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Abstract

The development of intelligent components for the automated analysis of samples by

inductively coupled plasma (lCP) spectrometry is presented. An expert system for

diagnosing an ICP atontie emission spectrometry (AES) system using a blank solution

was developed as a warning system. This expert system was able to wam the system of

major malfunctions and was able to identify most problems. Three pattern recognition

techniques were compared in their ability to recognize similar geological samples in

small databases. Two of these techniques, k-Nearest Neighbours and Bayesian

Classification, worked extremely weIl with over 96% success. The development of an

objective function for multi-element optimizations in ICP-AES is presented. Various

aspects of the application of a Simplex optimization were explored for the optimization

of the ion optics of an ICP-mass spectrometry (MS) system. An algorithm for the

automatic selection of internai standards for analytes in difficult samples in ICP-MS is

presented.
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Résumé

Cette thèse présente le développement d'éléments 'intelligents' pour l'analyse

d'échantillons par spectroscopie à plasma inductif: Un système sophistiqué a été

développé pour diagostiquer un plasma à couplage inductif en utilisant un blanc. Il s'est

avéré que ce système a été capable de diagnostiquer des malfonctions majeures et

d'identifier les problèmes les plus courants. Par la suite, trois techniques de

reconnaisance ont été comparées, le but de l'opération étant d'analyser l'habileté

respective de chacune des techniques à reconnaître des échantillons géologiques

similaires dans une base de données. Deux de ces techniques, K-Nearest Neighbors et

Bayesian Classification, ont obtenu un taux de succès remarquablement élevé. Le project

présente donc le développement d'une fonction générale pour l'optimisation de multiples

éléments. A cette fin, plusieurs aspects de ['application de la méthode d'optimisation du

Simplex ont été explorés pour l'optimisation de l'optique ionique d'un spectomètre de

masse. Finalement, le projet présente un algorithme dont le but primordial est de

sélectionner automatiquement des étalons internes afin d'aider à ['évaluation d'

échantillons difficiles.
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Contributions to Original Knowledge

1. A diagnostic procedure using a blank solution was developed for an inductively

coupled plasma atomic emission spectrometer to wam the instrument operator of possible

malfunctions.

2. Three pattern recogmtlon techniques were evaluated for the problem of sample

classification using elemental composition with variable size databases.

3. An objective function for multi-element optimization in inductively coupled plasma

atomic emission was developed.

4. A Simplex optimization of the ion optics on an inductively coupled plasma mass

spectrometer was evaluated in terms of (i) the most appropriate objective function for

multi-element optimizations, (ii) the best initial points of Simplex, (iii) the performance

of single-element versus multi-element optimizations, and (iv) the selection of the

element to be used for single element optimizations.

5. A procedure for the automatic selection of internaI standards for elements in difficult

samples was developed using a cluster analysis algorithm.
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• Chapter 1

1 Introduction

Man has always believed that humans are the only creatures on the Earth that are capable

of rational thought. In attempts to express power and intelligence, man has sought to

control his environment. Man's aspiration to become godIike has lead to his desire to

create artificial beings. Man is continuously trying to improve the quality of life by

creating machines to perform labor intensive and repetitive tasks. From the invention of

the wheel to the development of the land royer sent to Mars, man continually evolves and

so does his technology. The advent of computers has provided a wealth of opportunity

for improvement in aIl aspects of life. In business and finance, computers are found in

banking machines, the stock market, and most stores enabling consumers to buy

purchases using their bankcards. In education, schools are introducing computers to

students to help them leam subjects such as mathematics, geography and history. Many

examinations, such as those for a driver's license, are now being taken on computers

instead of on paper. In aviation, many pilots train in computer simulators long before

they fly a plane. The same types of simulators, using virtual reality, are helping people

conquer their fears of flying. In biology, the Human Genome Project, an effort to map

the human genetic code, would not be possible without computers to sort and store the

data. In astronomy, computers have made space exploration possible, from shuttle

launches to the Hubble Space Telescope, and recently missions to Mars. In chemistry,

computers control most instruments. The latest spectrometers have no knobs to adjust or

buttons to press, aImost every aspect of the spectrometer is accessed by computer.

Since their development, analytical instruments and their associated techniques

have been weIl described in joumaJs, conference proceedings, and books. Learning the

individual steps in an analytical process may take a persan a long time. In addition, good

analytical results are often only achieved with a great deal of experience. To an operator,

with very little experience and faced with a particular problem, selecting the appropriate

analysis procedure and analytical instrument can be a very difficult task.

•
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There are several reasons why expert systems (defined below) are recelvmg

attention1
.2 for use in the analytical laboratory. First, experts are confident in

demonstrating their decision-making process but have difficulty explaining their decision

processes. Second, experts may not like to disclose the mIes they use for decision

making. Third, transferring knowledge from one hurnan to another can be a laborious,

Iengthy, and expensive process. Transferring knowledge from one expert system to

another can be as simple as copying or cloning a program or data file. Fourth, an expert

system produces consistent results whereas a human expert can be unpredictable due to

emotionai factors such as stress or being under pressure.

1.1 Expert Systems

There have been many definitions of expert systems since the beginning of their

existence and the most generai and complete, although lengthy, is given by Michaelson et

al.3

Expert systems are a class of computer programs that can advise, analyze,
categorize, communic~te, consult, design, diagnose, expIain, explore,
forecast, fonn concepts, identify, interpret, justify, leam, manage, monitor,
plan, present, retrieve, schedule, test, and tutor. They address problems
nonnally thought to require human specialist for their solution.

This definition emphasizes the range of capabilities of an expert system although no

expert system to date has included all these features.

1.1.1 Importance of Expert Systems

The importance of expert systems can be illustrated by two early expert systems,

MYCM and PROSPECTORs. MYCIN, one of the first expert systems, was developed

as a decision aid for doctors. The doctor would feed a medical patient's symptoms into

the computer program. Based on this infonnation, MYCIN would diagnose infectious

blood disease. It would also provide a recommendation as to which therapies would be

appropriate to treat the disease diagnosed. In a medical facility that handles many

infectious diseases cases a year, an expert system such as MYCIN can be valuable. Its

ability to aid doctors in making quick and accurate diagnosis of the cases enables a

facility to handle more patients, more effectively. The PROSPECTOR expert system was

2
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developed to aid geologists in assessing whcther a given region wouid be a favorable site

for the exploration of minerais. PROSPECTOR wouid ask the operator for infonnation

such as what rocks and mineraIs were observed in a particular region. The expert system

would then provide its conclusions as to whether the available infonnation supports the

presence of a particular ore in a given site. An expert system such as PROSPECTOR is a

useful tool to a geologist with a vast territory ta explore.

User
n

Facts Expertise

"
Knowledge ..... ... Inference

base
..... ...

angine
.. ~

,r

Instrument
interface

Figure 1.1 Flowchart of an expert system.

1.1.2 Description of Expert Systems

The user interface is a link between the system and the outside world (Figure 1.1). The

user can input data or can ask questions and then receive comments, advice, explanations

or conclusions. Sorne expert systems control instruments through an instrument

interface. The purpose of this interface is ta transfer information from the instrument to

the system and provide a method for performing actions the system deems necessary.

The knowledge base contains information entered by an expert or knowiedge engineer

(persan who implements the expert system) in that domain in the fonn of mIes and facts

useful for solving problems in a domain. The information in the knowledge base usuaIly

takes on the fonn of IF/THEN mIes called production mIes. IFITHEN cules specify that

IF certain conditions are met THEN certain facts apply, or IF certain situations exist
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THEN certain actions may he taken. IF/THEN roles have other features6
: (i) Each mIe is

an independent piece of information, (ii) new rules may be added to the knowledge base

independent of other rules, and (iii) oid rules can be modified without affecting other

mIes in the knowledge base. Due ta the simplistic nature ofIF/THEN rules, it is easier to

fol1ow the reasoning behind a decision and answer questions such as UHow?" and

"Why?". The inference engine uses the mIes and facts in the knowiedge hase and finds

possible solutions to the problem.

Problem
Identification

Prototype
revision

Figure 1.2 Development of an expert system.
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1.1.3 Expert System Development

There are several phases that characterize the development 0 f an expert system7
,8

(Figure 1.2).

Identification phase:

This phase consists of identifying the essential components of the expert system,

namely, the characteristics of the problem, the avaiIabie reSOUTces, and the goal of

the system.

Conceptualization phase:

Using the information from the identification phase, the knowledge engineer will

create the structure of the prototype system using diagrams and flowchans.

Formalization phase:

This phase invoives the selection of the language or tool for the implementation

of the expert system. High-Ievel languages, such as C and Pascal, offer

computing speed and flexibility; however, they Iack capabilities such as dealing

with symbolic computation that expert systems require. Declarative languages

such as PROLOG and LISP provide mechanisms that are superior to other

languages for dealing with symbolic data and expressing logicai inference9
• A

disadvantage of these languages is that they suffer from a need for greater

computational resources and reduced portability of the final code, particularly

PROLOG. The alternative to programming languages is to acquire a

commercially available expert system shell. These shells contain the control

structure of the expert system. The knowledge engineer simply needs to add the

knowledge base. Since the shell contains a standard structure fonnat, the

knowledge engineer saves time although there is a loss of flexibility.

Implementation phase:

Once the programming language or expert system shen has been selected, the

knowledge expert programs ail the infonnation into the expert system.
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Testing phase:

Upon completion of the irnplementation of the prototype system, the system must

undergo a series of rigorous tests to ascertain its perfonnance. It is difficult to

specify exactly the knowledge in an expert system. If major modifications are

required, the results obtained from the testing phase can be used back in the

implementation phase to help the knowledge acquisition.

Prototype revision:

Based on the results of the testing phase, minor modifications are made and the

system undergoes fine-tuning.

De/ivery and Fol/ow-up:

The delivery phase includes the installation of the application, manuals and

system documentation. Even after an application has been delivered, software

maintenance, patches or upgrades may be required.

1.2 Limitations of Expert Systems

Expert systems attempt to model the human reasoning approach using a mle-based

approach. Developers of expert systems are required to detennine the mIes a human

expert wouid use and ta implement them in IFITHEN fonnat. Novices in the various

fields are expected to obtain the mIes from the experts. They often do not ask the right

questions and hence do not obtain the necessary knowledge. The human experts, on the

other hand, May have more difficulty explaining their decision·making process than using

il. This results in many interviews between the two and a lengthy development process.

The second problem is that improving an expert system requires that it is able to leam

through experience and most expert systems are incapable of this lO
• Several expert

system development techniques have been explored in arder to overcome these

limitations.
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1.2.1 Pattern Recognition

It is a characteristic of human beings presented with an object to recognize it and classify

it as belonging to a certain group. Having never seen a particular object before, its

properties are examined and it is placed in a group of objects with similar properties or a

new group is created. This can be seen in young children with their toys and older people

with their hobbies of collection. This is a valuable trait human possess not only in their

daily routines, but it also has great value in different fields of careers. In science, the

ability to classify and group abjects, data, and ideas, is essential. Aithough humans are

very good at recognizing and classifying various patterns, when presented with large

amounts of data, particularly numerical, they have considerable difficulty with the task.

Analytical insu-uments, today, generate large quantities of numerical data, which make it

almast impossible for the human operator to keep up.

1.2.1.1 Supervised vs. Unsupervised

Samples are analyzed and described by a set of measured values. The task tS ta derive

and apply a formaI method (e.g., mathematical scheme) of grouping the samples such that

the samples in a group (class) are similar and are also different from samples in other

groups (classes). In unsupervised analysis the number of classes and the characteristics

of the classes are not known prior to the analysis but are detennined from the analysis II.

In supervised pattern recognition, the number of classes and their characteristics are

known. The samples in the training set are associated with a particular class and this

infonnation is used to develop the method for the classification of unknown samples.

1.2.2 Inductive Learning

One of the most promising techniques for generating mle-based expert systems and

recognizing patterns has been inductive leaming l2
• Inductive leaming is a process by

which classification rules are generated from a set of examples. This set consists of

examples that have been previously solved by human experts. The set of mies that is

generated is used as the knowledge base in the expert system. This process eliminates the
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• need for extensive interviews between the developer and human expert. There are

severaI inductive learning algorithms but the most widely used has been ID3 developed

by Quinlan13
, which has its origins in Hunt's Concept Leaming Systems (CLS)l-l.

Quinlan later developed C4.S, an extension ofID3.

1.2,2.1 C4,S

The C4.S induction algorithm applies infonnation theory to determine which attribute

best divides the examples in a data set into distinct classes. For example, consider that

the data in Table 1.1 describe the conditions for determining whether an analysis will be

problematic. Each example consists of four attributes: Matrix, Feed Rate, Element, and

Suppres5ion. Each example belongs to one oftwo classes: Problematic or Easy.

Table 1.1 Data for determining whether analysis would he problematic

Matrix Feed Rate Element Suppression Class

High 90 K High Easy

High 60 K High Problematic

High 30 Mg Low Problematic

High 90 Na Low Easy

Medium 90 K High Problematic

Medium 30 Na High Problematic

Medium 60 K Low Easy

Medium 90 Na Low Easy

Medium 30 K High Problematic

Low 60 K High Easy

Low 90 Mg Law Easy

Low 30 Na High Easy

Low 60 Mg Law Easy

Consider an example selected at random from the data set, S, and said to be of class, Cj, it

has a probability of

jreq(Cj,S)

• ISI
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and the information it contains is given by

(
freq(Cj,S») .

-logz ISI bits.

A bit is a scalar value used as a unit of measure of the amount of infonnation that can he

extracted. The infonnation in the entire data set S is ca1culated using

For the data in Table 1.1, the information in the data set would he

info(S) = -~ log"(~) _2. 10g,(2-) = 0.961 bits.
13 - 13 13 - 13

There are eight examples in the data set that belong to the class Easy and five examples

belonging to the class Problematic. Once the C4.5 algorithm has calculated the

infonnation of a data set, it then looks at each attribute and detennines which one would

best divide the data set. The infonnation expected from a division by an attribute is

calculated using

where Si is the infonnation in a subset and calculated as described previously. For

example, the information expected when the attribute Matrix is used to divide the data set

into three subsets (High, Medium, Low) is calculated

infoMatrix(S) = infoMatrlx(High) + infoMatrlx(Medium) + infoMlltrix(Low)

4(2 2 2 2) 5(2 2 3 3) 4(4 4 0 0)=î3 - 4 log! 4 - 4 log! 4 +13 -Slogz S-Slogz"5 +0 - 4 log! 4 -"4 logz 4

=0.681 bits.

The infonnation gained by such a division is detennined by

gainMatrix(S) = info(S) - infoMatrix(S) = 0.961 - 0.681 = 0.280 bits.

The gain criterion was used by the ID3 algorithm for the selection of the attribute that

would best divide the data set. The criterion gives good results but it has a serious

shortcoming. It would give a strong bias in favor of attributes with a large number of

9



• values. To compensate for this~ Quinlan suggested the following ratio instead of gain

when he developed the C4.5 algorithm

GainRatio . (S) = gainMatrix (S)
Matnx l' . t". (S)sp It Inlo Matrix

where the split information is calculated using

l' . t". S) - ~[ISil *1 (ISil]]sp It Inlo Matrix ( - - f:t ïSI og:! ïSI
4 45 54 4 ,

=-13 log:! ï3-ï31og:! ï3-13 log :! 13 =0.845 bIts

and the gain ratio becomes

G 'nR' S 0.280 33al atloMatrix ( ) =--=O. 1
0.845

This process is repeated with the other attributes and the GainRatios for Feed

Rate, Element, and Suppression are 0.218, 0.0598, and 0.131, respectively, Since the

attribute Matrix yields the largest value for the GainRatio, it is used to subdivide the data

set. This procedure of examining GainRatios and subdividing the data set is repeated

until subdivision of the data set gives no further improvements.

Feedrate Suppression

Low

Easy

•

Easy Problematie Problematle Problematie Easy

Figure 1.3 Decision tree produced for the example of detennining when an analysis

would he problematic.

The output of the C4.5 inductive learning engine is a decision tree. For exarnple~

consider the output of the previous problem (Figure 1.3). The way to read the tree is to

tirst start at the top (Matrix). In the decision tree, each node represents a non-categorical

10



•

•

attribute (e.g., Matrix) and each branch corresponds to a possible value of that attribute

(e.g., High). A leaf of the tree (e.g., Problematic) specifies the result of the classification.

Once at the top of the tree, the first decision to be made is what kind of matrix is present.

There are three branches with the associated values of High, Medium, and Low. If the

Medium branch is fol1owed, the next decision to be made is the kind of suppression

observed. A High suppression results in a Problematic conclusion whereas a Low

suppression produces an Easy conclusion.

1.3 Expert Systems for Analytical Chemistry

Artificial intelligence techniques, such as expert systems, are playing an increasingly

important role in providing intelligent components in current analytical instrumentation.

These instruments can select the most suitable method available, optimize operating

conditions, and detect and, in sorne cases, repaîr malfunctions. Despite advances in

commercial instruments, no instrument to date incorporates aIl the intelligent components

necessary to fonn a completely autonomous instrument.

1.3.1 Fault Diagnosis

A major concem with instrument operation is whether the data obtained is valid. Many

things can go wrong in an analysis from the time of sample insertion to the output of

results. Any cornponent of the instrument can malfunction after extensive use. The

ability to diagnose possible malfunctions in a system is an asset to any laboratory. It

takes a trained operator to recognize when the system is not functioning properly. There

are few operators who possess this ability and many rely on an instrument manufacturer's

technical support services to assist them. An expert system, which bas incorporated

knowledge obtained from experienced operators, to diagnose faults in a system is an

invaluable and sought after tool.

1.3.2 Optimization

Most instruments in chemical analysis have many parameters that can be varied to obtain

satisfactory analysis results. The instrumental parameters cao sometimes bave many

Il



• settings and finding the right combination for aIl the parameters is not a trivial task. To

go through aIl possible combinations can be a very time-consuming approach and quite

costly if this procedure has to be repeated on a regular basis. Alternatives ta this

approach are to use optimization algorithm such as genetic algorithms ls, simulated

annealing16
, and Simplexl7

•

1.3.%.1 OptimizatioD Algoritbms

In analytical chemistry, a widely used optimization algorithm has been the Simplex

algorithm. The Simplex algorithm is a multi-parameter direct-search optimization that

varies all of the parameters simultaneously. This makes it useful when the optimum

setting for one parameter is dependent on the other parameter s~ttings. The algorithm

uses the response at various points to direct itself toward the optimum. The Simplex

algorithm, in N dimensions, begins by selecting N+ 1 points and ordering them from best

to worst. It then makes use of reflections, expansions, and contractions, to move around

the surface towards a maximum. For example, in two dimensions (Figure 1.4), tbree

points would be selected and labeled as Best (B), Next Best (N), and Worst (W). The

Worst point would then be reflected (R) through the Median of the Best and Next Best

points. Based on this new value, a contraction (C) or an expansion (E) is performed.

This is repeated until a maximum is obtained.

W'
c

......•... ,

B

R•...... , ..•
E

•
Figure 1.4 Illustration ofpossible directions of Simplex algorithm.
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1.4 Applications of Expert Systems in Chemistry

1.4.1 Molecular Spectroscopy

1.4.1.1 IR, NMR, and MS

One of the first and most notable expert systems in chemistry was the Dendral project. It

began in 1964 with Lederberg's development of an algorithm for generating canonical

names and structural description of molecules 18. Later, Dendral broadened to include

interpretation of analytical chemical data. Dendral programs are designed to aid organic

chemists interpret data from unknown compounds and have become the templates for

many expert systems developed in chemistry.

The interpretation of molecular spectra, whether it be in infrared (IR)

spectrometry, nuclear magnetic resonance (NMR) spectrometry or mass spectrometry

(MS), cao be a very complex process. A spectroscopist requires experience in this

domain in addition to extensive knowledge of spectrum-structure correlations. Many

expert systems have been developed in the fields of IR spectrometry, NMR spectrometry

and MS for the interpretation of spectra and structure elucidation19-26. These expert

systems were constructed to provide spectroscopists with tools to facilitate recognition of

substructures and to provide assistance in the construction of molecular structures based

on substructures. Andreev et a/. 19 fonnulated the principle heuristics used by an expert to

interpret IR spectra and implemented sorne ofthem in an expert system written in Pascal,

EXPIRS (EXPert in InfraRed Spectroscopy). The expert system's main function is the

structure elucidation of organic compounds. Luinge20 developed a similar expert system

for the interpretation of IR spectra, EXSPEC, which he wrote in LPA MACPROLOG.

Three main modules made up the EXSPEC system. The first was an interpretation

module. This module inferred structural fragments from an IR spectrum. Knowledge in

this module was represented by IFrrHEN rules; for example, IF there is a strong band

near 1700 THEN the compound probably contains a >C=O group20. The second module

was a rule generator. This module automatically generated interpretation mIes from

example data. The third module was a structure generator. This module constructed aIl

possible isomeric structures from a molecular formula and a given set of fragments. ISIA
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(InfraRed Interpretation Aid)21 was an expert system which recognized major functional

groups and sub-structures of functional groups based on user's description of spectral

data. This expert system was developed using a eommereially available expert system

shell, Leonardo Expert System. PAIRS (program for the Analysis of IR Spectra)22,

written in Fortran and the CONCrCE interpreter, provided an explanation of the rationale

behind its interpretation process. HIPS (Heuristie Interpretation ofProtein Spectra)24 was

a hybrid expert system. It did not solely employ If-Then mies but used a combination of

an expert system with pattern recognition. A genetie algorithm was used to find the best

pattern match provided by the expert system. This system was written using a number of

tools including a commercially available expert system shell, KEE shell, a programming

language, LISP, and Gates Toolbox on a Sun Sparc-l workstation. Expert system's have

aiso found other uses in molecular spectroscopy. Moore et a/.27 developed an expert

system to assist in the sampling and interpretation of Foumer Transforrn Infrared (FT-IR)

spectra of organic and inorganic compounds. In the beginning, the expert system would

provide a recommendation as to the best technique for sample preparation. It wouid then

perfonn sample identification by providing assistance with band identification. This was

accomplished by searching a database of band positions with position windows that the

band was expected to faIl within. This expert system was written in the Ist Class expert

system shell. Scott et al.28
-
3o used a combination of an expert system and pattern

recognition in the estimation of molecular weight from low-resolution mass spectra. The

aIgorithm employed a sequential design; it began by using an unsupervised pattern

recognition technique, SIMCA, and it then applied a filtering step and a molecular weight

estimator. Catasti et al.31 developed an expert system, PEPTO, written in Turbo Prolog

for automatic peak assignment of2-D NMR spectra ofproteins.

1.4.2 Chromatography

There have been several expert systems developed for gas chromatography (GC)

covering several aspects of automation. Du et al.32 designed and developed an expert

system, GCdiagnosis, to aid in the diagnosis of faulty analysis by GC. The expert system

was written in Visual Basic 2.0 for Windows 3.x and relied on manual input from the
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user. GCdiagnosis provided the identity of faulty components and improper operation

based on the appearance of the chromatograms that result from a required experiment.

Hasenoehrl et al.33 designed an expert system based on principle component analysis

(PCA) for the characterization of functional groups from GC-IR. DIM (Data

Interpretation Module)34 was created to automate the interpretation of gas chromatograms

for organochlorine compounds. In a fully automated laboratory, its tasks would include

data assessment, data interpretation, and result reporting. DIM was developed in the real­

time expert system shell G2 (Gensym) and employed principle component regression

(PCR) pattern recognition. Expert systems have found slightly more use in high

perfonnance liquid chromatography (HPLC) than with GC. An expert system has been

designed for the selection of factors for a ruggedness test, which is valuable for finding

the analytical conditions that give the best perfonnance in HPLC35
• DASH (Drug

Analysis System in HPLCi6 was created to give advice on HPLC conditions for analysis

of basic compounds. CRISE (CRIteria SElection)37,38 was developed to assist

chromatographers in the selection of suitable optimization criteria and CHIRULE39

suggests a chiral stationary phase which would be suitable for use in developing a

separation method for a new target molecule. Other method development expert systems

in HPLC include ECAT (Expert Chromatographic Assistance Team)4o and ESCA (Expert

System for Chemical Analysis)41.

1.4.3 Electrochemistry

Electrochemical techniques are weIl suited for the application of expert systems. Esteban

et a/.42
-45 developed an expert system to give advice on the different steps involved in the

selection of the appropriate methodology for the detennination of several elements by

polagraphic and voltammetric techniques. The elements studied were Cu, Zn, Cd, Pb, In,

Co, Ni and Tl. The advice given by this expert system was separated into four categories:

sample pretreatment, electroanalytical measurement, qualitative analysis, and quantitative

analysis. The knowledge in each category was implemented with IF/THEN mIes.

Another type of expert system developed by Palys et al.46 was for the automatic

elucidation of electrode reaction mechanisms.
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• 1.4.4 Atomic Spectroscopy

1.4.4.1 Atomic Absorption Spectroscopy

Stillman et a1.47
-
50 developed a complete expert system for automated metai analysis by

flame atomic absorption (FAA) spectrometry. The expert system was composed of many

modules that performed various tasks.

•

AAmethods,

AAselect

AAcontrol

AAanalysis,

AAQC

AAdiagnosis

AAtrend,

AAreport,

AAassurance

AAteach

Using rules and a method-selection database, these modules select the

appropriate method of analysis.

This module perfonns all the tasks related to the atomic absorption

spectrometer. It is responsibIe for real-time sample introduction and

scheduling of the autosampler and capturing real-time data.

These modules colleet and evaluate the data obtained from AAcontrol.

They extract infonnation and provide an assessment of the quality of

the data.

It is a fault diagnosis module that diagnoses probable causes of

instrument malfunctions or incorrect data values.

These modules provide a report of the evaluated analysis data and

infonnation. They aIso apply guidelines to assure process and

production quality.

This module provides a training capabiIity targeted toward laboratory

personnel or students. It teaches using simulations and question and

answer sessions.
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The system works as follows. The manager obtains a sample from a customer and

consults with both the customer and regulatory agency to determine the criteria to he used

in the analysis. The module AAassurance is used by the manager and the analyst to

implement the laboratory quality assurance program. The operator identifies the blank,

standard, and sample solutions to be used for the analysis. The module AAcontrol then

establishes the sequence of tubes and beakers to be used for the analysis. The method of

analysis is chosen by the modules AAmethods and AAselect and the analysis is initiated.

The absorbance profile of the solution being analyzed is sent to the module AAQC. The

AAQC and AAdiagnosis modules detennine whether the measurement meets preset

criteria. This is accomplished by the extraction of the parameters trom the training set

with the application of production mIes. Once the acceptability of the measurement has

been determined, an appropriate message is sent back to the AAcontrol module which

proceeds with the analysis. The modules AAtrend and AAreport provide a report of the

analysis of the experimental data which can be presented to the customer. Penninckx et

al.SI developed an expert system, written in Visual Basic, for the detection of matrix

interferences and method validation in atomic absorption spectrometry (AAS). Another

expert system in AAS was written in Toolbook 1.0 Software, for the selection of

dissolution methods prior to atomic absorption analysis of phannaca.

1.4.4.2 X-ray Fluorescence, X-r ay Diffraction, FIA

Arnold et al. 52 developed an expert system written in Pascal for energy-dispersive X-ray

fluorescence spectrometry. The aim in designing this expert system was to automatically

interpret the data and retum the elemental composition of the sample associated with a

spectrum. The expert system consisted of three components: (1) A knowledge base

which contains information on energy-dispersive X-ray fluorescence spectrometry in

IF/THEN mIes; (2) a database containing reduced spectral data and an array of certainty

factors associated with each element; and, (3) an inference engine which perfonns

manipulation of the knowledge. Janssens and Van Espen53 developed an expert system

for the qualitative interpretation of wavelength dispersive X-ray fluorescence
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spectrometry. This expert system included two modules. The fust was the pre-processor

module, PREXRF, written in BASIC. This module encompassed the following functions

for the manipulation of spectral data: (1) Filtering of the digital original spectrum and

derivation of line spectra; (2) selection of the database section that is applicable to the

actual experimental conditions; (3) correction for gross deviations in the wavelength axis;

(4) spectral pattern matching of the unknown sample spectrum and candidate element

spectrum; (5) calculation of probabilities of line coincidences by Bayesian reasoning;

and, (6) calculation and identification of Compton lines. The second module,

INFERXRF, implemented in PROLOG, contained the knowledge base and inference

engine. The mies in the inference engine were used for the selection of the MOst

appropriate lines, the identification of elements present and the spectral stripping of the

determined element in the raw spectrum. An expert system developed by Adler et al. S4

employed a knowledge base containing fuzzy set rules for the qualitative and semi­

quantitative interpretation of X-ray diffraction spectra. Brandt and HitzmannS5 developed

an expert system for fault detection and diagnosis in flow injection analysis (FIA). This

expert system could detect faults in the sampling, flow, reaction, detector, and automation

systems. The knowledge base comprised IFITHEN mies such as the following:

IF the measurement data in the initial phase of the flow injection cycle differ from

a straight tine THEN Injection disturbed.

1.4.4.3 Atomic Emission Spectr oscopY

In inductively coupled plasma atomic emission spectrometry (ICP-AES), an automated

sample preparation and plasma spectrometric system for the analysis of geological

materialss6 has been operational since 1981. This expert system involves complete

automation from prospecting to processing the analytical data. The entire process begins

with the selection and grinding of the samples. One gram of sample is weighed on an

electronic balance and both its origin and weight are stored in computer memory. This

information is used later for computing element concentrations. Sodium peroxide is

added automatically and the reaction takes 45 min. at 460°C. At the end of the

decomposition process, a clear solution is produced for multi-element analysis by ICP­

AES. In an 8-hour time period 250 samples can be prepared. A quality control
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procedure is irnplemented by monitoring the Cd II / Cu l ratio and adjusting gas flow

rates accordingly. When satisfactory operating conditions are obtained the analysis

begins. Upon analysis of the sample, if the relative standard deviations (RSDs) abtained

are not within tolerance the analysis is repeated. If after 3 repetitions the RSDs are

unacceptable, the system is halted and a waming is activated. Othenvise, the intensity

data is processed. The method of external calibration is the only calibration methodology

implemented in this system. Interferences are measured for element channels.

Corrections are applied based on results from experiments on synthetic samples. Major,

minor, and trace elements were aIl analyzed successfully in geochemical prospecting

samples.

Pomeroy et al.57
•
58 had in their possession a direct current plasma echelle CID

spectroscopie system for AES. This instrument has the advantage that it ean record

simultaneously aIl wavelengths between 220 nm and 520 nm and produce large amounts

of data. They designed and built two expert systems. The first, auto-qualitative analysis,

was used to detennine what elements were present in a sample. The process began with

the acquisition of two spectra: a blank and a sample. The blank subtraeted spectrum was

ealeulated and stored. The signal-to-noise ratio (SNR) of eaeh fine was then calculated

and used ta predict the presence of an element in the sample. There are several mies in

the deeision process:

1. If 50% of the lines of an element have a SNR > 5 then the element is present in

the sample.

2. If the most intense line of an element has a SNR > 5 then the element May be

present in the sample at a very low concentration.

3. Othenvise, the element is not present in the sample.

An advantage of tbis approach is that no prior knowledge of the sample is required in the

decision process. The authors decided that tms expert system was good for determining

what elements were present in a sample but what they wanted to know was the quantity

of the element in the sample. For this purpose, they designed their second expert system

for semi-quantitative analysis. The approach they used was ta employ the method of

internai standardization. They obtained initial calibration curves and did not need to
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recalibrate. Over a fifieen..day period their results never varied more than ±20%. This

system is used when speed is of utmost concern and accuracy is not as important.

Webb and Salins9 developed an expert system for line selection using an atomic

emission rapid scanning spectrometer. LINEX (LIne EXpert), written in Prolog, used

elemental compositions of a given sample to generate a line search strategy that

minimized the number of lines to be measured. The presence of an analyte was

determined by checking line ratios and verifying the possibility of line interferences. If

an analyte was present in the sample it was spectrally stripped from the net signal and the

expert system would go on to the next element.

Yang et al.60
•
61 developed an expert system for the prediction of spectral

interferences in ICP..AES. PESLS (Primary Expert System for Line Selection) was

written in C++ and consisted of three modules. The first module performed a simulation

of an ICP discharge. The second module perfonned a simulation of the process of

excitation and ionization. Both these modules were written in Fortran 77. The third

module required the tirst two modules and performed a simulation of spectral line shapes

and the selection of the best spectral line under non-local thennal equilibrium (LTE)

conditions. They found that the expert system's predictions under non-LTE conditions

were rnuch closer to reality than those under LTE conditions.

Webb et al.62 designed a fully automated ICP..AES, the Autonomous Instrument.

They employed a Thermo Jarrell Ash Model 2S scanning ICP-AES spectrometer that

could scan wavelengths in the range 160 nm to 900 nm. The sequence the expert system

used began with acquiring prior knowledge such as where the sample came from, its

volume, and the accuracy required. The next step was to search the database for a similar

sample and to use the same operating conditions. If the sample was not a quality control

(QC) sample then a semi-quantitative analysis was performed to estimate the

concentration of elements in the sample. A calibration methodology was selected based

on the semi-quantitative scan data and on the user constraints. If the sample were a QC

sample then a full analysis would be performed.

QUID Expert63 was developed using the knowledge obtained from Mennet' S64

research on ICP-AES instrument diagnosis. This expert system required that a test

standard solution be run. This solution contained the elements magnesium, barium, and
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zinc. QUID Expert would identify problems related to the nebulizer, drift, energy

transfer, sample transfer, and the optical components.

1.5 Application of Optimization Algorithms in lep

Spectrometry

The optimization of the operating conditions of an ICP spectrometer May improve

accuracy and precision of results. In ICP-AES, there have been several studies of a

single element Simplex optimization of the operating conditions65
-67. Terblanche et a/. 66

found that optimizing the instrument using the signal-to-background ratios of elements

generated higher reproducibility in results compared to using their detection limits.

Ebdon et al.67 found the best operating conditions for use with different organic solvents.

There have been several studies of mlllti-element optimizations in rcp_AEs68-70. Many

studies on optimization of ICP atomic emission spectrometers have been for the

minimization of interference effects in difficult to analyze samples68.70.71. Recent

studies72
-
75 in optimization of ICP-MS have made use of the Simplex technique. Evans

and Caruso13 and Schmit and Chauvette16 llsed the Simplex technique and demonstrated

its applicability to the optimization of the ion lens voltages. Evans and Ebdon17 and van

der Velde-Koerts and de Boer72 demonstrated the use of the Simplex technique in the

optimization of the plasma operating parameters. AIl of these studies optimized the

system for maximum analyte signal and minimum interferences. Ford et al.18 used the

Simplex technique for the optimization of the plasma parameters and the ion optics llsing

signal-to-background ratios.

1.6 Toward Autonomous lep Spectrometers

With advances in technology, analytical instruments can now produce enormous

quantities of data in relatively short periods of time. Of all the data produced only a

srnall select fraction is necessary. There is aiso concem that there is a shortage of skilIed

personnel to operate these instruments. Laboratories emphasize the importance of

accuracy and precision thus putting pressure on the operators who are trying to select the

best calibration methodology for the analyses. This results in a very difficult situation;
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there are more samples hence higher throughput is required, which means more data for

unskilled operators. The solution is to develop software that would handle the data

intelligently.

The goal of the Autonomous Instrument Project is ta relieve human operators of

the burden of dealing with the flood of data and to assist in the decision-making process

for more accurate and precise results. Originally, the concept behind the Autonomous

Instrument was to build a complete system but this was not acceptable to manufacturers.

It was then decided to break up the Autonomous Instrument into modules that couId be, if

desired, run independently. These modules could be combined to fonn a complete

system that could operate without a human operator.

The Autonomous Instrument has evolved over the years to its present modular

design (Figure 1.5). Although it looks like an integrated system, each component is a

module that cao stand alone; sorne of these modules contain smaller modules that cao

also be used on their own (Table 1.2). The first module consists of all the startup

procedures particular to the instrument such as wavelength calibration, turning the plasma

on and any other events that should occur in the initialization of the instrument. The

second module is the Real Time Blank Diagnosis (RTBD) module. This module would

be loaded immediately after startup and would be setup to run as a background process.

It would analyze each blank solution run and would wam the user if there were a problem

with the system. If the RTBD module has wamed the user of a possible problem or at the

user's request, QUID Expert may be used. QUID Expert63 is a diagnostic module based

on the research of J-M. Mennet et al.64 This module runs a test solution and monitors

several atomic and ionic tines. The infonnation extracted from these Hnes allows the

diagnosis of the major components of an inductively coupled plasma (lep) system.

The three remaining modules deal with different types of analysis. The Quality

Control (QC) module analyzes samples and verifies that they are aIl within specification

using a pattern recognition component. The analysis of an unknown sample module is a

large module, which contains smaller modules such as a pattern recognition module, a

calibration methodology selection module, and a module predicting whether a sample

would produce inaccurate results. The third type of analysis is Leaming to Run New
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• Samples (LNS) which would also be a large module. It will contain optimization and

methodology selection modules and is presently in the plarming stage.
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Figure I.S Diagram of the Autonomous Instrument system.
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Table 1.2 Components of the Autonomous Instrument.

Major modules Components 1

Real Time Blank Diagnosis module Expert system

QUID Expert Expert system

Analysis ofunknown sample Pattern recognition

Optimization

Methodology selection

Leam to mn a new sample Optimization

Methodology selection

Quality control Pattern recognition

1.7 Thesis Outline

Chapter 2 describes the development of a warning system which can diagnose an ICP­

AES in real-time and decide whether a complete diagnosis should be performed.

Chapter 3 is an evaluation of three pattern recognition techniques for use ln the

Autonomous Instrument system.

Chapter 4 describes the development of an objective function for multi-element

optimizations in ICP-AES.

Chapter 5 details studies on optimization of the ion optics in an ICP-MS which includes a

comparison of objective functions and a comparison of single element and multi-element

optimizations.

Chapter 6 describes the development of a system that can automatically select internaI

standards for analyses of analytes in difficult samples in ICP-MS.

Chapter 7 describes the work that remains to be done to complete the modules of the

Autonomous Instrument.
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1.8 Contributions to thesis

The author carried out the experimental work in Chapters 2, 3 and 4. The results of these

chapters were submitted or published as the following manuscripts:

"Inductively Coupled Plasma-Atomic Emission Spectrometer Waming

Diagnosis Procedure Using Blank Solution Data", C. Sartoros and E.n.

Salin, Spectrochimica Acta, 1998, 53B, 741.

"Pattern Recognition for Sample Classification uSlng Elemental

Composition -Application for Inductively Coupled Plasma Atomic

Emission Spectrometry", C. Sartoros and E.D. Salin,

J. Anal. At. Spectrom., 1997, 12, 827.

"Comparison of Two Objective Functions for Optimization of

Simultaneous Multi-Element Determinations in Inductively Coupled

Plasma Spectrometry", C. Sartoros and E.D. Salin, J. Anal. At. Spectrom.,

1997, 12, 13.

Chapter 5 contains experimental work used to evaluate the application of Simplex

optimization to the ion optics of an inductively coupled plasma mass spectrometer. The

design of the experiments and the work carried out was done by a postdoctoral feIIow,

Dr. Douglas M. Goltz, and the author. This work was published as the foIIowing

manuscript:

"Program Considerations for Simplex Optimization of Ion lenses ln

lCP-MS", C. Sartoros, D.M. Goltz, and E.n. Salin, App/ied

Spectroscopy, 1998, 52,643.

Chapter 6 contains experimental work to evaluate the use of a cluster analysis algorithm

for the selection of internaI standards in ICP-MS. This work has been accepted for

publication as:
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• "Automatic Selection of Internal Standards in ICP-MS", C. Sartoros and E.D.

Salin, Spectrochimica Acta.

Dr. E.D. Salin was available throughout and contributed helpful discussion and guidance

regarding project direction, experimental planning and data interpretation.
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Chapter 2

Prior to performing any analysis, it is important for the Autonomous Instrument to know

that the instrument is working properly. The Autonomous Instrument should have the

capability to identify malfunctions that May occur, determine the possible causes of these

malfunctions and suggest possible remedies. A complete diagnostic procedure is

implemented in the module QUID Expert. This module can diagnose malfunctions in aIl

the major components of an ICP-AES using a standard test solution. The standard test

solution must be reproducible and run on a regular basis, which could be time consuming.

The question is "\vhen should this solution be run?". The simplest answer is '"when

the instrument begins operation". Unfortunately, the instrument may run for many hours

and would not know if a malfunction had occurred during its operation. The Real Time

Blank Diagnosis (RTBD) module has been added to the Autonomous Instrument as a

warning system. This module uses a blank solution to monitor the instrument during its

operation. A feedhack loop is used to wam the Autonomous Instrument of a possible

malfunction. This module will alert the Autonomous Instrument of the need to run the

QUID Expert module. This chapter describes the RTBD module. This work was

published in Spectrochim. Acta., 1998. 53B, 741
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2 Inductively Coupled Plasma-Atomic Emission Spectrometer

Warning Diagnosis Procedure Using Dlank Solution Data

2.1 Abstract

Lines available while nmning a blank solution were used to monitor the analytical

perfonnance of an inductively coupled plasma atomic emission spectrometry (ICP-AES)

system in real time. Using H and Ar lines and their signal-to-background ratios (SBRs),

simple rules in the fonn of a prediction table were developed by inspection of the data.

These mies could be used for predicting changes in RF power, carrier gas flow rates, and

sample introduction rate. The performance of the prediction table was good but not

excellent. Anather set of mies in the form of a decision tree was developed in an

automated fashion using the C4.S induction engine. Performance of the decision tree was

superior to that of the prediction table. It appears that blank spectral information can he

used ta predict with over 90% accuracy when an rCp-AES is breaking down, however it

is not as definitive at identifying the exact fault as sorne more exhaustive approaches

involving the use ofstandard solutions.
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2.2 Introduction

Inductively coupled plasma atomic emission spectrometer (ICP-AES) systems are now

automated such that they cao easily run for long periods with less experienced operators.

The high data throughput and operator level suggest the quality of the data obtained can

be somewhat questionable. An essential module that is absent in these automated

instruments is a self-diagnosing procedure which would warn the operator when there

was a malfunction in one of its components. The software provided with instruments

does notify the user of major malfunctions such as loss of gas pressure, plasma off, or

communication failure bet\veen computer and instrument, but it will not tell the user of

more subtle failures such as nebulizer blockage, optics degradation, gas pressure

reduction, etc. Mennet and his colleagues have been able to identify problems in ICP­

AES instruments by devising several simple experiments that can evaluate the

perfonnance of an ICP sequential system 1. These experiments use a standard test solution

containing 5 ppm of barium, magnesium, and zinc, and monitor seven atomie and ionie

lines including those of argon. The infonnation extracted from the measurements of a

line profile, absolute line intensities, relative standard deviation (RSD) of intensities,

signal-to-background ratios (SBRs), and ionic to atomic line intensity ratios, allows

diagnosis of the major components of an ICP system ineluding the optics, the sample

introduction system, the generator, and the detector. While the tests are easy to perfonn,

the interpretation of the data could be difficult for an inexperienced operator. Ta

overeome this problem an expert system called QUID Expert was developed2
• The

program was developed to run in the Windows™ environment so that it runs concurrently

with most manufacturers' software. QUID Expert is based on Mennet's work and uses

the infonnation obtained from the ionic and atomic lines in a series of rules, sorne of

which use statistics, to detennine when the spectrometer's performance is degrading and

where the probable fault lies. QUID Expert appears to be a useful tool when the

instrument's performance is ofunnost importance.

A drawback of QUID Expert is that a standard test solution must be run on a

regular basis or whenever a problem is suspected. Excessive use of the test solution can
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decrease throughput of the system while sparse use can allow degradation to be

unnoticed. With this in mind, we decided to develop a procedure which would identify

potential problems during normal instrument operation. The purpose of this application

would not be to pinpoint the malfunction, as QUID Expert does, but to operate as an early

waming system. When a malfunction is detected, one would run QUID Expert to verify

the malfunction and detennine its cause(s). The best way to maintain throughput is to use

a solution that is run on the instrument on a regular basis: the blank. It is the single

solution that will nonnally he run multiple times and periodically on the instrument.

Using the blank solution does not increase the analytical cost since it must be run

anyway. The infonnation that would be available in an aqueous acid blank would be

accrued from the hydrogen tines, the argon tines, and the background signal (Table 2.1).

The Ar l 404 Dm Hne and two background positions were selected for this study since

they were used in QUID Expert for several of the tests. The four most prominent

hydrogen lines were selected since they are related to the water input through the sample

introduction system). The major components of the instrument emphasized in this study

were the generator and torch (energy transfer) and the sample introduction system

(nebulizer gas rate, nebulizer efficiency, nebulizer precision) since these components are

more subject to rapid degradation than the optics.

Rules were generated to predict the instrument's behavior based on information

obtained from line intensities, RSD of intensities, and SBRs. Using these figures of ment

and the Hne intensities, trends were studied to develop a system for predicting possible

instrument failure using only the blank solution data. Performance was also compared to

that provided by the QUID Expert tests using a standard test solution.
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Table 2.1 Observed lines or zones in blank solution.

Line Wavelength
(nm)

Arf 355.431
Arf 404.442
Arf 549.587
Arf 750.387
ArI 811.531
HI 410.174
HI 434.097
HI 486.133
HI 656.279

Background 200
Background 400

2.3 Experiments and Discussion

2.3.1 General Experiment Information

A Thermo Jarrell Ash Model 25 scanning spectrometer was used in this study with a

cross-flow nebulizer attached to a peristaltic pump. AlI the instrument functions are

automated and controlled by an independent computer via an RS-232 port. The solutions

used for the first set of experiments \Vere distilled and deionized water, 50/0 nitric acid

blank solution, and the standard test solution used by QUID Expert2 which consists of

5 ppm of Ba, Mg, and Zn, prepared from Fisher (Pittsburgh, PA) certified 1000 ppm

standard solutions, in 5% reagent grade nitric acid (lines listed in Table 2.2). The

experiments were performed under the operating conditions listed in Table 2.3. For each

solution, three operating parameters, RF power, sample introduction rate (feed rate), and

nebulizer gas pressure, were varied (Table 2.3) one at a time while holding all other

operating parameters constant thereby generating fifteen different data sets. A single

reading of the total signal and one of its background signal were recorded for each of the

lines studied (Table 2.1 and Table 2.2, in their respective solutions) at each subset of
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operating conditions. The relative intensities were detennined with 100 assigned to the

standard setting.

Table 2.2 Spectrallines or zones used in QUID Expert solution.

Lines Wavelength
(nm)

ArI 404.442
Ba II 455.403
Zn II 206.200
Mg II 280.270
MgI 285.213

Background 200
Background 400

Table 2.3 Instrument parameter settings.

Standard operating conditions used in first set of experiments.
Operating parameters Setting
RF power 1150 W
Sample introduction rate 0.9 ml/min
Nebulizer gas pressure 0.39 Vmin (30 psi)
Integration time 5 sec x 4 repeats
Observation height 15 mm ATOLC (above the top of the loarl coiI)

Operating conditions used and being varied.
Operating parameters Variations in setting
RF power 750W,950W, 1150W, 1350W, 1550W, 1750W
Sample introduction rate 0.3, 0.5, 0.8, 1.6, 2.4, 3.1 ml/min
Nebulizer gas pressure 0.28, 0.39, 0.48 Vrnin (20, 30, 40 psi, respectively)

2.3.2 General Observations

Based on the information obtained with the blank solutions, trends for each Hne were

observed for the variations in operating parameters. The trends are listed as an increase

or decrease corresponding to the variation and whether this trend is linear (Tables 2.4 ta

2.6). A trend was considered linear if a linear regression produced an r squared greater
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than 0.90. A trend was considered aImost linear if the linear regression produced an r

squared greater than 0.80.

2.3.2.1 Observations: Emission lines as a function of power

Upon examination of the relative line intensities in the blank solutions as a function of

power (Table 2.4), it can be seen that the relative line intensities of all the Ar lines

inereased linearly with increasing power. The relative Hne intensities of the H lines were

seen to increase to a plateau with the sole exception of H (656.279 nm) which simply

inereased. Aeeording to Boumans4
, the intensities ofhard atomic and ionie Hnes initially

inerease sharply with power and do not reach their maxima in the range of 800W to

2200W. Boumans also observed that soft atomic lines have maxima at the lower end of

the power range whereas the ionic Hnes approach their maxima in the middle of the

range. If we take the definition of "soft" lines to be atomie lines of elements with a low

to medium ionization potential (S 8 eV) and ionic lines of elements with a low second

ionization potential and "hard" Hnes to be aIl other elements4
, then both the H line and Ar

line are hard lînes. However, the H line seems to exhibit soft line characteristics when

varying the RF power. Considering the relative SBRs of the Ar lines as a funetion of

power, only AI (549.587 nm) perfonns in a predictable fashion, decreasing linearly with

increasing power. AIl the H lines exhibit similar decreasing trends (Table 2.4). This

results because an increase in power causes the background signal to increase more

rapidly than the net signal4
•
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Table 2.4 Trends observed while increasing the power setting.

Lines 820 (Signal) SBR820 HNOJ (Signal) SBR8NOJ

Ar 3554 + L +/- N + L +/- N
Ar 7503 + L +/- N + L +/- N
Ar 4044 + L +/- N + L +/- N
Ar 8115 + L +/- N + L +/- N
Ar 5495 + L - L + L - L
86562 + L - L + L - AL
84101 + N - N + N - N
84340 + N - N + N - N
H4861 +/- N - N + N - N
400nm + AL + AL
200nm + AL + AL
400 nm 1200 nm +/- N +/- N
+ mcrease
- decrease
+/- increase then decrease
L linear
AL almost linear
N Nonlinear

Table 2.5 Trends observed while increasing the sample introduction rate up to

1.6 mUmin.

Lines 8 20 (Signal) SBRH20 HN03 (Signal) SBR8NOJ

Ar 3554 -/+ N = N -/+ N = N
Ar 7503 - N = N - N -/= N
Ar 4044 - N = N - N = L
Ar 8115 - N = N -/= N +/= N
Ar 5495 - N = N - N = N
86562 + N = N +/= N + N
84101 + N + N +/= N + N
84340 + N + N + N + N
84861 + N + N +/= N + N
400nm - N -/+ N
200nm = N -/+ N
400 nm 1200 nm -/+ N -/+ N
+ mcrease
- decrease
+/- increase then decrease
-/+ decrease then increase
= relative stable
L linear
NNonlinear
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Table 2.6 Trends observed while increasing the nebulizer gas pressure.

Lines 820 (Signal) SBRH20 UN0 3 (Signal) SBRHN03

Ar 3554 - L + N - L +/- N
Ar 7503 - L - L - L + N
Ar 4044 - L +/- N - L +/- N
Ar 8115 - L - N - L +/- N
Ar 5495 - L + L - L + L
86562 + N + N +/- or = N +/- N
U4101 + N + N + L + L
84340 + L + L + L + L
84861 + L + N + L + L
400nm - L - L
2000m - L - L
400 nm / 200 nm - N +/- N
+ mcrease
- decrease
+/- increase then decrease
Llinear
N Nonlinear

2.3.2.2 Observations: Emission lines as a function of feed rate

If one considers the relative line intensities as a function of feed rate (e.g., Figure 2.1a),

one observes that a11 the lines exhibit a specifie trend until 1.6 mVrnin. where there is a

noticeable break. When using QUID Expert, one verifies nebulizer efficiency by

monitoring the SBR of Mg (285.213 nm). Examining the plot of the SBR of Mg as a

function of feed rate (Figure 2.1 b), one observes that the trend is also broken at a feed

rate of 1.6 mUmin. This would lead us to believe that the maximal aspirating rate of the

nebulizer used in our experiment is around the 1.6 mUrnin mark. According ta

Thompsons, inereasing the solution uptake beyond the "free-uptake" level by pumping

produces a slight decrease in signal intensity. Therefore, when detennining trends as a

function of feed rate, only feed rates under 1.6 mUmin were considered. From Table 2.5,

it can be seen that ail the H Hnes increase with feed rate whereas aIl the Ar lines decrease

due to the loss of available power. The relative SBRs as a function of feed rate reveal

that most of the Ar Hnes can be considered constant and that the relative SBR of the H

lines increases with feed rate (Table 2.5).
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Figure 2.1(a) Relative intensity of the H line (486.133 nm) in bath water and 5% nitric

acid as the sample introduction rate is varied.
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Figure 2.1(b) Relative signal-ta-background ratio of Mg (285.213 nm) in the QUID test

solution as the sample introduction rate is varied.

2.3.2.3 Observations: Emission Iines as a function of nebulizer gas Oow rate

The relative line intensities as a function of nebulizer gas pressure (Table 2.6) reveal that

the H lines increase linearly whereas the Ar Hnes decrease linearly. Boumans found that

the intensities of soft lines increase with carrier gas flow while hard lines decrease~.

Again, H behaves like a soft Hne and.A..r behaves like a hard line. Looking at the SBRs as

a function of nebulizer gas pressure it can be seen that most H lines increase linearly

whereas those of Ar could go either way (Table 2.6). Boumans found that a high carrier

gas flow favors the SBRs of soft lines4 which seems to be the case with H. Inspecting all
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• of the trends of the lines investigated~ it was detennined that the H (486.133 nm) line and

the Ar (549.587 nm) line would be used for further studies.

2.3.3 Prediction Table Generation and ResuUs

Upon examination of the trends (Tables 2.4 to 2.6), two lines, the H Beta line

(486.133 nm) and the Ar (549.587 nm) line, were selected as providing adequate

infonnation to fonnulate general trends. Using the line intensities and SBRs ofthese two

lines, a prediction table was generated (Table 2.7) by inspection. This could easily

translate into a decision tree however, for our purposes, the prediction table will he used.

Table 2.7 Prediction table.

--Sample.IDtrodaetioD
+

--: ~_: ~~balizer las
+

+-
+ +
+ =

= + +
+

+ + +
= = - =

•

+ increase
- decrease
=reasonably stable

Five experiments were performed to ascertain the validity of the prediction table. The

experiments were performed using only the 5% nitric acid blank solution. AlI five

experiments were carried out using the same operating conditions (Table 2.3). For these

experiments, various initial operating settings for the RF power, the sample introduction

rate, and the nebulizer gas pressure, were selected. Ten readings of the total signal and

background signal were recorded for each of two lines, H (486.133 nm) and Ar

(549.587 nm). The mean and standard deviation of the line intensities and the SBRs were

calculated. Following this, a single parameter was varied and, once the data was

recorded, the tine intensities and SBRs were calculated.

In determining whether there was a change in the system, a value was assigned to

one of three states: stable (constant), increase, or decrease. A stable evaluation resulted

in a prediction that there was no problem identified in the system. In sorne cases the
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• system predicted a problem but not the correct one. This would wam the user that there

was a problem, but it would be misleading as to the nature of the problem if no further

experiments were done. The two misclassified problems in Experiment 1 of Table 2.8

were caused by increases in power. Due ta the parabolic nature of the line intensity ofR

as a function of power, if one sits at the top of the curve an increase in power will not

give an increase in the line intensity as stated in the prediction table, but will produce a

decrease. This same problem was observed in aIl of the other experiments

(Experiments 2 and 5) with the last two being the most severe. A high power setting was

chosen as an initial operating condition rather than the more common values (Table 2.3)

used for generating the prediction table. Not surprisingly, this resulted in errors being

produced when decreasing the power. In this case, the prediction table does not always

predict that there is a change in power, however it will state that there is a problem and

identify it incorrectly as a change in nebulizer gas pressure. This is still an acceptable

situation since, by detecting a problem, it will recommend that further diagnostics he run,

which could correctly identify the situation as an energy transfer problem. The only

other prablems abserved were in Experiments 2 ta 4 where smaIl (and occasionally large)

increases in feed rate were often within one standard deviation of the average. This

suggests that this method was not sensitive enough ta monitor small changes in

nebulization and perhaps that small changes in feed rate are not critical ta nebulizer

perfonnance.

Table 2.8 Diagnasis ofproblems using prediction table

Exp. Initial Settings Number Correct Predicted Predicted
of tests predictions other no

problem problem
Power Sample Nebulizer
(\V) introduction gas

(ml/min) (llmin)
1 1150 0.9 0.39 28 22 5 1
2 1150 1.2 0.39 10 5 3 2
3 1350 1.0 0.39 10 4 4 2
4 1550 0.9 0.39 10 4 3 3
5 1550 0.9 0.39 7 4 2 1

Total 65 39 17 9

•
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2.3.4 Inductive Learning Generated Decision Tree

The results obtained using the prediction table were not as good as we had hoped

especially when it came ta changes in power. In order ta evaluate an automated rather

than manual method of selecting evaluation criteria, we extracted rules from the

information using inductive leaming, an algorithm used to automatically generate

rule-based expert systems6
. We generated a decision tree using the C4.5 induction engine

developed by Quinlan7
• The resulting decision tree is provided in Figure 2.2.

Ar549SSBR

86562 S 86562 S Ar5495 S

+//~'''-
;//!"'''- .~"

+,// -1 .,,"'-.,= +/// -i ',-
1

....
/ ' l """-,,- ./

,/ "- / ./ "
;"

GasOow Power GasRow Power Gas Dow GasRow Feedrate Feednte NOR!\L\L
UP DaWN UP UP DO\VN DOWN DOWN UP

Figure 2.2 Flowchart ofdecision tree generated by the C4.5 induction engine.

TweIve experiments were perfonned ta see how weIl this decision tree classified system

malfunctions. The two lines used by the decision tree for its classification were H

(656.279 nm) and Ar (549.587 nm). These experiments were exactly like those done for

the prediction table except that a different hydrogen line was selected by the C4.5

aIgorithm. For these experiments, various initiaI operating settings for the RF power, the

sample introduction rate, and the nebulizer gas pressure, were selected. Ten readings of

the total signal and background signal were recorded for each of two lines, H

(656.279 nm) and Ar (549.587 nm). Following this, one of the three parameters was

varied, and a single reading of the total and background signal was recorded for each of

the two lines. The results are listed in Table 2.9.
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Table 2.9 Diagnosis ofproblems using a C4.S generated decision tree

Exp. Initial Settings Number Correct Predicted Predicted
of tests predictions other no

problem problem
Power Sample Nebulizer
(W) introduction gas

(ml/min) (l/min)
1 1550 0.4 0.39 8 7 0 1
2 1150 0.8 0.28 8 6 1 1
3 750 1.6 0.43 9 5 3 1
4 750 0.4 0.28 8 7 1 0
5 950 0.6 0.39 8 7 1 0
6 1150 0.9 0.48 8 7 1 0
7 1350 1.6 0.39 8 6 1 1
8 1550 1.6 0.28 10 8 1 1
9 750 0.8 0.48 10 5 5 0
10 1150 0.9 0.39 10 10 0 0
11 1350 0.5 0.33 10 8 2 0
12 950 1.2 0.43 10 5 3 2

Total 107 81 19 7

Most of the errors seen in the results (Table 2.9) arase during changes of the feed rate.

Sorne of the changes in the H and Ar signaIs were so small that the situation was

considered nonnal even though there had been a change in feed rate. Another problem

was observed in predicting a change in nebulizer gas pressure. This problem was seen

mostly in Experiments 3, 9, and 12 of Table 2.9. These results aIl have in common that

they were obtained using low power and high nebulizer gas pressure. Once again, it

should be noted that the initial information about the trends of the three operating

parameters was obtained using different operating conditions (Table 2.3). These are

"standard conditions" (in the middle of the range of settings) and may not apply to

extreme starting conditions such as those with low power and high nebulizer pressure.

If the results from the prediction table (Table 2.8) aod those of the decision tree

(Table 2.9) are examined side-by-side, it cao be seen that the decision tree classified more

malfunctions correctly (-75%) than the prediction table (-60%). Both were good at

ooting that there was a change. The prediction table correctly caught changes 86% of the

time while the inductive system caught changes 93% of the time.
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2.3.5 Nebulizer malfunctions

The nebulizer is an important part of the instrument and malfunctions can occur from

plugging of the nebulizer to air bubbles in the pump tubing. Simulation of these

problems was perfonned with an external peristaltic pump controlled by computer. The

pump could be pulsed at various frequencies to simulate poor precision. The sample

introduction rate was held constant at 0.8 ml/min. The two solutions used for these

experiments were the 5% nitric acid blank solution and the standard QUID Expert test

solution. The RSD of ten readings of the background subtracted intensity of ivlg

(285.213 nm) was recorded as a function ofintegration time (Figure 2.3). The RSD of the

line intensities was plotted against integration time for both Mg (285.213 nm), which is in

the standard QUID Expert test solution, and H (486.133 nm) from the nitric acid blank:

solution (Figure 2.3). From Figure 2.3 it was determined that both the RSD of the

intensity of Mg in the QUID Expert solution and that of H in the nitric acid solution did

not show any particular trend as a function of integration time. The pump was then

pulsed at various frequencies with a duty cycle of 50% while an instrument integration

time of 10 seconds was used (Figure 2.4). The RSD of ten readings of the background

subtracted intensity of Mg was recorded for each pulsing frequency. This same

procedure was repeated for the H Hne (486.133 nm) in the nitric acid blank solution.

Since the variations were observed between 0 and 1 Hz for Mg, the pulsing for the H

experiment was kept within this range. By introducing a pulsing frequency (Figure 2.4),

the RSD's of the line intensities for both Mg and H increased with lower pulsing

frequencies as one would expect. From these plots it can be seen that the [ine intensity of

Mg is more sensitive to these fluctuations than that of H although the RSD of the line

intensity of H could still provide an excellent indication of nebulizer precision

degradation.
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Figure 2.3 Relative standard deviation of Mg (285.213 nm) in the QUID test solution

and H (486.133 nm) in 5% nitric acid observed while varying the integration time.
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Figure 2.4 Relative standard deviation ofMg (285.213 nm) in the QUID test solution and

H (486.133 nm) in 5°./c) nitric acid observed while varying the puIsing frequency at a

constant integration time of teu seconds.

Another experiment used a tube on the external pump to introduce air into the system

through a T-joint. The pump feed rate was held constant at 0.8 mI/min. and an

integration time of 10 sec \vas used. Line intensities and background signaIs were

recorded for both H and Ar as a function of time. Several readings were taken prior to

the introduction of air bubbles so that the line could be used as a reference. The relative

Hne intensity of H, the relative SBR of H, and the RSD of tine intensities of H were

plotted against time (Figure 2.5). Examining Figure 2.5, in all three plots it can be seen

when the air bubbles were introduced ioto the system bath the line intensity and the SBR

of H decrease and the RSD of the Hne intensity of H increases. A following experiment
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allowed the pump to run dry (Le., to run out of nitric acid solution) at 0.8 mUmin

(Figure 2.6a). Line intensities and background signals were recorded (integration time of

5 sec) for both H (486.133 nm) and Ar (549.587 nm) starting with a few milliliters of

nitric acid solution and continuing until there were no further variations of the signais

after the solution was depleted. The relative line intensity and relative SBR of H were

plotted against time (Figure 2.6b). When left to run dry (Figure 2.6b) the line intensity

and the SBR ofR decrease as expected.
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Figure 2.5(a) Monitoring of the relative intensity of both H, in 5% nitric acid, and Ar

with the introduction of air bubbles (at the fifth time intervalle
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Figure 2.S(b) Monitoring of the relative SBR of both H, in 5% nitric acid, and Ar with the

introduction of air bubbles (al the fifth rime interval).
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Figure 2.5(c) Monitoring of the RSD of H, in 50/0 nitric acid, with the introduction of air

bubbles (at the fifth time interval).
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Figure 2.6(a) Monitoring of the relative intensity ofboth H, in 5% nitric acid, and Ar as

the solution finishes.
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Figure 2.6(b) Monitoring of the relative SBR ofboth H, in 5% nitric acid, and Ar as the

solution finishes.
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• By monitoring the H line, the diagnostic procedure can identify if there has been a change

in the nebulization system.

2.4 Conclusion

It appears that infonnation available in a blank spectrum can be used to predict

instrument degradation with a success rate of 93% when using a scheme predicted

automatically by the C4.5 induction algorithm. This performance was superior to the

86% obtained with a manually developed algorithm. The C4.5 system had a correct fault

prediction rate of 76% as compared to 60°,/0 with the manually developed system. Either

system provides a good immediate waming. The accuracy of the prediction can be

enhanced by the use of QUID Expert with its solution. Hydrogen lines can be used to

monitor nebulizer degradation and certain errors in the feed system. In general, real time

system monitoring seems viable using only blank solution information.
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Chapter 3

The Autonomous Instrument must have the ability to recognize patterns. Several

modules require this capability. In the Quality Control module, pattern matching is used

to monitor the samples such that any sample, which is found different, will he identified

when it is flagged. The pattern recognition algorithm is also used in the modules

Leaming to Run a New Sample and Analysis of an Unknown Sample. In both these

modules, pattern recognition is used to find a sample in the database that is similar to the

one of interest. Along with a qualitative and quantitative description of samples, the

database includes the instrument operating conditions and the calibration methodology

used to analyze each sample. If a similar sample is found in the database, the instrument

operating conditions and calibration methodology is used as a starting point for the

analyses of the sample of interest.

The tirst attempt at pattern recognition in our laboratory was done on a data set of

reference materials that ranged from biological ta geological samples. Using various

standard deviations, data was generated from the original Mean values of concentrations.

The results obtained on this simulated data were good but several remarks were made by

other researchers. The first was on the data: it was not real data obtained in a laboratory

and therefore did not typify a common laboratory situation. The second remark was that

working with a complete database is not common, especially when setting up an

instrument. When the Autonomous Instrument is first installed it will begin with an

empty database or a very small database (unJess data could be shared among

instruments). This chapter takes a doser look al the pattern recognition module. It

specifically evaluates several candidate techniques for use in ICP-AES. This chapter was

published in J. Anal. At. Spectrom., 1997, 12, 827.
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3 Pattern Recognition for Sample Classification using

Elemental Composition -Application for Inductively

Coupled Plasma Atomic Emission Spectrometry

3.1 Abstract

Three pattern recognition techniques were investigated as tools for automatic recognition

of samples: k-Nearest Neighbors, Bayesian Classification and the C4.5 inductive learning

algorithme Their abilities to classify 20 geological reference materials were compared.

Each training and test example used 13 elemental concentrations. The data set was

composed of 2582 examples obtained from CANMET in the fonn of results of analyses

perfonned on these reference materials by different laboratories. It was found that aIl

three pattern recognition techniques performed extremely weil with a large data set of

real samples. Bayesian Classification and k-Nearest Neighbors worked very well with

small data sets.
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3.2 Introduction

The Autonomous Instrument Project involves developing software and methodologies

which allow instruments to run 'intelligently' with an absolute minimum of

supervision l
-4. One characteristic of the ideal autonomous instrument would be the

ability to classify samples. The classification can be used for two purposes: (l) selecting

operating conditions and calibration methodology (e.g., internai standards, standard

additions), and (2) identification of the sample (e.g., 440 stainless steel). The firs! case

consists of (a) perfonning a preliminary analysis (a semi-quantitative scan), (b)

recognizing that the apparent elemental composition is similar ta a sample class that has

been sllccessfully run with the use of a certain methodology and (c) adopting the same

methodology3. The second case consists of (a) perfonning a preliminary analysis, and Cb)

finding an exact (or very close) match in the sample database using the apparent

elemental composition of the sample. [n a recent paper,3 we evaluated the potential of

several numeric processing techniques for the identification of samples. A wide variety

of reference materials were selected, ranging from clinical through botanical to

geological, using their reported elemental concentrations and relative standard deviations

to generate validation (test) sets and training sets. The pattern recognition techniques that

were used were k-Nearest Neighbors (kNN)5, Bayesian classification6 and Inductive

Learning7
•
8

• These three techniques were described in sorne detail3
• The reference

materials used to study the three pattern recognition techniques were dissimilar and

would not have posed as much of a problem as in a study in which the materials were

similar. In addition, the data was not 'real' in the sense that the standard deviations were

not obtained experimentally but were fabricated as described. In this study, geological

reference material data was used for test and training sets in the comparison 0 f the three

pattern recognition techniques. These geological materials were much more similar than

those in the previous study and consequently provide a much more rigorous test of the

possibility of using pattern recognition with elemental concentrations for automatic

sample identification.
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• 3.3 Experimental

The general method for classifying samples is illustrated in Figure 3.1. The pattern

recognition technique is applied to a set of examples, the training set, to develop

classification rules. These mIes are then tested using another set of examples, the test set.

The sample types of the examples in the test set are known and used to evaluate the

performance of the classification techniques.

Pattern Examples in
recognition ---.... ' training set
technique

Examples in
test set

Rules ---. Classification

•

Figure 3.1 Flow chart of steps in pattern recognition.

3.3.1 k-Nearest Neighbors

The k-Nearest Neighbors5 algorithm is a simple statistical technique which does not

exactly follow the general method described in Figure 3.1. An example in the training set

is denoted as the vector Ec1ass,i(aj) =(ah a2,..., am) where class is the sample type of the ith

example in the training set, and aj is thejth attribute in the example. An example in a test

set will he the vector T(aj} = (al, a2,..., am). To classify an example in the test set, the

Euclidean distance between it and every example in the training set is calculated. Since
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large changes in attributes of large values would influence the calculation more than big

changes in attributes ofsmall values, a 'relative' Euclidean distance was used.

d = ./!( (Eclass.i(a j ) - T(a j)}J2
Vj=l T(a j )

These distances are then used to determine the closest neighbors (i.e., smallest Euclidean

distance) to the test example. The nearest k neighbors are selected and the frequency of

each is detennined. The class to which the majority of training examples belong is

assigned to the test example. If a tie should occur, the class with the closest neighbors is

selected.

3.3.2 Bayesian Classification

Bayesian Classification6 is a probabilistic technique of pattern recognition. It is based on

the assumption that the classification problem is posed in probabilistic tenns. It also

assumes that aIl the probability values are known. Using the mean and standard

deviation of examples of a class in the training set, the Bayesian Classification technique

detennines the probability that an example in the test set belongs ta a particular class.

The c1ass with the highest probability is assigned to the example in the test set. In this

study the distributions of the examples were assumed to be Gaussian in nature.

3.3.3 C4.5 Inductive Learning

Inductive leaming has been mainly used to generate rule-based expert systems although it

is also a powerful technique for pattern recognition. By evaluating examples in a training

set, inductive learning has the ability to infer general relationships about these examples.

In this study, the C4.5 induction engine developed by Quinlan7 was used. The output of

the C4.5 induction algorithm is in the fonn of a decision tree. The algorithm detennines

which data attribute best divides the examples in the training set into distinct classes. It

separates the examples in such a way that any pattern in the data is made apparent. This

results in a hierarchical structure of decisions, i.e., a decision tree. The decision tree can

then be used to classify the examples in the test set.
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• Table 3.1 Reference Materials from CANMET.

Reference Material

Copper Concentrate CCU~1b

Lead Concentrate CPB-I

Zinc Concentrate CZN-I

Zinc-Lead-Tin-Silver Ore KC-Ia

Zinc~Tin-Copper-LeadOre l\JlP~ la

Tungsten~MolybdenumOre MP-2

Iron Ore MW~1

Noble Metals Bearing Sulphide Concentrate PTC~1a

Noble Metals Bearing Nickel-Copper Matte PTM-la

Sulphide Ore Mill Tailings RTS-l

Sulphide Ore Mill Tailings RTS-2

Sulphide Ore Mill Tailings RTS-3

Sulphide Ore Mill Tailings RTS~4

Iron Ore SCH-l

Nickel-Copper-Cobalt Ore SU-I a

Diorite Gneiss SY-4

Diabase Rock PGE Material TDB-l a

Gabbro Rock PGE Material WGB~1

Mineralized Gabbro PGE Material WMG-l

Massive Sulphide PGE Material WMS-I

Number ofexamples in

data set

133

274

298

90

119

79

82

98

97

30

43

58

47

271

216

248

101

96

102

100

•

The Data Sets

The data set used in this study consisted of the elemental compositions for 20 reference

materials obtained from CANMET, Mineral Science Laboratories (Ottawa, Canada)

(Table 3.1). The data set was used for aIl three techniques, kNN, Bayesian Classification

and the C4.5 inductive leaming algorithm. Computer programs for kNN classification

and Bayesian classification were written in Borland IntemationaI's (Otis Valley, CA,
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USA) Turbo Pascal 7.0. C4.5 was written in Watcom International's (Waterloo~ Ontario,

Canada) C/C++ v.l 0.0 for OS/2. AlI computer programs were written in our laboratory

and were executed on a 66-MHz 486 PC type computer. The data set was composed of

results of multiple repeat analyses obtained for each reference material by different

laboratories. Each training and test example consisted of the concentration for each of

the 13 most commonly analyzed elements in the reference materials. The data set

contained unknown attributes since the concentration of each of the 13 elements was not

available for each reference material. The C4.5 inductive leaming algorithm is capable

of handling unknown attributes with their values set to a question mark ('?'). Since the

other two techniques, kNN and Bayesian classification, require aIl attributes to he known~

the unknown attributes needed to be set to sorne value. For kNN, the unknown attributes

(concentrations) were set to zero.

200

Frequency 100
of Samples

o

Figure 3.2 Frequency ofsamples from each class in each Euclidean distance range.

Figure 3.2 depicts the frequency of samples in each class that belong in the

different Euclidean distance ranges relative to the zero point. For Bayesian classification,

the attributes (concentrations) in a class that were sometimes known were set to the value
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of the mean of that attribute in that class; the attributes in a class that were completely

unknown were given a mean (999 999.5) far removed from any possible value and a very

small standard deviation thereby eliminating that element as a classifier. The average

concentrations ofeach element in each class are shown in Figure 3.3, which illustrates the

relative similarity ofsorne materials. (Note: The maximum concentration on the graph is

600000 J.1g/g so that the lower concentrations cao be seen.) Figure 3.4 shows both the

relative standard deviations with a material type as weIl as deviations across sample types

for a given element. The examples used in the test sets were selected at random from the

data set. In addition, the sizes of the test sets were varied to provide a variety of testing

environments.

600000

Average 500000
Cane. 400000
(ug/g) 300000

Figure 3.3 Average concentration ofeach element in each class.
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Table 3.2 Reference materials used in subset.

Reference Material Number ofexamples in

data set

Sulphide Ore Mill Tailings RTS-l 18

Sulphide Ore Mill Tailings RTS-2 25

Sulphide Ore Mill Tailings RTS-3 34

Sulphide Ore Mill Tailings RTS-4 28

Figure 3.4 Relative standard deviation of the concentration of each element in each class.

Due to the inconvenience of the missing dat~ further studies were done on a

subset of the CANMET data consisting of only the data from the Sulfide Ore Mill

Tailings (RTS-I, RTS-2, RTS-3 and RTS-4). The number of elements studied was
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reduced from 13 to 9 and ail examples with missing data were eliminated. The numbers

of remaining examples for each sample type are listed in Table 3.2. This particular set

was selected for the similarity of the materials.

3.4 Results and Discussion

Figure 3.2 is a depiction of the number of examples lying in an Euclidean distance range

with respect to the origin. The examples in the data set are grouped with their respective

sample types. Sorne of the sample types can be seen to faH in the same range Ce.g., CCV­

Ib and CPB-l) which could make them difficult to distinguish with a technique like kNN.

Figure 3.3 illustrates the average concentration of the elements in the various sample

types. This figure can be read in two different ways. The first is to start at the axis

labeled 'Elements' and to go across in parallel with the 'Classes' axis; the concentration

of an element cao be viewed and compared for the various sample types. The second

method is to start at the 'Classes' axis and go in parallel with the 'Elements' axis; the

concentration of aIl elements in a sample type can be viewed. The pattern for a sample

type seen by this method can be used for comparison with other sample types. Figure 3.4

has a similar layout except that it shows standard deviations rather than concentrations.

This figure can be read in the same manner as Figure 3.3. A casual examination of both

Figures 3.3 and 3.4 would suggest that it might be difficult to differentiate between sorne

of the sample types with a technique such as Bayesian Classification.

The classification results of the three techniques are listed in Tables 3.3, 3.4, and 3.5. As

cao be seen, aH three classifications perfonn extremely weil, with Bayesian classification

and kNN performing the best.
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Table 3.3 Classification results for kNN.

Test Set Size Relative to Data Set Rate of Success

1 25% 97.1 %

2 25% 97.6%

3 25 0;0 97.3 %

4 250/0 97.3 %

5 26% 97.2 %

6 22% 97.9%

7 50% 95.7 %

8 50% 96.3 %

9 54% 95.40/0

10 51 % 95.4%

Il 520/0 96.1 %

12 51 0/0 96.2 %

Table 3.4 Results of Bayesian classification

Test Set Sïze Relative to Data Set Rate of Success

1 25% 95.8 %

2 250/0 95.9%

3 250/0 95.6 01<>

4 25 % 96.6 %

5 26% 96.1 %

6 22% 95.6 %

7 50% 99.3 %

8 50 0iO 96.5 %

9 52% 97.8 %

10 52% 98.7 %

Il 52% 98.4%

12 54% 98.5 0/0
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Table 3.5 Classification results of C4.5 inductive learning

Test Set Sïze Relative to Data Set Rate of Success

1 25% 92.3 %

2 250/0 91.3 0/0

3 25% 93.5 0/0

4 25% 92.6%

5 26% 92.0%

6 22% 93.2%

7 50% 91.5 0/0

8 50% 90.7%

9 51 0/0 91.8 %

10 51 % 92.4%

Il 52% 91.7 %

12 54% 90.7%

Even though these results are extremely good and demonstrate how weB these

three techniques can perfonn with large data sets, the data and the tests performed are not

necessarily representative of aIl situations. The Autonomous Instrument system that we

are developing will not be initially supplied with such a complete set of data. It will have

to build it in time with experiments. In addition, this system will always perfonn a fast

analysis (a semi-quantitative scan) at standard conditions of a sample to provide an

estimate of the concentrations of all the elements. Since this will be perfonned every

time and the concentrations of ail the elements will be known, there will not be any

missing data in the training or test set. The system would start with an empty training set

the first time it is run. This first analysis would he the first example in the training set

and for every other analysis performed an example would he added to the training set as

long as the sample type is known. The system will use this training set (or database)

when running an unknown sample to find the closest match; that information can then be

used to select operating conditions and calibration methodology. Since the number of

examples of each class in the training can vary and could be as low as one example, a set

of experiments was conducted in which ooly one neighbor (k=I) was used for k-Nearest

Neighbors. For Bayesian Classification, the one-example experiments were conducted

using a small percentage of the mean as the standard deviation (e.g., 1%). To simulate
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the way our system would work, we started with an empty training set. We used a subset

of the CANMET data which only consisted of the four types of Sulfide Ore Mill Tailings

with no missing values. A random example of each sample type was put into the training

set. The remaining examples were put into the test set. Ten different combinations of

training and test sets were created and aIl three pattern recognition techniques were

applied to them, searching for the closest match. This described the first time the system

was used for classification of an unknown sample with respect to four sample types; tbis

was also repeated using two, three, five, and ten examples of each sample type in the

training set. The average success rates are listed in Table 3.6.

Table 3.6 Classifications based on number of examples in training set.

Numberof Numberof Average rate of success of pattern

examples in different cases recognition technique (%)

training set Tests k-Nearest Bayesian C4.5 Inductive

Neighbor Classification Learning

1 10 92 88 44

2 10 92 96 61

3 la 97 83 65

5 5 97 100 83

10 3 100 LOO 86

Upon examination of the average success rate of the tbree techniques (Table 3.6 ),

C4.5 inductive leaming did not perform weIl with very few examples in the training set;

however, its classification performance did improve significantly as the number of

examples in the training set increased. With a small number of examples in the training

set it seems that both kNN and Bayesian Classification performed weIl (Figure 3.5).
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Figure 3.5 Classification of test samples based on number of examples in training set.
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In the tests based on two examples of each type in the training set, there were two cases

where one technique outperfonned the other. In the first, kNN had a success rate of70%

whereas Bayesian Classification perfonned at 96%. The two training examples selected

for the RTS-4 sample type were not representative of the whole class. ln fact, these !Wo

were situated somewhere in between the RTS-2 sample type and the RTS-4 sample type

such that the Euclidean distances calculated were so close that the test examples were

sometimes classified as the RTS-2 sample type. Bayesian Classification, since it uses

means and standard deviations to calculate the probabilities, did not misclassify the test

examples. The probabilities of the test examples belonging to either class were

nonetheless competitive. In the second case, Bayesian Classification perfonned at 71 %

whereas kNN had a success rate of 94%. The two training examples selected for the

RTS-l sample type were so similar that the standard deviations ofsome oftheir attributes

were zero or close to il. When the standard deviation is very low or zero, the probability

ofa test example's attributes belonging to that particular class becomes zero or close to il.
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This results in very few test examples being assigned to the RTS-l sample type. The

kNN technique did not exhibit the same difficulties since the technique does not rely on

standard deviations. This same phenomenon was observed in one of the cases for the

three training examples of the sample types RTS-l, RTS-2 and RTS-3. The training

examples of the RTS-4 sample type, on the other hand, had relatively large standard

deviations which resulted in most of the examples in the test set being assigned to the

RTS-4 sample type. Bayesian Classification was only able to correctly c1assify 540/0 of

the test set.

Between the two techniques it would seem that kNN would suit our purposes best

for smal1 numbers of examples. The minimum requirements in our system are that there

be at least one example of each sample type in the training set and that the examples in

the training set he representative of their class.

3.5 Conclusion

It has been shawn that for classification of 20 reference materials with the use of their

elemental compositions obtained experimentally by various laboratories, C4.5 inductive

leaming, kNN, and Bayesian classification aIl perfonned extremely well. In choosing a

pattern recognition technique, there are several important characteristics to consider:

speed, classification accuracy, and clarity of results. C4.5 and Bayesian Classification

generate their rules and means and standard deviations, respectively, once, and hence

take approximately the same amount oftime to classify an example. The kNN technique

can be much slower since the test example must be compared ta every training example

and the amount of time needed is dependent on the number of examples in the training

set. We have seen that in classification accuracy a11 three techniques perfonned

extremely well when large training sets were used. As for clarity of results, it depends on

what information is required. C4.5 provides a decision tree demonstrating which

attributes are being used in the classification. Bayesian classification provides a

statistical probability of a test example belonging ta a particular class and can be used as

a measure for possible misclassifications. kNN provides the Euclidean distance between

the test example and its nearest neighbors, which can be used as a measure of goodness.
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• Using small training sets, both kNN and Bayesian Classification perfonned weil whereas

C4.5 required larger training sets. For the Autonomous Instrument system, kNN seems to

he the appropriate choice for the pattern recognition module. The hypothesis from our

last pape~ (i.e., that pattern recognition for sample identification is highly practicable)

has been strongly reinforced by this more recent work. It would seem that modem ICP­

AES spectrometer systems, using readily available pattern recognition techniques, have a

high probability of being able ta extract considerably more useful information than is

presently extracted from data which is already present in the system.
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Chapter4

An optimization procedure is required in two of the modules of the Autonomous

Instrument. In the Leaming to Run a New Sample module, an analysis method has to be

detennined for a standard reference material. An important aspect of the analysis method

is the selection of operating conditions. The optimization procedure would search for the

best operating conditions to be used for the standard reference material. In the }\nalysis

of an Unknown Sample, if a sample cannat be analyzed 1 using standard operating

conditions and if there is no prior knowledge of analyzing that type of sarnple, then the

operating conditions need to be detennined. The optimization procedure not only

determines the best operating conditions to be used with the unknown sarnple but must

perfonn this operation in a reasonable amount oftime.

Most optimization techniques use a single response value in their algorithms ta

find candidate-operating conditions. In an analysis of a sample, this would be limited to

a single analyte signal. In a multi-element analysis, an objective function that combines

many values into one is necessary. This chapter looks at the development of an objective

function that was applied to ICP-AES. Its perfonnance was compared to an existing

function commonly used in ICP-AES. This work was published in 1. Anal. At.

Spectrom., 12, 1997, 13.
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4 Comparison of Two Objective Functions for Optimization

of Simultaneous Multi-Element Determinations in

Inductively Coupled Plasma Spectrometry

4.1 Abstract

Two objective functions for multi-element optimization in inductively coupled plasma

atomic emission spectrometry (ICP-AES) were compared using signal-to-background

ratios as a figure ofmerit. Complete three-dimensional response surfaces were generated

for a number of elements (Ca, Cu, Al, Na, Ni, Mn, Ba) and two artificial Helements" to

evaluate the performance ofboth objective functions in locating the optimal compromise

instrumental operating conditions in multi-element detenninations. In the detennination

of the best compromise instrument operating conditions for most combinations of the

elements used, both objective functions performed equally weB; however, one

occasionally performs significantly better than the other.
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4.2 Introduction

Optimization of instrumental operating conditions may improve analytical accuracy and

precision. The instrumental operating conditions of an lep that May be optimized are rf

power, flow rates of gases (the outer or coolant~ intermediate or plasma and injector gas

flow rates), observation region in the plasma and solution pump rate to the nebulizer.2

The primary optimization techniques that have been used \Vith ICPs are SimplexJ
-
12 and

the Davidon-Fletcher-Powell 13 algorithm. Traditionally the response functions used have

been signal-ta-background ratios (SBRs), signal-to-noise ratios (SNRs), precision and

accuracy. Thomas and Collins13 also used detection limits as the response function. Any

of these response functions May be directly used for determining optimal instrument

operating conditions for single-element analysisJ
-
6

• Signal-to-background ratios are

easily obtained and they require the fewest measurements of the response functions listed

above. The SBR is also a good figure of merit since it can be correlated ta detection

limits. Therefore, SBRs are used throughout this work as calculated using the following

equation:

S / B = Total signal - Background
Background

where S/B is the SBR.

The difficulty arises in simultaneous multi-element analysis because optimization

techniques generally require a single value representing each set of operating conditions

but, using any of the response functions mentioned above, multiple values (one for each

element) are obtained for each set of conditions. Galley et al.6
, in their automated

Simplex optlmlzation of multi-element solutions, used the following choices for

optimization criteria: Cl) the maximization of the net signal or signal-ta-background

noise ratio, (2) the minimization of the relative standard deviation of the background and

(3) the maximization of the ratio of atomic or ionic lines. An objective function, which

by definition would result in a single value for a set of operating conditions, is needed. It
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• should comprise the SBRs of all the elements studied with the emphasis on the elements

closer to the detection limits.

Leary et a/.7 developed and tested several objective functions based on SBRs, the best

one being represented by the sum of the reciprocals of the SBRs for the elements studied:

n
F=---­

n

1: (S/B)~I
i=l

where n is the number of elements studied for the optimization and (S/B)j are the SBRs of

each of the ith elements. This equation generates a value for each set of instrumental

operating conditions using the SBRs of aIl the elements. Ebdon and Carpenteë used a

modified version of Leary's objective function in their study. Kalivas lo also used Leary's

objective function in the optimization of operating conditions for minimal interferences.

Instead of SBRs, Kalivas used selectivity, sensitivity, and accuracy, as derived by

Lorber,14 as response functions. Moore et al. Il also used Leary's objective function with

SBRs as well as ionization interference as the figure of merits. Belchamber et al. Il

developed an objective function based on a measure of the magnitude of the matrix

effects such as to minimize or remove these matrix effects.

We tested another approach towards satisfying the two conditions required for

obtaining optimal compromise operating conditions: (1) obtaining the maximum

compromise SBRs for aIl elements and (2) emphasizing the maximization of the SBR of

the elements close to their detection limits. This objective function is called the

Combined Ratio Method (CRM) and is given by:

CRM =

n

1:(S / B)i
i=1

•
where n is the number of elements, k is (n-l) + (n-2) + ...+ 1, (S/B)i are the SBRs ofeach

of the ith elements and Rj is the ratio of the SBRs of two given elements (jth
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combination) where the maximum SBR of the two is in the numerator such that Rj ~ 1.

For example, given the following SBRs of three elements Zn, Na, and K, the values for

RI, R1, and RJ, would be:

(S/B)Zn = 1; (S/B)Na =2; (S/B)K = 10

RI = (S/B)K/(SfB)Zn = 10/1 = 10

Rz=(S/B)K/(S/B)Na = 10/2 = 5

R3 = {SIB)NaI(SIB)zn = 2/1 = 2

and the CRM would be calculated as:

(S 1B)Zn + (S / B)Na + (S / B)K
CRM =~-~-......;.....--~-~-----:-

Ri + R1 + R.J

1 + 2 + 10 13
CRM = =-=0.76

10 + 5 + 2 17

The CRM perfonns a weighted average on the sum of the SBRs and maximizes the

individual SBRs while minimizing the difference among these ratios (Le., minimizing

rRj).

In this work, we perfonned a comparison of Leary's objective function and the

CRM by examining the response surfaces generated by each function and evaluating the

performance of each function in determining the optimum instrument operating

conditions.
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• 4.3 Experimental

The instrument used was a Thenno Jarrell Ash (Franklin, MA, USA) Madel 25

sequential scanning spectrometer. The instrument functions are aIl automated and

controlled by an independent computer via an RS-232 port. The solution pump rate to

the nebulizer was 0.9 ml min-I
. A signal integration time of 1.0 s was used. The

background for each line was selected at 0.05 nm on bath sides of each spectralline peak.

An average of the background was used for aIl readings. AlI operating conditions were

held constant except for observation height and rf power. The observation height was

varied from 3 mm to 24 mm above the top of the load coil (ATOLC) in steps of 3.0 mm

and the rf power was varied from 750 ta 1550 W in steps of 200 W. AlI these

combinations generated a response surface which characterized the parameter space.

While any combination ofrfpower, observation region in the plasma, flow rates of gases,

and solution pump rate to the nebulizer could he optimized, we chose to vary only two of

these parameters for simplicity of the graphicai representation of the response surfaces.

A stock solution was prepared from Fisher (Pittsburgh, PA) certified sodium, calcium,

copper, aluminum, nickel, manganese and barium 1000 ppm standard solutions and the

concentration and spectral !ines of these seven elements studied are listed in Table 4.1

aiong with their ionization potential. These elements have both hard and soft tines.

Table 4.1 Elements used.

Element Concentration Wavelengtb Ionization potentialJ
:)

Ippm Inm leV

AlI la 309.28 5.99

Ca II la 317.93 11.87

Cul 10 324.75 7.73

Ba II 2 455.40 10.00

Ni I 10 232.00 7.64

Mn II 2 257.61 15.64

NaI 10 589.59 5.14•
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The SBRs were detennined for all seven elements at each set of instrumental operating

conditions. Based on these SBRs, a response surface was generated for each element.

Using these seven response surfaces for the seven elements, two other surfaces were

generated, one using Leary's objective function and one using the CRM. The optimum

operating conditions were detennined from these latter surfaces and used in the

comparison of the two objective functions. In addition, theoretical models were used to

further compare the two objective functions.

4.4 Results and Discussion

Three-dimensional response surfaces were obtained for each element by plotting the

SBRs of each element against the observation heights and rf powers (Figures 4.1 to 4.7).

The SBRs of each element at each set of operating conditions are listed in Tables 4.2 to

4.8. The optimum instrumental operating conditions for each element are listed in

Table 4.9. Law power seems to be the best chaice for these elements at their present

concentration. This is expected since an increase in power increases the background

more than the signal with a subsequent decrease in SBR2
• For example, 100king at the

combination of manganese and sodium, the optimum operating conditions for manganese

are 750 W for rf power and 12 mm ATOLC, whereas thase for sodium are 950 W for rf

power and 21 mm ATOLC. However, using either of these operating conditions in the

simultaneous determination of these two elements would produce poor results for one of

them.

Using the data in Tables 4.2 through 4.8, the optimum compromise instrumental

operating conditions were detennined for aIl combinations (Table 4.10) of the seven

elements studied by applying Leary's objective function and the CRM. The application

of these two objective functions to any combination of the elements for aIl sets of

operating conditions produces two response surfaces (one for Leary's objective function

and the other for the CRM). For example, in the optimization of operating conditions

over aIl seven elements, the resulting surfaces are depicted in Figures 4.8 and 4.9. The

maximum point on a surface indicates the best compromise operating conditions given by

72



• each method. Considering the combination of these seven elements, the resulting

surfaces are similar to each other and give the same set of operating conditions as the

optimum compromise.

The optimum compromise settings were detennined for each combination of the

elements using both objective functions and are listed in Table 4.10. ln many cases, bath

objective functions give the same set of instrumental operating conditions as the best

compromise. In the cases where they give different operating conditions (Table 4.11),

the CRM puts a greater emphasis on decreasing the difference between the SBRs (i.e.,

decreasing Rj ).

Table 4.2 SBRs of aluminum.

RF power/W

Observation

beightlmm

750 950 1150 1350 1550

•

3

6

9

12

15

18

21

24

0.66 0.75 0.57 0.38 0.34

1.68 1.03 0.81 0.54 0.40

4.10 2.01 1.48 0.78 0.56

8.18 4.14 2.77 1.57 1.07

13.02 7.09 4.67 2.69 1.97

11.96 7.99 7.42 3.86 2.84

9.83 10.57 9.89 6.00 3.26

10.09 10.50 10.30 8.47 7.05
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Table 4.3. SBRs ofcalcium.• RF power/W

Observation 750 950 1150 1350 1550

beigbtlmm

3 0.59 0.75 0.75 0.75 0.61

6 1.55 1.76 1.68 1.36 1.12

9 4.01 3.59 2.99 2.15 1.70

12 7.66 5.89 4.92 3.40 2.66

15 7.81 7.44 6.78 4.80 3.93

18 5.30 6.92 6.55 6.31 5.21

21 2.54 4.61 5.73 5.62 5.65

24 1.19 1.81 3.08 3.85 4.78

Table 4.4 SBRs of copper.

RF power/W

Observation 750 950 1150 1350 1550

heightlmm

3 4.05 2.46 1.78 1.18 0.92

6 6.92 3.87 2.99 1.79 1.32

9 14.02 7.65 4.93 2.73 1.76

12 25.38 13.73 9.41 5.13 3.32

15 33.97 21.41 16.19 8.72 6.06

18 35.04 26.98 22.53 14.28 9.80

21 33.95 32.95 30.77 23.27 16.28

24 32.83 35.57 38.44 31.99 28.40

•
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Table 4.5 SBRs of barium.• RF powerfW

Observation 750 950 1150 1350 1550

heigbtlmm

3 0.39 0.29 0.27 0.16 0.13

6 0.85 0.55 0.42 0.26 0.19

9 1.50 0.73 0.52 0.24 0.15

12 3.94 1.61 1.09 0.49 0.32

15 7.65 3.75 2.30 1.05 0.77

18 10.32 5.87 4.20 2.18 1.38

21 9.16 8.64 6.64 3.72 2.57

24 6.35 8.23 7.70 5.68 4.73

Table 4.6 SBRs ofnickel.

RFpowerfW

Observation 7S0 950 1150 1350 ISS0

heightlmm

3 1.28 1.15 0.73 0.67 0.47

6 2.38 2.23 1.55 1.20 0.93

9 6.64 5.51 4.08 2.11 1.54

12 12.61 9.55 6.77 3.84 2.22

IS 14.48 12.05 9.03 6.56 4.12

18 8.45 10.55 10.05 6.14 3.83

21 3.23 5.65 5.83 4.99 2.21

24 2.50 2.25 2.35 2.99 3.78

•
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Table 4.7 SBRs ofmanganese.• RFpower/W

Observation 750 950 1150 1350 1550

heightlmm

3 5.47 6.17 5.60 4.60 3.26

6 13.38 12.19 9.95 8.34 6.56

9 26.31 24.57 19.61 12.66 8.70

12 41.05 32.97 28.80 19.58 14.98

15 36.87 39.03 36.83 26.53 20.32

18 27.46 35.66 36.65 32.85 26.49

21 14.08 22.28 22.34 22.73 18.74

24 4.44 6.63 10.57 9.51 Il.21

Table 4.8 SBRs of sodium.

RF power/W

Observation 750 950 1150 1350 1550

heightlmm

3 3.20 1.69 1.27 0.75 0.58

6 3.90 2.05 1.37 0.81 0.64

9 5.10 2.45 1.60 0.94 0.63

12 9.50 4.54 2.94 1.60 1.21

15 14.24 7.59 5.31 3.08 2.59

18 15.98 12.37 8.65 5.32 4.09

21 14.87 14.26 11.97 8.82 7.25

24 16.17 17.73 15.81 11.75 10.84

•
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• Table 4.9 Best operating conditions for each element.

Element PowerlW Observation

Height/mm

Al 750 15

Ca 750 15

Cu 1150 24

Ba 750 18

Ni 750 15

Mn 750 12

Na 950 24

The similarities between the surface produced with Leary's objective function

(Figure 4.8) and that produced with the CRM (Figure 4.9) indicate that neither function

would provide a better surface over the other for use with Simplex optimization

techniques or the Davidon-Fletcher-PowelI algorithm. ft is also difficult to tell whether

one of the two functions provides better compromise operating conditions over the other

for aIl seven elements. When fewer element responses are combined, such as for the

combination of Al, Ba and Mn, (Line 32 in Tables 4.10 and 4.11), Leary's objective

function provides better compromise operating conditions than the CRM since the CRM

puts more emphasis on minimizing the difference between the SBRs of these three

elements. However, for other combinations, such as that of Al, Ba, and Ni (Line 31 in

Tables 4.10 and 4.11), it is a question of which is of greater importance, maximizing the

smallest SBR obtained (i.e. minimizing the difference between the SBRs of the elements)

(CRM) or maximizing the total of the SBRs (Leary's objective function). When

considering SBRs which can vary widely, these data suggest that the Leary approach is

better, as significant improvements are sometimes found with relatively small losses

compared with the CRM approach.

•
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Table 4.10 Best compromise conditions for aIl the combinations of the elements.

Line Combination CRM LEARY

Power(W) Height (mm) Power (W) Height (mm)

1 Al-Ca 750 12 750 15

2 Al-Cu 750 15 750 15

3 Al-Ba 750 18 750 18

4 Al-Ni 750 15 750 15

5 Al-Mn 1150 24 750 15

6 Al-Na 750 15 750 18

7 Ca-Cu 950 15 750 15

8 Ca-Ba 750 15 750 15

9 Ca-Ni 750 12 750 15

10 Ca-Mn 750 15 750 12

11 Ca-Na 950 15 750 15

12 Cu-Ba 750 18 750 18

13 Cu-Ni 750 15 750 15

14 Cu-Mn 750 15 750 15

15 Cu-Na 950 24 950 24

16 Ba-Ni 750 18 750 15

17 Ba-Mn 750 21 750 18

18 Ba-Na 750 18 750 18

19 Ni-Mn 750 15 750 15

20 Ni-Na 750 15 750 15

21 Mn-Na 750 21 750 15

22 AI-Ca-Cu 750 15 750 15

23 AI-Ca-Ba 750 15 750 15

24 AI-Ca-Ni 750 15 750 15

25 AI-Ca-Mn 750 15 750 15

26 AI-Ca-Na 750 15 750 15

27 AI-Cu-Ba 750 18 750 15

28 AI-Cu-Ni 750 15 750 15

29 AI-Cu-Mn 750 15 750 15

30 AI-Cu-Na 750 15 750 18

31 AI-Ba-Ni 750 18 750 15

32 AI-Ba-Mn 750 21 750 18

33 AI-Ba-Na 750 18 750 18

78



•

•

34 AI-Ni-Mn 750 15 750 15

35 AI-Ni-Na 750 15 750 15

36 AI-Mn-Na 750 18 750 15

37 Ca-Cu-Ba 750 15 750 15

38 Ca-Cu-Ni 750 15 750 15

39 Ca-Cu-Mn 750 15 750 15

40 Ca-Cu-Na 750 15 750 15

41 Ca-Ba-Ni 750 15 750 15

42 Ca-Ba-Mn 750 15 750 15

43 Ca-Ba-Na 750 15 750 15

44 Ca-Ni-Mn 750 15 750 15

45 Ca-Ni-Na 750 15 750 15

46 Ca-Mn-Na 750 15 750 15

47 Cu-Ba-Ni 750 15 750 15

48 Cu-Sa-Mn 750 18 750 18

49 Cu-Ba-Na 750 18 750 18

50 Cu-Ni-Mn 750 15 750 15

51 Cu-Ni-Na 750 15 750 15

52 Cu-Mn-Na 750 18 750 15

53 Ba-Ni-Mn 750 18 750 15

54 Ba-Ni-Na 750 15 750 15

55 Ba-Mo-Na 750 18 750 18

56 Ni-Mn-Na 750 15 750 15

57 AI-Ca-Cu-Ba 750 15 750 15

58 AI-Ca-Cu-Ni 750 15 750 15

59 AI-Ca-Cu-Mn 750 15 750 15

60 AI-Ca-Cu-Na 750 15 750 15

61 AI-Ca-Ba-Ni 750 15 750 15

62 AI-Ca-Ba-Mn 750 15 750 15

63 AI-Ca-Ba-Na 750 15 750 15

64 AI-Ca-Ni-Mn 750 15 750 15

65 AI-Ca-Ni-Na 750 15 750 15

66 AI-Ca-Mn-Na 750 15 750 15

67 AI-Cu-Ba-Ni 750 15 750 15

68 AI-Cu-Ba-Mn 750 18 750 18

69 AI-Cu-Ba-Na 750 18 750 18

70 AI-Cu-Ni-Mn 750 15 750 15
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71 AI-Cu-Ni-Na 750 15 750 15

72 AI-Cu-Mn-Na 750 15 750 15

73 AI-Ba-Ni-Mn 750 18 750 15

74 AI-Ba-Ni-Na 750 15 750 15

75 AI-Ba-Mn-Na 750 18 750 18

76 AI-Ni-Mn-Na 750 15 750 15

77 Ca-Cu-Ba-Ni 750 15 750 15

78 Ca-Cu-Ba-Mn 750 15 750 15

79 Ca-Cu-Ba-Na 750 15 750 15

80 Ca-Cu-Ni-Mn 750 15 750 15

81 Ca-Cu-Ni-Na 750 15 750 15

82 Ca-Cu-Mn-Na 750 15 750 15

83 Ca-Ba-Ni-Mn 750 15 750 15

84 Ca-Ba-Ni-Na 750 15 750 15

85 Ca-Ba-Mn-Na 750 15 750 15

86 Ca-Ni-Mn-Na 750 15 750 15

87 Cu-Ba-Ni-Mn 750 15 750 15

88 Cu-Ba-Ni-Na 750 15 750 15

89 Cu-Ba-Mn-Na 750 18 750 18

90 Cu-Ni-Mn-Na 750 15 750 15

91 Ba-Ni-Mn-Na 750 18 750 15

92 AI-Ca-Cu-Ba-Ni 750 15 750 15

93 AI-Ca-Cu-Ba-Mn 750 15 750 15

94 AI-Ca-Cu-Ba-Na 750 15 750 15

95 AI-Ca-Cu-Ni-Mn 750 15 750 15

96 AI-Ca-Cu-Ni-Na 750 15 750 15

97 AI-Ca-Cu-Mn-Na 750 15 750 15

98 AI-Ca-Ba-Ni-Mn 750 15 750 15

99 AI-Ca-Ba-Ni-Na 750 15 750 15

100 AI-Ca-Ba-Mn-Na 750 15 750 15

101 AI-Ca-Ni-Mn-Na 750 15 750 15

102 AI-Cu-Ba-Ni-Mn 750 15 750 15

103 AI-Cu-Ba-Ni-Na 750 15 750 15

104 AI-Cu-Ba-Mn-Na 750 18 750 18

105 AI-Cu-Ni-Mn-Na 750 15 750 15

106 Al-Ba-Ni-Mn-Na 750 15 750 15

107 Ca-Cu-Ba-Ni-Mn 750 15 750 15

80



• 108 Ca-Cu-Ba-Ni-Na 750 15 750 15

109 Ca-Cu-Ba-Mn-Na 750 15 750 15

110 Ca-Cu-Ni-Mn-Na 750 15 750 15

III Ca-Ba-Ni-Mn-Na 750 15 750 15

112 Cu-Ba-Ni-Mn-Na 750 15 750 15

113 A1-Ca-Cu-Ba-Ni-Mn 750 15 750 15

114 AI-Ca-Cu-Ba-Ni-Na 750 15 750 15

115 AI-Ca-Cu-Ba-Mn-Na 750 15 750 15

116 AI-Ca-Cu-Ni-Mn-Na 750 15 750 15

117 AI-Ca-Ba-Ni-Mn-Na 750 15 750 15

118 AI-Cu-Ba-Ni-Mn-Na 750 15 750 15

119 Ca-Cu-Ba-Ni-Mn-Na 750 15 750 15

120 aIl 750 15 750 15

Table 4.11 SBR of elements for the best compromise conditions obtained using the two

methods.

Line Metbod SBR of elements

1 AI Ca

CIU.-I 8.18 7.66

Leary 13.02 7.81

5 AI Mn

CRM 10.30 10.57

Leary 13.02 36.87

6 AI Na

CRM 13.02 14.24

Leary 11.96 15.98

7 Ca Cu

CRM 7.44 21.41

Leary 7.81 33.97

9 Ca Ni•
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CRM 7.66 12.61• Leary 7.81 14.48

10 Ca Mo

CRM 7.81 36.87

Leary 7.66 41.05

Il Ca Na

CRM 7.44 7.59

Leary 7.81 14.24

16 Ba Ni

CRM 10.32 8.45

Leary 7.65 14.48

17 Ba Mn

CRM 9.16 14.08

Leary 10.32 27.46

21 Mn Na

CRM 14.08 14.87

Leary 36.87 14.24

27 AI Cu Ba

CRM 11.96 35.04 10.32

Leary 13.02 33.97 7.65

30 Al Cu Na

CRM 13.02 33.97 14.24

Leary 11.96 35.04 15.98

31 Al Ba Ni

Cüt 11.96 10.32 8.45

Leary 13.02 7.65 14.48

32 AI Ba Mn

• CRl\1 9.83 9.16 14.08
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Leary 11.96 10.32 27.46• 36 AI Mn Na

CRM 11.96 27.46 15.98

Leary 13.02 36.87 14.24

52 Cu Mn Na

CRM 35.04 27.46 15.98

Leary 33.97 36.87 14.24

53 Ba Ni Mn

CRM 10.32 8.45 27.46

Leary 7.65 14.48 36.87

73 AI Ba Ni Mn

CRM 11.96 10.32 8.45 27.46

Leary 13.02 7.65 14.48 36.87

•
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Given that the response surfaces were relatively similar for the various elements, several

artificial 'elemental' surfaces were generated to compare the two approaches. Two of

these models depicting extreme situations are presented (Figures 4.10 and 4.11). The

tirst model (Figure 4.10) illustrates SBR swfaces of two elements that peak under

completely different instrumental operating conditions but with approximately the same

SBR at the top of the peak. The surfaces obtained using both the CRM approach and

Leary's objective function are very similar, peaking under the same operating conditions.

The second model (Figure 4.11) is similar to the tirst except the SBRs of the two

elements at the maximum peak height are completely different. Again, the surfaces

obtained using the CRM and Leary's objective function are very similar. Ail models

generated gave the same operating conditions or produced the same situation described

earlier where Leary's objective function perfonned better since the CRM decreased the

difference between the SBRs.
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Figure 4.10 Theoretical model of two elements with similar SBRs.

Signal-to-background ratios are convenient to use for optimization since fewer

measurements are required compared to SNRs and they often are easily related to

detection limits. While one expects SBRs to vary widely, SNRs should he relative

similar given concentrations weIl above the detection limit. In this case the CRM may he

advantageous. With many lCP-MS instruments one tends to adjust a variety of operating

parameters (e.g. leos settings) to obtain a roughly uniform sensitivity for ail elements.

Because of its tendency to promote uniformity of performance, the CRM may be more

advantageous when used with a technique such as ICP-MS.
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Figure 4.11 Theoretical model oftwo elements with dissimilar SBRs.

Both objective functions, Leary's and the CRM, could easily use SNRs, accuracy or any

of the other figure of merits mentioned previously instead of SBRs in the computation of

the objective function values. They could also be applied to optimization of the other

instrument parameters (e.g., gas flow rates, solution pump rate to the nebulizer) using any

group of analyte elements. With the evolution of instruments, most instruments perform

simultaneous multi-element analysis rapidly and are completely computer controlled.

The use of these objective functions would be ideal in the optimization of these

instruments since the information for the optimization is readily available and the

computations involved are trivial relative to the computational power of modem

computers.
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Chapter 5

Optimization in ICP-AES was suitable for the purpose of the development of an objective

function due to the simple response surface. A more challenging application of

optimization can he found in ICP-mass spectrometry (MS). In ICP-MS systems, the ion

optics settings may discriminate ions based on their mass which can result in poor analyte

signaIs. This phenomenon may he observed when the ion optics settings are adjusted

using the response of a light element; the result, poor signaIs for the heavy analytes. The

reverse scenario can also be observed. To ensure that the ion optics settings are optimal

for both heavy ~'1d light analytes in a sample, these settings must be tuned either

manually or using an optimization algorithm.

This chapter evaluates various aspects of the optimization algorithm. It contains a

study of the effect of the initial operating conditions, the selection of an objective

function, and the performance of multi-element and single element optimizations. This

work was published in Appl. Spectrosc., 1998, 52, 643.
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5 Program Considerations for Simplex Optimization of Ion

Lenses in ICP-MS

5.1 Abstract

The perfonnance of an inductively coupled plasma mass spectrometer (ICP-MS) is

dependent on the ion optic bias potentials. A discussion of the multi-element

optimization of the lep-MS ion optics bias potentials using a Simplex algorithm is

presented. Three objective functions were tested: a function developed by Leary; the

combined ratio method (CRM); and the Euclidean distance from multicriteria target

vector optimization. Both the Leary and the target vector optimization's perfonnances

were comparable whereas, the CRM optimizations placed an emphasis on obtaining

similar signal intensities. Experiments detennined that an initial Simplex starting size of

20% of the parameter space was optimal. A method for the selection of an appropriate

target vector by predicting analyte signal intensity was also investigated. Signal

intensities for ail elements could be predicted with an acceptable margin of error (lO­

30 %), provided the same conditions were used. Comparisons of optimizations using a

single mid-mass element versus multi-element optimizations revealed that the multi­

element approach is only slightly better. If the analyst wished to optimize lens settings to

favor heavy or light elements, then an average mass was better than a mid-mass

optimization.
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5.2 Introduction

In the inductively coupled plasma mass spectrometer (lCP-MS), ions produced in the

plasma are extracted through a sampling interface region using sampler and skimmer

cones. The extracted ions are focused into a narrow beam using one or more ion lenses

before entering the quadrupole mass fi Iter. The Elan 250-5000 series of lep-MS

instruments use a number of ion lenses including Einzel lenses (E 1), Photon Stop (S2),

Plate lenses (P) and Bessel Box (B). Optimization of the voltage settings of the ion

lenses is criticaI for optimal performance of this type of lCP-MS.

An earlier study by Schmit and Chtaib 1 demonstrated that analyte signaIs of an

Elan 250 ICP-MS were dependent on the applied bias potentials of the input ion optics.

The transmission efficiency of the ion optics is dependent on the mass of the analyte and

can vary significantly for widely different masses (e.g. B and Tl). This is due ta the

higher kinetic energy of the higher mass elements which results in lower sensitivity to

changes in the ion lens voltage. For example, if one optimizes the ion lenses using a low

mass element, the sensitivity of the high mass elements are negatively affected and vice

versa. In general, if one optimizes lens voltages at sorne compromise for both light and

heavy elements, then the response signaIs for both light and heavy elements will be

compromised.

Optimization studies of the plasma operating parameters and ion lens voltages

have appeared in the literature for most, if not aIl commerciaIly available systems. In

most routine laboratories, optimization of ion lenses using the Elan 250-5000 series of

ICP-MS instruments is carried out manually using a univariate optimization procedure,

with one or two elements. The process is tedious and can he quite subjective depending

on the operator's choice of elements. Frequent ion lens optirnization is generally not

required for single operator, routine analysis, however, in laboratories with many

operators and with many applications using different settings, tuning of the ion lenses

may be required. Univariate optimization techniques become time consuming and

inefficient when dealing with many variables that requlre a large number of
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measurements ta caver a wide range of instrument settings. The range of instrument

settings can be considered a multi-dimensional surface for the optimization. Univariate

optimizations do not caver the whole surface (parameter space), making it possible for

the operator to miss the maximum. If the variables being optimized are dependent on

each other then a change in one variable affects other variables. A univariate

optimization would not perfonn weil in such a situation since this approach assumes that

the variables are independent. Relatively few studies in optimization of the ICP-MS have

made use of the Simplex technique which is simple, rapid and efficient in such a

system2
-
S

• Evans and Carus03 used Simplex optimization of ion lenses for reducing

matrix induced signal suppression by tuning the ion lenses in the presence of the matrix.

Schmit and Chauvette4 used the Ar2+ (miz=76) signal intensity to test their Simplex

optimization of the ion lens voltages. They also compared the signaIs obtained using

their Simplex approach to the manuai optimization of ion lenses by a skilled operator and

found improvements in ion transmissions of 33% for Li and up to 380% for U. Evans

and Ebdons and van der Velde-Koerts and de Boe~ demonstrated the use of the Simplex

technique in the optimization of the plasma operating parameters. Ford et al.6 used the

Simplex technique for the multi-element optimization of the plasma parameters and the

ion optics, though their study was focused on signal-ta-background ratios (SBRs) of the

analytes. This Simplex approach was used to optimize operating conditions across the

elemental mass range for argon and mixed gas plasmas.

The objective of this study was to investigate the best approach to ICP-MS

optimization using a Simplex algorithm. Another goal ofthis study was the development

of a practical procedure for the optimization of ion lenses. The procedure should be at

least as fast as an expert operator would detennine the best settings manually. Aspects of

the multi-element optimization algorithm such as the selection of the initial search size

and the selection and application of objective functions based on analyte response were

examined.
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• 5.3 Experimental

A Perkin-Elmer Sciex Elan 500 ICP-MS, with Elan 5000 software, was used throughout

with the operating conditions found in Table 5.1. Sample was introduced into the ICP­

MS at a flow rate of 1 ml min- l using a peristaltic pump. The operating conditions shown

in Table 5.1 were chosen, because they are typical for routine ICP-MS analysis. The

uncertainty of analyte signal intensity presented in aIl of the tables and figures was

detennined using 25 replicate measurements with a typical relative standard deviation of

approximately 5%. Each of the four lenses of the ion optics in the ICP-MS has its own

voltage range (Table 5.1) which is individually controlled and scaled from 0 to 99 on the

instrument control panel. Adjustment of the ion lens voltages was carried out manually.

The Simplex program was ron on a separate personai computer. Standards and blank

solutions were prepared in 0.2% HN03. Standards containing 100 ng mr l of analyte

were prepared by seriaI dilution from stock solutions (1000 ug mr1
).

Table 5.1 Instrumental operating and data acquisition parameters of ICP-MS.

•

ICP Mass Spectrometer
RF power
Coolant Ar f10w
Auxiliary Ar f10w
Nebulizer Ar flow
Sample introduction
Data Acquisition
Owell Time
Scan mode
number ofmasses (mlz) monitored
number ofreplicates
signal measurement
resolution
Lens voltages
Einzellenses El
Photon Stop S2
Plate lenses P
Bessel box B

1000W
15.01 min- l

1.41 min- I

1.01 min- I

1.0 ml min
ol

20 ms
peak hopping
2-7
25
counts sel

0.7 a.m.u. at 100/0 peak height.

-0.1 to -20.3 V
-0.01 to -20.2 V
-0.2 to -60.1 V
+0.1 to +10.1 V
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5.3.1 Simplex Optimization

The optimization algorithm used in this study was the modified Simplex described by

Morgan and Deming7
• Optimization techniques generally require a single value

representing the response at a set of operating conditions but multiple response values

(one for each element) are actually obtained. For single element optimization in ICP-MS

the objective function is the analyte signal intensity. For multi-element analyses, an

objective function was used ta convert the multiple response values into a single value.

There are several types of objective functions for multi-element responses that May be

used8
. Two will be considered for this study. In the first, response values for m analyte

signaIs (Yl,"',Ym) are united to form a new artificial one, y* =f(YI, ... ,Ym). The

optimization technique would use y* as a multiple compromise value and the optimal

conditions will resuit in the best compromise for aIl m analyte signaIs. Such an objective

function for optimizing the ICP-MS couid take the same fonn as an objective function

developed for inductively coupled plasma atomic emission spectrometry (lCP-AES)

using SBRs by Leary et a/.9
• The objective function was:

n
F=----

t(SBR);1
i

where n is the number of analytes and SBRi is the SBR of the lth analyte. The purpose of

this function is to find the best compromise by maximizing the lower SBRs at the

expense of the larger SBRs. For the optimization of the lCP-MS the objective function

studied was:

n
Y*=-n--

L(S)i
1

i

where n is the number of analytes and (S)i is the response of the ith analyte.

Another objective function of this type was investigated. It was originally

developed in our laboratory for optimizing ICP-AES and it can also be applied to

ICP-MS. This objective function was called the Combined Ratio Method iO (CRM) and

takes the ronn:
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n

~(S)i
CRM=_I;;'-k--

LR j
j

where n is the number ofanalytes, (S)i is the response of the ith analyte, k is (n-1) + (n-2)

+...+ 1, and Rj is the ratio of two given analytes Uth combination) where the maximum

response of the two is in the numerator such that Rj ~ 1. The CRM performs a weighted

average on the sum of the analyte responses. For these objective functions the Simplex

algorithm tries to maximize the y* or CRM value.

The second type of objective functions is based on multicriteria target vector

optimization8
• This optimization requires that the operator select "optimal" values for the

signaIs for the analytes. The algorithm then tries to find settings that would produce

analyte signaIs that are closest to the "optimal." The actual response value vector for the

m analytes will be defined as (Yl(a),...,Ym(a», where (a) stands for actual and y(a) is the

experimentally obtained response value for an analyte. The goal of this approach is to

achieve a desired response target vector (Yl(t)"",Ym(t», where (t) stands for target and

y(t) is the target response value set by the operator. The objective function then becomes

the Euclidean distance, dE(t-a), between the target and the actual response vectors

d.(t - a) = ( ~[y,(t) - y,(a)], ) '"

In the optimization of the ICP-MS, Yi(a) will be the signal intensity counts obtained for

the ith analyte and Yi(t) will be the desired signal intensity counts for that analyte. The

Euclidean distance was not calculated using the above equation since changes in smaller

values would not be weighted as much as changes in larger values; the normalized

Euclidean distance was used instead.

dE(t _a) = (t[Yi(t) - Yi(a)]2) 112

i )'i(t)

The Simplex algorithm'5 goal is to minimize the distance between the actual and target

vector. Prior to performing a multicriteria target vector optimization, an appropriate

target must be selected. The values in the target vector must always he greater than the
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maximum obtainable responses. If the responses are greater than the target values then

the values in the target have been underestimated. Due to the nature of the calculation of

the Euclidean distance (~(distance2)) this would result in a distance that may not he

considered as a good response even though it is better than the target vector. The value

of each element in the target vector plays an important role in how weil the optimization

will perfonn. Consider two elements, Al and Pb, whose maximum obtainable signaIs are,

for example, 50000 and 100000 counts, respectively and which will he denoted by the

vector [50000,100000]. If an arbitrary target vectar was chasen ta he, [60000,200000]

then changes in Al are weighted move heavily than those of Pb. This is because the

values in the target vector for Al and Pb are 120% and 200%, respectively, of the

maximum obtainable signaIs. A good target vector would be [60000,120000] since both

values would he 120% of the maximum obtainable signais. In general, to obtain a goad

target vector, aIl the values of the analytes in the target vector should he set at the same

percentage levei with respect to the maximum obtainable signaIs. This may he difficult

in practice since the maximum possible signais May he unknown.

The initial settings for the lenses for the optimization were set ta cover 20% of the

parameter space unless indicated otherwise. The optimization was tenninated when the

search space was reduced by the Simplex to 5% of the total parameter space.

5.4 Results and Discussion

5.4.1 Comparison of objective functions

In simuitaneous multi-element optimizations, the objective function determines the best

compromise for aIl the elements. Three objective functions were tested: Leary's

function, the CRM and the multicriteria target vector optimization function. Two sets of

optimizations were perfonned to cover the mass range of the periodic table. One set of

optimizations included Al and Pb and the other set included B and Tl. The best

compromise lens voltages found by the Simplex for both sets of optimizations are Iisted

in Table 5.2. The lens voltages obtained are similar for ail three objective functions

within each set of optimizations. Both Leary's function' s and the multicriteria target

vector optimization function's perfonnances are comparable. In tenns of total counts, the
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multicriteria target vector optimization function does slightly better (-10%) than Leary's

function. The CRM's compromise places more emphasis on obtaining similar and

maximal intensities. The number of steps taken by the Simplex did not differ

significantly among objective functions.

Table 5.2 Best settings obtained from the optimizations of Al and Pb, and 8 and Tl.

Function Lens voltages (V) Intensity
(Counts S·I)

Steps 8 El P S2 Al Pb
Leary 15 5.3 -10.7 -30.5 -10.6 58400 27000
CRM 20 5.4 -10.5 -25.0 -9.6 37910 39790
Target 20 4.1 -15.0 -28.1 -11.7 60050 33350

8 Tl
Leary 34 4.9 -18.0 -31.7 -12.1 9735 15440
CRM 24 5.7 -15.0 -31.1 -9.6 11050 12270
Target 33 5.6 -15.2 -29.9 -9.8 10630 17480

5.4.2 Initial Simplex starting sizes

The selection of an initial starting size of the search space for the Simplex aIgorithm is

not an obvious one. Three starting sizes of the search space were examined on an

optimization of two elements, Cu and Tb (Table 5.3) using a multicriteria target vector

optimization. The three starting sizes studied were 20%, 500/0 and 700~ around the center

of the parameter space. AIl three initial starting sizes resulted in relatively similar

compromise values for the two elements although the Simplex did not necessarily find

the same lens settings since the response surface has many local minima~. The number of

steps and therefore the time required for the Simplex optimization was the deciding factor

in the selection of the initial starting size. A Simplex starting with 20% of the parameter

space required approximately half the number of steps to completion compared to starting

sizes of 50% and 700/0 of the parameter space. In terms of signal intensity, a starting size

of 20% was sufficient. Therefore for the remainder of the experiments in this study, a

starting size of20% was used.
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• Table 5.3 Selection of initial starting size.

Starting Lens voltages (V) Intensity
Sïze (Counts s·')

Steps B El P 82 Cu Tb
20% 16 3.2 -10.5 -25.0 -8.4 13680 103600
50% 31 2.9 -7.2 -15.4 -5.7 17230 75210
70% 37 2.8 -5.6 -14.7 -5.5 14070 83680

5.4.3 Presence of drift

A potential limitation in this type of optimization study is the presence of instrumental

drift whi~h we observed and which has been reported in other studies3
•
6

• Drift is a

common problem with older electronics and instruments such as the Elan 500. The first

3-5 steps of the optimizations, independent of the objective function used, were the same

and therefore they could be used as indicators of drift since they were looked at 3

different times. Ta verify the presence (or lack) of drift, the ratio of the 2 elements

studied, one heavy and one light, was calculated since heavier elements tend to drift more

than lighter ones on our spectrometer. For each step taken by the Simplex, the ratios did

not exhibit significant variation, so it was concluded that the line intensities were not

drifting significantly within the time period of these optimizations. It is also worth noting

that the experimental drift may have been observed in sorne previous studies because

their Simplex optimizations required 2-5 hours, whereas 10-15 minutes was usually

required in this study.

5.4.4 Determination of a Target Vector

•

The approach used for determining a good target for all of the elements in the periodic

table required the optimization of the ion lenses for a single reference element, which

could be used to predict optimum signal intensities of ail of the elements in the periodic

table. By knowing the optimum signal intensity of one element it shouId possible to

calcuIate the optimum signal intensities for any single element using the same Simplex

and instrumental settings (rf power and carrier flow). It is possible to estimate the

optimum signal intensity of any element relative to another provided the atomic mass,
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kinetic energy, natural abundance and degree of ionization are known. The kinetic

energy of the ions! 1 provides infonnation about the transmission efficiency of ions

through the sampler and skimmer cones as weIl as through the ion lenses 12
• In general

heavier ions, with higher momentum should have high transmission efficiencies as they

are legs prone to problems such as spaces-charge effects. For a given atomic mass m, the

kinetic energyll, KE, can be calculated in units of eV using:

KE=a*m+beV

In our system, the values for a and b were 0.026 and 2.0, respectively, and m is the

atomic mass. Parameters such as natural abundance and degree of ionization13, provide

infonnation about the populations of ions in the plasma and therefore signal intensities

should be proportional. The assumptions made were that identical analyte concentrations

are used; the analytes are in the same matrix and identical conditions are used. Using the

signal intensity from a reference element (e.g. I03Rh), the relative signal intensity counts

of each element in the test sample could be predicted using:

Pred. SignalA = SignalRef * AbA * IonA * KEA
AbRef * lonRef * KERef

where A is the element of interest, Ref is the reference element, Pred. SignalA is the

signal predicted for element A, SignaiRef is the signal obtained for the reference element,

Ab is the percent abundance, Ion is the degree of ionization13
, and KE is the kinetic

energy. l03Rh was selected as the reference element because its mass lies in the middle of

the mass range. A Simplex was perfonned using 103Rh ta obtain its maximum signal for

use as a reference point. The Predicted Signal was then calculated for seven elements

(Table 5.4). Simplex optimizations were performed for each of the seven elements to

acquire the maximum obtainable (or close to it) signal. A comparison of the Predicted

Signal and the maximum experimentally obtained signal intensities are summarized in

Table 5.4. For most of the elements, the Prediction Signal was within 20% of the

maximum signal intensity obtained by experiment. Copper was the only element whose

signal intensity was not predicted accurately. This approach was then used to predict

appropriate values for the target vector by setting the values in the target vector to 120%

of the Predicted Signal for each analyte. OveraII, this approach for selecting a target
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vector was successful, however, it must he kept in mind that the purpose of this study is

not to accurately predict the signais of elements but to find a good target vector.

Table 5.4 Predicted and experimentally obtained signal intensities for selected elements.

Element Kinetic Degree of Predicted Experimental Error
Energy Ionizatioo Signal Signal (0/0)

(eV) (Couots 5-
1
) (Counts 5-

1
)

I03Rh (100%) 4.68 0.96 58770
lllCd (13%) 4.89 0.85 7113 6444 10
140Ce (88%) 5.64 0.98 65361 66980 -2
159Tb (1 OooAJ) 6.13 0.99 81161 121800 -33
20spb (52%) 7.41 0.98 50228 61560 -18
4SSC (l000/0) 3.17 1.00 42244 37800 12
63CU (69%) 3.64 0.92 30233 18190 66

5.4.5 Approaches to Mass Selection for Optimization

It is more time consuming to optimize the ion lenses for each of the analytes present in a

sample. Optimjzing for a single element takes less time and finding an objective function

is not necessary. One of the goals of these experiments was to compare optimizations

using a mid...mass element and a multi-element response function. A mid-mass element is

routinely used for operating parameter adjustments prior to the analysis of samples. To

simplify this study, the multi-element optimizations were perfonned using ooly two

elements. The Middle of the atomic mass range of the elements is calculated by:

. MasShigh + Mass,ow
mld - mass =

2

where MasShigh is the atomic mass of the heaviest element and MasSlow is the atomic mass

of the lightest element in the analysis. The element, that has an atomic mass closest to

the calculated mid-mass, is used as the mid..mass element. Optimizations using mid-mass

elements (Tables 5.5 and 5.6) provided higher signal intensities (-8 and 9°tlo) for the

heavier elements than the multi-element optimizations. Multi-element optimizations

performed significantly better (-29 and 61 %) for the lighter elements as compared to

mid...mass optimizations. The number of steps taken by the Simplex to perfonn each

optimization did not vary considerably and was not a factor. Overall, multi-element
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optimizations achieve better results than mid-mass element optimizations, however, the

lens voltages obtained using mid-mass element optimizations may be adequate for most

routine analyses.

Table 5.5 Best settings obtained in the multi-element (Al and Pb) ptimization

and the mid-mass (Sn) optimization.

Elements Lens voltages (V) Analytes
Optimize Steps B El P 52 Al Pb

d
Al-Pb 20 4.1 -15.0 -28.1 -11.7 52810 30660

(27-208)
Sn (118) 19 5.4 -9.5 -29.9 -10.8 40960 33290

Table 5.6 Best settings obtained in the multi-element (B and Tl) optimization

and the mid-mass (Ag) optimization.

Elements Lens voltages (V) Analytes
Optimized Steps B El P 52 B Tl

B-TI 21 4.8 -12.5 -26.2 -10.6 20570 24030
(11-203)
Ag (107) 15 6.1 -8.2 -24.4 -8.2 12800 25980

In a sample containing more than two analytes, the equation used to calculate the

mid-mass element will always give the Middle atomic mass between the two elements at

the extremes of the sample's mass range regardless of the other analytes in the sample. If

a sample consisted of five light elements and one heavy element, it May not he reasonable

to use the mid-mass element. An alternative is to calculate the average atomic mass of

the analytes, and find an element with corresponding atomic mass. The mid-mass and

average-mass elements were used for the optimizations of two sample types. One sample

consisted of five heavy and one light element and the second consisted of five light and

one heavy element. The optimizations on the tirst sample (containing the analytes Li, Ba,

Ce, Tl, Pb, and Bi) were done using Ag as the mid-mass element and Eu as the

average-mass element (Figure 5.1). AlI the elements with atomic weights above that of

Eu saw an increase in signal when the average-mass element, Eu, was used as compared
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• to the signaIs obtained when the mid-mass element, Ag, was used; however, aIl the

elements with atomic weights lower than that of Eu saw a decrease in signal when the

average-mass element, Eu, was used and the signal for Li suffered the most. The

optimizations on the second sample (containing the analytes Li, B, Al, Mn, As, and Bi)

were done using Ag as the mid-mass element and Zn as the average-mass element

(Figure 5.2). Using the result of the optimization of the average-mass element, Zn,

showed an improvement in aIl the analyte signaIs except for Bi, which decreased, as

compared to using the result of the optimization of the mid-mass element. Ag. The two

average-mass elements, Eu and Zn, used in these two samples were both approximately

44 mass units away from the mid-mass element, Ag. Two ather samples were made such

that the average-mass element and the mid-mass element did not have such a large

difference in masse The first sample contained the analytes B, Co, Ag, and Tl where the

mid-mass element was Ag and the average-mass element was Mo.
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Figure 5.2 Optimization for a solution containing the elements 7Li, lIB, 27Al, 55Mn, 75As,

and 209Bi. Optimizations were done with a mid-mass element (107Ag) and an average

mass element (64Zn).
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Figure 5.3 Optimization for a solution containing the elements lIB, 59CO, 107Ag, and

203T l. Optimizations were done with a mid-mass element (107Ag) and an average mass

element (95Mo).
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Figure 5.4 Optimization for a solution containing the elements liB, 107Ag, 151Eu, and

203T1. Optimizations were done with a mid-mass element (107Ag) and an average mass

element (118Sn).

The second sample contained the analytes B, Ag, Eu, and Tl where the mid-mass

element was Ag and the average-mass element was Sn. In these samples, both Mo and

Sn are approximately 12 mass units from Ag in either direction. The results are depicted

in Figures 5.3 and 5.4. For the tirst sample, Mo is slightly better for the lighter elements

at the expense of the heavy element when compared to Ag. The second sample showed

an improved signaIs for the heavier elements at the expense of the light element.

In general the selection between using the mid-mass element and the average-mass

element depends on whether it is desirable to bias towards the mass region with the most

analytes. Biasing the ion lenses using an average mass rather than a mid-mass can have

significant effects on analyte signal intensity.
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Chapter 6

The calibration methodology selection component is found in both the Analysis of an

Unknown Sample module and the Leam to Run a New Sample module. In both modules,

this component is responsible for determining the best calibration methodology to he

used for an analysis. One of the calibration methodologies that might he selected is the

methodology external calibration with internaI standards. If the Autonomous Instrument

selects trus methodology, the question becomes "How does it select elements to be used

as internaI standards?".

In ICP-MS, the use of internaI standards is very common and the Autonomous

Instrument will he required to find suitable elements to be used as internaI standards for

samples to be analyzed. There are several mIes that trained operators use for the

selection of internaI standards which involve the matching of the mass and the ionization

potential of the internaI standard to the analyte of interest. This chapter examines the use

of these rules in the development of an algorithm for the automatic selection of internaI

standards. This work was accepted for publication in Spectrochimica Acta.
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6 Automatic Selection of Internai Standards in lep-MS

6.1 Abstract

The automatic selection of internai standards in inductively coupled plasma-mass

spectrometry was perfonned using a cluster analysis algorithm. The samples contained

twenty-five analytes, spanning the atomic mass and ionization potential ranges, and a

single interfering element. The interferents examined were Na, Mg, K, Zn, Ba, and Pb.

The cluster analysis algorithm used kinetic energy, ionization potential, oxide bond

strength, hydride bond strength, and electronegativity, to group the analytes. These

variables were weighted differently in the various matrices. The performance of the

clustering method and selection of internai standards was good for most analytes in the

various matrices.
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6.2 Introduction

Most analytical techniques are susceptible to interferences and inductively coupled

plasma mass spectrometry (lCP-MS) is no different. ICP-MS does not suffer from

spectral interferences to the same extent that inductively coupled plasma atomic emission

spectrometry (lCP-AES) does whereas the opposite can be said of chemical-induced

matrix effects. Several calibration techniques can be used to determine the concentration

of analytes in a sample1
• External calibration is one of the easiest and mast used

techniques; however, it is also the one most prone to errors arising from ionization

interferences. The extemal calibration methadology involves the preparation of

standards, containing varying amounts of the analyte in a clean solvent, and the

generation of a calibration curve. The response of the analyte is generally assumed to be

linearly dependent on its concentration. Inaccuracies in the results can occur if the

standards do not accurately represent the sample matrix. The technique of standard

additions provides higher accuracy in difficult samples but this technique can he very

time consuming to perform since at least two measurements must be taken on each

sample: one on the sample itself and one (or more) after the sample has been spiked.

Another technique used in lCP-MS is isotope dilution. This is a very accurate technique

but it has two disadvantages: the first is that it is not applicable to monoisotopic

elements. The second is that it can be very expensive to buy many enriched isotopes.

One of the most common calibration methodologies used on ICP-MS is external

calibration with internaI standardization. The selection of internaI standards is not always

easy. In selecting internai standards, several rules must be followed: (1) The internai

standard must be present in low abundance (or not at a11) in the sample; (2) the internaI

standard must not have any spectral interferences; and, (3) the internaI standard must not

cause any spectral interferences. Thompson and Houk2 examined the response of over

fifty elements to a sodium matrix under different operating conditions. They found that

the amount of suppression and relative order of suppression of various analyte elements

can differ for various matrix elements and various operating conditions. They stated that

the criteria that they recommend for the selection of internaI standards are ta closely

match the mass and the ionization potential of the internaI standard to the analyte of
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interest. Doherty3 found that mass matching was the only cntenon necessary for the

selection of internai standards for the analysis of rare earth elements. Vanhaecke et al.~

aIso found a mass dependence in the selection of internai standards for analyses in

various matrices Ce.g., acidic, organic, high solids). Chen and Houk5 found that the use

of polyatomic ions as internai standards improved both accuracy and precision of the

analysis. Vandecasteele et al.6 found a mass dependence for elements in a NaCl matrix.

They found that four internaI standards were necessary for the analysis of elements in

biological samples: 9Be for low mass, 59CO for transition elements, 11SIn for medium

mass, and 20sTI for high mass.

The purpose of this study is to develop a method to automatically detennine,

when given a particular sample containing an interferent and N analytes, the number of

internai standards necessary to achieve the accuracy desired and which elements should

be used as internaI standards. The most limiting assumption to this work is that a single

interferent is present at a high concentration. The second assumption is that standard

operating conditions are used. The isotopes in this study were selected such that there

were no major spectral interferences. Otherwise, spectral interferences were not

considered in this study. An algorithm was developed based on the idea that elements

will behave similarly in samples with interfering elements. With this in mind, analytes in

a particular sample are grouped together using the cluster analysis technique and the

selection of internaI standards was based on atomic mass, kinetic energy, ionization

potential, oxide bond strength, hydride bond strength and electronegativity.
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Sïnce looking at aIl the elements in the periodic table is not realistic at this juncture, a

smaIler universe of 26 elements (Table 6.1) covering most of the mass range was

considered. Solutions of the analytes at a concentration of 100 ppb were prepared in

various single interferent matrices. The analytes were added in the form of a multi­

element standard (SCP Science, St-Laurent, Quebec). Six interfering elements were

examined: Na, Mg, K, Zn, Ba, and Pb. AlI matrix elements \Vere prepared from reagent

grade nitrates (Alfa Aesar, Ward Hill, MA) with the exception of Mg and Zn which were

prepared from reagent grade oxides (Alfa Aesar, Ward Hill, MA). A matrix-matched

blank was prepared and used for each sample to minimize any concerns of contamination

from the reagents. The matrix-matched blank also eliminated any spectral interferences

from the interfering elements. A Sciex ELAN 5000 was employed using standard

operating conditions of 1.0 kW ofpower and a nebulizer gas flow rate of 1.0 Vmin. Prior

to running any samples, a multicriteria target vector optimization of the ion lenses using

the Simplex algorithm was performed7
• The ion lenses were optimized for maximum

signaIs of Li and Pb to provide a compromise between heavy and light elements.

Table 6.1 Elements used in this study with their monitored isotope and their ionization

potentials.

Element Mass Ionization Element Mass Ionization
patential (eV) potential (eV)

Li 7 5.932 Zn 66 9.394
Be 9 9.322 Se 77 9.752
B Il 8.298 Sr 88 5.695
Na 23 5.139 Y 89 6.380
Mg 25 7.646 Mo 95 7.099
Al 27 5.986 Ag 107 7.576
K 39 4.341 Cd III 8.993
Ca 44 6.113 Sb 121 8.461
V 51 6.740 Ba 137 5.212
Cr 52 6.766 La 139 5.577
Fe 57 7.870 Pt 195 9.000
Ni 61 7.635 Pb 208 7.416

• Cu 63 7.726 Bi 209 7.289
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The initial step in this study was to detennine the suppressIon or enhancement of

elements in a sample containing an interfering element. The analytes were at a

concentration of 100 ppb and the interferent was 1000 ppm. The amount of suppression

or enhancement is expressed as %Error and was calculated using Equations 1 and 2.

EC = (sa,samp - sa,mbl~ • C tda,samp a,s
Sa,std - Sa, blk

%Error = ( EC~ samp IJ *100
Ca,samp

{I}

{2}

•

where a is a given analyte; blk is the blank which consists of distilled water; std is the

standard containing 100 ppb of aIl analytes; samp is the sample containing 100 ppb of a11

analytes along with 1000 ppm of the interferent; mblk is the matrix matched blank which

solely contains the interferent at 1000 ppm; Sa,std is the signal of the analyte in the

standard; S~samp is the signal of the analyte in the sample; Sa,blk is the signal of the

analyte in the blank; Sa,mblk is the signal of the analyte in the matrix matched blank;

Ca,std is the concentration of the analyte in the standard; Ca,samp is the concentration of

the analyte in the sample; Eca,samp is the estimated concentration of the analyte in the

sample.

6.3.2 Selection of internai standards (General Method)

A cluster analysis algorithm8
•
9 was used to select internaI standards for a particular

sample containing N analytes.

1. Samp/e Data Matrix

The fust step involved the preparation ofa data matrix. This matrix contains the analytes

with the characteristics that will be used to group them (e.g., ionization potentiaI, kinetic

energy, etc...).
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2. Distance matrix

The second step was the detennination of the distance matrix. The distance matrix

contains the values that describe how similar elements are to each other and will be used

to group the elements. To determine how the distance matrix would be calculated, two

interfering elements were considered: Na, a light easily ionizable element, and Pb, a

heavy non-easily ionizable element. These two elements are relatively close to the

extremities of the atomic mass and ionization potential scales; therefore, they were used

to calibrate the method for aIl elements. The amount of suppression (or enhancement)

was calculated as described above for twenty-five analytes in both matrices. In the

determination of any possible relationship between the amount of suppression (or

enhancement) and characteristics of the elements, five parameters 10 were considered.

These were ionization potential, kinetic energy, oxide bond strength, hydride bond

strength, and electronegativity. For any atomic mass, m, the kinetic energylI can be

calculated using

IŒ = 0.026 * m + 2.0 eV {3}

Applying a multiple linear regression l2 (MLR) on the %Error of the analytes in the Na

matrix and the five parameters, it was found, based on the correlation coefficient, that the

suppression was most correlated to the ionization potential of elements.

Electronegativity, hydride bond strength, and oxide bond strength made almost equal

contributions whereas the kinetic energy of elements made the least. Kinetic energy was

used instead of atomic mass since it was better correlated to the amount of suppression

observed. For the data obtained with the Pb matrix, the opposite was observed; the

suppression was most correlated to the kinetic energy of analytes whereas there was very

little correlation to the ionization potential of elements. It was decided that ail five

parameters would he included in the calculation of the distance matrix; however, these

parameters would be weighted differently. The distance between two analytes was

calculated using
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• dij = "J'[a • «(KEi - KEj)/(KEH - KEL))2 + b • «IPi - IPj)/(IPH - IPdi + c • «OBSi­

OBSj)/(OBSH - OBSd)2 + d * «HBSi - HBSj)/(HBSH - HBSd)2 + e • (ELNi-

ELNj)/(ELNH - ELNd)2] {4}

where the subscripts i and j denote the ith andjth analytes, respectively; the subscripts H

and L denote the highest and lowest value of a characteristic for all elements in our small

"unîverse"; KE is the kinetic energy of an element; IP is the ionization potential of an

element; oas is the oxide bond strength of an element; HBS is the hydride bond strength

of an element; and, ELN is the electronegativity of an element. There are five weighing

constants, a, b, c, d, and e.

Table 6.2 The weight values of a and b for the six interferents.

Interferent
Na
Mg
K
Zn
Ba
Pb

a
1
1
2
3
7
10

b
10
10
13
1

10
1

•

The correlation coefficients obtained for the five parameters in the Na and Pb

matrices were used ta calibrate the five weights. For each matrix, the most correlated

parameter was assigned a weight value of ten and the least correlated was assigned a

weight value of one. Since the relationship between the oxide bond strength, hydride

bond strengili, and electronegativity and the amount of suppression was not well known,

it was decided that they would he treated equally. The weights for these parameters were

arbitrarily assigned to a weight value of 3 (Table 6.2) due to their low correlation with the

amount of suppression ohserved in both matrices. Using the weights assigned for the Na

and Ph matrices, two scales, one for kinetic energy and one for ionization potential, were

established. These scales could be used to fmd weights for other matrices. For example,

consider a sample containing the matrix element Ba which has an atomic mass of 137.

To tind the weights for this Ba sample, tirst the relationship between the parameters and

the weights are established. Sodium, with an atomic mass of 23 and a weight value of 1
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for a, and lead, with an atomic mass of 208 and a weight of 10 for a, produce the

relationship a = O.049m - 0.12, where m is atomic mass and a is the weight for the kinetic

energy parameter. Using this relationship, the weight value of a for the Ba sample was

calculated as 6.6 and was rounded to the nearest integer (Table 6.2). The same was done

for the weight values of b using ionization potentials. The weight values for c, d, and e

were always set to three.

3. Clustering method

The next step was to run the clustering method. A clustering method converts a distance

matrix into a tree. It does this by a series of steps, each reducing the distance matrix and

building the tree. In the final step, the tree is completed and the distance matrix

disappears. A cluster is defined as a set of abjects (elements) that are similar to each

other. A cluster can consist of one abject (element) or aIl of the objects (elements). At

the start of the clustering method, each element is considered to be in a separate cluster.

For example, consider a hypothetical sample with four analytes, Li, B, K and Sr, in a Na

matrix. The clustering method will begin with four clusters. Each step will merge the

two most similar clusters that exist at the start of the step; this will decrement the number

of clusters by one. The unweighted pair-group method using arithmetic averages

(upGMA)8 was used. The process will he illustrated by our example of four analytes.

The distance matrix (Table 6.3) for these four analytes was determined using Equation 4.

Step 1. Find the smallest entry in the distance matrix (Table 6.3). Clearly, this is Li and

Sr. Merge clusters Li and Sr, gjving (Li Sr), B, K. Recalculate (Equations 5 and 6) the

distance matrix (Table 6.4) and build tree (Figure 6.1 a).

d(Li Sr),B = (du.s + dSr•B) * 0.5

=(7.35 + 6.8) * 0.5 = 7.08 {5}

d(Li Sr),K =(dLi.K + dSr•K) * 0.5

=(2.01 + 2.63) * 0.5 = 2.32 {6}

Step 2. Find the smallest entry in the new distance matrix (Table 6.4). Merge clusters

(Li Sr ) and K, giving (Li Sr K) and B. Recalculate (Equation 7) the distance matrix

(Table 6.5) and build tree (Figure 6.1 b).

d(u Sr K).B = (<!<Li Sr).B + dK.s) * 0.5
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Step 3. Find the smallest entry in the new distance matrix (Table 6.5). Merge clusters

(Li Sr K) and B giving (Li Sr K B). Complete the tree (Figure 6.1c).• = (7.08 + 9.34) • 0.5 = 8.21 {7}

Table 6.3 Distance matrix of four elements: Li, B, K, and Sr.

Li
B
K
Sr

Li

7.35
2.01
0.85

B

9.34
6.80

K

2.63

Sr

Table 6.4 Distance matrix after tirst step of the cluster analysis algorithm.

(Li Sr)
B
K

(Li Sr)

7.08
2.32

B

9.34

K

•

Table 6.5 Distance matrix after second step of the cluster analysis algorithm.

(Li Sr K) B
(Li Sr K)
B 8.21
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• (a)

Li

(b)

Li

Sr

Sr

K

K

B

B

Cc

(Ca

)

(AI)

(Ba)

(Ca)

(Ca' (Ba; (Ni)

Li Sr K B

•

Figure 6.1 Example of(a) Step 1, (b) Step 2, and (c) Step 3 of cluster analysis algorithm,

internai standards selected are in brackets.
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• 4. Selection ofinternai standards

At each level of the tree, internai standards are selected for each cluster. The selection is

performed by comparing the analytes in a cluster with the remainder of the elements

(Table 6.1) not present in the sample. The comparison is done by using

Compare_valuej = v[a * «(KEi - AvgKE)/AvgKE)2 + b * «!Pi - AvgIP)/AvgIP)2 + c *
«OBS i - AvgOBS)/AvgOBS)2 + d * «HBS i - AvgHBS)/AvgHBS)2 + e * «ELNi ­

AvgELN)/AvgELNiJ {8 }

where i is the internai standard candidate from the available elements not present in the

sample; AvgKE, AvgIP, AvgOBS, AvgHBS, and AvgELN are the average kinetic

energy, ionization potential, oxide bond strength, hydride bond strength, and

electronegativity, respectively, of the elements in the cluster. This equation is based on

Equation 4 and the weights a, b, c, d, and e are the same as for Equation 4 (Table 6.2).

The closest match is used as an internaI standard (Table 6.6). [t shouid be noted that the

same element can be used as an internaI standard for severai different clusters; therefore,

the number of internai standards at a certain level of a tree does not always correspond to

the level number (where level 1 is at the top and level N (number of analytes) is at the

bottom).

Table 6.6 Selection of internaI standards at each Ievel of the dendrogram.

Level
4

Cluster Li Sr K B
internai Standard Ca Ca Ba Ni

3
Cluster (Li Sr) K B
internaI Standard Ca Ba Ni

2
Cluster (Li Sr K) B
internaI Standard Ba Ni

1

• Cluster (Li SrKB)
internaI Standard Al
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6.3.3 Selection of internai standards (Sample Specifie)

Another methodology for selection of internai standards is possible. If samples, such as

the Na sample, have been previously run and the %Errors for the analytes have been

calculated, this infonnation can be used to find internai standards for samples containing

the same rnatrix element. For example, the 1000 ppm Na sample with the twenty-five

analytes can he used to detennine appropriate internaI standards for other Na samples.

J. Samp/e Data Matri",

In this case, the Sample Data Matrix contains the analytes and the %Error is calculated

using Equation 2.

2. Distance Matra

The distance between two analytes, i and j, is calculated by

dij ="J'[%Errorj - %Errorj]2 {9}

3. C/uslering Method

The clustering analysis is the same as described previously.

4. Selection ofinternai standards

The selection is perfonned by comparing the analytes in a cluster with the elements in

Table 6.1 not present in the sample. The comparison is done by

Compare_Va1ueis = "J'[%ErroriS - %ErrorAvg]2 {IO}

where %Erroris is the amount of suppression (enhancement) of the internai standard

candidate and the %ErrorAvg is the average %Error of the analytes in a cluster.
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• 6.4 Results and discussion

6.4.1 Collection of prior knowledge

6.4.1.1 Interfering element: Na.

The accuracies (or errors) of the detennination of analyte concentrations using an

external standard were calculated for a sample containing aIl the analytes listed in

Table 6.1 and 1000 ppm Na, a light easily ionizable element. Figure 6.2a illustrates the

%Error associated with each analyte. The analytes along the x-axis are listed in arder of

increasing mass. There is no obvious trend of %Error with respect to mass. Figure 6.2b

shows the %Error with respect to ionization potential; although there is considerable

scatter, one can see that the suppression increases with ionization potential. Thompson

and Houk2 also round sorne dependence of the amount of suppression on ionization

potential.
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Figure 6.2(a) The amount ofsuppression obtained for 25 analytes in an 1000 ppm Na

sample as a function ofatomic mass.
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Figure 6.2(b) The amount ofsuppression obtained for 25 analytes in an 1000 ppm Na

sample as a function of ionization potential.

6.4.1.2 Interfering elemeot: Pb

The same analysis was perfonned using Pb, a heavy element, as the interfering element.

Examining Figure 6.3a, it was observed that the lighter elements were more affected in

the presence of the Pb interferent than the heavier elements. This was not seen with the

Na interferent. The mIe regarding the selection of an internai standard close in mass

would be appropriate in this case; however, selecting an internaI standard close in

ionization potential (Figure 6.3b) would lead to erroneous results.
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• 6.4.2 Selection of internai standards (General Metbod)

Three different groups of analytes were used as though they were samples ta verify the

methodology (Table 6.7). This choice of analytes illustrates the difficulty in selecting

internaI standards for a sample where the analytes cover a large mass range and a wide

range of ionization potentials.

Table 6.7 Three groups ofanalytes used to validate the cluster analysis algorithrn.

Group
A
B
C

•

The selection of internaI standards was perfonned using cluster analysis as described

previously. The cluster analysis produced a dendrogram (tree) for each group of analytes

in a matrix with an interfering element. Six interfering elements at various

concentrations were examined: Na, Mg, K, Zn, Ba, and Pb. These interfering elements

cover a wide range of atomic mass and ionization potential. The matrix elements, Mg

and Zn, were only investigated at a concentration of 1000 ppm since the errors obtained

were small at lower concentrations. At lower concentrations of these elements there

would be no need to use an internaI standard calibration methodology. The

concentrations examined for the four other interfering elements \vere 500 ppm and

1000 ppm. Using the internaI standards selected at every level of the tree, the analyte

concentrations were determined. The error in this detennination was caiculated and its

absolute value was detennined. The absolute value was taken because the sign of the

error in this case was not important. The results obtained using the internai standards are

presented in Figures 6.4 to 6.6. The average error (in percentage) for aIl the analytes in a

group is plotted against the number of internaI standards used for the analysis. As stated

eaclier, the cluster analysis algorithm does not always produce a different element as an

internaI standard for each cluster. This can be seen on the plots since the maximum

number of internaI standards is not always equal to the number of analytes. In sorne

plots, there are also multiple points for a certain number of internaI standards since an
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• increase in clusters does not aiways equai an increase in the number of internai standards.

When the number of internaI standards is zero, only external calibration was perfonned.
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Figure 6.4 Perfonnance of the General Method cluster analysis aigorithm for analytes of

Group A in (a) Na, (h) K, (c) Mg, (d) Zn, Ce) Ba, and (f) Pb samples.
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Figure 6.5 Performance of the General Method cluster analysis algorithm for analytes of

Group B in (a) Na, (h) K, (c) Mg, (d) Zn, (e) Ba, and (t) Pb samples.
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Figure 6.6 Perfonnance of the General Method c1uster analysis algorithm for analytes of

Group C in (a) Na, (b) K, (c) Mg, (d) Zn, (e) Ba, and (t) Pb samples.
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6.4.3 Performance of cluster analysis

Examining the results (Figure 6.4) obtained for the samples containing the analytes of

Group A (Table 6.7), it can be seen that the average error initially decreases, then reaches

a point where no significant improvement was seen with the addition of internaI

standards. The only exception is Zn at 1000 ppm where the error obtained with an

external calibration was small and no real improvement was observed with the use of

more internai standards. Similar trends were observed with the analytes in Group B

(Figure 6.5) with the sole exception of Mg. In the case of the Mg interferent, the cluster

of aIl analytes in the group with the addition of one internaI standard does not improve

performance; in fact, it does the opposite. At the addition of two internai standards, the

average error decreases significantly. The only explanation for this phenomenon is that

the internai standard chosen for the cluster of aIl the analytes in Group B was not a good

compromise for ail analytes. This phenomenon is also observed with the analytes in

Group C (Figure 6.6). The internaI standards for the analytes of Group C in the Ba

matrix (500 ppm) did not perfonn weil as an increase in the average error was observed.

In particular, the analyte/internal standard pair of Sr/Ca does not appear to be the

appropriate choice. Although these two elements are relatively close in ionization

potential, Ca was suppressed twice as much as Sr in the Ba matrix.

One of the assumptions made at the beginning of this study was that there was

only one interferent element present in a sample. In real samples, more than one element

can be present at high concentration. Further studies would need to be done on how the

analytes are affected in samples with many interferents, and whether the efrect could be

correlated ta ionization potential, kinetic energy, oxide bond strength, hydride bond

strength, and electronegativity.

6.4.4 Selection of internaI standards (SampIe specifie)

The interferents Na, K, Ba, and Pb, were aH run at 1000 ppm with the twenty-five

analytes and the %Error for the analytes were calculated. Using this data, the cluster
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analysis algorithm was applied to the three group of analytes listed in Table 6.7. The

perfonnance of the cluster analysis was studied using a sample with 500 ppm of the

interferent. The reverse was also done using the 500 ppm for the selection of internaI

standards for the 1000 ppm samples. The results are depicted in Figures 6.7 ta 6.9.

Compared ta the results of the General Method (Figures 6.4 to 6.6), it can be seen that a

lower average error was obtained when the internaI standards are selected with the

knowledge of how the elements were affected in a similar matrix. The mast dramatic

difference appears as one increases the number of internaI standards, indicating that

fewer internaI standards are required to obtain good results with this method. AIso, it

does not seem to make much difference as ta which concentration of interferent in the

sample is used with the cluster analysis; both, the 500 ppm and 1000 ppm, samples

produce similar trends in the plots. Severai other observations were made when the two

samples of different interferent concentration were used with the cluster analysis

algorithm. First, the clusters produced for a group of analytes in the 1000 ppm sample

were not the same for that same group of analytes in the 500 ppm sample of the same

interferent. Second, the internaI standards selected for the clusters were aiso different for

the two concentrations of interferent. Third, the total number of internai standards

selected for a group of analytes also differed for the two samples of the same interferent.

These observations would imply that elements are not always similarly affected when the

concentration of the interferent is varied.

The sample specifie method produces legs error; however, care should be taken in

selecting the interferent concentration for the sample used with the c1uster analysis. If the

concentration is too low, the amount of suppression observed for the analytes may be

small and not representative ofa more difficult sample.

132



500
~

1000

~ 3 4 5
H\I...~.r.' illt.rIl4bt.",<iI.r.

1"'"

1'.. "'
'- ""-

...... .....

35

~30

~ ~5

iii ZO

i 15

1 10

5

o
o

(b)

500
~

1000

Z ) 4 5
H~,,".r.' il'lt.r"41It."".r.

\.
\.

......... \
......\.
1~

......... ..... -

50

o
o

(a)•
(d)

,.
'\.

",.,,.
..... "-

..... .,,- '"
'-l-"

5
o

40

l)5

~ )0

li 25

ï ZO

• 15

10

5
o 2 ) 4 5

H~Ift".r.' il'lt.rl'l."" ..114..,.

500
~

1000

35

1.
\..

\
\

-- ""'".......,
2 4 ~

H........' ., ilt.r",..I",,,"4..,4r *

500
~

1000

Figure 6.7 Performance of the Sample Specifie cluster analysis algorithm for analytes of

Group A in (a) Na, (b) K, (c) Ba, and (d) Pb samples.

•
133



"'
"""'" 1.......

~"
10.. ....~

""'JI ~ .

500
~

1000

~ 3 .. 5
H\I~".,.f i"".'''.'#t.,,-4.,4I'

.....

""- "
..... .......

~ ......--

35

l30
~Z5
li 20

i 15

!! 10

5

o
o

(b)

1000

-500-
51 l 3 ..

H...~".,.f j"t.,....lIt.II".'.

o
o

(a)•
(c) (d)

1'-
'l.

....

....
....

-~ I....-"~-

"\c

'\.
'-

'- ,
........

"""'"

0110

~35

(;. 30

1~S
i~O

1 15

10

S
o 1 23 ..

H...~"., ., j"t.'".llt....4.,4r
5

500
~

1000

s
o 1 23 ..

H\I~".' .f j ...t.,.....#t.,,-4.,4I'
5

500
~

1000

Figure 6.8 Perfonnance of the Sample Specifie c1uster analysis algorithm for analytes of

Group B in (a) Na, (b) K, (c) Ba, and (d) Pb samples.

•
134



'-
'\.

1'\.. "'"r-.... .....

'l .... -...... ~

r--....

o
o

• (a)

50

o
o 2 3 4 5

M.........,.f in,.,,,,..b'..n4..,.
,

(b)

25

g20... g 15500.... w

1000
., 10
~
l 5

~

f"'-.-"
r"\... -.....

r"\... ~

........ "\

....... " -
1 2 3 • 5
Nurnb~r of il'ltcrn'll ~t~nd:ud~

500

1000

5
o

....

""
'1.

"-- -"""" ~

i""oo ~ -., ....

(c)

JO

Jt,
'\.

r--..
'\.
~ - - --~"'-- ~ ~

1 2 3
M........, .f in'.f",..I,t.n4·.,4r

(d)

J5

JO
l25

500 ~ 20
~ u 15
1000 1

1 10

5

o
o 1 ~ ) 4

H......~.'.f int.r"'4I't.",04.r4r
5

-500-1000

•

Figure 6.9 Perfonnance of the Sample Specifie cluster analysis algorithm for analytes of

Group C in (a) Na, (b) K, (c) Ba, and (d) Pb samples.
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6.5 Conclusion

The selection of internaI standards can be done automatically using a cluster analysis

algorithm and using the characteristics: kinetic energy, ionization potential, oxide bond

strength, hydride bond strength, and electronegativity. A single set of operating

conditions was used throughout this study and the analyte/internal standard pair may not

be appropriate under different operating conditions. A change in the weights in

Equations 4 and 8 would be required to compensate for a change in operating conditions.

This would be done by running samples with single element interferent, Na and Pb, at

high concentrations and using multiple linear regressions to detennine the contribution of

the various characteristics on the amount of suppression (or enhancement) of analytes.

The weights to be used for other matrices would be adjusted, accordingly, based on the

kinetic energy and ionization potential of the interfering element.

If data has been eollected with the specifie interferent and analytes in question, then

the clustering method can be used to automatieally select internai standards that provide

even more accurate results than the more general method.
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• Chapter7

7 Conclusions and Future Work

•

The Autonomous Instrument now has modules for pattern recogrutlon, instrument

diagnosis, multi-element optimization, and selection of internaI standards. There are a

few aspects of the Autonomous Instrument that still need to he developed or implemented

for ICP-AES and ICP-MS. We have seen that diagnostic modules were successfully

developed for ICP-AES. The same framework could be applied to ICP-MS. The Qum
Expert module for ICP-AES examined the energy transfer, the sample transfer, nebulizer

precision and accuracy, and the optical system (resolution and collimation) using a

standard test solution. Most of these same components couid be diagnosed for lCP-MS

except for the optical component, as it differs; however, other components that could be

diagnosed are the ion optics and sampling interface (sampler and skimmer cones). In

ICP-AES, the waming diagnostic module used signaIs and signal-to-background ratios

(SBRs) of H and Ar lines to monitor the system's perfonnance. In ICP-MS there are

several species that could be monitored; these are the hydrogen, oxygen, and argon ions

along with several molecular combinations of these elements (OH"', ArO+, ArH"', Arl~,

etc...). If these ions are monitored while varying the rf power, the sample introduction

rate, and the gas flow rates, rules for predicting changes to the system could be obtained

by using an inductive learning aigorithm.

The study on pattern recognition revealed that k-Nearest Neighbors and Bayesian

Classification could be used on smal1 databases with relatively high recognition rates.

The purpose of the pattern recognition module is to find samples that are similar so that

the same operating conditions and calibration methodologies could be used. The next

step would be to see if the results obtained when using these operating conditions and

calibration methodology are significantly better than those obtained with standard

operating conditions.

The Autonomous Instrument can now automatically select internaI standards for

analyses in ICP-MS. This is one of the components of the Calibration Methodology
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Selection module. Several other components al50 need to be implemented. For example,

how should an external calibration with matrix matching be perfonned. The matrix

matching could be done on total salt content, match aIl the majors, or match the major

with the highest concentration. The question would be which one works better and/or

takes the least amount of time. The mies for the selection of a calibration methodology

also need to be developed and tested.

The framework for the Leam to Run a New Sample module needs to be

developed. It can be divided inta two components: optimizatian and calibration

methodology selection. Since the optimization component has been developed and

implemented, once the mies for the calibration methodology selection have been

developed, the two components could be bridged to fonn this new module. The Learn to

Run a New Sample module would begin by optimizing the operating conditions for best

accuracy in the results. Once the operating conditions are estab lished, it would pass

control to the Calibration Methodology Selection module. This latter module would try

to find the best calibration methodology that would suit constraints such as time of

analysis, cost of analysis (e.g., isotope dilution can he very expensive if enriched isotopes

have to be purchased for many analytes), and volume of sample.

With the addition of the intelligent components yet to be developed, the

Autonomous Instrument will be able to perform complete analyses of samples without

any assistance from human operators. The Autonomous Instrument will not only be a

powerful tool in ICP spectrometry but it will be able to serve as a framework for many

other analytical instruments.
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