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Introduction

Let  be a connected Hausdorif space which is locally compact but
not compact. Assume that Q has a countable base and that there is
defined on ) a system of harmonic functions satisfying the four axioms
of M.Brelot which are described in Chapter I. If in addition there is a
positive potential (Def.1.2,p.3) on &, then  is called a harmonic
space of Brelot with positive potential. Let S+ be the cone of positive
superharmonic functions (Def.l1.1,p.2) on Q, and S =S+—S+. Then it
is well known that with respect to a certain topology T on S, the convex
cone S+ has a compact metrizable base B, and that if s €S+, then there
exists a unique Radon measure |}l on B, carried by the extreme points
of B, &(B), such that if x €, s(x) =IBV(X) du (v) [2,p.26],[8,pP. 503 -
507].

For i=1,...,n, let Q’i be a harmonic space of Brelot with positive
potential satisfying Axioms I, II,III,IV. Consider the product space

n
Q=1 Qi’ the convex cone M of positive multiply superharmonic func-
i=1

tions on § (Def.1.4,p.9), and the real vector space M=M+—M+. One
can ask whether there is an integral representation for the elements of
I\/I+ as there is in the case of superharmonic functions of one variable.
Such a representation if it exists would have a number of important ap-
plications, in particular, in the study of holomorphic functions of several

complex variables and in probability. There have been two partial answers

to this question.
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In 1966, K.Gowrisankaran [6], proved that the cone MH' of positive
multiply harmonic functions on Q (Def.1.3, p-9) has a compact metrizable
base for the topology of uniform convergence on compact sets. The
author also showed that MH+ is a lattice in its own order, which is the
natural order. From this it follows that the elements of MH+ have a
unique integral representation in terms of a Radon measure on the base
of MH+ , carried by the extreme points of the base.

In 1968, R.Cairoli [4], using probabilistic methods, showed that
the elements of a certain class, ¥, of multiply superharmonic functions
of two variables, have a unique integral representation. The elements
of H are of the form:

vEMNH if v=v_+v. +v_ +v, where v_ is a multiply harmonic

1 2 3 4 1

function; v. is harmonic in the first variable and a potential

2
in the second variable; Vs is a potential in the first variable

and harmonic in the second variable; Vg is a potential in

both variables separately.

In this thesis we shall consider the problem of integral representation
of multiply superharmonic functions on the product of harmonic spaces of
Brelot with positive potential. In Chapter II we will show that the cone M+
does have a compact metrizable base A for a certain Hausdorff locally
convex topology v on M. We take a rather different approach to proving
this result in that we first show that A is precompact, then that M+ itself

is complete. Once A is compact metrizable, it then follows easily that the
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elements of M have an integral representation in terms of a signed Radon
measure on A, carried by &(A). Whether this integral representation is
unique has not yet been determined and at the moment seems to be quite
difficult, even in the simplest case. The nature of the extreme points of
the base A is also a matter of interest. In Chapter Il we give a partial

answer to this question which is taken up again in Chapter IV.

n
Let =11 ﬂi , where Qi is a harmonic space of Brelot with positive
i=1

+
potential. If Si =Si+~Si , Si+ the cone of positive superharmonic functionrs

on Qi for each i, then the space S=Sl®. . .®Sn can be considered as a
subspace of M. In Chapter IV we study the relationship between the two
spaces 8 and M by applying some results from the theory cf duality
between two Hausdorff locally convex topological vector spaces. In parti-
cular we use a theorem proved in Chapter III to obtain the following result:
N
(8, ), the completion of 8§ with respect to a certain topology 7 on §,
contains the space M. Furthermore, the set
m . . .
Q={% sl®..@s7|s)es.’ for an i, ;)
. 1 n'i i
j=1
is a convex cone in M+ with the properties that
—~ —_
(1) (8, m =Q-Q.
(2) Q has a compact metrizable base C where C is the closed
convex hull of Bl ®...®Bn, Bi a compact metrizable base of

Si+ for eachi.

(3) (Q-Q) is dense in M.
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We also show that the extreme points of C are precisely the elements
in 8 of the form b1®...®bn where bi is an extreme point in Bi for each
i. Going back to the question of the extreme points of the base A for the
cone M+ we show, by considering an example, that although &(C)cé(A),
the reverse inclusion is not necessarily true.

In Chapter III there are some minor results in the theory of tensor
products of ordered topological vector spaces, the main result being
Theorem 3.2 which is applied in Chapter IV.

The result in Chapters II and IV are believed to be original unless
explicitly stated otherwise. Although the results in Chapter III are also
believed to be original, there is some connection with the works of Hustad
[9,p.83], and Peressini and Sherbert [12, pp.182-185].

I would like to thank Professor K.Gowrisankaran fox; his guidance
and many heloful suggestions in preparing this thesis. I would also like
to thank my family and friends for their encouragement, in particular,

Mr.P.Roberts and Professor J.Lambek.



CHAPTER 1

In this chapter we will give a brief summary of the integral represent-
ation result for superharmonic functions of one variable on a space of the
type we consider in this thesis. For a detailed account the reader is re-

ferred to the paper, Axiomatique des Fonctions Harmoniques et Surharmo-

niques dans un Espace Localement Compact, by M. Brelot [2]. For a

more general result in this direction (viz. without the Axiom IV)see R.M.
Hervé [8]. We will also describe the properties of multiply harmonic and

multiply superharmonic functions which will be used in the following chapters.

Section 1l: Axioms I, 1, III, IV

Let © be a connected, Hausdorff space which is locally compact but
not compact. To each open subset wC Q there is assigned a vector space
of real valued continuous functions on (, called harmonic functions, satis-

fying the following axioms.

Axiom I. Let w,0 be open subsets of § and 6< w. Then a function
harmonic on ( is harmonic on 6. If f is a continuous real valued func-
tion on w which is harmonic on a neighborhood of each point in w, then

f is harmonic on .

Axiom II. A nonempty, open, relatively compact subset w is called

a regular open set if each continuous function f on the boundary of w, dw,



has a unique continuous extension to the closure of w, Z—o, denoted by wa,

which is harmonic on @, further satisfying the condition that if £=0, then

w
I-If =20.

Axiom II requires the existence of a2 base of regular open domains for Q.

If f is a continuous real valued function on dw, w a regular open set,
and x €w, then the mapping z:f-éwa(x) is a positive linear functional
on the space of continuous real valued functions on dow, a compact set.

Hence A4 defines a positive Radon measure on 3w which we will denote

by dp ©. Then [f dp ¥ = H.O(x).

Axiom III. If ( is an open connected set in , and ¥ is an increasing
directed family of harmonic functions on (), then the upper envelope of His

either harmonic on @ or identical to +e.

Definition 1.1. If @ is an open subset of ), then an extended real

valued function v on  is superharmonic if
i) vV > -
ii) v is lower semi-continuous
. = 6
iii) for each regular domain 6 €6 Cw, x€6, Vv(x)= Iv dpx

iv) v # +o» on any connected component of w.

Axiom IV. A regular domain €  is completely determining if for
every pair of positive superharmonic functions on §, Vi Vo harmonic on

w, the condition v1=v‘2 on the complement of w, C(w), implies vlzvz on §.



Axiom IV requires the existence of a countable base of completely de-

termining regular domains for .

If v is a positive superharmonic function on an open subset w, then
v has a harmonic minorant on w. For if h=0 on w, then h is harmonic
on  and h(x)<v(x) for eachx€w. It can be .nown that if a superhar-
monic function has a harmonic minorant, then it has a ;o .zatest harmonic

minorani.

Definition 1.2. A potential on an open subset w is a positive super-

harmonic function on @ with greatest harmonic minorant equal to zero.

We assume the existence of a positive potential on the space Q. If
such a potential does not exist, one can show that all the positive super-
harmonic functions are proportional to each other.

A space §, connected, Hausdorff, locally compact but not compact,

for which there is defined a system of harmonic functions satisiying the

above four axioms and having a positive potential will be called a harmonic

space of Brelot with positive potential.

Scction 2: Properties of Superharmonic Functions

and the Vector Space S

1) If vl, Vz are superharmonic functions on an open subset , then

1nf(vl,v2), )lel, )\1v1+)\2v2 ()\l,kzaO) are superharmonic on w.



2) If X is an increasing directed family of superharmonic functions
on an open subset @, then the upper envelope of ¥ is either superharmonic

or =+o on each connected component of w.

3) If v is a positive superharmonic function on a domain w, then

v>0 or v=0 on .

4) If v is a superharmonic function on an open subset w, X€ w,
and {én} is a sequence of regular domains such that Enc Gn 1 C s {x]:ﬂan

then Iv dpxa“ 7 v(x).

5) If v is a superharmonic function on §, and w a regular domain
c §, then the function ¥ =v on C(w) and equal to fv dpxw for each x€w,

is superharmonic on w.

6) If there is a positive potential on §, then there is a positive finite
continuous potential on . In addition, if w is any regular domain, the
existence of a positive potential on { implies that there is a positive super-

harmonic function on § which is not harmonic on w.

Let S+ be the set of positive superharmonic functions on . By Property
1, page 3, S+ is a convex cone. That is, S++ S+C S+ , and XS+C S+ for
+ + s +
X 20. The fact that ST N{-S }={0} follows from the definition of S'. We
define an equivalence relation on the pairs of elements of S+ in the following

way:

let v_,v

+
1 2,v3,v4€S ; then (vl,v2)~(v3,v4)

if v1+v4 =v2+v3 .



Let S be the set of equivalence classes thus formed and define addition

and scalar multiplication in the usual way, i.e.,

x[(vl, v2)] [(le, )LVZ)] (X >0)

[(VI,VZ)]+[(V3,V4)] = [(V1+V3, v2+v4)].

Then S is a real vector space, and if we make the identification of S+ with
+ + ot + : : .
{[(v,0)]|vesS" }, then S=5 -S . The cone S defines a partial ordering

on S which is called the generic order. If vl,VZGS, then v1 is less

than or equal to v, for the generic order, denoted by v, =v_, if v, =v +w,

1 2 2 1
where w€S+. If Vlczvz, then vl(x)s VZ(X) for each x€§}. The converse

of this is not necessarily true. The cone S+ is a lattice for the natural

order. Also, we have the following theorem.

Theorem 1.1. The cone S+ is a lattice for the generic order.

Section 3: Integral Representation for Elements of S.

If B is the countable base of completely determining regular domains

for §, then each couple (w,x), WEMB, x€w, defines a linear functional

+

on S in the following way. If s¢S, then s=s_.-s where s_,s_ €S .

1 "2 1’ "2

N w w " .
Let (w,x)(s) —I 1 dpx - Isz dpx . Let T be the set of all finite linear

combinations of linear functionals of this form, and let T be the weakest



topology on S such that the elements of Z are continuous. The topology 7
is locally convex by definition, and by means of Property 4, page 4, one
can show that it is Hausdorff.

If wo is a fixed element of 8 and xO is a fixed point in w then

0’

since (wo, xO) is a strictly positive linear functional on S,

B = {s€S+ I I s dpxw° 1} is a base for st . (Recall that a set A is a base
o

for a cone K, if A

{x€K|£(x)=1} where f is a strictly positive linear
functional on K.) Suppose that X is a countable dense subset of  and

XO €eX. T’ is the weakest topology on S such that linear functionals

of the form (w,x), WEB, x€ wNX, are continuous, then 7’ is an Hausdorff
topology on S which is metrizable since it is defined by a countable number

of seminorms. One has the following result for the base B.

Theorem 1.2. The base B is compact and metrizable for the topology

. . + .
7’ on S, and 7’ coincides on S  with T.

With the help of Theorems 1.1,1.2 we can now prove the integral re-

presentation result for superharmonic functions of one variable.

Theorem 1.3. If s €S+, then there exists a unique Radon measure
on the base B, carried by the extreme points of B, &(B), such that for

each x €8, s(x) ='J‘ v(x) du(v). In addition, if p is a positive measure
B

on B, then [ v(x)dp(v) € S'.
B



Proof: We will prove only the first statement. Since B is a compact
metrizable set for the topology 7 on S, and S+ is a lattice in its own order,
Choquet's Integral Representation Theorem [ 13,p.70] applies. That is,
if s€B, then ¥ a unique Radon measure gy on B, carried by &(B), such
that, if 4 1is a continuous linear functional on S+, then 4(s) =I L(v) du(v).
Now, if wE€B, x€w, then (w,x) is a continuous linear functional on S+ for

the topology 7 . Thus

Jsap =] [[vdpPlauw.
B .

If x€Q and {w } is a sequence of elements of B, W < w , XEW ,
n n n-1 n

%¥n, and decreasing to {x}, then

lim ['s dpxw“ =lim [ [ [vdp ®]du).
B

n n

Since the integrand on the right is monotonically increasing with n, by the

Monotone Convergence Theorem, the limit of the integrals is equal to

[ lm[ [v dpxw“]dp,(v) = [ v(x) du(v).
B n B

By Property 4, page 4,

hrn‘rs dpxwn = s(x),
n

therefore

s(x) = [ v(x) du(v).
B

If s €S+, then there is a unique b€ B, )\ =20, such that s=)b. Hence there

is a2 unique Radon measure W representing s. Similarly if s €S, then s



) +
can be written as }\lsl—Azsz, where s ,SZES and AI,AZZO. Thus each

1
element in S has a representation in terms of a signed Radon measure on

B, carried by &(B).

Section 4: Multiply Harmonic and

Multiply Superharmonic Functions

For eachi, i=1,...,n, let Qi be a harmonic space of Brelot with
n
positive potential. We will now denote by §, the product space I Qi ,

i=1
and we will use the following notation:

O’di; a countable base of completely determining regular domains for Qi'

+ sl . .
Si ; the cone of positive superharmonic functions on §,.
i

Z'_L; the linear span of {(w, %) ‘wé 03.1, X€wl.

T.; the weakest topology on Si such that the linear functionals in Zi

are continuous.

Bi; the compact metrizable base for Si+ given by Theorem 1.2.

0 O
(w, , %, ); the linear functional in Z_ which generates B,. That is,
i i . i 0.0 i
B.={s€S | [sdp_o =1}.

1



Definition 1.3. A real valued continuous function h on an open

subset w CQ is multiply harmonic on  if it is harmonic in each vari-
able separately (i.e., if all variables but one are fixed, the resulting

function is harmonic).
+ .
Let MH be the set of positive multiply harmonic functions on .

Definition 1.4. If (y is an open subset of §, v an extended real

valued function on , then v is multiply superharmonic on ¢ if
1) vV>-w®
ii) v is lower semi-continuous
iii) v is superharmonic in each variable separately, or =+4w.

iv) Vv # 4+ on any connected component of .

Let M+ be the set of positive multiply superharmonic functions on .

As might be expected, multiply harmonic and multiply superharmonic
functions have properties similar to those of harmonic and superharmonic
functions. We shall give only a partial list of these properties, in particular,

those which will be used in the following chapters.

+ .
1) If ml,mZEM , then so are, 1nf(m1,m2), A_lml, )lel+)\2m2

where )Ll,)\z =0.

2) If m mZEMH+, then m

+ .
1’ mZGM , and ()le1+) m_) is

1’ 22

multiply harmonic for all real values, )\1, )\2 .
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3) Let MH+(w) be the cone of positive multiply harmonic functions
on  an open subset of . Then if X, € w, {mEMH+(w) im(xo) =1} is a

compact metrizable base for MH+(w) [ 6,pp.45-47].

4) If mGMH+(w), then m>0 or m=0 on «w, provided wis connected.
+
5) If meM , and for i=1,...,n, wi EﬂBi , xiEwi, then the multiple
integral,
W, Wy
[-- -Im(cl, ) dpxl (crl)---dpXn (o)
exists and is equal to any of the iterated integrals.
6) If x, is a fixed point in Wy wl a fixed element in 031, m€M+,
then ‘J'm(o- s ---,0_ ) dp wl(o- ) 1is a positive multiply superharmonic
1 n X, 1
n =
function on I Qi' This result is true for any fixed Xie wi, wi a fixed
i=2

element of tBi .

We will give a proof of this result for the case of two variables. The

proof carries over directly to finitely many variables.Let h(y) =Im(x, y) dp:h(x).
1

Clearly h=20. Let {yn} be any sequence of points in QZ with lim Y,V
n
Then lim inf h(y ) = lim inf Im(x v )dpw1 (x) = Ilim infm(x,y )d @1
n n n Tint Ty n ! pxl

by Fatou's Lemma. Since m is itself lower semicontinuous, liminf m(x, yn) S
n

m(x,y) and we have liminf h(yn) =h(y). Therefore h is lower semicontinuous
n

on QZ. Now suppose Yo is a fixed point in QZ and 6 is a regular domain

with yoeﬁ. Then
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6 _ W, & _ 8 w
Ih(y) dp’)’o (y) = J‘J" m(x, y) dpx1 (%) deo (y) = ’J:(‘ m(x, y) deO(Y) del t(x)

< Im(x, yo) dpx(':1 (x) = h(YO)

since m(x, ) is a superharmonic function on Qz for each fixed XGQI.

If h(y) is not finite on an everywhere dense subset of then m =+ on

2 H
some connected component of leQZ and this is not possible since mEM+.

Hence h is a positive superharmonic function on QZ.

7) Let x€Q, x:(xl, .. .,xn). For each i, let‘ {wip} be a sequence

of neighborhoods of Xi’ wip Gﬁi ¥p, Zbipc wip_ 1, and decreasing to {xl} .

If ¥ is the collection of all sets of the form (wlp1 szpex_ .. anp“ ), then

& is a countable decreasing directed family of neighborhoods of x. If m is

a multiply superharmonic function on , then following the filter &

D b
Jefmie, o) dpx";’l (0)---dp " (o) Frm(xp, .0, ).

n

As before we will prove this for Q=le92. Let €, x=(x,,x.), m

1V=a2”

a multiply superharmonic function on . Then m(- ,XZ) is either a super-

harmonic function on Ql or m ( ’XZ) =+, Let {wln} be a sequence of
] n — n n-1 . .
neighborhoods of x,, w, €8, Vn, w, cuw, , and decreasing to {xl}.
Then
wln
1) Im(xl,xz)dpxl (x) A m(x;,x,).
This follows from Property 4, page 4, if m( ,x,) is superharmonic.

2
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n
It is immediate if m( ,xz) =+ . Now, Pn(y) =Im(x, V) dp}:')" (x) is a super-
1

harmonic function on Q‘Z by Property 6, page 10. If {w;n} is a sequence

. m —m m-1 ]
of neighborhoods of X, W, 6032 Ym, w, Cw, , and decreasing to {xz},
then for each m,
w m
2
2) J“Pn(y) a.,ox2 (y) ? P (x,).

If m(xl,xz) =+o, and N is any positive integer, then from (1) above En
wf‘ - -
such that N< Im(xl, XZ) dpxl (x) = Pn(xz) . From (2) above Em de

pending on n such that

N < [P_(y) d;::}:’:2 (y) = [[m(x,y) dp;:il (x) dp;;z (¥)-

. — n —_— m
Now if wleﬁl, W Cw, s w2€ﬂ32, W, w, xlewl, XZE""’Z’ then

w w Wy wz"
J\I m(x, y) dpx11(x) de:(y) 3 Ij‘m(x, v) de11 (%) dpx: (x).

Therefore
) P

lim “[‘III(X Y) d . (X‘ d ( ) N
’ ; > ’

and since N was any positive integer, we have the desired result. If

m(xl,xz) < 4o, and ¢ >0, then from (1) above En such that
wln
and from (2) above @m depending on n such that
U‘Im(x y) dpwln(x) d,;)wam (y) - Im(x v) dpwln(x)l <el/2.
’ X3 X2 ’ X1

Therefore

H"Im(x,y) dp;il (%) dp::;z (y) - m(xl,xz)] <eg.
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. . n e
As above if wleﬁl, xleu)lcw W , wzenaz, xZEwZ,Cw Cw

m
1@ G w, » then

n

@3 wWa wy W2
I‘J"m(x, v) dpXl (x) dpx2 (v) 2 J‘Im(x, v) dpxn. (%) dpr (v).
This, together with the fact that

[[m(x,y) dp :il () dp:;z(y) < m(x),%,)

for any wl EfBl, w2 6032, Xl Gwl, X2 sz, implies that following the filter &,

p p
1 2
I‘rm(x, y) dp}:il (%) dp;:;z (v) 7 m(xl,xz).

The fact that these integrals form an increasing directed set is due to
the increasing nature of the limit in Property 4, page 4. One should also

note that if xl,xz, m, {wip}, i=1l,2 are as above, then it is true that

D P
[P0y, 0,) do. (o)) ap, 7 (o) 7 milxy, x,).

We will use Properties 5, 6, 7 above extensively in the following chapters.
Whenever we refer to a point x€Q and the product filter F of neighbor-

hoods of x, we mean the filter ¥ as described in Property 7 above. Let

P1

us denote an arbitrary element, w;

oo >((.onpn , of ¥, simply by the symbol
wp, unless it is necessary to refer to a particular factor of wp, say wipi

for some i=1,...,n. Using this notation, we will then write

P P

w * wy "
I...Im(cl, ...,o'n) dpxl (('_;'1)...dpXn (cn)
w? . . w?
as ‘rmdpx , and Property 7 above can be rewritten as 11mvrmdpX =m(x).
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CHAPTER II

n
As in Chapter I, Q= II Qi’ where Qi is a harmonic space of Brelot
i=1

with positive potential for each i, (viz. a harmonic space satisfying the
Axioms I, II, III, IV), and M+ is the set of positive multiply superhar-
monic functions on §. By Propertydl, page 9, 1\/14~ is a convex cone,
since it is obvious that M'n {-M+} ={0}. We define an equivalence re-
lation on the pairs of elements of M+ whereby (ml, mz) ~ (rn3, rn4) if
m1+m4 =m2+m3 (mi GM+, i=1,2,3,4). Let M be the resulting set of
equivalence classes. Then M =M+— M+ under the identification of I\/I+
with {[(m, 0)]|m €M+} . Let us first consider a topology y on M. We

will show that y is Hausdorff and locally convex. We will use the notation

introduced in Chapter I in the following.

If T= '21@ ...®En, then T can be considered as a set of linear
functionals on M. For if m€M+, and for i=1, ...,n, (wi,xi) € Zi’

then we let

L@y, %)@ - 8w, % )]m) = [ [mo). -+ 0 ) dp P2 o). - -dp (o)

Since this integral exists by Property 5, page 10, this defines a linear
functional on M+ which can be extended to M. The elements of T are

finite linear combinations of functionals of this form.

Definition2.1. The topology v is the weakest topology on M such

that elements of T are continuous.
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Theorem 2.1. The topology v is Hausdorff and locally convex.
Proof: That ¥ is locally convex is clear from its definition. If

+
m,, mZEM , ™y #mz, then @x€ 2 such that ml(x) #mz(x). If &is

)
the product filter of neighborhoods of x, then, since 1im‘fm. dp:f =
JETF
. P w? w?
mi(x), i=1,2, Hsome () €F such that Iml dpx # J’mz dpx . Hence

the topology vy is Hausdorif.

Lemma 2.1. The cone M+ has a base.

. .. 3 + w.® _ .
Proof: For each i, i=1,...,n, Bi—{s GSi U's de:o =1} is a

+ _ 0 o 0 0
base for the cone Si . Let zo—[(g.,)1 ®y )®...®(wn,xn )], then ZOET.

+ o
For each i, if s GSi , s#0, then Isdp;":io > 0. Therefore, as a result
1

of Property 6, page 10, if m€M+, m#0, then zo(m)>0. Since zg is

a strictly positive linear functional on M, the set A={m¢ M+lzn(m) =1}

+
is a base for M .

Notation: In the considerations that follow A will stand for the above

base for a fixed choice of (w,lo,x,o), i=1,...,n.

—_— LT T = i

Let us now consider the topology v on A. We will show that A is
compact and metrizable. The following results will be stated for n
variables but the proofs will be given only for the case of two variables.
The methods in the proofs carry over directly to finitely many variables
except for Theorem 2.4 which will be proved by induction. We are res-

tricting our attention to two variables because, in the case of three or
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more variables, the notation becomes very complex and the method of

the proof is clouded.

Lemma 2.2. If z€T, z=[(w,,%,)®...®(w _,x )] where w, €EB.,
_— 1°71 n n i

i
xiEw:l for each i, then @n, N>0 3 for each mé€A, n<z(m)<N.

Proof: Let z=[(w1,x1)®(w ,XZ)]. If meA, then

2

: w,° wz° _
[fmla,. o) dpxlé () dpx:o (0,) =1.

o
Let m'(oz):‘rm(cl,gz)dp}‘:’lo (o'l), then m'GBz. Since B2 is T, compact
1

and (wz,xz) is a 7. strictly positive continuous linear functional on

2

+

S. oB , ZK,k>0 such that for each s€B,, ks‘.rsdpw2 <K. Hence,
2 2 2 Xp

’ Wso
O<ks< Im dpXa
wy® we
= [[mlo).0,) do ) (o) dp, 2 (0))
= ‘”m(c 0.) 4o 2%(0.) d wlo(c ) (by Fubini's Theorem)
17027 Py, 10p) Py 0 10, )
< K.

)
Note that k, K do not depend on mé€A. Now, since B1 = {sGSl+lIs dp)":io =1}
1
. . + + @’ ..
is T, compact in S1 , any set of the form {s eSl |as‘fs dpx o<bja,b=20},
1

. "y _ Wa " +;
is also T compact. If m (01)—~rm(01’02)dpx2 (02), then m”é€{s ESI |

(o]
ksjs dp:ié <K}. Since (wl,xl) is a strictly positive T, continuous

linear functional, @4, L >0 such that zsj'm”dp}u:l < L. Therefore
1
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Wa (3L}
0 <4 s [[fmla),0,)dp, *(o,) dp, *(oy)
= flfm(O‘ o )dpwl(o' ) dpwa(o' ) (by Fubini's Theorem)

< L,

where 4, L are independent of me€A.

Theorem 2.2. The base A for the cone M+ is bounded.

m - -
Proof: If z€T, then z= T ).z, where for each j, zj = [(le, le)®. ..
j=1

.. .®(wJ,xJ)], wl €R,, xJew) for each i. By Lemma 2.2, for each j,
n n 1 1 1 1
ENJ.>O, such that if m €A, then |zj(m)|sNJ.. Then YmeA, |z(m)| =

m
z l)\j | Nj’ hence A is bounded in the ¥ topology.
j=1

Corollary 2.1. If z€T, IN>0, 3Vm€M+ lz(m)lsN'zO(m),

0 0 0 0
where as before z,= [((,u1 1%y )® . .®(¢.'.)n = )]

Proof: If z€T, then by Theorem 2.2, EN>0 3|z(a)|sN, YacA.

If m€M+, then m=)\a, »=20, a€A. Hence \z(m)l =)\‘z(a)|*s)\N=N-zO(m).

Corollary 2.2. Let z €T such that z=[(w1,xl)®...®(wn,xn)] where
wieﬁi, x. € w,; for eachi. If C= {mEM+!z(m)=1}, then C is a y-bounded
set.

Proof: Since VmEM+, r}néO, z(rﬁ)>0, C is also a base for the cone
M’ If ceC, then c=ha, A>0, a€A, and 5 (c)=\. From Lemma 2.2,

IN,n>0 dva€cA, 0<nsz(a)sN, or 0<1/N<l/z(a)s1l/n. Since c€C
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implies that z(c)=1, for each X\ such that \a=c€C, l=2z(c)=rz(a).
Hence )\ =1/z(a), and 1/Ns)x<l/n. Therefore Vce€C, 1/st0(c) <1/n,
and z is bounded on C, by some constant K>0.
If z’e€T, then by Corollary 2.1, AN’ >0 such that Vm€M+,
2 7 . + 1 14 4
\z (m)\sN 'zo(m). Since CcM , YceC, ]z (c)\SN -zo(c)sN ‘K.

Hence C is y-bounded.

Proposition 2.1. In the y topology on M, a bounded set is also

precompact.

Proof: If two Hausdorff locally convex topological vector spaces
E, F are in duality, then one can show that a o(E,F) bounded set is
o(E,F) precompact.[14, page 50] The proof of Proposition 2.1 is
exactly the same as the proof of this result and will be given here for

the sake of completeness.

If U is a subbasis of neighborhoods of zero for a topology T on a

locally convex Hausdorif topological vector space E, then a set DCE

is T-precompact if for every VeV, ‘a’dl, e e dn’ all elements of D,
n

such that D C U (di+V) [14, page 50]. If i is the collection of all sets
i=1

of the form {meM| |z(m) |<e; z€T, ¢ >0}, then U is a subbasis

for the topology ¥ on M. Suppose DCM is bounded and V €1,
V={meM]| |Zlm)|<1}, where 2z’ €T. Since D is bounded, the image
of D under z', z'(D), is a bounded set of real numbers. Therefore,

there is a finite number of closed intervals, 11, ...,1 , each of diameter
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P
less than 1, such that z'(D)ﬂIi #¢ for eachi, and z’'(D)c U Ii' Now

i=1
for each i, choose some di_CD such that z'(di)EIi. If deDﬂ(z’)-l(Ii),
P -
then |z'(d)-2z’(d,)|<1 and de€d +V. Since Dc U (z") 1(J:i) , we have
i=1

p
that D< U (di+V), and D is precompact.
i=1

As a result of Theorem 2.2 and Proposition 2.1, we can conclude
that the base A is precompact. To show that the cone M+ is complete

+
we will consider a Cauchy net {vj} ...cM and from this net, construct

jed
a function ¥ on Q. The method used in constructing ¥ is a modification
of one used by Avanissian in [ 1, page 32]. We will prove in the

following lemmas and theorems that ‘\"rGM+ and that the net {vj}.

jeJ

converges to ¥ in the ¥ topology.

Definition 2.1. Let {vj} be a Cauchy net in M and W, Go';li, i=1, ..., n.

jed

Let Xi be an arbitrary element of wi and x=(x . ,xn). Then we define

12

. w Wn
V(W X v xw ) (x) = thI . -j'vj(crl, o) d"x: (0}).--dp " (o)

Lemma 2.3. The real valued function v(wlx. e X wn) defined on

Wy Xe o o XW is a positive multiply harmonic function on WyXe . XW

Proof: As stated in the introduction, in [6 ,pp.45-47], the author
shows that the cone of positive multiply harmonic functions on (wlx. CeXW ),
denoted by MH+(w1x. .o X wn), has a compact base D (for the topology of
uniform convergence on compact sets). The base D= {heMH_l_(wlx. .. anl

0 0 0 0, . . . L.
h(x1 see X )=1} where (X1 ,...,xn) is a fixed point in wlx...an
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Let (X,,00::%X )=X € W Xe oo XW - Then for each j, let h.(x) =
1 n 1 n ]

wl wn . + .
j‘. . ._fvj(o-l, ce e o-n) dpXl (01). . .den (o-n). The function hj € MH (wlx. . e X wn).,

tvidie

w X Xew - Therefore EN>0 and an index j' such that for each index

7 v¥-Cauchy in MY implies . the net {hj}jEJ converges pointwise in

. 0 0
j>i, Os.hj(x1 gee e X )<N. The base D being compact implies that the

. 0
set D' = {hEMH+(wlx. .o X (,un),\h(x1 y e s ,xno) < N} is also compact. Since

+

h c D’ i i i .
the net {hj}j>j' D’,, {hj}jGJ has an accumulation point h in MH (w, X an)
However, the fact that {hj]jGJ converges pointwise in Wy X - Xw implies

that h is actually the limit of the net {hj}jGJ' Therefore

. +
lim h. = h = v(w,X...Xw Yy € MH (X XW ).
i j 1 n 1 n

The lemma is proved.

f x€Q, x=(x,,...,%_) and for each i, w.,0.€8,, x.€6,C6,.Cw.,
1 n i’ T i i i 1 i

+ . . w1 Wy
then veM implies that I...Iv(cl, ...,o-n) de:L (cyl)...dpX (on) <

n

j‘...‘fv(ol, tees o) dp::(cl)--.dpi::(cn),

by Property 7, page 11. Therefore, if {Vj}jEJ is a Cauchy net in M+,
x€Q, and ¥ is the product filter of neighborhoods of x described pre-
viously, {V(L,,)p)(:x)}wp e is a countable increasing directed family of

positive real numbers and hence has a limit, finite or equal to + .

Definition 2.2. If {Vj}jGJ is a Cauchy net in M+, x €8, I the product

filter of neighborhoods of x, then ¥(x)= lim v(wp)(x).
wh €F
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Lemma 2.4. ¥ is a nonnegative, extended real valued, lower
semi-continuous function on .

Proof: From the definition ¥ is clearly a nonnegative extended real
valued function. i_;et =20 and let XGleQZ, X = (xl, XZ) be such that

H(x)>a=0. Since ¥(x) = lim v(wp)(x), 4 some wp€3 such that v(wp)(x)>a.
wPEF

B& Lemma 2.3, v(wp) is a multiply harmonic function on wp, hence

|3 such

continuous. Therefore 6, an open subset of QIXQZ’ xeécgcw

that if z €6, then v(wp)(z) >q. Now if EZ is the product filter of neigh-

borhoods of z¢€d, 32 as previously described, then ﬁwzk€3z such that
k_ P k P .

wz c w . Then we have that v(c;uz W(z)zv(w )Mz)>a and hence ¥(z) 2

v(wzk)(z) >q for z€6. This shows that {xl*?i(x) >q} is open for every

@20. However ¥=0, hence {x|¥(x)>-B8, B>0} is the whole space.

Therefore ¥ is a lower semi-continuous function on leﬂz.

Lemma 2.5. Let k be a fixed integer, 1<sk<n. Then

o . Wy
v(xl,...,xk,...,xn)zj'v(xl,...,xk_l, O ¥yt 1,...,xn) dpXk (o'k),

where x, is a fixed point in ‘Qi’ w, any regular domain in Qk such that

xkEwk, and o-k varies over Qk.
Proof: Let x=(x1,x2)691x92 be fixed, and let wl be any regular

domain in Ql, xl Ewl. We will show that
V(xl,xz) = IV(cl,x

Wi
2)dpxl(orl)-
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The product filter ¥ of neighborhoods of (xl,x ) was formed by

2

considering two sequences {wln}, {wzn} of neighborhoods aof %%,

. . n - n n-1
respectively, where for each i, wi eﬂ'&i for each n, wi c:o_;i , and

n win = {xi} . % was the collection of all elements of the form w nx wzm

n 1
Let us consider the subfilter ¥ of ¥ consisting only of the elements
n n 7 » s . : p
W, Xw, . Then % is in fact a sequence, and since lim v(w )(xl,xz) =
. wPEF

ﬁ'f(xl,xz), we have that lim v(wp)(x XZ) =w"r‘(x1,x2) as well. For the

1 b
wPed’

remainder of the proof we will consider only those wp €% and we will

write lim V(wp)(xl,xz) as 1imv(wp)(xl,x2) where it is to be under stood

wheF’ P
that wPe%® . Let N be a positive integer such that n>N implies (—o—lnc

W, - Then for each n>N,

V(w ), %,) = viw, Txw, )x,x,)

i}

) wln wen
lim ij(ol,oz) do, T (o) dp = (0;)

1

; wz' wy®
11§n [Jv(e1:05) 4o % (o) dp, " (o))

(by Fubini's Theorem)

v

tim [[v.(0,,0,) %2 dp®* (o)
i jo1rv2 Xp x, 17

. n . _ W
since w, Cwl. Let n be fixed, and n>N. Let kj(cl)—fvj(cl’sz)dpxa (0-2).

Then for each j, kjesl+ by Property 6, page 10, and since the net {vj}jGJ
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is Cauchy, {kj}jCJ is a Tl—Cauchy net in Sl+' However, Sl+ having a

Tl—compact base implies that Sl+ is 'rl-complete. Therefore EkeSl+
. - . Wy - (O]

such that 11jrn kj k and hence 11jrnjkj(o'l) deJ. (o'l) J‘k(o‘l) dpxl (o-l).

Now let {wq} be a decreasing sequence of neighborhoods of oy wqeﬁl,

a

for eachq, w C wq-l , and N wq= {ol} . Since keSl+, by Property 4,

q
. w? w?
page 4, k(gl)zllm‘fk(o-) d,oc1 (¢). Also, for eachq, [k(o) dpo_l(o-) =
q

q :
lim‘]'kj(o-) dp: (0) since lim kj =k in the T, topology. Then from
. 1 o .

J . J

above we have that

V(wlnx wzn)(xl, XZ)
. wsz Wi
> 11jxn vaj(al, 02) dpx2 (0‘2) dpx1 (crl)
W
_ 1im‘]'kj(cl) dpxl(crl)
j
_ w
= [klo}) dpxll(ol)

q
= j[l;m [x(o) dpy (o) 1dp, " (o))

PR s w? w
= J"[121m 11jrn fkj(g) dpo_l (o-)]dpx11(0'1)

i}

n ]
.J"[li;n tim [[v(0 ) dpr2(0,) 30 (0)] dp o)

1

q n
J‘[li;n tion [Jvy(0: 0,) dpy, (@) dpyc? ()] dp (o)),

the last equality being a result of Fubini's Theorem.
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Therefore, for any n>N, we have
n n
viw; xw, )xy,%,)

. . w? Wz W
> J'[hcxln hjm ffvj(o,_oz) dpin (o) de: (0,)] dpxll(ol),

hence,

o~

. n
V(xl,xz) = 11:1V(w )(xl,xz)

2 lim ‘J‘[lim lim J‘Iv (0,0 )dp"”‘l (o) dpwgn(o )] dpwl(O' ).
Now, if

£ (o.) = lim lim ( )d“’q()d"’;(
n oy = * 1. HVJ ) po-l o) APy

o,),
2
a 2

then {fn} is an increasing sequence of me asurable functions in oy

and lim fn(cl) =\"r'(cl, x2) . Then by the Monotone Convergence Theorem
n

we can interchange the limit and the integral and we have
F(x,x,) 2 [¥o,, % ) dp (o) -
1’72 1’72 x, 1
The proof is complete.

Theorem 2.3. The function ¥ constructed above belongs to M+ .

Proof: We have already shown that ¥20, hyperharmonic in each

variable separately. We now have to show that ¥#+w [ 6,p.33].
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Suppose on the contrary, ¥ =+o. Let w,lch, w CQZ be regular do-

2
mains and let N >0. For every x= (xl’XZ) on awlx awz, we can find
a neighborhood of the form 61x62 such that Gi is regular in Qi and

v(61x62)(x1,x2) >2N. We can find a neighborhood VX of X = (XI’XZ)
such that v(61x62)(y)>3N/2 for yGVx and Vx célxéz. Now, since

6, 65 . .
II vj(q-l, 0-2) dpx1 (0-1) dpx2(g-2) canverges locally uniformly to v(§ 1x62)(x1, XZ)’

for j following the Cauchy filter J, @a subfilter J/(x) such that for each

. 2 61 62
jeJ'(x) we have jjvj(ol,oz>dpy1 (0)dp 2(0,) >N for (y,,y,) €V_.

Furthermore
vy, v,) 2 [[v.(0;,0,) dp  (m,) dp22(0,) > N
IRERS) 5791 927 9Py 1717 ORy 10,

for (yl,yz)evx, j€J'(x). For every x€ Bwlx awz we choose a neigh-

borhood by the above process, and since Bwlx sz is compact, we may

m . m
assume that U V_ covers 3dw.xdw,, and let J' = N J'(x.). Then J’
i=1] ! 2 )

is a subfilter of J and for every j€J’, for all y¢ Bwlx sz, we have

vj(y)>N. This reasoning holds good for all N>0. Hence

lim ( inf v.(y))
j VA Bwl X Blg

exists and is equal to +«. However, this last conclusion is a contradiction

since for every j,

[ inf v.(v)]-p%1 (3w )pwa(awz) < [[v.(0,,0,)dpP(0,) dp*2(0,),
¥ € 3wy Xdwp = T R
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. X , . Wi W2
and hm[ inf vi(y)] < 11.m vaj(o-l, 0-2) deI (o-l) dpx2 (0-2) < +eo,
j Y€ dwiXdwsz J

We conclude therefore that ¢ #+w.

Theorem 2.4. Mt is y complete.

Proof: Let wiEBi’ xiewi, i=l, ...,n. We will show that if
Z = [(wl,x1)®. . .®(wn, xn}], then lim z(vj) = z(¥). If z is an arhitrary
j
element of T, then z is a finite linear combination of functionals of this

form. Hence, we can conclude then that the net {Vj}jEJ converges to

¥ 1in the vy topology.

Case 1 TFunctions of two variables

— 4 —-
Let xléw(-'ﬂl, Y1€5 GBZ, and z—[(w”,xl)®(5 .’Yl)]' If Vj (y) =

W ’ . . + + .
Ivj(x, v) dpxl (x), then {Vj }jGJ isar, Cauchy net in S2 . SZ being

T. complete implies that ".:L’V'GSZ+ such that lim Vj’ =V’'., Let W(y) =

J

2

[%(x,y) dp:i(x). I W(y)=V'(y), yEQ,, then

2(9) = [[ 9, y) 4o dgd ()

"

’ 6
v d
[ V') dpg ()

= lim I Vj’(y) dpz (y) (by definition of Tz-convergence)
: 1
J
. w o)
= lim v.(x, d x) d
: JIvi=y) do, ) dpg (y)
= lim z(v.).

j
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Suppose Hy, € Q, W(yo) < V’(yo). If {Gm} is a sequence of
neighborhoods of Yo such that 6 " < Gm_l, 6 € 032 Ym, and o™ = {yo},

then Em such that m’2m implies that

Wiy < [ V() dp " (3.

m 6" m
Let m be fixed, andlet V, (x) = | v.(x,y) dp_ (y). Then {V, ]
_ j JqJ Yoy {J]JGJ
is a T, Cauchy net in S1+ which is T
such that limV.m=V2. From above,
j

complete. Hence 3V~2€SI+,

o, yg) 4ol (%) = Wiyy)

< V() 6] )

1

. ' 6®
1 V. d
1jm I J ) pYo' (v)

1im¢j‘j‘ v.(x,vy) dpw (x) dpﬁul
f J Xy Yo

1

J

] m w
1 V. d
1m‘r j (x) prx)
J
2 w
=1V (x)d x).
) Oy
Since % ,yo), VZGSI+,

- w 2 w
[ =) d,ox1 (x) < [ V(=) deI(x)

implies that Tx, € dw such that V(xo,yo) <V2(x0). Suppose {wq} is a

o
li.rn‘ ‘”‘ vj(x, v) dp?’o (v) dp:)l(x) (by Fubini's Theorem)
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sequence of neighborhoods of e decreasing to {xo}, quBi Va,

Z,\q c wq_ 1 . Then,

2
q
lim [ vZ(x) ap®
%o
4 qQ
lim lim [ V. "(x) dp® (x)
q j J X0

(%)

. . 5° w?d
lim 1 (x,y) 4 d )
m 1 (o) 985 9)

Now, if m' >m, then for each xEQl,

5% 6%, .
‘fvj(x, y)dp,_ (y) = _fvj(x, y) deO(V),

hence for each m’>m,
4
# )<1'm1'm'”' ( )dﬁm()dwq()
Vix., 1 1 VX, X)),
0’ Yo . gy Pyo 7 Pxq
q J
and therefore

ol y.) < lim [lim lim [] v,(6y) dp0 () dp% ()]
vIiX o, 1Y 1m 11Ixm v.(X, X .
0 ¥o) <Hm e J s0 ) dog () do

However the right side of this inequality is precisely \“'r(xo, yo). This
contradiction implies that W(yo) = V'(yo) .

Suppose W(y0)>V'(yO). 1f {6™) is again a sequence of neighbor-

m-1

hoods of v, decreasing to {yo}, FR , Gm(—'ﬁz for each m, then

n
W(y0)>V’(y0) > IV'(y) dp?ro (y) for eachm. Let o and B be real numbers
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such that W(yo) >Sa>B> V'(yo) . Let

2, m 6
v.,™ = [v.(x,y) d .
;&) Jvi=y) dpg (y)

As before {ij’ m} is a Cauchy net in Sl+a,nd hence converges to some

Vz" m GSl+. From above we have for each m,

V' d am R
B>[V'(y) dpg ()

. 6"
1 (x,v) dp® (x) d
1jm II VJ(X v) pxl(x) pYo (y)

tim [] v, y) dp. (y) 4pite0)
j

. 2, m w
11jm [ VJ. (x) dpxl(X)

2, m w
Jv (x) dp_| 1(x).

As m=+to, IVZ’m(x) dp::(x) is monotonically increasing since for a
1

‘An
fixed j, ‘J"vj(x, v) dpz‘ (y) is monotonically increasing with m. Hence
°
B = lim‘r v ™(x) dp::(x). Now, if {wq} is a sequence of neighborhoods
1
m

of x € 3w, decreasing to {x}, quBl, wie wq_l for each q, then,

q
V2 ™(x) = lim [ V¥ ™) dp:: (9)-
q

Hence,

B =lim [ vZ Pix) dp}“:(x)
m 1

q
= lim [[lim [ V& ™(g) 46 (0)] dp2 ()
m q i
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s . . 2, m wt w
= 1;:1 I[l;m 1}mj' Vj (o) dp_] (")]dpxl (%)

. . . 6" w? w
=1 Iim lim Ao, d d d .
: r 1(:l J II VJ(O’ v) py_o (y) P (0)] pXI(X)

Since,

n q
lim limlim [[ v.(a,y) dp0 (v) dp®" (o)
m q j J Yo x

q n
lim lim lim II v.(o, V) dpw (o) dp(5 (y)
m q ] ) * ve

Y= y,)
we can apply the Dominated Convergence Theorem, and we have,
a>B ZI'R'/'(X v.) dpw(x).
70 X,
However, o« was chosen so that
a<W(y,) = 'J"\“f(x v.) d'pw(x).
0 70 Xy

This contradiction implies that for all y € QZ, W(y)=V’(y), and

therefore that lim z(v.) = z(¥).
j

Case 2: n>2

Now let z=[(w1,x1)®. ..®(wr‘1,xn)], wie@i, xiewi, for each 1i.

n-1
We assume that the theorem is true for k=n-1. That is, if Q'= 11 Q.,
1

i=1

the cone (M')+ of positive multiply superharmonic functions on ' is

complete for the corresponding 9’ topology.
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_ ~ iy Wn—1 ’ -

Let W(g ) = [...[¥(0}, ---10,) dpxl (crl)---dpxn_1 (o ) v, (o) =
I‘I‘v (., ., O )dpwl(o- )...dpw“’l(o- ). As before {V. '} isar

Jo1 T Tk, U X, n-1 j n

Cauchy net in Sn+ which is 7 complete. Hence & v’ ESn+ such that

lim V. =V’. We will show that for each ¢ €Q , W(r )=V'(c ).
. j n n n n

J
Suppose for some o-nEQn, W(cn)<V’(on). Let {ﬁm} be a sequence

m-1

of neighborhoods of g,, decreasing to {o-n}, 5 s , GmEtBH for each

m. Then ¥m dm’>m implies

7

’
6" . 6"
’ _ ;
Wi ) <[V (x)dp (r) = 11jrn J‘vj (x)dp  (x).

Let V., ) = [v.( ) dpd (r). Then f h j
e ; Oys -9 0, _J‘Vjol""’cn-l’r po_nr . en for each j,
m n-1

Vj is a positive multiply superharmonic function on '= II Qi’ and

i=1

since {v.}, is a Cauchy net in M+, {Vm} is a Cauchy net in (M')+.

jtjed j Tjed

By assumption (M')+ is complete, hence EVZ‘E (M’)+ ? lim ij=vz.

i
Then we have
W(g ) < lim [V.'(r) dp0 (r)
n . j P

J

=lim [[[...[v.(0,, -s0 r) dp®1(o,)...dp " (g )]dpém(r)
i A RS T x, 1 X, n-1 Oy

=tlim [...[[[v.(o,s .10 r)dpam(r)]dpwl(a Yondp® o )
. o v "“n-1’ Ty X, 1 %,_, n-1
! (by Fubini's Theorem)

s m Wi Wn-1

= hjmj...jvj (Gseer0 ) dpxl(o'l)...den_l (o ;)

_ 2 Wy W1
=[] [Viley e, ) dpxl (o-l)...dpx:_l (0 ;)
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3 —_ o wl wn._l
Since W(o-n) = J‘...Iv(al,..., Gn—l’cn)dpxl ((rl)...den_1 (on_l), the above

inequality implies that & (ol, e O 1) € awlx. ceX awn_lsuch that

o 2 Py . .

V(O'l, EEEY Y Gn) <V (al, e e, Gn-l)' If {'yi } is a sequence of neigh-
. P P-1 P :

borhoods of cri, decreasing to {o-i}, 'yi C-yi s Y € [Bi for each i, then

g some p’>dp>p’ implies

& 2 71p ')’n—lp
v(o-l, ...,an_l,o-n) < J'IV (rl, ""rnl-l)dpcl (rl)...dpo_n_1 (rn—l)

— 13 2 2% Ya-1"
= 11_mj...jV. (r ...,rn_l)dpc (r;)...dp 2=l (r
J 1

).
j Ou-y n-1

Hence

- . . 2 ¥ Yo
v(cl, ...,o-n_l,o-n) < lim 11.rnJ'...‘er (rl, ...,rn__l)dpchl (rl)...dp (r )

P Oay 11

6" ¥1° %1
, rn)dpon(r)]dpo_l (r l)...dpo_ (r

n—=1

= lim limI...j[‘fv,(rl, ceey T
P g

n-1

This inequality holds for all m’>m , since the right side is monotonically

increasing with m. Hence it holds for the limit, and we have

-~ . : P P s
v(c;-l,...,()-n)<11m11mv(-y1 x...)(-yn_l x6 )(o-l,...,o-n_l,cn)
m p
=V‘(crl, ,cn)

This contradiction implies W(gn) ZV'(o'n) for all o-ne Qn.

n-1

)
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’ P
Suppose W(on) >V (o-n) for some o-nEQn. Let {wn } be a sequence of
neighborhoods of ¢ , decreasing to {o_ 1, w pr p—l’ w PE(B for each
n n n n n n
p. Let o be areal number such that W(o-n) >a>V'(on). Then for each

P
D, o> [V'(x)dp ™ (x)
n

1

P
lim [V./(r) dp®®
1jmj (@1 dp "t (x)

1

: Wy 3 a&n-1 Wy
13mj‘[b[‘...jvj(ol, ...,o‘n_l,r)dpxl(o-l)...dpxh-l<cn_l)jdpa: (r).

p = wnp hp .
Let hj (o-l, ...,o-n_l) Ivj(ol, ""cn—l’r)dpon (r). Then { i }J'EJ is a

Cauchy net of positive multiply superharmonic functions on le. ‘e xQn .

By assumption, g hP € (M')+ such that 1lim hjp =hP. Then from above we

J
have that by means of Fubini's Theorem that,

. P ws Wh-1
o > 1;mj‘...jhj (0'1,...,o'n_l)dpxl(o-l)...den_l(o-n_

%

= P w Wn -
= [...[h (o, ---,Gn_l)dpxll(crl)---dp Mo _q)s

Xp—q -l
for each p. Now let {w,q} be a sequence of neighborhoods .of og.,i=1l,...,n-1,
i i

such that N w.q= {o.], Z).qc w.q_l, w.qeﬁ. for each 1. Then
q i i i i i i

P oy P w,? Warn?
h (o ...,gn_l)_11mj...jh (rl,...,rn_l)cl,o(I1~ (r))...dp " (o ).

_ n-1
q Bl

Hence,



P - Gy Wy
o 2\[‘...‘[‘]:1 (ol,...,o'n,_l)dpx1 ((,-1)...dpXn (o

_ , P wq? Wag? w, Wn-1
=[..[[lim [...[h (rl,...,rn_l)dpo_l (rl)...dpcn (rn_l)]dpxl (g;).--dp," o

q

1

qQ J

rf[llm li.m_r...J"hjp(rl, vers rn_l)dp

N Wy’ wyd Wn? w
I...I[l:lm hjmj...jvj(rl, ...,r-n)dponn (x) dp011 (rl)...dpan-ll (r__})] de11(cl)...den

)

-1 - 1

- Xp n-l)

wl“(
(5]

q
rl)...dpg’“-l (r

wn—l (
(9
n-j n-

w
n_l)]dpxll((yl)...den_1 )

1

U1 (g

-, n-1

This last inequality is true for each p, hence true for the limit over p. As in

Part 1, by means of the Dominated Convergence Theorem we can interchange the

limit and integral, and we have,

o Ij[hm lim v(wqu. CXw

q P wl ) wu—l
Xw )(01""’°n-1’9n)]dpx1 (o). --dp "o ;)

n-1 Xy nD-1

P q

.0 )dp:fll (o). - Ldp™L (g

-1 n-l)'

).

ve
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This is a contradiction to the way in which ¢ was chosen, hence W(o-n) =
V’(o-n) for all o € Qn. This implies therefore that lim z(v,) = z(%),

J
and M+ is y complete.

Theorem 2.5. The base A for M+ is compact and metrizable for

the y topology on M.

Proof: Since M+ is complete, it is closed. Hence ACM+ is closed,
since it is the intersection of M+ with a closed hyperplane. Therefore
A is complete, and since we have already shown A is precompact, we
conclude that A is compact.

If Xi is a countable dense subset of Qi for i=1, ..., n, then &,
the rational linear span of the set {[(wl, x1)®...®(wn, xn) lwie B, x.€wn X, vi},
is a countable subset of T. If 9’ is the weakest topology on M such that
elements of 3 are continuous, then v is an Housdorff metrizable topology

on M. Since A is y-compact and ‘y.' is weaker than 9, y' coincides with

vy on A. Hence A is y-metrizable.

The integral representation result for elements of M follows now by

a straightforward application of the Choquet Integral Represéentation Theo-

rem [ 13 ,p.19] .

Theorem 2.6. If méEM, then T a signed Radon measure Y on A,

carried by &(A), such that Vx e, m(x) = J'A v(x) du(v).
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Proof: Let mecA. Since A is compact and metrizable, @ a Radon
measure g on A, carried by &(A), such that, if 4 is a continuous linear

functional on M+, then

(m) = [\ 4(v) du(v).

Suppose x=(x1, .. .,xn) €  and for each i, {wip} is a sequence of

neighborhoods of X, decreasing to {xi}, Zo—ipc wip_l, wipe B, for each i.

Then for each p,

P P
[oJmlog o) dp::: (o)) 402" ()

is a continuous linear functional on the elements m in M. Hence for

each p,

P D
[...fmio).n0) dp}o:: (0-1)...dp::n (o) =

wy’ Wy’
'I‘A[‘J"---IV(O‘I,---,On) dpXl (c':'l)---dpXn (o )]dplv).
Taking the limit as p-+», by Property 7, pagell, we have

D D
m(xl, ,xn) =1;m IA[I...IV(O'I, vens cn)dpifll (0‘1)---dp:::' (o-n)]dy.(v).

In this last integral, the integrand is an increasing sequence of integrable
functions with respect to p, so by the Monotone Convergence Theorem,

we can interchange the limit and the integral. Hence m(x) =

P P
M, %) =IA1i11)'n [j...jv(gl,...,on)dpill (ofl)...dp::: (o) Jdp(v)

= jA v(x) du(v) .
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Now if m eM, then m=)\1a A AI,AZZO; al,aZGA. Hence @ a

17123

signed Radon measure gon A carried by €(A) such that if x€Q

m(x) = -[A v(x) du(v).

There are two questions which one should consider next:
1) What are the extreme points of A?
2) Is there a unique Radon measure on A representing a given

+
function meM ?

We give below a partial answer to the first question, and we will

continue the discussion of this question in Chapter IV.

Theorem 2.7. If bi is an extreme point of the base Bi for the cone

Si+’ i=1l, ..., n, then the function bi . . .@bne €(A) where for x= (Xl’ eees xn)

€8, b1®. . .®bn (x) = bl(xl)° ..t bn(xn).

Proof: Let us consider = leQ bies(Bi), i=1,2, and m€M+

2 2
such that (b1®b2-m) €M+. Then for each (x,y)€Q, m(x,y)s bl® bz(x, V).
Also, since (b1®b2-m) €M+, if v is a fixed element in QZ, then
+ . _ i

(bz(y) bl—m( ,y))ES1 . Since bl.E 8(B1), m( ,y)—cy bz(y) bl’ where
CY is a constant depending on y. Similarly one can show that for a fixed

“ = . . 1 i
X € Ql, m(x, ) CX bl(x) b2, c. a constant depending on x, since
b, €&(B,). Now, if (x,y)€Q, cx-bl(X)-bZ(Y) =m(x,y) =cy-b1(X)'b2(Y)-

Since bl(x) bz(y) >0 for all (x,y) € , we have that Cx:Cy for all
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(x,v) € . Now, if cyl#c for some yl,yzeﬂz, Vlﬁyz, then for

Va2

XE Qla since (X,Yl),(X,Y2)€Q=91XQZ, Cy_ =CX=CY . Hence the
1 2

function m is a constant multiple of b1 ®b2. One deduces easily

from this the fact that b ®b2 € e(A).

1
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CHAPTER III

In this chapter we give a few results of general interest for ordered
Hausdorff locally convex topological vector spaces. One of these, Theo-
rem 3.2 will be used in Chapter IV.

Let (E,r) be an Hausdorff locally convex topological vector space.
A set KcE is a convex cone if (i) K+KcK, (ii) AKcK, A =20, (iii)
KN{-K}={0}. I K is a convex cone in E then K defines a partial
ordering on E whereby if x,y€E, xsy if and only if (y-x)eK. K

is then called the positive cone.

Definition 3.1. Let K be a convex cone in E.

(1) K generates E if E =K-K.

(ii) B is a base for Kif B= {xGK‘f(x) =1} where f is a strictly
positive linear functional on E.

(iii) If 7 is a topology on E for which (E, 7) is an Hausdorff locally
convex topological vector space and K is r-closed, then (E,T,K) is an

ordered Hausdorff locally convex topological vector space with convex

cone K.

If x,y€E, K a convex cone inE and x<vy (i.e. (y-x%) €K), then the

set I={z€E |XSZsy} is an order interval in E and is denoted by [x,y].

[~}
Definition 3.2. If xoeK such that E= U n[—xo,xoj, then x, is
n=1
an order unit in E.
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If E=K-K, K a convex cone in E, and E’ is the continuous dual of
E, then K'={fcE’|f(x) 20, x€K} is a convex cone in E’ called the dual
cone. The ordering defined on E’ by K’ is called the dual ordering. In
1962, O.Hustad [9,p.83] proved the following result:

Let (E,T) be an Hausdorff locally convex topological vector space
with K a closed set contained in E and K+KcK, \KcK, A20. Then
K’ is a convex cone which is g(E}E ) locally compact if and only if

K has an order unit and every K-positive linear functional on E is con-

tinuous.

We give a somewhat similar result in Theorem 3.1. Let (E, 7, K)
be an ordered Hausdorff locally convex topological vector space with
convex cone K. Suppose E,F are in duality and that 7 is compatible

with the duality. Finally let Q={y€F|(x,y) 20, x€K}.

Theorem 3.1. The convex cone K is g(E, F) locally compact if

and only if Eyo €F such that yo—l(l) NK is o(E,F) complete and for
each y¢€F, there exists n>0 such that (nyo—y),(y+nyo)€Q. (We
remark here that if Q is itself a convex cone then such an element Yo
in F is an order unit for the ordering on F defined by Q.)

Proof: Since K is a T-closed convex set, K is o(E, F) closed
.[14,p.34]. Then, the convex cone K has a o(E,F) compact base if

and only if K is o(E,F) locally compact [11,p.188]. Suppose K has
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a g(E,F) compact base B. Without loss of generality we may assume
that B={x€eK]| (%4 yo) =1} where y, €F. We will show that y, has
the desired properties. Clearly yo_l(l)ﬂK is o(E,F) complete.

If y€F, then there exists n>0 such that ‘(b,y)\sn for all be B, since
B is g(E,F) compact. Then, if x€K, -n(x, yo)s (x,y) s n(x, yo).

Therefore (nyO-Y), (y+ nYO) €Q.

Suppose VOEF such that yo-l(l)ﬂK is o(E,F) complete and for
each y¢F there is some n>0 such that (nyo-y),(y+n'y0)€ Q. Clearly
Yo is nonnegative on K. If x€K, then (x, y0> =0 = {x,yy=0 for all
yeF. Hence x=0. Therefore Yo is a strictly positive linear functional
on E and B= {xGK‘ (%, yo) =1} is a base for K. The first assumption
on YO states that B is o(E,F) complete. The second assumption on Yo
states that each y in F is bounded on B. Then B is a o(E, F) bounded
set and hence g(E,F) precompact [14,p.50]. This implies finally that

B is g(E, F) compact and therefore that K is og(E, F) locally compact.

We will consider next, two ordered Hausdorff locally convex topo-
logical vector spaces (El’ Ty Kl)’ (EZ’ T KZ) having convex cones
Kl’KZ respectively. Consider E1®E2, the tensor product of El’ EZ’

m
and the set Pc E;®E,, P= {i?l Xi®yi|XiEK1’ y; €K, for each i}.
Peressini and Sherbert in [12, p.183] show that P, which clearly

satisfies the conditions P+PcP; APcP, ) =0, is a convex cone if there

is a strictly positive linear functional on Ei’ i=1 or i=2. They also
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state that P generates E1®E‘2 if Ki generates Ei’ i=1,2. The projective
topology on E1®E2, denoted by E1®1TE2’ is the finest locally convex
topology such that the canonical map (p:Elez - E1®E2 is continuous.
The completion of E1®ﬂE2 is denoted by Elé;Ez.
The following results are stated for the two spaces (El’ Ty Kl)’
(Ez,-rz', Kz), however they are true for finitely many variables and

the proofs carry over directly. In the following P is the set described

above.

Proposition 3.1. Suppose Ei =Ki-Ki, i=1, 2, and that the continuous

dual Ei' has an order unit xi' for the dual ordering. Then x1'®x2' is

an order unit in (E, ®77E2), for the ordering given by P’.
Proof: Let Bi= {xeKi|xi'(x) =1}. Then Bi is a base for Ki which is
G(Ei’Eil) bounded since xi’ is an order unit. Hence Bi is T bounded.

Then le B2 is bounded in the product topology on Elx EZ’ and hence

. . . ¥ 4
Bl®B2 is bounded in E1®ﬂE2. Now, if =z G(E1®ﬂE2) , then EM >0
such that |z/(B,®B,)|<M.

N 7 ? /
Therefore, if b1®b26 B1®B2, then lz (b1®b2)|sMx1 ®x2 (b1®b2).
n . . . .

_ 1 1 1 1
If peP, then p= Z O‘ibl .®b2 , Where aizo, b1 eBl, b2 EBZ for

i=1

éach i. Hence pe€ P implies |z'(p)|sMx1'®x2'(p). Therefore x1'®x2'

is an order unit in (E 1®1'TE2), for the ordering given by the dual cone P’.
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A
Theorem 3.2. If E=E.® E_, where E,=K,-K,, and K. has a
1772 b i i i

compact base Bi’ i=1, 2, then

(i) P is a convex cone in E

(ii) P has a compact base B =co B1®B the closed convex

2’

hull of B1®B2

(iii) E = P-P.

Proof: (i) Clearly P+Pc P , and if X =20, \Pc P. Suppose
z GElgﬂEz and z=Pn {-5} Since Ki has a compact Bi we assume
without loss of generality that Bi = {x GKi lxi’(x) =1} where xi'G Ei' .
Then by Theorem 3.1, Xi’ is an order unit in Ei, for the ordering

given by K-l,’ Now, if zo'=x1'®x2’, zelgﬂ{-ﬁ}, zo'(z)=0. Since

7 - . > Fi s . 3 ’_
z, is order unit in (E1 ®17E2) by Propos1t10n 3.1, and since (El®nE2) =

N ' ’ > ’ ’ ’
(E1®ﬂ_E2) , for any =z G(E1®WE2) A M>0 such that !z (p)l stO (p)
for all p€ P. Hence z’(z)=0 for all 2z’ E(E1®1TE2), and z=0.
Therefore PN {-E} ={0} and P is a convex cone. »

(ii) The set B = {zeﬁlzo'(z) =1} is a base for P since zo' is a
-\

strictly positive linear functional on E1®TrE Clearly coB_®B_C B.

2° 1 2
n .
If zeBNP, then zo'(z)=1 and z= % aib11®b

i, where . 20, b 1€B ,
i=1 1 1 1

2

: n
bzloEB2 for each i. This implies X ai=1, and hence =z €co B1®B

i=1 2

Let z€P and zo'(z) =1. Then there is a Caucrllly net {za}aéA cP
such that lim z =z. Now for each ¢, z = Z B.b ighb i, where
o o . il 2

o i=1



44

Bi >0, b 1eBl, bzleB2 for each i and for each . Since zo'(z)=1,

1
a B o n
limz . /(z )=1, and hence lim( T B.)=1. Let w =2z /( T B.) for
0 o . i o o . 1
o o i=1 i=1
a
each ¢. Then limw =1lim z /lim( I B.)=z, and w_ € coB.®B
o o i (o) 1 2
o o o i=1

for each . Hence z &co B1®B2. Since Bl’ BZ are compact in EI,E2

respectively, B1®B2 is compactin E=E1®;”E2. However, E being

a complete space implies that B =co B1®B is also compact [14,p.60].

n

(iii) Since E ®E,=P-P, E= Elé?ﬂEz -pP.Pc P-PcE. Hence

E = P~P.
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CHAPTER IV

In this chapter we will consider another approach to the question

of integral representation for multiply superharmonic functions.

Let  be a harmonic space of Brelot (viz.a harmonic space satisfying
Axioms I, II, 111, IV) with positive potential. In Chapter I, we defined a topo-
logy T on S=S+—S+, where S+ is the cone of positive superharmonic func-
tions on §. The topology T was defined as the weakest topology on S
such that elements of the set T are continuous. Recall that ¥ is the linear
span of the set of all linear functionals on S of the form (w,x), wWEB, a
base of completely determining regular domains for , x€w. We would

like to consider the topology T as a weak topology on S with respect to

n
some duality. It can happen that for some z, €y, i=l,...,n, Z aizi(s) =0
i=1

for all s€S where the ai‘s are real but not all zero. For example,

let § =(0, 1), the openunit interval in R, 8= {(a, b) |0<a<1,0<b<l;a,b
rational numbers}, w=(1/4,3/4). Since the harmonic functions on this
space §) are linear functions, for each s€S, x€w, (w,x)(s) =mx+b, where
m,b depend only on s and w. If %)= 1/3, %, = 1/2, X, =2/3, o = 1/2,cg2 =-1,

3 3
0. =1/2, then T @ =0, T o.x,=0. Then for
3 i=1 * j=1 ' *

i)

11 s€S,

3 3
o(w,x)(s) =m Tax +b T o =0.
1 1 . 11 . 1
1 i=1 i=1
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We will see below that this difficulty can easily be avoided, however,
it is interesting to note that if QcC Rn, nz2,  an open domain with
positive potential (for the solutions of the Laplace equation), then this
problem does not occur. We will show briefly why this is so, since it
does not play a part in what is to follow.

Let QCRn, n=22, § an open domain with positive potential. Sup-
pose B is a countable base of open spheres in Q. Then B is a countable
base of completely determining regularopen domains for . Let
(wl’xl)’ (wz,xz) € ¥ such that either xl;éx2 or x, =x, but wl# W, -
if xl;éxz, let yEQ- wlu w, such that y is not on the perpendicular
bisector of the line segment joining %, and %, If Qc RZ, then the

-1
function wv(x)= log(|x—y|) for all x€ §) is an element of S such that
. n . n-2
(wl,xl)(v) # (wz,xz)(v). If QcR ,n>2, then the function v(x)=1/ “x—y“
for x€ ) is an element of S+ and (wl,xl)(v) #(wz,xz)(v). If x, =%, but
W, #wz, then Ey€dw,, vé dw,. Let 5 €@ such that b ﬂbwz =¢ and
vy €6. Since there is a positive potential on  we can choose a functica
VES+ which is not harmonic on §. The function v, identical to v on
C(6), the complement of §, and equal to fv dpi for x€6, is an element
of S+, and (v-v)>0 on §. Since § ﬂawl is an open set in awl, it has
positive dpw" -measure, and hence (w,,x. )} (v-v) =‘J"(v—\—r) dpwl >0.
X4 1’71 X4
However, (w.,X )(v—\—r) = r(v-—\_r) dpwz =0 because v=v on 3w..Therefore
if (wl,xl), (wz,xz) € T are geometrically distinct, then they are distinct

linear functionals on S.
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m

Now, let z€Z, z= % ai(wi,xi). It is possible that for some i, j,
i=1

i#i, @, = ;- Let us rewrite z, collecting together those wi's which are

jdentical. Then z can be written as follows:
ml 1 1 mp

(1) z= 2 O (wl,x.) ...+ = aflw ,x.0),
j=1 * i=1 - Pt

where for any fixed k, xik# xjk if 1#j.

We recall here that if (w,x)€Z and VES, then _rvdp}g“ is the

Poisson integral of v evaluated at x, i.e., if w is a sphere with

center at y and radius r, then

[vapl= 15 [y, L2 -y 129/ 132 ) P Ivie) ata),

where S(w) is the surface area of wand p is the surface measure

on ow-

Proposition 4.1. Let z¢€ T such that z(v)=0 for all vES. Then

if z is expressed as in (1) above, for any j, 1sj<p,

m_, - -

T e lw.x)v) =0
- 1 j 1

i=1

for all vES.

m,

Proof: Suppose j=1 andlet p= z ail(wl,x.l). Then p is the
i=1

difference of two positive Radon measures on Bdw,, SAYV TV Vy- We

m, 1
shall show that if IvES such that % ogi

(w ,x,l)(v);EO, then =z(v)#£0
i=1 1

for all vE€S.



48

m; 4
Let v€S such that Z al (wl,xl)(v) #0. Then as measures on Bwl,
i=1

c
vl#uz, and @ some open set V,Sdw, such that vl(Vl);é UZ(VI). Suppose

W, is a sphere with center y, radius r, then

v V.)=1/S = ol 2=ty |2/ =tz P11 4
v (V))-0,(V,) =1/S(w,) j\.r [i_loti(r S Eou'a VA EAEE i RS R QP
Lis

where 1 is the function identical to one on awl. Let

my 1
f(z) = T ozi(_rz-llxil-Y“Z)/|!xi1-z||n.
.21

Since yl(Vl)-vz(Vl)#O, d some zlevl such that f(zl)#o, say f(zl)>0.

The function f is continuous on awl, hence ¥ an open set VZC awl,

z. € V_cV., suchthat £f(z)>0 Vz€V,. Now let X =3w, N Baw..
1 2 1 2 1 j=2 L
Then the set X is a set of y-measure zero in Bwl, hence ::{zz €V2
such that zzéX. Let 6 €8 suchthat 6N B 3w, = ¢ and zzeanwlcvz.
i=2

Choose a function v€S+ such that v is not harmonic on ‘5 and let v be

the function identical to v on C(6) and equal to ‘rv dpi' for x€6.

m,

Since (v-v)>0 on § and (v-v)=0 on C(§), T ail(wl,xil)(v—\—r) =
i=1
my )
1/8(@,) [5 3. LB ail(IZ_||xi1-y|\2)/||xil-z||n3(v_v)(z)du(z) -
1 i=1

1/S(w,) Iﬁﬂawl £(z)- (v-v)(2) du(z).
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- m, _
For all z€6 ﬂawl CVZ’ f(z)>0 and (v-v)(z)>0, hence T ail(wl,x_:)(v-v)>0.
i=1
d - - - _
However, for j, 2<jsp, % ai(wj,xi)(v-v)=0 since v=v on Bwj. There-

i=1
fore z(v-\-r) #0 which is the desired contradiction.
m

Proposition 4.2. Let z€ZX, z =T ai(w’xi)’ wEeERB, XiEw Y1i, and
i=1 '

xi#xj for i#j. Then z(v)=0 for all véS implies ai=0 for each 1.
2
Proof: Let us consider Q< R~ . Let lxi|=ri, i=1, ...,m, and

r= max {r.}. If C is the circle of radius r with center at the origin,
l1<ism

then for some i, l<i<m, Xi is on the circumference of C. Suppose i=1,
and let y be the point on the circumference ¢ C diametrically opposife
%- If we relocate the origin at the point y, then lxl [ =2r, and for

i=2, ...,m, |xi|s'y<2r. For each positive integer n, the function

f(x) -x" for x€  is a holomorphic function on  which can be written

in the form
f(x) = hl(x)+1h2(x),
where hi is a harmonic function, i=1,2. Since z(v)=0VvveS and hie S,

i=1, 2, aixin=0 for each positive integer n. Then

m n n n n ™ 0 n
Toax /|x | =a = /|x]"+ T ax/]|x | =0
i=1 © 1t jop b1

However, for each positive integer n,



m
= logl,

m n n m n n
|‘E ozixi/lxll |s.§2 |o¢i|(|xi|/|x1|) < (y/= ) .

i=2 i
n . n n .
and as n~w®, (y/2v) -0. Therefore lim |a1 % /lxl! | =1im |a1| =0
n=xo n-o
and @, = 0. It is clear that in this way, one can show o =0 for each 1i.

The case where QC Rn, n>2 can easily be reduced to the above

situation.

As a result of Lemmas 4.1,4.2, in the case where QC Rn, n=2,

Q) an open domain with positive potential,if z € 5;and z(v) =0, for all veS
then z is the zero linear functional on S. We have already shown . in
Chapter I that if v€S, v#0, then @ z€Z such that z(v)#0. Hence

in this particular case (S, I) is a duality.

Let us return to the general case where §} is simply a harmonic
space of Brelot with positive potential. We define an equivalence
relation R on the elements of Z whereby, Zy~2, if zl(s) =z2(s) for
all s€S, zie ¥, i=1,2. Let I’ be the set of equivalence classes
thus formed and define addition and scalar multiplication in the usual

way, that is

[2,1+[2,] = [z, +2,],
ALz, = DAz 1,

where [Zi] is the equivalence class containing Zie ¥, A any real
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number. Then the real vector space T’ can be considered as a set of
linear functionals on S if we define [z](s)=2z(s) for z€X and s¢€8S.

The value of [z](s) is uniquely determined for if [zlj=[z2], then zl(s) =
zZ(s) for all s€S by the equivalence relation R. The following

proposition is more or less obvious.

Proposition 4.3. (S, Z’) is a duality and T =¢(S, '), the weak

topology on S with respect to the duality.

Proof: If si€S+, i=1,2, x€& such that sl(x);ész(x), then by
Property 4, page 4, 3 z=(w,x)€Z such that z(sl) # Z(SZ)' Therefore
[z](sl) # [z](sz) for [z]€Z/. If [2z]€ T’ suchthat [z](s)=0 for
all s€S, then z(s)=0 for all s€S, hence z is equivalent to the zero
linear functional on S, and [z] is the zero element of £’'. Hence
(8, Z') is a duality.

Let V be an arbitrary element in the base of zero neighborhoods

for the o(S,Z’) topology. Then
V={ses| l[zi](s) |1, [z]¢ =/, i=1, ..., n}.

Trivially, V=V’ ={s €S| lzi(s) ls 1, zie Z, i=1,...,n}. However, any
element in the base of zero neighborhoods for the 7-topology is of the

form V’, hence it is clear that 7=¢(S, /).

n
Now, let us consider Q= 11 Qi’ where for each i, Qi is a harmonic
i=1

+ 4+ +
space of Brelot with positive potential, M=M -M , where M 1is the cone
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of positive multiply superharmonic functions on Q. Let T’/ =>:,1'®...®zt'1
and § =Sl®...®Sn. As a result of a well known theorem in topological
vector spaces [14,p.132], since <Si’ Ei’> is a duality for each i by the
above proposition, (8, T’) is also a duality. Now, as mentioned in
Chapter III, page42, the fact that Si=Si+_Si+ for each i, implies that

the vector space § =Sl®...8>Sr1 is generated by the convex cone

Q={ZT s J®...®s Jls?ES.-‘_for all i,j}.
5=1 1 n'1i 1

Proposition 4.4. 8 can be embedded in M in such a way that

Q oM,

M. If siGSi+, i=l,...,n, then for x=(x1, .- .,xn) €2, the
function S5 ®...®sn(x) = sl(xl) el sn(xn) is clearly nonnegative, hyper-
harmonic in each Varia})le separately, hence it is lower semicontinuous
[6, page 34]; Since s, is superharmonic for each i, sl®...®sn cannot
be E+;=o on any connected component. Therefore s1®...®sn €M+, and 8§
can be embedded in M so that Q & M+.

The set T’ can be considered as a set of linear functionals on M

as follows. If meM, z, = (wi,xi) € Ei’ then let

[z1]®...®[zn](m) zl®...®zn(m)

(23] (13
[T m(g,, - -5 0,) dpxl1 (t:'l)---dpxn (o)
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This number is uniquely determined by the way in which the equivalence
relation was defined on Ei’ i=l,...,n. Since each element of T/ is some
finite linear combination of linear functionals of this form, T’CM’P, the

algebraic dual of M.

Proposition 4.5. (M, T’) is a duality and the o(M, T’) topology on M
is equal to the vy topology (defined in Chapter II,p. 14 ).

Proof: In Chapter 1I, Theorem 2.1, we showed that if ml,m2 €M+,

m,_(x)#m_(x) for some x=(x,,...,x )€, then Tw,, i=1l,...,n such
1 2 1 n i

that xiewi for each i, and

[wy%)8... 8w ,x )](m, -m,) #0.
If z =(w.,x.) for each i, then [z.]€Z. and
i i’ i i
[z1}®...®[zn](m1—m2) = (z1®...®zn)(ml—m‘2) £ 0.

Now, if z€T’, z(m)=0 for allme€M, then z(s)=0 for all: s€S§.
Since {8, T’) is a duality, z=0, and therefore (M, T') is a duality.
To show that y=¢g(M, T’) one simply observes the following. If

m - . -
>z Z1J®"'®ZnJ’ ziJe 21‘. for all i, j, is an arbitrary element of T, let
j=1

F(S z,.79...82 ) = T [z ,J]®...®[z JJ. Then F is an onto map from
5=1 1 n 5=1 1 n

T to T’ such that for z€T, méeM, z(m)=[F(z)](m). Recall that
T =Z‘,1®...®En. Then if V is an arbitrary element of the base of zero

neighborhoods for o(M, T'),
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V={m€M| |[F(zi)](m)|sl, ziET,i=1,...,n}
= {meM| |zi(m)|sl, z €T, i=1,...,n}
=V’.

Now V'’ is a y neighborhood of zero and any element of the base of
v neighborhoods of zero is of the same form as V'.

Clearly o(M,T')=y on M.

A
Proposition 4.6. 8§ is g(M,T’) dense in M, hence Mc (8§, o), the

completion of 8 with the o(M, T’) topology.
Proof: Since (8§, T’),(M,T’) are dualities and ScM, by Propositions

4.1,4.2,4.3 we have that § is g(M, T’) dense in M. [10,p.237]

! i= .. =
Let [zi]E Z}i , i=1l,...,n, and for meM, let P[21]®---®[Z'n](m)
|[z1]®...®[zn](m) | . Then this defines a seminorm on M, and g(M, T’)

is generated by the family of seminorms P= {P[z1]®...®[zn]/[zi] € 2.1'
for each i}, because T’ is the linear span of the set of all elements of

the form [z1]®...®[zn 1, [zi] € Ei' for each i. In addition to the g(M, T')
topology on §, there is another topology w, called the projective topology,
which is formed by considering the spaces Si with the U(Si’ Ei,) topology.
The topology 7 is defined as the finest Hausdorff locally convex topology

on & such that the canonical map (p:Slx. . xSn—> s =Sl®...®Sn is continuous.
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For each i, the O(Si’ Z;i') topology on Si is generated by the family of

sem1norms{P[z,J|[z]€ Ei'} where P[z](s): |[2z](s)| for s€S,,[z]eZ/’

¥ [z,]€3/, i=l, .,n, s€8, let

J - J J
P[21]®...®P[ ](s)—lnf{ EP[ lj(s ) |:Zn:](sn)ls—.?1s1®...®sn}.
J.—.
Then the family of seminorms @ = {P[z ]®.'..®P
1

’ .
[Zn] |[Zi]€ Zi for each i}
generates the 7 topology on 8 [7,p.31]. .

Theorem 4.1.

The two families of seminorms, P, 6, are identical
on §.

Proof: We will prove this for the case of $=S_®S_. and the method
carries over directly to finitely many variables

oG
Let [ziJGEi',i=l,2, and s€8. If s= % sl®s s ESi

. 2 for all i, j,
j=1
then

m . ‘
= Jy. j
Frz Jelz,1® ljfltzlj(sl) [2,1(s)]

I

= Tz, J(sJ)| |[=,1(s) i
i=1

”MB

| Pra 1D P, 2]‘5
Hence, on §,
(1)

Pladelz,] = Frz,1%02,00
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i j .
Now, let {s }iEI’ {t }jEJ be basis for the kernel of [zl:l, kernel
of [z2] respectively. Assume that 1¢I, 1¢J, and let slGSI-Ker[zlj,
t]’ GSZ—Ker[zzj where Ker[zi] is the kernel of z, - Let {1}UI=1' and

{13UJ=J. Then {Sl} {tJ}jEJI are basis for Sl’SZ respectively,

iGII H
and s€8 implies s= Z ai’jsi®tj where this is a finite sum. Then,
i,

P (s) = | T a2z, 2N [2,1t)]
[z, ]elz,] i,]j ! 2

1,1

= |a EZIJ(SI)'[ZZJ(tl)la

since [zlj(sl)-[zzj(t3)=0 if i#1 or j#1. Similarly,

‘ i i j
P[21]®P[22](s) < T |a lPEZIJ(S )" Pr, qt)

i, (=,

% |10z, 2D 102,28 |

i, ]

1,1 1 1
le”” "[2,3(s )Lz, 1t ) |-
1 2

This together with (1) above imply that

P on §.

P[zl:|®[22] = P[zl:] [22]

A
As a result of the last theorem, (8, o), the completion of § with
~
respect to the ¢g(M, T’) topology, is uniformly isomorphic to (8, )
the completion of § with respect to #. Therefore we can apply Theorem

3.2 to obtain the following result.
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. PN
Theorem 4.2. The space M can be embedded in (8, 7) in such a way

that,
(i)  the two topologies vy, 7 coincide on M,

(ii) the convex cone Q has the property that Q-Q is dense in M;

— N\ + —
Q-Q=(8,mMm>M; M DQ,
(iii) Q has a compact metrizable base C and C =E—5Bl®...®Bn,
the closed convex hull of B1®"'®Bn'
A
Proof: By Proposition 4.6, Mc(S, ). By Proposition 4.5, the
~
v topology coincides on M with the g(M, T') topology. Since (8,0) is
~ . .
uniformly isomorphic to (8§, 7) by the remarks after Theorem 4.1,

PN _ ,
Mc(8,7w) and y coincides on M with . By Proposition 4.4, $=0Q-0Q
is ¢(M, T’) dense in M, hence Q-Q is 7 dense in M. Since M+ is vy

— +
complete by Theorem 2.4, hence g complete, QCM+ implies Qc M .
The remaining part of (ii) ‘and (iii) except for the metrizability of C
follow directly from Theorem 3.2. That C is metrizable is easily seen.
+ + 0 0
The base A for M was {méeM |z0(m)=1} where zo=[(w1,x1)®...
0 0 . 0 0, . . . .

. .®(wn, xn)] and for each i, (wi , xi) is the linear functional which
generates the base Bi for Si+. Then if m= bl®. . .®bn, bi € Bi for each i,
zo(m) =1. Hence B1®...®Bn < A, and A being closed, convex implies
C=€5B1®...®Bn c A. Since ACM+ is y metrizable and ¥ coincides

with 7 on M+, A is ¢ metrizable. Thus CcA implies C is 1 metrizable.

The proof is complete.
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A natural question to ask at this point is whether the cone Q could be

+ . . . . . .
equal to M . We will exariine this question by considering the extreme

points of the base C for Q and of the base A for M+.

Proposition 4.7. If C=co B1®...®Bn, then

e(C)= {b1®...®bn|bi€8(Bi) for each i}.
Proof:

We have already shown in Theorem 2.8 that any element of

the form b1®"°®bn’ biée(Bi) is an extreme point of A. Since elements

of this form are in C as well and CcCA, we have

e(C) > {b,®...8b |b.€€(B,) for each i}.

Since Bi is compact in Si’ U(Si’ Ei’), for each i, Bl®...®Bn is w

compact in § by definition of 4. By the Milman Theorem [10,p.332],

e(C)c Bl®...®Bn. Suppose bieBi for each i, and that b1 G&(Bl), say
b1=)\a1+(1-)\)a2, alyfbl, al,azeBl, 0<)\<1l. Then
bl®'"®bn=(Aal+(1-k)a2)®b2®“'®bn

= )\al®b2 .ee ®bn+( 1-A,)a.2®b

2®...®bn.

Clearly, if bl#al, bi#O for any i,
bl®...®bn # a1®b2®...®bn,

and bl®...®bn ¢ e(C). The proof is complete.
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Now, as a result of the above Proposition and Theorem 2.8,
E(C)ce(A). The exa.mplel) below will show that €(A) is not neces-
sarily contained in £(C), hence one cannot conclude that C—).=M+ in
general.

Let Qi =(0, 1) the unit interwval in Rl, i=1, 2, ﬁi= {(a, b) |0<asb<1,
a, b rational}. The harmonic function on Qi are the linear functions.
If h is a minimal positive harmonic function on Qi’ then either
h(x) =kx, k a constant >0, or h(x)=4(1-x), £ a constant >0. If p is an
extremal potential on Qi, then p(x)-»0 as x-0, and p(x)->0 as x-1.
Now, let Q=le92, Si=Si+-Si+ where S:is the cone of positive
superharmonic functions on Qi’ M+ be the cone of positive multiply

superharmonic functions on §).

Theorem 4.3. There is a function V€M+ such that v is an extreme

generator of M+ but v is not a tensor product of extreme generators of
+ .
the cones Si , 1=1,2.
Proof: Let v be a function defined on leﬂz such that v(x,y) =

inf{x+y, 1-%x,1-y}. Then VEM+, and the graph of v is given in Figure (1)

n This example was suggested to me by Professor Carl Herz, McGill

University.



Figure (1)

If ]?i is an extremal potential on Qi’ i=1, 2, then pl®p2(%, y) -0
as y=0. Since v(%,y)—é% as y=0, it is clear that v is not a tensor
product of two extremal potentials. If hi is a minimal positive harmonic
function on Qi, pi an extremal potential on Qi, i=1, 2, then by exam-
ining the behaviour of h1®h2, h1®p2, p1®ﬁ1, close to the boundary of the
unit square, one can earily see that v cannot be a tensor product of

elements in Sl+’ SZ+'

Let m €M+ such that (v-m) €M+. Then for (x,vy) EleQZ, m(x, y) <

v(x,y). Let us consider the open sets Al,A , A

50 Bg and the lines 21, 22, £

3
illustrated in Figure (2).

(0, 0) N
Figure (2)

(0,%)

(0, 1) (1,1)
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Then on Al, v{x,y) =x+y; on AZ, v(x,y)=1-x; on A3, v(ix,y)=1-y. Since

on A1 v(x,y) is multiply harmonic, m is multiply superharmonic, we
have m-v is multiply superharmonic and v-m€M+ = v-m 1is multiply

harmonic and hence m is multiply harmonic on A This implies here

1

that in Al for a fixed y, m( ,y) is linear and for a fixed x, m(x, )

is linear. Therefore m(x,y) =ax+by+c for some constants a,b,c=20.
Note however, m(x,y)<v(x,y) implies c¢=0. In a similar way we can
deduce that on A2 m(x, y)=d(1l-x); on A3, m(x,y)=e(l-y). Suppose that

along the line ,0,1, the planes defining m on A, and A2 do not meet at

1

some point (xo, yo) . Then for Yo fixed we have two choices given in

Figures (3), (4), for the graph of m( ,yo) in the x-z plane.

zZ
Ll 1 p.4
*o0
Z
Figure (4)
y p. 4
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Since m must be lower semicontinuous on le QZ, m( ,yo) must be

lower semicontinuous. Therefore in Figure (3), m(xo,y0

ysd(l -xo) .
and in Figure (4), m(xo, yo) Sax0+ byo. In either case, the function

(v-m)( , yo) will not be lower semicontinuous at x Since this

0"
contradicts the fact that (v-m) eM+, the planes defining m on A1 and
A2 must meet along the line !,1 . Similarly
along the lines ,ez and 17,3 . Then m(x,y)=inf{ax+by, d(1-x), e(l-y)}.
Now, the following equations must be satisfied:

(1)  4(1-1/3) = e(1-1/3),

(2) a(l/2)+b(0)=4d(1-1/2)

(3) a(0)+b(l/2)=e(1-1/2).
By (1), d=e; by (2), a=d; by (3) b=e. Hence m(x,y)=rinf{x+y, (1-x), (1-y)}
where O r<l.

. +
We conclude therefore that v is an extreme generator in the cone M .

The proof is complete.
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