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The problems whose history is the subject of this thesis is
as follows. One wishes to obtain criteria for the existence or non-
existenee of points in a topological space which remain fixed under a
transformation of the space into itself. Such criteria will of course
be expressed in terms of the properties of the space and of the mappinge.
One desires further that the properties of the space be topological invar-
iants while those of the mapping be invariant under homotopy.

Two main attacks have been made on the problem, by L. E. J,
Brouwer in 1910 and by S.Lefschetz in 1925. Presentatien of the results
of the work of these two mathematicians forms the main part of the thesis.
A less detailed account is also given of some of the lesser known researches
in the subject. The thesis concludes with selected applications particularly

in the field of Functional Analwmsis,
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INTRODUCTION.

The problem stated in its most general terms is this.
Given a space S and a mapping t of S into itself, under what circumstances
is there or is there not a fixed point? By a.fixed point we mean, simply,
a point x in S for which txsx. Most investigations are concerned with single
valued continuous mappings and the trend has been to search for ever larger
classes of spaces for which fixed point conditions can be derived. Studies
have, however, been made notably by M. H. A. Newman (15) and P. A. Smith (17)
of the question of periodic transformations i.e. transformations some power of
which is the identity. We shall not, however, be concerned with these. Two
main attacks have been launched on the problem. Our first three chapters
consist of a faithful account of the first of these due to L. E. J. Brouwerl(A).
This paﬁer is regarded as the classical paper 6n the subject. The fourth
chapter deals with subsequent discussions of the Brouwer theorems. In the fifth
chapter we>give an account of the second main attack begun by 8. Lefschetz (10)
and taken up by H. Hopf (6). The concluding chapter is devoted to selected
applications. We may mention here the close relation between the question of
fixed points and existence questions in analysis. For suppose one seeks a
solution to an equationxdf=(>where-§ is an element of some function space and A
an operator on that space. The existence of a solution is equivalent to the:
existence of a fixed point under the mapping (A+I) where I is the identity for

them: (A+I)f=f i.e.AM{-0. We have attempted, where possible, to lay emphasis on:
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the methods employed and to poimt out erucial steps in a proof, in the
hope that this paper may prove instructive rather than merely infommative.

CHAPTEFR 1. The Brouwer Degree.

We wish to define an n-dimensional manifold in the sense
of L. E. J. Brouwer and in order to do so we first introduce some prelimin-
ary notions. |

A simplex star in an n-dimensional Fuclidean space is a
finite collection of non-overlapping simplices with a common vertex, O, the
union of which is a finite neighbourhood of 0 and each pair of which have a
common p-face (ogp¢n) but no other common points.

By an n-dimensional element, E, we mean a homeomorphic
image of a simplex, S, in an n-dimensional Euclidean space. The images of
the vertices and faces of S are taken as the vertices and faces of E.

An n-dimensional manifold is a connected set which is made
up of a set of n-dimensional elements each pair of which have mo point in
common or a single p-face together with its proper faces in common but no
other points. The elements having a vertex in common are related in the
same way as the simplices of a Fuclidean simplex star defined above.

Such is the definition as given by Brouwer. We may state
it briefly thus: An n—dimensional manifold is a Fuclidean complex which is
such that the star of each vertex is isomorphic with a set of simplices in E,
having a common vertex P and constituting a neighbourhood of P in E,.

Concerning the properties of the manifold we observe immed-
iately that if it is made up of a finite number of elements it is closed with
respeet to fundamental sequences. On the other hand if there are infinitely
many elements the manifold is certainly not closed in view of the fact that

the infinite covering by elements is locally finite (i.e. an arbitrary point

of the manifold has a neighbourhood which intersects only finitely many elements.)
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Fixing our attention now on a closed n-dimensional manifold
we shall show that it is a compactum, which means that we must prove, in
addition to the compactness just mentioned, that it is metriec. In order to
do this we will introduce a continuous, normaligzed, non-negative, homogeneous
coordinate system from whicha metrie will follow. A coordinate system will
be introduced into each element but in such a way that for different elements
the systems will coincide for points on their common faces. ILet us see just
how such a system &an in fact be introduced.

Let the coordinates of a side AF’AQ, be denoted by UP and Uﬁ,with
the U!'s positive and the ratio u‘%lg/ decreasing continuously from <°at Ap
to 0 at Aq. To determine the coordinates of the points of a 2-face AF Ai,Ar
we map it topologically onto a plane Euclidean triangle FGH in such a way
that the sides of FGH correspond to the faces ApAq, ete. of ApAqA 4. We repres—
ent the points of FGH by homogeneous barycentrie coordinates with respect to
F, G and H and select an érbitrary point, 0, inside the triangle. TLet B! be
the image in FGH of a point in AFAiA'“ The straight segment OB! produced
beyond B! meets some side, say GH, in €'. Let C be the inverse image of C!
in A$Ar;<UW,_cUr its coordinates and C" the point in GH with barycentric
coordinates (0, cUq, ¢Ur). The 1line through B' parallel to GH will meet OC
in some point B". We choose as the coordinates of B the barycentric coordinates
of B,

In an analogous manner the coordinates of the points of the
3-faces are obtained with the aid of the barycentric coordinates of a homeom-
orphic Fuclidean tetrahedron. The process is continued until coordinates of
all the points of the manifold are assigned with the aid of those of the (n-1)-
faces and the barycentric coordinates of homeomorphic n-dimensional Fuclidean
simplices.

We may now associate with each element a homeomorphic Euclidean
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simplex with edges of fixed length and whose barycentric coordinates with
respect to its vertices are the same as the normal coordinates of the
corresponding points in the element. We shall refer to it as the represent-
ative simplex. By a subsimplex or a plane p-dimensional subregion of an
element we shall simply mean the image of a corresponding subset of its
representative.simplex. Similarly, by a straight segment and its length in
an element we mean the image of a straight segment and its length in the
representative simplex. We can now define the distance between points of
the manifold as the minimum of the lengths of the straight segmental paths
joining them. Such notions as the centroid of weighted points and the volume
of a subregion can be introduced for an element with the aid of its represent-
ative simplex and the homeomorphism.

The "indicatrix of an element" is defined, uniquely up to
even permutations, as a segquence of its vertices. Only two indicatrixes are
thereby possible. One of these is arbitrarily téken as positive, the other
negative. Through the choice of the positive indicatix of an element the
positive indicatix of its representative simplex is also determined. Hence
also those of each subsimplex and thus also those of the faces of the element.

We consider a finite closed series of elements each consecutive
pair of which have h vertices in coimmon and choose a positive indicatrix for
some element., This choice determines the negative indicatrix of the succeeding
element by means of the n vertices already arranged and the new one placed in
the position where it is first lacking. The positive indiestrix of each element
in the sequence is thus fixed by the choice for one element. If on returning
to this initial element the same positive indicatrix is induced and if this is

the case for all closed sequences we call the manifold "two-sided", otherwise,

"one-sided", The choice of positive indicatrix for a single element in a two-

sided metric n-dimensional manifold fixes the choice for each element and each



face so that we can speak of "the positive indicatrix of the manifold®.

We now turn to consideration of single-valued continuous
mappings of one two-sided manifold into another. The method of studying
such a mapping will be by means of approximating simplicial mappings and
will lead eventually to an important property of the mapping called by
Brouwer its degree and by whose name it is now designated.

Letp, M, be two n-dimensional closed metric two-sided
manifolds and let (X:pa}] ' be single-valued and continuous. We decompose
each element of‘p‘into a finite number of subsimplices each two of which
either have no common point or have a common p-face (o4 p<h) and then also
the lower dimensional ' faces in it but no other common points. Let € be the
least upper bound of the diameters of the subsimplices that is to say the
mesh of the simplicial decomposition described. Let us denote the decompos-
ition byr and refer to the subsimplices, their faces, and vertices as the
base simplices etc. of . We choose a positive indicatrix forp and there-
with for the base simplices of ¥ also: Amoné the subsimplices we distinguish
those which aremapped completely by & into one element of p' and refer to them
as general base simplices.

Let u1s now define what is meant by a simplicial mapping.JB
belonging to I which approximates X. B is applied only to the general base
simplices and in the following way. Let W=A,...A,, be a general base
simplex of/,{ and T'= X(T)=B,...B,,, be the image of w underX1lying of course
entirely in a single element of A'. Then /B(R()-—B( and B (=X Rt)=£)~;8;i.e.’/3
is a linear mapping of the points of T with respect to their barycentric
coordinates relative to thé Ai.. If the B; do not lire in a plane (n-1)

dimensional region we shall take the volume of ' to be positive or negative



according as its indicatrix is positive or negative while if W' is singular

its volume is O . For PeTr , the distance O(CP)P(P) in 7 'has an upper
bound € which along with £ decreases on each boundary.

We consider further a modified simplicial mapping ¥ belonéing
to £ and approximating ot . #B¥is applicable to those base simplices of P
whose images have vertices not more than £ apart. ¥ is determined for these
simplices in the same way as @8 was determined on the general base simplices.
These latter are not necessarily admissible for ¥ .

We choose now in each element of /u‘ant- inner simplex i.e. a
subsimplex whose edges do not meet the edges of the element. & can now be so
chosen that each point of/«mapped by one of 8 and ¥ into an inner simplex belongs
to a suitable subsimplex of /u with respect to both Pandb’ . This last subsimplex
must then of course be mapped into the same element of /4.(‘ . We consider now a
mapping ¥ which yields no singular immage simptex. Applying¥ to an innersimplex
J of a particular element E, let §"denote the set of points of the interior T °Cc T

which do not_ lie in the image of an (n-2) base face. (Clearly, any two points of
O can be joined by a path of finitely many segments lying wholly in® . The set
77 of points of ¢ which do not lie in the image o;: ,Zn-I)—-face we call general points
of J. Let P, and P, be arbitrarily fixed points and P a variable point ixnl .
Each point ofis covered by a number of image simplices, some positive, some
negative. Let the numbers of positive and negative simplices covering P be
denoted by p and p' respectively and letp,p}; PasP; be these numbers corresponding
to Py and P, .
Confining P to a segmental pathslying in0 which joins P, to P, ,
the numbers p and p’/ can change only when the image,T , of an (n-v)-face is crossed.

In fact, when the two image simplices meeting inTlie on different sides of T

they have the same sign and the crossing of¥ leaves p, p' and hence also p-P'

unaltered. If, however, the image simplices lie on the same side of T'they have



opposite sign so thatfiand P' are each either increased or decreased by
1 and again p-p’/ is unaltered. Thus /""P": Fz—’?z'and, for the general
points of J under the mavnping ¥, F—F‘ is a constant.
Similar numbers p and p' may be defined with respect to
the mappingj&. Let P‘ and P, in J, be general points with respect to
p and suppose that P’—Fl(# P ~P,L' . P may be approximated so closely by
a map D;of type ¥ that P, and P, are general points of J under ¥ while
P:, FL’ have the same values relative to?’vas to JG . Then p~p’ would not
be constant for Ug,either which is a contradiction. Hence p-p’ is constant
for the general points of.}3 also.
We shall prove that this constant, call it C, is the same
for all simplicial maps approximating &. Letr.pibe a simplicial map with
underlying decomposition };/of//&and 1et_j&lbe one whose underlying decom-
position 3;/15 a refinement of(§/; i.e. the base simplices of,@'are obtained
by simplicial decomposition of those of }‘l’. The images u.nder/[)‘,lof the base
points of‘lfcan be translated continuously along the shortest connecting path
into the corresponding images underJBi if the latter exist so that at least
where J is concerned the mapping/B:can be transformed continuously intoJB/.
The total volume of the parts of the .image simplices contained in J can have
no discontinuities under such a continuous transformation, therefore, insofar
as this is C times the volume of J and C is an integer, it must remain fixed.
That is to say, the integer C for a given simplicial hap is invariant under a
simplicial refinement of that map. This fact will enable us to prove the
assertion made at the beginning of this paragraph.
Let/S, and)%lbe two arbitrary simplicial maps approximating
O(with underlying decompositions };and }; oﬁ/&. We consider a decomposition,
3&, of }} of such small mesh that under the corresponding mappingJ33, it is

possible to choose a general point P in J which is a general point relative



to ﬁlalso. The vertices of each image simplex u.nder)’ covering P

are contained in each such image under B . But them there will belong

to each P-covering image simplex under B,one and only one P-covering simplex
for}33 and indeed each pair of image simplices corresponding in this way

have the indicatrix in the same sense. We therefore conclude that C which
was just shown the same forj;‘ andﬁ3 is also the same forﬁzand‘ﬁsand hence
also foer’ and},ﬁ.

Our next step is to prove that the values C, and C, which C

takes on in the inner simplices J, and J, of two elements, E and E, with
a common (n-()-face, S are equal. As Fuclidean antecedents of E and E,
we choose regular simplices T, and T, which are mirror images of each other
with respect to a common (n-1)-face 3 and such that $ corresponds t0oS. The
definitions of subsirﬁplex p~dimensional region, barycentre and volume of T+ 7T,
are carried over toE,+ELin precisely the same way as was done for a single
element. We determine in E, and E 2 subsimplices U, and U, containing J, and

J, and having a common (n-1)-face lying in S but whose boundaries do not

z
meet the remaining faces of E, and E, . Those simplices whose vertex images
underXall lie in the interior of E+E, we count in with the general base

simplices. We determine a simplicial mappingﬁ'approximatingo(which may be

applied to these additional simplices also. To ﬁ'there again belong modified
simplicial mappings ¥ . wWe may now choose € so that relative to Ui+Uand the
general simplices in the new sense the same property, earlier imposed for the

inner simplices and general simplices again remains valid. By the method used

above we can deduce from this that forﬁ the numberp- P'is constant on the general

points of U#U,. But this constant mey be identified with C, belinging to B'agd 7,

end with C 2 belonging to }5' and Iy from which it follows that C has the same value
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in J, and 3;. By a simple extension we could show that C is constant
in all the elements of;}d.

This number, C, constant in all the elements of M'and
furthermore having the same value for all simplicial mappings approximating
o thus characterizes a property of X. We refer to it as "the degree of
the single-valued continuous mappingO(f A fundamental property of the degree
is that it is the same for two single-valued continuous mappings of M

intq/bﬂwhich can be continuously transformed into each other. Tmt is, the

degree depends only on the homotopyclass!

Let us approximate two homotopic continuous mappings by
simplicial mappings each pair of which have the same underlying decompos-
itidn. We can then introduce between each pair of these mappings a finite
sequence of simplicial mappings based on the same decomposition for which
each is a map of the typg)3above; each consecutive pair differ only in the
images of one of the base points and then by as little as one pleases. Then
there will certainly exist an inner simplex og/bUin.which each consecutive
pair determine the same image set. and hence the same value of C. This value
of C will be unaltered along the sequence of mappings considered which means
that the original mappings have the same degree.

Remark: In order to see that any positive or negative integer
can arise as the degree of a mapping one has only to consider the mappings
of one sphere onto another as represented by the rational functions of a
complex variable. In fact the degree of such a mapping is identical with
the degree of the function representing it.
Finally we notice that whem X () is not everwhere dense in /u'
the degree of X must be zero. For in such a case there will exist an approx~

imating simplieial mappinng for whieh we can select an inner simplex J in//4/

st e e
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in which the image set is not everywhere dense., There will then exist
a subregion J* of J for whichﬂrﬁﬁﬂ(/q=lﬂ. Hence p | p'and consequently
C are zero there,

Hitherto we have considered only the case wheg/bﬂis two—
sided and closed. However when/f4'is one-sided and closed the above results
still hold both with respect to a single inner simplex and with respect to
a pair contained in elements with a common (wn-~t¢)-face. Let us consider a
closed sequence of elements in which the indjcatrix is reversed. Since on
the one hand C must remain constant and on the other hamd its sign changes
in traversing the complete cycle we can only conclude that it mustkbe Zero.
Again, ig/x‘is open we can, since &(m) is closed ig/lﬂ specify g finite
collectioq/LU‘of elements which both for « and the various g and ¥ contains
completely the image of & which is however not everywhere dense ig/ﬁiﬂ This
last fact together with the fact that the previous considerations are again
valid for a single inner simplex or ‘a pair contained in acdjacent elements
leads again to the conclusion that the degree of x must be zero.

To sum up: When a closed; tﬁo-sided, netric n-dimensional

manifoldybiis mapped single-valuedly ahd continuously into a metrie n-dimens-

ional manifolg/u(there exists an integer C called the degree of the mapping

which is the same for all homotopic mappings and which designates the number

ot

of times the image o:/}l covers positively each subregion og/l'. In particular,

i{}tﬂis one~-sided or open, C is equal to zero.
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CHAPTER 11. Continuous Vector Fields on n~dimensional spheres.

In what follows the term "sphere® will be reserved for
spherical surfaces while solid spheres we shall call "“disks",

We consider a n-dimensional sphere K in a Fuclidean space
K.+ of dimension (mn+¢i1). This may be represen£ed in a right angled
Cartesian coordinate system by the equation: Zh'::"x,: ={ . K may be
regarded as a metric n-domensional manifold as defined above by taking,
as its elements the ,Z“Hsimplices into which it is decomrosed by the
hyerrlanes X, =0 , and as its p—dimenéional regions the subregions of
the p-disks lying in it. As the unit point of normal coordinates in
each element we choose the points with coordinates £Jn" . A positive
indicatrix is chosen for one of the elements and hence also for each
spherical simplex. (A spherical simplex is made up of h+! different
( n-1)~disks and lies entirely in one hemisphere of K.)

Through each point P of K passes an (n-1) dimensional
direction sphere )\Pwhich can be handled precisely as K itself. The pos-
itive indicatrix of )‘P is made to depend on that of K in the following
way. Let s be an (w-~1) dimensional spherical simplex lying in X\ e We
determine in K an n-dimensional simplex Shaving P as a vertex and its
(n-1)-faces throughP determined by the (n-1) faces of S with the remaining
one arbitrary. We then write the positive indicatrix of S with Pin the
last place. The others in this arrangements determine a specific order of
the edges of S meeting infhence also of the vertices of s . This last arrange—
ment is chosen as the poéitive indicatrix of s .

We consider a continuous vector field in K in which we

are concerned only with the directions but not the magnitudes of the vectors.
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Let this field posses only a finite number of singularities, i.e. points

on the sphere at which the continuity of the vector direction is disturbed.
Let K be decomposed by means of an (n-¢ ) dimensional great sphere (general-
ization of great circle) o whiéh contains‘ no singular points into hemispheres
H, é.nd H, with poles T, andT,. We consider X as belonging to both H, and H,.
The hemispheres may themselves be decomposed into finitely many spherical
simplices Sy, Sia , +.. in H, and Si s S314e4+ in H, by means of singular-
ityfree (n-y) great spheres. In this way the decomposition of H, will be the
mirror image in X of that of H,,

Let O be an (h-1) ~face of some particular S‘P\ From the
positive indicatrix of 54}; we introduce that for 0 when considered as a face
of 5.(}; . Writing the vertices in a positive indicatrixof 5«}3 in such a way

that the one not in0 comes last the otbers determine the positive indicatrix
of & considered as a face of 54/3 . Similtaneously a positive indicatrix is
fixed for the whole boundary of Sxpin that Sxpmay be regarded as a two-sided
closed §r-1) dimensional manifold whose elements are the (n-1)-faces of Su«g
and whose p-dimensional regions are the subregions of the p-disks lying in it,

We now project the circumference udpof S-(PtOgether with the
vectors on it through a poimt @ ofKoutside S(F onto the n-dimensional hyperplane
O tangent toKat the point O diametrically opposite . This determines a single-
valued continuous map of ua( J onto the sphere of directions in © whose positive
indicatrix is determined by that of >\a . We shall establish that the degree of
this mapping does not depend on the choice of Q. For let P be a point in ua()B
then under this stereographic projection >\ P is placed in a congruence relation

with the direction sphereof © and hence also with any other sphere )‘R’ Reud}.

This congruence relation %,ﬂ between >\P and >‘R} P)R 6(1.(}; arises in the following

manner. Let V be some direction belonging. to A P Together with Q and R it
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determines a2 ~sphere { lying in K and on which P, Q and R determine a
circle (1l-sphere) . There will exist a direction through g belonging
to { which determines r ke the same angle withRasV . This direction
corresponds toV for the relationbm .

By continuous translation of A through a finite distance
from P and R this relation can only change continuously. Thus by a con-
tinuous translation ofathmugh a finite distance from S« p the whole
system of congruence relations between the (n-t) dimensional direction
spheres of the points of ux);can only change continuously. Hence the
degree of the mapping of ux};onto the direction sphere of 6 (i.e. the
mapping determined by the vector field) can admit no discontinuities. It
must therefore be a constant, C«p say, which we may call the degree of
S«p + We wish to evaluate the.sum «,E‘P Cap .

Let us project H( and H; respectively through T, and T,
onto the n-dimensional hyperplanes 6, and O, tangent to K at T, and7, and
evaluate the sum of the degreeé of the resulting mappingsof (l.ﬁ onto the
direction sﬁhere of ©, . In this sum each such (n-t)-face of zamS,Jg which
does not lie inX occurs twice but with opposite indicatrixes thus cancelling
each other's contributions. We need therefore consider ohly those facesO_ which
lie in X,

We can regard X. as a two-sided manifold with the Ok as elements.
Its positive indicatrix is given by that of a O considered as a side of an

5,)3 . The projection of x onto 6, has degree C, to which the contributions

of O, are the same as they make to C,p . Hence C;= fC.P. But take the
indicatrix of X now to be concordant with that of the Ulconsidered as sidesof Sz B

and projectX from T onto €,. As before the degree C, of this map is ZCL} .

\

Let so be the n-dimensional hyperplane in K, ,, which contains X ,

By reflection in f we have the following rorrespondences. The projection Xa
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of X in chorresponds *bo?(ithe projection of Xxin Q'bu'b with opposite
indicatrix. The direction sphere of Gicorre3ponds to that of 9, again

with opposite indicatrix. Finally, the vector distribution in .X,corresponds
to the reflected distribution inX;, i.e. that distribution over the image
points in 9.. The problem of evaluatinch‘(P . l.e. C,+Cx is thus reduced
to the question: What is the sum of the degrees of the mappings., J\a.ndf
of an (m-1)-sphere ¥ onto the direction sphere)of an n-dimensional hyperplane
© as determined by a continuous vector distribution over the points of ¥
and by the same distribution reflected in the plane 6f T

By means of an (n-1)-hyperplane we determine in & an (n-2)-~
disk and poles 9. and ‘i/v We consider a sequence ', )-‘2' oo }“: of simplicial
decompositions of ¥ for whichi,is not.contained in any proper face and whose
mesh decreases with increasingwt . Denote by 3“t.hat simplex of ¥.which contains
1,' and by W, the boundary of 3“.

For eachmwe construct from I a new single valued continuous
mapping c"m! ¥ gﬂg)\as follows. Let j be an arbitrary great semicircle in ¥
joining % 't:,oq,1 and its point of intersection withWU,. The arc q, h is mapped
by magnification onto the whole of j. Suppose a point F ¢ cl/,h is thereby
mapped into a point F' then é:“is defined thus:— TFor Fec(,"‘, J:..F A but if
Fej butFFC(,.“‘, J,_.F=J‘<b= { » say.

The reflection mapping (i.e. the one belonging to the reflected
distiibution) of J;we denote by?,,. Sihce J can be deformed continuously
into cs:“and $ intofmthe basic sums of rf and f’ are the same as those of J‘m) [P
Through further simplicial decomposition of the base simplices of E.. we arrive
at a simplicial decomposition )'-.“ of X—whose associated simplicial maps c)\,.’,and '
FL. approximating ):‘ andfﬁhave the properties of } in Chapter 1.

We next week the contribution to the sum of the degrees of ym
andfmmade by the image sets under é: and f; . Let us denote by 3‘ the reflexion
vector of the directiong alt the point C’(‘ c¥ . The number,o— P'is constant

outside a neighbourhoodof 3'whose diameter decreases with increasingw both
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for &; 3M and 3?,." 3"" The latter of these two constants is unaltered
if we modifyf,“ 5““ in such a way that as the image of each vertex f’, of &
lying in 5“" to which the direction E’P corresponds under cP w the reflected
vector of @p in g , takes the place of the reflected vector of Gp in P,
But the result of this modification is that S)._" P becomes the mirror
image in & of (S:‘: 5m . In particular, two such mirror images have opposite
indicatrixes so that the two image sets covering two points -of A which are
mirror images of each other determine opposite values of P- P‘. Thus the
images of_ gmunder J: and y,'“ have opposite values everywhere outside
a neighbourhood of 3’ of decreasing diameter and so destroy the two-peit con-
tribution to the sum of the degrees of J‘.“ y $on

There remains for us yet to determine the contribution which
the images under J: and ﬁl of a certain residual set €,,of gm in ¥
make: to the degree-sum of (. and c?m . If the imagecg:;mreduces to the
single pointg , there is no contribution made. Thus, for the image under
53“" outside a neighbourhood of 3) which decreases with increasing m, the
degree of the mapping of } onto A determined by the reflected distribution
of a constant vector through the points of'fis constant.

To ascertain this degree we denote: by I, that point of §f
whose radius is opposite the constant vector; by X, the point in J diametric-

great- sphere
ally opposite X, by w the (h=R)-dimensional having X, and X, as poles;

t)
and by 4, and Q,the halves of " determined by « containing X, and X, respectively.
We can decompose @&, simplicialy so that the images of the simplices with
positive indicatrix cover \ once only and positively. Furthermore let us

decompose A4, into simplices diametrically opposite those of A4, and let us

equip these with indicatrixes diametrically opposite those of the corresponding
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simplieces im Q, . The resulting indicatrix is positive for evenn
and negative for odd n . Thus, two corresponding simplicesin@,and Q,
determine the same image simplex in ,\ with positive indicatrix,
Equipping the simplices of Q, with a positive indicatrix thelr images
cover \ again just once and positively for even n, negatively for
odd 1 . |
Hence the degree we seek is equal to 4 for even N and
to O for odd n . Thus, also, the sum of the degrees for ():,‘and Fo s
for J and F and finally for C“F , is 2 for evenn and O for odd »r .
When the vector field on K has no singularities its con-
tinuity is uniform. We can then choose S«}g so small that the variation
in the directions of the stereographically projected wvectors of the same
uatp onto ©, and 91 does not exceed a number chosen arbitrarily
small. This would mean t.hatC.(Pis zero, which camnot occur if n is even.
We have thus shown that a continuous vector field on a sphere of even

dimension contains at least one singular point.
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CHAPTFR 1ll. Single-Valued Continuous Transformation ef n-Spheres into
Themselves.

Let us consider a eingie—valued continuous mapping,rof an
n-sphere K into itself which has no fixed points. I may be covered by
simplices, such as Sdpin Chapter 11, with arbitrarily small mesh. Let
us consider the corresponding simplicial transformations which avoroximates 77

| + There certainly exists such a simplical transformation, t, which
has no fixed point. But there can also be found a sequence of approximating
simplicial maps which converge to yand which leave the points f,,... say,
fixed, Then, however, every limit point of this set would be a fixed point
of T .

We choose a point, 0, of K,which is general with respect to
t and which does net lie on any proper face. We join each vpoint, P, of K,
to its image tP by the arc of a circle through O and affix to P the vector
determined by the directed arc P/’C?P not containing 0. The result is a vector

field on K whose only singularities occur at the finite number of points which
t takes into O and at O itself.

We select a positive indicatrix in K and denote by S, - Sp
those simplices whose imagesbs,,..., bSp cover O positively and bys.’) 5;” those
whose images bS",..., bS’;v cover 0 negatively. Let S”be that simplex in which 0
is situated. We may assume the decomposition of K underlying t so dense that
SntS=A for all S, and in particular $n§,=A and S'NS= N,

To determine the degrees of Sy and 5.; we project K steriographically from O
onto the hyperplane & tangent to K at the point O‘diametrically opposite O.
Denote the projection of Sy by C« , the projection of its boundary by U

and the projections of the boundaries of y S« by bUu. Now the image indigatrix



of tU. in © belongs to a negative indicatrix of a simnlex k(< bounded
by bU« . The vectors through the points gela« to which the points
‘p'e bl correspond are determined through the rectilineaw connecting
segments J{P" Through a uniformly continuous transformation these are
carried over into those vectors which through each pointllpare parzilel
to the straight segments OCB'. But the latter vectors cover )\ o exactly
once and negatively so that the degree of S4is -1. Through similar
argument the degree of each Sy is +1. The degree of 8” is found as
follows. We continuously deform the vector distribution on the boundary
T“of S into that in which the vector through PeT'is determined by the
great-circular are OP which does not contain 0'. Let us then project T"
and its vector field through 0’ onto the n-dimensional hyperplane e,tangent
to K at 0. Let (A“be the image of 7" in e, Thereby, at each pointJSE-L»("
the vector is determined by the straight segment O . Thus the vector
distribution on " covers Xo just once and with positive indicatrix so that
the degree of S$" is +l. As regards the remaining simplices they may be
so decomposed that under stereographic projection the variation of the
vector direction inside each is arbitrarily small. Hence each such simplex
has degree zero and this is also true for such simplices joined together,

Adding up, the sum of the degrees of the simplices is —p +p'+!
which for even n must be 2 and for odd n,0. Hence the degree p-p' for ¥
or T is -1 for even nand 1 for odd n . We have thus proved the following:
Theorem 1.

A single-valued continuous transformation of an n-sphere
into itself which has no fixed point has degree -1 for even h and 1 for odd n .

From this we can formulate the following special casess
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Corollary 1.

Wnen under a single-valued continpious transformation
of an n-sphere into itself the image set is not everywhere dense in the
whole sphere there exists a fixed point.

Corollary 2.

Every homeomorphic mapping of an even dimensional
sphere onto itself which can be deformed into the identity has a fixed point.
Gorollary 3.

Every homeomorphism of a sphere of odd dimension into
itself which can be deformed into a reflection must have a fixed point.

That transformatiomsof degree (-1)"*' need not have
fixed points may be illustrated by the rotations and reflections of R,\H
gbout a particular point.

We turn now to consider a single-valued continuous
transformation L of an n-dimensional element E into itself. E can be regarded
as the homeomorphic image of a hemisphere H, determined in an n-sphere K
by an (n-1) dimensional great-sphere X . A single-valued continuous trans-
formation of E into itself thus corresponds to a like transformation 1, of H‘
into itself. Let us now extend Z, to the other half H, ¢ K in such a
way that each pair of points which are mirror images in 3¢ are taken by Zl
into the same point of H, . Then this will be a single valued continuous
transformation of K into itself for which the image set is not everywhere
dense in K and which must therefore have a fixed point, lying of course in
H, . But this fixed point must correspond to a fixed point of E under X .
We have thus proved: -

Theorem 2.
continuous
A single-valued transformation of an n-dimensional

element into itself must possess -2 fixed point.

It is this theorem which is to-day known as "The Brouwer Fixed

Point Theorem".
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Chapter 1V. Subsequent treatments of the Brouwer Theorems.

The next contributions to the subject appear in two papers
by B. von Kérékjarto (8,9) in December 1918. 1In the first of these
considerations ére restricted to the 2-disk and the 2-sphere. As regards
the 2-disk, it is proved that a homeomorphism T into itself has at least
one fixed point. Two classical theorems are used for the proof, namely
Brouwer's theorem on the"invariance of domain® (5) and the Jordan-Brouwer
"separation theorem". Applied to the closed set of points, 4, for which
the polar angles (p(f’) = CP('C' P) , the first theorem demands that a point on
the perimeter is mapped into the perimeter so that if Hhas points on the
perimeter they must be fixed points. The second theorem is used to establish,
in the event H is entirely inside the disk, the existance of a subcontinuum
KCH containing the centre 0 and the point f, mapped into 0. One then
considers the single-valued function S(P)= v (‘CP)~T(P) where Y‘(P) is the
length of the radius vector of P. We have S(P) =~Y(Po) for p= P and s(P)=v(z0)
for P20, i.e. a negative and positive value of S(P). Hence there must be
a point, P, , for which S(P.)= O i.e. r('cP,)= Y(P.) but P, being in H,)(,DC‘CP,)=C}7(P.)
so that P, must be a fixed point. Similar considerations are used to prove
that a sense-preserving homeomorphism of the 2-sphere has a fixed point and |
that a sense-~preserving mapping of a 2-disk onto a subregion has a fixed point.
The second paper establishes criteria for the existence under
homeomorphism of fixed points in a #on-simply connected closed region, namely
that bounded by and including two concentrie circles in the plane. Of signif-
icance is the fact that the behaviouy of the bounding circles already provides
the criteria. It is in fact proved that, a) a sense-preserving homeomorphism

leaving the bounding circles invariant has in general no fixed point but one
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in which the circles are interchanged has at least two; b) a sense-
reversing homeomorphism with invariant boundary circles has at least
four fixed points while one which interchanges them has, in genersl,
none.

There is an interesting contribution to the subject made
by J. W. Alexander (l) in 1922; interesting in that results from classical
analys{s are utilized to obtain original proofs of the Brouwer theorenms.
The detailed discussion is restricted to 3 dimensions but can readily be
extended to R.

The key to the method is the "Gaussian Integral®:

X 4 F i daude
WX 2y g |
55 AL PR A 3

nx VY DV
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where X,‘J,g are the coordinates in real 3-space of the points on the image

of the unit sphere S, under continuous transformation; v = ) >4 31+ 3{!—
and U and (% are parametric coordinates for the unit sphere (e.g. latitude
and longitude. For continuous mappings |

x = x(u,v) 5 §= g(‘-\)gr); 5/:}(&,0)
are continuous functions. The integral taken over S, has the value £ 47
and in fact+i{by suitable choice ofUand. Evaluation of the integral
for a given continucus mapping Sf “US‘, leads to the definitien of an index,
h‘, of the mapping™C. It is shown that the integral for S;is l(,k'n’where k
is an integer which is the difference between the number of times a ray from
the origin cuts SL from the negative to the positive side and the number of
times it cuts S_lthe opposite way. Although the image, Sl)is considered
provigionally as made up of finitely many analytic pieces - - this condit-
ion is later removed in so far as .S’Z may be closely approximated by a second
image which is of the analytic type. The value of the integral for.S, is

then defined to beits value for a such a sufficiently well approximating
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analytic surface. In that a continous deformation of the integration
surface which does not cross the origin (discontinuities would then
arise) leaves the value of the integral unaltered the definition above
of the value of the integral over an arbitrary image S, is sufficiently
invariant.

The properties of this integral and the resulting definition
of the index, k, are now used in studying a continuous transformation oof

Sy into itself. Letting U(Xf; Yo 3-)= (L,Léngl) one considers

Woy= Xy, Y- Y -1 do do
55 %&("I_xl) ,-";%('1.“51) ,'6’?{&‘(3,(-&,_) 3
%’_(I.'xz) ro:% (51'31) /%QJ: (3!'5‘1)

where Y: :KJR‘11}1+'(Sr75V +(3'_3E)1. The absence of fixed points is

characterised by '#Oeverywhere. Under these circumstances the integral
is well defined.

By radial contraction ofc§,into the origin the integral is
seen to be 4T while similar contraction of S, shows it to be - kT where
k is the index of 0. It is thus proved that a continuous transformation
of S, into itself must have a fixed point if the index, k, is different
from -1.

We conclude this chapter with a very elegant proof of Theorem
2 as we have found it in Lefschetz "Introduction to Topology"(ll). Aside
from its. elegance we have found it particularly instructive for the follow-
ing reason. It may be recalled that the technique used by Brouwer consisted
in simplicial decomposition of the manifold which led to consideration of
associated simpl icisgl maps which approximated the contiéaus mapping in
question. Indeed, the very property of continuity of the mapping enabled

the successful approximation by means of simplicial maps referred to decom-
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positions of sufficiently small mesh. The success of this technique
culminated in the definition of the degree of the mapping a character-
istic of satisfactory invariance in that one could prove its invariance
with respect to homotopy. In short, then, this powerful technique concerns
itself not so much with the underlying triangulations but with their assoc-
iated linear mappings.

In contrast with this, the proof which is to follow is based
on results of a study of the decomposition per se! We refer to the result

known as Sperner's Lemma (18) which states the following:

Consider a complex K= £{0 where 0= f,... A,, , i.e. the
n-dimensional simplex O’“tOgether with all its faces. Let K (S{)e a barycentric
subdivision of K with vertices {Q;% and t an assignement which associates with
each A{ a vertex Rj(é) which is a vertex of that face of 0 which contains
A;. Then there exists a simplex (and in fact an odd number of them) A .. G
such that thetd( are all distinct. Now to prove the theorem.

The n-dimensional element, or n-disk, may be taken to be an
n-dimensional simplex 0= A, ... A,, with barycentric coordinates Xo,eog X o
Then a continuous mapping ¢! 0?2 0" consists of relations

x; = {-‘.(r.,,...,xn) d-0,02, . Rk,
where (x4 , ...x,’,) = t(x,,... X ) in which the ﬁare continuous functions.
Consider the closed subsetsF,of 0 given by
f, (Ko, .- Xu)< Xy
Intersection of the Fc implies the existence of a point for which xfs x; (=0,

ButS X/= Sx; = so that X{= X;({=0,~r)ie. (Xo,... Xu) is a fixed point.

" Thus in order to prove the theorem it suffices to show that

Consider the faces A, ... 4,

, . Here we have X(+.- t X5 = |

I'd

while Xy O for R# &,.-j .  Since Xi+ .-+ Xj < | for at
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least one index,¥, among L,...) , Xy & Xy so that
R, ... A; CF. U... uF;

Let us take a barycentriec subdivision of L0 of mesh €
with vertices ‘{Bh} . e assign to each vertex B, a vertex ﬂc(h)' in
the following way. If Br€ Ai.-.R; then Bh EF, for some F, amongF,... £«
We may take thatf with smallesi Y and then assign to By, the vertex ﬁ;(h)= A,
Now, by Spernert's Lemma there is a simplex BLO ... BL,. such that Ay is
assigned distinetly to 81«; which means B;“E F. . Hence this set Bi,....By,
of diameter < £ meets all the F-t . But €may be chosen as small as we

please and so even smaller than the Lebesgue number of the covering { Fe } .

It follows therefore that the F; must intersect thus proving the theorem.
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CHAPTER V. "The Lefschetz Fixed Point{ Formula.t

Prerequisite to proving the Lefschetz Fixed Point Theorem
we must quote two essential results. The first of these is due to J. W.
Alexander (2) and may be stated thus: Every mapping, (p , of one polyhedron

IKI into another lLl is £ -homotopic to a simplicial mapping 07! K> L,
where Kland Lare suitable subdivisions of the complexes K. and L. .Indeed,
mesh L ‘is less than & gnd the homotopy paths are each contained in the
closure of a simplex of .

The second result to which we refer, asserts that a mapping &~
of one polyhedron, |K{ into another, [L-| induces a homomorphism o of the

*3 °3
homo];‘y groups of [K|into the corresponding hom’olAy groups of ‘L.’ .
Furthermore, O is the same for all manpings homotopic to O~ . We speak
here of the homo]:y? groups of a polyhedron. This we may do in virtue of the
fact that the homology gpoups of different triangulations of the same polyhedron
are isomorphic. '

After these preliminaries we turn now to the development of
the fixed point formula. The first step consists of an inveéstigation of the
homomorphism of the homology groups induced by the mapping of a complex K
into itself.

Suppose {Sf} is a basis for the rational p-cycles, i.e. a
maximum set of p-cycles independent with respect to homolpgy; i will range
from | to Rpwhere' RP is thep*"Betti number. A simplicial map O of K into
K induces a transformation:

(b 2 S{ ~s Z a‘:J Sf
4
5 P we shall consider fixed it if appears ingag S;. Denoting the

J
matrix || 4%” by A’  we shall study the number ¥_ Q—l)ptrace a’
£
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which we may denote by ¢, o ) .
Suppose that {’T}P} is a new base for the module of

p-cycles then there will be relations

'T;P = > >\TJ 5'; with >\P non—-singular and
o _C-P = Z b:”TJP _
so that bp: Q\P)—’GFN: . Hence trace b° traceQwhich proves
that ¢, @)is independent of the choice of bases for the cycles.
Now let iﬁ{} , {X;P} ) {p‘:?}be successively extended
bases for the p-boundaries, p-cycles and p-chains respectively; so chosen

JPH e
that "Q0; ~ ﬁ; for all admissible p. O will now induce the following
e ® af
transformations: 0B, = Z b‘J }33 ,
R A D ST
P
. - P P pr P P P
O'J: Z.. bé\iy‘ *'ZC{J b/d ""ZC&JJ\J

Let (P(U) :Z(—I)P(trace b? + trace CF + trace d' ).

Applying "0 to the last of the three relations above, |
oed! s b Bl + sl H Ty J)
Since 700 = 070 and ’DJE'P= ﬁ;—' we get
op = Tdi gl
so that comparing this with the first relation for p-l1 we see that d:,:,'- b:-;._'
and hence trace c{ F: trace bp—'. The ingenuity of including the factor
(——I)P now becomes opparent in that (-1) F traceO(P cancels (-l)P#' trace bP—'
and d° and b" veing 0 anyway CP(O“) reduces to
¥O) = SEPtracec’

In other words,(P(O’ ) is 'oompletely determined by the transformation of the
rational cycles and since C,_PJ are integers, (¢ (O‘) is an integer.

Since no linear combination of the X{F is a boundary their
homology clasees{ﬂfg foma base for the PH" rational homology group HP(K) .
The homomorphism 7" induced by 0" is given precisely by

O_% FiP _ ZCEJ ij

Hence@(ﬁ) is completely determined by O * . In particular a sufficient
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condition that ¢ have fixed elements, as defined above, is that Cp(a’) #0
We shall now use the consequences of the first result we
quoted in order to prove:
FTheorem 111
Thet!trace invariant! CP(J') of a continuous mapping (f/
of a polyhedron K| into itself has the property that @(§)#0is a suffic-
ient condition for J/ to have a fixed point.
In speaking of Q(E)when &fis a continuous mapping we
mean of course CP as determined by any simplicial mapping homotopic to 5/ .
Let us assume that J has no fixed points, i.e.C((ij(XZ)P’O
for all X ¢K( . Since [K{ is a compactum there exists a § such that
d (x, (f@c)); f>o for all Xe[K[ . ©Let K  be a simplicial subdivision
of K with the property that each simplex in K, has diameter less than—% + Now,
J, is homotopic to a simpliecial mappingg,: [{,~7 K, so that for each x ek, J/@)
and(gég are in the same simplex of K‘. Now suppose that for some simplex
Sek, , 35 =S . This will mean that for xe S, ?E)es so that
O((x, SCx)) < %. But we have also (f(x),g@)eg'e K, so that 0((!-6(), 8,@))<%
Hence K (0, ) « L% 5c0) +d (g0, @) < S4+8, = p
which is a contradiction.
It follows then that under the assumption that(!/ be free of
fixed points the chain transformation induced by a eimplicial map homotopic
to }/ can have no fixed element i.e.§V@)':(7 which proves the theorem.
We shall give one or two examples to illustrate the theorem.
In theorem 11, K= 13{&7? K is therefore zerg-cyclic, i.e. all the p-cycles
are homologous to zero forP:naand every O-cycle is homologous to a multiple
of a given one. Hence CP(})# so that ;, always has a fixed point.
The rational homology groups of the projective plane are those
of a point so that here again (Of)-[ and hence every continuous mapping of

the projective plane into itself has a fixed point.
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The n-gphere may be considered on the boundary of an n-simplex.
The latter is cyclic at dimension O.ﬁ?d dimensionn . Thus, if A is the
class of a vertex and I the basi%;homology class we have}R=H}}r”HJF%here<£
is the degree ofJ/ . Hence (}7(})= 1+ from which we conclude
that every sense-preserving mapping (ct>1})of an even dimensional sphere and
every sense-reversing mapping (<o) of an odd-dimensional sphere must have
a fixed point. Indeed every mapping of an n-sphere into itself whose degree
is different from #fhas a fixed point. This is the converse of Theorem 1.

The examples just cited illustrate the power of the fixed point
formula. Lefschetz (12) in 1937 generalized the theorem still further to
apply to LC*;paces.

An LC space is defined in the following way. Let K= {0°§
be a finite Fuclidean complex and L a closed subcomplex of K which contains
all its vertices. An LC"space, R, is characterized by the properties:

1) R is a compactum 2) TFor any £>o there is an 7>o such that if there is
a pair (K,L) @s.just defined and a continuous mapping t, of |l-] into R

such that mesh { t, (Ln 410—)} <% then €, can be extended to a
continuous mapping t of ’K | such that mesh {(;0—3 < £ .

It has been shown by Lefschetz (13) thet the LC X spaces may be
identified with the "absolute neighbourhood retracts" as defined by K. Borsuk.
The latter are defined in the following way. Given a topological space B
and a subspace A,‘a continuous mapoving t: B-> A which is the identity on A
is called %"a retraction of B onto A.% If a retraction of B onto A exists
then A is known as a retract of B. More generally, A is a "neighbourhood
retract of B" if there is a neighbourhood, C, of A (i.e. an open set contain-
ing A) which may be retracted into A. When A is a separable metric space

it is said to be "an absolute neighbourhood retract" if every homeomorphic

image A, of A as a closed subset of any other separable metric space, B,
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is a neighbourhood retract of B. A detailed presentation of the

theory of retraction may be found in Lefschetz' "Topics in Topology,"

(14).
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CHAPTER V1 - Applications.

Noteworthy applications of fixed point theorems have been
made in the field of functional analysis in endeavouring to obtain "existence
theorems". The first major contribution is to be fouhd in .a paper by G. D.
Birkhoff and 0.D. Kellogg (3) which appeared in 1922, The procedure followed
here has essentially two steps. The first is to generalize results for two
and three dimensions to spaces of dimension m and then to function space by
means of a limiting process. Methods of classical analysis are used to prove
that a bounded connected region of Eh has a fixed point under a mapping for
which the coordinate tfansformations x(’ < }‘, (x 15--X«) are algebraic. This
is then extended to arbitrary continuous functions by means of the Weierstrass .
theorem on the approximation of continuous functions by polynomials.

The authors then pass to consideration of the space R}, of real
functions which consists of the totality of real functions J(S) defined on
the closed interval [_0, IJ which are uniformly bounded, i.e. '(H < B< 00
for all} and all S€[o,1] and equicontinuous 7(¢)s 7(¢) being convex. The
last property means that there exists a functjoﬁ defined and bounded on
which approaches 0 with & such that [f(s+%)-§G/] € % for "ﬁ J¢€ all g and
s+t in [0,1] and all 5( . The convexity of 77(c) means that for every a,

b and © in [o,(]
7(a+e(b-a)) 2 7(a) + o (7()—7())

It is proved that a single valued continuous mapping, S of R‘f into
itself has a fixed point. This is done by considering the effect of S on
polygonal functions 'TT(S) x) at the points x e K, where R, isa
region of n-space whose points have coordinates satisfying the relations:

xi £ 8 ; IX“.J‘—,)(‘-] $7Z(—;,%-.) ((;:;'f,zz’,'_'_'_hn_;)
The function TT(S) DC) = ¢ for $=S5; = th":% (('=1,z,... m)

and is linear for intermediate values of S. The functions (s, x) ; as thus
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defined are evidently in K}

*

A transformation T of [, is now defined by means of TW{,x)= 51!"(5)1).
Tx = x' is obtained by setting Xi= ’!T'(S’;}X) . The authors assert
that X'€ R, and in fact that K, is a bounded connected region. T is
algebraic on R. and so Rw has a fixed point under T. Let us denote
this fixed point by
The function _ﬂ'(5, d) coincides with 5‘"’(.‘»,(\) at the n
points 5" and between these points the variation of either function is
not greater than 7 (=) so that for all se[o,(], ITr(s,a)— Sﬂ(s,c«)‘ $27(5)

Denoting by «ﬁ =) L’ (46)- 5§s))*ds  the distance by which

}- is moved by S,

3. s a2y (&=) ;
clearly c?ﬂ- —20 as 0 -—> o0 so that
inf gJ, = O
which means that R& has a fixed point under S.
This result is used to answer affirmatively the question as
to the existence in R} of a solution of a differential equationg("i F(";g,g';mg(""))

satisfying v? linear conditions on the interval (0 a ) :
Qx n-l . h=-{ ™M .
A @) g @ -
L 420 Py () 4™ () elx 4 JZO%( 9ein yYcw) = ¢
(i=0,2,..n 08X & v € Xy S Q)

where the PdJ ) are continuous and the conditions are such as to
determine uniquely a polynomial g of degree y1-| . The problem is reduced

to proving the existence of a fixed point of the transformation S :

53 = LXLK“‘LXF<X,L\{,H'-H g(”-') .dacdx...c!x

n~{

+ Ao+ A X 4 -t R X

Results of a more general nature which include those obtained by Birkhoff
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and Kellogg have been obtained by J. Schauder (16) in 1930. We shall
merely state the theorems which he has proved.

1. Every single valued continuous mapping of a convex campactum
in a real vector sphce into itself has a fixed point.

2. If H is convex and closed in a Banach space and t is a contin-
uous mapping such that tH is conditionally compact then t has a fixzed point.
(The conditional compactness of a subspace A in a space R means that every
sequence {‘xng in A has a subsequence {x."g convergent to a pointX in
R).

3. Let R be a strongly separable Banach space and H a strongly
closed andvconvex subset of R which is weakly, sequentially conditionally
compaf:f.. Then every weakly continuous mapping of H into itself has a fixed
point. ("Strongly" refers to the !strong! topology, namely that with which
R is equipped in virtue of the metric. The 'weak! topology is induced by
means of the space, R*, conjugate to R, i.e. the space of linear funtionals
on R, in the following way. If {I,} are the intervals of the real line
and K* = {g} then the intersections of finitely many}—‘]:constitute
a base for the weak topology of R.

A further application, in quite a different field may be found in
a paper by H. Hopf and H. Samelson (7) which appeared in 1940. The problem
considered there is that of determining topological properties which spaces
must have in order to serve as "operation spaces" (Wirkungs raume) for closed

Lie groups. An operation space W is a manifold related to a Lie group (A in

thefollowing way. To each element @ of G there corresponds an analytic f°f°(°3f“‘(

mapping o(q of W onto itself. The mappings o must satisfy the cinditions:

1. }‘n (Ib <§))= L\b G)

2. The point ({ - (; ) depends continuously on the pair

@, F)

3. For each pair ( f’ 7 ) of elements in W there is

at least one a in ( for which [A., (f) =
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Up to 1940 it had been known that the fundamental group of W has
an abelian subgroup of finite index and that the Betti numbers Pp s T2,

n

satisfy the inequalities p_ 2> (:1) and P 2> ( ) . The authors

'T/
provethat the Fuler-Poincaré characteristic X (\A/) must be either zero or
positive and then proceed to restrict still further the positive numbers
which are admissible as characteristics. The method utilizes the trace

invariants of the Jaand the fact that q)(f) where I/ can he deformed into

the identity is the same as){@/)both being in fact Z(—-IJTP,, .
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