
Relational 2uery banguage

January 15, 1982

Q

McGill
University
School of Computer Science
Burnside Hall (514) 392-8275

16 April 1982

TO WHOM IT MAY CONCERN

Prof. D.J. Burrage and Mr. Michael Gilman of the School of Computer
Science at McGill have developed a relational algebra query language,
RAQL, which I would like to endorse.

The language is based on the syntax used in the popular textbook
by C.J. Date (Addison Wesley, 1977) and so is a valuable teaching tool
in a database course. RAQL offers all the facilities described in Date's
book, and more, and is implemented so as to run at a reasonable expense
on any teaching database. It could be very useful in any course intended
to give students direct experience of the variety of state-of~the-art
database models and facilities.

RAQL interfaces with the Statistical Analysis System (SAS), which is
a widely used tool for data manipulation and display, but lacks a systematic
approach to databases. Anybody who wants to perform database operations on
his SAS data would be well advised to have access to RAQL. This is a
second area of great benefit from RAQL.

Too little university developed software is adequately ~isseminated,
leading undoubtedly to frequent duplications of effort. I think it is
admirable that the developers of this useful product are taking the trouble
to polish and distribute it.

pr

Postal address: 805 Sherbrooke Street West, Montreal, PO, Canada H3A 2K6

T.H. Merrett
Associate Professor

c

0

Any comments, criticisms and/or suggestions regarding RQL would be
much appreciated. Users of MUSIC at McGill can interactively send such
feedback to RQL via the RQLCOMllENTS facility.

First, create a regular MUSIC file containing your comments. Then
enter; RQLCOllitEHTS. This p.Logram will prompt you for the name of the
MUSIC file containing your comments. Enter the file name.

c

0

INTRODUCTION ················--~···············-·--·········-·

HOW BQL WORKS: AN OVERVIEW ···············-·····-············
l:t.ELATIONS USED IN THE QUERY EXAMPLES --~·-··--···--·······-···

PRESENTATION AND EXPLANATION OF QUERIES ·······-···-··········
SOME GENERAL OBSERVATIONS AND RULES•...••......•....

JOIN

DIVIDE

SELECT

PROJECT

.Mil'f us

UNION

TIMES

PRINT

COPY

PURGE

SORTED ON

···········~-······················--·-······--···

··-····························--·-··-········-···
··-···
--·······················--··················--···
·······························-···-········--·--·
·······-·········-···---···········~·-··--·-······

·······-······························-·······--··
·································--·-·····-···~·-·

··~·····~································--·······

··········-·····-·····················-······-····
························-·········--··············

NEW PREFIX AND NEW SUFFIX ·····--·············-···----······
COMMENTS ·········--·-····-·········-···-······-----·--····
AUTHORIZED USERS OF BQL ··············-···········-········---
HOW TO ItUN RQL ················-··-···········-------·········
EXECUTION 0 F NESTED QUERIES

····~··--········-·········~···--~

aEGULAR USERS OF SAS
···································~·-··

USING SAS S!ATE!ENTS IN AN RQL PROGRAM
·······-----~----~-·

ROUTING THE SAS SOURCE PROGRAM. ······················-·····

1

3

5

6

6

7

13

16

18

20

22

23

24

26

27

28

29

30

.31

32

34

36

36

36

c

0

1

!J!TB.ODUCTIO!

BQL Relational Query Language is a relational data base
management system based on the operations of relational algebra as first
proposed by Codd. RQI. 1 s query language is an expanded version of the
query language presented in the book by c. J .. Date, Introduction to
Database Systems, 2nd Edition, Chapter 6. Although familiarity with
Date•s query .language would be advantageous, it is not a necessity for
purposes of understanding RQL. The user is expected, however, to have
an elementary knowledge of the theoretical constructs of the relational
algebra. This knowledge should include an understanding of the
traditional set operations; UNION, INTERSECTION and DIFFERENCE as well
as the special set operations of the relational algebra; JOIN, DIVIDE,
SELECT and PROJECT. The reader is referred to Date's book if this
understanding is .lacking.

RQL was written primari.ly to provide a relational data base system
which would act as a power£ ul supplement to the SAS programming
language. SAS is basically a statistical and report writing package
that currently enjoys widespread acceptance in business and scientific
environments.

The main data object. in SAS is the file. As SAS is intended for
essentially naive users, the manipulation of files is facilitated
through the use of powerful and concise SAS stateaents. As flexible as
SAS is for handling files, it lacks the necessary features to
fort brightly implement a re .la tional data base system. To !lake SAS more
complete therefore, I decided to fill this perceived void-

RQL works by translating the user's query into a SAS source program
which is then executed to ultimately answer the query. The advantages
of this method are;
a) As previously mentioned, SAS has existing powerful features for

manipulating files. These were used to simplify my task.

b) No changes to existing SAS data sets
operands in a ~uery. Although a user
sets to the theoretical structure
necessary (though per baps advisable).

are required for their use as
may wish to confora SAS data
of relations, this is not

c) As the result cf any query is a relation, which is a SAS data set,
all of SAS's editing, report writing and statistical features may be
brought to bear on it.

This last point is worth reinforcing.. aany existing data base
packages lack sophisticated tools for analyzing and printing results of
!iueries. As this further ~~ani pula tion can be an important and common
requirement, a query language imbedded in a host .language having these
features is desirable.. SAS has the needed features (RQt is not actually
technically iabedded in SAS. See REGULAR USERS OF SAS for details).

Although RQL is geared for those familiar with SAS, it can be used
as a stand-alone SJstem; i .. e. no knowledge o.f SAS is necessary to run
RQL.. Users are urged however to acquaint themselves vith the
fundamentals of SAS for two reasons:

a) Although RQL generates bug-free code, the occasional logic and/or
system error is bound to occur. The error messages will be aostly
output by SAS, thus familiar it.y with its basic elements will
faci.lita te message comprehension ..

http:prillari.ly
http:il!TB.OD

0

c

0

2

b) SAS is a very useful package in its own right.

The terms data base, relation, SAS data set and os data set have
related but different meanings. Here follows an attempt at
clarification.

An os data set is the data set given on the user's DD card.

//SUPPLIER DD DSN=H2A5.$MASTER,DISP=SHB

In the above JCL card, H2AS.$MASTER is
A SAS data set resides in a given os data
context o.f this manual, is the collection
reside in a given OS data set. A relation
SAS data set.

the name of an os data set.
set. A data base, in the
of all SAS data sets that

corresponds to a particular

The major part of this manual is devoted to presenting and
explaining the query language that provides access to the data base ..
Each query category is presented in several steps; each step a variation
of that query. The variations are intended to be in ascending order of
complexity; the coaplexity resulting from the introduction of options.
However, familiarization vit.h the first and/or second step of each query
category should be sufficient to use RQL.

The more ad venturous and inguisitive reader is urged to discover
what query language options are available. The initial effo.rt should
pay off in reduced programming time and/or greater task endeavors.

Although RQL is intended to be a complete relational data base
management package, some OIJerations found in other relational systems
have been omitted. Specifica.lly, an INPUT and UPDATE capability for
relations has not been provided (though UPDATE can be implemented with a
MINUS and UNION- also see SELECT).. This is mainly because SAS itself
handles these two functions quite adequately.. I deemed it wasteful and
unnecessary to duplicate functions already existing in a thorough fora ..
Even t.bough RQL is presented as a stand-alone system, I think it
reasonable in the case of INPUT and UPDATE that the user refer to the
SAS manual.

c

0

3

BQL is divided into three job steps.
turn.

These will be outlined in

fire.t.22!L~~.2

A SAS program is executed for the first job step. The directory of
each data base given on the BX:EC card is obtained and stored in a
temporary os data set. The contents of the directory includes;

1) The at tribute names of the attributes in each data base.
2) The length(# of bytes) of each attribute.
3) The type (character or numeric) of each attribute.

This directory information is passed to the second job step where
it is used to aid the translation of gueries to a SAS source program.

There are two critical errors that can occur in the first job step ..
The first is when the data base given on the EXEC card has no
corresponding JCL card defining the os data set on which the data base
resides. Note that the ddname of the corresponding JCL card must match
the data base name on the EXEC card (see HOW TO BUN RQL) ..

The second critical error occurs when a data .base does not contain
at least one SAS data set.. This error can be avoided by ensuring that
all data bases included in an RQL program have at least one SAS data
set.

A SNOBOL program translates the user•s guery into a SAS source
program. This SAS source program is executed in the third job step.
All error detecticn under the control of RQL is done in this step.
using s NOBOL allowed the g uick and easy definition of the grammar on
which the RQL query language is based. Furthermore, modifications and
supplements to the grammar can be implemented with ease with little or
no side effects. Although there is some overhead incurred for the
translation to SAS source code, the actual execution time and cost is
winimal when 11easured against the cost of the SAS program which performs
the data base operations(See HOW RQL WORKS for some details of
execution).

A list of the more important errors that can occur follows.

1} A result relation has the same name as a relation in the user's
data base and it is NOT prefixed by the data tase name{see JOIN
(9)) •

2) A relation given in a query does not exist.

3) A guery is syntactically incorrect.

4) Attributes given in a guery do not exist or are used improperly.
An example of improper usage would be if an attribute in a JOIH
guery is renamed to an existing attribute name(see JOIN (3)).

To confirm the successful translation o£ a query, a message to that
effect is printed.

0

c

0

4

The SAS program generated by the second job step is here executed.
Although the program should be bug-free, some system and perhaps logic
errors may occur. If so, the user is expected to analyze these errors
at tht:! SAS level.. That is, BQL does .not intercept err-ors in the third
job step. Any errors occurring here forces the user to 'get into' SAS
as much as is required to solve the problem.

The relations used in the query examples are those taken from
Date's SUPPLIER data base supplemented with some relations of my ovn
creation. The next page illustrates these relations. The reader is
urged to have a g,uick look at these rela ti oos before proceeding to the
presentation of the queries themselves.

s

!l&;ll!!Q!LY . .§AJL!L THE QUERY EXAgg~

0 s p

Sb!OM SNAHE STATUS CITY PNUM PNAltE COLOR WEIGHT

Sl S.KIT H 20 LONDON Pl JiUT BED 12
52 JONES 10 PARIS 1?2 BOLT GREEN 17
53 ELAKE JO PARIS P3 SCREW BLUE 17
54 CL ARK 20 LONDON P4 SCREW BED 14
ss ADAHS 30 ATHENS PS Cl .M BLUE 12

P6 COG RED 19

J PQ

JNUH JNAME CITY S NUM JNUI!t QTY

J1 SORTER PARIS Sl J1 100
J2 PUNCH BOMB 52 J3 300
J3 READER ATHENS 52 J4 200
J4 CONSOLE ATHENS S3 J2 800
JS COLLATOR LONDON 53 J4 400
J6 TEIUUNAL OSLO
J7 TAPE LONDON

c SPJ CON

SNUM PNUM JNUM QTY QTY

S1 P1 J1 200 200
Sl P1 J4 700
52 P3 J1 400
S2 P3 J2 200
S2 P3 J3 200
52 P3 J4 500
S2 P3 JS 600
S2 P3 J6 400
52 P3 J7 800
S2 PS J2 100
53 P3 J1 200
53 P4 J2 soo
54 P6 J3 300
54 P6 J7 300
ss P2 J2 200
ss P2 J4 100
ss PS JS soo
ss PS J7 100
ss P6 J2 200
ss P1 J4 1000
ss P3 J4 1200
ss P4 J4 800
ss PS J4 400
ss P6 J4 soo

0

c

0

- Relation and a ttri.bute names cannot exceed 8 characters in length.
- Relation and attribute names must begin with a letter or an

underscore. subseguent characters can only be integers, letters
or underscores.

- Except where commas and brackets are used, at least one blank aust
be inserted between keywords and identifiers. Extra blanks are
iynored.
Queries can be split across a line.
constants canllot be split across a

- Each query must begin on a new line
period{.).

- Redundant brackets are not allowed.

Keywords, identifiers and
line.
and be terminated by a

Every query, exce:t>t for SELECT, involves the sorting of copies of
the operand relations as a first step. It should be emphasized that
only copies of the relations are sorted. The operand relations
remain untouched.

6

c

c

0

7

The JOIN implemented by BQL is
is an egui-join with one of the
projected out.

the natural join. The natural join
two duplicate result attributes

JOllt.J1l

JOIN SPJ AND PQ OVER SNU1'1 1 Q'l:Y GIVING TEMP.

The operand relations SPJ and PQ will be joined over SNUK and QTY
to produce the result relation TEMP. SNUM and QTY must be common
attributes of SPJ and PQ. The result relation., TEMP, will contain the
attributes; SNUl'l,PNUli,JNUM, QTY.

QB§~£Vat!gn~ g~g_Bul~§

- The list of attributes to be joined over is called the •over-list •.
- Any number of attributes may be given in the over-list.
- The attributes in the over-list are those by which copies of the

two operand relations are sorted.
- The order of the attributes in the over-list is the order in which

the actual joining proceeds.
- All attributes in the over-list must reside in both operand

relations. If not all attributes in the over-list are held in
common, the job is terminated with an appropriate error message.

- The order of the attributes in the result relation is determined by
the order of the attributes in the first operand relation followed
by the order of the attributes in the second operand relation. The
attributes in the over-list are placed as they occur in the first
operand relation.

JOIN SPJ AND J OVER JNUM GIVING TEMP.

In the above example, the attributes in TEMP would have t.he
following order;

SNUM, PNU!1 JNUM, QTY, JNAME, CITY.
- It is possible for the two operand relations to have common

attributes which are of different types. For examp~e, QTY could be
declared as a character attribute in SPJ and a numeric attribute in
PQ. This means that, technically, QTY is not a common attribute of
SPJ and PQ. BQL does 1121 check for the occurence o.f this unlikely
situation and so assumes same-named attributes are, indeed, common
attributes. Note, however, that SAS will automatically convert
character values to numeric values, where possible. Although. this
may lead to some problems, it does provide some potentially useful
flexibility.

- The result relation is stored in a work area and is not written to
the user's os data set. However, the result relation is available
for use in later queries. To permanently keep result relations, see
JOIN (8).

4-Q!Llli

JOIN J AND SPJ GIVING TEMP.

Notice that there is no explicit over-list in the above query. The
over-list is obtained by determining all the attributes J and SPJ have

0

c

0

8

in common. In this example~ there is only one common attribute; JHUM. J
and SPJ are therefore joined over JNUM. If J and SPJ had two
attributes in common, the join would be performed over those two.

Note that if the two operand relations have exactly all their attributes
in common~ the above joi.n~ with no declared over-list~ impleaents the
standard set operation; INTERSECT.

Remember that if the tvo relations have no attributes in common~ the job
is terminated with an appropriate error message.

!d.Q!Lfll

JOIN SPJ (RE NAME SNUB TO SPJ_S NU .M, QTY TO S PJ_QTY) AND PQ OVER J NUM GIVING
TEMP.

When joining two relations, often there exist attributes in common
over which the relations are ngt to be joined. In the above example,
SPJ and PQ are to be joined over JNUM. The result relation, TE!P, will
therefore have JNUK as one of its attributes. As SPJ and PQ also have
SNUM and QTI in ccmraon, which SNUK and QTY will be included ia TEMP?
TEMP cannot have two SNUMs and two QTYs as this will give rise to
ambiguous attribute selection at a later time. The solution to the
problem is to rename all common attributes exclusive of those in the
over-list.

In the above example~ the result relation will have the attributes
SPJ_SNU M, PNUM, JNUM, SPJ_ QTY, SBU B, QTI. SPJ_S:NUM, FliU!I and SPJ_Q'l'I
are taken from relation SFJ while SNUM and QTI are taken fros relation
PQ. JNUM is the attribute over which SPJ and PQ are joined.

- If a join is perforraed on two relations having common attributes
other than those in the over-list(either explicit or implicit), the
attributes in the t!rst relation ~ be renamed. If not, the result
relation will contain only 2~~ of the non-renamed attributes. The
values of this attribute will he those of the attributes in the
~.Q!!.Q operand relation. If this occurs, RQ.L outputs a warning
message.

- There is no limit to the number of attributes that can be renamed.
Att~:iiJutes in the over-list .!isUU!.2! be renamed ..

- only attri.butes in the first relation can be renamed.
- Renaming of attributes does !!2! affect the attribute names of the

first operand relation.. The new names a re only .found in the result
relation.

JOIN SPJ AND ('P1 1 ,200) OVER PSUH,QTY GIYIBG TEMP.

In the above example, (1 P1',200) is known as a constant relation.
It has the effect ot creating a teraporary relation of one tuple and tvo
attributes, PNUM and QTI.

It is possible to have a constant relation which results in a temporary
relation of more than one tuple:

JOIN SPJ AND (1 P1 1 , 1 P4 1 , 1 P7•) OVER PNUM GIVING TEMP.

0

c

0

The constant relation above will produce the temporary relation:

PNUM

P1
1?4
P7

9

It is also possible to have a constant relation which produces a
temporary relation of arbitrary degree(t of attributes) and
cardinality (# o.f tuples).

JOIN SPJ AND (1 P1 1 , 1 J1 1 ,200, 1 P3 1 , 1 J6 1 ,100, 1 P9 1 , 1 J3 1 ,600) OVER
PNUM,JHOM,QTY GIVING TEMP.

The above constant relation will produce t.he teaporary relation:

PNUM JNUl! QTY

P1 J1

P3 J6

P9 J3

200

100

600

Once the temporary relation is .formed, it is used as the second operand
relation in the JOIN query.

Observations ABg_Bul~§
Literals must be enclosed in single quotes.

- Constant rela tio.ns may be continued on the next line:
E. G. (t p 1'. I J2' ,

200)
- Redundant brackets are NOT allowed.

The order of the single values in the constant .relation must exactly
correspond to the order of the attributes in the over-list to which
the values are wished to be associated. In the example above, if
the over-list vas given as; JNUB, PNUM ,QTY instead of PNUM, JIUft,QTY,
the temporary relation produced would be:

JNUM l.lNUll QTY

P1 J1 200

P3 J6 100

P9 J3 600

Note that JNUB would contain the 'P' values and PNUM would contain
the • J' values.

- The values of the constant relation must correspond in TYPE with
their associated attribute in the over-list. In the query above,
• 1:?1' is associated with PBUlt. Assuming .PHUll to have TYPE
'character•, using • Pl' is correct. If instead of 1 P1 • we had for
examp.le, 200, a TYPE error would occur.
Literals may have a length LESS THAN the length of its associated
attribute. A literal is truncated if it has a length greater than

http:examp.le

0

c

0

10

the declared length of its associated attribute.
- Literals may contain any character. If a single quote is part of

the literal string, write two quotes. E.G. ('DATE"S').

JOIN SPJ AND (1 S1* 1
1 P1 1 , 1 J1 1 ,200) GIVING TEMP.

The above is a combination of JOIN (2) and JOIN (4). There is no
explicit over-list and there is a constant relation. In this case, the
over-list is determined by the first relation; SPJ. All attributes of
SPJ are declared to be in the implicit over-list. Furthermore, the
order in which the attributes appear in SPJ is preserved in the
over-list. This is important as the values in the constant relation are
ultimately associated with the attributes in the over-list(see JOIN (4)
above). The query, therefore, is internally generated to have the form:

JOIN SPJ AND (1 S1 1 ,'P1' 1 'J1',200) OVER SNUfl,PNOM,JNUH,QTY GIVING TE!P.

~Q!1L.i2.l

JOIN (JOIN S AND J OVER CITY) AND SPJ OVER JN08 GIVING TEIU?.

Nested queries are allowed. In the above query, (JOIN S AND J OVER
CITY) will be evaluated first and the result stored in a temporary
relation, say TOO. The query then will have the form:

JOIN TOO AND SPJ OVER JNUM GIVING TEliP.

The query can now proceed in the usual fashion.

Qh§g~X2!iQli2_ang_jyle§
-Structures of the form; (JOINS AND J OVER CITY), are called •nested

relations' ..
Nested relations can appear anywhere an operand relation can(some
exceptions noted later).
Relations can l:e nested to any depth.
Nested relations are enclosed in sing le brackets. B.edundan t brackets
are NOT allowed ..
Nested relations NEVER have an explicit result relation dec.lared.
Nested relations can split over lines.
See EXECUTION OF NESTED QUERIES for a detailed explanation on how
a nested query is evaluated.

~£!LJ1l

JOIN SUl?LIEB1.SPJ AND SUPLIER2.J OVER JNUM GIVING TEMP.

In a given run of BQL, a user may wish to access relations drawn
from different data bases. RQL allows the inclusion of multiple data
bases(See HOW TO RUN RQL for JCL details).

To disti.nguish between relations of the same name, prefix the
relation name by the data base name in which the re1ation resides.
Follow this by a dot(.) • Foi;' example, if a relation 'J • existed in both
data base SUPLIEli1 and SOPLIEB2, entering SOPLIER1.J would access the
'J' relation in the SUPLIER1 data base.

c

0

11

QJlee£.!9.!: .i: Q!HL.9.!HL.!U.t!~
- There is no limit to the number of data bases that can be included.
- If more than one data base is included and a relation name is not

prefixed by a data .base name, the data bases are scanned in order
for the FIRST occurence of the given relation name. This is the
relation used in the query(see HOW TO BUN RQL for clarification of
the ordering of data bases}.

:IQ!!L.J~l

JOIN SPJ AND S OVEB SNUH GIVING SUPPLIEB.SPJ.

usually, a result relation is only needed as an interim result.
This is the reason result relations are stored in a temporary work area.
sometimes, however, the user may wish to permanently add the result
relation to the data base.. This is simply done by prefixing the result
relation with the DDNAltE of the JCL card which defines the user's data
base.

QR§e£!~~iQA2_aQq_jyle~
- When permanently storing relations on a data base, the DISP

paraaeter on the JCL card defining the data base must be;
DISP=OLD.

!IQI!LJ2l

TEMP=SPJ * J J JNUM.

The above query is equivalent to :

JO.IN SPJ AND J OVEB JNUM GIVING TEMP •

.Fo.r the regular user of RQL, shorthand operators are recommended ..

1} The join operation is presented as a multiplication of two
relations:

SPJ * J
2) The keyword OYEB can be replaced by 11'.

SPJ * J I JliiUH
3) The construct 'GIVING resu~t relation• can be replaced by

•result relation=• :
TEB~=SPJ * J J JNUM.

4) Shorthand operators may be used in any of the forms of JOIN:
E. G. TEMP=SPJ (REH.AME QTY TO SPJ_Q'l'I) *J •

.!lQ!Lilll

JC!ii SPJS AND SS OVER SNUH GIVING TEMP.

In response to the above guery, RQL would normally first sort SPJ
by SNU8 then sorts by SHUM(the sorting is done on copies o£ the
relations). As SPJ and s are already sorted on SNUM, this is an
unnecessary action.

Appending an ampersand(&) to a relation informs BQL that this is
the case and thus prevents the sorting of that relation. As sorting is
expensive in terms of time and cost, judicious use of the ampersand can
result in sigificant savings(See SORTED ON for declaration of sort
orders outside gueries).

0

~~~vations an&_aY!~§ 
only use the a•persand(&) when you are ABSOLUTELY certain that the 
relation is already sorted by the relevant attribute(s}. If an 
'S' is used with a relation not appropriately sorted, erroneous 
results will probably occur for the imaediate query AND for all 
later queries using that result relation. 
If the over-list has more than one at tribute, the relation (s) aust 
be already sorted on those attributes IN THE SAME O.BD.E.R as they 
appear in the over-list. That is, if an over-list contained the 
attributes; PNUM,SNUK, a relation T& involved in query in which 
that over-list is used, must be already sorted on PNUft,SHUll. If 

12 

T& was previously sorted on say, SNU1i,PNtHt, the t}Uery would produce 
erroneous results. 
The ampersand(&) can be put to particular good use when employing 
constant relations. As the constant relation is being created 
•on the spot•, the user can easily ensure that the values therein 
are sorted. An example of this is; 

JOIN SPJ AND ('P1 1 , 1 J3 1 )& over PNUM,JHUft GIVING TE!P .. 



13 

DIVIDE 

C The DIVIDE implemented by RQL is as given in Date(see pages 
116-117). 

0 

12I!!l2Lill 

DIVIDE SPJ BY CON OVE.R QTY DETERMINING SNUM GIVING TEMP .. 

This form of the DIVIDE is as given in Date's book except for one 
refinement, the 'DETERMINING' k.eyvord... In Date, the division is assumed 
to be done on a dividend which is a binary relation{only two 
attributes). However, in practice many dividends are not binary, they 
have more than tvo attributes(conceptually, of course, any relation may 
be thought of as binary). The DETERMINING keyword allows the user to 
specify which attribute(s) from the first operand relation will appear 
in the result relation. 

QlHH~&!a tiQ!!2._9.!!Li.!!lli 
The list of attributes appearing as the object of the DETEBMI.N.ING 
keyword is called the determine-list. In the query above, SNUI!l is 
the only attribute in the determine-list. 

- Any number of attributes may appear in the determine-list. 
E.G. DIVIDE SPJ BY PQ OVER QTI DETERMINING JNU.M,SNUM GIVING TEMP. 

- The ordering of attributes in the determine-list IS important as 
the dividend will be first sorted on these attributes. 

- All attributes in the determine-list HOST exist in the dividend. 
- All attributes appearing in the over-list MUST exist in BOTH the 

dividend and divisor. 
Any attribute appea.ring in the determi.ne-list I!OS! NOT appear in the 
over-list and vice versa • 

.Q!!!.!!.Lill 

DIVIDE SPJ BY CON OVER QTY G.I VI NG TEMP. 

This form of DIVIDE is exactly that as presented in Date. As can 
be seen, the determine-list is omitted. In this case. a determine-list 
is internally generated by RQL. The attributes of this determine-list 
are constructed by taking all the attribllte names that exist in the 
dividend and then subtracting those attributes appearing in the 
over-list. For example, SPJ has the attributes; SRUft,PHUft,JIOH and QTY~ 
The over-list has the attribute QTY. Therefore, the determine-list will 
be; SNUM,PNUK,JNUH. In other words the above query is treated by RQL 
as; 

DIVIDE SPJ BY CON OVER QTY DETERI!INING SNUM,PNU8,JNUM GIVING TEMP. 

Note that the result of the subtraction of the ove.r-list from the 
attributes of the dividend must NOT be null.. This would occur if the 
dividend had only those attributes appearing in the over-list. 

DIVIDE SPJ BY CON GIVING TEMP. 

The over-list as well as the dt~termine-list may be omitted. In 
this case, RQL first internally generates an over-list and from it a 



c 

c 

0 

14 

detcrmine-list{as in DIVIDE (2)). The over-list is obtained by taking 
the common attributes of the D.I VIDEUD and DIVISOR. In the query above, 
as CON has only one attribute, QTY, and SPJ also has QTY, the over-list 
becomes QTY. The resulting determine-list is thus SNUH,PNUH,JNUL 

DIVIDE SPJ BY CON DETERMINING JNUM GIVING TEMP. 

'Ihe over-list may be omitted and the determine-list declared. This 
case is just a simple variation of DIVIDE (3).. The over-list is 
determined as in DIVIDE (3) and the yuery is complete. In other words, 
the guery is internally geDerated as; 

DIVIDE SPJ BY CON OVER QTY DETERMINING JNUM GIVING TEMP .. 

Q!!I.Q.Llli 

DIVIDE SPJ BY {1 Pl 1 ,200) OVER PNUM, QTY DETEIUII!UNG SNUll GIVING TEMP. 

constant relations are allowed as the divisor in DIVIDE queries. 
see JOIN (4) for the rules for using constant re.lat:ions. 

W.B. i!.hen using a constant relation as the divisor, an over-list BUST 
be explicitly declared. 

R!VIDE j6l_ 

DIVIDE SPJ BY ('P1',200) OVER PNUM,QTI GIVING TEMP. 

This is essentially the saae as DIVIDE (2) except that a constant 
relation is used as the divisor. 

See JOIN (6) .for rules for nesting queries. 
see JOIN (7) for rules for using aultiple data bases. 
see JOIN (8) for rules for permanently storing result relations. 

DI!!.QL.llill.. 

TEMP=SPJ I CON I QTY m SNUH. 

The above query is equivalent to: 

DIVIDE SPJ BY CON OVEB QTY DETEBliiNING SNtJM GIVING TEMP. 

For the regular user of RQL, shorthand operators are recommended. 

1) The divide operation is presented as a division of the first 
operand re~ation, the dividend, by the second operand relation, 
the divisor: 

SPJ I CON 
2) !he keyword OVER can be replaced by 'J': 

SPJ I CON I QTY 
3) The keyword DETERMINING can be replaced by ·~· : 

SPJ I CON J QTY m SNUM 
4) The construct 'GIVING result relation' can be replaced by 



c 

0 

15 

•result relation=• : 
TEMP=SFJ I CON j QTY ~ SNUM. 

5) Shorthand operators may be used in any of the forms of DIVIDE: 
E.G. TEMP=SPJ/(200) j QTY. 

!!:!!!DE_jJJl 

DIVIDE SPJ& BY {1 52 1 )& OVER SNUM DETERMINING PNUM GIVING TEMP. 

To use the ampersand vith the dividend, the dividend aust be 
already sorted on the attributes in the determine-list AND the 
attributes in the over-list IN THAT ORDER. The divisor must be sorted 
o.n the attributes in the over-list only. 

See JOIN (10) for general rules and observations on the use of the 
ampersand to prevent sorting. 



0 

c 

0 

16 

The SELECT .impleaented by BQL is as described .in Date. 

SELECT J WHERE CITY='ATHENS' GIVING TEMP. 

Any logical expression may appear in the where-list. 
comparison operators includes: 

The list of 

= or EQ -.= or NE < or LT > or GT 

<= or LE >= or GE -.< or NL -.> or lfG 

The •where-list• may nave several conditions: 

SELECT SPJ WHERE SNOB='S5' AND (PNUB> 1 P3' OB QTY NE 200) AND SNUK< 1 S2' 
GIVING 'IEMP. 

Qb.§@rvat.i,ons ~.nd_Rul~§ 
- Literals are enclosed in quotes, numeric constants are not. 

There is no limit to the complexity of the where-list. 
Brackets should be used for clarification and/or to enforce a 
desired segue.nce of evaluation. 
Redundant brackets ARE allowed. 
When using alphabetic comparison operators(e.g .. NE), it must be 
surrounded by blanks. E.G. CI'lY NE 'PARIS'. 
The relation on which the SELECT is performed is NOT sorted. 
Therefore the order of the tuples in the result relation will 
ref.lect the tut:le ordering of the operand relation. 
The presence of where-list attributes in the operand relation 
is DOt ver.ified(see SELECT (3) for details). 

SELECT J WHEBE CITY =: 1 A1 GIVING TEMP. 

Notice the colon{:) after the equal{=) sign. Noraally when two 
strings are of unequal length in a comparison, the shorter string .is 
internally temporarily lengthened to the length of the longer string. 
However, using a colon after the comparison operator does the reverse; 
the longer striny i.s temporarily truncated to the length of the shorter 
string. The above guery, for example, will find all tuples with CITY 
values beginning with 'A 1 • 

The where-list can be considerably more complex than that presented 
in SELECT (1) and (2). 

BQL translates the WHERE keyword to the SAS keyword IF and then. 
outputs the where-list as the object of the IF keyword. No translation 
processing of the where-list occurs. This 11eans that the where-list can 
be a SAS IF statement. For example, the following is valid; 

SElECT SPJ WHERE SNUK='S2' THEN QTY=10 ELSE DC IF SNUli= 1 S3 1 THEN 
QT!=20 ELSE tT!=QTY * .25 END; GIVING 2EMP. 

mailto:Qb.�@rvat,j,ons


c 

0 

17 

Notice that using this flexibility of the where-list allows an ad hoc 
UPDATE capability. 

An unfortunate offshoot of permitting the inclusion of a SAS IF 
statement, is that no error checking on the where-list is do.ae. Most 
notably, the presence of where-list attributes in the operand relation 
is not verified and unmatched quotes for literals are not detected .. 
Errors of this itind, however, will cause the SAS program, which 
ultimately answers the user's query, to produce a compilation error. 
The user is urged to be aware of this nuance for the SELECT query. 

See JOIN (6) for rules for nesting queries. 
See JOIN (7) for rules for using multiple data bases. 
see JOIN {8) for rules for permanently storing result relations. 

Note that use of the ampersand to prevent sorting the operand 
relation is NOT valid with SELECT. 

:2~1-Jl!l 

TEHP=SPJ : (PNO! LT 1 P3 1 OR QTY >=500). 

The above is e~uivalent to: 

SELECT SPJ WHERE (PNOM LT 1 P3 1 OB QTY >=500) GIVING TE!P. 

1) 

2) 

3) 

The keyword WHERE can be replaced by •:• : 
SELECT SPJ: (PNUK LT 1 P3') 

The keyword SELECT can be omitted. 
SPJ : (PNUH LT 'P3') 

The co.nstruct 'GIVING result relation• can be replaced by 
'result relation=' : 

TE MP=SPJ : (PNOM L7 t P3') • 

Other rules for shorthand notation are as described in JOIN (9). 



c 

18 

PROJECT is i;~_:.lemented in RQL just as described in Date. The 
result relation contains the attributes projected over the operand 
relation. All tuple duplicates are deleted in the process. 

P RQiL~~'LJll. 

PROJECT SPJ OVER QTY,JNUH GIVING TEMP. 

TEMP will contain QTY and JNUM, in that order, with all duplicate 
tuples removed. 

Obs~~vations_~nd Bules 
All the attributes in the over-list must be found in the operand 
relation .. 

- The order of the attributes in the result relation will be the same 
order as the attributes in the over-list. 

PROJE£I_ill 

PROJECT SPJ OVER NOT QTY GIVING TEMP. 

Pre:fixing the over-list vith the keyword 1 NOT • has the effect of 
creating an over-list which contains all SPJ • s attributes except QTY. 
That is, the above query is internally translated to the equivalent 
form; 

PROJECT SPJ OVER SNUft,PHUM,JNUM GIVING TEMP. 

This feature is useful when one is dropping £ewer attributes than one is 
keeping. Note that the •-.• symbol may be used instead of the .keyword 
'NOT'. 

E.G. PROJECT SPJ OVER -. QTY GIVING TEMP. 

PROJECT SPJ OVER Q7Y,JNUM WHEBE SNUM= 1 SJ1 AND QTY>100 GIVING TEMP. 

Notice the inclusion of the where-list. .I.t has the ef.fect of 
performing a SELECT operation on SPJ. The PROJECT is then execQted on 
the result. The i &elusion of a where-list in a PROJECT guery simplifies 
and clarifies overall query presentation. Nothing is saved in actual 
execution however~ as it is implemented by a SELECT followed by a 
PBOJECT(later versions of BQL aay optiaize this). 

See JOIN (6) for rules fo.r nesting (jUeries .. 
see JOIN (7) for rules using multiple data bases. 
see JOIN {8) for rules for permanently storing result relations. 
see JOIN (10) for rules for preventing the sorting of relations. 

TEMP=SPJ t PNUM,SNU8. 



19 

The above guery is eguivalent to: 

P.BOJEC'l' SPJ OVER PNUM,SNUM GIVING TEMP. 

1) The k:eyword OVBR can .be replaced by • J • : 
PROJECT SPJ I PNUM,SNUM 

2) The keyword PROJECT can be omitted. 
SPJ j .I?NUM,SNU!! 

Other rules for shorthand notation are as described in JOIN (9). 

c 

0 



0 

0 

20 

~INUS 

This is the traditional set operation except that the two operand 
relations do not have to .be union compatible. Net only can same-named 
at tributes be of different type (see JOIN ( 1) for explanation), but also 
the order and the number of attributes in the the relations may differ .. 

SPJ MINUS PQ OVER JNUH,QTY GIVING TEMP. 

TE~P will contain all tuples of SPJ except those tuples that have 
JNUH and QTY values found in PQ. 

say PQ had a tuple where JNU! = 'J4' and QTI = 200. Then any tuple 
in SPJ that had JNUM = 1 J4' and QTI = 200, would not appear in TEMP. 
Both values of JNU! and QTY in PQ must be found in SPJ for that tuple 
NOT to be included in TEMP. 

2lt2!!ilili&!!L9~Hi Bul,~§ 
- All attributes in the over-list must be found in the second relation 
- The over-list need not contain attributes found in the first 

relation. In other words, this query is valid; 

SPJ MINUS S OVER SNUM,SNAME,STATUS GIVING TEMP. 

Although SNUM is found in both operand relations, SNAME and STATUS 
are only found in s. The reason this is a valid query is that the 
over-list is used as only a guide for the MINUS operation. What 
actually happens is that all the attributes of SPJ are compared 
with the attributes in the over-list. OnlJ those attributes that are 
in common a.re used in the MINUS operation. These coaaon at tributes 
form the 'minus-list•. In the above example, therefore, 
the minus-list would contain on.ly SNUM. Ultimately this means that 
any tuple in SPJ having a value of SNUM equal to an SNUM value in 
s, will not be included in TEMP. 

SPJ MINUS S GIVING TEMP. 

'l:he over-list may be ollitted., If so, it is internally defined to be 
all the at tributes found in the second relation. The above query is 
therefore eguivalent to; 

SPJ aiNOS S OVER SNUB,SNAME,STATUS,CITY GIVING TEftP. 

SPJ MINUS ('S3 1 ,100, 1 S4 1 ,100) OVER SNUM,QTI GIVING TEMP. 

The second operand relation may be a constant relation. See JOIN 
(4) for the general rules that apply to the use of constant relations. 

QR§~~vat1QU§_~g_Rule~ 
- As constant relations can be used in conjunction with an over-list, 

considerable flexibilty is available to update relations .. For 
example, should the user wish to remove all tuples from SPJ having 



21 

an SNUM value of 'SJ', the following could be given as the query; 

0 Sl?J MINUS ( 1 53') OVER SNUM GIVING SUPPLIER.SPJ. 

c 

(Note that when updating a result relation stored on the data .base, 
it must be prefixed by the data base name). 
when using a constant relation, it is often preferable to rework 
the query to a SELECT operation. The same results can be achieved 
and SELECT does not involve sorting the operand relation. As sorting 
is expensive in time and money, this alternative is preferable. The 
immediately above i_iuery should therefore be given as; 

SELECT SPJ WHERE SNUK NE 1 53' GIVING SUPPLIER.SPJ. 

The only disadvantage of using SELECT is that the result relation 
will not be sorted on the attributes contained in the over-list. 
If you don • t care about that. use the SELECT instead of the lU BUS .. 

SPJ MINUS ('S1', 1 P3 1 , 1 J2 1 .200) GIVING TEMP. 

The over-list can be omitted when using a constant relation. The 
over-list is internally generated using all the attributes found in the 
first Oferand relation. The above guery, therefore, is equivalent to; 

SPJ .MINUS ('51 1 , 1 P3 1 ,'J2' ,200) OVER SNUM,.PNUK,JNUM,QTI GIVING TEMP. 

Care should be used when using this fcrm of the MINUS query. The 
values of the constant relation must exactly match the name and ordering 
of the attributes in the first operand relation. 

See JOIN (6) for rules for nesting g:ueries. 
see JOIN (7) for rules for using multiple data bases. 
see JOIN (8) for rules for permanently storing result relations .. 
see JOIN {10) for rules for preventing sorting of relations. 

ti IN t}. §. .t~.L 

TEMP.:SPJ - ('S2 1 ) J SNOrt. 

As with the other queries, shorthand opera tors are available. 

1) The minus operation is presented as a subtraction of the tvo 
operand relations: 

SPJ - ( 1 52') 

see JOIN (9) for other general rules regarding the use of shorthand 
operators. 



0 

c 

0 

22 

This is the traditional set operation between tvo union compatible 
relations except that same-named attributes may be of different type and 
attributes may be ordered differently in the two operand relations (see 
JOIN (1) for further explanation). 

JllilQlL.Ul 

SPJ UNION TEMP GIVING fEKP2. 

Qli~L!S. tj,gns aD.Q_i.Yle§ 
- Note that there is no over-list. All attributes of the first and 

second relation take part in the union. All attributes of the 
second relation must be found in the first relation and vice versa. 
The order of the attributes in the result relation is that of the 
attribute order in the first ope.rand relation • 

.Qlf!ON j~}_ 

SPJ UNION ( 1 S1' 1
1 P1', 1 J4 1 ,200) GIVING TEMP. 

Constant relations can be used 
Care should be used when using this 
JOIN (4) for observations and rules. 

as the second operand re~ation. 
form of the ONION operation. See 

See JOIN (6) for rules for nesting queries. 
see JOIN (7) for rul.es for using multiple data bases. 
see JOIN (8) .for rules for creating mul.tiple relations. 
see JOIN ( 1 0) for rules for preventing the sorting of relations .. 

.Ql!IillL.Jl.l 

SUPPLIEB.SPJ=SPJ + ('S3 1 , 1 P4 1 , 1 J9 1 ,100). 

As with other gueries, shorthand opera tors are allowed. 

1) The union operation is presented as the addition of two relations: 
S PJ + [ 1 S 3 1 , 1 P 4 1 , 1 J 9 1 , 1 0 0) 

See JCIN {9) for general rules for the use of shorthand operators .. 



0 

c 

0 

23 

The TIMES implemented in BQL is as presented in Date (page 11 tl). 
TitlES is used to obtain the extended cartes ian product of two relations. 

TIMES should be used only when absolutely necessary as it involves 
execution cost of the order M * N; where M and N are the number of 
tuples in the first and second operand relation respectively. 

S TIMES P GIVING TEMP. 

The result relation, TEMP, will have the attributes; 

SNUK,SNAME,STATUS,CITY,PNUI,PHA~E,COLOR,WEIGHT 

The sort order of the attribute values in s will be inherited by 
TEMP. 

I!B~-111 

SPJ(HENAME S.IUM TO SPJ_SIIUll) TIMES S GIVING TE8P .. 

To preserve the identity of those attributes that the operand 
relations have in common, the RENAliE feature is available. Rules for 
its use can be found in JOIN (3) {state11ents regarding the over-list 
should be ignored). 

See JOIN (6) for rules for nesting queries. 
see JOIN (8) for rules for permanently storing result relations. 

TEMP=S TIMES .P. 

The only shorthand notation available is replacing the 'GIVING 
result relation• construct with •result relation=•. 



24 

PR INI 

SAS has sophisticated output facilities. I have included a PRINT 
~uery for the sake of completeness but be aware that it does not include 
all the options of the SAS PRINT. 

IMPORTANT: A relation having no tuples will NOT be printed. In fact, 
absolutely nothing is printed if a relation has no tuples. Even if a 
title is given, still there is no output. As the result of a query can 
easily be an empty result relation, don•t think there is necessarily a 
bug in your program if there is no printed output. 

PRINT SPJ. 

SPJ will be printed • 

.fl!!!!'f {21. 

PRINT SPJ 1 THIS IS THE RELATION SPJ'. 

Optionally, a title may be given. The title will appear at the top 
of every output page. 

Q.ti§~Q.,tion.2_~!HLJUI!!U! 
- The title must be the last component of the PRINT query. 

~ - A title may NOT be broken across a line. 

0 

PRJJ!L1Jl. 

PRINT SPJ OVER QTI,PNUH 'THIS IS THE RELATION SPJ WITH NO SNUM OR JNU!.• 

An over-list aay be included in the PRINT query. The output will 
then contain only those attributes of the operand relation named in the 
over-list. Furthermore, the printed order of the attributes will 
.reflect the order of the attributes in the over-list • 

.f.l!!l!L.i.9l. 

PRINT. 

The name of the relation to print may be omitted. In this case, 
the relation printed will be the LAST relation that was the result of a 
query. For example, in the following sequence: 

JOIN SPJ AND S OVER SNU~ GIVING TEMP1. 

DIVIDE TEMP1 BY (200) OVER QTY DETERMINING SHUM GIVING TEMP24 

PRINT .. 

The relation printed would be TEMP2. 

f!\!!!1_ .. [21. 

PRINT 1 THE ANSWER TO EXERCISE 6.18 1 • 

http:f!1!l!1_J..21
http:fJ!!l!Ll.9l


25 

This is just like PRINT (4) except that a title is given. 

0 !:.!!.!!~1 
PRINT{JOIN SPJ AND S OVER SNU!) 'USING PRINT WITH A NESTED RELATIOI. 1 

PRINT can have a nested relation (s) as its operand relation. This is 
useful when the result of a query is to be printed but not used in 
successive queries. The PRINT query itself, however, cannot be nested. 

http:t!!L.1.21


c 

0 

26 

The user is able to make a copy of a relation. This is aost useful 
when copying a relation from one data base to another. 

COPY SPJ GIVING NEi_SPJ. 

As can be seen, the syntax is straightforward. The COPY can be 
expressed more simply as; 

NEW_SPJ=SPJ. 

when copying a relation which is to be permanently stored on a data 
tase, the new relation must be prefixed with the data base naae. An 
example of this could be; 

HOUSES.NEW_SPJ=SPJ. 

The COPY operation cannot be nested. 



27 

C illfi1LJ.l.l 

0 

0 

A relation can be deleted by the following Oferation. 

PURGE TEMP. 

If the relation resides on the data base, it must be prefixed vith 
the data base name. 

PURGE SUPPLIER.SPJ. 



c 

28 

SORTED Q! 

All RQL yueries implementing 
prior sorting of copies of the 
attributes(SELECT query excepted). 

the relational algebra involve the 
operand relations by the indicated 

For example, in the following query; 

JOIN SPJ AND S OVER SNUM GIVING TEMP. 

copies of SPJ and S are sorted by SNUM as the first step of the join. 
As sorting is expensive in execution time, reducing the number of sorts 
required is a desirable goal. To this end, RQL maintains a sort•list 
for every relation. This sort-list contains a list of attributes by 
which a given relation is sorted. Before an operand relation is sorted 
in response to a guery, its sort-list is checked against the list of 
attributes by which the relation is about to be sorted. If there is a 
match, the relation is not sorted. The result relation then 'inherits' 
a sort-list comprised of those attributes relevant to the particular 
query (e.g. the over-list in a PROJECT guery). If not all attributes 
match, sorting of the operand relation proceeds in the usual fashion. 
The result relation then acguires a sort-list comprised o.f tb.e 
attributes by which the operand relation was sorted. 

1here is a way to initialize the sort-list of a relation. 

SPJ SOR~ED ON SNUH. 

The atove operation informs RQL that SPJ is sorted on SNDM. Thus in the 
yuery; 

JOIN SPJ AND S OVER SNUB GIVING TEMP. 

the sorting of the COJ?Y of SPJ would be prevented. 

To clear the sort-list of a relation, declare no attributes. That 
is; 

SPJ SORTED ON. 

Normally the SORTED ON declarations would be placed at the 
beginning o.f an RQL program, although they could be inserted anywhere. 

Don't confuse the SORTED ON declarations with. the notion of keys. 
Although very often a relation. is sorted on its key, it need not be. 
The declaration of the SORTED ON attributes is useful whatever the 
situation. 

Note that the SORTED ON keywords 
ampersand(&). For example; 

SPJ & SNUM. 

can be replaced by an 



0 

c 

0 

29 

RQL works by translating the user• s query in to a SAS source program 
which is then executed to ultimately answer the guery. The SAS program 
itself contains variables that it uses to contain temporary values. 
Unfortunately, these variable names may conflict with attribute naaes in 
the user's relations. To lessen the chance of this happening,. all 
var~an~e names and temporary relations generated by BQL start and end 
with an underscore. If this still does not prevent a conflict with the 
user's names, there is a way to change the prefix and/or suffix of RQL 
names .. 

NEW PREFIX=B. 

The above will change the first character of all variable and 
temporary relation names to 'B'. 

NEW SU.F.FIX=C. 

The above will change the last character of all variable and 
temporary relation naaes to •c•. 

The following is a list of the variables and temporary relation 
names used by RQL. 

All temporary relation names of the form _TOOnnn_ where nnn is a 
seguence number. 

The variables are; 

_ .MCH£ND_ 
FSTPSN_ 

_ NEXT_ 

_ FSTNG.P _ 
_ .LSTPSH_ 
_ ENDA _ 

_ PRV!ICH _ 
_llLEQL_ 
_ENDB _ 

and all variables of the form; 

_NA_ _NB_ _NATOTL_ _NBTOTL _ 
_INCRD1_ _FSTOBS_ _COUNT _ 

_s1Jnnn_ where nnn is a sequence nu•ber. 

Note that NEW PREFIX and NEW SOFF.IX can be used repeatedly at the 
user's d~scret~on. 



To include si.ng~e line comments in an BQL program, enter 
asterisk{*) as the first character on a new line. For exa11.ple, 

* THIS IS A CCMHENT 

30 

an 

To include aulti-li.ne comments, 'bracket• thea with the character 
pair, 1 (*' and '*) '· For example; 

(* THIS IS AN EXA.KPLE O.r· A COlll!ENT THAT OCCUPIES MOBE THAN 
THAN ONE LINE. *) 

Il!FORT ANT: Ccmments can 1!.Q! be imbedded vi thin a query. For 
examfle, the following is illegal:.; 

PROJECT(JOIN SPJ AND S OYEB SBUll) 
* IHBEDDING A COliHEN'I iilTHIN A NESTED QUERY IS ILLEGAL 

OVER SNUH,SNAME.QTY. 



0 

0 

31 

AUTHORIZED USERS Q.f RQL 

To provide some measure of security for users• data bases, RQL maintains 
a directory of authorized users. This directory is comprised of a list 
of users' os codes currently permitted to use BQL. An os code, not in 
the directory, attempting to use RQL, will result in an RQL abort. 

Owners of OS codes wishing to be placed in the BQL directory, 
should contact the data base administrator at the relevant location. 

Note that for present developmental purposes, ~ll os codes can use 
RQL. 



c 

0 

the JCL cards required to run EQL are the following: 

(1) // JOBCARD 
(2) // EXEC RQL,DBASE=SUPPLIER 
(3) //STEP 1. SUPPLIER DD DSN=ucod. $.SUPPLIER, DISP=OLD 
(4) //QUEBI.SYSIN DD * 
{5) Your gueries. 

(6) /* 
(7) //STEP3.SUPPLIER DD DSN=ucod.$.SUPPL.IEB,DI.SP=OLD 

32 

card ( 1) is your jobcard. The only tbinq here of interest is the 
JOB CLASS. It could be declared as low as 2, but a JOB CLASS of 3 or 4 
results in greater program execution efficiency. 

card {2) invokes the RQL catalogued procedu.t:e. The DBASE=SOPPL.IER 
option tells RQL that the name you are giving to your data base is 
SUPPL.IEB. If you bad more than one data base, you would enter thea 
here. For example, say you wanted to include three data bases in a 
given session; SUPPLIEB..,CABS, and HOUSES. You would then enter; 
DEASE= 1 SUPPLI.ER,CARS,BOUSES 1 • Notice that multiple data bases must be 
enclosed in quotes. 

The order that the data bases appear on the EXEC card is iaportant. 
When relations in a guery are not prefixed with the name o£ a data base, 
the data bases are searched for that relation name in the order in which 
they appear on the EXEC card. 

!he data bases given on the EXEC card must each contain at least 
one SAS data set. If not, the job is terminated. 

several. ovtio.ns aay be g.iven on the EXEC card .. 

A l.isting of the compiled SAS program source which u~timate1y 
answers the query can be obtained by declaring 'SOUBCE=SOUBCB' on the 
EXEC card; 

// EXEC BQL,DBASE=SUPPLIER,SOURCE=SOURCE 

When the source is desired, the NOTES that SAS outputs as part of 
the LOG can also le obtained; 

// ElEC RQL,DEASE=SUPPL.IER,SOURCE=SOURCE,NOTES=NOTES 

The answers to the quecys are output vi th a default line length of 
132 characters. This output length can be changed by declaring a line 
length ranging from 64 to 255 using the construct LS=. An output line 
length of 80 characters, for example, can be obtained as follows; 

// EXEC RQL,DEASE=SUPPLIER,LS=80 



0 

0 

SAS provides for the selection of a variety of 
options. The reader is referred to the SAS manual for 
To declare any of these other options, enter; 

CPTIONS='list of options• 

33 

other system 
their details. 

on the EXEC BQL card. 
guotes .. 

Note that the list of options must be enclosed in 

Ihose options declared vith 
over any other options declared. 
example; 

the 
If 

OPTIONS= feature take precedence 
the user enters the following, for 

// EXEC RQL, DEASE=SUPP.LIER,LS=SO, OPTIONS=' LS=132 1 

the outfut line size will be 132 characters. 

card {3) defines the os data set on vhich the data base resides. 
If either new relations are to be added to the data base or old 
relations modified, the DISP parameter must equal OLD; DISP=OLD. If 
only retrieval queries are to be executed, the DISP parameter should be 
SHR; DISP=SHR. 

The ddname of card (3) must be of the form; STEP1 .. databasenaae. In 
this example, the data base name is SUPPLIER, so the ddnname reads; 
STEP1.SUPPLIEB. There must be one such card for every data base on the 
EXEC card. If there were three data bases as above, you would have the 
following: 

//STEP1.SUPPLIER DD 
//STEP1.CARS DD 
//STEP1.HOUSES DD 

DSN=----------­
DSN=----------­
DSB=---------

The ordering of these cards is unimportant.. 

card {4) precedes the actual queries. 

Card ( 6) follows t.he actual queries. 

card ( 7) is an exact copy of card (3). If there are raul tiple data 
bases, all cards of type (3) must be copied here. Bote that. if a data 
base will be accessed often enough and by enough people,. cards of type 
(3) and (7) can be included in the BQL catalogued procedure. This would 
simplify the JCL setup cards considerably. 



0 

34 

The following example will at tempt to illustrate the sequence of 
nested query execution. 

JOIN (PROJECT (SELECT S WHERE CITY=' LONDON') OVER SitU!, CITY) AND 
(SELECT J WHERE CITY= 1 LONDON') OVER CITY GIVING TEHR. 

The first nested relation encounte.red is; 

(SELECT S WHERE CITY=' LONDON') 

The result of evaluating this nested relation is stored in a 
interim relation of the form; TOOnnn ; where nnn is a sequeace number. 
Therefoce, the original guery now looks like; 

like; 

JOIN (PROJECT _TOOl_ OVER SJUft,CI'fY) AND (SELECT J WHERE CITY= 
1 LCNDON 1 ) OVER CITY GIVING TEMP. 

The next nested relation encountered is; 

(P.BOJECT _T001_ OVER SNUM, CITY) 

The result is stored in _T002_ and so the original query now looks 

JOIN _T002_ AND (SELECT J WHERE CITY= 1 lOJDON 1 ) OVEB CITY GIVZBG 
TEMP. 

The next (and last) nested relation encountered is; 

{SELECT J WHERE CITY=' LONDON') 

The result is stored in _TOOJ_ and so the original query is; 

JOIN T002_ AND _T003_ OYER CITY GIVING TEMP. 

The g,uery execution .now proceeds in the regular fashion. 

There are two reasons •hy this explanation has been presented. 
First. to illustrate the mechanism of evaluation and second, to •arn the 
user of potential error messages. 

When a nested y_uery is in error, RQL vxites relevant error 
messages.. For example; 

JOIN(_T002_ AND _TOOJ_ OVER CITY GIVING TEftP. 

***ERROR**** THE ABOVE IS SYNTACTICALLY INCORRECT. 
IT HAS NOT BEEN RECOGNIZED AS A VALID STATEMENT. 

(Note that the above query has a superfluous left bracket 
immediately following the keyword JOIN). 

The above query looks guite different to the user's original query 
as the interim result relations have replaced the nested relations. The 
user who is unaware of how nested queries are executed would be quite 



0 

c 

35 

perplexed as to how the query was transformed. Hopefully, as a result 
of reading this section, the user will be able to proceed on an informed 
tasis. 



c 
36 

!i~LAR USEBS OL.a!§ 

Users familiar with SAS have a distinct advantage in RQL. 
Potential error messages wi~l be better understood and result relatioos 
manipulated with greater power dnd ease. 

Regular SAS statements can be im.bedded in an BQL prograa.. To 
inc~ude regular SAS statements, enter a '$' as the first character on a 
new line. For example; 

$ OPTIONS NOSOUBCE; 

To include a block of SAS 
charactEr pairs, '($'and 1 $)'• 

{$ DATA NEWSET; 
SET NEW_SPJ; 

IF FIRST.SNUlt; $) 

statements, 'bracket• 
For example; 

thea with the 

Note that when using the SAS comaents constructs; 'I*' and '*1', 
leave at least one .blank between • ($' and • I*'· For example; 

($ I* THIS IS A TEST OF THE SAS COHftENTS CONSTRUCTS. 
THIS IS A TEST OF THE SAS COftftEHTS CONSTRUCTS. *1 $) 

RQL knows nothing of the actions in the SAS statements given by the 
user. For example, if in a given RQL program a user deletes a relation 
using SAS, RQL will still assume it exists. or if, say, an attribute is 
dropped or renamed using SAS, BQL will still look for the old attribute. 
Therefore SAS statements which a~ter the essential structure of a 
relation should be placed at the very end of an RQL program. 
statistical and report writing procedures are normally •safe' and can be 
inserted anywhere. 

The user's queries are translated to a SAS source program which is 
then executed to ultimately answer the gueries. 

It is possible to defer the execution of the SAS program by having 
it routed to an output data set of the user's choosing. This feature 
thus enables the user to save the SAS source for later modification 
and/or execution. ~o accomplish this, two alterations to the JCL cards 
of RQL are required. First, on the EIEC card, the following must be 
added; COND.STEP3=(0,LE). To illustrate; 

11 E.l.EC RQL,DBASE=SUPPLIEB,COND.STEP3=(0,L.E) 

Second, immediately preceding the JCL card; 

//QUERY. SYSIN DD * 
the following card must be inserted; 

//QUERY. FT1.1H'001 DD output data set 



0 

31 

The above card defines the output data set to which the SAS source will 
be written(most typically it will be an os data set). 

It should be emphasized that routing the SAS program to a user 
defined data set precludes the execution of the SAS program. 


