E_ Q L User Hanual

Relational Query Language

January 15,

1982

McGill
University

School of Computer Science

Burnside Hall {514} 392-8275
16 April 1982

TO WHOM IT MAY CONCERN

Prof. D.J. Burrage and Mr. Michael Gilman of the School of Computer
Science at McGill have developed a relational algebra query language,
RAQL, which I would like to endorse.

The language is based on the syntax used in the popular textbook
by C.J. Date (Addison Wesley, 1977) and so is a valuable teaching tool
in a database course. RAQL offers all the facilities described in Date's
book, and more, and is implemented so as to run at a reasonable expense
on any teaching database. It could be very useful in any course intended
to give students direct experience of the variety of state-of-the-art
database models and facilities.

RAQL interfaces with the Statistical Analysis System (SAS), which is
a widely used tool for data manipulation and display, but lacks a systematic
approach to databases. Anybody who wants to perform database operations on
his SAS data would be well advised to have access to RAQL. This is a
second area of great benefit from RAQL.

Too little university developed software is adequately disseminated,
leading undoubtedly to frequent duplications of effort. I think it is
admirable that the developers of this useful product are taking the trouble
to polish and distribute it.

Yours truly,

’

T.H. Merrett
Associate Professor

Pr

Postal address: 805 Sherbrooke Street West, Montreal, PQ, Canada H3A 2K6

‘:;

PROVIDING FEEDBACK TG RQL

Any comments, criticisms and/or suggestions regardiang ERQL would be
much appreciated. Users of MUSIC at McGill can interactively send such
feedback to BQL via the RQLCCMMENTS facility.

First, create a regular MUSIC file containing your comments. Then
enter; RQLCOMHENTS. This program will prompt you for the name of the
AUSIC file containiag your comments. Enter the file name.

TABLE OF_ CONTENTS

IHTRODHCTION I EEREIEERRLEEREEBENEREENEFENNEEREREIEENERLREE EREZSERERERERLREEJEEZS]

PRESENTATION AND EXPLANATION OF QUERIES ceesvnccscccnsnssccsnmsses

SOME GENERAL COBSERVATIONS AND RULES aenscenceassscssncsnssnns

JOIN .'.O-".‘....O.’...S."..--‘...-'..----‘...;Q--’.t
DIVIDE IR R FEREEREEEEER EEEEBEREFEEEEREENERIELENEERERERENEEEJEEJNEJRZE S IEEXR]
SELECT [E RN RENEEFENFEFREEEEENEELNENFEEEEEE EERENRLERNEERESERLNEERSENXEIRES]

PROJECT IE R EERFEEEEENEERLNNEREENEEEEEREEERELENRNERRNEREREERZLEREREREZSEREZXR]

HINUS SessessssvscsusseTNeINe SR SE T RSN AN eNRSe TR Ny
UNION s e s s ssemsssNess ssanssne Nt aNSeNET AR S se NN ans RS
TIMES S e
PRIRT sesesesecseNes s Nt esnssuBeRT P NS AR RS eRaEReRnTOn.
COPY T I
PURGE S esnesssessasssesnsvasransnes se sena s mm R s ene RS
SORTED GN *assesssesesasssess srensmtResas SRR I RITTRaRmOn N,

NEW PREFIX AND NEW SUFFIX e ssssesssesssssasessmenenssassnane
CCHMMENTS srerrsevanssesssmessasessnesasssansannseernsnans e,
AUTHORIZED USERS OF RUL sancescsscesncscsencencssnssnnsassnsanna
HOW TO AUN BUL secsvcacssscsccsesasssasescsasasecsasnnansnesaannas
EXECUTION OF NESTED QUERIES ewscncswwsenssencencacensasssonsnns
BEGULAR USERS OF SAS cessescsacvscscscsnscsssassconsnsssnonnonsns

USING SAS STATENENTS IN AN RQL PROGEAM acesvecemscnensceces

RGUTING THE SAS SOURCE PROGRAH LA L E R ELERENBELEERELELELEERERERERENERSES L K]

16
18
20
22
23
24
26
27
28
29
30
31
32
34
36
36
36

c

LNTRODUCTION

RQL - Relatiomal Query Lanquage - 1is a relational data base
managyement system based on the operations of relational algebra as first
proposed by Codd. RQL's query language 1is an expanded version of the
guery language presented in the book by C. J. Date, Introduction to
Database Systems, 2nd Edition, Chapter 6. Although familiarity with
Date's query language would be advantageous, it is not a necessity for
purposes of understanding RQL. The user is expected, howvwever, to have
an elementary knowledge of the theoretical constructs of the relational
algebra. This knowledge should include an understanding of the
traditional set ofperations; UNION, INTERSECTION and DIFFERENCE as vell
as the special set operations of the relational algebra; JOIN, DIVIDE,
SELECT and PROJECT. The reader is referred to Date's book if this
understanding is lacking.

BQL was writtem primarily to provide a relational data base systenm
which would act as a powerful supplement to the 5SAS programming
language. SAS 1is basically a statistical and report writing package
that currently enjoys widespread acceptance in business and scientific
environnents.

The main data object im SAS is the file. As SAS 1is intended for
essentially naive wusers, the manipulation of files 1is facilitated
through the use of powerful and concise SAS statements. As flexible as
SAS is for handling files, it lacks the necessary features to
forthrightly implement a relational data base system. To make SAS more
complete therefore, I decided to f£ill this perceived void.

BQL works by translating the user's query into a SAS source progran
which is then executed to ultimately answer the guery. The advantages
of this method are;

a) As previously mentioned, SAS has existing powerful features for
manipulating files. These were used to simplify my task.

b) No changes to existing SAS data sets are required for their use as
operands in a yuery. Although a user may wish to conform SAS data
sets to the theoretical structure of relations, this 1is not
necessary(though perhaps advisable).

C) As the result <f any query is a relation, which is a S5AS data set,
all of SAS's editing, report writing and statistical features may be
brought to bear on it.

This 1last point 1is worth reinforcimng. Many existing data base
packages lack sophisticated tools for analyzing and printing results of
gueries., As this further manipulation can be am important and common
reguirement, a gquery language imbedded in a host language having these
features is desirable. SAS has the needed features{BQL is not actually
technically imbedded in SAS. See REGULAR USERS CF SAS for details).

Although RQL is geared for those familiar with SAS, it can be used
as a stand-alone system; i.e. no knowledge of SAS is necessary to run
RQL. Users are urged however to acgquaint themselves with the
fundamentals of SAS for two reasons:

a) Although RQL generates bug-free code, the occasional logic and/or
system error 1is bound to occur. The error messages will be mostly
output by SAS, thus familiarity with its basic eleaents will
facilitate message comprehension.

http:prillari.ly
http:il!TB.OD

O

b) SAS is a very useful package in its owan right.

The terms data base, relation, SAS data set and 0S data set have
related bat different meanings. Here follows an attempt at
clarification.

An 0S data set is the data set given on the user's DD card.

//SUPPLIER DD DSN=H2A5.3MASTER,DISP=SHR

In the above JCL card, H2AS.3HMASTER is the name of an 0S data set.
A SAS data set resides 1in a given O0S data set. A data base, in the
context of this manual, is the collection of all SAS data sets that
reside in a given (0S5 data set. A relation corresponds to a particular
SAS data set,

The major part of this manual 1is devoted to presenting and
explaining the guery language that provides access to the data base.
Each gquery category is presented in several steps; each step a variation
of that gquery. The variations are intended to be in ascending order of
coBplexity; the complexity resulting from the introduction of options.
However, familiarization with the first and/or second step of each query
category should be sufficient to use RQL.

The more adventurous and inguisitive reader is urged to discover
what query 1language options are available. The initial effort should
pay off in reduced programming time and/or greater task endeavors.

Although RQL 1is intended to be a complete relational data base
management package, some operations found in other relational systems
have been omitted. Specifically, an INPUT and UPDATE capability for
relations has not been provided (though UPDATE <can be implemented with a
MINUS and UNION- also see SELECT). This is mainly because SAS itself
handles these two functions guite adegunately. I deemed it wasteful and
unnecessary to duplicate functions already existing in a thorough form.
Even though EQL 1is presented as a stand-alone system, I thiak it
reasonable in the «case of INPUT and UPDATE that the user refer to the
545 manual.

€:>

€:>

HOW_RQL WORKS: AN OVERVIEW

BRQL is divided into three job steps. These will be outlined in
turn.

FPirst Job Step

A SAS program is executed for the first job step. The directory of
each data base given on the EXEC card is obtained and stored in a
temporary 0S data set. The contents of the directory includes;

1) The attribute names of the attributes imn each data base.
2) The length(# of bytes) of each attribute.
3) The type{character or numeric) of each attribute.

This directory information is passed to the second job step vhere
it is used to aid the translation of queries to a SAS source prograi.

There are two critical errors that can occur in the first job step.
The first 1is when the data base given on the EXEC card has no
corresponding JCL card defining the 0S data set on which the data base
resides. Note that the ddname of the corresponding JCL card must match
the data base name on the EXEC card {see HOW TO RUN RQL).

The second critical error occurs when a data base does not contain
at least one SAS data set., This error can be avoided by ensuring that
all data bases included in an EQL program have at least one SAS data
set.

second Job Step

A SNOBOL program translates the user's query into a SAS source
program. This SAS source program is executed in the third job step.
411 error detectiocn under the control of RQL is done in this step.
Using SNOBOL allowed the gquick and easy definition of the g¢rammar on
which the RQL guery language is based. Furthermore, modifications and
supplenments to the grammar can be inmplemented vith ease with little or
no side effects. Although there 1is some overhead incurred for the
translation to 5AS source code, the actual execution time and cost is
minimal when measured against the cost of the SAS program which perforas
the data base operations{See HOW BQL ®ORKS for some details of
execution).

A list cf the more importamt errors that can occur followus.

1) A result relation has the same name as a relation in the user?’s
data base and it is NOT prefixed by the data Lase name{see JOIN

{9))-

2) A relatioa given in a query does not exist.

3) A guery is syntactically incorrect.

4) Attributes given in a gquery do not exist or are used improperly.
An example of improper usage would be if an attribute in a JOIN

gquery is renamed to am existing attribute name (see JOIN (3))-

To confirm the successful translation of a query, a message to that
effect is printed.

Third Job Step

The S5AS program generated by the second job step is here executed.
Although the program should be bug-free, some system and perhaps logic
errors may occur. If so, the user is expected to analyze these errors
at the SAS level. That is, BQL does not intercept errors in the third
job step. Any errors occurring here forces the user to ‘'get into!' SAS
as much as is required to solve the problem.

The relations used in the gquery examples are those taken from
Date's SUPPLIER data base supplemented with some relations of my own
creation. The next page illustrates these relations. The reader is
urged toc have a guick look at these relations before proceeding to the
presentation of the gueries themselves.

RELATIONS USED IN_THE QUERY EXAMPLES

g

5 P

SNUH SNAKE STATUS CITY PNUM PNAME COLOR WEIGHT
S1 SMITH 20 LONDCN P1 NUT RED 12
52 JONES 10 PARIS P2 BOLT GREEN 17
s3 ELAKE 30 PARIS P3 SCREW BLUE 17
Sy CLARK 20 LONDON P4 SCREW RED 14
S5 ADAMS 30 ATHERS P5 CAH BLUE 12

P6 COG RED 19

J PQ

JNUM JNAHME CITY SHUHN JNUHN QTY

J1 SORTER PARIS S1 J1 100
J2 PUNCH KOME 52 J3 300
J3 READER ATHENS S2 J4 200
Jy CONSOLE ATHENS S3 J2 800
J5 COLLATGR LONDGON 53 J4 400
Jb TEEKMINAL GSLO
J7 TAPE LONDCN

S5PkJ CON

SNUY PNUA JNDH OTY QTY

S1 21 J1 200 200

51 P1 Ji 700

52 P3 J1 400

SZ2 P3 J2 200

52 P3 J3 200

52 P3 Ji 500

52 P3 Js 600

52 P3 J6 400

52 P3 J7 800

S2 P5 J2 100

S3 P3 d1 200

S3 Py J2 500

54 Pb J3 300

sS4 Pb J7 300

55 P2 J2 200

S5 p2 Ji 100

S5 P5 J5 500

S5 PS5 J7 100

S5 Pb AJ2 200

55 P1 Ji 1600

S5 P3 J4 1200

55 P4 J4 800

S5 P5 J4 400

S5 Pb Ji 500

PRESENTATION AND EXPLANATION OF QUERIES

Relation and attribute names cannot exceed 8 characters in length.
Relation and attribute pames must begin with a letter or an
underscore. Subsegquent characters can only be integers, letters

or underscoresa.

Except where commas and brackets are used, at least one blank must
be inserted between keywords and identifiers. Extra blanks are
ignored.

gueries can be split across a line. Keywords, identifiers and
constants canact be split across a line.

Each guery must begin on a new line and be terminated by a
period(.) .

kRedundant brackets are not allowed.

Every query, except for SELECT, involves the sorting of copies of
the operand relations as a first step. It should be eamphasized that
only copies of the relations are sorted. The cperand relations
remain untouched.

<

JOIN

The JOIN implemented by BQL is the natural join. The natural join
is an egqui-join with one of the two duplicate result attributes
projected out.

JOIN (1)
JCIN SPJ AND PQ OVER SNUM,QTY GIVING TEMP.

The operand relations SPJ and PQ will be joined over SNUM and QTY
to produce the result relation TEMP. SNGM and QTY wmust be conmon
attributes of SPJ and PY. The result relation, TEMP, will contain the
attriputes; SNUM,PNUN,JNUN, QOTY.

Observations _apnd_Rules

- The list of attributes to be joined over is called the 'over-list’.

- Any number of attributes may be given in the over-list.

- The attributes in the over-list are those by which copies of the
two operand relations are sorted.

- The order of the attributes in the over-list is the order in which
the actual joining proceeds.

- All attributes in the over-list must reside in both operand
relations. If not all attributes in the over-list are held ia
common, the job is terminated with an appropriate error message.

- The order of the attributes in the result relation is determined by
the order of the attributes in the first operand relation followed
by the order of the attributes in the second operand relation. The
attributes in the over-list are placed as they occur in the first
operand relaticn.

JOIN SPJ AND J OVER JNU# GIVING TEHP.

In the above example, the attributes in TEMP would have the
fcllowing order;
SNGM, PNUM, JNUM, QTY, JNAHME, CITY.

- It 1is possible for the two operand relations to have common
attributes which are of different types. For example, QTY could be
declared as a character attribute im SPJ and a numeric attribute in
PQ. This means that, technically, QTY is not a common attribute of
SPJ and PQ. BQL does not check for the occurence of this unlikely
situation and so assumes same-named attributes are, iandeed, common
attributes. Note, however, that SAS will automatically convert
character values to numeric values, where fpossible. Although this
may lead to some problems, it does provide some potentially useful
flexibility.

- The result relation is stored in a work area and is not writtem to
the user's 0S data set. However, the result relation is available
for use in later queries. To permanently keep result relations, see
JOIN (8).

JOIN (2)
JOIN J AND SPJ GIVING TEMP.

Notice that there is no explicit over-1list in the above query. The
over-1list is obtained by determining all the attributes J and SPJ have

8

in common. In this example, there is only omne common attribute; JNUM. J
and SPJ are therefore Jjoined over JNUM. If J and SPJ had two
attriputes in common, the join would be performed over those two.

Note that if the two operand relations have exactly all their attributes
in common, the above join, with no declared over-list, implements the
standard set operation; INTEKSECT.

Remember that if the two relations have ao attributes in common, the job
is terminated with an appropriate error message.

JOIN (3)

JOIN SPJ(BRENAME SNUM TO SPJ_SNUH,QTY TO SPJ_QTY) AND PQ OVER JNUM GIVING
TEMP.

¥hen joining two relations, often there exist attributes in commomn
over which the relations are not to be joined. 1In the above exanmple,
SPJ and PQ are to be joined over JNUM. The result relation, TENP, ¥will
therefore have JNUM as one of its attributes. As SPJ and PQ also have
SNUM and QTY in ccmmom, Wwhich SNUM and QTY will be included in TENP?
TEMP cannot have two SNUMs and two QTYs as this will give rise to
ambiguous attribute selection at a later time. The solution to the
problem is to rename all common attributes exclusive of those 1in the
over-list.

In the above example, the result relation will have the attributes
SPJ_SNUM, PNUM, JNUNM, SPJ_QTY, SNUM, (QTY. SPJ_SNUM, PNUM and SPJ_QTY
are taken from relation SPJ while SNUM and QTY are taken frosz relation
PQ. JNUM is the attribute over which 5PJ and PQ are joined.

Dbservations and Rules

- If a join is performed on two relations having common attributes
other than those imn the over-list{either explicit or implicit), the
attributes in the first relation must be renamed. If not, the result
relation will contain only one of the non~renamed attributes. The
values of this attribute will be those of the attributes in the
second operand relation. If this occurs, RQL outputs a warning
Ressagea

- There is no limit to the number of attributes that cam be renamed.

~ Attributes 1n the uvver-1list canpot be repamed.

- pnly attributes in the first relation can ke renamed.

- Renaming of attributes does not affect the attribute names of the
first operand relation. The new names are only foumnd in the result
relation.

JCIN_ (4)
JOIN SPJ AND ('P1?',200) OVER PNUM,QTY GIVING TENP.

In the above example, ('P1',200) is known as a constant relation.
It has the effect of creating a temporary relation of one tuple and two

attributes, PNUM and QTY.

It is possible to have a constant relation which results in a temporary
relation of more than one tuple:

JOIN SPJ AND ('P1','P4*,*P7') OVER PNUM GIVING TEMP.

‘:}

The constant relation above will produce the temporary relation:
PNOHM

P1
BY
P17

it is also possible to have a constant relation which produces a
temporary relation of arbitrary degree (# of attributes) and
cardinality {(# of tuples).

JOIN SPJ AND ('P1',¢J1',200,'P3','J6',100,'P9?,%J3",600) OVER
PNUM,JNUM,QTY GIVING TEMP.

The above constant relation will produce the teaporary relation:
PNUM JNUM QTY
P1 J1 200
P3 Jé 100
P9 J3 600

Once the temporary relation is formed, it is used as the second operand
relatioa in the JOIN qguery.

Dbservations and Rules
- Literals must be enclosed in single guotes.
- Constant relations may be continued on the next line:
E. G, {(*P1?,032",
200)

- Redundant brackets are NOT allowed.

— The order of the single values in the cconstant relation must exactly
correspond to the order of the attributes in the over-list to which
the values are wished to be associated. In the example above, if
the over-1list was given as; JNUM,PNUM,QTY instead of PNUM,JNUM,QTY,
the temporary relation produced would be:

JNUM ENOM QTY
P1 J1 200
P3 Jb 100
P9 J3 600

Note that JNUM would contain the 'P'! values and PNUM would contain
the 'J' values.

- The values of the constant relation must correspond in TYPE with
their associated attribute in the over-list. 1In the guery above,
1P1Y is associated with PNUAM. Assuming PNUM to have TYPE
*character', usiang *'P1' 1is correct. If instead of 'P1' we had for
exanple, 200, a TYPE error would occur.

- Literals may have a length LESS THAN the length of its associated
attribute., A literal is truncated if it has a length greater tham

http:examp.le

C

10

the declared length of its associated attribute.
- Literals may contain any character. If a single quote is part of
the literal string, write two guotes. E~-G. {'DATE''S?).

— ey s e

JOIN SPJ AND ('S1','P1*','J11,200) GIVING TEMP.

The above is a combination of JOIN ({2) and JOIN {4). There is no
explicit over-list and there is a constant relation. In this case, the
over-list is determined by the first relation; SPJ. All attributes of
SPJ are declared to be in the implicit over-list. Furthermore, the
order in which the attributes appear in SPJ 1is preserved 1ia the
over-list. This is important as the values in the constant relation are
ultimately associated with the attributes in the over-list {see JOIN (4)
above). The qguery, therefore, is internally generated to have the form:

JOIN SPJ AND (*S51*,'Pp1*,'J11,200) OVER SNUM,PNUMN,JNUM,QTY GIVING TEMP.

JOIN_ (6)
JOIN(JOIN S AND J OVER CITY) AND SPJ OVER JNUM GIVING TEMP.

Nested queries are allowed. In the above guery, {JCIN S AND J OVER
CITY) will be evaluated first and the result stored in a temporary
relation, say T00. The query then will have the form:

JOIN TOO0 AND SPJ OVER JNUM GIVIKRG TENP.
The query can now proceed in the usuval fashiona

Observations _and_ Rules

- Structures of the form; {(JOIN S AND J OVER CITY), are called !nested
relations'.

~ Nested relations can appear anywhere an operand relation can{some
exceptions noted later).

~ Relations can le nested to any depth.

- Nested relations are enclosed in single brackets. Redundant brackets
are NOT allowed.

~ Nested relations NEVER have an explicit result relation declared.

~ Nested relations can split over lines.

~ See EXECUTION OF NESTED QUERIES for a detailed explanation on how
a nested query is evaluated.

JCIN (7)

JOIN SUELIER1.5PJ AND SUPLIER2.J OVER JNUM GIVING TEMP.

In a given run of RQL, a user may wish to access relations drawn
from different data bases. RQL allows the inclusion of nmultiple data
bases {(See HOW TO EBUN RQL for JCL details).

To distinguish between relations of the same name, prefix the
relaticn name by the data base name in which the relation resides.
Follow this by a dot{(.). For exaample, if a relatiom 'J' existed in both
data base SUPLIEE1 and SUPLIER2, entering SUPLIER1.J would access the
'J' relation in the SUPLIER1 data base.

O

11

Observations and Rules
- There is no limit to the number of data bases that can be included.
- If more than one data base is included and a relaticn name is not
prefixed by a data base name, the data bases are scanned in order
for the FIRST occurence of the given relation name. This is the
relation used ia the guery{see HOW TO RUN RQL for clarification of
the ordering of data bases).

JOIN (8)

JCIN SPJ AND 5 OVER SNUH GIVING SUPPLIEE. SPJ.

Usually, a result relation 1is only needed as amn interim result.
This is the reason result relations are stored in a temporary work area.
5ometimes, however, the user may wish to permanently add the result
relation to the data base. This is simply done by prefixing the result

relation with the DDNAME of the JCL card which defines the user's data
base.

Observations_and Rules
- When permanently storing relatioans on a data base, the DISP

parameter on the JCL card defining the data base must be;
DISPE=0LD.

TEMP=5PJ * J | JNUH.
The above query is eguivalent to 3

JCIN SPJ AND J OVER JNUM GIVING TEMP.

For the regular user of RQL, shorthand operators are recommended.

1) The join operation is presented as a multiplication of two
relations:
5PJd * J
2) The keyvword OVER can be replaced by '}]"' -
SPJ * J | JNUM
3) The coastruct 'GIVING result relation® can be replaced by
'result relaticn=' :
TENP=SPJ ¥ J] JNUM.
4) Shorthand operators may be used in any of the forms of JOIN:
E.G. TEMP=SPJ (RENAME QTY TO SPJ_QTY) *J.

JGIN_ {10)
JCIN SPJE AND S& OVER SNUM GIVING TEMP.

In response to the abcve query, RQL would normally first sort SPJ
by SNUH then sort S by SNUM(the sorting is dcne on copies of the
relations). As SPJ and S are already sorted on SNUM, this is an
unnecessary action.

Appending an ampersand(f) to a relation inforas RQL that this is
the case and thus prevents the sorting of that relation. As sorting is
expensive in terms of time and cost, judicious use of the ampersand can

result in sigificant savings{See SORTED CN for declaration of sort
orders outside queries).

-

O

12

Observations and Rules

- OuLly use the ampersand (&) when you are ABSOLUTELY certain that the

relation is already sorted by the relevant attribute{s). If an
'£' is used with a relation not appropriately sorted, erroneous
results will probably occur for the immediate query AND for all
later queries using that result relation.
If the over-list has more than one attribute, the relation{s) must
be already sorted on those attriputes IN THE SAME ORDER as they
appear in the over-list. That is, if an over-list contained the
attributes; PNUM,SNUM, a relation T& involved in qguery in which
that over-list is used, nmust be already sorted on PNUM,SNUM. If
T& was previously sorted on say, SNUM,PNUM, the juery would produce
erroneoius results.
The ampersand (¢) can be put to particular good use when employing
constant relations. As the constant relation is being created
'on the spot', the user can easily ensure that the values therein
are sorted. An example of this is;

JOIN SPJ AND ('P1',%'J3')& over PNUM,JNUM GIVING TEHP.

é:;

()

13
DIVIDE

The DIVIDE implemented by RQL 1is as given in Date(see pages
116-117) .

DIVIDE (1)

DIVIDE SPJ BY CON QOVER QTY DETERMINING SNUM GIVING TEMP.

This form of the DIVIDE is as given in Date's book except for one
refinement, the 'DETERMINING' keyword. In Date, the division is assumed
to be done on a dividend which 1is a binary relatioan{only two
attributes). However, in practice many dividends are not binary, they
have more than two attributes{conceptually, of course, any relation may
be thought of as binary). The DETERMINING keyvword allows the user to
specify which attribute(s) from the first operand relation will appear
in the result relation.

Observations apd Rules

- The 1list of attributes appearing as the object of the DETERMINING
keyword is called the deteraine-list. In the guery above, SNUM is
the only attribute in the determine-list.

- Any number of attributes may appear in the determime-list.
E.G. DIVIDE SPJ BY PQ OVER QTY DETERMINING JNUM,SNUM GIVING TEMP.

- The ordering of attributes in the determime-list IS iaportant as
the dividend will be first sorted on these attributes.

- All attributes in the determine-list MUST exist in the dividend.

-~ All attributes appearing in the over-list MUST exist in BOTH the
dividend and divisor.

- Any attribute appearing irn the determine~list HMUST NOT appear in the
over-list and vice versa.

DIVIDE {2)

r—V—

DIVIDE SPJ BY CON QOVER QTY GIVING TEMNP.

This fore of DIVIDE 4is exactly that as presented in Date. As can
be seen, tihe determine-list is omitted. In this case, a determine-list
is internally generated by RQL. The attrikutes of this determine-list
are constructed by taking all the attribute names that exist im the
dividend and then subtracting those attributes appearing in the
over—-list, For example, SPJ has the attributes; SNUM,PNUM,JNUM and QTY.
The over-list has the attribute QTY. Therefore, the determine-list will
be; SNUN,PNOH,JNUH. In other words the above guery is treated by EQL
as;

DIVIDE 5PJ BY CON OVER QTY DETERMINING SNUM,PNUH,JNUM GIVING TEMP.
Note that the result of the subtraction of the over-list from the

attributes of the dividend must NOT be null. This would occur if the
dividend had only those attributes appearing im the over-list.

DIVIDE (3)
DIVIDE SPJ BY CON GIVING TEMP.

The over-list as well as the determine-list may be omitted. 1In
this case, BQL first internally generates an over-list and from it a

14
determine~list{as in DIVIDE {2)). The over—-list is obtained by taking
the common attributes of the DIVIDEND aad DIVISOR. In the query above,

as CON has only omne attribute, QTY, and SPJ also has QTY, the over-list
becomes (TY. The resulting determine-list is thus SNUM,PNUM,JNUM.

DIVIDE 5PJ BY CON DETERMINING JNUM GIVING TENP.

The over-list may be omitted and the determine-list declared. This
case 1is just a simple variation of DIVIDE (3). The over-list is
determined as in DIVIDE {3) and the query is complete. 1In other words,
the gquery is internally generated as;

DIVIDE 5PJ BY CON OVER QTY DETERMINING JNUM GIVING TEMNP.
DIVIDE {3)
DIVIDE SPJ BY ('P1',200) OVER PNUM,CTY DETERMINING SNUM GIVING TEMP.

Constant relations are allowed as the divisor ian DIVIDE gueries.
See JOIN (4) for the rules for using constant relations.

Ne.B. When using a constant relation as the divisor, an over-list MUST
be explicitly declared.

DIVIDE (6)
DIVIDE SPJ BY (*P1',200) OVER PNUM,QTY GIVING TEMP.

This is essentially the same as DIVIDE {(2) except that a constant
relation is used as the divisor.

DIVIDE (7) (8)_ (3)

See JOIN (6) for rules for nesting yueries.
See JOIN ({7) for rules for using multiple data bases.
See JOIN {8) for rules for permanently storing result relations.

DIVIDE (10)
TENP=SP3 / CON | CTY @ ShNUM.
The above gquery is equivalent to:
DIVIDE SPJ BY CON CVER QTY DETERMINING SNUM GIVING TEMP.
For the regqular user of RQL, shorthand operators are recommended.

1) The divide operation is presented as a division of the first
operand relation, the dividend, by the second operand relation,
the divisor:

sPJd / CON
2) The keyword CVER can be replaced by '}?! :
S5PJ 7 CON | QTY
3) The keyword DETERMINING can be replaced by 'a! :
SPJ s CGN | QTY @ SNUM
4) The construct 'GIVING result relation' can te replaced by

‘:}

15

'result relation=? :
TEMP=SPEJ / CON | QTY @ SNUH.
5) Shorthand operators may be used in any of the forms of DIVIDE:
E.G. TEMP=SPJ/{200)] QTY.

DIVIDE (11)

DIVIDE SPJE& BY ('52')& OVER SNUH DETERMINING PNUM GIVING TEMP.

To use the ampersand with the dividend, the dividend must be
already sorted on the attributes in the determine-list AND the
attributes in the over-list IN THAT ORDER. The divisor must be sorted
ot the attributes in the over-list only.

See JOIN (10) for general rules and observations on the use of the
ampersand to prevent sorting.

C

16
SELECT
The SELECT implemented by RQL is as described in Date.

SELECT_{1)

SELECT J WHERE CITY='ATHENS' GIVING TEHNP.

Any logical expression may appear in the where-list. The list of
ccmparison operators includes:

= or EQ == or NE < or LT > or GT
<= or LE >= oI GE -~< or NL => or NG
The 'vwhere-list' may have several conditionms:

SELECT SPJ WHERE SNUM='SS5' aND (PNUM>'P3' OR QTY NE 200) AND SHUM<'S2!
GIVING TEMP. -

Qbservatlons and Rules

Literals are enclosed in quotes, numeric constants are not.

- There is no limit to the complexity of the where-list.

- Brackets should be used for clarification and/or to enforce a
desired segyuence of evaluation.

- Redundant brackets ARE allowed.

- When using alphabetic comparison operators{e.g. NE), it must be
surrounded by blanks. E.G. CITY NE 'PARIS‘.

- The relation on which the SELECT is performed is NOT sorted.
Therefore the order of the tuples in the result relation will
reflect the tuple ordering of the operand relation.

- The presence of where-list attributes in the operand relation
is pnot verified(see SELECT (3) for details).

SELECI_(2)
SELECT J WHERE CITY =: *A' GIVING TEMP.

Notice the colon{:) after the egual{=) sign. Normally when two
strings are of unequal length im a comparisoan, the shorter string is
internally temporarily lengthened to the length of the 1longer stringe.
However, using a colon after the comparison operator does the reverse;
the longer string is temporarily truncated to the length of the shorter
string., The above query, for example, will find all tuples with CITY
values beginning with 'A'.

SELECT {(3)

The where-list can be considerably more complex than that presented
in SELECT (1) and (2).

BQL translates the WHERE keyword to the SAS keyword IF and then
outputs the where-list as the object of the IF keyword. No translation
prccessing of the where-list occurs. This means that the where-list can
be a SAS IF statement. For example, the following is valid;

SELECT SPJ WHERE SHUM='S2' THEN QTY=10 ELSE DC IF SNUM='S3' THEN
GTY=20 ELSE (TY=CTY * .25 END; GIVING TEMP.

mailto:Qb.�@rvat,j,ons

17

Notice that using this flexibility of the where-list allows an ad hoc
UPDATE capability.

An unfortunate offshoot of permitting the inclusion of a SAS IF
statement, is that no error checking on the where-list is dosne. HMost
notably, the presence of where-list attributes in the operand relation
is not verified and unmatched quotes for literals are not detected.
Errors of this kind, however, will cause the SAS program, which
ultimately answers the user's guery, to produce a compilation error.
The user is urged to be aware of this nuance for the SELECT query.

SELECT (4) (5) (6) (7)

See JOIN (6) for rules for nesting queries.
See JOIN (7) for rules for using multiple data bases.
See JOIN (8) for rules for permanently storing result relatiomns.

Note that use of the ampersand to prevent sorting the operand
relation is NOT valid with SELECT.

SELECT_(8)

TE¥P=SPJ : (PNUM 1T 'P3' OR QTY >=500).

The above is equivalent to:

SELECT SPJ WHERE (PNUM LT *P3*' OB QTY >=500) GIVING TENMP.

1) The keyword WHERE can ke replaced by %:' :
SELECT SPJ : (PNUM LT ?'P3')
2) The key¥ord SELECT can be omitted.
SPJ : (PNUM LT 'P3?Y)
3) The construct 'GIVING result relation' can be replaced by
'result relation=?! :
TEMP=SPJ : {PNUM LT 'P3%).

Other rules for shorthand notation are as described in JOIN {(9)a.

o

18
PROJECT

PROJECT is inplemented in BQL just as described ia Date. The
result relation contains the attributes projected over the operand
relation. All tuple duplicates are deleted in the process.

PROJECT_{1)
PRCJECT SPJd OVER {TY,JNUH GIVING TEWMP.

TEMP will contain QTY and JNUM, in that order, with all duplicate
tuples removed.

Observations and Rules
~ All the attributes in the over-list must be found in the operand
relation.
-~ The order of the attributes in the result relation will be the sane
order as the attributes in the over-list.

PROJECT_(2)
PROJECT SPJ OVER NCT QTY GIVING TENP.

Prefixing the over-list with the keyword T'NOT' has the effect of
creating an over-list which contains all SPJ's attributes except QTY.
That is, the above guery is internally tramslated to the equivalent
form;

PROJECT SPJ OVER SNUM,PNUM,JRUM GIVING TEMP.

This feature is useful when one is dropping fewer attributes than one is
keeping. Note that the '-' symbol may be used instead of the keyword
'NOT?'.

E.Ga PROJECT SPJ OVER - QTY GIVING TEMP.

e e . ot e i St s

PROJECT SPJ OVER QTY,JNUM WHERE SNUM=*'S3' AND QTY>100 GIVING TEMP.

Notice the imclusion of the +where-list, It has the effect of
performing a SELECT operation on SPJ. The PROJECT is then executed on
the result. The irclusion of a where-list in a PBROJECT guery simplifies
and clarifies overall yuery presentation. Nothing is saved in actual
execution however, as it 1is implemented by a SELECT folloved by a
PRCJECT (later versions of RQL may optimize this).

PROJECT (4) ({5)_ {6) {7)

See JOIN {b) for rules for nesting gqueries.

See JDIN {7) for rules using multiple data bases.

See JOIN (8) for rules for permanently storing result relatioams.
See JOIN (10) for rules for preventing the sorting of relations.

PROJECT_(8)

TEMP=5SPJ | PNUH,SNUH.

‘:}

The above guery is equivalent to:
PROJECT 5PJ OVER PNUM,SNUM GIVING TEHNP.

1) The keyword OVER can be replaced by '}°
. PRCJECT SPJ | PNUNM,SNUNM
2) The keyword PRGJECT can ke omitted.

5pJ | PNUM,SNUN

(1]

Cther rules for shorthand notation are as described in JOIN

9)-

19

C

20

HMINUS

This is the traditional set operation except that the two operand
relations do not have to be union compatible. Nct only can same-named
attributes be of different type (see JCIN (1) for explanation), but also
the order and the number of attributes in the the relations may differ.

HINUS_ (1)
SPJ MINUS PQ OVER JNUM,QTY GIVING TEMP.

TEMP will contain all tuples cof SPJ except those tuples that have
JNUM and QTY values found in PQ.

Say PQ had a tuple where JNUM = *'J4' and QTY = 200. Then any tuple
in SPJ that had JNUM = 'J4' and QTY = 200, would not appear in TENP.
Both values of JNUM and QTY in PQ must be found in SPJ for that tuple
NOT to be included in TEMP.

- All attrlbutes in the over-list must be found in the second relation
- The over—list need not contain attributes found in the first
relation. In other words, this guery is valid;

SPJ MINUS S OVER SNUM,SNAME,STATUS GIVING TEMP.

Althougih SNUM is found in both operand relations, SNAME and STATUS
are only found in S. The reason this is a valid query is that the
over-list is used as only a guide for the MINUS operation. What
actually happens is that all the attributes of SPJ are compared

with the attributes in the over—-list. Only those attributes that are
in common are used in the MINUS operation. These cormon attributes
form the '"minus-list'., In the above example, therefore,

the minus-list would contain only SNUM. Ultimately this means that
any tuple in SPJ having a value of SNUM egqual to an SNUM value in

S, will not be iancluded in TEMP.

SPJ MINUS S5 GIVING TEHNP.

The over—-list may be omitted. If so, it is intermally defined to be
all the attributes found in the second relation. The above (uery is
therefore equivalent to;

SPJ MINUS S OVEK SNUH,SNAME,STATUS,CITY GIVING TENP.

HINUS (3)

SPJ MINUS (*sS3!',100,'54%*,100) OVER SNUH,QTY GIVING TEMP.

The second operand relation may be a coastant relation. See JOIN
(4) for the general rules that apply to the use of constant relations.

Ubservations and_ Rules

- As constant relations can be used in conjunction with an over-list,
considerable flexibilty is available to update relations. For
example, should the user wish to remove all tuples from SPJ having

21
an SNUM value of 'S3', the following could be given as the guery;
SFJ MINUS ('S3') OVER SKNUM GIVING SUPPLIER.SPJ.

{Note that when updating a result relation stcred on the data base,
it must be prefixed by the data base name).

~ When using a constant relation, it is often preferatvle to rework
the query to a SELECT operation., The same results can be achieved
and SELECT does not iavolve sorting the operand relation. As sorting
is expensive in time and money, this alternative is preferable. The
immediately above yuery should therefore be given as;

SELECT 5PJ WHERE SNUM NE 'S3' GIVING SUPPLIER.SPJ.

The only disadvantage of using SELECT is that the result relatiom
will not be sorted on the attributes contained in the over-list.
If you donr't care about that, use the SELECT instead of the MINUS.

MINUS_(4)
SPJ MINUS ('S1','P3',v'J2',200) GIVING TEMP.

The over~list can be omitted when using a constant relation. The
over—list is internally generated using all the attributes found in the
first operand relation. The above query, therefore, is equivalent to;

SPJ MINUS (*S1','P3Y,%'J2',200) OVER SNUM,PNUM,JNUN,QTY GIVING TEMNP.

Care should be used when using this fcrm of the MINUS guery. The
values of the constant relation must exactly match the name and ordering
of the attributes in the first operand relatiom.

(5)_(6) (7) {8)

See JOIN (b)) for rules for nestlng gueriese.

See JOIN (7) for rules for using multiple data bases.

See JOIN (8) for rules for permanently storing result relations.
See JOIN (10) for rules for preveanting sorting of relations.

MINUS_(9)
TEMP=SPJ - ('S2') | SNUM.

HBINUS

As with the other queries, shorthand operators are available.

1) The minus operation is presented as a subtraction of the two
operand relations:
SPJ - {'527')

See JCIN ({9) for other genmeral rules regarding the use of shorthand
operators.

®

22

UNION

This is the traditional set operation between two union compatible
relations except that same-pamed attributes may be of different type and
attributes may be ordered differently in the two operand relations(see
JOIN (1) for further explanation).

UNION (1)
SBEJ UNION TEMP GIVING TEMP2.

Observations and Rules
— Note that there is no over—-list. All attributes of the first and
second relation take part in the union. All attributes of the
second relation must be found in the first relation and vice versa.
- The order of the attributes in the result relation is that of the
attribute order in the first operand relation.

UNION_{2)
SBJ UNICN ('S1%,'P1',%'J4"',200) GIVING TEMP.

Constant relations can be used as the seccond operand relation.
Care should be used when using this form of the UNION operation. See

JOIN {4) for observations and rules.

UNION_ {3) (4} {5)_ {6)

See JOIN (6) for rules for nesting ygueries.

See JOIN {7) for rules for using multiple data bases.

See JOIN (8) for rules for creating multiple relations.

See JOIN ({10) for rules for preventing the sorting of relatioss.

UNION_{7)
SUPPLIEKR. SPJ=SPJ + {'53*,'P4*,vJ9%,100).
As with other queries, shorthand operators are allowed.

1) The unioam operation is presented as the addition of two relations:
SPJ + ('S3','P4','J9',100)

See JCIN {9) for ¢general rules for the use of shorthand operators.

23
1MES

p——F

The TIMES iemplemented in RQL is as presented in Date(page 114).
TIMES is used to oktain the extended cartesian product of two relations.

TIMES should be used only when absolutely necessary as it iavolves
execution cost of the order M ¥ ¥N; where M and N are the number of
tuples in the first and second operand relation respectively.

TIMES (1)

S TIMES P GIVING TEHNP.

The result relation, TEMP, will have the attributes;
SKUM,SNAHE, STATUS ,CITY,PNUN,PNANE,CCLOR,WEIGHT

The sort order of the attribute values 1in S will be inherited by
TENP.

IINES_(2)

SPJ(RENAME SNUN TO SPJ_SNUM) TIMES 5 GIVING TEMP.

To preserve the identity of those attributes that the operand
relations have in common, the RENAME feature is available. Bules for
its use can be found in JOIN (3) (statements regarding the over-list
should be ignored)a.

TIMES_(3) _ {4)

See JOIN (6) for rules for nesting queries.
See JOIN {8) for rules for permanently storing result relations.

IIMES_(3)
TEMP=5 TIMES P.

The only shorthand mnotation available is replacing the 'GIVING
result relation® construct with *result relation="‘'.

24

PRINT

545 has sophisticated output facilities. I have included a PRINT
guery for the sake of completeness but be aware that it does not imclude
all the options of the SAS PRINT. '

IMPORTANT: A relation having no tuples will NCT be printed. in fact,
absolutely nothing is printed if a relation has no tuples. Even if a
title is given, still there is no output. As the result of a guery can
easily be an empty result relation, don't think there is necessarily a
bug in your program if there is no printed ocutput.
PRINT (1)
PRINT SPJe.

SPJ will be printed.
PRINT_ {(2)
PRINT SPJ 'THIS IS THE RELATIOCN SPJ'.

Gptionally, a title may be given. The title will appear at the top
of every output page.

Observations and Rules

- The title must be the last component of the PRINT guery.
- A title may NOT be broken across a line.

PRINT (3)
PRINT SPJ OVER (QTY,PNUM 'THIS IS THE RELATION SPJ WITH NO SNUM OR JNUM.?

An over-list may be included in the PRINT query. The output will
then contain only those attributes of the operand relation named in the
over-list. Furthermore, the printed order of the attributes will
reflect the order of the attributes in the over-list.

PRINT_{4)
FRINT.
The name of the relation to prinmt may be omitted. 1In this case,
the relation printed will be the LAST relation that was the result of a
query. For example, in the following sequence:
JOIN SPJ AND S OVER SNUM GIVING TEHMPI1.
DIVIDE TEMP1 BY (200) OVER QTY DETERMINING SNUM GIVING TENMP2.
PRINT.

The relation printed would be TEMP2.

BRINT_{5)

PRINT 'THE ANSWER TO EXERCISE 6.187.

http:f!1!l!1_J..21
http:fJ!!l!Ll.9l

25
This is just like PRINT {4) except that a title is given.
BRINT_{6)
PRINT{JCIN SPJ AND S OVER SNUHM) 'USING PRINT WITH A NESTED RELATION.?
PRINT can have a nested relaticn(s) as its operand relation. This is

useful when the result of a guery is to be printed but pnot used in
successive queries. The PRINT query itself, however, cannot be nested.

http:t!!L.1.21

‘:;

26
CoPY

The user is able to make a copy of a relation. This is most useful
wvhen copying a relation from one data base to another.

COPY SPJ GIVING NEW_SPJ.

As can be seen, the syntax is straightforward. The COPY <can be
expressed more simply as;

NEW_SPJ=SPJ.

When copying a relation which is to be permanently stored on a data
tase, the new relation must be prefixed with the data base name. An

example of this could be;
HOUSES.NEW_SPJ=5PdJ=.

The COPY operation cannot be nested.

O

PUEGE

e i

27

relation caa be deleted by the following operation.

PURGE TEMP.

If the relation resides on the data
the data base nhame.

PURGE SUPPLIER.SPJ.

base, it must be prefixed with

C

28
SORTED ON

All RQL 4queries implementing the relational algebra involve the
prior sorting of copies of the operand relations by the indicated
attributes (SELECT guery excepted). For example, in the following guery;

JOIN SPJ AND S OVER SNUM GIVING TEMNP.

copies of SPJ and S are sorted by SNUM as the first step of the join.
As sorting is expensive in execution time, reducing the number of sorts
required is a desirable goal. To this end, RQL maintains a sort-list
for every relation. This sort-list contains a 1list of attributes by
which a given relation is sorted. Before an operand relation is sorted
in response to a query, its sort-list is checked agaiast the 1list of
attributes by which the relation is about to be sorted. If there is a
match, the relatica is not sorted. The result relation then 'inherits!
a sort-list comprised of those attributes relevant to the particular
guery (e.g. the over~list im a PROJECT query). If not all attributes
match, sorting of the operand relation proceeds in the usual fashion.
The result relaticn then acgquires a sort-list comprised of the
attributes by which the operand relation was sorted.

There is a way to initialize the sort-list of a relation.
S5PJ SORTED ON SNUMN.

The akove operation informs RQL that SPJ is sorted on SNUM. Thus in the
Juery;

JOIN SPJ AND S5 QVER SNUH GIVING TEHNP.
the sorting of the copy of SPJ would be prevented.

To clear the sort-list of a relation, declare no attributes. That
is;

S5PJ SORBRTED ON.

Normally the SORTED ON declaratiomns would be placed at the
beginning of an RQL program, although they could be inserted anywhere.

Don't confuse the SORTED ON declarations with the notion of keys.
Although very often a relation 1is sorted on its key, it need not bea
The declaration of the SOBTED ON attributes is useful whatever the
situation.

Note that the SORTED ON keywords can be replaced by an
ampersand{t¢). For example;

SPJd & SNUM.

C

€:}

29

NEW _PREFIX aud NEW_ SUFFIX

RQL works by translating the user's guery into a SAS source program
which is then executed to ultimately ansvwer the query. The SAS program
itself contains variables that it uses tc contain temporary values.
Unfortunately, these variable names may conflict with attribute names in
the user's relations. To lessen the <chance of +this happening, all
variable names and temporary relations generated by RQL start and end
with an underscore. If this still does not prevent a conflict with the
user's names, there is a wvay to chanye the prefix and/or suffix of RQL
names.

NEW PREFIX=B.

The above will change the first character of all variable and
temporary relation names to 'B'.

NEW SUFFIi=C.

The above will change the last character of all variable and
temporary relation names to 'C'.

The following is a 1list of the variables and temporary relation
names used by R{le

All temporary relation names of the form _TOOnnn_ where nan is a
sSeguence number.

The variables are;

MCHFND _FSTNGP_ _PRVMCH_ _NA_ _NB_ _NATOTL_ _NBTOTL_
FSTPSN_ _LSTPSN_ _ALLEQL_ _INCRD1_ _FSTOBS_ _COUNT_
NEXT _ENDA_ _ENDB_

and all variables of the form;
S13dnnn where nnn is a sequence number.

Note that NEW PREFIX and NEW SOFFIX can be used repeatedly at the
user's discretion.

30

COMMENTS

To' include single line comments in am EQL program, enter an
asterisk(¥) as the first character on a new line. For example,

* THIS IS A CCMHENT

To include aulti-line comments, 'bracket?! them with the character
pair, *'{*' and '*)'_, For exaample;

{* THIS IS AN EXAMPLE OF A COMMENT THAT OCCUPIES MORE THAN
THAN ONE LINE. *)

IMEORTANT: Ccumments can pot be imbedded within a query. For
examgple, the following is jillegal;

PROJECT (JOIN SPJ AND S OVER SNUHN)
* IMBELDING & COMMENT WITHIN A NESTED QUEBY IS ILLEGAL
OVER SNUM,SNAME,QTY.

31
AUTHORIZED USERS OF_ RQL

To provide some measure of security for users! data bases, RQL maintains
a directory of authorized users. This directory is comprised of a list
of users?! 0S codes currently permitted to use RQL. An O0S code, not in
the directory, attempting to use RQL, will result in an RQL abort.
Owners of 0S codes wishing to be placed in the RQL directory,
should contact the data base administrator at the relevant location.

Note that for present developmental purposes, all OS codes can use
BRQL.

32

The JCL cards reguired to rum RQL are the following:

(Y 7/ JOBCARD

2) v/ EXEC RQL,DBASE=3SUPPLIER

(3) //STEP1.SUPPLIER DD DSN=ucod. $.SUPPLIER,DISPF=0LD
(4) //QUERY.SYSIN PD *

{5) Your queries.

(6) /*
{7) //STEP3.SUPPLIER DD DSN=ucod.$.SUPPLIER,DISP=0LD

Card (1) is your jobcard. The only thing here of interest is the
JOB CLASS. It could be declared as low as 2, but a JOB CLASS of 3 or 4
results in greater program execution efficiency.

Card (2) invokes the BQL catalogued procedure. The DBASE=SUPPLIER
option tells RQL that the name you are giving to your data base is
SUPPLIEE. If you had more than one data base, you would enter thenm
here. For example, say you wanted to include three data bases 1in a
given session; SUPPLIER,CARS, and HOUSES. You would then enter;
DBASE='SUPPLIER,CARS,HOUSES'. ©HNotice that multiple data bases must be
enclosed in guotesa

The order that the data bases appear on the EXEC card is important.
When relations in a query are not prefixed with the name of a data base,
the data bases are searched for that relation name in the order in which
they appear on the EXEC card.

The data bases given on the EXEC card must each contain at least
one SAS data set. 1If not, the job is terminated.

Several options may be given on the EXEC card.

A 1listing of the compiled SAS program source which ultimately
ansWwers the gquery can be obtained by declaring 'SOURCE=SOURCE' on the
EXEC card;

/7 EXEC RQL,DBASE=SUPPLIER,SOURCE=SOURCE

When the source is desired, the NOTES that SAS outputs as part of
the LOG can also ke oktained;

/7 EXEC RQL, DEASE=SUPPLIER,SOURCE=SOURCE,NOTES=NOTES

The answers to the querys are output with a default line length of
132 characters. This output length can be changed by declaring a line
length ranging from 64 to 255 using the coanstruct LS=. An output line
iength of 80 characters, for example, can be obtained as follows;

// EXEC RQL,DEASE=SUPPLIER,LS=80

33

5AS provides for the selection of a variety of other system
options. The reader is referred to the SAS manual for their details.
To declare any of these other options, enter;

CPTIONS='1list of options!?

on the EXEC RQL card. Note that the list of options must be enclosed in
guotes.

Those options declared with the OPTICONS= feature take precedeace
over any other options declared. If the user enters the following, for
example;

/7 EXEC BRQL,CEASE=SUPPLIER,LS=80,CPTIONS="1S=132"
the outyput line size will be 132 characters.

card {(3) defines the 05 data set on which the data base resides.
If either new relations are to be added to the data base or old
relations modified, the DISP parameter must equal CLD; DISP=0LD. 1If
only retrieval queries are to be executed, the DISP parameter should be
SHR; DISP=SiHR.

The ddname of card (3) must be of the form; STEPl.databasename. 1In
this example, the data base name is SUPPLIER, so the ddnname reads;
STEP1.SUPPLIER. There must be one such card for every data base on the
EXEC card. If there were three data bases as above, you would have the
following:

//STEP1.S5UPPLIER DD DSN=s——=—————=—-
//STEP 1.CARS DD DSN=—————=————=
//STEP1.HOUSES DD DSE=sw———m—m———

The ordering of these cards is unimportant.
Card (4) precedes the actual gqueries.
Card {6) follows the actual queries.

card (7) is an exact copy of card (3). If there are multiple data
bases, all cards of type (3) must be copied here. Note that if a data
base will be accessed often enough and by emough people, <cards of type
{3) and {7) can be included in the RQL catalogued procedure. This would
simplify the JCL setup cards considerably.

34

XECUTION OF NESTED QUERIES

The following example will attempt to illustrate the sequence of
nested gquery execution.

JOIN(PROJECT (SELECT S WHERKE CITY='LONDCN') OVER SNUM,CITY) AND
{SELECT J WHERE CITY=*!ILONDGCN') OVER CITY GIVING TENMP.

The first nested relation encountered is;

{SELECT S WHERE CITY="LONDCHN')

The result of evaluating this nested relation is stored in a
interim relation of the form; _TOOnnn_; where nan is a sequence aumber.

Therefore, the original guery now looks like;

JOIN(PROJECT _TO0O01_ OVER SNUM,CITY) AND (SELECT J WHERE CITY=
'LCNDCON') OVER CITY GIVING TEMP.

The next nested relaticn encountered is;

{PROJECT _TO001_ OVER SNUM, CITY)

The result is stored in _T002_ and so the original query now looks
like;

JOIN _TO002_ AND (SELECT J WHERE CITY=*LONDON') OVER CITY GIVING
TEMP.

The next{and last) nested relation encountered is;

{(SELECT J WHERE CITY=*LONDON')

The result is stored im _T003_ aad so the origimal gquery is;

JOIN _TO02_ AND _TO03_ OVER CITY GIVING TEMP.

The guery execution now proceeds in the regular fashion.

There are t%o reasons why this explanation has been presented.
First, to illustrate the mechanism of evaluation and second, to warn the

user of potential error messages.

When a nested guery is imn error, RQL writes relevant error
messages. For examgle;

JOIN(_T002_ AND _TO003_ OVER CITY GIVING TENP.

%ERROR** THE ABOVE IS SYNTACTICALLY INCORRECT.
1T HAS KOT BEEN RECOGNIZED AS A VALID STATEMENT.

{Note that the above gquery has a superfluous left bracket
immediately following the keyword JOIN).

The above query looks quite different to the user's original query
as the interim result relations have replaced the nested relations. The
user who is unawvare of hovw nested queries are executed would be quite

35

perplexed as to how the query was transformed. Hopefully, as a result

of reading this section,
basis.

the user will be able to proceed on an imformed

é:;

36

REGULAE USERS_OF_SAS

Users familiar with SAS have a distinct advantage in RQL.
Potential error messayes will be better understcod and result relatioas
manipulated with greater power and ease.

USING_SAS_STATEMENTS IN AN_RQL_PROGRAM

Begular SAS statements can be imbedded in an BQL programe To
include regular SAS statements, enter a '$' as the first character on a
new line. For example;

$ OPTIONS NOSOURCE;

To include a block of 5AS statements, 'bracket' them with the
character pairs, '($' and '3)'. For exanmple;

(3 DATA NEWSET;
SET NEW_SPJ;
IF FIRST.SNUN; $)

Note that when using the SAS comments construocts; '/*%' and '*/9,
leave at least one blank between ?'($? and '/*', For exanmple;

($ /% THIS IS A TEST OF THE SAS CCHMMENTS CONSTRUCTS.
THIS IS A TEST OF THE SAS COMMENTS CONSTRUCIS. */ §)

RQL knows nothing of the actions in the SAS statements given by the
user. For example, if in a given RQL program a user deletes a relation
using SAS, RQL will still assume it exists. Or if, say, an attribute is
dropped or renamed using SAS, RQL will still look for the o0ld attribute.
Therefore SAS statements which alter the essential structure of a
relation should bLe placed at the very end of an RQL prograne.
Statistical and report writing procedures are normally 'safe' and can be
inserted anywhere.

The user's gqueries are tramnslated to a SAS source progras which is
then executed to ultimately answer the queries.

It is possible to defer the execution of the SAS program by having
it routed to an ocutput data set of the user's choosing. This feature
thus enables the user to save the SAS scurce for later modification
and/or execution. To accomplish this, two alterations to the JCL cards
of RQL are required. First, on the EXEC card, the following must be
added; COND.STEP3=(0,LE). To illustrate;

/7 EXEC RQL,DBASE=SUPPLIER,COND.STEP3=(0,LE)
Second, immediately preceding the JCL card;
//QUERY.SYSIN bD x
the following card must be inserted;

//CUERY.FT14F001 DD output data set

37

The above card defines the cutput data set to which the SAS source will
-~ be written(most typically it will be an 0S data set).
Q-, It should be emphasized that routing the SAS program to a user
defined data set precludes the execution of the SAS program.

