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Abstract

This thesis investigates properties of spaces generated br PeetreYs f(-method and
uses the f\-method to interpolate linear, quasilinear and Lipschitz operators. Vari­
ants of classical results such as the Riesz convexity theorem and the ~Iarcinkiewicz

Interpolation Theorem will be proyed using the f(-method.
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Résumé

Cette thèse exarnine la méthode des espaces de moyenne à deux parametres et
l'utilise pour interpoler les operations linéairs, quasiIinéaires et de type Lipschitz et
pour preuver variations des résultats classiques comme le théorème de Riesz et le
théorème de ~Iarcinkiewicz.
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Chapter 0

Introduction

0.1 Notation

The following notation is frequently used in what follows.

N natural nunlbers: {1, 2, 3, ... }

Z integers: {... ,-3, -2, -1,0, 1,2,3, ... }

1, if x E A
X..l(x) characteristic function: X.-l(x) =

0, if x ~ A

•

m(A) Lebesque measure of set A

1



l

• (Ix If(x)lP dp.);; r O<p<oo
IlfIILP(X,I') -

inf{C ~ 0: p.({x E .(\': If(x)! > C}) = O}, p = 00

LP(X, p.) - {f: IlfIILP{X.d~} < oo}

l

(IoOO
If(x)lP~) P , O<p<oo

IlfIILP(~) -
inf{C ~ 0: 'm({t > 0: If(t)1 > Cl) = D}, p = 00

[xl+ = max(x, 0)

Definition 0.1.1 Let f be a function from IR -+ IR then f is said to be an increasing

function if x > y implies f(x) 2: f(y) and is said to be a decreasing function if x > y

'irnplies J(x) $ f(y)·

•

•

The point of the above definition is that we use the term increasing or decreasing

to also include functions which may be constant in places.

0.2 Background

Suppose T is a baunded linear operator from Lp -+ Lp and from Lr --+ Lr where

p < r. A natural question ta ask is whether this guarantees that T is a bounded linear

operator from Lq -+ Lq when p < q < r. This question \Vas answered affirmatively in

1926, by Marcel Riesz. He proved the following theorem:

Theorem 0.2.1 (Riesz Convexity Theorem) Let (X, JI.) and (~..\) be arbitrary

u-finite measure spaces and let T be a bounded linear operator /rom Vi (X) -+ Lqi CY)

2
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with baund lv[i where 1 ~ Pi ~ qi $ 00 for i = 0, 1. Let p and q be such that

l = 1-0 + .!L and l = 1-8 +!L where a< 8 < 1. Then T is a bounded linear operator
P PO Pl q qo ql

One can reformulate this result in geometric terms. Let AI(s, t) be a function

from [0,1) x [0,1) ~ [0,00] defined as AI(s,t) =suPII/IILP{x) IITfllL'I(Y) where p = lis

and q = lit. The above theorelll states that log AI(::J, t) is a convex function on the

triangle \Vith vertices (0,0), (1,0) and (1, 1) (which is why the above result is called

the convexity theorenl).

Theorem 0.2.2 (Hausdorff-Young Inequality) Let 1 ~ p ~ 2 and *+.; = 1. If

f E LP(T}, then Î E [P' (il) and IIÎII,P' ~ IIJIILP .

This result renlains true when we replace 'r \Vith an arbitraIT locally compact

abelian group. A special case of this result (when p' is an even integer) was proved by

Young in 1912 (see [15]). The general case was considerably more difficult and was

solved by Hausdorff [17] in 1923. However, thanks to the Riesz convexity theorem,

we no longer need to prove the result for Vp E [1,2) but only for the endpoint cases

p =1 and p = 2 which tum out to simpler to derive than for general p. The proof is

as fol1o\vs:

Prao/: \Vhen (P, ri) = (2,2), the desired result follows from Parseval's Theorem. Now

we examine the (P,P') =(1,00) case. If! E L 1(T), then IÎ(n)1 = IfT!(8)e-in8:1 $

fT IJ(8)1: = IIfIlLl(T) and taking the supremum over all nEZ, we get IIÎllzoo(z) ~

3
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IIfIILl(T)' Since the Fourier transform is a linear operator, the Hausdorff-Young In­

equality now follows from the Riesz Convexity Theorem.•

The Riesz convexity theorem was the genesis of the study of the interpolation of

operators. The obvious usefulness of the Riesz convexity theorem in proving results

such as Theorem 0.2.2 spurred further research in this field. In 1939, two major new

results were discovered. Using methods from complex variable theory, Tharin was able

ta remove the restriction Pi :S qi from Theorem 0.2.1. This new result came to be

called the Riesz-Thorin Convexity theorem. :\lso in that same year, J. ~Iarcinkiewicz

discovered an interpolation theorem which could be used in situations in where the

Riesz Convexity theorem no longer applies. These two results seryed as nlodels for

later results in the interpolation of operators. In the early 1960's, Calderôn and Lions

extended Thorin's nlethods from LP spaces ta general Banach spaces. These results

fornled the basis of the complex method of interpolation. Similarly, results inspired by

the ~IIarcinkiewicz Interpolation Theorem have corne to be known as the reai rnethod

of interpolation. One of the rnost widel)' used of the reai methods of interpolation is

the [{-method developed by Jaak Peetre in 1963.

In this thesis we will study the [<-method and its application to the Interpolation

of Operators in quasi-normed vector spaces. This thesis aims ta he as accessible and

self..contained as possible. Chapter 1 will review any terminology or results used in

the thesis which would not usually he covered in an introductory graduate analysis

course. We formally define interpolation spaces in Chapter 2, and show how the K-

4
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method can he used to find interpolation spaces. In Chapter 3, we use the K -method

ta study the interpolation of LP spaces. In particular, we introduce the Lorentz spaces

as the interpolation spaces generated by using the [(-method on a pair of V spaces

and we use the K-method to derive the rvrarcinkiewicz interpolation theorem and a

variant of the Riesz convexity theorem. In Chapter 4, we examine Peetre's J-method,

its applications, and its relation ta the f(-method. In our final chapter, we use the

K-method ta interpolate Lipschitz operators.

5
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Chapter 1

Preliminaries

1.1 Quasi-Normed Vector Spaces

Definition 1.1.1 Let F be a vector space over a sealar field ](. Then Il Ih" a

functioTl from t·I' ~ [0, (0), is called a quasi-seminorm if

(1) Ilkvllv = Iklllvlh' ~k E ](, u E V

(2) 3c\;· 2: 1 s.t·llu + 'ull\l' :5 cv(llulh·· + IIvllv) 'Vu, v E V'

Condition (1) is called homogeneity and Condition (2) is called the c-triangle inequal­

ity. If Cv = 1 in (2), then Il IIv is called a seminonn and (2) is simply called the

triangle inequality.

In this thesis the scalar field K will always be either the real or complex numbers.

Definition 1.1.2 Il IIv is a quasi-norm (resp. norm) if Il IIv is a quasi-seminorm

(resp. seminorm) with the added property thaf if v E V and IIvllv = 0 then v= O.

6
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Definition 1.1.3 A Banach space is a complete normed vector space.

Definition 1.1.4 Let V be a vector space having 1/ 1\ as a quasi-norm. Let Il Il' be

a functional on V with the property that IIkvll' = Iklllvll' Vk E ]<, v E V. Then Il Il

and 1111' are said to be equivalent quasi-norms iff3c, C > 0 s.t. cllvll :5 Ilvll' ~ CII'ull

for \Iv E V.

The conditions on Il Il' given in the definition are enough ta guarantee that it

is indeed aquasi-uorm. Since 0 ~ ctlvll ~ Ilvll' ~ Cllvll < 00, we ha\'e Ilvll' fini te

and nonnegative. Also !Ivll' = 0 irnplies Il L'II = 0 which Ineans v = O. )row we need

only check the c-triangle inequality. Letu, u E F then lIu + viI' ~ Cil u + vii ~

cvC(llul1 + Ilvll) ~ ~(llull' + Ilvll')·

1.2 LP spaces

It is assumed the reader is familiar with V spaces when the exponent p E [1,00].

'VVe now show that the LP spaces are quasi-normed vector spaces for p E (O~ 00]. 'vVe

begin with the following inequalities which will then be used to prove the c-triangle

inequality for LP spaces.

Lemma 1.2.1 Let x, y ~ O. Then (x+y)P ~ (xP+yP) S 21- P(x+y)P when 0 < p ~ 1

and 21- P(x + y)P S (xP+ yP) ~ (x + y)P when 1 ~ P < 00.

Prao/: If either x or y is zero, the result is immediate. Now fix y > 0 and let

F(x) = [(x+y)P_(xP+yP)l. Differentiating, we get F'(x) = p[(X+y)P-l-xp-
1]. For

7
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p :5 1, F'(x) :5 O. Hence [(x + y)P - (xP+ yP)J = F(x) :5 F(O) = O. The L.H.S. of the

first inequality follows. For p ~ 1, F'(x) ~ O. Rence [(x + y)P - (xP+ yP)J = F(x) ~

F(O) = O. The R.H.S. of the second inequality follows. xP is a concave function on

[0, (0) for p :5 1 and therefore we have ZP;yP :5 (Z;Y)P. ~dultiplying both sides by

2, gives us (xP+ yP) $ 21- P(x + y)P which is the R.H.S. of the first inequality. For

p ~ 1, xP is a convex function on [0,00) and as a result we have (r;y)p ~ rP;rt .

Again multiplying bath sides by two gives us 21-P(x + y)P $ (xP + yP) which is the

L.H.S. of the second inequality.•

Theorem 1.2.2 LP is a Banach space for 1 :5 p :5 00.

This result is well known 50 the praof is omitted. The following is a corresponding

result for p E (0,00].

Theorem 1.2.3 LP is a quasi-normed space for 0 < p :5 00.

Proo/: For p ~ 1 the result fo11ow5 from above, so let 0 < p < 1. \Ve first prove

that LP is a quasi-seminorm. Homogeneity is obvious. To establish the c-triangle

inequality requires repeated uses of the previous lemma.

IIf + gllLP = CJ If + gIPd~)I/p :5 (JClfl + IgI)Pd~P/p :5 Cf IflPdJL + f IgIPd1lP/p

:5 2(1!p)-1 [Cf IfIPd1lP/p+ Cf IgIPdJLP/P].

Hence Il IILP is a quasi-seminorm. Now let f E LP such that IlfllLP = O. Then

fP E LI with IIfPI!Ll =O. Since LI is a Banach space, f = 0 a.e. and therefore IIl1v

is a quasi-norme •

8
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Lemma 1.2.1 can aIso be used ta praye the fallowing useful inequality for nonneg­

ative functions in an LP space.

Lemma 1.2.4 (Reverse Triangle Inequality) Let 1, 9 E LP with J, y ~ O. Then

(lIfiILP + IlyIILP) $ 211- l
/ P'IIJ + gI!LP.

PraoJ: Let l, 9 be as above. Now let p ~ 1, then (f I PdJ1.) l/p + (f gPdtL) lfp <

21- 1IP(IIP + gPdJ1.) IIp $ 21- l / P{! (1 + 9)PdJ1.)l/P.

Now let p $ 1, then {J f PdJ1.)l/P + {J gPdJ1.)llp $ (J IP + gPdt/.)I/p $ (2 l- p J(J +

g)PdJ.L)lfp = 2l / p - 11If + gIILP.•

1.3 The Lattice Property

Let (,,\, t/.) he an arbitrary measure space. \Ve now consider quasi-normed spaces

whose elements are real al' complex valued functions on .\. It is aften useful to have

a quasi-norm which is related to the size of a function. This idea motivates the

following definition:

Definition 1.3.1 Let V be a quasi-normed vector space whose elements are scalar

vaLued functions on an arbitrary measure space (J'\, j1.). Then V is said ta have the

lattice property il /, 9 : X ~ Kt 9 E V, I/(x) 1 $ Ig(x)l Il- - a.a.x E X then 1 E V

and II/lIv $ IIgllv.

In references such as [39], normed spaces with the lattice property are called

pre-ideal spaces and Banach spaces with the lattice property are called ideal spaces.

9
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Similarly, we will define a quasi-ideal space as a quasi-normed vector space with the

lattice property.

The fol1o\ving is a useful elementary property of quasi-ideal spaces.

Lemma 1.3.2 Let V be a quasi-ideal space whose elements are functions from )( -t

K. Let 9 E V and f : X -t [( with I/(x)1 = Ig(x)1 f.L - a.e. on ~Y. Then 1 E V and

IIJllv = Ilglh,,·

Prao/: \Ve have I/(x)1 ~ Ig(x)l a.e. and 9 E F; therefore the lattice property implies

that 1 E V and 11/1h: ~ IIglh'· Howe\'er, we also have Ig(x)1 :5 If(x)1 a.e. which

ilnplies Ilgll\-' :5 1I/11t·, Hence we conclude that 11/11\, = lIylh" •

For LP spaces we have the following result .

Proposition 1.3.3 LP spaces for p > a have the lattice property.

Prao/: If p = 00, the result is trivial. For 0 < p < 00, the result fo11ows from the fact

that x P and x 1/ p are increasing on (0,00).•

One can extend the reverse triangle inequality from LP spaces ta arbitrary quasi­

ideal spaces.

Lemma 1.3.4 Let V be a quasi-ideal space Then 3dv ~ 2 such that lor l, 9 E V with

I,g ~ 0 a.e. 1I/IIv + Ilgllv :5 ~rlll + gllv.

Proo/: Since l, 9 ~ 0 a.e, 1 ~ f + 9 a.e. and 9 :5 f + 9 a.e. Hence 11/1 Iv + IIgllv <

2111 + gllv.•

10
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1.4 The SUffi and the Intersection of Quasi-normed

Vector Spaces.

The results in this chapter are central to the theory of interpolation. ~Iost are from

[1] or [3].

Definition 1.4.1 Let V, nI' be Hausdorff topological vector spaces with V· ç IV, ~'

and ~v not necessarily having the sarne topologies. Then V is said ta be continuously

embedded in lV if given {Xn}nEN with In E F, X n ~ 0 in F, implies In ~ 0 in ~v

as weil.

A quasi-normed space V' is a topological vector space whose neighborhood basis

at 0 consists of the open balls {v : Ilvll\" < ê} (see [24] for more details). Hence when

V and ~v are quasi-normed spaces. we have the following:

Theorem 1.4.2 Let V and t-V be quasi-normed spaces with V' ç Hl. Then V' is

continuously eT71bedded in t-V iff 3AI such that Ilfllw :5 ~\Jllfll\" for 'Vf EV'.

Prao! If 31\f such that Ilflhv :5 AllI/llv for 'VI E V, then it is clear that V is

continuously embedded in ~V. Now suppose no such 1"1 exists; then we can find a

sequence {Xn}nEN sucb that IlxnlIv = 1 but Ilxnlhv ~ n. Theo ~ ~ 0 in V but

Il =: 1hv ~ 1 and hence V is not continuously emhedded in lV. •

Il
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Definition 1.4.3 Let V and t-V be quasi-normed vector space and Al be a Hausdorff

topological vector space. Then (V, vV) is a compatible couple 01 quasi-normed spaces

(in 11;[) if V and ~V are continuously embedded subspaces of 1\1.

Definition 1.4.4 Let (V, VV) be a compatible couple (in Al) of quasi-normed vector

spaces. Then V + t--v ={I E Al such that 3v E V and w E TV such that 1 = v + w}.

ALso, Let V n T·V denote the usual set-theoretic intersection (i. e. V n1V := {f such that

1 E V and f E ~V} ).

Lemma 1.4.5 Let (F, TV) be a compatibLe couple (in .\1) of CJuasi-normed (resp.

n01med) vector spaces. Then F'nlV and F + TV are also quasi-normed (resp. nonned)

uector spaces.

Prao/: Let Ilfll \/nW =max{ 11/11v, Ilfll ~II} where f is an arbitral1' eIement of V· n lV.

It is easy to verify that Il Ilvnw is a quasi-norm (resp. norm) for V' n IV. ~ow let

IIfll\'+H' = inf{lIglh, + Ilhll w where gEl" and hE TV such that 1 = 9 + hl. It can

easily be shown that IIlh.'+w is a quasi-seminorm (resp. seminorm) for F + TV. Ta

show that 1I11\-·+1~· is aIso aquasi-norm (resp. norm), let f E V +IV with Ilfllv+~v = o.

Then TIn, 3vn E V and Wn E l'V such that Vn + W n = f and IIvnllv + IIwnll~v :5 n-1
•

Now Vn tends ta 0 in V and therefore aIso tends to 0 in Al. Similarly, Wn tends ta 0

in 1'1 and therefore 50 does Vn + Wn . Hence f = 0 and IIl1v+~v is a quasi-norm (resp.

nonn).•

Theorem 1.4.6 Let (V, ~V) be a compatible couple of Banach spaces. Then V n W

and V + ~V are also Banach spaces.

12
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Praof: By the previous lemma, V n VV and V + t,V are normed vector spaces and so

we only need to show that they are also complete. Let fn be a Cauchy sequence in

V n VV, then it is also a Cauchy sequence in \1. By completeness of \l, 3u E l/ such

that ln tends to v in V and therefore also in ~\1. By completeness of tV, 3w E l,V such

that ln tends to w in VV and hence aiso in ~vl. Since limits are unique in Hausdorff

spaces, v = w. Hence v E V ni-V and ln tends to v in li n Hl'. 50 V n IV is complete

and hence is a Banach space.

Now we turn our attention ta V + IV. Let fn be an absolutely conyergent sequence

in V + IV (Le. 2::=1 Il/nlh'"+w < oc). Vn, 3vn E V. W n E tV such that Un + Wn = fn

and Ilvnllv + IIwn llw $ II/nll\!+w + 11-2. Therefore, 2:~=1 Vnconyerges absolutely in

the V-norm. 5ince V is complete, 3v E F such that L~=l L'n converges ta v. Similarly

3w E l,V such that L~=l W n converges to w. Now let! = v + lL'. Theo! E V + lV

N N N·
and Il! - Ln:1 fnll\r+w :5 Ilv - Ln:1L'nllt: + IIw - Ln:1 wnllw. Slnce R.H.S. tends

to 0 as lV --t 00, sa cloes the L.H.S. Hence every absolutely convergent sequence in

V + vV converges in V + nr and hence V + vV is complete.•

Theorem 1.4.1 Let (Ao,Ad and (Bo,Bd be compatible couples of quasi-narmed

spaces. Let T be a linear operator from A.i -+ Bi where i = 0,1. Then T can be

extended uniquely ta a linear operator Irom Ao+ Al -t Bo+ B l -

Prao/: Let f E Ao + AIl then 3g E AOl h E Al sucb that ! = 9 + h. Now define

Tf =Tg+ Th. It is clear that the e..'"<tension is linear; now we must show it is unique.

Let 9' E Ao and h' E Al be such that / = 9' + h'. Theo 9 - g' = h' - h and since

13
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both sicles are E Ao n ..4.17 we have Tg - Tg' =T(g - g') = T(h' - h) = Th' - Th.

Rearranging, we get Tg + Th = Tg' +Th' and hence Tf is independent of the choice

of decomposition of f .•

The above result motivates the following definition.

Definition 1.4.8 Let A be quasi-normed vector space and let CV: t,V) be a compatible

couple of quus-i-1L01ïTLec1 vector spaces. Then A is said ta be an intermediate space

with respect to (V, tV) if V n Hf ç A ç V + IV with \/ n IV continuously embedded in

A and A cantinuously embedded in \' + 1V.

If a linear operatar is defined on V' and IV, it will be defined on V' + IF and hence

on every intermediate space of (l/~ IV).

Example 1.4.9 Let V' and Hr be quasi-normed vector spaces. Then F, l·r. li u IV

and V' + III are intermediate spaces for (V', llf).

Turning our attention back ta LP spaces, we get the following example of inter­

mediate spaces.

Example 1.4.10 Let 0 < p ~ q ~ r ~ 00, then Lq(X, J1.) is an intermediate space of

the pair (V(J~, p.), Lr(x, p.)).

Proof: First we assume that 0 < p < q < r $ 00. (If not, the result follows from

previous example.) Let f E LPnLr. Since p < q < T, 38 such that i = 1;8 +~. Then

using Holder's Inequality and 1 = q(l;8)+~, we get IIfIlLPnL" = max(lIfllv, II/ilL") ~

14
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(1IfIILP)1-O(llfIlLr)8 ~ Ilf1lL9. Hence LPnLr is contiuously embedded in Lq. Now let

f E Lq, we now prove IlfIlLP+Lr $ 211f11Lq. vVithout loss of generality, let II/IIL" = 1.

Define E = {x EX: I/(x)1 > 1}. Since p < q, 35 > a such that ~ = ~ + ~ and

using Holder's inequality and J.L(E) $ 1, we have IIlxEIiLP :5 1I/IILQIIXEIIL.I :5 IIflILll'

Aiso IIfXX\EIILr = (f,(\EITdJl)l/T ~ (!x\EfqdJ.L)l/r :5 Ilflltr = IlfllLq where the

first inequality follows from f being ~ 1 on )( \ E. Therefore we have 1I/IILP+Lr :5

IlfxEIILP + IIIXx\EIIL" :5 211f11Lq.•

Thus our intutive notion of what is intermediate for LP spaces corresponds to our

defintion of intermediate spaces.

1.5 Rearrangements

In this section we introduce the theoIJ' of rearrangements which was first systemat­

ically studied by Hardy, Littlewood and Pélya. This theory is intimately connected

ta the real method of interpolation. For instance, distribution functions were used in

the first praof of the ~Iarcinkiewicz Interpolation Thearem [40]. Our main results,

Propositions 1.5.3 and 1.5.8 are a combination of results from [1],[14],[20],[30] and

[38].

In the fallo\ving section 1 and 9 are rea! or comple..,,<-valued functions on an arbi­

trary measure space, (X, p).

Definition 1.5.1 8,(s) = {x EX: IJ(x)! > s} .
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Definition 1.5.2 The distibution function of f is denoted as J1.f(s) and is defined

as J1.f(s) = J.L(Sf(s)) for Vs > O.

It is clear that J1.1(s) is a nonnegative decreasing function from (0, (0) --+ [0,00]

The following are more properties of the distribution function.

Proposition 1.5.3 The distribution function has the following properties:

a) /-lf(s) is right-continuous on (0,00).

b) If If(x)1 ~ Ig(x)1 a.a.x, then J1.f(s) ~ J1.g(s) for \:/s > O.

c) If Ifni t IJI J.L-a.e., then f.llf\ t J1.1·

d) If c i= 0, then J.LC:f(S) =JLI(s/lcl).

e) ILI+g(s + t) ~ JLf(S) + J1.g(t) for 'VS,t > O.

Proo/: a) Let Sn be a decreasing sequence of non-negative real numbers \Vith Sn .J,. s.

Then Sf(sd ç Sf(S2) ç ...ç U~=l SI(sn) = Sf(s) and hence limn~oc JLf(sn) =J1.I(s).

b) Since IJ(x)1 ~ Ig(x)l, Sf(s) ç S9(S) and therefore J1.I(s) ~ J1.g(s) for 'Vs > O.

c) For any s > 0, Sft (s) ç Sh ç ...ç U~=l SI" (s) = SfCs) and therefore /-lft (s) ~

ILh(s) :5 ...:5limn~oo/-lfn(S) =Ilf(S).

d) Sc/Cs) = {x : le/(x)! > s} = {x : I/(x)1 > s/Iel} = Sf(s/Iel). Hence J1.cl(S) =

jLf(s/lel).

e) No\v if IJ(x) +g(x)! > s+t and hence we have IJ(x)1 + Ig(x)1 ~ I/(x) + g(x)1 >

s+t 50 either IJ(x)1 > sor Ig(x)! > t. This gives us SI+9(s+t) ç Sf(s)USg(t) and thus

JLf+g(s+t) = JL(SJ+g(s+t)) ~ JL(Sf(s)USg(t)) :5 JL(Sf(s))+JL(Sg(t)) =JLf(s)+JLg(t) .

•
16
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The following is a usefui inequality which bounds J.lf(s) in terms of the LP norm.

Theorem 1.5.4 (Chebyshev's Inequality) Let s > 0 and f E LP. Then J.lf(s) ~

(~)P

Proof: R.H.S.= ~~ Ix IflPdtL ~ .5~ Is/(.5) IflPdtt ~ .s~ Is/(.5) sPdJ.l = J1.J(S) .•

One can rewrite this inequality in the following form: sUP.s>o s(JLf(s))l/P :5 IIfllLp

and we can use this to define the following spaces.

Definition 1.5.5 vVeak LP consists of aU functions f such that SUP.s>O S(JlJ(S))l/P <

00.

Thus we can see that aIl LP functions are in weak LP but the converse rails as

x- 1/
p is a weak LP function which is not in LP. ~Iore about this space iater.

Definition 1.5.6 Two functions f and 9 whose domains are respectively (.\, p) and

(Y, /\) are called equimeasurable if I-lf(s) = '\glS) for 'Vs > o.

Since J1.f is a function from (0,00) -+ [O~ 00) and (0, oc) is a measure space under

Lebesgue measure, we can talk about the distribution function of a distribution func­

tian. So we have m p1 =m({s: Pf(s) > t}) = sup{s: J.Lf(s) > t} = inf{s: J.Lf(s) :5

t}. This function occurs often enough to be given a special name.

Definition 1.5.7 The decreasing rearrangement of f is denoted as f· and is defined

as follows: f*(t) = inf{s : J.Lf(s) ::; t} .

17
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Proposition 1.5.8 The following are properties of the decreasing rearrangement.

a) f* (s) is nonnegative decreasing right-continuous on (0,00).

b) If If(x)1 :5 Ig(x)l a.a.x, then f*(s) :5 g*(s) for 'Vs > O.

c) If Ifni t Ifl jJ.-a.e., then f~ t f*·

d) Ccf)*(s) = lelf*Cs) where e is an arbitrary constant.

e) Let s, t > O. Then J.L/(s) :5 t ifJ f'(t) :5 s.

f) f and f* are equimeasurable functions.

g) (f + g)*(s + t) :5 f'(s) + g'(t) for Vs,t > O.

Prao/: a) follows inlmediately from Proposition 1.5.3.a and the fact that f' is a

distribution function. b), c) and d) also follow from their eounterparts in Prop. 1.5.3.

e) Suppose J'(t) ~ s and let {Sn}nEN be a sequence of real numbers such that

Sn ts. Thenj'(t) = inf{x > 0: Il./(X):5 t} < Sn whichsinceJ.L/isdecreasingirnplies

that Il/(Sn) :5 t. Since the distribution function is right continuous (Prop. 1.5.3.a), we

have J.L/(s) ~ t. Now suppose J.L/Cs) :5 t. Then j'Ct) = inj{x > 0: JI.J(x) ~ t} ~ s.

f) mr (s) = m {x > 0 : j' (x) > s} = m {x > 0 : J.LJ(s) > x} = m((0, J.1./ (s ))) =

Il.I(s). Here the second equality follaws from part e above.

g) Let Ct = J'(s) and {3 = g*Ct). Our result in part e now gives us J.LI(Ct) :5 sand

J.1.g({3) :5 t. Using Prap. 1.5.3.e, J1.1+g(a + (3) :5 J1.1(a) + f.lg({3) $ s + t. Naw we use

part e again ta obtain (f +utes + t) $ J*(8) + y-Ct).•

It is two of the abave properties of f* (i.e. that j. is a decreasing function equimea­

surable \Vith f) from which ,. derives its name. In fact, one ean praye that f- is the

18
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only decreasing right-continuous functions on (0,00) which is equimeasurable ta f .

We have the following result due to Burkill [4].

Lemma 1.5.9 Let f he a measurable function on (..X, p) and let 9 be a decreasing

right-continuous function on (0, (0) with mg(t) =P/(t) for 'Vt > a then 9 = f-.

Prao/: Since f and gare equimeasurable, f- = g'. Now we only need show that

9 and g- are equal everywhere. Assume 3a > 0 such that g(a) #= g·(a). Suppose

g(a) > g'(a) and choose b such that g(a) > b > g'(a) and therefore a ri 59. (b) and

since g' is decreasing, we have Sg.(b) ç (0 1 a). :-\ow since 9 is right continuous 3é > a

such that g(a + e:) > band hence (0 1 a +::) ç 5g(b) and J.lg(b) ;::: a + E > a ;::: J1.g- (b)

which contradicts Propp 1.5.8.f. If g'(a) > g(a), the symmetric argument applies.

1.6 Quasi-Symmetric Spaces

Definition 1.6.1 Let V' be a quasi-ideal space of functions fro'm (..Y, f.l) ~ [{ and let

f, 9 be J.L-measurable functions from .\ ~ [(. Then V is a quasi-symmetric space if

f E \/ and f equimeasurable to 9 implies 9 E V· and Ilgllv = II/llv.

Corollary 1.6.2 Let V be a quasi-normed space. Then V is a quasi-symmetric space

iff f E V, 9 p.-measurable function [rom X ~ [( and g*(t) ~ f*(t) for 'Vt > a implies

that 9 E V and Ilgllv ~ II/Ilv.

Proo/: This easily follows from part b of Proposition 1.5.8.
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It seems intutitively obvious that LP spaces are quasi-symmetric spaces. \Ve make

this rigouraus in the following theorem:

Theorem 1.6.3 [1] [30] ForD < p < 00, (1IfIlLP)P =p Jaco SP-1J.Lf(s)ds = JaCO (f")P(t)dt

and Ilfllv~D = inf{s: J1.f(s) = O} = IIf-IiLoo. Therefore for 0 < p ~ 00, LP spaces are

quasi-symmetric spaces.

Praof: First let f be a nonnegative simple function with f(x) = L~l aiXE) (x). \Vith­

out 1055 of generality we can assume the Qi to be in descending arder.

Then J.Lf(s) = L7=1 (Li=1 J.L(EJ ))X[O)+l,I1J J(S)

Therefore (lIfllo')P =L~L afJl(Ej )

= 2:7=1 (a~ - a~+1)(L1=1 Jl(Ed)

= PE7=1 Ja:J+l (L1=1 J.l(E1) )sP-1ds

= p Jaco sp-l Z::;=1(l:i=1 Jl(EJ))X[a)+l'Oj)(S)

= p Joco
sp-l/lf{S)ds.

Now, let f be an arbitrary function in LP then let ln be nonnegative simple func­

tians sucb that fn t Ifl then by part c of Proposition 1.5.3, J.lfn t Jlf' Using the

monotone convergence theorem, we get (1IfIILP)P = p Joco sP-1pf(s)ds. Since f and f*

are equimeasurable, (1IfIILP)P = pIoco
Sp-l f.Lf(s)ds = Iooo(f*)P(t)dt. The LOO case is

simple to verify.•

The theory of rearrangements was systematically studied by Hardy, Littlewood

and Pôlya in their work [15] where this machinery is used to prove inequalities (see

also [27]). For the sake of illustration, we give one example (Theorem 1.6.6) of this
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type. As far as we knaw, the proof is new. \Ve begin \Vith the fallowing t,va lemmas.

Lemma 1.6.4 (Hardy's lemma) Let f:9,h be measurable functions from (0, 00) ~

[0, (0) and let h be decreasing everywhere. If fot
g(x)dx ~ f; f(x)dx for \lt > 0, then

fooo
g(x)h(x)dx ~ fooo

f(x)h(x)dx.

Praof: First we assume that in addition ta the above h(x) is alsa a simple function.

Hence 3lli, li > a for 1 ~ i ~ n such that h(x) = L~l aiX{O,td(x).

Therefare fooo
g(x)h(x)dx = Jooo

g(x) L::':l aiX{O,td(x)

= L:~l ai f; g(x)dx ~ L~l ai J; f(x)dx

= foOO
f(x) L:~l aiX{O,t,) (x) = Jo

OO
f(x)h(x)dx.

Now if Il is nat a simple function, we cau find a sequence of decreasing simple functions

hn t h and using the monotone convergence theorem, we obtain our result.•

Lemma 1.6.5 Let f be a Tneasurable function on (.\, Il). For t > 0, let ft(x) = f(x)

if IJ(x)1 $ t and ft(x) = t I~{~~I when IJ(x)! > t. Then J1./r (s) = J1.I(s) if s < t and

JLIt (s) =°when s 2:: t.•

Prao/: If s < t, then Ilt(x)1 > s iff If(x)1 > s which impIies SIt(s) = 51(s) and

Illtes) = /.L/(s). Since I/tex)! s tt Slt(s) =0 for s ~ t which gives us Plt(s) =o.•

Naw we are ready ta present the following result.

Theorem 1.6.6 Let 0 < p < 00 and let [,g be measurable functions on arbitrary

rneasure spaces. If 119tllLP :5 IlftllLP fOT \:It > 0 and if / E Lq lOT sorne q such that

o< q :5 p then 9 E Lq and IIgIIL4 < 11/IILf.
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Proo/: Now (1I9tllv')P =p Jo
oo

SP-IJ1.gt(s) by Theorem 1.6.3,

= p f; Sp-l J1.g(s) by Lemma 1.6.5.

Similarly, (1IftIILP)P = p J; SP-lJ-Lf(s).

Now use Hardy's lernma with h(x) = xq- p. \Ve obtain Jo
oo

sq-lJ-Lg(s)ds ~ fooo
sq-lJ-Lf(s)ds.

From our result in Theorem 1.6.3, we get IlgllLq ~ IIflILq.•

There is a degenerate case of quasi-symmetric spaces which contains only functions

which are zero a.e. \Ve will exclude these cases from the theory that fo11ows.

Theorem 1.6.1 Let F be a non-degenerate quasi-symmetric space of rneasurable

functions on .\, where (..Y, JL) is a non-atomic C1-finite rneasure space. If E ç ..\

and p.(E) < 00, then Xe E \/.

Prao/: Since V is non-degenerate, 3/ E F with / not J-L-a.e. zero on X. Hence

3P ç .\ and a > 0 with J.1.(P) > 0 and If(x)1 ~ a > a for 'ix E P. Since / ~ axp,

x.p E \-'. Since J-L(E) < 00, 3{Sil~1 a finite family of painvise disjoint subsets of E

\Vith JI,(Sd ~ J1.(P) for 1 ~ ·i :5 n and U~=l Si = E. Therefore Xs. ~ XP and hence

Xs, E l/. Since XE =L:l XS" XE EV'.•

Definition 1.6.8 Let (..Y, J.L) be a measure space. Then 1 : X -+ C is said ta be

a strictly simple function if 3{Ei li=1 such that Ei ç X with J1.(Ei } < 00 such that

I(t) = E::l aiXE, Ct) where the ai E C.

The following result no\v follows easily from Theorem 1.6.7 and the linearity of V.

Corollary 1.6.9 Let V be a quasi-symmetric space whose elements are functions
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from )( ~ KI then the set of strictly simple functions /rom ~"'( ~ [< is a subspace of

V.

Theorem 1.6.7 aIso allows us ta define the follo\ving:

Definition 1.6.10 Let V be a non-degenerate quasi-symmetric space of measurable

functions on (..Y, J.L), then the fundamentaI function of Tl 1 tP\··(t) is defined as tP\.. (t) =

IlxEllv for t ~ a where E ç )( with !J.(E) = t.

Since XE and XF are equimeasurable whenever !J.(E) =Jl(F), cP,,·(t) is independent

of the choice of E and therefore the above defintion is well-defined. Theorem 1.6.ï

shows us that the fundamental function is defined for "Vt for quasi-synlmetric spaces

of functions on a non-atomic measure space. The lattice property of F implies that

t/Jv(t) is a increasing function. Finally, tP\··(t) > 0 for t > 0 and 4>v'(O) = 0 which both

follow fronl the properties of the quasi-norms. One ean easily see that cPLP = tl/p.

The fundamental function was first defined by Semenov [37].

Since many spaces of great interest such as V(}~, J.l) spaces are quasi-symmetric

spaees, we will now show that two symmetric spaces of functions defined on the same

u-finite measure space (X, J.L) will be a compatible couple. First we recall the concept

of convergence in measure and one of its consequences.

Definition 1.6.11 A sequence fn of complex measurable functions on (X, f.L) is said

ta converge in measure ta f if forVe > 01 3N such that p({x : Ifn(x)- f(x)l > e}) < ê

for \:In > N.
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Lemma 1.6.12 Let ln be a sequence of complex measurablefunctions on (..Y, J1.) which

converges in measure to f and let E ç X where J1.(E) < 00. Then JE l~i~!.jldJ1. ~ 0

as n ~ 00.

Proof: Let lV be as in previous definition. FLx n > 2V. Let S = {x: lfn(x) - f(x)1 >

}. th (S) < UT h r Il,,-/1 d - r 1/,,-/1 d + r 1/,,-/1 d Th fi t
ê, en J1. ê. ne ave JE 1+1/,,-/1 f.l - JS 1+1/,,-/1 J1. JE\S 1+1/,,-/1 f.l. e rs

integral on the R.H.S. is less than ê since j.l(S) < € and the integrand is non-negative

a.nd ~ 1. The second integral on the R.H.S. is :5 êjL(E) since the inegrand is :5 ê.

The result follows.•

Theorem 1.6.13 Let (..\',j.l) be a non-atomic a-finite measure space and F r lF be

quasi-symmetric spaces whose Elements are measurable j.l-a.e. finite real or complex

valued functions on .\, then (V, t,V) is a compatible couple.

Prao/: Let JI he the set off aIl measurable IL - a.e. finite real or complex valued

functions on ..\. Clearly, AI is a linear space and ti and H' are subspaces of J.\f.

Now we construct a nletric d on ~\[. Since)~ is a O'-finite measure space, .Y is a

coulltable union of subsets {En}~l where 0 < J.L(En) < 00. No\v let d(/,g) =
~oo 1 r 1/-91 d cl h' . . :\[. S' l{ . . bl . .
LJn=l 2"S'(E,,) JE" 1+I/-gl J.1. an t IS 1S a metnc on 1.-.. Ince 1v. 1S metnza e, 1t 15 a

Hausdorff topological space. Now suppose ln is a sequence of functions in V with

Illnllv ~ 0 as n -+ 00. We now show that ln converges ta 0 in measure on the

sets En. The proof is by contradiction. Suppose 3E ç X with 0 < JL(E) < 00 such

that ln does not converge to 0 in measure on E. Theo 3/n" a subsequence of ln
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and é > a such that p.( {x E E : Ifnk 1 > é}) > é. Thus f~1c ~ é;(O,E) ~ xi> where

P is any measurable subset of E with 0 < f.l(P) < €. Since V is a quasi-symmetric

space XP E V and 0 < êllxpllv ::; Ilfnlcllv which contradicts our assumptian that

Ilfnllv --? O. Hence fn converges in measure ta aon aIl sets of finite measure which

implies that d(fn, 0) -+ aand therefore V' is continuously embedded in ~\I. Similarly

for ~·V. Rence (V, VV) is a compatible couple.

1.7 Quasilinear Operators

~Iuch of analysis denls with Huenr aperatars. Interpolation theory is no exception.

Hawever there are cases where the theory can be extended ta larger classes of opera­

tors. For this purpose we introduce the concept of a quasilinear operator.

Definition 1.7.1 Let T be an operator whose domain and range are topoLogical vector

spaces wltose elements are measurable functions on (S, ..\) and (..t, J..t) respectively.

Then if3C ~ 1 such thatforTff,g in the domain oIT, IT(f+g)(x)l::; C(ITf(x)1 +

ITg(x) 1) for J..t - a.a.x E .\, T 'is said ta be a quasilinear operator. If in addition we

can take C = l, T is said ta be sublinear.

Alllinear operators are sublinear. 'vVe can define the bound (or norm) of a quasi­

linear operator in exactly the same \Vay as we do for linear operators.

Definition 1.7.2 Let T be a quasilinear operator and let V and W be quasi-nonned

spaces contained in the domain and range of T respectively. Then T is said ta be a
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quasilinear operator from V -t ~v w'ith bound Al (or norm AI) if 1\1 is the smallest

positive real number such that IITfll~v ~ Alllfllv forT/f E V.

The use of the word norm here cornes from the theory of linear operators on Banach

spaces where the norm actually is a norm (Le. satisfies the axioms in Definition 1.1.2).

In the general case, the word norm is often still used (as in [18]) but in this case the

norm is not necessarily a norm. Hence, in this thesis, the ward bound will be used.

\Ve end this section by noting that if V' and IF are two quasi-normed spaces in the

domain of T, V + ~V and hence eyery intermediate space (Definition 1.-1.8) of (F, IV)

is also in the domain of T.
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Chapter 2

Interpolation and the K-method

2.1 Interpolation Spaces

Definition 2.1.1 Let (Ao,Ad and (Bo,Bd both he compatible couples (as defined in

Definition 1.4.3) of quasi-nonned spaces. Then T is an admissible operator from

(Ao,Ad to (Ba,Bd if T is an operator from ..la + Al ~ Ba + B l with the added

property that T maps Ai -+ Bi boundedly for bath i =a and i = 1.

Definition 2.1.2 Let ..4 and B be quasi-normed spaces and (Ao,..4d and (Bo,Bd be

a3 abave. Then (..4, B) is said ta be an interpolation pair for (Ao,At} and (Bo,Bd if

A is an intermediate space for (Ao,Ad, B is an intermediate space for (Bo,B l ) and

if every admissible linear aperator fram (Ao,A I ) ta (Bo,B I ) maps .4 -+ B baundedly.

Definition 2.1.3 A is said ta be an interpolation space for (Ao,Ad if (A, A) is an

interpolation pair for (Ao,Ad and (Ao,Ad .
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NIany mathematicans have studied methods of generating interpolation pairs. In

the remainder of this thesis we explore one of the more widely used of these methods;

the K-method developed by J. Peetre in 1963.

2.2 The K-functional

Definition 2.2.1 [34] Let (V, ~V) be a compatible couple of quasi-nonned vector

spaces and f E V + ~V. Then [«(J,t, F, Ir) = inJ9+h=/(I!glh· + tllhllu-) where the

infimum is taken ouer 'Vg E Ft h E IVwith J = 9 + h. /{(j, t, l~~ IF) is called the

[(-June.lional.

vVe sonletimes write /{(j, t, F, IF) as [{(f, t) if the identity of the spaces V' and

t,V are clear frem the context.

Lemma 2.2.2 Lel (~'~, IV) be a compatible couple of quasi-normed vector spaces.

Then [(-functional satisfies the inequaUty: [{(f, s, \.-~ IV) :5 max(l, s/t)l«(f, t, ~/~, lV)

for "fi/ E \/ + lV and Vs,t > O. In particular [«(J, t) is an increasing function of t

and 1«(/, t)/t is a decreasing function of t.

Prao!: New let 9 E V,h E l'V \Vith f = 9 + h. Suppose s < t, then K(f, s, V, ~V) :5

IIgllv + sllhlhv :5 Ilgllv + tllhlhv. Taking the infimum over the R.H.S gives us

[«/, s) :5 [«/, t). Hence K(/, t) is increasing. Now suppose s > t, then K(/, 5, ~ vV) :5

Ilgllv + sllhlhv < (s/t)(llgllv + tllhllw ). Taking the infimum over the R.H.S gives us
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[«(J, s) $ (s/t)K(J, t). Dividing both sides by s we see that [«(J, t}lt is decreasing.

•
Lemma 2.2.3 [1] Let (~ ~V) be a compatible couple of quasi-normed (resp. normed)

vector spaces and let t > o. Then K(·, t, V, t,V) is a quasi-norm (resp. norm) oJV + l,V

equivalent to the usual norm 11·11t-,+w.

Praof" It is easy to verify that [«(., t, V, ~V) is a quasi-serninorm (resp. seminorm).

From Lemma 2.2.2, we obtain min(l, t)ll/lIv+w ~ [«l, t, V, tV) ~ max(l, t)IIJlh'+w

and thus [«1, t) = a irnplies 11/11\,+w = 0 which by Lemma lA.5 implies f = 0 and

hence [«., t, \/, ~V) is aquasi-norm (resp. norm) equivalent to /1 Ih'+n" •

[«l, t, ~~, ~V) is defined for "fi! E V + tV. If we restrict J ta he in F or n~ we get

the following bounds for the [{-functional.

Proposition 2.2.4 [«J, t, V, IV) ~ 11/11\· for "fil E \/ and [«l, t, V, tl") ~ tll/i hv

JorV! E ~V

Prao/: This follows immediately from Definition 2.2.1. Use the decomposition 1 =

1+0.

Lemma 2.2.5 Let (~ l'V) be a compatible couple of quasi-ideal spaces, f, 9 E V +W

and Iyl < Ifl a.e. then K(y, t, ~ ~V) $ K(f, t, v: vV).

Praof: Let /,9 be as above. Let 17(X) = ~ if I(x) :/= 0 and l1(X) = 0 if I(x) = o.

Then 171(x)l $ 1 for a.a.x and g(x) = fJ{x)f(x). Fix t,e. Now 3h E ~ k E W such that
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/ = h+k and IIhllv+tllkllw ~ K(/, t, ~ ~V)+ê. Then g(x) =q(x)f(x) =1](x)h(x) +

q(x)k(x). Since 11](x)h(x)l ~ Ih(x)1 and V is an quasi-ideal space, Il''1hllv ~ IIhllv.

Similarly, IITJkll w ~ Ilkll~v. Therefore K(g,t, V, W) ~ IITJhll v + tll1]kll,v ~ IIhllv +

tllkll w ~ K(/, t, ~ ~V) +ê. Since ê is arbitrary, we get K(g, t T ~ IV) ~ K(/, t T V, ~V) .

•
Corollary 2.2.6 Let (V', ..~ .. ) he a cornpatihle couple of quasi-ideal spaces, f, 9 E

V + ~V and Iyl = 1/1 a.e. then /«9, t, V, H') = /{(/, t, \i', IV). J'lare specifically

[«Ifl, t, V, fV) =K(f, t, FT IV).

Proof: 'Use previous lemma twice.

2.3 K -spaces and Interpolation

In this chapter, we examine the properties of /(-spaces. :\11 results except where

otherwise noted can be round in [1} or (3}.

Definition 2.3.1 Let (t~ l'V) he a compatible couple of quasi-nonned spaces and let

o < () < 1 and 0 < q $ 00. ~Ve define the space (~ ~V)8.q = {f : f E V + ~V such

that IIt-8[«f,t, V, lV)IILq(~) < oo} (The definition ofll/IILq(~) was given in section

0.1).

. .
• •• 1

Theorem 2.3.2 Let (~~V) be a compatible couple of quasi-normed spaces, 0 < 8 <

1 and 0 < q :s 00. Then (v: W)Stq is a quasi-normed space with the quasi-norm
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IIfllo ,q = IIt-8K(f, t, ~ W)IILq(~). Furthermore, if V and ~V are normed spaces and

1 :5 q :5 00 then (V, VV)8,q is a normed space.

ProoJ: This follows from Lemma 2.2.3 and the faet Il 1IL.'l(!!f) is a quasi-norm for

o< q ~ 00 and a norm for 1 ~ q ~ 00.•

The members of these two parameter family of spaces are collectively called K-

spaces. They satisfy the following important inclusion relations:

Lemma 2.3.3 Let 0 < q < 00, then (V, IV)o,q ç (~., IV)o,oo and IIfllo,oc ~ [q8(1 -

8)P/qllfIIO,q lor 'VI E (F, lV)o,q.

Prao/: Let 1 E (F, t'F)o,oc.

Using Lemma 2.2.2:

~ (foS[t-8(t/s)I{(f,s)]q~ + J:OC[t-8I{(f,s)lq~)l/q

= [«1 s) (s-q fil t(l-O)q ri! + foc t-8q !ft) l/q = [«1 s) (S-tl
q + s-tl

q
) l/q

, Jo t J Il t 'q( 1-8) qO

Take sup over 0 < s < 00 of the R.H.S. and we obtain our desired result.•

Theorem 2.3.4 Let 0 < q < r :5 00, then (~vV)o,q ç (V, ~V)8,r and Ilf118,T ~

1 1

[q8(1- 8)]i- r llfIl8,qJorVf E (~', ~V)o.q.

ProoJ: The case where r = 00 was covered by the previons lemma. Sa let r < 00,

then 1I/IIOt T = (JoOO[t-SK(f, t)]r~)l/r = (!oOClt- OK(f, t)]r-q[t-SK(f, t)lq~tp/r.

~ (supo<s<ooI(f, S )5-9)l-q/r(llfI18
t
q)q/r = <11/110.00) l-q/r(llfIl8

t
q)q/r.
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Now using Lemma 2.3.3,

Theorem 2.3.5 Let (V, ~V) be a compatible couple of quasi-normed spaces. Then

(V, ~V)s,q is an intermediate space for (V, t,V).

Prao/: First, let J E Vnvv. Then from Lemma 2.2.4 we obtain the estimate [{(J, t) :S

minCI, t) IIJllvnw. rvlultiplying by t-O on both sides and applying the Lq(~) norm on

00, V n t,V is continuously embedded in (F, Jr)o.q. ~aw let f E (t·, Jr)o,q. If Cl = 00,

then Ilfllo,CXl = SUPt>O t-O[«J, t) ;::: [«f, 1) = llflh..+w. If q < 00, we use Lemma 2.3.3

ta obtain IIJII\-'+w $ Ilfllo,CXl ::; [q8(1 -lJ)j1/QIIJllo,q. Hence (F, ttt)s,q is continuausly

embedded in V + ~v and (\1, IV)o,q is an intermediate space for (F, H').•

Now we are ready to show that the f(-method interpolates quasilinear operators.

The following proof is original. This result is contained in the more general but less

elementary results of Sagher [36] and Komatsu [23}.

Theorem 2.3.6 Let (..la, :id and (Ba, Bd be compatible couples of quasi-ideal spaces

and let T be a quasi-linear operator !rom Ao+ ..4 l -+ Ba +B l where T maps Ai -+ Bi

with bound Mi > 0 when i = 0 or 1. Then T maps (Ao, Ado,q -+ (Ba, Bt}o,q with

bound Cl\t/J-s AtIf .

Prao/: In what follows C is a positive constant independent of t but not necessarily

the same in aIl occurences. Fix t, f > 0 and let f E Ao+ Al. Then 3g E .040 , h E Al
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such that / =9 + h and IlgllAo + ~tllhllAl ~ K(f, ~t, Ao,Ad + €

Then K(Tf, t, Bo,Bd = K(ITfi, t, Ba, Bd using Corollary 2.2.6,

~ CK(ITgl + IThl, t, Ba, Bd by the quasilinearity of T and Lemma 2.2.5,

~ C[K(ITgl, t, Ba, Bd + K(IThl, t, Ba, Bd]

= C[K(Tg, t, Ba, Bd + K(Th, t, Bo,Bd] using Corollary 2.2.6,

~ C[lITgll so + t11Th/l B1 ] using Proposition 2.2.4,

~ C[.AJollgII Ao + 1\-fl t/lhII A1 ]

~ CAfo[I«f, *t, .040 , Ad + f].

Since f is arbitraI')r, we have J{(TJ, t, Bo, Bd ~ CAloI{(/, *t, ...la, Ad.

Thèrefore liT fllcBo.BdS,q = {foOO[t-O[<CTJ, t, Ba, Bd]q!!f)l/q

~ CAIo (foOQ[t-O[<Cf, *t, ..la, Ad]q~t)l/q = C.AIJ-o A1rIlJllcAotAt}s,q' The last equaI­

ity can be obtained by making a change of variables s = ~t.•

Since every linear operator is aiso quasi-Hnear, we have

Corollary 2.3.7 Let (Ao, .-id and (Ba; Bd be compatible couples of quasi-ideal spaces.

Then «Ao, Ads,q, (Ba, Bd6,q) is an interpolation pair for (Ao, .-id and (Ba, Bd·

2.4 The Reiteration Theorem

AIl results in this section with the exceptions of Lemmas 2.4.2 and 2.4.3 are due ta

Tord Holmstedt and can he found in [18]. \Ve have streamlined certain proofs. Let

(V, W) be a compatible couple of quasi-normed spaces. Applying the K-methad,

we abtain a two parameter family of spaces (~W)'1q. Now choose two of these
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spaces: Ai = (V, VV)Qi,qi for i = 0, 1 where a < Qo < QI < 1 and 0 < qa, ql ~ 00.

Bath Ao and Al are continuously embedded in V + lV (proved in Theorem 2.3.5).

Hence (Ao, Ad is a compatible couple and we can apply the /(-method on this new

couple. The reiteration (or stability) theorem states that (.040 , Ado,q = (V', ~V)'1,q

where TJ = (1 - 8)00 + 80.1'

For ease of notation let K(/, t) = /«/, t, V, l'V) and let j«(/, t) = /«/, t, Ao, Al)'

It is often very difficult ta find the exact value of K(f, t). The f(-method can still be

used provided we can find H(/, t) : (li + IV) x (0, 00) ~ IR with the property that

'iff E V +vl!, H(cj, t) = IclH(f, t) and GLH(j, t) ~ f\:(j, t) ~ C2H(f, t), 'iff E \ ~ + I-V,

Vt > a where CL and C2 are positi\'e constants. \Ve write f{(j, t) "'w H(/, t) when

fI(j,t) satisfies the above conditions. Then Ilt-9H(/,t)IIL"(~) is a quasi-norm for the

space (Ao, Ado,q and is equivalent to the usual quasi-norm (see Definition 1.1.4) for

(Ao, .4do,q. The following is a result of this type.

Theorem 2.4.1 (Holmstedt's Formulas) Let V, ~V, Ao, A'1 be as above.

Then /(f, tQI - OO ) '" (!;[s-OO K(/, s)]qO ~.f Plqo + tQI-QO (h<Xl[S-QI K(j, s) ]ql ~") l!ql

and [{(I, tOI t V, Ad '" tQI (h<Xl[s-OI [«l, S)]ql d:Plql

and [«f, tl-aD, Ao, VV) '" (!;[s-OO K(j, s)]qO ~)llqo

AlI three of the above fonnulas are clasely related. 'vVe ,vin praye the first one

and give indications in the text where the argument needs to be modified to prove

the others.

Proo/: In what follows C is a positive constant independent of t but not necessarily
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the same in all its oceurenees. Fix t > aand let / E Ao + Al'

First we show that the L.H.S. $ C*R.H.S. Since Ao, Al ç \/~ + t·V, 39 E V and

hE t,V such that / = 9 + h and IIgllv + tllhll w ~ 2K(/, t).

Theo by Lemma 2.2.4, K(g, s) ~ Ilgllv $ 2K(/, t) and K(h, s) $ sllhlhv $ 2ÎK(j, t).

Using Lemma 2.2.3, we obtain 1«9, s) = K(/ - h, s) $ C[I«(/, s) + [«h, s)]

< C[[«/, s) + f1«f, t)] = CS[K(!,s} + K({'tl]. Now since 1«/, t)/t is a decreasing

fuoction of t, [«g, s) :5 Cs[K(/, r)/r] where r = min(s, t). Hence we have IIgl1.40 =

(Jooo[s-QO K(g, s)]qO ~ )l/qO =C(!;[s-oo [«~J, s)]qO~ + .1:00 [s-oo fI«/, t)]qO ~s )l/qo.

Now we consider the second term on the R.H.S. of the abo\"e inequality.

~oo[s-oof/(/, t)]qO = (K({'t))qO .1:oo [Sl-OO]qOd: ~ C(K({'t}t1-QO)qO

= C( K({'t) )qO J;(t 1-
QQ )qO $ C(f;[s-QO [(~J, s)]qO ~S).

Therefore we have 11911.40 $ C(f;[s-OO[«/,S))qO~)l/qo .

(In the case where Ao is replaced by V we use IIglhl :5 21«/, t)

:5 CtOl (ftoo[S-Ol [((J, t)]ql d: Plq1 $ CtQI (.1:00 [8-01 /(/, s) ]q1 d: )1/q1 ).

Using Lemma 2.2.3, we obtain K(h, s) = K(/ - g, s) :5 C[I«/, s) + [«g, s)]

~ C[[«(j, s) + K(/, t)] = C[I«j, T)] where T = max(s, t) sinee K(/, t) is increasing.

Henee we have IlhllAl = (IoOC[s-OI 1«h, S)]Ql ~)llql

= C(I;[S-QlK(/, t)]Ql ~ + hOC[s-ct1 K(/, S)]ql ~)llql.

Now we eonsider the first term on the R.H.S. of the above inequality.

J;[S-OI K(/, t)]ql et: = [[«l, t)]ql f~[s-Ollfl et: :5 C[K(j, t)]ql [5-Q1 ]fl

~ C(ftOO[S-OI K(/, S)]Ql). Renee we have IIhllAI $ C(ftOCl[S-OI K(/, S)]Ql ~)llql .
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(In the case ,vhere Al is replaced by t,v we use Ilhllw ::; 2K(/, t)jt

::; Ctoo - 1(J;[sl-00 K(/, t) jt]qO ~t) llqo ::; Ctoo - l (f;[s-oO K(/, s)]qO ~t) l/qo).

Therefore, we have K(f, tol -oO,Ao, Ad ::; f1gllAo + tol-oO IlhlL"l

::; C[(J;[s-oOK(/, S)]qo~)l/qo + tQl-OO(ftOO[S-QlK(/, S)}ql ~)l/qll

Therefore, L.H.S. $ C*R.H.S.

Now, we prove the reverse inequality. Fix t, f > O. Since / E ...la + ALI 3g E ...la,

h E Al such that f = 9 + h and IIgllAo + t01
-

o°l!hll."l ::; [\'(/, tO I -
QO , Ao, Ad + f.

Using Lemma 2.2.3, K(/, t) ::; C[I«y, t) + /«(h, t)]. Since 9 E Ao = (V', H')Qo,qO ç

(lI, I,V)QO,OO (Last inclusion follows from Lemma 2.3.3), SUPt>ot-no /«(y, t) :5 00 and

thus /«(y, t) :5 CtQOllgll.-lo' Similarly /{(h, t) $ Ct01IlhII A1 . (For the second and

third results we use instead /«(9, t) $ IIgll\' or /{(h, t) $ tllhllw respectively. The

renlainder of the argument is unchanged) .

Therefore (J~[s-OO[{(J, s)]qO d:) l/qo

::; C[(!;[s-OO[«g,S)]qOd:)l/qo + (f;[s-oOK(h,s)]qOd:)l/qO]

:5 C[(kOO[s-Qo/«(g, S)]qOd:)l/qO + IIhIIAl(J;[SOl-OO]qO~)l/qO]

:5 CUlgl/Ao + tOl-oo llhll."l]:5 C[I«(/,tOl-oo,Ao, ...lt)] +f.

Similarly (ftOO[S-Ol K(f, S)]ql )l/qO

$ C[(ftOO[S-Ol [«9, s)]ql ~) l/ql + (ftOO[S-Ol K(h, S )]ql ~ )llql]

$ C[lIgIIAoCftOO [sOO-Ol]Ql ~pfql + (k[S-Ol K(h, t)]ql ~)l/Ql]

S C[tQO-OIllgIIAo + IIhllA1l
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Since é is arbitrary, R.H.S.::; C* L.H.S.•

Befare proving the reiteratian theorem, we state the follawing well-knawn result.

Lemma 2.4.2 (Hardy's Inequalities) Let JCt) he afunctionfrom (0,00) -+ [0,00)

Let f3, t > 0 and 1 < r ::; 00

If 0 < r < 1 then the above inequalities are reversed. Furthe17nore, if r = 1 the

inequalities become equalities.

The praaf of Hardy's inequalities rnay he found in [12J,[l},[30] or [33]. \Ve aiso

need the following inequalities.

Lemma 2.4.3 Let s > 0, 0 < fJ < land 0 < p ..::: q :5 00, then the following

inequalities haid

and

Here C may depend on s,8,p or q but is independent of f.

Proof: First we praye these inequalities when q = 00. Now IIX(Ot.f)t-SK(f, t)(ILP(~) ~

K(;,.f) IIx(Ot.f)tl-sllv(~) = CK(f, s)s-9 where our first inequality follows from K({'t)
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being a decreasing function (Lemma 2.2.2). Now IIX(o,,,)t-B1«/, t)lfLP(~) is an in­

creasing function of S,50 for t < s we have Ilx(o,,,)t-OK(f, t)lILP(~) ~ C[«J, t)t-B. If

we take sup of R.H.S. over 'Vt < S we obtain our first inequality for q = 00.

For the second inequality, we have IIX(.!,oo)t-BK(f, t}IILP(!#f) ~ [«~J, s)IIX(s,oo}t-OIILP(lIf)

= CK(f, S)S-8 where our first inequality follows from [«/, t) being an increasing

function (Lemma 2.2.2). Now IIX(",oo}t-B1«J, t) IILP(!#f) is an decreasing function of s,

sa for t > s we have IIX(o,,,)t-O[(~J, t)lILP(~) ~ C/{(/, t)t-o. If we take sup of R.H.S.

over 'Vt > s we obtain our second inequality for q = 00.

Now using an argument identical to Theorem 2.3...l, we can use the q = 00 case ta

praye the inequalities for general q.•

Now we ready ta prove the reiteration theorem. This result is also due to Holnl­

stedt.

Theorem 2.4.4 Let V', lV, Ao, Al be as above, then (..10 , Ad8.p = (V', tl''')71,P where

TI = (1 - 8)00 + 001. Futhermore Ct B-min(l/p,l/qo}(l - o)-min(l/p,l/qdIlJII(\··,w)",p ~

IIfll(Ao,.-ltlll.
P

$ C2B-mu(l/p,l/Qo}(1 - o)-maz(l/p,l/qdllfll(v.\v)",p where Cl and C2 are

positive constants which do not depend on B.

Prao/: In the following C is a constant which is independent of 8 but is not neces­

sarily the same in all its occurences. IIfll(Ao
t
Ad,.P = (!000[S-8K(f, St Ao, Ad]pd:)l/P =

C(!oOO[t-8{a 1-ao)K(ft tOt-QG t Ao,Ad]P~ )l/p where we have made the substitution

tOt - ao = s. The same change of variables can be made for the supremum in the
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p = 00 case. Now using Holmstedt's formula, we get:

Using the triangle and reverse triangle inequalities for LP(~t), we now obtain:

Ilfll(Ao,Ads,p ~

IIt-B(ol-oo)(f; [s-oo K(/, s) ]qO ~$) l/qo IILP(~)+llt(l-8)(01-OO) (hCXl[s-QI[<(l, s) ]ql ~$) l/q1IlLP( ~).

Let la he the first terrn on the R.H.S. and let Il be the second term on the R.H.S.

If p ~ qo, we use the first of Hardy's Inequalities with ,d = 8(01 -(0), r =p/qo and

Remembering that 1J = (1 - 8)00 + 801 = 0(01 - ao) - 00, we see that the la $

C01/qO 11/11(v,w)IJ'P'

If p < qo, then we first use Lemma 2.4.3 ta get la ~ (!oCXl[t-8(Ql-QO) f~[s-QO[«l, s)]P~l~t) IIP.

Now we can use Hardy's Inequalities \Vith (3 as in previous case, r = 1 and I(s) =

Combining our two cases, we get la ~ CO-maz(l/qO,l/p) IIfll(\',~v)",p'

vVe cau also show that la ~ co-min(l/qO,l/p) 1I/11(v,~v)rr,p using the same methods.

If p ::; qa, we use Hardy's Inequality with f3 = 8(al - (0), r = p/qo and

Remembering that TJ = (1 - 8)ao + 8al = 8(a1 - (0) - aa, we see that the la ~

C81
/

QO 11111 (V,W)IJ,P'

Ifp> qo, we use Lemma 2.4.3 ta get la > (IaCC[t-8(OI-OO) f;[s-QOK(/,s)]P~l~t)lIP.
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Now we can use Hardy's Inequalities with (3 as in previous case, r = 1 and f(s) =

[s-oo K(f, s))P, we get la ~ C81/Pllfll(v.w)'1,P'

Combining our two cases, we get ID ~ C8-min(1/QO,l/p) Ilfll(v,w)'l.p'

Now we also have Il = (!OOO[t(1-S)(01-00) ItOO[s-QII«(f,s)Jql~.!]P/ql~)l/P.

Using the same methods as \Vith 10 , we can show that Il < C8-mQJ:(1/ql,l/P)llfll(v,~v)".P

and Il ~ C8-min(1/ql,l/P)IIJII(v,~v)'1.PThe only differences here are that we use the sec­

ond of Hardy's Inequalities instead of the first and that we take /3 = (1 - 8)(01 - 00)'

Adding our inequalities for la and Il we obtain the required result.•

Note that in all of the previous results, we have had Ai = (ll', lF)ol,q, with 00 < al'

The rciteration theorem aiso works when QI < 0'0; an we have to do is interchange

the roles of Ao and Al' One can easily see that [{(f, t, ....10 , Ad = tI«(!, lit, Al, Ao)

and therefore multiplying by t-e and taking Lq(!!f) of bath sicles we get (Ao, Ad8,q =

(Al, AO)l-O.q' No,v let TJ = (1 - 8)00 + 801' Since 0'1 < 0'0 we can use Theorem 2.4.4

on the reversed couple (A. l , Ao) to obtain (...10 , Ads,q = (Ah Aoh-s,q = (v", t,V)l1,P with

equaivalent norms where TI is as hefore.

'VVe used the first of Holmstedt's formulas in the proof of the reiteration theorem.

Using the second and third of the formulas and using an argument identicaI to the

usuaI reiteration theorem we get the following:

Theorem 2.4.5 Let ~ Al be as above, then (V', Ads" = (~fV)"" where 77 = BQl

with equivalent norms and Cl(l -lJ)-min(l/,.l/qdllfIlCv,w)JltP :S IIfllcv,Al)',p ~ C2(1 ­

8)-maz(l/p.l/qdllfll(v.~v}tr,P where Cl and C2 are positive constants which do not depend
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on (J •

Theorem 2.4.6 Let Ao, ltV be as above, then (Ao, vV)s,p = (V', lV)77,P where Tl =

(1 - 8)ao + 8 with equivalent nonns and c1o-min(l/p,l/qo)llfllcv.,v)",p ~ Ilfll(Ao.'V)s.P ~

C20-maxCl/p,l/qo)lIfllcv"v)'l,P where CL and C2 are positive constants which do not de­

pend on 9.
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Chapter 3

Interpolation of IY spaces

3.1 The Lorentz spaces

One of the goals of this chapter is to describe the interpolation spaces generated by

the LP spaces and then use the results to prove classical LP interpolation theorerns.

Sorne of the [(-spaces generated by a pair of LP spaces are not themselves LP spaces

but lie in a larger family of spaces called the Lorentz spaces. The results in this

section are from [30].

Definition 3.1.1 Let (X, J.L) be a a-finite measure space and let a < p, q :5 00;

then II/IILP" = (; IoOC[t 1
/P1·(t)]q~t)l/q if q < 00 and IIfllvJ'9 = SUPt>o t1

/
pI·(t) when

q = 00. Then the set y,q consist.s of ail the J.l.-measurable functions 1 on X with

IlJIILP'9 < 00.
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equality cornes from Theorem 1.6.3). Therefore LP spaces are aIl realizable as Lorentz

spaces.

The foIlowing proposition shows that lj1'OO is essentially weak LP (Definition 1.5.5).

This foUows from Proposition 1.5.8.e. Let t = J1.f(s), then fa(t) ::; s. Heuce

t1/p f·(t) $ s(fJ.f(s))I/p • Taking supremums of both sides, we get L.H.S.~R.H.S. Now

let s = fe(t), then fJ.f(s) ~ t. Hence L.H.S.~R.H.S.•

. wlany of the properties of Lorentz spaces wiU follow from those of I{-spaces once

we praye that (LPO,qO LPl,ql)O = LP,q where ! = 1-0 + L. In arder to appl..v this
',q P Po Pl

theory, we must show that LP,q are quasi-normed spaces.

Theorem 3.1.3 The v,q spaces are quasi-normed spaces.

Homogeneity follows from Proposition 1.5.8.d. No\v we prove the triangle inequality.

For what follows let 8 = 2t.

First let q = 00. Then using Proposition 1.5.8.g, Il! + gllLP,oc = SUPt>ot l
/ 1'(f +

Secondly let q < 00, Then using Proposition 1.5.8.g, "' + gllLP,q = (fOOO[tl/P(f +

gt (t)]q~t)l/q :5 (Iooo[tl/1' ,*(tf2)+tl/Pg*(tf2)]QIJ[P/q = (Iooo [(2s)I/1' f* (8)+(2s )1/1'9- (s)]q~ )1/q

$ 21/1'+[1/q-l}+«!OOO[Sl/Pf·(s)lq~tP/q+ (koo[Sl/Pg*(S)]Q~t)l/q) = 21/P+(1/q-l}+(lIfIlLP,q +
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I!gIILP,q). Now IlfllLp,q = 0 implies f* = 0 and hence f = O. Hence v,q are quasi­

normed spaces. •

It is not to hard to see that, in fact, the LP,q spaces are quasi-symmetric spaces.

One can compute the fundamental function of these spaces (Definition 1.6.10). For

p < 00 or p = q = 00 we obtain lPLP,q (t) = t1/P • However, when we consider the

case where p = 00 and q < 00 we find something quite different. Let E ç .\ with

J.L(E) = t < 00, then IIXEllv30,q = (foOO
X(O,t)(S)~.s)l/q = 00. Hence XE f1. v,q and by

Theorem 1.6.7, Loo,q cantains only functions which are zero a.e. \Ye exclude these

degenerate cases in what fo11ows.

3.2 K(f, t, A, LOO)

Lemma 3.2.1 Let (..\, J.L) be a non-atomic a-finite measure space. Let .-l be a quasi­

symmetric space whose elements consist of j.l-a. e. finite functions on ..\. ~Ve take LOO

to be LOO(~Y, J.L). Let f E A + Loo and E ç .\ with J.L(E) < 00 then fXE E .-L

Proo/: If f E A. + Loo, then 3g E A., h E LOO such that f = 9 + h. First we note that

.4 is a quasi-ideal space and therefore 9XE E .4, since 9 E A. and 19XE(t)1:5 Ig(t)l·

Furthermore, IhXE(t)1 =5 IlhIILoolxE(t)1 and XE E A (Theorem 1.6.7) which gives us

hXE E A. Since IXE = 9XE + hXE, fXE E A.•

Before continuing, we recall the content of Definitions 1.5.1 and 1.5.2:

8,(s) = {x EX: I/(x)1 > s} and jJ./(s) = jJ.(S,(s)).

AIso S/(s-) = limu - u - S,Cu) = {x EX: I/(x)! ~ s}.
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Definition 3.2.2 We define Alf(t) as follows. Suppose 3s > 0 such that J.Lf(s) = t

then let AtI,Ct) = 81(s). [f no such s exists, take S = f*(t) = inf{J.L/(s) ~ t}.

Then J.L(Sf(s)) < t and J.L(SI(s-)) ~ t. Then let lvII(t) be a set of J.L-measure t with

S,Cs) c lv!,(t) ç 5/(5-).

In the second case above, our choice of .L'I,(t) may not be unique. However,

the fXM/(t) are equimeasurable over ail choices of J.\f,(t) and hence the quantity

IIfxM/{t) liA which is needed for the following results is well defined. The following is

due ta Krée [25] (see also [2]).

Theorem 3.2.3 Let A,Loc and f be as in the previous lemma, let OA(t) be the

fundamentaL function (Definition 1.6.10) of A and let CA 1 ~-\ be the constants in

the c-triangle inequaLity and the reverse triangle inequaLity for .4. respectively. Then

(cA)-lllfxM/(t)IIA ~ [«f,cP.-l(t),A,LOO) 5 C:.dlfx.\[,(t) 11.4 forVf E A + L:JO.

Prao/: Fix t > Q. Let f E .4 + Loo, then 3g E A,h E LOC with f = g+h and

11911A + ~.-\(t)lIhIILCIO ~ [(Cf, <PA(t), A, LOO) +~.

Now usingthe c-triangleinequality, (cA)-lllfx.u/(t)1I $lIgXAJ/(t)IIA+llhxl\(,(tlIlA $

11911A + IlhllLoo IIXA-l[(tl liA since IgXA-I/(t)1~ lui, IhXAl/(L)1~ IlhllLoo IXA!/(t) 1·

Hence (cA)-lllfXA-c/(t)1I $ IlglIA + cPA(t) Ilhll LCIO $ K(f, cPA(t), A, LOO) + ê. Since ê

is arbitrary we have the L.H.S. of the required inequalities.

Now we praye the R.H.S. Using Corollary 2.2.6, we may assume without 1055

of generality that f ~ o. No\v let g(x) = [/(x) - f*(t)]xM/(t)(x) and let h(x) =

45



•

•

•

f(x) - g(x). Then h(x) = mine/ex), [-(t)) and IIhll L oc = f*(t). Furthermore since

f(x) E A + Loo and f*(t) E Loo ç .4 + Loo, f(x) - f-Ct) E A. + Loo and by Lemma

3.2.1, g(x) = [J(x) - [*]XMf(t} E A.

ThusK(f,tPA(t),A,Loo) :5llgIIA+cPA(t)llhIlL oc :5119X.\ff(t)II..I+llxMf(t)II.-tllhIILco:5

IlgXMf(t} lIA+f*Ct)llxMf(t) liA :5 II[f(x) - f*(t)]XMf(t} 11.-1+lIf*(t)xMf(t) 11.-1 ~ C:-tllfXMj(tl! lA,

The last inequality follows from the reverse triangle inequality (Lemmas 1.2.4 and

1.3.4).

Hence we have (cA)-III!xM/{t)ll.-t ~ /«f, tP.-t(t), A, LOO) ~ ~-IlIfx.\I/(tdl.-l' •

Now we can substitute IlfXM,(t)11.4 for /{(f, t, A, LOO) and obtain an equivalent

norm for (A, Loo)o,q' The following result gives us the decreasing rearrangement of

fXM/(t).

Proposition 3.2.4 For fixed t > 0, (!X.M/(t})a = f·x.(o,t).

Prao/: Let 9 = f XMf(t) and h = j- X(O,t)· Then h is cIearly decreasing and right­

continuous. \Vhen SI(s} < t, S9(S} = SI(s) = Sh(S) and when 81(s) ~ t, Sg(s) =

t = SIL(S). Hence 9 and h are equicontinuous and by Lemma 1.5.9, g. = h.•

For A = LI, we obtain an especially nice simplification of Theorem 3.2.3. Here

Co =éL1 = 1 giving us the following result due to Peetre [34):

Corollary 3.2.5 For \::ff E LI + Loo, t > 0; K(f, t, LI, LOC) = J~ f*(s)ds.

In the theory above, we restricted X ta be a non...atomic q ...finite measure space.

In sorne applications, we may want X ta he Z with counting measure. We sketch

46



•

•

•

what can be done in this case. Let f(n) he a function on Z! then let f'(t) =

I:iENJ(i)X[i,i+l)(t). For Lorentz spaces, we no\v have 11/'IILP,q(R) = IlflllP,q(Z). Hence

we have K(/, t l / p
, [P,q, [00) 'V Ilf'XMI'(t)IILP.q(lR)'

3.3 Interpolation of Lorentz spaces

If A is an LP,q space we can say more. Since (1 XMlet) r = f· X(O,t) , we have

which will allaw us to interpolate Lorentz spaces.

Theorem 3.3.1 Let 0 < fJ < l und let Lpo.qO und LP1,t[1 be two fLoneTTlpty Lorentz

.'ilJaces with Po -J. PL' Then (vo•qO LP1.ql)O = LP,q where ! = 1-8 + .!L und! =r , ,q p Po Pl Cl

1,~O + ~. Furtherrno're 3c, C > 0 such that cfJ- min(l/q,I/ClO)(l_ 8) - min(llq,Llqd IlfIILP,'l $

Ilfll(LPo''1o.LP1''11)s.q ~ CfJ-ma.."«I/q,l/qo)(l - 8)-ma:«1/q,l/qd llfIILP," for 'Vf E LP.q.

Proo/: Now let us suppose that Pi < 00 for i =0, 1. Choose r such that a< r < Pi, qi

for i = 0,1. Theorem 3.2.3 gives us [«/, t l/r, LT, LOQ) 'V (J;(f"(s)rds)l/r. ~Iaking

the substitution r = t l /r, we obtain [{(f, T, Lr, LOO) 'V (!o.,.r (j-(s)rds)l/f". Therefore

Ilfll(Lr,Loo),.IJ 'V (J~OQ(T-OrIoTr
(f-(s)Yds)q/r!lfF/q. Now let t = Tf". This gives us

IIfll(Lr,Loo),.q -. (JoOC(t-Of: s(f-(s)y~)qlr~t)l/q.

Now use Hardy~s Inequality (Lemma 2.4.2). Let p = L:8. For q > T, we get

R.H.S. 5 C(foOO [t 1
;' f*(s)]q~)l/q = CllfIlLP,q. Since f* is a decreasing function,

we have f;[f*(s)jTds ~ t[f*(t)Jr and therefore R.H.S ~ (fOOO [t 1
;8 f*(s)]q~)l/q =
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q > T and p = 1~8. Now since Pi > T, 38i E (0,1) such that Pi = l~ei and qi > T

gives us Vi,qi = (LT, LOO)ei,q, for i = 0,1. Now we can use the reiteration theorem

(Theorem 2.4.4) to obtain our result.

Now let one of the Pi be infinite. \Vithout loss of generality let Po < 00 and let

Pl = 00. Hence the pair we are interpolating is (VO,qO,LOC). \Ve follow the same

procedure as above except that we use Theorem 2.4.6 instead of Theorem 2...l...l.•

Proposition 3.3.2 LP,q ç Lp,T, 0 < p < 00 and a< q ~ r ~ 00

Proof: Using Theorems 3.3.1 and 2.3.4, we obtain LP,q = (Ln, LJ)o,q ç (Le", LJ)O,T =

Lp,T for properly chosen a, {3 and 8.•

Now we can prove the following interpolation theorem for Lorentz spaces. This

proof follows that of a similar result in [18].

Theorem 3.3.3 Let Lp"Ti and Lqlls, where i = 0 or 1 he non-empty Lorentz spaces.

Let T be a quasilinear operator [rom Vi ,Ti -+- Lqi ,s, with bound l\Ii [or i =0 or 1 and

! = 1-0 + JL ! = 1-0 + JL and T < s. Then T maps Vtr --+ LqtS with bound Al
P Po Pl' q qO ql -

independent of o.

Prao/: Using our main interpolation result (Theorem 2.3.6), we see that /tiI is an op-
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by Theorem 2.3.4, we have liT fIlCL'lo ..lo,L'll ..l1)s..I ~ [8(1 _8)p/r-l/sIlTfIICL'lo ..lo,L'l1 ..l1)9.r

~ C l\lfJ-O 1\.'1: [8(1 - 8)p/r-l/s Ilfll(LPo.ro,LPl,rq,.,..

Now by Theorem 3.3.1, Lq,s = (LqO'sO, Lql,Sl)O,s and IITfIIL'l'.I :5 C8min(l/s,l/so)(1_

(1)min(l/s,l/sl) liTfi 1(L'lO'''O ,L'li'''l ), .... Similarly v,r = (D'alTo, LPI,TI )O,T and IlfllCLPo.ro ,LPI.rl )"r

~ CO- mu(l/r,l/ra) (1-0)- mu(l/r,l/rd Il fIlLP." , Combining the last three inequalities, we

have IIfIIL'l ... :5 CAlJ-ol\1~8-([1/s-1/sol++[1/ro-l/rl+) (l_B)-([l/s-l/.!d++[1/Tl-l / rl+) IlfllLp,,.

and hence our result is proved.•

vVe ean use the preceeding theorem to get a sharper version of the Hausdorff-Young

Inequality which is due ta Parley [32].

Theorem 3.3.4 Let f E LP(T) for 1 :5 p :5 2 and *+ /; == 1. Then j E [P',P(Z) and

3ep > 0 such that IIÎlllp/.P«Z)) :5 cpllfIILP('!)'

Prao/: Let F be the linear aperator taking f to j. Then F : L1 -+ Loo and F : L2 -+ [2

(see the proof of Theorem 0.2.2). Now using previous theorem with Po = ra = 1,qo =

Sa =00, Pl =ql =rl = Sl = 2 and r = s = p we obtain the above result.•

Since for 1 :5 p :5 2, p :5 p', D"P ç Vi (Proposition 3.3.2). Hence Payley's result

is indeed stronger than the Hausdorff-Young Inequality. It is interesting ta note that

Payley published this result almost two decades before Lorentz formally introduced

the Lorentz spaces.

Theorem 3.3.3 cao he used ta derive many of the c1assical results of interpolation.

We start by deriving the ~Iarcinkiewicz Interpolation Theorem.
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Theorem 3.3.5 (Marcinkiewicz Interpolation Theorem) Let °< Pi ~ qi ~

00. Let T be a quasilinear operator from Vi -+ Lqi,OO with bound Ali for i = 0,1;

and let l = 1-8 + .!.. and _ql = 1-8 + 1... where a < 8 < 1. Then T is a quasilinear
P Po Pl qo ql

operator from lJ' ~ Lq with bound Al where lv/ ~ CAIJ-8AlnO(1 - 8)]-l/q and C is

independent of o.

Prao/: Let T satisfy the above hypotheses. Using Theorenl 3.3.3 \Vith ri = Pi, r = p,

Si =00 and s = q for i =0,1, we find that T is a quasilinear operator from LP -t Lq

Po and Pt, one of the terms of the forrn [I/Pi - l/p]+ is zero and will disappear.

Now we consider the other term. (l/Pi - l/p) = .1. - (1-8) _.!.. Hence if i = 0,
PI Po Pl

Ol/PO-l/p = B(B(l/po-lipI)) and a simple ca1culus argument shows that this tends ta 1

as f) -t 0 and hence is bounded for 8 E (0, 1). Therefore, we can absorb this term iuto

the C. Now similarly, if i = 1, then (1 - (J)l/Pl-l/p = (1 - B)(l-BH1/Pl-l/po) and again

this tends ta 1 as 0 -+ 1 and hence is also bounded for 8 E (0,1). \Ve aiso absorb

this into the C. \Vhat we are left with is i\! ~ CAIJ-8 ~\lf[(J(1 - B)]-l/q exactly as

required.•

Often the only V spaces that are considered are the Banach space cases where

1 :S p ~ 00. In this case l/q ~ 1 and we get the version of the Marcinkiewicz

Interpolation theorem most often round in the literature.

Theorem 3.3.6 [40} Let 1 $ Pi $ qi $ 00. Let T be a quasilinear operator /rom

Yi -., Lqi ,00 with bound Mi for i =0 1· and let ! = 1-8 + 1.. and l = 1-8 +.!. where
, 7 P PO Pl q qo ql
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o < () < 1. Then T is a quasilinear operator from V -+ Lq with bound i\tf where

vVe may also state a version of the Riesz Convexity Theorem. \Vhile the bound

is less sharp than in the original, our version also works when P < 1 and when T is

quasi-linear and oat just linear.

Theorem 3.3.7 Let a < Pi < qi < 00, _pl = l=! + 1.. and! = l-8 +.fL. Then if
- - Po Pl q qo ql

T is a quasilinear operator from V, -+ Lq. with bound J.\fi for i = 0, l, T also is a

quasilinear operator from LP --t Lq with the bound j,\I where JI ~ CJIJ-BJIr and C

is 'independent of ().

Proof: Let T satisfy the above hypotheses. Then Theorem 3.3.3 with Ti =Pi, r = p,

Si = qi and s = q implies that T is a quasilinear operator form V -+ Lq \Vith bound

arguments as in the praof of Theorem 3.3.5, we can sho\y that the powers of () and

1- 9 are bounded for \;/9 E (0,1) and hence we absorb them inta the constant C. The

conclusion fallows. •

The praafs of Thearem 3.3.5 and 3.3.7 are due ta Halmstedt [18}. His results were

stated only for linear operators. Using Theorem 2.3.6, we have extended these results

to quasilinear operators and are thus able ta obtain the Marcinkiewicz interpolation

theorem in full generality. It may he of interest to note that Calderôn and Zygmund

have also extended Riesz's result in these directions using complex-variable and sub-
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harmonie function theory to prove results for the quasi-normed V spaces in [9} and

for sublinear operators in [la].

3.4 The E-functional

In this section we explore the properties of the E-functional and use them to prove a

result of Hardy, Littlewood and Pôlya.

Definition 3.4.1 Let (V, l'V) be a compatible couple of quasi-normed vector spaces.

Then we define the E-functional as follows. For 'Vf E F + tt", let E(f, t , ''', If) =

inf {IlhIlw : f = 9 + h, Il9 Il \! '5 t, 9 E \''', h E lV} .

In [26}, Lorentz and Shimogaki write sI(t) instead of E(f, t, \l, H'). \Ve use the

latter notation as it is much more commonly used. The main application of the

E-functional is in approximation theory (see chapter 7 of [3]). \Ve will not discuss

the applications to approximation theory here; instead we will explore connections

between the E-functional and the I(-functional.

Theorem 3.4.2 Let (V, l-V) be a compatible couple of quasi-normed spaces. Then

Tft > 0, [(Cf, t, v, l'V) = infQ>o{E(f, et, ~~ V) + at}.

Proo/: Fix t,ê > O. Now 3g E ~ h E ~V such that K(f, t, V, IV) ~ Ilgllv+tllhll~v+ê.

If we take s sncb that s - i < IIhlhv :5 s; then IIgllv ~ E(f, s, It~ V). Hence

K(f, t, ~W) > E(f, s, W, V) + st - 2e ~ info>o{E(f, 0,~ V) +ot} + 2ê. Since é is

arbitrary, we have K(f, t, ~W) ~ infQ>o{E(f, Ck,~ V) + (kt} .

52



•

•

•

No\v we prove the converse inequality. Again fix t, c > o. 3s > 0 such that

infQ>o{E(j, 0, ~V, \1") + Qt} ~ E(f, s, ~V, V) + st - c. Now choose 9 E F and h E nT

snch that Ilhll w ~ s, f = 9 + h and such that IIgllv ~ E(f, s, tr, v") + ê. Then

E(j, s, ~~ V) + st ~ IIgllv + tllhllw - ê ~ K(f, t, ~ lV) - c. Since ê is arbitrary we

have K(f, t, V, ~V) :5 'infQ>o{E(f, a, ~V, V) + Qt}.•

Therefore, we cao obtain K (/, t, ~ l'V) from E(j, t, tV, tJ') using a variant of the

Legendre transform. Now we attempt ta solve for the E-functional for certain pairs

of quasi-normed spaces. Just as in the case of the [(-functional, it will turn out ta

he casier when one of our spaces is Loo. \Ve have the fallowing theorem.

Theorem 3.4.3 Let .4 be a quasi-ideal space whose elements are measurable func­

tions on the measure space (..Y, p). Let LOO = Loo (..'C, Jl) and furthermore let (.-i, LOO)

be a compatible couple. Then E(/,t,Loo,A) = 11([1/1- t]+) 11.-\ for rit > Q.

Proof: Fix t > 0, then define It as ft(x) = I(x) if I/(x)1 :5 sand ft(x) = sl~i~~I. Note

that IlftllLClO :5 t. Now suppose 3g E LOO such that IlgllLClO :5 t. Theo it is easy ta see

that I/(x) - ft(x)1 ~ If(x) - g(x)1 and that If - ftl = [lfl - t]+o Hence using the

lattice property and Lemma 1.3.2 we obtain E(f, t, L~, A) =infllgllLClOSt Il! - gliA =

Il ([III - tl+)1Lolo •

Using our t\va previous results, we obtain the following characterization of the

]<-functional.

Corollary 3.4.4 Let A and LOO be as above. Then K(/, t, A, LOO) = inf,,>o{II([lfl­

s]+)IIA + st} .
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One application of the abave results is the following classical resuLt of Hardy,

Littlewood and Pôlya given in [15) and [16].

Theorem 3.4.5 Let f and 9 be integrable functions on the a-finite measure spaces

(.\', IL) and (Yt ...\) 1·espectiveLy. Then the following conditions are equivalent:

(2) l'\ (D( Ifl)dJ.L ~ fy 4>(lyl)d'\ fvr t!.uery increasiny convex function (I? froln [O. x) -1

[o. ao).

Pruu/: \Ve will ünly prove that (2) ~ (1) here. \re first note that o(J:) =

[1;1:1 - t]+ is an increasing COllvex function from [O. x) ~ [0.00): hence I,\[lfl -

t]+clJL ~ J~·[Igl - t}-rcl...\. Using Corollary 3...l..l. we get I{(J, t. L l (.\,. IL). LX (.\'. IL)) ~

1{(9, t, Ll(l~. ,\), LOO (Y', A)). By Corollary 3.2.5. this is the same as J~ f·(s)d::; ~

J
't() !((s)cls. Hence we have (1).•

(1) ~ (2) can be established using similar machinery. ~Iore about the above

r.ht10renl ean be found in [15], [16]. [28] and [33]..-\ nice praof of (1) :::::;. (2) can he

round in [13} .
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Chapter 4

The J-Method

4.1 The J-Functional

The results in this section can be found in [1) and [3]. Let (A, B) be a compatible

couple of Banach spaces. The [(-functional was constructed by a slight modification

of the norm of the space .-1 + B. Analogously, we construct the J-functional using a

similar modification of the norm of the space A n B.

Definition 4.1.1 Let f E .olnB and t > O. Then J(/, t,.4 1 B) =max(II/IIA, tII/IlB)'

The J-functional can be related to the [(-functional in the following \Vay.

Lemma 4.1.2 Let f E AnB andt > O. Then K(f, f, A, B) :5 J(/, s, .4, B) min(I, tls).

Prao/: Using Proposition 2.2.4, we get K(/, t) :5 min(lIfIIA, tllfIlB). Then K(j, t) :5

IIIIIA :5 max(llfIlA, sll/IlB) =J(/, s). Aiso K(/, t) :5 tlllllB :5 max(;II/IIA, tllfllB) =

(tls)J(f, s). Hence K(f, t) :5 min(I, tls)J(f, s) and our result follows.•
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This following lemma also gives another relation between the 1(- and J-functionals.

Lemma 4.1.3 (The fundamentallemma of Interpolation) Let (A., B) be a com­

patible couple of Banach spaces. Let f E il + B such that limt-to K(f, t, A., B) =

limt-too K(fttiAtB) = o. Then for any f > 0, 3fi E A n B for Vi E Z such that f =

E:-oo fi where this sum converges absolutely in A+B. Furthermore, J(fi' 2i, A, B) ~

7(1 + e)K(f, 2i
, A, B) for vi where'Y is a universal constant ~ 3.

Proof: Fix ~ > o. For each i, 39i E .-1, hi E B \Vith f = Yi + hi and 119ill.-\ +211lhdiB <

(1 +f)I«(f, 2i ). Thus we have IIgdl.-\ < (1 +f)I«(f, 2i ) and IIhdlB < (1 +f)2- i /«(f, 2i
).

. Let fi = 9i+l - 9i = hi - h i+1• Then fi E .-l n B.

Furthermore, IIf-2:~Mfdl.-\+B= 11/-E:~M(gi+1-9dll.-\+B = Ilf-9N+l+9MIIA+B

= IIhN+l +9MIIA+B ~ 119MlI.-\ + IlhN+dlB ~ (1 +e)[2- N
-

1K{f, 2N +1
) +/«(/, 2-M

)] •

Sînce the R.H.S. tends ta 0 when JI ~ -00 and lV -+ 00, limn-too,m-t-oc

Iif - E~M fillA+B = 0 and f = 2::-00 fi with absolute convergence in A + B.

Finally, J(fi,2 i
) ="max{llfiIlA' 2i llfillB) = max{119i+l - giIL·" 2i llhi - hi+1liB)

~ max(1I9illA + 119i+t1IA' 2i llhi li B + 2i llhi +1Ils)

~ (lIgillA + 2i llhi ll B ) + (119i+t1IA + 2i+1I[hi+t1IB) $ (1 + f)[I«f, 2i
) + K(f, 2i+t

)]

~ 3(1 + f)I((f, 2i ) where the final inequality follows from Lemma 2.2.2.•

The fundamental lemma has a corollary which shows that if f satisfies the hy­

potheses of the Fundamental lemma, then there exists a representation of f in the

form J(t) = Iooo u$(t)~ where Us E An B for Vs > o.
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Corollary 4.1.4 Let f and {fd~-oo he as in the ahove lemma.

Let us(t) = lo~2 L~-oo fi(t)x(2 i ,2'+1)(s). Then f(t) = Jo
oo

Us~ where this integral

converges absolutely in A + B (i.e. Jo
oo

Ilu s I1.4+B d
: < 00).

Let i be such that 2i < s < 2i+1 then u,,(t) = (log 2)-L fi(t) and II·us(t)II.-t+B =

(log 2)-L Ilfi(t) IIA+B.

Tl fOO Il, Il do! - ~oo f2'+1 '1, Il d3 - (1 2)-1 ~oo '1 fil r2'+l ds ­lUS Jo Us A+87 - L.Ji=-OCl J2a 1Us A+B7 - og L.Ji=-oo 1 Ji A+8 J2' 7-

Now we are ready ta describe the J-methad.

Definition 4.1.5 Let (A, B) be a compatible couple of Banach spaces and let 0 <

6 < 1 and 1 ~ q ~ 00. Then (.4., B)o,q;J consist of ail f, for which Ilfllo,q,J =

inf IIs-oJ(us , s)lll."(~) is finite. Here the infimum is taken over all Us such that f(t) =

Jooo
"Us (t) ~ where this integral converges absolutely in A + B and Us E An B for 'is> 0

(~Ve follow the convention that the infimum of the empty set is =00).

The fallowing theorem will equate the spaces (A, B)o,q;J \Vith the spaces (.--1, B)o,q.

Theorem 4.1.6 (Equivalence Theorem) Let (A, B) be a compatible couple of Ba-

nach spaces and 0 < 9 < 1 and 1 ~ q ~ 00. Then (A, B)o,q;J = (A,8)9,q with

equivalent norms.

Suppose f E (A, B)O,qiJ then 3u" E A n B such that f = fo
oc

u"~. Using the

subadditivity of the K-functional and Lemma 4.1.2 we have:
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K(Jt)< rOOK(u t)ds< rooJ(U t)min(l t/S)dS= rtJ(U S)ds+tfOOJ(u.,.s)d.s, - Jo .U $ - Jo $, '.s Jo $, oS J t $ S •

Now multiplying each side by t-e and taking the Lq(~) norm on each side, we get

IIJllo,q ~ IIt-O fooo J(us, t)min(l, t/s)~11 ~ IIt-ef~ J(us• t)~IILq(~)+lItl-8 ftoo J(u;,t) ~tIlLq(~).

Now using Hardy's Inequalities (Lemma 2.4.2) on the R.H.S. of the above inequal-

Now taking the inf of the R.H.S. over aH functions us(t) E An B for 'Vs where

J(t) = Jooo
us(t) ~s, we get Ilflle,q ~ ~IIJllo,q;J' Hence (.4, B)o,q;J ç (A, B)o,q.

Now suppose f E (A, B)o,q. Then limt-+o [((f! t) = limt-+oo [(C{'t) = O. Then let Us

be as in Corollary 4.1.4. Now fix s and let i be the integer with the property that

and ~ ~ 2.

Using the fundamentallemmaofinterpolation with 1(1+f) < 3.5, we get J(us , s) ~

NIultiplying by s-o and taking Lq(~) norms, we get IIJllo,q;J ~ ï(log2)-1Ilfllo,q

and therefore (..4., B)e.q = (A, B)e,q;J \Vith equivalent norms.•

4.2 The Density Theorem

Since the J-method generates the same spaces as the K -method, it may seem at

first glance that the J-method is redundant. However the J-method can be used ta

examine the structure of the K -spaces. One of the most important applications of
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the J-method is its use in proving the following theorem.

Theorem 4.2.1 (Density Theorem) [1/ Let (A, B) be a compatible couple of ideal

spaces and suppose 0 < () < 1, 1 ~ q < 00. Then An B is dense in (A, B)o,q.

Let f E (A, B)o.q. Then limt-+o K(f, t) = limt-+oct-1 K(f, t) = O. Hence let fi be as

in the fundamentallemma. Forrl1V > 0, let u~ = (log2)-1 EiEZ\[-N,Nl fi(t)X(2',2'+l) (s).

Now clearly, lu~(t)1 ~ lu.!(t)! Vs, t. Therefore fa
co

Ilu~vll.-\+8~ ~ fa
co

lI·usll.-\+B~ < 00.

Now fooc u,/ ~s = LIEz\[-N,Nl fi (t)(log 2)-1 faoo X('l1.2~+t)(S) ds = f - L:~-N fi

vVe will now show that the R.H.S. (and hence also the L.H.S.) tends to 0 as

lV -+ 00. Then since L~-N fi E A. n B, we are done.

and therefore u~ (t) -+ 0 pointwise on (0,00) when l.V -1 oc. Since f E (6-\' B)O,q,

dOIninated convegence theorem implies that (kOC[s-oJ(u~V,s)]q~Plqtends to 0 as

iV -+ 00.•

The restriction that q < 00 cannat in general be relaxed as seen in the following

example.

Example 4.2.2 LICD, (0) n Loc (0, 00) is not dense in LP,OC(O, (0) for 1 < p < 00.

Proof: Let f(x) = x-I/p and let g(x) E LI n Loo. Let h(x) = [fex) -llgIILco]+ then

h(x) $ If(x) - g(x)l. Sînce VIOC is an ideal space, Ilf - gllLP.ao ~ IlhIlLP'oo. Now
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IIh IILP,oa = SUPt>O t L
/
p h- (t) =SUPt>o(l - t1

/
p IIgllLoa) = 1. Hence L i n Loo is not dense

in lj;oo.•

One consequence of the density theorem is the following property of Lorentz

spaces.

Theorem 4.2.3 The set of strictly simple functions is dense in v,q where 1 < P, q <

w.

Let f ~ 0 and 1 E LP,q(.\, p.) where .\ is an arbitrary a-finite measure space and

~ > 0; by the density theorem, L1 n L:Je is dense in LP,q and therefore 3g E Lin L:Je

such that III - gIILP." < ~. Since I/(x) -lg(x)11 ~ If(x) - g(x)I, we make take 9 ta

be non-negative.

For 't/x E IR, define lxJ =the greatest integer $ x. For 't/a > 0, let 9q(X) = al g~)J.

Now 9cr(X) is only nonzero on {x : g(x) > a} which is a set of finite measure since

9 E LI. Furthernlore 9 takes only values {ia},eNU{O} with la ~ 11911L~ and hence 9u

is a strictly simple function. Now Iig - 9O'llvlO $ a and therefore g(x) - Yq(x) --+ a

when (j --+ O. Since Ig(x) - 90' (x) 1~ g(x), a simple dominated convergence argument

shows that IIY - 90' IILI --+ 0 as a --+ O. Therefore IIY - gcrllLlnLoa --+ 0 as (j ~ O.

Since v;q is a [<-space for the couple (LI, LOO), lj,q is an intermediate space

for (LI, LOO) and 1I/Ily." :5 Cll/IILlnLoo for 't/f E LI n Loo. No,v pick a such that

110 - 9erllL l nLoo :S 2~ and hence IIg - gerllLP,,, :5 Cll9 - 9erllL I nLoo ~ ~. Then Il! ­

9erIlLP." :S III - glly." + 119 - 9erlly,,, ~ e. Now we can remove the restriction that

f ~ 0 by remeberingthat f = [~f]+-[-Rf]++i[9fJ+-i[-~f]+· Foreach ofthese
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four terms, there exists a strictly simple function that approximates it to \\~thin ë/4

and hence the sum of those simple functions approximates f ta within ê .•

This can he compared to [20] where Hunt gives a direct proof of the above result .
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Chapter 5

Interpolation of Lipschitz

.Operators

5.1 The K-method and Lipschitz Operators

Definition 5.1.1 Let.:l and B be Banach spaces and let T : A. ~ B: then T is said

ta be a Lipschitz operator \Vith baun~ ~I if for !, 9 E A., liTf - Tgll B $ JIll! - gllA-

The natural question ta ask in the context of this thesis is whether the K -method

can be used ta interpalate Lipschitz operators. Peetre [35] and ~Ialigranda [27] have

sho,vn that it cano We present the following theorem which is modeled after a result

of Lorentz and Shimogaki [26].

Theorem 5.1.2 Let (Ao,Ad and (Ba, BI) be two compatible couples ofBanach spaces

and let T be a Lipschitz operator /rom Ai --+ Bi wïth bound Mi .
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Then K(Tf - Tg, t, Ba, Bd :s ~v[oK(f - 9, ~t,Ao,Ad for 'Vl, 9 E Aon Al-

Proo!: Let l, 9 E Ao n Al and fix t, ê > O. Let hi E A.i for i = 0, 1 be such

that f - 9 = ho + hl and Ilholl Ao + ~tllhdlAI :s K(f - g, ~t, Ao, A. l ) + f:. Theo

ho, hl E Ao n Al and Tho, Th l E Ba n BI, Now let Q = T(g + ho) - Tg and let

{3 = Tf - T(g + ho). Therefore Cl, {3 E Ba n BI and ct + /3 = Tf - Tg. Now

l!ollBo = IIT(g + ho) - Tgll na :s lfollholl Ao and Il,6II B l -= IITf - T(g + hù)IIBt ~

NIdif - 9 - holl Al = ~vIdlhdIAl' Then [«Tf - Tg, t, Ba, Bd $ 1I00IIBo + tll,BIIBI $

i\,lo(llholl Ao + ~tllhdl.-\J :s J[o[[(f - g, ~t, Ao, Ad + e:]. Since ~ is arbitrary we

have our result.

Corollary 5.1.3 1fT is as in the above theorem and 0 < () < 1 and l :s q < 00 then

T is a Lipschitz operator from (.040 , ..-!do,q -+ (Ba, Bdolq with bound :s JIJ-8Af~

Proo/: From previous theorem we have [«TI-Tg, t, Bo, Bd ~ JfoK(1 -g, ~t, Ao, ..-id

and thus liTf - Tg!l(Bo,Bd8'9 -= (IoOO[t-O[{(Tf - Tg, t, Ba, Bd]q~ )l/q

:s CAloCIoOO [t-O[(Cf - g, ~t, ..la, Al)Jq~)l/q = C.l\ld-oAfrllf - gll(Ao,At}8,q' The

last equality can be obtained by making a change of variables s = M;t. Now we

have liTf - TglI(Bo,Bd"q ~ AIJ-okIrllf - gll(Ao,Ad"9 for "Vf, 9 E Aon Al' Since the

density theorem guarantees that Aon Al is dense in (Ao,A1)o,q when 0 < 8 < 1 and

1 ~ q < 00, we can use continuity to extend T uniquely to (Ao,Ado,q.•

Applications of the Interpolation of Lipschitz Operators ta areas of applied math­

ematics are given in (6). We present an application of the above results to the theory

of rearrangements in the next section.
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5,,2 The Lorentz-Shimogaki Inequality

The following is an interesting example of a Lipschitz operator due to Lorentz and

Shimogaki [26} and wlaligranda [27].

Example 5.2.1 Let (4'Y, J1.) be a nonatomic a-finite measure space and let T be the

operator that takes a function on (.\', tL) to its nonincreasing rearrangement. (i.e.

Tf = f· J. We caU T the rearrangement operator. Then T is a Lipschitz operator

with bound 1 from Li (.'\, J1.) ~ Li (R+, m) and is also a Lipschitz operator with bound

1 [rom LOO (.0'\, JL) ~ LOC(R+, m).

Proof: It follows from Thcorenl 1.6.3 that T : Ll(.':,]l) ......, Ll(R+. m) and similarly

for Loo. Now let /,g E Li and let h(x) = max(lf(x)l, Ig(x)l) .

Then Ilf· - g·IIL1 = Iooo[f"(t) - g"(t)J+dt + IoOC[g"(t) - f"(t)J+dt

~ JoOO[h"(t) -g*(t)]+dt+ IoOC[h"(t) - f"(t)}+dt = J~oo h"(t) - g"(t)dt+ Jooo Iz"(t) - f"(t)dt

(since Ifl :5 Ihl implies f" :5 h" (Prop. l.5.S.b) and similarly for g).

= Iooo h"(t)dt - Iooo
g"(t)dt + Jaco h"(t)dt - Iooo

f"(t)dt

=Ix hdJL - Ix IgldJ1. + Ix hdJ.L - Ix IfldJL (Theorem 1.6.3 with p = 1)

=Ix h -lgldJL+ f"( h -l/ldJL = i,:[/fl-lgll+dJL+ Ix[lgl-lfll+dJL = Ix Ilfl-lglldp :5

Ix If - gldp. = Il! - gllLl.

Since we have I/(x)l :5 "' - gllLoo + Ig(x)l, we can use proposition L5.8.b to

obtain f-(t) ~ Il! - gllv:lO + g-(t) and therefore we have f-(t) - g-(t) :5 III - gllLoo.

Interchanging the raies of 1 and g, we can aIso obtain g*(t) - '-(t) < Iif - gllLoo .
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Therefore we have IJ-(t) - g-(t)1 ~ IIJ - 911LOCl and taking sup of L.R.S. over aIl t

gives us IIJ- - g-lIulC ~ IIJ - gllulC ••

Now using Corollary 5.1.3 we can show that the rearrangement operator is a

Lipschitz operator from v,q(X, J.L) ~ y,q«O, 00). m) when 1 < p < 00 and 1 ~ q <

00. \Ve can also use Theorem 5.1.2 ta prove the following inequality.

Theorem 5.2.2 (Lorentz-Shimogaki Inequality) Let J, 9 be twa function:itn L l
()(, J1.)

and let t > O. Then f;[J* - g-]-(s)ds ~ f;[1 - g]-(s)ds.

ProoJ: In what fallows we denote [(l, t. Ll, LOC) as [«J, t). Using Theorem 5.1.2,

we obtain [«t/J- -ljJ\ t) :5 [«4J - -tjJ,t) for Tlcj), li; E Ll n Loc. ?\ow let J,g E Ll and

s > 0, then define Js as fs(x) = J(x) if IJ(x)1 ~ sand Js(x) = sl~~~~1 if I/(x)1 ~ s.

Define 9s analogousIy. Now fj,911 E Ll n Loc. Choose s such that ft IJ - JlIldJ.L < ê

and Ix Ig - 9sldtL < ê.

Then since IJlIl ~ III, J; ~ Je (Prop. 1.5.8.b) and 1«f- - f;, t) ~ Iooo(/- ­

J;t(t)dt (Corollary 3.2.5) ~ Joco Ife(t) - 1;(t)ldt (Theorem 1.6.3 with p = 1) =

Ioco 1* (t) - I;(t)dt (since integrand is positive) = Ix I/ldIL - Ix I/sldJ.L (Theorem 1.6.3

with p = 1) :5 Ix Il - IsidIL ~ €. Similarly [«g- - g;, t) < ê. Using Corollary 3.2.5,

[«1 - Is, t) = f;(1 - Is)·(x)dx ~ Iooo(l - Ist(x)dx = Ix Il - fsldIL $ ê. Similarly

K (g - 911' t) ~ ê.

Now I;(f· - g-)*(s)ds =K(f- - g-, t) (Corollary 3.2.5) ~ K(f- - f;, t) +K(f;-

g;, t) + K(y· - g;, t) (using the fact that K(·, t) is a norm.) ~ K(f: - g;, t) + 2ê

~ K(/s - Ys, t) +2E < K(f - fs, t) +K(I - g, t) +K(g - gs, t) +2ê ~ K(f - g, t) +4ê.
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Since é is arbitrary, [«(f- - g4<, t) $ K(f - 9, t) and using Corollary 3.2.5 we get

f;(f4< - g4<)4l(s}ds :5 f;(1 - gt(s)ds.

The original proof of this result is quite different and can be found in [26]. The

idea behind this version of the proof is due ta Nlaligranda [27) .
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