity by using pooled dataset from FARS and GES. 

The injury severity variable is analyzed using the ordered outcome framework to recognize the 

inherent ordinality of the injury severity levels. However, the prerequisites for any data pooling 

exercise are that different sources to be pooled are comparable (Verma et al., 2009) and share a 

common data generation process (Louviere et al., 1999). This section presents an approach to pool 

information from both the data sources and the tests used to assess if the pooled data represents a 

common data generation process for the individual data sources. A conceptual diagram of the 

research methodology employed is provided in Figure 6.1. 

 

6.3.1 Testing Data Pooling Exercise 

The GES dataset has a five point ordinal scale to represent injury severity while a seven point 

ordinal scale is defined to distinguish the severity of different fatal crashes based on the survival 

time. In this chapter, we form the pooled dataset by replacing the fatal crash records in GES with 

a random sample of crashes in FARS. In the pooled dataset we can generate an eleven point ordinal 

representation of injury severity, with 4 categories for non-fatal crashes and 7 categories for fatal 

crashes (5 + 7 – 1). Prior to developing models to analyze the newly generated injury severity 
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scale, it is imperative that we validate the pooled dataset. As the actual data generation process is 

latent we have to resort to comparing the pooled dataset with the un-pooled dataset. In our pooling 

exercise, the records from FARS are being added to the GES data, the evaluation would be geared 

towards comparing the pooled data with the original GES data (un-pooled data). Specifically, we 

undertake comparison of the pooled sample with the un-pooled sample in two ways: (1) uni-variate 

sample comparison, by simply comparing the distributions of the variables in the two samples and 

(2) econometric model estimate comparison. 

While the descriptive comparison of pooled and original samples is relatively straight 

forward, the more challenging task is to perform a more statistically rigorous analysis to examine 

if the crash records from FARS can replace those in the GES data. For this purpose, as a first step, 

we estimate the injury severity model using the original GES data and compare the model estimates 

with the injury severity model estimated from the pooled dataset – while maintaining the same 

number of injury severity categories in the GES and pooled datasets. To do so, all the fatal records 

pooled from FARS into the GES sample were categorized as fatal (i.e., a single category) 

regardless of the survival time of the victims. The pooled data sample is obtained by removing the 

59 fatal records in the GES sample of 6,062 records.  

To statistically ensure the validity of our comparison results and to ensure that the statistical 

results obtained from the pooled samples are stable, we consider multiple samples of fatal crash 

data from FARS to replace fatalities in GES. Specifically, for testing the validity of the pooled 

data, 15 data samples – 5 samples of about 2,000 records, 5 samples of about 3,000 records and 5 

samples of about 5,000 records – are randomly generated from the 8,845 records of FARS database 

and combined with the GES data to form pooled data. These 15 data samples along with the full 

sample (of 8,845 records) from FARS dataset are used to generate 16 different sets of pooled 

databases. The fatal records replaced in GES by the FARS fatal records in these 16 samples are 

presented in Table 6.1. GOL models of injury severity are estimated for these 16 pooled samples 

under the five point ordinal scale system and compared with the GOL model parameters obtained 

using un-pooled GES data to ensure that the estimates have not been altered significantly due to 

the newly added records. 
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6.3.2 Weight Variable for Pooling 

The reader would note, from Table 6.1, that the GES (un-pooled) database has a very small 

percentage of fatalities. This is because the percentage of fatal crashes is small compared to all 

other crashes. As our primary objective is examining the impact of exogenous variables on seven 

categories of the fatality spectrum (based on survival time) it is useful to oversample the fatal 

crashes from FARS. Otherwise, we are likely to have very small number of records for each of the 

fatal injury severity alternatives. Of course, the oversampling of fatalities from FARS to replace 

GES fatalities necessitates creating an appropriate weight variable to weight the pooled data. This 

approach ensures that the distribution of the injury severity variable in the pooled data is the same 

as that in the GES data. Therefore, to generate the pooled sample, we remove the fatal crashes 

(𝑚𝑖) from the GES sample and replace it with fatal cases (𝑛𝑖) from the FARS along with a specific 

weight 𝜔𝐹𝐺 computed as  
𝑚𝑖

𝑛𝑖
. Specifically, a weight of 𝜔𝐹𝐺 is assigned to the FARS crash records 

(that replace the GES fatalities) in the pooled samples while the other non-fatal crash records (from 

GES) were weighted by 1. The associated weights for 16 different pooled samples are shown in 

Table 6.1. 

 

6.3.3 Severity Parameters Comparison Exercise 

The 16 pooled data samples created with appropriate weights are employed to generate injury 

severity parameter estimates. The parameter estimates obtained using the pooled data are 

compared with that of the original GES parameter estimates obtained using un-pooled data (i.e., 

the original GES data) by computing the percentage error (considering parameter estimates from 

un-pooled data as the base case). Then, a hypothesis test that the parameters are obtained from the 

same distribution (𝑖. 𝑒. , 𝛽𝑃 = 𝛽𝑈𝑃
12 where P=Pooled and UP=Un-pooled) is carried out to examine 

the differences between parameter estimates. If this hypothesis is rejected, the estimates from 

pooled model represent estimates from a dissimilar latent data generation process (Bass and 

Wittink, 1975). On the contrary, if the hypothesis is not rejected, it will provide support that the 

                                                           
12 To test the hypothesis that 𝛽𝑃 = 𝛽𝑈𝑃, we need to obtain the distribution of (𝛽𝑃 − 𝛽𝑈𝑃). The standard error for the 

distribution is obtained as  √𝑆𝐸𝑃
2 + 𝑆𝐸𝑈𝑃

2  where SEP and SEUP represent standard errors of the parameters obtained 

using pooled and un-pooled data respectively. Then, one can simply do a t-test on (𝛽𝑃 − 𝛽𝑈𝑃). That is, if the ratio of 

the estimate of (𝛽𝑃 − 𝛽𝑈𝑃) to its standard error is less than the critical t-value at a chosen confidence level, then one 

cannot reject the hypothesis that  𝛽𝑃 = 𝛽𝑈𝑃. 
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proposed pooling of GES and FARS datasets has not altered the distribution of the parameters and 

that the pooling process is statistically valid. The percentage error in parameter estimates and the 

hypothesis tests are first computed separately for each of the 16 pooled data samples. 

Subsequently, for ease of presentation, we present and discuss the average measures from each 

sample type – 1 pooled sample with 8,845 records from FARS (sample 16th of Table 6.1); 5 pooled 

samples with about 5,000 records from FARS (samples 11-15th of Table 6.1); 5 pooled samples 

with about 3,000 records from FARS (samples 6-10th of Table 6.1); and 5 pooled samples with 

about 2,000 records from FARS (samples 1-5th of Table 6.1).  

 

6.3.4 Eleven Point Pooled Model 

After we confirm that the differences in model estimates from the five point ordinal models are 

within an acceptable margin, we can employ the pooled data to estimate an injury severity model 

with an eleven point severity scale with 4 categories of injury severity for non-fatal crashes and 7 

categories for fatal crashes. For our analysis we chose one sample from the 16 different pooled 

data samples for the purpose of estimating the best specified eleven point GOL model. The chosen 

sample has 2,967 randomly sampled records from the FARS data to replace the 59 fatal records 

from GES and the remaining 6,003 records from the GES data. 

 

6.4 EMPIRICAL ANALYSIS 

6.4.1 Variables Considered 

In our analysis, to estimate models using pooled data, we prepared the datasets such that both GES 

and FARS datasets have exactly the same set of independent variables. We selected a host of 

variables from five broad categories: Driver characteristics (including driver gender, driver age, 

restraint system use, alcohol consumption and physical impairment), Vehicle characteristics 

(including vehicle type and vehicle age), Roadway design and operational attributes (including 

roadway class, speed limit, types of intersection and traffic control device), Environmental factors 

(including time of day and road surface condition) and Crash characteristics (including collision 

object, manner of collision, collision location and trajectory of vehicle’s motion). It should be 

noted here that several variables such as presence of shoulder, shoulder width, point of impact, 

number of lanes, lighting condition could not be considered in our analysis because either the 
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information was entirely unavailable or there was a large fraction of missing data for these 

attributes in the dataset. To be sure, we employ the manner of collision and time of day variables 

as surrogates for point of impact and lighting condition, respectively. In the final specification of 

the model, statistically insignificant variables were removed. The reader would note that the 

pooling exercise was undertaken using the variables that are common to both datasets. Hence, 

variables such as emergency crew arrival times were not considered in our models as they are 

unavailable in GES data. 

 

6.4.2 Validation Exercise of Pooled Data  

The first step in the validation exercise was to examine the similarities and dissimilarities in 

independent variables across the pooled and un-pooled samples. In the comparison, we found that 

the exogenous factor distributions of all pooled datasets (16 datasets) are almost the same. For the 

sake of brevity we chose to present the results for one sample only. The sample characteristics of 

the exogenous factors of un-pooled and one pooled (weighted) dataset are presented in Table 6.2. 

Overall, we find that the characteristics of the pooled and un-pooled samples across the entire 

sample (in columns 2 and 3) and across fatal crashes (columns 4 and 5) are very similar. We 

observe that there are slightly higher proportions of driving under the influence of alcohol and 

negotiating curves among the fatal crashes in the pooled data than those in the un-pooled data. 

Also, the proportions for fatal crashes in the pooled dataset are marginally lower for two way 

traffic-with median and for vehicle age 6-10 years. It is not unanticipated that pooling would 

introduce such minor differences between the datasets.  

In the second step of our validation, a comparison exercise between the parameter estimates 

obtained using un-pooled and pooled data is also carried out by using 16 different pooled samples. 

The reader would note that a direct comparison of parameter estimates is considered only for 

illustrative purposes. A more rigorous statistical approach is also undertaken. The percentage 

errors in injury severity parameter estimates obtained using pooled datasets compared to parameter 

estimates obtained using un-pooled data are presented in Figure 6.2 for all the variables (variable 

numbers are defined in Table 6.4 along with the injury severity estimates obtained using the un-

pooled model). From this plot, we can see that, among 44 variables in the final models, 32 variables 

have an error percentage lower than 10%, 8 variables have an error percentage between 10 and 
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25% and 4 variables have an error percentage higher that 25%. Overall, for such highly non-linear 

models such as GOL, estimated using two datasets, these are reasonably small differences.  

To undertake a more rigorous statistical comparison, we test the hypothesis that the 

parameter estimates obtained using the pooled and un-pooled datasets are not systematically 

different and the observed numerical differences can be accounted by the randomness in data 

samples. The test values of the homogeneity hypothesis test (𝛽𝑃 = 𝛽𝑈𝑃) between parameter 

estimates obtained using un-pooled and pooled datasets are plotted against the variable numbers 

and is presented in Figure 6.3. From this plot, we can clearly see that the test statistics lie within 

the bounds +1.96 and -1.96 (critical t-stats at 95% confidence level). In fact, the largest difference 

is less than 1 indicating that there is no systematic difference in the estimates from pooled and un-

pooled models. This same trend can be observed for all types of pooled data samples with different 

numbers of FARS records in the pooled data. Thus, we can find no evidence to reject the 

hypothesis that the severity parameter estimates obtained using pooled data and the severity 

parameter estimates obtained using un-pooled data follow different distribution. Based on our 

comparison of descriptive statistics and severity parameter estimates, we can argue that there is no 

evidence to suggest that the data pooled from GES and FARS results from a distinct latent data 

generation process than that in GES. 

 

6.4.3 Metric for Comparing Eleven Point Model with Five Point Model 

Another issue that needs to be addressed before estimating the eleven point scale ordinal model is 

developing a statistical approach to determine if the eleven point ordinal model is an improvement 

on the five point ordinal model (with all fatal crashes lumped into a single category). Due to the 

nature of the log-likelihood measure employed in model estimation, increasing the resolution will 

lead to deterioration of model log-likelihood. Hence, comparing log-likelihoods between a five 

alternative model and eleven alternative model is not statistically valid. Interestingly, we could not 

find any method in literature to make a meaningful comparison of models with different 

resolutions of dependent variable definitions. Hence, we developed an approach based on first 

principles to address this issue. In a five point ordinal scale model all fatalities are treated equally 

i.e. there is no distinction across fatal crashes. So in a five alternative model, we implicitly assume 

that the seven fatality groups considered in the eleven alternative model are all equally likely. 

Recognizing this assumption, one could generate an equivalent eleven alternative log-likelihood 



149 
 

based on the five alternative model log-likelihood value. This can be compared with the log-

likelihood of the eleven alternative model that differentiates between the various fatality classes.  

The exact equation for the computation of log-likelihood takes the following form: 

𝐿 =  ∑ [(∑(𝑙𝑜𝑔𝑃𝑖(𝑗))
𝑑𝑖𝑗

4

𝑗=1

) +
1

7
∗ 𝜔𝐹𝐺 ∗ (𝑙𝑜𝑔𝑃𝑖(𝐽))

𝑑𝑖5

]

𝑁

𝑖=1

 (6.1)  

where, 𝜔𝐹𝐺 is the weight, 𝑖 be the index for drivers (𝑖 = 1,2, … , 𝑁), 𝑗 be the index for driver injury 

severity levels (𝑗 = 1,2, … … … , 𝐽), 𝑃𝑖(𝑗) represents the probability of injury severity level j,  and 

𝑑𝑖𝑗 is a dummy variable taking the value 1 if the driver 𝑖 sustains an injury of level 𝑗 and 0 

otherwise. Once the equivalent log-likelihood is generated based on the above equation, one could 

easily employ the likelihood ratio (LR) test to check if the eleven point ordinal scale model offers 

additional improvement. The LR test statistic is defined as 2 * (LL11 – LL5) where LL11 and LL5 

represent log-likelihood values at convergence of the eleven point and equivalent five point ordinal 

models, respectively. The LR test statistic thus computed is compared with the chi-square 

distribution value of k degrees of freedom where k corresponds to the additional parameters in the 

unrestricted model. In our case, for all samples, the additional number of parameters is 6. Hence, 

if the LR test statistic is larger than the 𝜓2 value for 6 degrees of freedom, we can conclude that 

the considering fatality as multiple states enhances the data fit.  

The log-likelihood values along with the LR test statistic for the equivalent and the actual 

eleven point models for various samples are presented in Table 6.3. The resulting LR test values 

for the comparison of equivalent/actual eleven point models for all sample types are more than 23 

indicating the actual eleven point model outperforms the equivalent eleven point model at any 

reasonable level of statistical significance. The consistent improvement offered by the pooled 

model clearly indicates that the refined categorization of fatal injury crashes improves the model 

fit and provides more information to the model for examining the injury severity outcome. This is 

of particular relevance to this empirical exercise because fatal crashes comprise a very small 

portion of our sample (only 1%) – thus by introducing further disaggregation of an alternative with 

such a small sample share, there was a risk of worsening the model. 
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6.5 Estimation Results 

The best specification model for the eleven point ordinal injury severity categorization is discussed 

in this section. To reiterate, the dependent variable under consideration is the eleven point ordinal 

variable defined as: no injury, possible injury, non-incapacitating injury, incapacitating injury, and 

7 categories within fatal crashes - died between 6th-30 days of crash, died between 2nd-5 days of 

crash, died between 7th-24 hours of crash, died between 2nd-6 hours of crash, died between 31st-

60 minutes of crash, died between 1st-30 minutes of crash and died instantly. The estimation 

results for the sample of 2,936 records from FARS are presented in Table 6.5. In GOL model, 

when the threshold parameter is positive (negative), the result implies that the threshold is bound 

to increase (decrease); the actual effect on the probability is quite non-linear and can only be judged 

in conjunction with the influence of the variable on propensity and other thresholds. In the 

following sections, the estimation results are discussed by variable groups. 

 

Driver Characteristics: In the category of driver characteristics, the result for driver gender 

indicates higher injury risk propensity for female drivers compared to male drivers. The effect of 

this variable is also significant for the threshold demarcating possible and non-incapacitating 

injury. The positive sign of the coefficient in the threshold indicates higher likelihood of possible 

injury for the female drivers. The result is perhaps indicative of the lower physiological strength 

of female drivers (compared to male drivers) in withstanding the impact of a crash (Xie et al., 

2009; Chen and Chen, 2011). The age of drivers involved in the collision also has a significant 

influence on injury severity. The parameter characterizing the effect of young driver (age<25) 

suggests a reduction in the likelihood of severe injuries compared to middle-aged drivers (age 25 

to 64), perhaps indicating the higher physiological strength of young drivers in withstanding crash 

impacts (see Xie et al., 2012; O'Donnell and Connor, 1996; Castro et al., 2013 for similar result). 

However, the estimation result indicates that compared to the middle aged driver, the latent injury 

propensity is higher for older drivers (age≥65), while the negative sign of threshold demarcating 

the possible and non-incapacitating injury indicates a lower likelihood of possible  injuries and, in 

general, a higher likelihood of dying instantly for older drivers.  

The result related to drunk driving indicates that alcohol impairment leads to higher injury 

risk propensity of drivers compared to sober drivers. The negative effect of this variable on the 

threshold separating the possible injury and non-incapacitating injury level indicates a lower 
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likelihood of possible injury for the alcohol impaired drivers. The net implications of these effects 

is that alcohol impaired drivers have a lower likelihood of no injury and a higher likelihood of 

dying instantly in a crash compared to sober drivers. A crash involving physically impaired drivers 

is associated with an overall higher injury risk propensity. The result may be reflecting increased 

reaction times for physically impaired drivers. As expected, injury risk propensity is higher for the 

drivers not wearing seat belts relative to the buckled up drivers (see Obeng, 2008; Yau, 2004; 

Yasmin et al., 2012; Eluru and Bhat, 2007 for a similar result). 

 

Vehicle Characteristics: With respect to driver’s vehicle type, the estimation results show that 

latent injury risk propensities are lower for the drivers of pickups and vans compared to the drivers 

of other passenger vehicles (passenger cars and SUV), presumably because pickups and vans have 

huge mass which offer more protection to the occupants of these vehicles (Kockelman and Kweon, 

2002; Xie et al., 2009; Eluru et al., 2010; Fredette et al., 2008). The vehicle age results demonstrate 

that latent injury propensities are higher for drivers in older vehicles (vehicle age 6-10 years and 

vehicle age ≥ 11 years) relative to drivers in newer vehicles (vehicle age ≤ 5 years). As is expected, 

within the vehicle age categories considered the oldest vehicle age category has a larger impact 

relative to the moderately older vehicle age category. The effect of vehicle age variable on the 

threshold also indicates increased likelihood of possible injury for 6-10 years old vehicle. The 

higher injury risk of older vehicle’s driver may be attributable to the absence of advanced safety 

features and/or the involvement of suspended and unlicensed drivers in older vehicles (Lécuyer 

and Chouinard, 2006, Kim et al., 2013; Islam and Mannering, 2006).  

 

Roadway Design Attributes: Several roadway design attributes considered are found to be 

significant determinants of driver injury severity. Among those, the injury risk propensities are 

higher for crashes occurring on medium (26 to 50 mph) and high (above 50 mph) speed limit 

locations (with larger impact for high speed limit locations) compared to lower (less than 26 mph) 

speed limit locations (see Eluru et al., 2010; Chen et al., 2012; Tay and Rifaat, 2007 for similar 

results). The presence of traffic control device is also found to have significant effect on the 

severity of crashes. The influence of traffic control device reveals that the presence of other traffic 

control devices (such as warning sign, regulatory sign, railway crossing sign) increases the 

likelihood of injury risk propensity of the drivers, possibly suggesting non-compliance with these 



152 
 

traffic control devices. With respect to intersection type, crashes occurring at T-intersection 

(relative to non- and all other types of intersection) have a lower injury risk propensity. This is 

perhaps a consequence of lower approaching speed of vehicles at a T-intersection.  

 

Environmental Factors: Among different environmental factors explored in this study, only time-

of-day and surface condition are significant in the final model specification. Compared to crashes 

during daytime and late evening (6.00 a.m. to 11.59 p.m.), the likelihood of injury risk propensity 

is found to be higher for late night (12.00 a.m. to 5.59 a.m.) period. This finding is consistent with 

several previous studies; attributable to reduced visibility, fatigue, longer emergency response 

times, higher driver reaction time and/or increased traffic speed (Plainis et al., 2006; Helai et al., 

2008; Hu and Donnell, 2010; Kockelman and Kweon, 2002; de Lapparent, 2008). The surface 

condition effects simplified to a simple binary representation of presence/absence of snowy road 

surafce condition. The result indicates that if collisions occur on a snowy road surface (relative to 

those on a dry surface), the drivers are more likely to evade serious injury, perhaps due to reduced 

speeding possibility and/or could be related to more cautious driving (Edwards, 1998; Mao et al., 

1997; Eluru and Bhat, 2007). 

 

Crash Characteristics: As observed in several previous studies (Yamamoto et. al., 2004; Holdridge 

et al., 2005), the results related to collision object of our study reflect an increased injury risk 

propensity for collision with large object (related to collision with small object and moving 

vehicle). However, the effects of “collision with large object” (building, concrete traffic barrier, 

wall, tree, bridge, snow bunk) indicator in threshold parameterization are relatively complex. It 

has a negative impact on the threshold between possible and non-incapacitating injury; while it 

has a positive impact on the threshold between non-incapacitating and incapacitating injury. In 

general, the net implication is that collision with large object has a lower probability of sustaining 

no injury (the specific impact of other injury severity categories on driver injury severity are 

context-specific). The result also suggests that collision with other object (animal, non-fixed 

object) has a lower injury risk propensity. The negative effect of this variable on the threshold 

separating the possible injury and non-incapacitating injury level indicates a lower likelihood of 

possible injury for the drivers. 
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The results related to collision type reflect lower injury risk propensities for both rear-end 

and sideswipe-same direction collisions compared to angular collision. Rear-end collision also has 

a significant impact on the threshold between non-incapacitating and incapacitating injury; and 

implies higher probability of incapacitating injury. Head-on collision reflects the anticipated 

higher injury risk propensity compared to angular collision. This is perhaps a consequence of 

greater dissipation of kinetic energy. Crashes in driveway access location lead to an overall 

reduced injury risk propensity (relative to collision at non-intersection location). The impacts of 

driveway access on both of the first two thresholds are positive, which implies that the effects of 

driveway access on different injury categories are crash and driver-specific. However, the results 

suggest an increased probability of no injury category and, in general, a decreased possibility of 

instant death category, perhaps indicating driving at lower speed or more watchful driving at these 

locations (Rifaat and Tay, 2009). The results in Table 6.5 underscore that crashes at intersections 

and intersection related crashes do not have any effect on injury risk propensity. But the effect of 

the indicator variable on the threshold indicates a higher probability of possible injury and an 

overall lower probability of instant death in a crash (relative to the crashes at non-intersection 

location).   

The effects of the trajectory of vehicle's motions underscore an overall higher injury risk 

propensity for the driver whose vehicle was stopped in a traffic lane compared to the one who was 

going straight at the time of collision. Also, the effect of stopped in a traffic lane variable on 

threshold between non-incapacitating and incapacitating injury indicates a higher likelihood of 

non-incapacitating injury. Both turning manoeuvres (left and right) of drivers have lower injury 

risk propensities compared to going straight. This may be reflecting more watchful driving as well 

as lower speeds while turning. Negotiating a curve does not have any effect on the risk propensity, 

but the indicator variable has a positive impact on the threshold between possible and non-

incapacitating injury. This effect implies a higher probability of possible injury and an overall 

reduced probability for instant death (relative to going straight).      

 

6.6 Elasticity Effects 

The parameter effects of the exogenous variables in Table 6.5 do not provide the magnitude of the 

variable effects on the injury severity of drivers. To quantify the effects of these variables on driver 

injury severity outcomes, we compute the aggregate level “elasticity effects” for a selected set of 
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independent variables – female driver, driver age≥65, driving under the influence of alcohol, 

vehicle age ≥ 11 years, high speed limit road, late night, collision with large stationary object and 

head-on collision. The elasticity estimates are presented in Table 6.6. For the ease of presentation, 

we focus only on the elasticity effects for the seven fatal crash injury severity categories. The 

numbers in the table can be interpreted as the percentage change (increase for positive sign and 

decrease for negative sign) in the probability of the crash severity categories due to the change in 

that specific exogenous variable. 

The following observations can be made based on the elasticity effects presented in Table 

6.6. First, the results in Table 6.6 indicate that there are considerable differences in the elasticity 

effects across different fatal crash categories. Specifically, the differences are substantial for 

collision on high speed limit road and head-on collision. This supports our hypothesis that the 

severity of fatal crashes is not a single, un-separable category but rather is a continuum ranging 

from dying instantly to dying within thirty days of crash. These results also suggest that 

considering a fine resolution categorization of fatal crashes in examining the crash injury severity 

outcome offers the potential to provide useful information for policy makers in developing the 

EMS system and trauma triage.  

Second, the most important variables in terms of early death are collision on a high speed 

limit road, head-on collision and driving under the influence of alcohol. Finally, the elasticity 

analysis conducted provides an illustration of how the proposed pooled model can be applied to 

determine the critical factors contributing to reducing the survival time. For example, based on 

crash characteristic elasticities computed, if EMS services can identify critical crashes with 

likelihood for survival on the field it might assist in determining the appropriate mode of patient 

transfer (by road or air lifting depending on the crash characteristics) and also providing 

appropriate medical supervision at the hospital. 

 

6.7 Summary  

The focus of this chapter was to develop a framework for pooling of data from Fatality Analysis 

Reporting System (FARS) and Generalized Estimates System (GES) data. The current chapter 

makes three important contributions to literature on vehicle occupant injury severity analysis. First, 

we developed and tested a simple approach to combine information from FARS and GES 

databases toward a pooled database that brings together the strengths of individual databases. 
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Second, after demonstrating the validity of the approach, the pooled data set was employed to 

undertake injury severity analysis with a very refined characterization of fatality along with other 

injury severity levels. Specifically, a Generalized Ordered Logit model (also referred to as Partial 

Proportional Odds model) was estimated on an eleven-alternative ordinal categorization of injury 

severity. Finally, using the empirical model results, we identified important factors affecting 

vehicle occupant severity levels by evaluating elasticities of a selected set of exogenous variables.  

The empirical analysis involved the validation of the five point ordinal (no injury, possible 

injury, non-incapacitating injury, incapacitating injury and fatal injury) pooled sample against the 

original GES sample (un-pooled sample) through two methods: (1) univariate sample comparison 

and (2) econometric model estimate comparison. The validation exercise confirmed that there was 

no evidence to suggest that the data pooled from GES and FARS resulted from distinct latent data 

generation process than the GES sample - the severity parameter estimates obtained using the 

pooled data closely resembled the severity parameter estimates obtained using the un-pooled GES 

data. After we confirmed that the differences in parameter estimates obtained using pooled and 

un-pooled data from the five point ordinal models were within the acceptable margins, we 

employed the pooled data to estimate models of fine resolution of injury severity with an eleven 

point ordinal scale defined as: no injury, possible injury, non-incapacitating injury, incapacitating 

injury, died between 6th-30 days of crash, died between 2nd-5 days of crash, died between 7th-24 

hours of crash, died between 2nd-6 hours of crash, died between 31st-60 minutes of crash, died 

between 1st-30 minutes of crash and died instantly. To compare the model with the five-alternative 

model estimated using the un-pooled data, we generated an equivalent eleven alternative log-

likelihood based on the five alternative model. The consistent improvement offered by the model 

estimated using the pooled data clearly indicated that inclusion of multiple discrete states of fatal 

injury category improves the model fit and provides more information in examining the injury 

severity outcome. 

In this research, to further understand the impact of various exogenous factors, elasticity 

effects were estimated for the seven fatal crash injury severity categories. The elasticity effects 

indicated that there were considerable differences in the elasticity effects across different fatal 

crash categories, which signify the importance of considering the fine resolution of fatal crashes 

in examining the crash injury severity outcome. The most important variables in terms of early 

death were collision on the high speed limit road, head-on collision and driving under the influence 
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of alcohol. In terms of most important factor affecting late MVC death (non-instantaneous) was 

collision during late night. In summary, the pooling of fatal crashes with high resolution 

information from FARS dataset and replacing the fatal crashes in GES data allowed us to examine 

the impact of various attributes on all levels of injury severity and in turn allowed us to draw on 

the strengths of FARS and GES datasets to generate a single, potentially more beneficial sample 

for analysis. Finally, through the elasticity exercise, we demonstrated how our approach can be 

employed to identify factors affecting potentially fatal crashes (non-instantaneous) and improving 

the chances of survival of motor vehicle occupants involved. 
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Figure 6.1: % Flow Chart Showing Research Framework 
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Figure 6.2: % Error in Parameter Estimates obtained using Pooled Model Plotted against Variable Numbers 

 
 

Note - Pooled data is obtained by replacing 59 fatality records from GES with 8,845 records from the FARS data for the 8,845 sample. 

The same process is applied to other sample sizes. 
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Figure 6.3: Test Statistics for Parameter Estimates Plotted against Variable Numbers 

 
 

Note - Pooled data is obtained by replacing 59 fatality records from GES with 8,845 records from the FARS data for the 8,845 sample. 

The same process is applied to other sample sizes. 
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Table 6.1: Fatal Cases and Weight of Data Samples 

Datasets Samples Fatal Cases Weight 

Un-pooled  --- 59 --- 

Pooled 

1 1956 59/1956 

2 1945 59/1945 

3 2010 59/2010 

4 1921 59/1921 

5 1983 59/1983 

6 2967 59/2967 

7 3101 59/3101 

8 3062 59/3062 

9 2980 59/2980 

10 2983 59/2983 

11 4976 59/4976 

12 4939 59/4939 

13 4921 59/4921 

14 4931 59/4931 

15 5004 59/5004 

16 8845 59/8845 
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Table 6.2: Sample Characteristics of “Driver Injury Severity” 

Variables 

Sample Fatal Crashes 

Un-pooled Data 
Pooled Data (With 

Weight) 
Un-pooled Data 

Pooled Data (With 

Weight) 

Frequency 

Driver Characteristics         

  Driver gender (Base: Male)       

    Female 2786 2786 18 18 

  Driver age (Base: Age 25 to 64)       

    Age less than 25 1671 1666 19 14 

    Age above 65 & above 514 514 11 11 

  Restraint system use  (Base: Restrained)       

    Unrestrained 230 233 28 31 

  Under the influence of alcohol 312 325 11 24 

  Other physical impairment 195 197 6 8 

Vehicle Characteristics       

  Vehicle Type (Base: SUV, Passenger car)       

    Pickup 1010 1019 4 13 

    Vans 413 414 2 3 

  Vehicle age (Base: Vehicle age ≤ 5 years)       

      Vehicle age 6-10 years  2077 2068 28 19 

    Vehicle age ≥ 11 years 1897 1903 21 27 

Roadway Design and Operational Attributes       

  Speed limit (Base: Speed limit less than 26 mph)       

    Speed limit 26-50 mph 3948 3940 32 24 

    Speed limit>50mph 1445 1452 25 32 

  Traffic Control Device       
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    Other traffic control device 145 148 1 4 

  Type of intersection       

    T intersection 729 731 2 4 

  Traffic-way description         

    Two way-with median 1398 1387 17 6 

Environmental Factor       

  Time of Day (Base: 6.00 a.m. to 11.59 p.m.  )       

    Late night (12.00 a.m. to 5.59 a.m.) 473 472 16 15 

  Surface condition       

    Snowy 262 263 1 2 

Crash Characteristics       

  Collision object (Base: Another moving vehicle)       

    Collision with large stationary  object  525 517 25 17 

    Collision with other object 205 206 0 1 

  Manner of collision (Base: Angular collision)       

    Head-on 347 346 10 9 

    Side swipe-same direction 342 342 1 1 

    Front to rear 1858 1858 1 1 

  Collision location (Base: Non-intersection)       

    Driveway access 625 626 0 1 

    Intersection 2641 2646 6 11 

  Trajectory of vehicle's motions (Base: Going straight)       

    Stopped in Traffic Lane 584 583 1 0 

    Turning right 155 155 0 0 

    Turning Left 680 683 0 3 

    Negotiating a curve 318 325 10 17 
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Table 6.3: Log-likelihood Values for Equivalent and Actual Eleven Point Ordinal “Driver Injury Severity” Models 

Samples 

Average log-likelihood 

Log-likelihood Ratio Test Statistic 

Equivalent eleven point ordinal model Actual eleven point ordinal model 

2000 (5 random samples) -5976.897 -5964.741 24.312 

3000 (5 random samples) -5977.325 -5965.546 23.558 

5000 (5 random samples) -5977.418 -5965.788 23.260 

8845 (1 sample) -5977.790 -5966.164 23.252 

 

 

 

Note - Pooled data is obtained by replacing 59 fatality records from GES with 8,845 records from the FARS data for the 8,845 sample. 

The same process is applied to other sample sizes. 
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Table 6.4: Estimation Results of “Driver Injury Severity” by using Un-pooled (GES) Data Sample 

Variables Latent Propensity 𝝉𝟐 𝝉𝟑 𝝉𝟒 

Constant 
1.2531* -0.53428 0.16637 0.97141 

(0.122) ǂ (0.071) (0.038) (0.075) 

Driver Characteristics 

 Driver gender (Base: Male) 

  Female 0.537 (0.060)2 0.245 (0.066)29 − − − − 

 Driver age (Base: Age 25 to 64) 

  Age less than 25 -0.117 (0.064)3 − − − − − − 

  Age 65 & above 0.237 (0.101)4 -0.213 (0.121)30 − − -0.471 (0.178)42 

 Restraint system use  (Base: Restrained)  

  Unrestrained 1.617 (0.142)5 − − − − -0.361 (0.132)43 

 Under the influence of alcohol 0.570 (0.131)6 − − − − − − 

 Other physical impairment 0.708 (0.140)7 − − − − − − 

Vehicle Characteristics 

 Vehicle Type (Base: SUV, Passenger car)  

  Pickup -0.423 (0.081)8 − − − − − − 

  Vans -0.239 (0.118)9 − − − − − − 

 Vehicle age (Base: Vehicle age ≤ 5 years)  

     Vehicle age 6-10 years  0.315 (0.069)10 0.218 (0.065)31 − − − − 

  Vehicle age ≥ 11 years 0.328 (0.071)11 − − − − − − 

Roadway Design and Operational Attributes 

 Speed limit (Base: Speed limit less than 26 mph)  

  Speed limit 26-50 mph 0.642 (0.102)12 − − − − − − 

  Speed limit>50mph 0.896 (0.117)13 − − − − − − 

 Traffic Control Device  

  Other traffic control device 0.465 (0.185)14 − − − − − − 

 Type of intersection  

  T intersection -0.205 (0.088)15 − − − − − − 

 Traffic way description         

  Two way-with median 0.138 (0.069)16 − − − − − − 

Environmental Factor  

 Time of Day (Base: 6.00 a.m. to 11.59 p.m.  )  
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Late night (12.00 a.m. to 5.59 a.m.) 0.281 (0.107)17 − − − − − − 

 Surface condition  

  Snowy -1.040 (0.153)18 − − − − − − 

Crash Characteristics  

 Collision object (Base: Another moving vehicle)  

  Collision with large stationary  object  0.379 (0.106)19 -0.289 (0.129)32 − − − − 

  Collision with other object -1.827 (0.217)20 -0.637 (0.349)33 − − − − 

 Manner of collision (Base: Angular collision)  

  Head-on 0.669 (0.106)21 − − -0.234 (0.124)38 − − 

  Side swipe-same direction -1.603 (0.157)22 − − − − − − 

  Front to rear -1.159 (0.079)23 − − − − − − 

 Collision location (Base: Non-intersection)  

  Driveway access -0.440 (0.108)24 0.252 (0.119)34 0.303 (0.132)39 − − 

  Intersection − − 0.266 (0.071)35 − − 0.515 (0.133)44 

 Trajectory of vehicle's motions (Base: Going straight)  

  Stopped in Traffic Lane 0.324 (0.111)25 − − 0.529 (0.139)40 − − 

  Turning right -0.991 (0.241)26 − − − − − − 

  Turning Left -0.188 (0.094)27 − − − − − − 

  Negotiating a curve − − 0.266 (0.120)36 − − − − 

𝜏2 = Threshold between possible injury/non-incapacitating injury; 𝜏3= Threshold between non-incapacitating injury/incapacitating injury; 𝜏4= Threshold between 

incapacitating injury/fatal injury 

 
ǂ Standard errors are presented in parenthesis 

* Variable Numbers 
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Table 6.5: Estimation Results of “Driver Injury Severity” by using the Final Pooled Data Sample 

Variables Latent Propensity 𝝉𝟐 𝝉𝟑 𝝉𝟒 𝝉𝟓 𝝉𝟔 𝝉𝟕 𝝉𝟖 𝝉𝟗 𝝉𝟏𝟎 

Constant 
1.260 -0.493 0.064 0.941 -2.637 -2.808 -2.854 -1.19 -1.301 -0.584 

(0.120) ǂ (0.076) (0.052) (0.187) (3.692) (4.165) (4.383) (2.000) (2.414) (2.053) 

Driver Characteristics 

 Driver gender (Base: Male) 

  Female 0.548 (0.061) 0.224 (0.066) − − − − − − − − − 

 Driver age (Base: Age 25 to 64) 

  Age less than 25 -0.135 (0.065)     − − − − − − − 

  Age above 65 & above 0.255 (0.107) -0.239 (0.122) − − − − − − − − − 

 Restraint system use  (Base: Restrained) 

  Unrestrained 1.752 (0.138) − − − − − − − − − − − 

 

Under the influence of 

alcohol 
0.635 (0.160) -0.309 (0.165) − − − − − − − − − 

 Other physical impairment 0.757 (0.143) − − − − − − − − − − − 

Vehicle Characteristics 

 Vehicle Type (Base: SUV, Passenger car) 

  Pickup -0.379 (0.085) − − − − − − − − − − − 

  Vans -0.224 (0.114) − − − − − − − − − − − 

 Vehicle age (Base: Vehicle age ≤ 5 years) 

     Vehicle age 6-10 years  0.294 (0.071) 0.237 (0.065) − − − − − − − − − 

  Vehicle age ≥ 11 years 0.326 (0.070) − − − − − − − − − − − 

Roadway Design and Operational Attributes 

 Speed limit (Base: Speed limit less than 26 mph) 

  Speed limit 26-50 mph 0.641 (0.101) − − − − − − − − − − − 

  Speed limit>50mph 0.965 (0.115) − − − − − − − − − − − 

 Traffic Control Device 

  

Other traffic control 

device 
0.569 (0.161) − − − − − − − − − − − 

 Type of intersection 

  T intersection -0.203 (0.092) − − − − − − − − − − − 

Environmental Factor 

 Time of Day (Base: 6.00 a.m. to 11.59 p.m.  ) 
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Late night (12.00 a.m. to 

5.59 a.m.) 
0.238 (0.105) − − − − − − − − − − − 

 Surface condition 

  Snowy -1.023 (0.152) − − − − − − − − − − − 

Crash Characteristics 

 Collision object (Base: Another moving vehicle) 

  

Collision with large 

stationary  object  
0.386 (0.108) -0.290 (0.131) 0.248 (0.091) − − − − − − − 

  

Collision with other 

object 
-1.815 (0.211) -0.650 (0.354) − − − − − − − − − 

 Manner of collision (Base: Angular collision) 

  Head-on 0.693 (0.112) − − − − − − − − − − − 

  

Side swipe-same 

direction 
-1.578 (0.168) − − − − − − − − − − − 

  Front to rear -1.125 (0.081) − − 0.260 (0.106) − − − − − − − 

 Collision location (Base: Non-intersection) 

  Driveway access -0.444 (0.102) 0.215 (0.115) 0.336 (0.145) − − − − − − − 

  Intersection − − 0.243 (0.072) − − − − − − − − − 

 Trajectory of vehicle's motions (Base: Going straight) 

  Stopped in Traffic Lane 0.313 (0.115) − − 0.410 (0.171) − − − − − − − 

  Turning right -0.965 (0.229) − − − − − − − − − − − 

  Turning Left -0.167 (0.090) − − − − − − − − − − − 

  Negotiating a curve − − 0.235 (0.133) − − − − − − − − − 

𝜏2 = Threshold between possible injury/non-incapacitating injury; 𝜏3= Threshold between non-incapacitating injury/incapacitating injury; 𝜏4= Threshold between 

incapacitating injury/6to30 days;  𝜏5= Threshold between 6to30 days/ 1 to 5 days; 𝜏6= Threshold between 1 to 5 days/ 7 to 24 hours; 𝜏7= Threshold between  7 to 

24 hours/ 1 to 6 hours; 𝜏8 = Threshold between  1 to 6 hours/ 31 to 60 minutes; 𝜏9 = Threshold between  31 to 60 minutes/ 1 to 30 minutes; 𝜏10 = Threshold 

between  1 to 30 minutes/ Died Instantly 

 
ǂ Standard errors are presented in parenthesis 
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Table 6.6: Elasticity Effects 

Variables 
Died between 

6th-30 days 

Died between 

2nd-5 days 

Died between 

7th-24 hours 

Died between 

2nd-6 hours 

Died between 

31st-60 minutes 

Died between 

1st-30 minutes 
Died instantly 

Female driver 31.816 32.347 32.812 34.120 36.099 38.344 42.184 

Driver age  65 & above 32.902 33.388 33.814 35.021 36.864 38.993 42.755 

Under the influence of 

alcohol 
70.863 71.557 72.160 73.831 76.307 79.042 83.577 

Vehicle age ≥ 11 years 25.424 25.756 26.045 26.854 28.067 29.426 31.699 

Speed limit>50mph 77.550 78.595 79.511 82.110 86.081 90.663 98.641 

Late night (12.00 a.m. 

to 5.59 a.m.) 
19.037 19.287 19.505 20.112 21.018 22.029 23.716 

Collision with large 

stationary  object  
20.272 20.523 20.743 21.358 22.284 23.328 25.108 

Head-on collision 61.050 62.168 63.152 65.962 70.294 75.355 84.346 
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CHAPTER 7  Conclusions and Directions for Future Research 

 

7.1 Introduction 

The objective of the dissertation is to develop advanced econometric frameworks to address 

methodological gaps in safety literature while employing these models developed to study 

important empirical issues. Specifically, the primary focus of the current research is on advancing 

the state of the art in modeling crash injury severity for drivers. The dissertation aims to formulate 

and implement several methodological developments in examining the crash injury severity 

outcome for drivers of passenger vehicles. This road user group represents approximately 50% 

fatalities among all road user groups in high-income countries of the world, and hence, the 

proposed research endeavours to identify the various factors that affect the crash severity to assist 

policy makers in developing appropriate remedial measures. 

The current dissertation contributes substantially towards methodological gaps in the state 

of the art for driver injury severity analysis along six directions: (1) appropriate model framework, 

(2) underreporting issue in severity analysis, (3) exogenous factor homogeneity assumption (4) 

multiple dependent variables in severity analysis, (5) continuum of fatal crashes and (6) data 

pooling from multiple data sources. In addition to making the aforementioned methodological 

contributions, the dissertation also makes a substantial empirical contribution to the existing safety 

literature. In this chapter major conclusions from the model frameworks presented earlier are 

summarized. The rest of the chapter is organized as follows. Sections 7.2 through 7.6 discuss the 

findings of each chapter briefly while also present the methodological and empirical contributions 

of the dissertation. Section 7.7 concludes the dissertation by presenting the directions for future 

research. 

 

7.2 Evaluating Alternate Discrete Outcome Frameworks for Modeling Crash Injury Severity 

In Chapter 2, a comprehensive empirical comparison of the ordered and unordered outcome 

models was presented to identify the more relevant framework to model crash injury severity. The 

alternative modeling approaches considered for the exercise included: for the ordered outcome 

framework - ordered logit (OL), generalized ordered logit (GOL), mixed generalized ordered logit 

(MGOL) and for the unordered outcome framework - multinomial logit (MNL), nested logit (NL), 
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ordered generalized extreme value logit (OGEV) and mixed multinomial logit (MMNL) model. 

The empirical analysis was based on the 2010 General Estimates System (GES) database. The 

performance of the alternative frameworks were examined in the context of model estimation and 

validation (at the aggregate and disaggregate level). Further, the performance of the model 

frameworks in the presence of underreporting was explored – with and without corrections to the 

estimates. Important findings and the implications from the research effort of Chapter 2 include: 

 The comparison exercise clearly highlighted the superiority of the MGOL in terms of data 

fit compared to MMNL model. 

 In the context of underreporting, both MMNL and MGOL performed almost equivalently 

and the performance for both of these structures were improved with the correction 

measure. 

 The host of validation statistics confirmed that neither the ordered nor the unordered 

frameworks exclusively outperforms each other both at the aggregate and the disaggregate 

levels. The results of validation also indicated that MGOL and MMNL offer very similar 

prediction for the various sub-samples at the aggregate and disaggregate level. 

 Overall, the results of the empirical comparison provided credence to the belief that an 

ordered system that allows for exogenous variable effects to vary across alternatives and 

accommodates unobserved heterogeneity offer almost equivalent results to that of the 

corresponding unordered systems in the context of driver injury severity. 

 Implications: The results presented in Chapter 2 have significant implications for safety 

research. There is growing recognition in the safety community that modeling injury 

severity as exogenous to seat belt use, alcohol consumption, or collision type is not 

realistic. For instance, the common unobserved factors that influence seat belt usage might 

also influence injury severity (see Eluru and Bhat, 2007). Incorporating such interactions 

in a joint framework increases the complexity of the models involved. However, by 

allowing for injury severity to follow an ordered response structure we can reduce the 

complexity of the joint model because of the single error term of this structure. The 

unordered model would lead to a more cumbersome modeling approach because of the 

multiple error terms involved (Eluru, 2013). Recent research has demonstrated the 

advantages of such joint frameworks (see for example Castro et al., 2013; Narayanmoorthy 

et al., 2012). 
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7.3 A Latent Segmentation based Generalized Ordered Logit Model – Heterogeneity in 

Driver Injury Severity Modeling 

Chapter 3 proposed an econometric model for examining driver injury severity that accommodates 

systematic heterogeneity based on crash characteristics and relaxes the constant threshold 

assumption of traditional ordered logit model. The data for this research effort was drawn from the 

Victoria crash database from Australia for the years 2006 through 2010. The empirical analysis 

involved the estimation of models using six different statistical frameworks: 1) OL, 2) GOL, 3) 

LSOL with two segments, 4) LSOL with three segments, 5) LSGOL with two segments and 6) 

LSGOL with three segments. The comparison exercise, based on information criterion metrics, 

highlighted the superiority of the LSGOL model with two segments on the estimation sample in 

terms of data fit compared to the other ordered outcome models. Other important results from 

Chapter 3 includes: 

 In the LSGOL approach, drivers were assigned probabilistically to two segments – high 

risk segment and low risk segment - based on a host of crash characteristics.  

 The crash characteristics that affected the allocation of drivers into segments included: 

collision object, trajectory of vehicle’s motion and manner of collision. 

 The elasticity effects estimate indicated that the most significant variables in terms of 

increase in serious/fatal injury (from both models) for drivers were driver age above 65, 

driver ejection, not wearing seat belts, and collision in high speed zone. In terms of 

serious/fatal injury reduction, the important factors were presence of pedestrian control, 

presence of roundabout, driving a panel van, unpaved road condition and presence of 

passengers. 

 The predictive performance evaluation of the estimated models on a validation sample 

revealed that the LSGOL model represented superior performance compared to other 

estimated models. 

 In summary, the comparison exercise supported the hypothesis that LSGOL is a promising 

ordered response framework for accommodating population heterogeneity and for relaxing 

the fixed threshold assumption in the context of driver injury severity. 
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7.4 Examining Driver Injury Severity in Two Vehicle Crashes – A Copula Based Approach 

The focus of Chapter 4 was to jointly model the collision type and injury severity outcome of 

drivers involved in a two vehicle collisions using a copula-based joint multinomial logit-ordered 

logit modeling framework. Our study also accommodated the potential heterogeneity (across 

drivers) in the dependency effect of collision type and injury severity outcome within a closed 

form copula framework. It examined collision type as a vehicle level variable using a combination 

of collision type and the initial point of contact. The proposed model was estimated using driver 

injury severity data for two vehicle crashes from the state of Victoria, Australia for the year 2006 

through 2010. The empirical analysis involved estimation of models by using six different copula 

structures: 1) Gaussian, 2) FGM, 3) Clayton, 4) Gumbel, 5) Frank and 6) Joe. Results of the 

estimated copula models revealed a significant level of dependency between collision type and 

injury severity outcome and thus confirmed the importance of accommodating dependence 

between collision type and injury severity outcome in the analysis of driver injury severity. Other 

important findings and implications from the empirical analysis include: 

 The best model fit was obtained for a combination model of Frank-Clayton copulas (Frank 

copula structure for rear-ender and head-on collision and Clayton dependency structure 

with the remaining collision type). 

 In model estimation, except for far-angular collision type, all other copula dependencies 

were characterized by at least one additional exogenous variable. This provided support to 

our hypothesis that the dependency structures were not constant across the entire database. 

 The results suggested that the impact of exogenous variables varied (for some variables) in 

magnitude as well as in sign across collision types. The impacts of these variables were 

also substantially different from the estimates of independent MNL-OL model. 

 The elasticity effect estimates for independent variables clearly highlighted that each 

collision type has a fundamentally distinct injury severity profile underscoring the 

importance of examining the effect of various exogenous variables on driver injury severity 

outcome by different collision types. 

 The validation experiments also revealed the enhanced performance of copula based model 

compared to independent model. 
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 Implications: The findings of Chapter 4 provided a more complete picture of injury severity 

profile associated with different collision type in the context of driver injury severity, thus 

target based countermeasures could be devised from such an approach to address the entire 

profile of collision mechanism. 

 

7.5 Analyzing the Continuum of Fatal Crashes: A Generalized Ordered Approach 

The focus of Chapter 5 of the dissertation was to identify the associated risk factors of driver 

fatalities while recognizing that fatality is not a single state but rather is made up of a timeline 

between dying instantly to dying within thirty days by using Fatality Analysis Reporting System 

(FARS) database for the year 2010. This research attempt introduced in this dissertation is a first 

attempt to analyze the fatal injury from a new perspective and examined fatality as a continuous 

spectrum based on survival time ranging from dying within thirty days of crash to dying instantly. 

Moreover, the correction for endogeneity bias was pinned down in the current study context by 

employing a two-stage residual inclusion (2SRI) approach.  In the research effort, we estimated 

six different models: 1) ordered logit (OL), 2) generalized ordered logit (GOL), 3) mixed 

generalized ordered logit (MGOL), 4) OL with the 2SRI treatment, 5) GOL with the 2SRI 

treatment and 6) MGOL model with the 2SRI treatment while employing a comprehensive set of 

exogenous variables (driver characteristics, vehicle characteristics, roadway design and 

operational attributes, environmental factors, crash characteristics and situational variables).  The 

comparison exercise highlighted the superiority of the MGOL model with the 2SRI treatment on 

the sample in terms of data fit compared to the other ordered outcome models in the current study 

context.  

 The factors that contributed to an increase in the likelihood of early death include: alcohol 

impairment, previous record of other harmful motor vehicle convictions, medium and 

higher speed limit, presence of stop sign, presence of other traffic control device, cloudy 

weather, head-on crashes, collision at non-intersection locations, driver ejection, presence 

of more passengers and longer EMS response time.  

 The factors that contributed to a decrease in the likelihood of early death include: young 

driver, previous record of license suspension and revocation, crashes during off-peak and 

evening peak periods and front-to-rear crashes. 
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 We found that after controlling for endogeneity, the coefficient on the logarithm of EMS 

response time was intuitive and statistically significant indicating that EMS response time 

is correlated with unobserved determinants generating endogeneity in the outcome model 

of the time to death of drivers. 

 The elasticity effects indicated that there were considerable differences in the elasticity 

effects across different fatal crash categories, suggesting that fatality is not a single state 

but rather is made up of multiple discrete states from dying instantly to dying within thirty 

days of crash.  

 The most significant variables in terms of lower survival probability for drivers were 

crashes on high speed limit roads, crashes on medium speed limit roads and head-on 

crashes. In terms of longer survival probability, the important factors were old driver, front-

to-rear crash and crashes during off-peak period.  

 The elasticity analysis assisted in providing a clear picture of attribute impact on driver 

time-to-death variables. 

 Implications: The variable effects identified in Chapter 5 have important implications in 

terms of enforcement, engineering and educational strategies. In terms of engineering 

measures, a forgiving road environment should be designed for a high and medium speed 

limit road location to allow the drivers more space to recover from a driving error. 

Moreover, policies concerning enforcement for reducing traffic violations have the 

potential to reduce head-on crashes.  

 

7.6 Pooling Data from Fatality Analysis Reporting System (FARS) and Generalized 

Estimates System (GES) to Explore the Continuum of Injury Severity Spectrum 

The focus of Chapter 6 was to develop a framework for pooling of data from Fatality Analysis 

Reporting System (FARS) and Generalized Estimates System (GES) data for the year 2010. In this 

chapter, we developed and tested a simple approach to combine information from FARS and GES 

databases toward a pooled database that brings together the strengths of individual databases. 

Further, the pooled data set was employed to undertake injury severity analysis with a very refined 

characterization of fatality along with other injury severity levels by employing a Generalized 

Ordered Logit model. Important findings and implications from the empirical analysis include: 
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 The validation exercise confirmed that the severity parameter estimates obtained using the 

pooled data closely resembled the severity parameter estimates obtained using the un-

pooled GES data. 

 The empirical analysis indicated that inclusion of multiple discrete states of fatal injury 

category improves the model fit and provides more information in examining the injury 

severity outcome. 

 These results also suggest that considering a fine resolution categorization of fatal crashes 

in examining the crash injury severity outcome offers the potential to provide useful 

information for policy makers in developing the EMS system and trauma triage. 

 Implications: The empirical effects identified in Chapter 6 have important implications in 

terms of enforcement, engineering and educational strategies. In terms of engineering 

measures, a forgiving road environment should be designed for a high speed limit road 

location to allow the drivers more space to recover from a driving error. Head-on collisions 

are often caused by drivers violating traffic rules, driving across the centerline, driving too 

fast for the roadway conditions and thus by losing control of their vehicles (Zhang and 

Ivan, 2005). Therefore, policies concerning the enforcement in reducing the traffic 

violation have the potential to reduce this type of collision. With respect to enforcement 

and education, our results endorse a continuous education program and stricter 

enforcement to prevent drunk-driving. Mortality rate for the alcohol impaired drivers is 

observed to be twice compared to the sober drivers (Stübig et al., 2012) in the event of road 

traffic crash. Besides, research suggests that alcohol-impaired drivers not only put 

themselves at a risk of high injury severity but also risk others involved in the crash to a 

high injury severity (Rana et al., 2010). Therefore, public health effort and education 

campaigns against alcohol-intoxicated driving are needed for this group of drivers. 

 

7.7 Directions for Future Research 

The summary of findings and the contributions of the dissertation in examining driver injury 

severity are discussed in the preceding sections of this chapter. In the following sections, the 

limitations of the research efforts are discussed while also present potential research extensions 

for future.  
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7.7.1 Limitations and Potential Extensions 

 

Limitations: The dissertation is not without limitations. The models estimated in our research 

efforts are based on data from particular region or countries. Hence, it is not possible to generalize 

the findings for other region or countries based on the findings of our studies. The wide variety of 

the data inventory would allow us to identify important determinants of safety for developed 

countries. Another aspect related to data is that we have used cross-sectional crash databases 

comprising of either one or multiple years of data. However, in our analyses, we have not 

considered differences across the different years. It will be an interesting exercise to model the 

impact of temporal effects on driver injury severity models.  

In our research effort, we categorized the spectrum of fatal crashes in seven refined 

categories of fatalities ranging from fatality after thirty days to instant death, specifically in 

Chapters 5 and 6. However, some of the earlier studies (Trunkey, 1983) argued that the distribution 

of survival times after traffic crash is “trimodal”. There are also studies (Clark et al., 2012) that 

contradict the trimodal distribution of survival time after crash. Thus, it will be an interesting 

exercise to identify the discrete categories or distribution of fatal crashes in examining the impact 

of exogenous variable on fatality spectrum. 

For examining the spectrum of fatal crashes we have considered FARS database of the US 

since it reports the exact timeline of the fatal occurrence within thirty days from the time to crash. 

However, to our knowledge, no other police reported crash database includes such information of 

fatal crashes. Thus, it would not be possible to examine the continuum of fatal crashes by using 

other available police reported crash databases. In this regards, it might be interesting to explore 

other source of crash databases, for instance: hospital reported crash data, to examine driver 

fatalities at a disaggregate level of fatal crashes. 

 

Potential Extensions: The major focus of current dissertation is to contribute to the state of the art 

for modeling driver injury severity analysis along six directions as discussed earlier. However, 

there are many other methodological issues (for instance spatial and temporal correlations, 

accommodating soft psychometric measures) in safety literature that requires further investigations 

as highlighted recently in the article by Mannering and Bhat (2014). While literature in severity 
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analysis is vast and growing, future research efforts should also continue to address the 

methodological gaps in analyzing crash injury severity outcome for different road user groups. 

In term of methodology, safety research would benefit from incorporating temporal effects 

within the econometric frameworks developed in this dissertation. Latent segmentation based 

model incorporates effects of both observed and unobserved heterogeneity while assuming that 

these impacts remain constant over time. But the effect of observed exogenous variable may vary 

based on a latent time-dependent state variable. More recently, safety researchers have employed 

Markov switching technique in capturing unobserved heterogeneity across time period in the 

context of crash injury severity analysis (Malyshkina and Mannering, 2009; Xiong et al., 2014). 

Such an approach allows for two time-varying unobserved states of roadway safety. Within this 

framework, the impacts of control variables are not only allowed to vary but also allowed to 

interact and change from one state to another over time. Thus, developing a Markov switching 

latent segmentation based model would add more flexibility towards capturing potential 

heterogeneity in the pursuits of estimating more generalized crash injury severity models.         

From an empirical standpoint, the road safety literature would benefit from exploring a 

wide spectra of driver attributes, specifically driver behaviour and driving record, in examining 

crash injury severity outcomes. In terms of driver behaviour, inappropriate driving actions are 

extensively identified in the literature as a major contributor of traffic collisions. For instance, 

using the Driver Behaviour Questionnaire, several studies (Elliott et al., 2007; Parker et al., 1995) 

found that violations and errors were significantly related to crashes. In fact, driver actions are 

identified to be a contributing factor in more than 90% of road crashes (Rumar, 1985). However, 

the conventional police/hospital reported crash databases may not include relevant behavioural, 

physiological and psychological characteristics of individual involved in traffic crashes. If data on 

insurance claims could potentially be used to augment the traditional police reported crash 

database the modeling exercise can be substantially enhanced. The driving history (for example: 

previous crash records, previous speeding or impairment records, previous license convictions, 

previous traffic law violations) as reported in insurance reports can be used as a “proxy” for driver 

behaviour. Thus, it would be interesting to examine crash injury severity outcomes by using 

matched police reported crash databases and insurance reports of the drivers.    

Future research efforts should also consider and investigate the opportunities to examine 

crash-frequency and crash-severity models jointly. In road safety literature, crash-frequency and 
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crash-severity models are mostly examined separately. However, few studies (see Savolainen et 

al., 2011 for a detailed discussion) have examined frequency of different crash severity levels 

simultaneously mostly by using non-crash-specific data. A two-stage model has also been 

proposed recently for examining the crash frequency-severity process jointly (Wang et al., 2011). 

Another possible alternate method to tie these two different approaches is to integrate the outcome 

of crash-frequency model, specifically macroscopic model, in examining the crash severity level 

outcomes. The outcome of a macroscopic crash-frequency model can potentially be used for 

network screening and for ranking different planning zones. Further, it would be possible to 

explore the relationship between the total number of crashes and the subsequent severity outcomes 

of a particular zone by integrating the rank variable as an independent variable in the crash-severity 

model. By using the specifications of such an integrated crash frequency-severity model, it would 

be possible to forecast the change in crash frequency and severity levels from implementing a 

specific countermeasure at planning level. The derived information will also benefit the emergency 

medical service resources.  
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