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ABSTRACT

The contents of this thesis are best divided into two components: (i) evalu-

ation of atlas-based segmentation and deformable contour propagation and (ii)

adaptive radiation therapy using deformable electron density mapping. The first

component of this thesis involves the evaluation of two commercial deformable

registration systems with respect to automatic segmentation techniques. Over-

all, the techniques revealed that manual modifications would be required if the

structures were to be used for treatment planning. The automatic segmentation

methods utilized by both commercial products serve as an excellent starting point

for contouring process and also reduce inter- and intra-physician variability when

contouring.

In the second component, we developed a framework for dose accumulation

adaptive radiation therapy. By registering the planning computed tomography

(CT) images to the weekly cone-beam computed tomography (CBCT) images, we

were able to produce modified CBCT images which possessed CT Hounsfield units;

this was achieved by using deformable image registration. Dose distributions were

recalculated onto the modified CBCT images and then compared to the planned

dose distributions. Results indicated that deformable electron density mapping is

a feasible technique to allow dose distributions to be recalculated on pre-treatment

CBCT scans.

iv



ABRÉGÉ

Le contenu de cette thèse est divisé en deux partis: (i) l’évaluation de la

segmentation automatique basée sur des atlas anatomiques numériques et la prop-

agation des structures déformables et (ii) la radiothérapie adaptative déformable

utilisant la cartographie de la densité électronique. Le premier élément de cette

thèse comprend l’évaluation de deux logiciels commerciaux par rapport aux tech-

niques de segmentation automatique. Globalement, l’évaluation des techniques a

démontré que des modifications manuelles seraient nécessaires si les contours créés

par les logiciels devaient être utilisées cliniquement. Les méthodes de segmentation

automatique utilisées par les deux produits commerciaux peuvent servir d’excellent

point de départ pour le processus de contournage et aussi permettent de réduire la

variabilité inter- et intra-médecin lors du contournage.

Dans la deuxième parti, nous avons développé un processus pour l’accumulation

de dose en radiothérapie adaptative. En enregistrant les images de planification de

la tomodensitométrie (TDM) aux images de tomodensitometrie conique (TDMC),

nous avons été en mesure de produire des images modifiées TDMC qui possédait

des unités Hounsfield TDM en passant par l’enregistrement déformable des images

utilisées. Les distributions de dose ont été recalculées sur les images de TDMC

modifiées et ensuite comparées à la distribution de dose prévue. Les résultats

indiquent que la cartographie déformable de la densité d’électronique est une tech-

nique adéquate pour permettre de recalculer les distributions de dose sur les images

de TDMC.
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CHAPTER 1
Introduction

Contents

1.1 Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Cancer Treatments . . . . . . . . . . . . . . . . . . . . . 2

1.3 Imaging in Radiation Therapy . . . . . . . . . . . . . . 3

1.3.1 Computed Tomography . . . . . . . . . . . . . . . . . . 3

1.3.1.1 Cone Beam Computed Tomography (CBCT) . . . 5

1.3.2 Magnetic Resonance Imaging . . . . . . . . . . . . . . . 6

1.3.3 Positron Emission Tomography . . . . . . . . . . . . . 7

1.4 Target Volume Definitions . . . . . . . . . . . . . . . . 9

1.5 Treatment Planning Process . . . . . . . . . . . . . . . 11

1.5.1 Treatment Plan Evaluation . . . . . . . . . . . . . . . . 11

1.5.2 Forward and Inverse Treatment Planning . . . . . . . . 11

1.6 Advanced Radiotherapy Protocols . . . . . . . . . . . . 13

1.6.1 Intensity Modulated Radiotherapy . . . . . . . . . . . . 13

1.6.2 Image Guided Radiotherapy (IGRT) . . . . . . . . . . 13

1.6.3 Adaptive Radiation Therapy (ART) . . . . . . . . . . . 15

1.1 Cancer

Cancer is a disease in which a group of cells display uncontrolled reproduction

and eventually invade surrounding tissue [20]. Sometimes the cancerous cells spread

to other parts of the body via lymph or blood, this is referred to as metastasis.

Cancer destroys healthy tissue by competing for resources, this may result in death

if left untreated.

According to the Canadian Cancer Society [19], ”An estimated 177,800

new cases of cancer (excluding 74,100 non-melanoma skin cancers) and 75,000
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1.2. CANCER TREATMENTS

deaths from cancer will occur in Canada in 2011.” Based on current incidence

rates [19], 40% of women and 45% of men in Canada will develop cancer during

their lifetimes, one out of every four Canadians are expected to succumb to the

disease.

1.2 Cancer Treatments

Once diagnosed, cancer is usually treated with a combination of surgery,

chemotherapy and radiation therapy. The choice of treatment depends on multi-

ple factors such as the location, progression of the cancer and the general health

of the patient. Surgery is a localized therapy in which the tumor mass is physi-

cally removed along with a margin to hopefully include any microscopic disease.

Chemotherapy acts by killing cells that divide rapidly, one of the main properties

of most cancer cells. The issue with this is that the chemotherapy also harms cells

that divide rapidly under normal circumstances: bone marrow cells, hair follicles,

digestive tract, etc... Radiation therapy involves the use of ionizing radiation to

kill cancer cells. Radiation therapy is in a way much like surgery since they are

primarily used to treat well localized cancers.

The aim of radiation therapy is the delivery of a lethal dose to malignant

tissues while minimizing the dose to surrounding healthy tissues. Achieving this

goal requires precise and accurate localization of the diseased tissues and delivery

of the radiation. The fulfillment of the aforementioned requirements has made

radiation therapy a distinctly integrated discipline composed of medical imaging

and radiation sciences. The following is a list of commonly used radiotherapy

treatment modalities,

• External Beam Radiation Therapy (EBRT) [11]

– Photon Therapy

– Electron Therapy

– Proton Therapy

2



1.3. IMAGING IN RADIATION THERAPY

• Brachytherapy [21]

1.3 Imaging in Radiation Therapy

Medical imaging plays a vital role in medicine, especially when used in the

diagnosis and treatment of cancer. The images used in radiation therapy are

digitally stored in the Digital Imaging and COmmunications in Medicine (DICOM)

format. DICOM [2] is a standard for handling, storing, printing, and transmitting

information in medical imaging. DICOM files consist of a 3D (or 2D) array of

rectangular volume elements, known as voxels, that have defined dimensions and

their respective intensities. These files include much more than just the image

study, such information ranges from the patient’s name and imaging modality to a

deformation matrix if applicable. 3D images are often viewed in 2D slices at certain

planes, in theory any cross-sectional cut can be viewed but the most common

planes are axial, coronal and sagittal. The axial plane divides the body into cranial

and caudal (head and tail) portions. The coronal plane divides the body into

posterior and anterior (back and front) portions. Finally, the sagittal plane divides

the body into sinister and dexter (left and right) portions.

Commonly used imaging modalities in radiation therapy are computed

tomography (CT), magnetic resonance imaging (MRI, or simply MR), positron

emission tomography (PET) and ultrasound (US). Each modality supplies different

information about the disease and the patient. Basic concepts in CT, MR and PET

will be discussed in the subsequent subsections.

1.3.1 Computed Tomography

Computed tomography or CT is an imaging modality that produces cross-

sectional images representing the X-ray attenuation properties of different tissues.

X-rays are produced by an X-ray tube, attenuated by the patient and detected on

the other end. This process is repeated until line attenuation measurements have

been obtained for all possible angles. From these measurements it is possible to

3



1.3. IMAGING IN RADIATION THERAPY

reconstruct the attenuation at each position of a slice using one of the following

algorithms [11]: Filtered backprojection, Fourier transform or series expansion.

Hounsfield developed the first clinical CT scanner [6], it was comprised of

one X-ray source and one detector and was capable of producing a slice in five

minutes. Presently, CT scanners can acquire upwards of 64 slices per rotation and

can reconstruct full 3D volumes in seconds. The output CT image is made up of

CT numbers called Hounsfield units, which are based on the attenuation properties

of the materials that make up each voxel.

The Hounsfield unit (HU) scale ranges from -1024 to +3072, which is simply a

pixel bit-depth of 212 = 4096 values. The HU number for air and distilled water at

standard temperature and pressure are defined as -1000 HU and 0 HU, respectively.

Sample HU numbers for various tissues are listed in table 1–1. For a material X

with linear attenuation coefficient µX , the HU value is given by [3]:

HU =
µX − µwater
µwater − µair

× 1000 (1.1)

where µwater and µair are the linear coefficients of water and air, respectively. A

sample CT image is shown in figure 1–1.

Tissue HU
Air -1000
Lungs -200
Fat -120
Water 0
Blood +30
Muscle +40
Bone +400 or more

Table 1–1: Approximate Hounsfield units for various tissues.

4



1.3. IMAGING IN RADIATION THERAPY

Figure 1–1: Sample axial slices of a 3D CT image. Higher x-ray attenuating objects

such as bone are white, while lower attenuating objects such as air are dark.

1.3.1.1 Cone Beam Computed Tomography (CBCT)

The CBCT is a compact version of the regular CT. Through the use of a

cone shaped X-ray beam (as opposed to fan-beam for CT), the size of the scanner,

radiation dosage and equipment cost are all greatly reduced.

However, the CBCT technology has some substantial drawbacks. kV CBCT

images are subject to ample contribution from scatter occurring within the

patient and reaching the detector [9]. This effect is more prominent in CBCT

than in regular fan-beam CT due to the larger cone angle used and the lack of

collimation on the detectors. This scatter contribution degrades the image quality

by degrading the contrast. The Hounsfield scale described in section1.3.1 applies

to CT scans but not to CBCT scans [22]. A sample CBCT image is shown in

figure 1–2.
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1.3. IMAGING IN RADIATION THERAPY

Figure 1–2: Cone beam computed tomography axial image from an on-board im-

ager mounted on a linear accelerator on left. CT image shown on right for compari-

son.

1.3.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is based on the concept of nuclear mag-

netic resonance. The body is largely composed of water molecules, each comprising

two hydrogen nuclei. The nucleus of hydrogen and some other atoms have a phys-

ical property referred to as magnetic spin. Given a strong, uniform magnetic field,

the nuclei will align in the direction of the magnetic field like little magnets; this

produces a net magnetization vector. By applying a specific radio frequency pulse

the net magnetization vector will tip away from its original orientation, next the

net magnetization vector will decay. The rate at which the decay occurs depends

on the longitudinal relaxation time (T1) and the transverse relaxation time (T2).

3D MRI images can be generated that depend on T1 or T2. Images whose

intensities mainly depend on T1 data are referred to as T1-weighted images, for

images dependent on T2 data they are referred to as T2-weighted images. MRI

6



1.3. IMAGING IN RADIATION THERAPY

images have exceptional soft tissue contrast, this is due to the large differences in

T1 and T2 values amongst different tissue types, see figure 1–3.

Figure 1–3: T1 (left) and T2 (right) weighted axial MRI images.

1.3.3 Positron Emission Tomography

Radiopharmaceuticals are used in the field of nuclear medicine as tracers

in the diagnosis and treatment of many diseases. Positron emission tomography

(PET) produces functional 3D images by detecting pairs of gamma rays emitted

indirectly by a positron-emitting radiopharmaceutical. The most frequently used

radiopharmaceuticals fluorodeoxyglucose (FDG); it is labelled with radioactive

fluorine (F-18).

To conduct a scan, the radioactive tracer is injected into the patient, usually

intravenously. There is a waiting period for the tracer molecule to become con-

centrated in tissues of interest. The patient is then placed in the PET scanner.

When the F-18 decays, it emits a positron, which when it encounters an electron

will annihilate to produce two 511 kilo-electron volt (keV) photons that are emitted

at almost 180 degrees to each other. The PET scanner, which consists of many

detectors in a ring, now defines a line of response (LOR) by detecting the two 511
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keV photons. After detecting the two 511 keV photons, the scanner knows that

the event has occurred somewhere along the LOR. After copious amounts of LORs

are collected, special image reconstruction methods are employed to obtain the 3D

distribution. A sample FDG-PET image is shown in figure 1–4.

Figure 1–4: Coronal FDG-PET image of a liver metastases of a colorectal tumor

case. Note that normal isotope uptake is seen in the brain, renal collection system

and bladder.
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1.4 Target Volume Definitions

To plan and deliver successful radiation therapy, it is important to accurately

define the volumes that must receive tumorcidal doses. The use of common termi-

nology is imperative, since it allows comparisons to be made between therapeutic

results after planning and between treatments at different institutions. The Inter-

national Commission on Radiation Units and Measurements (ICRU) has published

several reports used to determine treatment parameters as well as define target

volumes so that treatments may be planned and delivered accurately. These re-

ports include ICRU 50 and 62 [14, 15] for photon therapy, ICRU 83 [18] for photon

therapy intensity modulated radiotherapy, 71 [16] for electron therapy and 78 [17]

for proton therapy. The gross tumor volume (GTV) is defined as: gross palpable or

visible/demonstrable extent and location of malignant growth. The clinical target

volume (CTV) is defined as: tissue volume that contains a demonstrable GTV

and/or subclinical microscopic malignant disease, which has to be eliminated. The

planning target volume (PTV) is defined as: a volume selecting appropriate beam

sizes and beam arrangements, taking into consideration the net effect of all possi-

ble geometrical variations, in order to ensure that the prescribed dose is actually

absorbed in the CTV.

9
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Figure 1–5: Illustration of the boundaries of the volumes defined by report 50 of

the International Commission on Radiation Units and Measures (ICRU) on an

axial CT image. Gross tumor volume (GTV) is in purple, clinical target volume

(CTV) is in orange and planning target volume (PTV) is in red.

Two other volumes of interest are the treated volume (TV) and the irradiated

volume (IV). The TV is the volume that has the minimum probability of incurring

complications and the IV is the volume that receives a significant dose, based on

normal tissue tolerance doses. A representation of the target volume definitions are

illustrated in figure 1–5.
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1.5 Treatment Planning Process

The treatment planning process consists of target volume and organs at risk

(OARs) localization, selection of beam delivery parameters, dose calculation and

beam optimization. This is followed by treatment verification and delivery. 3D

treatment planning uses CT images taken from a CT-simulator for target volume

and OAR delineation and dose calculation. CT-simulators reproduce the same

geometry of a treatment unit allowing the images taken from it to be used for

treatment planning. MRI-simulators are sometimes used as a complement to

CT exist due to their superior soft tissue contrast, dose calculation can only be

performed on CT due to its direct connection to electron density which is required

for dose calculations [10].

1.5.1 Treatment Plan Evaluation

The aim of radiation therapy is to deliver the maximum possible dose to the

tumor volume without exceeding the dose tolerances for healthy tissues. According

to the ICRU report 50 [14], the dose delivered to the PTV should be within +7%

and -5% of the prescribed dose by the physician. The outcome of the treatment is

not only determined by the delivered dose but also the volume of tissue receiving

that dose. Treatment plans are commonly evaluated based on isodose distributions,

dose statistics and dose volume histograms (DVHs). DVHs present volumetric

information about the dose within a particular structure exists in differential and

cumulative forms. The differential form is a frequency distribution of the number

of voxels which receive a dose within a given dose bin. The cumulative DVH is an

integrated form of the differential DVH. Figure 1.5.1 demonstrates typical and ideal

cumulative DVHs for target and OARs.

1.5.2 Forward and Inverse Treatment Planning

In conventional forward planning, the user choses the beam configuration

based on experience and previous data. The dose distribution is then calculated
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Figure 1–6: Sample cumulative dose volume histograms for a target and organ at
risk for the typical case (a) and the ideal case (b).

and modifications to the plans may be executed to improve the dose distribution.

Complicated dose distributions such as those produced by intensity modulated

radiation therapy (IMRT) are usually produced using an inverse treatment
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planning process. In inverse planning, the user specifies a set of criteria for the

dose delivery to the target and select OARs. The treatment planning software uses

the user-defined criteria to find the optimized intensity which minimizes a cost

function [23], this process is achieved using an iterative algorithm.

1.6 Advanced Radiotherapy Protocols

1.6.1 Intensity Modulated Radiotherapy

IMRT is a three-dimensional radiotherapy technique that yields dose distri-

butions which are highly conformal to the tumor target while sparing surrounding

healthy tissue. IMRT, as the name suggests, uses beams with non-uniform in-

tensity. There are multiple ways of achieving this, namely: multi-leaf collimators

(MLCs), scanned beams [7], physical compensators or modulated fan beam (To-

motherapy). The most common method of achieving a non-uniform beam is with

the use of the MLCs. The MLC techniques deliver an intensity modulated field by

either moving the collimator leaves during irradiation or by irradiating a sequence

of static MLC configurations. The former is often referred to as the dynamic MLC

technique and the latter as the step-and-shoot MLC technique [4].

1.6.2 Image Guided Radiotherapy (IGRT)

The proper positioning of the patient is crucial to achieve optimal treat-

ment delivery, especially with IMRT due to the high dose gradients. IGRT is an

advanced radiotherapy technique that adopts imaging technology to guide the

localization of the radiation target throughout the course of treatment. Daily

or weekly alignment imaging is common practice in modern radiotherapy [13].

Without the use of IGRT the PTV margin is larger to compensate for localization

errors during treatment [8]. By improving precision and accuracy through IGRT,

the PTV margin may be reduced relative to non-IGRT treatments, resulting in

a reduction of the amount of radiation delivered to healthy normal tissue. Cone

beam computed tomography (CBCT) and 2D kV radiographs are commonly used
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in IGRT techniques. See figure 1–7 for a photo of the on-board imaging (OBI) de-

vice which allows CBCT images and kV radiographs to be acquired from Varian’s

Trilogy linac (Varian Medical Systems, Inc., Palo Alto, California).

Figure 1–7: Photograph of a Varian Triology (Varian Medical Systems, Inc., Palo

Alto, California) linac with the on-board imaging device extended on the sides.

IGRT has much evolved in the last decade with the incorporation of CT

scanners into radiotherapy treatment rooms [8]. These include OBI devices, CT

scanners mounted on linacs (CT-on-Rails) as well as the HI*Art II helical on

Tomotherapy system. By acquiring a 3D image of the patient in the treatment

position, image registration can be performed to apply the required shift to map

the treatment CT to the original planning CT. IGRT significantly increases the

chance that the target volume receives the prescribed dose, yet its drawback is in

its inability to compare the planned and delivered doses to the target volumes and

OARs. This issue provides the basis for adaptive radiation therapy.
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1.6.3 Adaptive Radiation Therapy (ART)

ART utilizes daily imaging (usually CT or CBCT) to track anatomical

changes such as displacement and deformation of the target volumes and/or

OARs, subsequently the treatment plan is adapted for the following treatment.

The ART process which combines image guidance, deformable image registration,

dose reconstruction, dose calculation and plan re-optimization to compensate for

uncertainties in inter-fraction setup and organ deformation.

Planning Volume

Fraction #2Fraction #1

T1

T2

Figure 1–8: Diagram demonstrating dose summation by determining the mapping

between the treatment plan CT image and the daily treatment CT images.

It has been shown that by applying the daily treatment CT images to the

treatment plan CT, the delivered dose distribution for each fraction can be

precisely calculated [12, 24]. By applying deformable image registration, the dose

delivered to each voxel of tissue in the planning CT image can be tracked and

accumulated over the course of treatment. This approach is referred to as dose

accumulation [1, 5] and is illustrated in figure 1–8. If at any point during the

course of the treatment the accumulated dose to the OARs is too high and/or
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the accumulated dose to the target volume is too low, the treatment plan may be

modified.
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CHAPTER 2
Concepts in Deformable Image Registration and its Applications
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2.1 Medical Image Registration

2.1.1 Definition

Image registration is the process of transforming different images (or image

sets) into one coordinate system. It is a method for determining the similarity

of features between images collected at different times or using different imaging

modalities. The similarity is then used to to transform one image so it closely

resembles the other so that the pair of images can be directly analyzed. A common

use of registration is to correct for different patient positions between scans.

Image registration adds value to images by allowing structural (CT, MR, US) and

functional (PET, SPECT, fMRI) images to be studied in the same coordinate

system and can allow disease progression to be monitored over time. Registration

of images from different modalities is known as inter-modality registration and
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intra-modality registration is the registration of images acquired from the same

imaging modality. Image registration is also classified as either rigid or deformable

(non-rigid). Rigid registration involves only translation and rotation (six degrees

of freedom) whereas deformable or non-rigid registration takes into account

deformable anatomical or biological changes between images.

2.1.2 Notation

Image registration determines the mapping between two images, F (floating)

and R (target), spatially with respect to intensity [3]. The mapping between

images can be expressed as:

R = T (F ) (2.1)

where T is the spatial transformation. For 3D images, T simply maps three

spatial coordinates, xF , yF and zF , to new spatial coordinates, xR, yR and zR. The

transformation T is defined over a finite domain which can consist of the entire

images or just a section, this finite domain is referred to as a mask. Figure 2–1

illustrates the concept of spatial transformation T that maps from arbitrary point

A in one image to point B in the second image.
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A B

T

Figure 2–1: Image registration determines a spatial transform that maps one image

onto another.

2.1.3 Workflow

When registering two images, one is taken as the floating image F , and the

other as the target image R. The objective of registration is to find the optimal

mapping that will align image F to R. Components of the registration workflow

include the transformation, interpolator and similarity measure (cost function).

Figure 2–2 illustrates a sample registration workflow.
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Figure 2–2: Sample image registration workflow. The output is the floating image

registered to the target image.

The interpolator is used to determine the intensity values at certain points

when images are moved. The similarity measure is used to calculate how well two

images match, this is the cost function.

2.1.4 Transformations

Transformations between floating and target images can be either rigid

(translation and rotation only) or deformable. The rigid transformation is a

transformation that preserves distances between pairs of points; objects will have

the same shape and size after a rigid transformation. A rigid transformation
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is defined as a transformation, which when acting on a vector v, produces a

transformed vector T (v) expressed as:

T (v) = Rv + t (2.2)

where R is a rotation and t is a translation vector [6]. The rigid transformation is

described by six degrees of freedom, which is useful for many medical applications

but is often insufficient to describe without warping the floating image to describe

the target image.

The simplest form of the deformable transformation is the affine transform,

which is an extension of the rigid transform where scaling and shearing are

permitted [8]. This transform is described by twelve degrees of freedom in the

first order polynomials transformation, second, third and fourth order polynomial

transformations yield a total of 30, 60 and 105 degrees of freedom, respectively.

The affine transformation is limited in that it can only model global deformations

and not local ones, which is more applicable to realistic medical applications. A

common approach is the use of freeform deformations (FFD) [5] based on locally

controlled functions. A very common locally controlled function is the B-splines [5],

which are defined by a mesh of control points with uniform spacing δ. In this

method, the control point φi,j,k is moved around and the floating image is deformed

by:

TB-Splines =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (2.3)

where i = b x
nx
c − 1, j = b y

ny
c − 1, k = b z

nz
c − 1, u = x

nx
− b x

nx
c, v = y

ny
− b y

ny
c,

w = z
nz
− b z

nz
c and Bl represents the lth basis function of the B-spline:

B0(u) =
(1− u)3

6

B1(u) =
(3u3 − 6u2 + 4)

6
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B2(u) =
−3u3 + 3u2 + 3u+ 1

6

B3(u) =
u3

6

As previously mentioned, the B-spline are locally controlled, which means that

changing the location of one control point affects the transformation of the local

neighborhood of that control point only. Computationally, the B-splines is efficient

even for a large number of control points.

Another class of deformable registration algorithms are non-parametric

transforms where the transformation is defined by a discrete set of displacement

vectors instead of a continuous function. The main advantage to using non-

parametric deformable transformations is that there is a considerable increase in

freedom when modeling large local deformations.

2.1.5 Similarity Measures

Similarity measures are a metric of how well two images match. Image

registration algorithms find the transformation that optimizes the similarity

measure (cost function). Conceptually, the simplest similarity measure is the

sum of intensity differences between each pair of voxels. The ideal case is when

the sum is zero, which would imply that the two images are perfectly aligned. A

commonly used similarity metric based on difference in intensity is the sum of

squared differences (SSD), which is calculated as follows:

SSD =
1

N

∑
X

(T (x)− F (t(x)))2 (2.4)

where T (x) is the intensity at a position x in an image (target) and F(t(x)) is the

intensity at the corresponding point (in the floating image) given by the current

estimate of the transformation t(x). N is the number of voxels. This type of sim-

ilarity metrics are appropriate for images that differ only by Gaussian noise [1],
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there are sensitive to small number of voxels that have very large intensity dif-

ferences and are only applicable to mono-modal image registration. Similarity

measures based on correlation between images are also quite common. The correla-

tion coefficient (CC) is one of the more used correlation-based metrix and defined

as:

CC =

∑
X

(T (x)− T̄ ) · (F (t(x))− F̄ )√∑
X

(T (x)− T̄ )2
∑
X

(F (t(x))− F̄ )2
, (2.5)

CC is also based on voxel intensities and is only suitable for mono-modal images.

A different class of similarity measure is required for voxel-based inter-

modality registration, a commonly used similarity metric for this problem is mutual

information (MI) [4]. MI is derived from an information-theoretic approach to the

dependence of on variable on another; it assumes that only a probabilistic rela-

tionship between intensities exists. It is based on the shared information between

overlapping regions of two images, which should be maximized at registration. MI

is defined in terms of entropies of the intensity distribution as follows:

MI = HT +HS −HTS (2.6)

with

HT = −
∑
i

Pi logPi,

HS = −
∑
j

Qj logQj and

HTS = −
∑
i,j

pi,j log pi,j

where P (or Q) is the probability of intensity I (or J) occurring in the target (or

floating) image and pi,j is the joint probability of both occurring at the same place.
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2.2 Atlas

IMRT is driven by volumetric segmentation, which necessitates greater

care and accuracy when contouring OARs and target volumes. The anatomical

contouring process requires both clinical knowledge and a significant workload.

Atlas-based anatomical segmentation can be used to automatically obtain contours

of a patient scan. The previously described image registration methods are applied

to atlas-based image segmentation, figure 2–3 illustrates the basic framework

for atlas-based segmentation. A pre-labeled image, known as the atlas, is first

registered using a deformable algorithm to the subject image to be segmented. The

deformation field used to register the atlas to the subject image is extracted and

then applied to the atlas mask1 . The transformed structures delineated in the

atlas are projected onto the subject image. The output is the segmented subject

image.

1 A mask is a binary image, in this context each structure in the atlas has a
mask which is deformed and subsequently projected onto the subject image.
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Deformable Registration

Extracted 
Deformation Field

Atlas

Atlas Mask Segmented Subject

Subject To Be Segmented

Figure 2–3: A simple framework for atlas-based segmentation. The atlas is first

registered to the subject image using deformable registration. The deformation

field is extracted and applied to the structures from the atlas, which maps the

structures onto the subject image. 28
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Atlases in this work were created using in-software tools (see section 2.4).

Atlases were created using a set of patient data sets, which included the planning

CT image and the physician-drawn contours.

2.2.1 STAPLE Algorithm

The Simultaneous Truth and Performance Level Estimation (STAPLE) algo-

rithm is a widely accepted tool that adjusts for inter- and intra-expert variability

in image segmentation [7]. It takes in a collection segmentations and calculates a

probabilistic estimate of the true segmentation. Using this algorithm, we took a

collection of structure sets (single-patient-based atlases) and generated an estimate

of the true segmentation; an average atlas was created.

2.2.2 Validation

To evaluate the performance of the atlas-based segmentation, we compared the

atlas-based contours to expert-drawn contours. For the segmentation performance

evaluation, the Dice Similarity Coefficient (DSC) metric was computed [2]. For two

contours with volumes V1 and V2, the DSC is defined as the ratio of the volume of

their intersection to their average volume:

DSC = 2
V1

⋂
V2

V1 + V2
(2.7)

where the DSC has a value of 1 for perfect agreement and 0 when the structures do

not overlap.

2.3 Deformable Contour Propagation

The idea behind deformable contour propagation is very much similar to

atlas-based segmentation except that in deformable contour propagation the

segmentation is based on only one patient data set. This could be more powerful

than using a multi-patient-based atlas when propagating contours for a given

patient. An example of this would be when propagating contours from a planning

CT to a weekly CBCT or when a patient requires a new planning CT due to
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weight loss; the original planning CT would be registered to the new scan, then

the extracted deformation field would be applied to the original planning CT’s

structure set.

2.4 Software Packages

Two commercially available deformable medical image registration software

packages were used in this research. VelocityAI version 2.4 (Velocity Medical

Solutions, Atlanta, GA) and MIMvista version 5 (MIM; MIMvista, Cleveland,

OH) were both run on a 3.2 GHz iMac (Apple, Cupertino, California) with 1 TB

of hard disk space. Both deformable registration tools were used to create atlases

using archived patient data, non-rigidly register image sets and automatically

segment patient images using atlas-based segmentation and deformable contour

propagation.
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3.1 Introduction

The quality of contours in treatment plans plays an important role in radiation

therapy. Images from various imaging modalities provide increasing information

of healthy and malignant tissues of a subject. Automatic image segmentation

techniques used for the delineation of anatomical structures and others regions of

interest are becoming increasingly important in facilitating quantification of tissue

volumes, study of anatomical structures and treatment planning [1].

Intensity modulated radiation therapy (IMRT) is designed to be highly

conformal to the three-dimensional shape of a tumor volume, which yields a dose

distribution that maximizes the dose to the tumor while sparing healthy normal
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tissue. There may also be an increased risk that the high degree of conformality

will lead to steep dose gradients, which inturn increase the risk of a geometrical

miss, especially for sites where positioning and organ motion are more uncertain.

IMRT is driven by volumetric segmentation, thus the contours for the organs at

risk (OAR) and the target volumes must be meticulous. This increase in care

comes at the cost of valuable physician and dosimetrist time. We have thus

evaluated the atlas-based segmentation and deformable contour propagation

techniques presented in Chapter 2.

3.2 Methods and Materials

3.2.1 Atlas-Based Segmentation

VelocityAI and MIMvista were compared. Twenty-one IMRT head and neck

(HN) cases were randomly and retrospectively chosen. These cases included

their respective planning CT scans and physician-drawn structures. The twenty-

one cases were divided into two sets: one to create the atlas (eleven) and the

other to test the atlas on (ten). In MIMvista, the atlas was created using the

in-software tool and setting the most representative patient as the atlas template.

In VelocityAI, the atlas was created using all ten cases to create an average patient

atlas. The STAPLE algorithm was used to take collections of single-patient-based

atlases to calculate a probabilistic average atlas for the VelocityAI method. The

atlas-based contours were compared to physician-drawn contours using DSC.

3.2.1.1 Patient Data Requirements

The twenty-one IMRT HN cases used for the atlas-based segmentation

method were chosen such that all twenty-one patients had twelve specific OARs

already contoured. Each patient was treated with roughly the same degree of neck

extension.
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3.3. RESULTS AND DISCUSSION

3.2.2 Deformable Contour Propagation

Eleven HN and sixteen gynecologic (GYN) brachytherapy cases were randomly

and retrospectively chosen for this study. These cases included their respective

pre-treatment (pCT) and follow-up CT (fCT) scans along with their respective

physician-drawn structures. The pCT volume was registered using VelocityAI’s

deformable algorithm to the fCT and the resulting deformation field was applied to

the pCT’s structure set to propagate it to the fCT. The propagated contours were

compared to physician-drawn contours using the DSC.

3.2.2.1 Patient Data Requirements

The eleven HN cases used for deformable contour propagation were re-scanned

and re-contoured at least once. All HN cases had twelve specific structures in

common. The sixteen GYN brachytherapy cases were all treated using the Miami

applicator [2] and all had three CT scans.

3.3 Results and Discussion

3.3.1 Atlas-Based Segmentation

Ten OARs were automatically segmented using VelocityAI and MIMvista

and were compared to the physician-drawn contours using the DSC as seen in

table 3–2. VelocityAI and MIMvista performed quite well with the brain, cord and

eyes with mean DSC values ranging between 0.68-0.95 and 0.75-0.98 respectively.

The spinal cord DSC values are not representative due to the fact that physicians

may not always contour the entire structure. VelocityAI outperformed MIMvista

for the brainstem, with a mean DSC of 0.77 ± 0.06 versus 0.7 ± 0.1 for MIMvista.

MIMvista yielded better results for the mandible, with a mean DSC of 0.8 ± 0.2

versus 0.6±0.1 for VelocityAI. Both had some trouble with the oral cavity, parotids

and sphincter muscle with DSCs ranging between 0.41-0.69 for VelocityAI and

0.38-0.71 for MIMvista. It should be noted that the physician-drawn contours are
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3.3. RESULTS AND DISCUSSION

taken as the gold standard. A way to improve this study would be to have multiple

physicians contour all the structures and then create a probabilistic average using

the STAPLE algorithm, this average would then be used as the gold standard when

evaluating the automatically segmented structures.

Abbreviation Expansion
BrnStm Brain Stem
Esoph Esophagus
Lrynx Larynx
Mndbl Mandible

OrlCvT Oral Cavity
Paro Parotid

Table 3–1: Expansions for the abbreviations found in tables 3–3 and 3–2.
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Brain BrnStm Cord Eye-L Eye-R Mndbl OrlCvT Paro-L Paro-R Sphincter Mean (STD)
Pt# V M V M V M V M V M V M V M V M V M V M V M

ABS01 0.94 0.98 0.78 0.70 0.24 0.33 0.78 0.72 0.77 0.84 0.25 0.23 0.27 0.11 0.64 0.66 0.66 0.62 – – 0.59 (0.27) 0.58 (0.29)
ABS02 0.94 0.97 0.78 0.51 0.76 0.78 0.78 0.82 0.81 0.83 0.74 0.87 0.50 0.43 0.62 0.76 0.60 0.74 0.32 0.54 0.68 (0.18) 0.73 (0.18)
ABS03 – – 0.77 0.78 0.71 0.89 0.83 0.89 0.84 0.90 0.70 0.87 0.65 0.74 0.65 0.80 0.71 0.76 0.50 0.00 0.71 (0.10) 0.74 (0.28)
ABS04 0.96 0.98 0.65 0.64 0.74 0.87 0.81 0.65 0.75 0.70 0.64 0.80 0.51 0.21 0.81 0.81 0.72 0.73 0.33 0.24 0.69 (0.17) 0.67 (0.25)
ABS05 0.95 0.97 0.83 0.73 0.80 0.79 0.72 0.84 0.74 0.79 0.59 0.84 0.57 0.56 0.65 0.72 0.61 0.52 0.28 0.48 0.67 (0.18) 0.72 (0.16)
ABS06 – – 0.72 0.72 0.80 0.72 0.90 0.84 0.87 0.87 0.60 0.79 0.43 0.13 0.42 0.69 0.68 0.69 0.37 0.17 0.64 (0.20) 0.62 (0.28)
ABS07 0.95 0.98 0.80 0.60 0.77 0.79 0.80 0.78 0.73 0.76 0.64 0.83 0.57 0.64 0.74 0.55 0.70 0.36 0.43 0.43 0.71 (0.14) 0.67 (0.19)
ABS08 0.95 0.98 0.84 0.59 0.62 0.77 0.79 0.81 0.76 0.81 0.61 0.85 0.51 0.04 0.71 0.65 0.75 0.65 0.48 0.55 0.70 (0.15) 0.67 (0.26)
ABS09 0.93 0.98 0.72 0.62 0.66 0.74 0.74 0.70 0.68 0.67 0.58 0.75 0.62 0.31 0.60 0.73 0.69 0.76 0.32 0.35 0.65 (0.16) 0.66 (0.20)
ABS10 0.96 0.98 0.83 0.86 0.68 0.86 0.85 0.92 0.82 0.92 0.73 0.87 0.75 0.72 – – 0.79 0.75 0.64 0.64 0.78 (0.10) 0.84 (0.11)

Mean 0.95 0.98 0.77 0.67 0.68 0.75 0.80 0.80 0.78 0.81 0.61 0.77 0.54 0.39 0.65 0.71 0.69 0.66 0.41 0.38
STD 0.01 0.01 0.06 0.10 0.17 0.16 0.05 0.08 0.06 0.08 0.14 0.19 0.13 0.26 0.11 0.08 0.06 0.13 0.12 0.21

Table 3–2: DSC values for various structures for the head and neck cases using the atlas-based segmentation method. The
cells are red for DSC values from 0-0.7, yellow till 0.8 and green till unity. VelocityAI and MIMvista are denoted by V and
M, respectively. The spinal cord DSC values are not representative due to the fact that physicians may not always contour
the entire structure. Abbreviations of structures are expanded in table 3–1.
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3.3. RESULTS AND DISCUSSION

We also evaluated the performance of VelocityAI and MIMvista on the 11

patients that were used to create the atlas. The overall average DSC values for

VelocityAI and MIMvista were 0.7 ± 0.2 and 0.93 ± 0.04 respectively. MIMvista

outperforms VelocityAI here due to the nature of its algorithm. MIMvista will

search for the best matching patient from its atlas database and use it as the

reference, hence why MIMvista fares better when using patients, which are part

of the atlas. VelocityAI did not achieve a perfect segmentation since the patients’

structure sets were averaged using the STAPLE algorithm.

3.3.2 Deformable Contour Propagation

Eleven OARs and two CTVs were analyzed for the HN cases, as well as the

Miami applicator, bladder, rectum and CTV for the GYN cases. The propa-

gated contours obtained from deformable contour propagation were compared to

physician-drawn contours using the DSC metric. DSC values for the HN and GYN

cases are summarized in table 3–3 and table 3–4, respectively. As discussed in sec-

tion 3.3.1, the study could be improved in the future by having multiple physicians

contour all the structures and creating a probabilistic average using the STAPLE

algorithm, this average would then be used as the gold standard when evaluating

the automatically segmented structures.
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Pt# Brain BrnStm Cord Esoph Eye-L Eye-R Lrynx Mndbl OrlCvT Paro-L Paro-R CTV1 CTV2 Mean STD
HN01 0.98 0.80 0.81 0.72 0.81 0.83 0.77 0.77 0.84 0.73 0.81 0.07
HN02 0.98 0.91 0.87 0.77 0.92 0.92 0.73 0.91 0.89 0.87 0.85 0.86 0.87 0.07
HN03 0.97 0.89 0.82 0.87 0.87 0.91 0.83 0.87 0.88 0.83 0.90 0.82 0.87 0.04
HN04 0.87 0.90 0.83 0.90 0.93 0.85 0.88 0.81 0.78 0.84 0.89 0.87 0.86 0.04
HN05 0.98 0.87 0.75 0.75 0.86 0.90 0.81 0.77 0.67 0.85 0.75 0.81 0.09
HN06 0.98 0.76 0.69 0.55 0.93 0.85 0.71 0.87 0.75 0.88 0.51 0.77 0.15
HN07 0.97 0.87 0.87 0.90 0.88 0.70 0.87 0.79 0.72 0.78 0.90 0.78 0.83 0.08
HN08 0.98 0.74 0.78 0.65 0.90 0.83 0.84 0.67 0.82 0.80 0.86 0.85 0.81 0.09
HN09 0.97 0.82 0.69 0.40 0.89 0.88 0.81 0.83 0.73 0.81 0.84 0.79 0.15
HN10 0.97 0.86 0.69 0.36 0.83 0.85 0.73 0.83 0.46 0.81 0.74 0.90 0.40 0.72 0.20
HN11 0.98 0.87 0.79 0.69 0.87 0.89 0.88 0.87 0.37 0.73 0.74 0.82 0.84 0.79 0.15

Mean 0.98 0.84 0.79 0.64 0.88 0.88 0.79 0.84 0.71 0.80 0.78 0.87 0.73
STD 0.01 0.05 0.08 0.16 0.04 0.03 0.07 0.05 0.18 0.06 0.06 0.03 0.18

Table 3–3: DSC values for various structures for the head and neck cases using the deformable contour propagation method
(VelocityAI only). The cells are red for DSC values from 0-0.7, yellow till 0.8 and green till unity. The spinal cords DSC
values are not representative due to the fact that physicians may not always contour the entire structure. Abbreviations of
structures are expanded in table 3–1.
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Patient Applicator Bladder CTV Rectum Mean Stdev
GYN01 0.92 0.66 0.82 0.79 0.80 0.11
GYN02 0.83 0.80 0.86 0.66 0.79 0.09
GYN03 0.83 0.81 0.81 0.67 0.78 0.07
GYN04 0.81 0.69 0.75 0.69 0.74 0.06
GYN05 0.84 0.72 0.77 0.73 0.76 0.05
GYN06 0.81 0.71 0.82 0.63 0.74 0.09
GYN07 0.87 0.75 0.81 0.69 0.78 0.08
GYN08 0.81 0.82 0.75 0.77 0.79 0.03
GYN09 0.47 0.59 0.81 0.67 0.64 0.14
GYN10 0.28 0.70 0.56 0.62 0.54 0.18
GYN11 0.80 0.62 0.84 0.76 0.75 0.10
GYN12 0.82 0.68 0.87 0.72 0.77 0.09
GYN13 0.88 0.82 0.90 0.77 0.84 0.06
GYN14 0.77 0.84 0.83 0.62 0.76 0.10
GYN15 0.69 0.83 0.75 0.72 0.75 0.06
GYN16 0.89 0.66 0.89 0.72 0.79 0.12

Mean 0.77 0.73 0.80 0.70
Stdev 0.17 0.08 0.08 0.05

Table 3–4: DSC values for various structures for the gynecologic brachytherapy cases using the deformable contour propa-
gation method (VelocityAI only). The cells are red for DSC values from 0-0.7, yellow till 0.8 and green till unity.
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The propagated contours for the brain, brainstem, spinal cord, eyes, larynx,

mandible, parotids and CTVs were quite similar to the physician-drawn contours

with mean DSC values ranging between 0.73-0.98. Spinal cord DSC values are not

representative due to the fact that physicians may not always contour the entire

structure. The algorithm did not perform well with respect to the esophagus and

oral cavity, calculated mean DSC values were 0.6 ± 0.2 and 0.7 ± 0.2, respectively.

The algorithm performed reasonably well on the GYN cases with mean DSCs

ranging between 0.702-0.804 for the applicator, bladder, rectum and CTV. The

applicator and the CTV exhibited DSCs that were quite high except for a few

outliers which brought down the mean DSC values; 0.8 ± 0.2 and 0.80 ± 0.08,

respectively. The DSC values for the applicator and the CTV fared better than

the bladder and rectum since registration of these structures only requires a rigid

transformation due to their non-deformable nature.

3.4 Conclusions

3.4.1 Atlas-Based Segmentation

The atlas-based segmentation technique revealed that neither of the software

truly outperformed the other. Although MIMvista did fare a bit better than Ve-

locityAI both their contours required manual modification if used for a treatment

plan. These tools are very promising since they may reduce total contouring time

and can be used to generate a decent first draft of the required clinical volumes.

3.4.2 Deformable Contour Propagation

This study has demonstrated that the use of deformable contour propagation

is quite accurate and requires minimal modification for use in a valid treatment

plan. The HN cases outperformed the GYN cases primarily due to the fact that

the GYN scans are low in contrast and contain highly deformable tissues such

as the bladder and rectum. This tool is very promising since is may reduce total

contouring time and may be used to generate a quick draft for contouring.
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3.4. CONCLUSIONS

Deformable contour propagation and atlas-based segmentation use the same

deformable image registration algorithm yet deformable contour propagation

performs automatic segmentation better since it deforms structures from a given

patient’s older scan. The contour propagation technique is ideal for cases where a

patient must be re-planned due to anatomical changes since contouring is a tedious

and time-consuming task.
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4.1 Introduction

When delivering fractionated radiation treatments the patient volume is

assumed to be unchanged over the course of treatment. Yan et al. [1] proposed

that after monitoring a number of fractions, treatment plans should be modified to

correct for dose prescriptions and patient specific margins, they coined the concept

of adaptive radiation therapy (ART). Since the inception of ART, treatments

include offline (reaction to imaging is delayed to a subsequent fraction) and online

(reaction to imaging is made immediately following imaging) plan re-optimization

and dose compensation [5]. Dose accumulation is the method of evaluating the

cumulative dosimetry of organs at risk and target volumes.

Dose accumulation is performed using a three-dimensional patient image,

deformable image registration and dose recalculation or reconstruction. The first

requirement, the three-dimensional patient image, can be obtained throughout the
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4.2. METHODS AND MATERIALS

treatment using in-room CT variants such as the CT on rails [6], CBCT, megavolt-

age CT (MVCT) on helical Tomotherapy treatment machines [2] and linac-MRI

systems [4]. Deformable image registration methods have been developed in order

to track the daily motion of individual voxels from the initial planning CT image.

Kapatoes et al. [3] demonstrated that the exit fluence detected during treatment

and in-room CT imaging may be used to reconstruct the dose distribution in the

patient. In this chapter, we recalculated dose distributions on weekly pre-treatment

CBCT scans and compared DVHs for various structures.

4.2 Methods and Materials

Weekly pre-treatment CBCT images from a head and neck patient were

chosen for this study. The patient was treated with 67.5 Gy in 30 fractions to

the GTV and had weekly CBCT images acquired pre-treatment throughout the

entire treatment (6 CBCTs). Using VelocityAI, we registered the planning CT

to the weekly CBCT images. After deformable registration, the HU in each voxel

in the planning CT is mapped to the corresponding point in the CBCT image to

produce the modified CBCT image. The aforementioned method is also known

as the deformable electron density mapping (DEDM), coined by Yang et al. [7].

Dose distributions were then recalculated on the modified CBCT images using

the Eclipse treatment planning system (Varian Medical Systems, Inc., Palo Alto,

California).

4.2.1 Uncertainty in the Deformable Electron Density Mapping
Method

Many factors contribute to the uncertainty in the evaluation of the recalcu-

lated dose distribution using the modified CBCT image. For our purposes, we are

only interested in errors stemming from interpolation of deformable registration

doses and inaccurate image registrations. To observe the magnitude of these effects

we scanned and planned the Rando head and neck phantom (Alderson Research
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Laboratories, Stamford, CT) and acquired a CBCT scan. Next, we compared a

DVH of a target volume from the planning CT to the recalculated dose distribution

using the modified CBCT (explained in section 4.2).

4.3 Results and Discussion

4.3.1 Phantom Study

The Rando head and neck phantom was scanned using the CT and CBCT

scanners. Figure 4–1 shows an axial and a sagittal image for each imaging modal-

ity.

Figure 4–1: Axial and sagittal images from CT (left) and CBCT (right) scans of

the Rando head and neck phantom (Alderson Research Laboratories, Stamford,

CT).

The CT image was planned using Eclipse. The plan consisted of one

10x10 cm2 field, 6 MV photon beam, anterior to the target volume which was

defined as the palate, found in the roof of the mouth. Once the planning CT had
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4.3. RESULTS AND DISCUSSION

its dose distribution calculated in Eclipse, the Dose warping is a dose accumulation

method where the initial dose distribution is warped on to treatment images to

permit the comparison of planned and delivered doses in a common reference

frame.

(a) Planning CT

(b) Dose recalculated on modified CBCT

Figure 4–2: Calculated dose distributions for the planning CT (a) and the modified
CBCT (b).

The planning CT and the modified CBCT along with their respective dose

distributions are shown in figures 4–2(a) and 4–2(b), respectively. The target

volume DVHs for both plans are shown in figure 4–3.
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Figure 4–3: DVH of target volume for planning CT and modified CBCT plans.

The DVHs for both plans are in excellent agreement with an average percent

error of 0.4%. Deformable electron density mapping seems to work reasonably well

for the rigid, Rando phantom case. In the next section we will apply the same

principles to a real patient study, where organ deformations occur readily.

4.3.2 Patient Study

Figure 4–4 shows the DVHs for the CTV, spinal cord and right parotid

for the planning CT and the six weekly CBCTs for a head and neck patient.

Figures 4–5, 4–7 and 4–9 are close ups of the DVHs for each structure, respectively,

and figures 4–6, 4–8 and 4–10 are the respective plots of the DVH differences

between the weekly CBCTs and the planning CT. The structures in the CBCT
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were automatically contoured using the deformable contour propagation method

described in chapter 3; the structure set from the original planning CT was

deformed to the weekly CBCT scans.
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Figure 4–4: DVH of the CTV (rightmost set of curves), spinal cord (middle set of

curves) and right parotid (leftmost set of curves) for the planning CT and the six

weekly CBCTs.
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Figure 4–5: DVH of the CTV for the planning CT and the six weekly CBCTs.
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Figure 4–6: Difference in the CTV DVH between each weekly CBCT and the plan-

ning CT.

CT CBCT 1 CBCT 2 CBCT 3 CBCT 4 CBCT 5 CBCT 6
D95(GY) 61.7 63.5 63.1 62.6 63.7 61.8 62.8
% Error – 2.8 2.2 1.4 3.2 0.1 1.7

Table 4–1: Doses received by atleast 95% of the CTV volume.
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Figure 4–7: DVH of the spinal cord for the planning CT and the six weekly

CBCTs.
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Figure 4–8: Difference in the spinal cord DVH between each weekly CBCT and the

planning CT.

CT CBCT 1 CBCT 2 CBCT 3 CBCT 4 CBCT 5 CBCT 6
D10(GY) 41.4 43.4 44.1 42.8 42.9 42.8 43.4
% Error – 5.0 6.6 3.3 3.7 3.3 5.0

Table 4–2: Doses received by atleast 10% of the spinal cord volume.
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Figure 4–9: DVH3 of the right parotid for the planning CT and the six weekly

CBCTs.
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Figure 4–10: Difference in the right parotid DVH between each weekly CBCT and

the planning CT.

CT CBCT 1 CBCT 2 CBCT 3 CBCT 4 CBCT 5 CBCT 6
D10(GY) 51.1 53.0 47.5 55.9 57.3 53.7 50.0
% Error – 3.6 -7.2 9.4 12.1 4.9 -2.2

Table 4–3: Doses received by atleast 10% of the right parotid volume.

In comparing planned and delivered doses we demonstrated that a fractionated

treatment is not necessarily delivered as planned. The original plan’s DVH for

the CTV required at least 95% of the volume (D95) to receive 61.5 Gy. The plan

recalculation on the CBCTs gave rise to D95 values ranging from 61.8 to 63.7 Gy or

a percent error ranging from 0.1 to 3.2%. The spinal cord CBCT D10 values (10%
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of volume to receive at most D10) ranged from 42.8 to 44.1 Gy or a percent error

ranging from 3.3 to 6.6%, the original plan’s D10 was 41.4 Gy. The right parotid

exhibited the largest variations with D10 ranging from 47.5 to 57.3 Gy or a percent

error ranging from -7.2 to 12.1 Gy relative to the original plan’s D10 value of 51.1

Gy.
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Figure 4–11: DVH of the CTV, spinal cord and right parotid for the planning CT

and the accumulated weekly CBCTs.

In figure 4–11, the DVHs for the weekly CBCTs were accumulated and the

result was plotted against the original planning CT’s DVHs. The accumulated

DVH for the CTV yielded a D95 of 62.8 Gy or a percent error or 1.8%. The
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accumulated DVH for the spinal cord and the right parotid produced D10 values of

43.3 and 53.4 Gy or percent errors of 4.6 and 4.5%, respectively.

4.4 Conclusions

Pre-treatment CBCT imaging provides useful information for patient posi-

tioning and dose verification. The deformable electron density mapping was an

attractive method for calculating dose distributions from the CBCT images since a

reliable relationship between the HU and the relative electron density is needed to

calculate dose distributions. Our phantom study indicated that the dosimetric ac-

curacy of CBCT-based dose calculation is acceptable for the purpose of dosimetric

checks. The patient study has shown that the delivered doses are not necessarily

delivered as planned and the differences in the DVH curves varied from fraction to

fraction.
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CHAPTER 5
Conclusions and Future Work
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5.1 Evaluation of Atlas-Based Segmentation and Deformable Contour
Propagation

The atlas-based segmentation technique revealed neither VelocityAI nor

MIMvista truly outperformed the other, both their contours required manual mod-

ifications if their structures were to be used for treatment planning. Deformable

contour propagation was quite accurate relative to atlas-based segmentation due to

the fact that a patient’s initial planning contours were deformed to a subsequent

scan; the patient’s initia3l planning contours serve as an excellent starting point

for the segmentation. The premise for these tools are very promising since they

may considerably reduce contouring time [1] and should reduce variability between

contouring experts [3].

5.2 Adapative Radiation Therapy Using Deformable Electron Density
Mapping

Pre-treatment 3D treatment imaging not only allows for daily image guid-

ance [2], but in combination with deformable registration and dose calculation

tools, can be used to account for daily anatomical variations in the evaluation of

cumulative treatment dosimetry. In chapter 4, we developed a framework for dose
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accumulation in head and neck adaptive radiation therapy. By registering the

planning CT to the weekly CBCT images, we were able to produce modified CBCT

images which possess CT Hounsfield units; this was achieved by used deformable

image registration. In using our method to compare planned and delivered doses,

we concluded that deformable electron density mapping is a feasible technique to

allow dose distributions to be recalculated on pre-treatment CBCT scans.

5.3 Future Work

Areas of future research include increasing patient atlas size and attempting

the aforementioned automatic segmentation methods with different deformable

image registration algorithms. Development of an automatic offline plan-checking

system utilizing the CBCTs to evaluate the cumulative dosimetry would also be of

great interest.
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ABBREVIATIONS

1D One-dimension

2D Two-dimension

3D Three-dimension

3D-CRT Three-Dimension Conformal Radiotherapy

EBRT External beam radiotherapy

GB Gigabyte

GHz Gigahertz

GTV Gross tumor volume

Gy Gray

ICRU International Commission on Radiation Units and Measurements

IMRT Intensity Modulated Radiation Therapy

LINAC Linear accelerator

MB Megabyte

MHz Megahertz

MLC Multileaf collimator

MRI Magnetic Resonance Imaging

NTCP Normal tissue complication probability

PTV Planning target volume

RF Radio-frequency

TCP Tumor control probability

TPS Treatment planning system

UTCP Uncomplicated tissue control probability
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