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Abstract 
 

 
The purpose of this research work is to implement a method, namely the meshless 

method, to represent Electromagnetic field problems. Meshless methods are currently 

being widely researched and are in a rapid development stage, this work verifies whether 

it is viable to use this method for low frequency problems. The benefit that this method 

will demonstrate is that it will bypass the mesh generation process involved in a well 

established technique called the finite element method presently being used in most of the 

computer aided design softwares available in the market, thereby reducing the 

computation cost. The other objective of this work is when there is a solution from the 

meshless method in place; it then incorporates a routine that re-arranges the nodes 

involved in the meshless process to minimize the error in the solution. This work 

investigates the ideas from a self-organizing feature map, specifically the Kohonen 

network, to determine whether such an approach is feasible enough to drive the nodes 

involved in the meshless approach to the regions where they will assist in obtaining the 

most accurate solution. 
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Résumé 

 

Le but de ce travail de recherche est d'exécuter la méthode sans maille afin de représenter 

des problèmes de Champ électromagnétique. Les méthodes sans maille sont presentement 

examinées en détail et sont dans un étape de développement rapide. Ce travail vérifie s'il 

est réalisable d'utiliser cette méthode pour les problèmes de basse fréquence. L'avantage 

que cette méthode démontrera est qu'elle évitera le processus de génération de maille, un 

processus impliqué dans une technique bien établie appelée la méthode des éléments 

finies étant à présent utilisé dans la plupart des logiciels disponibles dans le marché de 

conception assistée par ordinateur, en réduisant ainsi le prix de compte. L'autre objectif 

de ce travail consiste en ce quand il y a une solution de la méthode sans maille dans 

l'endroit; elle incorpore alors une routine qui réarrange les noeuds impliqués dans la 

méthode sans maille de minimiser l'erreur dans la solution. Ce travail enquête sur les 

idées d'un plan de caractéristique auto-organisée, spécialement le réseau Kohonen, afin 

de déterminer si une telle approche est assez réalisable pour conduire les noeuds 

impliqués dans l'approche de la méthode sans maille aux régions où ils aideront à 

l'obtention de la solution la plus exacte. 
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CHAPTER 1 
 

1 Introduction 

 

1.1 Motivation and Overview  

 

In today‘s world, where devices like television, radio, internet, microwave ovens, mobile 

telephones, electrical generators, computers and many more have become a necessity, life 

without them would be unthinkable for the present generation. Each of these examples is 

some form of electromagnetic system and is used in a broad range of situations. We can 

say without any qualms that we are heavily dependent on electromagnetic devices for a 

comfortable life. Because of this profound role, the study of electromagnetics becomes 

imperative. 

  

The understanding of electromagnetic phenomena is derived from the electromagnetic 

field theory that describes the interactions between electric charges at rest and in motion. 

The theory explains such interactions through Maxwell‘s equations, which are a system 

of coupled partial differential equations that relate sources to the electromagnetic fields 

and fluxes. The possible ways of obtaining knowledge on the properties of 

electromagnetic systems can be classified into: a) theoretical methods and, b) 

experimental investigations. Theoretical methods can further be categorized into: i) 

analytical approaches and ii) numerical approaches.     
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In case of analytical techniques the equations, which have to be considered for a realistic 

description of the processes, are not often solvable for practical problems. In order to use 

an analytical approach one would have to simplify the equations and this often leads to 

inaccurate or inapplicable results. In terms of experimental investigations, the aim is to 

acquire system information by means of tests and this presents a lot of constraints such as 

the measurement of real objects becoming difficult in scenarios where the dimensions are 

either too small or too large; and such investigations require a considerable amount of 

time. The remaining approach, i.e. the numerical solutions, provides us with a fair degree 

of accurate approximation that overcomes the hurdles presented in the scenarios 

mentioned above. Using this approach coupled with the advent of computers, the ability 

to solve Maxwell‘s equations has changed profoundly and the advantages are manifold 

e.g., results can be obtained faster compared to the times when engineers had to prepare 

data elements on a piece by piece basis and parameter variations are easily realizable. 

Numerical simulation techniques have become an established self-contained scientific 

discipline and the solution of electromagnetic field problems using them has been a 

subject of research for almost half a century.  

 

             As stated earlier, determining device performance primarily involves solving the 

complex partial differential equations (PDEs) that govern the electromagnetic phenomena 

over the region of interest. One of the most prominent techniques that has been developed 

over the years and is now widely applied in this field is the finite element method.  

 



 3 

It provides the advantage of being versatile enough to solve complex geometrical 

problems along with the capability of solving linear and non-linear problems with a great 

degree of accuracy. However, the finite element method does have a few shortcomings; 

the predominant one being the high cost of creating the meshes required for solving. 

Further, when adaptation is included in a system and is implemented by modifying the 

mesh to add new degrees of freedom, the computation cost increases significantly. For 

this reason, attention has been paid in recent years towards alternate methods where one 

can avoid the mesh generation completely. 

 

An alternative methodology, with significant potential in terms of reducing the 

computation cost, that is currently being widely researched and is in a rapid development 

stage is the Meshless method (MM) [1], [2], [3], [4]. As the name suggests it does not 

require generating a mesh and thus bypasses the major drawback of the finite element 

system. Ideally no predefined mesh is necessary (some versions, may require a mesh to 

perform integration, refer to section 2.2.3) at all throughout the process of solving a 

problem involving an arbitrary geometry governed by the Maxwell‘s equations subject to 

a variety of boundary conditions. These methods originated over thirty years ago and 

began with the smooth particle hydrodynamics (SPH) method developed by Leon Lucy, 

Bob Gingold and Joe Monaghan who used it for modeling astrophysical phenomena such 

as exploding stars and dust clouds[5]. 

 

Instead of mesh generation, as done in FEM, the approach involves distributing nodes, 

referred to as field nodes, within the problem domain as well as on its boundaries to 

represent the problem and its boundaries. The later stages, involving the creation of shape 
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functions, the generation of a discretized set of equations and then solving for the field 

variables will be discussed in more detail in Chapter 2.  

 

Continuing with the discussion on FEM, certain aspects of it should be highlighted in 

order to appreciate their relevance in the meshless approach later. The usual finite 

element analysis would proceed from the generation of a mesh and basis functions to the 

creation of a solution. The solution is dependent on the manner in which the analysis of 

the problem is done for instance the way boundary conditions are applied and the error 

estimation, generally the latter is used as means of feedback to obtain a result with greater 

accuracy. Error estimation typically requires the generation of a second solution on a 

finer mesh or a different approach such as the use of higher degree of shape functions (p-

refinement) and a comparison of the two solutions. With the increase in speed and 

storage capabilities of computers nowadays, many problems are solvable with great 

accuracy by simple local refinement (without going for re-meshing over the entire 

domain) or relocating a mesh (r-refinement). The motive is to use low degrees of freedom 

in the problem without compromising the accuracy of the approximated solution. For this 

reason, the concept of ―a posteriori error‖ estimation and adaptive mesh refinement has 

been developed in FEM. A typical adaptive algorithm will include the steps of solving 

the problem, a measurement of the error and then re-meshing and solving again until the 

error is below a prescribed quantity. An ―a posteriori‖ error estimate provides the 

accuracy feedback that is necessary to terminate the adaptive procedure. One of the most 

popular methods in determining this is with an enrichment indicator. In this approach, the 



 5 

basic assumption is that large errors come from regions where the local error estimate is 

large and this is where the mesh should get concentrated. Correspondingly, the mesh is 

coarsened where the error estimate is small. These ideas can be extended to MMs, except 

now, instead of meshes, we will have nodes to play with in order to ensure results of 

desired accuracy. 

 

The present work proposes to have an adaptive system in a meshless model. The 

approach that has been incorporated for obtaining the optimal solution draws its ideas 

from the Kohonen Self Organizing Feature Map – a form of neural network. The 

Kohonen networks have the ability to learn autonomously by extracting statistical 

features (without supervision) from the input pattern population. The input pattern will be 

developed on similar lines to the enrichment indicator stated earlier in order to have an 

inclusive model in place that will comprise a functioning Kohonen model working 

synchronously with the meshless model. It can be viewed as an approach for optimization 

that will not involve any increase in the degrees of freedom by the introduction of 

additional nodes in the system but will involve positioning, or arranging, a fixed set of 

nodes using the Kohonen network in such a manner that it will minimize the global and 

local errors.  

 

One of the main objectives of this work is to develop a flexible method for solving 

electromagnetic field problems that will bypass the rigidities involved in generating 

meshes presented by FEM. On obtaining results from such a method, the next objective 

will be to investigate whether the ideas of a self-organizing feature map particularly that 
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of Kohonen network can be used to obtain the best solution with the available number of 

nodes.  

 

To summarize the outline of the structure of this dissertation, the next chapter i.e., chapter 

2 section 2.1 will discuss the preliminaries of radial basis functions (RBFs) which will be 

used as the basis function in the meshless approximation technique to be considered, this 

chapter will also provide an introduction and a discussion on the theoretical as well as the 

mathematical aspects involved in meshless methods. Chapter 3 will have details 

regarding neural networks and aspects concerning the Kohonen neural network. Chapter 

4 illustrates the approach involved in designing the meshless and Kohonen models in 

detail and then presents the algorithm being proposed in this work to integrate these two 

models and the results. Chapter 5 presents the conclusion of this work and a discussion 

about future work. 

 

I have used Matlab version R2007b along with a system specification of Intel Pentium M 

processor 1.60 GHz, RAM of 512 MB and Windows XP operating system SP 2 for 

designing the models and computation tasks involved in this work. 
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CHAPTER 2 

 

2.1 Radial Basis Function 

 

2.1.1 Preliminaries on radial basis function 

 

The meshless method is primarily a numerical technique for approximating functions. 

Numerical methods such as the finite difference method (FDM), FEM or the finite 

volume method (FVM) first involve discretization wherein the creation of some sort of 

mesh is required for computation and, finally, all of them approximate the unknown 

function. There are a number of approximation techniques available which can broadly 

be classified into - 1) Least square based approximation 2) Quasi interpolation for 

approximation 3) Interpolation using polynomials or piecewise polynomials, or radial 

basis functions for approximation [6], [7]. Radial basis functions when used for 

interpolation as explained later in the text, involve translates of the basis function, for the 

construction of a multivariate function from the data points. As we will find later, the 

MM, when using radial basis function, requires reconstruction of  a multivariate function 

from a scattered data set which can be either be structured or unstructured data. This 

aspect provides us with a reason to highlight the properties of multivariate scattered data 

interpolation.  

 

Scattered data interpolation involves finding a continuous function f  such that for given 

a data (xj, yj), j = 1, . . . ., N, with xj 
n  , yj  ,  f (xj) = yj . A convenient approach to 
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represent such a function is by assuming that the function f  is a linear combination of 

certain basis functions Bk, 

                                                              N    

        f (X) =ck Bk (X),           X  n                                                 (1)   
                                                    k =1  

 

where ck denotes the coefficient. The above interpolation problem will lead to a system 

of linear equations of the form Ax = D where A denotes the interpolation matrix, x the 

vector of unknowns and D is a vector of known values or constants. The solution to the 

linear equations will exist if and only if the matrix A is non-singular. In a univariate 

environment, one can interpolate to arbitrary data at N distinct data sites using a 

polynomial of degree N-1, but in the case of a multivariate condition the system will fail 

as evident from the Mairhuber – Curtis theorem (refer to appendix A). The theorem 

highlights the fact that if we want to have a well posed multivariate scattered data 

interpolation problem then the basis should depend on the data locations.  

 

In order to construct a function, f , that interpolates a given set of uniformly scattered data 

sites, for instance in a unit cube, one would use piecewise polynomials to avoid any 

oscillations, the simplest approach in this scenario being through the use of continuous 

piecewise linear splines (spline functions of order 2). Such an approach involves shifting 

of the absolute value function to data sites, the function, f  , will be of the following form 

                                                             N    

          f (X) =ck ||X – Xk ||,      X                                                 (2)   
                                                     k =1  
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where ||.|| denotes some norm. The above equation clearly indicates that the basis 

functions Bk = |. - Xk | are dependent on the data sites. The points Xk to which the 

functions are shifted are usually referred to as centers and, generally, they are picked to 

coincide with the data sites to simplify the analysis. The functions Bk are radially 

symmetric about their respective centers thereby constituting an example of a radial basis 

function. While dealing with field problems later in this work, the field values at the 

nodes or the data points involved in the MM will not be known, infact MM will use 

interpolation technique and the values at the boundaries of the problem domain to 

estimate the field values at the data points.  

 

The above discussion provides us with a background that highlights the intricacies 

involved while dealing with multivariate scattered data interpolation and they in fact 

guide the basic criteria that result in the use of RBFs for approximation, which are 1) 

when the function to be approximated (the approximand) depends on many variables or 

parameters; 2) the data are scattered in their domain. The manner in which RBFs and 

meshless methods achieve this is by composing a univariate basic function with a 

Euclidean or P-norm and thereby converting a problem involving many dimensions into 

one that we can say is similar to a one-dimensional problem. 

 

Definition 1:  A function n is called a radial provided there exists a univariate 

function such that 

                  (x) = (r) where r = ||x||                                                          (3)   
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where ||.|| is a norm on 
n
. As defined above, Radial Basis Functions (RBFs) are a good 

means to approximate multivariate functions. Given data in n dimensions that consist of 

data sites n  
and function values f f () we seek an approximant s: 


n
to the function (the approximand)  f: n   

from which the data are 

assumed to originate. Here n > 0 is the dimension of underlying space. One can also be 

restricted to a domain D  n 
and if this D is prescribed one seeks an approximation s: 

D
 


 
only. We can consider f () as the explicit function values we know of f, which 

itself is unknown, or at least unavailable, for arbitrarily large numbers of evaluations. A 

good approximate of f () can be obtained by distributing large numbers of nodes (data 

points) in the required and precise areas of the problem domain thereby obtaining a 

solution close to the ―true‖ solution. An estimation of the accuracy of the approximant 

can be obtained by formulating a four or five point stencil approach, a technique that is 

similar to what is done in a FDM solution by taking the average of the unknown values 

around a particular point and then comparing it with the value computed at that point.  

One has to postulate the existence of  f () so that s and f can be compared and the 

quality of the approximation be estimated. In an interpolation approach to approximation 

we explicitly require s|  f |  where  n 
is the discrete set of data sites (nodes). 

It is desirable to be able to perform the interpolation without any further assumptions on 

the shape of 
 
 so that the nodes can be scattered and these ideas can easily be applied 

when the node distribution is uniform and it will be easier to handle the gridded data 

where we will have equal spacing or same step size. However we at times do consider 

= (h)
n ; h being a positive step size and  being integers thereby we have step sizes 
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with some integral multiple attached to them which help us in analyzing properties of 

approximation easily. 

 

The RBF approximant s is usually composed of finite linear combinations of translates of 

radially symmetric basis functions say (||.||). Radial symmetry implies that the value 

of the function only depends on the distance of the argument from the origin and any 

rotation thereof makes no difference to the function value. The translates are to the point 

, from where we consider linear combinations of (||.- ||). are called the centers 

and the space S is dependent on the set this observation again becomes clearer 

through the Mairhuber – Curtis theorem (refer to appendix A).  The simplest example is 

given by                              

                                  S  =       ||. - ||      

                                                  
       

The radial basis function (r) = r (linear radial basis function) where the radial 

symmetry stems from the norm ||.|| and it is shifted by the centers  RBF spaces are 

spanned by translates 

                                  (||. - ||),       

The general form of the radial basis approximants is. 

                               s(x)  =   ||. - ||), x
n                                               

 
with real coefficients 






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Examples of radial basis functions (r) are 

 

Multiquadrics         (r) =  r2
 + c

2      
c a positive parameter.                                    

where c is a shape (user-defined) parameter. 

 
 

Thin plate splines   (r) =  r
2 

log r                                                                                     
 
 
Linear radial basis   (r) = r    
 
 
Gaussian               (r) = e

-(r)2                                                                                             
 

is a positive parameter which controls the smoothness properties of the interpolating 

function. 

 

For the thin-plate spline, and several other radial basis functions, a linear (generally low-

order) polynomial has to be added to s with side conditions 

                                   m              
m

 

                                   j=   jj   =  0                                                                    
                                  j = 1               j = 1 

 
in order to be able to solve the interpolation equations uniquely; where m is the number 

of center points. In that case, the centers must not lie on a straight line, but may otherwise 

be arbitrarily distributed. For multi-quadrics, Gaussian and linear radial functions, among 

others, the extra geometric condition is not needed. 

 

Before concluding the section on RBFs, we need to highlight two important aspects that 

affect the accuracy of the solution and the efficiency of solving problems involving RBF 
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interpolation and they are 1) conditionality and 2) convergence. A detailed discussion is 

beyond the scope of this presentation. The accuracy of the solution is dependant upon the 

condition number of the coefficient matrices that are generated using the RBF 

interpolants. The condition number can be adjusted through variable shape parameters 

but it comes with a catch, as there is a conflict between the numerical stability and the 

accuracy of the solution. In case of Multiquadrics or Gaussian, convergence can only be 

achieved at the cost of instability [8], [9], [10]. To study convergence and its related 

issues in RBFs, the works of J Duchon and Z. M Wu can be considered as a good starting 

point; it is difficult to generalize the convergence phenomena when we deal with 

different types of RBFs under the stationary and the non-stationary conditions (we deal 

with these conditions later in this thesis) as they behave in a slightly different manner. 

However, its study also brought to light the fact that as the spatial dimension of the 

problem increases, the convergence order also increases, and hence when the RBF 

collocation (which involves interpolation using RBFs) approach is used, fewer 

collocation points are required to maintain the same accuracy when compared with FDM 

and FEM to solve similar problems, in this scenario, the convergence implies the 

approach of the solution to a physical problem towards the ―true‖ solution, which is 

dependent on the position and the number of nodes. 
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2.2 Meshless Methods 

 

 

2.2.1 Introduction 

 

As mentioned earlier, meshless methods are used to establish a system of algebraic 

equations for the whole problem domain without the use of a predefined mesh for solving 

partial differential equations (PDEs). Like other numerical techniques, they too require 

mathematical models that are generally expressed in terms of the field variables in the 

governing equations with proper boundary conditions (BCs) and/or initial conditions 

(ICs). The governing equations are usually a set of (PDEs) or integral equations (IEs) 

keeping in mind the latter are treated differently from the former. For dealing with 

problems involving PDEs, the methods use a set of nodes known as field nodes, 

distributed within the problem domain, as well as sets of field nodes on the boundaries, to 

represent the problem. This set of scattered nodes does not form a mesh, which means 

that no information on the relationship between the nodes is required, at least for field 

variable interpolation and when we are dealing only with linear problems. There are 

various flavors of meshless methods that have been developed over the years such as: 

smooth particle hydrodynamics (SPH) by Gingold and Monagham in 1977, the diffuse 

element method (DEM) by Nayroles in the year 1992, the element-free Galerkin (EFG) 

method proposed by Belytschko in 1994, the reproducing kernel particle method (RKPM) 

by Liu in 1995, the hp-clouds method in 1996 by Duarte and Oden and many more.[2],[5] 

They can broadly be classified into three categories: a) those based on collocation 

methods; they are truly mesh-free and do not require either a mesh structure or an 

integration procedure and are relatively easy to implement. However, they are less stable 
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and less accurate; b) those derived from the weak form, these are not considered truly 

mesh-free due to the fact that they require a background mesh to implement the 

integration; and c) thirdly those based on a local weak form, here the concept of local 

domains is used to formulate the weak form locally and to define the integration points 

[1], [2], [11]. To elaborate a bit more on the nature of the algebraic system involved in a 

meshless environment,  i) as stated above, we have the strong form (SF) which is 

represented as a system of ordinary or partial differential equations in space, 

complemented by appropriate boundary conditions. This may be presented in integro-

differential form reduced to algebraic equations, an example being the collocation 

method;  

 

ii) the weak form (WF) wherein the governing PDEs with derivative boundary conditions 

are first transformed to a weighted integral equation that ―relaxes‖ the strong form into a 

domain-averaging statement. The weak-forms are used to derive a set of algebraic system 

equations through a numerical integration process using sets of background cells that may 

be constructed globally or locally in the problem domain, the element-free Galerkin (EFG) 

method is one such approach; 

 

iii) the variational form (VF) is presented as a functional whose stationary conditions 

generate the weak and strong forms [2]. Examples include the Petrov-Galerkin approach 

wherein we find variational statements.  
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The choice or approach of mathematical model will ultimately depend upon the given 

conditions for the system and the ability of a particular approach to handle them well and 

provide a good solution. 

2.2.2 Procedures of Meshless methods 

 

This section will present the details that are involved in the use of meshless methods. A 

typical meshless system will involve the following steps (Fig 1).  

 

Fig 1 

The basic steps involved in solving a problem using the meshless approach. 

 

Node Generation: Node distribution can be performed arbitrarily over the problem 

domain provided the nodes are placed in the regions where the solution is required.  In 

certain scenarios where it is convenient to have basis functions that can automatically 

adapt to changes in the nodal distribution such as in the case of fluid dynamics or of 

anisotropic supports , the nodes can be generated in a problem domain using triangulation 
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algorithms that are routinely available for 2D and 3D domains. The significance here is 

that the process of node generation can be fully automated and the analysis can be 

performed in a fully adaptive manner; such an approach is prevalent in a well established 

meshless technique known as the Natural Element Method (NEM) [12].  In terms of 

implementation for the present work, the uniform distribution was created easily by 

defining a fixed step size (spacing among the nodes). On identifying the boundaries and 

with the available number of nodes an iterative approach has been used to distribute them 

in the problem domain. In the case of a random node distribution we have considered the 

Halton sequence, (refer to appendix B).  

 

Shape Functions: The approximation function is an essential feature of the meshless 

method. In this, the field solution is approximated by local shape functions, often but not 

always, using a form of radial basis functions. 

 
                                                                Fig 2 

 
Domain representation using a) the FEM approach with its triangular elements in place b) random 

distribution of field nodes using the meshless approach with the same problem domain [2]. 
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Each node, through its shape function, is considered to have a domain of influence, which 

could cover the entire problem space or might be limited to a local neighborhood. The 

field value at any point in space is then given by summing the contributions of all the 

nodes within whose domain of influence the point lies. The weight function, or basis 

function, plays an important role in the performance of the methods and is used in all 

varieties of meshless methods.  In the construction of the shape functions, one of the 

concepts that we come across is the influence domains and the support domains. One 

would tend to interpret both of them as the same but there is a slight nuance. 

                                       

Fig 3 

 
A meshless discretization of an arbitrary domain with the support domains [2]. 

 
The support domain defines which nodes in the problem domain are needed for the 

interpolation at a particular point x = (x, y). Nodes closer to x can be given more 

importance in the interpolation calculation than the nodes further away, in which case the 

support domain is said to be weighted. However, this is not always done. Different points 

can have support domains of different shapes and sizes, although typically the shape is 
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circular or rectangular. The influence domain is a similar concept except that in this the 

point (or the reference point) is not merely a point but is a node considered from the ones 

distributed in the domain. The influence domain is just how far a node (where the node is 

the center of a RBF) extends its influence, and it can be different for each node.  The 

concept of a support domain works well when the nodes are distributed evenly whereas 

the influence domain works well even if the nodes are distributed very unevenly; but the 

latter is slightly more difficult to construct. 

 

Disctretized system equations and the field variable solution: The discrete equations 

involved in a meshless method are formulated using the shape functions and the strong or 

weak form of the system equations. These equations are often written in a nodal matrix 

form and are assembled into the global system matrices for the entire problem domain.  

The solution is obtained using the available established numerical techniques used for 

solving systems of algebraic equations, including direct or iterative methods such as the 

Gauss elimination or the QR method etc. 

2.2.3 Numerical implementations 

 

In Chapter 1 some background concerning approximation using interpolation with radial 

basis functions were presented since this approach has been used in the present work. 

Before additional details are provided in terms of the manner in which the 

implementation has been handled, this section will briefly highlight three main numerical 

techniques that are widely used in the meshless world and also extensively applied in the 

field of electromagnetics, including the one that has been used in this work.  
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Fig 4 

 
The Background Cell for the Galerkin weak-form using Quadrature Integration Scheme approach. Field 

nodes represent the problem domain. The background cell structure is used to evaluate the integrations in 

the weak form. 

 

Element Free Galerkin (EFG) method: Meshless methods based on the global weak form 

usually use this approach. In the EFG method, the problem domain is represented by a set 

of distributed nodes. The moving least square (MLS) approximation is used to construct 

shape functions that use only on a group of arbitrarily distributed nodes in a local domain, 

which is a part of the global domain. As shown in Fig 4, the domain is divided into a 

latticed domain known as the background cells consisting of nodes.  A set of background 

cells is used to evaluate the integrals that result from the use of the Galerkin weak form 

(the Quadrature Integration Scheme approach). Each cell becomes a unit of integration. 

Usually Gauss integration is applied in all cells. To have a better idea, the figure (Fig 4) 

is a representation of such an arrangement when the number of integration points is four 

at an inner cell, and sixteen at a boundary cell applied to a square domain. There are 

certain difficulties associated with this approach particularly in enforcing the boundary 

conditions [13],[14], besides this it also requires global numerical integrations for which 
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a global background cell structure has to be used, which adds more complexity. An 

alternative approach is the spatial integration of the Galerkin method, which was 

achieved by evaluating the integrals of the weak form only at the nodes suggested by 

Beissel and Belytschko in 1996. There is no need of a cell structure or background mesh 

in this approach and it is a truly meshless method. However, in certain cases it results in a 

spatial instability because of underintegration causing spurious modes of energy (modes 

with no physical basis that appear due to lower order of numerical integration) and 

providing a singular assembled stiffness matrix; this problem arises because the 

integration scheme at times leads to rank deficiency [15].  

 

Petrov–Galerkin Method and Local Boundary Integral: Zhu in 1999, and Atluri and Zhu 

in 2000 proposed two kinds of meshless methods: the meshless local boundary integral 

equation (MLBIE) method and the meshless Petrov–Galerkin (MLPG) method. Both 

these methods use the MLS approximation to interpolate the solution variables, the 

MLBIE method uses a local boundary integral equation formulation, and the MLPG 

employs a local symmetric weak form. Here a local weak form over a local subdomain, 

which is located entirely inside the global domain, is used. Integrals in both methods are 

evaluated over regularly shaped domains and their boundaries. There is no need for a 

background mesh, and they are truly meshless methods. Here, too, the nodal shape 

functions from meshless interpolations, such as MLS, are highly complex in nature; and 

this makes an accurate numerical integration of the weak form difficult [4], [16].  
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Collocation Method: This technique has been in place for a long time. There are various 

forms of it in place such as the vortex method proposed by Chorin in 1973, the finite 

point method (FPM) by Oñate and others in the years 1996 and 1998, the hp-meshless 

cloud method by Liszka in 1996, the meshfree collocation method by Kansa in the year 

1990 and other variants of collocation technique by Wu in 1992; Xu in the year 1999 and 

many more [2],[17]. The present work implements an approach similar to the Kansa 

method. In collocation techniques, the discretized equations can be obtained directly from 

the strong forms of PDEs governing the problem. The PDEs are discretized directly 

without using weak forms, and hence no numerical integration is required thereby 

making the process simple to implement, which is one of its major advantages.  

 

However, two major problems are common to this technique. One being the issue of 

singularity of the moment matrix (coefficient matrix) arising in the process of function 

approximation. This can be avoided by using a matrix triangularization algorithm for a 

point interpolation method (PIM) that uses polynomial basis as suggested by GR Liu and 

Gu in 2001 and 2003 or by using the weighted least squares method as proposed by  Krok 

and Orkisz in the year 1989, or as implemented in the Kansa approach by using RBFs.  

The Kansa method is a global collocation method that uses all the points in the problem 

domain, which leads to a fully populated system matrix [17]. As RBFs are used, the 

moment matrix is, in general, not singular.  

 

The second issue arises due to the boundary conditions. Strong-form methods can 

produce accurate results for PDEs, when the boundary conditions are all of the Dirichlet 

type. The accuracy of the solution deteriorates drastically when there is any derivative 



 23 

boundary condition, and the solution can end up being very unstable: small changes in 

the setup of the problem can lead to a large change in the solution. The discretized system 

equation behaves like an ill-posed problem in which errors introduced into the system are 

magnified in the output. Some of the common ways of rectifying such issues are a) using 

a set of fictitious points (FPs) that is added outside the problem domain along the 

derivative boundary, which leads to two sets of equations one for the derivative boundary 

condition and the other for the governing equation;  

 

b) a Hermite-type collocation (HC) method in which additional derivative variables for 

the derivative boundary nodes are used to enforce the derivative boundary conditions;  

 

c) a Direct collocation (DC) method where the derivative boundary conditions are 

discretized by collocation to obtain a set of separate equations that are different from the 

governing system equations. This approach has been applied in the present work. 

 
 

2.2.4 Collocation Method 

  

This section will restrict itself to presenting the collocation approach using the Gaussian 

form of RBF, as it has been used in the present work. Before presenting the mathematical 

aspects involved in it, a few properties of the Gaussian form of RBF will be provided in 

the following paragraphs. 

 

Consider equation (9), (r) = e-(r)2, where is a positive parameter and is known as the 

shape parameter. It is related to the variance  of the normal distribution function by  2 
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= 1/ (2
). The Gaussian with Euclidean distance function ||.||2 for any fixed center xk  


n , can be defined as 

   

                         (x) = e-(2 || x – xk
 ||2

2
  ,         x n                                                          (11) 

 

or, we can write using equations (9) and (11) 

                         

                            k(x)  =   (||x – xk||2)                                                                    (12) 

 

a smaller value of (greater variance) will result in flat distribution whereas for 

increased we have a peaked RBF,  plays an important role as highlighted in section 

2.1.1 in terms of the accuracy and stability of the solution. There are two ways to set the 

shape parameter either by fixing the value of for all the experiments with the Gaussians, 

known as a non-stationary approximation, or by scaling the shape parameter according to 

the spacing among the nodes so that we have peaked basis functions for densely spaced 

data and flat basis functions for coarsely spaced data. The selection of a good shape or 

optimal shape parameter can be performed in number of ways such as using a power 

function as the indicator or cross validation but the approach that is most widely used by 

practitioners is through trial and error. 

 

In interpolation with data {Zi, fi} where i = 1,.…, N (the nodal points), Zi  n the values 

of fi can be considered being sampled from a function f: n which is a linear 
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combination of certain basis functions, here the functions are RBFs (r). Referring to 

equations (4) and (5) we will have an equation of the following nature 

                                        N 

                          Pf (Z) =  xk  (||Z – Zk||2),                     Z  n                                    (13) 
                                         k = 1

 

 

such that   Pf (Zi) =  fi  where i = 1,.…, N which leads to a linear form of the system 

equation of the nature Ax = f , interchanging the L.H.S and R.H.S in (13) the matrix form 

is represented as: 

 

      (||Z1 – Z1||2)      (||Z1 – Z2||2) …  (||Z1 – ZN||2)                x1                f (Z1)    

      (||Z 2 – Z 1||2)    (||Z 2 – Z 1||2)…  (||Z 2 – Z N||2)              x2           f (Z2) 

                  .                                                                          .              . 
                  .                                                                          .    =  .     .               (14)       
                  .                                                                          .               . 

     (||Z N – Z 1||2)    (||Z N – Z 1||2) …(||Z N – Z N||2)               xN          f (ZN) 

 

 

Where k varies from 1 to N indicating the total number of data points or nodes. xk being 

the notation for the unknowns.  Equation (14) shows the basic structure of the matrix that 

will be used in most of the scenarios later. In the collocation method, matrices of such 

form are altered or modified depending upon the boundary conditions and the governing 

equations that completely define the system. 

 

The idea employed behind the collocation approach is to satisfy the governing PDEs at 

each of the nodes in the domain. If a Dirichlet or a Neumann boundary condition is 

imposed on a node that is on the boundary, then an equation that satisfies the boundary 

condition is developed for the boundary node instead of satisfying the governing partial 
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differential equation. The Kansa‘s collocation method approximates the solution of u (the 

unknown) by a radial basis function (multiquadric) expansion.                     

       

                                              N  

                                u (x) =  cj  (||x – j||2),       x n                                                       (15) 
                                                              j = 1 

 

The set of centers is represented as   = {12N}, the collocation points and 

the centers often coincide. Equation (15) can easily be interpreted from the discussions 

presented for equations (3), (5) and (14).  Assuming Nd to be the number of nodes 

carrying a Dirichlet boundary condition, Nn to be the number of nodes carrying a 

Neumann boundary condition and Ni be the remaining nodes or the interior ones. The 

total number of nodes (Nt) covering the domain is given by Nt  =  Nd + Nn + Ni. Any PDE 

problem can then be described in the following manner. 

 

                               L u   = f                      (for all Ni)                                                                  (16) 

 

                             u  = d   on    d      (Dirichlet‘s conditions, for all Nd)                             (17) 

 

                    

                      u /n  = n   on   n       (Neumann‘s conditions, for all Nn)                          (18) 

 

L signifies the differential; d and n are the Dirichlet and Neumann boundaries 

respectively, d and n signify the values present on such boundaries, whereas f signifies 

the right hand condition that exists in the governing PDE it can be 0 or some constant 
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value or function of variables depending upon the nature of the equation. On applying the 

set of conditions to the respective nodes, it will lead us to a matrix problem of the 

following form 

                              uL                             a       

                                                   C      =                                                                                                             (19)                                                              

                                      u                                 b 

 

where the vector a collects values for Ni nodes and the vector b collects values for  Nd + 

Nn nodes. Where uL  =  L  (||x – j||2) |x = xi; xi   Ni ;  j    and  u =  (||xi – j||);  xi  

Nd + Nn ;   j 

The matrix    uL    NT
 
X
 
NT    ; C  NT X 1 and the RHS vector  NT X 1 

 . 

                              u                            

 

The above discussion provides the mathematical aspects of the Kansa approach also 

known as the non-symmetrical collocation method due to the nature of the collocation 

matrix (refer to appendix C ) in the simpler form that has been used in the present work.  

 

2.2.5 Summary 

 
This concludes the present chapter which has provided an introduction along with an 

insight into the theories involved in meshless methods particularly the collocation 

approach and the RBFs that are used for interpolation. The next chapter presents an 

overview of the ideas involved in Artificial Neural Networks (ANNs).  Section 3.4 in the 

next chapter is entirely devoted in highlighting the facts involved in the Kohonen 

Networks since it has been applied in the present work. As mentioned earlier, the purpose 
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of using self-organizing feature map is to move the nodes to positions that will provide 

the most accurate solution with the given number of degrees of freedom. 
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CHAPTER 3 
 

3 Neural Networks 

 

3.1 Introduction 

 

The discipline of neural networks originated from a understanding of the human brain. It 

had its origins when McCulloch and Pitts in the 1940s found that neurons could be 

modeled as simple threshold devices which perform logic functions. Later Hebb, in the 

late 1940‘s, proposed the Hebbian rule to describe how learning affects the synaptics 

between two neurons [18], [19]. These fundamental discoveries laid the foundations for 

future research in this area and over the years many models were put forward; these 

include the perceptron model by Rosenblatt proposed in 1957 and in 1960 Widrow and 

Hoff proposed the adaline (adaptive linear element) model [19], [20]. Some pioneering 

works were conducted on competitive learning and self-organization by von der 

Malsburg and Stephen Grossberg and in 1973 Stephen Grossberg, based on the 

connection patterns found in the visual cortex, proposed the concept of self-organization 

maps (SOMs) and one of the well-known network models based upon such maps is the 

Kohonen network [21], [22]. The modern era of neural-network research is commonly 

deemed to have started with the publication of works related to the Hopfield network in 

1982. This was followed by the advent of some additional models such as the 

Hamming network proposed by Lippman in the mid-1980s, the multilayer perceptron 

(MLP) model trained with the back propagation (BP) published in 1986 by Rumelhart  
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and many more. Biological neurons are the basic cells that make up the nervous system 

and the brain; small electrical gap junctions called synapses interconnect them. The 

electrical signals of the brain are processed in the neuron‘s cell body and sent to the 

synapses through the axons and dendrites (neuron endings) and the synapses distribute 

this signal to the neighboring neurons. It is estimated that an average human brain 

consists of 100 billion neurons of various types, with each neuron connected to up to 104 

synapses. This massive, as well as complex, network of neurons processes signals 

separately and simultaneously thereby demonstrating a parallel distributed processing 

system. This parallel aspect is one of the main features that various artificial neural 

networks (ANNs) try to emulate. Like its counterpart in nature, the basic functional unit 

of an ANN is also known as a neuron. Such a node (neuron) processes all fan-in from 

other nodes and generates an output according to a transfer function called the ―activation 

function‖, which represents a linear or non-linear mapping from the input to the output 

and is denoted by  (.) (Fig 5).  

 

Fig 5 

 
On the left a biological neuron, on the right a mathematical model representation found in ANNs – a 

McCulloch-Pitts neural model [19]. 
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                                           j 1 

                               net = w i xi -  =  wT
 X -                                                        (20) 

                                          i = 1
 



                                y   =   (net)                                                                                       (21) 
 

where xi is the ith input, wi  is the link weight from the i th input, the vector w = (w i ,……, 

w j) T, X = (xi,…….., x j) T   , is a threshold or bias and j1 is the number of inputs. The 

activation function equation 21), is usually some continuous or discontinuous function 

mapping the real numbers into the interval (-1, 1) or (0, 1). The following are examples 

of some of the activation functions used. 

Hard Limiter threshold (a step function) 
 

                            (x)   =         1     x   0   
                                                                                                                            (22)                                           

                                            -1      x  < 0 
 

 
Logistic function (sigmoid function) 
 

                       (x)   =     1/ ( 1 + e-x  )
                                                                         

(23) 

Semi linear function 

                                            1                                       x > a 

                       (x)    =             

                                            x/ 2 a  1 a            - a  x  a                

                                              
                                            0                                 x < - a                                             (24) 

 

In practical implementations, all the neurons are typically assumed to have the same 

activation functions. The McCulloch–Pitts neuron model employs the sigmoidal 
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activation function and has been used in most neural-network models, including 

multilayer perceptrons (MLPs) and Hopfield networks. Many other neural networks are 

also based on the McCulloch–Pitts neuron model, but use other activation functions e.g., 

in the adaline and Kohonen‘s self-organizing maps, (SOMs), linear activation functions 

are used. The sigmoidal activation function is suitable for a training algorithm due to its 

monotonic character and derivability but from an approximation viewpoint, the function 

is not always an optimal choice and, as a result, we find the use of other activation 

functions in ANNs.  

 

Neural network models are specified by the net topology, node characteristics, and 

training rules. The training rules specify an initial set of weights and indicate how 

weights should be adapted during use to improve performance. A detailed discussion on 

these aspects of ANNs has been provided in the following sections. 

 

The ANNs have the ability to detect trends or patterns from complicated sets of data. The 

trends in such cases are difficult for humans to identify and it is in such scenarios that 

ANNs play a significant role. After being fully trained, the ANNs gain the ability to 

provide projections when new situations are presented to them. The neural network 

models are used to address certain types of problems such as a) optimization, b) 

classification, and c) prediction.  In the electromagnetics community they have been put 

to use in number of ways e.g., optimization of magnetic devices [23], in FEM solvers for 

approximating mesh density [24], magnetic performance prediction [25] and many more 

[26], [27]. This work uses an ANN to optimize a meshless model applied in the field of 

electromagnetics; as mentioned earlier, in this scenario we will look for an optimal nodal 
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arrangement in a given problem domain that will provide us with the accurate field 

solution. 

3.2 Neural Network Architecture 

 
The weight matrix w = [wij], where wij  denotes the connection weight from node i to 

node j, is used to describe the network architecture. When wij  = 0 there is no connection 

from node i  to node j. By setting the connection weights between nodes, one can realize 

different network topologies. The basic structure of a neural network consists of one or 

more layers of neurons. The input layer distributes the network inputs to the subsequent 

layers. One or more hidden layers follow it. The functioning of the hidden layer is 

invisible to the user and hence the name. The hidden layers usually do the computation 

and the result is passed on to the output layer. In terms of architecture, neural networks 

can broadly be classified into a) feed forward neural networks (FNNs) b) recurrent neural 

networks (RNNs) and the combination of two. Some popular network topologies include 

fully connected layered FNNs, RNNs, lattice networks and layered FNNs with lateral 

connections (Fig 6).  

 

FNNs are the most common type of neural networks. As implied by the name, the signal 

propagation is only in the forward direction, and there is no physical feedback. The 

network is usually arranged in the form of layers. FNNs exhibit no dynamic properties - 

the networks are simply a nonlinear mapping and are often referred to as universal 

approximators [19], [28]. It has been proved that with an appropriate number of hidden 

layers, feed forward networks can be used to approximate any function. Examples 

include MLPs and RBFNs, which are fully connected, and layered FNNs. In RNNs, 
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there is at least one feedback connection that corresponds to an integration operation or 

unit delay. A RNN actually represents a nonlinear dynamic system. The Hopfield models 

and the Boltzmann machines are examples of RNNs. Lattice networks are comprised of 

one-, two- or higher-dimensional arrays of neurons (Fig 6 c). Each array has a 

corresponding set of input nodes. The Kohonen network uses a one- or two-dimensional 

lattice architecture [22] [29], [30]. 

 

 

 Fig 6 

(a) Fully connected layered FNN. (b) RNN. (c) Two-dimensional lattice network. (d) Layered FNN with 

lateral connections. The large circles denote neurons, and the small circles denote input nodes. 
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3.3 Learning in Neural Networks  

 

Learning can be viewed as the task of searching through a large space of hypotheses; the 

goal of this process is to find a result or representation that best fits the training scenarios. 

A learning algorithm can adapt the nonzero elements of w or weights. Learning in the 

context of neural networks can be defined as a process by which the free parameters of a 

neural network adapt through a process of stimulation by the environment in which the 

network is embedded. The type of learning is determined by the manner in which the 

parameter changes take place and can be viewed as a nonlinear optimization problem in 

which the goal is to find a set of network parameters minimizing the cost function for a 

given set of examples. This kind of parameter estimation is also called a training 

algorithm. They are usually trained by epoch, which is a complete run when all the 

training examples are presented to the network and are processed using the learning 

algorithm only once. After learning, a neural network represents a complex relationship, 

and possesses the ability for generalization. When a new input is presented to the trained 

neural network, a reasonable output is produced, provided it was trained with correct 

input data.  The following are a few of more common learning algorithms (models) that 

are used in the various network models [18], [19]. The purpose of this discussion is to 

highlight the manner in which the learning models update weights and this is how they 

are different from one another, most of the network architectures use these update rules 

through an iterative process. 

 

Error Correction learning: Consider a network with an input vector x(n) , the output being 

yk(n) , the desired response being denoted as dk(n) and the error signal as ek(n). k 
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signifies the neurons in the output layer and n is the current time step. Based upon the 

error signal ek(n) a sequence of corrective adjustments to the weights of neuron k is 

applied. The purpose is to make the output signal yk(n) move closer to the desired 

response dk(n) in a step by step manner. This objective is achieved by minimizing a cost 

function, (n), defined in terms of the error signal ek(n) as 

 

(n) = ½ (ek(n))
2
                                                                                 (25) 

 

The minimization of the cost function (n) defines a learning rule commonly referred to 

as the ―delta rule‖ or the ―Widrow – Hoff rule‖ an approach applied in single and multi 

layer feed forward networks. According to this wkj(n) the synaptic weight for neuron k, 

is excited by element  x  j(n) of signal vector x(n) and is defined by  

    

                        wkj(n) = ek(n) x  j(n)                                                                                (26) 

 

where is a positive constant that determines the rate of learning as we proceed from 

one step in the learning process to another. Having computed the weight adjustment 

wkj(n) the updated value of synaptic weight wkj  is determined by  

 

                     wkj(n + 1) = wkj(n) + wkj(n)                                                                           (27) 
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Memory-Based (Instance based) Learning: Here the past experiences are explicitly stored 

in a large memory of correctly classified input – output examples:  (x  i,di) where i ranges 

from 1 to N,
 x i  is the input vector,  di denotes the desired response and N is the number 

of data points.  In classifying a test vector x test this algorithm responds by retrieving and 

analyzing the training data in a local neighborhood of x test. One of the important aspects 

involved here is the manner in which the local neighborhood of the test vector x test is 

defined; i.e. by defining a function of the form. 

  

            min d(xi, x test) =  d(x
'
N, x test)                                                                               (28)                         

 

where d(x
'
N, x test) is the Euclidean distance between the vectors, xi and x test. The class 

associated with the minimum distance, which is the vector x
'
N, is reported as the 

classification of  x test. Apart from this, there are three other properties that are defined in 

this technique – a) the number of neighbors; b) a weighing function such that the nearby 

points are weighted strongly compared to far points (but this is optional in some cases); 

and c) fitting the local points .  

 

Hebbian Learning: This is the oldest among the learning rules and states that if two 

neurons on either side of a connection are activated synchronously then the strength 

(weight) of that connection is selectively increased or if on either side they are activated 

asynchronously, then the connection is selectively weakened or eliminated. This 

approach is known to have linear dependency on the size of the network, where 

saturation (a state when the output of a node is near its extreme value) leads to 
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―catastrophic forgetting‖. The outputs from adjacent nodes are locally available and are 

used to produce a local modification that is input specific, implying that it doesn‘t take 

into account the overall system input-output characteristic. The manner in which the 

weights are adjusted can be represented in the following manner 

 

                        wkj(n + 1) = wkj(n) + x k (n)x j(n)                                                                 (29)   

                     

where is a positive constant that determines the rate of learning; the x’ s are the outputs 

of k th and j th elements. We find such rules in recurrent networks, such as the Hopfield 

neural network. 

 

Boltzmann Learning: This is a stochastic learning algorithm derived from the ideas in 

statistical mechanics and is based upon the Boltzmann machine in which the neurons 

constitute a recurrent structure and operate in a binary manner. For example, they are 

either in an ―on‖ state denoted by +1 or in an ―off‖ state denoted by -1. Boltzmann 

Learning is characterized by states of individual neurons as shown by 

                                  E = - ½ wk j  xk  x j           j    k                                                 (30)                       

 

where wk j   is the weight connecting neuron j to k  and x j  is the state of neuron j  . It is 

similar to the error-correction learning rule but instead of a direct difference between the 

result value and the desired value, the difference between the probability distributions of 

the system is considered. Hence in effect, the entire system output is taken into account. 
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The probability distribution P during the flipping state of neuron k from x k to state - x k  

at some state T is given as   

               

          P(x k - x k ) =  1/ 1+ exp (- Ek / T)                                                                 (31)   

 

Competitive Learning: Unlike the Hebbian based ANN where several outputs may be 

active simultaneously, there is only one in this case. The neurons compete among 

themselves to become active (fired).  This feature makes it highly suitable for discovering 

features statistically that can be used to classify a set of input patterns. The Kohonen 

network uses this learning rule and a detailed discussion on this approach is included in 

the next section. 

     

So far in this chapter, the rules involving the training of ANNs have been described. 

There is a certain set of standard methodologies that use these rules to perform the task of 

training, known as learning methods, and they are classified as supervised, unsupervised, 

reinforcement, and evolutionary learning. The present discussion will highlight only the 

first two forms since they are more relevant to the work being discussed here. Supervised 

learning involves comparison between the actual network output and the desired output. 

Network parameters are adjusted by a combination of training patterns and the 

corresponding errors between the desired output and the actual network response. 

Supervised learning is a closed-loop feedback system, where the error is the feedback 

signal. Error correction learning and Boltzmann learning rules are implemented using this 

method. In the case of the unsupervised method, there are no target values and it does not 
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require any teacher. In this scenario, the training data is unlabeled implying there is no ―a 

priori‖ knowledge of a distribution class that may exists in the data source. In terms of a 

statistical approach, the models using an unsupervised method often use clustering 

algorithms or probability density approximations. A criterion is needed to terminate the 

learning process or else the learning process continues even when a pattern, which does 

not belong to the training patterns set is presented to the network. The Hebbian learning 

and the competitive learning schemes are the ones that are involved with such an 

approach. 

 

3.4 Kohonen Networks 

 

 

Stephen Grossberg, Von der Malsburg and Fukushima conducted pioneering work on 

competitive learning and self-organization maps, based on the connection patterns found 

in the visual cortex. Upon those concepts professor Teuvo Kohonen proposed his self-

organization map (SOM) which is widely known as the Kohonen Network [22]. 

 

 
Fig 7 

 
The Kohonen Model 

 

http://en.wikipedia.org/wiki/Teuvo_Kohonen
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The Kohonen network (Fig 7) is a feed forward structure with fully interconnected 

processing units that compete among themselves (competitive learning) to be activated or 

fired. The output layer is called the Kohonen layer. The input nodes are fully connected 

to the output neurons with their associated weights. Lateral connections between neurons 

are used as a form of feedback whose magnitude is dependent on the lateral distance from 

a specific neuron, which is characterized by a neighborhood parameter (Fig 8). 

 

 

Fig 8 

Neighborhoods (0, 1 and 2) of the centermost unit with a rectangular lattice The innermost polygon 

corresponds to 0-, next to the 1- and the outmost to the 2-neighborhood. 

 

 

A SOM can be thought of as a net which is spread over the data cloud (the vector 

carrying tagged data in the input space). In the present work, this data cloud will be an 

error grid (in vector form) spread over the input space; the error being the measure of the 

accuracy of the approximate solution obtained using the Kohonen neurons (nodes) in 

conjunction with the meshless model.  The SOM training algorithm moves the weight 

vectors towards the element of the data cloud based on certain criteria (here it is the 

highest error criteria), so that all the neurons span the data cloud and the network of 

neurons is organized; this is done for all the neurons and while one neuron is being 

moved the neighboring neurons also get adjusted accordingly. The highest error criteria 
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involves a process in which a neuron is moved towards a location where the error is the 

highest from a set of error points that are within its domain of influence. The SOM is 

trained iteratively, in each training step one vector x from the input data set is chosen 

randomly and the distances between it and all the weight vectors of the SOM (Kohonen 

nodes) are calculated using some distance measure. Here we are using the Euclidean 

distance. The neuron whose weight vector is the closest to the input vector x is called the 

Best Matching Unit (BMU) denoted here by b                  

 
                    || x – m b ||  =  min {|| x – m i ||}                                                                     (32) 

                                            i   N 

 

N represents the set of Kohonen nodes and ||.|| the Euclidean distance. Each variable has 

an associated weighting factor; the greater this value, the bigger the component‘s 

(neuron‘s) effect on map organization will be.  

 

After finding the BMU, the weight vectors of SOM are updated so that the BMU is 

moved closer to the input vector in the input space, the topological neighbors of the BMU 

are treated in a similar manner (Fig 9). 

 

Fig 9 

             The solid and the dashed lines correspond to situation before and after updating respectively. 
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The Kohonen update rule can be described in the following manner: 

 

                 mi (s + 1)  = mi (s) + (s)h bi(s)[x(s) – m i (s)]                                                 (33) 

 

where s denotes time or iteration steps, x is an input vector drawn from the input data set 

during s, h bi(s) is the excitation response also known as the neighborhood function or the 

kernel function around the winning neuron b and (s) is the learning rate during s. The 

neighborhood function is a non-increasing function (decay) of iteration steps and the 

distance of neuron, i  from the winning neuron b: (hbi ) is typically selected as   

 

                       h bi  (s) =  h0e 
(- || m 

b
 -  m 

i
 ||2/


s )                                                                                                     (34) 

 

h0 here is a positive constant. The topological neighborhood also known as the 

neighborhood size, is a decreasing function of s and one popular choice for the function 

decay is to use an exponential decay as shown above. The training can be stopped when 

the map achieves equilibrium with a given accuracy or when a specified number of 

iterations is reached. 

 

The role that will be played by the Kohonen network in the present work is to identify or 

to locate the regions in a given problem space, where a given number of nodes can be re-

arranged to obtain the best possible solution using the meshless model. 
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3.5 Summary 

 

This concludes our discussion pertaining to ANNs. It provided in depth details 

concerning certain important aspects of ANNs such as learning and the manner in which 

learning is handled in various models of ANNs; emphasis was placed on presenting the 

Kohonen model as it has been implemented in the present work. The following chapter 

will present the ideas behind designing the meshless and the Kohonen models and 

various test scenarios that were used during the design phase. 
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CHAPTER 4 

 

4 Model Design and Simulation 

 

This section will discuss in detail the approach involved in designing the meshless and 

the Kohonen models and then present the manner in which the two have been integrated. 

It will also present some mathematical aspects involved in them during the course of the 

discussion and the simulation results. 

4.1 Meshless Model 

 

We will present number of scenarios for solving elliptic partial differential equations 

using RBF collocation. The approach will be similar to that used by Kansa [34] but 

instead of multiquadrics, the present work uses Gaussian RBFs in most of the scenarios. 

Before we proceed further, let us familiarize ourselves with certain aspects of field 

problems with boundary conditions, which will help us to appreciate the manner in which 

the technique is applied. Generally, a field problem is represented by a differential 

equation, which is similar to those used in equations (19), (20) and (21) to describe the 

attributes of approximation, and is of the form.  

 

                             
                                         L u = f                                                                                             (35) 
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L  is the differential operator, u  is the unknown function to be determined, f  is the 

forcing function, and together with boundary conditions, they describe the field problem 

for the domain under analysis. In electromagnetic problems, equation (38) is given by the 

Poisson, Laplace or Helmholtz equation, in which u is a scalar or a vector field. For 

instance, in an example of an electric field problem to be discussed later, u , the unknown, 

represents the electric potential V and with a uniform charge density distributed over the 

space in a homogenous medium the differential operator acting on the potential in space 

is described by the Laplace equation and is of the following form 

 

                                    
V = 0                                                                                         (36) 

 

The conditions that represent the behavior of u on the edges of the domain are called the 

―boundary conditions‖ and they constraint the fields along of the domain under 

analysis. Among these conditions, one can assign a Dirichlet‘s condition, which occurs 

when a given value of u is assigned on the boundary  or a Neumann‘s condition, which 

is assigned when the derivative of u is normal to In a homogenous environment, the 

Dirichlet‘s and Neumann‘s conditions are represented as u = 0 and u /n = 0 respectively 

[31]. 

 

We begin our discussion with a simple parallel plate capacitor arrangement where there 

are two plates held at different potentials with an air gap in between them (Fig 10 a). This 

example will be used extensively in order to demonstrate the fundamentals that are 

involved in this method.  
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                                     a                                                                                         b 

                                           
                                                                         c 

Fig 10 

a) Set up for the Laplace equation 
V = 0 along with boundary conditionsV/n   = 0   for y = 0, V/n 

= 0   for y = 1, V = 1   for x = 0 and V = 0   for x = 0  b) 81 nodes uniformly distributed within a region of 

[0, 1]
2
  c) The potential distribution. 

 

In the example above, the bottom and the top boundaries were set to potential values of 0 

and 1 respectively whereas the left and right boundaries were set to a homogenous 

Neumann‘s condition of V/n = 0 (V denotes the unknown field). 81 nodes were 

uniformly distributed over the problem domain of which 32 nodes were present on the 

boundaries and the remaining 49 were inside. We carried out most of our simulations 

with node numbers ranging from 16 to 450 nodes, the count was kept small in order to 

save computation time. The shape parameter,  in all the test scenarios presented in the 

following sections unless specified, was set within a range of 3 to 5. The value of  was 



 48 

decided by carrying out a basic experimentation involving stationary approximation 

(refer to section 2.2.4) where we began with a large value of  and gradually decreasing 

the value until there was a warning from Matlab of the matrix being ill conditioned, a 

value of  prior to reaching such a state was considered good enough as it was also 

noticed that the accuracy increased with the decreasing value of (the trade off 

mentioned in section 2.1.1). An extreme test case was also performed where we 

uniformly distributed 2000 nodes in a similar [0, 1] X [0, 0.5] domain, here  was altered 

to a value of 19 to obtain good results (R.M.S error being of the order 1.10E-03). In the 

present problem the first assumption that was made, as was mentioned earlier, is that the 

centers of the basis functions associated with the interior points are considered to be the 

same as the collocation points. We then had to fit the collocation points and the centers 

with the boundary conditions. The manner in which the collocation matrix is derived has 

been discussed in section 2.2.4, where the governing equation is applied to the interior 

nodes whereas the Dirichlet‘s conditions and Neumann‘s conditions, the latter involve 

handling of derivatives, are applied to the boundary nodes (for further details, refer to 

appendix C). This approach involving RBFs resulted in the largest errors near the 

boundaries. To avoid this, the collocation points on the boundaries were made to satisfy 

the PDE as suggested by Fedoseyev [32]. 
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Fig 11 

The additional collocation points represented as ‗*‘ that were used to obtain accurate results on the 

boundaries 
  

To meet the guideline as stated earlier, additional collocation points were created outside 

the boundaries (Fig 11, denoted with asterisk) which were equally spaced. The next task 

involved a test scenario as performed in the previous setup but with a random distribution 

of nodes (Fig 12). We retained the same boundary conditions as earlier and the random 

distribution of 81 nodes was achieved using the Halton sequence (refer to appendix B). 

                 
                                     a                                                                          b 

Fig 12 

            a) The random distribution of 81 nodes within a region of [0, 1]
2
. b) The potential distribution. 
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The R.M.S errors were 1.22e-003 and 1.13e-003 for the uniform and random 

distributions respectively. With a similar and simple geometry and with the same number 

of nodes in place, there were no substantial differences in the results. 

 

Our next endeavor was to verify whether such an approach (collocation RBFs) has the 

ability to handle the interface conditions. To study this we considered a problem where 

we had two domains  and  with permeabilities  and  

respectively (Fig 13) the condition being  = 10 *   (i.e., the upper half had 10 times 

the permeability of the lower half). 

                                 
                                                                                      Interface Nodes  

Fig 13 

              The two domains with different permeabilities each having 66 uniformly distributed nodes. 
                
                                  
A homogenous Neumann boundary condition was applied to - the left and right hand 

edges for both domains i.e.,Vn = 0. In the case of  the essential boundary condition 

at the bottom edge was set to V2 = 0, whereas for  the top edge was set to V1 = 1. 66  
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nodes were uniformly distributed in each domain.  As can be seen from the figure above, 

we had 11 nodes at the interface; these were the set of nodes that required a slightly 

different treatment for solving the problem. A particular RBF solution was defined for 

each of the two regions. The set of nodes N (here it was 11) distributed at the region of 

interface v simultaneously belonged to both the regions and we used the following two 

sets of equations for coupling the solutions at the interface. 

                                

                              V1(r v)  =   V2(r v)                                                                                   (37) 

                     V1 (r v) =   V2 (r v)                                                                           (38) 

where r v denotes the point at the interface. The equation (37) forces the continuity of the 

solution at the interface and the equation (38) is established by the provided interface 

conditions [33],[34],[35],[36]. Using this approach, we obtained the results exhibited 

shown in Fig 14. 

            
                                  a                                                                              b 

 

Fig 14 

 
The solution to the interface problem a) the contour plot displaying the contour lines getting accumulated at 

the upper half b) the side view of the surf plot fort the same solution showing the change in the potential 

over the entire domain. 
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Until now, the discussions have laid emphasis on applying the theoretical aspects to some 

simple problems. Our next attempt was to extend the ideas developed so far and apply 

them to geometries that are more complex and more relevant from an application point of 

view. 

 

The first scenario involved a semicircular hole present on the upper edge of a square 

domain as represented in Fig 15 a. The left and the right hand edges were set to a 

homogenous Neumann boundary condition of Vn = 0, whereas the bottom edge and 

the top edge had the potentials of V = 0 and V = 1 respectively. 

              
                                        a                                                                   b 

 

Fig 15 

 
a) Problem domain with a semicircular hole on top. b) The contour plot displaying the potential distribution 

inside the problem domain. 
 

The governing equation considered was the Laplace equation, 
V = 0 equation (36), 410 

nodes distributed uniformly were used to solve the problem and the result obtained is 

shown in Fig 15 b. 

 



 53 

              
                                  a                                                                              b 

 

Fig 16 

 
a) The ―L‖ problem domain. b) The contour plot displaying the potential distribution inside the problem 

domain. 
 

We further tested our approach for solving the Laplace equation by investigating the ―L‖ 

domain problem Fig 16 a, and a problem domain that had a square hole inside, Fig 17 a. 

In both cases we had the homogenous Neumann condition. 

        
                                  a                                                                           b 

 

Fig 17 

 
a) The problem domain with a square cavity. b) The contour plot displaying the potential distribution inside 

the problem domain. 
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The results from both the instances were according to what was anticipated as shown (Fig 

16 b and Fig 17 b).  

 

At this point, we have demonstrated the use of MMs in function approximation for 

simple static field scenarios. The examples so far presented establish that such methods 

are capable of solving cases where we have defined boundary conditions and problems 

that involve the Laplace equation. The ideas developed will be carried forward while 

dealing with more realistic problems in electromagnetics that are presented below but 

before we proceed further to study the use of MMs in electromagnetics [37], [38], [39] 

we deviate slightly to review some vector algebra and properties of electromagnetics that 

will highlight the manner in which problems concerning them could be handled. 

 

The static magnetic field is completely defined by the curl and the divergence in 

following equations (39) (40) as per the Helmholtz theorem.  

 

                               X H = J                                                                                             (39)    

 

                                 .B = 0                                                                                              (40) 

 

Where B is the magnetic flux density, H is the magnetic field intensity and J is the current 

density. It is possible to define a given problem in a manner, which will minimize the 

number of unknowns, and while dealing with approximation problems such as the ones 



 55 

demonstrated earlier, one would look for functions (which can be scalars or vectors) that 

can be used in conjunction with magnetic fields to simplify the solution process [33],[40]. 

 

Although a scalar function may be used under certain conditions, the vector function is 

generally used to describe the magnetic field. The scalar function will be discussed later 

in this section but for the vector function, we begin the discussion with one of the vector 

identities. We know that the vector identity  (X A)  0; i.e., the divergence of the 

curl of any vector is identically 0. Now, if the divergence of a vector field is 0 then this 

vector can be defined as the curl of another vector. In order to relate this aspect with 

magnetic flux density (B), the vector B can always be written as the curl of another 

vector A, as shown in equation (41) since the divergence of  the magnetic flux density is 

always 0. 

  

                                B =  X A                                                                                         (41) 

 

If we substitute equation (41) in the vector identity mentioned earlier it would satisfy the 

identity‘s stated condition. The vector A is known as the magnetic vector potential. After 

A is calculated, it can be used to directly evaluate other quantities or to calculate B. The 

choice should be guided by the ease of use and the intention of highlighting the facts 

above was to emphasize that the vector potential could work as a substitute for B and this 

approach has been applied in the examples. 
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We now define Ampere‘s law and magnetic flux in terms of the magnetic vector potential 

(A). In free space where the magnetic permeability  is constant, we will have 



 X H = J            X B = J                                                                                (42) 

 

On substituting the definition of B we get 

 

       X ( X A) = J    (. A) - 
A = J                                                            (43) 

 

Considering . A = 0, this condition, known as the Coulomb gauge, is the best choice 

when we are dealing with static fields with no changes in the properties of the magnetic 

field. This will then lead us to the vector Poisson equation as shown below that will serve 

our purpose of approximating field values for electromagnetic problems involving current 

densities as demonstrated in the next set of scenarios.  

 

                          

A = - J                                                                                                (44) 

 

In the case of a scalar function, we consider that a field should be conservative in nature, 

thereby making it curl free. Any vector field F that satisfies the curl free condition  X F 

= 0 can be used to describe the gradient of a scalar function  given by  

                                F = -                                                                                                (45) 
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on substitution with the curl in place, we will have  X F =  X (- )  
 = 0. 

From an electromagnetics perspective, though the magnetic field intensity H is not, in 

general, curl free there are important applications where a magnetic field exists but there 

are no current densities involved (J = 0), such as permanent magnets, and these scenarios 

are best described using the following equation 

 
 
                         X H =     H = - 





Where is the scalar function and is known as the magnetic scalar potential. The 

magnetic scalar potential satisfies the Laplace equation i.e., 
 = 0 similar to the electric 

potential [33].  

 

Returning to the discussion on the meshless approach, we now present the scenarios that 

were used to verify the solutions of Poisson‘s equation. In the first scenario (Fig 18), we 

considered a problem 

A = 2.0E+06 with the boundary condition of A = 0 along all 

the edges. The problem was solved using 216 randomly distributed nodes and the result 

obtained had contours, which were elliptical in nature that represented the field inside the 

problem domain the flux plot for the solution is shown in Fig 18. The next scenarios 

involved trying the Poisson problem with two different media inside the problem domain, 

they represented some typical cases for instance a core with coils wound around it (2-D 

representation Fig 19 a) and a C core sliced in half (2-D representation Fig 19 b). The 

product of current density (J) and permeability () was 2.0E+06 A m
-2

. 
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Fig 18 

 
    The problem involved two current sources with boundary condition of  A = 0 along all the edges. 

 
The top edge in both the cases had the Neumann‘s condition of A/n = 0 whereas the 

remaining edges had the boundary condition set to A = 0. For the first scenario, 216 

 

Fig 19 

 
a) The problem involved a rectangular material (limb) with coils adjacent to the limb, the latter having a 

permeability of 3 times that of the surrounding medium. b) The problem had a slightly different limb 

arrangement the other properties such as the coil arrangement and the permeability remaining the same as 

the previous scenario. This problem represented a c core that had been sliced from the middle. 
 

randomly distributed nodes were used whereas for the second case 216 uniformly 

distributed nodes were used to solve the respective problems. Fig 20 a represents the 
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result for the scenario 19 a and figure 20 b presents the solution for the scenario 19 b 

respectively. 

 

            
                                      a                                                                   b 

Fig 20 

 
                                 Field solutions to the problems presented in figures 19 a and 19 b. 

 

In this section, we presented the ideas that were used in implementing the meshless 

model and the outcomes when we tested them for solving problems that involved the 

Laplace and Poisson equations along with geometries having minor complexities. The 

next section will discuss briefly the manner in which the dense system matrices present in 

the above technique could be made sparse by using a simple approach involving a check 

on the radial distance and its effects on the solution. 

 

 

4.2 Computational Efficiency  

 

 

In section, 2.2.3 it was pointed out that the Kansa approach has an issue in terms of 

matrix density as it leads to a fully populated system matrix and with a computational 

complexity of O(n
3
) for the solver, the efficiency is not that considerable. To address this 
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issue an approach leading to a sparse system matrix with a small bandwidth is needed. To 

achieve this, we considered a simple problem domain similar to that presented in the first 

meshless test scenario (Fig 10) , in the present case 16 nodes were uniformly distributed 

over the problem domain and all the remaining conditions such as the governing equation 

and the boundary conditions remained the same as for Fig 10. A check was implemented 

based on radial distance while forming the system matrix, such that if the distance was 

beyond a certain limit from the center of the node under consideration then the radial 

value contributing to the formation of the matrix was considered as 0. It was also ensured 

here that no region of the problem space was left uncovered or in other words, all the 

regions in the problem domain were covered by at least one RBF. The next example (Fig 

21a and 21b) shows the output from one of the experiments that were carried out. 

 

The limiting radial distance that was considered in this scenario was 0.5 implying that 

any distance value greater than this contributed 0 to the matrix. A stable solution was 

obtained but we had less accuracy (the R.M.S error being 5.54E-01). As evident, the error 

was high and it was also noticed that as the limiting condition was reduced further the 

error value increased. For the same problem domain we will have better accuracy if we 

use a larger number of nodes as shown in Fig 21 c. The increase in the number of 

computation points will again deteriorate the computation efficiency, hence to have a 

sparse matrix, using the above approach wherein we are removing a part of the RBFs 

contributions to the matrix entries will require substantial human judgment to have an 

accurate result. 
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                                   a                                                                      b 

                

                                 c                                                                       d 

Fig 21 

 
a) The solution with the limiting condition in place. b) The matrix sparsity nz = 204. c) The solution for the 

same problem using 2500 nodes. d) The matrix sparsity for second scenario nz = 1183800. 
 

As noted earlier, the RBF collocation approach has issues at the boundaries and to 

address them we use additional collocation points (section 4.1, page 54). If we try to use 

this approach in such scenarios for sparse matrix generation we will obtain inaccurate 

results because we lose valuable information specifically at the boundaries that are 

essential for providing an accurate solution.  
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This was observed when we carried out experiments on similar lines as discussed above 

and it also becomes difficult to have a generalized approach in place as it may require the 

boundary nodes to be treated differently to the interior ones to have good results. 

Moreover, if we have complex geometries involving curves or abrupt changes in 

boundary conditions etc., then it will further restrict us in having a complete automated 

system and will demand human decision making for good solutions. In order to solve 

problems with a large number of nodes along with a sparse matrix in place as shown in 

Fig 21 c and Fig 21 d we used another approach involving the scaling of the shape 

parameter which involved limiting the span or spread of the RBF function and not 

removal or ―chopping‖ of the function. In the present scenario it was set to a value of 17 

and the R.M.S Error associated with the result was 3.63E-03. The value of  was reached 

in the manner as discussed in section 4.1. 

 

The above techniques demonstrate  an attempt to have some localization in place but 

there exists a more elegant approach using a different radial basis function known as the 

compactly supported RBFs (CSRBFs), the most popular being the one introduced by 

Wendland [10], [41]. It allows multilevel iteration, which involves scaling the size of the 

basis functions according to nodal distance (the distance that separates one node from the 

other in the problem space) and progressively interpolate on refined sets of centers 

(computational grids) based upon residuals [42]. Such a multilevel approach provides a 

computational complexity of O(n) (n being the interpolation points in the final level), can 

be put to use in a similar collocation environment and is well conditioned but has a few 

convergence issues in certain scenarios. 
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Another alternative approach to achieve computational efficiency is through the use of 

adaptive iteration such as a Greedy adaptive algorithm [43]. All these ideas have 

theoretically been proven effective to handle the computational efficiency problem 

involving RBFs and there are examples of the use of CSRBFs in the field of mechanics. 

The use of such approaches is still at a very nascent stage in the field of electromagnetics 

and the present work has not implemented any of these ideas. 

 
 
The above two sections provided us with an in depth detail concerning the design of a 

meshless model, along with all the test scenarios. The next section will provide the details 

concerning the design of a Kohonen network and the technique that was used to integrate 

the meshless model and the Kohonen model. 

4.3 The ANN model and its integration with the Meshless model 

 

We will first provide the details concerning the design of the Kohonen model and later 

will present the approach of integrating the two models. 

 

In chapter 3, under section 3.4, we discussed the theoretical aspects involved in the 

Kohonen network. We consider equation (33) i.e., the update rule wherein the weight 

vectors (neurons) are adjusted in each iteration. We will concentrate on the two 

parameters present in this rule i.e., the neighborhood function (h bi(s)) and the learning 

rate ((s)) and investigate first as to how each one of them affects the training process. 

The neighborhood function involves an exponential decay component (refer to equation 

(34)) that includes two parameters apart from the distance measure namely, h0 which was 
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kept at 1 and the neighborhood size. The neighborhood size determines the reach of 

influence of individual neurons in the network system implying that, if a neuron is moved 

towards an element of a data cloud, then some of the neighboring neurons should be 

adjusted (or moved) to implement an effective learning scheme. The neighborhood size is 

initialized to a large value; in the present case it was set to 10 cm or more. This size is 

determined by studying the size of the input space and, through trial and error, and is 

gradually shrunk down to 0 at the end of learning; the gradual shrinkage helps the 

network in finding a good ordering pattern. To cause this decrease in the influence 

domain we may use a parameter, as has been done here, known as the ―collapse rate‖, 

which is slightly less than the value of 1 (here it was set to 0.97), so as the learning 

iteration proceeds, the neighborhood size gets updated by multiplying the ―collapse rate‖ 

(a constant) with that of the initial neighborhood size. The idea behind such an approach 

is to allow every neuron to adapt at the beginning of the learning using the neighborhood 

function and gradually it is more confined. A large value of neighborhood size may not 

provide a convergence or it may take a considerable amount of time, whereas a small 

value of size may lead to a wrong ordering of the neurons. The second parameter i.e., the 

learning rate, decides the amount by which each weight changes with every learning 

iteration. The learning rate is a constant and must be a positive number less than 1 and is 

generally set in the range of  0.1 – 0.5 (here most of the scenarios were tried with 0.1). A 

large value of learning rate will cause the training to progress faster but here too a very 

large value can result in no convergence. This is because the oscillations of the weight 

vector will be too large for any classification.  
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In practice, a vector represents the neurons in the network, which is a matrix of nature M 

X N where M denotes the number of neurons and N the dimension of the input data. The 

neighborhood relation, as described earlier, connects each neuron to the adjacent neurons. 

In each training set, there will be one neuron that wins (as it involves competitive 

learning) and the weight of this winning neuron is adjusted in such a way so that it will 

react more strongly when a similar input is provided next time (refer to section 3.4 for 

weight adjustments). In all the examples that have been presented below with the above 

set of parameters in place we found 80 to 100 iterations were adequate to train the 

networks under consideration. It must be pointed out that this number would vary as we 

try to train them in a different input size (or domain size) and with a different number of 

neurons in place. The main constraint involved in the Kohonen network is that the 

network weights should be normalized and each of the inputs should fully use the range 

(the limits of the problem space). In all the examples we tested, the maximum limiting 

range of the input space was [0,2] X [0,2], therefore the neurons were normalized within 

this limit. In practice along with this normalization factor, we also ensured that the 

weights initially had small and random values; this was done to avoid any condition of 

non convergence or slow training cycles, as a wide initial random spread may lead to 

input vectors falling into clusters over a limited region. 
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Fig 22 

 Flow chart of the proposed algorithm. 

 

We now explain the manner in which the Kohonen and the meshless models were 

integrated. The thesis to this point has shown the manner in which we proceeded with this 

work. The first goal was to have a working meshless model in place. The objective when 

a problem domain with defined boundary conditions was presented was to distribute 

nodes over the domain and solve the problem; at the end of this process, we will have a 

solution vector of field values (with reasonable accuracy). We will then calculate the 

error distribution over the domain, which will form the data set (referred as the data cloud) 

on which the Kohonen network will work as shown in Fig 22.        



 67 

For the error distribution, we used a simple approach in which the error at a particular 

node was estimated by considering the average value of potential of the four adjacent 

nodes (we may even use a different stencil here provided the averaging points are close to 

the point of estimation), and then we compared the average value with the potential 

computed at the reference node (Fig 23). Referring to Fig 22, after the error computation 

the algorithm has an accuracy check in place (represented by the decision block) set to a 

tolerance value of 1 x 10
-8

, a root mean square (R.M.S) estimate of the error   

 

Fig 23 

The error map. The node shaded dark is the reference node, to estimate the error at this coordinate the 

average potential value of the adjacent nodes shaded in grey is considered and then compared with the 

value at the reference node. 

 

values is used to compare with the tolerance value. Next there is a check based on the 

number of iterations or cycles to allow termination of the process in the event of non 

convergence. If the output of the decision is no, then the algorithm identifies the points of 

maximum error and these coordinates are used to ―train‖ the Kohonen network and, in 

the process, the nodes are moved towards the high error positions. On completion of the 

training, the new arrangement of neurons (nodes) is fed to the meshless solver and the 

same cycle as described above is repeated till there is a convergence.  
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4.4 Experiments and Results 

 

We now present the results from the experiments that we carried out using this algorithm 

with the meshless models described in the preceding section.   

 

 

Fig 24 

Final positions of the 16 nodes and the field solution along with the convergence plot at the bottom. 

 
 
Fig 24 represents the result when we tried the algorithm with a meshless model for the 

problem presented in Fig 10. We can find a convergence and the system optimizes the 

positions of the nodes with the R.M.S error being 2.40E-03.  
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In the next example we tried the algorithm with the model presented in figure 16 (Fig 16), 

the ―L‖ domain problem. The R.M.S error at the end of the training was 3.91E-004. 

 

 
 

Fig 25 

 

Final positions of the 144 nodes and the field solution along with the convergence plot at the bottom. 

 

 
 

4.5 Summary 

 

This chapter clarified the procedures involved in designing meshless and Kohonen 

models and presented the algorithm that was used to make them work together. To 

demonstrate that the two models are effective in handling problems in electromagnetics a 

number of cases were presented but a more rigorous investigation using the ideas 

introduced so far is required in order to establish it as a reliable and a robust technique. 

The Appendix D provides a comparative detail pertaining to a simple scenario between 
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FEM and MM approaches. This work has presented examples that involved the use of 

collocation technique for solving the field problems, however as mentioned earlier, there 

are number of methods that are available, such as the ones based on integral approaches 

(refer to sections 2.2.1 and 2.2.3) which could have been developed to ascertain the best 

possible meshless solver for the above algorithm, but because of time constraints they 

were not investigated. 
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CHAPTER 5 
 

5 Conclusion and Future work 

 

 

The main objectives of this thesis work included 1) finding a more flexible method of 

representing the electromagnetic field problem that avoids the rigidity imposed by FEM – 

will meshless systems give us this? If yes, then to what extent? 2) once we have a 

solution, can the idea of a self organizing feature map (Kohonen network) allow us to 

move the nodes of a meshless system to where they can produce the most accurate 

solution, i.e., to provide us with the optimal nodal arrangement.  

 

This thesis work introduced an algorithm that successfully uses meshless and Kohonen 

network systems, which can work in tandem to solve electromagnetic field problems 

effectively. The work addresses most of the objectives stated previously; it was 

demonstrated that the meshless approach is free from the issues and problems of re-

meshing, which is prevalent in FEM, and the approach can provide results with good 

accuracy when solving electromagnetic field problems. In addition to this, it was also 

shown that Kohonen networks have the ability to move nodes of meshless systems, and 

thereby the network can provide an optimal nodal arrangement. The Appendix D 

provides some comparison for a simple scenario between the MM and the FEM 

approaches but a more detailed comparative study between the two methods is required; 

such a study could have involved verifying the efficiency (computational cost) between 

them. Another area for investigation could have been a comparison between the number 

of nodes required in MMs and the number of elements required in FEM to solve a 
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problem with the same level of accuracy, one can gain some idea from Appendix D. 

These studies would have helped us in clarifying to a greater extent the effectiveness of 

meshless method when compared to FEM for solving electromagnetic field problems.  

 

From an overall perspective, the computational complexity as explained in sections 2.2.3 

and 4.2 is the main shortcoming, this factor assumes significance as we have an adaptive 

system in place where we need to solve the system matrix repeatedly. A simple approach 

to generate a sparse matrix was presented in the work (section 4.2) but it was shown that 

accuracy levels were quite low when we tried to remove portions of RBF values from the 

system matrix. Another technique that involved scaling of the shape parameter provided 

us with good accuracy and also a sparse system matrix when tried on a problem with 

simple geometry; further investigations are required here to ascertain its viability in 

complex geometrical scenarios. The approach involving Kohonen network and the 

techniques that generate sparse matrices were not explored fully as it was thought it is 

wise to build a system first that tries to optimize a solution of high accuracy (involving a 

dense matrix) rather than one that tries to optimize a solution with less accuracy. To deal 

with real world scenarios computational efficiency has to be taken under consideration 

and for this we need to study the techniques for generating sparse matrices, one such 

approach that involved scaling of shape parameter has been discussed here and there are 

certain new techniques such as the CSRBFs [10], [43] that hold a lot of promise but they 

were not examined. Apart from addressing the issue of computational complexity, the 

major future work will include studies involving the coupling of FEM and meshless 

techniques for better accuracies and handling of non-linear conditions as highlighted 
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below. It has been discussed earlier in this work that in order to have good results at the 

boundaries involving the collocation approach we need to construct additional collocation 

points, such an approach can get very complex when we have moving objects, as in case 

of motors, or objects that change their geometrical shapes during computation. To avoid 

the issues at the boundaries while using meshless techniques researchers have suggested 

the use of a hybrid approach [44] wherein to implement the boundary conditions we use 

FEM and for approximation in regions associated with motion we use meshless 

techniques. Here we need to determine whether the present collocation approach (strong 

formulation) can be coupled with FEM to address problems of similar nature. This thesis 

work has dealt with scenarios that involve only linear conditions; we can also investigate 

problems involving non linear conditions which may involve careful study of RBFs in 

order to incorporate the material effects into the basis functions for precise approximation. 

This may involve basis functions based on material coordinates, or some form of 

tessellation where approximation is performed at a sub domain level rather than on a 

global scale. The use of the meshless methods to deal with nonlinear problems is still at a 

very nascent stage, and most of the published work has concentrated on the 

implementation of integral approaches, in particular the nodal integration approach for 

such scenarios [45], [46]. However, the FEM has a vast literature that concentrates on 

nonlinear problems; future work may involve the use of methods developed in FEM with 

some modifications, and use them in the meshless methods. We can also explore as to 

how we can use the meshless solver to handle 3 D geometries, which would be closer to 

the real world. Coming back to the proposed algorithm in the present work, the main 

issue that needs to be investigated is that of computational complexity and as stated 
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earlier there are few new techniques in the meshless world that use RBFs, which do hold 

some promise, we need to find whether they are good enough for solving electromagnetic 

field problems. If they are found effective, then we can try to integrate them with the 

existing Kohonen model developed in this work.  

 

The techniques developed in this work provided a working concept that integrates the 

meshless method (collocation approach) and the Kohonen model to solve electromagnetic 

field problems. Certain issues, concerning the computational efficiency were also 

highlighted.  Further development of this work will be to address the issue stated above in 

order to have a viable software system in place.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 75 

References 

 

 

 

[1]  G.R. Lui; ―Meshfree Methods Moving beyond the Finite Element Method‖, CRC  

       Press, pp 15, 19-24, 67-107, 2003. 

 

[2]   G.R. Lui and Y.T Gu; ―An Introduction to Meshfree Methods and Their  

        Programming‖. Springer, Chapters 2, 3, 4 and 6, 2005. 

 

[3]   Michael Griebel and Marc A Schweitzer; ―Meshfree Methods for Partial Differential 

        Equations I‖., Springer., pp 1-20, 75-86,143-192, 2003. 

 

[4]    Satya N. Atluri & Shengping Shen; ―The Meshless Local Petrov-Galerkin (MLPG) 

         Method: A Simple & Less-costly Alternative to the Finite Element and Boundary  

         Element Methods‖., Tech Science Press CMES, vol.3, no.1, pp.11-51, 2002. 

 

[5]    T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P Krysl; ―Meshless 

         methods: An overview and recent developments‖., Elsevier. Comput. Methods  

         Appl. Mech. Engrg., vol. 139,  pp 3- 47, 1996. 

 

[6]    Martin D Bhuman; ―Radial Basis Functions‖., Cambridge University  Press.,       

         pp 1-5, 48-65, 99-108, 2003. 

 

 



 76 

[7]   M. J. D. Powell; ―Approximation Theory and Methods ‖.,Cambridge University  

        Press, Chapters 1-5,11,14,16,18,19, 20 and 24, 1982 

 

[8]   Robert Schaback ―Error estimates and condition numbers for radial basis 

        function interpolation‖., Advances in Computational Mathematics 3, pp 251-264,  

        1995. 

 

[9]   I R H Jackson; ―An Order of Convergence of Some Radial Basis Functions‖., 

        I M A Journal of Numerical Analysis, vol. 9, pp 567-587, 1989.  

 

[10]   Holger Wendland; ―Piecewise polynomial, positive definite and compactly 

          supported radial functions of minimal degree‖., Advances in Computational  

          Mathematics, vol. 4, pp 389-396, 1995.  

 

[11]  G. R. Liu, Y. T. Gu; ―A meshfree method: meshfree weak–strong (MWS) 

         form method, for 2-D solids‖., Springer-Verlag, Computational Mechanics, vol. 33.  

         pp 2–14, 2003. 

 

[12]   M.A  Martinez, E Cueto, M Doblare, F Chinesta; ―Natural element meshless  

          simulation of flows involving short fiber suspensions‖., Elsevier., J. Non- 

          Newtonian Fluid Mech., vol. 115, pp 51–78, 2003. 

 

 



 77 

[13]  C. Hkrault and Y. Markchal; ―Boundary and Interface Conditions In Meshless 

         Methods‖., IEEE Transactions on Magnetics, vol. 35, No. 3, pp 1450-1453, May 

         1999. 

 

[14]   Y. X. Mukherjee, S. Mukherjee; ―On boundary conditions in the element-   

         free Galerkin method ‖., Springer- Verlag, Computational Mechanics, vol. 19, 

         pp 264–270,1997. 

 

[15]   Michael Griebel and Marc A Schweitzer ―Meshfree Methods for Partial 

           Differential Equations III‖., Springer., pp 57-76, 2003. 

 

[16]  Soichiro Ikuno, Katsuyuki Takakura, and Atsushi Kamitani; ―Influence of  

         Method for Imposing Essential Boundary Condition on Meshless Galerkin 

         /Petrov– Galerkin Approaches‖., IEEE Transactions on Magnetics, vol. 43, 

          No. 4, pp 1501 -1504, April 2007. 

 

[17]   Maithili Sharan, Suman Gupta, E. J. Kansa; ―Application of the Multiquadratic 

         Method for Numerical Solution of Elliptical Partial Differential Equations‖.,  

         Elsevier, Applied Mathematics and Computation, vol.84,  pp 275-302, 1997. 

 

[18]  Simon Haykin; ―Neural Networks a Comprehensive Foundation‖, Prentice Hall  

        (second edition)., pp. 58 - 104, 443- 476, 1999. 

 



 78 

[19]   K.L Du and M.N.S; ―Swamy Neural Network in Softcomputing Framework‖.  

         Springer., Chapters 1,2 and 5, 2006.   

 

[20]    James A. Freeman, David M. Skapura; “Neural Networks: Algorithms, 

           Applications, and Programming Techniques‖., Addison-Wesley., Chapters 2, 3, 5,  

           and 7., 1991 

 

[21]   Christopher M Bishop; ―Neural Networks for pattern recognition‖, Oxford   

          University Press.,pp 1-17,116-126, 1995. 

 

[22]   Teuvo Kohonen;―Self organization and associative memory‖.,Springer- 

           Verilag (second edition), 1988. 

 

[23]   Christos Christodoulou and Michael Georgiopoulos; ―Applications of Neural  

          Networks in Electromagnetics‖. Artech House., Chapters 1, 3 and 10, 2001.  

 

[24]    Derek Dyck; ―Determining Finite Element Mesh Density from Problem 

           Specification using Neural Networks‖., M.Eng dissertation McGill University,     

           1990. 

 

[25]    G.K. Miti, A.J. Moses, N. Derebasi, D. Fox; ―A neural network based tool for  

           magnetic performance of toroidal cores‖., Elsevier., Journal of Magnetism  

          and Magnetic Materials, pp 262-264, 2003. 



 79 

[26]   A. A. Adly, S. K. Abd-El-Hafiz;―Automated Two-Dimensional Field  Computation 

         in Nonlinear Magnetic Media Using Hopfield Neural Networks‖., IEEE 

         Transactions on Magnetics, vol. 38, No. 5, pp 2364 – 2366, September 2002. 

 

[27]   J. Seguin, F. Dandurand, J.K. Sykulski and D.A. Lowther; ―The optimisation  

         of electromagnetic devices using a combined finite element/ neural network  

         approach with on-line training‖., COMPEL, vol. 18, No. 3, pp. 266-274, 1999. 

 

[28]    Bernhard Lang; ―Artificial Neural Networks: Formal Models and Their  

          Applications - ICANN 2005‖., 15th International Conference Proceedings, Part II. 

          Springer., pp 325-330., 2005.  

 

[29]   Robert Schaback and Holger Wendland; ―Kernel techniques: From machine 

          learning to meshless methods‖., Cambridge University Press, Acta Numerica, pp 1- 

          97 ., 2006. 

 

[30]   Miklós Hoffmann; ―Numerical control of kohonen neural network for  

         scattered data approximation‖., Springer. Numerical Algorithms, vol. 39, 

         pp 175–186, 2005.  

 

[31]  Nicola Bianchi; ―Electrical Machine Analysis using Finite Elements.‖., CRC  

         Press., Chapters 2, 3 and 4., 2005. 

 

http://www.springerlink.com/content/?Author=Bernhard+Lang


 80 

[32]   A. I. Fedoseyev; ―Improved Multiquadratic Method for Elliptical Partial  

          Differential Equations via PDE collocation on the boundary‖., Pergamon.  

          Computers and Mathematics with Applications, vol.43, pp 439-455, 2002.  

 

[33]   Nathan Ida; ―Engineering Electromagnetics‖., Springer. Chapters 1, 2, 5,6, 

          8,9 and 11., 2003. 

 

[34]   Frederico G. Guimarães, Rodney R. Saldanha, Renato C. Mesquita, David A.  

          Lowther, and Jaime A. Ramírez; ―A Meshless Method for Electromagnetic    

          Field Computation Based on the Multiquadric Technique‖., IEEE  

          Transactions on Magnetics, vol. 43, No. 4, pp 1281-1284, April 2007. 

 

[35]  Kok-Meng Lee, Qiang Li, and Hungson Sun; ―Effects of Numerical formulation 

         on Magnetic Field Computation Using Meshless Methods‖., IEEE Transactions  

         on Magnetics, vol. 42, No. 9, pp 2164-2171, September 2006. 

 

 

[36]   Qiang Li; ―Effects of Adaptive Discretization on Numerical Computation using 

          Meshless Method with Live-object Handling Applications‖ Phd  dissertation   

          Georgia Institute of Technology 2007. 

 

 

[37]   S. L. Ho, S. Yang, J. M. Machado, and H. C. Wong; ―Application of a Meshless 

          Method in Electromagnetics‖., IEEE Transaction on Magnetics, vol. 37, No. 5, 

          pp 3198 -3202, September 2001. 



 81 

 

[38]  S. A. Viana, D. Rodger, and H. C. Lai; ―Meshless local Petrov-Galerkin method 

         with radial basis functions applied to electromagnetics‖., IEE Proc. Sci. Meas. 

         Technol., vol. 151, No 6, pp 449 -451, November 2004. 

 

[39]   S. A. Viana, D. Rodger, and H. C. Lai; ―Application of the Local Radial Point  

          Interpolation Method to Solve Eddy-Current Problems‖., IEEE Transactions       

          on Magnetics, vol. 42, No. 4, pp 591 -594, April 2006. 

 

[40]  Nannapaneni Narayana Rao; ―Elements of Engineering Electromagnetics‖.,  

         Prentice Hall (fourth Edition)., Chapters 2,3 and 4., 1994. 

 

[41]    Holger Wendland; ―Meshless Galerkin Methods using Radial Basis Functions‖., 

          Mathematics of Computation, vol. 68, pp 1521-1531, 1999.  

 

[42]   C S Chen, M. Ganesh, M. A Golberg, A.H. D Cheng; ―Multilevel Compact Radial 

 

         Functions Based Computational Schemes for some Elliptical Problems‖., Pergamon, 

 

         Computers and Mathematics with Applications, vol. 43,pp 359- 378, 2002.   

 

 

[43]    Leevan Ling, Roland Opfer, Robert Schaback; ―Results on meshless collocation 

           techniques‖., Elsevier., Engineering Analysis with Boundary Elements, vol. 30,  

           pp 247-253, 2006. 

 

 

 [44]   Vlatko Cingoski, Naoki Miyamoto, and Hideo Yamashita; ―Hybrid Element- 

          Free Galerkin—Finite Element Method for Electromagnetic Field Computations‖., 

          IEEE Transactions on Magnetics, vol. 36, No. 4, pp1543-1547, July 2000. 



 82 

 

[45]  Jiun-Shyan Chen, Sangpil Yoon, and Cheng-Tang Wu; ―Non-linear version of  

         stabilized conforming nodal integration for Galerkin mesh-free methods‖.,  

         International Journal for Numerical Methods in Engineering, vol. 53, pp 2587-2615, 

         2002. 

 

[46]   L. Kucherov, E. B. Tadmor, and R. E. Miller; ―Umbrella spherical integration: A 

          stable meshless method for non-linear solids‖., International Journal for Numerical 

          Methods in Engineering, vol. 69, pp 2807-2847, 2007 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 83 

Appendix 

 

Appendix A 

 

Theorem: (Mairhuber – Curtis). If n, n  2   
contains an interior point, then there 

exist no Haar spaces of continuous functions except for one-dimensional ones.  

 

Definition: Let the finite-dimensional function space B  C () have a basis {B1 ,… ,BN} . 

Then  B  is a Haar space on  if  

                                   det (Bk(x j))    0                                                                              (1) 

 

for set of distinct x 1 , …, x N   in  Note that Haar space guarantees invertibility of an 

interpolation matrix. 

 

Proof: Let n  2 
and consider B  is a Haar space with {B1 ,… ,BN} with N  2 .Then, by 

the definition of a Haar space. 

                                    det (Bk(x j))    0   

 

for set of distinct x 1 , …, x N . 

 

Now consider a closed path P inside connecting only x 1 and x 2. We can exchange the 

positions of x 1 and x 2 by moving them continuously along the path P without interfering 

with any of the other x j. This means, however, that rows 1 and 2 of the above 
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determinant have been exchanged and the determinant has changed sign. Since the 

determinant is a continuous function of x 1 and x 2 we must have had at some point det = 

0 along P (two identical rows). This is a contradiction. 
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Appendix B 

 

 

Halton points are created from van der Corput sequences that are frequently used in quasi 

– Monte Carlo methods for multidimensional integration application. For constructing 

van der Corput sequences, every non-negative integer, n, is written uniquely using a 

prime base p i.e. 

                                             k 

                                     n = aj p
j
                                                                                        (1) 

                                           j = 0  

 

where the coefficient aj , is an integer such that   0  aj  p. 

The following examples will clarify the manner in which the van der Corput sequences 

are generated. We consider two prime bases i.e., p = 2 and 3 and demonstrate how any 

integer can be represented using them, the coefficients that we obtain from here will play 

an important role in constructing the Halton sequences as explained later.   

 

With p = 3, the integer 10 can be represented as: 

          10 = 1.3
0
 + 0.3

1
 + 1.3

2
 

So the coefficients are a0 = a2 = 1 and a1 = 0 with k = 2. For integers 9 and 8, they are 

represented as: 

                                9 =  0.3
0
 + 0.3

1
 + 1.3

2
                                                    

The coefficients are  a0 = a1 = 0 and a2 = 1 and again we have k = 2,    

 

and                         8 =  2.3
0
 + 2.3

1
 + 0.3

2
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where the coefficients are  a0 = a1 = 2 and a2 = 0 and the parameter k is 2.                                                                             
 

 

Now we tryout with a different prime base i.e., p = 2 with the same set of above integers 

i.e., 10, 9 and 8  

 

                           10 =  0.2
0
 + 1.2

1
 + 0.2

2
  + 1.2

3
   

 

Here the coefficients are  a0 = a2 = 0 and a1 = a3 = 1 and the parameter k is 3                                                                              

      

                           9 =  1.2
0
 + 0.2

1
 + 0.2

2
 + 1.2

3
      

for 9, the coefficients are  a1 = a2 = 0 and a0 = a3 = 1 and the parameter k is 3    

   

                           8 =  0.2
0
 + 0.2

1
 + 0.2

2
  + 1.2

3
      

and the coefficients are a0 = a1 = a2 = 0 and a3 = 1 and the parameter k is 3    

 

We then proceed to define a function hp (p being the prime base) that maps the non 

negative integers to the interval [0, 1) using    

 

                                            
k 

                               hp (n) = aj/ pj+1                                                                                  
                                           j = 0  

 

 

where aj are the coefficients obtained from the van der Corput sequences above 
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e.g., h3(10)  = 1/3 + 1/3
3 

  = 10/27  and h2(10) = 1/2
2 

 + 1/2
4 
  = 5/16. 

 

The first eleven elements for the prime bases 3 and 2 are: 

 h3(n) =  {0,1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9, 1/27,10/27 } 

 h2(n) = {0, 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, 1/16, 9/16, 5/16} 

Where n = 0, 1, …. , 10. The above two sets provide us with the points for a two 

dimensional Halton sequence and for a unit square i.e., [0,1] 
2 

 we just pair them up like 

(1/2, 1/3), (1/4, 2/3), (3/4, 1/9), (1/8, 4/9) and so on. 

 

Thus, in order to generate the Halton point set in m dimensional space we consider m 

(usually distinct) primes p1,…., pm and use the resulting  van der Corput sequences as the 

coordinate of m dimensional Halton points. The resulting set provides us with the Halton 

points as. 

                          Hm, N =  { (hp1(n) , ...... , hpm(n) ): n = 0, 1, …. ,N }                       
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Appendix C 

 

To demonstrate the Kansa collocation approach we present a simple scenario similar to 

the problem presented in Fig 10 

 

Basic function and the derivatives: 

Gaussian RBF   (r) = e-(r)2 
                                                                                                    (1) 

              (r) /r = -2  r e-(r)2
 .                                                                                       (2) 

                

In terms of x and y coordinates the above function and derivative can be written as 

                      (x, y) = e
-2 ({x- x

i 
} 2 +{y - y

i
} 2 )                                                                 (3)

    

          (x, y) /x = -2  (x, y) e-(r)2 (x - xi).                                                                (4)
   

 

          (x, y) /y = -2  (x, y) e-(r)2 (y - yi).                                                                (5)
    

 

The second order PDE for the equation (1) will be of the nature  

           (r) /r2 = 2  e-(r)2
 (2(r)

2
 - 1)                                                                       (6) 

 

On applying the chain rule to equation (3) we can obtain the second order derivatives in 

terms of x and y. 

 

Most of the problems that have been presented in this work involve solving equations of 

the form  u   = f , referred to as the governing equations.  
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In terms of collocation approach, (refer to section 2.2.4) we construct a linear equation of 

the form Ax = f. The components of such an equation i.e., A x and f are in matrix form 

where A is known as the collocation matrix, x carries the unknowns or the coefficients 

and f is known as the right hand side matrix. As mentioned in section 2.2.4 the 

collocation approach involves carefully constructing the collocation and the right hand 

side matrices. The collocation matrix is made by matching the governing equation (PDEs) 

and the boundary conditions. Considering the problem in figure 10, where we have a 

square problem domain with the governing equation  u   = 0 defining the interiors of 

the domain, the left and the right hand edges are defined by the homogenous Neumann 

condition of  u /n = 0 and the top and bottom edges by the Dirichlet condition where 

the value of u is known, in this instance the bottom edge has a value of 0 and the top has 

a value of 1 respectively. For constructing the matrices, we first consider the governing 

equation, on the left hand side since the equation involves the second order derivative we 

consider the equation (6). This equation (6) is applied to all the interior nodes. We then 

define a block on the right hand side matrix, which will apply the right hand condition of 

the governing equation, as we have a 0 value in the present scenario so all the entries 

corresponding to the interior nodes are 0. Then we approach systematically in defining 

the blocks for the boundary nodes in the collocation and the right hand side matrices, 

implying we deal with them in counter clockwise or clockwise order but not in some 

random order i.e., if the first boundary considered is the bottom edge then and it is a 

counter clockwise approach the next should be the right hand edge and then the top edge 

and so on. In the present case as the bottom edge involves the Dirichlet‘s condition of 0 

we consider all the boundary nodes that are present at the bottom edge and apply 
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equation (1). This has been done specifically as per the Fedoseyev‘s guideline [32] in 

order to minimize errors on the boundary. Such a sub block thus formed is placed inside 

the collocation matrix just after the sub block formed by the use of the governing 

equation. In the right hand side matrix since the value at the bottom edge was 0, so all the 

entries corresponding to the nodes present at the bottom edge are set to 0. Then we treat 

in a similar way the right hand edge but this time as we have a Neumann condition in 

place, we use an equation involving the first order derivative such as equation (2) and 

place the sub block thus obtained just after the previous sub block. We repeat the 

procedure as explained above till we have defined all the boundaries in the system 

matrices. The coefficient matrix (x) can then be obtained by using QR decomposition 

involving the collocation matrix A and the right hand side matrix f. The manner in which 

the collocation matrix is formed does not always lead to a symmetric arrangement 

because of this the Kansa collocation approach is known as non–symmetric collocation 

technique.  
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Appendix D 

 

Following are the simulation results, when a scenario same as that presented in Fig 10 

was tested using the FEM approach. The simulation was carried out using MATLAB‘s 

PDE toolbox. 

      
                                   a                                                                     b 

Fig 26 
 

a) FEM mesh with nodes 191 nodes and 338 triangular elements b) Output from the FEM solver. 

          
                                 a                                                                         b 

Fig 27 

 
a) FEM mesh with nodes 2789 nodes and 5408 triangular elements b) Output from the FEM solver. 
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Fig 28 

Comparative chart between the MM approach and the FEM approach for the same field problem as in Fig 

10. 

 

 

Coordinates (x,y) MM - 81 FEM - 191 nodes FEM - 2789 nodes 

        

0.5,0.5 0.53 1.12 0.81 

0.5,1 1 1 1 

0.2,0 0 0 0 

0.25,0.85 0.84 0.91 0.85 


