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The problems whose history is the subject of this thesis is

as follows. One wishes to obtain criteria for the existence or non­

existenEe of points in a topological space which remain fixed under a

transformation of the space into itself. Such criteria will of course

be expressed in terms of the properties of the space and of the mapping.

One desires further that the properties of the space be topological invar­

iants while those of the mapping be invariant under homotopy.

'!'wo main attacks have been made on the problem, by L. E. J.

Brouwer in 1910 and by S.Lefschetz in 1925. Presentatimn of the results

of the work of these two mathematicians forms the main part of the thesis.

A less detailed account is also given of some of the lesser known researches

in the subject. The thesis concludes with selected applications particularly

in the field of Functional An~sis.
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INTRD!2UCTION.

The problem statsd in its most general terms is this.

Given a space S and a mapping t of S inta itself, under what circumstances

is there or is there not a fixed point? By a fixed point we mean, simply,

a point x in S for which tx..x. Most investigations are concerned with single

valued continuous mappings and the trend has been to search for ever larger

classes of spaces for which fixed point conditions can be derived. Studies

have, however, been made notably by M. H. A. Newman (15) and P. A. Smith (17)

of the question of period:ic transformations Le. transformations sorne power of

which i5 the identity. We shail not, however, be concerned with these. Two

main attacks have been launched on the prob1em. Our first three chapters

consist of a fai thful account of the first of these due ta L. E. J. Brouwer (4).

This paper is regarded as the classical paper on the subject. The fourth

chapter deals with subsequent discussions of the Brouwer theorems. In the fifth

chapter we give an account of the second main attack begun by S. Lefschetz (la)

and taken up by H. Hopf (6). The concluding chapter Ls devoted ta selected

applications. We may mention here the close relation between the question of

fixed points and existence questions in analysis. For suppose one seeks a

solution te an equatian 4f ~ 0 where f is an element of some function space and 4

an operater on that space , The existence of a solution is equivalent te the '

existence of a fixed point under the mapping (4+1) where I is the identity for

them (A+I)f "f Le.Âf= O. We have attempted, where possible, ta lay emphasis on
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the methods employed and to poiat out crucial steps in a proof, in the

hope that this paper may prove instructive rather than merely ânf'oznnative ,

CHAPTER 1. The Brouwer Degree.

We wish to define an n-dimensional manifold in the sense

of L. E. J. Brouwer and in order to do BO we first introduce sorne prelimin­

ary no tâons ,

A simplex star in an n-dimensional Euclidean space ia a

finite collection of non-overlapping simplices with a common vertex, 0, the

union of which is a fini te neighbourhood of 0 and each pair of which have a

common p-face (o!lP(n) but no other common points.

By an n-dimensional element, E, we mean a homeomorphic

image of a simplex, S, in an n-dimensional Euclidean space , The images of

the vertices and faces of S are taken as the vertices and faces of E.

An n-diJnensional manifold is a connected set which is made

up of a set of n-dimensional elements each pair of which have no point in

commoa or a single p-face together with its proper faces in common but no

other points. The e1ements having a vertex in common are relatefl in the

sarne way as the simplices of a Euclidean simplex star defined above ,

such is the defini tion as given by Brouwer. We may state

it briefly thus: .An n-dimensional manifold is a Euclidean complex which is

such that the star of each vertex is isomorphic with a set of simplices in ~

having a common vertex P and constituting a neighbourhood of P in E~.

Concerning the properties of the manifold we observe immed­

iately that if i t is made up of a finite nwnber of elements it is closed with

respect to fundamental sequences. On the other hand if there are infinitely

many elements the manifold is certainly not closed in view of the fact that

the infinite covering by elements is locally finite (Le. an arbitrary point

of the manifold has a neighbourhood which intersects only finitely many elements.)
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Fixing our attention now on a closed n-dimensional manifold

we shal.L show that i t is a compactum, which means that we must prove; in

addition ta the compactness just mentionedtthat it is metric. In order to

do this we will introduce a continuous, normalized, non-negative, homogeneous

coordinate system from whicha metric will follow. A coordinate system will

be introduced inta each element but in such a way that for different elements

the systems will coincide for points on their cornmon faces. Let us see just

how such a system can in fact be introduced.

Let the coordina t es of a side Ap A~ be denoted by Uf' and Uey wi th

the U' s positlve and the ratio U p;1L-v decreasing continuously from 00 at Ap

ta 0 at Aq. To determine the coordinates of the points of a 2-face Ap A<y Ar

we map it tapologically onto a plane Euclidean triangle FGH in such a way

that the sides of FGH correspond ta the faces ApAq, etc. of ArA'lA.,.. We repres­

ent the points of FGH by homogeneous barycentric coordinates with respect ta

F, G and H and select an arbi trary point, 0, inside the triangle. Let B' be

the image in FGH of a point in ArA,A.-. The straight segment OB' produced

beyond B' meets some side, say GR, in ct. Let C be the inverse image of C'

in ~A,., icUt' . eUr i ts coordinates and Cil the point in aH with barycentric

coordinates (0, cUq, èU~). The line through B' parallel ta GH will meet Oen

in sorne point B". We choose as the coordinates of B the barycentric coordinates

of B".

In an analogous manner the coordinates of the points of the

3-faces are obtained \Vi th the aid of 'ijle barycentric coordinates of a homeom-

orphie Euelidean tetrahedron. The process is eontinued until eoordinates of

all the points of the manifold are assigned wi th the aid of those of the (n-l)-

faees and the baryeentrie eoordinates of homeomorphie n-dimensional Euclidean

simpliees.

We may now associate with each element a homeomorphic Euclidean
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simplex with edges of fixed length and whose barycentric coordinates with

respect ta its vertices are the same as the normal coordinates of the

corresponding points in the element. We shall refer to it as the represent­

ative simplex. By a subsimplex or a plane p-dimensional subregion of an

element we shall simply mean the image of a oorresponding subset of its

representative.simplex. Similarly, by a straight segment and its length in

an element we mean the image of a straight segment and i ts length in the

representative simplex. We can now define ,the distance between points of

the manâf'oLd as the minimum of the Lengths of the straight segmental paths

joining them. SUch notions as the centroid of weighted points and the volume

of a subregion can be introduced for an element with the aid of i ts represent­

ative simplex and the homeomorphism.

The "indicatrix of an element" is defined, uniquely up ta

even permutations, as a sequence of its vertices. Only two indicatrixes are

thereby pcsaâbl,e, One of these is arbi trarily taken as positive, the other

negative. Through the choice of the positive indicatixof an element the

positive indicatixof its representative simplex i5 also determined. Hence

also those of each subsimplex and thus also those of the faces of the element.

We oonsider a finite closed series of elements each consecutive

pair of which have h vertices in common and choose a positive indicatrix for

sorne element. This choice determines the negative indicatrix of the succeeding

element by means of the n vertices already ar'rangeâ and the new one placed in

the position where it is first lacking. The positive indicatrix of each element

in the sequence is thus fixed by the choice for one element. If on returning

ta this initial element the sarne positive indicatrix is induced and if this is

the case for all closed sequences we calI the manifold Iltwo-sided", otherwïse,

"one-sided". The choice of positive indicatrix for a single element in a two­

sided metric n-dimensional manifold fixes the choice for each element and each



face so that we can speak of "the positive indicatrix of the manifold".

We now turn to consideration of single-~ued continuous

mappings of one two-sided manifold into another. The method of studying

such a mapping will be by means of approximating simplicial mappings and

will lead eventually to an important property of the mapping called by

Brouwer its degree and by whose name it is now designated.

LetjJ, }J', be two n-dimensional closed metric two-sided

manifolds and let CX:p...,p 1 be single-valued and continuous. We decompose

each element of pinto a finite number of subsimplices each two of which

either have no common point or have a common p-face (0' f"n) and then also

the lower ddmensdonaL .' faces in i t but no other common points. Let é be the

Leasb upper bound of the diameters of the subsimplices that Ls ta say the

mesh of the simplicial de composi tion descri bed. Let us denote the decompos-

ition by; and refer ta the subsimplices, their faces, and vertices as the

base simplices etc. of F. We choose a positive indicatrix for p and there­

with for the base simplices of ~ also: Among the subsimplices we distinguish

those which aremapped completely by «into one element of P' and refer ta them

as general base simplices.

Let us now define what Ls meant by a simplicial mapping )3

belonging xo ]: which approximates Cl\ • .p is applied only ta the general base

simplices and in the following way. Let"TT':; ft" •••An+( be a general base

simplex of)J- and tri:. lX.(-n-) ';:, BI' •••BM I be the image of-rr underC{lying of course

entirely in a single element of~/. Then J3(Ri) ::.Bi. and} (iÀ( Ai) =.L\: Bii.e.}

is a linear mapping of the points of 7r wi th respect ta their barycentric

coordinates relative ta the At • . If the St do not Lâne in a plane (n-1)

dimensional region we shall take the volume of 7r' ta be positive or negative

o.
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according as its indicatrix is positive or negative while if 1T' i5 singular

i ts volume Ls a For f E -,r , the distance «trl ft tn in
r

7T has an upper

bound e which along with t decreases on each baundary.

We consider further a modified simplicial mapping ~ belonging

ta t and approximating oi. .I~fl'is applicalù.e ta those base simplices of /"f

whose images have vertices not more than €. apart. ~ is determined for these

simplices in the same way as p was determined on the general base simplices.

These latter are not necessarily admissible for)" •

We choose now in each element of ~(an( . inner simplex i.e. a

subsimplex whose edges do not meet the edges of the element. é can now be so

chosen that each point 01)'<mapped by one of} and ~ into an tnner simplex belongs

ta a suitable subsimplex of.JA with respect to bathjJand N. This last subsimplex

must then of course be mapped into the same element of/ I • We consider now a

mapping ~ which yields no singula.r iromage simplex. Applying t to an innersimplex

J of a particular element E, let (jdenote the set of points of the interior <roC U'"

which do not lie in the image of an (".~) base face. Clearly, any two points of

<r can be joined by a path of fini tely many segments lying wholly in 0"• The set
&n

?f of points of crwhich do not lie in the iIlage of" ("'-1 )-face we call general points

of J. Let P, and P:z. be arbitrarily fixed points and P a variable point in'l.

Each point of'Y{is covered by a number of image simplices, some positive, sorne

negative. Let the numbers of positive and negative simplices covering P be

denoted by f' and fi respectively and let~)p.'; p~,p; be these numbers corresponding

Confining p ta a segmental pathslying inl1which joins Pl ta P1 '

the numbers p and p' can change o~y when the image,~, of an (n-\)-face is crossed.

In fFict, when the tm image simplices meeting in-rlie on different sides of ""'('
,

they have the same sign and the crossing of"l; leaves p, pl and hence a Iso p. r

unaltered. if, however, the image simplices lie on the sarne side of lithey have
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opposite sign 50 that f and F' are each either increased or decreased by

l '(1 and again p-p is unaltered. Thus fr-p, ::: ft. -p'2. and, for the general

points of J under the mapping «, rr 1 is a constant.

Similar numbers p and p ' may be defined ri th respect to

the mapPing~. Let PI and PL in J, be general points with respect to

J3 and suppose that Fr - Fr 1 -4 f7. -p~ . J3 may be approximated so closely by

a map ~of type atha t PI and P.2,. are general points of J under t1? while

P.: ) pl have the sarne values relative to ,-pas to j5. Then p_pl would not

be constant for Oop either which Ls a contradiction. Hence p-p 1 is constant

for the general points of)3 also.

We shall prove that this constant, call it C, is the same

for all simplicial maps approximating a<,. Let j3~ be a simplicial map wi th

underlying decomposition ~'/ of;«and let J/ be one whose underlying decom­

position ):;f is a refinement of ~'; Le. the base simplices of ):,'are obtained

)-. ,
by simplicial decomposi tion of those of ,./. The ~mages under]J, of the base

points of ;t,'can be translated continuously along the shortest connecting path

into the corresponding images underj3~ if the latter exist 50 that at least

where J is concerned the mappingJ: can be transformed continuously into}.' •

The total volume of the parts of the image simplices contained in J can have

no discontinuities under such a continuous transformation, therefore, insofar

as this is C times the volume of J and C is an integer, it must remain fixed.

That is ta say, the integer C for a given simplicial map is invariant under a

simplicial refinement of that map, This fac;t will enable us to prove the

assertion made at the beginning of this paragraph.

Letj31 andJ:t be two arbitrary simplicial maps approximating

0( wi th underlying de compositions j; and ~"of~. We consider a decomposition,

;C.3' of ;rI of such small mesh the. t under the corresponding mapping j33' i t is

possible to choose a general point P in J which is a general point relative
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tÇ> }Joa.Lso , The vertices of each image simplex under -'J covering P

are contained in each such image under )3~. But them there will belong

to each p-covering image simplex under }1.one and only one P-covering simplex

for}3and indeed each pair of image simplices corresponding in this way

have the indicatrix in the same sense. We therefore conèlude that C which

was just shown the same forJ, andJj is al.so the same forJ.tand}l and hence

also forYI and J3.z.•

OUr next step is ta prove that the values C, and C2. which C

takes on in the iooer simplices J, and J,. of two elements, E, and E~rith

a cémmon (h-I) -face, 5 are equal. As Euclidean antecedents of E, and E 2.

we choose regular simplices -r, and~which are mirror images of eaeh other

ri th respect to a common (n-I)- face 2.and such that i corresponds to S. The

definitions of subsimplex p-dimensional region, barycentre and volume of 7;+'1..

are carried over ta Ë,+E}n precisely the same way as was done for a single

element. We determine in Eland E Â subsimplices U1 and U:t. containing J, and

J L and having a common (n-I)- face lying in S but whose boundaries do not

meet the remaining faces of E,and E;L. Those simplices whose vertex images

undero<.all lie in the interior of E,+ E.L we count in wi th the general base

simplices. We determine a simplicial mappingJ~pproximatingO(whiChMay be

appl1ed to these additional simplices al.so , To j3'there again belong modified

simplicial mappings 1f'. We may now choose E so that relative ta ~,Tt.4;md the

general simplices in the new'sense the sarne property, earlier imposed for the

linner simplices and general simplices again remains valid. By the method used

above we cao deduce from this that forl the numberp-I"is constant on the general

points of\A(H.(.l. But this constant may be identified with C, beldmging to)3' arJd"J\

and rith C~ belonging ta,' and J
t

from which it follows that Chas the sarne value
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in 1; anèi J; . By a simple extension we could show that C is constant

in aU the elements of/",(.

This number, C, constant in al.L the elements of~I and

furthermore having the same value for all simplicial mappings approximating

0< thus characterizes a property of l>lC. We refer to i t as "the degree of

"the single-valued continuous mappingeX:. A fundamental property of the degree

is that it is the same for two single-valued continuous mappings of ~

into~'which cao be continuously transformed into each other. Tm. t is, the

degree~~epends only on the homotopyclassl

Let us approximate two homotopic continuous mappings by

simplicial mappings each pair of which have the same l.U1derlying decompos-

itiân. We cao then introduce between each pair of these mappings a fini te

sequence of simplicial mappings based on the saroe decomposition for which

each is a map of the type)3 above; each consecutive pair differ only in the

images of one of the base points and then by as li ttle as one pleases. Then

there will certainly exist an inner simplex of~'in which each consecutive

pair de ternune the same image set. and hence the same value of C. Thisvalue

of C will be unaltered along the sequence of mappings considered which means

that the original aappângs have the same degree.

Remark: In order ta see that any positive or negative integer

can arise as the degree of a mapping one has only to consider the mappings

of one sphere onto another as represented by the rational functions of a

complex variable. In fact the degree of such a mapping is identical with

the degree of the function representing it.

FiJlally we aotdee that wheJl o<.(JA) is not everwp.ere dense in!",'

tae degree of "" must be sero , For in suea a case there will exist an approx­

imating simplicial mappingJ for which we ean select an inner simplex J in)""
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in which the image set is not everywhere dense. There will then exist

a subregion J *" of J for whichT ~j (f<J ::: A. Hence p J p (and consequently

C are zero ther-e ,

Hi therto we have considered only the case whe~lis two­

sidei and e.Losed , However when..-#' is one-sided and closed the above results

still hold both wi th respect to a single inner simplex and with respect to

a pair contained in elements with a common ('" -,)- face. Let us consider a

closed sequence of elements in which the indicatrix i5 reversed. Since on

the one hand C must remain constant and on the other haad its sigu changes

in traversing the complete cycle lYe cao oo1y conclude that it must be zero.

Again, 1~liS open we cao, sinee O(ÇuJ 1s closed inJ'<~ specify ~ finite

collection~/1of elements which both for c( and the various.J and t containe

completely the image 05P which 15 however not everywhere dense in/fi. This

last fact together with the fact that the previous considerations are again

valid for a single inner simplex ora pa1r contained in adjacent elements

leads again to the conclusion that the degree of D( must be zero.

To sum up: When a closed, two-sided, Iletric n-dimensional.

manifold~is mapped single-valuedly and continuousl:y into a metric n-dimens­

ional manifol~(there exists an integer C ca11ed the degree of the mapping

which 18 the same for al~ homotopie mappings and which designates the number

of timea the image Of/ covera positively each subregion o~f. In particular,

i~'is one-sided or open, C is equal ta zero.
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CHAPTER 11. Continuou~_yector Fields on n-dimensional spheres.

In what f'Oliows the term "sphere ll will be reserved for

spherical surfaces while solid spheres we shall cal.L "àisks ll •

We consider a n-dimensional sphere 1< in a Euclidean space

R.. +,of dimension (l'HoI). This may be represented in a right angled

. x.: 1.Cartesian coordinate system by the ~quat~on: ;CL =f •
li;.' «r

K may be

regarded as a metric n-domensional manifold as defined above by taking,

~'H

as i ts elements the 2. simplices into which i t is decompo sed by the

hyerplanes X h ~ 0 , and as i ts p-dimensional regions the subregions of

the p-disks lying in it. As the unit point of normal coordinates in

each element we choose the points wi th coordinates ± Jn=ï A positive

indicatrix is chosen for one of the elements and hance also for each

spherical simplex. (A spherical simplex is made up of rt+/ different

( t1-' )-disks and lies ent.rr-el.y in one hemisphere of K.)

Through each point, PI of K passes an (n - ,) dimensional

direction sphere )\pwhich can be handled precisely as K itself. The pos­

i tive indicatrix of Àf' is made ta depend on that of K in the following

way. Let 5 be an (t\ -') dimensional spherical simplex lying in >- p • We

determine in K an n-àimensional simplex Shaving Pas a vertex and its

("'-1 )-faces throughP determined by the ("'-.l..) faces of S with the remaining

one arbitrary. We then write the positive indicatrix ofSwith Pin the

last place. The others in this arrangements determine a specifie order of

the edges of S meeting inf'hence also of the vertices of s. This last arrange-

ment is chosen as the positive indicatrix of s

We consider a continuous vectar field in K in which we

are concerned only with the directions but not the magnitudes of the vectors.
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Let this field posses only a fini te number of singularities, i.e. points

on the sphere at which the continuity of the vector direction is disturbed.

Let 1< be decomposed by neans of an (n -1 ) dimensional great sphere (general­

ization of great circle) ex. which contains no singular points into hemispheres

~ 1 and J-{~ wi th poles -rr; and 1f2. • We consider.x as belonging to both JI1 and J.Jz.

The hemispheres may themselves be decomposed into finitely many spherical

simplices Sil / S 12. ) ••• in H, and S~l , S,n.,••• in Hi by means of singular­

ityfree (n-I) great spheres. In this way the decomposition ofH, will be the

mirror image in..x. of that of HJ..'

Let (j be an (h-I) -face of SOrne particular 5,,1'- From the

positive indicatrix of St.(P we introduce that for o-when considered as a face

of S-tp. Writing the vertices in a positive indicatrixof 5«p in such a way

that the one not in 0"' cornes last the others determine the positive indicatrix

of cr considered as a face of 34(p • Sinrultaneously a positive indicatrix is

fiKed for the whole boundary of S..{f3in that S.<pmay be regarded as a two-sided

closed t-t -/) dimensional manifold whose elements are the (n - r) -faces of S ~.p

and whose p-dimensional regions are the subregions of the p-disks lying in i t.,

We now pro j ect the circumference t..4~pof S II(P together with the

vectors on i t through a pont Q ofJ(outside 5-<p onto the n-dimensional hyperplane

e tangent to Kat the point 0 diametricaily opposite Q. This determines a single­

valued continuous map of IJ 0<' onto the sphere of directions in e whose positive

indicatrix is determined by that of \0' We shall establish that the degree of

this mapping does not depend on the choice of Q• For let P be a point in U.P

then under this stereographie projection,Àp is placed im a congruence relation

with the direction sphere of 9 and hence also wi th any other spher'e XJe' ~ E: (1-<, •

This congruence relation 17pft between Àpand >"R j ~ R. é Uolp arises in the following

manner , Let V be sorne direction bal.ongâng. to Àp ' Together with Q and R it
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det.ermânes a 2. -sphere"e lying in K and on which P, Q and R de termine a

crrcle (l-sphere)~. There will exist a direction through ~ belonging

ta ~ lI'hich determines r ';K W ; the same angle with ~ as V. This direction

corresponds toV for the relationbp R •

By continuous translation of G.. through a fini t.e distance

from P and R this relation can only change continuously. Thus by a con­

tinuous translation ofQ.through a fini te distance from Sl<.jl the whole

system of congruence relations between the (~-,) dimensional direction

spheres of the points of Ua(; can only change continuously. Hence the

degree of the mapping of U«}onto the direction sphere of e (Le. the

mapping determined by the vector field) can admit no discontinuities. It

must therefore be a constant, ço(J3 say, which we may call the degree of

We wish to eva1uate the sum 2:. Coll«,p

the

which

Let us project H, and HÂ. respectively through"TG and 7f1

onto the n-dimensional hyperplanes Grande.ltangent to K at -n; and1f~ and

evaluate the sum of the degrees of the resulting mappings of U., onto

direction sphere of e,. In this sum each such (11-' )-face of an S,?

does not lie inoXoceurs twice but with opposite indicatrixes thus cancelling

each other t s contributions. We n eed therefore consider ohly those faces()"~which

lie in X.

We can regard x; as a two-sided manifold wi ta the CT";c. as elements.

Its positive indicatrix is given by that of a o:c considered as a side of an

~IJ. The projection of x onto el' has degree C, to which 1ile contributions

of a::. are the salle as they make to C,}. Hence C, '" îc". But take the

indicatrix of)( now to be concordant with that of the~consideredas side&cl' 5~p

and projectXfrom-rr: ontotl,t. As before the degreeG.1. of this map is J-C1.}.

Let f be the n-dimensional hyperplane in R....... which contains X •

By reflection inf we have the following eorrespond-encei. The projection X,,-
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of X inG.1corresponds toX,the projection of .x:in G,but with opposite

The direction sphere of G.l corresponds ta that of 6,again

with opposite indicatrix. Finally, the vector distribution in X~corresponds

ta the reflected distribution inX" Le. that distribution over the image

points in ê l • The problem of evaluating2 c.c1' • Le. C,+C;l. is thus reduced

to the question: What is the sum of the degrees of the mappdngs , , J'and.f

of an ("-r)-sphere ~ onta the direction sphere~ofan n-dimensional hyperplane

e as deterr:ùned by a continuous vector distribution over the points of l­

and by the same distribution reflected in the plane ôf l ?

By means of an (... -') -hyperplane we determine in if an (~-1)-

disk and poles t 1 and '/;'J.. We consider a sequence).;', ~:l.' ••• »:... of simplicial

decompositions of5-for whicht,is no trcon'ta'lned in any proper face and whose

mesh decreases with âncreasmgwr , Denote by J.....that simplex of ~':which contains

~, and by(,.\...the boundary of 1..:
For each"", we construct from J'a new single valued continuous

mapping cf...: ~ ~).as follows. Let j be an arbi trary great semicircle in 1­

joining ,&-1 to ~'1 and{ i ts point of intersection with ".... The arc q. h is mapped

by magnification onto the whole of j. Suppose a point F E 't-'~ is thereby

mapped into a point Ft thend_is defined thus:- For Fe~lhJ Jr-F := J'!="' but if

fE-J butFf~lh, J... F",J''tJ'" 1- ' say.

The reflection mapping (i.e. the one belonging te the reflected

distribution) of J'... we denote byf..... Sihce [ can be defonned continuously

into J',.. and f intof....the basic sums of cf and f are the sarne as those of <1'.... J f- .

Through further simplicial decomposition of the base simplices of F:'" we arrive

at a simplicial decomposition:t_ of !- whose associated simplicial maps J~and

f~ approximating J2,andf_have the properties ofJ in Chapter 1.

We next .eek the contribution to the sum of the degrees of J.-
{' • t ,andj'...... made by the image sets under 0_ and j~. Let us denote by ~ the reflexion

vector of the direction~ at the point '}, E S The number f- pl is constant

out.sâde a neighbourhoodof q' whose diameter decreases with Incr-easâng,« both
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for JI: 3...... and f:"" 3......· The latter of these two constants is unaltered

if we modifYf': 3..... in such a way that as the image of each vertex ~ of l-.

lying in ;} -. to which the direction ep corresponds under cP-. the reflected

vector of C2 p in <J;, takes the place of the reflected vector of e r in P •

But the result of this modification Ls that f':'" &..... becomes the mirror

image infof J~~~. In particular, two such mirror images have opposite

indicatrixes so that the two image sets covering two points of À which are

mirror images of each other determine opposite values of î: r': Thus the

images of. J....under J': and f:'" have opposite values everywhere outside

a neighbourhood of } of decreasing diameter and so destroy the two-patt· con-

tribution to the sum of the degrees of d_) f .......

There remains for us yet to determine the contribution which

the images under cr; and r: of a certain residual set tr<of l""" in f

makes: to the degree-sum of,f..... and d"", • If the image S~J~educes to the

single POÙlt~, there is no contribution made. Thus, for the image under

f~ outside a neighbourhood of j-' which decreases with increasing w\, the

degree of the mapping of ~ onto Ildetermined by the reflected distribution

of a constant vector through the points of1is conttant.

Ta ascertain this degree irE! denote: by x, that point of 'f

whose radius Ls opposite the constant vector; by ~ the point in 1- diametric-
C;JTea.t- splteT'e

allyopposite .x, j by w the (n-I.)-dimensional"having X, andX2.as poles;

and by Q, and QI the halves of "f determined by tU containing XI and xI.. respectively.

We can decompose .., simplicialy so that the images of the simplices with

positive indicatrix cover)\ once only and positively. Furthermore let us

decompose al. into simplices diametrically opposite those of a., and let us

equip these with indicatrixes diametrically opposite those of the corresponding



simplices i. ~I • The resulting indicatrix Ls positive for evenn

and negatlve for odd 11. Thus, two corresponding simpllcesin ll..and a.:1.

determine the same image simplex in,,\ with positive lndlcatrix.

Equlpping the simplices of Q.l wit.h a positive indicatrix their images

cover ~ again just once and positively for even h, negatively for

odd n

Renee the degree we seek is equal to 1.. for even n and

to 0 for odd 11. Thus, also, the sum of the degrees for J'.... and f ...... ,

for d and f and finally for C.,(f ' ls :::2- for even VI and 0 for odd h •

When the vector field on K has no singularities i ts con­

tinui ty is uniforme We can then choose Sa(j3 so small that the variation

in the directions of the stereographically projected vectors of the same

U.., onto el and e~ does not exceed a number chosen arbitrarily

small. This would mean thatC.cpis zero , whlch canno t occur if " ls even.

We have thus shown that a continuous vector field on a sphere of even

dimension contains at least one singular point.

16.
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CHAPTF.R lll. Single-Valued Continuous Transformation sr n-8pheres into
Themselves.

Let us consider a eingle-va.lued continuous mapping/~of an

n-epher-e 1< into i tself which has no fixed points. t< may be covered by

simplices, such as Sol~ in Chapter li, wi th arbi trarily sma.ll mesh, Let

us consider the corresponding simplicial transformations which aooroximates ~

• There certainly exists such a simplical transformation, t, which

has no fixed point. But there can also be found a sequence of approximating

stmplt câà.L maps which converge ta rand which leave the points f,) 'L ... say,

fixed. Then, however, every limit point of this set would be a fixed point

of ,

We choose a point, 0, of K,which i 5 general with r Aspect to

t and which does nc·t lie on any proper face. We join each poirrt , P, of K,

ta i ts image tp by the arc of a circle through 0 and affix ta p the vector

~

determined by the directed arc Ptp not containing O. The result is a vector

field on K whose only singularities occur at the finite number of points which

t takes inta 0 and at 0 itself.

We select a positive .indi ca t r i x in K and denote by S,}", Sr

those simplices whose images.S" . ." liS,. coyer 0 positively am by s.~'" S~' those

whose imagesbS,~".,l>S;'cover 0 negatively. Let S{/be that simplex in which 0

is situated. We may assume the decomposition of K underlying t 50 dense that

SniS=!\ for all S, and in particuJ.arS"n5ol ", j\ and srns: '" 1\,
1

To determine the degrees of So(and S4111 we project K steriographically from 0
,

onto the hyperplane e tangent ta K at the point 0 diametrically opposite O.

Denote the projection of Sc:(by Co(, the projection of its boundary by cL<a<.

and the projections of the boundaries Ofb5oe. by "(,(1(,. Now the image indimtrix
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of il UoC. in e belongs to a negative lndicatrix of a simnlex"'~ bounded

by bUG(. • The vectors through the points .flE: U..c. to which the points

y' E. b tA. et. correspond are determined through the rectilinealf' connecting

segments J3J'. Through a uniformly continuous transformation these are

carried over into those vectors which through each point · }sare J*l.rdlel

to the straight segments O'}'. But the latter vectors caver ~ 0' exactly

once and negatively so that the degree of 5~ is -1. Through similar

argument the degree of each S~ is +1. The degree of S" is found as

folloll's. We continuously deform the vector distribution on the boundary

T fi of S tr into that in which the vector through fé T"is determined by the

great.-cfrcul.ar- are OP which does not contain 0'. Let us then project Til

"and i ts vector field through 0' onto the n-dimensional hyperplane 9 tangent

to K at o. Il ",
Il e .Let'" be the image of T in Thereby, at each point..p e. U Il

the vector is determined by the straight segment O}. Thus the vector

JI" "-distribution on~ covers 1'0 just once and with positive indicatrix so that

the degree of Si' is +1. As regards the remaining simplices they may be

so decomposed that under stereographie projection the variation of the

vector direction inside each is arbitrarily small. Renee each such simplex

has degree zero and this is also true for such simp1.ices joined together.

Adding up, the sum of the degrees of the simplices Ls - P "1-("101

which for aven h must be ~ and for odd ~ 10. Hence the degree p-p' for y­

or t is -1 for even '" and l for odd n. We have thus proved the following:

Theorem 1.

A single-valued continuous transformation of an n-sphere

into i tself which has no fixed point has degree -1 for even ,., and l for odd n •

From this we can formulate the following special cases:
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COrolla:sY....!..

When under a single-valued continpous transformation

of an n-opher-e into i tself the image set is not everywhere dense in the

whole sphere there exists a fixed point.

Corollary; 2.

Every homeomorphic mapping of an even dimensional

sphere onto itself which can be deformed into the identity has a fixed point.

Every homeomorphism of a sphere of odd dimension into

itself which can be defonned into a reflection must have a fixed point.

That transformations of degree (_1)"'+ 1 need not have

fixed points may be illustrated by the rotations and reflections of Rt'\. ... 1

about a particular point.

We turn now to consider a single-valued continuous

transformation :t.. of an n-dimensional element E. into i tself. E can be .r ega r de J

as the homeomorphic image of a hemisphere H, determined in an n-sphere k:

by an (~-l) dimensional great-sphere x. . A single-valued continuous trans-

formation of E into itself thus corresponds to a like transformationt., of H,

into itself. Let us now extend :lI to the other half HÂ. C. K in such a

way that each pair of points which are mirror images in x are taken by :t 1

into the same point of l~1. Then thi s will be a single valued continuous

transformation of K into itself for which the image set is not everywhere

dense in K and which must. therefore have a fixed point, lying of course in

H, But this fixed point must correspond to a fixed point of ~ under :t. .

We have thus proved:

Theorem 2.
c.ontin,",O\lS

A single-valued transformation of an n-dimensional
"

element into i tself must possess a ' fixed point.

It ls this theorem which is to-day known as "The Brouwer Fixed

Point 'I'heor-em";
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The next contributions ta the subject appear in two papers

by B. von Kérékjarta (8,9) in December 1918. In the first of these

considerations are restricted ta the 2-disk and the 2-sphere. As regards

the 2-disk, it is proved that a homeomorphism l::inta itself has at least

one fixed point. Two classical theorems are used for the proof, namely

Brouwer' s theorem on the"invariance of domain" (S) and the Jordcm-Brouwer

"separation theorem". Applied to the closed set of points, fi, for which

the polar angles g>(p) '= cp CT p) , the first theorem demands that a point on

the perimeter is mapped into the perimeter so that if Hhas points on the

perimeter they must be fixed points. The second theorem Ls used ta establish,

in the event H is entirely inside the disk, the existance of a subcontd.nuu m

IV c H contai nân g the centre 0 and the point Pc, mapped into o. One then

considers the singlè-valued function str)» y("t"P )-y(p) where r(P) is the

length of the radius vector of P. We have S(p) ~ -r(po) for f<:' p. and sep): -,(-co)

for P"-O, Le. a negative and positive value ofS(P). Hence there must be

a point, P, ' for which sep,): 0 Le. "'6:~): Y(P') but PI being in Hf) 'P(C r.) z: cp (P.)

sa that P, must be a fixed point. Similar considerations are used ta praye

that a sense-preserving homeomorphism of the 2-sphere has a fixed point and

that a sense...preserving mapping of a 2-disk onto a subregion has a fixed point.

The second paper establishes criteria for the existence under

homeomorphism of fixed points in a ~on-simply connected closed region, namely

that bounded by and including two concentric circles in the plane. Of signif­

icance is the fact that the behavi.ous- of the bounding circles already provides

the criteria. It is in fact praved that, a) a sense-preserving homeomorphism

leaving the bounding circles invariant has in general no fixed point but one
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in which the circles are interchanged has at least two; b) a sense-

reversing homeomorphism with invariant boundary circles has at least

four fixed points while one which interchanges them has, in general,

none.

There is an interesting contribution ta the subject made

by J. W. Alexander (1) in 1922; intereRting in that results from classical

analysl sare utilized ta obtain original proofs of the Brouwer theorems.

The detailed discussion i5 restricted ta 3 dimensions but can readily be

extended ta h.

The key ta the method lis the "Gaussian Integral":
1( tj s du. cl. .,..

S5 'l)X u ~- ,J11"l 't><.(. /bU

lb" ~ r:Ql:;
.;::;..-- -n.,. roc.rrau-

where X)'j) ~ are the coordinates in real 3-space of the points on the image

of the unit sphere S, under continuous transfomation; y :: J X~+ ~r'+ l'L
andU and(J- are parametric coordânat.es for the unit sphere (e.g. latitude

and longitude. For continuous mappings

)

are continuous f'unctions. The integral taken over S, has the value ± If.7f

and in fact+lf.1fby suitable choice ofUandv. Evalulition of the integral

for a given continuous mapping 5,,::: -CS" leads ta the defini tdon of an index J

k,of the mapping(;. It is shown that the integral for~is4~lfwhere k

is an integer which is the difference between the number of times a ray from

the origin cuts 51. from the negative ta the positive side and the number of

times i t cuts S.J.. the opposite way. Al though the image
J

S;Z) is considered

provieionally as made up of finitely many analytic pieces this condit-

ion is later removed in so far as S:J.. may be closely approximated by a second

image which is of the analytic type. The value of the integral forS~is

then defined ta èeits value for a such a sufficiently weIl approximating
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analytic surface. In that a continous defonnation of the integration

surface which does not crQSS the origin (discontinuities would then

arise) leaves the value of the integral unaltered the definition above

of the value of the integral over an arbi trary image S l. is sufficiently

invariant.

The properties of this integral and the resulting definition

of the index, k, are now used in studying a continuous transformation "'of

5, into itself. Letting 0'" (x, J ~1) J']= (x~)~1.)~:>.) one considers

x,-x:t.. ~.-'j2. J.l-~'1.1 J.udcJ-
':u,(lIC.- JC t.) ~'-<. (lj,-~2.) ~ (JI-~ ...J -r-3

~(XI-XJ -i% ('<St-~L) ~ (~")d

where 1: j(~-;{2.r-+(~I~~~Y+QI-06\.)1.. The absence of fixed points is

characterised by tlOeverywhere. Under these cireumstances the integral

is well defined.

By radial contraction ofa-5, into the origin the integral is

seen ta belt--1Twhile similar contraction of S, shows it to be -Jrk.1Twhere

k is the index of~. It is thus proved that a continuous transformation

of S, into i tself must have a fixed point if the index, k, is different

from -1.

We conclude this chapter with a very elegant proof of Theorem

2 as we have found it in Lefschetz "Introduction to Topology (11). Aside

from its. elegance we have found it particularly instructive for the follow-

ing r-eason , It may be recalled that the technique used by Brouwer consdst.ed

in simplicial decomposition of the manifold which led to consideration of

~

associa ted simr:J. icial maps which approximated the conti~ous mapping in

question. Indeed, the very property of continuity of the mapping enabled

the successful approximation by means of simplicial maps referred to decom-
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positions of sufficiently sma1.l mesh. The success of this technique

culminated in the definition of the degree of the mapping a character-

istic of satisfactory invariance :in that one could prove i ts inva.riance

with respect to homotopy. In short, then , this powerful technique concerns

i tself not 50 mueh wi th the underlying triangulations but wi th their assoc-

iated linear mappings.

In contrast with this, the praof which is ta follow is based

on r esul,ts of a study of the decomposition per se! We refer ta the result

known as Sperner l s Lemma (18) which states the following:

Consider a complex K=II o"where 0-"'::. lio • •• ri.., , L, e , the

n-dimensional simplex (J"tagether with all i ts faces. Let K(S{e a barycentric

subdivision ofJ(with verticesiQ~~ and tan assignement which associates with

each q~ a vertex R~(i) whiich is a vertex of that face of l)"'which contains

ai. Then there exists a simplex (and in fact an odd number of them) a.i ... 0\
o ....

such that the t ai.. are a.Ll, distinct. Now ta praye the theorem.

The n-dimensional element, or n-disk, may be taken to be an

n-dimensional simplex o", li o '" Il.., wi th barycentrie coordinates XO J ••• .)X.,. •

Then a continuous mapping t: ~7~ consists of relations

where (.:x:~, ... x~)= t(xo/."x",) in which the{are continuous functions.

Consider the closed subsets r. ofo-given by

f. (Xo ) . - - x: ... ) 5: ..x \.
~

Intersection of the Fi implies the existence of a point for which xC ~ Xi U:.O, ... ri)

- l' ~ButL x: <= 1(. =(
l,. l

Thus in order ta praye the theorem i t suffices ta show that

~

;:""\. f ~ i:- 1\
l,. :. "

Consider the faces Il i. Il i . Here we have .x ~ + .. , -1 Xj ;:.

while ;x~ =0 for k:f 'J '" j Since X[ +- •.. f- X~ ~ for at
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At ... A j c F.. V . •. u Fj

Let us take a barycentric subdivision of .g..{t:r"of mesh €.

wi th vertices {Bh}. "IVe assign to each vertex Bh a vertex (l '(h) in

the following way. If BhE. Ri'" f1. j then Bh t f-( for sorne Ft" among F;.) ... Fj •

We may take thatf... with sma.Ll.es't r and then assign to B~ the vertex n~(h)= Rye

Now, by Sperner' s Lemma there is a simplex BI. o •.. Bl. .... such that {j l 1s

assigned distinetly to B",~ which means Bh~e. Fi.' Hence this set BhQ• .•.• Bt.'"

of diameter ~ E. meets a.LL the Fi. • But ~may be chosen as srnall as we

please and so even smaller than the Lebesgue number of the covering { F(. f e

It follows therQfore that the Po: must intersect thus proving the theorem.
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CHAP'l'ER V. "The Lefschetz Fixed Point Formula."

Prerequisite to proving the Lefschetz Fixed Point Theorem

we must quote t'VlO essential results. The first of these is due to J. W.

Alexander (2) and may be stated thus: Every mapping, cp , of one polyhedron

Il< 1 into another IL 1 is €.. -homotopie to a simplicial mapping cr: 1\;'7" L,

where Kland L,are suitable subdivisions of the complexes K. and L. Indeed,

mesh L ,is less than E. ftlld the homotopy paths are each contained in the

closure of a simplex of

The second result to which we refer, asserts that a mapping tr

of one polyhedron, 't( f into another, fL-1 induces a homomorphism ~of the
., o~

homoly groups of fI(l into the corresponding homoLy groups of ft-(
~ A

Furth ermore , cr '*" is the sarne for all ma:"pings homotopie to cr. We speak

0'
here of the homoly groups of a polyhedron. This we may do in virime of the

"
fact that the homology groups of different triangtù.ations of the same polyhedron

are isomorphic.

After these preliminaries we turn now te the development of

the fixed point formula. The first step consists of an invèstigation of the

homomorphism of the homology groups induced by the mapping of a complex K

into itself.

SUppose {Sr} is a basis for the rational p-cycles, i.e. a

maximum set of p-cycles independent with respect te homolvgy; i will range

from 1 te R. f
where RI" is thep+IoBetti number. A simplicial map trof K into

S!'
J

matrix 1JQ~ Il

K induces a transformation:

" ~ p 5"0- Si. rv ~ a 4j j
~ "p pwe shall consider fixed it it ·appears in~ Q~j Sj. Denoting the

by af' we shall study the number 2. (:- tftrace a.P
p
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which we may denote by 'P, (tr')

Suppose that { -, i. Pl5 is a new base for the module of

p-cycles then there will be relations

wi th ~f non-eângul.ar and

br p
Hence trace traeeQ whieh proves•

T. fI
=.-

l

0- Tf ~
l

sothat bP=(Àp)-rat'Àf'

that 'P, (~is independent of the choice of bases for the cycles.

Now let {pIj J t~tj ,i~ PJbe successively extended

bases for the p-boundaries, p-cycles and p-chaâns respectively; so chosen
(l ptl P

that 'ê) 0 è. :: J3é. for ail admissible p. cr- will now induee the following
f c;- L P p

transformations: crJ3 é. -z: L "', j J3.i
v p = " LP( P "C fi "."p

0- Di. L Oij >\ t ~ i.j Uj

(] r P: - P'" P' yP ..fJp ("
di L D., Q. + 1: Cl' u . +- L ct .. a-

<"J fil J ~ 'J"
<V(0) =z(- ,l(trace bP +- trace C P + trace cl r ) •Let

2. p' r
+ () C· · 1·"J J

we get

Applying'() to the last of the three relations. above,

ruo-J'·p =.-
l

ra 0- = o-ro 0..0 dSince

P r:'
so that comparing this with the first relation for p-l we see that J.. ., -:: b,.

c. J J
J r bP-

'and hence trace q ~ trace • The ingenuity of including the factor

C:-I)P now becomes opparent in that (-1) P traced
P

cancels (-l)P-I trace br - '

and d" and b" being 0 anyway cp(rr} reduces to

cr(~) z, ~(-1}PtYaCeCp

In other words, <p«:r) iscompletely determined by the transformation of the

rational cycles and sinceC[. are integers, cp(O) is an integer.
J

Since no linear combination of the (([ Ls a boundary their

homology clasees{0tJ fonna base for the pt~ rational homology group HfCk) •

The homomorphism o: indu.ced by 0- is given precisely by

* r: ~ f rra- ,= CL "( J J

Hence<p(IJ) Ls completely determined by 0-<, In particular a sufficient
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condition that 0""' have fixed elements, as defined above, is that cp (a) :f 0

We shall now use the consequences of the first result we

quoted in order ta prave:

'1'heorem III

The' trace invariant 1 <p(J-) of a contdrruous mapping f­
of a polyhedron ·(K! into itself has the property thatcp(J)ftlis a suffic­

ient condition for f to have a fixed point.

In speaking of ~) when l is a continuous mapping we

mean of course q? as determined by any simplicial mapping homotopie to r- .
Let us assume that J has nofixed points, Le. J.(~)~j('))"70

for ail X E(K(. Since (K( is a compactum there èxi.s ta a f such that

J... Cx)J~)) ~ .f'>0 for all Xe-((. Let K 1 be a simplicial subdivision

of K with the nroperty that each simplex in K, has diameter less than-%.. Now,

} is homotopie to a simplicial mapping ~: 1<,-7 KI so that for each x. e-/k( ) J«'}
and oCt) are in the same simplex of KI. Now suppose that for sorne simplex

SE/( 1 d- cS == S This will mean tha t for oc€:- S.J t ~)E-S so that

d.. (X") 3CXV-c. %.. But we have also !CX)J3-<!JE; 5, é k, so that oC (~(X), ~)).<. ~

~ (X") yxy ~ ç;((xJ (t<X"J) + d. (3(X:).1 çoo) ~ f1 +-%. =- r
which i8 a contradiction.

It follows then th.'lt under the assumption that f be free of

fixed points the chain transformation induced by a simplicial map homotopie

to } ca.n have no fixed element Le. 'PÔ) -::: 0 which proves the theorem.

We shall give one or two exarnples to illustrate the theorem.

In theorem il, K= -g-ecrlll,. K is therefore zero-cyclic, L9. al.L the p-cycles

are homologous to zero forp70and every O-cycle Ls homologous ta a multiple

of a given one. Hence cp(J}: (so that f always has a fixed point.

The rational homology groups of the proj ective plane are those

of a point so tha t here again q?(Ç-) __ 1 and hence every continuous mapping of

the projective plane into itself has a fixed point.
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The n-:::;phere may be considered on the boundary of an n-simplex.

The latter is cyclic a t dimension 0 and dimension Il. Thus, if A is the
nth

class of a vertex and 1'" the basic"homology class we haveJR::.Ilj j(1~Jr~here J.
is the degree of f. Hence 0/ (1)::: 1te-,) l'tJ. from which we conclude

that every sense-preserving mapping (cl » 0 ) of an even dimensional sphere and

every sense-reversing mapping (4<0) of an odd-dimensional sphere must have

a fixed point. Indeed every mapping of an n-sphere into itself whose degree

is different from ±Ihas a fixed point. This is the converse of Theorem 1.

The examples just cited illustrate the power of the fixed point

formula. Lefschetz (12) in 1937 generalized the theorem still further ta

~apply to LC spaces.

An LC space Ls defined in the following way. Let K = t liJ
be a fini te Euclidean complex and L a closed subcomplex of K which contains

all i ts vertices. An LC* space, R, is characterized by the properties:

1) R is a compactum 2) For any E"7o there is an r:7 0 such that if there is

a pair (K,L) S3 .,iust defined and a continuous mapping t o of IL-' into R

such that mesh [ire (L n ~.fcr)J <. r then t- o can be extended to a

continuous mapping t of 'KI such that mesh {tD""j < f. •

It has been shown by Lef'achat.z (13) thr,t the LC ~ spaces may be

identified with the "absolute neighbourhood retracts"· as defined by K. Borsuk.

The latter are defined in the following way. Given a topological space B

and a subspace A, a continuous map~ing t: B~ A which Ls the identity on A

is called lia retraction of B onto A." If a retraction of B onto A exists

then A is known as a retract of B. More generally, A is a "neighbourhood

retract of B" if there is a neighbourhood, C, of A (Le. an open set contain-

ing A) which may be retracted inta A. When A is a separable metric space

it is said ta be "an absolute neighbourhood retract" if every homeomorphic

image A, of A as a closed subset of any other separable metric space, B,



is a neighbourhood retract of B. A detai1ed presentation of the

theory of retraction may be found in Lefschetz' "Topics in Topo1ogv,"

(14) •

29.
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CHAPTER VI Applications.

Noteworthy applications of fixed point theorems have been

made in the field of functional analysis in endeavo.uring to obtain "existence

theorems". The first major contribution is to be fouhd ina paper by G. D.

Birkhoff and O.D. Kellogg (.3) which appeared in 1922. The procedure followed

here has essentially two steps. The first is to generalize results for two

and thrœ dimensions to spaces of dimension r1 and then to function space by

means of a limiting process. Methods of classical analysis are used to prove

that a bounded connected region of E ... has a fixed point under a mapping for

which ~~e coordinate transformations x{" L (XI)"'X") are algebraic. This

is then extended to arbitrary continuous functions by means of the Weierstrass

theorem on the approximation of continuous functions by polynomials.

The authors then pass to consideration of the space Rf of real

functions which consists of the totality of real functions J(5) defined on

the closed interval lOJ t] which are uniformly bounded, i.e. If' < B< toO

for all f and aIl S f [0) IJ and equicontinuous ?((E), 1(.(E) being convex, The

last property means that there exists a functjon defined and bounded on

which approaches 0 with ~ such that [f(H'{) -J{J)/ ~ 'f for f{', s: all S and

S oVe. in [0/ rJ and aIl f. The convexity of 7[(t) means that for every El,

b and e ~n Co} f]
?'((a + S(b-o.)) ~ 7[(a) t- e (7((b)-7((o..))

It is proved that a single valued continuous mapping, S ot RJ into

itself has a fixed point. This is done by considering the effect of:5 on

polygonal functions If( S J X) a t the points x E. R. "l where R", is a

( (, :. ') 2.) • .. lit)forX·l

Ixd $ B j

1T ( S).?C) =

region of n-space whose points have coordinates satisfying the relations:

(
' : I , 2 1 h )
J"'IJZ, VI-(

The function

and is linear for intermediate values of S. The runctaons , T(S) x) 1 as thus
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defined are evidently in •

A transformation T of R", is now defined by means of --w ti, x) = S-rr(.s-'1­

IX. Xl is obtained by setting .:x(-::rr'(s(Jx). The authors assert

that X'<=: R. n and in fact that R" is a bounded connected region. T is

algebraic on R", and 50 Rh has a fixed point under T. Let us denote

this fixed point by C\

The function "Tf(S)a) coincides ri th S-rr{5, (\ ) at the III

Denoting by

i s moved by S,

the distance by which

than ?( Cl'J'-,)

~

and between these points the variation of either function is

so that for ail 5 ~ [0)1], 1'" (sJ<l)- 51f(S;ct)(s À. "l. (v! _1 )

:: JI: (1(5)- SjCsJ)\-ls

Jrr ~ ~?( (~ - .) J

points Si

not greater

clearly JlTI" ~ 0 as 50 that

/(1+ dJ- ::. 0

which means that R~ has a fixed point under S.

This result is used ta answer affirmatively the question as

ta the existence in Rf of a solution of a differential equation ~(rr~ F(X}~;~')I"d("-'})

satisfying V1 linear conditions on the interval(o]a) :

S a.~ P~.(;() q(.i)(.x)c(x + fi. Q'''ik lf(iJGx=0 := Ci.
o J -~ J <l J:'O R=( v" (J

(L. : I,l) .,. ..., j 0 s .J{. ~ •• . s x ...... ~ a..}
where the p~. (x:) are continuous and the condf tions are such as ta

d
determine uniquely a polynomial ~ of degree y\ - 1 • The problem is reduced

ta proving the existence of a fixed point of the transformation S :
5 ~ =: LXiK

. .. LXF(X 1 ~« .. y(c.-.-,~& Je cl,c ." cl JC

k-I

+ Qo+a...X of. "- of a .... _, X

Results of a more general nature which include those obtained by Birkhoff
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and Kellogg have been obtained by J. Schauder (16) in 1930. We shall

merely state the theorems which he has proved.

1. Every single valued continuous mappf.ng of a convex campactum

in a real vector space into itself has a fixed point.

2. If H is convex and closed in a Banach space and t is a contin~

uous mapping such that tH is conditionally compact then t has a fixed point.

(The conditional compactness of a subspace A in a space R means that every

tX..5 in A has a subsequence {X." J convergent to a pointx in

R).

3. Let R be a strongly separable Banach space and H a strongly

closèd and convex subset of R which is weakly, sequentially condi tionally

c.
compat. Then every weakly continuous mapping of H into itself has a fixed

"
point. ("Strongly" refers to the 1 atœong! topology, namely that wi th which

R is equipped in virtue of the metric. The 'weak' topology is indn~ed by

means of the space, R*"', conjugate to R, i. e , the space of linear funtionals

on R, in the following way. If {I.J are the intervals of the real line

and R.* = {fJ then the intersections of finitely many J-lX consti tute

a base for the weak topology of R.

A further application, in quite a different field may be found in

a paper by H. Hopf and H. Samelson (7) which appeared in 1940. The problem

considered there is that of determining topological properties which spaces

must have in order to serve as "operation spaces" (Wirkungs raume) for closed

Lie ~oups. An operation space W is a manifold related to a Lie group C. in

thefollowing way. To each element (.\ of G. there corresponds an analytic foro 103 ;,0.(

mapping }Q. of W onto i tself. The mappings ~ ~ must satisfy the cinditions:

1. fo.(Jb(~));; rQ.b(~)

2. The point Jo. (~) depends continuouslyon the pair

~J f)
3. For each pair ( .F)'1. ) of elements in W there is

a t least one Q. in G:. for which f.:(r) .: 7?
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Up t.o 1940 it had been known that the fundamenta1 group of W has

an abe1ian subgroup of fini te index and that the Betti numbers D ..,-; 1 ;L, •.•l-r J J

satisfy the inequa1ities PT ~ (;) and f..,. ~ (~) The authors

provethat the Euler-Poincaré characteristic)(, (W) must be either zero or

positive and then proceed to restrict still further the positive numbers

which are admissible as characteristics. The method utilizes the trace

invariants of the ia. and the fact that q> (r) where r can he deformed into

the identity is the same asX(w~oth being in fact 2(-1)"- fI-,-
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