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“When modern man builds large load-bearing structures, he uses dense solids: steel, 

concrete, glass. When nature does the same, she generally uses cellular materials: 

wood, bone, coral. There must be good reasons for it.” 

M.F. Ashby 
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ABSTRACT 

Bio-inspired cellular materials have attracted considerable attention in the past few decades. 

Low thermal conductivity, high impact absorbance, wide range of porosity and permeability, 

sound and vibration insulation, and lots of other interesting properties all at lower densities 

compared to regular solid materials like metals, make these materials worthy of a closer 

investigation. As a well-known example, wood with its outstanding properties is a cellular 

structure, which is the result of millions of years of evolution that has perfected the building blocks 

of plants. Understanding the underlying physical phenomenon responsible for the properties of 

cellular materials will pave the way towards designing new materials with unprecedented 

properties. A widely used artificial cellular architecture, especially in aviation industries, is the 

honeycomb core of the sandwich composites, which is lightweight and stiff, with in-plane isotropic 

properties and low thermal conductivity. 

With a similar inspiration, this thesis focuses on the thermal conductivity of 2D and 3D 

cellular metamaterials. With the help of CAD packages like Solidworks and ANSYS, different cell 

architectures are modeled and their effective thermal conductivities are obtained by adopting 

standard mechanics homogenization technique on a representative cell under periodic boundary 

conditions. A wide variety of 2D pore shapes based on a modified form of Gielis’ superformula is 

analyzed to inspect the effect of different topological parameters. Furthermore, a case study in 2D 

is provided to explore how the concept of functionally graded cellular materials can be used to 

tune the heat flow and temperature within a part made of cellular materials.  

3D thin-walled open lattices are also introduced based on the 2D cells with supershape pores. 

Effective thermal conductivity of these 3D architectures are compared with those of Shellular 

materials. Discrete conformal mapping is employed to introduce holes in Shellular architectures, 

making it possible to adjust effective properties of the Shellular materials. While the relative 

density of a conformally-perforated Shellular material (CPSM) is less than its Shellular 

counterpart, the existence of holes further increases the overall permeability of this new architected 

metamaterial. Analysis of the correlation between the effective thermal conductivities of the 

underlying 2D and 3D architectures of the P-type CPSM shows the effect of using cellular structure 

at different length scales in designing a new ultralight metamaterial. Effective thermal 

conductivities of CPSM are studied under the assumption that same physics are applicable at the 
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involved length scales, in other words, underlying 2D and 3D cellular architectures are both at 

continuum level and Fourier heat conduction can be used to accurately model heat conduction 

through these materials. On the other hand, for structures at the nanoscale, different physics are 

involved in heat transfer and sophisticated methods such as Molecular Dynamics simulation are 

mostly used to study their properties. To show the length scale dependency of effective properties, 

macroscopic counterparts of some nano-architected metamaterials with face centered cubic (FCC) 

and simple cubic (SC) arrangements, designed based on carbon nanotube (CNT) nanotrusses, are 

created and their effective properties are obtained using standard mechanics homogenization.  
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RÉSUMÉ  

Les matériaux cellulaires bio-inspirés ont attiré une attention considérable au cours des 

dernières décennies. Une faible conductivité thermique, une forte absorbance aux chocs, une large 

gamme de porosité et de perméabilité, une isolation vibratoire et acoustique et de nombreuses 

autres propriétés intéressantes, toutes à des densités inférieures à celles de matériaux solides 

normaux tels que les métaux, rendent ces matériaux dignes d'une recherche plus approfondie. En 

tant qu'exemple bien connu, le bois, avec ses propriétés exceptionnelles, est une structure 

cellulaire, produit de millions d'années d'évolution qui ont perfectionné les éléments constitutifs 

des plantes. La capacité de comprendre le phénomène physique responsable pour les propriétés 

avancées des matériaux cellulaires permettra la conception de nouveaux matériaux aux propriétés 

sans précédent. Une structure cellulaire artificielle largement utilisée, en particulier dans les 

industries de l'aviation, est l'âme en nid d'abeilles des composites sandwich, qui est léger et rigide, 

avec des propriétés isotropes dans le plan et une faible conductivité thermique. 

En suivant une inspiration similaire, cette thèse porte sur la conductivité thermique des 

métamatériaux cellulaires 2D et 3D. À l'aide de logiciels de CAD tels que Solidworks et ANSYS, 

différentes architectures de cellules sont modélisées et leurs conductivités thermiques effectives 

sont obtenues en adoptant la technique d'homogénéisation mécanique classique sur une cellule 

représentative dans des conditions aux limites périodiques. Une grande variété de formes de pores 

2D basées sur une version modifiée de la superformula de Gielis est analysée pour examiner l'effet 

de différents paramètres topologiques. De plus, une étude de cas en 2D est fournie pour explorer 

comment le concept de matériaux cellulaires à gradations fonctionnelles peut être utilisé pour 

régler le flux de chaleur et la température dans une pièce constituée de matériaux cellulaires. 

Des réseaux 3D à parois minces sont également introduits sur la base des cellules 2D à pores 

supershape. La conductivité thermique effective de ces architectures 3D est comparée à celle des 

matériaux Shellular. La mise en correspondance discrète est utilisée pour introduire des trous dans 

les architectures Shellular, ce qui permet d'ajuster les propriétés effectives des matériaux Shellular. 

Alors que la densité relative d'un matériau Shellular perforé de manière conforme (CPSM) est 

inférieure à son équivalent Shellular, la présence de trous augmente davantage la perméabilité 

globale de ce nouveau métamatériau architecturé. L'analyse de la corrélation entre les 

conductivités thermiques effectives des architectures 2D et 3D sous-jacentes du CPSM de type P 
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montre l'effet de l'utilisation d'une structure cellulaire à différentes échelles de longueur dans la 

conception d'un nouveau métamatériau ultra-léger. Les conductivités thermiques effectives du 

CPSM sont étudiées en supposant que la même physique est applicable aux échelles de longueur 

impliquées, autrement dit, les architectures cellulaires 2D et 3D sous-jacentes sont à la fois au 

niveau du continuum, et la conduction thermique de Fourier peut être utilisée pour modéliser avec 

précision la conduction thermique à travers ces matériaux. D'autre part, pour les structures à 

l'échelle nanométrique, le transfert de chaleur implique différents phénomènes physiques et des 

méthodes sophistiquées telles que la simulation par dynamique moléculaire sont principalement 

utilisées pour étudier leurs propriétés. Pour montrer la dépendance des propriétés effectives sur 

l’'échelle de longueur, des équivalents macroscopiques de certains métamatériaux nano-

architecturés avec des structures cubiques à faces centrées (FCC) et cubiques simples (SC), conçus 

à partir d'une armature nanométrique de nanotubes de carbone (CNT), sont créés et leurs propriétés 

effectives sont obtenues à l'aide de l'homogénéisation mécanique classique. 
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- C. Zhang, A.H. Akbarzadeh, W. Kang, J. Wang, A. Mirabolghasemi, “Nano-architected 

metamaterials: Carbon nanotube-based nanotrusses”, Carbon, 2018. 131: p. 38-46  
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For the first journal publication listed above as the main part of this thesis, the research, 
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provided scientific suggestions in the development of the work and helped polishing the written 
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manuscript. Prof. Rodrigue and Prof. Therriault also contributed to the conception of the work and 
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numerical homogenization to investigate the effective thermal conductivity and mechanical 
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aforementioned macroscale cellular architectures with those of CNT based nanotrusses. Chunyi 

Zhang, the first author, has performed the studies at nanoscale and did the result analysis, under 

the supervisory of Prof. Akbarzadeh, Prof. Kang and Prof. Wang. Detailed description of Armin’s 

collaboration in this article is presented in Chapter 4 of this thesis.2 
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Shellular materials, in collaboration with Shahin Eskandari and Jiahao Shi and under Prof. 

Akbarzadeh’s guidance, is also presented in this thesis which includes designing and preparation 

of required CAD models of architectures and analysis of their effective thermal conductivities, 

while Shahin focuses on investigating dynamic behaviours of these materials and Jiahao performs 

nonlinear structural analysis to study these architectures under large deformation. 

In addition to his main research topic, Armin has also contributed to the investigation of 

mechanical properties of architected cellular metamaterials in the following publications: 

Journal articles 

- H. Yazdani Sarvestani, A. H. Akbarzadeh, A. Mirabolghasemi, K. Hermenean, “3D 

printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit 

capability”, Materials & Design, 2018. 160: p. 179-193 

- H. Yazdani Sarvestani, A.H. Akbarzadeh, A. Mirabolghasemi, “Structural Analysis of 
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Conference papers 

                                                 
2 Permission has been granted from the publisher (Elsevier) to use materials from this article in the thesis. 



xxv 

- H. Niknam, A.H. Akbarzadeh, A. Mirabolghasemi, D. Rodrigue, D. Therriault, 

“Engineered architected materials: Multidirectional functionally graded cellular solids”, 

Proceedings of 14th U.S. National Congress on Computational Mechanics, Montreal, QC, 

Canada, July 2017 
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1 LITERATURE REVIEW AND GENERAL INTRODUCTION 

Cellular solids, a class of material that consists of clusters of cells with 2D or 3D walls and 

gaseous or empty pores, span a wide range of natural and artificial materials. Several classes of 

cellular solids have been defined based on their characteristics, such as open-celled and closed-

celled cellular materials, for when pores are connected or separate. While the interconnected 

network of struts and shells in an open-cell structure, such as open-cell sponge, makes it permeable 

for fluids, in a closed-cell architecture such as cork, pores are enclosed by the solid phase and the 

material is impermeable [1]. Closed-cell materials are generally mechanically stronger than the 

open-cell architectures [2]. Cellular solids are also divided to Foam and lattices, in which the 

former has random cell architecture and/or arrangement throughout the material, contrary to the 

latter which is a periodic assembly of one unit cell. Sponge and honeycomb structures are two 

examples of the two groups, respectively. There are also other classifications based on wall 

thickness, relative density or even material's application [1]. In the context of this thesis, the focus 

would be on architected periodic cellular materials and the word cellular only refers to the lattice 

structures.  

Although the use of natural cellular materials, such as wood and cork, dates back thousands 

of years and cellular geometries such as honeycomb have fascinated many throughout the history, 

it was not until the 20th century that the manmade cellular materials became widely used. Foams 

for thermal insulation, metallic honeycomb core sandwich plates in aircrafts, and paper 

honeycomb core plasterboard panels can be named as some of the early applications of cellular 

materials, in which they were mostly used to reduce the weight without sacrificing the strength [1, 

3, 4]. With new and growing industries, ideal materials today should have multiple functionality, 

from strength and durability to thermal/electrical conductivities, liquid or gas permeability, shock 

and vibration absorbance, and so on [5, 6]. In terms of thermal applications, although cellular 

materials are generally considered as lightweight insulators without load bearing capabilities, 

recent studies have shown their promising potential in other applications such as lightweight load 

bearing insulations for building materials [7], thermal conductivity enhancement for thermal 

storage units at high temperatures [8], thermal management in microelectronics [9] and thermal 

shock absorbers [10].  
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In order to design cellular materials with desired thermal properties, it is important to identify 

factors that play a role in transferring heat through the cellular media, and employ an accurate 

mathematical model to investigate the involved heat transfer physical phenomena. At atomic and 

nano scale, phonon and electron transport and their interactions with the material’s architecture at 

that length scale define the heat transfer [11]. In continuum level, in addition to the self-

explanatory role of constituent materials’ conductivities and the rather unsurprising effect of their 

relative amount, pore topology (i.e. size, shape, connectivity and orientation of the pores) is shown 

to significantly affect the overall thermal conductivity of a cellular architecture [1]. This thesis 

concentrates on the thermal properties of cellular materials at the macro scale.  

Rule of mixtures is probably the oldest and arguably the simplest mathematical model for 

estimating the overall properties of cellular materials, which only takes into account thermal 

conductivities of constituent materials and their relative amount. Although predictions of this 

simple model is surprisingly good for certain cases, they generally deviate significantly from the 

actual properties as a consequence of ignoring the impact of underlying architectures. Empirical 

models dealing with a single or a family of simple cellular architectures were developed to address 

the lack of accuracy of the Rule of mixtures model, though they were inapplicable for other 

architectures [1, 12]. One of the concepts that enabled accounting microarchitecture for estimating 

the effective thermal conductivity of cellular materials is the analogy between electric and heat 

conduction, which was the basis of thermal circuit modeling [13, 14]. However, similar to few 

other concepts, using this method only provides upper and lower bounds and not the exact effective 

thermal conductivity. A summary of popular closed form expressions for estimating the effective 

thermal conductivity of heterogeneous materials and their limitations can be found in reference 

[15]. On the other hand, during the last few decades advanced computational methods, such as 

homogenization techniques [16, 17] and lattice-based Monte-Calro approach [18, 19], have been 

developed which are capable of accounting for the microarchitecture in predicting the effective 

thermal conductivities of cellular materials. With the help of the new methods, in addition to 

mechanical properties, investigating thermal conductivity of a wide range of cellular architectures 

(such as cellular solids with convex or concave pores [20], metamaterials based on Gibson-Ashby 

cells [21], metallic hollow spheres structures [3, 22] and even nanostructured materials [23]) has 

been a compelling topic among material researchers, providing insights about the applications of 

cellular materials in the field of thermal management such as heat exchangers and lightweight heat 
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insulations. Considering the relative simplicity of implementing the numerical standard 

homogenization technique, effective thermal conductivities of different architectures are obtained 

using this method throughout this thesis, in which adopting periodic boundary conditions 

guarantees the accuracy of the predictions.  

Although theoretical and numerical study on thermal properties of cellular materials have been 

an active field of research in the past few decades, studies that explore the microarchitecture are 

mostly focused on truss-like lattices or cellular materials with simple pore topologies such as those 

based on rectangle and ellipse in 2D or cuboid and ellipsoid in 3D [20, 21, 24, 25]. In the present 

thesis, it is tried to study a wide range of cell architecture in 2D and 3D, and where possible offer 

alternative mathematical approaches to better understand the underlying correlation between cell 

microarchitecture and its effective thermal conductivity.  

Contents of this thesis are organized in five chapters. After a general introduction in this chapter, 

Chapter 2 as the main part of this thesis constitutes the following manuscript prepared and 

submitted for publication: 

 A. Mirabolghasemi, A.H. Akbarzadeh, D. Rodrigue, D. Therriault, “Thermal 

Conductivity of Architected Cellular Metamaterials”, 2018 (under review) 

in which, effective thermal conductivity of several 2D and 3D architected cellular materials are 

extensively studied using numerical homogenization. Novel architectures are introduced to better 

investigate the relation between pore topology and heat conduction in 2D cellular materials. Based 

on these 2D cells, 3D architectures are constructed and their homogenized thermal conductivity is 

obtained. A mathematical model is also developed to further examine correlation of the thermal 

conductivity of the 3D architectures and their underlying 2D cells. Moreover, selected Shellular 

materials are also compared with the aforementioned 3D cellular materials. A case study is also 

provided to demonstrate the potential use of functionally graded cellular materials to guide heat 

through a porous medium. 

Chapter 3 addresses some shortcomings of macroscopic Shellular architectures by perforating 

them with a mapped 2D layout of pores in regular cellular arrangements. Conformal mapping is 

employed to minimize the area distortion through the mapping process and preserve cell topology 

as much as possible. It is shown that although 2D cell architecture is not preserved through the 
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mapping, with enough number of pores effective thermal conductivity of this doubly porous 

cellular material can be precisely determined based on the overall thermal conductivities of the 

underlying 2D and 3D architectures. In collaboration with other researchers, mentioned in the 

preface section, dynamic responses and non-linear large deformation behaviour of the 

architectures made with the procedure discussed in this chapter are currently being studied.  

In Chapter 3, it is assumed that all cell features are at continuum level, and as a result no length 

scale dependency is expected in the thermal behaviour of the perforated Shellular architectures. 

However, thermal conductivity of architectures at the nanoscale is generally different than their 

analogous macroscale counterpart. In Chapter 4, using the characteristic dimensions of two types 

of novel carbon nanotube-based nano-trusses, simplified macroscopic models are created to obtain 

their effective properties at continuum length scale by employing numerical homogenization on a 

representative cell with periodic boundary conditions. Calculated effective properties are used to 

show the aforementioned length dependency of thermal properties of selected truss-like cellular 

architectures. Chapter 4 is based on the contribution of the author of this thesis that have been 

appeared in the following journal publication: 

 C. Zhang, A.H. Akbarzadeh, W. Kang, J. Wang, A. Mirabolghasemi, “Nano-architected 

metamaterials: Carbon nanotube-based nanotrusses”, Carbon, 2018. 131: p. 38-46  

Finally, in Chapter 5 concluding remarks and suggested future works are provided.  

 

MAJOR ASSUMPTIONS 

- A cellular material is assumed to be an assembly of perfectly periodic cells, without 

imperfections, and with architectural features at continuum length scale (unless otherwise 

stated) 

- Following some criteria found in the literature, contributions of convection and radiation to 

overall heat transfer through the cellular media are assumed small and neglected. In addition, 

analysis of square cells with air inside their square pores, shows that for this architecture, air 

inside the pore can be ignored if thermal conductivity of the base solid material is several orders 

of magnitude larger than air, such as the case for metallic base cellular materials. For this 

assumption to be acceptable at relative densities below 0.1, the cellular material shall be made 
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from a highly conductive metal or technical ceramic. Although this analysis is done only on 2D 

square cells with square pores, for the rest of the manuscript, it is assumed that either the thermal 

conductivity of the gas inside the pores is negligible (such as poorly conductive gases at low 

pressures) or the pores are completely empty.  

 

RESEARCH OBJECTIVES 

The objectives of this thesis can be summarized as: 

- To thoroughly analyze the effects of cell relative density and pore geometrical features (such 

as one directional scaling and rotation angle) on the effective thermal conductivity of 2D square 

cells with single confined pore with different topologies 

- To investigate homogenized thermal conductivity of 3D cellular architected metamaterials 

- To showcase the possibility of heat transfer manipulation inside a cellular medium using the 

concept of functionally graded cellular materials 

- To introduce novel ultralight periodic cellular architectures and exploring their effective 

conductivities 

- To demonstrate manufacturability of cellular architectures by means of additive manufacturing 
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CONNECTING STATEMENT 

In Chapter 1, following a concise literature review, general scope and the framework of the 

thesis together with the objectives of the studies are presented. In Chapter 2, which constitutes the 

following article: 

 A. Mirabolghasemi, A.H. Akbarzadeh, D. Rodrigue, D. Therriault, “Thermal 

Conductivity of Architected Cellular Metamaterials”, 2018 (under review) 

the effects of cell architecture on the effective thermal conductivity of cellular materials are 

thoroughly investigated by introducing novel 2D and 3D cellular architectures and implementing 

numerical standard homogenization. Findings are thoroughly discussed using a mathematical 

model and a case study, to provide better understanding of design aspects and potential use of 

cellular materials for thermal applications.  
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2 THERMAL CONDUCTIVITY OF ARCHITECTED CELLULAR METAMATERIALS 

ABSTRACT 

Periodic architected cellular materials, as a novel class of low-density materials, possess 

unprecedented multifunctional properties mainly due to their underlying microarchitecture. In this 

paper, we study the thermal conductivity of cellular metamaterials and evaluate their performance 

for thermal management applications. To understand the relations between the microarchitecture 

and the thermal response, we analyze the thermal conductivity of a wide range of cellular 

metamaterials with strategically developed microarchitectures from two-dimensional (2D) cells 

with supershape pores to three-dimensional (3D) thin-walled open lattices and Shellular materials. 

We implement standard mechanics homogenization on the periodic representative volume 

elements (RVEs) of these cellular metamaterials to examine the effect of pore architecture (relative 

density, pore shape, pore orientation and pore elongation) on their effective thermal conductivity. 

The numerical results show how the thermal conductivity of an isotropic material can be modified 

by pore introduction and how the pore architecture could lead to an anisotropic effective thermal 

conductivity tensor. To examine the impact of having 2D supershape cuts on 3D RVEs, thin-

walled open lattices are designed as an assembly of thickened 2D supershape RVEs. A 

mathematical model is derived based on the effective thermal properties of the constituent 2D 

RVEs to predict the effective thermal properties of these lightweight cellular materials. Effective 

thermal conductivity these 3D cellular architectures are also compared with those of Shellular 

materials based on triply periodic minimal surfaces. Unlike the Shellular materials, which only 

cover a narrow region of thermal conductivity versus relative density chart, cellular materials with 

a wide range of anisotropic effective thermal conductivities can be engineered by using 2D 

supershape pores on 2D or 3D thin-walled cells. Finally, we show how the concept of architected 

functionally graded cellular materials can be used to tune the heat flow within cellular media 

guiding it in a specific direction to control the temperature inside advanced 3D printed materials. 

As a case study, the optimum spatial distribution of pore rotation angle is found to maximize or 

minimize the heat flow passing through different sides of a square-shaped porous slab. 

Keywords – Architected cellular metamaterials, Effective thermal conductivity, Homogenization, 

Supershape pore, Thin-walled open lattice, Shellular materials, Functionally graded cellular 

materials. 
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2.1 INTRODUCTION 

Developing lightweight and structurally robust advanced materials with unprecedented 

multifunctional properties has been one of the main engineering challenges during the past few 

decades. Limited material and energy resources, economical restrictions and concerns over the 

prospect of global climate changes promote the design and manufacturing of durable lightweight 

materials with tunable multifunctional properties. The engineered materials with properties not 

available in natural materials are called metamaterials, among which bio-inspired architected 

cellular materials [26] are one of the cutting-edge lightweight and optimized materials that can 

simultaneously satisfy multiple functionalities from structural stiffness to thermal insulation or 

heat exchanging [5].  

Cellular materials are divided into two categories: (1) Foams where a gaseous phase is 

randomly dispersed in a continuous solid medium, and (2) Periodic porous materials (lattices) 

which consist of a periodic architected cell [1]. Inspired by their excellent lightweight and 

mechanical properties, natural materials like bone, wood and cork led to the development of 

cellular materials as early as 1970. Hexagonal honeycombs as sandwich cores, used in aviation 

industry, are one of the first applications of periodic cellular metals [3]. Driven by the high 

performance of cellular materials and recent developments in advanced manufacturing techniques 

such as additive manufacturing (3D printing) and laser cutting, advanced polymeric and metallic 

cellular materials of complex nano/microarchitectures can be designed and fabricated. A non-

exhaustive list of applications of cellular materials found in the literature includes: lightweight 

structural elements in aircrafts and high-speed trains, energy-absorbing elements in automotive 

industry, thermal insulators, thermal energy storage devices, hydrogen storage tanks, and 

biomedical scaffolds for tissue engineering [1, 3, 8, 18, 27-32]. 

To exploit the multifunctional potential of cellular materials, a mathematical model capable 

of accurately predicting their effective properties is of crucial importance. Early efforts on this 

subject range from the simple volumetric averaging of properties of constituent materials, the so-

called rule of mixtures method, to several empirical equations to predict the physical properties of 

cellular materials [1, 12]. Investigations have clearly shown that cell microarchitecture, in addition 

to the constituent materials properties, plays a significant role in the emergence of the outstanding 

properties of cellular materials, such as negative Poisson’s ratio in auxetic materials [33], as well 
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as thermal and vibration insulation properties of ultralight metallic microlattices [34]. In this 

regard, since thermal conductivity, electrical conductivity and magnetic permeability are all 

mathematically described by Laplace equation, existing approaches used in the electric and 

magnetic fields have also been applied to predict the thermal properties of cellular materials [13, 

14]. The introduction of the thermal-circuit method, based on the analogy between electrical and 

thermal conductivities, can be considered as a turning point in the theoretical modelling of thermal 

conductivity of cellular materials [14]. It is worth mentioning that most of the analytical models 

have been mainly developed for porous materials with random pore distribution [35], or for 

periodic cellular materials with simple pore topologies: i.e. cubic, circular, cylindrical and 

spherical pore shapes [27, 36], leaving cellular materials with complex periodic microarchitectures 

and potentially superior multifunctional properties unexplored. Although analytical upper and 

lower bounds, e.g., Hashin-Shtrikman bounds [37] or bounds obtained by the thermal-circuit 

method, are valuable for estimating the effective thermal conductivity with a minimum knowledge 

about the actual heat flow and temperature profile in cellular materials, advanced computational 

models, e.g., lattice-based Monte Carlo approach [19], micropolar modelling [38], as well as 

standard mechanics [16] and asymptotic [17] homogenization techniques have been introduced to 

precisely take into account the effect of microarchitecture of cellular materials to accurately predict 

their effective thermal properties.  

Although the main focus of the literature on cellular materials has been devoted to their 

mechanical properties, the connection between cell microarchitecture and their effective thermal 

conductivity has also been the subject of compelling research over the past few decades. The 

analysis of the anisotropic thermal behavior of cellular metals [28], studies on thermal properties 

of new architected materials such as Shellular materials [39, 40], invention of thermal 

metamaterials to manipulate heat at the continuum level [41], and research on thermal properties 

of nanostructured cellular materials [23, 42, 43], are a few examples of the research in thermal 

analysis of architected cellular solids. However, to the best of the authors’ knowledge, apart from 

cells with simple pore shapes, no in-depth study on the relation between topological parameters 

and the thermal conductivity tensor of periodic cellular materials with complex pore 

microarchitectures has been performed. As a result, a deeper understanding of the thermal 

properties of cellular materials is required to address the thermal requirements of emerging 

technologies such as lightweight electronics and catalysts. 
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In this article, after introducing various cell architectures in Section 2.2, two methodologies 

for predicting the effective thermal conductivity of 2D cellular materials are discussed in Section 

2.3: (1) Theoretical modelling using the thermal-circuit method [44] and (2) Computational 

modeling based on standard homogenization. In Section 2.4, after investigating the validity of 

assumptions made in previous sections, we first compare the aforementioned two methodologies 

to predict the effective thermal conductivity of 2D cellular materials with rectangular and elliptic 

pores. While the theoretical model can at best provide narrow bounds for the effective thermal 

conductivity of architected cellular materials with simple 2D microarchitectures, standard 

mechanics homogenization is used to accurately determine the thermal conductivity of cellular 

metamaterials with complex 2D pore topologies of supershape pores [45] (introduced in Section 

2.2.1). In addition to an in-depth analysis on the effects of topological parameters (pore shape, 

pore scaling and pore rotation) on the effective thermal conductivity of these 2D architected 

cellular materials, a case study is conducted to highlight the importance of the off-diagonal terms 

of the anisotropic thermal conductivity tensor for the thermal analysis of cellular metamaterials. 

Thereafter, a mathematical model based on superposition is derived to predict the thermal 

conductivity of lightweight 3D thin-walled open lattices (systematically designed in Section 2.2.2) 

based on the effective thermal conductivity of 2D supershape architectures. Following the recent 

interests in periodic minimal surfaces in material engineering, the thermal conductivities of thin-

walled metamaterials are compared with three Shellular materials which are lightweight 

microarchitectures based on triply periodic minimal surfaces (presented in Section 2.2.3). While 

the Shellular materials in this work exhibit isotropic effective thermal conductivities, the 

anisotropic thermal properties of thin-walled open lattices show possibilities for better use of 

cellular materials to optimize the thermo-mechanical performance of lightweight structures. 

Finally, in a case study conducted in Section 2.5, pore angle inside a 2D cellular medium is graded 

to optimize the heat flow passing through its different edges, showing how grading the cells 

throughout porous media provides new solutions for optimum thermal performance. 

 

2.2 CAD DESIGN OF ARCHITECTED CELLULAR METAMATERIALS  

To apply a computational homogenization method and explore the effects of pore topology 

and relative density on the effective thermal conductivity of cellular metamaterials, two-
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dimensional (2D) square representative volume elements (RVEs) with supershape pores (referred 

to as 2D supershape RVEs), 3D cubic thin-walled open lattices cut through by 2D supershape 

pores on opposite faces, and Shellular RVEs are examined.  

2.2.1 2D SUPERSHAPE RVES 

As a powerful formula for creating a wide variety of pore topologies, Gielis’ superformula 

[45], is selected and modified to generate alternative pore architectures, while scaling (S) and 

rotation (β) are considered to increase the possibilities of pore topologies. The boundary of this 

supershape pore in a Cartesian coordinate system is mathematically expressed as:  

[
𝑥′
𝑦′
] = [

cos 𝛽 − sin 𝛽
sin 𝛽 cos 𝛽

] ([|cos (𝑚α/4)| + |sin (𝑚α/4)|]𝑛  [
𝑆 cos(α)

sin(α)
])  

(−π ≤ 𝛼 ≤ π ,  m = 1 ~ 8 , n = -5 ~ 5 , 𝑆 = 1~3.5 (0.5 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡) , 0 ≤ 𝛽 ≤ 𝜋/2 ) 

(Eq.2.1) 

As introduced in Eq. (2.1), a pore gets elongated along the x direction by increasing the scaling 

factor S, followed by a counter-clockwise rotation of β degree. Using Eq. (2.1), the area of the pore 

can be calculated by 4𝑆 ∫  (cos 𝛾 + sin 𝛾)2𝑛 𝑑𝛾
𝜋

4
0

 independent of the values of β and m. When no 

scaling exists (S = 1), m defines the pore order of rotational symmetry, meaning that rotating the 

pore by an angle of 360°/m does not change it. 

To focus on 2D architected closed-cell metamaterials, one percent of the RVE’s length is 

selected as the minimum allowable clearance between the pore and RVE’s outer edges to avoid 

pore walls from touching the RVE’s boundaries. For these 2D metamaterials, porosity (Φ) is 

defined as the ratio between the pore area and the whole cell area, which in the case of a unit square 

RVE, is equal to the pore area. The relative density (𝜌𝑟) is defined as the ratio of the solid area to 

the whole cell area and is equal to: 1- Φ. For a unit square RVE with an enclosed 2D supershape 

pore, Eq. (2.1) can be rewritten in terms of the relative density (𝜌𝑟) via [
𝑥
𝑦] =

[
𝑥′
𝑦′
]√(1 − 𝜌𝑟)/(𝑆 𝐴0 ), where 𝐴0 for different n values is reported in Table 2.1.  

Table 2.1: A0 for different n values. 

n -5 -4 -3 -2 -1 0 1 2 3 4 5 

A0 0.527 0.686 0.933 1.333 2.000 3.142 5.142 8.712 15.187 27.078 49.140 
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Figure 2.1 presents typical RVEs of the 2D architected cells for different topological 

parameters. Each pore topology, corresponding to each set of geometrical parameters introduced 

in Eq. (2.1), is modeled within ANSYS APDL (Fig. 2.A.1 in Appendix 2.A1) by creating keypoints 

and using spline curves. The area surrounded by the splines is formed, scaled, rotated and moved 

to the center of the RVE to be subtracted from the unit solid RVE and to create 2D supershape 

cellular metamaterials. 

(a) 

 

(b) 

 

 

Figure 2.1: Sample RVEs of 2D architected cellular metamaterials for different topological 

parameters: (a) 𝜌𝑟 = 0.88 , 𝑆 = 1 and β=0° and (b) 𝜌𝑟 = 0.62 , 𝑆 = 1.5 and β=45°. 
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2.2.2 3D THIN-WALLED OPEN LATTICES 

Using closed 3D surface equations (such as 3D supershape formula) to generate 3D void 

shapes enables a parametric control over the pore geometry to create a variety of 3D RVEs for 

cellular materials. However, this method is generally unable of producing cells with low relative 

densities. To address this limitation, novel lightweight thin-walled open lattice architectures, based 

on 2D supershape pore topologies, are introduced and their effective thermal conductivities are 

compared with the thermal conductivity of 2D and 3D cellular materials. The 2D supershape pores 

are cut from each face of a hollow cubic RVE with a total relative wall thickness equal to 2~10% 

of the RVE’s length (tr = 0.02 ~ 0.1). To fulfill geometrical periodicity, opposite faces of RVE are 

cut by identical pore shapes. As illustrated in Fig. 2.2b, with three different 2D pore shapes on the 

faces of cubic RVE, the number of achievable 3D thin-walled open cells is much higher than their 

2D closed-cell counterparts. Considering the fact that 3D computer-aided design (CAD) and finite 

element modelling are more computationally expensive than 2D RVEs, a tighter limit for the 

geometrical parameters of supershape pores is adopted (1 ≤ 𝑚 ≤ 4 , −3 ≤ 𝑛 ≤ 3 and S = 1) and 

the pore’s topological parameters are kept constant on all faces of the 3D thin-walled open lattices 

(Fig. 2.2c). 

 

  

(a) (b) (c) 

Figure 2.2: (a) Local coordinate system used for the creation of 2D supershape pores on each 

face of 3D RVE, (b) Possible thin-walled open lattice modeled in SolidWorks, and (c) Schematic 

view of a thin-walled open lattice considered in this study. 

2.2.3 3D SHELLULAR RVES 

A Triply Periodic Minimal Surface (TPMS) is a non-self-intersecting surface in R3, which has 

a crystalline structure repeated in three independent directions, having a zero mean curvature at 
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each point [46]. The presence of TPMS in natural materials, like biological membranes [47] and 

crystals [46], has inspired researchers to consider TPMS architectures in tissue engineering and 

biomimetic material design [48-51]. The Shellular term has been recently used in the literature to 

represent thin TPMS cellular shells. Among many known TPMSs, Schwarz’s Primitive (P), 

Diamond (D), and Schoen’s Gyroid (G) are selected here for analysis. These surfaces can be 

trigonometrically approximated using the following level surface equations [52]: 

P: 𝑐𝑜𝑠 𝑥 + 𝑐𝑜𝑠 𝑦 + 𝑐𝑜𝑠 𝑧 = 𝑓                         (f = 0, 0.4, 0.8)   

D: 
𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑦 𝑠𝑖𝑛 𝑧 + 𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑦 𝑐𝑜𝑠 𝑧 + 𝑐𝑜𝑠 𝑥 𝑠𝑖𝑛 𝑦 𝑐𝑜𝑠 𝑧 +

𝑐𝑜𝑠 𝑥 𝑐𝑜𝑠 𝑦 𝑠𝑖𝑛 𝑧 = 𝑓  
(f = 0) (Eq. 2.2) 

G: 𝑐𝑜𝑠 𝑥 𝑠𝑖𝑛 𝑦 + 𝑐𝑜𝑠 𝑦 𝑠𝑖𝑛 𝑧 + 𝑐𝑜𝑠 𝑧 𝑠𝑖𝑛 𝑥 = 𝑓     (f = 0)  

We developed a MATLAB code to solve the level surface equations and determine the 

coordinates of several points on the surface. These points together with multiple cross-section 

curves, satisfying the surface equations, are firstly created inside SolidWorks using a Visual Basic 

code and then used to create a smooth surface. This part of the surface is then patterned to create 

the mid-surface of the Shellular RVE and the pattern is subsequently thickened to add the desired 

thickness (as shown in Fig. 2.A.2 in Appendix 2.A2). To focus on lightweight structures, five 

relative thicknesses (tr) from 2 to 10% of RVE’s length are considered for analysis. Figure 2.3 

presents some selected Shellular architectures. 

    

(a) (b) (c) (d) 



15 

Figure 2.3: 3×3×3 TPMS cells together with two Shellular RVEs at 0.02 and 0.10 relative 

thicknesses: (a) Schwarz D, (b) Gyroid, (c) Schwarz P with 𝑓 = 0, and (d) Schwarz P with 𝑓 =

0.8. 

 

2.3 PREDICTIVE METHODS 

Fourier's law assumes the following linear relation between the heat flux (q⃗ ) and temperature 

gradient (∇⃗⃗ T) through a symmetric thermal conductivity tensor (Keff):    

𝑞 =  −𝐾𝑒𝑓𝑓 ∇⃗⃗ 𝑇         (Eq. 2.3) 

For a thermally isotropic homogenous solid material, 𝐾𝑒𝑓𝑓 tensor reduces to KI, where I is the 

identity tensor and K is the isotropic thermal conductivity. However, in the case of cellular 

materials, the overall thermal conductivity is generally anisotropic and depends on 

microarchitectural parameters of the cells [5]. 

Since the simple volumetric averaging approach is indifferent to cell architecture, it is unable 

to capture the anisotropic thermal properties of cellular materials leading to effective thermal 

conductivity overestimation. To address these shortcomings, several analytical and computational 

methods have been developed, among which the thermal-circuit method (or Resistor approach) 

has been widely used to predict the theoretical upper and lower bounds of thermal conductivity for 

a given cell topology [53]. More advanced numerical methods, e.g., computational 

homogenization, are required to exactly model the microarchitecture of cellular materials. 

It should be noted that the contribution of heat transfer mechanisms other than conduction, i.e. 

radiation and convection, is assumed to be small and consequently neglected in this paper. For a 

cellular material made by a highly conductive matrix and empty voids or gaseous inclusions, this 

assumption is valid for small pore sizes working close to the ambient temperature [54-57]. 

2.3.1 ANALYTICAL MODELLING 

Using the analogy between thermal and electric fields, the thermal circuit method with parallel 

and series configurations is used to derive closed-form expressions for the upper and lower bounds 

of the thermal conductivity of cellular materials with rectangular or elliptic inclusion/pore. In this 

approach, the thermal gradient is analogous to electric voltage, the heat flow represents the electric 
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current and the thermal resistance, being equal to the reciprocal of thermal conductivity for a unit 

cell, corresponds to electric resistance [44]. To establish this analytical model, Fig. 2.4 shows that 

the unit cell is divided into rectangular elements acting as thermal resistors while the heat flux is 

considered to flow along the y direction and perfect thermal contact is assumed between the matrix 

(solid cell walls) and the filler (air for cellular materials). 

  

(a) (b) 

Figure 2.4: Schematic view of the thermal resistant elements for: (a) Horizontal iso-thermal 

lines where 𝛿𝑅𝑦 =  
1

𝛿𝑅𝑚
𝑦 +

1

𝛿𝑅𝑖
𝑦 

−1

  and ,𝑅𝑦 =   𝛿𝑅𝑦   and (b) Vertical adiabatic lines with 

𝛿𝑅𝑦 = 𝛿𝑅𝑚
𝑦

+  𝛿𝑅𝑖
𝑦
  and 𝑅𝑦 =   

1

𝛿𝑅𝑦
 
−1

 . 

Closed-form thermal conductivity formulations are derived and presented in Table 2.2, where 

𝑘𝑚 and 𝑘𝑖 are the thermal conductivity of the matrix and inclusion, respectively. In addition, l is 

the dimension of the square RVE, a and b are the pore length and width along the x and y directions, 

respectively;  𝜆𝑎 = 𝑎 𝑙 , 𝜆𝑏 = 𝑏 𝑙 , 𝜆𝑘 = 𝐾𝑖 𝐾𝑚  (< 1), 𝜃 = atan(√((1 − 𝜆𝑘)𝜆𝑎)−2 − 1 and 𝐴 =

𝜆𝑏(1 𝜆𝑘 − 1). It can be deduced that the ‘Vertical adiabatic lines’ expressions for both rectangular 

and elliptic geometries reduce to 𝐾𝑦𝑦
𝑒𝑓𝑓

/𝐾𝑚 = 1 − 𝜆𝑎 when 𝐾𝑖 = 0, which corresponds to cellular 

materials with empty (vacuum) pores. The relative density of the matrix can be calculated as 

(𝜌𝑚)𝑟 = (𝑙2 − 𝑎𝑏) 𝑙2 = 1 − 𝜆𝑎𝜆𝑏 and (𝜌𝑚)𝑟 = (𝑙2 − 𝜋𝑎𝑏 4 ) 𝑙2 = 1 − 𝜋𝜆𝑎𝜆𝑏 4 , for cells 

with rectangular and elliptic inclusion/pore, respectively. As symmetry in the selected 

architectures of matrix and inclusion/pore dictates, the off-diagonal terms of the thermal 

conductivity tensor are zero (𝐾𝑥𝑦
𝑒𝑓𝑓

= 0) and the thermal conductivity in the x and y directions are 

equal. 
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Table 2.2: Closed-form expressions for 𝐾𝑦𝑦
𝑒𝑓𝑓

/𝐾𝑚   of cells made by thermally isotropic and 

homogeneous matrix and filler material (inclusion), having rectangular and elliptic 

inclusion/pore shapes, under the assumptions of ‘Horizontal iso-thermal lines’ or ‘Vertical 

adiabatic lines’.  

 Assumption 𝑲𝒚𝒚
𝒆𝒇𝒇

/𝑲𝒎 

 

Horizontal iso-

thermal lines 

1 + 𝜆𝑎(𝜆𝑘 − 1)

1 + 𝜆𝑎(𝜆𝑘 − 1)(1 − 𝜆𝑏)
 

Vertical adiabatic 

lines 
1 −

𝜆𝑎𝜆𝑏(1 − 𝜆𝑘)

𝜆𝑘 + 𝜆𝑏(1 − 𝜆𝑘)
 

 

Horizontal iso-

thermal lines 

1

1 − 𝜆𝑏 +
𝜆𝑏

𝜆𝑎(1 − 𝜆𝑘)

(

 𝜋 − 𝜃

√1 − ((1 − 𝜆𝑘)𝜆𝑎)
2
−
𝜋
2

)

 

 

Vertical adiabatic 

lines 

{
 
 
 
 

 
 
 
 1 − 𝜆𝑎 +

𝜆𝑎
𝐴
 
𝜋

2
−
ln (𝐴 + √𝐴2 − 1

√𝐴2 − 1
 , 𝐴 > 1

1 + 𝜆𝑎 (
𝜋

2
− 2) ,                                                𝐴 = 1

1 − 𝜆𝑎 +
𝜆𝑎
𝐴

(

 
 𝜋

2
−

atan 
√1 − 𝐴2

𝐴  

√1 − 𝐴2

)

 
 
, 𝐴 < 1

 

 

2.3.2 COMPUTATIONAL STANDARD MECHANICS HOMOGENIZATION 

Under the assumption that the RVE of a periodic cellular material is repeated in all three 

directions and the RVE is far from the boundaries, the following periodic boundary conditions 

(Eq. (2.4)), together with independent unit thermal gradients (Eq. (2.5)), are adopted on the 

boundaries [16]: 

Periodicity in x direction:  
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𝑇(𝑥0, 𝑦, 𝑧) − 𝑇(𝑥0 + 𝑙𝑥, 𝑦, 𝑧) = 𝑙𝑥  
𝜕𝑇

𝜕𝑥
 
𝑖
 (Eq. 2.4a) 

Periodicity in y direction:  

𝑇(𝑥, 𝑦0, 𝑧) − 𝑇(𝑥, 𝑦0 + 𝑙𝑦, 𝑧) =  𝑙𝑦  
𝜕𝑇

𝜕𝑦
 
𝑖

 (Eq. 2.4b) 

Periodicity in z direction:  

𝑇(𝑥, 𝑦, 𝑧0) − 𝑇(𝑥, 𝑦, 𝑧0 + 𝑙𝑧) = 𝑙𝑧  
𝜕𝑇

𝜕𝑧
 
𝑖
 (Eq. 2.4c) 

Independent unit thermal gradients: 

(∇𝑇̅̅̅̅ )𝑖  =  
𝜕𝑇

𝜕𝑥

̅̅̅̅
,
𝜕𝑇

𝜕𝑦

̅̅̅̅
,
𝜕𝑇

𝜕𝑧

̅̅̅̅
 
𝑖

= {

(1,0,0), 𝑖 = 1
(0,1,0), 𝑖 = 2
(0,0,1), 𝑖 = 3

 (Eq. 2.5) 

where i is the thermal loading case number and x0, y0 and z0 are the locations of the three negative 

faces of the cubic RVE, while lx, ly and lz represent RVE’s dimensions along the x, y and z axes, 

and ∇T̅̅̅̅  is the average thermal gradient applied to the RVE’s boundaries to calculate the 

microscopic thermal gradients inside the unit cell. Since the RVE is a unit square in 2D analysis 

and a unit cube in 3D analysis, Eqs. (2.4) and (2.5) can be further simplified to: 

(

𝑇(𝑥0, 𝑦, 𝑧) − 𝑇(𝑥0 + 1, 𝑦, 𝑧)

𝑇(𝑥, 𝑦0, 𝑧) − 𝑇(𝑥, 𝑦0 + 1, 𝑧)

𝑇(𝑥, 𝑦, 𝑧0) − 𝑇(𝑥, 𝑦, 𝑧0 + 1)
)

𝑖

= (
1
0
0
)

𝑖=1

, (
0
1
0
)

𝑖=2

, (
0
0
1
)

𝑖=3

 (Eq. 2.6) 

For 2D analysis, all terms in the z dimension are discarded, leading to two independent 

thermal loading cases. The energy balance equation, i.e. energy equation combined with Fourier 

heat conduction, is solved over the RVE using the finite element method (FEM). The effective 

thermal conductivity of the cellular materials can be calculated by the volumetric averaging of the 

resultant heat flux based on the standard mechanics homogenization as [58]: 

𝐾̅𝑖𝑗 =
1

𝑉𝑅𝑉𝐸
 ∫𝐾𝑖𝑘𝑀𝑘𝑗

𝑇 𝑑𝑉𝑅𝑉𝐸 (𝑖, 𝑗, 𝑘 = 1,2,3) (Eq. 2.7) 

where K̅ij is the effective thermal conductivity tensor,  VRVE represents the RVE volume, Kik is the 

local thermal conductivity tensor, and the MT tensor relates the average and local temperature 

gradients by ∇𝑇 = 𝑀𝑇∇𝑇̅̅̅̅ . 
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2.4 RESULTS AND DISCUSSION 

Starting with verification of the numerical homogenization scheme, the obtained effective 

thermal conductivities of periodic cubic RVEs with spherical pores in the well-known simple cubic 

(SC), face-centered cubic (FCC) and body-centered cubic (BCC) arrangements are compared with 

the findings in literature. Figure 2.A.3 (in Appendix 2.A3) demonstrates the good agreement 

between our numerical results with those reported in [20]. 

To show the effect of filler (inclusion) material on the overall thermal conductivity and to 

examine the validity of neglecting the thermal conductivity of the gas inside the pore of cellular 

materials, the homogenized thermal conductivity of a square cell with an empty square pore is 

benchmarked against the effective thermal conductivity of the same cell filled with air at room 

temperature. As shown in Fig. 2.5, for relative densities higher than 10%, the air’s thermal 

conductivity can be neglected without affecting the effective thermal conductivity when the 

thermal conductivity of the matrix is several orders of magnitude higher than the air, such as in 

metallic cellular materials. 

 

Figure 2.5: Effective thermal conductivity of air-filled (kair = 0.0263 W/mK) and empty (ki = 0) 

cellular materials for a square pore shape versus the thermal conductivity of the solid matrix 

(log-log scale). 
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Under the assumption of neglecting the air, the closed-form expressions presented in Table 

2.2 for the cellular materials with rectangular and elliptic pore topologies are compared with the 

results obtained by standard mechanics homogenization. As shown in Fig. 2.6, for all pore’s aspect 

ratios (
𝜆𝑎

𝜆𝑏
= 1, 2 and 3), the distances between the higher and lower bounds of the effective thermal 

conductivity of the cells with elliptic pores are larger than those for rectangular pores. Moreover, 

by increasing the relative density, the distance between the theoretical bounds increases. In this 

case, although the pore topology is accounted to derive the theoretical upper and lower bounds, 

the simplifying assumptions made in deriving the closed-form formula based on the thermal-circuit 

method make it impossible to accurately predict the effective thermal conductivity. Close to the 

smallest possible relative density for each pore aspect ratio, the effective thermal conductivity of 

cells with elliptic pores shows sharper drops compared to rectangular pores. This is partially 

because of the higher decreasing rate of the minimum wall thickness with decreasing relative 

density for the cells with elliptic pores.  

  

(a) (b) 

Figure 2.6: Theoretical upper and lower bounds along with computational homogenized values 

of the thermal conductivity along y direction, normalized by the thermal conductivity of the solid 

matrix: (a) rectangular, and (b) elliptic pores. 
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The standard mechanics homogenization is applied to predict the thermal conductivity of 2D 

architected cellular metamaterials with supershape pore topologies. We consider the variation of 

the pore’s scaling S between 1 and 3.5 (with 0.5 increment) and the pore’s rotations in the range 

of 0o to 90o (with 7.5o increment) to better show the effect of the pore shape and pore rotation on 

tuning the thermal properties of engineered porous materials. The in-plane effective thermal 

conductivity generally shows anisotropic properties in both x and y directions. As a result, the 

effective principal thermal conductivities (K1 as the maximum and K2 as the minimum) are 

presented in Fig. 2.7 instead of 𝐾𝑥𝑥, 𝐾𝑦𝑦 and 𝐾𝑥𝑦. Some representative relative densities are 

highlighted with different colors to show the achievable range of K1 and K2 by selected pore 

topologies. The large area of K1 versus K2 for each relative density allows the engineering of 

architected cellular materials while keeping the weight constant. 

 

Figure 2.7: Normalized effective principal thermal conductivities predicted by standard 

mechanics homogenization for 2D supershape RVEs. 

As mentioned earlier, we consider RVEs with enclosed 2D supershape pores which have wall 

thicknesses larger than 0.02 times the RVE’s length. For this RVE, reducing the relative density 

pushes the boundaries of the pore towards the cell edges, which makes scaling and rotation 

impossible at small relative densities. This results in square-like pore topologies with isotropic in-
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plane effective thermal conductivities for relative densities smaller than 0.2. This behavior can be 

observed on the far left side of Fig. 2.7, in which 𝐾1
𝑒𝑓𝑓

 and 𝐾2
𝑒𝑓𝑓

 are getting closer with decreasing 

relative density, leading towards thermal isotropy. As an example, Fig. 2.8 exhibits two RVEs with 

relative densities below 0.2. 

 

Figure 2.8: Two RVEs with relative densities below 0.2. 

While decreasing the relative density usually leads to isotropic thermal conductivity for 

square RVEs with a supershape pore, other cell architectures might enforce anisotropic thermal 

conductivity even at low relative densities. Figure 2.9 shows an example for an RVE which has a 

pore size several times larger than the RVE’s dimensions. While for thermally isotropic materials 

the ratio of the maximum to minimum principal thermal conductivities is equal to one, the 

architected cell presented in Fig. 2.9 exhibits a highly anisotropic effective thermal conductivity, 

with an in-plane thermal conductivity ratio of 𝐾1
𝑒𝑓𝑓

𝐾2
𝑒𝑓𝑓

⁄  close to 60. 

 

Figure 2.9: An example of an RVE with 𝜌𝑟 = 0.132  and a highly anisotropic effective thermal 

conductivity ( 𝐾1
𝑒𝑓𝑓

/𝐾𝑚 = 0.122  and 𝐾2
𝑒𝑓𝑓

/𝐾𝑚 = 0.002 ). Rectangular pore’s specifications 

are: 19.1 aspect ratio and 14° rotation angle. 

The results presented in Fig. 2.10 show how the effective thermal conductivity of 2D 

supershape cellular metamaterials can be tuned by changing the shape parameters (m, n, S, β and 

𝜌𝑟) of supershape pore. A detailed analysis of the results obtained by standard mechanics 

homogenization, presented in Fig. 2.10, shows that: 
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- Narrower relative density range is possible generally with n < 0, which is the main reason 

for the smaller region covered in the 𝐾2
𝑒𝑓𝑓

 vs. 𝐾1
𝑒𝑓𝑓

plot for n < 0 compared to n > 0. 

- 𝐾𝑥𝑦
𝑒𝑓𝑓

 for all supershape pore topologies with β = 0° is zero, which can be justified by the fact 

that the defined 2D RVEs (supershape pore within square cells) are symmetric about the x 

axis, which in turn makes 𝐾𝑥𝑦
𝑒𝑓𝑓

 zero, identifying 𝐾𝑥𝑥
𝑒𝑓𝑓

 and 𝐾𝑦𝑦
𝑒𝑓𝑓

 as the principal thermal 

conductivities. Similarly for β = 45°, the RVEs are symmetric about one of the diagonals of 

the square cell, thus off-diagonal terms of the thermal conductivity tensor must be zero along 

this direction.  

- With the same relative density, rotating the elongated pore in the x direction (S > 1) by 45° 

decreases the 𝐾1
𝑒𝑓𝑓

/𝐾2
𝑒𝑓𝑓

 ratio. It should be noted that the pore dimensions remain 

unchanged by keeping the relative density constant. Therefore, rotating the pores by 45° 

aligns them in the diagonal direction increasing the distance between the pores of the adjacent 

cells and providing more space for heat to flow.  

- 𝐾1
𝑒𝑓𝑓

and 𝐾2
𝑒𝑓𝑓

 of cells with lower pore elongation (S) and higher relative densities are less 

sensitive to pore rotation than cells with larger S values or cells with smaller relative 

densities. For instance, for S = 1.5 and relative densities above 0.95, pore rotation does not 

change the principal effective thermal conductivities. However, this is not true for lower 

relative densities or larger S values. 

- Regardless of rotation angle, for S = 1, all cases with m = 4 or 8 or RVEs with n = 0 (circular 

pore) are thermally isotropic. This is a result of the four-fold rotational symmetry of these 

supershape RVEs which leads to 𝐾𝑥𝑥
𝑒𝑓𝑓

= 𝐾𝑦𝑦
𝑒𝑓𝑓

 and  𝐾𝑥𝑦
𝑒𝑓𝑓

 = 0.  

- For m = 2 and n > 0, the supershape pore is initially elongated in the y direction. For other 

cases, increasing S generally leads to architected metamaterials with highly anisotropic 

effective thermal conductivity, at the cost of not being able to achieve lower relative 

densities. 
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(a) (b) 

  

(c) (d) 
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(e)  

Figure 2.10: Effective principal thermal conductivities of 2D supershape RVEs for different sets 

of topological parameters: a) [n=3, m=6], b) [n=3, m=3], c) n=0, d) [n=-3, m=6], and e) [n=-

3, m=3]. 

An interesting, but not-widely sought, thermal property of advanced architected materials is 

off-diagonal terms of the thermal conductivity matrix; i.e. 𝐾𝑥𝑦, 𝐾𝑥𝑧 and 𝐾𝑦𝑧. While these off-

diagonal terms are zero for thermally isotropic materials and applying temperature gradients in 

any direction only results in heat flow in that direction, applying temperature gradient along one 

direction on thermally anisotropic metamaterials can also result in heat flow in other directions. 

For instance, temperature gradient along the x direction in thermally anisotropic 2D materials with 

non-zero 𝐾𝑥𝑦 can also create heat flow in either positive or negative y direction. Figure 2.11 shows 

𝐾𝑥𝑦
𝑒𝑓𝑓

 for all analyzed 2D supershape RVEs with respect to their relative density. Inspecting cases 

with higher 𝐾𝑥𝑦
𝑒𝑓𝑓

 shows that highly elongated pores aligned along one of the RVE’s diagonals lead 

to a significant increase of the magnitude of the off-diagonal thermal conductivity term.  
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Figure 2.11: Effective off-diagonal term in the thermal conductivity tensor for 2D supershape 

RVEs with respect to the relative density obtained by standard mechanics homogenization. 

It should be noted that by rotating a thermally anisotropic material with respect to a coordinate 

system, components of its thermal conductivity tensor change; hence, the materials’ orientation 

(not to be confused with pore’s rotation) can also be considered as an approach to control the 

thermal conductivity of an anisotropic material. To obtain the thermal conductivity tensor of the 

rotated material, coordinate transformation can be used [28, 41]. The Mohr’s circle (Fig. 2.12) can 

also be used as an alternative.  

 

Figure 2.12: Using the Mohr’s circle to calculate the thermal conductivity components for a 

rotated anisotropic material. 

It is worth mentioning that with the considered minimum wall thicknesses of 2D cellular 

metamaterials, all 2D supershape RVEs in this research have non-zero thermal conductivities in 
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all directions. As a result, the distance between the Mohr’s circle center and the origin (c) in Fig. 

2.12 is always larger than the Mohr’s circle radius (r) meaning that 𝐾2 must be positive. 

Considering that max(𝐾𝑥𝑦) = 𝑟, and max (𝐾𝑥𝑥 , 𝐾𝑦𝑦) ≥ 𝑐, the maximum of the 𝐾𝑥𝑥 and 𝐾𝑦𝑦 must 

always be higher than 𝐾𝑥𝑦, while min (𝐾𝑥𝑥 , 𝐾𝑦𝑦) can be smaller, larger or equal to 𝐾𝑥𝑦 depending 

on the rotation angle of the material and the magnitudes of c and r. Interestingly, for 𝐾𝑥𝑦 > 𝐾𝑥𝑥, 

applying a temperature gradient in the y direction would make higher heat transfer in the x 

direction, compared to applying the same temperature gradient in the x direction. It can be easily 

shown that when 𝑐/(𝑟√2) > 1, which by replacing c by (𝐾1 + 𝐾2)/2 and r by (𝐾1 − 𝐾2)/2, 

simplifies to 𝐾1/𝐾2 < (√2 + 1) (√2 − 1)⁄ , for all rotation angles of the material, the minimum of 

𝐾𝑥𝑥 and 𝐾𝑦𝑦 is always larger than 𝐾𝑥𝑦. However, when 𝑐/(𝑟√2) ≤ 1, or equivalently 𝐾1/𝐾2 ≥

(√2 + 1) (√2 − 1)⁄ , which is the case for large 𝐾1 and small 𝐾2 values, a rotation angle can be 

found at which min(𝐾𝑥𝑥 , 𝐾𝑦𝑦) <  𝐾𝑥𝑦. Inspecting this criteria among all the effective thermal 

conductivities of the 2D supershape RVEs, we found few cases, e.g., [n = 2, m = 4, S = 2, β = 0, 

𝜌𝑟= 0.6] and [n = 2, m = 4, S = 2.5, β = 0, 𝜌𝑟= 0.68], which have 𝐾𝑥𝑦
𝑒𝑓𝑓

marginally greater than their 

𝐾𝑦𝑦
𝑒𝑓𝑓

 when these architected materials are rotated by -22.5°. High 𝐾𝑥𝑦 values open up the 

possibility of controlling the net heat flow in the x direction by tuning the temperature gradient in 

the y direction. Table 2.3 presents a case study where the net heat flow in the x direction has been 

increased (Case b) or reversed (Case c) by applying different temperature gradients along the y 

direction of a cellular medium made of a -45° rotated supershape pore with [n = 2, m = 4, S = 2.5, 

β = 0, 𝜌𝑟= 0.68]. The cellular part is a unit square with its corners cut by 0.1 m, while the thermal 

conductivity of the thermally isotropic base material is assumed to be 100 W/mK, with the 

aforementioned architecture, the effective thermal conductivity of the cellular medium is 

determined as: 𝐾𝑥𝑥
𝑒𝑓𝑓

= 𝐾𝑦𝑦
𝑒𝑓𝑓

= 37.2 W/mK and 𝐾𝑥𝑦
𝑒𝑓𝑓

= −26.8 W/mK. For all cases, the left 

wall’s temperature (Tl) is set at 6°C, while the temperature of the right wall (Tr) is 4°C. In Case a, 

all the walls are insulated (q = 0) except the left and right walls. Positive temperature difference in 

the y direction is applied in Case b by setting the top wall’s temperature (Tt) at 10°C and the bottom 

wall’s temperature (Tb) at 0°C. In Case c, the top and bottom wall temperatures of Case b are 

swapped so that the temperature difference applied in the y direction is negative. Steady-state heat 

conduction simulation is conducted using ANSYS Fluent and temperature distribution, together 
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with the effective heat flux passing through the left (ql), right (qr), top (qt) and bottom (qb) walls 

of the part are presented in Table 2.3, in which as of convention, positive sign for heat flux stands 

for inward and negative sign indicates outward heat fluxes. The observed coupling between the 

heat fluxes in both x and y directions in Case b and Case c, which is caused by the non-zero 𝐾𝑥𝑦
𝑒𝑓𝑓

, 

highlights the importance of the off-diagonal components of the thermal conductivity tensor. 

Failing to consider this coupling might result in completely different temperature distribution and 

inaccurate conclusions. For instance, in Case c although the imposed temperature difference in the 

x direction is negative, the apparent heat flow in this direction is also negative. Referring to Eq. 

(2.3), this leads to deducing a negative thermal conductivity for the cellular part, if the 

aforementioned coupling is ignored.  

Table 2.3: Thermal response of a square cellular part made by an anisotropic cellular 

architecture, subjected to a negative temperature gradient in the x direction (𝑇𝑙 > 𝑇𝑟)  and 

different boundary conditions in the y direction. Thick solid black lines represent insulated walls. 

 Case a Case b Case c 

 

   

 
 

Boundary 

Conditions 

Tl = 6°C, Tr = 4°C 

qb = qt = 0 W/m2 

Tl = 6°C, Tr = 4°C 

Tb = 0°C, Tt = 10°C 

Tl = 6°C, Tr = 4°C 

Tb = 10°C, Tt = 0°C 

heat fluxes 

[W/m2] 
ql = 43.2, qr = -43.2 

ql = 280.2, qr = -280.2 

qb = -429.2, qt = 429.2 

ql = -123.9, qr = 123.9 

qb = 349, qt = -349 
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As shown in Fig. 2.13, by adding a small thickness to 2D supershape RVEs and assembling 

them in a predefined 3D arrangement, thin-walled open lattices are introduced. Using a finite 

element simulation in ANSYS APDL to conduct standard mechanics homogenization, effective 

thermal conductivity of these lightweight 3D architected RVEs is then determined.  

 

Figure 2.13: Assembling or disassembling a general thin-walled open lattice RVE. 

To show the influence of pore topology of one side on the heat flow through the other sides 

of the thin-walled RVE, a simple mathematical model is derived based on superposition, in which 

heat flow through different RVE sides is assumed independent, and any heat flow or thermal 

resistance normal to all sides are neglected. Under these assumptions, all six RVE sides can be 

treated as separate entities as depicted in Fig. 2.13. Consequently, the effective thermal 

conductivity can be determined by summing up the contributions of these individual sides. 

Assuming that the effective in-plane thermal conductivities of the faces of the 3D RVE (which are 

2D supershape RVEs) in their 2D local coordinate systems are given by 𝐾
𝑧𝑥 𝑓𝑎𝑐𝑒

𝑒𝑓𝑓
𝐾𝑚⁄ =

[
𝑎3 𝑐3
𝑐3 𝑏3

]
𝑙𝑜𝑐𝑎𝑙

, 𝐾
𝑦𝑧 𝑓𝑎𝑐𝑒

𝑒𝑓𝑓
𝐾𝑚⁄ = [

𝑎2 𝑐2
𝑐2 𝑏2

]
𝑙𝑜𝑐𝑎𝑙

, and 𝐾
𝑥𝑦 𝑓𝑎𝑐𝑒

𝑒𝑓𝑓
𝐾𝑚⁄ = [

𝑎1 𝑐1
𝑐1 𝑏1

]
𝑙𝑜𝑐𝑎𝑙

, the overall 

thermal conductivity of the 3D thin-walled open RVE is calculated as: 

𝐾3𝐷
𝑒𝑓𝑓

𝐾𝑚⁄ ≈ 𝑡𝑟 [
𝑎1 + 𝑏3 𝑐1 𝑐3

𝑐1 𝑏1 + 𝑎2 𝑐2
𝑐3 𝑐2 𝑎3 + 𝑏2

]  (Eq. 2.8) 

where the relative wall thickness 𝑡𝑟 is defined as the total wall thickness divided by RVE’s length. 

Since the same pore topologies are applied to all sides of the thin-walled RVE, Eq. (2.8) can be 

further simplified as: 

𝐾3𝐷
𝑒𝑓𝑓

𝐾𝑚⁄ ≈ 𝑡𝑟 [
𝑎1 + 𝑏1 𝑐1 𝑐1

𝑐1 𝑏1 + 𝑎1 𝑐1
𝑐1 𝑐1 𝑎1 + 𝑏1

]  (Eq. 2.9) 
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This equation satisfies 𝐾𝑥𝑥 = 𝐾𝑦𝑦 = 𝐾𝑧𝑧 and 𝐾𝑥𝑦 = 𝐾𝑦𝑧 = 𝐾𝑧𝑥 for the introduced thin-walled 

RVEs, which arise from their three-fold rotational symmetry about their diagonals. Equation (2.9) 

also predicts a linear relation between the relative wall thickness and the effective thermal 

conductivity. Figure 2.14 compares the prediction of Eq. (2.9) with the results of 3D standard 

mechanics homogenization for some of the thin-walled RVEs. Since the discrepancies between 

the aforementioned methods are highest for 0.1 relative wall thickness, the homogenization results 

for other relative thicknesses are not presented. As shown in Fig. 2.14, the predicted results by Eq. 

(2.9) show good agreement with the 3D homogenization. However, because the heat flow and 

thermal resistance normal to each RVE face are neglected, small 𝐾𝑥𝑥 overprediction can be seen 

as if the results are slightly shifted to the right.  

(a) 
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(b) 

 

Figure 2.14: Effective 𝐾𝑥𝑥   and 𝐾𝑥𝑦   normalized by the base material’s thermal conductivity times 

the relative wall thickness, for the thin-walled open lattices based on: (a) supershape parameter 

m=1 and (b) supershape parameter m=2. Only the face of the 3D RVE in the x-y plane is shown. 

Although the superposition-based model shows good agreements with 3D standard mechanics 

homogenization, because it does not account for the influences of pore geometry of one face on 

the heat flow through the other faces, its prediction of the effective thermal conductivity of thin-

walled open lattices might deviate noticeably from the 3D homogenization. An example is 

provided in Fig. 2.15, in which Eq. (2.9) predicts zero effective 𝐾𝑥𝑦, while the actual value of this 

parameter changes with the relative density of 3D RVE for a supershape parameter set as [n=-3, 

m=3, S=1, β=0]. It should be noted that the assumptions made to neglect the heat transfer 

mechanisms other than conduction inside the matrix might lose their validity for lower relative 

densities of thin-walled open-cell lattices. 
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Figure 2.15: Deviation of the results of Eq. (2.9) from 3D standard mechanics homogenization 

for thin-walled open lattice with supershape parameters set as [n=-3, m=3, S=1, β=0]. 

To show the versatility of the achievable effective thermal conductivity of thin-walled open 

lattices, their thermal conductivities are compared with P, D and G Shellular materials. The 

computational analysis shows that unlike most of the considered 2D and 3D architected cellular 

metamaterials, P, D and G Shellular materials are thermally isotropic and thus only one value is 

reported in Figs. 2.16 and 2.17. The G, D and P Shellular materials (when f = 0) show almost equal 

thermal conductivity at each relative density, a phenomenon that is in agreement with the findings 

reported elsewhere [40]. Curve fittings of the effective thermal conductivities of these Shellular 

materials are provided in Table 2.4 (with the coefficient of determination R2 > 0.9999). As the 

power-law exponents for the relative density are all close to unity, it can be inferred that for relative 

densities below 0.25, the thermal conductivity of G, D and P Shellular materials varies almost 

linearly with relative density. 
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Figure 2.16: Effective thermal conductivity of Shellular materials, normalized by thermal 

conductivity of the solid matrix, with respect to relative density. 

Table 2.4: Curve fittings of the normalized effective thermal conductivity of P, D and G Shellular 

materials in the form of 𝐾𝑒𝑓𝑓 𝐾𝑚 = 𝐶0 (𝜌𝑟)𝑛  . 

G 

(f = 0) 

D 

(f = 0) 

P family 

f = 0 f = 0.4 f = 0.8 

0.7060 (𝜌𝑟)
1.0219 0.6853 (𝜌𝑟)

1.0089 0.6941 (𝜌𝑟)
1.015 0.6700 (𝜌𝑟)

1.0157 0.5808 (𝜌𝑟)
1.0219 

  

Figure 2.17a shows the normalized effective thermal conductivity of P, D and G Shellular 

materials (with f = 0) with respect to their relative wall thickness. As shown in this figure, for the 

same relative thickness, type G has the highest thermal conductivity among the three Shellular 

materials, while type D has the lowest thermal conductivity. Having the same unit cell dimensions, 

the G surface has more surface area than the other two Shellular materials, meaning that type G 

Shellular material has the highest relative density among the three Shellular materials for the same 

relative thickness. Considering relative density as one of the most influential parameters on the 

effective thermal conductivity, it is then reasonable for type G Shellular material to have higher 
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effective thermal conductivity than P and D Shellular materials. With the same logic, as type D 

has the smallest surface area among the three selected surfaces, it has the lowest relative density 

for the same thickness and thus the smallest relative thermal conductivity. The effect of f  

parameter on the overall thermal conductivity of type P Shellular materials is also examined. As 

shown in Fig. 2.16 and Fig. 2.17b, for the same relative density or the same relative thickness, 

increasing f decreases the effective thermal conductivity of type P Shellular materials. This can be 

justified by the change in the spatial distribution of the material inside each cell. In other words, 

when f = 0, more material is involved in the effective heat transfer throughout the Shellular medium 

compared to f = 0.8.  

  

(a) (b) 

Figure 2.17: Normalized effective thermal conductivity of Shellular materials with respect to 

relative thickness: (a) G, D and P Shellular materials with 𝑓 = 0, and (b) P Shellular materials 

with different 𝑓 values. 

Figure 2.18 presents the plots of 𝐾1
𝑒𝑓𝑓

− 𝐾2
𝑒𝑓𝑓

 for all 2D and 3D RVEs introduced in this 

paper. To compare the thermal conductivity of the 2D supershape, 3D thin-walled open lattices, 

and selected Shellular materials,  𝐾1
𝑒𝑓𝑓

 and 𝐾2
𝑒𝑓𝑓

 are selected as the maximum and minimum 

principal effective thermal conductivity, respectively. It should be mentioned that for a 3D RVE 

made by thickening of a 2D supershape RVE, the effective out-of-plane thermal conductivity 
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(𝐾𝑧𝑧
𝑒𝑓𝑓

) follows the rule of mixtures since there is no topological change or heat transfer obstruction 

through thickness. The relation between 𝐾1
𝑒𝑓𝑓

, 𝐾2
𝑒𝑓𝑓

 and 𝐾3
𝑒𝑓𝑓

  for thin-walled open lattices with 

different m and n values is presented in Appendix 2.A4 (Fig. 2.A.4). 

 

Figure 2.18: Maximum vs. minimum effective principal thermal conductivity of 2D supershape 

cellular, 3D thin-walled open lattices, and Shellular materials for different relative densities. 

Using a MarkerBot Z18, a fused deposition modelling (FDM) 3D printer, the 

manufacturability of the architected cellular metamaterials is verified. Figure 2.19 shows 

representative 3D printed unit cells made by layer-by-layer deposition of molten polylactic acid 

(PLA) using a 0.4mm nozzle size, layer thickness around 0.1 mm and with 3D support structures 

where the part has overhang beyond 65°. Some common FDM 3D printing defects, such as rough 

surfaces, warpage, and shifted layers, are visible which can add extra thermal resistance when a 

3D printed part is attached to another solid part. On the other hand, internal defects, such as internal 

delamination of layers and imperfect bonding, may significantly affect the overall thermal 

conductivity of the 3D printed part itself. While Fig. 2.19 confirms FDM 3D printing as a possible 

manufacturing process to produce cellular metamaterials, more precise additive manufacturing 
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techniques, like stereolithography (SLA) or selective laser sintering (SLS), can be considered to 

reduce the manufacturing defects  for the production of architected metamaterials.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 2.19:  FDM 3D printed unit cells of some 2D and 3D RVEs presented in this paper: (a) 

2D supershape RVEs, (b) Thin-walled open lattice, (c) Gyroid or G type Shellular (𝑓 = 0), (d) 

Diamond or D type Shellular (𝑓 = 0), (e) Primitive or P type Shellular with 𝑓 = 0, (f) P type 

Shellular with 𝑓 = 0.4 and (g) P type Shellular with 𝑓 = 0.8. All 3D RVEs are 4×4×4 cm3. 

 

2.5 FUNCTIONALLY GRADED CELLULAR MATERIALS 

To explore the effect of tailoring the pore architecture across cellular metamaterials on tuning 

the thermal flow, topology and cell relative density of supershape pores can be graded according 

to the concept of functionally graded cellular materials (FGCMs) [59, 60]. Among all the 

possibilities, only the effect of pore rotation angle variation on the heat flux and temperature 

distribution is investigated here. Specific cell arrangements with similar pore shape but with 

different rotation angles are investigated to maximize or minimize the heat flow passing through 

the top (Qt) and right (Qr) edges of the cellular media while controlling the maximum temperature 

(Tmax) within these advanced cellular metamaterials. 
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Figure 2.20:  Schematic representation of an FGCM subjected to thermal loading. 

As illustrated in Fig. 2.20, a 1 m × 1 m 2D architected FGCM, consisting of 10 × 10 cells, 

is considered and 100 W heat is applied on the left side which leaves the cellular medium from the 

other three edges through heat convection with an ambient temperature of 0°C and a heat 

convection coefficient of 1 W/m2K (close to free convection in dry air). The base material of the 

FGCM is assumed isotropic with a thermal conductivity of 1 W/mK (such as some non-technical 

ceramics). The topology of the empty pores within the FGCM is formed by the following sets of 

parameters in the supershape formula: n = -2, m = 2, S = 1.5, 𝜌𝑟 = 0.8. The pore angles of rotation 

(βi) at the four corners of the FGCM medium are independently tailored between −90𝑜 to 90𝑜 

with ∆𝛽𝑖 = 22.50. The rotation angle of the pores within the FGCM is linearly interpolated by: 

𝛽(𝑖, 𝑗) =
𝛽4−𝛽3−𝛽2+𝛽1

(𝑛𝑦−1)(𝑛𝑥−1)
(𝑖 − 1)(𝑗 − 1) +

𝛽3−𝛽1

(𝑛𝑥−1)
(𝑖 − 1) +

𝛽2−𝛽1

(𝑛𝑦−1)
(𝑗 − 1) + 𝛽1   

(1 ≤ 𝑖 ≤ 𝑛𝑥  , 1 ≤ 𝑗 ≤ 𝑛𝑦)  

(Eq. 2.10) 

where 𝑛𝑥 and 𝑛𝑦 are the number of cells in the x and y directions, respectively. Here, 𝑛𝑥 = 𝑛𝑦 =

10.  

The numerical results for the heat flux at the top (Qt) and right (Qr) edges, as well as the 

maximum temperature within the FGCM (Tmax), are illustrated in Fig. 2.21a, 2.21b and 2.21c, 

respectively. As a side note, nine cases exist where all the pores have the same rotation angle 

within the medium, representing periodic architected cellular materials that are not graded. 

Numerical results for these architected cellular cases are also separately presented in Fig. 2.22.  
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(a) (b) 

 

(c) 
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Figure 2.21: Numerical simulation results of the square FGCM introduced in Fig. 2.20 for 

different β1 to β4 values. (a) Heat flow rate through the right edge (Qr), (b) Heat flow rate 

through the top edge (Qt), and (c) Maximum temperature throughout the FGCM. Stars on the 

color bars indicates Qr, Qt and 𝑇𝑚𝑎𝑥   for the solid part under the same boundary conditions. For 

points A~E, please refer to Table 2.5. 

Within the FGCM, each pore can be considered as a wall guiding the heat to flow along its 

elongation direction, preventing it from transferring in the normal direction. Using this analogy, 

having all pores with zero rotation angle (β1= β2= β3 = β4= 0°) would guide more heat towards the 

right edge creating the case having maximum Qr (point C in Fig. 2.21). Similarly, when all the 

pores are 90° rotated (β1= β2= β3= β4= 90° or -90°), more heat is being blocked from going towards 

the right side resulting in the minimum Qr (point B in Fig. 2.21). For these two cases, the FGCM 

is symmetric about the x axis. Therefore, as Qt and Qb are equal, they do not correspond to 

minimum and maximum Qt; but correspond to the minimum and maximum of Qt + Qb (which is 

equal to 100-Qr). In other words, to maximize Qt instead of minimizing Qr, summation of Qr and 

Qb shall be minimized. This can be achieved by arranging the pores in directions that maximize 

the heat flow towards the top edge, while minimizing it in the other two directions. Points E and 

D in Fig. 2.21 represent the maximum and minimum achievable Qt. Introducing voids (or pores) 

into a solid media decreases its local thermal conductivity, which in turn translates into an increase 

in the maximum temperature. To control the increased maximum temperature, heat should 

encounter minimum resistance in its flowing direction towards the top, right and bottom edges. 

The functionally graded cellular arrangement corresponding to the minimum increase in Tmax is 

indicated by point A in Fig. 2.21. Results for points A to E are summarized in Table 2.5. 
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Figure 2.22: Heat flow rates through the top and right edges together with the maximum 

temperature as a function of pore’s rotation angle, in the part made by uniform cellular 

materials (β1= β2= β3= β4). 

To demonstrate how tailoring the pore topology can tune the thermal performance of 

architected cellular media, numerical thermal results are compared with a corresponding fully solid 

medium. It can be seen that while the weight of both functionally graded and uniform cellular 

media is 20% lower than their solid counterparts, Qt can be increased by more than 25% using 

graded pore angles, compared to a 21% increase achievable by uniform cellular materials. As 

presented in Table 2.5, when minimizing the heat flux through the top edge of a cellular medium 

is of design interests, using an appropriate FGCM makes it possible to decrease Qt by 15%, while 

a uniform cellular material can only reduce Qt
 by at most 10%. In addition, it is possible to limit 

the unavoidable rise of the maximum temperature within the architected cellular medium and have 

Tmax equal to 115% of those of the solid medium value using the graded pore angles, while for 

uniform cellular media minimum Tmax is 32% higher than the solid medium.  
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Table 2.5: Temperature contours of architected and graded cellular media along with the minimum 

and maximum values for Qr, Qt and Tmax. The results of a solid medium are also provided as a 

baseline for comparison.    

 

      

 
 

 (A) (B) (C) (D) (E) (F) 

[β1 ~ β4] 

(Degree) 

[-67.5,67.5,-

22.5,22.5] 
[90,90,90,90] [0,0,0,0] [-67.5,0,-45,0] [0,90,67.5,90] Solid medium 

Tmax (°C) 
94.7  

(Min. Tmax) 

147  

(Max. Tmax) 
111.9 109.5 127.8 82.2 

Qt  

(Watt) 
39.3 44 36.6 

32.4  

(Min. Qt) 

47.9  

(Max. Qt) 
38.2 

Qr  

(Watt) 
21.4 

12  

(Min. Qr) 

26.8  

(Max. Qr) 
22.3 16.6 23.6 

 

This section focused on the effect of grading pore rotation angles throughout an FGCM on 

the thermal flow and temperature distribution inside the material to show the advantages that 

architected FGCMs can offer for designing advanced materials to control/tune heat flow in desired 

directions and limiting the maximum temperature within cellular media. For structural applications 

of architected cellular metamaterials where thermal and mechanical properties are both crucial, in 

addition to the pore’s rotation angle, other topological parameters of the cell microarchitecture 

(e.g., pore topology, relative density, elongation and even material composition) can also be 

spatially tailored throughout the FGCMs to achieve the highest multifunctional efficiency, for 

example in lightweight, structurally durable and highly-efficient thermal insulators. 
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2.6 CONCLUDING REMARKS 

Theoretical and computational methodologies have been conducted in this paper for 

predicting the effective thermal conductivity of architected cellular metamaterials. We firstly 

examine the validity of neglecting the thermal conductivity of air inside the pores of cellular 

materials by determining their effective thermal conductivity using derived closed-form 

expressions and numerical homogenization. We then used computational prediction of standard 

mechanics homogenization for analyzing the effect of cell microarchitecture on effective thermal 

conductivity of 2D cellular metamaterials with supershape pore architectures of different pore 

shape, scaling and rotations. The results presented a wide range of achievable anisotropic effective 

thermal conductivity for different relative densities. While the results in this paper and in the 

available literature are mostly focused either on the effective thermal conductivity in the x and y 

directions, or the effective principal conductivities, we also explored the importance of off-

diagonal terms in the thermal conductivity tensor using a case study. Then, the thermal 

conductivity of novel lightweight thin-walled open lattices, introduced based on 2D supershape 

pores, was examined. A mathematical model based on superposition was derived to calculate the 

effective thermal conductivity of thin-walled open lattices using the properties of 2D cellular 

materials with supershape pores. Comparing the predictions of this model with the numerical 

homogenization revealed that pores of one side of the cell alters the heat transfer through the other 

sides, further highlighting the importance of the cell architecture on the effective thermal 

conductivity of cellular materials. Different TPMS-based Shellular lightweight materials were also 

analyzed to compare their thermal conductivity with those of thin-walled open lattices. For the 

range of relative density investigated (𝜌𝑟 < 25%), G, D and P type Shellular materials with f = 0 

were found to have similar homogenized thermal conductivities. For the P type Shellular family, 

increasing the f value from 0 to 0.8 decreased the effective thermal conductivity. Finally, using a 

case study in 2D, it was shown how the concept of architected functionally graded cellular 

materials can be used to tune the heat flow and temperature within a cellular medium. While the 

methodology presented in this paper sheds light on the engineering of thermal conductivity of 

advanced cellular metamaterials, manufacturable by additive manufacturing technology, this study 

needs to be extended to also consider the other properties of cellular materials such as stiffness, 

electrical conductivity and permeability. This information will enable designers to develop 

engineered lightweight multifunctional structures in multiple length scales.  
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APPENDICES 

2.A1   MODELING STEPS OF 2D RVES IN ANSYS APDL  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 2.A.1: Modeling steps of 2D RVEs in ANSYS APDL: (a) keypoints, (b) spline segments 

passing through the keypoints, (c) pore area confined by the splines, without scaling and 

rotation, (d) pore area scaling and rotation and (e) subtraction of the pore area from a solid unit 

RVE. 

2.A2   STEPS FOR 3D MODELING OF A 3D SHELLULAR RVE  

    

(a) (b) (c) (d) 

Figure 2.A.2: Steps for 3D modeling of a 3D Shellular RVE: (a) points and curves satisfying the 

level surface equation, (b) smooth surface passing through the points and curves to create the 

fundamental region, (c) using transformation to create the unit cell from the fundamental region 

and (d) adding thickness to the middle surface. 
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2.A3   VERIFICATION OF THE NUMERICAL HOMOGENIZATION RESULTS 

 

Figure 2.A.3: Obtained effective thermal conductivities based on the discussed numerical 

homogenization scheme (solid lines) and the values reported in [20] for the same periodic RVEs 

To verify and check the validity of the discussed numerical standard mechanics 

homogenization technique, the obtained effective thermal conductivities of periodic cubic RVEs 

with spherical pores in simple cubic (SC), face-centered cubic (FCC) and body-centered cubic 

(BCC) arrangements are compared with those presented in [20], calculated using a solver based 

on explicit jump immersed interface method (readers are referred to reference [20] for more 

details) . Despite using different methods to calculate effective thermal conductivities, very good 

agreement between the results is demonstrated in the Fig. 2.A.3.  

It should be noted that by increasing the pore size larger than a specific value, solid parts of 

the RVEs become isolated and the periodic material loses its continuity. As a result, the effective 

thermal conductivity lines do not cross the origin in Fig. 2.A.3. The minimum relative density of 

the CAD models for the analysis are about 0.04 for the SC and FCC arrangements and 0.02 for the 

BCC. 
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2.A4  EFFECT OF M AND N ON THE RELATION BETWEEN EFFECTIVE PRINCIPAL THERMAL 

CONDUCTIVITIES OF THIN-WALLED OPEN LATTICES  

 

Figure 2.A.4: Relation between effective principal thermal conductivities of thin-walled open 

lattices for different m and n values of porous faces and 0° ≤ β ≤ 90°. 

As a result of the three folded rotational symmetry, the effective thermal conductivity tensor 

of thin-walled open lattices in x-y-z coordinate system is presented only by two values (𝐾𝑥𝑥
𝑒𝑓𝑓

 and 

𝐾𝑥𝑦
𝑒𝑓𝑓

) in the form of:  

𝐾𝑒𝑓𝑓 = 

[
 
 
 𝐾𝑥𝑥

𝑒𝑓𝑓
𝐾𝑥𝑦
𝑒𝑓𝑓

𝐾𝑥𝑦
𝑒𝑓𝑓

𝐾𝑥𝑦
𝑒𝑓𝑓

𝐾𝑥𝑥
𝑒𝑓𝑓

𝐾𝑥𝑦
𝑒𝑓𝑓

𝐾𝑥𝑦
𝑒𝑓𝑓

𝐾𝑥𝑦
𝑒𝑓𝑓

𝐾𝑥𝑥
𝑒𝑓𝑓

]
 
 
 
 

Calculating the eigenvalues of this matrix gives the three effective principal thermal 

conductivities, one equals to 𝐾𝑥𝑥
𝑒𝑓𝑓

+ 2𝐾𝑥𝑦
𝑒𝑓𝑓

 and the other two equal to 𝐾𝑥𝑥
𝑒𝑓𝑓

− 𝐾𝑥𝑦
𝑒𝑓𝑓

. Therefore 

for 𝐾𝑥𝑦
𝑒𝑓𝑓

> 0, the maximum (𝐾1
𝑒𝑓𝑓

) and minimum (𝐾2
𝑒𝑓𝑓

) effective principal thermal 

conductivities are 𝐾𝑥𝑥
𝑒𝑓𝑓

+ 2𝐾𝑥𝑦
𝑒𝑓𝑓

 and 𝐾𝑥𝑥
𝑒𝑓𝑓

− 𝐾𝑥𝑦
𝑒𝑓𝑓

 respectively, and the third effective principal 

thermal conductivity 𝐾3
𝑒𝑓𝑓

 is equal to 𝐾2
𝑒𝑓𝑓

. For 𝐾𝑥𝑦
𝑒𝑓𝑓

< 0 on the other hand, 𝐾1
𝑒𝑓𝑓

= 𝐾3
𝑒𝑓𝑓

=

𝐾𝑥𝑥
𝑒𝑓𝑓

− 𝐾𝑥𝑦
𝑒𝑓𝑓

 and 𝐾2
𝑒𝑓𝑓

= 𝐾𝑥𝑥
𝑒𝑓𝑓

+ 2𝐾𝑥𝑦
𝑒𝑓𝑓

. Figure 2.A.4 shows the relation between 𝐾1
𝑒𝑓𝑓

, 𝐾2
𝑒𝑓𝑓

 

and 𝐾3
𝑒𝑓𝑓

 for thin-walled open lattices. It is assumed that 𝐾1
𝑒𝑓𝑓

 is the maximum and 𝐾2
𝑒𝑓𝑓

 is the 

minimum effective principal thermal conductivity. 
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CONNECTING STATEMENT 

Chapter 2 provided in-depth analysis of effective thermal conductivity of some 2D and 3D 

cellular architectures. As one of the findings, it is shown that with the introduction of supershape 

holes on the faces of a hollow cube, it would be possible to design cellular materials with a wider 

range of thermal conductivity compared to Shellular materials. In the next chapter, to expand the 

range of effective thermal conductivity of Shellular architectures, the possibility of systematically 

introducing holes on these materials is evaluated. It is shown that 2D holes in cellular arrangement 

can be mapped on a subsection of the TPMS using conformal mapping. Holes are then cut from 

this subsection and the rest of the TPMS unit cell is created using transformation of the perforated 

part. By thickening the unit cell of the perforated TPMS, the RVE of a conformally perforated 

Shellular material is built. Effective thermal conductivities of some architectures created by this 

method are investigated as case studies.  

Chapter 3 is a part of ongoing studies on different properties of Shellular and perforated-

Shellular materials, in collaboration with Shahin Eskandari, Jiahao Shi, and Prof. Abdolhamid 

Akbarzadeh at AM3L laboratory of McGill University. 
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3 THERMAL CONDUCTIVITY OF CONFORMALLY PERFORATED SHELLULAR 

METAMATERIALS 

3.1 INTRODUCTION 

Using P, D and G-type Shellular architectures, low relative density cellular materials can be 

created. These structures consist of a shell-like solid phase that forms the architecture and divides 

the space into two disjoint sub-spaces (labyrinths) [39, 46, 61, 62]. As a TPMS is continuous, the 

interconnection between the two sub-spaces are cut by the solid material. Furthermore, there is no 

parameter in their mathematical model to change in order to modify their underlying architecture 

and subsequently their effective properties at a given relative thickness or relative density. To 

consider these points, Shellular architectures can be upgraded by introducing perforations on their 

surfaces. Adding holes, not only further reduces the relative density, but also makes the two 

disjoint sub-spaces interconnected, which in turn would further increase the permeability and open 

up the door to potential new applications in ultralight advanced structural materials, thermal 

insulation, tissue engineering scaffolds, catalyst supports, filtration and battery electrodes. 

Introducing holes on the Shellular architecture can be done by any arbitrary approach, as long 

as the integrity of the solid structure is intact. Similarly, pore shape and arrangement as well as the 

number of holes (perforations) can also be adjusted as desired. In this article, inspired by the idea 

of hierarchical architectures [63], holes arranged in a 2D periodic cellular layout are selected to be 

mapped on and cut from the TPMS. The idea is to make a 3D Shellular architecture perforated 

based on a 2D cellular layout and investigate the relation between the properties of the resulting 

material and the two incorporated 2D and 3D cellular architectures. To keep the connection with 

the previous works (please refer to Chapter 2 of this thesis), 2D cells are selected to be square. 

Knowing that the cell shape and pore topology determine the effective properties of a cellular 

material, it is obvious that distortions through the mapping shall be kept as small as possible to 

have a simple and meaningful correlation between the properties of the 3D perforated Shellular 

material and the 2D cellular layout used for perforating the TPMS. However, mapping a 2D flat 

region to a 3D curved surface (and the reverse operation) unavoidably distorts it, which indicates 

the importance of selecting an appropriate mapping method. In the current manuscript, discrete 

conformal mapping [64, 65] is selected as an appropriate method for transformation between the 

3D and 2D layouts.  
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In the following sections, after reviewing the steps in CAD modeling of conformally perforated 

Shellular materials (abbreviated as  CPSM), the effective thermal conductivity of selected CPSM 

is obtained using standard homogenization (Section 3.4). The aforementioned hypothetical relation 

between the properties of the underlying 2D and 3D architectures are then assessed. The 

manuscript is concluded with a short summary of the incorporated methods and major findings.  

 

3.2 CONFORMAL MAPPING 

Conformal mapping, also known as angle-preserving transformation, is a transformation that 

preserves local angles (magnitude and orientation), except at some probable points on the 

boundary, hence a 2D circle mapped on a 3D surface will look like a circle, or corners of a rectangle 

mapped on a 3D surface will still be 90°. Using this mapping method, although the 2D rectangular 

cells will unavoidably deform when mapped on the 3D surface, the area and angle distortions are 

tentatively kept to be minimum [64, 65].  

In this research, mapping is done using the method provided in reference [64], in which a 

discrete triangulated surface is first mapped onto the unit disk by solving the Laplace equation, 

and then, the unit disk is mapped to the unit square by solving the generalized Laplace equation 

introduced in that reference. The height of the unit square is finally optimized to achieve 

conformality. The Riemann mapping theorem guarantees the existence of a conformal map from 

any simply-connected open surfaces to the unit disk and consequently a rectangle with unit width. 

For detailed discussion about conformal mapping, readers are referred to reference [64]. The 

resultant 2D rectangle’s height depends on the choice of the corner points. While any point on the 

boundary of the 3D surface can be selected as a corner, it is preferable to choose points at which 

the boundary of the 3D surface has an angle closest to 90°. This would further decrease the area 

and angle distortion associated with mapping, especially on the boundary of the surface. Figure 

3.1 shows the selected portion of the RVE of the Primitive, Diamond and Gyroid TPMS, denoted 

as fundamental region since the whole corresponding RVE can be constructed from this portion 

using rotation, translation or reflection transformations.  
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(a) 

 

 (b) 

 

(c) 

 

Figure 3.1: Fundamental regions of (a) Primitive, (b) Diamond, and (c) Gyroid TPMS. 

By choosing corners of the fundamental regions shown in Fig. 3.1, for P and D surfaces the 

height of the mapped 2D rectangle is also equal to unity, allowing a 2D cellular layout made of 

square cells to be mapped on them. However, height of the conformally mapped fundamental 

region of the G surface is not unity, making it impossible to contain 𝑛 × 𝑛 square cells. Defining 

a and b as the longer and shorter edges of the mapped rectangle and 𝑙𝑎 and 𝑙𝑏 as their lengths, the 

aspect ratio (𝑙𝑎/𝑙𝑏) of the 2D mapped fundamental region of G-type TPMS is found to be 1.134.  

Alternatively for the case of G-type CPSM, instead of square RVEs, rectangular 2D cells can 

be mapped to the 3D fundamental region. Needless to say, dividing its width and height to the 

same number of cells (n) would create small rectangular cells with the same aspect ratio. However, 

if the shorter edge b is divided into n segments (with segment’s length 𝑑𝑏 equals to 𝑙𝑏/𝑛) and the 

longer edge a is divided by the nearest integer number to 𝑙𝑎/𝑑𝑏, increasing n to more than 5 would 

reduce the aspect ratio to smaller than 1.05. The effect of further increasing the n number on the 

aspect ratio of the rectangular cells is presented in Fig. 3.2. As shown in this figure, in general by 

increasing n, the aspect ratio gets closer to unity meaning that with small enough cells it would be 

possible to get practically square RVEs mapped to the Gyroid surface as well.  
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Figure 3.2: Effect of increasing the number of divisions on the smaller edge of the rectangular 

mapping of the fundamental region of G-type TPMS on the cell aspect ratio, while the longer 

edge is being divided by the nearest integer number to 𝑙𝑎/𝑑𝑏   

Although increasing the number of cells with the aforementioned method seems like a 

promising method that enables mapping square cells on the G-type TPMS, it makes the CAD 

modeling and FEM used for homogenization computationally expensive. As a result, and to only 

focus on the perfectly square 2D RVEs similar to our previous works, G type CPSM is not included 

among the architectures analyzed in this manuscript.  

 

3.3 CAD MODELLING 

Steps for CAD modeling of CPSM are presented in Fig. 3.3. The first step is to model the 

fundamental region of the selected TPMS. Here, the previously modeled RVEs of the TPMS 

(Section 2.2.3) are trimmed so that the remaining part is the fundamental region. Thereafter, saving 

the file to STL format creates the triangulated surface. Exporting high resolution STL file and 

having a finer triangulated surface would increase the accuracy of mapping. The STL file is then 

imported to MATLAB, and checked to remove probable duplicate entities. Next, using the method 

provided by [64] (briefly discussed in Section 3.2), it is conformally mapped to a 2D rectangular 

region. The 2D rectangle is then covered by the 2D unit cells with the desired pore topology, made 
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by several points. To find the position of the corresponding points on the 3D surface, locations of 

the 2D points on each triangular facet are found with respect to the corners of that triangle, and 

knowing the corresponding triangular facet on the 3D triangulated surface, it is possible to 

calculate the location of each point mapped back to the 3D surface. After finding the corresponding 

locations of the points of the 2D pores on the 3D surface, these points are created in the original 

CAD model of the smooth fundamental region in SolidWorks. By connecting the points around 

each pore with one or more splines and cutting the surface with them, 3D pores are introduced to 

the surface. It is important to note that one closed spline is enough to create smooth pore topologies 

without a sharp corner (e.g., circle); however, to preserve the corners of pore shapes with sharp 

angles (e.g., square) multiple connected splines shall be used. Using linear, circular and mirror 

transformations of the perforated fundamental region, the unit cell of the perforated TPMS is 

made. Finally the assembly of at least 2 × 2 × 2 of this unit cell is thickened and subsequently cut, 

to make the final unit cell of CPSM. Doing this, assures that the concluding RVE has flat sides 

and is periodic in three dimensions. To reduce the file size and ease the importing process of the 

CAD models into ANSYS (or COMSOL), generated RVEs are saved to Parasolid .x_t format.  

 

Figure 3.3: Steps for CAD modeling of conformally perforated TPMS. 
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The manufacturability of CPSM is tested by 3D printing sample P, D and G-type CPSMs 

using a Makerbot Replicator FDM 3D printer and PLA fillament, with a 0.4mm nozzle size and 

0.25mm layer height setting. Images of the 3D printed samples are provided in Fig. 3.4. While 

some defect and imperfections are noticeable, the surface finish and overall quality of the part can 

be increased by fine tuning the 3D printing parameters which are out of the scope of the present 

study. 

   

(a) (b) (c) 

Figure 3.4: Sample FDM 3D printed CPSMs based on layouts of 2-by-2 2D cells of 0.5 relative 

density: (a) P-type CPSM with shifted semi-circular pores, (b) D-type CPSM with semi-square 

pores and (c) G-type CPSM with semi-circular pores.  

3.4 HOMOGENIZATION 

After modeling the RVEs of the CPSM, effective properties of the cellular material made from 

these architected cells can be predicted using homogenization. In this work, to accurately calculate 

the effective thermal conductivity of these metamaterials, periodic boundary conditions are applied 

to the RVEs and numerical standard homogenization [16] is employed. 

In this method, it is assumed that under the same temperature gradient applied to the boundaries 

of the cells, temperature gradient at any point on the RVE of the cellular architecture (∇𝑇) and the 

corresponding point on the RVE of the equivalent homogenized material are related by a tensor, 

denoted as 𝑀𝑇. Knowing that the temperature gradient at any point on the RVE of the 

homogenized material is equal to the average temperature gradient on that cell (∇𝑇̅̅̅̅ ), the 

aforementioned relation can be mathematically written as ∇𝑇 = 𝑀𝑇∇𝑇̅̅̅̅  for any point on the RVE 

of the cellular material. To calculate 𝑀𝑇 tensor, three independent unit thermal gradients are 

applied to the boundaries of the cubic RVE with unit dimensions: 
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(

𝑇(−0.5, 𝑦, 𝑧) − 𝑇(0.5, 𝑦, 𝑧)

𝑇(𝑥, −0.5, 𝑧) − 𝑇(𝑥, 0.5, 𝑧)

𝑇(𝑥, 𝑦, −0.5) − 𝑇(𝑥, 𝑦, 0.5)
)

𝑖

= (
1
0
0
)

𝑖=1

, (
0
1
0
)

𝑖=2

, (
0
0
1
)

𝑖=3

 (Eq. 3.1) 

where i is the thermal loading case number, 𝑥, 𝑦 and 𝑧 are on the boundaries of the RVE  and the 

center of the unit cubic RVE is assumed to be located at the origin.  

Under each loading case Fourier heat conduction simulation is performed inside ANSYS APDL 

environment and the resulting thermal gradients at each element is calculated and subsequently 

stored using this FEA package. 𝑀𝑇 tensor is then constructed based on the stored thermal 

gradients. The effective thermal conductivity of the cellular material made from the chosen RVE 

is then calculated by: 

𝐾̅𝑖𝑗 =
1

𝑉𝑅𝑉𝐸
 ∫𝐾𝑖𝑘𝑀𝑘𝑗

𝑇 𝑑𝑉𝑅𝑉𝐸 (𝑖, 𝑗, 𝑘 = 1,2,3) (Eq. 3.2) 

in which, K̅ij is the effective thermal conductivity tensor,  VRVE represents the RVE volume, and 

Kik is the local thermal conductivity tensor. 

 

3.5 RESULTS AND DISCUSSION  

The main objective of this study is to investigate the possibility of upgrading Shellular 

materials’ architecture by introducing a mapped layout of holes on them, and showing that with 

this upgrade it would be possible to tune their effective thermal conductivities. Figure 3.5 provides 

a variety of CPSM architectures, to demonstrate the potentials of the presented method for 

modeling CPSMs with any arbitrary pore shapes. While Fig. 3.5 shows that P, D and G-type 

CPSMs can be modeled using this method, in this manuscript only P-type CPSM with 2D square 

cells containing circular and square pores are considered to showcase and investigate the 

hypothetical relation between their effective thermal conductivities and those of their underlying 

2D and 3D architectures. Characteristics of the selected underlying architectures and their effective 

properties, presented in Chapter 2, are listed in Table 3.1. 
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(a) 

 

 (b) 

 

(c) 

 

 (d) 

 

Figure 3.5: Representative CAD models of CPSMs based on: (a) P-type Shellular and 2D 

rectangular cell with an elliptic pore, (b) P-type Shellular and 2D re-entrant square cell, (c) D-

type Shellular and 2D square cell with shifted circular pore, and (d) G-type Shellular and 2D 

rectangular cell with an arbitrary pore shape. Relative thicknesses of all models are 0.02. 

To merely investigate the contribution of the base material’s heat conduction to the overall 

thermal conductivity of the CPSM, gaseous inclusion is neglected (that is, vacuumed pore  

or pore with low thermal conductivity gases at low pressure). It is also assumed that the  

material is approximately at ambient condition and temperature difference throughout the  

CPSM is small, so that the convection and radiation heat transfer mechanisms can be  

ignored [54-57]. Under these assumptions, effective thermal conductivity of the selected  

P-type CPSM are numerically calculated using the standard homogenization method discussed  

in Section 3.4.  
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Table 3.1: Characteristics of the underlying architectures of the selected P-type CPSM 

   Characteristics 
U

n
d
er

ly
in

g
 a

rc
h
it

ec
tu

re
s 

2D  
 

𝜌𝑟
2𝐷 (I) 0.1 0.3 0.5 0.7 0.9 

𝐾2𝐷
𝑒𝑓𝑓

𝐾𝑚⁄  (II) 0.052 0.171 0.320 0.517 0.805 

 

𝜌𝑟
2𝐷 (I) 0.3 0.5 0.7 0.9  

𝐾2𝐷
𝑒𝑓𝑓

𝐾𝑚⁄  (II) 0.134 0.325 0.538 0.819  

3D 

 

𝑡𝑟 (III) 0.02 0.06 0.10   

𝜌𝑟
𝑆ℎ𝑒𝑙𝑙𝑢𝑙𝑎𝑟  (IV) 0.047 0.141 0.233   

𝐾𝑆ℎ𝑒𝑙𝑙𝑢𝑙𝑎𝑟
𝑒𝑓𝑓

𝐾𝑚⁄  (V) 0.031 0.094 0.159   

I. Relative density of the underlying 2D architecture 

II. Effective thermal conductivity of the underlying 2D architecture, normalized by thermal  

conductivity of the base material 

III. Relative thickness (equals to Shellular’s thickness divided by the RVE’s length) 
IV. Relative density of the underlying 3D Shellular architecture 
V. Effective thermal conductivity of the underlying 3D P-type Shellular architecture, normalized  

by thermal conductivity of the base material 

 

With the existing rotational symmetries, it is evident that both of the selected 2D architectures 

and the 3D P-type Shellular materials are thermally isotropic. Assuming that the area distortion 

through the mapping process is small, cell topology and relative density before and after mapping 

would be similar, suggesting that the in-plane conductivity of the 2D and their corresponding 

mapped 3D cells shall be approximately equal and the slightly deformed version of the 2D square 

cell shall also be thermally isotropic. The area distortion inside the fundamental region is found to 

be small, though it may not be small close to the boundaries (e.g., as shown in Fig. 3.1a, there is a 

60° corner on the fundamental region of the P surface, which is being mapped to a 90° corner). 

However, by increasing the number of mapped cells on the fundamental region, the ratio of the 

more distorted cells close to boundary with respect to the inner cells will decrease, meaning that 

the overall thermal property of the fundamental region should converge to that of the 2D cell. With 

the considerations about the area distortion and assuming that within the thickened surface the heat 

flow component normal to the shell at any point is significantly smaller than the heat flow tangent 

to it, it could be theorized that with enough number of mapped cells, effective thermal conductivity 
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of the selected CPSMs should reach to the multiplication of the effective thermal conductivity of 

the underlying 2D and 3D architectures. To assess this theory, using the homogenization results 

and the data provided in Table 3.1, the effect of increasing the number of holes on the effective 

thermal conductivity of the selected CPSM is examined in Fig. 3.6. In this regards, as previously 

shown in Fig. 3.3, 2D 𝑛 × 𝑛 layouts of circular holes are mapped on the fundamental region of the 

P-type TPMS and cut to make the CPSM.  

 

  

(a) (b) 

Figure 3.6: Dependency of properties of the selected CPSMs (described in Table 3.1) on the 

number of mapped holes on the fundamental region of the underlying P-surface, (a) normalized 

effective thermal conductivity and (b) relative density. Effective thermal conductivities denoted 

with a star are normalized by the conductivity of the base material 

As shown in Fig. 3.6, numerical results support the theory mentioned in the previous 

paragraph, in which by increasing the number of circular holes that are conformally mapped to the 

fundamental region of the P-surface, the overall thermal conductivity of the CPSM converges to 

that of a hypothetical P-type Shellular with the same thickness made out of a cellular material with 

square cells and circular holes. Having only 3 × 3 cells conformally mapped on the fundamental 

region, the error associated with the predictions of the theory with respect to the detailed 

homogenization method is found to be less than 3 percent. With this in mind, to reduce the 
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computational cost, effective thermal conductivity of a CPSM based on a 3 × 3 cellular layout of 

2D square cells with square pores and P-type Shellular with 0.02 relative thickness are also 

obtained using standard mechanics homogenization to compare with the anticipated values from 

the multiplication of the effective thermal conductivity of the underlying 2D and 3D architectures.  

 

 

 
(b) 

 

(a) (c) 

Figure 3.7: (a) Overall thermal conductivity of P-type CPSMs (with 0.02 relative thickness) with 

respect to relative density of its underlying 2D architectures; (b) and (c) show the RVEs of the P-

type CPSM with semi-circular and semi-square holes with 2D relative densities equal to 0.5. 

As presented in Fig. 3.7, effective thermal conductivity of the CPSMs normalized by the 

effective thermal conductivity of the underlying P type Shellular architecture with 0.02 relative 

thickness, is plotted with respect to the relative density of the underlying 2D architectures. Results 

shown in Fig. 3.7 clearly show that the normalized effective thermal conductivities of CPSMs for 

both semi-circular and semi-square perforation cases match the homogenization results for 2D 

cells with perfect circular and square pores, further confirming the validity of the theory and its 

assumptions for at least when the underlying 2D cellular architecture of the CPSM is thermally 

isotropic. 
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3.6 CONCLUDING REMARKS  

Deeming the fundamental regions of a 3D TPMS as a deformed 2D surface, it is hypothesized 

that it should be possible to warp a 2D cellular layout to make the fundamental region of the 3D 

perforated TPMS. To minimize the cell distortion, conformal mapping (which locally preserves 

the angles through the transformation) is selected to transform the 2D cellular layout into the 3D 

fundamental region of TPMS. The conformally perforated Shellular architectures created by this 

methodology are imported to ANSYS in order to perform numerical standard mechanics 

homogenization and to accurately predict their effective thermal conductivities. Case studies on 

the P-type CPSM with 2D layout of cells with circular and square pores, show that by increasing 

the number of cells on the 2D layout thermal properties of the CPSM change as if the mapped 2D 

cells on the 3D surface are perfectly periodic. This will significantly reduce the time required to 

obtain the effective thermal properties of this type of ultralight architectures.  

The objective of this work was to show the possibility of adjusting the thermal conductivity of 

Shellular materials by introducing holes on them. Further studies are required to investigate the 

overall thermal conductivity of different CPSMs with 2D cells that may not be necessarily 

thermally isotropic.  
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CONNECTING STATEMENT 

In Chapter 3, a methodology is presented to imprint a 2D sub-structure on Shellular materials 

which is used to create semi-hierarchical metamaterials with 2D cells as the base material and a 

3D Shellular as the 3D architecture. A few case studies are performed to investigate the effective 

thermal conductivity of the new ultralight perforated Shellular materials using standard mechanics 

homogenization. Although compared to the Shellular material, the underlying 2D cellular structure 

is at a smaller length scale, both of them are assumed to be at continuum level and the heat transfer 

simulations performed on them are based on Fourier heat conduction. While this assumption is 

generally effective at micro to macro scales, material behaviour at the nanoscale can be quite 

different. In Chapter 4, effective properties of macroscopic analogues of some truss-like cellular 

nano-architectures based on carbon nanotube are obtained using standard mechanics 

homogenization and are compared with the properties of their nanoscale counterparts predicted by 

molecular dynamics (MD) simulation.  

Chapter 4 is a detailed report of the contribution of the author of this thesis in the following 

manuscript published in the Carbon journal: 

 C. Zhang, A.H. Akbarzadeh, W. Kang, J. Wang, A. Mirabolghasemi, “Nano-architected 

metamaterials: Carbon nanotube-based nanotrusses”, Carbon, 2018. 131: p. 38-46  
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4 THERMAL CONDUCTIVITY OF FCC AND SC PERIODIC TRUSS MATERIALS 

4.1 INTRODUCTION 

Thanks to the ever growing computing power of modern computers, the idea of cellular 

materials has been recently brought to the nano meter dimensions to design cellular nano 

architectures at atomic length scales [23, 66, 67]. Studies on material at this size have shown that 

properties can be quite different compared to those of the same material at continuum level. 

Colloids of gold nano particles at different nano dimensions exhibiting different colors from red 

to blue [68], or extraordinary structural and thermal properties of carbon nano tubes [69-71] are 

two examples which clearly show significantly different material properties at the nanoscale 

compared to the normal properties seen at the macro scale. These dissimilarities are attributed to 

different physics governing the structural and thermal behavior of materials at different length 

scales [23].  

In the present study, simplified macroscopic models of carbon nanotube-based nanotrusses with 

SC and FCC cellular architectures are created and while Diamond, as a material with properties 

comparable to those of carbon nanotube (CNT), is chosen as the base material for the cell 

architectures at the macro scale, their effective properties are obtained by performing standard 

mechanics homogenization on their representative unit cells under periodic boundary conductions. 

Effective thermal conductivity and modulus of these truss architectures at the nano and macro 

scales are firstly compared with each other, which shows a lower thermal conductivity and a higher 

shear modulus of the FCC architecture. Properties of the FCC nanotrusses and Diamond trusses 

are then compared with other materials to show the advantages that these architectures at different 

length scales can provide for designing materials with unprecedented multifunctional properties.  

 

4.2 METHODOLOGY 

Building upon the introduced architected SC and FCC CNT-based nano-trusses in reference 

[23], simplified macroscopic CAD models are created to numerically calculate their effective 

properties using ANSYS, a commercial finite element analysis package. In the following sections, 

the steps in preparing the CAD model of the cell architectures at the macro scale and the 

implemented homogenization scheme are discussed.  
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4.2.1 CAD MODELING OF FCC AND SC PERIODIC TRUSS ARCHITECTURES 

 

 Nano architecture Analogues macro architecture 

(a) 

 

 

(b) 

 

Figure 4.1: (a) FCC and (b) SC truss-like architectures at the nano and macro scales.  

Presented in Fig. 4.1, important architectural dimensions that relate the simplified macro scale 

and the real nano scale architected SC and FCC CNT-based nanotruss materials introduced in 

reference [23] are first identified. Nano scale dimensions, obtained from the molecular dynamics 

(MD) model, are then normalized by the length of their corresponding RVE. These relative 

dimensions, listed in Table 4.1, are defined as: 

𝑡𝑟 = 𝑡 𝐿𝑅𝑉𝐸   

𝐷𝑟
𝑡𝑢𝑏𝑒 = 𝐷𝑡𝑢𝑏𝑒 𝐿𝑅𝑉𝐸   

𝐷𝑟
𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛

= 𝐷𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐿𝑅𝑉𝐸   

(Eq. 4.1) 

where, 𝐿𝑅𝑉𝐸 , 𝑡, 𝐷𝑡𝑢𝑏𝑒 and 𝐷𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 are geometrical dimensions specified in Fig. 4.1. As shown, 

compared to the nano-architecture, in the simplified macro scale model CNT parts are replaced by 

hollow cylinders, and junctions are approximated by hollow spheres. Furthermore, Graphene’s 

layer thickness is considered as the thickness of all members.  
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Table 4.1: Relative dimensions of the selected nanotruss architectures 

  SC FCC 

  

𝑡 𝑟
 (

%
) 

𝐷
𝑟𝑡
𝑢
𝑏
𝑒
 (

%
) 

𝐷
𝑟𝑗𝑢

𝑛
𝑐
𝑡𝑖
𝑜
𝑛

 (
%

) 

𝑡 𝑟
 (

%
) 

𝐷
𝑟𝑡
𝑢
𝑏
𝑒
 (

%
) 

𝐷
𝑟𝑗𝑢

𝑛
𝑐
𝑡𝑖
𝑜
𝑛

 (
%

) 

N* 

3 8.0 43.8 25.6 6.8 52.2 21.8 

7 5.5 30.0 17.6 5.4 40.9 17.1 

12 3.9 21.5 12.6 4.2 32.3 13.5 

16 3.2 17.6 10.3 3.6 27.5 11.5 

20 2.7 14.8 8.7 3.2 24.0 10.1 

24 2.4 12.8 7.5 2.8 21.3 8.9 

* N is the tube length parameter used in the MD simulation in [23] 

Using the dimensions listed in Table 4.1, the solid models are created in SolidWorks and saved 

to parasolid format (.x_t) in order to later being imported to ANSYS APDL environment. Relative 

densities of these CAD models, as measured in Solidworks, are listed in Table 4.2. 

Table 4.2: Relative densities of the simplified macroscopic Diamond-truss architectures 

 
N 

3 7 12 16 20 24 

Relative density 

(%) 

SC 38.3 23.8 14.1 10 7.4 5.7 

FCC 36 28 20.2 15.8 12.6 10.3 

 

4.2.2 NUMERICAL HOMOGENIZATION 

Assuming that a cellular material is a perfectly periodic assembly of a single representative 

volume element (RVE), by employing periodic boundary conditions and using standard 

homogenization technique, analysis of only one RVE would be enough for obtaining effective 

thermal conductivity of the cellular material [16]. In this regards, after CAD modeling and having 

the RVE in ANSYS APDL environment, periodic mesh is created so for each point on one face of 

the cubic RVE, there is a corresponding point at the projection of the original point on the opposite 

face. Periodicity and temperature gradient can then be adopted to the cell boundaries by adding 

temperature constraints to these pairs.  
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Following the standard mechanics homogenization approach, three independent unit 

temperature gradients along the coordinate axes are applied to the cell in three load cases and 

Fourier heat conduction is numerically solved for each case. The resultant microscopic temperature 

gradients inside the RVE are then used to construct the 𝑀𝑇 tensor which relates the applied thermal 

gradients on the cell boundaries (equal to the average thermal gradient in a homogenized cell under 

the same boundary load) and the local thermal gradients at each point by ∇𝑇 = 𝑀𝑇∇𝑇̅̅̅̅ . Effective 

thermal conductivity of the RVE is then calculated using: 

𝐾̅𝑖𝑗 =
1

𝑉𝑅𝑉𝐸
 ∫𝐾𝑖𝑘𝑀𝑘𝑗

𝑇 𝑑𝑉𝑅𝑉𝐸 (𝑖, 𝑗, 𝑘 = 1,2,3) (Eq. 4.2) 

in which 𝐾̅𝑖𝑗 represents effective thermal conductivity tensor, 𝐾𝑖𝑘 is thermal conductivity tensor 

of the base material at each point, and  𝑉𝑅𝑉𝐸 is the volume of the RVE.  

In case of structural analysis, temperature gradients are replaced by unit strains and six 

independent load cases are considered to calculate the 𝑀𝐶  tensor which relates local and average 

strains on the RVE by 𝜀𝑖𝑗 = 𝑀𝑖𝑗𝑘𝑙
𝐶 𝜀𝑘̅𝑙. Homogenized structural properties are then calculated using: 

𝐶𝑖̅𝑗𝑘𝑙 =
1

𝑉𝑅𝑉𝐸
 ∫𝐶𝑖𝑗𝑚𝑛𝑀𝑖𝑗𝑘𝑙

𝐶 𝑑𝑉𝑅𝑉𝐸 (𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑛 = 1,2,3) (Eq. 4.3) 

where 𝐶𝑖̅𝑗𝑘𝑙 is the effective stiffness tensor and 𝐶𝑖𝑗𝑚𝑛 is the local stiffness tensor.  

 

4.3 RESULTS AND DISCUSSION  

To be able to compare effective properties of the macro scale FCC and SC periodic truss 

materials with their nano scale counterparts, Diamond, which has comparable properties to those 

of CNT, is assumed as the solid constituent. Consequently, they are named FCC and SC Diamond-

trusses. Material properties of the Diamond are listed in Table 4.3. Contributions of radiation, 

convection and thermal conduction of the gas inside the cells are also neglected. 

Table 4.3: Material properties for Diamond [72] 

Density 

(kg/m3) 

Thermal conductivity (k) 

W/mK 

Young’s modulus (E) 

GPa 
Poisson’s ratio (ν) 

3520 2000 1220 0.2 
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Figure 4.2 demonstrates effective thermal conductivity of SC and FCC Diamond truss cellular 

materials obtained using homogenization approach. For both cell architectures, the rotational 

symmetries dictate isotropic effective thermal conductivities, therefore, only one trend line is 

shown for each architecture. The higher thermal conductivity of the SC Diamond truss architecture 

at the examined densities can be justified by the shorter and thicker pathways for the heat to 

transfer from one side of the cell to the opposite side. On the other hand, for the FCC Diamond 

truss architecture, inclined and thin truss links present more resistance for the heat to pass through.  

  

(a) (b) 

Figure 4.2: Effective thermal conductivity of SC and FCC Diamond trusses, (a) with respect to 

N, and (b) with respect to density  

Homogenized structural properties of the two macroscopic cellular architectures are presented 

in Fig 4.3. In this case, existing rotational symmetries make them structurally orthotropic and 

similar to thermal conductivity, one trend line is enough to show each mechanical property along 

x, y and z directions. Likewise, each of the two Diamond trusses has equal shear moduli along the 

main coordinate axis (i.e., 𝐺𝑥𝑧 = 𝐺𝑦𝑧 = 𝐺𝑥𝑦) and equal Poisson’s ratios (i.e., 𝜈𝑥𝑦 = 𝜈𝑦𝑥 = 𝜈𝑥𝑧 =

𝜈𝑧𝑥 = 𝜈𝑦𝑧 = 𝜈𝑧𝑦).  
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(a) (b) 

Figure 4.3: Effective mechanical properties of SC and FCC Diamond trusses along coordinate 

axes, (a) with respect to N, and (b) with respect to density  

As shown in Fig. 4.3, increasing N reduces the effective Young’s and shear moduli of both 

architected materials, which is a consequence of decreased density (please refer to Table 4.2). In 

addition, unlike FCC truss architecture, Poisson’s ratio of the SC diamond truss decreases by 

increasing N. By increasing N, truss links become longer and the whole cell becomes less rigid, 

which makes it easier for the truss links to rotate about the junctions compared to when truss links 

are smaller. The easier rotation of the inclined links of the FCC architecture about the junctions 

further increases the lateral deformation, leading to increased Poisson’s ratio. On the other hand, 

the truss links of the SC architectures are not inclined with respect to the sides of the RVE and 

coordinate system, therefore they cannot rotate.  

It has also been observed that, while SC architecture has higher effective Young’s modulus and 

smaller effective Shear modulus at densities less than ~1000 kg/m3, at higher densities, FCC 

Diamond trusses have higher effective Young’s modulus and smaller effective shear modulus. It 

should be noted that in cases with densities above 1000 kg/ m3 parameter N is equal to 3, in which 

the size of the junction is comparable to the cells size and the architecture does not represent a 

truss. However increasing N, decreases the relative size of the junction and the structural behavior 

of the architectures would get more truss-like. Similar to the trusses, in which those with inclined 
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links are stronger under shear loading and those with simple cubic arrangement of links are 

stronger under normal loading, with larger N values FCC architecture are more rigid under shear 

and more flexible under normal loads.  

 
Figure 4.4: Specific effective moduli of FCC and SC diamond truss architectures with respect to 

their effective thermal conductivities. 

Figure 4.4 compares specific moduli of FCC and SC diamond truss architectures, with respect 

to their effective thermal conductivities. Based on this figure, it is expected that the FCC truss 

architectures generally perform better where higher thermal conductivity and higher loads are 

present and the material is expected to be lightweight. 

Properties of the SC and FCC diamond trusses are compared with their nano scale counterparts 

in Fig. 4.5 (as presented in our published manuscript [23]). As demonstrated in Fig. 4.5a, at both 

macro and nano scales SC truss architectures show higher thermal conductivity compared to FCC 

architectures; however, effective thermal conductivity of the Diamond trusses is about two orders 

of magnitude larger than those of the SC and FCC nano-trusses. This is attributed to different 

phonon scattering mechanisms in the macro and nano scales [23]. Although effective thermal 

conductivities of the Diamond-truss architectures are significantly higher than those of the 

nanotrusses, their effective mechanical properties are close (As presented in Fig. 4.5b and 4.5c). 

Similar to the macroscopic Diamond trusses, at the nano scale SC nanotrusses have higher 
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effective modulus along coordinate axes ([100] direction) and smaller effective Shear modulus 

(modulus along [110] direction) at densities less than ~1000 kg/m3, and at higher densities, FCC 

nanotrusses have higher effective Young’s modulus and smaller effective shear modulus.  

 

 

 
(a)  (b) 

 
(c) 

Figure 4.5: Effective properties of SC and FCC truss architecures at the macro and nano scale 

as a function of relative density, (a) Effective thermal conductivity, (b) Effective specific modulus 

along x axis ([100] direction), and (c) Effective Specific shear modulus ([110] direction) 

Lastly, effective properties of the FCC nano and Diamond trusses are compared with other 

materials in Fig. 4.6 (as presented in our published article [23]). As shown, only FCC nanotrusses 

and some composites are in the domain with specific modulus greater than 40 MNm/kg and 

thermal conductivity lower than 5 W/mK. Considering the thermal stability and extraordinary 



68 

electronic properties of FCC nanotrusses, these cellular materials can be used as multifunctional 

mechanically robust insulators. Although mechanical properties of the FCC Diamond trusses and 

nanotrusses are comparable, thermal conductivity of the FCC Diamond trusses are much higher 

than the FCC nanotrusses, due to different heat transfer mechanisms in different length scales and 

size-dependency of the thermo-mechanical properties at the nanoscale. 

 

Figure 4.6: Specific modulus ([100] direction) of nano and macro scale SC and FCC trusses 

with respect to effective thermal conductivity compared to other materials (as reported in [23]) 

 

4.4 CONCLUDING REMARKS  

In this work, to investigate the length-dependency of the effective properties of the SC and 

FCC nanotruss architecture, simplified macroscopic analogues are modeled using the relative 

dimensions of the nano scale cells and their effective thermal and mechanical properties are 

obtained using standard homogenization. While effective thermal conductivities of these truss-like 

architectures at the nano and macro scales are shown to be significantly different, their mechanical 

properties are almost similar. These findings shed light on the optimum design of multifunctional 

cellular metamaterials, through multiscale designing of the underlying cellular architectures.  
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5 SUMMARY, CONCLUSION AND SUGGESTED FUTURE WORKS 

Inspired by the excellent multifunctional performances of cellular biomaterials such as wood, 

this thesis attempts to study the effective thermal conductivity of architected cellular metamaterials 

by implementing numerical homogenization scheme, by developing new mathematical methods, 

and by introducing new cell architectures. Studies are initially focused on 2D lattices with single 

pores. By investigating square cells with a wide variety of supershape pores with different relative 

densities, pore aspect ratios and rotation angles, effects of different pore topologies on the effective 

thermal conductivity of 2D cellular materials are studied. The results clearly show the possibility 

of creating cellular architectures with anisotropic thermal conductivity. Furthermore, by spatially 

arranging these architected cells and making an FGCM, the possibility of guiding the heat flow 

and controlling temperature distribution within a part is demonstrated.  

With the understandings from the analysis of 2D cells, the rest of the thesis focuses on 3D 

periodic cellular architectures. First by thickening the previously defined 2D cells and positioning 

them in a predefined alignment on the faces of a cubic cell, 3D thin-walled open lattices are 

introduced. A mathematical model is then derived to calculate the effective thermal conductivity 

of these novel lightweight advanced metamaterials using the data acquired from 2D studies; the 

homogenized results are also compared with the result of 3D standard mechanics homogenization. 

The comparison indicates that although thickened 2D cells are placed perpendicular to each other 

and heat flow within one is seemingly independent of the others, pores of one side of this hollow 

cube can actually affect the heat transfer through the other sides. Effective thermal conductivity of 

thin-walled open lattices are also compared with those of TPMS-based Shellular materials. To 

enhance the achievable thermal conductivity of Shellular architecture, holes with initial 2D lattice 

arrangement are conformally mapped on the underlying TPMS and subsequently trimmed. The 

perforated TPMS is then thickened to make the conformally perforated Shellular material (CPSM). 

Similar to the concept of hierarchical materials, with the addition of mapped holes at a smaller 

length scale onto the Shellular materials, it would be possible to adjust their thermal properties, 

although hole shapes and their 2D lattice arrangement will inevitably deform during the mapping 

process. The effective thermal conductivity of the P-type CPSMs with circular and square holes 

indicates that by increasing the number of holes, effects of distortion become less noticeable and 

thermal conductivity converges to the multiplication of effective properties of the underlying 
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thermally isotropic 2D and 3D architectures. While it is assumed that all geometrical features of 

the CPSM are at the continuum length scale, at the nano scale, materials exhibit different behaviour 

as a result of different physics governing a material’s structural and thermal properties at different 

length scales. To show this length dependency, macroscopic analogues of some CNT-based 

nanotrusses with FCC and SC arrangements are modeled in SolidWorks and their effective 

properties are obtained using the standard mechanics homogenization scheme. The properties of 

the macroscopic scale analogues are compared with those of the original architecture at nano scale 

(obtained by others using MD simulation), which provides a better understanding of the 

exceptional multifunctionality of cellular materials at multiple length scales.  

The novel cellular architectures introduced in this thesis, the presented mathematical models 

and the in-depth analyses of the numerical results show many advantages of cellular materials 

compared to conventional solids. While findings provided in this thesis shed lights on the design 

aspects of using architected cellular metamaterials for thermal applications, the 3D printed sample 

architectures clearly show their possible manufacturability through additive manufacturing. 

 

SUGGESTED FUTURE WORKS 

Studies presented in this thesis are performed under certain assumptions, some of which are 

used to simplify the complex phenomenon involved in thermal behaviour of cellular materials and 

some are to limit the scope of the work so that it can be completed within the time frame of a 

master’s degree. As a result, to further expand the scope of this thesis for future studies, the 

followings can be investigated: 

- Considering the contribution of convection and radiation on the overall thermal conduction 

through the cellular material  

- Comparing thermal conductivity of gas filled open and closed cell cellular metamaterials at 

different length scales 

- Considering multi-material cellular architectures and the effects of imperfect thermal 

bonding between them 
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- Investigating the effect of changing temperature on the effective thermal conductivity of 

architected cellular materials made from a base material with temperature-dependant 

thermal conductivity 

- Research on the effective thermal conductivity of  CPSMs based on 2D cellular architectures 

with anisotropic 2D effective thermal conductivities 

- Investigating the accuracy of the theoretical findings of this thesis through experimental 

studies on thermal conductivity of architected cellular metamaterials 
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