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Abstract 

Adolescence is a highly vulnerable period where many external and environmental 

factors can greatly impact brain maturation. Experiences of social stress in adolescence, 

such as bullying, can hamper prefrontal cortex development and impair cognitive control 

in adulthood. This developmental disruption can have negative consequences on mental 

health trajectories. In adolescence, dopamine axons undergo targeting events in the 

nucleus accumbens, with most of them forming local enduring synaptic connections. In 

contrast, mesocortical dopamine axons continue to grow from the nucleus accumbens all 

the way to the prefrontal cortex across adolescence, remaining vulnerable to ongoing 

experiences.  

 

To study long- and short-term effects of social adversity in adolescent C57BL/6 

female and male mice and the underlying mechanisms, we modified and adapted an 

accelerated version of the chronic social defeat stress paradigm used in adult male mice. 

Our adolescent model, termed accelerated social defeat (AcSD), allows to expose mice 

to social stress during discrete windows within adolescence. Exposure to AcSD in early 

adolescent males and females leads to impulse control deficits in adulthood. In males, 

but not females, these effects associate with alterations in the expression of axonal 

guidance cues that control adolescent dopamine development.  

 

To explore whether AcSD in adolescence alters the ongoing development of the 

male and/or female dopamine circuitry, a targeted viral tracing strategy was used to track 

the growth of dopamine axons to the prefrontal cortex during adolescence. Additionally, 

longitudinal profiles of gonadal and stress hormones in follicular hair samples were 

assessed in a different cohort of mice that underwent AcSD or control conditions. The 

goal of this experiment was to understand if, how, and when, social adversity impacts 

these endocrine systems.  

 

In males exposed to AcSD, dopamine axons found in the nucleus accumbens 

during adolescence underwent targeting errors leading to ectopic growth to the prefrontal 

cortex in adulthood when compared to control counter parts. In female mice, however, 
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AcSD reduced the number of dopamine axons that grew to the prefrontal cortex. Notably, 

in control non-stressed male and female mice, significantly more axons were found to 

grow to the prefrontal cortex in females compared to males. Regarding the profile of 

follicular hair hormones, corticosterone levels were differently affected by AcSD in males 

and females: while AcSD-exposed males showed short and long-term elevated 

corticosterone levels, in females corticosterone levels correlated significantly with social 

avoidance behavior. These results are the first demonstration that social adversity in 

adolescence disrupts dopamine long-distance axonal pathfinding and that this effect is 

opposite in males and females exposed to stress during the same chronological age. 

Sexually dimorphic molecular mechanisms involving axonal guidance cues and 

corticosterone may be at play.  We propose that adverse experiences in adolescence 

increases susceptibility to mental illnesses by inducing sex-specific alterations in ongoing 

dopamine axon targeting and growth. 
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Résumé 
L'adolescence est une période de grande vulnérabilité où de nombreux facteurs 

externes et environnementaux peuvent avoir un impact important sur la maturation du 

cerveau. Les expériences de stress social telles que l’intimidation à l'adolescence 

peuvent entraver le développement du cortex préfrontal et altérer son rôle dans le 

contrôle cognitif. Cette perturbation du développement peut avoir des conséquences 

négatives sur le bon développement de la santé mentale. À l'adolescence, les axones 

dopaminergiques ciblent majoritairement le noyau accumbens, la plupart d'entre eux 

formant des connexions synaptiques locales durables. En revanche, les axones 

dopaminergiques mésocorticaux continuent de croître du noyau accumbens jusqu'au 

cortex préfrontal durant cette période et restent donc très vulnérables aux expériences 

en cours.  

 

Pour étudier les effets à court et long terme de l'adversité sociale chez les souris 

adolescentes C57BL/6 mâles et femelles, nous avons adapté une version accélérée du 

paradigme de stress chronique de défaite sociale pour étudier les effets de l'exposition 

de ce stress pendant des périodes distinctes de l'adolescence. Nous avons appelé notre 

modèle d'adolescent "défaite sociale accélérée" (AcSD). L'exposition à la défaite sociale 

accélérée au début de l'adolescence chez les mâles et les femelles entraîne des déficits 

du contrôle de l’impulsion à l'âge adulte. Chez les mâles seulement, ces effets sont 

associés à des altérations de l'expression des signaux de guidage axonal qui contrôlent 

le développement de la dopamine chez l'adolescent. 

 

Pour déterminer si l’AcSD à l'adolescence modifie le développement du circuit 

dopaminergique chez les mâles et/ou les femelles, une stratégie de traçage viral a été 

utilisée pour suivre la croissance des axones dopaminergiques vers le cortex préfrontal 

au cours de l'adolescence. Dans une autre cohorte de souris, des profils longitudinaux 

d'hormones gonadiques et de stress ont été étudiés dans des échantillons de poils 

folliculaires de souris ayant subi l’AcSD, ou de conditions de contrôle. L'objectif de cette 

expérience était de comprendre si, comment, et quand l'adversité sociale a un impact sur 

ces systèmes endocriniens.  
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Il a été constaté que chez les mâles, l’AcSD induit des erreurs de ciblage des 

axones dopaminergiques dans le noyau accumbens, ce qui déclenche leur croissance 

ectopique vers le cortex préfrontal. Chez les souris femelles en revanche, l’AcSD réduit 

le nombre d'axones dopaminergiques qui se migrent normalement vers le cortex 

préfrontal. Notamment, lorsque l’on suit la croissance des axones dopaminergiques au 

même âge chronologique à l'adolescence, on constate qu'un nombre significativement 

plus important d'axones se développent vers le cortex préfrontal chez les femelles que 

chez les mâles.  En ce qui concerne le profil des hormones folliculaires, les niveaux de 

corticostérone sont différemment affectés par l’AcSD chez les mâles et les femelles: alors 

que les mâles présentent une corticostérone élevée à court et à long terme, les niveaux 

chez les femelles sont significativement corrélés avec le comportement d'évitement 

social. Ces résultats sont la première démonstration que l'adversité sociale à 

l'adolescence perturbe le cheminement axonal à longue distance de la dopamine. Il est 

intéressant de noter que ces résultats sont diamétralement opposés chez les mâles et 

les femelles, ce qui soulève un questionnement des mécanismes moléculaires 

sexuellement dimorphiques, et le rôle potentiel de la corticostérone à cet égard. 
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is the first to our knowledge to adapt the chronic social defeat model such that we can 

study discrete temporal windows of vulnerability during adolescence in C57BL/6 female 

mice. It is revealed that following social defeat stress in adolescence, female and male 
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Introduction and Statement of Problem  
Adolescence is defined as a very broad period of development where we observe 

a gradual transition from a juvenile state to independence. During this period, many 

changes are ongoing including a variety of physiological, hormonal, and behavioral 

alterations that make it such that we mature into an adult. The field of neuroscience is 

very keen on studying the adolescent population since this age marks future mental 

health trajectories (Clark et al., 1997; Hicks et al., 2009; Larsen & Luna, 2018; Lee et al., 

2014; Rao et al., 1999; Wills et al., 2001). The age of onset for many different 

psychopathologies is in fact during the fragile, but plastic, adolescent period (Larsen & 

Luna, 2018; Paus et al., 2008). Enhanced vulnerability during this age can be explained 

in part by the fact that the prefrontal cortex (PFC) is still undergoing substantial 

developmental changes as it is one of the very last brain regions to fully mature (Gogtay 

et al., 2004).  

 

Via the orchestration of important axonal guidance molecules, such as the Netrin-

1/deleted in colorectal cancer (DCC) guidance cue system, dopamine (DA) axons in the 

mesocortical pathway are still innervating their frontal cortical targets (Hoops et al., 2018; 

Reynolds, Pokinko, et al., 2018). This gradual increase in the density of DA fibers growing 

up to the PFC until early adulthood, renders this process highly vulnerable to experiences 

during adolescence (Kalsbeek et al., 1988; Manitt et al., 2011; Naneix et al., 2012; 

Rosenberg & Lewis, 1995). In parallel to the maturation of the DA input to the PFC, 

inhibitory control capacity improves gradually from adolescence to adulthood in rodents, 

non-human primates, and humans (Luna et al., 2015; Reynolds & Flores, 2021). Since 

several psychiatric disorders of adolescent onset are characterized by impulse control 

deficits, this PFC-mediated behaviour can serve as an endophenotype of psychiatric risk 

(Paus et al., 2008).  

 

Regardless of gender, one of the most important events in adolescence is 

socialization and peer interaction (Smetana, 2015). Unfortunately, during this stage of life, 

stressful incidents of bullying, domestic/sexual violence and navigating one’s sexual and 

gender identity are highly prevalent (Collier et al., 2013; Rijlaarsdam et al., 2021). These 
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experiences of social stress put individuals at a high risk of developing internalizing and 

psychiatric disorders (Bowes et al., 2015; Lereya et al., 2015; Oram et al., 2013; Stapinski 

et al., 2014) due to dysfunctions in PFC-dependent cognitive functions (Clark et al., 1997; 

Rao et al., 1999; Wills et al., 2001; Wills & Cleary, 1996). 

 

It is essential to note that there are significant individual differences in how 

adolescents respond to social stress. Some adolescents remain resilient and unaffected 

by social adversity, while those who are susceptible may experience it in different ways 

(Notaras & Buuse, 2020; Wood & Bhatnagar, 2015). Whether it be chronological age or 

biological sex, many different factors contribute to individual differences in resilience and 

susceptibility to the psychiatric impact of stress exposure in adolescence (Beesdo et al., 

2009; Paus et al., 2008). For one, many obvious differences exist between males and 

females in their onset and prevalence of depression, substance use disorder and other 

mental illnesses that emerge during adolescence that are tightly linked to stress 

(Dalsgaard et al., 2020; Pedersen et al., 2014). When compared to males, females 

exposed to adversity during adolescence have a higher risk of developing mood disorders 

(Bale & Epperson, 2015; Boyd et al., 2015; Heim et al., 2010; Kessler et al., 2007. It 

seems that the vulnerability to experiences in an adolescent’s environment is highly 

dependent on both the type of stressor occurring as well as the physiological or behavioral 

outcomes being examined (Hankin et al., 2007; Kim et al., 2017). 

 

Social stress during this developmental period can be damaging in many ways. 

Understanding how immediate and enduring consequences of social stress manifest 

differently in males and females is critical and timely. There is an increasing incidence in 

peer victimization and depression in youth and therefore there is a pressing need for 

research data to inform early detection, prevention, and intervention programs. This work 

was aimed at modeling social stress in adolescent C57BL/6 female rodents and at 

providing insights regarding the dimorphic sensitivity to adversity at the behavioral, 

neuroanatomical, and molecular level. 
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Background and Rationale 
 
Adolescent Dopamine Development in the Maturing Prefrontal Cortex 

As is the case in humans, there are no precise boundaries demarcating the 

beginning and end of adolescence in rodents (Hollenstein & Lougheed, 2013; Sawyer et 

al., 2018). Our group as well as others suggest that adolescence in C57BL/6 mice spans 

from postnatal day (PND) 21, when mice are weaned, until the start of adulthood at PND 

60 (Reynolds & Flores, 2021; Schneider, 2013). Within this adolescent window of 

transformation, we can further subdivide this period into what we refer to as a peripubertal 

“early adolescence” (PND 21-34) and pubertal mid adolescence (PND 35-48). These age 

ranges encompass discrete DA developmental periods (Kalsbeek et al., 1988; Manitt et 

al., 2011; Reynolds & Flores, 2019) and distinct behavioural characteristics (Adriani & 

Laviola, 2004; Makinodan et al., 2012; Spear, 2000; Wheeler et al., 2013). 

 

Our group is interested particularly in the development of the DA system whereby 

DA neurons originating from the ventral tegmental area (VTA) form the mesolimbic and 

mesocortical pathways respectively by innervate the nucleus accumbens (NAcc), or the 

medial prefrontal cortex (mPFC). Both pathways travel together through the medial 

forebrain bundle (Nieuwenhuys et al., 1982) and then diverge at the NAcc into their 

separate DA systems serving different brain areas and functions. While most axons 

remain in the NAcc to form enduring connections (Hoops et al., 2018; Manitt et al., 2011; 

Reynolds & Flores, 2021) others continue to bypass through this region to reach the 

mPFC and other frontal cortical regions, including the orbitofrontal cortex (Hoops et al., 

2018; Manitt et al., 2011; Reynolds & Flores, 2021). Since collaterals of NAcc DA axons 

to the mPFC are extremely rare  (Beier et al., 2015; J. Fallon, 1981; J. H. Fallon & 

Loughlin, 1982; Lammel et al., 2008; Reynolds, Yetnikoff, et al., 2018; Swanson, 1982), 

the NAcc is a decision-making point whereby axons either settle in the NAcc or continue 

to grow up to the mPFC. Interestingly, these two segregated DA pathways have very 

different developmental temporal trajectories whereby in rodents, DA axon innervation of 

the NAcc reaches full maturation by early adolescence (Antonopoulos et al., 1997; Manitt 

et al., 2011; Voorn et al., 1988) whereas mesocortical DA axons to the mPFC gradually 
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increase from early adolescence all the way up until adulthood (Benes et al., 1996, 2000; 

Hoops et al., 2018; Kalsbeek et al., 1988; Leslie et al., 1991; Manitt et al., 2011; Naneix 

et al., 2012; Willing et al., 2017). This prolonged maturation of the PFC development 

occurs both in non-human primates (Rosenberg & Lewis, 1995) and most likely in humans 

too (Padmanabhan & Luna, 2014). By labeling DA axons in the NAcc in early adolescence 

and tracking their trajectory afterwards, our lab showed that indeed, DA axons still grow 

from the NAcc to the mPFC across adolescence in mice (Hoops et al., 2018; Reynolds, 

Yetnikoff, et al., 2018). This demonstration of long-distance axon growth during late 

postnatal development occurs to the DA system and renders it uniquely vulnerable to 

environmental disruptions during this prolonged developmental time (Hoops & Flores, 

2017). Unlike DA inputs to the mPFC, norepinephrine and serotonergic inputs to the 

mPFC reach adult density levels much before adolescence by PND 7 and PND 14 

respectively (Benes et al., 2000; Levitt & Moore, 1979; Lidov et al., 1980).  

 

Role of the Netrin-1/DCC Guidance Cue System in Dopamine Development 
Within the mesocorticolimbic system, several important proteins play a key role in 

shaping the development of the DA circuitry, such that DA axons end up forming 

connections at the right place and at the right time. One of these organizers is the Netrin-

1/DCC guidance cue system which controls targeting decisions by axons along their 

growth to their final endpoint. This guidance cue system is expressed in DA systems of 

rodents, non-human primates, and humans across the lifespan (Cuesta et al., 2018; 

Manitt et al., 2010, 2011; Osborne et al., 2005; Reyes et al., 2013). The Netrin-1 ligand 

which is distributed as a gradient across the brain makes it such that axons can either be 

attracted or repelled depending on the type of receptor they express (Lanoue & Cooper, 

2019; Sun et al., 2011). DCC receptors expressed on the growth cone of DA axons 

mediate their attraction towards sources of Netrin-1 (L. Finci et al., 2015; L. I. Finci et al., 

2014).  

  

DCC receptors are highly expressed in VTA DA neurons (Phillips et al., 2022), with 

levels diminishing from early life to adulthood (Manitt et al., 2010). Interestingly, the level 

of expression of Netrin-1 and DCC receptors in terminal regions of mesocorticolimbic DA 
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pathways differ both spatially and 

temporally. Lower levels of Netrin-1 

protein are found in the NAcc and very 

high levels are found in the mPFC (Manitt 

et al., 2011), particularly in the inner 

layers, where there is the densest DA 

input (Cowan et al., 1994; Eden et al., 

1987). In the NAcc, all DA axons express 

DCC receptors, and in fact this protein is 

only expressed by these axons (Phillips et 

al., 2022). However, in the mPFC, very 

few if any of the DA axons express DCC 

(Figure 1; Reynolds et al., 2023). 

 

The Netrin-1/DCC guidance cue system has crucial roles in shaping the mature 

mesocorticolimbic DA pathway. When DCC levels are reduced in DA axons that have 

reached the NAcc by early adolescence, these axons fail to recognize the NAcc as their 

final target and instead, they grow ectopically to the mPFC (Reynolds, Pokinko, et al., 

2018). This rerouting of NAcc axons to the mPFC leads to (i) the presence of DCC+ axons 

in the mPFC (Manitt et al., 2013; Reynolds, Yetnikoff, et al., 2018), (ii) altered mPFC DA 

release (Grant et al., 2007; Hernandez et al., 2022) and (iii) a disorganized DA 

connectivity in the mPFC (Cuesta et al., 2020; Manitt et al., 2011, 2013; Reynolds et al., 

2015). DCC is thus a critical receptor for the proper segregation of mesolimbic and 

mesocortical DA pathways (Reynolds, Pokinko, et al., 2018). Interestingly, during 

adolescence, the NAcc undergoes abundant changes in its connectivity and activity, 

including in humans, rendering it a vulnerable target at this developmental period 

(Antonopoulos et al., 1997; Manitt et al., 2011; Mastwal et al., 2014; McCutcheon et al., 

2012; Naneix et al., 2012). 

 

However, variations in DCC not only cause enduring alterations at the circuitry 

level, but also at the level of behavior and cognitive function. In rodents, ectopic growth 

FIGURE 1. Distribution of Netrin-1 and DCC across 
the mesocorticolimbic system While high levels of 
Netrin-1 are found in the PFC and very low levels 
are found in the NAcc, the opposing expression 
level is seen in DCC whereby there are very high 
expression levels on mesolimbic axons whereas 
mesocortical axons express low levels. 
 
 

Reynolds et al., 2023 
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of NAcc DA axons to the mPFC leads to alterations in impulse control in adulthood 

(Reynolds et al., 2018, 2023). Human work studying adult individuals with DCC 

haploinsufficiency not only show changes in PFC connectivity but also in inhibitory control 

in adulthood (Vosberg et al., 2018, 2020). An increasing number of studies are also now 

showing that genetic variations in the Netrin-1/DCC system are tightly linked to disorders 

that are characterized by deficits in inhibitory control such as major depressive disorder 

and substance use disorder (Bechara & Martin, 2004; Manitt et al., 2013; Torres-Berrío 

et al., 2017; Vocci, 2008; Woicik et al., 2011). Dysregulation of these guidance cues 

during adolescence in the mesocorticolimbic system can perhaps explain mechanistically 

how experiences during this age lead to enduring impulsivity traits in rodents and humans 

(Torres-Berrío et al., 2020; Vosberg et al., 2020).  

 

Consequences of Social Stress in Adolescent Male Mice  
To reproduce aspects of physical and psychological stress experienced by victims of 

bullying during adolescence, researchers have used the chronic social defeat stress paradigm 

initially implemented in adult male rodents (Burke et al., 2016; Hasegawa et al., 2018; Huang 

et al., 2013; Iñiguez et al., 2014, 2016; Kim et al., 2018; Montagud-Romero et al., 2015, 2017; 

Mouri et al., 2018; Resende et al., 2016; Rodríguez-Arias et al., 2015; Xu et al., 2018; F. Zhang 

et al., 2016; H. Zhang et al., 2016). In this model, a mouse is subjected to repeated physical 

attacks from a larger dominant and aggressive mouse. We recently adapted the accelerated 

social defeat (AcSD) version of the chronic social defeat stress model to expose male mice to 

social stress during specific adolescent chronological ages (Pantoja-Urbán et al., 2022; 

Vassilev et al., 2021, 2022) such that we could capture critical windows of vulnerability and 

assess possible molecular players. In males, it was found that AcSD in early adolescence 

induced social avoidance, soon after exposure, and had enduring detrimental consequences 

on impulse control (Vassilev et al., 2021). Although not all males exposed to adolescent AcSD 

showed impaired social behavior, all defeated mice exhibit impulse control deficits in 

adulthood. This indicated that a social avoidant phenotype was not a consistent measure of 

susceptibility to AcSD in adolescence and that there may be a trade-off between protection 

against social deficits in adolescence and poor inhibitory control in adulthood (Brody et al., 

2020; Pantoja-Urbán, Richer, et al., 2023). Indeed, all mice subjected to AcSD showed 
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reduced expression of the Netirn-1 guidance cue receptor DCC, one week after exposure, 

when DA axons were undergoing targeting events in the NAcc (Vassilev et al., 2021). As 

mentioned, DCC receptors in mesolimbic DA neurons controls the extent of the protracted 

growth of DA axons to the PFC – an event occurring in parallel to the gradual refinement of 

impulse control (Cuesta et al., 2020; Hoops et al., 2018; Reynolds, Pokinko, et al., 2018).  

 
Rationale and Hypothesis 

Because dominance hierarchies in rodents involve males fighting against males, but 

not females, building a model of adolescent social defeat stress in females was challenging 

for many groups. Here we overcame this limitation by modifying and adapting our adolescent 

AcSD male paradigm to female mice. Using a combination of behavioral, molecular, 

anatomical, and cognitive measures, we were able to assess, for the first time, the short- and 

long-term impact of social defeat stress in early adolescent female mice and to determine 

whether sex-specific characteristics emerged.  
 

Because of sex-specific neurodevelopmental trajectories, we hypothesized that 

social defeat stress during the same adolescent chronological window would affect 

female mice differently than what was previously reported in males (Vassilev et al., 2021). 

We anticipated that AcSD would have a different impact in males and females regarding 

(i) social avoidance patterns, (ii) mPFC DA development, and (iii) hormone levels.  
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Project Aims 
 
 
Aim 1: To determine if the AcSD model works for female adolescent mice.  

 

Aim 2: To determine if social stress in early adolescence leads to dopamine axon 

mistargeting in both male and female mice.   

 

Aim 3: To measure levels of stress and gonadal hormone before and after adolescent 

AcSD exposure in male and female mice.  
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Materials & Methods 
 
Animals* 

All experiments conducted in this study adhered to the guidelines set forth by the 

Canadian Council of Animal Care (CCAC) and received approval from the McGill 

University/Douglas Mental Health University Institute Animal Care Committee. All mice 

used were housed in a controlled environment at the Douglas’s Neurophenotyping Center 

where a temperature of 21-22°C and humidity level of approximately 60% was 

maintained. Except for the C57BL/6 DATCre mice bred in our animal facility specifically for 

the purpose of the axonal mistargeting experiment (Aim 2), all other C57BL/6J 

experimental mice were obtained from Jackson Laboratories. For the AcSD paradigm, 

male CD-1 retired breeder mice were acquired from Charles-River Canada and used as 

aggressor mice. These single housed CD-1 mice were used for no more than three 

months and a maximum of three consecutive experiments. All non-experimental C57BL/6 

adult and adolescent mice used for the screening and priming during AcSD were also 

obtained from Charles-River Canada. Throughout the experiments, all mice were given 

ad libitum access to food and water. 

 

Accelerated Social Defeat* 
To replicate aspects of the physical and psychological stress experienced by 

adolescent victims of bullying, researchers have employed a modified version of the 

chronic social defeat stress paradigm originally used in adult male rodents (Burke et al., 

2016; Hasegawa et al., 2018; Huang et al., 2013; Iñiguez et al., 2014, 2016; Kim et al., 

2018; Montagud-Romero et al., 2015, 2017; Mouri et al., 2018; Resende et al., 2016; 

Rodríguez-Arias et al., 2015; Xu et al., 2018; F. Zhang et al., 2016; H. Zhang et al., 2016). 

Our lab adapted an accelerated version of this stress model called the Accelerated Social 

Defeat Stress Model (AcSD) such that both adolescent male and female mice could be 

subjected to attacks by an aggressive CD-1 mouse during precise periods in adolescence 

(Figure 1A; Pantoja Urbán, Richer, et al., 2023; Vassilev et al., 2021).  
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Phase 1- CD-1 Screening: When male CD-1 mice are obtained from Charles River, 

approximately half of the cohort exhibits aggression towards adolescent C57BL/6 mice, 

while the other half do not display aggressive behaviour. Due to this variability, it is 

essential to carefully select aggressor CD-1 mice before undergoing the AcSD 

experiment. For at least two consecutive days, an adult male C57BL/6 mouse was 

introduced into the home cage of the CD-1 for 3 minutes or until it experienced 10 attacks, 

whichever occurred first. From these observations collected, aggressive CD-1 mice were 

selected to move onto phase 2 based on whether they attacked or not.  

 

Phase 2- CD-1 Priming: The next phase of preparation before starting AcSD is called 

the priming phase. This phase has the objective of firstly, finding mice that will attack 

adolescent C57BL/6 mice and secondly, it has the aim of getting CD-1 mice primed and 

consistently aggressive. Twice a day (9:00 & 14:00) an adult C57BL/6 was introduced to 

the CD-1’s home cage for a brief 30 seconds to stimulate aggressiveness and was 

immediately replaced by an adolescent C57BL/6 mouse for 5 minutes or until there were 

10 attacks. The sex and age (early adolescent PND 21-31) of the priming adolescent 

mice were matched to that of the experimental mice that would soon follow in the 

upcoming AcSD phase. This careful matching allowed for the accurate selection of a 

subset of CD-1 mice aggressive towards experimental mice that would be used in the 

subsequent step. This was done for 3-4 days until the desired number of CD-1 mice were 

able to consistently attack for more than one day.  

 

Accelerated Social Defeat Stress: The AcSD set-up consisted of a transparent rat cage 

with a perforated and see-through central divider separating the area into two mouse 

housing compartments. Selected aggressive CD-1 mice were housed on one side of the 

divider 2 days prior to the commencement of the AcSD to allow time to explore the new 

environment and heighten territorial conduct. Additionally, during these two pre-AcSD 

days, the priming process used in phase 2 was repeated to ensure the CD-1 mice still 

displayed aggression towards the adolescent mice.  
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Once the AcSD phase begun, newly arrived experimental mice were randomized 

into the AcSD group or the control group. AcSD mice underwent two sessions of physical 

attacks per day (9:00 & 14:00) for a total of four consecutive days. Each physical stress 

session consisted of briefly introducing an adult C57BL/6 mouse for 30 seconds to the 

CD-1 to prime the CD-1 with aggressive behaviour. Immediately after, the adult mouse 

was replaced by the experimental adolescent C57BL/6 mouse until 10 attacks occurred 

(see Table 1 for the operational definition of an attack: adapted from (Pantoja-Urbán et 

al., 2022; Vassilev et al., 2021)) or until 10 minutes had passed. After the physical stress 

session, the experimental mouse was placed in the adjacent empty compartment beside 

the CD-1 that had just aggressed it to provoke a form of psychological stress. Every attack 

session consisted of a novel aggressive CD-1 mouse to allow a variety of attackers.  

  

Control mice were housed in the same dual housing apparatus (rat cage with 

transparent divider) as the AcSD mice. As opposed to AcSD mice, control counterparts 

were housed next to an age and sex matched C57BL/6 mouse and did not have any 

physical contact with any CD-1 nor C57BL/6 mouse.  After the final session of AcSD, 

mice in both control and stress groups were single housed individually until the completion 

of experiments to avoid aggression amongst the mice.   

 



 
 

26 *The Material and Methods section regarding Animals, Accelerated Social Defeat and Social Interaction 
were all adapted from (Pantoja-Urbán, Richer, et al., 2023) 

Limited Attacks- “Female-Like” Pattern of Attacks in Males 

Based on our operational attack criteria outlined in Table 1, it was observed that 

during the AcSD, a lower occurrence of attacks was directed to female adolescent cohorts 

when compared to male adolescent cohorts. In light of this disparity, it was essential to 

ensure that behavioural, molecular and neuroanatomical outcomes were not a result of 

these differences in attack patterns.  For this reason, a limited attacks AcSD experiment 

was performed whereby a cohort of male adolescent mice were subjected to a pattern of 

attacks resembling those that females were exposed to. This was achieved by carefully 

aligning the number of attacks and the duration of exposure with the CD-1 aggressor to 

match the recorded values observed in previous female AcSD experiments. Regulating 

the number of attacks to match the desired number was achieved by using a ruler to 

maintain separation between the mice.  

 

Social Interaction Test* 
To evaluate the potential immediate impact of AcSD on social approach and 

avoidance behaviour, the Social Interaction Test (SIT) was conducted the day after the 

final AcSD attack session between 10:00-16:00. This test, widely employed in various 

social defeat studies, aimed to gauge alterations in social behaviour resulting from 

adolescent AcSD (Golden et al., 2011). Under redlight conditions, AcSD and control mice 

were placed in a 42cm x 42cm open field for two consecutive sessions each lasting 2.5 

minutes long. The first session consisted of a habituation phase where an unoccupied 

wire mesh enclosure was centered against one wall of the arena. Immediately following 

this, a second session followed whereby an unfamiliar CD-1 mouse was placed inside the 

wire mesh enclosure. To determine social approach/avoidance behaviour, a social 

interaction zone measuring 14cm x 9cm was delineated surrounding the wire-mesh 

enclosure. Behaviour was recorded with an overhead video camera such that analysis 

could be performed with the software TopScanTM 3.0 (Clever Systems Inc.). Using this 

software, a social interaction ratio was calculated by taking the time spent in the social 

interaction zone in session 2 when the CD-1 was present divided by the amount of time 

spent when the CD-1 was not present in session 1. A ratio <1.00 signified that mice did 

not spend as much time in the social interaction zone when the social target was present, 
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and they were labeled as “susceptible”.  Mice with a ratio >1.00 that did spend more time 

in the social interaction zone when the CD-1 was present were deemed to be “resilient”.  

 

Social Interaction Test with an Anesthetized CD-1 Target 

To validate the AcSD model in female mice, a separate cohort of mice underwent 

either AcSD or control conditions during early adolescence and were tested to see 

whether the state of the social target (awake or asleep) affected proportions of 

resiliency/susceptibility. The day after the last AcSD session, mice underwent the regular 

SIT with an awake CD-1 as a social target. The following day, the same mice were tested 

once again in the SIT but this time with an anesthetized novel CD-1 mouse instead of an 

awake social target in the second session. Anesthesia was performed using a mixed 

solution administered intraperitoneally, containing 50 mg/kg of ketamine, 5 mg/kg of 

xylazine, and 1 mg/kg of acepromazine.   

 

Stereotaxic Surgery 
To study Aim 2 and the effect of AcSD on the segregation of NAcc and mPFC DA 

projections, a dual viral strategy was employed to track DA axon growth in adolescence 

(Figure 2). Using axon-initiated viral recombination in DATCre mice, we were able to label 

specifically VTA DA neurons whose axons had reached the NAcc by early adolescence. 

At PND 21 (prior to 

AcSD), DATCre mice were 

weaned and anesthetized 

with isoflurane. Using a 

Hamilton syringe needle, 

we injected unilaterally 

into the NAcc (+1.5 

anterior / posterior; +2.6 

medial / lateral; -3.84 

dorsal/ventral relative to 

bregma at a 30° angle) 

0.5µl of a retrogradely 
FIGURE 2. Aim 2. Experiment timeline of dopamine axon mistargeting 
experiment after early adolescent AcSD. 
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transported virus expressing a Cre-dependent Flp recombinase (CAV-FLEX-Flp, 

BioCampus Montpellier, Titer: 11x1012 pp/ml) as in (Reynolds et al., 2023). This design 

limited expression of the Flp recombinase to DAT-expressing VTA neurons that had 

reached the NAcc by PND 21. Simultaneously, we injected 0.5µl of Flp-dependent 

enhanced yellow fluorescent protein (eYFP) virus (pAAV-Ef1a-fDIO-EYFP-WPRE-pA, 

UNC Vector Core, Titer: 5x1012 pp/ml) into the ipsilateral VTA (-2.56 anterior/posterior; -

0.9 medial/lateral; -4.21 dorsal/ventral relative to bregma at a 4° angel). The delivery of 

each viral construct spanned 6 minutes followed by a 10-minute waiting period before 

removing the injector. Mice were then exposed to AcSD or to control conditions from PND 

25-28, and tested in the SIT at PND 29.  Mice were single housed until they reached 

adulthood (PND 75 ± 10), when their brains were processed for stereological 

quantification of eYFP+ fibers in the mPFC.  

 
Perfusion  

Axonal mistargeting experiments (Aim 2) required perfusion of mice at PND 75 ± 

10. Mice were administered an overdose of ketamine (50 mg/kg), xylazine (5 mg/kg) and 

acepromazine (1 mg/kg) intraperitoneally. Following this, they were subjected to an 

intracardial prefusion with 50 ml of 1x phosphate buffered saline (PBS). After clearing all 

circulating blood, 75ml of chilled 4% paraformaldehyde (PFA) in PBS was intracardial 

perfused to fix the brain. The brains were carefully removed from the skull and placed in 

the PFA fixative solution at 4°C for 1 day and then transferred to a 1x PBS solution for 1-

2 days. A Leica vibratome was used to section the brains into 35 µm coronal slices where 

they then underwent immunohistochemistry and mounting onto gelatine coated slides and 

cover slipped using SlowFade Gold Antifade mounting medium (Invitrogen).  

 
Immunohistochemistry  

Brain sections underwent three 10-minute washes in PBS followed by a 1-hour 

incubation in a blocking solution (2% bovine serum albumin, 0.2% Tween-20, in PBS). 

Subsequently, these sections were immersed in a polyclonal anti-TH raised in rabbit 

antibody (1:1000, #AB152; Millipore Bioscience Research Reagents) and a polyclonal 

anti-GFP raised in chicken antibody (1:1000, antibody #1020, Aves labs) for a period of 
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48 hours at 4°C.  The anti-GFP antibody was raised against whole recombinant GFP so 

any of the other Aequorea Victoria GFP derivatives would be recognized by the antibody 

as they differ via only a small mutation in a fraction of amino acid substitutions (For more 

information see: (Lambert, 2024)). For this reason, anti-GFP antibodies are often used to 

visualize eYFP (Bechelli et al., 2023; Shimizu et al., 2023; O. Singh et al., 2023; U. Singh 

et al., 2022). Following this, three 10-minute washes in PBS were performed and tissue 

was then incubated for an hour in the two following secondary antibodies: Alexa Fluor 

594 donkey anti-rabbit antibody (1:500, Invitrogen) & Alexa Fluor 488 goat anti-chicken 

antibody (1:500, Invitrogen). Sections underwent three 10-minute washes in PBS and 

were then carefully mounted onto gelatin-coated slides and cover-slipped using 

SlowFade Gold Antifade mounting medium (Invitrogen).  

 

Stereology 
Blinded stereological quantification of eYFP+ varicosities in the mPFC was 

performed using the Stereoinvestigator© (Microbrightfield) software on a Leica DM400B 

microscope as in (Reynolds et al., 2018; Reynolds et al., 2023). Briefly, eYFP and TH 

expressing varicosities in the mPFC were identified using the mouse brain atlas (Franklin 

& Paxinos, 2008) to locate the pre-genual mPFC (plate 14-18, in a 1:4 series). In this 

region, delineation of cingulate (Cg1), prelimbic (PrL), and infralimbic (IL) subregions 

were contoured according to the TH-positive innervation using a 5x magnification. The 

number of co-expressing eYFP+ and TH+ varicosities was quantified at 100x 

magnification. This was done using an unbiassed counting frame measuring 50 x 50 µm 

(x = 175 µm, y = 175 µm intervals). An established guard zone of 4µm and optical 

dissector height 10µm. Following that we averaged all regions to get a measure of the 

total number of mPFC eYFP+ fibers. 
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Hormone Analysis 
To begin assessing levels of stress and gonadal hormones throughout 

development in male and female mice exposed to AcSD or control conditions, a protocol 

to measure corticosterone, testosterone, progesterone from follicular hair was 

implemented (Figure 3). 

This method of 

measuring peripheral 

hormones is gaining 

popularity in many 

human studies and more 

recently in rodents 

(Stalder et al., 2017; Steudte-Schmiedgen et al., 2017; Ullmann et al., 2016; Wippert et 

al., 2014) whereby circulating hormones get incorporated into the growing hair overtime. 

Concentrations of hormones in follicular hair provide a retrospective reflection of 

corticosterone/cortisol, testosterone, progesterone, and of other hormone secretions that 

accumulate over time (Scorrano et al., 2015; Smyth et al., 2016; Uarquin et al., 2016; 

Walther et al., 2019, 2021; Wang et al., 2015; Weckesser et al., 2021). Although 

measures of salivary or plasma corticosterone concentrations can accurately detect acute 

effects of stress as well as variations in hormone levels throughout the day in rodents, 

many studies have reported that hair glucocorticoid concentrations vary more gradually 

and better represent the levels of these hormones over prolonged periods of time 

(Erickson et al., 2017; Scorrano et al., 2015; Uarquin et al., 2016). The following timeline 

and protocol was used in our laboratory to study levels of follicular hair hormones in 

adolescent male and female mice exposed to AcSD or to control conditions.  

 

Hair Collection #1 - Pre-Stress 

At PND21, C57BL/6J male and female mice arrived from the Jackson Laboratory 

to the Douglas Research Centre Phenotyping Centre group-housed with 3 mice per cage.  

Mice were given one day to acclimate and at PND 22, they underwent the first shave 

using a Wahl Peanut clipper. While awake mice were restrained, bilateral flank hair was 

collected and placed into a folded square of aluminum foil. Hair was kept in at 4°C. 

FIGURE 3, Aim 3. Experiment timeline of follicular hair hormone analysis 
experiment after adolescent AcSD. 
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Between each shaving, a can of compressed air was used to clear any remaining hairs 

on the clipper.  

 

At PND 22 following the first shave, male and female mice were randomly assigned 

into one of the following groups:  

 

GROUP 1: AcSD- Male and female mice were exposed to the AcSD paradigm from 

PND 25-28, and on PND29 they underwent the SIT. Mice stayed single housed for 

the rest of the experiment. 

 
GROUP 2: Single housed control group- Male and female mice were exposed to 

the control condition from PND 25-28, and on PND 29 they underwent the SIT. Mice 

stayed single housed for the rest of the experiment.  

 

GROUP 3: Group housed control group- To assess whether housing conditions 

were a confound, in this group, mice were kept group housed throughout the entirety 

of the experiment and were not exposed to any aspect of the AcSD paradigm. The 

only manipulation done to them was the shaving along with the same frequency of 

handling as the other two groups. 
 

Hair Collection #2: Post-Stress 

As a measure of “post stress” hormone levels, two weeks after the last day of AcSD 

(PND 42), follicular hair was collected from male and female mice by bilaterally shaving 

the exact same flank area as was done in Hair Collection #1 prior to stress. Mice were 

left undisturbed until they reached adulthood. 

 

Hair Collection #3: Adulthood 

In adulthood (PND 90 ± 15), follicular hair was collected from male and female 

mice by bilaterally shaving the exact same flank area as priorly done in Hair Collection #1 

and Hair Collection #2. At this time point, trunk blood and brains were collected, and flash 

frozen with 2-methylbutane for future molecular analysis.  
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Follicular Hair Hormone Analysis 

The analysis of follicular hair samples was performed in collaboration with Dr. 

Clemens Kirshbaum at the Technical University of Dresden (Biopsychology Department) 

was. This lab specializes in the analysis of hormones from specimens of human and non-

human origins and offers state-of-the-art steroid hormone analysis from hair samples. A 

hair sample >5mg was shipped at 4°C and a steroid panel analysis was performed to 

measure corticosterone, progesterone, and testosterone via Liquid Chromatography with 

tandem Mass Spectrometry (LC-MS/MS). 

 
 
Statistical Analysis 

Statistical analyses were performed using Prism version 9.4.0 (GraphPad 

Software, La Jolla, CA, USA). A significant threshold value of a <0.05 was used across 

all experiments. The data are presented as means ± the standard error of the mean 

(SEM). Depending on the number of factors analyzed, t-tests, 2-way ANOVAs and 

correlations were utilized to address statistical validation of any data. Planned 

comparisons as well multiple comparison tests were conducted post hoc when conditions 

were met and underwent a rigorous correction for the family-wise alpha using a Holm-

Sidak or Holm-Bonferroni correction. 
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Results 
 
Aim 1: To determine if the AcSD model works for female adolescent mice.  
 Previous work conducted in our laboratory demonstrated that the AcSD model is 

an effective and robust model of adolescent social stress in male mice (Pantoja-Urbán et 

al., 2022; Vassilev et al., 2021, 2022). What was unknown, was whether this AcSD model 

could also be implemented in female adolescent mice. The modified AcSD model for 

adolescent females, as shown in Figure 4A, did work (Pantoja-Urbán, Richer, et al., 

2023). The great majority (85%) of female mice exposed to AcSD were classified as 

“resilient” because they did not develop social avoidance in the SIT.  In contrast, only a 

small proportion of females (15%) showed social avoidance and were categorized as 

“susceptible” (Figure 4B; from (Pantoja-Urbán et al., 2022)).  

 

Compared to the previous reporting in male mice whereby 55% of AcSD mice 

displayed resilience (Figure 4C; from (Vassilev et al., 2021)), the proportion of resilience 

in females significantly surpassed the resilience rate reported in males (one-tailed 

binomial test p < 0.0001). Importantly, no difference in the frequency of received attacks 

was observed amongst resilient and susceptible mice in both the female cohort (Figure 

4D, two-way repeated measures ANOVA, F(7, 763) = 0.84, p = 0.56) and the male cohort 

(Figure 4E, from (Pantoja-Urbán et al., 2022; Vassilev et al., 2021), two way repeated 

measures ANOVA, F(7,511) = 1.321 p = 0.2378).  

 

When we compared the number of attacks between female and all male mice 

(using previously published data (Vassilev et al., 2021)), we found that females received 

fewer attacks throughout all defeat sessions (Figure 4F, from (Pantoja-Urbán et al., 2022), 

two-way repeated measures ANOVA, main effect of session, F(6.82, 1227) = 27.53 p < 

0.0001, main effect of sex, F(1, 180) = 170.4, p < 0.0001; session × sex interaction F(7, 1260) 

= 1.63, p = 0.12). With this concern in mind, to prove the effectiveness of this stress model 

in adolescent female mice, it was essential to investigate whether reduced physical harm 

in females could possibly account for their heightened resilience. Firstly, a typical attack 

pattern previously recorded in female mice was replicated in a cohort of adolescent male 
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mice through a limited attacks strategy as outlined in the methodology section. It was 

found that this manipulation did not substantially alter the ratio of resilient (67%) versus 

susceptible (33%) phenotypes in males when compared to regular AcSD male 

proportions (Figure 4G, from (Pantoja-Urbán et al., 2022), one-tailed binomial test p = 

0.31).  Secondly, we retroactively looked back at previous attack numbers in our cohorts 

and divided the cumulative number of received attacks among all female subjects (n = 

107) into two groups: “high number of attacks” and “low number of attacks” based on a 

median split. When comparing both groups having received high and low attack numbers, 

the proportion of susceptible and resilient females displayed no notable differences 

(Figure 4H, from (Pantoja-Urbán et al., 2022), one-tailed binomial test p = 0.45). These 

two results both demonstrated that female adolescents undergoing AcSD exhibit 

resilience to social avoidance irrespective of the number of attacks endured. Lastly, to 

validate the segregation of resilience and susceptibility to a social target in the SIT, it was 

important to confirm that these phenotypes were specific to an awake and behaving social 

target as was done in some of the first chronic social defeat studies to prove robustness 

of the model (Krishnan et al., 2007). We found that susceptible defeated female mice 

showed avoidance in the presence of an awake, but not anesthetized CD1 social target 

(Figure 4I, Two-way repeated measures ANOVA, CD-1 state x phenotype interaction 

F(2,19)= 7.411, p=0.004, Holm–Sidak post hoc tests: susceptible/awake vs 

susceptible/anesthetized, p=0.0016; control/awake vs susceptible/awake p=0.009; 

resilient/awake vs susceptible/awake p=0.0251). 
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FIGURE 4. Validating the AcSD model in adolescent female mice. A, Experimental timeline of early 
adolescent AcSD (PND 25-28). B, Female SIT results after adolescent AcSD with the proportion of 
“resilient” & “susceptible” mice. C, Male SIT results after adolescent AcSD with the proportion of 
“resilient” & “susceptible” mice. D, Attack number in resilient and susceptible mice was not significantly 
different in females. E, Attack number in resilient and susceptible mice was not significantly different in 
males. F, Attack number received by males was significantly higher than those received by females 
during AcSD. G, Proportions of “resilient” and “susceptible” mice when male adolescent mice 
underwent a female pattern of attacks. This proportion did not differ from the typical male AcSD 
protocol. H, When performing a median split on the cumulative number of received attacks, the 
proportion of susceptible or resilient females did not differ between the “low” versus “high” received 
attack groups. I, An awake and behaving CD1 mouse was required to elicit the susceptible phenotype in 
female mice. All data are shown as mean ± SEM. * p<0.05, ** p<0.01, *** p<0.001. 
 
 

*Adapted from (Pantoja-Urbán, Richer, et al., 2022) 
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Aim 2: To determine if social stress in early adolescence leads to dopamine axon  

mistargeting in both male and female mice.   

Through a DA specific targeted viral tracing technique using DATCre mice, we 

asked whether adolescent AcSD impacts DA axon targeting and growth in adolescent 

male and female mice (Figure 5A). After undergoing a viral surgery to track axonal growth 

and adolescent AcSD, the social interaction test was employed to parse out resilient and 

susceptible male (Figure 5B, one-way ANOVA, F(2, 11) = 10.47, p = 0.003, Holm–Sidak 

post hoc tests: control vs susceptible, p = 0.003; control vs resilient, p = 0.13; resilient vs 

susceptible, p = 0.024) and female mice (Figure 5C, one-way ANOVA, F(2, 12) = 14.93, p 

= 0.0006, Holm–Sidak post hoc tests: control vs susceptible, p = 0.0005; control vs 

resilient, p = 0.20; resilient vs susceptible, p = 0.004). In adulthood, brains were perfused, 

sliced, and underwent immunohistochemistry via a dual stain. Anti-TH labeling delineated 

the mPFC (Figure 5D top panel) and anti-GFP staining allowed visualization of the eYFP+ 

terminals in this outlined region (Figure 5D bottom panel). To assess axonal growth from 

the NAcc to the mPFC after adolescent AcSD or control conditions, stereological 

quantification was performed to assess the number of eYFP+ varicosities.  

 

We found a strong stress by sex interaction in mPFC eYFP+ fibers (Figure 5E, 

two-way ANOVA, stress × stress interaction F(2, 24) = 9.922, p = 0.0007; main effect of 

stress, F(2, 24) = 4.679 p = 0.019, main effect of sex, F(1,24) = 19.04, p = 0.0002). First, we 

were interested in how resilient and susceptible mice differed in mPFC eYFP+ fibers when 

compared to controls. We found that male mice showed an increased number of eYFP+ 

fibers growing to the mPFC in resilient but not susceptible mice when compared to 

controls (Figure 5E left panel, Holm-Bonferroni post hoc tests: control vs resilient, p = 

0.019; control vs susceptible, p = 0.238). Opposite result in females were found whereby 

a greater number of eYFP+ axons spanned the mPFC of control animals when compared 

to resilient and susceptible mice (Figure 5E right panel, Holm–Bonferroni post hoc tests: 

control vs resilient, p = 0.0011; control vs susceptible, p = 0.0065). This remarkable sex-

difference indicates that the number of mistargeted axons growing from the NAcc to the 

mPFC following social stress during adolescence increases in males but decreases in 
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females. Note that rerouting of NAcc DA axons to the mPFC occurred even though mice 

displayed resilience against social avoidance in adolescence implying that this social trait 

did not protect against disruption of DA development. We also wanted to compare how 

normative control levels of mPFC eYFP+ fibers differed in males and females and found 

less rerouted fibers to the mPFC in control males versus females (Figure 5E, Holm–

Bonferroni post hoc tests: control male vs control female, p < 0.0001). VTA stereology 

will be needed to quantify infected DA cells to ensure equal transfection across groups.  
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FIGURE 5. Dopamine axon mistargeting to the mPFC in males and females as a result of AcSD in early 
adolescence. A, Experimental timeline of dopamine axon mistargeting experiment after adolescent AcSD. 
B, Social interaction ratio for male mice during SIT. C, Social interaction ratio for female mice during SIT. 
D, Top Panel: 5X representative micrograph of control TH+ fibers in the mPFC Bottom Panel: 40X 
representative micrograph of control eYFP+ fiber which grew to the mPFC with a 100X zoom in on a 
representative co-labeled TH+/eYFP+ labeled varicosity. E, Stereological quantification revealed that 
compared to control counterparts, resilient but not susceptible males exposed to adolescent AcSD showed 
increased number of eYFP+ fibers. Opposingly, when compared to control counterparts, resilient and 
susceptible females showed a drastic reduction in the number of eYFP+ fibers innervating the mPFC 
following AcSD in early adolescence. F, 40X representative micrographs of TH+/eYFP+ fibers that grew to 
the mPFC. Data are shown as mean ± SEM. * p<0.05, ** p<0.01, *** p<0.001. 
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Aim 3: To measure levels of stress and gonadal hormone before and after 
adolescent AcSD exposure in male and female mice.  

Follicular hair analysis of corticosterone, testosterone and progesterone levels 

were quantified in males and females during three developmental periods (Figure 6A). In 

female mice, the developmental trajectory of follicular hair corticosterone levels increased 

from early adolescence to adulthood (Figure 6B, two-way repeated measures ANOVA, 

main effect of time, F(1.68, 38.74) = 198.6, p < 0.0001). Amongst female mice that underwent 

AcSD or either control condition, there were no difference in corticosterone levels at any 

given time (Figure 6B, two-way repeated measures ANOVA, main effect of condition, F(2, 

23) = 2,44 p = 1.09, time × condition interaction F(4, 46) = 1.11, p = 0.36). However, there 

was a negative and significant correlation in the AcSD group between the time in the 

interaction zone (with the target during the SIT) and corticosterone post stress (PND 42) 

(Figure 6C, correlation Pearson’s r(9) = -0.80, p= 0.01, R2 = 0.007). Notably, the correlation 

was absent in control mice (Figure 6D, correlation Pearson’s r(8) = 0.695, p= 0.06, R2 = 

0.48) and importantly, the number of attacks received did not corelate with corticosterone 

levels (Figure 6E, correlation Pearson’s r(9) = -0.16, p= 0.67, R2 = 0.03).  

 

Developmentally, corticosterone in males also showed increases from early 

adolescence to adulthood in all three groups (Figure 6F, two-way repeated measures 

ANOVA, main effect of time, F(2, 45) = 90.63, p < 0.0001). Unlike females however, male 

mice that underwent AcSD showed significantly higher levels of corticosterone post stress 

(PND 42) when compared to their AcSD control group and the group house controls 

(Figure 6F, two-way repeated measures ANOVA, time × condition interaction, F(4, 45) = 

4.73, p < 0.003, Holm–Sidak post hoc tests: AcSD vs AcSD control, p = 0.02; AcSD vs 

group-house control, p = 0.0017; AcSD control vs group-house control, p = 0.48). Male 

mice that underwent AcSD also differed from females whereby they exhibited no 

significant correlation between corticosterone post stress (PND 42) and time in the 

interaction zone (Figure 6G, correlation Pearson’s r(10) = 0.04, p= 0.9, R2 = 0.002). 

Additionally, in controls, there existed no correlation between corticosterone levels and 

time spent in the interaction zone with the social target (Figure 6H, correlation Pearson’s 

r(7) = 0.05, p= 0.92, R2 = 0.002) nor was there a correlation between corticosterone levels 
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and number of attacks received by the AcSD group (Figure 6I, correlation Pearson’s r(9) 

= -0.16, p= 0.67, R2 = 0.03).   

 

Overall, when comparing male and female mice, striking differences arise. Firstly, 

during normative development, both males and females showed increased corticosterone 

levels from adolescence to adulthood, with female controls displaying much higher 

corticosterone levels compared to male control counterparts during the mid-

adolescent/pubertal age of PND42 (Figure 6J, two-way repeated measures ANOVA, time 

× sex interaction F(2, 62) = 18.13, p < 0.0001, post hoc test: PND42 male control vs PND42 

female control, p = 0.0001). As previously mentioned, at PND 42, females display no 

changes in corticosterone after undergoing AcSD whereas a trend of elevated 

corticosterone in males was seen (Figure 6J, two-way repeated measures ANOVA, time 

x condition interaction F(2, 19) = 8.27, p = 0.003 post hoc test: PND42 female control vs 

PND42 female AcSD, p =0.997; PND42 male control vs PND42 male AcSD, p =0.068). 

Later in adulthood (PND 75), corticosterone levels were similar between control and 

AcSD mice in both males (Figure 6J, two-way repeated measures ANOVA, time x 

condition interaction F(2, 19) = 8.27, p = 0.003 post hoc test: PND75 male control vs PND75 

male AcSD, p =0.67) and females (Figure 6J, two-way repeated measures ANOVA, time 

x condition interaction F(2, 19) = 8.27, p = 0.003 post hoc test: PND75 female control vs 

PND75 female AcSD, p =0.9998).      

 

Additionally, when studying gonadal hormones across development, we found 

increased male testosterone levels (Figure 6K, two-way repeated measures ANOVA, 

main effect of time F(1.22, 42.8) = 276, p < 0.0001) and female progesterone levels (Figure 

6L, two-way repeated measures ANOVA, main effect of time F(1.76, 39.7) = 163, p < 0.0001) 

across development. However, when comparing mice having undergone adolescent 

AcSD or control conditions, there was no significant difference in male testosterone 

(Figure 6K, two-way repeated measures ANOVA, time × condition interaction F(2, 70) = 

0.66, p = 0.52, main effect of condition F(1, 70) = 0.65, p = 0.42)  nor in female progesterone 

levels (Figure 6L, two-way repeated measures ANOVA, time × condition interaction F(2, 

45) = 0.33, p = 0.72, main effect of condition F(1, 24) = 0.47, p = 0.50) amongst these groups.  
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FIGURE 6. Follicular hair hormone analysis in adolescent mice exposed to AcSD or control conditions. 
A, Experimental timeline of adolescent AcSD and hair collection. B, Female levels of corticosterone 
increased from adolescence to adulthood with no differences in corticosterone levels at each timepoint 
between female mice having undergone AcSD, AcSD control or group house control. C, Female 
corticosterone levels post stress (PND 42) correlated negatively with social interaction in the AcSD group. 
D, Female corticosterone levels post stress (PND 42) did not correlate with social interaction in the AcSD 
control group. E, In females, the number of attacks received by the AcSD group did not correlate with 
corticosterone levels. F, Male levels of corticosterone increased from adolescence to adulthood. After 
undergoing AcSD stress in adolescence, male mice displayed significantly higher levels of corticosterone 
post stress (PND 42) when compared to the AcSD control and group house control mice. G, Male 
corticosterone levels post stress (PND 42) correlated negatively with social interaction in the AcSD group. 
H, Male corticosterone levels post stress (PND 42) did not correlate with social interaction in the AcSD 
control group. I, In males, the number of attacks received by the AcSD group did not correlate with 
corticosterone levels. J, Male and female mice showed normative corticosterone differences and only 
AcSD male mice show elevated corticosterone post stress (PND 42). K, Male mice showed increased 
testosterone levels throughout development but no differences amongst control or AcSD groups. L, 
Female mice showed increased progesterone levels throughout development but no differences amongst 
control or AcSD groups. All data are shown as mean ± SEM.  
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Discussion 
 

Paradigms of adolescent social defeat stress have long served as valuable models 

to reproduce certain physical and psychological aspects experienced by victims of 

bullying and domestic violence (Bourke & Neigh, 2011; Burke et al., 2016; Harris et al., 

2018; Hoeve et al., 2013; Huang et al., 2013; Iñiguez et al., 2014; Montagud-Romero et 

al., 2015). Constructing such models in female adolescent mice has proven challenging 

for numerous research teams, as dominance hierarchies in rodents primarily entail male-

male aggressive behaviour. Here, for the first time, we were able to assess the immediate 

and future consequences of social defeat stress during early adolescence in female 

C57BL/6 mice using the modified AcSD paradigm (Pantoja-Urbán et al., 2022; Vassilev 

et al., 2021). We found that social defeat stress in adolescence induced robust targeting 

errors by DA axons with completely opposite effects in males versus females. Resilient 

male mice that underwent AcSD in adolescence showed a greater number of eYFP+ 

axons in the adult mPFC when compared to control and susceptible mice. Contrastingly, 

all female mice that underwent AcSD showed a decrease in eYFP+ axons growing to the 

mPFC when compared to their control counterparts. Lastly, our findings highlight the 

presence of sex differences in endocrine response to AcSD as corticosterone levels are 

influenced differently in males and females: AcSD males exhibited both short and long-

term elevations in corticosterone when compared to controls whereas in females, these 

levels were significantly associated with social avoidance behaviour. These findings 

revealed for the first time that an adverse social experience in adolescence could 

significantly disrupt ongoing long-distance dopamine axon pathfinding in adolescence, 

with opposite changes in males versus females. Our results suggest that sex-specific 

alterations in brain development and in corticosterone levels following AcSD may be at 

play.  Overall, this work allows us to better understand the mechanistic underpinnings 

that might be at play in the sexually dimorphic development of the dopaminergic system 

in adolescence and how it is influenced by adverse experiences that are common during 

this age.  
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The early adolescent AcSD model leads to a large majority of “resilient” females 
that do not display social avoidance 
 When exposed to the AcSD stress paradigm during early adolescence, both males 

and females received consistent attacks from the CD-1 aggressor mouse across all 8 

sessions, yet, they showed very different social avoidance behaviour as a result of this 

experience. Unlike in male cohorts that typically displayed around 50% susceptibility to 

AcSD-induced social avoidance, very few females (~15%) consistently and repeatedly 

exhibited resilience to social deficits as measured by the SIT. While the origin of this 

disparity remains unknown, sexually dimorphic trajectories of adolescent social behaviour 

may help explain how males and females distinctively adapt to such an experience during 

this vulnerable period (Burke et al., 2011; Panksepp et al., 2007). During adolescent 

development, rodents exhibit heightened social behaviour more than at any other age 

(Burke et al., 2017; Kopec et al., 2018). Rodent males and females have shown 

divergence in the timing of when behaviours such as social play or social exploration 

occur (Kopec et al., 2018). Perhaps protective mechanisms are in place aimed at 

preserving social behaviour relevant to males or females at this critical developmental 

stage and could be important to understand brain maturation and vulnerability. 

Interestingly, when observing proportions in adulthood social defeat models, numerous 

studies have reported that both male (Krishnan et al., 2007; Vassilev et al., 2021) and 

female rodents (Greenberg et al., 2015; Harris et al., 2018; Hoeve et al., 2013; Steinman 

& Trainor, 2017; Trainor et al., 2011) display markedly greater proportions of susceptibility 

when compared to those seen in our adolescent AcSD model emphasizing the critical 

importance of studying age and sex. Numerous social defeat studies have emphasized 

resiliency and susceptibility based on only the SIT outcomes however in this study we 

emphasize the need for prudence when using such terms as we have learnt that 

susceptibility is age, sex, and domain-specific depending on which behavioural outcome 

is being measured.  

  

To confidently assess the robustness of this model, we report that there was no 

discernible difference in the number of received attacks between resilient and susceptible 

mice. Additionally, we show that the susceptible phenotype is truly due to social 
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interaction since an anesthetized CD-1 does not induce susceptibility. While females 

experience slightly fewer attacks than males due to the nature of aggressive behaviour 

between males, we show that proportions are not a result of the number of attacks. We 

do so by exposing male mice to a “female” attack pattern and showing similar proportions 

of susceptibility. When ranking mice based on the cumulative number of attacks they 

received and performing a medium split, we show that the proportions of susceptibility 

are the same in the mice subjected to a higher cumulative number of attacks when 

contrasted to those subjected to a lower cumulative number of attacks. As was shown in 

our study, other groups studying adult chronic social defeat models in females report 

variable amounts of aggression by the attacker yet still show the stress induced 

physiological increases in corticosterone as well as behavioural manifestations of a stress 

response (Harris et al., 2018). The fact that an aggressive CD-1 mouse attacks a female 

rodent differently than its male counterpart should not be a reason to halt the development 

and use of social defeat models to advance our knowledge on female specific impacts of 

stress and our understanding of psychiatric vulnerability in females. 
 
AcSD in adolescence significantly disrupts ongoing dopamine axon growth to the 
PFC with opposite effects in males and females 
 It has long been known that the cortical and striatal dopaminergic pathways exhibit 

markedly different temporal trajectories during development. In rodents, the mesolimbic 

system attains matured axonal growth in the NAcc by prepubertal adolescence 

(Antonopoulos et al., 1997; Manitt et al., 2011; Voorn et al., 1988) whereas mesocortical 

DA axon projections to the PFC experience a gradual increase up until early adulthood 

(Benes et al., 1996, 2000; Hoops & Flores, 2017; Kalsbeek et al., 1988; Leslie et al., 

1991; Manitt et al., 2011; Naneix et al., 2012; Willing et al., 2017). Previous work has 

shown that altering guidance cue levels, specifically reducing levels of DCC receptors in 

DA axons that have reached the NAcc during adolescence, causes them to reroute 

towards the mPFC and to recognize this region as their final target (Manitt et al., 2013; 

Reynolds, Pokinko, et al., 2018). Furthermore, this misrouting event leads to aberrant DA 

metabolisms and release in this region (Grant et al., 2007; Hernandez et al., 2022) and 

to impaired impulse control in adulthood (Reynolds et al., 2018).  
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The NAcc is an important intermediate target for axons to pass through along their 

way to the cortex. Indeed, this region undergoes substantial dynamic changes in activity 

and connectivity during adolescence rendering it highly vulnerable to external 

experiences (Antonopoulos et al., 1997; Manitt et al., 2011; Mastwal et al., 2014; 

McCutcheon et al., 2012; Naneix et al., 2012). Amphetamine administration in adolescent 

male, but not female mice has been shown to induce significant alterations in the ongoing 

growth of DA axons to the mPFC when compared to saline-treated counterparts 

(Reynolds et al., 2023). Here, for the first time, we assess how a social adverse 

experience in adolescence can induce axonal targeting errors in DA axons in both males 

and females. In male mice we observed an increase of eYFP+ fibers in the mPFC of 

resilient AcSD exposed mice compared to control and susceptible mice. This notable 

discovery suggests that resilience to social stress during early adolescence redirects DA 

axons, originally intended to innervate the NAcc, all the way up to the mPFC in males. 

Critically, it is important to note that these findings of rerouted axons from the NAcc to the 

mPFC occurred in mice that exhibited resilience against social avoidance in adolescence 

as measured by the SIT. This displays once again that this social trait does not provide 

protection against the disruption of DA development. Understanding the molecular 

mechanisms that dictate ectopic axonal growth to the PFC and how susceptible mice 

avoid this circuitry change remains an area to be further studied.  

 

To our surprise, resilient and susceptible females undergoing AcSD in early 

adolescence showed the exact opposite pattern: they had a decrease in eYFP+ fibers in 

the mPFC compared to their control counterparts, indicating reduced mesocortical 

dopamine axon growth in adolescence. The fate of the DA axons that were initially 

destined to innervate the mPFC remains to be investigated to understand where they go 

instead and why they innervate elsewhere. These findings reveal that sexually dimorphic 

mechanisms may mediate the effects of adolescent AcSD on the maturation of the 

dopamine system and of impulse control (Vassilev et al., 2021; Pantoja-Urbán, Richer, et 

al., 2023).   
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It is also interesting to see that when looking at normative control development, 

there was a greater number of eYFP+ fibers in female control mice when compared to 

male control mice. This may be explained by several studies suggesting that the dynamic 

period of DA activity and connectivity occurs at an earlier chronological age in females 

compared to males (Drzewiecki et al., 2016; Mastwal et al., 2014; McCutcheon et al., 

2012; Willing & Juraska, 2015). Another scenario that could possibly account for this 

discrepancy amongst male and female controls is that some studies report a higher 

proportion of VTA DA neurons projecting to the mPFC in females (>50%) compared to 

males (~30%) (Kritzer & Creutz, 2008). 

 

While in males the changes in dopamine axon growth are associated with stress-

induced reductions in DCC receptor levels, in females this guidance cue system is not 

altered (Pantoja-Urbán, Richer, et al., 2023). We are currently conducting RNAseq 

experiments in male and female mice exposed to AcSD or to control conditions to 

investigate guidance cue alterations in dopamine regions. 
 
Normative corticosterone levels are sexually dimorphic and are divergently altered 
in male and female mice exposed to early adolescent AcSD 

Many studies have demonstrated a prominent interaction between gonadal and 

HPA hormones which makes it critical to consider corticosterone when looking at the 

developmental trajectories of adolescent male and female mice. As reported in other 

rodent studies, we have corroborated that female mice have much higher normative 

levels of corticosterone in comparison to males both during adolescence (Martínez-Mota 

et al., 2011; McCormick et al., 2005) and during adulthood (Weinstock et al., 1998) which 

could potentially explain the many sexually dimorphisms outlined throughout this thesis. 

Overall, it seems that although females displayed much higher levels of corticosterone 

during normative development compared to males, only males displayed corticosterone 

elevations in response to AcSD in adolescence. This intriguing finding leads us to 

question whether the high basal level of female corticosterone makes it such that no 

experiences could further increase such levels via a ceiling effect (Kokras et al., 2019). 

 



 
 

47 

Additionally, we did not find differences in the levels of testosterone in males nor 

in female progesterone levels measured in the follicular hair analysis between the AcSD 

and control groups. Perhaps repeating this experiment with AcSD during a mid-

adolescent period when the activation effects of sex hormones ramp up, would allow us 

to better address the interaction between these two systems. Many studies have found 

that testosterone inhibits the HPA axis (Handa et al., 1994), while estrogens have an 

opposing stimulatory effect due to the estrogen receptor’s role in blunting the normal 

negative feedback regulation of the HPA axis’ corticosterone secretion (Weiser & Handa, 

2009). Such changes in the female stress response have even been noted in the estrous 

cycle whereby basal corticosterone is much higher at periods of the cycle that report 

higher estrogen levels (Carey et al., 1995). While many studies convey that estrogens 

can protect adolescent females from anxiety-like behaviours after social stress 

(McCormick et al., 2008), many groups show the same trade off we report whereby 

estrogens contribute to the impaired PFC functioning during stress (Shansky et al., 2004). 

It is clear that the opposing effects sex hormones have on the HPA axis influence the 

effects of social stress in a sex-specific manner and may be an important mechanism in 

understanding the human sex-differences that exist in onset and prevalence of many 

psychiatric disorders.  
 
 
Future Directions 

While these findings have served as great insight into the sex and age dependent 

mechanisms responsible in AcSD induced perturbations of the developing dopamine 

system, many questions remain to be addressed. We have shown that the phenomenon 

of axonal mistargeting occurs in dopamine axons whereby AcSD in adolescence induces 

changes to the correct target that DA axons normally grow to. In males, it seems that the 

coordinated effects of DCC and Netrin-1 may explain the mechanisms of axonal 

mistargeting as well as explain the deficits in inhibitory control however, functional 

analyses must be conducted to assess whether these proteins are causally implicated in 

this pathway (Vassilev et al., 2021). Additionally, these guidance cues are not at all altered 

in females (Pantoja-Urbán, Richer, et al., 2023), yet we observe the opposite trend 

whereby AcSD induces less axons rerouting to the mPFC. This finding highlights that 
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other guidance cues must be responsible in dictating axonal growth including the 

potentially critical UNC5C receptor which repels axons from Netrin-1. Moreover, studying 

whether postsynaptic changes in dopamine axons (ie: spine density in the MSN) during 

adolescence can help further explain mechanisms of rerouting would be very interesting 

to understand.   

 

Lastly, reproducing all studies (axonal mistargeting, guidance cue expression 

levels and follicular hair hormones) with AcSD at a mid-adolescent time point will be 

crucial to observe the effects that puberty and gonadal hormones have on the developing 

DA system. The gonadectomising of male and female mice to blunt the antinational 

effects of sex-hormones will provide many insights into the interaction between sex and 

the response of the HPA axis.  
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Conclusion and Expected Contributions 
The experiments presented throughout this study have been essential in shaping 

our understanding of male and female dopaminergic development and the possible 

mechanisms that could be at play in orchestrating its growth to the right targets. The first 

objective of this study was to validate the robustness of the AcSD model in assessing the 

impacts of social stress in females. To our knowledge, this is the first model used to study 

social defeat stress in early adolescent female C57BL/6 mice. Using this model, our 

axonal tracking viral strategy showed that males and females differed in the number of 

fibers that grew to the mPFC. Moreover, early adolescent AcSD produced sexually 

dimorphic outcomes whereby resilient males showed more axons in the mPFC because 

of adolescent social stress whereas AcSD females showed less fibers reaching the 

cortex. Lastly, we started to explore the potential effects of stress and gonadal hormones 

and how they may be important players in the stress response. We found that as a result 

of AcSD, corticosterone levels differed in a sex-dependent manner with males displaying 

elevated corticosterone immediately after AcSD as well as in adulthood when compared 

to controls. Interestingly, this is not seen in females however, levels correlated 

significantly with social avoidance behavior. 

 

Adolescence is a highly vulnerable period for developing mental health trajectories. 

Psychiatric susceptibility to experiences such as stress is heightened during this 

developmental window and social stress during adolescence increases vulnerability to 

psychopathology. Studies pertaining to this age group can help us discover the 

mechanisms of early life vulnerability and can help shape early intervention treatment for 

patients suffering from psychiatric illness. This is the first demonstration that exposure to 

physical/psychosocial harm in adolescence can deviate DA axons from their intended 

target, inducing their input into off-target regions, and likely altering adult cognitive 

processing. Most importantly, this project studies the many sex differences that arise as 

a result of social defeat stress in rodents and uncovers potential cellular underpinnings 

critical to help prevent, protect and treat both male and female youth form the harmful 

effects of peer victimization at this vulnerable age.  
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