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Abstract 

Integral Representation for Multipty Superharmonic Functions 

by 

Anne E. Drinkwater 

Ph, D, Mathematic s 

For i -= l, ' .. ,n, let n. be a harnlonic space of Brelot (viz. 
1 

satisfying Axioms I, II, III, IV) with positive potential. 
+ + 

Let M=M-M 

+ where M is the cone of positive multiply superharmonic functions 

n 
on n = Il n." An Hausdorff locally convex topology JI is defined on 

i= l l 

M and it is shown that M+ has a compact metrizable base A with 

respect to 1'. Thus there is an integral representation for the ele-

ments of M in terms of a signed Radon measure on A, carried by 

the extreme points of A. 

Sorne results for tensor products of general ordered Hausdorff 

locally convex topological vector spaces are given. One of these 

results is applied in another approach to integral representation for 

the elernents of M which involves duality theory. 

Finally the nature of the extreme points of the base A i5 dis-

cussed. 
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Introduction 

Let 0 be a connected Hausdorff space which is locally com.pact but 

not com.pact. Assum.e that 0 has a countable base and that there is 

defined on 0 a system. of harm.onic functions satisfying the four axiom.s 

of M. Brelot which are described in Chapter 1. If in addition there is a 

positive potential (Def. 1. 2, p. 3) on 0, then 0 is called a harm.onic 

space of Brelot with positive potential. Let S+ be the cone of positive 

+ + 
superharmonic functions (DeI'. l. l, p. 2) on 0, and S = S -S. Then it 

is well known that with respect to a certain topology T on S, the convex 

cone S+ has a compact metrizable base B, and that if s ES+, then there 

exists a unique Radon measure Il. on B, carried by the extrem.e points 

of B, e(B}, suchthatif xEO, s(x} =JBv(x} dJ.l.(v} [2,p.26],[8,pp.503-

507J. 

For i = l, ... , n, let O. be a harmonie space of Brelot with positive 
1 

potential satisfying Axiom.s l, Il, III, IV. Consider the product space 

n 
0= n O., the convex cone M + of positive multiply superharmonic func-

1 
i=l 

+ + 
tionson 0, (Def.1.4,p.9), andtherealvector space M=M -M One 

can ask whether there is an integral representation for the elem.ents of 

M+ as there is in the case of superharm.onic functions of one variable. 

Such a representation if it exists would have a num.ber of important ap-

plications, in particular, in the study of holom.orphic functions of several 

complex variables and in probability. There have been two partial answers 

to this question. 
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In 1966, K.Gowrisankaran [6J, proved that the cone MH+ of positive 

multiply harmonie functions on (} (Def. 1.3, p. 9) has a compact metrizable 

base for the topology of uniform convergence on compact sets. The 

author also showed that MH+ is a 1attice in its own order, which is the 

natura1 order. From this it follows that the elements of MH+ have a 

unique integra1 representation in terms of a Radon measure on the base 

of MH+, carried by the extreme points of the base. 

In 1968, R. Cairoli [4 J, using probabilistic methods, showed that 

the elements of a certain c1ass, ~, of multiply superharmonic functions 

of two variables, have a unique integra1 representation. The elements 

of ~ are of the form: 

v E ~. if v=v 1 + v 2 +v 3 +v 4 where vI is a multip1y harmonie 

function; v 2 is harmonie in the fir st variable and a potential 

in the second variable; v
3 

is a potential in. the first variable 

and harmonie in the second variable; v 4 is a potential in 

both variable s separately. 

In this the sis we shall consider the problem of integral repre sentation 

of multiply superharmonic functions on the product of harmonie spaces of 

Brelot with positive potential. + In Chapter II we will show that the cone M 

does have a compact metrizable base A for a certain Hausdorff locally 

convex topology y on M. We take a rather different approach to proving 

this result in that we first show that A is precompact, then that M+ itself 

i8 complete. Once A is compact metrizable, it then follows easily that the 



iii 

elements of M have an integral representation in terrns of a signed Radon 

measure on A, carried by e(A). Whether this integral representation is 

unique has not yet been determined and at the moment seems to be quite 

difficult, even in the simplest case. The nature of the extreme points of 

the base A is also a matter of interest. In Chapter II we give a partial 

answer to this question which is taken up again in Chapter IV. 

n 
Let 0 = n O., 

3. 
where O. 

1 
is a harmonie space of Brelot with positive 

i=l 

potential. 
+ + 

If 8. =8. -8., 
3. 1 1 

8. + the cone of positive superharmonic functions 
1 

on 0i for each i, then the space g =8
1 

® •.• ®8
n 

can be considered as a 

subspace of M. In Chapter IV we study the relationship between the two 

spaces g and M by applying sorne results from the theory of duality 

between two Hausdorff locally convex topologie al vector spaces. In, parti-

cular we use a theorem proved in Chapter III to obtain the following result: 

/'.. 
(g, 17), the completion of g with respect to a certain topology 17 on g, 

contains the space M. Furtherrnore, the set 

Q f ~ j 101 j 1 j E 8 + f Il'' } = 1.. I.J sI ® •.. '<>' s s. . or a 1., J 
n 1 3. 

j=l 

is a convex cone in M+ with the properties that 

......... 
(1) (g, 17) = Q - Q. 

(2) Q has a compact metrizable base C where C is the closed 

convex hull of BI ® ... ®B
n

, 

8.+ for each i. 
1 

(3) (Q-Q) i s dense in M. 

B. a compact metrizable base of 
1 
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We also show that the extreme points of C are precisely the elements 

in g of the form b
l 

® ... ®b where b. is an extreme point in B. for each 
n 1 1 

i. Going back to the question of the extreme points of the base A for the 

+ cone M we show, by considering an example, that although e(C)ce(A), 

the reverse inclusion is not necessarily true. 

In Chapter III there are sorne minor re sults in the theory of tensor 

products of ordered topological vector spaces, the main result being 

Theorem 3.2 which is applied in Chapter IV . 

The result in Chapters II and IV are believed to be original unless 

explicitly stated otherwise. A Ithough the results in Chapter III are also 

believed to be original, there is sorne connection with the works of Hustad 

[9, p. 83 J, and Peressini and Sherbert [12" pp. 182-185 J . 

l would like to thank Professor K.Gowrisankaran for his guidance 

and many helpful suggestions in preparing this the sis . l would also like 

to thank my family and friends for their encouragement, in particular, 

Mr. P.Roberts and Professor J. Lambek. 
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CHAPTER l 

In this chapter we will give a brief summary of the integral represent­

ation result for superharmonic functions of one variable on a space of the 

type we consider in this thesis. For a detaHed account the reader is re­

ferred to the paper, Axiomatique des Fonctions Harmoniques et Surharmo­

niques dans un Espace Localement Compact, by M. Brelot [2]. For a 

more general result in this direction (viz. without the Axiom IV)see R.M. 

Hervé [8 J. We '!1ill also describe the properties of multiply harmonie and 

multiply superharmonic Îunctions which will be used in the following chapter s . 

Section 1: Axioms l, II, III, IV 

Let 0 be a connected, Hausdorff space which is locally compact but 

not compact. To each open subset wc 0 there is assigned a vector space 

of real valued continuous funct10ns on w, called harmonie functions, satis-

fying the following axioms. 

Axiom I. Let w,ô be open subsets of 0 and ôc w. Then a function 

harmonie on W is harmonie on ô. If f is a continuous real valued func­

tion on w whieh is harmonie on a neighborhood of each point in w, then 

f is harmonie on w. 

Axiom II. A nonempty, open, relatively compact subset w is called 

a regular open set if each continuous function f on the boundary of w, 0 w, 
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has a unique continuous extension to the closure of w w, w, denoted by Hf ' 

which is harmonie on w. further satisfying the condition that if f ~ 0, then 

Axiom II requires the existence of a base of regular open domains for Q. 

If f is a continuous real valued function on è w, w a regular open set, 

and xE w. then the mapping t: f-?Hfw(x) is a positive linear functional 

on the space of continuous real valued functions on èw. a compact set. 

Hence t defines a positive Radon measure on èw which we will denote 

by dp w 
x S w w 

Then f dpx = Hf (x). 

Axiom III. If w is an open connected set in O. and ~ is an increasing 

directed family of harmonie functions on W, then the upper envelope of ~ is 

either harmonie on w or identical to + co • 

Definition l. l . If w is an open subset of Q, then an extended real 

valued function v on W is superharmonic if 

i) v > -co 

ii) v is lower semi-continuous 

Hi) for each regular domain Ô C Ô C w. x E Ô, v(x) ~ Sv dp Ô 
x 

iv) v t= +co on any connected component of w. 

Axiom IV. A regular domain w E Cl is completely determining if for 

every pair of positive superharmonic functions on Q. vI' v 2' harmonie on 

w. the condition vI =v
2 

on the complement of w, C(w), implies vI =v
2 

on Q. 
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Axiom IV requires the existence of a countab1e base of comp1etely de­

termining regular domains fol' n. 

If v is a positive superharmonic function on an open subset w, then 

v has a harrnonic Ininorant on w. For if h == 0 on w, then h is harmonie 

on W and h(x) ~ v(x) for each xE w. It can be '-' hown that if a superhar-

manie function has a harmonie minorant, then it has a t;.c·~:ë.test harmonie 

minorani: . 

Definition 1.2. A potential on an open subset w is a positive super­

harmonie function on w with greatest harmonie minorant equal to zero. 

We assume the existence of a positive potentia1 on the space O. If 

such a potential does not exist, one can show that aU the positive super­

harmonie functions are proportiona1 to each other. 

A space n, conneeted, Hausdorff, locally compact but not compact, 

for which there is defined a system of harmonie functions satisfying the 

above four axioms and having a positive potentia1 will be called a harmonie 

space of Brelot with positive potential. 

.::?'-'ct':on 2: Properties of Sup(~rharmonie F'unctions 

and the Vector Space S 

1) If VI' v
2 

8.re superharmonie functions on an open subset (.t.), thefl 

in f (v l ' v 2), À l vI' À l v l + À 2 v 2 (À l'À. 2 :2 0 ) are su p e r ha r mon i. con w . 
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2) If Jo(; is an increasing directed family of superharmonic functions 

on an open subset w, then the upper envelope of Jo(; is either superharmonic 

or == + ex> on each connected component of w. 

3) If v is a positive superharmonic function on a domain w, then 

v> 0 or v == 0 on w. 

4) If v is a superharmonic function on an open subset W, xE w, 

and [6 } is a sequence of regular domains such that 6 c 6 le w, [x) = n 6 
n n n- n 

then 

5) If v is a superharmonic function on 0, and w a regular domain 

cO, then the function v == v on C(w) and equal to J v dpxW for each xE w, 

is superharmonic on w. 

6) If there is a positive potential on 0, then there is a posi.tiVE- finite 

continuous potential on n. In addition, if w is any regular domain, the 

existence of a positive potential on n impHes that there is a positive super-

harmonie function on n which is not harmonie on w. 

Let S+ be the set of positive superharmonic functions on o. By Property 

1 3 S+· ,page, lS a convex cane. That is, + + + + + 8 + S c 8 , and À8 C 8 for 

+ + The fact that 8 n [-8 } = [O} follows from the definition of 8+. We 

define an equivalence relation on the pair s of elements of S+ in the following 

way: 

if v 1 +v 4 = v 2 + v 3 . 
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Let S be the set of equivalence classes thus formed and define addition 

and scalar multiplication in the usual way, i. e . , 

x [ (v l ' v 2)] = [ (Xv l ' Xv 2) ] (X > ° ) 
X[(v

l
,v

2
)] = [(-Xv

2
, -XvI)] if X<O 

[ (v l ' v 2) ] + [ (v 3' v 4)] = [(vI + v 3 ' v 2 +v 4) J. 

Then S is a real vector space, and if we make the identification of S+ with 

+ + + + 
[[(v,O)J\vES }, then S=S -S . The cone S defines a partial ordering 

on S which is called the generic order. If vI' v 2 ES, then vI is less 

than or equal to v 2 for the generic order, denoted by vI cc v 2' if v 2 = vI +w, 

+ 
where wES . If vI ccv

2
' then vl(x)~ v

2
(x) for each xEO. The converse 

of this is not necessarily true. + The cone S is a lattice for the natural 

or der . Also, we have the following theorem. 

Theorem 1.1. + The cone S is a lattice for the generic arder. 

Section 3: Integral Representation for Elements of S. 

If 3 is the countable base of completely determining regular damains 

for n, then each couple (w, x), w E 6, xE w, defines a linear functional 

on S in the following way. + 
If sES, the n s = s l - s 2 w he r e sI' s 2 ES. 

Let !; be the set of aU !inite linear 

combinations of linear functionals of this form, and let T be the w~akest 



6 

topology on S such that the elern.ents of ~ are continuous. The topology T 

is locally convex by definition, and by rn.eans of Property 4, page 4, one 

can show that it is Hausdorff. 

If Wo is a fixed elern.ent of 3 and Xo is a fixed point in W
O

' then 

since (w
O

' xO) is a strictly positive linear functional on S, 

B = (s ES+ 1 J s dp Wo = l} is a base for S+. (Recall that a set A is a base 
Xo 

for a cone K, if A = [x E K 1 f(x) = l} where f is a strictly positive linear 

functional on K.) Suppose that X is a countable dense subset of 0 and 

Xo EX. If T' is the weakest topology on S such that linear functionals 

of the forrn. (W, x), W E 3, xE w n X, are continuous, then T' is an Hausdorff 

topology on S which is rn.etrizable since it is defined by a countable nurn.ber 

of sern.inorrn.s. One has the following result for the base B. 

Theore:m. l. 2. The base B is co:m.pact and :m.etrizable for the topology 

T' on S, and T' coincides on S+ with T . 

With the help of Theore:m.s l. l, l .2 we can now prove the Integral re-

presentation result for superharrn.onic functions of one variable. 

Theore:m. l. 3. If s ES+, then there exists a unique Radon rn.easure ,." 

on the base B, carried by the extre:m.e points of B, e(B), such that for 

each xEO, 

on B, then 

s(x) = J v(x) dJ.L(v). 
B 

+ J v(x) dV(v) ES. 
B 

In addition, if V is a positive rn.easure 
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Proof: We will prove only the first statement. Since B is a compact 

metrizable set for the topology T' on S, and S+ is a lattice in its own order, 

Choquet' s Integral Representation Theorem [ 13, p. 70] applies. That is, 

if sE B, then ::il a unique Radon measure tJ. on B, carried by e.(B), such 

that, if 1, is a continuous linear functional on S+, then i,(s) = J i,(v) dtJ.(v). 
B 

Now, if w E la, xE w, then (w, x) is a continuous linear functional on S+ for 

the topology l' Thus 

If xEO and [w } is a sequence of elements of la, w c: w l' xE w , 
n n n- n 

Vn, and decreasing to (x}, then 

Since the integrand on the right is monotonically increasing with n, by the 

Monotone Convergence Theorem, the limit of the integrals is equal to 

J lim [ J v dp Wn ] dtJ.(v) = J v(x) dtJ.(v). 
B n x B 

By Property 4, page 4, 

therefore 

lim S s dpxWn = s(x), 
n 

s(x) = S v(x) dtJ.(v). 
B 

If sES+, thenthere is a unique bEB, À:2:0, suchthat s=Àb. Hence there 

is a unique Radon measure tJ. representing s. Similarly if sES, then s 
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can be written as À l s l -À
2 

s2' wher e Thus each 

element in S has a representation in terms of a signed Radon measure on 

B, carried by e(B). 

Section 4: Multiply Harmonie and 

Multiply Superharmonic Functions 

For each i, i = l, ... , n, let o. 
1 

be a harmonie space of Brelot with 

n 
positive potential. We will now denote by 0, the product space n O., 

i=l 1 

and we will use the following notation: 

~.; a countable base of completely deterrnining regular domains for O .. 
1 1 

+ S. ; the cone of positive superharmonic functions on O .. 
1 1 

+ + 
S. = S. -8 .. 

1 1 1 

~. 
1 

the linear span of ((w,x)lwE~., xEw}. 
1 

T. ; the weakest topology on S. such that the linear functionals in 2:. 
1 1 1 

are continuous. 

B. ; the compact metrizable base for S. + given by Theorem 1.2. 
1 1 

o 0 
(W. ,x. ); the linear 

1 1 
functional in ~. which generates 

1 
o + Wi 

B. = [s ES. 1 J s dp 0 = l}. 
1 1 Xi 

B .. 
1 

That is, 
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Definition 1.3. A real va1ued eontinuous funetion h on an open 

subset w cO is multip1y harmonie on w if it is harmonie in eaeh vari-

able separately (i. e., if aIl variables but one are fixed, the resulting 

funetion is harmonie). 

Let MH+ be the set of positive multiply harmonie funetions on O. 

Definition 1.4. If w is an open subset of 0, v an extended real 

valued funetion on W, then v is multiply superharmonie on w if 

i) v>-oo 

H) v is lower semi-eont-Lnuous 

Hi) v is super harmonie in eaeh variable separately, or == +00 . 

iv) v 1= +00 on any eonneeted eomponent of w. 

Let M + be the set of positive multip1y super harmonie funetions on O. 

As might be expeeted, multiply harmonie and m.ultiply superharn"lonie 

funetions have properties similar to those of harmonie and superharmonie 

functions. We shaH give on1y a partial list of these properties, in partieular, 

those whieh will be used in the following ehapters. 

1 ) 

Z) + 
If ml' m Z E MH 

+ 
then ml' m Z E M 

m.ultip1y harmonie for all real values, À l' À,z' 
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3) Let MH+ (W) be the cone of positive m.ultip1y harm.onic functions 

on W an open subset of O. Then if Xo E W, [m. E MH+(w) Im.(xo) = 1} is a 

com.pact m.etrizable base for MH+ (w) [ 6 , pp. 45 -4 7J . 

4) + 
If m.EMH (w), then m.>0 or m.=0 on"w, provided wis connected. 

5) 
+ 

If m.EM , and for i= l, ... , n, w. E lB. , x. E w., then the m.ultiple 
1 1 1 1 

integral, 

exists and is equal to any of the iterated integrals . 

6) If xl is a fixed point in W l' w
1 

a fixed elem.ent in lB l' m. E M +, 

then !m.(0'1'.'.' 0' ) dp wl(O'l) is a positive m.ultiply superharm.onic 
n xl 

n 
function on n O .. 

i=2 1 

elem.ent of lB .• 
1 

This result is true for any fixed x. E w., W. a fixed 
1 1 1 

We will give a proof of this result for the case of two variables. The 

proof cardes over directly to finitely m.any variables. Let h(y) = Jm.(x, y) dpwl(x). 
xl 

Clearly h:=:: O. Let 

Then Hm. inf h(y ) 
n n 

by Fatou' s Lem.m.a. 

m.(x, y) and we have 

[Yn} be any sequence of points in Oz with l~ Yn =y. 

= 1irn. inf Sm.(x, y ) dpwl (x) :=:: J lim inf m.(x, y ) dpwl 
n n xl n n xl 

Since m. is itself lower sem.icontinuous, lim. inf m.(x, y ):=:: 
n n 

lim. inf h(y ) :=::h(y). Therefore h is lower semicontinuous 
n n 

on OZ. Now suppose yO is a fixed point in Oz and Ô is a regular dom.ain 

with yO Eô. Then 

,-
.\ 
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J h(y) dp Ô (y) = J J m(x, y) dp Wl (x) dp Ô (y) = J J m(x, y) dp Ô (y) dp Wl (x) 
Yo Xl Yo Yo Xl 

since m(x, ) is a superharmonic function on Oz for each fixed x EOI . 

If h(y) is not Hnite on an everywhere dense subset of OZ' then m == + ex> on 

sorne connected component of ° l X 02 and this is not possible since mE M +. 

Bence h is a positive superharmonic function on OZ' 

7) Let xE 0, x = (xl' ... ,x
n

). For each i, let [W
i 
p} be a sequence 

p _ p p-l [ } of neighborhoods of x., w. Ela. Vp, W. c w. ,and decreasing to x..
L

• 
1. 1. 1. 1. 1. 

If 3t is the collection of aIl sets of the form (W
l 
Pl X W

2 
Pa X .•• X W

n 
Pn), then 

3t is a countable decreasing directed family of neighborhoods of x. If m is 

a multiply superharmonic function on 0, then following the Hlter 3' 

p p 

J J Wl 1 W n AI 
.... m(O'l' ... ,0' )dp (O'l) ... dp n (0' ) r m(x

l
, ... ,x ). 

n xl x n n n 

a multiply superharmonic function on O. Then m(.,.., x
Z

) is either a super-

harmonie function on ° l or m ( 

n 
neighborhoods of xl' W l Ela l Vn, 

Then 

1) 

n 
,xZ)==+ex>. Let [W

l
} be a sequence of . 

- n n-l [ } 
W

l 
C W

l 
,and decreasing to xl . 

This follows from Property 4, page 4, if m( ,x
Z

) is superharmonic. 
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It is irnrnediate if m.( w n 

,x
2

)=+co. Now, P (y)=Jm.(x,y)dp l (X) is a super-
n xl 

harm.onic function on 02 by Property 6, page 10. 
m. 

If [w
2

} is a sequence 

m. - m. m.-1 
of neighbor hoods of x

2
' w

2 
E a

2 
Vm., W 2 c W

2 
' and decreasing to [x

2
}, 

then for each :m., 

2) 

" 

If m.(x
1

, x ) = +co, and N is any positive integer, then from. (1) above :En , Z 

such that w n 

N < J m.(x
I

, x
2

) dPXl l (x) = P n (x
2

)· From. (Z) above :B:m. de-

pending on n such that 

w m w n 
W

m 
N < Jp (y) dp :a (y) = JJm.(x,y) dp 1 (x) dp :a (y). 

n X:a xl x:a 

w W W
n 

W
m 

J J m.(x, y) dp l(x) dp :a (y) ~ J J m.(x, y) dp 1 (x) dp S (x). 
xl x 2 xl x:a 

Therefore 
p P 

1 W :3 
lim. J J m.(x, y) dp Wl (x) dp la (y) > N, 
~ Xl x:a 

and since N was any positive integer, we have the desired result. If 

m.(x
1

, xZ) < +co, and {>O, then from. (I) above :En su ch that 

and from. (2) above :Em. depending on n such that 

w n 
W

m 
W

n 
IJJm.(x,y) dp 1 (x) dp S (y) - Jm.(x,y) dp 1 (x)1 < €/Z. 

xl x:a xl 

Therefore 

W n W m 
1 J J m.(x, y) dp 1 (x) dp 2 (y) - m.(x

I
, xZ) 1 < € • 

xl x 2 
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This, together with the fa ct that 

J J m(x, y) dp W1 (x) dp Wa (y) ~ m(x
l

, xZ) 
Xl xa 

p p 

W 1 w:3 J J m(x, y) dp 1 (x) dp a (y) t m(x
l

, x
Z

), 
xl xa 

The fact that these integrals form an increasing directed set is due to 

the increasing nature of the lirnit in Property 4, page 4. One shou1d also 

note that if xl' x z' m, (wiPJ, i=l, Z are as above, then it is true that 

We will use Properties 5,6,7 above extensively in the following chapters. 

Whenever we refer to a point xE 0 and the product HIter 3' of neighbor-

hoods of x, we mean the HIter 3' as described in Property 7 above. Let 

us denote an arbitrary element, wt l X ••• X w
n

Pn , of 3', simply by the symbol 

wP , unless it 1S necessary to refer to a particular factor of wP, say w .. P1 
l 

for sorne i = l, ... , n. Using this notation, we will then write 

p p 

~ l W n 

J ... Jm(O'l' ... ,0' )dp (O'l) ... dp n (cr ) 
n Xl x n n 

wP 
as fm dp ,and Property 7 above can be rewritten as . x 

wP 
lim J m dp = m(x) . 
:J x 
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CHAPTER II 

n 
A s in Chapter l, n = n n., where n. lS a harmonie space of Brelot 

l l 
i=l 

with positive potential for each i, (viz. a harmonie space satisfying the 

Axioms l, II, III, IV), and M+ is the set of positive multiply superhar­

monic functions <:>n n. By Property' l, page 9, M + is a convex cone, 

since it is obvious that M+n [-M+) = [0). We define an equivalence re­

lation on the pairs of elements of M+ whereby (ml' m
Z

) ,... (m3' m
4

) if 

(m. EM+, i=1,Z,3,4). 
l 

Let M be the resulting set of 

equivalence classes. 
+ + + 

Then M = M - M under the identification of M 

with [[ (m, 0) ] lm E M+}. Let us first consider a topology y on M. We 

will show that 'Y is Hausdorff and locally convex. We will use the notation 

introduced in Chapter l in the following. 

If T = ~1® "'®!:n' then T can be considered as a set of linear 

functionals on M. For if mEM+, and for i=l, ... ,n, (w.,x.)E~., 
111 

then we let 

Since this integral exists by Property 5, page la, this defines a linear 

functional on M+ which can be extended to M. The elements of Tare 

finite linear combinations of functionals of this form. 

Definition Z . 1. The topology y is the weakest topology on M such 

that elements of Tare continuous. 
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Theorem Z. 1. The topology y is Hausdorff and locally convex. 

Proof: That y is locally convex is clear from its definition. If 

+ 
ru l' m Z E M , ml f= m Z' then :Il: xE" such that ml (x) f= m

Z 
(x) . If 3' is 

P 
the product Hlter of neighborhoods of x, then, since lim J m. dpW = 

W'E3' 1. x 

ru. (x), i= l, Z, :B: sorne wP E 3' such that 
1. 

the topology y is Hausdorff. 

wP wP 

J ml dpx f=.r m Z dpx 

Lernrna Z . l . 
+ 

The cone M has a base. 

Hence 

+ W O 
Proof: For each i, i=l, ... , n, B. = (s ES. IJ s dp 10 = l) is a 

1. 1. xi 

+ 0 0 0 0 
base for the cone Si • Let Zo = [(W

l 
,xl )® •• '®(Wn ' x n )J, then Zo ET. 

+ w 0 
For each i, if sES. , s t= 0, then J s dp 10 > O. Therefore, as a result 

1. xi 

of Property 6, page 10, if mEM+, mt=O, 

a strictly positive linear functional on M, 

is a base for M+. 

then zO(m) > O. Since Zo is 

+ the set A = (mEM Iz{)(m) = l} ..., 

Notation: ln the considerations that follow A will stand for the above -- -- ----
o 0 

base for a fixed choice of (w. ,x. ), i = l, ... , n. 
-------- 1. 1. 

Let us now consider the topology y on A. We will show that A is 

compact and metrizable. The following results will be stated for n 

variables but the proofs will be given only for the case of two variables. 

The methods in the proofs carry over directly to finitely many variables 

except for Theorem 2.4 which will be proved by induction. We are res-

tricting our attention to two variables because, in the case of three or:. 
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Inore variables, the notation beeoInes very eOInplex and the Inethod of 

the proof is elouded. 

w. Ela., 
1 1 

x.Ew. for eaeh i, then an, N>O 3for eaeh InEA, n:$;z(In):$;N. 
1 1 

° Let In' (O'z) = J In(O' l' az) dP:llo (0' 1)' then In' E BZ' Sinee Bz is l' Z eOInpact 

and (W
Z

' xZ) is a l' Z strietly positive eontinuous linear functional on 

Sz +:::> BZ' aK, k>O sueh that for eaeh s EBZ' k:$;J s dP:: :$;K. Bence, 

(by Fubini 1 s TheoreIn) 

:$;K. 

+ w ° Note that k, K do not depend on In EA. Now, sinee BI = (SES
I 

IJs dpXllo = l} 
o 

is Tl eOInpaet in SI +, any set of the forIn (s ES
I 

+1 a:$;Js dp~o :$;b~ a, b~O}, 

i8 also Tl eOInpaet. If In"(O'l) =JIn(O'l'O'Z) dP:22 (O'Z), then In"E(SES l +\ 
W O 

k:$;Js dP
Xl

6 :$;K}. Sinee (Wl,x
l

) is a strietly positive Tl eontinuous 

linear funetional, ai" L > 0 sueh that i,:$; J In" dpWl :$; L. Therefore 
xl 
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(by Fubini! s Theorem) 

~ L, 

where 1" Lare independent of mEA. 

Theorem 2.2. The base A for the cone M+ is bounded. 

Proof: If zET, then z=;; À..z. wherefor each j'ZJ'=[(W{'X{)®'" 
j= 1 J J 

001 ( j j)] jE tO jE j for each' 
••• '01 W ,X ,W. ""., x. W. 1. nn 1.111 

By Lemma 2.2, for each j, 

Œ1 N. > 0, such that if 
J 

m 
t IÀ.I N., hence A 

j= 1 J J 

mEA, then 1 z.(m) 1 ~N .. 
J J 

Then V m éA, 1 z(m) 1 ~ 

is bounded in the y topology. 

Gorollary2.1. If zET, Œ1N>O, 3vmEM+ Iz(m)I~N'zO(m), 

° ° ° ° where as before zO=[(W l ,xl )®"'®(W
n 

,x
n 

)]. 

Proof: If zET, then by Theorem 2.2, Œ1N>O 3Iz(a)\sN, VaEA. 

+ 
If mEM , then m=Àa, À~O, aEA. Hence Iz(m) 1 =À.lz(a) l-SÀ.N =N.zO(m). 

Gorollary2.2. Let zET suchthat z=[(wl,xl)® ... ®(wn,xn)]where 

w. Ea., x. E W. for each i. 
1 1 1 1 

If G = (m E M+! z(m) = l}, then G is a y- bounded 

set. 

Proof: + Since V mE M , m i= 0, z(m) > 0, G is also a base for the cone 

M+. If cEG, then c=Àa, À>O, aEA, and zO(c)=À.. From Lernrna 2.2, 

Œ1N,n>O ~VaEA, O<n~z(a)~N, or O<l/N~l/z(a)~l/n. Since cEG 
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irn.plies that z(c) = l, for each À. such that Àa = cE C, 1 = z(c) = À.z(a). 

Hence À=l/z(a), and l/N~À~l/n. Therefore VcEC, l/N~zO(c)~l/n, 

and Zo is bounded on C, by sorn.e constant K > O. 

+ 
If z' ET, then by Corollary 2. l, aN' >0 such that V rn. E M , 

Hence C is "Y-bounded. 

Proposition 2.1. In the JI topology on M, a bounded set is aiso 

precorn.pact. 

Proof: If two Hausdorff Iocally convex topological vector spaces 

E, F are in duality, then one can show that a O'(E, F) bounded set is 

O'(E, F) precorn.pact. [14, page 50J The proof of Proposition 2.1 i8 

exactly the sarn.e as the proof of this result and will"be given here for 

the sake of corn.pletenes s. 

If lJ is a subbasis of neighborhoods of zero for a topology.,. on a 

locally convex Hausdorff topological vector space E, then a set Dc:E 

is -r-precorn.pact if for every V E lJ, a dl' ... , dn' all elern.ents of D, 

n 
such that D C U (d.+V) [14, page 50J. If lJ is the collection of aU sets 

i=l 1 

oftheforrn (rn.EM\ \z(rn.)\~€; zET, €>O}, then lJ isa subbasis 

for the topology "Y on M. Suppose Dc:M is bounded and V E lJ, 

V = (rn. E M \ 1 z'(rn.) 1 < I}, where z' eT. Since D is bounded, the image 

of D under z', z' (D), is a bounded set of real nurn.bers. Therefore, 

there is a finite nurn.ber of closed intervals, Il''.'' Ip' each of diarn.eter 
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p 
less than l, such that Z'(D) nI. -F iJ for 

1 
each i, and z'(D} cUI.. Now 

i=l 1 

for each i, choose sorne d. F D 
1 

suchthat z'(d.}E1.. If dEDn(z,}-l(I.}, 
111 

th en \z'(d)-z'(d.} 1< 1 
1 

p 

and dE d.+V. 
1 

Since 
P -1 

D C U (z') (1.), we have 
1 

i=l 

that De U (d.+V), and D is precornpact. 
1 

i=l 

As a resu1t of Theorern 2.2 and Proposition 2.1, we can conclude 

that the base A is precornpact. To show that the cone M + is cornplete 

we will consider a Cauchy net [v.). J CM + and frorn this net, construct 
J JE 

a function v on Cl. The rnethod ùsed in constructing v is a rnodification 

of one used by Avanissian in [ 1 ,page 32 J. We will prove in the 

following lernrnas and theorerns that VFM+ and that the net [vj}jEJ 

converges to v in the 'Y topology. 

Definition 2.1. Let [v
j

} jEJ be a Cauchy net in M+ and W
i 

EBi' i=l, ... , n. 

Let xi be an arbitrary elernent of w
i 

and x = (xl' ... ,X n). Then we define 

v(WIX ... XW )(x) = lirnJ. .. Jv.(O"l' ... ,0" }dpWl(O"l}···dpWn(O"}. 
n . J n xl Xn n 

J 

Lernrna 2.3. The real valued function v(W
l 

X ... X W
n

} defined on 

WIX ... XW
n 

is a positive rnultiply harrnonic function on WIX ..• XW
n

. 

Proof: As stated in the introduction, in [6 ,pp. 45-4 7J, the author 

shows that the cone of positive rnultiply harrnonic functions on (W
1 

X ... X W
n

), 

+ 
denoted by MH (WIX ... Xw

n
), has a cornpact base D (for the topology of 

+ uniforrn convergence on cornpact sets). The base D= [hEMH (W1X .. • xwnl 

a a a a 
h(x

1 
, ... , x

n 
).= 1} where (Xl , ... , x

n 
) is a fixed point in W

l 
X ... X W

n
. 
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Let (xl"'" X ) =x E WIX ... X W • Then for each j, let h.(x) = 
n n J 

J. .. fV'(O"I'" .,0" )dpWl(O"I)" .dpWn(a). The function h.E MH+(WIX •.. xw ): 

. J n xl X n n J n 

{Vj
} jEJ y- Cauchy in M+ im.plies the net [h

j
} jEJ converges pointwise in 

W
I 

x ... X W
n

' Therefore :B: N > ° and an index j' such that for each index 

. ., ° h (0 0) h 
J > J, ~. xl ,"', x ~ N. T e base D being compact implies that the 

J n 

set D' = [hEMH+(WIX ... XWn)\h(x
l
o, ... ,xno)~ N} is aiso compact. Since 

the net (hj)j>j' CD'" (hj}jEJ has an accumulation point h in MH+(Wlx ... X Wn
)· 

However, the fact that (h
j
} jEJ converges pointwise in W

I 
X ••• X W

n 
implies 

that h is actually the limit of the net th.}. J' Therefore 
J JE 

lim 4. = h = v(wlx ... xw ) E MH+(WIX ... xw ). 
. J n n 
J 

The lerruna is proved. 

If xEn, x=(x
1

, .... x) and for eachi. w.,Ô.E3 .• x.EÔ.CÔ.CW., 
n "!.1 1111 '1 

then v E M+ implie s that J ... J v(O"I' .... 0" ) dp Wl (0"1)'" dp W n (0' ) ~ 
n xl Xn n 

J ... Jv(O"I' ~ .. ,(j )dpÔl(O"I) .. ·dpÔn(O" ), 
n xl x n n 

by Property 7. page 11. Therefore. if (vj)jEJ is a Cauchy net in M+, 

x E n, and '3t is the product filter of neighborhoods of x described pre-

viously, [v(wp)(x)}wp E'3t is a countable increasing directed farnily of 

positive real numbers and hence has a limit, finite or equal to + co. 

Definition 2.2. If [v.). J is a Cauchy net in M +, xE n. 31 the product 
J JE 

filter of neighborhoods of x, then v(x) = lim v(wp)(x). 

wP E '3t 



Zl 

Lenuua Z. 4. V is a nonnegative, extended real valued, lower 

semi-eontinuous funetion on O. 

Proof: From the definition v is clearly a nonnegative extended real 

valued funetion. Let a ~ 0 and let xE ° l X OZ' x = (xl' xZ) be sueh that 

v(x) >a~ O. Sinee v(x) = lirrl v(wp)(x), œ: sorne wP E 3' su eh that v(wp)(x»a. 

wPE3' 

By Lerrlrrla Z. 3, v(w
p

) is a rrlultiply harmonie funetion on wP , henee 

eontinuous. Therefore œ:Ô, an open subset of 0lXO
Z

' xEôc6c wP sueh 

that if z E Ô, then v(wp)(z) >a. Now if 3' is the produet filter of neigh­
z 

borhoods of z E ô,:J as previously deseribed, then œ: w k E 3' sueh that 
z z z 

w kc wP Then we have that v(w k)(z) ~v(wP}(z) >O! and henee v(z) ~ 
z z 

k 
v(w }(z) > a for z E Ô. This shows that lX 1 v(x) >a} is open for every 

z 

a ~ O. However v ~ 0, henee lX 1 v(x) > - {3, {3 > O} is the whole spaee. 

ThereÎore v is a lower semi-eontinuous funetion on 01 xO
Z

' 

Lernrna Z. 5. Let k be a fixed integer, l s: k s: n. Then 

where xi is a fixed point in ni' W
k 

any regular domain in Ok su eh that 

Proof: Let x = (xl' xZ) E ° l X Oz be fixed, and let w
l 

be any regular 

dom.ain in ° l' xl E w l' We will show that 
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The product filter ;; of neighborhoods of (xl' x
2

) was form.ed by 

considering two sequenceoJ (WIn}, (W
2 

n} of neighborhoods af xl' x
2 

. n - n n-l 
respeetively, where for each 1., W. E B. for each n, W. C w. ,and 

1. 1- 1..1. 

n w. n 
= (x.}. ;; was the collection of aIl elem.ents of the form. wlnx w2m." 

n 1. 1. 

Let us consider the subfilter 3' of;; consisting only of the elem.ents 

n n p 
W

l 
XW

2 
• Then 31' is in fact a sequence, and since lim. v(w )(x

l
,x

2
) = 

. WP E3 

V(x
l
,x

2
), we have that lim. v(wP )(x

l
,x

2
) =v(x

l
'x

2
) as weIl. For the 

w?E:J' 

rem.ainder of the proof we will consider only those wP E;;' and we will 

write lim. v(wP )(x
l
,x

2
) as lim.v(wP )(x

l
,x

2
) where it is to be understood 

wP E3' p 

that wP E:;' . 
- n 

Let N be a positive integer such that n >N im.plics W
l 

C 

W
I

" Thenfor each n>N, 

(by Fubini' s Theorem.) 

- n 
since W

l 
C W

l 
" Let n be fixed, and n >N" 

+ 
Then for each j, kj E SI by Property 6, page 10, and sinee the net [v

j
} jEJ 

, 
.. i 
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is Cauchy, (k
j

) jEJ is a 7' 1 -Cauchy net in SI +. However, SI + having a 

Tl-compact base implies that SI + is Tl-complete. Therefore :3:k E SI + 

such that lim k. = k and hence lim S k. (°
1

) dpWl (0
1

) = S k(ol) dpWl (0
1

) . 
j J j J xl Xl 

Now let (W q) be a decreasing sequence of neighborhoods of ° l' W q E BI' 

-q q-l q + 
for each q, W C W ,and n w = (°

1
), Since k ES, by Property 4, 

q 1 

S 
wq wq 

page 4, k(ol} = lim k(o} dp (0). Also, for each q, fk(o) dp (o) = 
q 01 • 01 

q 

lirnSk.(o}dpW (o) since lim k. =k in the Tl topology. Then from 
j J 01: j J 

above we have that 

n 

~ limSSv.(Ol' °2 ) dpw2 (02) dpWl(ol} 
. J X 2 Xl 
J 

_ l' Sk.(ol} dpWl(ol) 
- l.m J Xl 

j 

= Sk(o l} dp~: (°1) 

Wq W n W 
= J[lim 1imSSv.(0, °

2
) dp (0) dp 2 (02)J dp 1(°1), 

. J 01 X:a Xl 
q J 

the last equality being a result of Fubini' s Theorem. 
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Therefore, for any n >N, we have 

w" W n W 
~ selim lim SSv.(O', 0'2) dp. (a) dp 2 (0'2)J dp 1(0'1)' 

. J. al Xiii Xl 
q J 

hence, 

V(X
l

, x
2

) = lim v(w
n

)(x
1

, x
2

) 
n 

Now, if 

w" w n 

f
n

(O'l) = lim lim SSv.(O', 0'2) dp (0') dp 2 (0'2)' 
. J 0'1 X 2 q J 

then Un} is an increasing sequence of me asurable functions in 0'1' 

and lim f (0' ) =v(O'l' x
2

). Then by the Monotone Convergence Theorem 
n n l 

we c~n interchange the limit and the integral and we have 

The proof is complete. 

Theorem 2.3. 
+ The function v constructed above belongs to M . 

Proof: We have already shown that v ~ 0, hyperharmonic in each 

variable separately. We now have to show that v 1= +cx> [6, p. 33 J . 

.i 
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Suppose on the contrary, v == + 00. Let W
1 

c:: ° l' W
2 

c:: 02 be regular do-

m.ains and let N > 0 • For every x = (xl' x
2

) on ô W
1 

X ô W
2

, we can find 

a neighborhood of the form. Ô l XÔ
2 

such that Ô
i 

is regular in 0i and 

suchthat v(ô
1

xô
2
)(y»3N/2 for yEV

x 
and V

x 
c::ô

1
xô

2
• Now, since 

J J v/a 1,0'2) dp~~ (al) dp~:(0'2) c.onverges locally uniform.ly to v(ô l xô 2)(x 1, X 2 ), 

for j following the Cauchy filter J, [[ a subfilter J'(x) such that for each 

Furtherm.ore 

borhood by the above proces s, and since ô W l X '0 W
2 

is com.pact, we m.ay 

m. m. 
assum.e that UV covera ÔW1X ÔW

2
, and let J' = n J'(x.). Then J' 

i=l xi i=l 1 

is a subfilter of J and for every jE JI, for all y E '0 W l X 'OW
2

, we have 

v .(y) >N. This reasoning holds good for all N > o. Hence 
J 

lim. ( inf v.(y)) 
j y E 'OWl X ÔW2 J 

exists and is equal to + 00. However, this last conclusion is a contradiction 

since for every j, 
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We conc1ude therefore that V ~+co. 

Theorem. 2.4. M+ is 'Y complete. 

Proof: Let w. E lB., x. E w., i== l, ... , n. We will show that if 
1 1 1 1 

z= [(w1,x
1

)® ... ®(Wn,x
n

)-], then limz(v.) = z(v). If z is an arhitrary 
. J 
J 

element of T, then z is a finite linear combination of functionals of this 

form. Hence, we can conclude then that the net {v.l. J converges to 
J JE 

V in the 'Y topology. 

Case l Functions of two variables 

Jvj(X, y) dp~ (x), then (V/}jEJ is a '7"2 Cauchy net in 8 2 +. 

1 + 1 .,. 2 complete implie s that :ft V E 8
2 

such that lim V / = V . 

Jv(x,y)dpW(x). If W(y) =V/(y), yE 02' then 
xl 

z(v) = J J v(x, y) dP:1x ) dP~l(Y) 

= J V' (y) dP~l (y) 

j 

If V. ' (y) 
J 

8
2 

+ being 

Let W(y) 

= 

= 

= limJV./(y) dpÔ (y) 
j J Yl 

(by definition of '7"2 -conver gence) 

= lim JJv.(x,y) dpw (x) dpÔ (y) 
j J Xl Yl 

= lim z(v.). 
. J 
J 



27 

Suppose :Kyo E 02 W(yO) < V'(yO). If {ôm} is a sequence of 

neighborhoods:of yo such that Ômc:ôm-I, ÔmE a
2 

t'm, and nô
m

= {Yo}, 

then :K m such that m' ~ m implies that 

, 
ô m 

W(yO) < J V'(y) dp (y). 
Yo 

m ô m m 
Let m be fixed, and let V. (x) = J v. (x, y) dp (y). Then fV. }. J 

J J Yo J JE 

is a 7'1 Cauchy net in SI + which is "'1 complete. Hence :KV
2 

ES
1 
+, 

such that lim V.
m 

=V
2

. From above, 
j J 

Jv(x, yO) dP:l(x) = W(yO) 

Ôm 
< J V' (y) dp (y) 

Yo 

= lim J V.' (y) dpô
m 

(y) 
· J Yo 
J 

W Ôm 
= lim, J J v .(x, y) dp (x) dp 

· J xl Yo 
J 

JJ Ôm w 
= Hm. v .(x, y) dp (y) dp (x) (by Fubini' s Theorem) 

j J Yo Xl 

: m W = lim J V. (x) dp (x) 
· J xl 
J 

J 2 w = V (x) dp (x). 
xl 

S V-( ) 2 S + ince , y 0 ' V El' 

1 
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sequence of neighborhoods of x
O

' decreasing to (x
O

}' w q E Bi "If q, 

-q q-l 
W c: W • Then, 

2 W ll 

= Hm J V (x) dp (x) 
xo 

q 

= lim 
q 

= Hm 
q 

m wll 

Hm J V. (x) dp (x) 
• J Xo 
J 

am wll 

HmJJv.(x,y)dp (y)dp (x). 
. J Yo Xo 
J 

N ow, if m' >m, then for each x E Cl l ' 

, am am 
Jv.{x, y) dp (y) ~ Jv.(x, y) dp (y), 

J Yo J Yo 

hence for each m' >m, 

, 
ôm Il 

v(xO
' yO) < Hm lim JJ v.(x, y) dp (y) dpW (x), 

. J Yo Xo 
q J 

and therefore 

am wll 

v(xo' y 0) < Hm [Hm Hm J J v .(x, y) dp (y) dp (x) J. 
m q j J Yo Xo 

However the right side of this inequaHty is precisely v(x
O

' YO). This 

contradiction impHes that W(y 0) ~ V'(y 0)' 

Suppose W(yO) >V'(yO)' If (ô
m

} is again a sequence of neighbor­

-rn rn-l rn 
hoods of y 0' decreasing to (YO}, Ô c.: Ô ,ô E B

2 
for each rn, then 

am 
W (yo) > V'(y 0) ~ JV' (y) dpyo (y) for each rn. Let (y and {3 be real nurnber s 

.\ 
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such that W(yO) > 01. > (3 > V'(y 0)· Let 

2 r-n ô m 
V.' (x) = Sv.(x,y) dp (y). 

J J Yo 

As before (V
j 

2., r-n) is a Cauchy net in 51 + and hence converges to sor-ne 

V
Z., r-n E5

1
+. F b h f h ror-n a ove we ave or eac r-n, 

ôm 
= lir-n SS v.(x, y) dpW (x) dpyO (y) 

. J Xl 
J 

ô m W = lim S S v .(x, y) dp (y) dp (x) 
. J Yo xl 
J 

= lir-n J V.2., r-n(x) dpW(x) 
j J xl 

As r-n -+ +co, S V 2, m(x) dpW(x) . t' Il' " f 1.S r-nouo on1.ca y 1.ucreas1.ng S1.nce or a 
Xl 

fixed j, Sv .(x, y) dpô~ (y) is mouotonically increasing wi.th r-n. Hence 
J Yo 

(3 ~ lir-nS V
2
., r-n(x) dpW(x). Now, if (wq

) is a sequence of neighborhoods 
xl r-n 

q -q q-l 
of xE èw, decreasing to (x), W E 1B

1
, W c: w for each q, then, 

Hence, 

, 
.i 
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= Hm. J[Hm. lim. J V .2:, m.(cr) dpu/l. (cr) Jdp W (x) 
. J x xl 

m. q J 

r JJ 
Ôm W~ W 

= Hm.. lim. Hm. v.(cr,y) dp (y) dp (cr)Jdp (x). 
m. q j J Y 0 X xl 

Since, 

ôm W~ 
lim. lim.Hm. J J V .(cr, y) dp (y) dp (cr) 
m. q j J Yo x 

J W~ Ôm 
= lim. lim. Hm. J V .(cr, y) dpx (cr) dp (y) 

. J Yo m. q J 

= v(x, YO)' 

we can apply the Dom.inated Convergence Theorem., and we have, 

However, O! was chosen so that 

This contradiction im.pHes that for all yE Q2' W(y) =V'(y), and 

therefore that Hm. z(v.) = z(V'). 
. J 
J 

Case2:n>2 

We as sum.e that the theorem. is true for k = n-1 . 

x. E W., for each i. 
1 1 

n-1 
T ha t i s, if 'l' = n n., 

i=l l 

the cone (M')+ of positive m.u1tiply superharm.onic functions on 'l' is 

com.plete for the corresponding y' topo1ogy. 
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Let W(a
n

) =J ... Jv(a
l

, ··.,a )dpWl(al)···dpWn-l(a 1), V.'(o) = 
n xl Xn-l n- J n 

J. .. Jv.(a
l

, ... ,a )dpWl(al)···dpWn-l(a 1)' As before [V.'} is a 7" 
J n xl Xn-l n- J n 

Cauchy net in S + which is 7" complete. 
n n 

+ Hence :H V' ES such that 
n 

limV.'=V'. Wewillshowthatforeach a EO, W(rr )=V'(a). 
J n n n n 

m 
Let [ô } be a sequence 

j 
Suppose for sorne a EO, W(a )<V'(a). 

n n n n 

of neighborhoods of an' decreasing to [an}' Ômcô
m

-
l

, ô
m 

E IS
n 

for each 

m. Then :Hm ~m'>m implies 

, , 
W (a ) < J V' (r) dp Ô m (r) = lim SV.' (r ) dp Ô m (r) . 

n an' J an 
J 

m Ôm 

Let V j (al"'" a n _ l ) = Jv/al, ..• , O'n_l' r) dPa
n 
(r). Then for each j, 

n-l 
V.

m 
is a positive multiply superharmonic fUllction on 0' = n O., and 

J i= 1 1. 

since [v.}. J isaCauchynetinM+, [V.
m

}. J is a Cauchy net in (M')+. 
J JE J JE 

Byassumption (M')+ is complete, hence :HV 2 E(M')+ ~ lim V.
rn

=V
2

. 
J 

Then we have 

ô m 
W(a ) < limSV.'(r) dp (r) 

n . J an 
J 

j 

= lim SCS ... Sv'(O'l' .. ·,a l,r) dpWl(al) ... dpWn-l(a l)]dpôm(r) 
· J n- xl Xn-l n- an 
J 

= lim S .. ·SCSV'(O'l' .. ·,a 1,r)dpôm(r)]dpWl(Ol)···dpWn-l(0' 1) 
· J n- (in xl Xn-l n-
J (by Fubini 1 s Theorem) 

= limS .. ·SV.m(al, .. ·,O' l)dpWl(O'l) .. ·dpWn-l(a 1) 
• J n- xl Xn-l n-
J 

.1 
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Since W(a} = J. .. S'O'(a1, ... ,a l,a }dpW1(al}···dpWn-1(a 1)' the above 
n n- n xl Xn-1 n-

inequality im.plies that :B: (al' : .. , a n _
l

) E OW
I 

x ... X own_lsuch that 

v(a
l

, ... , a l' a } < v 2 
(al' ... , a l)' If (y. p) is a sequence of neigh-

n- n n- 1 

- P - p-l P 
borhoods of a., decreaaing to (al'), y. c y. , y. E a. for each i, then 

1 1 1 1 l 

:B: s om.e il' ~ p > P" im.plie s 

2 P P 
v(a

l
, ... ,an_l,a

n
} < S ... SV (rI' ... ,r 1}dpY1 (r } ... dpYn-1 (r ) 

n,.. al l an -1 n- 1 

Hence 

2 P P 
'0'(0'1' ... ,0' l,a} <lim.lim.S .. ·SV. (rI' ... ,r 1) dpY1 (r

l
)··· dpYn-1 (r 1) 

n- n p j J n- 0'1 0'0-1 n-

ô m y P ~ P 
= lim.lim.S ... SCSv.(r

l
, ... ,r l,r )dp (r)Jdp 1 (rl} .. ·dp -l(r 1) 

p j J n- n 0'0 0'1 O'n-1 n-

This inequality holds :l;or aIl m.'>m., since the right side is m.onotonicaIly 

increasing with m.. Hence it holds for ~he lim.it, and we have 

v(O' l' ... , O'n} < lim.lim. v(Yl px ... XY n-l p xôm.)(O' l' ... , O'n_l' O'n) 
m. p 

This contradiction im.plies W(O' ) ~V'(O' ) for aIl a E 0 . 
n n n n 
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Suppose W(a ) >V'(a ) for som.e a En . Let (W p} be a sequence of 
n n n n n 

neighborhoods of a , decreasing to (a ), w p Cw p-l, w p E lB for each 
n n n n n n 

p. Let Ct be a real num.ber such that W(a ) >Ct>V'(a ). Then for each 
n n 

p, w P 
Ct > J V' (r) dp n (r) 

an 

w P 
= lim. J V . ' (r) dp n (r) 

. J an 
J 

= lim. JCJ ... Jv .(a
l

, ... , a l' r) dpwl(a
l

) ... dpWn-~(a l)]dpWn
P 

(r). 
. J n- xl Xn-~ n- an 
J 

p w P 
Let h. (al'·. ·,a 1) = Jv.(a l ,.· .,a l,r)dp n (r). 

J n- J n- an 
Then (h.P }. J is a 

J JE 

Cauchy net of positive m.ultiply superharm.onic functions on nI X ••• X nn_l . 

Byassum.ption, :[ h P E (M')+ such that lim. h. P = hP . Then from. above we 
j J 

have that by m.eans of Fubini's Theorem. that, 

for each p. Now let {W. qJ be a sequence of neighborhoods of a., i=l, ... , n-l, 
1 1 

Hence, 

_ i 



œ~J ... JhP(O'l'···'O' 1)dp1.lJ.l(-0'1)···dpWn-l(0' 1) 
n - xl Xn- l n-

CI. CI. 

= J ... J[lim J ... JhP(r l' ... , r l)dp
W

l (rI)'" dp Wn-l (r 1) ]dpWl (0'1)'" dpWn-l (0' 1) 
q n- 0'1 O'n-l n- Xl Xn- l n-

CI. CI. 

= r ... J[lim limJ ... Jh.P(rl' ... ,r l)dp
W

l (r
1

) .. · dpWn-l (r l)]dpWl(O'l)···dpWn-l(O' 1) 
• • J n- 0'1 O'n-l n- Xl Xn-l n-

q J 

P CI. q W 
=J ... J[limlimJ ... Jv.(rl, ... ,r- )dpWn(r)dpWl(rl) .. ·dpWn-l (r l)] dp

W
l(O'l) .. ·dp n-l(O' 1)' 

. J n O'n 11. 0'1 O'n-l n- Xl Xn-l n-
q J 

This last inequality is true for each p, hence true for the limit over p. A s in 

Part l, by means of the Dominated Convergence Theorem we can. interchange the 

limit and integral, and we have, 

0:: ~ J ... J[ lim lim v(w
1
qx .. ·x W lqxw P)(O'l , ... ,0' 1'0') ]dp Wl (0'1)' .. dp Wn-1 (0' 1) 

n- n 11.- -n xl Xn-l n-
P q 

= JJV(O'l" .. ,0' )dpWl (0'1)" .dpWn-l(O' -1)' 
n xl Xn-l 11. 

v.> 
~ 
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This is a contradiction to the way in which Ol was chosen, hence W«(j ) = 
n 

V'(a ) for aU a E 0 . 
n n n 

+ 

This implies therefore that lim z(v.) = z(V') , 
j J 

and M is y complete. 

Theorem 2.5. The base A for M+ is compact and metrizable for 

the y topology on M. 

Proof: Since M+ is complete, it is closed. Rence A CM+ is closed, 

since it is the intersection of M+ with a closed hyperplane. Therefore 

A is complete, and since we have already shown A is precompact, we 

conclude that A is compact. 

If X. is a countable dense subset of O. for i=l, ... , n, then 3'-, 
1. 1. 

the rational linear span of the set {( (W
l ' xl )® ••• ® (W ,x ) 1 W. E 6., x. E W. n X. 'fi}, 

n n 1. 1. 1. 1. 1. 

is a countable subset of -T. If y' is; the weakest topology on M such that 

elements of 3" are continuous, then 'Y' is an H~'-usdorff metri:zable topology 

on M. Since A is y-compact and ')l' is weaker than ')l, y' coincides with 

y on A. Rence A is y-metrizable. 

The integral representation result for elements of M foUows now by 

a straightforward application of the Choquet Integral Representation Theo-

rem [13 ,.p.19] . 

Theorem 2.6. If mEM, then :li a signed Radon measure,.,. on A, 

carried by e,(A}, such that if xE 0, m(x} = SA v(x) d,.,.(v) . 

_-1 
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Proof: Let mE A. Since A is compact and metrizable, ::t[ a Radon 

measure #J. on A, carried by e{A), such that, if ~ is a continuous linear 

functional on M+, then 

Suppose x = (xl' ... , x ) E n and for each i, {w.
p

} is 
n 1 

a sequence of 

- P p-l 
neighborhoods of x., decreasing to {x.}, w. c: w. , 

1 1 1 1 
w. p 

E lB. for each i. 
1 1 

Then for each p, 

w p w p 

J ... Jm{(Tl' ... 'cr )dp l {crl) ... dp n (cr ) 
n Xl X n n 

is a continuous linear functional on the elements m in M. Hence for 

each p, 

w P w P 

J ... Jm{crl, ... ,cr )dp l (cr"l) ... dp n (cr) = 
n Xl" Xn n 

w p w P 

fA [J ... Jv{crl, ... ,cr )dp l (crl) ... dp n (CT )Jd#J.{v). 
. n xl Xn n 

Taking the limit as p~+c:o, by Property 7, page Il, we have 

In this last integral, the integrand is an increasing sequence of integrable 

functions with respect to p, so by the Monotone Convergence Theorem, 

we can interchange the limit and the integral. Hence m(x) = 

P P 

m(x l
, ... ,X )=JAlim[J. .. Jv(crl, ... ,(T )dpwl (O'l) ... dpwn (cr ) Jd#J.(v) 

n p n xl Xn n 
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Nowif m.EM, then m.=Àlal-ÀZaZ' Àl,ÀZ~O; al,aZEA. Hence:[ a 

signed Radon m.easure p. on A:carrted"by e(A) such that if x EO 

m.(x) = fA v(x) dp.(v) . 

There are two questions which one should c0I1sider next: 

1) What are the extrem.e points of A? 

Z) ls ther'e a unique Radon m.easure on A representing a given 

function m. E M + ? 

We give below a partial answer to the first question, and we will 

continue the discussion of this question in Chapter IV. 

Theorem. Z. 7. If b. is an extrem.e point of the base B. for the cone 
1 1 

+ 
S., i=l, ..• , n, then the function b. ®. 0 • ®b E e(A) where for x = (xl' o.' , x

n
) 

1 1 n 

Proof: Let us consider 0= 0lXO
Z

' b
i 

Ee(B
i
), i=l,Z, and m.EM+ 

+ 
suchthat (bl®bZ-m.)EM. Thenfor each (x,y)EO, m.(x,y)~bl®bZ(x,y)o 

Also, since (bl®bZ-m.) EM+, if Y is a fixed elem.ent in OZ' then 

(bZ(y)·bl-m.( ,Y»ES
1

+. Since b1Ee(B
1

), m.( ,y)=cyobZ(y)ob
l

, where 

c is a constant depending on y 0 Sün.i1arly one can show that for a fixed 
y 

xE °1 , m.(x, c a constant depending on x, since 
x 

Since b
l 

(x) bZ(Y) >0 for aIl (x, y) E 0, we have that c = c for aIl 
x y 
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(x,y)EO. Now, if cYlf:.cY2 for som.e Y1'YZEOZ' ylf:.yZ' thenfor 

xEOI, since (x,yl),(x'YZ)EO=OIXOZ' cYl=cX=CY2 Hencethe 

function m. is a constant m.ultiple of b
l 

®b
Z

' One deduces easily 

from. this the fact that b
l 

®b
Z 

E e(A). 

, 
.. i 
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CHAPTER III 

In this chapter we give a few results of general interest for ordered 

Hausdorff locally convex topological vector spaces. One of these, Theo-

rem 3.2 will be used in Chapter IV. 

Let (E,.,.) he an Hausdorff 10cally 'convex topological vector space. 

A set Kc:E is a convex cone if (i) K+Kc:K, (ii) ÀKc:K, À:?; 0, (iii) 

Kn {-K) = {O). If K is a convex cone in E then K defines a partial 

order.ing on E wherehy if x, yEE, xsy if and only if (y-x) EK. K 

is then called the positive cone. 

Definition 3.1. Let K be a convez cone in E. 

(i) K generates E if E =K-K. 

(ii) B is a base for K if B = lX E K \f{x) = 1} where f is a strictly 

positive linear functional on E. 

(iii) If". is a topo10gy on E for which (E,,,.) is an Hausdorff locally 

convex topological vector space and K is T-c10sed, then (E, T, K) is an 

ordered Hausdorff locally convex topologica1 vector space with convex 

cone K. 

If x,yEE, K a convex cone in-E and xsy (i.e. (y-x) EK), then the 

set 1= {z E E \xs z sy} is an order interval in E and is denoted by [x, yJ. 

co 
Definition 3.2. If Xo E K such that E = U nC -xO' Xo J, then Xo is 

n=l 
an order unit in E. 
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If E = K-K, K a convex cone in E, and E' is the continuous dual of 

E, then K'={fEE'lf(x)~O, xEK) is a convex cone inE' calledthe dual 

cone. The ordering defined on E' by K' is called the dual ordering. In 

1962, O.Hustad [9, p.83J proved the following result: 

Let (E,.,.) be an Hausdorff locally convex topological vector space 

with K a closed set contained in E and K+K cK, ).,KcK, )., ~ O. Then 

K' is a convex cone which is a(E~ E ) locally compact if and only if 

K has an order unit and every K-positive linear functional on E is con ... 

tinuous. 

We give a somewhat similar result in Theorem 3..1. Let (E, 7', K) 

be an ordered Hausdorff locally convex topological vector space with 

convex cone K. Suppose E, F are in duality and that .,. is compatible 

with the duaHty. Finally let Q = [y E FI (x, y) ~ 0, xE K). 

Theorem 3.1. The convex cone K is a(E, F) locally compact if 

-1 
andonlyif ~YOEF suchthat yO (l)nK is a(E,F) complete and for 

each y E F, there exists n > 0 such that (ny 0 -y), (y+ ny 0) E Q. (We 

remark here that if Q is Uself a convex cone then such an element y 0 

in F is an order unit for the ordering on F defined by Q.) 

Proof: Since K is a .,.-closed convex set, K is a(E, F) closed 

. [14, p. 34 J. Then, the convex cone K has a a(E, F) compact base if 

and only if K is a(E, F) locally compact [11, p. 188J. Suppose K has 
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a cr(E, F) co:rnpact base B. Without 10ss of generality we :rnay assu:rne 

that B=[xEK\(xO'YO)=l} where YOEF. Wewill show that yO has 

-1 
the desired properties. Clearly yO (1) n K is cr(E, F) co:rnplete. 

If Y E F, then there exists n >0 such that \ (h, y) \ ~ n for aU b E B, since 

B is cr(E,F) co:rnpact. Then, if xEK, -n(x,yO)~ (x,y)~ n(x,yO). 

Therefore (ny 0 -y), (y+ ny 0) EQ. 

Suppose y 0 E F suchthat y 0 -1 (l)n K is cr(E, F) co:rnp1ete and for 

each YEF there is so:rne n>O such that (nyO-y), (y+n'Y
O

) E Q. C1ear1y 

yO is nonnegative on K. If xE K, then (x, y 0) = 0 ~ (x, y) = 0 for all 

y E F. Hence x = O. Therefore y 0 is a strictly positive linear functional 

on E and B = [x E K \ (x, yO) = l} is a base for K. The fir st assu:rnption 

on y 0 states that B is (l'(E, F) co:rnp1ete. The second assu:rnption on y 0 

states that each y in F is bounded on B. Then B is a cr(E, F) bounded 

set and hence cr(E, F) pr eco:rnpact [14, p. 50]. This i:rnplies finally that 

B is cr(E, F) co:rnpact and therefore that K is cr(E, F) locally co:rnpact. 

We will consider next, two ordered Hausdorff locally convex topo-

logical vector spaces (El' '7"1' KI), (E 2 , '7"2' K 2 ) having convex cones 

KI' K
2 

respectively. Consider E
l
®E

2
, the tensor product of El' E2' 

:rn 
and the set PCEl®E2' P=[:E x.®y.\x.EK l , Y.EK2 for eachi}. 

i= 1 1 1 1 1 

Peressini and Sherbert in [12, p.183] show that P, which clearly 

satisfies the conditions P+PcP; ÀPc P, )..:<: 0, is a convex cone if there 

is a strictly positive linear functiona1 on E., i=1 or i=2. Theya1so 
1 

,1 



4Z 

state that P generates El ®EZ if Ki generates Ei' i=l, Z. The projective 

topologyon El®EZ' denoted by El®1TEZ' is the finest locally convex 

topology such that the canonical rnap cp:E1xEZ ~ El®EZ is continuous. 

"'-
The cornpletion of El ® EZ is denoted by El ® EZ' 

~ 1T 

The following results are stated for the two spaces (E
1

,'7"1,K
1

), 

(EZ''7"Z' KZ), however they are true for finite1y rnany variables and 

the proofs carry over direct1y. In the following P is the set described 

above. 

Proposition 3.1. Suppose E. =K.-K., i=1, Z, and that the continuous 
1 1. 1. 

dual E/ has an order unit xi' for the dual ordering. Then x
1
'®x

Z
' is 

an order unit in (El ®1TEz)' for the ordering given by P'. 

Proof: Let B. = [x E K.\x. '(x) = 1}. Then B. is a base for K. which is 
1. 1. 1. 1. 1. 

cr(E., E.') bounded since x.' is an order unit. Hence B. is '7". bounded. 
1. 1. 1. 1. 1. 

Then BlxBZ is bounded in the product topology on ElxEZ' and hence 

B 1 ® BZ is bounded in El ®'1T EZ . 

such that \z'(B1®BZ) \~M. 

Therefore, if b1®bZ E B 1®B Z' then \z'(b 1®bZ) '~Mx1'®xZ'(b1®bZ)' 

n i i i i 
If pEP, then p=:r; 0!.b1®bZ ' where O!.~O, b l EB 1, b Z EBZ for 

i=l 1. 1. 

éach i. Hence pEP irnplies \z'(p)\~Mxl'®xZ'(p). Thereforex1'®xZ' 

is an order unit in (E1®1TEZ)' for the ordering given by the dual cone P'. 

1 
.. 1 
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~ 

Theorem 3.Z. If E=El®'lTEZ' where Ei = Ki-Ki' and Ki has a 

compact base B., i=l, Z, then 
1 

(i) P is a convex cone in E 

(H) P has a compact base B = co BI ®B
Z

' the closed convex 

hull of BI ® B Z 

(Hi) E = P- P . 

Proof: (i) ClearlyP +P c: P, and if À ~ 0, ÀP c: P. Suppose 

zEE l ® 'IT E Z and z = P n { - pl· Since K. has a compact B. we assume 
1 1 

without loss of generality that B. = {xEK.lx.'(x) = 1) where X.'EE.'. 
1 1 1 1 1 

Then by Theorem 3. l, x.' is an order unit in E.' for the ordering 
1 1 

givenby Ki" Now, ifzO'=xl'®xZ', zEPn{-~}, zO'(z)=O. Since 

zo' is order unit in (El ®'lTEZ)' by Proposition 3.1, and since (El®'lTEZ)'= 

"", , "" , 1 1 (E l ®'IT EZ) , for any z E (El ®'lTEZ) :[ M >0 such that z'(p) :!::MzO' (p) 

for all pEP. Rence z'(z) =0 for all z' E(E
I 

®'lTEZ)' and z=o. 

Therefore pn {-P} = {O} and P is a convex cone. 

(H) The set B = {z EPi zo' (z) = l} is a base for P since zo' is a 

"" strictly positive linear functional on El®'lTEZ' Clearly cOBl®BZC: B. 

n . . i 
If zEBnp, then zO'(z)=l and z= ~ 0l.b

1
1 ®b

Z
l, where 0l.~0, b

l 
EBl' 

. i= l 1 1 

n i 
b

Z 
E BZ for each i. This implies ~ Ol. = l, and hence z E co BI ®BZ' 

. l 1 1= 

Let z EPand zO'(z) = 1. Then there is a Cauchy net {zOl}OlEA c: P 
n Ol . i 

such that lim z = z. Now for each Ol, z = !; f3. b
1

1 ®b
Z 

' where 
Ol Ol . l 1 Ol 1= 

.. 
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i i 
(3i ~o, b

l 
EBl' b

Z 
EBZ for each i and for eachCi.. Since zO'(z)=l, 

Ci. n Ci. n 

Hm.zO'(z ) = l, and hence lim.( !; (3.) = 1. Let w = z /( !; {3.) for 

Ci. Ci. Ci. i=l l Ci. Ci. i=l l 

Ci. n 

Then Hm. w = lim. z /Hm. ( !; (3:.) = z, and w IV E co B l® BZ 
Ci. Ci. '1 l .... 

Ci. Ci. Ci. l ;:: 
each Ci.. 

for each Ci.. Hence z Eco Bl®BZ' Since BI' BZ are com.pact in El' EZ 

respectively, Bl®BZ is com.pactin E=El®1rEZ' However, E being 

a com.plete space i:m.plies that B = co BI ®BZ is aiso com.pact [14, p. 60J. 

( iU) Hence 

E = p;..:P. 

,-
.1 
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CHAPTER IV 

In this chapter we will consider another approach to the question 

of integra1 representation for :rnultip1y superhar:rnonic functions. 

Let 0 be a har:rnonic space of Brelot (viz. a har:rnonic space satisfying 

Axio:rns l, II, III, IV) with positive potential. In Chapter l, we defined a topo­

logy ". on S = S+-S+, where S+ is the cone of positive superhar:rnonic func-

tions on o. The topo1ogy ". was defined as the weake st topo1ogy on S 

suc h that e1e:rnents of the set I: are continuous. Recall that I: is the linear 

span of the set of all linear functiona1s on S of the for:rn (w, x), wEB, a 

base of co:rnp1ete1y deter:rnining regu1ar do:rnains for 0, xE w. We wou1d 

like to consider the topo1ogy 7" as a weak topo1ogy on S with respect to 

so:rne duality. It can happen that for so:rne z. E I:, i=l, ... , n, 
1 

n 
I: O!. z. ( s) = 0 

i=l 1 1 

for all sES where the O!.IS are rea1 but not all zero. For exa:rnp1e, 
1 

let 0=(0,1), the open unit interva1 in R', B=(a,b)\O<a<l,O<b<l;a,b 

rational nu:rnbers}, w = (1/4,3/4). Since the har:rnonic functions on this 

space 0 are linear functions, for each s ES, xE w, (w, x)(s) =:rnx+b, where 

nl.,b depend on1y on sand w. If ~= 1/3, x
2

= 1/2, x 3 =2/3, 0!1 = 1/2'0!2 = -1, 

3 3 
0!3 = 1/2, then I: O!. = 0, !,; O!.x. = O. Then for aU sES, 

i=1 1 i=l 1 1 

3 3 3 
I: O!.(W,x.)(s) 

i=l 1 1 

=:rn !:; O!.x. + b I: o!. =0. 
i=l 1 1 i= 1 1 
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We will see below that this difficulty can easily be avoided, however, 

11. 
it is interesting to note that if 0 c: R ,n::!: 2, 0 an open do:rnain with 

positive potential (for the solutions of the Laplace equation), then. this 

proble:rn does not occur. We will show briefly why this is so, since it 

does not play a part in what is to follow. 

Let OC:R
n

, n::!:2, 0 an open domain with positive potential. Sup-

pose B is a countable base of open spheres in O. Then ~ is a countab1e 

base of completely determining regularopen domains for O. Let 

Ii xl #x
2

' let y E 0- w
i 

U W
2 

such that y is not on the perpendicular 

bisector 

function 

of the line segment joining xl and x
2

. 

-1 

2 
If Oc: R , then the 

v(x) = 10g(\x-y \) for all xE 0 is an elern.ent of S such that 

11. 11.-2 
(W1,xl)(v) # (W

2
,x

2
)(v). If Oc:R ,11.>2, thenthe function v(x)= l/l\x-yl\ 

for xE Q is an element of S+ and (W1,xl)(v) # (W
2
,x

2
)(v). If xl =x

2
' but 

W l # W2 ' then :B: y E oW l' Y ~ OW2 • Let Ô E a such that Ô n OW
2 

= rj) and 

y E ô. Since there is a positive potential on 0 we can choose a functiua 

+ v ES which is not harmonie 011. Ô. The function v, identical to v on 

Ô 
C(ô), the complement of Ô, and equal to JVdpx for xEô, is an element 

+ -
of S , and (v-v»O on ô. Since Ô nèW

1 
is an open set in èw

1
, it has 

positive dpWl-measure. and hence (W
1

, x1)(v-v) = J(v-v) dpWl >0. 
xl xl 

However, (W
2

, x
2

)(v-V) = .î(v-~) dp~: = 0 because v =V on èw
2

. Therefore 

if (W
1

, xl), (W
2

, x
2

) E ~ are geometrically distinct, then they are distinct 

linear functionals on S. 
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m 
Now, let z E~, z= ~ odw., x.). lt is pos sible that for som.e i, j, 

. 1 1. 1. 1 
1.= 

il- j, w. = w.. Let us rewrite z, collecting together those w. 1 s which are 
1 J 1 

identical. Then z can be written as foHows: 

(1) 
ml l l mp p p 

z = ~ Q!. (W l' x.) + ... + ~ Q!. (w , x. ) , 

i=l 1 1 i=l 1 P 1. 

k k 
where for any fixed k, x. 1- x. if i 1- j . 

1 J 

We recall here that if (W, x) E ~ and v ES, then rv dp ü.' is the 
. ·x 

Poisson integral of v evaluated at x, i. e., if W is a sphere with 

center at y and radius r, then 

where S{w) is the surface area ofw and IJ is the surface measure 

on ow. 

Proposition 4.1. Let z E 'E such that z{v) = 0 for aH v ES. Then 

if z 1S expressed as in (1) above, for any j, l s: j s: p, 

ml' . 

~ O!.J(w.,x.J)(v) = 0 
i=l 1. J 1 

for aU vES. 

Proof: 
m. l l l 

Suppose j = l and let V = !; o!. (w
1

' x. ). Then Il is the 
1. 1. 

i=l 

difference of two positive Radon measures on OW
1 
,say V = VI -V2' We 

ml 1 1 

shaH show that if ![vES such that ~ œ. (W
1

, x. )(v) f. 0, then z(v) f. 0 
1. 1 

i=l 

for aU vES. 

../ 
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ml 1 
Let vES such that l:; a; (W1,x1)(v) 1:0. Then as measures on OW

1
, 

. 1 l. 1= 

W
1 

is a sphere with center y, radius r, then 

-rn11212 ln 
[ ~ cx. ():' -\Ix. -y 1\ )/ \Ix. -z 1\ J' l d~(z), 
.11 1. 1. 
l.= 

where l is tp.e fl1.nction identical to one on èw 1. Let 

m l12 12 1 n 
f(z) = ~ cx.b." -Ux.-yl! )/nx.-zn . 

. 1 1. 1 1. 
1= 

The function fis continuous on èw
1

, hence :[ an open set V 2 c èw
1

, 

zl EV 2 cV l' such that f(z) >0 V z EV 2" Now let X = èW 1 n Ù èW .. 
i=2 1. 

Then the set X is a set of v-measure zero in èw
1

, hence :[:2:
2 

EV 2 

suchthat z2éX" Let ôEa suchthat ôni~2oWi=(/J and z2EÔnWlcvZ" 

Choose a function VES+ such that v is not harmonie on 'ô and let v be 

ô· 
the function identical to v on C(Ô) and equal to Sv dpx for x E ô. 

Since (v-v) ~ 0 on Ô and (v-v) EO on C(ô), 
ml. 1 l -
~ cx. (w 1 ' x. )(v-v) = 

i= l 1. l. 

ml. l 2 l 2 l n -
1/S(w1) Sô n~ [~O!. (r -\Ix. -y 1\ )/ II x . -z Il J(v-v)(z)d~(z) = 

oW l i=l 1 1. 1. 

.-..1 
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ml 1 1 _ 
For all zEônow

l 
CV

2
' f(z»O and (v-v)(z) >0, hence ~ O!i(w

1
,x

i
)(v-v»0. 

i=l 

However, for j, 2s:js:p, 
mJ j j _ 
~ O!. (W., x. )(v-v) = 0 since v = v on oW., There-

i= 1 1 J 1 J 

fore z(v-v) " 0 which is the desired contradiction. 

m 

Proposition 4.2. Let z E~, z = ~ O!.(w,x.), wEB, x. E wifi, and 
. 1 1 1 1 
1= 

x, "x. for i" j. Then z(v} = 0 for al! v ES implies O!, = 0 for each i. 
1 J 1 

Proof: Let us consider Cl c:: R 
2

. Let Ix.1 = r., i=l, ... , m, and 
1 1 

r = max {r.). If C is the circle of radius r with center at the origin, 
1 

. 1 
S:1s:m. 

then for some i, ls:is:m, x. is on the circurnference of C. Suppose i=l, 
1 

and let y be the point on. the circumference ,--oC C diametrically opposite 

Xl' If we relocate the origin at the point y, then IX
I 

r = 2r, and for 

i=2, ... , m, Ix,ls:y<2r. For each positive integer n, the function 
1 

n 
f(x) = x for x E Cl is a holomorphie function on Cl which can be written 

in the form 

where 

i=1,2, 

f(x} = hl (x}+ih
2 

(x), 

h. is a harmonie function, i=1,2. Since z(v}=O ifvES and h.ES, 
1 1 

m n 
!; O!.X. = 0 for each positive integer n. Then 

, 1 1 1 
1= 

m n n n 1 ln m n 1 ln ~ O!.X. /l x
1 1 :: O!l'x l / Xl + ~ O!.X. / Xl = O. 

'Ill '2 11 
1= 1= 

However, for each positive integer n, 
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and as n~c:o, ('Y/2v)n~0. Therefore liml~l xt/lxllnl =liml~ll =0 

and ~l =0. 

n~ n~co 

It is clear that in this way, one can show ~. = 0 for each 1. 
1. 

The case where Oc Rn, n >2 can easily be reduced to the above 

situation. 

As a resultof Lemmas 4.1,4.2, inthecasewhere OCR
n

, n~Z, 

o an open domain with positive potential, if z E ~;·à.ndz(V:) = 0,. for aU v E S 

then z is the zero linear functional on S. We have already shown. in 

Chapter l that if v E S, v t:. 0, then :[ z E ~ such that z(v) f- O. Hence 

in this particular case (S,:E) is a duality. 

Let us return to the general case where 0 is simply a harmonic 

space of Brelot with positive potential. We define an equivalence 

relation R on the elements of :E whereby, zl""zZ if zl (s) = zZ(s) for 

all sES, z. E :E, i=l, 2. Let :E' be the set of equivalence classes 
1. 

thus formed and define addition and scalar multiplication in the usual 

way, that is 

where [z. ] is the equivalence class containing z. E:!;, À any real 
1. 1. 
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number. Then the real vector space !;' can be considered as a set of 

linear functionals on S if we define [z](s) = z(s) for Z E ~ and sES. 

The value of [z](s) is uniquely determined for if [zl ]=[z2]' then Zl (s) = 

z 2( s) for aU sES by the equivalence relation R. The following 

proposition is more or less obvious. 

Proposition 4.3. (S, !;' > is a duality and T = O'(S, ~'), the weak 

topology on S with respect to the duality. 

Proof: If si ES+, i=I,2, xEO suchthat sl(x)#s2(x), thenby 

Property 4, page 4, g z=(w,x)E~ suchthat z(sl)#z(s2). Therefore 

[z](sl) # [z](s2) for [z] E!;'. If [z] E!;' such that [z](s) = 0 for 

aU sES, then z(s) = 0 for aU sES, hence z is equivalent to the zero 

linear functional on S, and [z] is the zero element of ~'. Hence 

(S, ~' > is a duality. 

Let V be an arbitrary element in the base of zero neighborhoods 

for the O'(S, !;') topology. Then 

V=(sESII[z.J(s)l~l, [z.]E~', i=l, ... ,n}. 
1 1 

Trivially, V=V'=(sESllz.(s)l~l, z.E!;, i=l, ... ,n}. However, any 
1 1 

element in the base of zero neighborhoods for the T-topology is of the 

form V', hence it is clear that T = O'(S, !;') . 

n 
Now, let us consider 0 = no., where for each i, O. is a harmonie 

i=l 1 1 

space of Brelot with positive potential, M = M +-M +, where M + is the cone 

,-
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of positive multiply superharmonic functions on O. Let T' = L.l
/® ... ®~~ 

and g = SI ® ... ®Sn' A s a result of a well known theorem in topological 

vector spaces [14,p.132J, since (S.,L../ ) is a dualityfor each i bythe 
1. 1. 

above proposition, (g, T' > is also a duality. Now, as mentioned in 

Chapter III, page 42, the fact that S. = S. +-S. + for each i, implies that 
1. 1. 1. 

the vector space g = S 1 ® ... ®S n is generated by the convex cone 

m. .' + 
Q = ( L. sIJ® ... ®s J Is~ ES. for aU i, j} . 

. 1 n 1. 1. 
J= 

Proposition 4.4. g can be embedded in M in such a way that 

Proof. If s.ES.+, i=I, ... ,n, thenfor x=(x
I

, ... ,X )EO, the 
1. l. n 

harmonie in each variable separately, hence it is lower semicontinuous 

[6, page 34J. Since Si is superharmonic for each i, sl® ... ®sn cannot 

be =+co on any connected component. Therefore 

can be embedded in M so that Q C7 M+. 

The set T' can be considered as a set of linear functionals on M 

as foUows. If mE M, z. = (w., x.) E L.., then let 
1. 1. l. 1. 

= J ... J m(O'I'·· .,0' )dpWl(O'I)···dpWn(O' ). 
n Xl ~ n 
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This number is uniquely determined by the way in whieh the equivalenee 

relationwas defined on I::., i=l, ... ,n. Sinee eaeh element of T' is some 
1 

* finite linear eombination of linear funetionals of this form, T'cM , the 

alge br aie dual of M. 

Proposition 4.5. (M, T') is a duality and the cr(M, T') topology on 1\,1 

is equal to the 'Y topology (defined in Chapter II, p. 14 ). 

+ 
Proof: In Chapter II, Theorem Z. l, we showed that if ml' m

Z 
E M , 

ml(x);tmZ(x) for some x=(x
l

' ... ,xn)EO, then Xw
i
, i=l, ... ,n sueh 

that x. E W. for eaeh i, and 
1 1 

If z. = (W., x.) for eaeh i, then [z.] E ~.' and 
1 1 1 1 1 

Now, if z E T', z(m) = 0 for aU mE M, then z(s) = 0 for aIL sE g. 

Sinee <g, T') is a duality, z = 0, and therefore (M, T') is a duality. 

To show that 'Y = cr(M, T') one simply observes the foUowing. If 

m· . j 
I:: zlJ® ... ®z J, z. E~. for aU i, j, is an arbitrary element of T, let 

. 1 n 1 1 
J= 

m. . 
= I:: [zl~]® ... ®[Z J]. 

. 1 n J= 

Then F is an onto map from 

T to T' sueh that for z ET, m EM, z(m) = [F(z) ](m). Reeall that 

T =I::l® ... ®I::
n

. Then if V is an arbitrary element of the base of zero 

neighborhoods for cr(M, T'), 



.i 

54 

V=(mEM! ![F(z.)J(m)!:;;l, z.ET,i=l, ... ,n} 
1. 1. 

= (mEM! !z.(m)!:;;l, z. ET, i=l, ... ,n} 
1. 1. 

= Vi. 

Now Vi is a ')1 neighborhood of zero and any e1ement of the base of 

')1 neighborhoods of zero is of the same form as V' . 

Clear1y a(M, T') =')1 on M. 

-""". 
Proposition 4.6. g is a(M, T') dense in M, hence Mc(g,a), the 

comp1etion of g with the a(M, T') topo1ogy. 

Proof: Since <g, T' >, (M, T' > are dua1ities and g cM, by Propositions 

4. l, 4.2,4.3 we have that g is a(M, T') dense in M. [10, p. 237J 

Let [z.J E ~/, i=l, ... ,n, and for mEM, let p[ JtO tO[, J(m) = 
1. 1. zl 101 ••• 101 zn 

![zl J ® .•. ®[znJ (tn)!. Thenthis defines a seminormonM, and a(M,T / ) 

is generated by the family of seminorms p={p[ JIO. 10.[ J/[Z.JE~.' zl 10/ ••• 10/ zn 1. 1. 

for each i}, because T' is the linear span of the set of all elements of 

the form [zl J ® ..• ®[z J, [z.J E "'[;.' for each 1. In addition to the a(M, T') 
n 1. 1. 

topo1ogy on S, there is another topology 'TT, called the projective topology, 

which is formed by considering the spaces S. with the a(S., ~./) topology. 
1. 1. 1. 

The topology 'TT is defined as the finest Hausdorff locally convex topology 

on S such that the canonical map cp:S 1 x ... X S n ~ g = S 1 ® ... ®S n is continuous. 
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For each i, the O'(S., "E.') topo1ogy on S. is getierated by the family of 
111 

seminorms( p[zJ l[zJ E "E{} where p[zJ (s) = 1 [zJ(s> 1 for sE Si' [zJ E r,{ . 

If [z.J E"E.', i=1, ... ,n, sEg, let 
l l 

m. . rn. . 
p[ J®"'®p[ J(s~=inf( r,p[ J(sl~)'''''p[ J(sJ>ls= I; sJ1® .. ·®sJ J. 

z1 z . 1 zl zn. 1 n n J= n J= 

Then the family of seminorrns ~ = {Pc J®"'®p[ JI [z.JE "E.' for each i} 
zl zn, 1 1 

generate s the 17 topo1ogy on g [7, p. 31 J . 

Theorern 4. 1. The two families of seminorms, P,~, are identical 

on g. 

Proof: We will prove this for the case of g =Sl®SZ and the methcd 

carries over directly to finitely many variables. 

then 

Let [z.JE"ï;.',i=l,Z, and sEg. If s= Esj®sj, s.jES. foralli,j, 
11 'Il Z 1 l 

J= 

m , . 
= 1 r, [zlJ(s;>,[zzJ(si>1 

j=l 

m , , 

~ "E l[zlJ(si>:!'I[zzJ(si>1 
j=l 

Hence, on g, 

(1) p[ J [ J ~ p[zlJ®P[zZJ' zl ® Zz 

· "-
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Now, let [s i1iEI' [t
j 

1 jEJ be basis for the kernel of [z 1]' kernel 

of [z2] respectively. Assum.e that 1 éI, 1 éJ, and let sleSl-Ker[zl]' 

t~ES2-Ker[z2] where Ker[zi] isthekernelofzî Let P)UI=I' and 

P} U J = J'. Then [si 1 iEI' , [t
j 

1 jEJ' are basis for SI' S2 respectively, 

and s Eg im.plies s = I; OI.i , jsi®tj where this is a finite sum.. Then, 
i, j 

= 1 I; Cl.
i
,j[zl](Si).[z2](t

j )1 
i, j 

= . ~ 1 CI. i, j 1 1 [z 1 ] ( si)\ 1 [z 2 ] ( t
j
) 1 

1, J 

This together with (1) above im.ply that 

on g. 

"" As a result of the last theorem., (g, a), the com.pletion of g with 

A 
respect to the Q'(M, T') topology, is uniform.ly isom.orphic to (g, 17) 

the com.pletion of g with.respect to ft. Therefore we can apply Theorem. 

3 .2 to 0 bta in the following r e sult. 

'-
; 

-_-1 
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'" Theorem 4.2. The space M can be embedded in (g, 'TT) in such a way 

(i) the two topologies ')l, 'TT coincide on M, 

(ii) the convex cone Q has the property that Q-Q is dense in M; 

~ ~ + -
Q-Q = U;;', 'TT) :;:) M; M:;:) Q. 

(iii) Q has a compact m.ctrizable base C and C = ëOB
l 

® ... ®B
n

, 

the closed convex hull of Bl® ... ®Bn' 

A 
Proof: By Proposition 4.6, Mc:(g,O'). By Proposition 4.5, the 

"" ')1 topology coincides on M with the O'(M, T') topology. Since (g, a) is 

~ 

uniformly isomorphic to (g, 'TT) by the remarks after Theorem 4. l, 

~ 

MC (g, 'TT) and ')1 coincides on M with 'TT. By Proposition 4.4, g = Q-Q 

is a(M, T') dense in M, hence Q-Q is 'TT dense in M. Since M+ is ')1 

+ - + 
co;nplete by Theorem 2.4, hence 'TT complete, Qc:M implies Qc M . 

The remaining part of (ii) °and (Hi) except for the metrizability of C 

follow directly from Theorem 3.2. That C is metrizable is easily seen. 

+ + ° ° The base A for M was (mEM Izo(m) = 1) where Zo = [(wl,x l )® ••• 

.• • ®(wO, xC)] and for each i, (w?, x?) is the linear functional which 
n n 1 1 

+ generates the base B. for S. . Then if m = b
1

® ... ®b , b. E B. for each i, 
1 1 n 1 1 

zo(m) = 1. Hence B
1

® ... ®B
n 

c: A, and A I;)eing closed, convex implies 

C=coB
1

® ... ®B
n 

cA. Since AC:M+ is ')1 metrizable and 'Y coincides 

with 'TT on M+, A is 'TT metrizable. Thus C cA implies C is 'TT metrizable. 

The proof is complete. 

ooi 
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A natural question to ask at this point is whether the cone Q could be 

equal to M+. We will exarîine this question by considering the extreIne 

- + 
points of the base C for Q and of the base A for M . 

Proposition 4,.7. If C = co BI ® ... ®Bn' then 

e(c) = (b
l

® ... ®b 1 b.E e(B.) for each i}. 
n 1 1 

Proof: We have already shown in TheoreIn 2.8 that any eleInent of 

the forIn b
l

® ... ®b , b. E e(B.) is an extreIne point of A. Since eleInents 
n 1 1 

of this forIn are in C as well and Cc:A, we have 

e(c) ~ (b
1

® ... ®b 1 b.E e(B.) for each i}. 
n 1 1 

Since B. is cOInpact in S., O'(S., ~./), for each i, BI® ... ®Bn is TT 
1 1 1 1 

cOInpact in g by definition of 'fT. By the MilInan TheoreIn [10, p. 332J, 

e(c)c: BI® ... ®Bn· Suppose b
i 

EBi for each i, and that b
l 

ée(B
1

), say 

b l =Xa
l +(1-)d a

2 , al Fb l , al' a Z EBI' 0<>..<1. Then 

Clearly, if b
l 

F al' b
i 

F a for any i, 

The proof is cOInplete. 
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Now, as a result of the above Proposition and Theorem Z. 8, 

e(c) c e(A). The example1) below will show that e(A) is not neces­

- + 
sarily contained in e(C), hence one cannot conclude that Q = M in 

general. 

Let O. = (0,1) the unit interval in R
I

, i=l, Z, lB. = {(a, b) 10<a~b<l, 
l 1 

a, b rational) . The harmonie function on O. are the linea:r functions. 
1 

If h is a minimal positive harmonie function on O., then either 
1 

h(x)=kx, ka constant >0, orh(x)=.t(l-x), .ta constant >0. If pisan 

extremal potential on O., then p(x)~O as x~O, and p(x)~O as x~ 1. 
1 

Now, let O=OlXO
Z

' S. =S.+-S.+ where S:is the cone of positive 
l l l '1 

superharmonic functions on O., M+ be the cone of positive multiply 
'1 

superharmonic functions on O. 

Theorem 4.3. There is a function VEM+ such that v is an extreme 

+ generator of M but v is not a tensor product of extreme generators of 

the cones S.+, i=l, Z. 
'1 

Proof: Let v be a function defined on 0lXO
Z 

such that v(x,y) = 

inf(x+ y, l-x, l-y). Then v E M+, and the graph of v is given in Figure (1) 

1) This example was suggested to me by Professor Carl Herz, McGill 

University. 
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z 

Figure (1) 
(1,0,0) 

~~r-------~~~~~X 

(0, l, o).,-..-___ v 
(l, 1,0) 

y 

If Pi is an extremal potential on ni' i=1,2, then Pl ®P2<î, y)-+o 

as y-+o. Sinee v(î,y)-+î as y-+O, it is elear that v is not a tensor 

produet of two extremal potentials. If h. is a inini.m.al pàsitive harmonie 
1. 

funetion on n., p. an extremal potential on O., i=1,2, then by exam-
1. 1. 1. 

ining the behaviour of h
l
®h

2
, h

l
®P2' Pl®h

l
, close to the boundary of the 

unit squ.are, one ean eat::.i.ly see that v eannot be a tensor produet of 

elements in 5
1
+,5

2 
+. 

LetmEM+suehthat (v-m)EM+. Thenfor (x,y)E0
1

X0
2

, m(x,y")< 

v(x, y). Let us eonsider the open sets Al' A2' A3 and the Hnes t
l

, t
2

, t
3 

illustrated in Figure (2). 

(0, ° )r------( -_~ ,,..0_) ____ (.....,1 'r-
0_>_ x 

Figure (2) 

(0, 1>1----------~(1, 1> 

y 
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Then onA
l

, v(x,y)=x+y; onA
2

, v(x,y)=l-x; onA
3

, v(x,y)=l-y. Sinee 

on Al v(x, y) is multiply harmonie, m is multiply superharmonic, we 

+ have rn-v is multiply superharmonie and v-m E M ~ v-m is m.ultiply 

harmonie and henee m is multiply harmonie on Al. This implies here 

that in A 1 for a fixed y, m( ,y) is linear and for a fixed x, m(x, 

is linear. Therefore m(x, y) = ax+by+e for sorne constants a, b, e ~ O. 

Note however, m(x, y) s:v(x, y) implies e = O. In a similar way we ean 

deduee that on A
2 

m(x, y) = d(1-x); on A3' m(x, y) = e(1-y). Suppose that 

along the line 1,1' the planes defining m on Al and A
2 

donot meet at 

sorne point (x
O

' y 0). Then for y 0 fixed we have two ehoiees given in 

Figures (3), (4), for the graph of m( ,y 0) in the x- z plane. 

z 

Figure (3) 

~---------------r-------------~~--------x 
1 

z 

Figure (4) 

x 
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Since m must be lower semicontinuous on 0
1 

X O
2

, m( ,y 0) must be 

lower semicontinuous. Therefore in Figure (3), m(x
O

' y 0) ~ d(.l-xO) 

and in Figure (4), m(xO' yO) s axO+ byO' In either case, the function 

(v-m)( ,y 0) will not be lower semicontinuous at xo. Since this 

contradicts the fa ct that (v-m) E M+, the planes defining m on A 1 and 

AZ must meet along the line 1,1' Similarly 

along the Hnes 1,Z and 1,3' Then m(x, y) = inf{ax+by, d( l-x), e(1-y»). 

Now, the following equations must be satisfied: 

(1 ) d( 1- 1/3) = e ( 1 - 1/3) , 

(2) a(l/Z)+b(O) =d(1-1/2) 

(3) a(O)+b(l/Z)=e(l-l/Z). 

By (1), d=e; by (Z), a=d; by (3) b=e. Hence m(x,y) =rinf(x+y, (l-x), (l-y») 

where O~r<l. 

We conclude therefore that v is an extreme generator in the cone M+. 

The proof is complete. 

, 
1 
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