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Abstract

This thesis investigates properties of spaces generated by Peetre’s A-method and
uses the K-method to interpolate linear, quasilinear and Lipschitz operators. Vari-
ants of classical results such as the Riesz convexity theorem and the Marcinkiewicz
Interpolation Theorem will be proved using the K-method.



Résumé

Cette thése examine la méthode des espaces de moyenne a deux parametres et

I'utilise pour interpoler les operations linéairs, quasilinéaires et de type Lipschitz et

. pour preuver variations des résultats classiques comme le théoréme de Riesz et le
théoréme de Marcinkiewicz.
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Chapter 0

Introduction

0.1 Notation

The following notation is frequently used in what follows.

N natural numbers: {1,2,3,...}
Z integers: {...,-3,-2,-1,0,1,2,3,...}

1, ifzed
xa(z) characteristic function: xa(z) =

0, ifz¢ A

m(A) Lebesque measure of set A



(i ()P du)? , 0<p< oo

fllexwy =
inf{C>0: p{z€e X:|f(z)| >C}) =0}, p=o0
LX) = {f: Iflleoxam < oo}
U2 If ()P L), 0<p<oo
”f”LP("—“-) =
inf{C > 0: m({t>0:|f(t)] >C}) =0}, p=
[z]l+ = max(z,0)

Definition 0.1.1 Let f be a function from R — R then f is said to be an increasing
function if > y implies f(z) > f(y) and is said to be a decreasing function if £ > y

implies f(z) < f(y).

The point of the above definition is that we use the term increasing or decreasing

to also include functions which may be constant in places.

0.2 Background

Suppose T is a bounded linear operator from L, — L, and from L, — L, where
p < r. A natural question to ask is whether this guarantees that T is a bounded linear
operator from L, — L, when p < ¢ < r. This question was answered affirmatively in

1926, by Marcel Riesz. He proved the following theorem:

Theorem 0.2.1 (Riesz Convexity Theorem) Let (X, p) and (Y, ) be arbitrary

o-finite measure spaces end let T be a bounded linear operator from LPi(X) — L%(Y)
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with bound M; where 1 < p; < ¢ < oo fori = 0,1. Let p and ¢ be such that
Lo1=0, pll and L = =2 + :_1 where 0 < 8 < 1. Then T is a bounded linear operator

P pa q q0

from LP(X) = LY(Y) with bound My where My < MJ™4ME.

One can reformulate this result in geometric terms. Let M(s,t) be a function
from [0, 1] x [0, 1] — [0, co] defined as M (s, t) = supy gy, ., IT fllzocy) where p = 1/s
and ¢ = 1/t. The above theorem states that log Af(s,¢) is a convex function on the
triangle with vertices (0,0),(1,0) and (1,1) (which is why the above result is called

the convexity theorem).

Theorem 0.2.2 (Hausdorff-Young Inequality) Let1<p<2andl+ . =1 [f

f € LP(T), then f € IP(Z) and ||fl|» < |Ifllce-

This result remains true when we replace T with an arbitrary locally compact
abelian group. A special case of this result (when p' is an even integer) was proved by
Young in 1912 (see [15]). The general case was considerably more difficult and was
solved by Hausdorff {17] in 1923. However, thanks to the Riesz convexity theorem,
we no longer need to prove the result for Vp € [1,2] but only for the endpoint cases
p =1 and p = 2 which turn out to simpler to derive than for general p. The proof is
as follows:

Proof: When (p,p’) = (2,2), the desired result follows from Parseval’s Theorem. Now
we examine the (p,p’) = (1,00) case. If f € L'(T), then |f(n)| = | f; f(8)e"™£L| <

Jo1F(ONZ = ||£]|z1r) and taking the supremum over all n € Z, we get || f|li=(z) <



If1|zvt)- Since the Fourier transform is a linear operator, the Hausdorfl-Young In-
equality now follows from the Riesz Convexity Theorem. W

The Riesz convexity theorem was the genesis of the study of the interpolation of
operators. The obvious usefulness of the Riesz convexity theorem in proving results
such as Theorem 0.2.2 spurred further research in this field. In 1939, two major new
results were discovered. Using methods from complex variable theory, Thorin was able
to remove the restriction p; < ¢; from Theorem 0.2.1. This new result came to be
called the Riesz-Thorin Convexity theorem. Also in that same year, J. Marcinkiewicz
discovered an interpolation theorem which could be used in situations in where the
Riesz Convexity theorem no longer applies. These two results served as models for
later results in the interpolation of operators. In the early 1960’s, Calderén and Lions
extendad Thorin's methods from LP spaces to general Banach spaces. These results
formed the basis of the complex method of interpolation. Similarly, results inspired by
the Marcinkiewicz Interpolation Theorem have come to be known as the real method
of interpolation. One of the most widely used of the real methods of interpolation is
the A-method developed by Jaak Peetre in 1963.

In this thesis we will study the K-method and its application to the Interpolation
of Operators in quasi-normed vector spaces. This thesis aims to be as accessible and
self-contained as possible. Chapter 1 will review any terminology or results used in
the thesis which would not usually be covered in an introductory graduate analysis

course. We formally define interpolation spaces in Chapter 2, and show how the K-



method can be used to find interpolation spaces. In Chapter 3, we use the K-method
to study the interpolation of L? spaces. In particular, we introduce the Lorentz spaces
as the interpolation spaces generated by using the X-method on a pair of LP spaces
and we use the K-method to derive the Marcinkiewicz interpolation theorem and a
variant of the Riesz convexity theorem. In Chapter 4, we examine Peetre's J-method,
its applications, and its relation to the K-method. In our final chapter, we use the

K-method to interpolate Lipschitz operators.



Chapter 1

Preliminaries

1.1 Quasi-Normed Vector Spaces

Definition 1.1.1 Let V" be a vector space over a scalar field K. Then || ||v, a
function from V' — [0, 0c), is called a quasi-seminorm if
(1) |hvlly = |kl|lvllv VE €K, veV
(2) 3ev 21 s.tlu+ vy < cv(||ully + |lv]lv) Yu,ve V

Condition (1) is called homogeneity and Condition (2) is called the c-triangle inequal-
ity. If ey = 1 in (2), then || ||v is called a seminorm and (2) is simply called the

triangle inequality.
In this thesis the scalar field K will always be either the real or complex numbers.

Definition 1.1.2 || ||v is a quasi-norm (resp. norm) if || ||v is e quasi-seminorm
(resp. seminorm) with the added property that ifv € V and |jv||ly = 0 then v =0.
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Definition 1.1.3 A Banach space is a complete normed vector space.

Definition 1.1.4 Let V be a vector space having || || as a quasi-norm. Let || ||' be
a functional on V with the property that ||kv||' = |k|||[v||' Vk € K, v € V. Then || ||
and || ||' are said to be equivalent quasi-norms iff 3¢,C > 0 s.t. ¢||v|| < ||v}|' < C||v||

forYveV.

The conditions on || || given in the definition are enough to guarantee that it
is indeed a quasi-norm. Since 0 < cl|v|| < |||’ £ C||v]| < oo, we have ||v]|’ finite
and nonnegative. Also ||v[|' = 0 implies ||v|| = 0 which means v = 0. Now we need
only check the c-triangle inequality. Let u,v € V" then |Ju + v]|' < Cllu +v|| £

coC(llull + lvll) < =S (lull’ + [loll).

1.2 LP spaces

It is assumed the reader is familiar with L? spaces when the exponent p € [1, ).
We now show that the L? spaces are quasi-normed vector spaces for p € (0, 00]. We
begin with the following inequalities which will then be used to prove the c-triangle

inequality for LP spaces.

Lemma 1.2.1 Letz,y > 0. Then (z+y)? < (zP+y?) < 2! P(z+y)P when0<p <1

and ' P(z+y)? < (2P + y*) < (z + y)? when 1 < p < 0.

Proof: If either z or y is zero, the result is immediate. Now fix y > 0 and let
F(z) = [(z +y)? — (z* +y?)]. Differentiating, we get F'(z) = p[(z +y)?~' —z?~!]. For

7



p <1, F'(z) < 0. Hence [(z+y)? — (2 +y*)] = F(z) < F(0) = 0. The L.H.S. of the
first inequality follows. For p > 1, F'(z) > 0. Hence [(z + y)? — (zP + y?)] = F(z) >
F(0) = 0. The R.H.S. of the second inequality follows. zP is a concave function on
[0,00) for p < 1 and therefore we have i%f- < (Z%)*. Multiplying both sides by
2, gives us (zP + y*) < 2'"P(z + y)P which is the R.H.S. of the first inequality. For
p > 1, z7 is a convex function on [0,00) and as a result we have (54 < ‘p—;‘l’-

Again multiplying both sides by two gives us 2!P(z + y)? < (zP + yP) which is the

L.H.S. of the second inequality. B
Theorem 1.2.2 L? is a Banach space for 1 < p < occ.

This result is well known so the proof is omitted. The following is a corresponding

result for p € (0, oq].
Theorem 1.2.3 L? is a quast-normed space for 0 < p < oc.

Proof: For p > 1 the result follows from above, so let 0 < p < 1. We first prove
that L? is a quasi-seminorm. Homogeneity is obvious. To establish the c-triangle
inequality requires repeated uses of the previous lemma.

If +gllee = ([ 1S + glPdp)? < (J(f] + |g1)Pdp)? < ([ | f1Pdu + [ lglPdp)V/?

< 2BV F | fPpdu) /e + (g e).

Hence || ||.» is a quasi-seminorm. Now let f € L” such that ||f||z» = 0. Then
fP € L' with || fP}|z+ = 0. Since L! is a Banach space, f = 0 a.e. and therefore || ||»

is a quasi-norm. B



Lemma 1.2.1 can also be used to prove the following useful inequality for nonneg-

ative functions in an LP space.

Lemma 1.2.4 (Reverse Triangle Inequality) Let f.g € L? with f,g > 0. Then

(lflle + llgllzs) < 2771 f + gllLo.

Proof: Let f,g be as above. Now let p > 1, then ([ fPdu)'/? + ([ gPdu)'/P <
21-1/1'(]’ fP + !]pdll) L/p < 21—1/p(f(f + _(])pdu)llp,
Now let p < 1, then ([ fPdu)"/? + ([ g%dp)"/? < ([ f7 + gPdu)'/P < (27 [(f +

9)Pdp)tP = 2P| f 4+ g||. @

1.3 The Lattice Property

Let (.X,u) be an arbitrary measure space. We now consider quasi-normed spaces
whose elements are real or complex valued functions on X. It is often useful to have
a quasi-norm which is related to the size of a function. This idea motivates the

following definition:

Definition 1.3.1 Let V be a quasi-normed vector space whose elements are scalar
valued functions on an arbitrary measure space (X,p). Then V is said to have the
lattice property if f,g: X = K, g€V, |f(z)| < |9(z)| p —a.ax € X then fe V

and || fllv < [lgllv-

In references such as [39], normed spaces with the lattice property are called
pre-ideal spaces and Banach spaces with the lattice property are called ideal spaces.

9



Simijlarly, we will define a quasi-ideal space as a quasi-normed vector space with the
lattice property.

The following is a useful elementary property of quasi-ideal spaces.

Lemma 1.3.2 Let V be a quasi-ideal space whose elements are functions from X —

K. Letg€eVand f: X = K with |f(z)] = lg(z)| p —a.e. on X. Then f € V and

”f”V = “y[lv.

Proof: We have |f(z)| < |g(z)| a.e. and g € V; therefore the lattice property implies
that f € V and ||flliv < l|glly- However, we also have |g(z)| < |f(z)| a.e. which
implies [|g]|v < [|f]]y-. Hence we conclude that ||fl|y = ||g||\-. B

For L? spaces we have the following result.

Proposition 1.3.3 L? spaces for p > 0 have the lattice property.

Proof: If p = oo, the result is trivial. For 0 < p < oo, the result follows from the fact
that z? and z'/? are increasing on (0,00). @
One can extend the reverse triangle inequality from LP spaces to arbitrary quasi-

ideal spaces.

Lemma 1.3.4 Let V be a quasi-ideal space Then 3c|, < 2 such that for f,g € V with

f,920 ae [[fllv+llgllv < &llf +gliv-

Proof: Since f,g > 0 a.e, f < f+g ae and g < f + g ae. Hence ||fllv + |lg]lv £
2|f +gllv- B

10



1.4 The Sum and the Intersection of Quasi-normed

Vector Spaces.

The results in this chapter are central to the theory of interpolation. Most are from

f1} or [3].

Definition 1.4.1 Let V', W be Hausdorff topological vector spaces with V C W, V
and W not necessarily having the same topologies. Then V is said to be continuously
embedded in W if given {z,}nen with z, € V', 2, = 0in V', impliesz, - 0 in W

as well.

A quasi-normed space 1’ is a topological vector space whose neighborhood basis
at 0 consists of the open balls {v : ||v||v < €} (see [24] for more details). Hence when

V and W are quasi-normed spaces. we have the following:

Theorem 1.4.2 Let V and W be quasi-normed spaces with V. C W. Then V is

continuously embedded in W iff IM such that ||f|lw < M||fllv forVf e V.

Proof 1f 3M such that |[fllw < M||f||lv for Vf € V, then it is clear that V is
continuously embedded in W. Now suppose no such M exists; then we can find a

sequence {Zn}nen such that ||zn|[v = 1 but {|za|lw > n. Then 2 — 0 in V but

l{Z2]lw > 1 and hence V is not continuously embedded in V. B

11



Definition 1.4.3 Let V and W be quasi-normed vector space and M be a Hausdorff
topological vector space. Then (V,W) is a compatible couple of quasi-normed spaces

(in M) if V and W are continuously embedded subspaces of M.

Definition 1.4.4 Let (V,W) be a compatible couple (in M) of quasi-normed vector
spaces. Then V + W ={f € M such that Jv € V and w € VV such that f = v+ w}.
Also, let VNIV denote the usual set-theoretic intersection (i.e. VNIV = {f such that

feEVand feW}).

Lemma 1.4.5 Let (V,1V) be a compatible couple (in M) of quasi-normed (resp.
normed) vector spaces. Then VNI and V' + 1V are also quasi-normed (resp. normed)

vector spaces.

Proof: Let || fllvaw = maz{||{f|lv,||f||w} where f is an arbitrary element of V' NIV.
[t is easy to verify that || ||vmi is a quasi-norm (resp. norm) for 1" N 11", Now let
Hf v ew = inf{|lgllv + ||h|lw where g € 1" and h € TV such that f = g+ £}. It can
easily be shown that || ||y-+w is a quasi-seminorm (resp. seminorm) for V" + V. To
show that || |[v-4+1v is also a quasi-norm (resp. norm), let f € V' +IV with || f]|v+w =0.
Then Vn, 3v, € V and w, € W such that v, + w, = f and ||val|lv + [[wallw < 0L
Now v, tends to 0 in V and therefore also tends to 0 in M. Similarly, w, tends to 0
in M and therefore so does v, + w,. Hence f =0 and || ||v+w is a quasi-norm (resp.

norm). @

Theorem 1.4.6 Let (V,W) be a compatible couple of Banach spaces. Then VW
and V + W are also Banach spaces.

12



Proof: By the previous lemma, V NW and V' + W are normed vector spaces and so
we only need to show that they are also complete. Let f, be a Cauchy sequence in
V N W, then it is also a Cauchy sequence in V. By completeness of V', Jv € V such
that f, tends to v in V and therefore also in M. By completeness of 1V, 3w € IV such
that f, tends to w in W and hence also in M. Since limits are unique in Hausdorff
spaces, v =w. Hence v € VNIV and f, tends tovin VNIV, So VNIV is complete
and hence is a Banach space.

Now we turn our attention to V" +11". Let f, be an absolutely convergent sequence
in V+1V (ie. Soom, |lfallvsw < o). Vn, 3u, € V, w, € 1V such that v, + w, = f,
and ||vallv + lfwnllv < |[fallv+w + n~% Therefore, Y oo | v, converges absolutely in
the V-norm. Since V' is complete, Jv € V" such that 32 | v, converges to v. Similarly
3w € W such that } o, wy converges to w. Now let f =v+w. Then fe V+ 1V
and ||f = S, fallvew < v =T, vallv + |lw = SN, wnl|w. Since R.H.S. tends
to 0 as N — oo, so does the L.H.S. Hence every absolutely convergent sequence in

V + W converges in V' + W and hence V + W is complete. @

Theorem 1.4.7 Let (Ag, 4,) and (Bg, B)) be compatible couples of quasi-normed
spaces. Let T be a linear operator from A; — B; where i = 0,1. Then T can be

ertended uniquely to a linear operator from Ag + A; — By + B,.

Proof: Let f € Ap + A;, then 3g € Ag, h € A, such that f = g + h. Now define
Tf =Tg+Th. It is clear that the extension is linear; now we must show it is unique.
Let ¢ € Ag and A’ € A, be such that f = ¢’ + k’. Then g — ¢’ = A’ — h and since

13



both sides are € Ag N A, we have Tg - T¢' =T(9—-¢') =T(h' —h) =Th' - Th.
Rearranging, we get Tg+ Th = T¢’ + Th' and hence T f is independent of the choice
of decomposition of f. @

The above result motivates the following definition.

Definition 1.4.8 Let A be quasi-normed vector space and let (V, W) be a compatible
couple of quusi-normed vector spaces. Then A is said to be an intermediate space
with respect to (VW) if VAW CACV + W with VNIV continuously embedded in

A and A continuously embedded in V + 1V,

If a linear operator is defined on V" and IV, it will be defined on V" + I} and hence

on every intermediate space of (V,1V).

Example 1.4.9 Let V" and W be quasi-normed vector spaces. Then V', W', VUV

and V' + 1V are intermediate spaces for (V,1V).

Turning our attention back to L?P spaces, we get the following example of inter-

mediate spaces.

Example 1.4.10 Let 0 < p < q <1 < 00, then LY(X, u) is an intermediate space of

the pa'ir (Lp(‘Yr Au)v Lr(X, “))

Proof: First we assume that 0 < p < ¢ < r < 00. (If not, the result follows from
. : 1 _1-8_.§6
previous example.) Let f € LPNLT. Since p < g < r, 30 such that ¢ =5 +73 Then

using Holder's Inequality and 1 = €048, we get || f||onz- = max(l|fllzs, [Iflle-) 2

14



(||f[|,_,,)‘“’(||f||u)” > ||fllee- Hence LP N L7 is contiuously embedded in L?. Now let
f € L7, we now prove || f||ze+rr < 2||f][ze. Without loss of generality, let || fl|z. = 1.
Define E = {z € X : |f(z)| > 1}. Since p < ¢, 35 > Osuch that } =1+ ! and

using Holder’s inequality and u(E) <1, we have ||fxelle < ||f]|2s]

xelles < [flles-
Also || fxxeller = (g £7@WY < ([ng f2dm)" < 1FIIT = |1fllze where the
first inequality follows from f being < 1 on X'\ E. Therefore we have ||f]||Lr+rr <
1fxelles + 1 xx\gller < 201f||e. W

Thus our intutive notion of what is intermediate for LP spaces corresponds to our

defintion of intermediate spaces.

1.5 Rearrangements

In this section we introduce the theory of rearrangements which was first systemat-
ically studied by Hardy, Littlewood and Pdlya. This theory is intimately connected
to the real method of interpolation. For instance, distribution functions were used in
the first proof of the Marcinkiewicz Interpolation Theorem [40]. Our main results,
Propositions 1.5.3 and 1.5.8 are a combination of results from [1],{14],(20],(30] and
(38].

In the following section f and g are real or complex-valued functions on an arbi-

trary measure space, (X, i).

Definition 1.5.1 Sy(s) = {z € X : |f(z)| > s}.

15



Definition 1.5.2 The distibution function of f is denoted as u;(s) and is defined

as ps(s) = p(Sy(s)) for ¥s > 0.

It is clear that pf(s) is a nonnegative decreasing function from (0, c0) — [0, 0]

The following are more properties of the distribution function.

Proposition 1.5.3 The distribution function has the following properties:
a) us(s) is right-continuous on (0, 0o).
b) If 1f(2)] < l9(z)| a.a.z, then uy(s) < pgls) for Vs > 0.
c) If | fal T 1f] p-a.e., then py, T py.
d) Ifc # 0, then pesls) = uy(s/Icl)-

e) pyrg(s +1t) < pep(s) + py(t) for Vs,t > 0.

Proof: a) Let s, be a decreasing sequence of non-negative real numbers with s, | s.

Then Sy(s1) € Sy(sa) C...C Une, Sy(sn) = S¢(s) and hence limoo f27(8n) = ps(s).

b) Since [f(z)] < lg(z)l, Sy(s) € S,(s) and therefore u/(s) < py(s) for ¥s > 0.

c) For any s > 0, Sp,(s) € Sy, €€ UzZy Sra(s) = Sy(s) and therefore pf,(s) <
bpy(8) S liMnaoo g, (s) = py(s).

Ser(s) = {z : lef(z)| > s} = {z : |f(z)| > s/lcl} = Sy(s/|c]). Hence pcs(s) =

wy(s/le).

¢) Now if | f(z) +g(z)| > s+t and hence we have |f(z)| +|g(z)| > |f(z) +g(z)| >
s+t so either | f(z)| > s or|g(z)| > t. This gives us Syi4(s+t) C Sy(s)US,(t) and thus
Breg(s+t) = u(Sreg(s+1)) < u(Sp(s)USe(t)) < u(Sy(s)) +n(Sg(t)) = pp(s) +p(t)-

16



The following is a useful inequality which bounds p((s) in terms of the L? norm.

Theorem 1.5.4 (Chebyshev’s Inequality) Let s > 0 and f € LP. Then u(s) <
(Mo

s

Proof: RH.S.= 5 [y [fPPdp 2 55 [5, ) 1fPdp 2 5 [s () Pdn = py(s). @
One can rewrite this inequality in the following form: sup,,qs(pr(s))/? < [|fllz»

and we can use this to define the following spaces.

Definition 1.5.5 Weak L? consists of all functions f such that sup,,q s(s(s))? <

Q.

Thus we can see that all LP functions are in weak LP but the converse fails as

£~'/? is a weak LP function which is not in L?. More about this space later.

Definition 1.5.6 Two functions f and g whose domains are respectively (X, u) and

(Y, A) are called equimeasurable if ps(s) = \gis) for Vs > 0.

Since yy is a function from (0, 00) — [0, o0) and (0, oc) is a measure space under
Lebesgue measure, we can talk about the distribution function of a distribution func-
tion. So we have m,, = m({s: us(s) > t}) = sup{s : ps(s) > t} =inf{s: ps(s) <

t}. This function occurs often enough to be given a special name.

Definition 1.5.7 The decreasing rearrangement of f is denoted as f* and is defined

as follows: f*(t) =inf{s: us(s) < t}.
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Proposition 1.5.8 The following are properties of the decreasing rearrangement.
. a) f*(s) is nonnegative decreasing right-continuous on (0, 00).
b) If | f(z)| £ |g(z)| a.a.z, then f*(s) < g*(s) for Vs > 0.
&) F1fal 1] eace., then f 1 f*
d) (cf)*(s) = |c|f*(s) where c is an arbitrary constant.
e) Let s,t > 0. Then pus(s) <t off f5(t) < s.

f) f and f* are equimeasurable functions.

g) (f +g)(s+1t) < f(s)+ g*(t) for Vs,t > 0.

Proof: a) follows immediately from Proposition 1.5.3.a and the fact.that frisa
distribution function. b), ¢) and d) also follow from their counterparts in Prop. 1.5.3.
e} Suppose f*(t) < s and let {s,}nen be a sequence of real numbers such that
. sn 4 5. Then f*(¢) = inf{z > 0: puy(z) < t} < s, which since py is decreasing implies
that ps(sn) < t. Since the distribution function is right continuous (Prop. 1.5.3.a), we
have u;(s) < t. Now suppose ps(s) <t. Then f*(t) =inf{r > 0: us(z) <t} < s.

f) mp-(s) = m{z > 0: f(z) > s} = m{z > 0: pyl(s) > 2} = m((0, uy(s)) =
ftr(s). Here the second equality follows from part e above.

g) Let a = f*(s) and § = ¢*(t). Our result in part e now gives us ps(a) < s and
pg(B) < t. Using Prop. 1.5.3.e, psig(a + 8) < ps(a) + py(B) < s+t. Now we use
part e again to obtain (f +g)*(s+¢t) < f*(s) +g*(¢t). @

It is two of the above properties of f* (i.e. that f* is a decreasing function equimea-

surable with f) from which f* derives its name. In fact, one can prove that f* is the
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only decreasing right-continuous functions on (0, oc) which is equimeasurable to f.

We have the following result due to Burkill [4].

Lemma 1.5.9 Let f be a measurable function on (X, u) and let g be a decreasing

right-continuous function on (0, 00) with my(t) = py(t) for V¢t > 0 then g = f~.

Proof: Since f and g are equimeasurable, f* = g*. Now we only need show that
¢ and g* are equal everywhere. Assume Ja > 0 such that g(a) # g¢°(a). Suppose
g(a) > g°(a) and choose b such that g(a) > b > ¢*(e) and therefore a € S,-(b) and
since ¢* is decreasing, we have S;. (b} C (0, a). Now since g is right continuous 3¢ > 0
such that g(a +€) > b and hence (0,2 + <) C S,;(b) and p,y(b) 2 a+¢ > a > py-(b)

which contradicts Prop. 1.53.8.f. If g*(a) > g(a), the symmetric argument applies.

1.6 Quasi-Symmetric Spaces

Definition 1.6.1 Let V" be a quasi-ideal space of functions from (X, u) = K and let
f,g be u-measurable functions from X — K. Then V is a quasi-symmetric space if

f €V and f equimeasurable to g implies g € V' and ||g||v = ||fllv.

Corollary 1.6.2 Let V be a quasi-normed space. Then V is a quasi-symmetric space
iff f € V, g u-measurable function from X — K and g*(t) < f*(t) for Vt > 0 implies

that g € V and |lg||v < [|fllv.
Proof: This easily follows from part b of Proposition 1.5.8.
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It seems intutitively obvious that L? spaces are quasi-symmetric spaces. We make

this rigourous in the following theorem:

Theorem 1.6.3 [1][30] For0 < p < oo, (|| flls)? = p f;° sP us(s)ds = [~ (f*)P(t)dt
and || f||z= = inf{s: ps(s) =0} = ||f*||c=. Therefore for 0 < p < oo, LP spaces are

quasi-symmetric spaces.

Proof: First let f be 2 nonnegative simple function with f(z) = 3"7_ a;xg, (). With-
out loss of generality we can assume the a; to be in descending order.
Then py(s) = Zsl:l(Zf:l#(EJ))X[a,+x.a,)(s)
Therefore (|| fllzs)P = 312, au(E))

=3 =i(af = af ) (o, n(E))

=Y pe S, (Tl wl(E))sP~ ds

=pJy 7 (e #ED) X, 01.a,)(5)

=p [y " uy(s)ds.
Now, let f be an arbitrary function in LP then let f, be nonnegative simple func-
tions such that f, 1 |f| then by part ¢ of Proposition 1.5.3, uy, T uy. Using the
monotone convergence theorem, we get ({[f]|.s)? =p f°°° sP~luy(s)ds. Since f and f*
are equimeasurable, (||f||Ls)P = p [5- s*~'up(s)ds = [7°(F*)P(t)dt. The L™ case is
simple to verify. @

The theory of rearrangements was systematically studied by Hardy, Littlewood

and Pélya in their work [15] where this machinery is used to prove inequalities (see

also [27]). For the sake of illustration, we give one example (Theorem 1.6.6) of this
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type. As far as we know, the proof is new. We begin with the following two lemmas.

Lemma 1.6.4 (Hardy’s lemma) Let f,g,h be measurable functions from (0,0c) —
[0,00) and let h be decreasing everywhere. If f; g(z)dz < f(; f(z)dz for Vt > 0, then

I3 g(z)h(z)dz < [ f(z)h(z)dz.

Proof: First we assume that in addition to the above h(z) is also a simple function.
Hence 3a;,t; > 0 for 1 < i < n such that h(z) = 30, aix(o.) ()
Therefore [ g(z)h(z)dz = [° 9(z) T, aixiou(z)

=3 f;g(r)dz: <6 f«: flz)dz

= [ f(2) Timi e (2) =[5 f(z)h(z)dz.

Now if £ is not a simple function, we can find a sequence of decreasing simple functions

hn 1T h and using the monotone convergence theorem, we obtain our result. B

Lemma 1.6.5 Let f be a measurable function on (X, u). Fort >0, let fi(z) = f(z)
if |f(z)] £t and fi(z) = t% when |f(z)| > t. Then ps(s) = py(s) if s < t and

pr(s) =0 whens >t. @

Proof: If s < t, then |fi(z)| > s iff [f(z)| > s which implies S;,(s) = S;(s) and
1, (s) = ps(s). Since |fi(z)| £ t, Sy (s) =0 for s > ¢ which gives us p;,(s) =0. B

Now we are ready to present the following resulit.

Theorem 1.6.6 Let 0 < p < o0 and let f,g be measurable functions on arbitrary
measure spaces. If ||gllce < ||felles for V¢ > 0 and if f € L? for some q such that
0<g<pthen g€ L? and ||g|lee < ||f]|zs-
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Proof: Now (||ge|lzs)? = p [~ s"~ g, (s) by Theorem 1.6.3,

= pfot sP~lpu,(s) by Lemma 1.6.5.

Similarly, (|| fellze)? = p fy 8~ ey(s).
Now use Hardy’s lemma with h(z) = z97°. We obtain [ s y,(s)ds < [° 7~ us(s)ds.
From our result in Theorem 1.6.3, we get |[g|{Le < |[fllze- B

There is a degenerate case of quasi-symmetric spaces which contains only functions

which are zero a.e. We will exclude these cases from the theory that follows.

Theorem 1.6.7 Let V' be a non-degenerate quasi-symmetric space of measurable
functions on X, where (X, ) is a non-atomic o-finite measure space. If E C X

and p(E) < oo, then xg € V'.

Proof: Since V is non-degenerate, 3f € V with f not p-a.e. zero on X. Hence
3P C X and a > 0 with p(P) > 0 and |f(z)] > a > 0 for Vz € P. Since f > axp,
xp € V. Since u(E) < oo, 3{S;}, a finite family of pairwise disjoint subsets of £
with £(Si) < pu(P) for 1 < i < nand |J, Si = E. Therefore x5 < xp and hence

Xs, €V. Since xg =Y oo, Xs, xe €V. B

Definition 1.6.8 Let (X, u) be a measure space. Then f : X — C is said to be
a strictly simple function if 3{E;}%, such that E; C X with u(E;) < co such that

f(t) = Y, aixg,(t) where the a; € C.
The following result now follows easily from Theorem 1.6.7 and the linearity of V.

Corollary 1.6.9 Let V be a quasi-symmetric space whose elements are functions
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from X — K, then the set of strictly simple functions from X — K is a subspace of

V.

Theorem 1.6.7 also allows us to define the following:

Definition 1.6.10 Let V be e non-degenerate quasi-symmetric space of measurable
functions on (X, i), then the fundamental function of V', ¢y(t) is defined as ¢v(t) =

[Ixellv fort 2 0 where E C X with u(E) =t.

Since xg and xr are equimeasurable whenever u(E) = p(F), ¢-(t) is independent
of the choice of £ and therefore the above defintion is well-defined. Theorem 1.6.7
shows us that the fﬁndamental function is defined for Vt for quasi-symmetric spaces
of functions on a non-atomic measure space. The lattice property of V' implies that
#v(t) is a increasing function. Finally, ¢-(t) > 0 for ¢ > 0 and ¢v(0) = 0 which both
follow from the properties of the quasi-norms. One can easily see that ¢, = t!/7.
The fundamental function was first defined by Semenov [37].

Since many spaces of great interest such as LP(.X, u) spaces are quasi-symmetric
spaces, we will now show that two symmetric spaces of functions defined on the same
o-finite measure space (X, u) will be a compatible couple. First we recall the concept

of convergence in measure and one of its consequences.

Definition 1.6.11 A sequence f, of compler measurable functions on (X, u) is said
to converge in measure to f if for Ve > 0, AN such that u({z : |fa(z)-f(z)| > €}) <€

for¥n > N.
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Lemma 1.6.12 Let f, be a sequence of complez measurable functions on (X, u) which
converges in measure to f and let E C X where pu(E) < co. Then fE #Jﬁdp =0

as n — OC.

Proof: Let N be as in previous definition. Fix n > N. Let S = {z : [f.(z) - f(z)| >
e}; then p(S) < €. We have fE -&‘%%du fs ll_fl"f" ””d,u+f5\5 T«’Tndﬂ The first
integral on the R.H.S. is less than ¢ since u(S) < € and the integrand is non-negative

and < 1. The second integral on the R.H.S. is < eu(E) since the inegrand is < ¢.

The result follows.

Theorem 1.6.13 Let (X, u) be a non-atomic o-finite measure space and V',IV" be
quasi-symmetric spaces whose elements are measurable pu-a.e. finite real or complex

valued functions on X, then (V,W) is a compatible couple.

Proof: Let M be the set off all measurable i — a.e. finite real or complex valued
functions on .X. Clearly, M is a linear space and V" and IV are subspaces of M.
Now we construct a metric d on M. Since X is a o-finite measure space, X is a
countable union of subsets {E,}32, where 0 < p(E,) < oo. Now let d(f,g) =

o 2";::5") 5. Iiﬂ;ﬂ'ﬂa’u and this is a metric on M. Since M is metrizable, it is a

Hausdorff topological space. Now suppose f, is a sequence of functions in V' with
[|fallv = 0 as n = oco. We now show that f; converges to 0 in measure on the
sets E,. The proof is by contradiction. Suppose 3E € X with 0 < u(E) < oo such

that f, does not converge to 0 in measure on E. Then 3f,, a subsequence of f,
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and € > 0 such that u({z € E : |fo,| > €}) > e. Thus f;, > ex(o,e) = Xp where
P is any measurable subset of E with 0 < u(P) < £. Since V is a quasi-symmetric
space xp € V and 0 < €l|xp|lv £ ||fa.llv which contradicts our assumption that
[|fallv = 0. Hence f, converges in measure to 0 on all sets of finite measure which
implies that d(f,,0) — 0 and therefore V" is continuously embedded in /. Similarly

for W. Hence (V, W) is a compatible couple.

1.7 Quasilinear Operators

Much of analysis deals with linear operators. Interpolation theory is no exception.
However there are cases where the theory can be extended to larger classes of opera-

tors. For this purpose we introduce the concept of a quasilinear operator.

Definition 1.7.1 Let T be an operator whose domain and range are topological vector
spaces whose elements are measurable functions on (S,\) and (.\\, u) respectively.
Then if 3C > 1 such that for Vf, g in the domain of T, |T(f + g)(z)] < C(|T f(z)| +
[Tg(x)|) for u — a.a.x € X, T is said to be a quasilinear operator. If in addition we

can take C =1, T is said to be sublinear.

All linear operators are sublinear. We can define the bound (or norm) of a quasi-

linear operator in exactly the same way as we do for linear operators.

Definition 1.7.2 Let T be a quasilinear operator and let V and W be quasi-normed

spaces contained in the domain and range of T respectively. Then T is said to be a
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quastlinear operator from V — W with bound M (or norm M) if M is the smallest

positive real number such that ||T f|lw < M||fl|v forVf e V.

The use of the word norm here comes from the theory of linear operators on Banach
spaces where the norm actually is a norm (i.e. satisfies the axioms in Definition 1.1.2).
In the general case, the word norm is often still used (as in [18]) but in this case the
norm is not necessarily a norm. Hence, in this thesis, the word bound will be used.

We end this section by noting that if I and I} are two quasi-normed spaces in the
domain of T, V + W and hence every intermediate space (Definition 1.4.8) of (17, 1}")

is also in the domain of T.
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Chapter 2

Interpolation and the K-method

2.1 Interpolation Spaces

Definition 2.1.1 Let (A, ;) and (By,B,) both be compatible couples (as defined in
Definition 1.4.3) of quasi-normed spaces. Then T is an admissible operator from
(do,41) to (Bo,B1) if T is an operator from Aq + A, — By + B, with the added

property that T maps A; = B; boundedly for bothi =0 and i =1.

Definition 2.1.2 Let A and B be quasi-normed spaces and (Ag,d;) end (Bg,B,) be
as above. Then (A, B) is said to be an interpolation pair for (4g,4,) end (By,B,) if
A is an intermediate space for (Ag,A)), B is an intermediate space for (By,B,) and

if every admissible linear operator from (Ag,A:) to (Bo,B,) maps A — B boundedly.

Definition 2.1.3 A is said to be an interpolation space for (Aq,4,) if (4, A) is an
interpolation pair for (Ag,A;) and (Ag,A,;).
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Many mathematicans have studied methods of generating interpolation pairs. In
the remainder of this thesis we explore one of the more widely used of these methods;

the K-method developed by J. Peetre in 1963.

2.2 The K-functional

Definition 2.2.1 [34] Let (V,W) be a compatible couple of quasi-normed vector
spaces and f € V + W. Then K(f.t,V\IV) = infyen=s(l|g|lv- + t||hl|sv) where the
infimumn s taken over Vg € V', h € W with f = g+ h. K(f,t,V.1V") is called the

K -functional.

We sometimes write A(f,t, 1, 11") as K'(f,t) if the identity of the spaces V" and

W are clear from the context.

Lemma 2.2.2 Let (V,IV) be a compatible couple of quesi-normed vector spaces.
Then K -functional satisfies the inequality: K(f,s,V,WV) < maz(1,s/)K(f,t,V, W)
forVf € V + W and Vs,t > 0. In particular K(f,t) is an increasing function of t

and K(f,t)/t is a decreasing function of t.

Proof: Now let g € V,h € W with f = g+ h. Suppose s < ¢, then K(f,s,V,W) <
lgllv + slikllw < Hgllv + t||h|lw. Taking the infimum over the R.H.S gives us
K(f,s) < K(f,t). Hence K(f,t) is increasing. Now suppose s > t, then K(f,s, VW) <

lgllv + sllkllw < (s/t)(l|g]lv + tl|h|lw). Taking the infimum over the R.H.S gives us
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K(f,s) < (s/t)K(f,t). Dividing both sides by s we see that K(f,t)/t is decreasing.

Lemma 2.2.3 [1] Let (V, W) be a compatible couple of quasi-normed (resp. normed)
vector spaces and lett > 0. Then K(-,t,V, W) is a quasi-norm (resp. norm) of V+W

equivalent to the usual norm || - ||lv+w-

Proof: 1t is easy to verify that K(-,¢,V, W) is a quasi-seminorm (resp. seminorm).
From Lemma 2.2.2, we obtain min(1, t)|| fllv+w < K(f,t, V. W) < maz(L, )|} f|lv-+w
and thus K'(f,t) = 0 implies ||f||v+w = 0 which by Lemma 1.4.5 implies f = 0 and
hence K(-,¢t,V,1V) is a quasi-norm (resp. norm) equivalent to || ||y-s1-. B
K(f,t,V,W) is defined for Vf € VV + V. If we restrict f to be in V" or [V we get

the following bounds for the A’-functional.

Proposition 2.2.4 K(f,t,V,IV) < [|fll\ for ¥f € V and K(f,t,V,IV) < t]|fllw

forVfeW

Proof: This follows immediately from Definition 2.2.1. Use the decomposition f =

f+0

Lemma 2.2.5 Let (V, W) be a compatible couple of quasi-ideal spaces, f, g€ V+ W

and |g| < |f| a.e. then K(g,t,V,W) < K(f,t,V,W).

Proof: Let f,g be as above. Let n(z) = %E))' if f(z) # 0 and n(z) =0 if f(z) = 0.

Then |n(z)| < 1fora.a.z and g(z) = n(z) f(z). Fixt,s. Now 3h € V, k € W such that
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f = h+k and ||hljv +t||k|lw £ K(f,t,V.W)+e. Then g(z) = n(z) f(z) = n(z)h(z)+
n(z)k(z). Since |n(z)h(z)| < |h(z)| and V is an quasi-ideal space, |[nh|ly < ||A||v.
Similarly, ||nkllw < ||kllw. Therefore K(g,t,V,W) < |Inhllv + t|ink|lw < ||Allv +
tlk|lw < K(f,t,V,W)+e. Since ¢ is arbitrary, we get K(g,t,V,W) < K(f,t,V,W).

Corollary 2.2.6 Let (VW) be o computible couple of quasi-ideal spaces, f,g €
V+ W and |g| = |f] ae. then K(g,t,V,W) = K(f.t,V,W). More specifically

K(f,t, VW) = K(f,t,V,I¥).

Proof: 'Use previous lemma twice.

2.3 K-spaces and Interpolation

In this chapter, we examine the properties of K-spaces. All results except where

otherwise noted can be found in [1] or (3.

Definition 2.3.1 Let (V,W) be a compatible couple of quasi-normed spaces and let
0<60<1and0<q< oo We define the space (VW)= {f:f eV +W such
that ||t K (f,t, V,I'V)||Lq(4‘1) < oo} (The definition of||f||,_q(%) was given in section

0.1).

Theorem 2.3.2 Let (V, W) be a compatible couple of quasi-normed spaces, 0 < § <

1and 0 < g £ 0o. Then (V,W)4, is a quasi-normed space with the quasi-norm
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1flleq = lItOK(f,t.V, W)llose)- Furthermore, if V and W are normed spaces and

1 < g < oo then (V,W)g, is a normed space.

Proof: This follows from Lemma 2.2.3 and the fact || || Le(d) 1S 2 quasi-norm for
0<g<owandanormforl <g<oc. B
The members of these two parameter family of spaces are collectively called K-

spaces. They satisfy the following important inclusion relations:

Lemma 2.3.3 Let 0 < g < 00, then (V,W)sq C (V. W )po and || fllee < [g8(1 —

0)1/%]1 £ llo.g for Vf € (V,1W)aq

Proof: Let f € (V, W )pee
Then [|fllog = (Jg [t/ K(f, )79 = (P K (S, )05 + [T K (£, 0]9)s
Using Lemma 2.2.2:

2 (LIt A/s)K(f, )% + [T K (S, )P 4)e

= K(f,s)(s™ f; t0-00t 4 [ p=0adt)la = [(f,s)(2te. 1 =2eyi/e

= K(f,5)s"%[q0(1 — 6)]-1/a.

Take sup over 0 < s < oo of the R.H.S. and we obtain our desired result. B

Theorem 2.3.4 Let 0 < ¢ < 7 < oo, then (V,W)gq C (V,W)g, and ||fller <

[46(1 — 8)]+™% || flag for VS € (V,W)ag

Proof: The case where r = 0o was covered by the previous lemma. So let r < oo,
then ||fllo, = (J5 Bt K(£, ) )" = (fo P K(£, ) [t 0K (£, )P ).
< (suPocs<aalC(f, 8)s78) 9 (|| fllog) ™ = (1 flloc) =4/ (H1£lo.) /"
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Now using Lemma 2.3.3,

< [g8(1 = 8)]5 || fllo,. M

Theorem 2.3.5 Let (V,W) be a compatible couple of quasi-normed spaces. Then

(V,W)g,q ts an intermediate space for (V,W).

Proof: First, let f € VNIW. Then from Lemma 2.2.4 we obtain the estimate K{f,¢t) <
min(1,t)||fllvaw. Multiplying by ¢=% on both sides and applying the L"(dT‘) norm on
both sides, we get || f|ls,, < ||t“’mz'n(1,t)||,‘.,(al_e)||f||‘-n;;r. Since ||t'”min(1,t)|lmg‘£} <
0o, V' NIV is continuously embedded in (1711)g,. Now let f € (1,117)g,. If ¢ = o0,
then || f|ls.c0 = SUPsg t 2K (f,t) > K(£, 1) = ||fllv+w- Ifq < oo, we use Lemma 2.3.3
to obtain |{f|jvew < [[flloee < [g8(1 — 8)]'/9)|fll6.; Hence (V,117)g, is continuously
embedded in V + W and (V, W), is an intermediate space for (V,11"). B

Now we are ready to show that the K-method interpolates quasilinear operators.
The following proof is original. This result is contained in the more general but less

elementary results of Sagher [36] and Komatsu [23].

Theorem 2.3.6 Let (A, A,) and (By, B;) be compatible couples of quasi-ideal spaces
and let T be a quasi-linear operator from Aqg+ A = By + By where T maps A; - B;
with bound M; > 0 when i = 0 or 1. Then T maps (Aq, A1)ag = (Bo, B1)s,q with

bound CME~OME.

Proof: In what follows C is a positive constant independent of ¢ but not necessarily
the same in all occurences. Fix t,e > 0 and let f € Ag + A;. Then 3g € Ay, h € A,
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such that f = g+ h and ||g]|4, + %t”hll,‘l < K(f, g—%t, Ag, A1) +¢
. Then K(Tf,t, By, Bi) = K(|T f},t, By, B,) using Corollary 2.2.6,
< CK(|Tg| + |Th|,t, By, By) by the quasilinearity of T and Lemma 2.2.5,
< C[K(|Tgl,t, By, Br) + K(|Th|, t, By, By)]
= C[K(Tgy,t, By, B)) + K(Th,t, By, B,)] using Corollary 2.2.6,
< C[|IT9gll s, + t||Th||8,] using Proposition 2.2.4,
< C[Mollgllao + Mitfh||4,)
< CMy[K(f, %%t, Ao, A1) +¢).
Since ¢ is arbitrary, we have R (T'f, t, By, By) < CM K (f, %;t, Ao, 4y).
Therefore ||T fl|(8o,513,, = ([5 (LK (T f,t, Bo, By)]"%)"7
S CMy (1K (S, f{—f;t,.—lg,;ll)]"?)”" = CMg~" M| f|l(A0.1)s,- The last equal-
. ity can be obtained by making a change of variables s = —t%t |

Since every linear operator is also quasi-linear, we have

Corollary 2.3.7 Let (4o, A|) and (By, B,) be compatible couples of quasi-ideal spaces.

Then ((Ao, A1)ag, (Bo, B1)a,g) is an interpolation pair for (Ag, A,) and (B, By).

2.4 The Reiteration Theorem

All results in this section with the exceptions of Lemmas 2.4.2 and 2.4.3 are due to
Tord Holmstedt and can be found in [18]. We have streamlined certain proofs. Let
(V,W) be a compatible couple of quasi-normed spaces. Applying the K-method,

we obtain a two parameter family of spaces (V,W)g, Now choose two of these
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spaces: A; = (V,W)a,,q fori = 0,1 where 0 < @y < @; < 1and 0 < gp,q; < 0.
Both Ay and A, are continuously embedded in V' + W (proved in Theorem 2.3.5).
Hence (4q, A;) is a2 compatible couple and we can apply the K-method on this new
couple. The reiteration (or stability) theorem states that (Ao, 41)eq = (V. W)ne
where 71 = (1 — 0)aqg + fa;.

For ease of notation let K(f,t) = K(f,t,V,W) and let K(f,t) = K(f,t, Ao, A1).
It is often very difficult to find the exact value of K(f,t). The K-method can still be
used provided we can find H(f,t) : (V + V) x (0,00) — R with the property that
Ve V+W, H(cf,t) = |c|H(f, t) and C H(f,t) < K(f,t) < C2H(f.t),Vf eV +I¥,
V¢t > 0 where C, and C, are positive constants. e write K(f,t) ~ H(f,t) when
H(f,t) satisfies the above conditions. Then |[t=9H (f, t)||Lq(%;) is a quasi-norm for the
space (Ag, 41)g and is equivalent to the usual quasi-norm (see Definition 1.1.4) for

(Ao, A1)aq. The following is a result of this type.

Theorem 2.4.1 (Holmstedt’s Formulas) Let V, W, Aq, A, be as above.
Then K(f,1717%0) ~ (3]s~ K (f, s)|0 L)/ + tor-oo( [R5~ K (f, 5)]0 &) /o
and K(f,t,V, Ar) ~ 2 ([C[s™ 0 K(f, s)|n &)Y

and I((f, tl—ao, Ao, ‘IV) ~ (fot[s-aoK(f, s)]‘lo %—*)1/40

All three of the above formulas are closely related. We will prove the first one
and give indications in the text where the argument needs to be modified to prove
the others.

Proof: In what follows C is a positive constant independent of ¢ but not necessarily
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the same in all its occurences. Fix ¢t > 0 and let f € 4y + A;.

First we show that the L.H.S. < C+*R.H.S. Since Ag, 4, C V + IV, 3g € V and
h € W such that f = g + h and ||g|lv + t]|kllw < 2K(f,?).
Then by Lemma 2.2.4, K(g, s) < ||gllv < 2K(f,t) and K(h, s) < s{|h|lw < 2:K(f,¢).
Using Lemma 2.2.3, we obtain K(g,s) = K(f — h,s) < C[K(f,s) + K(h,s)]

< CIK(f,s) + 3K(f.t)] = Cs[K(f”) + £ Now since K(f,t)/t is a decreasing

t

function of t, K (g, s) < Cs[K(f,)/7] where T = min(s,t). Hence we have ||g||4, =
([C[s~ @K (g, s)]0 L) = C([[[sK(f, s)|0L + [F[s~0sK(f,t)]©0 L) o,

Now we consider the second term on the R.H.S. of the above inequality.
[P0t K (f )| = (EUtyw [2[s1-aojrods < C(KUt1-a0)e0

= C(Elya [H(pi-co)m < C([[[s7 K (f, 5)]"L).

Therefore we have ||g||4, < C([;[s7® K (f, s)]70d) /%,
(In the case where -, is replaced by V' we use ||g||y < 2K(f,t)
< Cen ([Pl K (f, ] &) Va < Ceon([F[s~ K(f, )| &) Vm).
Using Lemma 2.2.3, we obtain K'(h,s) = K(f — g,s) < C[K(f,s) + K(g, s)]
< C[K(f,s) + K(f,t)] = C[K(f,T)] where T = maz(s,t) since K(f,t) is increasing.
Hence we have |||, = (J5 [s™* K (h, s)|n &) a
= C([{[s K(f, )] & + [Pls~0 K(f, s)|n &) Vo,
Now we consider the first term on the R.H.S. of the above inequality.
Rl K(f, )04 = [K(£, 0] [{s~]eL < CK(f, O[]

< C([°[s™™ K(f,s)]"). Hence we have |[h|[4, < C(J"[s~ K (f, s)|&)Ya.
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(In the case where A, is replaced by W we use [|h|[y < 2K(f,t)/t
< Gt~ ({50 K (£, ) /{R )/ < Coom([3fs0 K (f, )0 ) o).
Therefore, we have K(f,t* 7, A, A;) < ||g]| 4o + t* 7}]A|| 4,
< Cl([ls™0 K, ) ) Voo 4 oo ([[s=0 K/, )]0 &) /o
Therefore, L.H.S. < C+R.H.S.

Now, we prove the reverse inequality. Fix t,e > 0. Since f € 44 + 4,, 3g € Ao,
h € A; such that f = g + h and ||g||4, + t**7(|h|]l4, < K(f, 279, 4o, 41) + €.
Using Lemma 2.2.3, K(f,t) < C[K(g,t) + K(h,t)]. Since g € 49 = (V,W)aeuo C
(V. W)ag,c (Last inclusion follows from Lemma 2.3.3), supy5ot K (g,t) < oc and
thus K(g,t) < Ct*||g||4,- Similarly K'(h,t) < Ct*||h||4,. (For the second and
third results we use instead K'(g,t) < [|g|[s- or K(h,t) < t]|h||i respectively. The
remainder of the argument is unchanged).

Therefore (f; [s79K(f, s)]rade)! /40
< Cl(fyls™ K (g, s)|® L) /o0 4 ([{[s~ K (h, s)]0L)" /%]
< Cl(fo7[s7 K (g, 5)] L) /90 + [A]| 4, (fy s o]0 &) 0]
< Clllgllao + 7] |h||4,} £ CIK(f, 1270, 4q, AL)] + e

Similarly ([”[s~® K(f,s)]%)"/®
< Cl(STls~ K (g, )] ) + ([~ K (h, 5)|" &) /9]
< Clllgllao([ s n L) + (5 [s~ K (h, t)] &) !/9
< Clto=|gllao + l~lla)]

L Ctoo— K (f, 197, Ay, Ay)] + e
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Since ¢ is arbitrary, RHS.< Cx L.HS. B

Before proving the reiteration theorem, we state the following well-known result.

Lemma 2.4.2 (Hardy’s Inequalities) Let f(t) be a function from (0, 00) — [0, 00)

Let f,t >0 andl1 <r< o
N AN ~1y4-8
It | f(s)?”u(#) S B7TIEE (o,

e d
1€ [ 16 S ety < 87 IOl

s
If 0 < r < 1 then the above inequalities are reversed. Furthermore, if r = 1 the

inequalities become equalities.

The proof of Hardy's inequalities may be found in {12],[1],{30] or [33]. We also

need the following inequalities.

Lemma 2.4.3 Let s > 0,0 < 8 <1 and 0 < p < q < oo, then the following

inequalities hold

”X(O.s}t_aK(f’ t)“[,q(t"_') < C”X(u.s)t—al\’(f: t)”z,n(é‘i)
and
”X(s.oo)t_aK(fz t)”.{.‘i(“T’) < C”X(a.oo)t—aK(fr t)”Lp("T‘)
Here C may depend on s,0,p or q but is independent of f.
Proof: First we prove these inequalities when g = co. Now ||x(.qt ¢ K(f,t)|| Lr(dt) 2

K{fs) {" IIX(o,s)tl'a“ Loy = CK(f,s)s™® where our first inequality follows from E(,‘L‘).
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being a decreasing function (Lemma 2.2.2). Now ||x(0,t K (f, t)[[,_,,(#) is an in-
creasing function of s, so for t < s we have [|x (ot ?K(f, t)HL,,(u%) >CK(f,t)t 8. If
we take sup of R.H.S. over Vt < s we obtain our first inequality for ¢ = co.

For the second inequality, we have ||x(s 0t K (f, tNIeweay 2 K(f, s)llx(,m)t“’ll,‘,(g)
= CK(f,s)s™® where our first inequality follows from K(f,t) being an increasing
function (Lemma 2.2.2). Now |[x(s.c0t P K (£, t)]| Lp(d) is an decreasing function of s,
so for t > s we have ||x(o.,)t“’1\'(f,t)||L,,(.%) > CR(f,t)t7%. If we take sup of R.H.S.
over VYt > s we obtain our second inequality for ¢ = 0.

Now using an argument identical to Theorem 2.3.4, we can use the ¢ = oc case to
prove the inequalities for general q. B

Now we ready to prove the reiteration theorem. This result is also due to Holm-

stedt.

Theorem 2.4.4 Let VW, 4o, A; be as above, then (Ag, A1)sp = (V.WW),, where
n = (1 — 8)ag + 8. Futhermore C §~™nt/pl/0)(1 — 9)"'"‘"(”"'”‘“”|f||(v’.W).,,, <
£ lao,any, S Cof=mex(t/pt/w)(1 — g)=mas(i/pi/al|f||y.y), . where C, and C; are

positive constants which do not depend on 6.

Proof: In the following C is a constant which is independent of 6 but is not neces-
sarily the same in all its occurences. ||f||(a0,4105, = (Jy (7 K(f, 5, Ao, A1) P£)/P =
C([y [t~ K(f, tm -, Ag, A;)]P%)!/? where we have made the substitution

te1=% = 5. The same change of variables can be made for the supremum in the
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p = oo case. Now using Holmstedt’s formula, we get:

~dar-aa)( [ [.-a ds caes [ d
11 £l ~ llE75=2( /0 [ K (f, 5)]%0 =) 04210 / [s-m.r{(f,s)]'v-sf)*/m]nm?,
t

Using the triangle and reverse triangle inequalities for U(%), we now obtain:

|1 f1la0.4106, ~
e =e0)( f2{5=20 K (£, 5)]9042) /0]y sy ][00 -m) [=[ga e ( £, )]0 )1/ ||

Let I be the first term on the R.H.S. and let I, be the second term on the R.H.S.

Then Iy = ([} [t~%e1-00) f(;[s“"’fx’(f,s)]"“%]""’“%)”".

If p > qo, we use the first of Hardy’s Inequalities with d = 8(, — ), r = p/qo and
f(s) = [s7™K(f,s)]% to obtain Iy < ([f(a;, — ao)]'lfom[tg(""‘m)‘%}’\'(f.t)]P“T‘)‘/".
Remembering that n = (1 = f)ag + 8oy = O(a; — ag) — ap, we see that the [ <
COYB|| £l v )a,-

If p < qo, then we first use Lemma 2.4.3to get [y < (fow[t“’(“““") fot[s"’u K(f, s)]p%]%‘)‘/”,
Now we can use Hardy’s Inequalities with 3 as in previous case, r = 1 and f(s) =
[s~™ K (f, 5)]?, we get Iy < CO'YP||f||ivw),,-

Combining our two cases, we get [y < C=ma=(/a/P)| || -y, .

We can also show that Io > C6=™m(1/a:.L/P)]| || \.yy),  using the same methods.

If p < qo, we use Hardy’s Inequality with 3 = 8(ay — ag), 7 = p/gs and
f(s) = [s7™K(f,s)]% to obtain I > ([f(ay — ao)]™! [ [tHer—2)-a0 g (f, t)|Pdt)i/p.
Remembering that n = (1 — 6)ag + fa; = 0(a; — ag) — ag, we see that the I >
COY®|{ fll(v,#)ap-

If p > qo, we use Lemma 2.4.3 to get fo > (f;~[t~¥ ) fot [s7K(f, s)|Pde}&)1/e,
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Now we can use Hardy’s Inequalities with 3 as in previous case, r = 1 and f(s) =
[sT* K(f, s)]P, we get Iy > COY?||fl|vw),.,-

Combining our two cases, we get Iy > Co=™n /0P| fll 1y, .

Now we also have [; = ([~ [t(}-0)@1-a0) [F[s=ar (f, s)|ar Le]plmdtyl/p,

Using the same methods as with Jo, we can show that [} < C=me=(/aul/p)|| £l
and I > CO~™/aul/?)|| f[| vy, , The only differences here are that we use the sec-
ond of Hardy's Inequalities instead of the first and that we take 3 = (1 - 6)(a; — ao).
Adding our inequalities for Iy and I, we obtain the required result. B

Note that in all of the previous results, we have had A; = (V, W), 4, with ag < .
The reiteration theorem also works when a; < ay; all we have to do is interchange
the roles of Ag and A;. One can easily see that A'(f,t, Ag, A1) = tK(f, 1/t, 4;, o)
and therefore multiplying by t~¢ and taking L9(%) of both sides we get (Ag, A1)gq =
(A1, Ao)1-64- Now let 7 = (1 — 8)ag + 6. Since a; < ag we can use Theorem 2.4.4
on the reversed couple (A;, Ag) to obtain (g, A1)ag = (A1, Ao)i-g4 = (V. W), with
equaivalent norms where 7 is as before.

We used the first of Holmstedt’s formulas in the proof of the reiteration theorem.
Using the second and third of the formulas and using an argument identical to the

usual reiteration theorem we get the following:

Theorem 2.4.5 Let V, A, be as above, then (V,A,)sp = (V, W)y, where n =
with equivalent norms and Cy(1 — §)~™n(/pl/a)|| fllvwres < fllvage, < C2(1 -

g)~maz(l/pl/a)|| f||v.w),, where Cy and C; are positive constants which do not depend
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on 8.

Theorem 2.4.6 Let Ao, W be as above, then (Ao, W)sp = (V,W),, where n =
(1 — 8)axg + 8 with equivalent norms and Clﬁ'mi“(l/”'l/q")”f”(V.W)n.p < £ laomye,

Caf~ma=(l/p/®)|| || vy, , where C1 and C, are positive constants which do not de-

pend on 8.

41



Chapter 3

Interpolation of LP spaces

3.1 The Lorentz spaces

One of the goals of this chapter is to describe the interpolation spaces generated by
the L? spaces and then use the results to prove classical L? interpolation theorems.
Some of the K-spaces generated by a pair of L? spaces are not themselves L spaces
but lie in a larger family of spaces called the Lorentz spaces. The results in this

section are from (30].

Definition 3.1.1 Let (X, pu) be e o-finite measure space and let 0 < p,g < oo;
then || fllLre = (% TP £ ()]9%) Y9 if g < oo and ||f||ee = Sup,sq tY/P f*(t) when
g = 0o. Then the set LP? consists of all the u-measurable functions f on X with

[1fl|zpe < o00.
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Note that when p = g, we have ||f|lzs» = (f5 [f*(£)]Pdt)/? = ||f||» (second
equality comes from Theorem 1.6.3). Therefore LP spaces are all realizable as Lorentz
spaces.

The following proposition shows that L»> is essentially weak L? {Definition 1.5.3).
Proposition 3.1.2 sup,,qt'/7f*(t) = sup,sq s(us(s))/?.

This follows from Proposition 1.5.8.e. Let t = u(s), then f*(t) < s. Hence
t'/P f+(t) < s(us(s))'/?. Taking supremums of both sides, we get L.H.S.<R.H.S. Now
let s = f*(t), then us(s) <t. Hence LHS.>R.HS. R

Many of the properties of Lorentz spaces will follow from those of A-spaces once

L 9

we prove that (LPo#0, LPt%)s, = LP4 where = 12 + L. In order to apply this

theory, we must show that LP9 are quasi-normed spaces.
Theorem 3.1.3 The LP9 spaces are quasi-normed spaces.

Homogeneity follows from Proposition 1.5.8.d. Now we prove the triangle inequality.
For what follows let s = 2t.

First let ¢ = co. Then using Proposition 1.5.8.g, ||f + gl|tre = supesot'/?(f +
9)*(t) < supesat'P(f*(t/2)+9°(2/2)) < supe>o(25)P(f*(s)+9°(s)) = 2'/P(|| fllLoe0 +
llgl|zs0)-

Secondly let g < oo, Then using Proposition 1.5.8.g, ||f + gllse = (f5 [E/P(f +
g (OPL)e < ([o[EP £(t/2)+£7g" (1/2)7%)9 = ([°](25)1/7f* (5)+(25) VPg" (s)]7%) o
< VPHamle ([2[51/8 £ ()]0 ) 10 4 ([32[sH/ng™()|o%)H0) = 2VP*/ae |1 f] e +
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ligllLea). Now ||fl|zpq = O implies f* = 0 and hence f = 0. Hence LP? are quasi-
normed spaces. B

It is not to hard to see that, in fact, the LP spaces are quasi-symmetric spaces.
One can compute the fundamental function of these spaces (Definition 1.6.10). For
p < ooorp=q= oo we obtain ¢;s4(t) = t'/?. However, when we consider the
case where p = 00 and g < oo we find something quite different. Let £ C X with
1(E) = t < oo, then |[xgllzma = (f° X(0(s)£)"s = co. Hence xz & L9 and by
Theorem 1.6.7, L9 contains only functions which are zero a.e. We exclude these

degenerate cases in what tollows.

3.2 K(f.t, A, L®)

Lemma 3.2.1 Let (X, u) be a non-atomic o-finite measure space. Let A be a quasi-
symmetric space whose elements consist of u-a.e. finite functions on X. We take L®

to be L®(X,u). Let f€ A+ L*® and E C X with u(E) < oo then fxg € A.

Proof: If f € A+ L™, then 3g € 4, h € L™ such that f = g + h. First we note that
A is a quasi-ideal space and therefore gxz € A, since g € A and |gxg(t)] < |g(t)|-
Furthermore, |Axg(t)| < ||h||lt=|x£e(t)| and xg € A (Theorem 1.6.7) which gives us
hxe € A. Since fxg = gxe + hxe, fxe € A. B

Before continuing, we recall the content of Definitions 1.5.1 and 1.5.2:
Si(s) = {z € X : 1f(z)] > s} and py(s) = p(Sy(s)-
Also Sy(s7) = limy_s- Sy(u) = {z € X : | f(z)| > s}
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Definition 3.2.2 We define M(t) as follows. Suppose Is > 0 such that ps(s) =t
then let Mp(t) = Sy(s). If no such s ezists, take s = f*(t) = inf{us(s) < t}.
Then u(Sp(s)) < t and u(Sp(s™)) > t. Then let My(t) be a set of u-measure t with

Sp(s) € My(t) € Se(s™).

In the second case above, our choice of A,(t) may not be unique. However,
the fxar ) are equimeasurable over all choices of M(t) and hence the quantity
|lf xar (!l 4 which is needed for the following resuits is well defined. The following is

due to Krée [25] (see also {2]).

Theorem 3.2.3 Let A,L™ and f be as in the previous lemma, let d,(t) be the
fundamental function (Definition 1.6.10) of A and let c4, ¢/, be the constants in

the c-triangle inequality and the reverse triangle inequality for A respectively. Then

(ca) I xarlla S K(f, 04(t), A, L) S dillfxarpnlla for Ve A+ L.

Proof: Fixt > 0. Let f € A+ L™, then 3g € 4,h € L= with f = g+ h and
llglla + Sa®)llhllLe < K(f, 9a(t), 4, L) +e.

Now using the c-triangle inequality, (c4)~*||fxar, 9]l < llgxar,lla+llhxar@wlla <
llglla + [1~llze|lxat,0]la since lgxar, ] < gl [hxag@] < AllzelXxas@]-

Hence (ca) ™! |[fxatyll < llglla + da(@iRllie < K(f, (), 4,L°) + €. Since €

is arbitrary we have the L.H.S. of the required inequalities.
Now we prove the R.H.S. Using Corollary 2.2.6, we may assume without loss

of generality that f > 0. Now let g(z) = [f(z) — f*(t)]xm,()(z) and let h(z) =
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f(z) — g(z). Then h(z) = min(f(z), f*(t)) and [|k||z= = f*(t). Furthermore since
flz) € A+ L*® and f*(t) € L* C A+ L, f(z) — f*(t) € A + L* and by Lemma
3.2.1, g(z) = [f(z) = f*]xay0 € A

Thus K(f, ¢a(t), 4, L%) < |lgllat+da(t)lhlle < llgxarellatlxawllallhllze <

Hgxar,wlla+f Exanmlla < (@)= F @Olxawll s+ @)xarmlla < allf xamlla

The last inequality follows from the reverse triangle inequality (Lemmas 1.2.4 and
1.3.4).

Hence we have (c) 7!||fxarlla € K(f,04(t), A, L) < illfxarwlla- B

Now we can substitute || fxar /4 for K(f,¢t, 4, L) and obtain an equivalent

norm for (A, L*®)g4. The following result gives us the decreasing rearrangement of

Fxatye)-
Proposition 3.2.4 For fired t >0, (fxsr,0)° = f X0

Proof: Let ¢ = fxaryy and h = f°x(r. Then h is clearly decreasing and right-
continuous. When Sy(s) < t, Sy(s) = Sy(s) = Su(s) and when Sy(s) > t, Sy(s) =
t = Sp(s). Hence g and h are equicontinuous and by Lemma 1.5.9, ¢g*=h. B

For A = L}, we obtain an especially nice simplification of Theorem 3.2.3. Here

cpr = ¢, =1 giving us the following result due to Peetre [34):
Corollary 3.2.5 ForV¥f € L' + L®,t > 0; K(f,t,L',L=) = [; f*(s)ds.

In the theory above, we restricted X to be a non-atomic o-finite measure space.
In some applications, we may want X to be Z with counting measure. We sketch
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what can be done in this case. Let f(n) be a function on Z, then let f'(t) =
Y ien f(9)Xpii+1)(t). For Lorentz spaces, we now have ||f'||zra®) = || f|lip.a(z). Hence

we have K(f,t'/7,1P9,1°) ~ || f'xpt (0| Lram)-

3.3 Interpolation of Lorentz spaces

It A is an LP9Y space we can say more. Since ( fof(”)‘ = f*X(op » We have
Hxarllees = (j;[s‘/”f‘(s)]"‘$)‘/"°. Using this we can obtain the following result

which will allow us to interpolate Lorentz spaces.

Theorem 3.3.1 Let 0 < § < 1 and let LFo% gnd LP*" be two nonempty Lorentz
spaces with py # p,. Then (LFPo%, [P}y, = LP9 where ’1, = = L 2 54 5 =

Po m

=0+ L. Furthermore 3¢, C > 0 such that cg=mint/al/w)(] — g)=min(t/at/a)| £|| 1,y <

‘"Ju

||f||(1.vu-vo.1_m-n),q < Cg- max(i/y, I/qo)(l - ) mm((l/'!.l/'h)”f”LPN forVf e LpP.

Proof: Now let us suppose that p; < oo for ¢ =0, 1. Choose r such that 0 < r < p;, g;
for i = 0,1. Theorem 3.2.3 gives us K'(f,t"/", L7, L®) ~ ([ (f*(s))"ds)"/". Making
the substitution 7 = t}/7, we obtain K(f,7,L",L*®) ~ (fu (f(s))"ds)!/r. Therefore
W ller iy, ~ (J5o(r % [77(f*(s)"ds)¥"£)9. Now let t = 7. This gives us
L fHler.zoyq ~ (fo°°(t“’fo‘s(f‘(S))”i—’)"’”i-‘)"“-

Now use Hardy's Inequality (Lemma 2.4.2). Let p = &;. For ¢ > r, we get

RHS. < C(J°[t'F" f(s))9%)Ys = C||f||zsa. Since f* is a decreasing function,

we have f(;[f'(s)]’ds > t{f*(t)]” and therefore R.H.S > ( f:"[t¥f (LM =
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cl|fllzoa. Therefore cl|fl|zra < [|fllizr.c=tey < Cllfllzne and (L7, L®)g, = [P when
g >rand p = ;5. Now since p; > r, 36; € (0,1) such that p; = Z5- and ¢; > 1
gives us LP% = (L7, L®)y, .. for i = 0,1. Now we can use the reiteration theorem
(Theorem 2.4.4) to obtain our result.

Now let one of the p; be infinite. Without loss of generality let p; < oo and let

p1 = oo. Hence the pair we are interpolating is (LP*%, L>=). We follow the same

procedure as above except that we use Theorem 2.4.6 instead of Theorem 2.4.4. B
Proposition 3.3.2 LPAC [P" 0<p<ooandl<qg<r<o

Proof: Using Theorems 3.3.1 and 2.3.4, we obtain LP? = (L®, Ld)g‘q C (L, L)y, =
LP" for properly chosen e, 3 and 6. B
Now we can prove the following interpolation theorem for Lorentz spaces. This

proof follows that of a similar result in [18].

Theorem 3.3.3 Let L»" and L% where i = 0 or 1 be non-empty Lorentz spaces.
Let T be a quasilinear operator from LP+" — L%* unth bound M; for i =0 or 1 and

L_1=0,8 1 _1=0_8 T L9
= 50 T g -+t and r < s. Then T maps LP" — L% with bound M

where M < CM(,“ajv[fg-(llls-1/so]++[l/ro-1/rI+)(1 — @)~ (Ws=YsnleHl/n=1/rle) gnd C is

independent of 6.

Proof: Using our main interpolation result (Theorem 2.3.6), we see that M is an op-

erator from (LPore, [P1mt),  — (L% [931),  with bound < CM™? MY or to put it

in the form of an inequality: “Tf“([,coﬂo,[‘q;.q)"r < CA/[(}'-EA’If“f“(pg.rn’uhq Yo.r- Now
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by Theorem 2.3.4, we have ||T f||(zsws0 zarsr),, < [0(1 = 0)]Y"Y/*||T £||(Ls0t0 Laror ),
< CMy= MPB(L = )75 fllLroro Lorr)g -

Now by Theorem 3.3.1, L% = (L% [#:31)y - and ||T f|| e < C™In{/5:l/s0)(]
0)in(1/51/50|[T £ | zsowo, covony, . Similarly L = (L0, [Pv71)g - and || fll(zroro oy,
< €@~ max(i/nl/ro)(] — @)~ max(l/r.l/r)|| £|| .s.r. Combining the last three inequalities, we
have || f||zes < CME™0 MEG=(1e=tisole+{/ro=V/rls) (] — g)=(IW/s=Unls+{/ri=1/tle)|| £ || s
and hence our result is proved. B

We can use the preceeding theorem to get a sharper version of the Hausdorff-Young

Inequality which is due to Payley {32].

Theorem 3.3.4 Let f € LP(T) for 1 <p <2 and % + # =1. Then f € IPP(Z) and

dc, > 0 such that ||f||u-'.p((z)) < Cp”f”LP(T)-

Proof: Let F be the linear operator taking f to f. Then F: L! = [® and F: L2 — {2
(see the proof of Theorem 0.2.2). Now using previous theorem with pg =ry = 1,q0 =
Ssg=00,p1 =q =711 =8 =2and r =s = p we obtain the above result. i

Since for 1 < p <2, p<p, LF? C [¥ (Proposition 3.3.2). Hence Payley’s result
is indeed stronger than the Hausdorff-Young Inequality. It is interesting to note that
Payley published this result almost two decades before Lorentz formally introduced
the Lorentz spaces.

Theorem 3.3.3 can be used to derive many of the classical results of interpolation.

We start by deriving the Marcinkiewicz Interpolation Theorem.
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Theorem 3.3.5 (Marcinkiewicz Interpolation Theorem) Let 0 < p; < ¢ <
oo. Let T be a quasilinear operator from LP — L% with bound M; for i = 0,1;
and let % = ;;ua + p% and % = Iq;u" + ‘% where 0 < 8 < 1. Then T is a quasilinear

operator from [P — L9 with bound M where M < CM{~MP[O(1 — 6)]7/9 and C is

independent of 8.

Proof: Let T satisfy the above hypotheses. Using Theorem 3.3.3 with ry = p;, r = p,
si =00 and s = ¢ for t =0, 1, we find that T is a quasilinear operator from L? — L9
with bound < C M=o Afg~-(/a+lt/pa=1/ple) (1 — g)-(/a+{l/m=V/pl4) | Since p is between
Po and py, one of the terms of the form [1/p; — 1/p|+ is zero and will disappear.
1 (1-6} ]

T e T Hence if i = 0,

Now we consider the other term. (1/p; — 1/p) =
gt/po=t/p = §8(1/po=1/P1)) and a simple calculus argument shows that this tends to 1
as  — 0 and hence is bounded for 8 € (0, 1). Therefore, we can absorb this term into
the C. Now similarly, if i = 1, then (1 — §)/Pr=1/P = (1 — §)(1-0)1/P1=1/P0) apnd again
this tends to 1 as § — 1 and hence is also bounded for 8 € (0,1). We also absorb
this into the C. What we are left with is M < CMMP[0(1 — 6)]~'/9 exactly as
required. @

Often the only L” spaces that are considered are the Banach space cases where

1 < p < . In this case 1/g¢ < 1 and we get the version of the Marcinkiewicz

Interpolation theorem most often found in the literature.

Theorem 3.3.6 [40] Let 1 < p; < q; < 00. Let T be a quasilinear operator from

LPi = L% with bound M; fori=0,1; and let % = 1;—00 + ;”l- and # = lq.%a + ‘% where
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0 <8 < 1. Then T is a quasilinear operator from [P — L7 with bound M where

M < CMIMB(1 - 8)]~" and C is independent of 6.

We may also state a version of the Riesz Convexity Theorem. While the bound
is less sharp than in the original, our version also works when p < 1 and when T is

quasi-linear and not just linear.

Theorem 3.3.7 Let 0 < p; £ ¢; £ o0, % = 1)0;09 + pil and

_1-6 . 8 :
==t Then if
T is a quasilinear operator from LP* — L% with bound M; for i = 0,1, T also is a
quasilinear operator from LP — L9 with the bound M where M < CMI™0)M! and C

is independent of 0.

Proof: Let T satisfy the above hypotheses. Then Theorem 3.3.3 with r, = p;, r = p,
s;i = ¢; and s = ¢ implies that T is a quasilinear operator form LP — L? with bound
M < CMEOA109~ (1 /a= gole+{(1/po=1/pl+) (1 — g)=(It/a=V/als+{t/p1=1/Pl+)  Using similar
arguments as in the proof of Theorem 3.3.5, we can show that the powers of 8 and
1 — ¢ are bounded for V6 € (0, 1) and hence we absorb them into the constant C. The
conclusion follows. @

The proofs of Theorem 3.3.5 and 3.3.7 are due to Holmstedt [18]. His results were
stated only for linear operators. Using Theorem 2.3.6, we have extended these results
to quasilinear operators and are thus able to obtain the Marcinkiewicz interpolation
theorem in full generality. It may be of interest to note that Calderén and Zygmund

have also extended Riesz's result in these directions using complex-variable and sub-
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harmonic function theory to prove results for the quasi-normed L” spaces in [9] and

for sublinear operators in [10].

3.4 The E-functional

In this section we explore the properties of the E-functional and use them to prove a

result of Hardy, Littlewood and Pélya.

Definition 3.4.1 Let (V,W) be a compatible couple of quasi-normed vector spaces.
Then we define the E-functional as follows. For ¥Vf € V' + W, let E(f,t,} W) =

inf{|[allw: f=g+h|lgllv<t,geV helW}

In [26], Lorentz and Shimogaki write s;(t) instead of E(f,t,V,1V). We use the
latter notation as it is much more commonly used. The main application of the
E-functional is in approximation theory (see chapter 7 of [3]). We will not discuss
the applications to approximation theory here; instead we will explore connections

between the E-functional and the K'-functional.

Theorem 3.4.2 Let (V,WV) be a compatible couple of quasi-normed spaces. Then

Vt > 0, K(f,t,V,W) = infaso{ E(f, 0, W, V) +at}.

Proof: Fix t,e > 0. Now 3g € V, h € W such that K(f,t,V,W) > ||gl|v +tl|h]||w +e&.
If we take s such that s — £ < ||h]lw < s; then |lg|lv > E(f,s,W,V). Hence
K(f,t, VW) > E(f,s,W,V)+st—2e > infoso{E(f,a,W,V) +at} + 2. Since ¢ is
arbitrary, we have K(f,t,V,W) > infoso{ E(f,a, W, V) + at}.
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Now we prove the converse inequality. Again fix t,e > 0. 3s > 0 such that
infoso{ E(f,a,W,V) +at} 2 E(f,s,W,V) + st —e. Now choose g€ V and h € IV
such that ||h|ljw < s, f = g + h and such that {|g|lv < E(f,s,W,V) +¢. Then
E(f,s,W,V)+ st > |lgl|lv + tl|hllw — e > K(f,t,V,W) — €. Since ¢ is arbitrary we
have K(f,t,V,W) < infoso{E(f,a,W,V) +at}. B

Therefore, we can obtain K(f,t,V,W) from E(f,t,W,V) using a variant of the
Legendre transform. Now we attempt to solve for the E-functional for certain pairs
of quasi-normed spaces. Just as in the case of the K-functional, it will turn out to

be easier when one of our spaces is L=. We have the following theorem.

Theorem 3.4.3 Let A be a quasi-ideal space whose elements are measurable func-
tions on the measure space (., p). Let L = L®(X, ) and furthermore let (A, L*)

be a compatible couple. Then E(f,t, L=, A) = ||([|f] - t]+)l|a for V¢t > 0.

Proof: Fix t > 0, then define f, as f,(z) = f(z) if | f{z)| < s and fi(z) = s%. Note
that ||fe]|z= < t. Now suppose 3g € L™ such that ||g||z= < t. Then it is easy to see
that |f(z) = fu(z)| < |f(z) — g(z)| and that |f — fi] = [|f| — t]+. Hence using the
lattice property and Lemma 1.3.2 we obtain E(f,t, L®, A) = infjg,e<: ||f — glla =
(AT = el )]l @

Using our two previous results, we obtain the following characterization of the

K-functional.

Corollary 3.4.4 Let A and L™ be as above. Then K(f,t, A, L®) = inf5o{||([|f] —

sl+)lla + st}.
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One application of the above results is the following classical result of Hardy,

Littlewood and Pélya given in [15] and [16].

Theorem 3.4.5 Let f and ¢ be integrable functions on the o-finite measure spaces
(X, 1) and (Y, \) respectively. Then the following conditions are equivalent:

(1) J; F*(s)ds < [; g*(s)ds for ¥t > 0.

(2) j\ D1 fdp < fy ®(|y|)dA for every increasing convez funiction ® from [0. ) —

[0, o0).

Proof: We will only prove that (2) == (1) here. We first note that o(r) =
(l#] = t]+ is an increasing convex function from [0.oc) — [0.00): hence [, [|f] -
tedp < [ -[lgl = t]+d). Using Corollary 3.4.4. we get N'(f, t. LY (X.p). L=(X. p)) <
K(g,t,L'(Y.\), L=(Y,A)). By Corollary 3.2.5, this is the same as jD‘ fr(s)ds <
j(f g"(s)ds. Hence we have (1). B

(1) = (2) can be established using similar machinerv. More about the above
theorem can be found in [15], [16]. [28] and [33]. A nice proof of (1) = (2) can be

found in [13].
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Chapter 4

The J-Method

4.1 The J-Functional

The results in this section can be found in [1] and [3]. Let (A, B) be a compatible
couple of Banach spaces. The K-functional was constructed by a slight modification
of the norm of the space A + B. Analogously, we construct the J-functional using a

similar modification of the norm of the space AN B.

Definition 4.1.1 Let f € ANB andt > 0. Then J(f,t, A, B) = max(||f||4, t||fl|5)-
The J-functional can be related to the K-functional in the following way.

Lemma 4.1.2 Let f € ANB aendt > 0. Then K(f,t,A,B) < J(f,s, A, B) min(1,1t/s).

Proof: Using Proposition 2.2.4, we get K(f,t) < min(||f||,t]|fl|s). Then K(f,t) <

Iflla < max(||f]la sllfll8) = J(f,s). Also K(f,¢) < t]|f|ls < max(§[|flla:tll fll8) =

(t/s)J(f,s). Hence K(f,t) < min(1,t/s)J(f,s) and our result follows. B
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This following lemma also gives another relation between the K- and J-functionals.

Lemma 4.1.3 (The fundamental lemma of Interpolation) Let (A, B) be a com-

patible couple of Banach spaces. Let f € A+ B such that lim,_ o K(f,t,4,B) =

lim,o o0 w = 0. Then foranye >0, 3fi € AN B for Vi € Z such that f =
o oo [i Where this sum converges absolutely in A+B. Furthermore, J(f;, 28, 4,B) <

¥(1 + )R (f, 2%, A, B) for Vi where v is a universal constant < 3.

Proof: Fix € > 0. For each i, 3g; € 4, h; € B with f = g+ h; and ||gi|| 1+ + 2'|| |8 <

(1+€)K(f,2"). Thus we have ||g;|]4 < (1+€)K(f,2") and |[h;||p < (1+€)27'K(f,2').
Let f; = giv1 — gi = h; — hiyy. Then f; € ANB.

Furthermore, [|f = =% o fillase = 1f = Sy (0ir1= 9)llass = 1 = gxa1 +gurllas
= ||hv+1+9umlla+s < llgarlla+lhneille € (1+€)[27 VLR (f, 2V ) + K (f,27M)].
Since the R.H.S. tends to 0 when M — —oc and NV = o, lim,00m——oc

f - E:\;M filla+g=0and f =32 __ fi with absolute convergence in A + B.
Finally, J(fi,2") = maz(||fill 1, 2’| fill 8) = maz(||gi+1 — gill 4, 2°|hi = hixil[B)
< maz([|gil| + llgisr]la 2'llRill 8 + 2] hivi]] B)
< (llgilla + 29kl 8) + (lgisilla + 2 hialle) < (1 + K (S, 2°) + K(f, 2*)]
< 3(1 +€)K(f,2') where the final inequality follows from Lemma 2.2.2. B
The fundamental lemma has a corollary which shows that if f satisfies the hy-

potheses of the Fundamental lemma, then there exists a representation of f in the

form f(t) = [7° u,(t)% where us € AN B for Vs > 0.
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Corollary 4.1.4 Let f and {f;}2_, be as in the above lemma.

Let ug(t) = l052 Yoo filt)x@2+y(s). Then f(t) = [°u % where this integral

converges absolutely in A+ B (i.e. fi° |lu]|a+8L < o).

Let i be such that 2' < s < 2'*! then u,(t) = (log2)™' fi(t) and ||us(t)||1+8 =
(log 2) 7| fi(®)l|.a+5-
T s _
Thus j;) “us“A+8 = Zt-——oo 21: |lus“A+Bd? = (108 2) lz:...-oo ]If:”A-f—B f

Z?;—oo ”fi“A+B < oa.

2s+[

21+! d .ZH'I
NO\V j‘ﬂ u" = ZI——N 2 - = (Iog ) I=—-00 fl n d_’—s = :_w fl = f‘ .

Now we are ready to describe the J-method.

Definition 4.1.5 Let (A, B) be a compatible couple of Banach spaces and let 0 <
0 <landl < q £ . Then (A, B)ggys consist of all f, for which ||fl|lags =
inf ||s~%J (us, )| o) is finite. Here the infimum is taken over all u, such that f(t) =
fo°° u,(t)? where this integral converges absolutely in A+ B and u; € ANB forV¥s >0

(We follow the convention that the infimum of the empty set is = 00).
The following theorem will equate the spaces (4, B)gq with the spaces (A, B)g,q

Theorem 4.1.6 (Equivalence Theorem) Let (A, B) be a compatible couple of Ba-
nach spaces and 0 < 8 < 1 end 1 < ¢ < oo. Then (A, Blags = (A, B)gg with

equivalent norms.

Suppose f € (A, B)gqys then Ju; € AN B such that f = [;° u,%. Using the
subadditivity of the K-functional and Lemma 4.1.2 we have:
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K(f,t) <[5 K(us,t) &< I J(us, tymin(1, t/s)L —fo J(ug, s) L+t [ J("'v’) ds

Now multiplying each side by t=% and taking the L‘I(%E) norm on each side, we get
Fllog < 1167 f5° J(us, ymin(L, t/5) 211 < [0 [ Tutg )] pogary HIE10 [ L8281y

Now using Hardy’s Inequalities (Lemma 2.4.2) on the R.H.S. of the above inequal-
ity, we obtain ||fllg, < %IIt‘”J(u,,t)ll,_,(#).

Now taking the inf of the R.H.S. over all functions u,(t) € AN B for Vs where

= [o us(t)%, we get ||fllog < 3l|fllogu- Hence (4, By C (4, Bog

Now suppose f € (A, B)g,y. Then lim,o K(f. 1) = limp, oo = K = 0. Then let u,
be as in Corollary 4.1.4. Now fix s and let ¢ be the integer with the property that
28 < s < 2L

J(us, s) < (log2)~'J(fi,s) < 2(log2)~'J(f;, 2) using the inequalities u, < (log2)~!f;
and 5; < 2.

Using the fundamental lemma of interpolation with y(1+¢) < 3.5, we get J(u,, s) <
2(log2)~J(f;,2) < T(log2) "' K(f,2") < T(log 2) 7' K(f, 5).

Multiplying by s~° and taking L9(%) norms, we get ||f|loq.s < T(log2)™*{|fllaq

and therefore (A, B)g,q = (A, B)gq,s with equivalent norms. @

4.2 The Density Theorem

Since the J-method generates the same spaces as the K-method, it may seem at
first glance that the J-method is redundant. However the J-method can be used to

examine the structure of the K-spaces. One of the most important applications of
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the J-method is its use in proving the following theorem.

Theorem 4.2.1 (Density Theorem) /1] Let (A, B) be a compatible couple of ideal

spaces and suppose 0 < 6 < 1,1 < g <oo. Then AN B is dense in (A, B)g,

Let f € (A, B)gg- Then limo K(f, 1) = limeot ™' K (f,t) = 0. Hence let f; be as
in the fundamental lemma. For VN > 0, let u¥ = (log2)~! ZieZ\[—N,N} filt)x(a: 2+1(s)-
Now clearly, [u (t)] < |u,(t)] Vs, t. Therefore [° [|ul|l1+8L < [77 |[usl|4+8% < 0.

Now [Cullt = $ oy fil)(log2)~t [ Yzl o o¥ g

Hence by the definition of the J-method || f=5"% _ fillo.gs < ( (Jo [s70J (ul, s)]rde) e,

We will now show that the R.H.S. (and hence also the L.H.S.) tends to 0 as
N — oo. Then since YV _ fi € AN B, we are done.

Since u¥(t) = 0 for 27 < s < 2%, [s70J(uY,s)]? = O for 27V < s < 2V
and therefore uY (t) — 0 pointwise on (0,00) when ¥ — oc. Since f € (4,B)gg,
[s7K(f,s)]"/s € L'(0, 00). Thussince [s~0J(u¥, s)]7/s < [s70J(us, 5)]?/s, Lebesgue’s
dominated convegence theorem implies that ([ [s~%J(uY,s)]%)!/ tends to 0 as
N—=o>occ. B

The restriction that ¢ < oo cannot in general be relaxed as seen in the following

example.
Example 4.2.2 L!(0,00) N L=(0, 00) is not dense in L*(0,00) for 1 < p < oo.

Proof: Let f(z) = z~V/? and let g(z) € L' N L*®. Let h(z) = [f(z) — ||gl|z=]+ then
h(z) < |f(z) — g(z)|. Since LP* is an ideal space, ||f — g|lLre > ||R||zr=. Now
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[[R]l|Lre = SUpPssg tYPR*(t) = supesq(l — t/7||gllz=) = 1. Hence L' N L™ is not dense
in P>, &
One consequence of the density theorem is the following property of Lorentz

spaces.

Theorem 4.2.3 The set of strictly simple functions is dense in LP? where 1 < p,q <

3.

Let f > 0 and f € LP9(X, u) where X is an arbitrary o-finite measure space and
¢ > 0; by the density theorem, L! N L* is dense in LP¥ and therefore 3g € L' N L>
- such that ||f — glfzee < §. Since |f(z) = |g(z)I| < |f(x) = g()|, we make take g to
be non-negative.

For Vz € R, define |z| = the greatest integer < z. For Vo > 0, let g,(z) = a[lgﬂj.
Now g,(z) is only nonzero on {z : g(zr) > o} which is a set of finite measure since
g € L'. Furthermore g takes only values {ic},enufo) With ic < ||g||r= and hence g,
is a strictly simple function. Now |[g — g¢||c= < ¢ and therefore g(z) — g,(z) = 0
when ¢ — 0. Since |g(z) — go(z)| < g(z), a simple dominated convergence argument
shows that |[g — gs||1 = 0 as o — 0. Therefore ||g — go||z1AL= — 0 as ¢ — 0.

Since LP9 is a K-space for the couple (L', L®), LM is an intermediate space
for (L, L) and ||fl||zre < C||f]leraLe for Vf € L' N L*®. Now pick o such that
9 = golleinc= < 3c and hence ||g — 9ollzra < Cllg = gollrrar= < 5. Then [f -
9ollzre < ||f — glleee + 119 — gol|Lre < €. Now we can remove the restriction that
f 2 0 by remebering that f = [Rf]+ — [-Rf]+ +i[Sf]+ —i[-Sf]+. For each of these
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four terms, there exists a strictly simple function that approximates it to within £/4

and hence the sum of those simple functions approximates f to within ¢. @

This can be compared to [20] where Hunt gives a direct proof of the above result.
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Chapter 5

Interpolation of Lipschitz

- Operators

5.1 The K-method and Lipschitz Operators

Definition 5.1.1 Let A and B be Banach spaces and let T : A — B: then T is said

to be a Lipschitz operator with bound M if for f,.g € A, {|Tf-Tglls < MI|f - gl|a-

The natural question to ask in the context of this thesis is whether the K-method
can be used to interpolate Lipschitz operators. Peetre [35] and Maligranda [27] have
shown that it can. We present the following theorem which is modeled after a result

of Lorentz and Shimogaki [26].

Theorem 5.1.2 Let (Ag, A;) and (By, B,) be two compatible couples of Banach spaces
and let T be a Lipschitz operator from A; — B; with bound M;.
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Then K(Tf —Tg,t, Bo, B1) < MoK(f — g,4t, A, A1) for¥f,g € AgN A,.

Proof: Let f,g € A4gN A, and fix t,e > 0. Let h; € 4; for i = 0,1 be such
that f — g = ho + hy and ||ho]|4, + %t”hl”m < K(f-g j:’—f;t, Ag, A1) +¢. Then
ho,hy € AgN Ay and Thy,Thy € BgnN By. Now let a = T(g + ho) — Tg and let
B =Tf—T(g+ hy). Therefore ¢, € BpN By and a+ 8 = Tf —Tg. Now
lells, = [IT(g + ho) — Tgllp, < Mollholls, and IBlla, = ITf — T(g + hollla, <
M||f = g = holla, = Millhi||4,. Then K(Tf —Tg,t, Bo, B\) < llal|g, + t]|3]]s, <

Mo([lholl 4o + ﬁgtllhlll,\l) < M[K(f - g, %;Jo-t, Ao, A1) +¢]. Since ¢ is arbitrary we

have our result.

Corollary 5.1.3 If T is as in the above theorem and 0 < 8 <1 and 1 < q < oc then

T is a Lipschitz operator from (Ag, A1)gq = (Ba, B1)e, with bound < M0 MY

Proof: From previous theorem we have K (T f-Tg,t, By, B)) < MoK (f-g, %‘l;t, Ag, A1)
and thus |[Tf ~ Tgll(ge.81)., = (Jy [t K(Tf - Tg,t, By, B)]*%)¢

< CMo(fo 1P K (f = g, 4, Ao, AIPE)Y7 = CMa~° M| f =~ 9llo,r)e- The
last equality can be obtained by making a change of variables s = %;t Now we
have ||Tf — Tgll(zo.813., < Mg~ MIf — 9ll(t0i)e, for VS, g € AN A;. Since the
density theorem guarantees that Ag N A, is dense in (Ag, A1)s,q When 0 < 6 < 1 and
1 < g < 00, we can use continuity to extend T uniquely to (Ag, A1)sq. B

Applications of the Interpolation of Lipschitz Operators to areas of applied math-
ematics are given in [6]. We present an application of the above results to the theory
of rearrangements in the next section.
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5.2 The Lorentz-Shimogaki Inequality

The following is an interesting example of a Lipschitz operator due to Lorentz and

Shimogaki [26] and Maligranda [27].

Example 5.2.1 Let (X, ) be a nonatomic o-finite measure space and let T be the
operator that takes a function on (X, pu) to its nonincreasing rearrangement. (i.e.
Tf = f*). We call T the rearrangement operator. Then T is a Lipschitz operator
with bound 1 from L'(X, p) = L'(R*,m) and is also a Lipschitz operator with bound

1 from L®(X,p) = L=(R*, m).

Proof: It follows from Theorem 1.6.3 that T : L'(X,u) = L'(R*.m) and similarly
for L. Now let f,g € L' and let h(z) = maz(|f(z)|, |g(z)]).
Then [|f* = g°llz = [1*(8) - g7 () ot + [Z[a*(8) — F(8)]ott
< [P () =g (O edt+ [0 () = £ (O]t = [ ho(8) = g (O)de+ [ h*(0) = F(2)dt
(since | f| < |h] implies f* < A* (Prop. 1.53.8.b) and similarly for g).
= [ hr(tydt — [ gt (t)dt + [ he(t)dt — [J7 f*(t)dt
= [ hdp— [, |gldu+ [\ hdp — [, |fldp (Theorem 1.6.3 with p =1)
= [ h=lgldu+ [ h=|fldp = [ [IfI-lgllsdp+ [xllgl =1 fll+dp = [x [If] - lglldp <
Jxlf —gldu=If = glle:-

Since we have |f(z)| < ||f — gll= + |g(z)], we can use proposition 1.5.8.b to
obtain f*(t) < |[|f — gllz~ + 9°(t) and therefore we have f*(t) — g°(¢) < ||f — gl|L-

Interchanging the roles of f and g, we can also obtain g*(¢) — f*(t) < ||f — gllc=-
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Therefore we have |f*(t) — ¢°(t)] < ||f — gllz= and taking sup of L.H.S. over all ¢
gives us ||f* = g°||ee < |If — gllz=. W

Now using Corollary 5.1.3 we can show that the rearrangement operator is a
Lipschitz operator from L”4(X,u) = [P9((0,00),m) when l < p<ocand1<g<

0o. We can also use Theorem 5.1.2 to prove the following inequality.

Theorem 5.2.2 (Lorentz-Shimogaki Inequality) Let f, g be two functions in L'(X, p)

and let t > 0. Then [J[f* — g"]'(s)ds < [;[f — g]*(s)ds.

Proof: In what follows we denote K(f,t.L', L*=) as K'(f,t). Using Theorem 5.1.2,
. we obtain K(¢* — v*,t) < K(¢ — v,t) for Vo, v € L' N L*®. Now let f,g € L! and
s > 0, then define f, as f,(z) = f(2) if |f(z)| < s and fi(2) = sE if | f(z)] 2 5.
Define g, analogously. Now f,, g, € L' N L. Choose s such that [, |f — fi|du <€
and [, |9 — gldp < €.

Then since |fs| < |fl, fi £ f* (Prop. 1.5.8.b) and K(f* - f!,t) < f0°°(f' -
£1)*(t)dt (Corollary 3.2.5) < [7°|f(t) — f:(t)|dt (Theorem 1.6.3 with p = 1) =
I3 fr(t) = f:(t)dt (since integrand is positive) = [\ |fldu ~ [} | fs|dp (Theorem 1.6.3
with p=1) < [ If - felde < €. Similarly K(g* — g;,t) < €. Using Corollary 3.2.5,
K(f = fut) = J(f = £ (@)dz < [ - fu)(@)dz = [y |f - fuldp < e Similarly
K(g—gst)<e.

Now JX(f* - g°)"(s)ds = K(f* —g",¢) (Corollary 3.2.5) < K(f* = f2,8) + K (f; -
g:.t) + K(¢° — gi,t) (using the fact that K(-,t) is a norm.) < K(f; — g;,t) + 2¢
S K(fs—gst)+2e S K(f - fo,t) + K(f —g,t) + K(9— g, ) +26 < K(f —g,t) +4¢.
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Since ¢ is arbitrary, K(f* — ¢*,¢) < K(f — g,t) and using Corollary 3.2.5 we get
Jolf* = g°)*(s)ds < [5(f — 9)*(s)ds.
The original proof of this result is quite different and can be found in [26]. The

idea behind this version of the proof is due to Maligranda [27].

66



Bibliography

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston

(1988)

(2] J. Bergh, A Generalization of Steffensen’s Inequality, Journal of Mathematical

Analysis and Applications 41: 187-191 (1973)
(3] J. Bergh and J. Lofstrom, Interpolation Spaces, Springer-Verlag, Berlin (1976)

[4] H. Burkill, A note on rearrangements of functions. Amer. Math. Monthly T1:

887-888 (1964)

[5] P. L. Butzer, The Hausdorff-Young Theorems of Fourier Analysis and their im-

pact, Journal of Fourier Analysis and Applications 1: 113-130 (1994)

[6] F. E. Browder, Remarks on Nonlinear Interpolation in Banach Spaces, Journal

of Functional Analysis 4: 390-403 (1969)

[7}] A. P. Calder6n, Intermediate spaces and interpolation, Studie Math (special

series) 1: 31-34 (1963)

67



[8] A. P. Calderén, Spaces between L' and L™ and the theorem of Marcinkiewicz,

Studia Math 26: 273-299 (1966)

[9] A.P. Calderdn and A. Zygmund, A Note on the interpolation of linear operations,

Studia Math 12: 194-204 (1951)

[10] A. P. Calderdn and A. Zygmund, A Note on the interpolation of sublinear oper-

ations, Amer J. Math 78: 282-288 (1956)

[11] K. M. Chong and N. M. Rice, Equimeasurable Rearrangements of Functions,
Queen’s Papers in Pure and Applied Mathematics 28, Queen’s University

Kingston, Ontario, (1971)

[12] R. A. Devore and G. G. Lorentz, Constructive Approzimation, Springer-Verlag,

Berlin, (1993)

(13] L. Fuchs, A New Proof of an [nequality of Hardy-Littlewood-Pdlya, Mat. Tidsskr.
B: 53-54 (1947)

(14] G. B. Folland, Real Analysis - Modern Techniques and their Applications, Wiley-

Interscience, (1984)

[15] G. H. Hardy, J. E. Littlewood, and G. Pélya, Inegualities, 2nd ed. Cambridge

University Press, (1960)

(16] G. H. Hardy, J. E. Littlewood, and G. Pélya, Some Simple Inequalities Satisfied

by Convex Functions, Messenger of Math 58: 145-152 (1929)

68



[17] F. Hausdorff, Eine Ausdehnung des Parsevalen Satzes Uber Fourierreihen, Math.

Zeit 16: 163-169 (1923)

[18] T. Holmstedt, Interpolation of Quasi-Normed Spaces, Math. Scand 26: 177-199

(1970)

[19] R. A. Hunt, An extension of the Marcinkiewicz interpolation theorem to Lorentz

spaces, Bull. Amer. Math. Soc. 70: 803-807 (1964)
[20] R. A. Hunt, On L(p.q) spaces, L ’enseignment Math. 12: 249-275 (1966)

[21] R. A. Hunt and G. Weiss, The Marcinkiewicz interpolation theorem. Proc. Amer.

Math. Soc. 15: 996-998 (1964)

[22] I. Klemes, A mean oscillation inequality, Proc. Amer. Math. Soc. 93: 497-500

(1985)

(23] H. Komatsu, A general interpolation theorem of Marcinkiewicz type. Téhoku

Math J. 33: 383-393 (1981)
[24] G. Kothe, Topological Vector Spaces I. Springer-Verlag, New York. (1969)

[25] P. Krée, Interpolation d'espaces vectoriels qui ne sont ni normés, ni complets.

Ann. Int. Fourier, Grenoble. 17: 137-174 (1967)

[26] G. G. Lorentz and T. Shimogaki, Interpolation Theorems for Operators in Func-

tion Spaces. Journal of Functional Analysis. 2: 31-51 (1968)

69



[27] L. Maligranda, Some remarks on Orlicz’s interpolation theorem. Studic Math.

95: 43-57 (1989)

[28] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Ap-

plications. Academic Press, New York. (1979)

[29] M. Mastylo, The K-Functional for Rearrangment Invariant Spaces and Applica-

tions . Bull. Polish Acad. Sci. 32: 53-59 (1984)

[30] O. A. Nielsen, An Introduction to Integration and Measure Theory. John Wiley

and Sons, New York. (1997)

[31] E. T. Oklander, L,, interpolators and the theorem of Marcinkiewicz. Bull. Amer.

Math. Soc. T2: 49-53 (1966)

[32] R. E. A. C. Payley, Some theorems on orthogonal functions (I}, Studia Math. 3:

227-238 (1931)

[33] J. E. Pecari¢, F. Proschan and Y. L. Tong, Conver Functions, Partial Orderings

and Statistical Applications. Academic Press, San Diego. (1992)

[34] J. A. Peetre, Theory of Interpolation of Normed Spaces. Notas de Matematica

Universidade de Brasilia 39: 1-86 (1963)

[35] J. A. Peetre, Interpolation of Lipschitz operators and metric spaces. Mathematica

(Cluj) 12: 325-334 (1970)

[36] Y. Sagher, Interpolation of r-Banach spaces. Studia Math. 41: 45-70 (1972)

70



[37] E. M. Semenov, Imbedding theorems for Banach spaces of measurable functions.

Soviet Math. Dokl. 5: 831-834 (1964)

[38] E. M. Stein and G. Weiss, An Introduction to Fourier Analysis on Euclidean

Spaces. Princeton University Press, Princeton, N.J., (1971)
[39] M. Vith, Ideal Spaces. Springer-Verlag, Berlin. (1997)

[40] A. Zygmund, On a theorem of Marcinkiewicz concerning interpolation of opera-

tions. J. Math Pures et Appl. 35: 223-248 (1956)

71



