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Abstract

We develop an extension of the proof environment Beluga with datasort refinement types

and study its impact on mechanized proofs. In particular, we introduce refinement schemas,

which provide fine-grained classification for the structures of contexts and binders. Re-

finement schemas are helpful in concisely representing certain proofs that rely on relations

between contexts. Our formulation of refinements combines the type checking and sort check-

ing phases into one by viewing typing derivations as outputs of sorting derivations. This

allows us to cleanly state and prove the conservativity of our extension.



Résumé

Nous développons une extension de l’environnement de preuve Beluga avec des types de

rafinements, suivant l’approche des sortes de données, puis étudions l’impact sur les preuves

mécanisées. En particulier, nous introduisons les schèmes de rafinement, qui permettent une

classification fines des structures de contextes et des variables. Les schèmes de rafinement

sont utiles pour représenter certaines preuves reposant sur les relations entre contextes. Nous

suggérons une formulation du rafinement qui combine les phases de typage et de sortage et

interprète les dérivations de typage comme un produit des dérivations de sortage. Cette

formulation nous permet de spécifier et de prouver la conservativité de l’extension de façon

concise et claire.
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Chapter 1

Introduction

Proof mechanization provides strong trust guarantees towards the validity of theorems. Con-

trary to informal proofs, expressing a theorem and its proof formally requires absolute pre-

cision. The resulting statement can thus become riddled with technicalities, which obscures

their relation to their informal counterparts. This work combines two approaches to type sys-

tems that significantly reduce the added complexity from formalization, namely refinement

types and higher-order abstract syntax (HOAS).

Datasort refinement types (Freeman and Pfenning, 1991; Freeman, 1994) provide ways to

define subtypes (called datasorts or just sorts) by imposing constraints on the constructors

of (inductive) types. Intuitively, a sort S refines a types A if it is defined by a subset of its

constructors. The idea originated in the simply-typed setting, where refinements enhance

the expressive power of the type system. Later, Lovas and Pfenning (2010); Lovas (2010)

extended datasort refinements to the dependently-typed Edinburgh logical framework LF

(Harper et al., 1993). They provide an equivalence between their system of refinements,
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LFR, and another extension of LF with proof-irrelevance. An immediate conclusion here is

that refinements do not increase the expressive power of dependently-typed calculi. Rather,

Lovas (2010) observes that refinements may significantly reduce the verbosity of mechanized

proofs, which is demonstrated through several case studies.

Beluga (Pientka and Dunfield, 2010) is a two-level programming language based on

contextual modal type theory (CMTT) (Nanevski et al., 2008). It uses the Edinburgh

logical framework LF (Harper et al., 1993) as a specification logic (data-level), with an

intuitionistic first-order reasoning logic (computation-level). The data-level is embedded in

the computation-level via a (contextual) box modality similar to the one in the modal logic

S4. From a logical point of view, the formula □A (read box A) expresses that A is true

under no assumptions, i.e. in the empty context. The contextual box modality generalizes

this idea to arbitrary contexts, yielding formulas of the form [Ψ ⊢ A] expressing that A holds

in context Ψ. This allows us to represent LF objects (and types) together with a context in

which they are meaningful. To handle this representation, LF contexts are restricted using a

notion of schema that acts as classifiers of contexts, similarly to how types classify terms. In

addition, LF substitutions are first-class objects of Beluga and they can be used to move

objects from one context to another while preserving their meaningfulness. These features

allow the expression of an object language (OL) using HOAS (Pfenning and Elliott, 1988)

and provide several substitution lemmas for free in our mechanizations.
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1.1 Contributions

Broadly, the main contribution of this thesis is the theoretical development of a refinement

type system for Beluga. Specifically, we introduce the notion of refinement schemas, which

allow expressing more precise properties of contexts, much like type refinements allow ex-

pressing more precise properties of objects. We also extend Lovas and Pfenning (2010)’s

refinements for LF to contextual refinement types, which requires including a refinement

relation on contexts as well as types. With refinement schemas and contextual refinement

types in our hand, we can carry our refinement type system to Beluga’s computation-level.

This means mainly that we allow refinements to cross the box modality that separates the

data- and computation-levels.

One of the objectives of refinement types is to provide multiple classifiers to objects,

which is why we can view them as extrinsic properties. Likewise, a context can be classified

with multiple refinement schemas, but only one type schema. To achieve this flexibility, we

had to review our understanding of contexts. Specifically, the presence of annotations to

variables in a context can restrict the schemas that classify that context. Our solution is to

view schemas as specifications of how a context can be generated, similarly to how atomic

types explain how terms may be generated correctly. In doing so, we can remove most

(but not all) type information from a context, leaving a specification of contexts that relies

(almost) exclusively on terms. Such contexts can more naturally be interpreted as objects

existing independently of their classifiers, so that we maintain a view that refinements are

extrinsic properties of objects.
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Finally, we observe that the two-step process used by previous work on datasort refine-

ments is redundant for our purposes. That is, performing type-checking before sort-checking

is unnecessary (although it provides certain benefits). We establish this fact by defining

refinement-level judgments that produce type-level derivations of their analogous type-level

judgment. Then, we prove that whenever we have a refinement-level derivation, the type-

level derivation that it outputs is correct in conventional Beluga.

The work presented here covers roughly the same material as Gaulin and Pientka (2023),

albeit in more detail. In particular, we give here a complete definition of the language, as

well as a proof that the extension with refinements is conservative. Moreover, we include

subsorting, which was omitted from Gaulin and Pientka (2023) due to space considerations.

Finally, we provide additional case studies that further exemplify the benefits of refinement

types in proof environments.

1.2 Background and related work

Before we move on to a more formal definition of our language, we discuss some related

work. We focus here on presenting an overview of the development surrounding refinement

types. The previous work that went into the design of Beluga was also highly influential

to the present thesis, and will be discussed thoroughly at a later point.

Refinements were originally introduced by Freeman and Pfenning (1991) as a way to

validate totality of programs in the presence of non-exhaustive pattern-matching. Intuitively,

a program containing non-exhaustive pattern-matching has unspecified behaviour on some of

its potential inputs. Running the program on such an input would naturally cause a runtime
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error. To avoid such undesirable consequences, a compiler might raise an error, thereby

forcing the programmer to specify behaviour on all possible patterns. However, if no input

matching the unspecified pattern is ever passed to the function, then the non-exhaustive

pattern-matching never causes an error. Accordingly, a preferable solution would consist of

ensuring that none of the missing patterns can ever be encountered.

An atomic type is generated by specifying new (unique) constants (i.e. names) for con-

structing objects and a way to use them (the type of the constant). Since the constants are

always new, types provide unique syntactic classifiers of objects formed with constructors.

In this sense, atomic types can be considered intrinsic properties of objects, an idea rein-

forced by the fact that we can synthesize a unique type for every neutral terms (and atomic

types are only inhabited by neutral objects in a canonical form presentation). A similar

idea applies to function spaces, provided that variables bound by λ-abstractions have a type

annotation.

Sorts, on the other hand, can tell us more specific information about the order in which

constructors are used in an expression. This is achieved by removing the burden that every

constructor name be unique when declaring a new sort. Instead, a user defining a new

sort must specify a previously defined type and use only a subset of its constructors. In

addition, they may assign new sorts to the selected constructors. This provides the tools

to isolate the fragment of objects of a given type whose structure satisfies some regularity

condition. Freeman (1994) discusses how datasort definition corresponds to regular tree

automata (Gécseg and Steinby, 2015), which generalize regular expressions to trees (instead

of lists). Importantly, sorts characterize objects that exist independently of them, and are
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therefore extrinsinc properties. We refer to Pfenning (2008) for a discussion of this two-

layered approach to unify the intrinsic and extrinsic views of typing.

1.2.1 Datasort refinements

Our notion of refinement falls in the datasort tradition that was initiated by Freeman and

Pfenning (1991); Freeman (1994) for MiniML, a monomorphic fragment of Standard

ML’s core language. Their system uses refinement type inference so that users don’t need

to provide annotations, but the inferred refinements are usually intersections with some

undesired components. Davies (2005), who coined the term datasort, extended this work

to the full Standard ML language (including modules). They gave up sort inference in

favor of a bi-directional sort-checking algorithm, so that only the desired sorts are used by

the compiler. Unfortunately, even sort-checking is untenable in the presence of intersections:

the compiler needs to choose the correct branch of an intersection when synthesizing sorts

for neutral expressions, making sort-checking PSPACE-hard (Reynolds, 1997).

Later, Lovas and Pfenning (2010); Lovas (2010) designed LFR, an extension of LF with

datasort refinement types. They provide an equialence between LFR and another variant of

LF, called LFI, that is equipped with a proof irrelevance modality. Intuitively, this means

that a datasort S refining a type A can be interpreted as a type family indexed by objects

of type A, say Ŝ M for all M : A, and such that any two objects of type Ŝ M are equal

(i.e. the exact proof is irrelevant, we only care that it exists). Through several case studies,

Lovas (2010) demonstrates that proofs in LFR are more concise and more intuitive than

their corresponding LFI proofs. Thus, they conclude that datasorts are beneficial in the
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setting of proof mechanization. The present thesis investigates the benefits of datasorts in

the richer setting of Beluga.

More recenty, Jones and Ramsay (2021) used refinement types to validate termination

in the presence of non-exhaustive pattern matching. Their notion of an intensional refine-

ment is obtained by removing some of the constructors from a datatype, but the remaining

constructors cannot be assigned new sorts. Instead, a constructor c : A selected for the sort

s ⊏ a is assigned the sort S obtained by replacing every occurrence of a in A by s. More-

over, the simplicity of intensional refinements allows Jones and Ramsay (2021) to provide

a practical language featuring full type and refinement inference. In a sense, intensional

refinements appear weaker than datasorts since users are not allowed to specify new sorts for

constructors. In particular, they cannot control the order in which constructors are applied.

On the other hand, Jones and Ramsay (2021) do not consider that the absence of base cases

in a refinement leads to the refinement being empty. Rather, they view such refinements

as describing infinite structures. For instance, the refinement of the type of lists that only

maintains the list extension constructor is viewed as the refinement type of infinite lists

instead, whereas it would be an empty sort in our system.

1.2.2 Index refinements and liquid types

In parallel to datasorts, another important form of refinement types, known as index refine-

ments, was developped for the purpose of including dependent types in practical program-

ming languages. These were first introduced by Xi (1998); Xi and Pfenning (1999), who

designed a family of dependently-typed ML-style languages parameterized by an arbitrary
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index domain C, called DML(C). Refinements are obtained by allowing quantification over

the index domain, which intuitively corresponds to having a refinement relation Πx:S.A ⊏ A,

where S ∈ C. In this way, most difficulties of dependent types can be avoided, similarly

to how we avoid them in Beluga’s computation-level by restricting dependencies to data-

level terms. Datasort refinements and index refinements were combined by Dunfield (2007),

essentially yielding an extension of DML with intersections.

An important development of this approach came in the form of logically qualified (or

liquid) types (Rondon et al., 2008), this time as an extension of OCaml. In this methodol-

ogy, a refinement is expressed as {x : τ | P (x)}, where τ is a type and P is a boolean-valued

function over τ . The type τ can then be seen as the refinement {x : τ | true} and this

allows combining typing and sorting into one judgment, much like we have done for datasort

refinements. Liquid types offer two important advantages over datasorts: Firstly, they are

written in a style that is reminiscent of common mathematical notations for defining sets,

which allows the (mathematically inclined) programmer to refer to their previously acquired

intuition. Secondly, the properties expressible by liquid types are all the first-order boolean

formulas, while datasorts are limited to those formulas whose validity can be established by

a regular-tree automaton. This second advantage, however, comes at a cost in complexity,

since type-checking now requires the use of an SMT solver. SMT solvers perform extremely

well in practice (despite their theoretical difficulties), so one could argue that the benefits

outweigh the cost in performance. Indeed, liquid types have been integrated to several lan-

guages since their introduction by Rondon et al. (2008), such as C (Rondon et al., 2010),

Haskell (Vazou, 2016), and Rust (Lehmann et al., 2023).
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1.3 Structure of the thesis

The remainder of the thesis is separated as follows. We first present Beluga’s type system

in Chapter 2. For the most part, this chapter is a review of previous work, although we

make some adjustments to the contexts and schemas of the language. We will also discuss

a simple example to illustrate how one mechanizes an OL in Beluga. Next, Chapter 3

discusses the refinement system that we define on top of the type system. Here, we revisit

our example from the previous chapter to see how refinements can help us improve the

clarity of our mechanization, especially when it comes to theorem statements. We prove in

Chapter 4 that the extension is conservative, meaning that any well-sorted program is also

well-typed, despite not performing a type-checking phase. Chapter 5 provides two additional

case studies that exemplify more aspects of our newly acquired power and show that the

benefit of refinements are even stronger when mechanizing more complex properties. Finally,

we conclude in Chapter 6.

All the work presented in this thesis was developed by myself, with advisory help from

Brigitte Pientka along the way.
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Chapter 2

Review of Beluga

Beluga (Pientka and Dunfield, 2010) is a dependently-typed functional programming lan-

guage inspired by contextual modal type theory (CMTT) (Nanevski et al., 2008). It al-

lows direct manipulation of higher-order abstract syntax (HOAS) representation of object

languages (OLs). In particular, this means that the mechanized OL inherits the correct

behaviour of substitutions from Beluga’s specification language. This provides important

benefits in concisely mechanizing the meta-theory of programming languages, since substi-

tution properties tend to require long, technical proofs.

This chapter describes the structure of Beluga’s type system and programs, with the

goal of making our presentation of refinement types for Beluga more accessible. Beluga

consists of two levels: a specification language (also called the data-level), and a computation

language (also called the computation-level). The data-level is an extension of the Edinburgh

logical framework LF (Harper et al., 1993) with contextual types, which we therefore call

Contextual LF. The computation-level is an ML-style functional language in which types can
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depend on Contextual LF objects, but not other computation-level objects. The ability to

manipulate contextual objects allows pattern matching on open code, which further enhances

the clarity of proofs. We will start by reviewing LF itself, before extending it to Contextual

LF, and finally presenting the computation-level.

The formulation of Beluga has varied somewhat significantly over the years of its devel-

opment. Here, we present a further variation closely inspired by the one of Pientka and Abel

(2015), although we will discuss, in this chapter, how the definition has evolved over time.

Throughout the presentation, we include a mechanization of the simply-typed λ-calculus

and some of its meta-theory. Later, we will revisit this mechanization to see how it can be

improved with refinement types.

2.1 LF

The Edinburgh logical framework LF (Harper et al., 1993) is a dependently-typed specifica-

tion language specialized in representing formal systems, such as logics and typed λ-calculi.

The key idea behind LF is its “judgments-as-types” principle, which identifies LF types

with judgments of the mechanized OL. Well-typed LF objects then correspond to proofs of

the OL judgments.

LF is separated into three levels, terms (or objects), types, and kinds. Intuitively, terms

are programs, types are classifiers of terms, and kinds are classifiers of types. The presence of

kinds ensures that LF types are predicative, meaning here that LF types may only depend

on objects that do not inhabit them.

We adopt here a canonical form presentation (Watkins et al., 2002), although Harper
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et al. (1993)’s original formulation of LF is more permissive in allowing reductions to occur.

For our purposes, LF serves only as a specification language, so it is not too restrictive to

require from our users that they write normal forms. Moreover, Harper et al. (1993) shows

that LF is strongly normalizing, implying that any (well-typed) LF term has a unique

normal form. Thus, in requiring normal forms only, we lose none of LF’s power.

In order to handle canonical forms properly, we use a bi-directional typing algorithm and

hereditary substitutions. As the name suggests, bi-directional typing consists of two phases:

type checking and type synthesis. Type checking consists mainly of assigning a (given) type

to each variable of a function. Then, we use this typing information to synthesize the type of

the function’s body, and we verify that the synthesized type coincides with the type we are

checking against. Hereditary substitutions are similar to ordinary substitutions, but differ

in that they sometimes perform additional reduction steps to ensure that the resulting term

is still in canonical form. For instance, [(λy.y)/x](x M) produces M instead of (λy.y) M ,

which is not in normal form.

One advantage of using a bi-directional type-checking algorithm is that terms themselves

do not contain type annotations. Rather, users annotate a program with its type on the

outside. This means that types never appear directly within terms, which is compatible

with an extrinsic view of typing. Extrinsic typing has limited impact here, but it will play

a more important role when we introduce refinement types later on.
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2.1.1 Syntax

We begin with a discussion of LF’s syntax, starting with terms. We differ from Harper

et al. (1993) by using a head and spine syntax. Given the simplicity of LF, this leads to a

somewhat verbose presentation. However, the use of heads and spines facilitates extending

the language of terms since we only need to add new heads. With this in mind, we define

the syntax of terms as follows :

Head H ::= c | x

Spine M⃗ ::= nil |M ; M⃗

Neutral term R ::= H M⃗

Normal term M ::= R | λx.M

The head c represents constants, while x represents variables. All constants have been

defined by the user, and are stored in a globally accessible signature along with their user-

specified type. A spine M⃗ is simply a list of normal terms. We note that neither heads nor

spines are valid terms on their own.

To construct a term, we first apply a head H to a spine M⃗ , yielding the neutral term

H M⃗ . We will write simply H when M⃗ = nil is the empty spine. Intuitively, heads are

functions that cannot be evaluated when applied to arguments: c is a constructor so it is

generative, while x must be substituted by an actual function before we can evaluate it.

Spines are used to pass multiple arguments to a head at once.

A normal term is either a neutral term of a function abstraction λx.M . The fact that

applications may only be used in the neutral phase ensures that a function λx.M is never
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directly applied to arguments. Since heads do not represent concrete computations, the

separation of terms into neutral and normal ensures that no evaluation is possible.

Now, our syntax of terms encodes an untyped λ-calculus enhanced with constants. Since

we only describe normal forms, none of the terms can actually run, but we can still express

functions that would run forever if they were to be applied in the wrong ways. For instance,

the term λx.x x describes a function that applies its only input to itself. If we were to apply

this function to itself, we would obtain the self-reproducing term (λx.x x) (λx.x x), which

does not normalize. The problem with these terms is that the variable x is used as a both

function and its argument, which introduces a form of impredicativity.

Types allow us to reject the bad terms described above. In LF, types are allowed to

depend on terms (hence we say that it is dependently-typed). A type depending on a term

M corresponds to a property of M expressed in first-order logic (FOL) and classifies those

terms that can be seen as proofs of that property. More generally, a type depending on

terms M1, ...,Mn represents a relation between those terms and is inhabited by proofs of

that relation. In other words, LF allows a Curry-Howard isomorphism with (intuitionistic)

FOL, according to which types are propositions and terms are proofs. Types are defined by

the following syntax:

Atomic types P ::= a M⃗

Canonical types A ::= P | Πx:A1.A2

The atomic types a M⃗ consist of a type constant a applied to a spine. Like for terms,

type constants are stored in the signature and must be assigned a kind K at declaration. The

spine M⃗ must be made of terms that match the corresponding types in K and we require
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that all type families be fully applied. We will write only a for a nil.

Canonical types are either atomic or dependent function spaces Πx:A1.A2 from A1 to A2,

where x may occur in A2. We adopt the common convention of writing A1 → A2 instead of

Πx:A1.A2 when x does not occur in A2, and we call A1 → A2 a simple function space.

Next, the fact that types are allowed to depend on terms introduces the possibility that

some types are ill-formed. For instance, if we have a type even expressing that a number

is even, then even M is only meaningful when M is a number. To handle this, we need a

notion of kinds. Intuitively, a kind classifies types based on the objects to which they can

be applied, similarly to how types classify terms based on the arguments to which they can

be applied. They are given by the following syntax:

Kinds K ::= type | Πx:A.K

The kind type classifies all the well-formed types, that is those with no unspecified

dependencies. Every other kind has the form Πx1:A1.Πx2:A2. · · ·Πxn:An.type and classifies

those types with dependencies on objects of types A1, A2, ...An. For our purposes, only

unapplied type constants a can have a kind different than type.

Next, we need a way to keep track of bound variables as we traverse open terms, which

we do using contexts. For now, we view contexts simply as lists of variables together with

their types. We thus obtain the following syntax for contexts:

Context Γ ::= · | Γ, x:A

where · is the empty context, and Γ, x:A extends the context Γ with a fresh (i.e. new)

variable x of type A.
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An LF program consists of a sequence of declarations of either constant objects or atomic

type families. When declared, every constant object must be assigned a type and every

atomic type must be assigned a kind. Each declaration is stored in a globally accessible

signature, denoted Sig (Σ is also commonly used, but we reserve it for later).

In our work, constant declarations are bound within type declarations. This is because

constants are really constructors for atomic types, so they can only be defined while defining

the atomic type. In this case, there is only one form of LF declaration for us, given by the

following syntax :

Declaration D ::= (LF a : K = c1 : A1 | c2 : A2 | ... | cn : An)

Signature Sig ::= · | Sig, D

For simplicity, this thesis treats only of sequential declarations. That is, a declaration may

only reference previously declared constants and types. Mutual definitions can be handled

by including subordination into our judgments (Virga, 1999).

Example: Simply typed λ-calculus

We demonstrate the usefulness of LF as a specification language by encoding a simply-

typed λ-calculus (STLC) with natural numbers. Every snippet of code needed in the mech-

anization is accompanied by an informal definition of what is encoded, so as to show how

closely related the formal and informal versions are. We begin by encoding the types of

STLC:

LF tp : type =

| nat : tp

| arr : tp → tp → tp;

STLC Types T ::=

N

| T1 → T2
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On the left, we see the syntax of an LF declaration of the type tp. It is defined by the two

constructors nat and arr. The type of nat tells that this constructor is already a tp. On

the other hand, the type of arr indicates that this constructor must be given two arguments

of type tp in order to produce a new object of type tp. If we contrast this formal definition

with the informal syntax of STLC types on the right, we see that N is indeed a type on its

own, while the function types T1 → T2 necessitate two previously constructed types T1 and

T2. In other words, the formal and informal definitions of STLC types can clearly be seen

to encode the same concept.

Next, we encode the terms of STLC:

LF tm : type =

| zero : tm

| succ : tm

| lam : tp → (tm → tm) → tm

| app : tm → tm → tm;

STLC Terms e ::= x

| 0

| S e

| λx:T.e

| e1 e2

Here, the correspondence between formal and informal encoding is a little less clear. In

particular, the informal syntax includes variables x, but the formal definition does not have

a constructor for variables. Instead, the fact that tm includes variables is hidden in the

negative occurrence of tm in the type of the constructor lam.

We note that negative occurrences do not cause trouble in LF because of its weak function

space. With strong functions spaces, the type (tm → tm) would be strictly larger than tm,

which creates a paradox since each such function may be used to create a tm (implying

that tm is at least as large as (tm → tm)). With LF’s weak function spaces, the negative

21



occurrence of tm in (tm → tm) is simply represented as an LF variable of type tm that may

occur within the positive occurrence of tm, so both types are countably infinite. This is also

in accordance with the principles of HOAS, whereby variables of the OL are represented as

variables of the meta-language (in this case, LF). HOAS then also permits the use of meta-

language substitutions for representing OL substitutions through function applications. This

provides us with the necessary tools to elegantly encode the typing judgment :

LF oft : tm → tp → type =

| t-zero : oft zero nat

| t-succ : oft e nat →

oft (succ e) nat

| t-lam : ({x:tm} oft x T → oft (e x) T’) →

oft (lam T e) (arr T T’)

| t-app : oft e1 (arr T’ T) → oft e2 T’ →

oft (app e1 e2) T

Γ ⊢M : A – STLC typing

Γ ⊢ 0 : N

Γ ⊢ e : N
Γ ⊢ S e : N

Γ, x:T ⊢ e : T ′

Γ ⊢ λx:T.e : T → T ′

Γ ⊢ e1 : T
′ → T Γ ⊢ e2 : T

′

Γ ⊢ e1 e2 : T

The most interesting aspect of this definition is the encoding of the rule for λ-abstractions.

We use the curly braces {x:tm} to denote explicit universal quantification over tm. Notice

in particular how we represent the informal context extension Γ, x:T using the negative oc-

currences of tm and oft x T. Notice also how the dependency of the function body e on the

variable x is represented using a function application in oft (e x) T’.
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Γ ⊢ H ⇒ A – Synthesize type A for head H

(c:A) ∈ Sig

Γ ⊢ c ⇒ A

(x:A) ∈ Γ

Γ ⊢ x⇒ A

Γ ⊢ M⃗ : A > P – Apply A to M⃗ , resulting in P

Γ ⊢ nil : P > P

Γ ⊢M ⇐ A1 Γ ⊢ M⃗ : [M/x]A2 > P

Γ ⊢M ; M⃗ : Πx:A1.A2 > P

Γ ⊢ R ⇒ A – Synthesize type A for neutral term A

Γ ⊢ H ⇒ A′ Γ ⊢ M⃗ : A′ > A

Γ ⊢ H M⃗ ⇒ A

Γ ⊢M ⇐ A – Check M against A

Γ ⊢ R ⇒ P
Γ ⊢ R ⇐ P

Γ, x:A1 ⊢M ⇐ A2

Γ ⊢ λx.M ⇐ Πx:A1.A2

Figure 2.1: LF typing rules

2.1.2 Judgments

Now that we have defined and exemplified the syntax of LF, we can discuss its judgments.

We focus here on the typing judgments, although, for completeness, we also need a kinding

judgment and a context formation judgment. We leave out kinding from this discussion as it

is straightforward to define it, but we provide its definition in Appendix A. We will discuss

context formation in depth later on, but for now we think of a context Γ as well-formed if it

contains no duplicate variable and every type in Γ is well-formed (i.e. has kind type).

We use a bi-directional typing algorithm. This means that we have two main judgments:
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type synthesis for neutral terms, denoted Γ ⊢ R ⇒ P , and type checking for normal terms,

denoted Γ ⊢ M ⇐ A. Note that synthesis is restricted to atomic type, which enforces

that terms are η-long. As the names suggest, the type A is an output of type synthesis

judgment and an input of the type checking judgment. From a proof-theoretic perspective,

the synthesis phase corresponds to using only elimination rules, while the checking phase

uses only introduction rules. Here, we only have functions, so elimination is application and

introduction is λ-abstraction, but the idea generalizes to richer type systems.

In addition, we need a type synthesis judgment for heads, denoted Γ ⊢ H ⇒ A, and

a type checking judgments for spines, denoted Γ ⊢ M⃗ : A′ > A. Synthesis for heads is

simply a lookup in the signature (for constants) or context (for variables). Type checking

for spines takes in a spine M⃗ = M1; ...;Mn and a type A′ = Πx1:A1...Πxn:An.A
′′, then

validates that Γ ⊢Mi ⇐ [M1/x1, ...,Mi−1/xi−1]Ai for each i, and finally produces the output

A = [M1/x1, ...,Mn/xn]A
′′.

These judgments should be read bottom-up. This means that we start by a type-checking

phase, during which we peel off any λ-abstraction that occurs and extend the context with

the new variables. Once we reach a function application, we attempt to synthesize its type

by first synthesizing the type of the head, and then verifying that each argument in the spine

checks against the expected type. Once we have synthesized a type for the application, we

compare it (syntactically) with the type that we were checking against. A type-checking

derivation succeeds only when the comparison yields that the two types are indeed equal.

Generally, equality of dependent types reduces to equality between terms. Since our

language only allows normal terms, equality of terms is simply syntactic equality (modulo
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α-renaming).

Example: Comparing LF and OL derivations

To finish our presentation, let us see how an informal typing derivation in STLC compares

to its formal LF derivation. Consider the STLC function λx:N.S x that increments a natural

number. Clearly, this function has type N → N, which we can indeed validate with the

following proof:

(x:N) ∈ (x:N)

x:N ⊢ x : N
x:N ⊢ (S x) : N

⊢ (λx:N.S x) : (N → N)

In contrast, the corresponding encoding of the function λx:N.S x is the LF object

lam nat (λx. succ x), and the type N → N translates to arr nat nat. We then expect

the LF type oft (lam nat (λx. succ x)) (arr nat nat) to be inhabited by a proof sim-

ilar to the above. It is not difficult to work out that the LF object t-lam (λx.λt. t-succ t)

is the one we want, as demonstrated by the following LF derivation :

(t:oft x nat) ∈ (x:tm, t:oft x nat)

x:tm, t:oft x nat ⊢ t : (oft x nat)

x:tm, t:oft x nat ⊢ (t-succ t) : (oft (succ x) nat)

x:tm ⊢ (λt.t-succ t) : Πt:oft x nat.oft (lam nat (λx.succ x)) (arr nat nat)

⊢ (λx.λt.t-succ t) : (Πx:tm.Πt:oft x nat.oft (lam nat (λx.succ x)) (arr nat nat))

⊢ (t-lam (λx.λt. t-succ t)) : (oft (lam nat (λx. succ x)) (arr nat nat))

Now, we can clearly see that the informal STLC typing derivation and its formal LF

counterpart have roughly the same shape, although the formal proof has a few extra steps.

Specifically, there are two extra steps needed to perform the context extension properly.
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In particular, notice how we end up with the context x:tm, t:oft x nat to represent the

informal assumption x:N. This is inevitable since x:N introduces both the term variable x

and the assumption that it has type N.

Generally speaking, informal presentation of typed λ-calculi may allow various ways to

extend a context with new bindings. These bindings can have complex structures involving

several assumptions and constraints on how these assumptions are made. For instance, in a

polymorphic language, we may have type variables of any kind, but only allow term variables

to have a type of kind type (see Chapter 5 for more details).

The central idea behind our HOAS consists of representing OL variables as LF variables,

so it is crucial that we represent the binders (and other components of the OL) correctly. The

LF methodology for ensuring this is to prove adequacy theorems, which means establishing

a compositional bijection between a rigorous, informal presentation of an OL and its formal

encoding in LF (Harper et al., 1993). Here, bijection means that for every object of interest

(terms, types, contexts, judgments, etc.) in the informal presentation, there corresponds an

LF object in the formal encoding, and vice versa. Compositionality means that the bijection

commutes with substitutions, or, intuitively, that applying an OL substitution to an OL

term is the same as applying the corresponding LF substitution to the corresponding LF

term. This compositionality criterion is what guarantees that our mechanization correctly

represents the variables, contexts, and substitutions of the OL. In our example, we have given

this compositional bijection informally by presenting the informal and formal representations

side by side. While adequacy is an important aspect of mechanization, we omit further

discussion of it, opting instead for these informal side-by-side comparisons. We refer to
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Pfenning (1997); Harper and Licata (2007) for more details on adequacy.

In short, the correspondence between an OL context and the LF context representing

it is not always obvious. Since our HOAS is based around the principle that OL variables

can be represented as LF variables, it follows that OL contexts can be represented as LF

contexts. However, as we have just seen, an LF context must have a particular structure

in order to adequately encode an OL context. In order to properly reason about the meta-

theoretic properties of an OL, it is imperative that this structure be preserved as we traverse

terms under binders and extend the contexts. Therefore, we need additional tools to enforce

the particular structure of contexts and facilitate their manipulation. To achieve this, we

will extend LF to Contextual LF.

2.2 Contextual LF

Contextual LF extends LF with contextual types. Simply, a contextual type Γ ⊢ A consists

of a type A together with a context Γ containing all of the free variables in A. An object of

type Γ ⊢ A has the form Γ ⊢ M and must satisfy Γ ⊢ M ⇐ A. The key advantage of this

approach lies in the fact that Γ ⊢ Πx:A.A′ is isomorphic to Γ, x:A ⊢ A′, in the sense that one

can transform any derivation of Γ ⊢ Πx:A.A′ into a derivation of Γ, x:A ⊢ A′ and vice versa.

This allows us to express traversals under binders directly through context extensions.

In addition, we revise the notion of LF contexts to improve their ability to represent OL

contexts. In particular, we add the notion of a schema to classify contexts based on their

structures, thus enforcing the correct representation of OL binders. Moreover, we extend

the language with an explicit substitution calculus that allows moving an object from one
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context to another while preserving its meaningfulness.

2.2.1 Revision of contexts

As illustrated in our last example, representing the binding structures of an OL may require

multiple LF variables. To ensure the adequacy of our representations, we must specify how

to extend an LF context so that it actually corresponds to an OL context. To handle this,

Felty et al. (2015a) suggests structuring contexts into lists of tuples of variables instead of

flat lists of variables. With this additional structure, we can more accurately characterize the

assumptions contained within a context. We achieve this by adding schemas to the language.

Schemas originated in the work of Schürmann (2000) as classifiers of LF contexts. They

were first included to Twelf (Pfenning and Schürmann, 1999), a proof environment that

implements LF. In this work, a schema element (or block schema in their terminology)

is a parameterized record type, and a context schema is a collection of schema elements.

Intuitively, the record of a schema element contains all the LF variables necessary to encode

one OL assumption, and it is parameterized with the premises of the OL’s context formation

rules, in accordance with the judgment-as-types principle. Then, a context schema is the

list of all possible ways to introduce an OL assumption.

Beluga has had a notion of schemas since its beginning (Pientka, 2008), although it

differs from Schürmann (2000) in that schema elements are just types. However, the language

presented by Pientka (2008) already contains tuples and it is simply-typed, so there is no need

for parameterizing them. In this sense, the difference from Schürmann (2000) is superficial.

Soon after, the dependently-typed formulation of Beluga by Pientka and Dunfield (2008)
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returns to a notion of schema in line with Schürmann (2000). Since records are not valid

LF types, variables with record types may only be accessed through projections.

Later formulations by Cave and Pientka (2012, 2013); Pientka and Abel (2015) restrict

the records of schema elements to be single types. The removal of records simplifies the

treatment of contexts since there are no more projections to handle. However, we know that

this is insufficient to properly describe an OL context.

Here, we return again to a notion of schema with records. Moreover, we consider schemas

with a generative flavour: a schema specifies how a context can be constructed. In this sense,

we think of schemas as the atomic types of contexts, where schema elements correspond to

constructors. An important difference with atomic types is that schema elements only tell

us how to extend a context of the same schema. In a sense, every schema element can

be thought of as having an implicit argument corresponding to the context that is being

extended.

We now define contexts and schemas with the following syntax:

Blocks of declarations B ::= · | Σx:A.B

Schema elements E ::= B | Πx:A.E

Context schemas G ::= · | G+w:E

Contexts Γ ::= · | ψ | Γ, x:A | Γ, b:w · M⃗

Heads H ::= ... | b.i

Blocks of declarations represent tuples of labelled assumptions, i.e. variables. The empty

block · is not valid on its own, rather it is a syntactic device that indicates the end of a block.

Empty blocks are not strictly necessary for the system to work, but facilitate the theoretical
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development by providing a simple base case.

A schema element is a parameterized block of declarations. While blocks express specific

instances of assumptions, schema elements encode the general requirements of a particular

form of assumption. Note that every block of declarations is also a schema element that

relies on no additional parameters.

A schema is given as a list of named schema elements, and we write w to indicate

these names. Schema elements can only be defined within schema declarations, much like

constants are defined within type declarations. Consequently, every schema element used in

a mechanization must have a name. The empty schema · describes the collection of contexts

that can be formed without ever adding assumptions, i.e. only the empty context. Like for

blocks, the interest of an empty schema lies mainly in simplifying the meta-theory of our

system, and so it could be omitted entirely.

Finally, contexts are now allowed to contain blocks of declarations, denoted b:w · M⃗ . If

w : Π(
−−→
x:A).B, then w · M⃗ corresponds to the concrete block of declarations [M⃗/x⃗]/B. Since

Σ-types are not proper LF types, block variables can only be used in LF objects through

projections, denoted b.i. Intuitively, this projection corresponds to a single variable within

the block, hence we extend our syntax of heads with b.i. We also need to add an inference

rule to the type synthesis for head judgment:

(b : w · M⃗) ∈ Γ ∆; Γ ⊢ w · M⃗ > B ∆;Γ ⊢ b : B ≫i
1 A

∆;Γ ⊢ b.i⇐ A

where the judgment ∆; Γ ⊢ w · M⃗ > B computes the concrete block of declarations B

represented by w · M⃗ , and the judgment ∆; Γ ⊢ b : B ≫i
1 A extracts the type A of the ith

component of B. We omit the definition of these judgments here as they are straightforward,
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but provide them in Appendix A.

In addition, we allow LF contexts to start with a context variable ψ. We stress that

although ψ may occur within an LF context Γ, it is not itself an LF variable, but rather a

Contextual LF variable. As such, ψ must be bound outside of Γ. To handle this issue, we

use a meta-context ∆ that is allowed to contain, among other things, our context variables.

We will discuss meta-contexts in details when we formally introduce contextual types and

contextual objects. For now, it suffices to know that ∆ can contain assumptions ψ:G that

context variable ψ has schema G.

Note that, while arbitrary single assumptions x:A may still appear within an LF context,

the type A is not described by the syntax of schema elements. However, the type A is

essentially the same as the block of declarations (and therefore schema element) Σx:A.·. In

this sense, the single assumptions are not strictly necessary for mechanizations themselves.

However, several of our judgments (in particular, block and schema element well-formedness)

rely on adding single assumptions to LF contexts, so we at least need them for our current

definition of the language.

Now, let us go over the schema-checking judgment ∆ ⊢ Γ : G (see Figure 2.2). First, the

rule SC-empty tells us that the empty context inhabits every schema. The other base case

is the rule SC-var, that tells us that a context variable has the schema that it was declared

to have.

The rule SC-ext is used to validate schemas of contexts containing actual variables. It

is restricted to block variables b:w · M⃗ , where w : E is defined in the schema that we are

checking against. To validate that a context extension is correct, we simply need to check
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∆ ⊢ Γ : G – LF context has schema G in meta-context ∆

∆ ⊢ G : schema
∆ ⊢ · : G

SC-empty
(ψ : G) ∈ ∆

∆ ⊢ ψ : G
SC-var

∆ ⊢ Γ : G (w:E) ∈ G ∆;Γ ⊢ M⃗ : E > B

∆ ⊢ (Γ, b:w · M⃗) : G
SC-ext

∆;Γ ⊢ M⃗ : E > B – Instantiate schema element E with parameters M⃗ , yielding B.

∆; Γ ⊢ nil : B > B
Inst-block

∆;Γ ⊢M ⇐ A ∆;Γ ⊢ M⃗ : [M/x]E > B

∆;Γ ⊢ (M ; M⃗) : (Πx:A.E) > B
Inst-pi

Figure 2.2: Schema-checking rules

the terms of M⃗ against the type parameters dictated by the schema element E. We perform

this verification with the auxiliary judgment ∆; Γ ⊢ M⃗ : E > B, which incidentally generates

the concrete block of declarations B. Although we do not need to generate the actual blocks

for schema-checking, we will need to do so in order to derive the types of variables later on

and we can reuse the same judgment. In practice, we would use two separate judgments to

avoid type-checking M⃗ every time a block variable is used, which would significantly impact

performance.

Example: Terms of STLC

When we defined the type tm of terms in our OL, we assigned the type (tm → tm) → tm

to the constructor lam, and said that the negative occurrence of tm posed no problem as it

would simply be represented as an LF variable in the ambient context. Now, we want to

make the LF context explicit and use it to represent the OL context, so we need to specify a
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schema that classifies those LF context that correspond to and OL context. In this setting,

we only need a variable of type tm, so we define the schema as follows:

LF lam-ctx : schema =

| lc-var : block (x:tm);

This new explicit syntax of schema declarations is purposefully similar to the one of

atomic type declarations. It differs only in two ways: First, the kind is replaced with schema,

which we think of as analogous to the kind type. Second, the constructors are assigned

schema elements instead of types. The keyword block indicates which fresh variables should

be included in the new block of declarations.

Now, in the typing judgment oft, the rule for λ-abstraction is encoded through the con-

structor (t-lam : ({x:tm} oft x A → oft (M x) B) → oft (lam A M) (arr A B)),

which contains negative occurrences of both tm and oft. In this case, adequately represent-

ing the contexts of STLC requires extending the LF context with two variables. Thus, our

schema lam-ctx, despite accurately representing all terms of the OL, is ill-suited to repre-

senting also its typing derivations. We can solve this issue with a more sophisticated context

schema:

LF stlc-ctx : schema =

| typ-var : some [A:tp] block (x:tm, t:oft x A);

The keyword some corresponds to the Π of schema elements, and all the parameters are

introduced within the square brackets (in this case, there is only A:tp). Then, when provided

with a particular A, typ-var produces the block of declarations (x:tm, t:oft x A) which

corresponds to the negative occurrences in the type of t-lam. We denote the extension of
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a context (Ψ : stlc-ctx) as (Ψ, b:typ-var A), and access the variables contained in the

block with the projections (b.1 to access x and b.2 for t).

2.2.2 Substitutions

Next, we address how the new structure of contexts impacts substitutions. Since we are using

a canonical forms presentation, we need to use hereditary substitutions as well (Watkins

et al., 2002). This means that substitutions must perform certain reduction steps to ensure

that the resulting object remains in normal form. Essentially, whenever a variable occurs in

a head position and is substituted for a λ-abstraction, the hereditary substitution will apply

β-reduction. For instance, [(λx.x)/x′](x′ M) would ordinarily yield (λx.x) M , which is not

normal, but the hereditary substitution will further reduce this into M .

So far, every substitution that we have used included an explicit specification of the

substituted variables. Our most recent one, [(λx.x)/x′], substitutes only the variable x′. In

what follows, we instead require that substitutions have the same shape as their context

domain. Now, let us look at the syntax of substitutions:

Substitutions σ ::= · | idψ | s[σ] | σ,M | σ, M⃗

We distinguish five forms of substitutions and write ∆; Γ′ ⊢ σ : Γ to indicate that σ has

domain Γ and co-domain Γ′. We will now discuss this judgment, whose formal definition is

given in Figure 2.3.

The empty substitution · has the empty context as a domain and can have any other

context as a co-domain. The substitution idψ is the identity for the context variable ψ, so

it has ψ for a domain.
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∆;Γ′ ⊢ σ : Γ – σ is a well-formed substitution with domain Γ and co-domain Γ′.

∆ ⊢ Γ1 : ctx
∆;Γ1 ⊢ · : ·

Subst-empty
(ψ : G) ∈ ∆ ∆ ⊢ Γ1 : ctx

∆;Γ1 ⊢ idψ : ψ
Subst-id

(s:Γ1 ⊢ Γ2) ∈ ∆ ∆;Γ ⊢ σ : Γ1

∆;Γ ⊢ s[σ] : Γ2
Subst-var

∆;Γ1 ⊢ σ : Γ2 ∆;Γ1 ⊢M ⇐ [σ]A

∆;Γ1 ⊢ (σ,M) : (Γ2, x:A)
Subst-tm

∆;Γ1 ⊢ σ : Γ2 ∆;Γ2 ⊢ w · M⃗
′
> D ∆;Γ1 ⊢ M⃗ ⇐ [σ]D

∆;Γ1 ⊢ (σ, M⃗) : (Γ2, b:w · M⃗
′
)

Subst-spn

Figure 2.3: Explicit substitution calculus

Substitution variables s : Γ1 ⊢ Γ2 are located in the meta-context and have domain Γ2

and co-domain Γ1. These can only be used when paired with a delayed substitution σ, which

we indicate by writing it on the right of s rather than on its left. The delayed substitution

is necessary to ensure that substitution variables have the correct co-domain.

Next, (σ,M) has domain (Γ, x:A) and co-domain Γ′ provided that σ has domain Γ and

codomain Γ′, and Γ′ ⊢M ⇐ [σ]A. Notice that the terms composing a substitution must be

meaningful in its co-domain. These four forms were part of previous formulations of Beluga

and have been thoroughly discussed in the past (see Pientka (2008); Cave and Pientka (2013)

for instance).

Here, we add a fifth form of substitutions, (σ, M⃗), that allows users to extend a sub-

stitution with several objects at once, so that we can substitute blocks more easily. More

precisely, the spine M⃗ (which we really think of more as an n-ary tuple in this case) consists
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of terms that match against each variable in a block b:w · M⃗
′
. If we simply substitute M⃗ for

b in an LF object, we can obtain expressions of the form M⃗.i since b may only occur within

projections. This poses a problem since M⃗.i is not in normal form, which breaks the correct

behaviour of hereditary substitutions. Fortunately, we can extend hereditary substitutions

to compute the actual projections of the spine, simply by stating that:

[M⃗/b](b.i) =Mi if M⃗ =M1; ...;Mn and 1 ≤ i ≤ n

[M⃗/b](b.i) fails otherwise

For other objects, we define [M⃗/b](M ′) via the usual congruence rules, with the base cases

[M⃗/b](x) = x and [M⃗/b](c) = c.

2.2.3 Contextual objects

As mentioned above, a contextual type Γ ⊢ A consists of a type A together with a context Γ

containing all the free variables occurring in A. We also discussed how a contextual object

Γ ⊢M has type Γ ⊢ A if Γ ⊢M ⇐ A. If x:A ∈ Γ, then Γ ⊢ x⇐ A, so we have a contextual

object Γ ⊢ x of type Γ ⊢ A. However, we cannot say that x itself is a variable of type Γ ⊢ A.

Consequently, this view of contextual objects is limited by a lack of variables with contextual

types. Similarly to context and substitution variables, the problem comes from the fact that

variables of contextual types must exist outside of the LF context.

To address this issue, we simply allow our meta-contexts ∆ to contain assumptions of the

form u:(Γ ⊢ P ). We call u a meta-variable and restrict its type to Γ ⊢ P , that is contextual

atomic LF types. This restriction is superficial since the types Γ ⊢ Πx:A.A′ and Γ, x:A ⊢ A′
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are isomorphic. Since we want meta-variables to occur within LF objects, we must once

again extend the syntax and type synthesis of heads:

Heads H ::= ... | u[σ] u:(Γ′ ⊢ P ) ∈ ∆ ∆;Γ ⊢ σ : Γ′

∆;Γ ⊢ u[σ] ⇒ [σ]P

So, a meta-variable umay only occur in an LF object when it is paired with a substitution.

This is necessary because u can denote an object meaningful in a different LF context from

the one we are currently working in. Again, we write the substitution on the the right

to indicate that it is a delayed computation. That is, once we substitute u with a proper

contextual object Γ′ ⊢ M , we apply the substitution to bring M to context Γ. Note that,

while we include meta-variables in the syntax of heads, the restriction that they have an

atomic type means that we can only meaningfully apply it to the empty spine and convert

it to normal term. Accordingly, we could equivalently specify u[σ] as a normal term.

2.2.4 Meta-layer

We have now identified several kinds of variables that belong in the meta-context ∆. As we

move to the computation-level, we wish to be able to quantify over each of these variables.

In the current presentation, this would require the introduction of distinct function spaces

for each kind of variables, leading to an unnecessarily verbose system. To address this issue,

Cave and Pientka (2012) suggests unifying the different kinds of assumptions into what they

call the meta-layer.

Simply put, we define a notion of meta-type that combines the classifiers of contexts,

substitutions, and contextual objects. Similarly, we unify contexts, substitutions, and con-

textual objects into the notion of meta-object. This approach also simplifies the definitions
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∆ ⊢ M : A – Meta-object M has meta-type A

∆;Γ ⊢ R ⇐ P

∆ ⊢ (Γ̂.R) : (Γ.P )
MOft-tm

∆;Γ1 ⊢ σ : Γ2

∆ ⊢ (Γ̂1.σ) : (Γ1.Γ2)
MOft-subst

∆ ⊢ Γ : G (schema checking)

∆ ⊢ Γ : G (mtype checking)
MOft-ctx

Figure 2.4: Meta-level typing

of meta-contexts and meta-substitutions, which we are finally ready to discuss. First, let us

look at the syntax of the meta-layer:

Meta-object M ::= Γ̂.R | Γ̂.σ | Γ

Meta-type A ::= Γ.P | Γ.Γ′ | G

Meta-variable X ::= u | ψ

Meta-context ∆ ::= · | ∆, X:A

Meta-substitution θ ::= · | θ,M

We write Γ̂ to denote the erasure of Γ, that is the list of variables obtained by removing

all type annotations from Γ. The annotations are irrelevant when considering LF terms and

substitutions since these do not rely on any type information. Moreover, we can recover the

types of variables in an erased context by looking at the non-erased context in the meta-type.

Notice however that we only consider a fully annotated context as a valid meta-object. This

is necessary since we cannot recover the types of variables from a schema alone.

The meta-level typing rule, defined in Figure 2.4, are simply conversion rules from the

previously defined judgments. That is, we obtain ∆ ⊢ (Γ̂.R) : Γ.P by invoking the LF
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typing judgment ∆; Γ ⊢ R ⇐ P , that ∆ ⊢ Γ̂.σ : Γ.Γ′ by invoking the LF substitution

correctness judgment ∆; Γ ⊢ σ : Γ′, and that ∆ ⊢ Γ : G by invoking the schema-checking

judgment ∆ ⊢ Γ : G. The same idea applies for the judgment ∆ ⊢ A : mtype that validates

meta-type well-formedness. As for meta-context and meta-substitutions well-formedness, we

use judgments ⊢ ∆ : mctx and ∆ ⊢ θ : ∆′ (respectively). These are defined similarly to the

LF context and LF substitution well-formedness judgments. We omit their definitions here,

but provide them in Appendix A for completeness.

2.3 Computation-level

Beluga is an ML-style functional programming language supporting pattern matching

over contextual LF objects. It features an indexed function space, so that types are allowed

to depend only on data-level objects. Contextual objects and types are embedded in the

computation-level via a box modality. We note that, although we restrict our data-level to

contextual LF here, Beluga is parametric in its specification language (Pientka and Abel,

2015). We choose contextual LF because it expresses OLs very nicely, as discussed earlier.

The central goal of Beluga is to provide a meta-language in which expressing OLs and

their meta-theory is reasonably easy. An OL is specified in Contextual LF using HOAS, as

described in the previous sections. Then, we write proofs about the OL as recursive Beluga

programs. Crucially, a recursive function may only be seen as a proof if it is total, that is it

terminates on every input. This being said, we also allow non-terminating functions, making

Beluga into a general-purpose programming language rather than just a proof environment.

We present here a version of Beluga closely inspired by the one of Pientka and Abel
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(2015), although it differs in two important ways, namely the absence of recursive functions

and of a totality checker. We expect that recursive functions can be added without significant

difficulties, but that requires several technical details that are irrelevant to the present work.

Specifically, the valid recursive calls have to be specified as part of every pattern (although

they can be inferred, so users do not need to provide them explicitly). Without recursion,

patterns are essentially (boxed) contextual objects, which we can handle straightforwardly.

Totality, on the other hand, presents fundamental challenges, which we will discuss in more

details as we introduce the refinement system, in Chapter 3. For now, let us look at the

syntax of Beluga:

Types τ ::= [A] | τ1 → τ2 | ΠX:A.τ

Contexts Ξ ::= · | Ξ, y:τ

Expressions e ::= [M] | fn y:τ ⇒ e | e1 e2 | mlam X:A ⇒ e | e M

| let [X] = e1 in e2 | case
τ [M] of b⃗

Branches b ::= Ω; [M] ⇒ e

We now discuss this syntax and the associated typing rules (see Figure 2.5) The lifting

of meta-types and meta-objects to the computation level is achieved via a (contextual) box

modality, which we denote using square brackets [A]. The elimination form for the modality

is given by the let expressions: an expression e1 : [A] is unboxed as the meta-variable X,

which may then be used in the expression e2.

We distinguish two kinds of function spaces, the simple function space τ1 → τ2 and

the dependent function space ΠX:A.τ . So, dependencies are restricted to objects from the

index domain, which provides strong reasoning power over the index domain without all the
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∆;Ξ ⊢ e : τ – Expression e has type τ in context Γ and meta-context ∆

∆ ⊢ Ξ : cctx (y:τ) ∈ Ξ

∆;Ξ ⊢ y:τ
CT-var

∆ ⊢ M : A ∆ ⊢ Ξ : cctx
∆;Ξ ⊢ [M] : [A]

CT-box

∆;Ξ, y:τ1 ⊢ e : τ2
∆;Ξ ⊢ fn y:τ1 ⇒ e : τ1 → τ2

CT-fn
∆;Ξ ⊢ e1 : τ2 → τ1 ∆;Ξ ⊢ e2 : τ2

∆;Ξ ⊢ e1 e2 : τ1
CT-app

∆, X:A; Ξ ⊢ e : τ
∆;Ξ ⊢ mlam X:A ⇒ e : ΠX:A.τ

CT-mlam
∆;Ξ ⊢ e : ΠX:A.τ ∆ ⊢ M : A

∆;Ξ ⊢ e M : JM/XKτ
CT-mapp

∆;Ξ ⊢ e1 : [A] ∆, X:A; Ξ ⊢ e2 : τ

∆;Ξ ⊢ let [X] = e1in e2 : τ
CT-let

τ = Π∆0.ΠX0:A0.τ0

·; · ⊢ τ : ctype

∆ ⊢ θ : ∆0

∆ ⊢ M : JθKA0 ∆;Ξ ⊢JθKA0 bi : τ (for all bi ∈ b⃗)

∆; Ξ ⊢ (caseτ [M] of b⃗) : Jθ,M/X0Kτ0
CT-case

∆;Ξ ⊢A b : τ – Branch b satisfies invariant τ when matching against an object of type A

∆i ⊢ θ : ∆0

∆i ⊢ M0 : JθKA0

∆′ ⊢ θ′i : ∆i

∆′ ⊢ θ′ : ∆

∆′ ⊢ Jθ′KA = Jθ′iKJθiKA0 ∆′; Jθ′KΞ ⊢ Jθ′, θ′iKei : Jθ′iKJθiKτ0

∆;Ξ ⊢A (∆i; [Mi] ↦→ ei) : Π∆0.ΠX0:A0.τ0
CT-branch

Figure 2.5: Beluga typing rules
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difficulties of full dependent types. The expressions fn y:τ ⇒ e and e1 e2 correspond to the

introduction and elimination forms for simple function spaces, respectively. On the other

hand, mlam X:A ⇒ e and e M correspond to the introduction and elimination forms for

dependent function spaces, respectively.

The language also supports pattern matching on meta-objects through the use of case

expressions. While we do not allow pattern matching on arbitrary expressions, any expression

that has a box type can be matched against by first unboxing it with a let expression and

then matching on the new variable. The type superscript τ in case expression corresponds

to the invariant that must be satisfied by all the branches in b⃗. We require that pattern

matching invariants have the form Π∆0.ΠX0:A0.τ0 and that they be closed. Intuitively, a

branch ∆; [M] ↦→ e satisfies this invariant if there is a meta-substitution θ from ∆0 to ∆

such that ∆ ⊢ M : JθKA0 and ∆;Ξ ⊢ e : Jθ,M/X0Kτ0. Formally, we also need to verify

that the type A0 of the object in a branch matches the type A of the object that we are

pattern matching on (called the guard). We do this in the branch validation judgment,

∆; Ξ ⊢A b : τ , which is indexed by the type A of the guard. More specifically, the three

premises ∆′ ⊢ θ′i : ∆i, ∆
′ ⊢ θ′ : θ, and ∆′ ⊢ Jθ′KA = Jθ′iKJθiKA0, state together that A and A0

are unified in meta-context ∆′. Note that we do not here provide a procedure for computing

the unifying meta-context and substitutions, so our typing judgment is not algorithmic.

Pientka and Pfenning (2003); Pientka (2003) give a unification algorithm for CMTT, which

can be adapted to Beluga in a straightforward manner. We omit its discussion from our

presentation due to space considerations.

Example: Evaluation in STLC
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Now that we have Beluga’s computation-level at our disposal, we can finally start prov-

ing things. Since our current description of STLC does not include an evaluation semantics,

there is not much to prove at the moment. So, let us start by specifying a small-step opera-

tional semantics for STLC:

LF step : tm → tm → type =

| s-succ : step M N →

step (succ M) (succ N)

| s-beta : step (app (lam M) N) (M N)

| s-app1 : step M1 M2 →

step (app M1 N) (app M2 N)

| s-app2 : step N1 N2 →

step (app M N1) (app M N2);

M −→ N : M steps to N (single step)

M −→ N
S M −→ S N

(λx.M) N −→ [N/x]M

M1 −→M2

(M1 N) −→ (M2 N)

N1 −→ N2

(M N1) −→ (M N2)

There are four possible ways to evaluate a term. The rules s-succ, s-app1 and s-app2

are simply congruences that propagate the evaluation of subterms into larger ones. All

the real work happens in s-beta, which applies functions to their arguments. Notice how

substitution in the OL (denoted as [N/x]M in the informal rule) is represented as function

application (denoted as M N) in the LF representation.

Now, the rule s-succ only allows stepping a term of the form succ M, and all of the

remaining rules only allow stepping terms of the form app M N. In particular, there are no

ways to step either zero or lam M. These are instances of values of STLC, and we see them

as the endpoints of the evaluation process. We encode what it means to be a value as follows:

LF val : tm → type =
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| v-zero : val zero

| v-succ : val M → val (succ M)

| v-lam : val (lam M);

And now we can prove that values do not step using a recursive Beluga function:

LF false : type =;

rec vds : (Γ : lam-ctx) [Γ ⊢ val M] → [Γ ⊢ step M M’] → [⊢ false] =

fn V, S => case V of

| [Γ ⊢ v-zero] => impossible S

| [Γ ⊢ v-succ V’] =>

let [Γ ⊢ s-succ S’] = S in

vds [Γ ⊢ V’] [Γ ⊢ S’]

| [Γ ⊢ v-lam] => impossible S;

We start by declaring an empty type false so that we can express the intuitionistic

negation (recall, ¬A ≜ (A → ⊥)). The keyword rec introduces a new recursive function,

called vds (for values do not step) in our case. The parenthesis around the context variable,

(Γ : lam-ctx), indicate implicit universal quantification over contexts of schema lam-ctx.

Then, the function (i.e. proof) proceeds by case analysis (i.e. induction) on the proof that

we have a value. The cases for zero and lam are quickly dismissed as impossible since no

constructor of step allows such terms to step. So, the only case with actual work to do is

the one for succ, where we essentially only need to defer to our inductive hypothesis.

Notice that we use here the schema lam-ctx and not stlc-ctx. This is because the
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typing information is irrelevant to our purpose, so good design principles dictate that it

should be omitted. However, this leads to significant challenges when we need to use the

lemma for typed terms, i.e. those defined in a context of schema stlc-ctx. Simply put,

the mismatching context schema prevents us from using the lemma since the inputs with

stlc-ctx would not type-check against what vds expects. The easy solution is to copy the

function and change the schema annotation on Γ to stlc-ctx, but this leads to duplication of

code that should be avoidable since vds is perfectly safe to use even with an stlc-ctx. Felty

et al. (2015a) discusses alternative solutions involving explicit relations between contexts of

the different schemas. We will discuss these in more depth when presenting our case studies

in Chapter 5.

2.3.1 User-defined computation-level types

Beluga supports (co)inductive and stratified computation-level types (Jacob-Rao et al.,

2018). A stratified type has an inductive structure hidden within its dependencies: any neg-

ative occurrence of the type in some constructor must depend on a term that is structurally

smaller than the constructor’s output’s dependency. These play a crucial role in representing

proofs by logical relations (Cave and Pientka, 2018), such as normalization proofs. Inductive

types are also important in expressing the aforementioned context relations. Coinductive

types allow representing infinite data structures and reasoning about their properties.

An interesting advantage of refinement types is that they can represent several (but not

all) useful inductive types. As such, they offer a conceptually simpler alternative that is less

cumbersome to use in practice, as we will illustrate in Chapter 5. We omit further discussion
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of (co)inductive and stratified types from the current presentation as their inclusion compli-

cates the language significantly, and we wish to focus on refinement types. However, given

the usefulness of logical relations in the theory of programming languages, including them

into our extension with refinement should be a priority for future work.
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Chapter 3

Datasort refinements for Beluga

Now that we have introduced Beluga in detail, we move on to discussing its extension

with refinement types. As mentioned previously, our work uses a notion refinements known

as datasorts, and is closely inspired by the LFR system of Lovas and Pfenning (2010). In

essence, the refinement system for Beluga is obtained by replacing the LF specification

layer by LFR. Accordingly, we begin the chapter with a review of LFR, which we modify

in various ways to fit our needs. The technical contributions occur later, as we extend the

refinement system to Contextual LFR, and eventually to Beluga’s computation-level.

3.1 LFR

The LFR system (Lovas and Pfenning, 2010; Lovas, 2010) extends the Edinburgh logical

framework LF (Harper et al., 1993) with datasort refinement types. The objects of LFR are

exactly the same as in LF, that is, expressions of a λ-calculus with constants. The types of

LFR are also the same as those of LF, but they play a different role, in a sense secondary to
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sorts. Because sorts express more specific information than types, the properties represented

by types become less interesting. Specifically, types merely introduce new syntax, thereby

providing a kind of upper bound on the names that may occur within a term. Sorts, on the

other hand, impose constraints on previously defined syntax, allowing users to isolate the

fragment of object (of a given type) that satisfy these constraints. Freeman and Pfenning

(1991) note the correspondence between fragments expressible as datasorts and properties

recognizable by regular tree-automata. So, intuitively, datasorts are like regular expressions

for arbitrary types (instead of just strings).

3.1.1 Types, sorts, and the refinement relation

Now, let us formally look at the refinement types of LFR. As mentioned above, the classifiers

of our language are separated into two layers, types and sorts (or refinements), which are

related by a refinement relation. We write S ⊏ A to indicate that sort S refines type A.

Sorts are defined essentially in the same way as types, whose syntax we recall to highlight

the resemblance:

Type level Refinement level

Atomic families P ::= a | P M Q ::= s | Q M | P

Canonical families A ::= P | Πx:A1.A2 S ::= Q | Πx:S1.S2

The refinement relation ultimately boils down to what the user specifies. An atomic

type family a is defined by its constructors and their types. An atomic sort family s ⊏ a

is then defined by selecting a subset of the constructors of a and assigning them sorts that

refine their previously specified types. In this sense, refinements offer a way to safely reuse
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constructors. Finally, the relation is lifted to other types with simple congruence rules :

Q ⊏ P
Q M ⊏ P M

S1 ⊏ A1 x:S1 ⊢ S2 ⊏ A2

Πx:S1.S2 ⊏ Πx:A1.A2

Intuitively, a refinement relation S ⊏ A holds if S and A have the same shape (including

term dependencies) and every atom s occurring in S refines the corresponding atom a in A.

Whether or not s ⊏ a can be determined by looking at the declaration of s in the signature.

Since s can only refine a single a, given any sort S, we can generate the unique type A such

that S ⊏ A simply by traversing S and replacing any occurrence of an atom s by the atom a

which it refines. Consequently, we can view the type A as an output of the judgment S ⊏ A.

Our syntax also includes an embedding of atomic types into atomic sorts. This is not

strictly necessary since it is possible to define a sort that corresponds to the entire type that

it refines, simply by preserving all of the constructors and imposing no restrictions on them.

However, the embedding will be helpful for the addition of subsorting to the language, where

embedded types act as upper bounds for the subsorting relation. While we only allow the

explicit embedding for atomic types, it can be extended to all types through a straightforward

induction.

The other syntactic categories of the language are similarly duplicated at the refinement

level. Each category is equipped with a refinement relation that is induced by the refinement

for types. In pure LFR, this means that we have kind refinements and context refinements,

but this duplication will keep happening as we reach the computation-level. We will discuss

contexts in details in Section 3.2 and focus our attention on kinds for now. Kinds and their

refinements (called classes by Lovas and Pfenning (2010)) are given by the following syntax:
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Type level Refinement level

Kinds K ::= type | Πx:A.K L ::= sort | Πx:S.L

and the refinement relation is given by the following two rules :

sort ⊏ type
S ⊏ A x:S ⊢ L ⊏ K
Πx:S.L ⊏ Πx:A.K

Intuitively, the refinement relation L ⊏ K holds if L and K have the same shape and all the

sorts in L refine the corresponding type K. Hence, kind refinement is simply a consequence

of type refinement. In particular, since A is an output of S ⊏ A and sort only refines type,

we can also view K as an output of L ⊏ K. In fact, a similar principle applies to all of our

refinement relations to come since they are all induced by type refinements.

Example: From judgments to algorithms, an evaluation strategy for STLC

When we discussed the stepping semantics for STLC earlier, we defined a non-deterministic

judgment. In particular, there can be several ways to step a function application. For in-

stance, we can choose to first evaluate on the right and then on the left, of vice versa. In

practice, we need to fix an evaluation strategy since algorithms must be deterministic.

Here, we use refinements to extract those stepping derivations that follow a call-by-

value (CBV) strategy. This means that we evaluate a function application by first reducing

the left-hand side to a λ-expression, then we reduce the right-hand side to a value, and finally

we apply β-reduction. We can impose these constraints by restricting some terms to values

in the sorts of the constructors of step. But first, we specify values as a refinement of terms:

LFR val ⊏ tm : sort =

| zero : val
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| succ : val → val

| lam : (tm → tm) → val;

As mentioned before, a sort is defined by picking some constructors of a type and assigning

them sorts. Here, we pick all of the constructors except for app and we restrict the sort of

succ to val → val since the successor of an arbitrary term may not be a value. The sort

of lam is also changed so that the output is val instead of tm, and the argument being of

sort (val → tm) enforces that functions can only be computed when they are applied to

values. Note that the sort of lam is also changed so that the output is val instead of tm.

However, since the input (tm → tm) is unrestricted, it remains true that all lam-expressions

are classified by val 1. Notice also that we use here the embedding of (atomic) types into

(atomic) sorts and view tm as a sort rather than a type.

Now, we can define a CBV strategy as a refinement of step:

LFR cbv ⊏ step : tm → tm → sort =

| s-succ : cbv M N → cbv (succ M) (succ N)

| s-app1 : cbv M1 M2 → cbv (app M1 N) (app M2 N)

| s-app2 : (V : val) cbv N1 N2 → cbv (app V N1) (app V N2)

| s-beta : (V : val) cbv (app (lam M) V) (M V);

Here, we have mainly restricted s-app2 and s-beta. We are only allowed to reduce the

argument of a function application if the function is already a value, and we only allow uses

1It would also be possible to assign lam : (val → tm) → val, enforcing the fact that computations

can only occur when functions are applied to values. However, justifying that all lam-expressions of STLC

are valid val would then require the use of subsorting, which we have not yet introduced.
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of s-beta if the argument is already a value. We impose these restrictions with the implicit

quantification, denoted with round brackets (V : val). Here, the fact that V is an implicit

argument is imposed by the types assigned to s-app2 and s-beta in the definition of step.

Note that for s-app2, we only enforce that the left-hand side of an application has sort val,

not that it is a lam. However, the typing rules of STLC enforce that the left-hand side of

function applications have function types, and values of function types are all of the form

lam M for some M.

While we are on the subject of evaluation, let us consider the multi-step semantics and

how refinements may help us in expressing it. step only tells us how to take one step in

the evaluation process, but we are usually interested in stepping terms until they become

values. To express longer evaluation sequence, we define a reflexive transitive closure of the

stepping relation:

LF mstep : tm → tm → type =

| m-refl : mstep M M

| m-trans : step M1 M2 → mstep M2 M3 →

mstep M1 M3

M −→∗ N : M multi-steps to N

M −→∗ M

M1 −→M2 M2 −→
∗ M3

M1 −→
∗ M3

The judgment M −→∗ N expresses that M steps to N in 0 or more steps. We encode

this in LF with the type mstep, defined by two constructors: m-refl takes care of the case

for 0 steps, while m-trans allows adding one more step to a multi-step derivation. One issue

with this judgment is that it characterizes the intermediate steps of an evaluation algorithm,

but offers no way to validate that the evaluation is complete. This is because the reflexivity

step, which acts as a stopping point, may be applied to any term, including those that could
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be stepped further. We can address this issue using a refinement:

LFR eval ⊏ mstep : tm → val → sort =

| m-refl : eval V V

| m-trans : cbv M N → eval N V → eval M V;

Now, the refinement kind of the sort eval imposes that the second dependency be of sort

val. Consequently, the reflexivity rule may only be used on values, and thus it provides a

satisfying stopping point for the evaluation. Generally, the kind tm → val → sort ensures

that eval extracts the fragment of mstep that corresponds to complete evaluation sequences.

3.1.2 Subsorting

One goal of refinement types is to provide a manageable form of subtyping. However, we

want to maintain the fact that any well-formed expression has a unique type, and this

fundamentally goes against having subtyping. Instead, we use the notion of subsorting,

which is like subtyping, but at the level of sorts. Since we do allow well-formed expressions

to have several different sorts, a subsorting relation can be meaningful, provided that any

two subsorts refine the same type.

This thesis will not discuss subsorting too much since we are more interested in the

refinement relation itself. However, it is a useful feature and necessary for some of our

examples to go through, so we include it as part of the formal definition of the language. We

present here a high-level overview of subsorting for LFR, and a formal definition may be

found in appendices A (for data-level) and B (for computation-level). Much like refinement,

the subsorting relation ultimately boils down to its behaviour in LFR.
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The refinement relation for atomic families Q ⊏ P is similar to the notion of constructor

subtyping (Barthe and Frade, 1999), according to which a subtyping relation P1 ≤ P2 occurs

between two inductive types when P1 is defined by a subset of the constructors of P2. As

such, it is sensible to consider a notion of subsorting such that Q ≤ P whenever Q ⊏ P . In

particular, a subsumption rule is admissible for refinements of atomic families.

The similarity between subtyping and refinement does not carry to function spaces be-

cause the rule for establishing Πx:S1.S2 ⊏ Πx:A1.A2 requires that S1 ⊏ A1. This is in

contrast with subtyping, which is contra-variant in the domain of function spaces, i.e. re-

quires that A1 ≤ A′
1 to conclude that ΠA′

1.A
′
2 ≤ ΠA1.A2. The contra-variance is essential in

ensuring that subsumption remains sound on function spaces: A function defined over a large

domain A is safe to use on objects from a smaller domain A′ ≤ A, but a function defined

over the small domain A′ may not be safe to use on all objects of type A. For this reason,

we cannot generally consider refinement types to be a form of subtyping, although there is

a natural subsorting relation that emerges from the refinement relation. This being said,

subsumption is admissible for all LF types because the function spaces are weak, so there

is no issue of ensuring totality. Once we reach the computation-level and include pattern

matching, allowing subsumption does not always preserve coverage.

We also allow users to specify their own subsorting relation, but only for atomic sorts.

Intuitively, the subsorting relation s1 ≤ s2 ⊏ a corresponds to the presence of a conversion

rule from s1 to s2. We require that the subsort s1 be specified prior (or simultaneously) to

its supersort s2. The collection of user-defined sorts s refining a specific type a may then be

structured as a directed graph, where the s are vertices and there is an edge from s1 to s2
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if there is a declaration that s1 ≤ s2 ⊏ a. Currently, our system only allows one subsort to

be given, meaning that the graph is always a tree. We expect no fundamental challenges to

emerge from generalizing this structure to a directed acyclic graph.

Once the user has defined subsorting on atomic sorts, the relation is propagated through

the rest of the language in two steps. First, we take the reflexive transitive closure of

subsorting for atomic sorts. Then, we define subsorting for function spaces with the usual

contra-variant rule. In this case, reflexivity and transitivity cannot be used directly for

function spaces, although the two rules are easily shown to be admissible via inductive

arguments. We only allow reflexivity and transitivity for atomic sorts because these rules

are not syntax-directed, and therefore enlarge the proof space significantly. On the other

hand, verifying that s1 ≤ s2 ⊏ a may be accomplished by a simple graph traversal.

For any type A, the set of sorts S ⊏ A forms a partially ordered set (poset). We know

that S ≤ A ⊏ A whenever S ⊏ A, so the poset has a maximal element (commonly denoted

⊤). Moreover, we can always define an empty sort ⊥ ⊏ A such that ⊥ ≤ S ⊏ A for any

S ⊏ A, so the poset can have a minimal element.

Example: Neutral and normal terms

We demonstrate the uses of subsorting by encoding neutral and normal terms of the

untyped λ-calculus. We use the same type tm as before, which we recall encoded an untyped

λ-calculus with natural numbers. A term is normal if none of its subterms can be evaluated

further. This is similar to the notion of values discussed in the previous example, except

that now we also need to ensure that the bodies of functions cannot be evaluated further.

To properly define normal terms, we must ensure that no λ-abstraction appears on the
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left-hand side of a function application, as otherwise β-reduction could be performed. To

achieve this, we need to separate term formation into two phases, neutral and normal.

We start by constructing neutral terms from constants, variables, and function application.

Then, we convert neutral terms into normal terms, at which point only λ-abstractions can

be introduced. We encode this language of normal terms as follows:

LFR neutral ⊏ tm : sort =

| zero : neutral

| succ : neutral → neutral

| app : neutral → normal → neutral

and neutral ≤ normal ⊏ tm : sort =

| lam : (neutral → normal) → normal;

When defining normal, we specify that it extends neutral. This means that any neutral

term may be interpreted as a normal term. Once we have a normal term, we can start

binding its free variables with lam. However, the constructor app can no longer be used

since it is not part of the definition of normal. Thus, these two sorts allow us to specify a

more precise order in which the constructors may be used.

Note that the negative occurrence of tm in the type of lam is refined with the sort neutral.

This means that a context used to construct normal terms should have its variables restricted

to sort neutral. In this case, the schema lam-ctx discussed earlier no longer provides a good

representation of OL contexts used for constructing normal terms. To handle this difficulty,

we will need a notion of refinement schema, which will be introduced in the next chapter.
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3.1.3 Changes to LFR

Our presentation of LFR differs from that of Lovas and Pfenning (2010); Lovas (2010) in

several ways and describes a slightly different language. The changes that we made were

motivated by two main reasons: because they facilitate a smooth integration of refinements

into the setting of Beluga, or because we considered them as improvements on the original

LFR. We will now discuss these changes in detail.

Our first modification concerns the embedding of types into sorts. Our syntax allows

interpreting any atomic type as an atomic sort, so that P ⊏ P for any atomic type P .

In contrast, Lovas and Pfenning (2010) have a special sort, called ⊤ (read top), such that

⊤ ⊏ A for any type A. Consequently, there is no distinction between the ⊤-sort for type

A and the one for a different type A′. This means that upon encountering ⊤ in a sorting

derivation, the type that is refined cannot be directly inferred. In previous work, this issue

was solved by performing type-checking first, so that we could know which type is refined

by which ⊤. We consider this to be wasteful since sorting derivations have the same shape

as their typing counterparts. Thus, performing typing and sorting results in doing much of

the work twice. Moreover, there are many cases where ⊤ does not appear within a sort,

so that the whole typing derivation serves no real purpose. Using an explicit embedding

of types into sorts allows to switch to a typing procedure only when we encounter a type,

which reduces the amount of redundant work. In this sense, we consider this modification

as a strict improvement of Lovas and Pfenning (2010)’s work.

We note, however, that performing type-checking first offers other benefits. First, it
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guarantees the conservativity of the extension with refinements, whereas we must prove

it. Second, the fact that constants can have multiple declared sorts implies that there is

sometimes a need to backtrack during the sort synthesis phase. This is because synthesis

will only succeed when we find the correct sort declaration for a given constant, so we

might need to perform synthesis several times, until the correct signature lookup occurs.

As a consequence, sort-checking is more expansive than type-checking. In this case, typing

errors can be detected faster by the type-checker than the sort-checker. In other words, our

approach performs better only on well-typed (but possibly ill-sorted) programs.

Secondly, we distinguish sorting and typing contexts, whereas Lovas and Pfenning (2010)

used mixed contexts that ascribe both sorts and types to each variable. That is, their

contexts have the form x1 : S1 ⊏ A1, ..., xn : Sn ⊏ An, while we would have a refinement

relation directly between the contexts, that is (x1 : S1, ..., xn : Sn) ⊏ (x1 : A1, ..., xn : An).

The reason for this change is that it facilitates the transition to contextual refinements. We

will discuss this issue in more depth when we introduce Contextual LFR, in the next section.

The last technical modifications that we made is the omission of intersection sorts. Lovas

and Pfenning (2010) only allows constants to be given a sort once, but the whole idea of

refinements only works if we can assign them multiple sorts. The standard way to tackle this

issue is to allow users to declare multiple sorts at once through intersection sorts. That is,

the sort S1 ∧ S2 classifies objects that inhabit both sorts S1 and S2. Here, we take instead a

different approach and allow constants to appear several times within a signature. However,

we also change the form of declaration so that each declared constructor appears inside a

type or sort declaration, following Cave and Pientka (2018).
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Note that the absence of intersections prevents variations on the possible uses of a con-

structor for a particular sort. That is, we cannot have c : S⃗ → s and c : S⃗
′
→ s since c

can only have one sort generating an s. The original system of Lovas and Pfenning (2010)

does support such definitions since intersections can be used anywhere. Moreover, Lovas

and Pfenning (2010) gives an example that uses intersections in this way, namely the en-

coding of the languages of the λ-cube (Barendregt, 1991). It would be difficult to reproduce

this mechanization in our language without including intersection sorts. This being said,

we expect that the addition of intersection sorts to our system would not affect the results

presented here.

3.2 Contextual LFR

Having gained a better understanding of the core ideas behind datasort, let us start de-

veloping a notion of contextual refinements. This means extending LFR with a notion of

schemas, and then defining Contextual LFR through addition contextual sorts. In the

process, we will need to distinguish sorting contexts Ψ from typing contexts Γ, which are

related through refinements. Then, a contextual sort Ψ ⊢ S refines a contextual type Γ ⊢ A

if Ψ refines Γ and S refines A. Intuitively, contextual types characterize derivations, and

contextual sorts can isolate those derivations whose HOAS trees have particular structures.

In this sense, it is natural to interpret contextual refinement as a relation between judg-

ments. This realization will then lead us towards defining our refinements as relations on

judgments, thereby facilitating the transition from LFR refinements to Contextual LFR

refinements.
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As before, we will need a notion of meta-context during our discussion of Contextual

LFR. This time however, it must contain sorting assumptions instead of typing assumptions.

We will write Ω for a refinement-level meta-context, which we will discuss further at the end

of this section.

3.2.1 Contexts and schemas

We begin by defining refinements for contexts and schemas. Similarly as before, we achieve

our goal by duplicating the relevant syntactic categories, yielding the following:

Type level Refinement level

Blocks of declarations B ::= · | Σx:A.B C ::= · | Σx:S.C

Schema elements E ::= B | Πx:A.E F ::= C | Πx:S.F

Contexts Γ ::= · | Γ, x:A | Γ, b:w · M⃗ Ψ ::= · | Ψ, x:S | Ψ, b:w · M⃗

Context schemas G ::= · | G+ E H ::= · | H + F

Each of these syntactic categories have the same interpretation as before. However, we

think of the type level versions as intrinsic properties of objects, whereas their refinement

counterparts are extrinsic. This distinction plays a particularly important role when it comes

to schemas. Type schemas provide information on the structure of a context, such as the

number of variables within a block and the dependencies between them. Of course, it also

contains the typing information for all the variables, and since types are unique, every context

also has (at most) a unique type schema. In contrast, refinement schemas provide flexibility

in the interpretation of the variables by assigning them sorts. Since contexts are created as

sequences of (schema element) names applied to argument, one particular context may be
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Ω;Ψ ⊢ F ⊏ E – Refinement relation for schema elements

Ω ⊢ Ψ ⊏ Γ
Ω;Ψ ⊢ · ⊏ ·

Ω;Ψ ⊢ S ⊏ A Ω;Ψ, x:S ⊢ C ⊏ B

Ω;Ψ ⊢ Σx:S.C ⊏ Σx:A.B

Ω;Ψ ⊢ S ⊏ A Ω;Ψ, x:S ⊢ C ⊏ B

Ω;Ψ ⊢ Πx:S.F ⊏ Πx:A.E

Ω ⊢ H ⊏ G – Refinement relation for context schemas

⊢ Ω ⊏ ∆
Ω ⊢ · ⊏ ·

Ω ⊢ H ⊏ G w /∈ H (w:E) ∈ G Ω; · ⊢ F ⊏ E

Ω ⊢ (H +w:F ) ⊏ G

Ω ⊢ Ψ ⊏ Γ – Refinement relation for contexts

⊢ Ω ⊏ Γ
Ω ⊢ · ⊏ ·

Ω ⊢ Ψ ⊏ Γ Ω;Ψ ⊢ S ⊏ A

Ω ⊢ (Ψ, x:S) ⊏ (Γ, x:A)

Ω ⊢ Ψ ⊏ Γ Ω;Ψ ⊢ F ⊏ E

Ω ⊢ (Ψ, b:F · M⃗) ⊏ (Γ, b:E · M⃗)

Figure 3.1: Refinement relations for contexts and schemas

classified by several refinement schemas. This means that we can interpret variables locally,

based on what properties we want them to have, all without affecting the shape of a context.

The refinement relations for contexts and schemas (provided in Figure 3.1) are simply

inherited from type refinement. For schema elements, we just check one sort at a time,

starting with the parameters and then the assumptions in the block. Similarly, contexts

are checked one assumption at a time. For block assumptions, refinement requires the same

parameters to be used in the refined schema element. The relation on schemas is similarly

simple, but we take care not to allow duplicate schema elements in G (or in H for that

matter). We do this mainly because duplicate elements serve no purpose in practice, but

also to highlight the fact that multiple elements of H can refine the same element of G. As

always, the type-level components of all the refinement relations are viewed as outputs of

the judgments.
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Refinement-level contexts are checked against refinement-level schemas in a way that

closely resembles the analogous type-level judgment. This becomes evident when we place

the rules of both judgments side-by-side:

Type-level schema-checking:

∆ ⊢ G : schema
∆ ⊢ · : G

∆ ⊢ Γ : G

(w:E) ∈ G ∆;Γ ⊢ M⃗ : E > B

∆ ⊢ (Γ, b:w · M⃗) : G

Refinement-level schema-checking:

Ω ⊢ H ⊏ G
Ω ⊢ · : H

Ω ⊢ Ψ : H

(w:F ) ∈ H Ω;Ψ ⊢ M⃗ : F > C

Ω ⊢ (Ψ, b:w · M⃗) : H

The most significant differences between those rules is in the premise of the case for an

empty context: Instead of validating the well-formedness of a schema, the refinement-level

rule calls a refinement judgment. This difference is superficial since the refinement relations

are essentially the well-formedness judgments of the refinement level. It is then tempting to

relate the new (refinement-level) rules and their associated judgments to the old (type-level)

rules and judgments, through a refinement relation. An important aspect of our refinement

relations is that the type-level part (i.e. everything that occurs on the right of ⊏) can be

considered as an output of the judgments. Moreover, these outputs have a nice regularity.

In particular, for any refinement-level context Ψ : H, we can find Γ and G such that Ψ ⊏ Γ,

H ⊏ G, and Γ : G (we prove this and several similar result in Chapter 4).

Example: Neutral variables

In the previous chapter, we saw how subsorting can be used to extract neutral and normal

terms. We ended that example by saying that variables should be neutral terms. Now, we
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can represent this using a refinement schema:

LFR neut-ctx ⊏ lam-ctx : schema =

| lc-var : block (x : neutral);

Here, we define a new schema neut-ctx as a refinement of our previously defined term

formation schema lam-ctx. Just as we would define a sort, we must select some of the

schema elements of lam-ctx, and provide a refinement of its previously specified type. Here,

our only choice is to take lc-var, and we assign its only variable the sort neutral, which

indeed refines tm.

An alternative approach using only types consists of defining “neutral” as a property

of terms, that is as a dependent type neutral’ : tm → type. In this scenario, we would

define our neutral contexts with the following type schema:

LF neut-ctx’ : schema =

| nc-var : block (x:tm, n:neutral’ x);

The disadvantage here is that a context of schema neut-ctx’ never has schema lam-ctx

Moreover, we cannot easily go from a neut-ctx’ to a lam-ctx, because there is no way to

construct a proof that neutral’ x for a variable x in the context, so there is no substitution.

A lesser (yet still non-negligible) difficulty occurs in the other direction: there is always a

weakening substitution from a lam-ctx to a neut-ctx’, but specifying the correct weakening

substitution (i.e. the one that does not add more variables than needed) requires the use of

computation-level inductive types.

In contrast, alternating between a lam-ctx and a neut-ctx can be achieved without

transforming the context in any way. This is because the annotation to a block variable
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b:lc-var does not specify whether we view the variable inside as a tm or a neutral. Gen-

erally speaking, any context that has a schema contains no explicit sort or type, and can

therefore only be interpreted based on what the schema specifies. This being said, sorts

express stronger properties than types, so moving from a lam-ctx to a neut-ctx is a form

of strengthening. It is not clear that such strengthenings are always valid, so we must be

careful in how we use it. Here, we take a highly restrictive stance and prevent the use of

strengthening altogether. Dually, moving from a neut-ctx to a lam-ctx is a form of weak-

ening, and can therefore safely be used at any point. We will see in Chapter 5 that the

combination of weakenings and recursion allows us to recover at least some strengthening in

a safe way.

3.2.2 Meta-types and meta-objects

Now that we have discussed all of the classifiers of LFR, we can move on to the unified

setting of the meta-layer. It is in this transition that the need for refinements as a relation

on judgments should become evident. First, let us recall the syntax of the meta-layer, which

is now duplicated at the refinement level:

Type level Refinement level

Meta-types A ::= Γ.P | Γ.Γ′ | G S ::= Ψ.Q | Ψ.Ψ′ | H

Meta-objects M ::= Γ̂.R | Γ̂.σ | Γ N ::= Ψ̂.R | Ψ̂.σ | Ψ

Meta-contexts ∆ ::= · | ∆, X:A Ω ::= · | Ω, X:S

Meta-substitutions ρ ::= · | ρ,M θ ::= · | θ,N

An interesting aspect of refinements at the meta-layer is that we must now consider
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refinement-level objects. This comes from the separation of sorting and typing contexts,

as well as the fact that contexts cannot be erased when viewed as objects of their own.

Notice, however, that if Ψ ⊏ Γ, then the only difference between the two contexts is in the

annotations of single variables. In this case, we can conclude that Ψ̂ and Γ̂ are identical, since

they no longer contain any annotation. Moreover, if Ψ has a schema, then, by definition,

it can only contain blocks of assumptions, and no single assumption. In this case, Γ also

contains no single assumption since the refinement relation between them ensures that Ψ

and Γ have exactly the same shape. Thus, we can also conclude that Ψ and Γ are the same.

In other words, in many (but not all) cases where N ⊏ M, we actually have that N and M

are syntactically equal. We note that this separation of meta-objects also induces a similar

separation for meta-substitutions, since those are composed of meta-objects.

Now, the refinement relations at the meta-layer are, once again, inherited from previously

defined refinement relations, and ultimately from LF type refinements. However, here the

fact that we incorporate contexts into types and objects leads to some complications. Let

us consider, for instance, how the refinement relation could be defined for a contextual type

Γ.A, and how it compares to the analogous type formation rule:

∆; Γ ⊢ P ⇐ type

∆ ⊢ (Γ.P ) : mtype

Ω ⊢ Ψ ⊏ Γ Ω;Ψ ⊢ Q ⊏ P

Ω ⊢ (Ψ.Q) ⊏ (Γ.P )

As mentioned previously, the refinement relations judgments are analogous to the well-

formedness judgments of the type-level. Then, in the above, the two conclusions are analo-

gous in this way, and the premises ∆; Γ ⊢ P ⇐ type and Ω;Ψ ⊢ Q ⊏ P are also analogous in

this way. However, our only way to obtain the context Γ is by adding an additional premise
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Ω ⊢ Ψ ⊏ Γ to the refinement-level rule. For the type-formation rule, we do not have the

analogous premise ∆ ⊢ Γ : ctx since that is enforced through the type formation judgment.

In fact, the refinement judgment Ω;Ψ ⊢ Q ⊏ P does also enforce that Ω ⊢ Ψ ⊏ Γ, but this

information is not directly available without the extra premise.

Now, we have only discussed one rule, but similar issues occur in various other places,

and propagate into the computation-level. Every time we need to add a premise simply to

extract some information that is otherwise validated by our judgments, we slow down the

sort-checking process. Our approach to remedy these difficulties is to consider refinements

as a relation on the judgments themselves. This allows us to extract all the refinement

information at once. This gives rise to a judgment of the form (Ω ⊢ S) ⊏ (∆ ⊢ A : mtype),

and similarly for other syntactic categories. For instance, instead of the above refinement

rule for contextual types, we can use the following:

(Ω;Ψ ⊢ Q) ⊏ (∆; Γ ⊢ P ⇐ type)

(Ω ⊢ Ψ.Q) ⊏ (∆ ⊢ Γ.P : mtype)

Note that for this approach to work as intended, we must go back through our definition of

LFR and rewrite its judgments in the same style. We give these definitions in Appendix A.

Now, we have discussed how the refinement relations judgments are analogous to the

well-formedness judgments of the type-level, and we have illustrated that these refinement

relations may be best understood as relations on the judgments directly, rather than on

syntactic objects. Interestingly, a similar idea can be applied to every other judgment in our

language. We provide here (in Figure 3.2) the sorting rules for the meta-layer, written in

this new style. We obtain, in this case, the judgment (Ω ⊢ N : S) ⊏ (∆ ⊢ M : A). What is

most advantageous about this approach is that, in every refinement judgment, the type-level
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(Ω ⊢ N : S) ⊏ (∆ ⊢ M : A) – Sorting and typing judgments

⊢ Ω ⊏ ∆ Ω ⊢ Ψ ⊏ Γ Ω;Ψ ⊢ R ⇐ Q ⊏ P

(Ω ⊢ Ψ̂.R : Ψ.Q) ⊏ (∆ ⊢ Γ̂.R : Γ.P )
⊢ Ω ⊏ ∆ Ω ⊢ Ψ ⊏ Γ Ω ⊢ Ψ : H ⊏ G

(Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G)

⊢ Ω ⊏ ∆ Ω ⊢ Ψ1 ⊏ Γ1 Ω ⊢ Ψ2 ⊏ Γ2 Ω;Ψ1 ⊢ σ : Ψ2

(Ω ⊢ Ψ̂1.σ : Ψ1.Ψ2) ⊏ (∆ ⊢ Γ̂1.σ : Γ1.Γ2)

Figure 3.2: Meta-level typing and sorting

part can still be considered as an output. Moreover, our design ensures that the type-level

part of a refinement judgment coincides exactly with the analogous type-level judgment. In

other words, the judgment (Ω ⊢ N : S) ⊏ (∆ ⊢ M : A) is a verification of the sorting

judgment Ω ⊢ N : S that additionally produces a typing derivation ∆ ⊢ M : A.

3.3 Computation-level refinements

It remains only to extend our refinements to Beluga’s computation-level. We achieve this

in roughly the same way as before, that is by duplicating the syntax and rules of the type-

level, and defining a refinement relation between the new syntax and the old one. The

computation-level inherits a refinement relation on expressions (i.e. objects) from the meta-

layer. Once again, each refinement relation ultimately boils down to refinements of LF types.

Now, let us present the syntax of refinements more formally:
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Type level Refinement level

Types τ ζ ::= [S] | ζ1 → ζ2 | ΠX:S.ζ

Contexts Ξ Φ ::= · | Φ, y:ζ

Expressions e f ::= [N ] | fn y:ζ ⇒ f | f1 f2 | mlam X:S ⇒ f | f N

| let [X] = f1 in f2 | case
ζ [N ] of c⃗

Branches b c ::= Ω; [N ] ⇒ f

We have omitted redefining the type-level syntax, which can be found either in Chapter

2 or Appendix B, although we recall the symbols used for each syntactic category. All the

refinement relations are simply component-wise, and they are defined as relations between

refinement-level and type-level well-formedness judgments, following what we did in the

previous section. We will discuss here the sorting judgment (whose rules are given in Figure

3.3), but we leave out the others as they are straightforward. The complete definition of

these judgments is located in Appendix B.

The most interesting aspects of the sorting judgments are the rules related to pattern

matching. In particular, notice that CTR-case only requires that we check the branches on

the refinement side of the relation. This is consistent with the idea that the type side is an

output of the judgment, in which case all the type side branches are in fact generated. This

means that the refinement relation on expressions is only possible when pattern matching

expressions have the same number of branches on the refinement and type levels. Since a

central component of datasorts is their ability to omit some of the constructors from type def-

initions, we expect that exhaustive pattern matching on the refinement-level contains fewer

cases than on the type-level. As a consequence, the typing derivation that we obtain cannot
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(Ω; Φ ⊢ f : ζ) ⊏ (∆; Ξ ⊢ e : τ) – Sorting and typing judgments for expressions

(Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx) (y:ζ) ∈ Φ (y:τ) ∈ Ξ

(Ω;Φ ⊢ y:ζ) ⊏ (∆; Ξ ⊢ y:τ)
CTR-var

(Ω ⊢ N : S) ⊏ (∆ ⊢ M : A) (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

(Ω; Φ ⊢ [N ] : [S]) ⊏ (∆; Ξ ⊢ [M] : [A])
CTR-box

(Ω; Φ, y:ζ1 ⊢ f : ζ2) ⊏ (∆; Ξ, y:τ1 ⊢ e : τ2)

(Ω; Φ ⊢ fn y:ζ1 ⇒ f : ζ1 → ζ2) ⊏ (∆; Ξ ⊢ fn y:τ1 ⇒ e : τ1 → τ2)
CTR-fn

(Ω; Φ ⊢ f1 : ζ2 → ζ1) ⊏ (∆; Ξ ⊢ e1 : τ2 → τ1) (Ω; Φ ⊢ f2 : ζ2) ⊏ (∆; Ξ ⊢ e2 : τ2)

(Ω; Φ ⊢ f1 f2 : ζ1) ⊏ (∆; Ξ ⊢ e1 e2 : τ1)
CTR-app

(Ω, X:S; Φ ⊢ f : ζ) ⊏ (∆, X:A; Ξ ⊢ e : τ)

(Ω; Φ ⊢ mlam X:S ⇒ f : ΠX:S.ζ) ⊏ (∆; Ξ ⊢ mlam X:A ⇒ e : ΠX:A.τ)
CTR-mlam

(Ω; Φ ⊢ f : ΠX:S.ζ) ⊏ (∆; Ξ ⊢ e : ΠX:A.τ) (Ω ⊢ N : S) ⊏ (∆ ⊢ M : A)

(Ω; Φ ⊢ f N : JN /XKζ) ⊏ (∆; Ξ ⊢ e M : JM/XKτ)
CTR-mapp

(Ω; Φ ⊢ f1 : [S]) ⊏ (∆; Ξ ⊢ e1 : [A]) (Ω, X:S; Φ ⊢ f2 : ζ) ⊏ (∆, X:A; Ξ ⊢ e2 : τ)

(Ω; Φ ⊢ let [X] = f1 in f2 : ζ) ⊏ (∆; Ξ ⊢ let [X] = e1in e2 : τ)
CTR-let

τ = Π∆0.ΠX0:A0.τ0
ζ = ΠΩ0.ΠX0:S0.ζ0
(·; · ⊢ ζ) ⊏ (·; · ⊢ τ : ctype)

(Ω ⊢ ρ : Ω0) ⊏ (∆ ⊢ θ : ∆0)
(Ω ⊢ N : JρKS0) ⊏ (∆ ⊢ M : JθKA0)
(Ω;Φ ⊢JρKS0 ci : ζ) ⊏ (∆; Ξ ⊢JθKA0 bi : τ) (for all ci ∈ c⃗)

(Ω;Φ ⊢ (caseζ [N ] of c⃗) : Jρ,N/X0Kζ0) ⊏ (∆; Ξ ⊢ (caseτ [M] of b⃗) : Jθ,M/X0Kτ0)
CTR-case

(Ω; Φ ⊢S c : ζ) ⊏ (∆; Ξ ⊢A b : τ) – Branch c satisfies invariant ζ when matching against an

object of sort S

(Ωi ⊢ ρ : Ω0) ⊏ (∆i ⊢ θ : ∆0)
(Ωi ⊢ N0 : JρKS0) ⊏ (∆i ⊢ M0 : JθKA0)
(Ω′ ⊢ ρ′i : Ωi) ⊏ ∆′ ⊢ θ′i : ∆i

(Ω′ ⊢ ρ′ : Ω) ⊏ ∆′ ⊢ θ′ : ∆
(Ω′ ⊢ Jρ′KS = Jρ′iKJρiKS0) ⊏ ∆′ ⊢ Jθ′KA = Jθ′iKJθiKA0

(Ω′; Jρ′KΦ ⊢ Jρ′, ρ′iKfi : Jρ′iKJρiKζ0) ⊏ (∆′; Jθ′KΞ ⊢ Jθ′, θ′iKei : Jθ′iKJθiKτ0)

(Ω;Φ ⊢S (Ωi; [Ni] ↦→ fi) : ΠΩ0.ΠX0:S0.ζ0) ⊏ (∆; Ξ ⊢A (∆i; [Mi] ↦→ ei) : Π∆0.ΠX0:A0.τ0)
CTR-branch

Figure 3.3: Sorting as a refinement of typing
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ensure coverage, since for that we would need to generate the missing cases automatically.

This is the reason why our rules do not enforce coverage, contrary to those of Pientka and

Abel (2015). It would be possible to enforce coverage only at the refinement-level, although

we leave this to future work.

The second part of validating pattern matching is the branch sorting judgment. Like

the branch typing judgment, branch sorting is defined by a single rule whose purpose is

to validate that the branch matches the specified invariant and can be unified with the

guard. Once again, we obtain this rule by refining its type-level equivalent with the relevant

sort-level judgments.

Example: A better proof that values do not step

Now that we have defined computation-level refinements, let us revisit our earlier proof

that values do not step. In this chapter, we have seen how to define values as a refinement

of terms instead of predicate. This simple modification allows us to improve the statement

of the theorem. For convenience, let us remind ourselves of how exactly we stated it earlier:

rec vds : (Γ : lam-ctx) [Γ ⊢ val M] → [Γ ⊢ step M M’] → [⊢ false]

This statement is fairly close to how one might informally express the result, and it will

be difficult to significantly improve upon it. By using the sort val instead of the type, we

obtain the following:

rec vds-ref : (Γ : lam-ctx) {M : [Γ ⊢ val]} [Γ ⊢ step M M’] → [⊢ false]

On the surface, this seems roughly the same as before, with the exception that we use

a dependent function space to bind M instead of a simple function space for [Γ ⊢ val M]
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However, this is in part the result of us “cheating” our way out of elaboration by allowing

silent implicit quantification. Under the hood, these will be expanded into the following:

rec vds : (Γ : lam-ctx) (M : [Γ ⊢ tm]) (M’ : [Γ ⊢ tm]) [Γ ⊢ val M] →

[Γ ⊢ step M M’] → [⊢ false]

rec vds-ref : (Γ : lam-ctx) {M : [Γ ⊢ val]} (M’ : [Γ ⊢ tm])

[Γ ⊢ step M M’] → [⊢ false]

So, we do in fact get rid of one of the function’s arguments, thus simplifying the statement.

While this does not appear immediately to the user, simplifying the elaboration process still

improves the overall user experience, since the assistance provided by the compiler would

be based on the elaborated types or sorts. Moreover, the simplicity of this example leaves

little room for improvement. In Chapter 5, we will consider more complex mechanizations,

allowing us to observe that refinements can, in fact, provide significant simplifications of

theorem statements.
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Chapter 4

Meta-theory

This chapter contains the proof that our extension is conservative. Our formulation of

refinements as a relation on judgments provides an elegant formulation of the theorem.

Essentially, if we write an arbitrary type-level judgment as I and an arbitrary refinement-

level judgment as J , then the theorem states that if the refinement judgment J ⊏ I holds,

then the type-level judgment I is valid on its own. We will have one theorem statement

for each particular judgment, and the various statements are proven simultaneously in two

groups: First, the data-level judgments, and, second, the computation-level judgments. All

of the proofs are based on the definitions found in the appendices.

Before we start the proof, we need to discuss two technical details that will play an

important role, and which we have omitted until now since they are of no conceptual interest.

Our presentation of refinements on judgments leads to a very simple proof, as virtually all

cases are solved by straightforward inductions. In fact, the only exceptions are the base

cases, which mainly consist of context lookups and signature lookups.
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In the same spirit as other judgments, we write our (LF)context lookup as (x:S ∈ Ψ) ⊏

(x:A ∈ Γ), with the intention that the lookup x:A ∈ Γ is an output. This is important since

the synthesis rule will then need to produce the typing derivation correctly. This lookup

judgment can be seen as a shorthand for the three premisses Ψ ⊏ Γ, x:S ∈ Ψ, and x:A ∈ Γ.

We need the refinement of contexts there since the conclusion of the rule needs to produce

Γ, not just A. Note that, since Ψ ⊏ Γ, the two contexts must have the exact same structure,

and so that we can perform the two lookups simultaneously. A similar idea applies for

lookups in meta-contexts and in computation-level contexts.

The situation is a bit more complex when it comes to signature lookups. We have designed

our signature formation rules so that our results would follow easily. So, before moving on to

the proof of conservativity, we need to briefly discuss signatures. Their complete definition

appears in Appendix B.

A signature consists of a sequence of declarations. Our language currently supports six

forms of declarations, including the type-level ones. They are given by the following syntax:

Signatures Sig ::= · | Sig, D

Declarations D ::= LF a : K = c1:A1 | ... | cn:An LF type

LFR s ⊏ a : L = c1:S1 | ... | cn:Sn LFR sort

LFR s1 ≤ s2 ⊏ a : L = c1:S1 | ... | cn:Sn LFR supersort

LF g : schema = w1:V1 | ... | wn:Vn LF schema

LFR h ⊏ g : schema = w1:W1 | ... | wn:Wn LFR schema

rec f : ζ = f Recursive function

Signatures keep track of all the user-defined names and how to use them. The crucial
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aspects of the various declarations, then, is which names are new and which ones are previ-

ously known. We have mentioned on several occasions that any type-level declaration can

only introduce new names. On the other hand, refinement-level declarations must introduce

exactly one name. Moreover, refinement-level declarations are limited in which other names

they may use. Specifically, the names of their constructors must be selected from the col-

lection of names of constructors of the type (or schema) which is refined. For instance, the

rule for well-formedness of a sort declaration is the following:

s /∈ Σ

(LF a : K = c1:A1 | ... | cn:An) ∈ Σ

(·; · ⊢Σ L) ⊏ (·; · ⊢Σ K : kind)

(·; · ⊢Σ,s⊏a:L Sij) ⊏ (·; · ⊢Σ,s⊏a:L Aij) (for all j)

⊢Σ (LFR s ⊏ a : L = ci1 :Si1 | ... | cik :Sik) : decl

So, the premises ensure that the new name s has not been used, and that the remaining

names are taken from the definition of a, as desired. This means that when we reach a base

case where we need a signature lookup for s, then we know that indeed the type a exists,

and we can produce it. The remaining rules have a similar form. We note that in supersort

declarations, it is s2 that is introduced, and not s1.

One notable declaration is the one for recursive functions, which only has a refinement-

level version. We have this declaration so that the name of a recursive function is available

when we sort-check its actual definition. In this way, we avoid having recursion as part of the

syntax of expression, which enforces that all recursive functions are defined at the top-level

(i.e. there is no nested recursion).
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4.1 Conservativity for data-level

Theorem 4.1 (Conservativity for data-level).

1. If (Ω;Ψ ⊢ L) ⊏ (∆; Γ ⊢ K : kind), then ∆; Γ ⊢ K : kind.

2. If (Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type), then ∆; Γ ⊢ A⇐ type.

3. If (Ω;Ψ ⊢ M⃗ : L > sort) ⊏ (∆; Γ ⊢ M⃗ : K > type), then ∆; Γ ⊢ M⃗ : K > type.

4. If (Ω;Ψ ⊢ H ⇒ S) ⊏ (∆; Γ ⊢ H ⇒ A), then ∆; Γ ⊢ H ⇒ A.

5. If (Ω;Ψ ⊢ W [M⃗ ] > D) ⊏ (∆; Γ ⊢ V [M⃗ ] > C), then ∆; Γ ⊢ V [M⃗ ] > C.

6. If (Ω;Ψ ⊢ b : D ≫k
i S) ⊏ (∆; Γ ⊢ b : C ≫k

i A), then ∆; Γ ⊢ b : C ≫k
i A.

7. If (Ω;Ψ ⊢ R ⇒ S) ⊏ (∆; Γ ⊢ R ⇒ A), then ∆; Γ ⊢ R ⇒ A.

8. If (Ω;Ψ ⊢ M⃗ : S ′ > S) ⊏ (∆; Γ ⊢ M⃗ : A′ > A), then ∆; Γ ⊢ M⃗ : A′ > A.

9. If (Ω;Ψ ⊢M ⇐ S) ⊏ (∆; Γ ⊢M ⇐ A), then ∆; Γ ⊢M ⇐ A.

10. If (Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : block), then ∆; Γ ⊢ C : block.

11. If (Ω;Ψ ⊢ W ) ⊏ (∆; Γ ⊢ V : world), then ∆; Γ ⊢ V : world.

12. If (Ω ⊢ H) ⊏ (∆ ⊢ G : schema), then ∆ ⊢ G : schema.

13. If (Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G), then ∆ ⊢ Γ : G.

14. If (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx), then ∆ ⊢ Γ : ctx.
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15. If (Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2), then ∆; Γ1 ⊢ σ : Γ2.

16. If (Ω;Ψ ⊢ M⃗ ⇐ D) ⊏ (∆; Γ ⊢ M⃗ ⇐ C), then ∆; Γ ⊢ M⃗ ⇐ C.

17. If (⊢ Ω) ⊏ (⊢ ∆ : mctx), then ⊢ ∆ : mctx.

18. If (Ω ⊢ S) ⊏ (∆ ⊢ A : mtype), then ∆ ⊢ A : mtype.

19. If (Ω ⊢ N : S) ⊏ (∆ ⊢ M : A), then ∆ ⊢ M : A.

20. If (Ω1 ⊢ ρ : Ω2) ⊏ (∆1 ⊢ θ : ∆2), then ∆1 ⊢ θ : ∆2.

21. If (Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A), then ∆; Γ ⊢ A⇐ type

22. If (Ω;Ψ ⊢ D1 ≤ D2) ⊏ (∆; Γ ⊢ C : block), then ∆; Γ ⊢ C : block.

23. If (Ω;Ψ ⊢ W1 ≤ W2) ⊏ (∆; Γ ⊢ V : world), then ∆; Γ ⊢ V : world.

24. If (Ω;Ψ ⊢ H1 ≤ H2) ⊏ (∆; Γ ⊢ G : schema), then ∆; Γ ⊢ G : schema.

25. If (Ω ⊢ S1 ≤ S2) ⊏ (∆ ⊢ A : mtype), then ∆ ⊢ A : mtype.

Proof.

We argue by simultaneous induction on the given derivation D.

1. We have D :: (Ω;Ψ ⊢ L) ⊏ (∆; Γ ⊢ K : kind). There are two cases to consider

Case D =

D′ : (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ sort) ⊏ (∆; Γ ⊢ type : kind)
KR-sort

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D′

Then ∆; Γ ⊢ type : kind by rule K-type
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Case D =

D′ : (Ω;Ψ, x:S ⊢ L) ⊏ (∆; Γ, x:A ⊢ K : kind)

(Ω;Ψ ⊢ Πx:S.L) ⊏ (∆; Γ ⊢ Πx:A.K : kind)
KR-pi

We have ∆; Γ, x:A ⊢ K : kind by inductive hypothesis on D′

Then ∆; Γ ⊢ Πx:A.K : kind by rule K-pi

2. We have D :: (Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type). There are two cases to consider :

Case D =

D1 :
(︁

s:L) ⊏ (a:K)
)︁

∈ Σ

D2 : (Ω;Ψ ⊢ M⃗ : L > sort) ⊏ (∆; Γ ⊢ M⃗ : K > type)

(Ω;Ψ ⊢ s M⃗) ⊏ (∆; Γ ⊢ a M⃗ ⇐ type)
TR-atom

We have (a:K) ∈ Σ by inversion on signature formation rules with D1

We have ∆; Γ ⊢ M⃗ : K > type by inductive hypothesis on D2

Then ∆; Γ ⊢ a M⃗ ⇐ type by rule T-atom

Case D =

D1 : (Ω;Ψ ⊢ S1) ⊏ (∆; Γ ⊢ A1 ⇐ type)

D2 : (Ω;Ψ, x:S1 ⊢ S2) ⊏ (∆; Γ, x:A1 ⊢ A2 ⇐ type

(Ω;Ψ ⊢ Πx:S1.S2) ⊏ (∆; Γ ⊢ Πx:A1.A2 ⇐ type)
TR-pi

We have ∆; Γ ⊢ A1 ⇐ type by inductive hypothesis on D1

We have ∆; Γ, x:A1 ⊢ A2 ⇐ type by inductive hypothesis on D2

Then ∆; Γ ⊢ Πx:A1.A2 ⇐ type by rule T-pi

3. We have D :: (Ω;Ψ ⊢ M⃗ : L > sort) ⊏ (∆; Γ ⊢ M⃗ : K > type). There are two cases

to consider :

Case D =

D′ : (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ nil : sort > sort) ⊏ (∆; Γ ⊢ nil : type > type)
KR-spn-nil

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D′

Then ∆; Γ ⊢ nil : type > type by rule K-spn-nil
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Case D =

D1 : (Ω;Ψ ⊢ M ⇐ S) ⊏ (∆; Γ ⊢ M ⇐ A)
D2 : (Ω;Ψ ⊢ M⃗ : [M/x]L > sort) ⊏ (∆; Γ ⊢ M⃗ : [M/x]K > type)

(Ω;Ψ ⊢ (M ; M⃗) : Πx:S.L > sort) ⊏ (∆; Γ ⊢ (M ; M⃗) : Πx:A.K > type)
KR-spn-cons

We have ∆; Γ ⊢M ⇐ A by inductive hypothesis on D1

We have ∆; Γ ⊢ M⃗ : [M/x]K > type by inductive hypothesis on D2

Then ∆; Γ ⊢ (M ; M⃗) : Πx:A.K > type by rule K-spn-cons

4. We have D :: (Ω;Ψ ⊢ H ⇒ S) ⊏ (∆; Γ ⊢ H ⇒ A). There are three cases to consider

Case D =

D1 : (c : S ⊏ A) ∈ Σ

D2 : (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ c ⇒ S) ⊏ (∆; Γ ⊢ c ⇒ A)
TRS-const

We have (c : A) ∈ Σ by signature formation rules on D1

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D2

Then ∆; Γ ⊢ c ⇒ A by rule TS-cons

Case D =

D1 : ((x:S) ∈ Ψ) ⊏ ((x:A) ∈ Γ)

D2 : (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ x⇒ S) ⊏ (∆; Γ ⊢ x⇒ A)
TRS-x

We have (x:A) ∈ Γ by inductive hypothesis on D1

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D2

Then ∆; Γ ⊢ x⇒ A by rule TS-x

Case D =

D1 : ((b:w[M⃗ ]) ∈ Ψ) ⊏ ((b:w[M⃗ ]) ∈ Γ)

D2 : (Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (∆; Γ ⊢ w[M⃗ ] > C)

D3 : (Ω;Ψ ⊢ b : D ≫k
1 S) ⊏ (∆; Γ ⊢ b : C ≫k

1 A)

(Ω;Ψ ⊢ b.k ⇒ S) ⊏ (∆; Γ ⊢ b.k ⇒ A)
TRS-b

We have (b:w[M⃗ ]) ∈ Γ by inductive hypothesis on D1

We have ∆; Γ ⊢ w[M⃗ ] > C) by inductive hypothesis on D2

78



We have ∆; Γ ⊢ b : C ≫k
1 A by inductive hypothesis on D3

Then ∆; Γ ⊢ b.k ⇒ A by rule TS-b

5. We have D :: (Ω;Ψ ⊢ W [M⃗ ] > D) ⊏ (∆; Γ ⊢ V [M⃗ ] > C). There are three cases to

consider:

Case D = (Ω; Γ ⊢ D[nil] > D) ⊏ (∆; Γ ⊢ C[nil] > C)
R-Inst-nil

We have ∆; Γ ⊢ C[nil] > C by rule Inst-nil

Case D =

D1 : (w : W ⊏ V ) ∈ Σ

D2 : (Ω;Ψ ⊢ W [M⃗ ] > D) ⊏ (∆; Γ ⊢ V [M⃗ ] > C)

(Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (∆; Γ ⊢ w[M⃗ ] > C)
R-Inst-const

We have (w:V ) ∈ Σ by signature formation rules and D1

We have ∆; Γ ⊢ V [M⃗ ] > C by inductive hypothesis on D2

Then ∆; Γ ⊢ v[M⃗ ] > c by rule Inst-const

Case D =

D1 : (Ω;Ψ ⊢ M ⇐ S) ⊏ (∆; Γ ⊢ M ⇐ A)

D2 : (Ω;Ψ ⊢ ([M/x]W )[M⃗ ] > D) ⊏ (∆; Γ ⊢ ([M/x]V )[M⃗ ] > C)

(Ω;Ψ ⊢ Πx:S.W [M ; M⃗ ] > D) ⊏ (∆; Γ ⊢ Πx:A.V [M ; M⃗ ]) > C
R-Inst-pi

We have ∆; Γ ⊢M ⇐ A by inductive hypothesis on D1

We have ∆; Γ ⊢ ([M/x]V )[M⃗ ] > C by inductive hypothesis on D2

Then ∆;Ψ ⊢ Πx:A.V [M ′M⃗ ] > C by rule Inst-pi

6. We have D :: (Ω;Ψ ⊢ b : D ≫k
i S) ⊏ (∆; Γ ⊢ b : C ≫k

i A). There are two cases to

consider:

Case D = (Ω;Ψ ⊢ b : Σx:S.D ≫k
k S) ⊏ (∆; Γ ⊢ b : Σx:A.C ≫k

k A)
R-Ext-stop

We have ∆; Γ ⊢ b : Σx:A.C ≫k
k A by rule Ext-stop.
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Case D =

D′ : (Ω;Ψ ⊢ b : [b.i/x]D ≫k
i+1 S) ⊏ (∆; Γ ⊢ b : [b.i/x]C ≫k

i+1)

(Ω;Ψ ⊢ b : Σx:S′.D ≫k
i S) ⊏ (∆; Γ ⊢ b : Σx:A′.C ≫k

i A)
R-Ext-cont

We have ∆; Γ ⊢ b : [b.i/x]C ≫k
i+1 by inductive hypothesis on D′

Then ∆; Γ ⊢ b : Σx:A′.C ≫k
i A by rule Ext-cont

7. We have D :: (Ω;Ψ ⊢ R ⇒ S) ⊏ (∆; Γ ⊢ R ⇒ A). There are two cases to consider:

Case D =

D1 : (Ω;Ψ ⊢ H ⇒ S ′) ⊏ (∆; Γ ⊢ H ⇒ A′)

D2 : (Ω;Ψ ⊢ M⃗ : S ′ > S) ⊏ (∆; Γ ⊢ M⃗ : A′ > A)

(Ω;Ψ ⊢ H M⃗ ⇒ S) ⊏ (∆; Γ ⊢ H M⃗ ⇒ A)
TRS-app

We have ∆; Γ ⊢ H ⇒ A′ by inductive hypothesis on D1

We have ∆; Γ ⊢ M⃗ : A′ > A by inductive hypothesis on D2

Then ∆; Γ ⊢ H M⃗ ⇒ A by rule TS-app

Case D =

D1 : ((u : Ψ′.S) ∈ Ω) ⊏ ((u : Γ′.A) ∈ ∆)

D2 : (Ω;Ψ ⊢ σ : Ψ′) ⊏ (∆; Γ ⊢ σ : Γ′)

(Ω;Ψ ⊢ u[σ] : [σ]S) ⊏ (∆; Γ ⊢ u[σ] : [σ]A)
TRS-mvar

We have (u : Γ′.A) ∈ ∆ by inductive hypothesis on D1

We have ∆; Γ ⊢ σ : Γ′ by inductive hypothesis on D2

Then ∆; Γ ⊢ u[σ] : [σ]A by rule TS-mvar

8. We have (Ω;Ψ ⊢ M⃗ : S ′ > S) ⊏ (∆; Γ ⊢ M⃗ : A′ > A). There are two cases to consider:

Case D = (Ω;Ψ ⊢ nil : Q > Q) ⊏ (∆; Γ ⊢ nil : P > P )
TRC-spn-nil

We have ∆; Γ ⊢ nil : P > P by rule TC-spn-nil

Case D =

D1 : (Ω;Ψ ⊢ M ⇐ S1) ⊏ (∆; Γ ⊢ M ⇐ A1)
D2 : (Ω;Ψ ⊢ M⃗ : [M/x]S2 > Q) ⊏ (∆; Γ ⊢ M⃗ : [M/x]A2 > P )

(Ω;Ψ ⊢ (M ; M⃗) : Πx:S1.S2 > Q) ⊏ (∆; Γ ⊢ (M ; M⃗) : Πx:A1.A2 > P )
TRC-spn-cons
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We have ∆; Γ ⊢M ⇐ A1 by inductive hypothesis on D1

We have ∆; Γ ⊢ M⃗ : [M/x]A2 > P by inductive hypothesis on D2

Then ∆; Γ ⊢ (M ; M⃗) : Πx:A1.A2 > P by rule TC-spn-cons

9. We have D :: (Ω;Ψ ⊢M ⇐ S) ⊏ (∆; Γ ⊢M ⇐ A). There are two cases to consider:

Case D =

D1 : (Ω;Ψ ⊢ R ⇒ Q′) ⊏ (∆; Γ ⊢ R ⇒ P )

D2 : (Ω;Ψ ⊢ Q′ ≤ Q) ⊏ (∆; Γ ⊢ P )

(Ω;Ψ ⊢ R ⇐ Q) ⊏ (∆; Γ ⊢ R ⇐ Q)
TRC-conv

We have ∆; Γ ⊢ R ⇒ P by inductive hypothesis on D1

Then ∆; Γ ⊢ R ⇐ P by rule TC-conv

Case D =

D′ : (Ω;Ψ, x:S ⊢M ⇐ S ′) ⊏ (∆; Γ, x:A ⊢M ⇐ A′)

(Ω;Ψ ⊢ λx.M ⇐ Πx:S.S ′) ⊏ (∆; Γ ⊢ λx.M ⇐ Πx:A.A′)
TRC-lam

We have ∆; Γ, x:A ⊢M ⇐ A′ by inductive hypothesis on D′

Then ∆; Γ ⊢ λx.M ⇐ Πx:A.A′ by rule TC-lam

10. We have (Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : block). There are two cases to consider:

Case D =

D′ : (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ ·) ⊏ (∆; Γ ⊢ · : block)
BR-empty

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D′

We have ∆ ⊢ · : block by rule B-empty

Case D =

D1 : (Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type)

D2 : (Ω;Ψ, x:S ⊢ D) ⊏ (∆; Γ, x:A ⊢ C : block)

(Ω;Ψ ⊢ Σx:S.D) ⊏ (∆; Γ ⊢ Σx:A.C : block)
BR-sigma

We ∆;Γ ⊢ A⇐ type by inductive hypothesis on D1

We have ∆; Γ, x:A ⊢ C : block by inductive hypothesis on D2

Then ∆; Γ ⊢ Σx:A.C : block by rule B-sigma
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11. We have D :: (Ω;Ψ ⊢ W ) ⊏ (∆; Γ ⊢ V : world). There are two cases to consider:

Case D =

D′ : (Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : block)

(Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : world)
WR-conv

We have ∆; Γ ⊢ C : block by inductive hypothesis on D′

Then ∆; Γ ⊢ C : world by rule W-conv

Case D =

D1 : (Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type)

D2 : (Ω;Ψ, x:S ⊢ W ) ⊏ (∆; Γ, x:A ⊢ V : world)

(Ω;Ψ ⊢ Πx:S.W ) ⊏ (∆; Γ ⊢ Πx:A.V : world)
WR-pi

We have ∆; Γ ⊢ A⇐ type by induction hypothesis on D2

We have ∆; Γ, x:A ⊢ V : world by induction hypothesis on D2

Then ∆; Γ ⊢ Πx:A.V : world by rule W-pi

12. We have D :: (Ω ⊢ G) ⊏ (∆ ⊢ F : schema). There are three cases to consider:

Case D =

D′ : (⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ·) ⊏ (∆ ⊢ · : schema)
SR-empty

We have ⊢ ∆ : mctx by inductive hypothesis on D′

Then ∆ ⊢ · : schema by rule S-empty

Case D =

D1 : (w:V ) ∈ G

D2 : w /∈ H

D3 : (Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

D4 : (Ω; · ⊢ W ) ⊏ (∆; · ⊢ V : world)

(Ω ⊢ H +w:W ) ⊏ (∆ ⊢ G : schema)
SR-ext

We have ∆ ⊢ G : schema by inductive hypothesis on D3

13. We have (Ω ⊢ Ψ : G) ⊏ (∆ ⊢ Γ : F ). There are three cases to consider:

Case D =

D′ : (Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ · : H) ⊏ (∆ ⊢ · : G)
SRC-empty

We have ∆ ⊢ G : schema by inductive hypothesis on D′

Then ∆ ⊢ · : G by rule SC-empty
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Case D =

D′ : ((ψ : H) ∈ Ω) ⊏ ((ψ : G) ∈ ∆)

(Ω ⊢ ψ : H) ⊏ (∆ ⊢ ψ : G)
SRC-var

We have (ψ : G) ∈ ∆ by assumption D′

Then ∆ ⊢ ψ : G by rule SC-var

Case D =

D1 : ((w:W ) ∈ H) ⊏ ((w:V ) ∈ G)

D2 : (Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G)

D3 : (Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (∆; Γ ⊢ w[M⃗ ] > C)

(Ω ⊢ (Ψ, b:w[M⃗ ]) : H) ⊏ (∆ ⊢ (Γ, b:w[M⃗ ]) : G)
SRC-ext

We have (w:V ) ∈ G by inductive hypothesis on D1

We have ∆ ⊢ Γ : G by inductive hypothesis on D2

We have ∆; Γ ⊢ w[M⃗ ] > C by inductive hypothesis on D3

Then ∆ ⊢ (Γ, b:w[M⃗ ]) : G by rule SC-ext

14. We have (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx). There are four cases to consider:

Case D =

D′ : (⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ·) ⊏ (∆ ⊢ · : ctx)
CR-empty

We have ⊢ ∆ : mctx by inductive hypothesis on D′

Then ∆ ⊢ · : ctx by rule C-empty

Case D =

D1 : ((ψ : H) ∈ Ω) ⊏ ((ψ : G) ∈ ∆)

D2 : (⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ψ) ⊏ (∆ ⊢ ψ : ctx)
CR-var

We have (ψ : G) ∈ ∆ by assumption D1

We have ⊢ ∆ : mctx by inductive hypothesis on D2

Then ∆ ⊢ ψ : ctx by rule C-var
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Case D =

D1 : (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

D2 : (Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type)

(Ω ⊢ Ψ, x:S) ⊏ (∆ ⊢ (Γ, x:A) : ctx)
CR-cons-x

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D1

We have ∆; Γ ⊢ A⇐ type by inductive hypothesis on D2

Then ∆ ⊢ (Γ, x:A) : ctx by rule C-cons-x

Case D =

D1 : (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

D2 : (Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (Ω;Ψ ⊢ w[M⃗ ] > C)

(Ω ⊢ Ψ, b:w[M⃗ ]) ⊏ (∆ ⊢ (Γ, b:w[M⃗ ]) : ctx)
CR-cons-b

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D1

We have Ω;Ψ ⊢ w[M⃗ ] > C by inductive hypothesis on D2

Then ∆ ⊢ (Γ, b:w[M⃗ ]) : ctx by rule C-cons-b

15. We have (Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2). There are four cases to consider:

Case D =

D′ : (Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1 : ctx)

(Ω;Ψ1 ⊢ · : ·) ⊏ (∆; Γ1 ⊢ · : ·)
SubstR-empty

We have ∆ ⊢ Γ1 : ctx by inductive hypothesis on D′

Then ∆; Γ1 ⊢ · : · by rule Subst-empty

Case D =

D1 : ((ψ : H) ∈ Ω) ⊏ ((ψ : G) ∈ ∆)

D2 : (Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1 : ctx)

(Ω;Ψ1 ⊢ idψ : ψ) ⊏ (∆; Γ1 ⊢ idψ : ψ)
SubstR-id

We have (ψ : G) ∈ ∆ by assumption D1

We have have ∆ ⊢ Γ1 : ctx by inductive hypothesis on D2

Then ∆; Γ1 ⊢ idψ : ψ by rule Subst-id
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Case D =

D1 : (Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2)

D2 : (Ω;Ψ1 ⊢M ⇐ [σ]S) ⊏ (∆; Γ1 ⊢M ⇐ [σ]A)
(︁

Ω;Ψ1 ⊢ (σ,M) : (Ψ2, x:S)
)︁

⊏
(︁

∆;Γ1 ⊢ (σ,M) : (Γ2, x:A)
)︁ SubstR-tm

We have ∆; Γ1 ⊢ σ : Γ2 by inductive hypothesis on D2

We have ∆; Γ1 ⊢M ⇐ [σ]A by inductive hypothesis on D2

Then ∆; Γ1 ⊢ (σ,M) : (Γ2, x:A) by rule Subst-tm

Case D =

D1 (Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2)
D2 (Ω;Ψ2 ⊢ w[M⃗

′

] > D) ⊏ (∆; Γ2 ⊢ w[M⃗
′

] > C)
D3 (Ω;Ψ1 ⊢ M⃗ ⇐ [σ]D) ⊏ (∆; Γ1 ⊢ M⃗ ⇐ [σ]C)

(︁

Ω;Ψ1 ⊢ (σ, M⃗) : (Ψ2, b:w[M⃗
′

])
)︁

⊏
(︁

∆;Γ1 ⊢ (σ, M⃗) : (Γ2, b:w[M⃗
′

])
)︁

SubstR-spn

We have ∆; Γ1 ⊢ σ : Γ2 by inductive hypothesis on D1

We have ∆; Γ2 ⊢ w[M⃗
′
] > D by inductive hypothesis on D2

We have ∆; Γ1 ⊢ M⃗ ⇐ [σ]D by inductive hypothesis on D3

Then ∆; Γ1 ⊢ (σ, M⃗) : (Γ2, b:w[M⃗
′
]) by rule Subst-spn

16. We have D :: (Ω;Ψ ⊢ M⃗ ⇐ D) ⊏ (∆; Γ ⊢ M⃗ ⇐ C). There are two cases to consider:

Case D =

D′ : (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ nil ⇐ ·) ⊏ (∆; Γ ⊢ nil ⇐ ·)
ChkR-spn-nil

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D′

We have ∆; Γ ⊢ nil ⇐ · by rule Chk-spn-nil

Case D =

D1 : (Ω;Ψ ⊢ M ⇐ S) ⊏ (∆; Γ ⊢ M ⇐ A)

D2 : (Ω;Ψ ⊢ M⃗ ⇐ [M/x]D) ⊏ (∆; Γ ⊢ M⃗ ⇐ [M/x]C)

(Ω;Ψ ⊢ (M ; M⃗) ⇐ Σx:S.D) ⊏ (∆; Γ ⊢ (M ; M⃗) ⇐ Σx:A.C)
ChkR-spn-sigma

We have ∆; Γ ⊢M ⇐ A by inductive hypothesis on D1

We have ∆; Γ ⊢ M⃗ ⇐ [M/x]C by inductive hypothesis on D2

Then ∆; Γ ⊢ (M ; M⃗) ⇐ Σx:A.C by rule Chk-spn-sigma
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17. We have D :: (⊢ Ω) ⊏ (⊢ ∆ : mctx). There are two cases to consider:

Case D = (⊢ ·) ⊏ (⊢ · : mctx)
MCR-nil

We have ⊢ · : mctx by rule MC-nil

Case D =

D1 : (⊢ Ω) ⊏ (⊢ ∆ : mctx)

D2 : (Ω ⊢ S) ⊏ (∆ ⊢ A : mtype)

(⊢ (Ω, X:S) ⊏ (⊢ (∆, X:A) : mctx)
MCR-cons

We have ⊢ ∆ : mctx by inductive hypothesis on D1

We have ∆ ⊢ A : mtype by inductive hypothesis on D2

Then ⊢ (∆, X:A) : mctx by rule MC-cons

18. We have D :: (Ω ⊢ S) ⊏ (∆ ⊢ A : mtype). There are three cases to consider:

Case D =

D′ : (Ω;Ψ ⊢ Q) ⊏ (∆; Γ ⊢ P ⇐ type)
(︁

Ω ⊢ (Ψ.Q)
)︁

⊏
(︁

∆ ⊢ (Γ.P ) : mtype
)︁ MTR-tp

We have ∆; Γ ⊢ P ⇐ type by inductive hypothesis on D′

Then ∆ ⊢ (Γ.P ) : mtype by rule MT-tp

Case D =

D′ : (Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ H) ⊏ (∆ ⊢ G : mtype)
MTR-schema

We have ∆ ⊢ G : schema by inductive hypothesis on D′

Then ∆ ⊢ G : mtype by rule MT-schema

Case D =

D1 : (Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1 : ctx)

D2 : (Ω ⊢ Ψ2) ⊏ (∆ ⊢ Γ2 : ctx)
(︁

Ω ⊢ (Ψ1.Ψ2)
)︁

⊏
(︁

∆ ⊢ (Γ1.Γ2) : mtype
)︁ MTR-subst

We have ∆ ⊢ Γ1 : ctx by inductive hypothesis on D1

We have ∆ ⊢ Γ2 : ctx by inductive hypothesis on D2

Then ∆ ⊢ (Γ1.Γ2) : mtype by rule MT-subst
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19. We have D :: (Ω ⊢ N : S) ⊏ (∆ ⊢ M : A). There are three cases to consider:

Case D =

D′ : (Ω;Ψ ⊢ R ⇐ Q) ⊏ (∆; Γ ⊢ R ⇐ P )
(︁

Ω ⊢ (Ψ̂.R) : (Ψ.Q)
)︁

⊏
(︁

∆ ⊢ (Γ̂.R) : (Γ.P )
)︁ MOftR-tm

We have ∆; Γ ⊢ R ⇐ P by inductive hypothesis on D′

Then ∆ ⊢ (Γ̂.R) : (Γ.P ) by rule MOft-tm

Case D =

D′ : (Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2)
(︁

Ω ⊢ (Ψ̂1.σ) : (Ψ1.Ψ2)
)︁

⊏
(︁

∆ ⊢ (Γ̂1.σ) : (Γ1.Γ2)
)︁ MOftR-subst

We have ∆; Γ1 ⊢ σ : Γ2 by inductive hypothesis on D′

Then ∆ ⊢ (Γ̂1.σ) : (Γ1.Γ2) by rule MOft-subst

Case D =

D′ : (Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G) (schema checking)

(Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G) (msort checking)
MOftR-ctx

We have ∆ ⊢ Γ : G (schema checking) by inductive hypothesis on D′

Then ∆ ⊢ Γ : G (meta-type checking) by rule MOft-ctx

20. We have D :: (Ω1 ⊢ ρ : Ω2) ⊏ (∆1 ⊢ θ : ∆2). There are two cases to consider:

Case D =

D′ : (⊢ Ω1) ⊏ (⊢ ∆1 : mctx)

(Ω1 ⊢ · : ·) ⊏ (∆1 ⊢ · : ·)
MSubstR-nil

We have ⊢ ∆1 : mctx by inductive hypothesis on D′

Then ∆1 ⊢ · : · by rule MSubst-nil

Case D =

D1 : (Ω1 ⊢ ρ : Ω2) ⊏ (∆1 ⊢ θ : ∆2)

D2 : (Ω1 ⊢ N : JρKS) ⊏ (∆1 ⊢ M : JθKA)
(︁

Ω1 ⊢ (ρ,N ) : (Ω2, X:S)
)︁

⊏
(︁

∆1 ⊢ (θ,M) : (∆2, X:A)
)︁ MSubstR-cons

We have ∆1 ⊢ θ : ∆2 by inductive hypothesis on D2

We have ∆1 ⊢ M : JθKA by inductive hypothesis on D2

Then ∆1 ⊢ (θ,M) : (∆2, X:A) by rule MSubst-cons

21. We have D : (Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A). There are four cases to consider:
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Case D =

D1 : (LFR s1 ≤ s2 ⊏ a : L) ∈ Σ

D2 : (Ω;Ψ ⊢ M⃗ : L > sort) ⊏ (∆; Γ ⊢ M⃗ : K > type)

(Ω;Ψ ⊢ s1 M⃗ ≤ s2 M⃗) ⊏ (∆; Γ ⊢ a M⃗)
Sub-atom

We have (LF a : K) ∈ Σ by signature formation rules

We have ∆; Γ ⊢ M⃗ : K > type by inductive hypothesis on D2

Then ∆ ⊢ a M⃗ ⇐ type by rule T-atom

Case D =

D : (Ω;Ψ ⊢ Q) ⊏ (∆; Γ ⊢ P ⇐ type)

(Ω;Ψ ⊢ Q ≤ Q) ⊏ (∆; Γ ⊢ P )
Sub-refl

We have ∆; Γ ⊢ P ⇐ type by inductive hypothesis on D′

Case D =

D1 : (Ω;Ψ ⊢ Q1 ≤ Q2) ⊏ (∆; Γ ⊢ P )

D2 : (Ω;Ψ ⊢ Q2 ≤ Q3) ⊏ (∆; Γ ⊢ P )

(Ω;Ψ ⊢ Q1 ≤ Q3) ⊏ (∆; Γ ⊢ P )
Sub-trans

We have ∆; Γ ⊢ P ⇐ type by inductive hypothesis on D1

Case D =

D1 : (Ω;Ψ ⊢ S2 ≤ S1) ⊏ (∆; Γ ⊢ A)

D2 : (Ω;Ψ, x:S2 ⊢ S
′
1 ≤ S ′

2) ⊏ (∆; Γ, x:A ⊢ A′)

(Ω;Ψ ⊢ Πx:S1.S
′
1 ≤ Πx:S2.S

′
2) ⊏ (∆; Γ ⊢ Πx:A.A′)

Sub-pi

We have ∆; Γ ⊢ A⇐ type by inductive hypothesis on D1

We have ∆; Γ, x:A ⊢ A′ ⇐ type by inductive hypothesis on D2

Then ∆; Γ ⊢ Πx:A.A′ ⇐ type by rule T-pi

22. We have D : (Ω;Ψ ⊢ D1 ≤ D2) ⊏ (∆; Γ ⊢ C : block). There are two cases to consider:

Case D =

D′ : (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ)

(Ω;Ψ ⊢ · ≤ ·) ⊏ (∆;Ψ ⊢ ·)
Sub-Bnil

We have ∆ ⊢ Γ : ctx by inductive hypothesis on D′

Then ∆; Γ ⊢ · : block by rule B-empty
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Case D =

D1 : (Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A)

D2 : (Ω;Ψ, x:S1 ⊢ D1 ≤ D2) ⊏ (∆; Γ ⊢ C)

(Ω;Ψ ⊢ Σx:S1.D1 ≤ Σx:S2.D2) ⊏ (∆; Γ ⊢ Σx:A.C)
Sub-sigma

We have ∆; Γ ⊢ A⇐ type by inductive hypothesis on D1

We have ∆; Γ, x:A ⊢ C : block by inductive hypothesis on D2

Then ∆; Γ ⊢ Σx:A.C : block by rule B-sigma

23. We have D : (Ω;Ψ ⊢ W1 ≤ W2) ⊏ (∆; Γ ⊢ V : world). There are two cases to

consider:

Case D =

D′ : (Ω;Ψ ⊢ D1 ≤ D2) ⊏ (∆;Ψ ⊢ C : block)

(Ω;Ψ ⊢ D1 ≤ D2) ⊏ (∆;Ψ ⊢ C : world)
SubW-conv

We have ∆;Ψ ⊢ C : block by inductive hypothesis on D′

Then ∆;Ψ ⊢ C : world by rule W-conv

Case D =

D1 : (Ω;Ψ ⊢ S2 ≤ S1) ⊏ (∆; Γ ⊢ A : type)

D2 : (Ω;Ψ, x:S2 ⊢ W1 ≤ W2) ⊏ (∆; Γ ⊢ V : world)

(Ω;Ψ ⊢ Πx:S1.W1 ≤ Πx:S2.W2) ⊏ (∆; Γ ⊢ Πx:A.V : world)
SubW-pi

We have ∆; Γ ⊢ A⇐ type by inductive hypothesis on D1

We have ∆; Γ, x:A ⊢ V : world by inductive hypothesis on D2

Then ∆; Γ ⊢ Πx:A.V : world by rule W-pi

24. We have D : (Ω;Ψ ⊢ H1 ≤ H2) ⊏ (∆; Γ ⊢ G : schema). There are two cases to

consider:

Case D =

D′ : (Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ · ≤ H) ⊏ (∆ ⊢ G)
SubS-nil

We have ∆ ⊢ G : schema by inductive hypothesis on D′
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Case D =

D1 : (w:V ∈ G)

D2 : (w /∈ Hi)

D3 : (Ω ⊢ H1 ≤ H2) ⊏ (∆ ⊢ G : schema)

D4 : (Ω; · ⊢ W1 ≤ W2) ⊏ (∆; · ⊢ V : world)

(Ω ⊢ H1 +w:W1 ≤ H2 +w:W2) ⊏ (∆ ⊢ G)
SubS-sum

We have ∆ ⊢ G : schema by inductive hypothesis on D1

25. We have D : (Ω ⊢ S1 ≤ S2) ⊏ (∆ ⊢ A : mtype). There are three cases to consider:

Case D =

D′ : (Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A)

(Ω ⊢ Ψ.S1 ≤ Ψ.S2) ⊏ (∆ ⊢ Γ.A)
SubM-tp

We have ∆; Γ ⊢ A⇐ type by inductive hypothesis on D′

Then ∆ ⊢ Γ.A : mtype by rule MT-tp

Case D =

D1 : (Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1)

D2 : (Ω ⊢ Ψ2) ⊏ (∆ ⊢ Γ2)

(Ω ⊢ Ψ1.Ψ2 ≤ Ψ1.Ψ2) ⊏ (∆ ⊢ Γ1.Γ2)
SubM-subst

We have ∆ ⊢ Γ1 : ctx by inductive hypothesis on D1

We have ∆ ⊢ Γ2 : ctx by inductive hypothesis on D2

Then ∆ ⊢ Γ1.Γ2 : mtype by rule MT-subst

Case D =

D′ : (Ω ⊢ H1 ≤ H2) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ H1 ≤ H2) ⊏ (∆ ⊢ G : mtype)
SubM-schema

We have ∆ ⊢ G : schema by inductive hypothesis on D′

Then ∆ ⊢ G : mtype by rule MT-schema

■

4.2 Conservativity for computation-level

Theorem 4.2 (Conservativity for computation-level).

90



1. If (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx), then ∆ ⊢ Ξ : cctx.

2. If (Ω; Φ ⊢ ζ) ⊏ (∆; Ξ ⊢ τ : ctype), then ∆;Ξ ⊢ τ : ctype.

3. If (Ω; Φ ⊢ f : ζ) ⊏ (∆; Ξ ⊢ e : τ), then ∆;Ξ ⊢ e : τ .

4. If (Ω; Φ ⊢ c : ζ) ⊏ (∆; Ξ ⊢ b : τ), then ∆;Ξ ⊢ b : τ .

5. If (Ω; Φ ⊢ ζ1 ≤ ζ2) ⊏ (∆; Ξ ⊢ τ), then ∆;Ξ ⊢ τ .

Proof.

By simultaneous induction on the given derivation D.

1. We have D :: (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx). There are two cases to consider:

Case D =

D′ : (⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ·) ⊏ (∆ ⊢ · : cctx)
CCR-nil

We have ⊢ ∆ : mctx by Theorem 4.1 on D′

Then ∆ ⊢ · : cctx by rule CC-nil

Case D =

D1 : (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

D2 : (Ω; Φ ⊢ ζ) ⊏ (∆; Ξ ⊢ τ : ctype)

(Ω ⊢ Φ, y:ζ) ⊏ (∆ ⊢ (Ξ, y:τ) : cctx)
CCR-cons

We have ∆ ⊢ Ξ : cctx by inductive hypothesis on D1

We have ∆; Ξ ⊢ τ : ctype by inductive hypothesis on D2

Then ∆ ⊢ (Ξ, y:τ) : cctx by rule CC-cons

2. We have D :: (Ω; Φ ⊢ ζ) ⊏ (∆; Ξ ⊢ τ : ctype). There are three cases to consider:

Case D =

D1 : (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

D2 : (Ω ⊢ S) ⊏ (∆ ⊢ A : mtype)

(Ω; Φ ⊢ [S]) ⊏ (∆; Ξ ⊢ [A] : ctype)
CTR-meta
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We have ∆ ⊢ Ξ : cctx by inductive hypothesis on D1

We have ∆ ⊢ A : mtype by Theorem 4.1 on D2

Then ∆;Ξ ⊢ [A] : ctype by rule CR-meta

Case D =

D1 : (Ω; Φ ⊢ ζ1) ⊏ (∆; Ξ ⊢ τ1 : ctype)

D2 : (Ω; Φ ⊢ ζ2) ⊏ (∆; Ξ ⊢ τ2 : ctype)

(Ω; Φ ⊢ ζ1 → ζ2) ⊏ ∆;Ξ ⊢ τ1 → τ2 : ctype)
CTR-arr

We have ∆; Ξ ⊢ τ1 : ctype by inductive hypothesis on D1

We have ∆; Ξ ⊢ τ2 : ctype by inductive hypothesis on D2

Then ∆;Ξ ⊢ τ1 → τ2 : ctype by rule CT-arr

Case D =

D1 : (Ω ⊢ S) ⊏ (∆ ⊢ A : mtype)

D2 : (Ω, X:S; Φ ⊢ ζ) ⊏ (∆, X:A; Ξ ⊢ τ : ctype)

(Ω; Φ ⊢ ΠX:S.ζ) ⊏ (∆; Ξ ⊢ ΠX:A.τ : ctype)
CTR-pi

We have ∆ ⊢ A : mtype by Theorem 4.1 on D1

We have ∆, X:A; Ξ ⊢ τ : ctype by inductive hypothesis on D2

Then ∆;Ξ ⊢ ΠX:A.τ : ctype by rule CT-pi

3. We have D :: (Ω; Φ ⊢ f : ζ) ⊏ (∆; Ξ ⊢ e : τ). There eight cases to consider

Case D =

D1 : (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

D2 : ((y:ζ) ∈ Φ) ⊏ ((y:τ) ∈ Ξ)

(Ω;Φ ⊢ y : ζ) ⊏ (∆; Ξ ⊢ y : τ)
CTR-var

We have ∆ ⊢ Ξ : cctx by inductive hypothesis on D1

We have (y:τ) ∈ Ξ by assumption D2

Then ∆ ⊢ y : τ by rule CT-var
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Case D =

D1 : (Ω ⊢ N : S) ⊏ (∆ ⊢ M : A)

D2 : (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

(Ω; Φ ⊢ [N ] : [S]) ⊏ (∆; Ξ ⊢ [M] : [A])
CTR-box

We have ∆ ⊢ M : A by Theorem 4.1 on D1

We have ∆ ⊢ Ξ : cctx by inductive hypothesis on D2

Then ∆;Ξ ⊢ [M] : [A] by rule CT-box

Case D =

D′ : (Ω;Φ, y:ζ1 ⊢ f : ζ2) ⊏ (∆; Ξ, y:τ1 ⊢ e : τ2)

(Ω;Φ ⊢ (fn y:ζ1 ⇒ f) : ζ1 → ζ2) ⊏ (∆; Ξ ⊢ (fn y:τ1 ⇒ e) : τ1 → τ2)
CTR-fn

We have ∆; Ξ, y:τ1 ⊢ e : τ2 by inductive hypothesis on D′

Then ∆;Ξ ⊢ (fn y:τ1 ⇒ e) : τ1 → τ2 by rule CT-fn

Case D =

D1 : (Ω; Φ ⊢ f1 : ζ2 → ζ1) ⊏ (∆; Ξ ⊢ e1 : τ2 → τ1)

D2 : (Ω; Φ ⊢ f2 : ζ2) ⊏ (∆; Ξ ⊢ e2 : τ2)

(Ω; Φ ⊢ f1 f2 : ζ1) ⊏ (∆; Ξ ⊢ e1 e2 : τ1)
CTR-app

We have ∆; Ξ ⊢ e1 : τ2 → τ1 by inductive hypothesis on D1

We have ∆; Ξ ⊢ e2 : τ2 by inductive hypothesis on D2

Then (∆; Ξ ⊢ e1 e2 : τ1) by rule CT-app

Case D =

D′ : (Ω, X:S; Φ ⊢ f : ζ) ⊏ (∆, X:A; Ξ ⊢ e : τ)

(Ω;Φ ⊢ (mlam X:S ⇒ f) : ΠX:S.ζ) ⊏ (∆; Ξ ⊢ (mlam X:A ⇒ e) : ΠX:A.τ)
CTR-mlam

We have ∆, X:A; Ξ ⊢ e : τ by inductive hypothesis on D′

Then ∆;Ξ ⊢ (mlam X:A ⇒ e) : ΠX:A.τ by rule CT-mlam

Case D =

D1 : (Ω; Φ ⊢ f : ΠX:S.ζ) ⊏ (∆; Ξ ⊢ e : ΠX:A.τ)

D2 : (Ω ⊢ N : S) ⊏ (∆ ⊢ M : A)

(Ω; Φ ⊢ f N : JN /XKζ) ⊏ (∆; Ξ ⊢ e M : JM/XKτ)
CTR-mapp

We have ∆; Ξ ⊢ e : ΠX:A.τ by inductive hypothesis on D1

We have ∆ ⊢ M : A by Theorem 4.1 on D2
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Then ∆;Ξ ⊢ e [M] : JM/XKτ by rule CT-mapp

Case D =

D1 : (Ω;Φ ⊢ f1 : [S]) ⊏ (∆; Ξ ⊢ e1 : [A])

D2 : (Ω, X:S; Φ ⊢ f2 : ζ) ⊏ (∆, X:A; Ξ ⊢ e2 : τ)

(Ω;Φ ⊢ (let [X] = f1 in f2) : ζ) ⊏ (∆; Ξ ⊢ (let [X] = e1 in e2) : τ)
CTR-let

We have ∆; Ξ ⊢ e1 : [A] by inductive hypothesis on D1

We have ∆, X:A; Ξ ⊢ e2 : τ by inductive hypothesis on D2

Then ∆;Ξ ⊢ (let [X] = e1 in e2) : τ by rule CT-let

Case D =

D1 : τ = Π∆0.ΠX0:A0.τ0
D2 : ζ = ΠΩ0.ΠX0:S0.ζ0
D3 : (·; · ⊢ ζ) ⊏ (·; · ⊢ τ : ctype)
D4 : (Ω ⊢ ρ : Ω0) ⊏ (∆ ⊢ θ : ∆0)
D5 : (Ω ⊢ N : JρKS0) ⊏ (∆ ⊢ M : JθKA0)
D6 : (Ω;Φ ⊢JρKS0 ci : ζ) ⊏ (∆; Ξ ⊢JθKA0 bi : τ) (for all ci ∈ c⃗)

(Ω;Φ ⊢ (caseζ [N ] of c⃗) : Jρ,N/X0Kζ0) ⊏ (∆; Ξ ⊢ (caseτ [M] of b⃗) : Jθ,M/X0Kτ0)
CTR-case

We have τ = ΠX0:A0.τ0 by assumption D1

We have ·; · ⊢ τ : ctype by inductive hypothesis on D3

We have ∆ ⊢ θ : ∆0 by Theorem 4.1 on D4

We have ∆ ⊢ M : JθKA0 by inductive hypothesis on D5

We have ∆; Ξ ⊢JθKA0 bi : τ) (for all ci ∈ c⃗ by inductive hypothesis on D6

Then ∆;Ξ ⊢ (caseτ [M] of b⃗) : Jθ,M/X0Kτ0 by rule CT-case

4. We have D :: (Ω; Φ ⊢ c : ζ) ⊏ (∆; Ξ ⊢ b : τ). There is only one case to consider:

Case D =

D1 : (Ωi ⊢ ρ : Ω0) ⊏ (∆i ⊢ θ : ∆0)
D2 : (Ωi ⊢ N0 : JρKS0) ⊏ (∆i ⊢ M0 : JθKA0)
D3 : (Ω′ ⊢ ρ′i : Ωi) ⊏ (∆′ ⊢ θ′i : ∆i)
D4 : (Ω′ ⊢ ρ′ : Ω) ⊏ (∆′ ⊢ θ′ : ∆)
D5 : (Ω′ ⊢ Jρ′KS = Jρ′iKJρiKS0) ⊏ (∆′ ⊢ Jθ′KA = Jθ′iKJθiKA0)
D6 : (Ω′; Jρ′KΦ ⊢ Jρ′, ρ′iKfi : Jρ′iKJρiKζ0) ⊏ (∆′; Jθ′KΞ ⊢ Jθ′, θ′iKei : Jθ′iKJθiKτ0)

(Ω;Φ ⊢S (Ωi; [Ni] ↦→ fi) : ΠΩ0.ΠX0:S0.ζ0) ⊏ (∆; Ξ ⊢A (∆i; [Mi] ↦→ ei) : Π∆0.ΠX0:A0.τ0)
CTR-branch

We have ∆i ⊢ θ : ∆0 by Theorem 4.1 on D1

We have ∆i ⊢ M0 : JθKA0 by Theorem 4.1 on D2
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We have ∆′ ⊢ θ′i : ∆i by Theorem 4.1 on D3

We have ∆′ ⊢ θ′ : ∆ by Theorem 4.1 on D4

We have ∆′ ⊢ Jθ′KA = Jθ′iKJθiKA0 by Theorem 4.1 on D5

We have ∆′; Jθ′KΞ ⊢ Jθ′, θ′iKei : Jθ′iKJθiKτ0 by inductive hypothesis on D6

Then ∆;Ξ ⊢A (∆i; [Mi] ↦→ ei) : Π∆0.ΠX0:A0.τ0 by rule CT-branch

5. We have D : (Ω; Φ ⊢ ζ1 ≤ ζ2) ⊏ (∆; Ξ ⊢ τ). There are three cases to consdier :

Case D =

D1 : (Ω ⊢ S1 ≤ S2) ⊏ (∆ ⊢ A : mtype)

D2 : (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

(Ω; Φ ⊢ [S1] ≤ [S2]) ⊏ (∆; Ξ ⊢ [A])
SubC-meta

We have ∆ ⊢ A : mtype by inductive hypothesis on D1

We have ∆ ⊢ Ξ : cctx by inductive hypothesis on D2

Then ∆;Ξ ⊢ [A] : ctype by rule CT-meta

Case D =

D1 : (Ω; Φ ⊢ ζ2 ≤ ζ1) ⊏ (∆; Ξ ⊢ τ)

D2 : (Ω; Φ ⊢ ζ ′1 ≤ ζ ′2) ⊏ (∆; Ξ ⊢ τ ′)

(Ω; Φ ⊢ ζ1 → ζ ′1 ≤ ζ2 → ζ ′2) ⊏ (∆; Ξ ⊢ τ → τ ′)
SubC-arr

We have ∆; Ξ ⊢ τ1 : ctype by inductive hypothesis on D1

We have ∆; Ξ ⊢ τ2 : ctype by inductive hypothesis on D2

Then ∆;Ξ ⊢ τ1 → τ2 : ctype by rule CT-arr

Case D =

D1 : (Ω ⊢ S2 ≤ S1) ⊏ (∆ ⊢ A)

D2 : (Ω, u:S2; Φ ⊢ ζ1 ≤ ζ2) ⊏ (∆, u:A; Ξ ⊢ τ)

(Ω; Φ ⊢ Πu:S1.ζ1 ≤ Πu:S2.ζ2) ⊏ (∆; Ξ ⊢ Πu:A.τ)
SubC-pi

We have ∆ ⊢ A : mtype by inductive hypothesis on D1

We have ∆; Ξ ⊢ τ : ctype by inductive hypothesis on D2

Then ∆;Ξ ⊢ Πu:A.τ : ctype by rule CT-pi
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Chapter 5

Case studies

In previous chapters, we have illustrated the key ideas behind Beluga and its refinement

system by mechanizing a simple property of the STLC, namely that values do not step.

However, to really demonstrate the power of the language, we must consider more complex

mechanizations. In this chapter, we will look at two additional examples. First, we will

mechanize a polymorphic λ-calculus, showing that the design principles discussed earlier can

scale up to richer OLs. Then, we will tackle one of the benchmarks presented by Felty et al.

(2015a), which provides a more striking example of the benefits of refinements for stating

theorems.

5.1 Polymorphic λ-calculus

Our first case study is a mechanization of System Fω, based on the formulation of Abel

(2009) (although we omit term equality here). The reason behind the choice of Fω is that we

need an OL in which type formation is non-trivial to properly explain one of the problems
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solved by our new formulation of contexts. Specifically, the fact that contexts are extended

by explicitly applying schema elements to parameters allows us to refer to these parameters,

even when they do not appear within the corresponding block of declaration.

5.1.1 Encoding of Fω

We begin by encoding Fω using LF types. The language consists of kinds, types, and

terms. Contrary to STLC, Fω contains type-level computations, hence we need kinds to

classify those. Additionally, the language requires type variables (of any kind) in order to

support polymorphism. All type variables, including those that occur in binding, have a

kind annotation, and, similarly, term variables have a type variables. Accordingly, kinds

may occur in types, and both types and kinds may occur in terms. This means that we must

define kinds first, then types, and finally terms. So, let us start with the syntax of kinds:

LF kd : type =

| star : kd

| karr : kd → kd → kd;

Kinds K,L ::=

⋆

| K → L

The kind star represent base types, while karr correspond to type-level function spaces.

Next, we look at types:

LF tp : type =

| tarr : tp → tp → tp

| tall : kd → (tp → tp) → tp

| tlam : kd → (tp → tp) → tp

| tapp : tp → tp → tp;

Types A,B ::= α

| A→ B

| ∀α:K.A

| λα:K.A

| A B
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Here, tarr is our usual function space, and tall is the polymorphic function space.

Type-level computations are introduced using tlam, and eliminated with tapp. Finally, we

can define the terms of Fω:

LF tm : type =

| lam : tp → (tm → tm) → tm

| app : tm → tm → tm

| Lam : kd → (tp → tm) → tm

| App : tm → tp → tm;

Terms M,N ::= x

| λx:A.M

|M1 M2

| Λα:K.M

|M A

Here, lam and app are the usual function introduction and elimination forms, respectively,

while Lam and App are the polymorphic function introduction and elimination forms, respec-

tively. Note that, as for STLC, variables are not modelled through explicit constructors (this

applies to both type and term variables). Now, let us look at the kinding judgment:

LF ofk : tp → kd → type =

| o-tarr : ofk A star → ofk B star →

ofk (tarr A B) star

| o-tall : ({α:tp} ofk α K → ofk (A α) star) →

ofk (tall K A) star

| o-tlam : ({α:tp} ofk α K → ofk (A α) L) →

ofk (tlam K A) (karr K L)

| o-tapp : ofk A (karr K L) → ofk B K →

ofk (tapp A B) L;

Γ ⊢ A : K – Kinding

(α:K) ∈ Γ

Γ ⊢ α : K

Γ ⊢ A : ⋆ Γ ⊢ B : ⋆
Γ ⊢ A→ B : ⋆

Γ, α:K ⊢ A : ⋆

Γ ⊢ ∀α:K.A : ⋆

Γ, α:K ⊢ A : L

Γ ⊢ λα:K.A : K → L

Γ ⊢ A : K → L Γ ⊢ B : K
Γ ⊢ A B : L
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Notice that arrow (→) and universal (∀) types are limited to kind ⋆. Consequently, the

only valid type-level computations are variables, tlam, and tapp.

Next, we want to define the typing judgment. In the presence of type-level computations,

equality between types is no longer a trivial syntactic check. Therefore, we must first define

a type equality judgment. Following Abel (2009), we use the kind-directed βη-equality:

LF teq : tp → tp → kd → type =

| t-beta : ({α : tp} ofk αK → ofk (A α) L) →

ofk B K →

teq (tapp (tlam K A) B) (A B) L

| t-eta : ofk A (karr K L) →

teq A (tlam K (λα. tapp A α)) (karr K L)

...

Γ ⊢ A ≡ B : K – Type equal-

ity at kind K

Γ, α:K ⊢ A : L Γ ⊢ B : K

Γ ⊢ (λα:K.A) B ≡ [B/α]A : L

Γ ⊢ A : K → L
Γ ⊢ A ≡ (λα:K.A α) : K → L

...

For conciseness, we omit here the congruence rules that are needed to propagate type

equality across the entire type system. In particular, there are subtle issues that occur when

dealing with reflexivity and variables, which we will discuss in more details in our second

case study. Now, we can finally define our typing judgment:
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LF oft : tm → tp → type =

| o-lam : ({x:tm} oft x A → oft (M x) B) →

oft (lam A M) (tarr A B)

| o-app : oft M (tarr A B) → oft N A →

oft (app M N) B

| o-Lam : ({α:tp} ofk α K → oft (M α) (A α)) →

oft (Lam K M) (tall K A)

| o-App : oft M (tall K A) → ofk B K →

oft (App M B) (A B)

| o-teq : oft M A → teq A B star →

oft M B;

Γ ⊢M : A – Typing

(x:A) ∈ Γ

Γ ⊢ x:A

Γ, x:A ⊢M : B

Γ ⊢ λx:A.M : A→ B

Γ ⊢M : A→ B Γ ⊢ N : A
Γ ⊢M N : B

Γ, α:K ⊢M : A

Γ ⊢ Λα:K.M : ∀α:K.A

Γ ⊢M : ∀α:K.A Γ ⊢ B : K
Γ ⊢M B : [B/α]A

Γ ⊢M : A Γ ⊢ A ≡ B : ⋆
Γ ⊢M : B

Notice, now, that the typing judgment ensures that any term must have a type that is

equal to either an arrow or a universal, i.e. a type of kind ⋆, except for type variables. By

using a suitable schema, we can ensure that any term variable is also assigned a type of kind

⋆, and thus that any well-typed term has a base type. We encode the schema as follows:

LF ctx : schema =

| tp-var : some [K:kd]

block (α : tp, k : ofk α K)

| tm-var : some [A:tp, W:ofk A star]

block (x : tm, t : oft x A);

⊢ Γ – Γ is a well-formed context

⊢ Γ Γ ⊢ K
⊢ Γ, α:K

⊢ Γ Γ ⊢ A : ⋆
⊢ Γ, x:A

Notice here that forming a tm-var assumption requires a parameter W:ofk A star which
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appears nowhere in the block. The new notation for contexts that we suggest in this work is

crucial to properly handling this kind of scenario appropriately. Consider, for instance, the

following result stating that if M : A, then A : ⋆:

rec subderiv : (Γ : ctx) [Γ ⊢ oft M A] → [Γ ⊢ ofk A star] =

fn d => case d of

| [Γ, b:tm-var A W ⊢ b.2] => [Γ, b:tm-var A W ⊢ W]

...

Using the previous notation (Pientka and Dunfield, 2010) for context extensions, we would

instead have only the pattern [Γ, b:block(x:tm, t:oft x A)], from which it is impos-

sible to recover the desired derivation. We first encountered this issue when attempting to

mechanize Stone and Harper (2006)’s proof of normalization for Standard ML’s module

calculus. Solving that problem was the original motivation behind the present work (al-

though, in time, it became a fairly small aspect of it). Unfortunately, we still only have a

partial solution: although the variable case of the subderivation lemma can now be solved,

other cases remain difficult to prove in our setting. Consider, in particular, the case of

functions, which we would like to (but cannot) solve roughly as follows:

| [Γ ⊢ o-lam (λx.λt.D)] =>

let [Γ, b:tm-var A W1 ⊢ W2] =

subderiv [Γ, b:tm-var A W1 ⊢ D[..,b.1,b.2]] in

[Γ ⊢ o-tarr W1 W2]

There are two main problems with this. First, the derivation W2 may, in principle, depend

on b, so we cannot use it in context Γ in the last line. This issue can be solved by prov-
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ing a strengthening lemma since kinding derivations can never depend on terms or typing

derivations (i.e. anything in a tm-var assumption).

The second, and more important, problem is that we do not know from the premise that

the derivation W1 actually exists. We can infer what A is since D depends on the variable t,

which is known to have type oft x A. But, there is nothing there to allow us to retrieve a

derivation of ofk A star. It is possible to work around this issue by including the missing

assumption as part of o-lam’s type, but this is unsatisfactory since the informal formulation

of the judgment does not include this assumption.

A more satisfactory solution could come from allowing full-fledged schema elements to

appear in negative positions of type definitions. In this setting, the type of o-lam would be-

come ({b:tm-var A W} oft (M b.1) B) → oft (lam M) (arr A B), which would then

allow us to easily recover all the information that we need. For this approach to work,

we would also need to simultaneously define judgments and the contexts in which they are

meaningful. This being said, we have not yet investigated this idea, so we cannot assert, at

this time, that it is a viable option.

5.1.2 Bi-directional typing

Next, let us briefly look at how one may extract some interesting fragments of Fω using

refinements. In Chapter 3, we briefly discussed how neutral and normal terms could be

defined as refinements of terms in the STLC. Here, we revisit this example by extracting a

bi-directional typing algorithm as a refinement of Fω’s typing judgment. For simplicity, we

will focus only on typing, although one could also specify a bi-directional kinding judgment

103



in a similar way.

The first step in defining the bi-directional type checker is to extract neutral and normal

terms. We achieve this elegantly thanks to subsorting, just like we did for STLC:

LFR neut ⊏ tm : sort =

| app : neut → norm → neut

| App : neut → tp → neut

and neut ≤ norm ⊏ tm : sort =

| lam : tp → (neut → norm) → norm

| Lam : kd → (tp → norm) → norm;

Neutral R ::= x

| R N

| R A

Normal N ::=

λx:A.N

| Λα:K.N

Now, a bi-directional type checker has two phases: type synthesis for neutral terms, and

type checking for normal terms, with a conversion from synthesis to checking. So, we can

again use subsorting to obtain the conversion. Moreover, here we can use kind refinements to

enforce that only neutral terms are allowed in synthesis, and only normal terms in checking.

We obtain the following encoding:
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LFR synth ⊏ oft : neut → tp → sort =

| o-app : synth R (arr A B) →

check N A →

synth (app R N) B

| o-App : synth R (tall K A) →

ofk B K →

synth (App R B) (A B)

and synth ≤ check ⊏ oft : norm → tp → sort =

| o-lam : ({x:neut} synth x A → check (N x) B) →

check (lam A N) (arr A B)

| o-Lam : ({α:tp} ofk α K → check (N α) (A α)) →

check (Lam K N) (tall K A)

| o-teq : synth M A → teq A B →

check M B;

Γ ⊢ R ⇒ A – Synthesis

(x:A) ∈ Γ

Γ ⊢ x⇒ A

Γ ⊢ R ⇒ A→ B

Γ ⊢ N ⇐ A

Γ ⊢ R N ⇒ B

Γ ⊢ R ⇒ ∀α:K.A

Γ ⊢ B : K

Γ ⊢ R B ⇒ [B/α]A

Γ ⊢ N ⇐ A – Checking

Γ ⊢ R ⇒ A
Γ ⊢ R ⇐ A

Γ, x:A ⊢ N ⇐ B

Γ ⊢ λx:A.N ⇐ A→ B

Γ, α:K ⊢ N ⇐ A

Γ ⊢ Λα:K.N ⇐ ∀α:K.A

Notice that the sort of o-teq also offers a conversion from synthesis to checking, so the

subsorting is not strictly necessary for this example. This being said, using subsorting for

conversion removes the need to check equality of a type with itself. Finally, we incorporate

the fact that variables are neutral and subject to synthesis as part of our context schemas:

LFR bdt-ctx ⊏ ctx : schema =
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| tp-var : some [K:kd] block (α:tp, k:ofk α K)

| tm-var : some [A:tp, W:ofk A star] block (x:neut, t:synth x A);

And this concludes the encoding of a bi-directional typing judgment as a refinement of

the ordinary typing judgment. Now, our conservativity results imply that a subsumption

property from bi-directional derivations to ordinary derivations is admissible. That is, if

Γ:bdt-ctx and M:[Γ⊢ check M A], then Γ:ctx and M:[Γ⊢ oft M A]. This means that we

can apply our lemma subderiv to M and obtain a proof that [Γ ⊢ ofk A star]. In other

words, the properties proven about ordinary typing derivations still hold of bi-directional

typing derivations, hence refinements provide a form of proof reuse.

5.2 Equality

For our second example, we tackle one of the benchmarks presented by Felty et al. (2015a),

showing the equivalence between two forms of equalities in the untyped λ-calculus. Several

solutions to this benchmark were discussed in a follow-up paper (Felty et al., 2015b). This

provides us with an opportunity to compare our mechanization with refinements to previous

attempts with types only, and to observe more significant improvements than we previously

obtained in our simple example that values do not step.

5.2.1 Overview of the benchmark

Lemmas play a crucial role in structuring complex proofs, both formally and informally. To

allow flexible usage, a lemma’s statement should make no assumption about the setting in
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which it may be invoked. A particular lemma may come up in the proofs of several theorems,

each of which makes slightly different and stronger assumptions than those required by

the lemma. In our previous case study, we saw a subderivation property that holds of all

typing derivations, and discussed how it also holds of bi-directional derivations. There, the

assumption of being a bi-directional typing derivation was stronger than just being a typing

derivation, and this was encompassed by our refinement subsumption. One reason why this

worked is that the contexts of both typing disciplines have the same structure, but this

may not always be the case. For instance, a lemma concerning all untyped terms should be

applicable regardless of the typing discipline, but our refinements would not be helpful since

untyped contexts have a different structure than typed contexts.

Felty et al. (2015a) suggests two solutions for this problem, along with several benchmarks

aimed at comparing the two approaches (and their solutions using different proof environ-

ments). The generalized context approach (G version) consists of stating every lemma and

theorem with the same context schema. Consequently, all the assumptions needed for some

proof need to be carried across all proofs, thus failing at making only minimal assumptions.

In contrast, the context relation approach (R version) uses minimal schemas in statements

of lemmas and theorems, but requires the top-level theorem to manipulate several related

contexts, so that it can call the relevant lemmas on the correct context. Despite being con-

ceptually more pleasing, R version proofs tend to be more complicated than G version proofs.

Even for the relatively simple benchmarks proposed by Felty et al. (2015a), we observe a

significant blow-up in the size of types required to express theorems. This is only due to the

fact that multiple contexts and relations between them need to be maintained and passed
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as arguments to recursive calls. The increased size impacts the readability of mechanized

proofs by drowning the important parts of a type in a sea of technical details. We can only

expect this to get worse as we attempt to mechanize more and more complex proofs, so we

conclude that the context relation approach does not easily scale.

Now, we will illustrate the benefits of refinement types by revisiting one of the benchmark

proposed in Felty et al. (2015a), namely the equivalence of algorithmic and declarative

equalities in the untyped λ-calculus. Algorithmic equality traverses terms recursively to

establish that they are syntactically equal. Declarative equality does the same thing, but

also includes rules encoding the axioms of an equivalence relation (reflexivity, symmetry, and

transitivity). As such, we can represent algorithmic equality as a refinement of declarative

equality. This will allow us to encode the context relation as a refinement relation, so that it

does not need to be carried explicitly in the theorem. We end up with a proof that matches

the simplicity of a G version, but still offers the flexibility of the R version.

5.2.2 Solution using refinement types

Let us now present a new solution using refinements, so that we can later discuss how it

improves on previous approaches. The first step of the mechanization is to encode the

untyped λ-calculus as a type:

LF tm : type =

| lam : (tm → tm) → tm

| app : tm → tm → tm;

Terms M,N ::= x

| λx.M

|M N

There is nothing special about this definition that has not been discussed earlier, so we
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move on to encoding the judgments for equalities. We start with declarative equality, which

is represented as a type:

LF deq : tm → tm → type =

| e-lam : ({x:tm} deq x x → deq (M x) (N x)) →

deq (lam M) (lam N)

| e-app : deq M1 N1 →

deq M2 N2 →

deq (app M1 M2) (app N1 N2)

| e-refl : deq M M

| e-sym : deq M N →

deq N M

| e-trans : deq M1 M2 →

deq M2 M3 →

deq M1 M3;

Γ ⊢M ≡ N – Declarative

x ∈ Γ
Γ ⊢ x ≡ x

Γ, x ⊢M ≡ N

Γ ⊢ λx.M ≡ λx.N

Γ ⊢M1 ≡M2

Γ ⊢ N1 ≡ N2

Γ ⊢M1 N1 ≡M2 N2

Γ ⊢M ≡M

Γ ⊢ N ≡M
Γ ⊢M ≡ N

Γ ⊢M1 ≡M2

Γ ⊢M2 ≡M3

Γ ⊢M1 ≡M3

So, we have a rule that says that variables are equal to themselves, two congruence

rules to propagate equality through λ’s and applications, and the three rules representing

the axioms of equivalence relations, reflexivity, symmetry, and transitivity. Note that the

variable rule is redundant due to the presence of reflexivity, so it is technically not needed

for this judgment’s definition. We follow Felty et al. (2015a) in maintaining the variable rule

in order to facilitate the relation with algorithmic equality, which we will soon discuss. But

first, let us encode the contexts required to express proofs of declarative equality:
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LF xdG : schema =

| eq-var : block (x:tm, e:deq x x);

Contexts consists of term variables together with the assumption that they are declara-

tively equal to themselves. As usual, this coincides precisely with the negative occurrences

that we see in the definition of deq, so we know that proofs of deq can be constructed in a

context of schema xdG, as desired.

Now, algorithmic equality is just declarative equality without the three constructors

encoding the axioms of equivalence relations. As such, it is best defined as a refinement of

deq rather than as a separate atomic type:

LFR aeq ⊏ deq : tm → tm → sort =

| e-lam : ({x:tm} aeq x x → aeq (M x) (N x)) →

aeq (lam M) (lam N)

| e-app : aeq M1 N1 →

aeq M2 N2 →

aeq (app M1 M2) (app N1 N2);

Γ ⊢M ⇔ N – Algorithmic

x ∈ Γ
Γ ⊢ x⇔ x

Γ, x ⊢M ⇔ N

Γ ⊢ λx.M ⇔ λx.N

Γ ⊢M1 ⇔M2

Γ ⊢ N1 ⇔ N2

Γ ⊢M1 N1 ⇔M2 N2

Here, the variable rule is crucial for the judgment since it provides the only base case. We

note that a general reflexivity rule poses a conceptual problem when designing an algorithm

to decide equality since it is not immediately clear that two terms are syntactically the

same. That is, reflexivity concludes equality of arbitrary large terms in a single step, which

is unrealistic. On the other hand, variables are the smallest terms (along with constants),

so it is sensible to think that we can use reflexivity in one step for variables.
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One advantage of representing algorithmic equality as a refinement of declarative equality

is that we can exploit the subsumption associated to refinements to obtain soundness of

algorithmic equality for free. If we had used only types, this would need to be proven

explicitly, and, while this is not particularly difficult, it can be tedious to formally prove

results that would informally be dismissed as trivial by definition. In fact, this soundness

result is so obvious that Felty et al. (2015a) does not even mention it as a requirement for

establishing equivalence between the two equalities, focusing instead on completeness.

Finally, we need contexts in which to perform our algorithmic equality. The solution, of

course, is to refine declarative equality contexts:

LFR xaG ⊏ xdG : schema =

| eq-var : block (x:tm, e:aeq x x);

We use the same context schemas as suggested in Felty et al. (2015a), but we relate them

using the refinement relation instead of an explicitly defined inductive relation on contexts.

The refinement relation is then exploited in the proof of completeness to alternate between

the two schemas. The proof relies on three lemmas that each reproduces one of the missing

rules. We omit here their proofs as they are straightforward, and mention only their assigned

sort (reflexivity, symmetry, and transitivity, respectively):

aeq-ref : (Ψ : xaG) {M : [Ψ ⊢ tm]} [Ψ ⊢ aeq M M];

aeq-sym : (Ψ : xaG) [Ψ ⊢ aeq M N] → [Ψ ⊢ aeq N M];

aeq-tra : (Ψ : xaG) [Ψ ⊢ aeq M1 M2] → [Ψ ⊢ aeq M2 M3] → [Ψ ⊢ aeq M1 M3];

Finally, we must prove completeness. To achieve this, we need be able to alternate

between interpreting a context as an xaG and a xdG. We know from our conservativity result
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(Theorem 4.1) that whenever we have a context Ψ : xaG, we can find Γ : xdG with Ψ ⊏ Γ.

Moreover, as discussed in Chapter 3, we know that Ψ and Γ are, in fact, the exact same

context since Ψ has a schema, and therefore does not contain any type annotations (or,

rather, they are hidden within the schema). So, we introduce the notation Ψ⊤ to indicate

that we want to treat Ψ as having schema xdG instead of xaG. With this, we can state and

prove our completeness theorem as follows:

rec ceq : (Ψ : xaG) [Ψ⊤ ⊢ deq M N] → [Ψ ⊢ aeq M N] =

fn d => case d of

| [Ψ⊤ ⊢ #b.2] =>

[Ψ ⊢ #b.2]

| [Ψ⊤ ⊢ e-lam (λx.λe. D)] =>

let [Ψ, b:eq-var ⊢ E] = ceq [Ψ⊤, b:eq-var ⊢ D[.., b.1, b.2]] in

[Ψ ⊢ e-lam (λx.λe. E[..,<x;e>])]

| [Ψ⊤ ⊢ e-app D1 D2] =>

let [Ψ ⊢ E1] = ceq [Ψ⊤ ⊢ D1] in

let [Ψ ⊢ E2] = ceq [Ψ⊤ ⊢ D2] in

[Ψ ⊢ e-app E1 E2]

| [Ψ⊤ ⊢ e-refl M] =>

aeq-ref [Ψ ⊢ M]

| [Ψ⊤ ⊢ e-sym D] =>

let [Ψ ⊢ E] = ceq [Ψ⊤ ⊢ D] in

aeq-sym [Ψ ⊢ E]
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| [Ψ⊤ ⊢ e-trans D1 D2] =>

let [Ψ ⊢ E1] = ceq [Ψ⊤ ⊢ D1] in

let [Ψ ⊢ E2] = ceq [Ψ⊤ ⊢ D2] in

aeq-tra [Ψ ⊢ E1] [Ψ ⊢ E2];

So, we prove the result by induction on the given proof of declarative equality, with

six cases to consider. The first case, for variables, crucially exploits the good behaviour of

refinements. It is essentially an identity case, in the sense that we merely output the same

variable that was given as input. However, the interpretation differs because, in the input,

we considered it as an element of Ψ⊤, which has schema xdG, but the output is an element of

Ψ, which instead has schema xaG. Since the sort information is entirely located within the

schema, and not the context itself, we know that the input has sort deq #b.1 #b.1, while

the output has sort aeq #b.1 #b.1, as desired. Note also that we can be certain that #b

appears in both contexts since they are the same, only interpreted slightly differently.

The next two cases correspond to our congruence rules. Since those appear in both

judgments, we need only unpack the information, apply an inductive hypothesis, and repack

the results. The case for e-lam illustrates well the fact that the contexts Ψ and Ψ⊤ must

be syntactically equal: both contexts are extended with the same assumption b:eq-var.

The notation <x;e> appearing in the substitution on the last line of this case is the concrete

syntax for substitutions including n-ary tuples (or spines). It is needed here because we have

a derivation E that makes sense in context Ψ, b:eq-var, but e-lam expects a derivation in

context Ψ, x:tm, e:aeq x x.

The last three cases correspond to the rules encoding equivalence relations. These are
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handled in a similar way to the congruence rules, except that we call the relevant lemma

(instead of an inference rule) after applying the inductive hypothesis. Note that the deriva-

tion that we obtain from the recursive call is in context Ψ, so it correctly matches the sort

expected by the lemma.

5.2.3 Comparison with previous solutions

Several solutions1 have already been proposed for this benchmark (Felty et al., 2015b).

This section will discuss how we have improved on previous work, focusing on the previous

Beluga solution. The key takeaway is that we require fewer parameters to be passed as

inputs to the function, and fewer types to encode these parameters. Moreover, the additional

types are computation-level inductive types, so our solution, in addition to being simpler,

relies on (arguably) less heavy machinery. Let us start by looking at the statement of the

completeness result in Beluga, which provides a good example of an unreadable type:

ceq: Ctx_xaR [Γ] [Ψ] [Ψ ⊢ $σ] →

Ctx_xdR [Γ] [Φ] [Φ ⊢ $ρ] →

Ctx_adR [Ψ] [Φ] →

Eq [Γ] [Ψ] [Ψ ⊢ $σ] [Γ ⊢ M] [Ψ ⊢ Ma] →

Eq [Γ] [Ψ] [Ψ ⊢ $σ] [Γ ⊢ N] [Ψ ⊢ Na] →

Eq’ [Γ] [Φ] [Φ ⊢ $ρ] [Γ ⊢ M] [Φ ⊢ Md] →

Eq’ [Γ] [Φ] [Φ ⊢ $ρ] [Γ ⊢ N] [Φ ⊢ Nd] →

[Φ ⊢ deq Md Nd] → [Ψ ⊢ aeq Ma Na]

1The complete solutions can be found at https://github.com/pientka/ORBI.
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The first three parameters correspond to context relations, where Γ contains only tm vari-

ables, and Ψ and Φ additionally contain aeq and deq variables, respectively. The first rela-

tion, Ctx_xaR [Γ] [Ψ] [Ψ ⊢ $σ], expresses that σ is a weakening substitution that adds to

each block (x:tm) an assumption of type aeq x x. The relation Ctx_xaR [Γ] [Φ] [Φ ⊢ $ρ

], is similar, except that it weakens with deq x x assumptions. Finally, the third relation,

Ctx_adR [Ψ] [Φ], essentially expresses our refinement relation Ψ ⊏ Φ.

The type Eq expresses that applying the substitution $σ to M results in Ma. We cannot

directly use the same object since the variables of Γ are different from those of Ψ, so that M

is not meaningful in context Γ. The type Eq’ is similar, but relates objects in Γ to objects

in Φ instead. Each of these seven arguments serve only as a setup for the last line to express

the desired property.

In the interest of fair comparison, we observe that this result is slightly stronger than

what we have proven using refinements. The tm’s compared, M and N, are meaningful in the

context containing only tm assumptions, and then weakened to the larger contexts using Eq

and Eq’. Our version only specifies that the tm’s are meaningful in both the xaG and the xdG

contexts. To obtain, in conventional Beluga, the same property that we proved, we would

only need the context relation Ctx_adR and we could use an equality predicate to directly

relate terms in Ψ to terms in Φ (although there would be no substitution between the two

contexts). Since our extension does not currently support definitions of computation-level

types, we cannot yet reproduce the exact same result. However, we expect that a slightly

richer form of refinements would allow us express it without the use of any user-defined

computation-level types (see 6.2 for a discussion).
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Chapter 6

Conclusion

We included a form of datasort refinement types (Freeman and Pfenning, 1991) to Beluga

(Pientka and Dunfield, 2010), a proof environment specialized in proving meta-theoretic

properties of programming languages and other similar formal systems. The key advantage

that Beluga offers is its handling of contexts as first-class objects, which allows mechanized

OLs to inherit the good properties of LF substitutions for free. Through the addition of re-

finements, in particular refinement schemas, we improved upon this advantage by expanding

the precision of classifiers.

In the process, our formulation of the language went through several iterations, which led

us to describe refinement as a relation between judgments, rather than between the various

objects which compose them. We identify two main benefits to this approach. First, it

becomes clear that the refinement relation may be interpreted as a function, meaning that

every sort refines a unique type, and that said type may be derived from the shape of the

sort. Second, it significantly simplifies the proof of conservativity, which would otherwise
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rely on several lemmas (rather than be self contained). We note also that our formulation

demonstrates the simplicity of extending a language with refinements by highlighting the

close similarities between the new judgments and those that existed before.

Finally, we illustrated the benefits of refinements for Beluga through examples. In

particular, we revisited one of the benchmarks proposed by Felty et al. (2015a), which is

concerned with relations between contexts. Our notion of refinement schema provides an

elegant representation of some of the relations, which we used to significantly simplify the

statement of the main theorem. This is mainly caused by the fact that several predicates can

be expressed without the use of additional parameters. Thus, refinements improve the clarity

of mechanizations, bringing the formal and informal theorem statements closer together.

6.1 Discussion

This work has been guided by two distinct, yet intertwined, guiding lines. In the beginning,

we were concerned with correctly representing contexts, particularly in the setting of HOAS.

We revised our understanding of schemas so as to view them in a constructive way, similar to

atomic types. Specifically, we now view schema elements as analogous to constructors, but for

contexts. Then, much like atomic types provide the recipes for constructing particular terms,

schemas provide the recipes for constructing particular contexts. This modification allows

us to correctly interpret schemas as formal representations of context formation judgments

of OLs, and thus maintains the “judgments-as-types” principles that Beluga inherits from

LF. At first, the change seemed simple enough that it would have few ramifications: it

merely solved a minor, technical bug in Beluga’s representation of context.
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The focus of our research then moved towards more conceptual challenges related to con-

texts in HOAS representations. Felty et al. (2015a) discusses how different judgments can

rely on slightly different context structures. Since one OL usually involves several judgments,

we may need several schemas to satisfyingly state all the meta-theoretic properties that we

care about. In many cases, these various schemas are related, or rather the contexts inhab-

iting them are related, although not always in a clear way. Through multiple benchmarks,

Felty et al. (2015a) investigates these issues, and provides a solution for a modular state-

ment of lemmas and theorems, namely context relations. Unfortunately, context relations

seriously complicate the statements of theorems, which obscures the correspondence between

formal and informal theorems. This being said, the context relations solution is conceptually

pleasing since it indicates a possible path towards scalable formal proofs. As such, it deserves

further investigation, hence we decided to tackle its challenges with refinement types, our

second guiding line.

While datasort refinements were previously used mainly as a way to provide subtyping

and intersection types to a language, our work focuses on the refinement relation itself. In

particular, we discussed how refinements could allow validating the correctness of proofs

containing non-exhaustive pattern matching. As such, refinement types can help a proof en-

vironment reproduce the informal method of omitting irrelevant possibilities, which crucially

relies on knowing what a function will be called on. Unfortunately, we could not, in this

work, finalize the design of a coverage checker, so the interpretation of programs as proofs

remains incomplete.

Our notion of refinement differs from previous datasort systems (Freeman and Pfenning,
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1991; Lovas and Pfenning, 2010) in that we do not consider sort-checking as phase that

occurs after type-checking. Rather, we view type-checking as a by-product of sort-checking,

in the sense that the sort-checking algorithm can generate a valid typing derivation. We

achieved this by formulating our refinement relations between judgments themselves, rather

than on the various syntactic objects that compose them. Our view is that refinements are

best understood as a means of safely reusing constructors that were uniquely introduced

through type definitions.

Through this extension, we studied the novel notion of refinement schemas. These express

more precise information about contexts, much like refinement types express more precise

properties about objects. In particular, refinement schemas are useful to deal with a special

kind of context relations, namely those when contexts are related by refinements. We demon-

strated this by revisiting one of the benchmarks suggested by Felty et al. (2015a), in which

our solution was significantly simpler than the previous, types-only, Beluga solution. Our

investigation of refinement schemas further reinforced the correctness of our reformulation

of contexts and schemas. By viewing schema elements as constructors of contexts, we can

consider the refinement relation on schemas as a way to reuse the same syntax, much like

we interpret atomic sorts. In particular, this means that we can now view a single context

in multiple different ways, which eliminates the need for certain context relations.

A key objective that motivated the present work is the development of a practical proof

environment, in the sense that most of a user’s efforts should go into the conceptual aspects

of a proof, rather than the technical implementation details imposed by the underlying type

theory. Refinement types play an interesting role in this endeavour. When included in an al-
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ready practical system, such as Standard ML (Freeman and Pfenning, 1991; Davies, 2005),

they increase the power of the type theory, allowing it to provide stronger security guarantees

without significantly affecting the usability. On the other hand, by adding refinements to an

already expressive language, such as LF (Lovas and Pfenning, 2010) or Beluga, we instead

improve the usability without sacrificing any type theoretic power. This makes them a useful

tool in virtually any language. Moreover, the wealth of work on datasort refinements hints

that they can scale well to very rich type theories. With the formulation suggested in this

thesis, it seems that they would also be relatively easy to add in most systems: basically, we

only duplicated everything in the language and added a few rules to handle sort declarations

in the signature formation judgment.

In Beluga, every computation-level expression has a unique type, but they can have

many sorts in our extension. Pfenning (2008) discusses this phenomenon and how it relates

intrinsic and extrinsic views of typing, respectively. That is, types may be viewed as an

intrinsic, syntactic property of expressions, whereas sorts represent properties that are ex-

ternally asserted. The fact that our judgments produce typing derivation then shows that

sorts can only express properties about objects that are intrinsically meaningful. Moreover,

it tells us that that the unique intrinsic property of a program is hidden within any extrinsic

property that applies to that program.

Conceptually, an extrinsic view of typing is satisfying. This is especially true because

terms evaluate in the same way no matter the particular typing discipline enforced. However,

this view relies on the possibility to define terms independently of types (or sorts), which

proves difficult when we consider contexts as objects. This is because we cannot discard the
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type information of the variables in a context without losing information on its structure,

especially in the case of blocks. Our new formulation of contexts and schemas using worlds

provides a partial solution to this problem: a context only inhabits a schema if all of its

variables are constructed from its schema elements. Since a schema element is only a name,

contexts are expressed as lists of names applied to terms. Consequently, contexts do not

directly contain any type (or sort) information.

On the other hand, intrinsic typing offers the benefit of filtering out ill-defined terms

from the start. Under this view, we recognize that our underlying model of computation,

the (untyped) λ-calculus, describes many programs that are simply meaningless. Thus,

adopting a strict typing discipline that removes these programs from the language will only

save us the headache of fixing errors. However, the intrinsic type of a program should be

uniquely determined from the shape of the program alone, so this view is only compatible

with languages in which type uniqueness holds. In practice, this means that code cannot

easily be reused in slightly different settings, since the type would have to change.

Previous versions of Beluga have opted for the intrinsic typing approach. In our setting

of datasort refinements, we settle instead for a compromise between the two views of typing:

types correspond to intrinsic properties, and sorts to extrinsic properties. In doing so,

we can leverage the advantages of both approaches: types provide strong guarantees that

programs perform only meaningful computations, while sorts allow us to express multiple

precise statements on the behaviour of programs. However, we also inherit some of the

inconveniences from both approaches: types no longer ensure that programs always perform

computations because non-exhaustive pattern matching is allowed, and sort-checking is more
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expensive than type-checking because constructors have multiple sorts, so we have to make

the right choices in signature lookups (or backup and try again).

Handling contexts and substitutions is at the source of many difficulties in the field of

programming languages. As mentioned in Chapter 5, this work originated in an attempt

at mechanizing the meta-theory of Standard ML, which failed due to subtle errors in

Beluga’s understanding of contexts. Previous mechanizations of Standard ML also had

a hard time dealing with contexts: Lee et al. (2007) reports that about half of their Twelf

(Pfenning and Schürmann, 1999) mechanization pertains to proving (hereditary) substitution

properties, and Rossberg et al. (2010) notes that most of the lemmas in their Coq (Dowek

et al., 1993) mechanization are devoted to the context and substitution infrastructure. These

proofs tend to be long and tedious, which may discourage language designers from formalizing

their systems. The main advantage of HOAS is that it relegates much of these tedious lemmas

to the underlying meta-language, so the user obtains them for free. Thus, we can expect a

Beluga mechanization to be much shorter than previous attempts.

The language discussed in the present thesis went through several stages of formulation,

mainly because of difficulties related to contexts. In particular, we started with contexts

where variables are assigned both a sort and a type, following Lovas and Pfenning (2010).

This proved inadequate when dealing with contextual refinements, where it was more mean-

ingful to fully separate sorting and typing contexts, as we did now. However, this meant that

several premises establishing refinement relations were needed in some rules, which eventu-

ally led us to formulate refinements directly on judgments. Originally, we only intended this

formulation to validate all the necessary refinement relations at the same time, but once we
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had this formulation, it became a lot clearer that we could view the refinement relation as a

function (i.e. that types could be generated). In other words, handling these small, subtle

problems with contexts led to one of the central contributions of our work.

Our formulation of Beluga also differs from previous ones (Pientka, 2008; Cave and

Pientka, 2013; Pientka and Abel, 2015) in its treatment of substitutions. Like them, we

ensure that substitutions have the same shape as their domain context, thus eliminating

the need to explicitly specify said domain. However, since our contexts are structured into

blocks, substitutions needed to also have that form. This is why we allow n-ary tuples in

substitutions. Once again, this is a design decision that was based on how we understand

contexts. We note that both the structure of contexts into blocks and the idea that sub-

stitutions should have the same shape as their domain were previously discussed, yet, to

our knowledge, the idea that substitutions be structured into blocks as well had not been

previously explored.

6.2 Future work

We end this discussion by looking at some of the possible avenues for future work. A

most simple direction is to carry on the extension of refinements to the remaining features

of Beluga. In particular, we expect that there should be no significant challenges with

extending our refinement relations to computation-level inductive types, especially given that

datasorts were originally designed for inductive types. Moreover, we expect that refinements

for computation-level inductive types would increase the expressive power of Beluga type.

This is because these types cannot be dependencies of other types, so we cannot express
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predicates about objects of computation-level inductive types. As pointed out by Lovas and

Pfenning (2010), datasorts can be understood as (proof irrelevant) predicates on the type

which they refine.

Beluga’s computation-level also supports coinductive types and index-stratified types,

neither of which has ever been studied through the lens of refinements (to our knowledge).

(Co)inductive and stratified are defined together in Jacob-Rao et al. (2018), so it would be

straightforward to extend our computation-level judgments with the additional rules that

they have. All of these computation-level types allow us to mechanize additional proof

methods, such as logical relations. Given the importance of such proofs in programming

language theory, supporting them would certainly improve our system.

Another immediately useful addition to the present work would be the development of

a refinement-level totality checker. The type-level totality checker was developed in Pientka

and Abel (2015) and is essential in identifying which functions can be understood as proofs.

There are three important components needed by the totality checker: First, a unification

procedure, second, a way to split on LF objects, that is, identify the possible patterns

representing that object, and third, a well-founded order on objects of the data-level. For

the first point, we note that the main challenge of unification is unifying terms. Since we have

not changed the language of terms, we expect that the procedure of Pientka (2003) can be

adapted to our purpose. Likewise, the third point is already solved by using the same order

that Pientka and Abel (2015) suggested, which is still applicable to us since the terms of

LF and LFR are the same. This leaves us, then, only with the task of designing a splitting

algorithm. The algorithm suggested by Pientka and Abel (2015) proceeds essentially by
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brute-force, generating all the possible patterns based on the definition of the atomic LF

type of the guard. Due to the close similarity between type definitions and sort definitions,

it should again be possible to adapt their algorithm to our setting. However, complications

arise in the presence of subsorting since generating all the patterns that can yield an object

of a given atomic sort Q also requires generating the patterns for all of its subsorts. This

will be particularly difficult in the case where a particular constructor is allowed by both

Q and some of its subsorts, as there would then be multiple cases associated to the same

constructor. A simple solution for this problem would be to use explicit coercions whenever

subsorting occurs, and to associate a special pattern to these coercions. In this way, we

can differentiate the different possible uses of a constructor, thus resolving the issue. We

recall that refinements were originally intended to solve this non-exhaustive pattern matching

problem (Freeman and Pfenning, 1991), so it is really not surprising that we can apply them

for this purpose here as well.

The other important theme of this work is the structure of contexts and of relations

between them, which can also benefit from further investigations. We have discussed in

Chapter 5 that refinement schemas could be used for representing some of the context re-

lations described by Felty et al. (2015a). However, our current notion of refinements can

represent only a small subset of these context relations. In particular, the limitation that a

refined schema element must have exactly the same shape as what it refines prevents describ-

ing relations between contexts that do not have the exact same structure. In our current

setting, a refinement between contexts, say Ψ ⊏ Γ, indicates that Ψ is “stronger” than Γ, in

the sense that the assumptions contained in Ψ entail those contained in Γ. In this case, there
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are more proofs possible in context Ψ than there are in context Γ. Keeping in line with this

idea, it is interesting to consider how the refinement relation may be meaningfully extended

to allow Ψ to contain more variables than Γ. Felty et al. (2015a) already discussed such

context relations, so there are several known examples for which this extended refinement

relation could be applied.
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Appendix A

Definition of Contextual LFR

A.1 Syntax

A.1.1 Syntax of CLFR objects

Heads H ::= c | x | b.k

Spines M⃗ ::= nil |M ; M⃗

Neutral terms R ::= H M⃗ | u[σ]

Normal terms M ::= R | λx.M

Substitutions σ ::= · | idψ | σ, M⃗

A.1.2 Syntax of CLFR classifiers
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Syntactic category Type level Refinement level

Kinds K ::= type | Πx:A.K L ::= sort | Πx::S.L

Atomic families P ::= a · M⃗ Q ::= s · M⃗

Canonical families A ::= P | Πx:A1.A2 S ::= Q | Πx::S1.S2

Blocks C ::= A | Σx:A.C D ::= S | Σx::S.D

Worlds V ::= C | Πx:A.V W ::= D | Πx::S.W

Contexts Γ ::= · | ψ | Γ, x:A | Γ, b:(E · M⃗) Ψ ::= · | ψ | Ψ, x::S | Ψ, b::(F · M⃗)

Schemas G ::= · | G+ v H ::= · | H +w

A.1.3 Syntax of meta-layer

Syntactic category Type level Refinement level

Meta-objects M ::= Γ̂.R | Γ̂.σ | Γ N ::= Ψ̂.R | Ψ̂.σ | Ψ

Meta-types A ::= Γ.P | Γ1.Γ2 | G S ::= Ψ.Q | Ψ1.Ψ2 | H

Meta-contexts ∆ ::= · | ∆, X:A Ω ::= · | Ω, X:S

Meta-substitutions θ ::= · | θ,M ρ ::= · | ρ,N

Meta-variables X ::= u | ψ
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A.2 Type-level judgments

A.2.1 Type formation

∆;Γ ⊢ K : kind – K is a well-formed kind.

∆ ⊢ Γ ctx
∆;Γ ⊢ type : kind

K-type
∆;Γ, x:A ⊢ K : kind

∆;Ψ ⊢ Πx:A.K : kind
K-pi

∆;Γ ⊢ A⇐ type – Canonical type family A is well-formed.

(a:K) ∈ Σ ∆;Γ ⊢ M⃗ : K > type

∆;Γ ⊢ a M⃗ ⇐ type
T-atom

∆;Γ ⊢ A1 : type ∆;Γ, x:A1 ⊢ A2 ⇐ type

∆;Γ ⊢ Πx:A1.A2 ⇐ type
T-pi

∆;Γ ⊢ M⃗ : K > type – Check spine M⃗ against K with target type.

∆ ⊢ Γ ctx
∆;Γ ⊢ nil : type > type

K-spn-nil

∆;Γ ⊢M ⇐ A ∆;Γ ⊢ M⃗ : [M/x]K > type

∆;Γ ⊢ (M ; M⃗) : Πx:A.K > type
K-spn-cons

A.2.2 Typing

∆;Γ ⊢ H ⇒ A – Synthesize type A for head H

(c:A) ∈ Σ ∆ ⊢ Γ ctx

∆;Γ ⊢ c ⇒ A
TS-const

(x:A ∈ Γ) ∆ ⊢ Γ ctx

∆;Γ ⊢ x⇒ A
TS-x

(b : w[M⃗ ]) ∈ Γ ∆; Γ ⊢ w[M⃗ ] > C ∆;Γ ⊢ b : C ≫k
1 A

∆;Γ ⊢ b.k ⇒ A
TS-b
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∆;Γ ⊢ V [M⃗ ] > C – Instantiate block C for element V applied to M⃗

∆;Γ ⊢ C[nil] > C
Inst-nil

(w:V ) ∈ Σ ∆;Γ ⊢ V [M⃗ ] > C

∆;Γ ⊢ w[M⃗ ] > C
Inst-const

∆;Γ ⊢M ⇐ A ∆;Γ ⊢ ([M/x]V )[M⃗ ] > C

∆;Γ ⊢ Πx:A.V [M ; M⃗ ] > C
Inst-pi

∆;Γ ⊢ b : C ≫k
i A – Extract type A for kth projection of block variable b

∆;Γ ⊢ b : Σx:A.C ≫k
k A

Ext-stop
∆;Γ ⊢ b : [b.i/x]C ≫k

i+1 A

∆;Γ ⊢ b : Σx:A′.C ≫k
i A

Ext-cont

∆;Γ ⊢ R ⇒ A – Synthesize type A for neutral term R

∆;Γ ⊢ H ⇒ A′ ∆;Γ ⊢ M⃗ : A′ > A

∆;Γ ⊢ H M⃗ ⇒ A
TS-app

(u : Γ′.A) ∈ ∆ ∆;Γ ⊢ σ : Γ′

∆;Γ ⊢ u[σ] : [σ]A
TS-mvar

∆;Γ ⊢ M⃗ : A > P – Apply type A to spine M⃗ to obtain type P

∆;Γ ⊢ nil : P > P
TC-spn-nil

∆;Γ ⊢M ⇐ A1 ∆;Γ ⊢ M⃗ : [M/x]A2 > P

∆;Γ ⊢ (M ; M⃗) : Πx:A1.A2 > P
TC-spn-cons

∆;Γ ⊢M ⇐ A – Check normal term M against type A.

∆; Γ ⊢ R ⇒ P

∆;Γ ⊢ R ⇐ P
TC-conv

∆;Γ, x:A ⊢M ⇐ A′

∆;Γ ⊢ λx.M ⇐ Πx:A.A′ TC-lam
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A.2.3 Schemas

∆;Γ ⊢ C : block – Block of declarations C is well-formed

∆ ⊢ Γ : ctx
∆;Γ ⊢ · : block

B-empty
∆;Γ ⊢ A⇐ type ∆;Γ, x:A ⊢ C : block

∆;Γ ⊢ Σx:A.C : block
B-sigma

∆;Γ ⊢ V : world – World V is well-formed

∆; Γ ⊢ C : block

∆;Γ ⊢ C : world
W-conv

∆;Γ ⊢ A⇐ type ∆;Γ, x:A ⊢ V : world

∆;Γ ⊢ Πx:A.V : world
W-pi

∆ ⊢ G : schema – Schema G is well-formed

⊢ ∆ : mctx
∆ ⊢ · : schema

S-empty
∆ ⊢ G : schema w /∈ Σ ∆; · ⊢ V : world

∆ ⊢ G+w:V : schema
S-ext

∆ ⊢ Γ : G – LF context Γ has schema G in meta-context ∆

∆ ⊢ G : schema
∆ ⊢ · : G

SC-empty
(ψ : G) ∈ ∆

∆ ⊢ ψ : G
SC-var

∆ ⊢ Γ : G (w:V ) ∈ G ∆;Γ ⊢ w[M⃗ ] > C

∆ ⊢ (Γ, b:w[M⃗ ]) : G
SC-ext

A.2.4 Contexts

∆ ⊢ Γ : ctx – LF context Γ is well-formed in meta-context ∆

⊢ ∆ : mctx
∆ ⊢ · : ctx

C-empty
(ψ : G) ∈ ∆ ⊢ ∆ : mctx

∆ ⊢ ψ : ctx
C-var

∆ ⊢ Γ : ctx ∆;Γ ⊢ A⇐ type

∆ ⊢ (Γ, x:A) : ctx
C-cons-x

∆ ⊢ Γ : ctx ∆;Γ ⊢ w[M⃗ ] > C

∆ ⊢ (Γ, b:w[M⃗ ]) : ctx
C-cons-b

∆;Γ1 ⊢ σ : Γ2 – σ is a well-formed subsitution from Γ2 to Γ1

∆ ⊢ Γ1 : ctx
∆;Γ1 ⊢ · : ·

Subst-empty
(ψ : G) ∈ ∆ ∆ ⊢ Γ1 : ctx

∆;Γ1 ⊢ idψ : ψ
Subst-id

138



∆;Γ1 ⊢ σ : Γ2 ∆;Γ1 ⊢M ⇐ [σ]A

∆;Γ1 ⊢ (σ,M) : (Γ2, x:A)
Subst-tm

∆;Γ1 ⊢ σ : Γ2 ∆;Γ2 ⊢ w[M⃗
′
] > C ∆;Γ1 ⊢ M⃗ ⇐ [σ]C

∆;Γ1 ⊢ (σ, M⃗) : (Γ2, b:w[M⃗
′
])

Subst-spn

∆;Γ ⊢ M⃗ ⇐ C – n-ary tuple M⃗ checks against block of declarations C

∆ ⊢ Γ : ctx
∆;Γ ⊢ nil ⇐ ·

Chk-spn-nil
∆;Γ ⊢M ⇐ A ∆;Γ ⊢ M⃗ ⇐ [M/x]C

∆;Γ ⊢ (M ; M⃗) ⇐ Σx:A.C
Chk-spn-sigma

A.2.5 Meta-layer

⊢ ∆ : mctx – ∆ is a well-formed meta-context

⊢ · : mctx
MC-nil

⊢ ∆ : mctx ∆ ⊢ A : mtype

⊢ (∆, X:A) : mctx
MC-cons

∆ ⊢ A : mtype – A is a well-formed meta-type in meta-context ∆

∆; Γ ⊢ P ⇐ type

∆ ⊢ (Γ.P ) : mtype
MT-tp ∆ ⊢ G : schema

∆ ⊢ G : mtype
MT-schema

∆ ⊢ Γ1 : ctx ∆ ⊢ Γ2 : ctx

∆ ⊢ (Γ1.Γ2) : mtype
MT-subst

∆ ⊢ M : A – Meta-objects M has meta-type A

∆;Γ ⊢ R ⇐ P

∆ ⊢ (Γ̂.R) : (Γ.P )
MOft-tm

∆;Γ1 ⊢ σ : Γ2

∆ ⊢ (Γ̂1.σ) : (Γ1.Γ2)
MOft-subst

∆ ⊢ Γ : G (schema checking)

∆ ⊢ Γ : G (mtype checking)
MOft-ctx

∆1 ⊢ θ : ∆2 – θ is a well-formed meta-substitution from ∆2 to ∆1

⊢ ∆1 : mctx
∆1 ⊢ · : ·

MSubst-nil
∆1 ⊢ θ : ∆2 ∆1 ⊢ M : JθKA

∆1 ⊢ (θ,M) : (∆2, X:A)
MSubst-cons
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A.3 Refinement-level judgments

A.3.1 Sort formation

(Ω;Ψ ⊢ L) ⊏ (∆; Γ ⊢ K : kind) – L is a kind refinement of K

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ sort) ⊏ (∆; Γ ⊢ type : kind)
KR-sort

(Ω;Ψ, x:S ⊢ L) ⊏ (∆; Γ, x:A ⊢ K : kind)

(Ω;Ψ ⊢ Πx:S.L) ⊏ (∆; Γ ⊢ Πx:A.K : kind)
KR-pi

(Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type) – Sort S refines type A

(s:L ⊏ a:K) ∈ Σ (Ω;Ψ ⊢ M⃗ : L > sort) ⊏ (∆; Γ ⊢ M⃗ : K > type)

(Ω;Ψ ⊢ s M⃗) ⊏ (∆; Γ ⊢ a M⃗ ⇐ type)
TR-atom

(Ω;Ψ ⊢ S1) ⊏ (∆; Γ ⊢ A1 ⇐ type)

(Ω;Ψ, x:S1 ⊢ S2) ⊏ (∆; Γ, x:A1 ⊢ A2 ⇐ type)

(Ω;Ψ ⊢ Πx:S1.S2) ⊏ (∆; Γ ⊢ Πx:A1.A2 ⇐ type)
TR-pi

(Ω;Ψ ⊢ M⃗ : L > sort) ⊏ (∆; Γ ⊢ M⃗ : K > type) – Check M⃗ against L with target sort

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ nil : sort > sort) ⊏ (∆; Γ ⊢ nil : type > type)
KR-spn-nil

(Ω;Ψ ⊢M ⇐ S) ⊏ (∆; Γ ⊢M ⇐ A)

(Ω;Ψ ⊢ M⃗ : [M/x]L > sort) ⊏ (∆; Γ ⊢ M⃗ : [M/x]K > type)

(Ω;Ψ ⊢ (M ; M⃗) : Πx:S.L > sort) ⊏ (∆; Γ ⊢ (M ; M⃗) : Πx:A.K > type)
KR-spn-cons

A.3.2 Sorting

(Ω;Ψ ⊢ H ⇒ S) ⊏ (∆; Γ ⊢ H ⇒ A) – Synthesize sort S for head H

(c :: S ⊏ A) ∈ Σ (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ c ⇒ S) ⊏ (∆; Γ ⊢ c ⇒ A)
TRS-const
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((x:S) ∈ Ψ) ⊏ ((x:A) ∈ Γ) (Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ x⇒ S) ⊏ (∆; Γ ⊢ x⇒ A)
TRS-x

((b:w[M⃗ ]) ∈ Ψ) ⊏ ((b:w[M⃗ ]) ∈ Γ)

(Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (∆; Γ ⊢ w[M⃗ ] > C)

(Ω;Ψ ⊢ b : D ≫k
1 S) ⊏ (∆; Γ ⊢ b : C ≫k

1 A)

(Ω;Ψ ⊢ b.k ⇒ S) ⊏ (∆; Γ ⊢ b.k ⇒ A)
TRS-b

(Ω;Ψ ⊢ W [M⃗ ] > D) ⊏ (∆; Γ ⊢ V [M⃗ ] > C) – Instantiate block D for element WM⃗

(Ω;Ψ ⊢ D[nil] > D) ⊏ (∆; Γ ⊢ C[nil] > C)
R-Inst-nil

(w : W ⊏ V ) ∈ Σ (Ω;Ψ ⊢ W [M⃗ ] > D) ⊏ (∆; Γ ⊢ V [M⃗ ] > C)

(Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (∆; Γ ⊢ v[M⃗ ] > C)
R-Inst-const

(Ω;Ψ ⊢ M ⇐ S) ⊏ (∆; Γ ⊢ M ⇐ A)(Ω;Ψ ⊢ ([M/x]W )[M⃗ ] > D) ⊏ (∆; Γ ⊢ ([M/x]V )[M⃗ ] > C)

(Ω;Ψ ⊢ Πx:S.W [M ; M⃗ ] > D) ⊏ (∆; Γ ⊢ Πx:A.V [M ; M⃗ ] > C)
R-Inst-pi

(Ω;Ψ ⊢ b : D ≫k
i S) ⊏ (∆; Γ ⊢ b : C ≫k

i A) – Extract sort S for kth projection of b

(Ω;Ψ ⊢ b : Σx:S.D ≫k
k S) ⊏ (∆; Γ ⊢ b : Σx:A.C ≫k

k A)
R-Ext-stop

(Ω;Ψ ⊢ b : [b.i/x]D ≫k
i+1 S) ⊏ (∆; Γ ⊢ b : [b.i/x]C ≫k

i+1 A)

(Ω;Ψ ⊢ b : Σx:S ′.D ≫k
i S) ⊏ (∆; Γ ⊢ b : Σx:A′.C ≫k

i A)
R-Ext-cont

(Ω;Ψ ⊢ R ⇒ S) ⊏ (∆; Γ ⊢ R ⇒ A) – Synthesize sort S for neutral term R

(Ω;Ψ ⊢ H ⇒ S ′) ⊏ (∆; Γ ⊢ H ⇒ A′)

(Ω;Ψ ⊢ M⃗ : S ′ > S) ⊏ (∆; Γ ⊢ M⃗ : A′ > A)

(Ω;Ψ ⊢ H M⃗ ⇒ S) ⊏ (∆; Γ ⊢ H M⃗ ⇒ A)
TRS-app

(u : Ψ′.S) ∈ Ω (u : Γ′.A) ∈ ∆ (Ω;Ψ ⊢ σ : Ψ′) ⊏ (∆; Γ ⊢ σ : Γ′)

(Ω;Ψ ⊢ u[σ] : [σ]S) ⊏ (∆; Γ ⊢ u[σ] : [σ]A)
TRS-mvar

(Ω;Ψ ⊢ M⃗ : S > Q) ⊏ (∆; Γ ⊢ M⃗ : A > P ) – Apply sort S to M⃗ to obtain sort Q

(Ω;Ψ ⊢ nil : Q > Q) ⊏ (∆; Γ ⊢ nil : P > P )
TRC-spn-nil
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(Ω;Ψ ⊢M ⇐ S1) ⊏ (∆; Γ ⊢M ⇐ A1)

(Ω;Ψ ⊢ M⃗ : [M/x]S2 > Q) ⊏ (∆; Γ ⊢ M⃗ : [M/x]A2 > P )

(Ω;Ψ ⊢ (M ; M⃗) : Πx:S1.S2 > Q) ⊏ (∆; Γ ⊢ (M ; M⃗) : Πx:A1.A2 > P )
TRC-spn-cons

(Ω;Ψ ⊢M ⇐ S) ⊏ (∆; Γ ⊢M ⇐ A) – Check normal term M against sort S.

(Ω;Ψ ⊢ R ⇒ Q′) ⊏ (∆; Γ ⊢ R ⇒ P ) (Ω;Ψ ⊢ Q′ ≤ Q) ⊏ (∆; Γ ⊢ P )

(Ω;Ψ ⊢ R ⇐ Q) ⊏ (∆; Γ ⊢ R ⇐ P )
TRC-conv

(Ω;Ψ, x:S ⊢M ⇐ S ′) ⊏ (∆; Γ, x:A ⊢M ⇐ A′)

(Ω;Ψ ⊢ λx.M ⇐ Πx:S.S ′) ⊏ (∆; Γ ⊢ λx.M ⇐ Πx:A.A′)
TRC-lam

A.3.3 Schemas

(Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : block) – Block of declarations D refines C

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ ·) ⊏ (∆; Γ ⊢ · : block)
BR-empty

(Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type) (Ω;Ψ, x:S ⊢ D) ⊏ (∆; Γ, x:A ⊢ C : block)

(Ω;Ψ ⊢ Σx:S.D) ⊏ (∆; Γ ⊢ Σx:A.C : block)
BR-sigma

(Ω;Ψ ⊢ W ) ⊏ (∆; Γ ⊢ V : world) – World W refines V

(Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : block)

(Ω;Ψ ⊢ D) ⊏ (∆; Γ ⊢ C : world)
WR-conv

(Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type) (Ω;Ψ, x:S ⊢ W ) ⊏ (∆; Γ, x:A ⊢ V : world)

(Ω;Ψ ⊢ Πx:S.W ) ⊏ (∆; Γ ⊢ Πx:A.V : world)
WR-pi

(Ω ⊢ H) ⊏ (∆ ⊢ G : schema) – Schema H refines G

(⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ·) ⊏ (∆ ⊢ · : schema)
SR-empty

(w:V ) ∈ G

w /∈ H

(Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

(Ω; · ⊢ W ) ⊏ (∆; · ⊢ V : world)

(Ω ⊢ H +w:W ) ⊏ (∆ ⊢ G : schema)
SR-ext
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(Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G) – Context Ψ has schema H

(Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ · : H) ⊏ (∆ ⊢ · : G)
SRC-empty

((ψ : H) ∈ Ω) ⊏ ((ψ : G) ∈ ∆)

(Ω ⊢ ψ : H) ⊏ (∆ ⊢ ψ : G)
SRC-var

((w:W ) ∈ H) ⊏ ((w:V ) ∈ G)

(Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G) (Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (∆; Γ ⊢ w[M⃗ ] > C)

(Ω ⊢ (Ψ, b:w[M⃗ ]) : H) ⊏ (∆ ⊢ (Γ, b:v[M⃗ ]) : G)
SRC-ext

A.3.4 Contexts

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx) – LFR context Ψ refines Γ

(⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ·) ⊏ (∆ ⊢ · : ctx)
CR-empty

((ψ : H) ∈ Ω) ⊏ ((ψ : G) ∈ ∆) (⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ψ) ⊏ (∆ ⊢ ψ : ctx)
CR-var

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx) (Ω;Ψ ⊢ S) ⊏ (∆; Γ ⊢ A⇐ type)

(Ω ⊢ Ψ, x:S) ⊏ (∆ ⊢ (Γ, x:A) : ctx)
CR-cons-x

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx) (Ω;Ψ ⊢ w[M⃗ ] > D) ⊏ (Ω;Ψ ⊢ w[M⃗ ] > C)

(Ω ⊢ Ψ, b:w[M⃗ ]) ⊏ (∆ ⊢ (Γ, b:w[M⃗ ]) : ctx)
CR-cons-b

(Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2) – σ is a well-formed subsitution from Ψ2 to Ψ1

(Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1 : ctx)

(Ω;Ψ1 ⊢ · : ·) ⊏ (∆; Γ1 ⊢ · : ·)
SubstR-empty

((ψ : H) ∈ Ω) ⊏ ((ψ : G) ∈ ∆) (Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1 : ctx)

(Ω;Ψ1 ⊢ idψ : ψ) ⊏ (∆; Γ1 ⊢ idψ : ψ)
SubstR-id

(Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2)

(Ω;Ψ1 ⊢M ⇐ [σ]S) ⊏ (∆; Γ1 ⊢M ⇐ [σ]A)
(︁

Ω;Ψ1 ⊢ (σ,M) : (Ψ2, x:S)
)︁

⊏
(︁

∆;Γ1 ⊢ (σ,M) : (Γ2, x:A)
)︁ SubstR-tm
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(Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2)

(Ω;Ψ2 ⊢ w[M⃗
′
] > D) ⊏ (∆; Γ2 ⊢ w[M⃗

′
] > C)

(Ω;Ψ1 ⊢ M⃗ ⇐ [σ]D) ⊏ (∆; Γ1 ⊢ M⃗ ⇐ [σ]C)
(︁

Ω;Ψ1 ⊢ (σ, M⃗) : (Ψ2, b:w[M⃗
′
])
)︁

⊏
(︁

∆;Γ1 ⊢ (σ, M⃗) : (Γ2, b:w[M⃗
′
])
)︁

SubstR-spn

(Ω;Ψ ⊢ M⃗ ⇐ D) ⊏ (∆; Γ ⊢ M⃗ ⇐ C) – n-ary tuple M⃗ checks against block C

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ : ctx)

(Ω;Ψ ⊢ nil ⇐ ·) ⊏ (∆; Γ ⊢ nil ⇐ ·)
ChkR-spn-nil

(Ω;Ψ ⊢M ⇐ S) ⊏ (∆; Γ ⊢M ⇐ A)

(Ω;Ψ ⊢ M⃗ ⇐ [M/x]D) ⊏ (∆; Γ ⊢ M⃗ ⇐ [M/x]C)

(Ω;Ψ ⊢ (M ; M⃗) ⇐ Σx:S.D) ⊏ (∆; Γ ⊢ (M ; M⃗) ⇐ Σx:A.C)
ChkR-spn-sigma

A.3.5 Meta-layer

(⊢ Ω) ⊏ (⊢ ∆ : mctx) – Ω refines ∆

(⊢ ·) ⊏ (⊢ · : mctx)
MCR-nil

(⊢ Ω) ⊏ (⊢ ∆ : mctx) (Ω ⊢ S) ⊏ (∆ ⊢ A : mtype)

(⊢ (Ω, X:S) ⊏ (⊢ (∆, X:A) : mctx)
MCR-cons

(Ω ⊢ S) ⊏ (∆ ⊢ A : mtype) – S refines A / is a well-formed meta-sort

(Ω;Ψ ⊢ Q) ⊏ (∆; Γ ⊢ P ⇐ type)
(︁

Ω ⊢ (Ψ.Q)
)︁

⊏
(︁

∆ ⊢ (Γ.P ) : mtype
)︁ MTR-tp

(Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ H) ⊏ (∆ ⊢ G : mtype)
MTR-schema

(Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1 : ctx) (Ω ⊢ Ψ2) ⊏ (∆ ⊢ Γ2 : ctx)
(︁

Ω ⊢ (Ψ1.Ψ2)
)︁

⊏
(︁

∆ ⊢ (Γ1.Γ2) : mtype
)︁ MTR-subst

(Ω ⊢ N : S) ⊏ (∆ ⊢ M : A) – Meta-objects N has meta-sort S

(Ω;Ψ ⊢ R ⇐ Q) ⊏ (∆; Γ ⊢ R ⇐ P )
(︁

Ω ⊢ (Ψ̂.R) : (Ψ.Q)
)︁

⊏
(︁

∆ ⊢ (Γ̂.R) : (Γ.P )
)︁ MOftR-tm
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(Ω;Ψ1 ⊢ σ : Ψ2) ⊏ (∆; Γ1 ⊢ σ : Γ2)
(︁

Ω ⊢ (Ψ̂1.σ) : (Ψ1.Ψ2)
)︁

⊏
(︁

∆ ⊢ (Γ̂1.σ) : (Γ1.Γ2)
)︁ MOftR-subst

(Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G) (schema checking)

(Ω ⊢ Ψ : H) ⊏ (∆ ⊢ Γ : G) (msort checking)
MOftR-ctx

(Ω1 ⊢ ρ : Ω2) ⊏ (∆1 ⊢ θ : ∆2) – ρ is a meta-substitution refinement of θ from Ω2 to Ω1

(⊢ Ω1) ⊏ (⊢ ∆1 : mctx)

(Ω1 ⊢ · : ·) ⊏ (∆1 ⊢ · : ·)
MSubstR-nil

(Ω1 ⊢ ρ : Ω2) ⊏ (∆1 ⊢ θ : ∆2) (Ω1 ⊢ N : JρKS) ⊏ (∆1 ⊢ M : JθKA)
(︁

Ω1 ⊢ (ρ,N ) : (Ω2, X:S)
)︁

⊏
(︁

∆1 ⊢ (θ,M) : (∆2, X:A)
)︁ MSubstR-cons

A.3.6 Subsorting rules

For LFR sorts (Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A) – S1 is a subsort of S2

(LFR s1 ≤ s2 ⊏ a : L) ∈ Σ (Ω;Ψ ⊢ M⃗ : L > sort) ⊏ (∆; Γ ⊢ M⃗ : K > type)

(Ω;Ψ ⊢ s1 M⃗ ≤ s2 M⃗) ⊏ (∆; Γ ⊢ a M⃗)
Sub-atom

(Ω;Ψ ⊢ Q) ⊏ (∆; Γ ⊢ P )

(Ω;Ψ ⊢ Q ≤ Q) ⊏ (∆; Γ ⊢ P )
Sub-refl

(Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A) (Ω;Ψ ⊢ S2 ≤ S3) ⊏ (∆; Γ ⊢ A)

(Ω;Ψ ⊢ S1 ≤ S3) ⊏ (∆; Γ ⊢ A)
Sub-trans

(Ω;Ψ ⊢ S2 ≤ S1) ⊏ (∆; Γ ⊢ A) (Ω;Ψ, x:S2 ⊢ S
′
1 ≤ S ′

2) ⊏ (∆; Γ, x:A ⊢ A′)

(Ω;Ψ ⊢ Πx:S1.S
′
1 ≤ Πx:S2.S

′
2) ⊏ (∆; Γ ⊢ Πx:A.A′)

Sub-pi

For blocks (Ω;Ψ ⊢ D1 ≤ D2) ⊏ (∆; Γ ⊢ C) – D1 is a sub-block of D2

(Ω ⊢ Ψ) ⊏ (∆ ⊢ Γ)

(Ω;Ψ ⊢ · ≤ ·) ⊏ (∆;Ψ ⊢ ·)
Sub-Bnil

(Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A) (Ω;Ψ, x:S1 ⊢ D1 ≤ D2) ⊏ (∆; Γ ⊢ C)

(Ω;Ψ ⊢ Σx:S1.D1 ≤ Σx:S2.D2) ⊏ (∆; Γ ⊢ Σx:A.C)
Sub-sigma
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For worlds (Ω;Ψ ⊢ W1 ≤ W2) ⊏ (∆; Γ ⊢ V : world) – W1 is a sub-world of W2

(Ω;Ψ ⊢ D1 ≤ D2) ⊏ (∆;Ψ ⊢ C : block)

(Ω;Ψ ⊢ D1 ≤ D2) ⊏ (∆;Ψ ⊢ C : world)
SubW-conv

(Ω;Ψ ⊢ S2 ≤ S1) ⊏ (∆; Γ ⊢ A) (Ω;Ψ, x:S2 ⊢ S
′
1 ≤ S ′

2) ⊏ (∆; Γ ⊢ A′)

(Ω;Ψ ⊢ Πx:S1.S
′
1 ≤ Πx:S2.S

′
2) ⊏ (∆; Γ ⊢ Πx:A.A′)

SubW-pi

For schemas (Ω;Ψ ⊢ H1 ≤ H2) ⊏ (∆; Γ ⊢ G) – H1 is a sub-schema of H2

(Ω ⊢ H) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ · ≤ H) ⊏ (∆ ⊢ G)
SubS-nil

(w:V ∈ G)

(w /∈ Hi)

(Ω ⊢ H1 ≤ H2) ⊏ (∆ ⊢ G : schema)

(Ω;Ψ ⊢ W1 ≤ W2) ⊏ (∆; Γ ⊢ V : world)

(Ω ⊢ H1 +w:W1 ≤ H2 +w:W2) ⊏ (∆; Γ ⊢ G)
SubS-sum

For meta-sorts (Ω ⊢ S1 ≤ S2) ⊏ (∆ ⊢ A) – S1 is a sub-meta-sort of S2

(Ω;Ψ ⊢ S1 ≤ S2) ⊏ (∆; Γ ⊢ A)

(Ω ⊢ Ψ.S1 ≤ Ψ.S2) ⊏ (∆ ⊢ Γ.A)
SubM-tp

(Ω ⊢ Ψ1) ⊏ (∆ ⊢ Γ1) (Ω ⊢ Ψ2) ⊏ (∆ ⊢ Γ2)

(Ω ⊢ Ψ1.Ψ2 ≤ Ψ1.Ψ2) ⊏ (∆ ⊢ Γ1.Γ2)
SubM-subst

(Ω ⊢ H1 ≤ H2) ⊏ (∆ ⊢ G : schema)

(Ω ⊢ H1 ≤ H2) ⊏ (∆ ⊢ G : mtype)
SubM-schema
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Appendix B

Definition of Beluga

B.1 Syntax

Category Type level Refinement level

Types τ ::= [A] | τ1 → τ2 | ΠX:A.τ ζ ::= [S] | ζ1 → ζ2 | ΠX::S.ζ

Expressions e ::= y | [M] | fn y:τ ⇒ e | e1 e2 f ::= y | [N ] | fn y::ζ ⇒ f | f1 f2

| mlam X:A ⇒ e | e M | mlam X::S ⇒ f | f M

| let [X] = e1 in e2 | let [X] = f1 in f2

| caseτ [M] of b⃗ | caseζ [N ] of c⃗

Branches b ::= ∆; [M] ⇒ e c ::= Φ; [N ] ⇒ f

Contexts Ω ::= · | Ω, y:τ Ξ ::= · | Ξ, y::ζ
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B.2 Type-level judgments

∆ ⊢ Ξ : cctx – Computation context formation

⊢ ∆ : mctx
∆ ⊢ · : cctx

CC-nil
∆ ⊢ Ξ : cctx ∆;Ξ ⊢ τ : ctype

∆ ⊢ Ξ, y:τ : cctx
CC-cons

∆;Ξ ⊢ τ : ctype – Type formation

∆ ⊢ Ξ : cctx ∆ ⊢ A : ctype

∆;Ξ ⊢ [A] : ctype
CT-meta

∆;Ξ ⊢ τ1 : ctype ∆;Ξ ⊢ τ2 : ctype

∆;Ξ ⊢ τ1 → τ2 : ctype
CT-arr

∆ ⊢ A : mtype ∆, X:A; Ξ ⊢ τ : ctype

∆;Ξ ⊢ ΠX:A.τ : ctype
CT-pi

∆;Ξ ⊢ e : τ – Expression e has type τ

∆ ⊢ Ξ : cctx (y:τ) ∈ Ξ

∆;Ξ ⊢ y:τ
CT-var

∆ ⊢ M : A ∆ ⊢ Ξ : cctx
∆;Ξ ⊢ [M] : [A]

CT-box

∆;Ξ, y:τ1 ⊢ e : τ2
∆;Ξ ⊢ fn y:τ1 ⇒ e : τ1 → τ2

CT-fn
∆;Ξ ⊢ e1 : τ2 → τ1 ∆;Ξ ⊢ e2 : τ2

∆;Ξ ⊢ e1 e2 : τ1
CT-app

∆, X:A; Ξ ⊢ e : τ
∆;Ξ ⊢ mlam X:A ⇒ e : ΠX:A.τ

CT-mlam
∆;Ξ ⊢ e : ΠX:A.τ ∆ ⊢ M : A

∆;Ξ ⊢ e M : JM/XKτ
CT-mapp

∆;Ξ ⊢ e1 : [A] ∆, X:A; Ξ ⊢ e2 : τ

∆;Ξ ⊢ let [X] = e1 in e2 : τ
CT-let

τ = Π∆0.ΠX0:A0.τ0

·; · ⊢ τ : ctype

∆ ⊢ θ : ∆0

∆ ⊢ M : JθKA0 ∆;Ξ ⊢JθKA0 bi : τ (for all bi ∈ b⃗)

∆; Ξ ⊢ (caseτ [M] of b⃗) : Jθ,M/X0Kτ0
CT-case

∆;Ξ ⊢A b : τ – Branch b matches invariant τ

∆i ⊢ θ : ∆0

∆i ⊢ M0 : JθKA0

∆′ ⊢ θ′i : ∆i

∆′ ⊢ θ′ : ∆

∆′ ⊢ Jθ′KA = Jθ′iKJθiKA0 ∆′; Jθ′KΞ ⊢ Jθ′, θ′iKei : Jθ′iKJθiKτ0

∆;Ξ ⊢A (∆i; [Mi] ↦→ ei) : Π∆0.ΠX0:A0.τ0
CT-branch
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B.3 Refinement-level judgments

(Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx) – Computation context formation

(⊢ Ω) ⊏ (⊢ ∆ : mctx)

(Ω ⊢ ·) ⊏ (∆ ⊢ · : cctx)
CCR-nil

(Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx) (Ω; Φ ⊢ ζ) ⊏ (∆; Ξ ⊢ τ : ctype)

(Ω ⊢ Φ, y:ζ) ⊏ (∆ ⊢ Ξ, y:τ : cctx)
CCR-cons

(Ω; Φ ⊢ ζ) ⊏ (∆; Ξ ⊢ τ : ctype) – Sort/type formation

(Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx) (Ω ⊢ S) ⊏ (∆ ⊢ A : mtype)

(Ω; Φ ⊢ [S]) ⊏ (∆; Ξ ⊢ [A] : ctype)
CTR-meta

(Ω; Φ ⊢ ζ1) ⊏ (∆; Ξ ⊢ τ1 : ctype) (Ω; Ξ ⊢ ζ2) ⊏ (∆; Ξ ⊢ τ2 : ctype)

(Ω; Φ ⊢ ζ1 → ζ2) ⊏ (∆; Ξ ⊢ τ1 → τ2 : ctype)
CTR-arr

(Ω ⊢ S) ⊏ (∆ ⊢ A : mtype) (Ω, X:S; Φ ⊢ ζ) ⊏ (∆, X:A; Ξ ⊢ τ : ctype)

(Ω; Φ ⊢ ΠX:S.ζ) ⊏ (∆; Ξ ⊢ ΠX:A.τ : ctype)
CTR-pi

(Ω; Φ ⊢ f : ζ) ⊏ (∆; Ξ ⊢ e : τ) – Sorting and typing judgments for expressions

(Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx) (y:ζ) ∈ Φ (y:τ) ∈ Ξ

(Ω;Φ ⊢ y:ζ) ⊏ (∆; Ξ ⊢ y:τ)
CTR-var

(Ω ⊢ N : S) ⊏ (∆ ⊢ M : A) (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

(Ω; Φ ⊢ [N ] : [S]) ⊏ (∆; Ξ ⊢ [M] : [A])
CTR-box

(Ω; Φ, y:ζ1 ⊢ f : ζ2) ⊏ (∆; Ξ, y:τ1 ⊢ e : τ2)

(Ω; Φ ⊢ fn y:ζ1 ⇒ f : ζ1 → ζ2) ⊏ (∆; Ξ ⊢ fn y:τ1 ⇒ e : τ1 → τ2)
CTR-fn

(Ω; Φ ⊢ f1 : ζ2 → ζ1) ⊏ (∆; Ξ ⊢ e1 : τ2 → τ1) (Ω; Φ ⊢ f2 : ζ2) ⊏ (∆; Ξ ⊢ e2 : τ2)

(Ω; Φ ⊢ f1 f2 : ζ1) ⊏ (∆; Ξ ⊢ e1 e2 : τ1)
CTR-app

(Ω, X:S; Φ ⊢ f : ζ) ⊏ (∆, X:A; Ξ ⊢ e : τ)

(Ω; Φ ⊢ mlam X:S ⇒ f : ΠX:S.ζ) ⊏ (∆; Ξ ⊢ mlam X:A ⇒ e : ΠX:A.τ)
CTR-mlam
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(Ω; Φ ⊢ f : ΠX:S.ζ) ⊏ (∆; Ξ ⊢ e : ΠX:A.τ) (Ω ⊢ N : S) ⊏ (∆ ⊢ M : A)

(Ω; Φ ⊢ f N : JN /XKζ) ⊏ (∆; Ξ ⊢ e M : JM/XKτ)
CTR-mapp

(Ω; Φ ⊢ f1 : [S]) ⊏ (∆; Ξ ⊢ e1 : [A]) (Ω, X:S; Φ ⊢ f2 : ζ) ⊏ (∆, X:A; Ξ ⊢ e2 : τ)

(Ω; Φ ⊢ let [X] = f1 in f2 : ζ) ⊏ (∆; Ξ ⊢ let [X] = e1 in e2 : τ)
CTR-let

τ = Π∆0.ΠX0:A0.τ0
ζ = ΠΩ0.ΠX0:S0.ζ0
(·; · ⊢ ζ) ⊏ (·; · ⊢ τ : ctype)

(Ω ⊢ ρ : Ω0) ⊏ (∆ ⊢ θ : ∆0)
(Ω ⊢ N : JρKS0) ⊏ (∆ ⊢ M : JθKA0)
(Ω;Φ ⊢JρKS0 ci : ζ) ⊏ (∆; Ξ ⊢JθKA0 bi : τ) (for all ci ∈ c⃗)

(Ω;Φ ⊢ (caseζ [N ] of c⃗) : Jρ,N/X0Kζ0) ⊏ (∆; Ξ ⊢ (caseτ [M] of b⃗) : Jθ,M/X0Kτ0)
CTR-case

(Ω; Φ ⊢S c : ζ) ⊏ (∆; Ξ ⊢A b : τ) – Branch c matches invariant ζ

(Ωi ⊢ ρ : Ω0) ⊏ (∆i ⊢ θ : ∆0)
(Ωi ⊢ N0 : JρKS0) ⊏ (∆i ⊢ M0 : JθKA0)
(Ω′ ⊢ ρ′i : Ωi) ⊏ (∆′ ⊢ θ′i : ∆i)
(Ω′ ⊢ ρ′ : Ω) ⊏ (∆′ ⊢ θ′ : ∆)
(Ω′ ⊢ Jρ′KS = Jρ′iKJρiKS0) ⊏ (∆′ ⊢ Jθ′KA = Jθ′iKJθiKA0)
(Ω′; Jρ′KΦ ⊢ Jρ′, ρ′iKfi : Jρ′iKJρiKζ0) ⊏ (∆′; Jθ′KΞ ⊢ Jθ′, θ′iKei : Jθ′iKJθiKτ0)

(Ω;Φ ⊢S (Ωi; [Ni] ↦→ fi) : ΠΩ0.ΠX0:S0.ζ0) ⊏ (∆; Ξ ⊢A (∆i; [Mi] ↦→ ei) : Π∆0.ΠX0:A0.τ0)
CTR-branch

(Ω; Φ ⊢ ζ1 ≤ ζ2) ⊏ (∆; Ξ ⊢ τ) – ζ1 is a computation-level sub-sort of ζ2

(Ω ⊢ S1 ≤ S2) ⊏ (∆ ⊢ A : mtype) (Ω ⊢ Φ) ⊏ (∆ ⊢ Ξ : cctx)

(Ω; Φ ⊢ [S1] ≤ [S2]) ⊏ (∆; Ξ ⊢ [A])
SubC-meta

(Ω; Φ ⊢ ζ2 ≤ ζ1) ⊏ (∆; Ξ ⊢ τ) (Ω; Φ ⊢ ζ ′1 ≤ ζ ′2) ⊏ (∆; Ξ ⊢ τ ′)

(Ω; Φ ⊢ ζ1 → ζ ′1 ≤ ζ2 → ζ ′2) ⊏ (∆; Ξ ⊢ τ → τ ′)
SubC-arr

(Ω ⊢ S2 ≤ S1) ⊏ (∆ ⊢ A) (Ω, u:S2; Φ ⊢ ζ1 ≤ ζ2) ⊏ (∆, u:A; Ξ ⊢ τ)

(Ω; Φ ⊢ Πu:S1.ζ1 ≤ Πu:S2.ζ2) ⊏ (∆; Ξ ⊢ Πu:A.τ)
SubC-pi
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B.4 Signatures

Signatures Σ ::= · | Σ,D

Declarations D ::= LF a : K = c1:A1 | ... | cn:An LF type

LFR s ⊏ a : L = c1:S1 | ... | cn:Sn LFR sort

LFR s1 ≤ s2 ⊏ a : L = c1:S1 | ... | cn:Sn LFR subsort

schema g = w1:V1 | ... | wn:Vn LF schema

schema h ⊏ g = w1:W1 | ... | wn:Wn LFR schema

rec f : ζ = f Recursive function

⊢ Σ : sig – Σ is a well-formed signature

⊢ · : sig

⊢ Σ : sig ⊢Σ D : decl

⊢ (Σ,D) : sig

⊢Σ D : decl – D is a well-formed declarature in signature Σ

a /∈ Σ c1, ..., cn /∈ Σ ·; · ⊢Σ K : kind ·; · ⊢Σ,a:K Ai ⇐ type (for all i)

⊢Σ (LF a : K = c1:A1 | ... | cn:An) : decl

s /∈ Σ

(LF a : K = c1:A1 | ... | cn:An) ∈ Σ

(·; · ⊢Σ L) ⊏ (·; · ⊢Σ K : kind)

(·; · ⊢Σ,s⊏a:L Sij) ⊏ (·; · ⊢Σ,s⊏a:L Aij) (for all j)

⊢Σ (LFR s ⊏ a : L = ci1 :Si1 | ... | cik :Sik) : decl

s2 /∈ Σ

(LFR s ⊏ a : L) ∈ Σ

(LF a : K = c1:A1 | ... | cn:An) ∈ Σ

(·; · ⊢Σ L) ⊏ (·; · ⊢Σ K : kind)

(·; · ⊢Σ,s⊏a:L Sij) ⊏ (·; · ⊢Σ,s⊏a:L Aij) (for all j)

⊢Σ (LFR s1 ≤ s2 ⊏ a : L = ci1 :Si1 | ... | cik :Sik) : decl
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g /∈ Σ w1, ...wn /∈ Σ ·; · ⊢σ Vi : world (for all i)

⊢Σ (schema g = w1:V1 | ... | wn:Vn) : decl

h /∈ Σ (schema g = w1:V1 | ... | wn:Vn) ∈ Σ (·; · ⊢Σ Wij) ⊏ (·; · ⊢Σ Vij : world) (for all j)

⊢Σ (schema h ⊏ g = wi1 :Wi1 | ... | wik :Wik) : decl

f /∈ Σ (·; · ⊢Σ,rec f:ζ f : ζ) ⊏ (·; · ⊢Σ,rec f:ζ e : τ)

⊢Σ (rec f : ζ = f) : decl
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