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ABSTRACT

Adaptive radiotherapy is the process of modifying radiation therapy treatment

parameters in order to accommodate anatomical changes that manifest during a sin-

gle fraction (ie. breathing) or over the course of treatment (ie. weight loss, tumor

growth/recession). This process relies heavily on the use of imaging available within

the treatment room such as cone-beam computed tomography (CBCT) and mega-

voltage computed tomography (MVCT), of which image quality is often sub-par

compared to diagnostic scans. Plan adaptation often necessitates re-segmentation of

targets and organs-at-risk as well as registration with previous scans which add time

and cost to their implementation. In this dissertation, we attempt to address these

problems through the investigation of a coupled segmentation and registration algo-

rithm using the Jensen Rényi information objective. This divergence metric can be

tuned to optimize performance depending on the image context such as mono-modal

or multi-modal inputs and specific modalities by using a parameter α contained in

the objective function. Coupling of the two processes has the potential to realize

efficiencies and improved accuracy for both processes. We began by investigating

the usage of the Rényi entropy for the sole purpose of segmentation using an active

contour method based on the level-sets approach. The method was found to have

direct applications to Positron Emission Tomography (PET), where noise, blurring

and variable target contrast make segmentation a challenging prospect. Application

to computed tomography (CT) and the combination of PET and CT was included

to investigate the interplay of the α parameter with choice of imaging modality.
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Registration was then coupled with segmentation using the same metric. The inves-

tigation focused on the performance effects of coupling, the alpha parameter with

regard to registration and artificially modified noise and contrast. In conjunction

with the joint segmentation and registration algorithm we developed a 4D biome-

chanical phantom using preserved swine lungs and a computer controlled respirator

in order to evaluate this specific subset of algorithms. The system contains a set of

synthetic lesions allowing us to determine segmentation ground truths. An airway

bifurcation tracking pipeline was implemented in order to provide points of compari-

son for registration evaluation. Through the use of an in-house phantom we were able

to show benefits from coupling and performance under a varying degree of contrast

and noise conditions.
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ABRÉGÉ

La radiothérapie adaptative est le processus de modification des paramètres des

traitements par radiations afin de tenir compte des changements anatomiques qui se

manifestent durant une seule fraction (exemple : respiration) ou au cours du traite-

ment (exemple : perte de poids, croissance/récession tumorale). Ce processus repose

en grande partie sur l’utilisation de l’imagerie disponible dans la salle de traitement

telle que la tomodensitométrie par faisceau conique et la tomodensitomtrie par haut-

voltage, dont la qualit est souvent inférieure par rapport aux scans diagnostiques.

L’adaptation des plans de traitements nécessite souvent la re-segmentation des cibles

et des organes risques ainsi que le recalage des images avec les scans précédemment

effectués, ce qui ajoute un temps et un coût considérable à leur mise en œuvre. Dans

cette thése, nous tentons de résoudre ces problèmes via l’étude d’un algorithme cou-

plant simultanément la segmentation et le recalage d’image et utilisant l’information

de Jensen Rényi comme objectif d’optimisation. Cette mesure de divergence per-

met un réglage de l’algorithme pour plusieurs combinaisons spécifiques d’imagerie

en utilisant une pondération de la contribution du bruit de chaque image. Le cou-

plage des deux processus a le potentiel d’améliorer la précision des deux processus

pris séparément, tout en conservant l’efficacité de chacun. Tout d’abord, nous avons

étudié l’utilisation de l’entropie de Rényi dans le seul but de la segmentation en

utilisant une approche dite par “ensemble de niveau”. Nous avons pu déterminer

que la méthode conduit à des applications directes à la tomographie par émission de

positrons (TEP), où le bruit, le flou et la variation de contraste de la cible font de
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la segmentation une tâche difficile. Une application à la tomodensitométrie (TDM)

et la combinaison de la TEP et la TDM a été incluses afin d’étudier l’interaction du

paramètre alpha avec le choix du type de modalité d’imagerie. Le recalage d’image

a ensuite été couplé avec la segmentation en utilisant la même métrique et a été

mis en œuvre. L’étude s’est concentrée sur les effets de performance du couplage du

paramètre alpha vis- à-vis le recalage d’image et le bruit et le contraste d’image arti-

ficiellement modifiés. Conjointement avec l’algorithme de couplage de segmentation

et de recalage d’image, nous avons développé un fantôme biomécanique 4D en util-

isant des poumons de porcs préservés et un respirateur contrôlé par ordinateur afin

d’évaluer ce sous-ensemble spécifique d’algorithmes. Les systèmes contiennent un en-

semble de lésions synthétiques nous permettant de déterminer les valeurs réelles de

segmentation. Une séquence de suivi des voies de bifurcation a été mise en œuvre afin

de fournir des points de comparaison pour l’évaluation de l’algorithme de recalage

d’image. Grâce à l’utilisation d’un fantôme que nous avons développé, nous avons

pu démontrer les avantages du couplage et les performances pour diverses conditions

de variation de bruit et de contraste d’image.
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CHAPTER 1
Introduction
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all documents present in this thesis.
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Pierre L éger: Mr. Léger was responsible for designing and constructing the

control circuit used to operate the airflow system of the biomechanical lung phantom

presented in Chapter 4.

Joe Larkin: Mr. Larkin contributed significantly through education on the

use of the machine shop and physical construction of the airflow system presented in

Chapters 4 and 5.

1.2 Motivation

Cancer accounts for 1 in 7 deaths worldwide, approximately 8.2 million in 2012.

Lifestyle choices are expected to add to this number with smoking as the number one

contributor. In low to middle-income countries the number of tobacco related deaths

are projected to double by 2030 (as compared to 2002 statistics)[4]. The treatment

of lung cancer is and will continue to be a significant challenge in healthcare.

The choice of treatment in 60-70% of cancer diagnoses includes radiation therapy

for curative or palliative intent[5]. This is accomplished through the delivery of

radiation dose to a pre-defined target while minimizing the collateral dose to healthy

tissue. This is usually achieved with the use of a linear accelerator or radiation

source that will emit photons and/or electrons in order to apply a dose of radiation

to a specific tissue region in the body. This treatment is often divided into many

sessions over the course of weeks due to the radiobiological response, called fractions.

Changes in tumour volume of nearly 2%[6] per day by volume has been observed

throughout courses of treatment. As such, efficacy is largely dependent on knowledge

of the extent of the biologically active tumour region and the ability to account for

these changes through adaptive strategies that tailor treatment to each patient’s
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progression. Unfortunately, such a course of action often puts a strain on clinical

resources due to re-planning time of the treatment and equipment requirements,

increasing costs by as much as 40%[7] and compromising its practicality.

With more complex treatment regimens becoming the norm, this considerable

burden has motivated commercial software vendors to include automated planning

tools to assist with planning processes such as segmentation and registration. Seg-

mentation within the context of radiation therapy is the act of partitioning bio-

logically relevant regions within a medical image such as active tumours or critical

organs. Manual segmentation is a time consuming and laborious process prone to

subjectivity and a large degree of variability. The degree of interobserver variability

has been determined to be one of the largest sources of uncertainty in regards to

knowledge of the boundary of the tumor in radiotherapy [8] reaching up to 700% by

volume when using Computed Tomography (CT) information [9].

Registration on the other hand involves warping or transforming one set of im-

ages so that they align with a second set taken at a different time or with another

scanner. These image processing tools allow planners not only the ability to ac-

count for anatomical changes, but also to leverage additional imaging information

from modalities such as Positron Emission Tomography (PET) and Magnetic Reso-

nance Imaging (MRI) in addition to conventional CT. This can be used to increase

knowledge of the anatomy during planning, ultimately leading to improved survival

and reduced risk of toxicity and secondary cancers. An example of this is with

the incorporation of hybrid PET/CT scanners into the treatment planning process.

Future necessity for these tools is further highlighted by the recent emergence of
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hybrid MRI-linear accelerators which are able to deliver a prescribed radiation dose

while imaging the treatment site simultaneously. Such a treatment strategy relies

heavily on fast and accurate registration of CT and MRI information assuming that

treatment planning was performed using the CT.

Automated methods have potential to reduce uncertainty and treatment plan-

ning time, ultimately saving costs and making adaptive radiotherapy increasingly

feasible for a larger number of patients.

The difficulty in using automated registration and segmentation tools is the

potential for compromised performance under changing image variables such as con-

trast, image noise and artifacts. Such conditions are common when dealing with

on-board imagers such as Cone-Beam CT (CBCT) and Mega-Voltage CT (MVCT)

or with PET imaging. These are areas where human input and interpretation con-

tributes the largest value but again is susceptible to observer subjectivity.

The processes of registration and segmentation as applied in this thesis are

framed as optimization problems using a chosen cost function. The cost function

is used in this context to determine when the segmentation algorithm has reached

the visual border of an object as seen on an image, or in the case of registration,

when the two images have been accurately aligned with one another. As a cost

function the Jensen Rényi divergence has the potential to partially alleviate concerns

when poor contrast and image noise conditions are present. The divergence measure

relies on a parameter α to determine its curvature and thus how the algorithms

reliant on it will behave. In addition to investigating the usage of the Jensen Rényi

divergence, simultaneous coupling of the segmentation and registration processes can
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further improve efficiency and accuracy for both methods by introducing additional

information into the processes of each.

1.3 Challenges

Our work addresses several difficulties faced when using the Jensen Rényi di-

vergence in general and simultaneous registration and segmentation algorithms in

particular.

One of the difficulties faced in incorporating the Jensen Rényi divergence is op-

timization of its α parameter in application to a specific imaging context. The α

parameter determines the curvature of the cost function and significantly influences

the performance of the registration and segmentation processes. We have taken

an experimental approach to optimization of the α parameter, giving recommended

values for the different imaging modalities studied. Additionally, as with the α pa-

rameter, the degree of coupling neccessary between the registration and segmentation

terms was unknown and required its own optimization as well.

The second challenge faced was finding a suitable dataset for evaluating the algo-

rithm. Since the joint registration/segmentation algorithm represents an uncommon

approach, most datasets available lacked the ability to evaluate both registration and

segmentation. Added to this, the fact that our algorithm has the built in flexibility

to tackle multiple modalities requires compatibility of the dataset/phantom to MRI

and/or PET. Anatomical and kinetic realism was another important factor in order

to reproduce the image detail, texture and deformation field seen on clinical scans

rather than resorting to homogenous regions and simplistic movement patterns. To

this end we constructed our own phantom using preserved tissue. In order to evaluate
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segmentation and registration algorithms, we need data to compare against in which

we have a reasonable degree of certainty of its validity. This data will constitute our

ground truth. This invites further difficulties as we required a segmentation and reg-

istration ground truth beyond manually selecting a series of points and boundaries

which by the very nature of how they are acquired contain significant uncertainties.

Creating a segmentation ground truth required a target that was MRI/PET/CT

compatible, contained a degree of heterogeneity in appearance and could be obfus-

cated. This requires ’hiding’ the target boundary using a second compartment and

varying the contrast of the target compartment in order to increase the difficulty of

segmentation. In this way we can evaluate performance differences between mutli-

ple segmentation algorithms. When considering PET imaging, user safety becomes a

concern since contact with the radiotracer can lead to contamination and uneccessary

dose.

Extracting a registration ground truth is a challenge within the image processing

field. The use of fiducial markers (artificial objects placed into the object being

scanned acting as landmarks) could be utilized for this purpose, but would potentially

bias the registration since they alter the intensity information in the image used by

the registration algorithms. Artificial digital deformations can be used but ensuring

anatomical correctness then becomes a challenge.

New tools are required to address the aforementioned concerns and perform

simultaneous registration and segmentation evaluation while avoiding the pitfalls to

commonly existing techniques.
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Figure 1–1: A visual example of the ground truths needed for registration and seg-
mentation. In a) Two squares represent an object imaged at two different times and
has undergone rotation. Our ground truth is represented by the vectors that describe
the movement at any point in the first image. Shown in b) and c) is an example for
segmentation, where our ground truth is represented by a curve (in 2D) or surface
(in 3D) that accurately defines the boundary of the object in question. In this case
the dark grey square which exists over a lighter grey background is the object we
wish to segment. The boundary shown in red in c) is our ground truth or what we
will compare against.

1.4 Contributions

The work described in this thesis contributes to the fields of radiotherapy and

image processing in three ways.

First, we developed a novel segmentation algorithm by investigating the use of

the Jensen Rényi divergence applied to a level-sets methodology. We reported a

performance on par with current state of the art algorithms for the task of PET seg-

mentation and demonstrated multimodal applications using PET/CT. We describe

the Jensen Rényi segmentation algorithm in Chapter 3.

Second we developed a quality assurance (QA) platform for evaluating joint seg-

mentation/registration algorithms that is MRI/PET/CT compatible, and is physi-

cally and kinetically realistic from an anatomical standpoint. Part of the platform is
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a computer controlled respirator that can fully replicate human breathing traces, a

feature useful for evaluating motion prediction algorithms and for testing registration

under realistic conditions. Details on the phantom are included in Chapter 4.

Finally, we combined the segmentation algorithm previously developed with a

non-rigid registration technique to see if simultaneous application could improve

convergence and accuracy for both methods. We optimized the α and coupling co-

efficients through experiments. The simultaneous algorithm is described in Chapter

5.
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CHAPTER 2
Background: Information Theory, Segmentation and Registration

In this section we describe the background theory on radiation therapy, segmen-

tation, registration and divergence measures that will be neccessary to understand

the rest of the chapters. An overview of the practice of adaptive external beam ra-

diotherapy will be given to contextualize the image processing algorithms and their

role. The segmentation and registration algorithms in turn are each dependent on an

objective function which they seek to maximize through optimization. The underly-

ing innovation is the exploration of the Jensen Rényi divergence as a cost function

and as such, this chapter will conclude with a review of information theory in Section

2.4.

2.1 External Beam Radiation Therapy

As stated in the motivation section, radiation therapy is a popular choice in

the treatment of cancer, particularly in cases where surgical resection is deemed too

risky, prior to surgery in order to reduce the disease burden or simply in conjunction

following surgery in order to improve survival. External beam radiotherapy involves

the application of radiation from outside the body either using a natural source such

as Cobalt-60 or an electronic one such as with the use of a medical linear accelerator.

The accelerators can usually produce both electrons (in the kinetic energy range of

4-25 MeV) and photons (in the energy range of 4-25 MV). Photon irradiation can

cause cell death or eliminate the ability of cells to reproduce through two approaches,
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namely direct or indirect ionization. The first involves the interaction of radiation

directly with the DNA or critical structures of the cell causing ionization in molecules

that lead to a loss of function, or irreversible damage to genetic material through

the breaking of DNA bonds. This may happen through several mechanisms. For

photons they occur primarily through photoelectric effect, compton scattering and

photonuclear interactions. This leads to photon and electron scattering and positron

production which go on to further deposit energy in the surrounding medium. Rather

than direct ionization of critical structures in the cell, additional damage is applied

indirectly through the production of free radicals such as hyodroxyl (OH−) through

the ionization of water particles. These go on to interact chemically which can lead

to further DNA bond breaking. One way of measuring radiation dose is in units of

Gy, equivalent to the deposition of one J/kg of material.

2.1.1 Fractionation

The effect of radiation on cell populations is complex and depends on a number

of factors such as sensitivity, the presence of radiosensitizers and radioprotectors

and the ability of the cell to repair damage. The main goal of radiotherapy and

radiotherapy planning is to maximize the dose delivered to diseased areas of the body

while minimizing the dose received by healthy regions. This leads to a maximization

of what is termed the tumor control probability (TCP) and minimization of the

normal tissue complication probability (NTCP). The ratio of TCP to NTCP is called

the therapeutic ratio and is an indicator of a treatment plan’s quality. In order to

take advantage of the ways in which cells respond to radiation and maximize the

therapeutic ratio, dose is not delivered in one treatment session but usually divided
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Figure 2–1: Hypothetical cell survival curves for late and early responding cell types
reproduced from Podgorsak, 2005 [1]

into 1-2 Gy fractions. Total treatments are delivered over many fractions over a

few weeks. The rationale for and proper application of fractionated radiotheray

are summarized by the 5 R’s of radiobiology (previously the 4 R’s, so we see some

progress in this area).

Repair: By fractionating treatment, normal tissue is given the chance to repair

while malignant cancer cells often have suppressed repair pathways hindering their

ability to recover from sublethal damage. The application of this idea is a bit more

nuanced in that the proximity and type of tissue around the target area or in the

radiation beams pathway must be considered.

11



Sublethal damage can be repaired during the treatment itself and thus tissue

generally exhibit one of two types of behaviour, late or early responding which is of

course relative to other tissues. Late responding tissues react early to repair damage

from radiation but once those repair mechanisms are overwhelmed, cell death occurs

at a greater rate than early responding tissue. This is illustrated in Figure 2–1. This

is the main idea behind fractionation schemes. If the target region responds later

than adjacent healthy tissue than higher doses per fraction are needed to seperate the

cell survival curves of the two tissue types and fewer fractions are needed. Likewise

if the target regions respond earlier, smaller doses spread over a larger number of

fractions becomes more appropriate.

Redistribution: Cell sensitivity to radiation is dependent on the stage of the

cell cycle that it is found in when irradiated. The G2 and M phases of the cell

cycle are the most sensitive while the S-phase is found to be the most radioresistant.

Because of this there is a differential in cell survival based on the distribution of

phases that cells are found in. Fractionating radiotherapy allows the cell population

to redistribute so that those in the S phase during the first fraction have a chance to

change to the G2 or M phase in future fractions.

Reoxygenation: One of the chemical species that radiosensitizes cells to radi-

ation is oxygen. Due to large demands on energy and oxygen that tumors have, they

tend to grow quickly and signal the growth of new blood vessels in highly irregular

patterns. This inefficient distribution of resources leads to hypoxic areas, with oxy-

gen rich regions tending to exist at the edges of a tumor. Higher radiosensitization

in these areas leads to a higher cell kill and thus reduced competition for oxygen,
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allowing areas deeper in the tumor to re-oxygenate following a dose of radiation.

This allows them to be more susceptible to treatment in the following fraction. A

pattern that would not be observed with a single application.

Repopulation: Repopulation of cells in the body plays a large role in treatment

outcome. It is found that cancer cells can undergo rapid repopulation following

radiation treatment. Thus continued and frequent fractions of radiation are necessary

to manage the disease.

Radiosensitivity: Different cell types and tumor types have intrinsicly dif-

ferent sensitivities to radiation which must be taken into account when considering

treatment options and techniques. For example activation of Epidermal Growth Fac-

tor (EGFR)[10], the p53 protein [11] and presence of the Human Papilloma Virus

(HPV)[12] have been identified as sources of radiosensitivity or radioresistance.

The need for fractionation presents a significant problem when considering the

need to ensure consistent geometric accuracy throughout treatment. Patient anatomy

along with tumor dimensions have the very real possibility of changing throughout

the course of treatment which typically stretches over a few weeks and even during

treatment itself due to patient movement.

2.1.2 Planning

Treatment planning for external beam radiotherapy involves several steps follow-

ing initial diagnosis and prescription of a treatment option. The first step in planning

involves a CT simulation in conjunction with immobilization of the patient. A CT

simulation differs from a diagnotic CT scan in terms of quality, a larger bore size

(to allow a larger array of patients and immobilization equipment) and the use of
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a robotic flat-top couch similar to that installed in the linear accelerator treatment

bunker in order to replicate the conditions under which the patient will be treated.

Careful attention is made to immobilize the patient using a combination of devices

such as deflatable polyurethane foam molds, vacuum molded plastic masks for the

head, bite blocks and skin tattoos to precisely reposition the patient in the same

pose the day of the treatment. The CT simulation is used to give planners infor-

mation on the attenuation properties of the patient. This scan is imported into a

sophisticated treatment planning system (TPS) where the 3D anatomy of the patient

is used to simulate the deposition of dose under varying beam configurations. The

planners must then define the boundaries of tissues in the vicinity of the treatment

site that they seek to spare, called organs at risk (OARs). Both the OARs and the

boundaries of the tumor must be defined in a process called segmentation. This is

typically done manually however more recently semi-automated and fully automated

methods have made their way into the clinic [13, 14]. Several contours are defined for

the tumor, the first is the gross tumor volume (GTV) which encompasses the gross

tumor that is visible on the scan. A margin of a few mm is defined around the GTV

to include the sub-clinical extent of the disease that is not visible on the scan, the

boundary is referred to as the clinical target volume (CTV). An additional margin is

defined around this to encompass the positional uncertainty of the target (ie. the full

extent of motion during or between fractions that is expected to occur) called the

internal target volume (ITV). Finally, one last margin is added to account for setup

uncertainties on the day of treatment called the planning target volume (PTV) in

which the planners attempt to ensure a uniform dose. Once the regions of interest
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have been defined, the number of beams, beam geometry and energy are determined

in order to conform the dose to the PTV while attempting to spare the OARs as

much as possible.This may consist of a set of static beams conformed to the shape

of the target volume or more sophisticated approaches such as intensity modulated

radiation therapy (IMRT) or volumetric arc therapy (VMAT). IMRT makes use of

a large number of beams with sophisticated geometries that are planned on a grid

using a multi-leaf collimator (MLC) to shape and vary the fluence from the beam’s

eye view which when added together over all angles, produce a dose distribution

that conforms to the target geometry. VMAT incorporates one fluid motion of the

linear accelerator and MLC around the patient rather than stopping for each beam

position. The beam parameters of the chosen treatment type are optimized using

multiple criteria based on the dose received by the PTV and surround OARs. Based

on the weighting given to each criteria a plan that satisfies each of them (or comes

as close as possible) is presented to the planner and can be accepted or rejected in

order to change the chosen criteria and receive an improved plan.

2.1.3 Imaging

Treatment planning and diagnosis is heavily reliant on medical imaging available

in the clinic and while radiotherapy is primarily concerned with CT, CBCT and

MVCT other imaging modalities can also be incorporated in the cancer treatment.

CT

Computed tomography was first conceived by Sir Godfrey Hounsfield in 1967

while working for EMI [15]. Computed tomography works by using a fan beam of

kilovoltage x-rays that pass through a subject and are measured by an opposing row
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of detectors. Using the attenuation of the beam by subject and rotating the beam

and detector around the subject, a 2D image can be reconstructed using a number

of techniques such as filtered back projection of the data. Modern CT scanners

use multiple rows of detectors in order to acquire hundreds of slices at once [16]

which is particularly useful for 4D imaging of the lungs and heart. As CT makes

use of kilovoltage X-rays, the primary mode of photon interaction is through the

photoelectric effect. Thus image contrast in CT is strongly dependent on electron

density.

CT provides higher soft-tissue contrast compared to X-ray radiographs in ad-

dition to 4D data when multiple volumes are acquired in series and sub-millimeter

spatial resolutions. The values recorded in a CT image are called Hounsfield units

(HU) and are defined in Equation 2.1.

HU = 1000× µ− µwater
µwater − µair

(2.1)

The Hounsfield unit normalizes the values of the image to the attenuation coef-

ficient of water.

PET

Positron emission tomography is a functional imaging modality used to image

the distribution of radiopharmaceuticals injected into a subject. The most commonly

used radioisotope in the clinic is Fluorodeoxyglucose (18F-FDG) which has a radioac-

tive isotope of fluorine attached to a glucose molecule in place of a hydroxyl group.

This works as a glucose surrogate for imaging regions of the body with increased

metabolism and glucose uptake such as the brain, heart and tumor lesions. 18F is
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a convenient isotope as it has a decay time of 109.8 min, long enough for practical

use but not too long that it will remain radioactive longer than needed. 18F decays

through beta-plus emission where an emitted positron travels on the order of a few

millimeters before anihilating with an electron. This interaction results in the emis-

sion of two gamma-rays at 180◦. A ring of detectors is used to detect the gamma rays

within a time window on the order of 10 ns. By recording these coincidences, activity

is recorded as having occured along the line connecting the location of the two de-

tectors. In this way a sinogram can be constructed similar to how CT reconstruction

is performed. However due the activity statistics and effects such as misregistra-

tion of anihilation events, false detections and non-colinearity due to residual kinetic

energy during anihilation, special reconstruction techniques are required. The most

common of which are the ordered subset expectation maximization (OSEM), 3D-row

action maximum-likelihood (3D-RAMLA) and the maximum likelihood expectation

maximization (MLEM) algorithms. These use statistical models of the detector and

anihilation process that take into account positional uncertainties when iteratively

reconstructing the images through forward and back projection steps. The low en-

ergy of emitted positrons from 18F-FDG is also ideal as it leads to a shorter path

length before anihilation, reducing the geometric uncertainty of the original decay

event. FDG-PET is a highly sensitive modality, able to detect clonogen densities

as low as 105 cells/cm3 compared to 105−6 cells/cm3 for MRI and CT[17]. Hybrid

PET/CT scanners have provided immense clinical utility by offering physically reg-

istered images that combine functional and anitomical information. This has greatly

aided in detection and segmentation of lesions and has also been used to predict
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Figure 2–2: Coronal view of an image acquired with a PET scan on left and fused
PET/CT on the right of a subject with lesions throughout the lymphatic system.
Elevated 18F uptake is seen in the liver and bladder due to elimination of the tracer
by the body. (L. Vaalavirta / CC-BY-SA-2.0)[2]
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Figure 2–3: Sagital view of the head and neck of a patient deemed ‘normal’ using a
T1-weighted scan. (Relgh LeBlanc / CC-BY-SA-2.0)

treatment response [18]. An example image is shown in Figure 2–2. One of the

drawbacks to PET is the reduced spatial resolution (3-6 mm) compared to other

modalities and increased noise that makes precise segmentation of objects difficult.

MRI

Magnetic resonance imaging is a profoundly varied and useful modality that can

offer a wide variety of physical information and instrument flexibility for influencing

image content. The operating principle of MRI is based on the application of high

strength magnetic fields in the range of 0.23-9.4 T (clinical scanners do not tend to

exceed 3 T). The main B-field is used to align the proton spins of molecules (signal is

primarily dominated by water) while a secondary radiofrequency (RF) field is used
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to precess these spins into the tangential plane. This RF field also aligns the phases

of the spins. After cessation of the RF field, dephasing of the spins occurs due to

influence of the microenvironment in addition to a return in spin orientation to the

axis of the main B-field. The loss of RF signal and the increase in signal oriented

in the main B-field direction are measurable properties directly linked to T2 and

T1 weighted images [19]. Figure 2–3 shows an example image of the head and neck

acquired using a T1-weighted scan. Spatial encoding is accomplished through the

use of a linear gradient field applied in the same direction as the main B-field but

varying in field strength over the x and y axes. This alters the precession frequency of

the protons over space. When the fourier transform of the return signal is recorded,

each frequency encodes a specific x and y location.

MRI is advantageous as a non-invasive, non-ionizing imaging technique that

poses no adverse health effect when operated correctly. The disadvantages to using

MRI include cost, scanning time, the preclusion of certain patients with ferric im-

plants and difficulties imaging lung. Difficulties in imaging lung stem from blood

flow, organ movement, molecular diffusion and the heterogenous structure of the

lung parenchyma leading to fast signal loss. Contrast agents for use in MRI consist

mainly of Gadolinium based molecules.

CBCT

Cone-beam computed tomography works on a similar principle as computed

tomography except that it is designed as more accessible option with a smaller form

factor allowing integration onto the linear accelerator itself. Cone-beam CT differs

from conventional CT in that, as its name implies, it uses a cone shaped X-ray beam
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Figure 2–4: CBCT (a) versus conventional CT (b) scan of a pair of preserved swine
lungs demonstrating the differences in contrast and noise.

opposite a flat panel detector. One single rotation over 200◦ is sufficient to acquire

enough information to reconstruct a 3-dimensional volume. This is advantageous

for ensuring proper alignment of the patient with the planning CT while they lie

on the treatment couch. Due to the differing beam geometry, CBCT requires alter

reconstruction methods.

One major drawback to using CBCT is reduced contrast and increased noise

caused by scattering events resulting from the use of a cone beam as opposed to a

fan-beam where many of these scattering events end up outside of the detector field

of view. An example of this can be seen in Figure 2–4

2.1.4 Adaptive Strategies

Adaptive radiotherapy (ART) encompasses a number of techniques that account

for anatomical changes over different time scales. Intrafractional adaptive therapy

attempts to track tumor and OARs during involuntary movement such as swallowing

or free breathing. While simpler methods such as breath holding during beam on
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time are possible, many patients due to poor physical condition are unable to comply.

Gating is an approach where the free breathing of a patient is tracked using either an

infrared reflective block or using a pressure sensitive respiratory belt strapped around

the thorax followed by the treatment beam turning on during a specific breathing

phase. These two procedures do of course require significantly longer treatment

times. Dynamic tracking of the target using the MLC during free breathing is one

alternative currently being researched but requires a method of imaging the tumor or

an implanted seed. Specialized products such as the Synchrony Respiratory Tracking

System along with the Cyberknife linac (Accuray, Inc., Sunnyvale, California) or the

Calypso 4G localization system from Varian (Palo Alto, California) system often rely

on implanted gold seeds tracked through stereo radiographic panels. A drawback to

this method is the need for invasive insertion of the seed and risks the possibility of

pneumothorax (leakage of air into the pleural cavity surrounding the lungs).

Interfractional adaptive radiotherapy applies to anatomical changes experienced

over multiple fractions of treatment. This can incorporate modalities such as CBCT

and MVCT or offline modalities such as PET, CT or MRI. Typically, compromises

to the treatment planning objectives (usually quantified by TCP, NTCP and dose

coverage to specific structures) are used as a selection criteria for re-planning in

response to limited time and physician resources [20, 21]. Replanning in this con-

text requires adapting patient contours to the current anatomical context. This can

be done through image registration of the original planning scans to the current

scans and deforming the previous set of contours. However, for regions where tis-

sue deformation is insuffienct to account for biological changes (primarily loss or
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gain of tissue), alterations of the contours may necessitate re-segmentation through

manual or computer assisted means. Reoptimization is then required to derive new

beam parameters that will fulfill a new required dose distribution within the pa-

tient. Deformable registration also serves another purpose within ART to track and

accumulate total dose in order to ensure overall dose objectives are met.

Considering their importance in the larger context of image-guided adaptive

radiotherapy (IGART), the theory and knowledge of the approaches to both seg-

mentation and registration are necessary for proper understanding of this work.

2.2 Image Segmentation

Haralick and Shapiro define segmentation as a “partition of an image into a set

of non-overlapping regions whose union is the entire image” [22]. During treatment

planning, this is often referred to as contouring. Image segmentation simply entails

defining an object’s boundaries using an enclosing curve (in 2D) or surface (in 3D)

either manually or using software to assist. Segmentation is a significant challenge

within the medical imaging and computer science field particularly when there is

a lack of information separating the object from its background. This section will

cover the two main approaches to variational methods of segmentation, explicit and

implicit representations. Variational methods revolve around the initialization and

evolution of a contour to satisfy a particular cost function.

2.2.1 Explicit Representation: Snakes

The snakes method of segmentation is where the contour in question is explicitly

defined by a series of line segments connecting an array of points represented by C

in Euclidean space. The arc length along C is defined by s. It was first proposed
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in 1987 by Kass, Witkins, and Terzopoulous [23]. The proposed cost function is

represented by Equation 2.2,

E(C(t)) =

∫ 1

0

(
α(s)

∣∣∣∣∂C(s; t)

∂s

∣∣∣∣+ β(s)

∣∣∣∣∂2C(s; t)

∂s2

∣∣∣∣2
)
ds+ γ

∫ 1

0

P (C(s; t))ds; (2.2)

where the first integral refers to the internal energy that stems from the curvature

of the contour. The first and second order terms within this integral correspond to

the membrane and thin plate behaviour (or sensitivity to the degree of stretching and

curvature) of the contour, regulated by the coefficients α(s) and β(s). The second

integral in Equation 2.2 refers to the potential energy which drives the evolution of

a contour based on image information. It may take many forms but it is commonly

a function of the image gradient.

Equation 2.2 can be solved using the following Euler-Lagrange partial differential

equation (PDE),

∂

∂s

(
α
∂C

∂s

)
+

∂2

∂s2

(
β
∂2C

∂s2

)
+∇P (C(s, t)) = 0 (2.3)

One of the general drawbacks to using explicit representations of active con-

tours is that they require additional attention in regulating point density as well as

splitting/combining multiple regions. In particular, handling areas of high curvature

such as object corners can be challenging. This can be seen in Figure 2–5 where the

snakes algorithm is used to attempt to segment an octagon and a circle. In the next

section we will see how an alternative representation can alleviate this challenge.
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Figure 2–5: Application of the snakes segmentation approach applied to an octagon
and a circle. Image a) shows us the algorithm after the 1st iteration after being
initialized through a manual selection of points. In b) we see the algorithm after 30
iterations. It is unable to split the shape without implementing a special procedure
and encompasses both test shapes.

Figure 2–6: Visual representation of a level set surface intercepting a test image
containing an octagon. The contour is defined by this intercept.

2.2.2 Implicit Representation: Level Set Method

The implicit approach to active contours involves the use of a level sets mapping

to represent the contour boundary. This technique was influenced and developed

from the work of Osher and Sethian [24] in 1988.

A level-set is a scalar function (φ) that adds an additional dimension to the

image space, defining a surface (in a 2D case), the zero-crossing of which defines

the contour boundary (ie. φ(C, t) = 0). In this case, C represents the contour
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curve and t, time. In an explicit representation, the expansion and contraction of

the contour is defined by the movement vectors of the boundary points, the level

sets function expands and contracts through raising and lowering of the level sets

function according to Equation 2.4 and shown in Figure 2–6.

δφ

δt
= V (κ) |∇φ|+ F (Θ) (2.4)

This is a simplified representation of a level set evolution function where V (κ)

is a function of the curvature and image gradient and F (θ) represents the external

forces such as shape related constraints. κ represents the curvature term and can be

calculated numerically from φ using Equation 2.5.

κ = ∇
(
∇φ
|∇φ|

)
(2.5)

Using level sets allows significant advantages such as stability, and intuitive

curve breaking and combining as shown in Figure 2–7. However it is dependant on

image gradients to determine the stopping point. Some objects may not have clearly

defined borders encompassing the entire shape and thus are prone to leakage issues

where the active contours grows beyond the boundary of the object. An alternative

formulation of the variational framework was proposed by Mumford and Shah in

1989 [25]. Here the following energy function is minimized:

F (u,C) =
∑
i

µi

∫ ∫
Ω

|u− gi|2 dxdy + ν |K| , (2.6)
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where u refers to the image in question, particularly the set of intensity values for

each pixel in question and x and y in this context symbolize the Euclidean coordinates

within a 2D image. Here µ and ν are positive weighting coefficients for the different

terms of the function. The first term attempts to minimize the difference between

the intensity values found in each region, indexed by i and gi the mean value within

these regions. The second term is a shape energy term, and determines the overall

curvature of the final contour. High values lead to more rounded contours with

fewer regions of high curvature (ie. corners). Ω in this context defines the region of

possible values of x and y. For example, the simplest application of the Mumford

Shah formulation contains two regions, inside and outside the contour boundary

usually represented by Ω− and Ω+, the union of which constitutes the entire image

space. This approach was combined with a level set formulation in the Chane-Vese

implementation in which the proposed energy function follows Equation 2.7 [26].

E(ψ, u) =
∑
i

∫
Ω

(I(x)− u1)2H(ψ) + (I(x)− u2)2(1−H(ψ))dx+ ν

∫
ω

|∇H(ψ)| dx

(2.7)

Where E is the energy and u1 and u2 are the mean intensity values for inside

and outside the contour. H(ψ) is the Heaviside step function where H(ψ) = 1 for

ψ > 0 and H(ψ) = 0 for ψ < 0. The edge function H(ψ) forces an evaluation of the

function at the edge of the contour solely instead of updating the entire level sets

function which would slow down the algorithm and is potentially unnecessary.

The cost function can be minimized using the following Euler-Lagrange equation:
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∂ψ

∂t
= −∂E

∂ψ
= δ(ψ)

(
νκ+ (I(x)− u2)2 − (I(x)− u1)2

)
(2.8)

Alternative edge functions (H(ψ)) have been used in the literature such as by

Zhao et al. [27].

Hη(ψ) =


1 if x > η

0 if x < −η
1
2

[
1 + x

η
+ 1

π
sin
(
πx
η

)]
if |x| ≤ η

(2.9)

δη(x) = H ′η(x) =

 0 if |x| > η

1
2η

[
1 + cos

(
πx
η

)]
if |x| ≤ η

(2.10)

Where η is a scale factor that scales the smoothness of the edge function. Here,

H ′η(x) represents the spatial derivative of Hη(x), used as a smoother approximation

to the δη(x) function in 2.8. Chan and Vese utilized an alternative edge function of

the following formulation:

Hη(x) =
1

2
(1 +

2

π
arctan(

x

η
)) (2.11)

δ2,η(x) = H ′η(x) =
1

π

η

η2 + x2
(2.12)

This allows a smoother updating to the level set function, increasing the prob-

ability of finding a global minimum. Updating schemes like these have the risk of

making the optimization unstable after a few iterations by introducing sharp gradi-

ents into the level set function. This requires a refreshing step where the level set
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Figure 2–7: An example of the Chan Vese level set algorithm segmenting the same
example from Figure 2–5. The procedure is shown after a) 1 iteration, b) 10 iterations
and c) 25 iterations where the contour has split into two.

function is reinitialized by a distance function of the current contour boundary every

few iterations.

In the case of equation 2.6 the objective function is defined at the distance

between distribution means, however this can be replaced by other distance measures

such as a probabilistic value infering class identity.

2.3 Registration

Image registration is the act of matching the space of two images through the use

of a geometric transformation. Often one image is designated as the moving image

(or reference image) while the second remains stationary (the target image). Image

registration has been applied widely in the medical field under several strategies.

The first of which is temporal image or intra-subject registration where the two

images are of the same subject taken at different points in time or under different

physical conditions. Some examples of commonly observed anatomical changes that

may require registration include changes to tumor size, weight loss, movement of the

lungs under free breathing, swallowing, filling/voiding of hollow organs and shifts in
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organ position. This is important for studying disease progession, dose tracking or

as a surgical aid.

The second category is inter-subject registration in which multiple subjects are

registered together. This is often performed during the construction of atlases, which

is a way of defining a population-based anatomical model. In essence it is an average

of a large number of images of registered subjects. It represents an average model

of the human body (or other species). Atlases are commonly used to automate

the identification and segmentation of regular anatomy for radiotherapy treatment

planning [28, 29], the study of variances in anatomy [30] or using abnormalities from

the norm to determine areas of diseased tissue [31].

Multi-modality registration is another area that is commonly required in medical

physics when incorporating information from a variety of imaging techniques such as

computed tomography, magnetic resonance imaging, positron emission tomography,

cone-beam computed tomography or ultrasound to name the more common ones.

This is a particular challenge since each modality retrieves vastly different informa-

tion with different resolving capabilities and contrast. Determining the proper way

to measure image similarity is a challenging area that requires the utilization of alter-

native similarity criteria [32, 33, 34] and deformation constraints[35, 36]. Registering

image information from multiple modalites can allow that information to be bet-

ter utilized such as for improved target definition [37, 38], diagnosis, and prognosis

[39, 40]. This is useful since images from multiple modalities often contain com-

plementary information, such as the anatomical and functional information derived

from CT and PET, respectively. Multi-modality registration is also commonly used
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for intra-subject registration between the planning CT and CBCT during the day of

treatment or patient alignment.

The process of registration requires the selection of several components: an

objective function or metric, a transformation, an interpolation method, an opti-

mization strategy, and regularization.

2.3.1 Metric

The objective function is the metric of similarity between the two images. Lower

degrees of freedom, such as employing sets of points or surfaces to measure similarity

are a quick way to evaluate positional alignment. These are best used to define rigid

transformations however non-rigid applications are possible [41, 42]. The function

defined by Equation 2.13 has been used to correctly match contours in order to

register two radiographic images [43, 44].

D(X,T (Y )) =
N∑
i=1

wid
2 (X,T (~yi)) =

N∑
i=1

wi

∥∥∥ ~x′i − T (~yi)
∥∥∥2

(2.13)

In this metric D is the overall distance measure, X and Y define surfaces con-

tained in the reference and target images. These surfaces can be defined as a series

of points xi and yi of which there are N . The variable T defines the transformation

while wi represents a weighting factor associated with point i. The function d can

be considered the distance function between the two surfaces assuming the point yi

is the closest available point to xi when performing the summation.

One of the drawbacks of using limited degrees of freedom is how ill-posed the

problem is. If the metric is not properly suited to the application such as non-rigid

registration, the resulting transformation may be one of a large number of non-unique
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solutions. To better define the registration problem, intensity based metrics (using

the similarity of pixel/voxel values) are more commonly used, in particular for non-

rigid deformations. The simplest of these is the sum-of-squares differences (SSD)

defined by Equation 2.14.

SSD =
N∑
i=1

(Ai −Bi)
2 (2.14)

In this equation, A and B are the reference and target images, and i represents

the index of summation over the N pixels/voxels contained in these images. Other

variants of this metric include the sum of absolute differences (SAD), zero-mean sum

of absolute differences (ZSAD), locally scaled sum of absolute differences (LSAD),

zero-mean sum of squared differences (ZSSD) and the locally scaled sum of squared

differences (LSSD). Some of the drawkbacks to using this type of metric is suscep-

tibility to non-Gaussian noise [45] and the inability to consider multiple modalities.

This is due to the intensity relationship not necessarily being one-to-one and one may

in fact encounter inverse contrast patterns (ie. bone appearing with high attenuation

in CT but low signal in MRI).

An alternative to this is to use correlative information metrics such as mutual

information or entropy based measures such as those described in Section 2.4. These

have been used to great effect to provide a metric for multimodal image registration

[46, 33, 34].

2.3.2 Transformation

The choice of transformation is dependent on the type of alignment required by

the reference and target images. The simplest transformations are labelled ‘rigid’ and
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involve translation and rotation. Additional degrees of freedom are afforded under

affine transforms which add the possibility of shear and magnification. All four

possible transforms can be defined using a 4x4 transformation matrix which acts on

a 3D coordinate [x, y, z, 1]. The definitions for each transform are summarized by

Equations 2.15, 2.16, 2.17 and 2.18.

T =



1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1


(2.15)

Where T is the translation matrix defined by the three parameters dx, dy, and

dz defining the translation in the x, y and z euclidean planes.

The rotation matrices Rx, Ry, and Rz are defined around their respective axis

of rotation and the degree of rotation around each is defined by Θx, Θy, and Θz.

RxRyRz =



1 0 0 0

0 cos(Θx) sin(Θx) 0

0 − sin(Θx) cos(Θx) 0

0 0 0 1





cos(Θy 0 sin(Θy 0

0 1 0 0

− sin(Θy) 0 cos(Θy) 0

0 0 0 1





cos(Θz) sin(Θz) 0 0

− sin(Θz) cos(Θz) 0 0

0 0 1 0

0 0 0 1


(2.16)
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Shear, unlike rotation is defined using the combination of two planes and the

magnitude of shear in each plane is defined by the parameters Sx, Sy and Sz.

Sx,ySx,zSy,z =



1 0 Sx 0

0 1 Sy 0

0 0 1 0

0 0 0 1





1 Sx 0 0

0 1 0 0

0 Sz 1 0

0 0 0 1





1 0 0 0

Sy 1 0 0

Sz 0 1 0

0 0 0 1


(2.17)

Magnification is represented by one simple multiplicative factor for each axis

Mx,My and Mz.

M =



Mx 0 0 0

0 My 0 0

0 0 Mz 0

0 0 0 1


(2.18)

The collection of transformations defined here are considered global transforms (the

transform is applied the same over the entire image). Higher degrees of freedom can

be implemented into the transformation in order to account for deformation that are

local in nature.

Localized transformations such as free-form deformations are defined using a

series of points pi = [px,i, py,i, pz,i] referred to as control points that are overlaid on
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an image. These points are moved around, defining a field of vectors which define

the transformation. There is variability in how these points are applied that offer

advantages in efficiency and accuracy. Points can be placed randomly or in irregular

locations as is the case with adaptive bases [47] and thin plate splines [48]. A sparse

representation involves the regular placement of points in a grid at a much coarser

spacing than the voxels of a given image and is a common technique [49] and can

also be applied in a pyramidal fashion with increasingly higher point densities [50].

This is an effective way to reduce processing requirements and improve the ability

to handle large deformations. A dense representation is one where a control point is

placed at the center of every pixel/voxel and has been used very successfully in the

case of the Demons registration algorithms variants [51, 52]. The drawback to using

dense representations of course is the increased complexity and degrees of freedom of

the registration problem and thus efficient ways of computing the deformation vector

field are required.

Much of the work in free-form deformations is focused around applying proper

deformation constraints centered around biomechanical properties of tissue such as

with using Finite Element Analysis [53] or by ensuring diffeomorphism (invertibility)

through maximization of cross-correlation [54] using a flexible algorithm called ANTs.

This lead to success in the BRATS MICCAI segmentation challenge [55] and and

the EMPIRE10 lung registration challenge [56].

2.3.3 Interpolation

The chosen interpolation method determines how the deformation is approxi-

mated away from where the vector field is defined. It also determines how gradient
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calculations are performed and can affect the algorithm complexity. Woods et al.

used a linear summation of polynomials [57] to interpolate their values while Friston

et al. used the Taylor expansion of a series of non-linear basis functions [58]. A

common interpolation technique combined with non-rigid deformable registration is

the use of cubic-B-splines (defined by Equation 2.19) [59] which define a surface and

provide a smooth interpolation, eliminating discontinuities at boundaries.

u(x) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(µx)Bm(µy)Bn(µz)di+l,j+m,k+n (2.19)

In this formulation, i = bx/Nxc − 1, j = by/Nyc − 1, k = bz/Nzc − 1, µx =

x/Nx − bx/Nxc , µy = y/Ny − by/Nyc and µ = z/Nz − bz/Nzc where Nx, Ny and

Nz represent the image dimensions. Bl represents the basis functions of the B-spline

and d represents the displacement of the control point around which values are being

interpolated. The operators bc signify taking the floor of whatever value is inside.

While smooth, cubic-B-splines do not prevent meshfolding or insure reversability of

the transformation.

Thin plate spline (TPS) transforms are another widely used method that uses

a series of radial basis functions (RBFs) to approximate the dense vector field from

any number of irregularly spaced control points. TPSs can be defined by the form

of Equation 2.20.

t(p) = ap+ b+
N∑
i=1

ciR(p− pi) (2.20)
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where p defines the coordinate of the point being transformed and thus t(p)

defines the forward mapping. In this formulation an affine transformation is incor-

porated into the coefficients a and b in order to account for global transforms first.

The parameters ci are weighting functions of the RBF R while i is the control point

index. A myriad of RBFs are available for use in the TPS [60, 61] so long as they

are radially symmetric.

2.3.4 Optimization

In many cases, registration is an optimization problem involving the search for

a global minima or maxima of the chosen cost function. To this end there are many

techniques for improving the efficiency of the registration procedure by minimizing

the number of search steps required. While there are many optimization techniques,

here we will touch on a few of the more popular choices.

Gradient descent optimization involves calculating the gradient of the objective

function as a result of changes to the parameters defining the transformation. If

the objective function is intensity based, this calculation will heavily incorporate the

chosen interpolation method into the gradient calculation through the use of the

chain rule. The optimizer follows the gradient according to a set step size until a

minima/maxima is reached. Gradient descent has a tendency to get stuck in local

minima/maxima and requires a significant amount of processing to calculate the

gradient.

Evolutionary optimizers randomly choose a number of step directions and sizes

and evaluates the objective function with these new randomly perturbed values. The
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values with the most improved metric value are chosen to replace the previous gen-

eration. The one-plus-one evolutionary optimizer is one such example that evaluates

one offspring at a time. This method is effective for avoiding local minima/maxima

and reducing computation time as it doesn’t require a gradient calculation [62].

The simultaneous perturbation stochastic approximation (SPSA) algorithm is a

compromise between the gradient descent and evolutionary optimizers. The central

idea behind this algorithm is that it evaluates the gradient based on a random per-

turbation of the deformation parameters. It uses two calculations of the objective

function (as opposed to calculating the gradient directly) to approximate the step

direction [63]. The finite differences stochastic approximation (FDSA) method is

similar in approach but differs in that it estimates the gradient through perturbation

of the parameters one at a time rather than all at once. This leads to a larger number

of calculations but a better estimate of the gradient.

Another popular stochastic optimization technique is the simulated annealing

(SA) algorithm inspired by the behaviour of crystalizing molecules during a drop

in temperature and first published by Kirkpatrick, Gelatt and Vecchi in 1983 [64].

The algorithm randomly explores the solutions space in the neighbourhood of the

current parameter values and probabilistically accepts solutions that offer a worse

cost function value which is influenced by an iteratively decreasing temperature value

T according to Equation 2.21.

P (J(t)) = exp

[
− 1

T (t)
max(0, J(t+ 1)− J(t))

]
(2.21)
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Here J is the calculated cost function at step t and P is the probability of

accepting a worse solution. For solutions where the cost function increases, the

solution is automatically accepted. This ability to accept poorer solutions allows the

algorithm to search over a wide area to find the global minima/maxima.

2.3.5 Regularization

The problem of registration is an ill-posed one, in that many possible solutions

may exist for a chosen objective function. Additional constraints on the problem are

often required in order to ensure specific properties such as smoothness, invertibility

and proper biomechanical responses to strain in order to narrow down the number

of acceptable solutions.

One way to apply additional constraints to ensure realistic deformations is

through the use of parameterization. In this approach regularization is implicitely

applied through the reduction in degrees of freedom. The transformation becomes

parameterized through the use of basis functions. For examples the use of cubic-B-

splines [59] and radial basis functions [60]. The choice of basis functions can ensure

smoothness and reduce irregularities since if the basis functions are twice differen-

tiable, so is the transformation.

The second approach is by applying a filter to the deformation field. This

often involves the convolution of a kernal such as a Gaussian function [52, 65, 66].

This can be applied in two ways, the first in an elastic manner where the filter is

applied to the deformation field, the second is a fluid approach where it is applied

to the velocity or update to the deformation field [67]. The latter method allows

more extreme deformations to take place. Specialized anisotropic filters that impose
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differential filtering rules in order to approximate the expected deformation rigidity

of certain regions have also been applied [68]. The advantages to using a filter are

simplicity and ease of calculation, the drawback is that by applying it repeatedly, we

homogenize the deformation field. While this may be good for eliminating random

vectors that might arise in homogenous image regions, it reduces the accuracy of

the deformation at the borders of objects or areas of high information content so a

balance is required.

The third approach is the usage of Sobolev spaces in which the deformation is

defined within a space that is already regularized. Examples of this include Trouve

et al. [69] and Chefd’hotel et al. [70] in their application to diffeomorphic image

registration, a technique which seeks to ensure invertibility of the transform.

The final group of methods is to apply penalty terms to the registration pro-

cess. These are additional terms calculated once the vector field velocity has been

calculated and include things such as smoothness by penalizing the first and second

derivatives of the deformation, incompressibility, rigidity and invertibility. These

can be applied as soft constraints where the terms are added to work against the

deformation vector field or as a hard constraint [71].

2.4 Information Theory

In this section we will review the background of information theoretics and how

divergence measures between distinct distributions are estimated. The goal of this

section is an explanation of how the Jensen Rényi divergence and statistical similarity

measures in general are calculated, beginning with the estimation of the probability

densities, from there the calculation of entropy is followed by its further adoption in
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calculating mutual information and finally, a similar divergence metric, the Jensen

Rényi divergence. We begin with a Gaussian distribution shown in Figure 2–8.

Exact calculation of the population histogram would be computationally expen-

sive depending on the population size, so instead, Parzen windows can be used to

approximate the distribution using a subset of samples. This is explained in excellent

detail by Viola and Wells when proposing mutual information for image alignment

[46] and Duda and Hart [72]. A Parzen window is essentially a convolution of a

subset of samples in order to estimate the population histogram. This is defined by

Equation 2.22.

PΩ(x) =
1

N

N∑
i∈Ω

K(x− xi) (2.22)

Where Pi(x) is the probability density of a value x occuring, N is the number

of subsamples taken and K is the Parzen window function. Ω and i refer to the

subset of samples and sample index respectively. xi in this context then refers to the

values of samples contained with the set Ω. K does not have to be Gaussian like in

Equation 2.23 but for many applications it allows further simplifications.

K(x) = (2π)−(n/2) |ψ|
−1
2 exp−1

2
xTψ−1x (2.23)

In this context, n is the dimensionality of the distribution space. For example if

we were to sample from a color image with RGB channels, the dimensionality would

be 3. If the dimensionality if larger than 1, then x becomes an n-dimensional array

of samples. T in this context refers to the transpose of the array x, and ψ is the

variance x.
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Figure 2–8: Example of the use of a Gaussian Parzen window to estimate an intensity
distribution. Part a) shows the population distribution, b) three values sampled
from the distribution along with their surrounding Parzen windows. In c) we see
the addition of the Parzen windows of all three samples compared to the original
distribution, this is further refined with more samples in d)-f).

Returning to our previous example we can see how the Parzen window operates

for a subset of samples in Figure 2–8 part b). In Figure 2–8 parts c)-f) we can

see how quickly the subsampled probability distribution approaches the population

distribution. To this end, once the probability distribution can be estimated, it is

relatively straight forward to calculate the entropy of sample set x which in this

thesis exclusively refers to a series of intensity values sampled from an image or

image region. The formula for entropy in this context is shown in Equation 2.24.

H(x) = −
∫
PΩ(x) ln (PΩ(x)) dx (2.24)
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In this case, the integral is over the range of possible values that x can take on.

For the purposes of registration, it is convenient to think of entropy as a measure of

information contained within an image. Similarly, joint entropy is a measure of the

information contained in a superposition of two distributions - e.g. two images - and

is defined by equation 2.25.

H(x, y) = −
∫
PΩ(x, y) ln (PΩ(x, y)) dxdy (2.25)

Where the probability density is now two dimensional and x in Equation 2.23 is

now replaced with the 2D array [x, y] in Equation 2.25. The key to understanding how

these relate is knowing that there will be similarities between the two distributions,

P (x) and P (y), with larger similarities reducing the total information/uncertainty

content or the joint entropy. If we think of the two distributions as a Venn diagram

as shown in Figure 2–9, with two circles representing H(x) and H(y) for the two

distributions, H(x, y) would be the union of the two.

If we wish to measure the information redundancy (or the overlapping region of

the venn diagram) we can calculate a measure known as Mutual Information (MI).

The formulation is fairly intuitive using the given analogy, it is shown in Equation

2.26

MI(x, y) = H(x) +H(y)−H(x, y) (2.26)

Mutual information is one example of a statistical divergence measure, meant

to quantify the similarity between two distributions. This is particularly useful for

medical imaging applications when comparing images from two modalities such as
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Figure 2–9: A Venn diagram explanation of mutual information, represented as the
overlap symbolizing the redundant informaton described by two populations or in
our context intensity values taken from two images or image regions. Each circle
represents the entropy/image information from each of these populations. The joint
entropy is effectively the union of these two circles/entropies.
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MRI and CT where the intensity values will contain similarities but do not have a

one-to-one relationship.

Another entropy measure that can be used is the Rényi entropy

Rα(x) =
1

1− α
log

(
N∑
i=1

P (x)α

)
(2.27)

Where α is a new parameter controlling the weighting of frequently versus in-

frequently occurring intensity values defined by x in this case. The logarithm in

this case is of base 2. The Rényi entropy is a generalized entropy metric that can

be formulated as other entropy values with the choice of α. For example an α of 1

produces the Shannon entropy used in mutual information. In this context the Rényi

entropy does not provide a new antropy measure but allows us a method of switching

between a large range of measures using the free parameter α. There is additional

freedom in being able to use it a continuous parameter in this way. The parameter

α plays a large role in how incoherent noise is handled when using this information

metric as values with lower probability density can be minimized in their influence.

As α inreases, the influence of highly probable values increases. This will not affect

how coherent image artifacts are handled since that could significantly shift the mean

value of the intensity distribution. In other words, the image artifact would result in

highly frequent intensity values which this entropy measure would be susceptible to.
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Similar to before, the similarity or divergence measure that we extract from

multiple images is summarized in Equation 2.28.

JRα(x, y) =
1

1− α

[
log

(
N∑
i=1

(w1P1(x) + w2P2(y))α
)
− log

(
N∑
i=1

P1(x)α

)
− log

(
N∑
i=1

P2(y)α

)]
(2.28)

Where w1 and w2 are weights for probability densities 1 and 2. The divergence

measure, termed the Jensen Rényi divergence is named after mathematicians Johan

Jensen and Alfréd Rényi [73]. Further details about the measure are covered in

Chapter 3.
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CHAPTER 3
Novel multimodality Segmentation Using Level Sets and the

Jensen-Rényi Divergence

This chapter represents a print of ”D. Markel, H. Zaidi, and I. El Naqa, Novel

multimodality segmentation using level sets and jensen-rényi divergence, Medical

Physics 40, 121908 (2013)”. In it we describe the application of the Jensen Rényi

divergence as a cost function/metric in optimizing the surface contour for defining

tumor boundaries and the boundaries of image objects in general. Experiments

are performed in order to discern the advantages of using this metric for object

segmentation, particularly in the presence of random noise. Phantom and human

examples are used to test the algorithm.

3.1 Abstract

Purpose: Positron emission tomography (PET) is playing an increasing role

in radiotherapy treatment planning. However, despite progress, robust algorithms

for PET and multimodal image segmentation are still lacking, especially if the al-

gorithm were extended to image-guided and adaptive radiotherapy (IGART). This

work presents a novel multimodality segmentation algorithm using the Jensen-Rényi

divergence (JRD) to evolve the geometric level set contour. The algorithm offers

improved noise tolerance which is particularly applicable to segmentation of regions

found in PET and cone-beam computed tomography.

Materials and Methods: A steepest gradient ascent optimization method is used
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in conjunction with the JRD and a level set active contour to iteratively evolve a con-

tour to partition an image based on statistical divergence of the intensity histograms.

The algorithm is evaluated using PET scans of pharyngolaryngeal squamous cell car-

cinoma with the corresponding histological reference. The multimodality extension

of the algorithm is evaluated using 22 PET/CT scans of patients with lung carci-

noma and a physical phantom scanned under varying image quality conditions.

Results: The average concordance index (CI) of the JRD segmentation of the PET

images was 0.56 with an average classification error of 65%. The segmentation of

the lung carcinoma images had a maximum diameter relative error of 63%, 19.5%

and 14.8% when using CT, PET and combined PET/CT images, respectively. The

estimated maximal diameters of the gross tumor volume (GTV) showed a high cor-

relation with the macroscopically determined maximal diameters, with an R2 value

of 0.85 and 0.88 using the PET and PET/CT images, respectively. Results from the

physical phantom show that the JRD is more robust to image noise compared to

mutual information and region growing.

Conclusions: The JRD has shown improved noise tolerance compared to mutual

information for the purpose of PET image segmentation. Presented is a flexible

framework for multimodal image segmentation that can incorporate a large number

of inputs efficiently for IGART.

3.2 Introduction

Radiotherapy is an important modality for treating patients with cancer. About

60-70% of all cancer patients receive irradiation as part of their treatment [74] and
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this remains the main option for advanced stages of disease. However, geomet-

ric and dosimetric uncertainties during fractionated radiotherapy can accumulate

daily from tumor regression, soft-tissue deformations and organ motion. Tradition-

ally, computed tomography (CT) has been the principal modality used for radio-

therapy treatment planning. However, several studies have shown inter- and intra-

observer variability in manual gross tumor volume (GTV) delineation as high as

700% [75, 76, 9] and 80% [77] using CT alone, respectively. The inclusion of PET

into the treatment planning process has provided improved contrast and increased

sensitivity to metabolically active regions of the tumor versus normal background

tissue. However, PET suffers from relatively low spatial resolution, variable uptake

patterns and quantum image noise. These properties can drastically influence the

intended treatment target.

Even assuming perfect initial target definition, a patient’s anatomy as well as the

target itself may change drastically during the course of treatment. Tumor regression

in the lung on the order of 1.2% of the volume per day was observed in a study by

Kupelian et al.[78] using megavoltage CT images. In a study by Barker et al. an

average volume change of 1.8% per day was observed in the head and neck [79]. In the

same study average weight loss of 7.1% of the body mass was observed over the course

of treatment. The feasibility of image-guided adaptive radiotherapy (IGART) relies

on fast and accurate algorithms that can reduce treatment planning time[80]. Often

cone-beam computed tomography (CBCT) or mega-voltage computed tomography

(MVCT) is used to check the anatomical context of the patient. These modalities
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tend to suffer from a reduction in contrast and increase in image noise, thus making

it difficult to redefine the target boundary accurately.

A large number of automated and semi-automated methods have emerged in the

literature attempting to provide consistent interpretation of the tumor boundary.

These have included a large number of soft threshold values ranging within 15-

50% of the maximum Standardized Uptake Value (SUV) [81, 82, 83, 84, 85], and

a hard value of 2.5 SUV [86]. Further work has produced regression formulas to

predict the most appropriate threshold value based on either mean SUV [87], lesion

volume [88] or signal to background ratio (SBR) [89]. However, a few studies have

noted that no appropriate threshold value exists that consistently and accurately

determines the GTV boundary [88, 90]. This is partially due to inconsistent FDG-

PET uptake from patient to patient as well as heterogeneous uptake patterns that

are often seen within the tumor regions themselves. More advanced methods such

as those using fuzzy hidden Markov chains [91] or Markov random fields [92] have

been proposed which make use of stochastic modelling to fit Gaussian functions

to the intensity distributions, using each voxel’s class probability and agreement

with surrounding voxels to randomly shuffle it around into other data classes. This

process eventually converges, and finally classifies the voxels in the image into a

number of hard classes. The information from surrounding voxels is often used to

reduce errors produced by image noise. More recently, clustering methods have been

receiving considerable attention due to the fact that they are able to approximate

the intensity distributions of the segment and background without any knowledge

about the shape of the distributions [93, 94, 95]. Another popular method that has
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often seen commercial implementation is the atlas-based approach that uses the co-

registration of a large database of patient scans to produce a probabilistic map of

expected uptake values for healthy patients and then uses deviations from this map

to determine where abnormal regions lie [96][97]. While there has been a plethora

of work regarding proper PET segmentation, the problem remains a challenging one

that has not been satisfactorily resolved using single modality methods. A more

thorough review of PET segmentation algorithms can be found in surveys by Zaidi

and El Naqa [98] and Sheperd et al. [99].

We have adapted an active contour approach due to its ability to define the con-

tour using a continuous function which can intuitively adapt to topological changes

such as splitting and merging of multiple regions, as encountered in a heterogenous

tumor and to achieve sub-pixel accuracy. Active contours are a class of methods

by which an initialized segment is evolved over time to maximize a chosen energy

function. Internal forces specific to the shape of the contour along with external

forces from the image itself are both used in this evolutionary process which follows

the gradient field of the function. The active contour can be defined explicitly as

is the case with snakes [100] where the contour is given by the positions of a set of

points, or implicitly as with level sets [24, 101], where it is represented by the zero

level of a scalar function.

Another important facet of our work regards the consideration of complemen-

tary information from different modalities to delineate the so called ”biophysical”

target [101]. A study by Milker-Zabel et al. [102] showed that with the inclusion of

PET, CT and MRI modalities into the treatment planning process for stereotactic
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radiotherapy resulted in changes to the target definitions 73% of the time. The chal-

lenge with multi-modality treatment planning stems from registering patient images

that often do not include a high degree of correlating details. The inclusion of hybrid

PET/CT imaging devices over the past ten years has greatly aided in reducing inter-

observer variability in target definition [103, 104] by providing physically registered

datasets. The interpretation of visual information from multiple images is another

source of variability that may be aided by computer automation. A number of algo-

rithms addressing the issue of multimodality segmentation, particularly with regards

to PET/CT segmentation have been recently published [105, 106, 107, 101, 108].

These include a simple region growing method where the user places a seed within

the area to be segmented which then begins to absorb surrounding voxels that fall

within a given intensity range, growing until it fills the entire connected region. This

method has been applied in the context of the lung [105] using PET/CT images

but found to produce systematic overestimation of the tumor boundary. Probabilis-

tic classification using a number of textural filters and machine learning techniques

trained on a set of previously observed cases has been shown to produce accurate

results in the head and neck area [106]. Within the same area of the body, a semi-

automated graph-based method has been tested that uses Markov Random Fields

to produce globally optimal solutions [107]. Within our own group, we have applied

an active contour to the task of PET/CT segmentation with the development of the

multivalued level sets segmentation method [101]. This method employed an energy

metric based on differences between voxel intensity and the mean intensity values

found inside and outside the segment. This approach however, does not account for
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the spread and shape of individual image intensity distribution reducing each to a

single weighting parameter in the algorithm.

The Jensen-Rényi divergence (JRD) is a relatively new generalized information

divergence measure whose curvature can change based on a chosen parameter (α).

Our implementation relies on a non-parametric approach that makes no assumptions

about the underlying distribution. Some studies have observed that the JRD is more

robust to image noise than mutual information when applied to registration as long

as the weighting parameters are chosen appropriately [73][109]. Mutual information

is a common objective function for registration tasks, and while it is not commonly

used for segmentation, it is based on entropy terms which a number of authors have

investigated for use in segmentation[110, 111, 112, 113]. The use of entropy based

on intensity value histograms (in particular using non-parametric density estimates)

is an effective objective for statistically based segmentation. Using the metric, it

is possible to partition regions with subtle differences in their intensity distribution

that may be too difficult to detect with simple average intensity methods or the

naked eye. Mutual information also has a similar mathematical formulation to the

JRD and hence is used for comparison in this paper. To date the JRD has not been

applied as a metric for segmentation using a level set active contour framework. The

goals of this work are threefold. First we show that the JRD can improve noise

tolerance when applied to the task of segmentation using PET and CT scans of

an in-house phantom. Second, we evaluate the JRD based level sets method with

regards to PET segmentation using PET scans of patients with pharyngolaryngeal
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squamous cell carcinoma. Third, we demonstrate its application to segmentation of

multimodality PET/CT scans of patients with lung carcinoma.

3.3 Materials and Methods

The implementation and validation of the proposed method is developed in this

section starting with a theoretical background of the energy term used in level sets

method. Here we present the derived solution to the level sets differential equation

using the JRD. The materials and methods for collecting the validation data along

with an explanation of the validation metrics is then provided followed by hardware

and software specifications of our implementation.

3.3.1 Theory

Level Sets

A level set function φ(u, v, w) is used to implicitly define a contour within our

image where x = (u, v, w) defines a set of 3D cartesian coordinates within the im-

age volume. φ is a scalar function that defines the contour edge by its zero level

(φ(u, v, w) = 0).

Let E be a function of a level set. The successive iterations of the minimiza-

tion/maximization of E using a steepest descent/ascent approach corresponds to a

specific evolution of the level set, and hence of its zero level.

E(φ) =

∫
Ω

(JRD(φ(x)) + µ |∇H(φ(x))| − ν) dx (3.1)

Where JRD(φ) is the Jensen Rényi divergence, ν is a scalar velocity term, dx is an

infinitesimally small volume at point x (which is defined by the image resolution), Ω

is the set of sampled voxels in the image, |∇H(φ)| is the magnitude of the gradient of
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the Heaviside function (which forces a smooth boundary) and is defined by equation

3.3.1, µ is a weighting factor. Following curve evolution theory, evolving the energy

function over time is equivalent to finding the derivative over the contour.

∂φ

∂t
=
∂E(C)

∂C
(3.2)

Where C is the contour at the current iteration defined by the zero level (φ(C) =

0) of the level set function.

H(φ) =

 1 if φ ≥ 0

0 if φ < 0
(3.3)

The Jensen Rényi divergence

For estimation of the JRD, we start by defining a set of samples from either

outside or inside a contour by xi, i = 1, 2, ...n where n is the sample size and i is

the sample index. If we let P = (P (J(x1),Ω), P (J(x2),Ω)....P (J(xn),Ω)) be the

probability density distribution where J(xi) is the intensity value of sample xi then

we can define the Jensen Rényi entropy using equation 3.4.

Rα(P ) =
1

1− α
log

n∑
i=1

P (J(xi),Ω)α (3.4)

Where J(x) is the feature vector at point x made up of the intensity values of

the input images and α defines the curvature of the function. For α ∈ (0, 1) the

function is concave, whereas it is neither convex nor concave for α > 1. Choosing an
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α value of 1 gives back the Shannon entropy. The JRD criterion is defined by the

following conditional expectation:

JRD(φ) = Rα

(∑d
k=1wkPk

)
−
∑d

k=1 wkRα(Pk)

(3.6)

= 1
1−α [log

∫
< (w1P1(J,Ω−) + w2P2(J,Ω+))α dJ − (3.7)

w1log
∫
< (P1(J,Ω−))α dJ − w2log

∫
< (P2(J,Ω+))α dJ ]

where w1,w2 are the weighting parameters for the probability distribution func-

tions P1 and P2. P1 and P2 in this context are defined by the intensity distribu-

tions inside and outside the evolving level set, respectively. d is the number of

regions/distributions and < is the domain of feature values represented by J . The

set of samples defining these regions is referred to by Ω− for inside the segment and

Ω+ for outside the segment.

The divergence measure changes with the parameter α. For example, when

alpha is equal to 0.5, the divergence is proportional to the log of the Bhattacharyya

coefficient. When α is chosen to be 1, Rényi entropy reduces to the Shannon entropy

(SE in equation 3.8) and the measure becomes the Jensen-Shannon divergence. This

becomes equivalent to mutual information when the weighting parameters w1 and

w2 are chosen equal to P1(J,Ω−) and P2(J,Ω+) for each sample[73]. The weighting

parameters determine the importance of probability distributions P1 and P2 which

in this case represent the foreground and background. For this work the weighting
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Figure 3–1: Mesh plots of the JRD energy space using Bernoulli distributions for
P1 and P2. In this context Pk = (pk, 1 − pk) replaces P (J(xi),Ω) in equations 3.4
and 3.8. In a) alpha is chosen equal to 1 with equal weights. b) shows the function
with α = 5 and equal weights. c) shows the function with α = 5, w1 = 0.75 and
w2 = 0.25. The segmentation algorithm would maximize the JRD, these are the
spots in the energy space where there is the largest difference between P1 and P2

if the weighting values are equal. Changing the weighting parameters affects where
these maxima occur.

parameters were chosen to be 0.5 each. On a continuous basis, α can be seen to

change the curvature of the divergence measure as shown in figure 3–1. Here <

covers the domain of possible intensity values. For our implementation, volumes

were discretized to 40 levels in order to reduce processing time requirements.

SE(P ) = −
n∑
i=1

P (J(xi),Ω)log(P (J(xi),Ω)) (3.8)

The probability distribution functions are defined as follows:

P (J,Ω) =
1

n

n∑
i=1

Kψ (J − J(xi)) , (3.9)
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where

Kψ (J − J(xi)) = (2π)−t/2 |ψ|−1/2 × exp
(
−1

2
(J − J(xi))

T ψ−1 (J − J(xi))

)
.(3.10)

Where Kψ is the Gaussian kernal used for the Parzen window estimation of

the probability density[114]. Here ψ represents the covariance matrix of the feature

vector J . This can be calculated directly from the vector J , however this makes the

assumption that the data is best represented by two unimodal distributions. Since we

want to make no assumptions about the shape of the distributions, every covariance

matrix was set to a t × t matrix with every diagonal element equal to 8 which was

determined heuristically. Here t is the dimensionality of the feature vector J .

∂φ

∂t
= δ(φ)

((
∇φ
|∇φ|

)
+

1

1− α

∫
< α (w1P1(J,Ω−) + w2P2(J,Ω+))α−1 (w1

∂P1

∂C
+ w2

∂P2

∂C

)
dJ∫

< (w1P1(J,Ω−) + w2P2(J,Ω+))α dJ
−

1

1− α
w1

∫
< αP1(J,Ω−)α−1 ∂P1

∂C
dJ∫

< P1(J,Ω−)αdJ
−

1

1− α
w2

∫
< αP2(J,Ω+)α−1 ∂P2

∂C
dJ∫

< P2(J,Ω+)αdJ
− ν

)
(3.11)

Where δ(φ) (the dirac delta function) is approximated by the following

δ(φ) =
1

πε (1 + (φ/ε)2)
(3.12)
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Where ε is a small number arbitrarily chosen to be 10−7. The partial derivatives

of the probability densities are

∂P1

∂C
= ∂P1(J,Ω−)

∂C
= (3.13)

1
|Ω−| (−Kψ1(J(C)− J)− P1(J,Ω−))

∂P2

∂C
= ∂P2(J,Ω+)

∂C
= (3.14)

1
|Ω+| (P2(J,Ω+)−Kψ2(J(C)− J))

When using p multiple inputs, or in our case multiple images, the vector of

intensity values, J simply becomes a p× n vector where each data point is sampled

from the same spatial location in the domain of the images. A maximum sample size

of 1600 voxels or the total number of voxels in a sample region (whichever is smaller)

is used to estimate the probability distribution functions for inside and outside the

segment. The samples are randomly taken from the inside of the segment and an

equally sized area surrounding it which is created using a distance transform of the

contour edge and masking the values within the appropriate distance.

A similar derivation can be performed on the mutual information metric using

Equation 3.15.

∂MI(φ)
∂C

= −
∫

Ω

(
(x)
∂C
log(P (x))− ∂P (x)

∂C

)
dx

−
∫

Ω

(
(y)
∂C
log(P (y))− ∂P (y)

∂C

)
dy

+

∫
Ω

(
∂P (x, y)

∂C
log(P (x, y))− ∂P (x, y)

∂C

)
dy (3.15)
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Where x and y in this context integrate over the intensity value ranges from

images 1 and 2 over the entire image space (assuming a multi-modal segmentation).

For monomodal images, the image was input twice. The inside and outside image

regions are defined by splitting the integral for the inside and outside regions, Ω−

and Ω+.

∂H(x)
∂C

=
∫

Ω−

(
∂P (x)
∂C

lnP (x)− ∂P (x)
∂C

)
−
∫

Ω+

(
∂P (x)
∂C

lnP (x)− ∂P (x)
∂C

)
(3.16)

This is used for attaining the results in Figures 3–8.

3.3.2 Datasets and Validation

Experimental Phantom Studies

A physical phantom was constructed in order to evaluate the performance of

the algorithm under varying conditions of image quality. This was done by placing

a small glass jar with a 64 mm inner diameter with 4 mm thick walls wrapped in

a 3 mm thick bolus sheet inside a larger glass jar with an outer diameter of 111

mm and 7 mm thick walls which is shown in figure 3–2. Thread seal tape was

used to make the larger jar water tight. The phantom was filled with a solution

of approximately 950 ml of water with 8.7875 MBq of 18F-FDG radiotracer for a

concentration of 9250 Bq/ml. The inner jar is not sealed allowing the solution to

mix inside the phantom producing a 1:1 concentration between the inside and outside

of the inner jar. The purpose of this phantom was to have the semi-automated

algorithm attempt to segment the boundary of the inner jar without spilling into the

surrounding region. The phantom was scanned using a GE Discovery-ST PET/CT
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Figure 3–2: The inner jar wrapped in the bolus sheet (left) and the two containers,
one inside the other (right).

scanner (GE Healthcare) and reconstructed into a series of 128x128 voxel images

with a resolution of 5.4688 mm in the transverse plane and a slice thickness of 3.27

mm using the ordered subset expectation maximization (OSEM) algorithm.

In order to achieve a variety of SNR values, 6 scan times of 4, 6, 9, 15, 62 and

246 seconds were chosen to produce 6 volumes. The measured SNRs from these

scans were 9.1, 9.2, 10.9, 12.6, 17.8 and 26.0 dB using the definition of SNR given

by equation 3.17. Where µsig and σbkg are the mean and standard deviation of

the signal and background. The signal in this case is the water within the inner

jar since it contained the FDG where as the wall of the inner jar and the bolus

emitted no signal and was thus considered background. Since the wall and the bolus

occupied very little area, the region over the entire volume was used to provide a

more accurate calculation of standard deviation. For the CT, µsig and σbkg are the
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Figure 3–3: Transverse slices of phantom PET scan for scan times of 4, 6, 9, 15, 62,
and 246 seconds (from left to right in the top row). Slices of the phantom taken with
the CBCT are shown in the bottom row with increasing SNR from left to right

mean and standard deviation of the intensity values found in the inner jar wall and

using the inner region of water as the background. Transverse slices from these 6

scans are shown in figure 3–3

SNR = 20 · log10

(
µsig
σbkg

)
(3.17)

Similarly the phantom was scanned using on-board cone beam computed to-

mography (CBCT). The images were all scanned using a voltage of 100 kV but with

varying current and pulse width. CBCT scans were evaluated due to their poor con-

trast and low SNR. The applied scanning parameters along with the resulting SNRs

are summarized in table 3–1.

Approximately 310 ml of Omnipaque 300 (65% iohexol, GE Healthcare Canada,

Mississauga ON) was diluted in 640 ml of water for the CBCT scan and the bolus

sheet removed. It was observed that the scan contained beam hardening artifacts and
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Table 3–1: Scanning parameters for the CBCT.

Scan Current (mA) Pulse Width (ms) SNR (dB)
1 10 10 25.3
2 20 10 29.2
3 40 10 31.8
4 40 20 33.9
5 80 20 35.3
6 80 32 35.7

an asymmetric distribution of contrast agent. In order to correct for these hetero-

geneities, the regions of the phantom walls and the space in between were delineated

with circles matching the dimensions of the phantom. A quasi-ideal version of the

phantom was generated by uniformly filling these areas with the mean value found

in the original scan. A third volume was generated using the voxel-by-voxel ratio

of the quasi-ideal phantom to the original scan. This third volume was smoothed

using a 3D bilateral filter and then used to rescale the phantom images to remove the

inhomogeneity. This is shown in figure 3–4. In order to compare the performance

of the Jensen Rényi divergence versus using mutual information, two segmentation

methods using an active contour but each driven by one of the two divergence mea-

sures was used to segment the region surrounded by the inner jar. Additionally a

region growing algorithm were also used to segment the inner jar for comparison.

The region growing algorithm was given an intensity difference threshold of half the

intensity difference between the water and jar wall values. This was found to pro-

duce favourable results in the highest SNR images for both modalities. This was

done two-dimensionally over 19 slices from each volume for both PET and CBCT

63



modalities. The performance of each method was measured by the average concor-

dance index comparing the final segmentation to the known boundary of the inner

jar.

3.3.3 Clinical Studies

Louvain Database

In addition to phantom studies, we included clinical validation datasets with

a known reference from previous studies so that our results could easily be com-

pared to other results reported in the literature [3]. PET scans of a subset of 7

patients with T-III to T-IV pharyngolaryngeal squamous cell carcinoma taken from

the Louvain database were used for performance evaluation [115]. Patients were im-

aged on average 5 days prior to treatment which entailed a total laryngectomy. A

60 min dynamic 3-D PET scan using an injection of 185-370 MBq of 18F-FDG was

performed on the selected patients while immobilized with a thermoplastic mask.

This was done with an ECAT EXACT HR camera (CTI Siemens, Knoxville, TN)

and reconstructed using a 3-D Attenuation-weighted Ordered Subsets Expectation

Minimization (AW-OSEM) algorithm into images of 128x128 voxels at a resolution

of 2.1656 x 2.1656 mm in the transverse plane with a slice thickness of 3.125 mm.

Following the laryngectomy, resected tissue was placed in a polystyrene cast that

was filled with a 16% gelatin solution and cooled to -20◦C for 48 hours and -80◦C

for a minimum of 72 hours. Specimens were cut transversely into 1.7-2 mm slices

that were then digitally scanned on both faces using a flatbed scanner. A reference

segment of the perceived gross tumor volume (GTV) was manually delineated using

the digital scans of the macroscopic specimens and coregistered to the PET volume
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Figure 3–4: Inhomogeneity correction with a) the original CBCT slice (from scan
#6). b)The ideal phantom whose values are equal to the mean within the 4 regions
found in a). c) The ratio of b) to a) following a bilateral filter smoothing, using σ1

= 13, σ2 = 18 and a tolerance of 0.02, and finally d) the corrected image.
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using a semi-automated rigid transformation using segmented structures as described

by Daisne et al. [116].

The PET images were segmented following a denoising procedure which con-

sisted of smoothing using a bilateral 3D filter followed by deconvolution using the

Landweber algorithm. For the JRD algorithm, segments were initialized using an

anisotropic sphere that approximated the size of the GTV and ran for 100 iterations.

The following parameters were used in all studies when evaluating the algorithm for

the JRD (υ = 0.013, α = 1.8, µ = 0.1).

MAASTRO Database

In order to evaluate the performance with regard to multimodal data, this

study included a set of 33 patients with stage Ib-IIIb non-small cell lung carcinoma

(NSCLC) treated at the Maastro clinic in Maastricht, The Netherlands. Each has

received a whole-body PET/CT scan using a Biograph SOMATOM Sensation 16

with an ECAT ACCEL PET scanner (Siemens, Erlangen Germany). Patients were

injected with an 18F-FDG tracer following a 6 hour fast. The dosage was determined

using (weight×4 + 20 MBq). A spiral CT with contrast was performed. The pa-

tient was then scanned in 5 min intervals covering 7 sections, beginning 45 minutes

post-injection. The CT scan was used for attenuation correction and the PET data

reconstructed using OSEM with 8 subsets and 4 iterations. Of these 33 patients, 22

of which underwent surgical resection of the lung tumor, the maximal diameters of

the tumor were measured macroscopically. This was used for comparison against the

maximal tumor diameters produced by the JRD segmentation algorithm. The data

collection is discussed in more detail in Van Baardwijk et al., [89].
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Validation Metrics

With regards to the Louvain dataset, contours drawn from the images of the

macroscopic specimens were used as a reference and validation was determined by

two frequently used similarity metrics; concordance index (CI) and classification error

(CE):

CI =
A ∩B
A ∪B

(3.18)

CE =
PCE +NCE

V ol
× 100% (3.19)

Here positive CEs (PCE) is the volume identified as background that is actually

part of the tumor and negative CEs (NCE) is the volume identified as tumor that is

actually background. V ol is the volume of the histologically derived contours. When

defining CI, A and B are defined as the segmented volume and macroscopically

derived volume, respectively.

The MAASTRO data was evaluated using the percent error of the maximal

tumor diameter defined by equation 3.20:

%error =
|maxDseg −maxDmacro|

maxDmacro

(3.20)

This was done due to the fact that the binary tumor masks were unavailable,

only maximal tumor diameter was used in the original study.
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Hardware and Implementation

The JRD based level sets method was implemented in Matlab on a laptop with

an Intel Core i7-2630QM @2GHz using 16GB of RAM and an NVIDIA GEFORCE

GTX 560M with 3 GB of integrated RAM. Each iteration was calculated on the GPU

requiring 0.2-0.4 seconds per iteration using a single modality and 0.4-0.6 seconds

per iteration when using two modalities.

3.4 Results

3.4.1 Phantom Studies

Using a slice from each scan that showed the inner jar wall surrounded by the

outer jar, binary masks of circles of radii varying from 29 to 36 mm were used to

measure the mutual information and Jensen Rényi divergence. Figures 3–5 and 3–

6 show the mutual information and Jensen Rényi divergence for the different radii

using the CBCT and PET scans. The minima for both functions occurs at the wall

of the inner jar. The profiles for both divergences are shown for the lowest SNR

scan and the highest. The profiles show a distinct difference between the two scans,

the minima of the mutual information becomes severely distorted by the decrease in

image SNR. This is reflected in the performance of the two algorithms when measured

using the average concordance index as shown in figures 3–8 and 3–9 when applied

to the CBCT and PET modalities, respectively. The region growing method showed

a drastic decrease in performance for both modalities as noise in the image increase.

Profiles of the JRD are affected by the choice of alpha value as shown in figure 3–7.

Higher alpha values produce a sharper curve upon approaching the inner jar wall.

The tail of the profiles are also increased with increasing alpha, these tails exist due
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Figure 3–5: JRD and mutual information measured for circles of growing radius
centered at the inner jar using the CBCT images. The low SNR scan had an SNR
value of 32 and the high SNR scan had a value of 36. The peak is clearly preserved
using the JRD when applied to the lower SNR image set.

to detection of the outer wall which lies partially adjacent to the bottom of the inner

wall as shown in figure 3–4.

3.4.2 Clinical PET Evaluation: Louvain Database

The results from segmenting the PET images from the Louvain dataset are com-

pared against those presented by Zaidi et al. [3], where a comparison of 9 algorithms

is performed. The results are shown in terms of Classification error and concordance

index in figures 3–10 and 3–11. The JRD algorithm showed an average concordance
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Figure 3–6: JRD and mutual information measured for circles of growing radius
centered at the inner jar using the PET images. The low SNR scan had an SNR
value of 9.2 and the high SNR scan had a value of 26.
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Figure 3–7: The Jensen Rényi divergence measured for the PET scan of the noise
phantom with circles of increasing radii. The profiles are shown with varying choices
of parameter α. When α is equal to 1, the values become negative since the Rényi
entropy reduces to the Shannon entropy as shown in equation 3.8.
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Figure 3–8: The average concordance index of the active contour based on mutual in-
formation and the Jensen Rényi divergence for varying CBCT SNR values. The JRD
shows a linear response to noise whereas the mutual information shows a somewhat
exponential decrease in performance.
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Figure 3–9: The average concordance index of the active contour based on mutual in-
formation and the Jensern Rényi divergence for varying PET SNR values, controlled
by the scan time.
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Figure 3–10: The average concordance index of the JRD based active contour com-
pared to 9 other PET segmentation algorithms evaluated using the same data from
Zaidi et al. [3]. Using only the PET intensity, the JRD based segmentation had
an average CI of 0.55 versus 0.59 for the FCM-SW. The error bars represent one
standard deviation.

index of 0.55 with a standard deviation of 0.12. This was second to the fuzzy clus-

tering method incorporating spatial information and the á trous wavelet transform

(FCM-SW) which has a average CI of 0.59 with a somewhat smaller standard devi-

ation of 0.08. Similar results are reflected with regards to the average classification

error where the JRD method had an average CE of 65% second to 55% for the

FCM-SW.
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Figure 3–11: The average classification error of the JRD based active contour com-
pared to 9 other PET segmentation algorithms evaluated using the same data from
Zaidi et al. [3]. The JRD based segmentation had an average CE of 65% versus 50%
for the FCM-SW. The error bars represent one standard deviation.
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3.4.3 Clinical PET/CT Evaluation: MAASTRO Database

Figure 3–12 shows the percentage error of the maximum GTV diameter estima-

tion for the JRD-based active contour when using PET, CT and PET-CT together.

The error is shown for each patient and shows a general trend of having the highest

error when using CT alone and the lowest when using both modalities in conjunction.

The correlation between maximal diameter estimate by the SBR method published

by Baardwijk et al. in 2007 [89] showed an R2 value of 0.82. The same comparison

using the results from the JRD based method using the PET image alone is shown

in Figure 3–13 and using the PET-CT together in Figure 3–14. The estimated

maximum diameter by the JRD method shows a higher correlation with the macro-

scopically determined diameter than the SBR technique when using only PET. This

correlation is further improved when using the PET and CT information together

which is not surprising considering the results shown in figure 3–12.

3.5 Discussion

Hybrid imaging is becoming increasingly prevalent within radiotherapy clinics

with the commercial introduction of PET/CT scanners over 15 years ago and more

recently with the advent of PET/MRI scanners. Consequently, radiation oncolo-

gists are required to consider multiple pieces of visual information when determining

treatment targets yet the large majority of commercially available automated and

semi-automated segmentation algorithms do not consider more than one modality

at a time. Presented in this work is a novel multimodality segmentation algorithm

based on the level set active contour method that relies on maximizing the Jensen
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Figure 3–12: The estimation error for the JRD based segmentation method of the
GTV compared to the macroscopically determined maximum diameter. The average
error was 63%, 19.5% and 14.8% for the segmentations using CT only, PET only
and PET/CT. Particularly, high errors for cases 4 and 21 were seen when using CT
alone due to the small size of the lesions and their proximity to the chest wall causing
contour leakage.

Rényi divergence between the inside and outside domain of the contour. The advan-

tage of using this divergence measure is two-fold. The first is that when compared to

mutual information, the JRD offers an improved robustness to sample variability and

hence image noise. This is demonstrated using the phantom scans where not only is

the difference in the energy space seen between the two measures, but the effect that

this has on the performance for both PET and CT images is demonstrated in figures

3–8 and 3–9. The second advantage is that changing the alpha value can alter the

energy space of the function and thus its tolerance to noise and the sensitivity of the

final solution to subtle changes in intensity distribution.

The algorithm was tested using clinical single and multiple image modalities

when performing segmentations. Considering the improved noise tolerance of the
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Figure 3–13: The correlation of the JRD estimated maximum diameters versus the
macroscopically determined maximum GTV diameters using only the PET image.
The solid line shows the linear fit to the data while the dotted line represents the
ideal 1 to 1 linear relationship. The JRD based method shows a higher correlation
compared to the SBR technique with an R2 value of 0.85 versus 0.82.
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Figure 3–14: The correlation of the JRD estimated maximum diameters versus the
macroscopically determined maximum GTV diameters using both the PET and CT.
The incorporation of both modalities shows an improved correlation versus using
PET alone.
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Figure 3–15: A comparison of the JRD method applied to the Louvain (a and b)
and MAASTRO (c and d) datasets with their respective references. In a and b, the
JRD method is shown in blue compared to the macroscopically determined contour
in green. For c and d, the JRD method using the CT only is drawn in magenta,
using PET only in green and using combined PET and CT together in blue. It is
compared to the maximum diameter shown with the yellow arrow.
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JRD and the fact that PET is a modality presenting with a large degree of inherent

noise, it was appropriate to compare the segmentation method using PET alone

versus other PET segmentation methods. This was done using the results from

Zaidi et al. [3] that used data from the Louvain database. The JRD based method

did not perform as well as the FCM-SW in regards to both average classification

error and average concordance index (figures 3–10 and 3–11) however this difference

was not found to be statistically significant (p = 0.52 for CI and p = 0.16 for CE).

It should also be noted that the FCM-SW algorithm utilizes both an anisotropic

diffusion filter as well as the á trous wavelet transform as additional pre-processing

steps whereas the results for the JRD method as implemented incorporated only the

PET intensity values. It may be possible to improve the JRD segmentation results

by using the filters adopted by the the FCM-SW algorithm since the JRD method

can incorporate multiple inputs.

The MAASTRO data shows that the JRD method can estimate maximum GTV

diameter with a better correlation to the macroscopically determined diameters than

using the SBR method which relies on fitting the most appropriate threshold to

the lesion volume. The segmentation results show that using the PET information

results in a higher accuracy than using the CT alone. This result has been observed

previously [106, 9] and can be qualitatively seen on the contours shown in figure 3–15

(c and d), where the CT contours had little contrast to follow when the GTV was

connected to the mediastinum or chest wall. This led to leaking and overestimation

of the boundary which was the reason for the large errors seen for cases 4, 11 and

21 in the MAASTRO data shown in figure 3–12. By comparing the trends shown in
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figures 3–13 and 3–14 we see an increase in the adherence to a linear fit from the R-

square value but also closer 1:1 linear relationship between the estimated maximum

diameters using both PET and CT than with PET alone. This is seen from the

slope of the trend lines. The combination of both PET and CT provides the most

accurate segmentation, and the highest correlation to the reference, a result that

has been previously observed [106]. Results from a 2011 study using the FCM-SW

algorithm[95] to estimate maximum tumor diameter using the MAASTRO dataset

showed an R-square value of 0.942, much higher than using the JRD with either PET

or PET/CT. The R-squared value of the FCM-S algorithm evaluated in the same

study was only 0.81 emphasizing again the improvement made by including the á

trous wavelet transform.

The JRD is a convenient objective function in that it can also be applied to

the task of registration as investigated by a number of reports [109, 73, 117]. This

may facilitate future work involving the simultaneous segmentation and registration

of multimodality images using this metric in order to reduce computation time and

improve accuracy of both processes. Such an algorithm would have great application

towards IGART where previous plan contours provide a good approximation for

initialization.

3.6 Conclusions

This work has presented a novel multimodality segmentation algorithm using

the Jensen-Rényi divergence with a level set contour. Using phantom CBCT and

PET scans taken at various image quality levels, we demonstrate the improved noise

robustness of the proposed objective compared to a traditional information-theoretic
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similarity measure (mutual information). The solution to the level set differential

equation is presented along with clinical data validation using PET scans of 7 patients

from the Louvain database with pharyngolaryngeal squamous cell carcinoma and

22 PET/CT scans from patients with lung carcinoma taken from the MAASTRO

database. The JRD based approach has shown competitive performance compared to

existing methods without much added pre- and post-processing. More importantly,

the approach allows for easy application to simultaneous multimodality segmentation

as demonstrated in the phantom and clinical results.
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3.9 Appendix

The integrals of equation 3.11 can be simplified using the following property of

convolution theory regarding the integral of two Gaussian functions.

∫
gp(x; a,A)gp(x; b, B)dx (3.21)

=
∫

1

(2π)p/2|A|1/2
e−

1
2

(x−a)′A−1(x−a) 1

(2π)p/2|B|1/2
e−

1
2

(x−b)′B−1(x−b)dx

= 1

(2π)p/2|A+B|1/2
e−

1
2

(a−b)′(A+B)−1(a−b)

Where a and b are offsets, or other data points in the distribution if we are

referring to how we will apply this. A and B are the covariance matrices of their

respective Gaussian probability functions (Gp). If one chooses an alpha value of 2,

this conveniently allows us to take advantage of this property, for example if we can

define
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P12 = P21 =

∫
< P1 (J,Ω−)P2 (J,Ω+) dJ =

1
n1n2

n1∑
i=1

n2∑
j=1

∫
<Kψ1 (J − J(xi))×Kψ2 (J − J(xj)) dJ

= 1
n1n2

n1∑
i=1

n2∑
j=1

(2π)−p/2 |ψ1 + ψ2|−1/2×

exp
(
−1

2
(J(xi)− J(xj))

T [ψ1 + ψ2]−1 (J(xi)− J(xj))
)

(3.22)

and similarly

P11 =
1

n1n1

n1∑
i=1

n1∑
i′=1

K2ψ1 (J(xi)− J(xi′)) (3.23)

We can also define
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P̂12 (J,Ω) =
∫
< P1 (J,Ω)Kψ2 (J(C)− J) dJ

= 1
n1

n1∑
i=1

(2π)−p/2 |ψ1 + ψ2|−1/2×

exp
(
−1

2
(J(xi)− J(C))T [ψ1 + ψ2]−1 (J(xi)− J(C))

)

(3.24)

and using these definitions we can rewrite equation 3.11 as

∂φ(x)/∂C =

−2w2
1(P̂12−P11)+2w1w2(P12−P̂12+P̂21−P21)+2w2

2(P22−P̂22)
(w2

1P11+w2w2(P12+P21)+w2
2P22)

+
2w1(P̂11−P11)

P11
+

2w2(P22−P̂22)
P22

(3.25)

This simplification means the processing time of the algorithm increases as

O (pnα) where p is the number of input images and n is the number of samples

used to estimate P1 and P2. This is opposed to an increase of O (np) which allows

the consideration of a larger number of image features/modalities when segmenting.

In the general case that alpha is an integer greater than 2, the property of equation

3.22 can be applied recursively, for example in the case of the integral of the product

of n Gaussian functions
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(
n∏
i=1

s∑
ki=1

)∫
<

n∏
i=1

1
|Ωi|Kσi (J − J(xki))

=

(
n∏
i=1

s∑
ki=1

)
1

(2π)p/2
(

n∏
i=1
|ψi|1/2

)∣∣∣∣( n∑
i=1

ψ−1
i

)∣∣∣∣1/2 × exp
(
−1

2

n−1∑
i=1

(di − xki)TDi(di − J(xki))

)

whereDi =

(
i+1∑
j=1

ψ−1
kj

)−1

and di =

i∑
j=1

ψjxkj

i∑
j=1

ψj

,

(3.26)

where s is the total number of samples taken from inside and outside the segment

and ki is the kth sample of the ith summation. To similarly reduce the number of

integrals let us define the following terms
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P̌11 = α
∫
< (w1P1 (J,Ω−) + w2P2 (J,Ω+))α−1 × (w1 (kσ1 (J(C)− J))) dJ

= α
∫
<

α−1∑
l=0

(
α−1

l

)
(w1P1 (J,Ω−)))α−1−l × (w2P2 (J,Ω+)))l w1 (kσ1 (J(C)− J)) dJ

= α
α−1∑
l=0

(
α−1

l

)
β̂11w

α−l
1 wl2

1

(2π)p/2(|ψ1|α−l|ψ2|l|((α−l)ψ−1
1 +lψ−1

2 )|)1/2 exp

(
−1

2

α∑
j=1

(dj − xkj)TDj(dj − xkj)

)

where xkj ∈ Ω− for j = 1, 2...α− l

xkj ∈ Ω+ for j = α− l + 1, ...α− 1

xkj = J(C) iff j = α

and β̂11 = 1

nα−l1

(
n1∑
k0=1

n1∑
k1=1

...
n1∑

kα−l=1

)
× 1

nl2

(
n2∑

k0′=1

n2∑
k1′=1

...
n2∑

kl′=1

)
(3.27)
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P 11 = α
∫
<

(
α−1∑
l=0

(
α−1

l

))
(w1P1 (J,Ω−))α−l (w2P2 (J,Ω+))l dJ

= −α
α−1∑
l=0

(
α−1

l

)
β11w

α−l
1 wl2

1

(2π)p/2(|ψ1|α−l|ψ2|l|((α−l)ψ−1
1 +lψ−1

2 )|)1/2×

exp

(
−1

2

α∑
j=1

(dj − xkj)TDj(dj − xkj)

)

where xkj ∈ Ω−forj = 1, 2...α− l + 1

xkj ∈ Ω+ for j = α− l + 2, ...α

and β11 = 1

nα−l+1
1

(
n1∑
k0=1

n1∑
k1=1

...
n1∑

kα−l+1=1

)
× 1

nl2

(
n2∑

k0′=1

n2∑
k1′=1

...
n2∑

kl′=1

)

(3.28)

Here the summations with a kn and kn
′

refer to summations of the sample sets

from inside and outside the segment. For completeness,
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P̌22 = α
∫
< (w1P1 (J,Ω−) + w2P2 (J,Ω+))α−1w2kσ2 (J(C)− J) dJ

= α
∫
<

α−1∑
l=0

(
α−1

l

)
(w1P1 (J,Ω−))α−1−l × (w2P2 (J,Ω+))l w2 (kσ2 (J(C)− J)) dJ

= α
α−1∑
l=0

(
α−1

l

)
β̂22w

α−1−l
1 wl+1

2
1

(2π)p/2(|ψ1|α−1−l|ψ2|l+1|((α−1−l)ψ−1
1 +(l+1)ψ−1

2 )|)1/2×

exp

(
−1

2

α∑
j=1

(dj − xkj)TDj(dj − xkj)

)
where xkj ∈ Ω− for j = 1, 2...α− 1− l

xkj ∈ Ω+ for j = α− l, ...α− 1

xkj = J(C) iff j = α

and β̂22 = 1

nα−1−l
1

(
n1∑
k0=1

n1∑
k1=1

...
n1∑

kα−l−1=1

)
× 1

nl2

(
n2∑

k0′=1

n2∑
k1′=1

...
n2∑

kl′=1

)
(3.29)
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P 22 = α
∫
<

(
α−1∑
l=0

(
α−1

l

))
(w1P1 (J,Ω−))α−1−l (w2P2 (J,Ω+))l+1 dJ

= −α
α−1∑
l=0

(
α−1

l

)
β22w

α−1−l
1 wl+1

2 ×

1

(2π)p/2(|ψ1|α−1−l|ψ2|l+1|((α−1−l)ψ−1
1 +(l+1)ψ−1

2 )|)1/2×

exp

(
−1

2

α∑
j=1

(dj − xkj)TDj(dj − xkj)

)

where xkj ∈ Ω− for j = 1, 2...α− l

xkj ∈ Ω+ for j = α− l + 1, ...α

and β22 = 1

nα−l1

(
n1∑
k0=1

n1∑
k1=1

...
n1∑

kα−l=1

)
× 1

nl+1
2

(
n2∑

k0′=1

n2∑
k1′=1

...
n2∑

k(l+1)′=1

)

(3.30)
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P 312 =
∫
< (w1P1 (J,Ω−) + w2P2 (J,Ω+))α dJ

=
α∑
l=0

(α
l
)
β3w

α−l
1 wl2

1

(2π)p/2(|ψ1|α−l|ψ2|l|((α−l)ψ−1
1 +(l)ψ−1

2 )|)1/2 exp

(
−1

2

α∑
j=1

(dj − xkj)TDj(dj − xkj)

)

where xkj ∈ Ω− for j = 1, 2...α− l

xkj ∈ Ω+ for j = α− l + 1, ...α

and β3 = 1

nα−l1

(
n1∑
k0=1

n1∑
k1=1

...
n1∑

kα−l=1

)
× 1

nl2

(
n2∑

k0′=1

n2∑
k1′=1

...
n2∑

kl′=1

)
(3.31)
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P̌31 =
∫
< P1 (J,Ω)α−1 kσ1 (J(C)− J) dJ

= 1
nα−1

1

(
n1∑
k1=1

n1∑
k2=1

...
n1∑

kα−1=1

)
1

(2π)p/2(α|ψ1|)1/2 × exp

(
−1

2

α∑
j=1

(dj − xkj)TDj(dj − xkj)

)

where xkj ∈ Ω− for j = 1, 2...α− 1

xkj = J(C) iff j = α

(3.32)

P̌1 =
∫
< P1 (J(x),Ω)α dx

= 1
nα1

(
n1∑
k0=1

n1∑
k1=1

...
n1∑

kα=1

)
1

(2π)p/2(α|ψ1|)1/2 × exp

(
−1

2

α∑
j=1

(dj − xkj)TDj(dj − xkj)

)

where xkj ∈ Ω− for all j

(3.33)

93



P̌2 and P̌32 are equivalent to P̌1 and P̌31, under the condition that P2, n2 and

Ω+ are substituted for P1, n1 and Ω−.

Considering these definitions, equation 3.11 can be rewritten as

∂E(φ)

∂t
=

1

1− α
P̌11 + P 11 + P̌22 + P 22

P 312

+
α

1− α
w1
P̌31 + P̌1

P̌1

− α

1− α
w2
P̌2 − P̌32

P̌2

(3.34)

94



CHAPTER 4
A 4D Biomechanical Lung Phantom for Joint

Segmentation/Registration Evaluation

This represents a print of ”D. Markel, I. Levesque, J. Larkin, P. Léger and I.

El Naqa, A 4D Biomechanical Lung Phantom for Joint Segmentation/Registration

Evaluation, Accepted in Physics in Medicine and Biology (2016)”

4.1 Abstract

At present, there exist few openly available methods for evaluation of simulta-

neous segmentation and registration algorithms.These methods allow combination

of both techniques to track the tumor in complex settings such as adaptive radio-

therapy. We have produced a quality assurance platform for evaluating this specific

subset of algorithms using a preserved porcine lung in such that it is multi-modality

compatible: Positron Emission Tomography (PET), Computer Tomography (CT)

and Magnetic Resonance Imaging (MRI). A computer controlled respirator was con-

structed to pneumatically manipulate the lungs in order to replicate human breath-

ing traces. A registration ground truth was provided using an in-house bifurca-

tion tracking pipeline. Segmentation ground truth was provided by synthetic multi-

compartment lesions to simulate biologically active tumor, background tissue and a

necrotic core. The bifurcation tracking pipeline results were compared to digital de-

formations and used to evaluate three registration algorithms, Diffeomorphic demons,

Fast-Symmetric Forces Demons and MiMVista’s deformable registration tool. Three
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segmentation algorithms the Chan Vese level sets method, a Hybrid technique and

the Multi-Valued level sets algorithm. The respirator was able to replicate three

seperate breathing traces with a mean accuracy of 2-2.2%. Bifurcation tracking er-

ror was found to be sub-voxel when using human CT data for displacements up to

6.5 cm and approximately 1.5 voxel widths for displacements up to 3.5 cm for the

porcine lungs. For the Fast-Symmetric, Diffeomorphic and MiMvista registration

algorithms, mean geometric errors were found to be 0.430 ± 0.001, 0.416 ± 0.001

and 0.605 ± 0.002 voxels widths respectively using the vector field differences and 0.4

± 0.2, 0.4 ± 0.2 and 0.6 ± 0.2 voxel widths using the bifurcation tracking pipeline.

The proposed phantom was found sufficient for accurate evaluation of registration

and segmentation algorithms. The use of automatically generated anatomical land-

marks proposed can eliminate the time and potential innacuracy of manual landmark

selection using expert observers.

4.2 Introduction

The introduction of hybrid PET/CT and more recently PET/MRI scanners [118]

has provided physically registered multi-modal datasets for diagnostic purposes and

radiotherapy planning. This provides a large opportunity for multi-modal segmen-

tation algorithms to improve target definition accuracy particularly for cancerous

tumors where the shape, location, intensity distribution and texture is widely vari-

able [119]. For many centers that do not have access to hybrid scanners or when

considering images from multiple fractions or gated scans taken during free breathing,

multi-modal segmentation accuracy relies heavily on the quality of the registration

process used to bring the datasets of images into alignment.
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Segmentation and registration, two common image processing algorithms used

often in the process of adaptive radiotherapy have increasingly been used in a simul-

taneous fashion [120, 121, 122, 123, 124, 125, 126]. For multi-modal segmentation

this improves the alignment of the input volumes while the additional boundary in-

formation can aid in the registration process. In many cases the registration is used

solely to aid in the segmentation process as with Atlas-based algorithms or contour

templates. Numerous benchmarks have been developed for evaluating each method

independently [127, 128, 129, 130, 131]. Kerdok et al. developed a silicone rub-

ber phantom called truthcube to evaluate soft tissue deformation using implanted

Teflon beads. Compared to a simulation using Finite Element Method (FEM) soft-

ware they found discrepancies on the order of 3.5 mm for displacements of 1.5 cm.

This was attributed to lack of refinement of the FEM model and a 2 mm estimated

uncertainty of the bead locations. Serban et al, developed a cylindrical phantom

comprised of natural sea sponges interlaced with nylon wires, lucite beads and round

dermasol tumors. The sponge is actuated by an industrial motor in order to simu-

late breathing phases. Ground truth uncertainty was dominated by the uncertainty

in manual selection of these landmarks, the 2.5 mm diameter of the lucite beads

and scan resolution (0.7x0.7x1.25 mm3 at its highest). Liu et al. used foam inserts

within a custom made polymer shell and plastic 1x5 mm seeds as markers. Their

positional uncertainty was dominated by the slice thickness of their scan and esti-

mated at 1.7 mm. Additionally they used an NCAT virtual phantom for evaluation

using estimated deformation vectors from a series of patient breathing scans. Nu-

merical models and virtual phantoms such as NCAT [132], XCAT [133], VIP-man
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[134], CNMAN [135] among many have been regarded as a pseudo gold standard

for registration benchmarking due to the fact that the final location of any point

in the phantom is accurately known. The short-comings of such phantoms lay in

the difficulty of recreating the complex features observed on clinical scans such as

anatomical details, texture, geometric and temporal deformation patterns as well as

image quality degradations such as artifacts and noise. As such the realism of such

phantoms with regard to these properties is difficult to determine [136].

Physical phantoms can offer additional geometric realism along with realistic

imaging characteristics at the cost of introducing some ground truth uncertainty.

Yang et al. utilized a preserved swine lung in order to improve anatomical realism

and allow MRI compatiblility by placing the pneumatic actuator outside the scanning

room [137]. In this case bifurcations of the lung are used as markers for evaluation

but still rely on proper selection. Simultaneous registration and segmentation and

the evaluation of both in the same setting remains a challenge and there is currently

no gold standard.

Several factors are addressed with the proposed phantom which attempts to

balance the trade-off of realism to ground truth knowledge. The goal of this work

is developing hardware and software tools to provide a well known ground truth for

evaluating both segmentation and registration in the same setting while maintaining

realism through the use of a set of preserved swine lungs and a custom made com-

puter controlled respirator that can precisely mimic real human breathing traces.

The phantom is compatible with multiple modalities including PET, CT and MRI.
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Tracking of bifurcations in the lung airways is used for evaluating registration accu-

racy along with synthetic lesions for evaluating segmentation accuracy.

4.3 Materials and Methods

4.3.1 Lung Tissue

An educational kit consisting of porcine lungs contained within a preservative

solution (74% water, 25% propylene glycol, 0.3% formaldehyde and traces of phenol)

was used to simulate a set of human lungs due to similarities in anatomy and capacity.

The swine lungs are advertised with a vital capacity of approximately 4.6 L compared

to 3-5 L for humans [138]. The samples are meant to last 6 months but can last longer

with proper storage.

4.3.2 Computer Controlled Airflow System

Shown in figure 4–1 is the airflow system used to inflate the lungs. Air pressure

within the lungs is regulated by a set of bellows actuated by a 186 watt Baldor

industrial motor. An 8 meter long vinyl tube with a 1.27 cm diameter connects the

bellows to the lungs. A second 6.35 mm port is used to supply air from an aquarium

pump into the bellows to account for any leaks in the sample. Ideally, the port is

replaced with a plug in the case of a closed system. In order to attain constant

torque while varying the speed of the motor, a driver circuit was designed to provide

pulse width modulation of the driving voltage. This is controlled by a National

Instrument data acquisition module connected to a laptop running LabVIEW 2013

(32-bit) (National Instruments, Austin, TX). The direction of the motor is controlled

by changing its polarity with a relay. A 2500 point resolution optical encoder was

used to provide feedback to the data acquisition card. The control software relies on a
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Figure 4–1: The computer controlled airflow system model shown from the a)side,
b)top, c)front and d)photographed connected to the swine lungs. The main piston
has a 4 cm range of motion and is held horizontal by a pair of pillow block bearings
attached to a mounting plate.
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proportional-integral-derivative (PID) controller, using the position of the breathing

trace every 40 ms as a new set point. PID controllers are feedback systems commonly

used in industrial automation. Their function is governed by Equation 4.1.

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ + kd
de(t)

dt
(4.1)

Where u(t) is the update to the controlled variable based on the error e(t) be-

tween the current variable value and set point. t in this notation is the time and τ is

a variable of integration the ranges from 0 to t. In this case the controlled variable is

the linear position of the respirator piston and the set point is the scaled breathing

trace. Kp, Ki and Kd and the proportional gain, integral time and derivative time.

The proportional gain drived the variable value towards the set point in order to

minimize the error between the two. Since the proportional term is linearly depen-

dant on the error, the correction to the controlled variable shrinks as it approaches

the set point, never quite reaching it. The integral term attempts to equalize the

time spent above and below the set point and works towards ensuring the controlled

variable reaches the set point instead of approaching it asymptotically. Often the

interplay between the first two terms can lead to unwanted behaviour such as ring-

ing about the set point. The derivative time, or third term, acts to smooth the

transition to the set point, reducing ringing. In practice, the relationships between

the three terms can be much more complex and optimization of the three variables

KP ,Ki and Kd can be very difficult. Thus the proportional gain, integral time and

derivative time were optimized using the Ziegler Nichols method [139] (Kp=1.82,
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Ki=0.11, Kd=0.03). Reversal of the motor direction was limited to switching be-

tween the inhale and exhale phases of breathing. Changing the motor direction due

to an overshoot was prohibited in the control software in order to prevent the relay

from switching too quickly and burning out its contacts. In these cases, the motor

was turned off temporarily to allow the breathing trace to catch up with current

position of the motor.

4.3.3 Synthetic Targets

Figure 2 shows the segmentation targets constructed from natural sea sponges.

Each sponge was vacuum-sealed in order to reduce the presence of air bubbles and

increase their rigidity, preserving their shape during the scan and subsequent han-

dling. The synthetic targets consisted of two sealed sponges, one placed inside the

other with the inner sponge approximating a biologically active tumor region and

the outer, typical surrounding healthy tissue. Two synthetic lesions with this config-

uration were attached to the lungs within neoprene pouches while a third designed

with three compartments was also included. This design was meant to mimic a het-

erogenous tumor with a necrotic core. Figure 4–2 shows scans of the three synthetic

targets using CT, MRI and PET.

For each synthetic tumor, two medical injection ports (three for the heteroge-

nous tumor) were attached to allow injection of fluorodeoxyglucose ([18F] FDG)

radiotracer. In order to determine the compartment boundaries, a 65% iohexol CT

contrast agent (diluted to 323.5 mg/mL) mixed with 18-FDG radiotracer at a final

activity concentration of 60 kBq/ml was injected into the inner compartment. The

outer compartment was injected with a mixture of Gadovist gadolinium-based MRI
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Figure 4–2: Transverse views of the synthetic targets scanned with CT (a)-c)), MRI
(d)-f)) and PET (g)-i)). The targets 1-3 are organized from left to right. Target
1 consists of compartments 1.2, 13.9 and 20.2 cm3 in volume from the inside to
the outside. Target 2 is made up of compartments with volumes of 0.85 and 21.9
cm3. Likewise, target 3 has compartments of 10.8 and 13.9 cm3 in volume. Maximal
diameters for each compartment are shown in white. Image scaling for each target
may not match.
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Figure 4–3: The compartment obfuscating procedure with a) the original image, b)
the image after the compartment has been replaced with NaN values, c) the image
following inpainting and smoothing and d) the original image smoothed using the
same filter. e)-h) show a range of contrast values by varying λ in Equation 4.2 from
0.9 to 1.05 in 0.05 increments. These same values were used to evaluate the three
segmentation methods shown in Figure 4–9. A horizontal profile of the synthetic
tumor taken from e)-h) is shown below in i)-l).

contrast agent (diluted to 3.6 mg/ml) and 18-FDG at a final activity concentration

of 30 kBq/ml. Using the contrast provided by the iohexol and Gadovist contrast

agents, the boundaries of the active compartments were discerned by thresholding

the volumes using values of 376 HU, 500 HU for the CT and CBCT images respec-

tively. The MR images were thresholded using a window between 10-60% of the
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maximum signal in the neighbourhood of the synthetic tumors. Any errors resulting

from this were then corrected manually using the open source software 3D slicer.

The contrast agents were used as a means to easily determine the boundaries of

the compartments meant to mimic biologically active tumors. However, this contrast

would also have the effect of compromising the ability to compare the performance of

different segmentation algorithms since the boundary is easily discernable. To rem-

edy this, the intensity distribution of the active compartment was digitally altered

in order to reduce the contrast and obfuscate the compartment boundary according

to Equation 4.2. First an estimate of the background compartments was made using

a HU window of 924-1400 HU. The upper range of this threshold was purposefully

overestimated. To get a more precise estimate of the appropriate upper boundary

on the threshold range, the histogram of the background compartment is taken and

upper leading edge (defined as the first local minima past the peak) was used. This

new threshold range is then used to define the active compartment in such a way

that it includes any partial volume effects around the border. In painting is then

performed on this region using inverse distance weighting with a power value of 11.

A diffusion filter presented by Weickert et al. [140] was used to smooth the region

inside the compartment without blurring the borders significantly (# of Iterations

= 15,τ = 0.7, kernal size = 1, threshold = 0.7). This was also used on the original

image to produce two images A (for the smoothed original) and B for the smoothed

background image, to determine the ratio by which the original image must be mul-

tiplied to reduce the contrast. Smoothed versions are used to retain texture and
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noise information as much as possible when altering the original image according to

Equation 4.2.

I ′(x) = I(x)− λ
(
I(x)− I(x)

B

A

)
(4.2)

Where I and I ′ are the unaltered and altered images, x is the subset of voxels

within the synthetic target. A and B are the smoothed background and original

images. λ is a parameter to control the contrast of the active compartment.

CNR =
µfg − µbkg

σbkg
(4.3)

The contrast-to-noise ratio (CNR) is calculated from Equation 4.3 where µfg, µbkg

and σbkg are the active compartment mean, background compartment mean and

background standard deviation respectively. A range of CNR values are shown in

Figure 4–3.

4.3.4 Bifurcation Tracking Pipeline

In order to discern a ground truth for registration evaluation, bifurcations of the

bronchi were used as fiducial points of comparison between scans. The bifurcation

tracking pipeline, outlined in Figure 4–4 begins with a segmentation of the lung

bronchi by using a region growing algorithm in the space surrounding the bronchi

and inverting this binary image. A 3D skeletonization procedure is performed on

the segmented bronchi to reduce them to their medial axis based on the work by

Lee and Kashyap [141]. The bifurcations of this skeleton are detected in a fashion

similar to that used by Nallaperumal et al. [142] extended to the 3-dimensional case

using neighbourhood templates. In order to reduce the search neighbourhood, only
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Figure 4–4: The bifurcation tracking pipeline. This consisted of an initial region
growing of the air in the lungs, followed by morphological hole filling and subtraction
from the original mask to segment the lung airways. A 3D skeletonization proce-
dure determines the medial axis of the airways which are then compared against a
bank of automatically generated 3D templates to detect bifurcations. The detected
bifurcations from two lung volumes are then matched using the estimated diameter
of the bronchi and an initial rigid alignment using cluster centers.

333 voxel neighborhoods in the skeleton mask with exactly 4 voxels belonging to the

skeleton are compared to a lookup table of neighbourhoods that would represent a

bifurcation in the medial axis.

The neighbourhoods of the lookup table were automatically generated by itera-

tively considering every voxel in a 3x3x3 neighbourhood and assigning a value of 1 to

4 of them. Here the center is always given a value of 1. Every other voxel is consid-

ered for the second voxel and the third and fourth are likewise iterively selected from

the remaining set under the condition that they cannot be directly touching another

voxel with a value of 1. In total 9480 templates were automatically generated.
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After detection of the bifurcation points from two volumes they are matched

by first estimating a rigid transformation. A fuzzy clustering algorithm is used to

determine the cluster centers of the bifurcation points of each lung. The difference

in centers between the two data sets is used to initialize the transformation. A

second non-rigid transformation using the thin-plate-spline robust point matching

(TPS RPM) algorithm published by Yang [41] in 2011 was used to match landmarks

between both point clouds. The algorithm was chosen for its ability to match point

clouds where some of the points don’t have a corresponding match in the second

cloud by enforcing a smooth transformation. The energy function of the registration

included the euclidean distance between point pairs and the difference in bronchial

radii, summarized in Equation 4.4. This was estimated from the segmentation mask

of the bronchi. First principle component analysis was performed on a 21x21x21 voxel

neighbourhood surrounding any detected bifurcation. The first eigenvector estimates

the medial axis of the bronchi and the normal of the plane that perpendicularly cuts

through the bronchi. The radius can be estimated by assuming a circular cross

section and inverting the formula for the area of a circle. The formula for the energy

function was given by simple addition

E(i, j) = |~xi − ~xj|+ β |ri − rj| (4.4)

Where ~xi and ~xj are the euclidean coordinates of bifurcation points i and j and

ri and rj are the radii of their respective bronchi. β was determined through trial

and error to be 40 by maximizing the true positive rate of the point pair candidates.

Finally a GUI, shown in Figure 4–5, was written to show the candidate point pairs
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Figure 4–5: Graphical User Interface written for quality control of matched bifurca-
tion points. Red croses show the point pair selected by the iterative point matching
algorithm. Green crosses represent detected bifurcations in each volume. The GUI
shows a CT scan of the lungs from three planes, transverse, coronal and sagittal
(ordered left to right).
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to the user for a final confirmation, rejection or potential reselection of the matching

point. In the event of a mismatch, alternative bifurcations can be selected if they

are found to be the appropriate matching landmark. The pipeline accuracy was

evaluated by applying a known virtual deformation to a CT scan of a patient and

the porcine lung itself. The detected bifurcation locations were compared to the

known final locations.

4.3.5 Scanning Parameters

PET and CT scans were acquired using a GE Discovery 690 hybrid PET/CT

scanner at the PERFORM institute, Concordia University. Four-dimensional (3D+t)

PET scans of the lungs were taken during free-breathing and discretized into 6

bins/phases. The scans were acquired over the course of an hour and reconstructed

with the VUE point HD (VPHD) algorithm using several time periods (first 25 s, 20

min, 30 min and 60 min) in order to vary the resulting quality of the scan. CT images

were taken in CINE mode using a voltage of 140 kVp and currents of 10, 55 and 140

mA. The position of the lungs was tracked using the Real-time Position Management

(RPM) System which relied on a reflective marker placed on top of the lungs. This

was imaged using an infrared illumator and CCD camera in the scan room. The 6

bins were centered at 8%,25%,42%,58%,75% and 92% of the breathing cycle. MRI

scans were acquired at the Cedars Cancer Center using a Philips (Amsterdam, The

Netherlands) 3.0 T Ingenia. The lungs were scanned using a T1-weighted fast field

echo (FFE) sequence (FA = 90deg, TE = 9 ms, TR = 520 ms) and with water fat

shift coefficients of 0.45 and 0.99. Due to the lack of commercial sequences for 4D

MRI imaging of the lungs, the respirator was used to hold the lungs at 6 specific
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breathing phases for the duration of a series of 3D scans in order to match the data

sets acquired using the 4D PET/CT scans. The image volumes were reconstructed

with resolutions of 3.64x3.64x3.27 mm3, 1.7x1.7x5 mm3 and 0.61x0.61x3 mm3 for

the PET, CT and MRI scans, respectively.

CBCT scans were performed using the on-board imager of a Varian Truebeam

linear accelerator (Varian Medical Systems, Palo Alto, CA) using a potential of 80

kVp and a current of 50 mAs with a spatial resolution of 0.51x0.51x2 mm3.

4.3.6 Human Breathing Reproduction

Three female patients undergoing radiotherapy treatment, all presenting with

carcinoma in either the small intestines or the liver, were chosen to attain a sam-

ple of varied human breathing patterns. Breathing traces were measured using a

Philips (Amsterdam, The Netherlands) respiratory bellows belt. The three profiles

were anonymized and imported to the control software for replication. This was

accomplished by setting the breathing trace as a set point that changed every 40

ms. Reserve and tidal volume of the swine lungs are set by the user, determining the

offset and magnitude of the rescaled breathing trace. Profiles were also smoothed

using a box filter with a 100 ms width in order to eliminate noise in the traces.

4.4 Comparable Methods

As a proof of concept three level-sets segmentation methods were used to seg-

ment the radiologically active portions of the artificial lesions on all four modalities

in which images were acquired. The Chan-Vese model [143], a Hybrid techique pub-

lished by Zhang et al. [144] and the multi-valued level set method [101] were chosen

as example algorithms. The Chan Vese method is a level sets implementation that

111



attempts to optimize the Equation 4.5.

F (c1, c2, φ) = µ

∫
Ω

δ(φ(x, y)) |∇φ(x, y)| dxdy + ν

∫
Ω

H(φ(x, y))dxdy +

λ1

∫
Omega

|u0(x, y)− c1|2H(φ(x, y))dxdy +

λ2

∫
Ω

|u0(x, y)− c2|2 (1−H(φ(x, y)))dxdy (4.5)

The level set implementation relies on an implicit mapping through the function

φ(x, y) (in 2D) where the contour is defined at the zero-level crossing (φ(x, y) = 0).

The first regularizes the roundness of the segmentation contour while the second term

is a retarding velocity parameter which works to limit the expansion or contraction

of the contour. The third and fourth term are the expansion and contraction forces

driving the evolution of the contour, controlled by the weighting parameters λ1 and

λ2. In our implimentation λ1 and λ2 are equal to the image weight (IW) whereas ν

is set to zero and µ set to 1. H is the regularized Heaviside function, that ensures

that changes to the level set function occur in the proximity of the contour.

The Second method being evaluated is a hybrid technique built off the Chan-

Vese formulation that proposes the energy function shown in Equation 4.6.

F (φ) = −α
∫

Ω

(I − µ)H(φ)dΩ + β

∫
Ω

g |∇H(φ)| dΩ (4.6)

In Equation 4.6 g is a boundary feature map which is a function of the gradient

of the image intensity I. The variable µ in this context takes on the role of the lower

bound of the gray-level of the intended target. As the algorithm is built to enclose

a region with higher values than µ this acts as a threshold value. The values α and
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β represent the propogation weight (PW) and geodesic active contour (GAC) terms

respectively. The Multi-Valued Level Set Method was designed to incorporate co-

registered multi-modality information with weights used to enforce the importance

of each modality in the energy function summarized in Equation 4.7.

infCJ(C, c+, c−) ∝ µlength(C) +
1

N

∑
i

λ+
i

∫
Ω

∣∣Ii − c+
i

∣∣2H(φ)dx+

λ−i ×
∫

Ω

∣∣Ii − c−i ∣∣2 (1−H(φ))dx+
1

N

∑
i

γi(c
+
i − c−i )2 (4.7)

Here C represents the contour, c+ and c− represent the regions outside and inside the

contour. Image i is sampled N times and λ+
i , λ+

i and γi represent the weights outside

and inside the contour and the spring force for image i. Similar the Chan-Vese and

Hybrid formulism, µ controls the roundess, or smoothness of the contour.

All three techniques were identically intialized using a sphere with a radius of

4 voxels and allowed to evolve until a convergence criteria was met. In this case we

chose a termination criteria based on the change in volume dropping below 1%. The

smooth weight µ for the Chan Vese method was set to 1 and not varied since the

results were found to be relatively insensitive to it.

4.5 Results

4.5.1 Bifurcation Tracking Evaluation

In order to evaluate the bifurcation tracking results, a digital deformation was

applied to a CT scan of the porcine lungs in addition to a human CT dataset acquired

at the MAASTRO clinic (Maastricht, The Netherlands) of a patient with stage-I

non-small cell lung carcinoma. The scan was acquired using a Biograph SOMATOM

Sensation 16 scanner (Siemens, Erlangen Germany). The patient was scanned with
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a spiral CT with contrast at a resolution of 0.98x0.98x5 mm. This data set was

previously acquired in a study by Baardwijk et al.[89]. The deformations were defined

globally using Equations 4.8, 4.9 and 4.10.

dx = −A sin

(
(X − originx)× π

dimx/2

)
(4.8)

dy = −A sin

((
Y − originy

)
× π

dimy/2

)
(4.9)

dz = −A cos

(√
[(X − originx)π/dimx]

2 +
[(
Y − originy

)
π/dimy

]2)
(4.10)

Where X, Y and Z are the cartesian coordinates of the voxels in each volume,

origini represents the coordinates of the center of the volume, dimi represents the

dimensions of the volume and A is a free parameter representing amplitude. The

amplitude was varied from 16 to 83 mm in order to discern the relationship to tracking

error which is shown in Figure 4–6. Bifurcation points were detected and matched in

both the deformed and undeformed volumes and compared to the known deformed

coordinates.

4.5.2 Breathing Reproducibility

After optimizing the PID controller coefficients, the breathing traces were com-

pared to the optical encoder feedback for the length of the profiles. A visual com-

parison is shown in Figure 4–7 for the three chosen profiles. Table 4–1 summarizes

the errors of the traces compared to the feedback from the optical encoder.
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Figure 4–6: Bifurcation tracking error as a function of deformation magnitude for
human and phantom lungs

Table 4–1: Summary of the reproduction error for the three profiles.

Profile # Mean Error (%) Standard Deviation (%)
1 2.2 2.1
2 2.0 1.5
3 2.2 1.6
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Figure 4–7: The three profiles tested using the computer controlled respirator. The
measured breathing trace using the respiratory bellows belt is shown in blue with
the feedback from the optical encoder showing the piston position is plotted in red.
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Modality Target Chan Vese-IW Hybrid-PW Hybrid-GAC MVLS-λ1,2,3

CT 1 1e-4 1.42e-3 1e-7 [4,4;4,4;2,2]
2 1e-4 1.2e-4 1e-7 [4,4;4,4;3,3]
3 1e-4 5.4e-4 1e-7 [4,4;4,4;1,1]

CBCT 1 4.6e-5 4e-4 0.02 [10,10;10,10;3,3]
2 4.6e-5 1e-4 0.02 [10,10;10,10;2,2]
3 4.6e-5 1e-4 0.02 [10,10;10,10;2,2]

MRI 1 12 -1e-5 1e-6 [60,60;60,60;0.5,0.5]
2 24 -1e-5 1e-6 [6,6;6,6;0.5,0.5]
3 9 -1e-5 1e-6 [4,4;4,4;0.5,0.5]

PET 1 5e-7 -2e-6 1e-7 [4,4;4,4;1,1]
2 2e-7 -2e-6 1e-7 [1.5,1.5;1.5,1.5;1,1]
3 2.5e-7 -2e-6 1e-7 [3,3;3,3;1,1]

Table 4–2: Optimal parameters for segmenting the targets of the lung phantom. The
λ1,2,3 array is shown such that λ+,λ− are represented in the columns with i shown
along the rows

4.5.3 Segmentation Evaluation

The parameters of each segmentation algorithm were optimized through brute

force evaluation of a large range until a maxima was determined for each target. This

was done in order to use the best possible results from each algorithm. The optimal

parameters are summarized in Table 4–2.

The resulting segmentation was compared to the target ground truths for each

modality. Figure 4–8 summarizes the results of the segmentation algorithms for each

of the four modalities.

The active compartment volumes were 13.87, 0.85 and 10.8 cm3s for synthetic

lesions 1,2 and 3 respectively. The Cone-Beam CT images were altered using Equa-

tion 4.2 in order to evaluate the effect of contrast on the segmentation performance
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Figure 4–8: A summary of the segmentation results for the three algorithms (Chan-
Vese, Hybrid and MVLS) using three synthetic lesions for a) CBCT, b) CT, c) MRI
and d) PET.

118



Figure 4–9: The Dice coefficient of the three segmentation methods evaluated using
the lungs for varying CNR values of the active compartments of synthetic lesion 1

of the three algorithms. For CBCT the MVLS algorithm has the highest consistent

Dice coefficient for each of the three targets. For the remaining modalities the re-

sults show a lower Dice coefficient for target 2, the smallest of the three, however the

Hybrid algorithm outperforms the other two methods with regard to this target with

the exception of when applied to CBCT. Figure 4–9 summarizes the results of the

three algorithms for varying CNR values where CNR is calculated using the form in

Equation 4.3

From Figure 4–9 we can see that while the MVLS is the most affected by loss

in target contrast, it still performs with the highest DSC when compared with the
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Figure 4–10: Error maps using the vector field differences of the original Demons
algorithm with b) The fast Symmetric Forces registration b)Diffeomorphic demons
and c)MiMVista’s deformable registration algorithm. The side bar represents the
error in voxel widths. The red crosses mark detected bifurcation points within the
current slice and adjoining 3 slices.

ground truth across all CNRs tested. At a CNR of 1.2 it performs almost equivalently

with the Hybrid technique.

4.5.4 Registration Evaluation

Three registration algorithms were chosen for evaluation using the swine lung,

these include the fast-symmetric forces Demons[145], Diffeomorphic demons[145] and

MiMVista’s deformable registration engine[146].
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Method Vector Field TRE
(Voxels[mm])

Bifurcation
Tracking TRE
(Voxels[mm])

Equivalent Vec-
tor Field TRE
(Voxels[mm])

Fast Symmetric
Forces

0.430[0.73]±0.001[0.003] 0.4[0.7]±0.2[0.4] 0.5[1.0]±0.1[0.2]

Diffeomorphic 0.416[0.74]±0.001[0.003] 0.4[0.6]±0.2[0.4] 0.4[0.7]±0.2[0.1]
MiMVista 0.605[1.07]±0.002[0.004] 0.6[0.8]±0.2[0.3] 0.5[0.8]±0.1[0.2]

Table 4–3: Registration error metrics for the three registration algorithms. 1) The
mean error comparing the vector field of the method to the reference vector field,
2)The maximum error of the vector field comparison, 3) The mean bifurcation land-
mark error and 4) the mean vector field error evaluated only at those landmark
coordinates. The uncertainties stated here are the 95% confidence intervals calcu-
lated using Equation 4.11.

The algorithms were evaluated using their vector field differences with the refer-

ence field (calculated with the regular Demons algorithm) as shown in Figure 4–10.

These results are summarized in Table 4–3 using three figures of merit. The first was

a voxel by voxel comparison with a seperate vector field calculated using the regular

demons registration algorithm included in 3D slicer. The warped reference image

using this vector field was used as the target image in the other three registration

procedures to account for any registration errors associated with the regular demons

results. Since information outside the lungs consists of little more than noise and is

of little interest, only the vectors within a mask of the lungs and the synthetic lesions

was used during the evaluation. The second figure of merit consists of the average

target registration error (TRE) of 35 tracked bifurcation points. Target registration

error is simply the euclidean distance between landmarks as defined by Equation

4.11.
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TRE(i) =

√
(xi,1 − xi,2)2 + (yi,1 − yi,2)2 + (zi,1 − zi,2)2 (4.11)

Where (xi,1, yi,1zi,1) and (xi,2, yi,2zi,2) represent the euclidean coordinates for the ith

pair of matching landmarks. The third figure of merit is the average of the vector

field errors taken at the location of the tracked bifurcation points in order to observe

an potential bias in using anatomical landmarks to evaluate registration accuracy

since they are by definition areas of high information content. The 95% confidence

interval as discussed by Castillo et al. [147] is the distance representative of the

registration error distribution defined by Equation 4.12.

d95%CI =
2s√
N

(4.12)

Where s is the pooled standard deviation of the set of error measurements asso-

ciated with one algorithm (in this case we are only relying on our own measurements)

and N is the number of measurements taken. This is calculated for both the error

map and bifurcation tracking distributions.

4.6 Discussion

We have demonstrated the design, construction and application of a joint reg-

istration/segmentation evaluation phantom hardware and software tools using pre-

served porcine lung tissue, synthetic tumors and a bifurcation tracking pipeline.

The construction of a computer controlled respirator allows reproduction of human

breathing traces using the porcine lungs. The results of the bifurcation tracking eval-

uation show that the tracking algorithm is optimally used in human lungs where the

mean error is sub-voxel for displacements up to 6.5 cm. This analysis used digitally
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defined deformations in order to evaluate the tracing error with a high degree of pre-

cision however the drawback in using this approach is the potential loss of detail from

interpolation, meaning that the results included in this paper should be considered

upper limits on the error. The phantom was evaluated using known registration and

segmentation algorithms The comparison of the three registration algorithms shows

that the MiMVista algorithm demonstrated the highest average target registration

error in all three metrics used although this difference was only 0.2 mm. While

the comparison of multiple registration algorithms is a useful exercise, it has been

performed using larger numbers of methods and more rigorously than presented here

[147, 53, 148]. Our purpose of our comparison is to contrast our method with a

known ground truth for evaluation of the algorithms. We can see that by comparing

the bifurcation tracking results to the equivalent euclidean vector field differences in

Table 4–3 that the average values fall well within the other’s 95% confidence interval.

This suggests the bifurcation tracking algorithm is capable of measuring the same

mean error values then when the point correspondence is known explicitly for every

voxel. It is well known that registration error in regions of low image detail and in-

formation tend to be higher than the average registration error[149] which suggests

that using bifurcation points could contain some bias as they are often areas of high

detail. When comparing the mean vector field error to the equivalent bifurcation

point error we see the equivalent error is consistantly lower but not with any statis-

cal significance with p-values of 0.06,0.32,0.87 for the fast symmetric, diffeomorphic

and MiMVista algorithms respectively. The only differences worth remarking upon
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are those for the results using MiMVistas’ algorithm. This may stem from the dif-

ferences in control point density where the demons algorithm used a dense control

point scheme (effectively 1.7x1.7x5 mm3), MiMVista relied on a sparser grid (3x3x5

mm3) in the transverse plane resulting in a coarser deformation. For these three

evaluations, we were able to discern the accuracy with narrow confidence intervals

of 0.18-0.39 mm using only 35 landmarks. Algorithms with higher error variabil-

ity would require larger point sets to accurately evaluate, which one can infer by

Equation 4.11 assuming we desire an equivalent confidence interval. The number of

landmarks available for comparison is determined by the performance of the tracking

algorithm. The main bottleneck in selecting more points is the size of the bronchi

being considered and the accuracy and sensitivity of the method used to segment the

airways. Our segmentation approach is relatively rudimentary and thus our future

efforts would be well spent in improving this aspect of the tracking pipline. Improved

segmentation of finer structures in the lung would not only provide a larger number

of bifurcations but reduce confusion with points not associated with the bronchial

tree which is currently only excluded through manual intervention with the accep-

tance GUI. We found that compromised quality of the swine lungs and lack of even

inflation led to false positives of bifurcations. This meant larger airways were relied

upon for biurcation tracking in the swine lungs, explaining the differences in perfor-

mance between human and swine point tracking. This is due to the fact that there

is higher uncertainty in determining the medial axis for larger airways. Considering

the differences in performance between the human and swine lungs, the use of lungs

from another species of similar size might solve this issue due to differences in the

124



morphology of the lung. Additional improvements to the point-to-point registration

and the GUI for checking the point pairs would reduce the time necessary to acquire

larger sets of data making the platform more feasible for use beyond research.

Segmentation evaluation showed significantly degraded accuracy with respect to

the smaller lesion for all modalities, a result that is consistent with previous studies

[150, 151]. The hybrid and Chan Vese segmention methods appear to have difficulty

segmenting the first lesion compared to the MVLS for the CBCT and CT modalities.

This may be explained by the hetergeneous configuration of the first lesion as it

was built with three compartments, one of which simulated a necrotic core. This

seems to have a presented a challenge as the algorithms tended to neglect the core,

segmenting the outer boundary of the active tumor region and even the background

in some cases instead. Using CBCT images of the phantom with digitally altered

contrast of the active tumor compartments we can see the effect on the performance

of three segmentation algorithms we tested. The effect is more drastic on the MVLS

algorithm, although this was simply due to the other two algorithms failing with

higher CNR values.

An obvious addition to the phantom would be the inclusion of a flexible out shell

for the lungs that resembled the appearance of a human torso as this would have

a significant effect on registration and segmentation performance. We acknowledge

that while the computer controlled respirator is a good step towards kinetic realism,

the relation between movement of the lung and volume is more complex than the

linear relationship that we have assumed here. The movement of the lungs is 3D

and influenced by the diaphram, intercostal muscles and interaction with the pleural

125



cavity among other biomechanical factors. The system presented here inflates and

deflates freely and even with an outer shell can only be considered an approximation

to a clinical case.

Another observation is that the synthetic tumors would mimic clinical conditions

more closely if placed inside the lungs, a feat that was not attempted due to the risk

of compromising the preserved lungs. We further plan to use the phantom in the

future to assess motion prediction algorithms based on custom breathing traces.

4.7 Conclusions

The work presents the development of a multi-modal simultaneous segmentation

and registration platform utilizing a biomechanical lung phantom. The phantom

uses synthetic lesions constructed from vacuum sealed sea sponges and an in-house

bifurcation tracking pipeline for segmentation and registration evaluation. We found

using a PID controller that the airflow to the lungs could be controlled with 2.1%

mean error of the input breathing profile. Bifurcation tracking error was measured

to be sub-voxel for human lungs for displacements up to 6.5 cm and within the

95% confidence interval when evaluating registration error compared to using the

error of the full vector field. The phantom was used to evaluate three segmentation

algorithms (Chan Vese, A hybrid approach and the MVLS methods) on four separate

modalities (CBCT,CT,PET and MRI).
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CHAPTER 5
Simultaneous Registration/Segmentation using the Jensen Rényi

Divergence

This represents a print of ”D. Markel and I. El Naqa, Simultaneous Registra-

tion/Segmentation using the Jensen Rényi Divergence, Submitted June to Medical

Physics (2016)”

5.1 Abstract

Registration and segmentation are two commonly used processes in radiother-

apy treatment planning which place a considerable burden on time and processing

resources. With respect to adaptive radiotherapy this can be prohibitive to the prac-

ticality of plan re-optimization. Presented is a simultaneous coupling of the two

methods, termed regmentation, using an information theoretic technique called the

Jensen Rényi divergence as an objective function. The Jensen Rényi covers a num-

ber of mathematical forms very similar to well known statistical similarity measures

such as the Kullback Leibler divergence or the Bhattacharyya coefficient depending

on the selection of a parameter α. The coupled regmentation method relies on a

level sets approach along with a non-rigid deformable registration technique using

an adaptive meshing selection of control points for the segmentation and registration

procedures, respectively. An in-house built 4D biomechanical lung phantom with

synthetic lesions was used to evaluate this specific type of algorithm’s performance.

We investigate the optimal use of regmentation parameters within this work. An
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improvement in segmentation accuracy and registration accuracy within the local

region of the segmentation targets was found using a coupling coefficient of 0.55.

Values of α1 = 0.7 and α2 = 0.5 were determined to be optimal for the registration

and segmentation tasks, respectively. Additionally, the regmentation algorithm was

also compared to a Lucas-Kinade optical flow and Demons registration algorithm

using a variety of signal-to-noise (SNR) values which were created using artificially

produced computed tomography (CT) noise. A reduction in target registration error

(TRE) of 4% between 36 and 6.8 dB was observed for the regmentation algorithm

compared to 24% and 30% for the optical flow and Demons algorithm. Our work has

shown improvement in registration and segmentation accuracy attained through the

coupling of the two methods and have demonstrated a robustness to noise compared

to alternative deformable registration algorithms.

5.2 Introduction

The practice of adaptive radiotherapy (ART) attempts to take into account

anatomical changes that occur during the course of fractionated radiotherapy. These

may include, but not limited to, tumor size and shape, weight gain or loss, the

filling or voiding of hollow organs such as the bladder or even movement during

the treatment itself. Many of the tools ART employs include use of resegmentation,

registration and re-optimization. In the last 20 years, partial implimentation of ART

practices into the clinic have been aided through the advancement of computing

power, in-room imaging devices and treatment planning techniques [80, 152, 153].

The practicality of ART is dependant upon the efficiency of the replanning process.

Automated and semi-automated segmentation and registration software has been
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demonstrated to significantly reduce replanning time and observer variability [154,

155, 156].

Regmentation is the process of simultaneously combining segmentation with

registration with the intent of improving the accuracy and efficiency of both processes

[157, 101]. With regards to adaptive radiotherapy (when the target is found within

the lung) and in particular when leveraging multimodal imaging for plan adjustment

several challenges are present.

• Proper re-segmentation of the target boundary in the presence of noise and

weak boundaries

• Registration of data sets with low image quality, particularly for MRI images

of the lung or using cone-beam CT.

• Segmentation of unregistered data from multiple modalities.

Many commercial applications incorporate an atlas to aid in segmentation of

OARs and treatment targets [154]. This technique requires the registration of an

atlas volume to the applied image to segment desired structures but often does so

sequentially. Several experimental methods have applied the two in a joint fashion

[120, 121, 122], however, the registration component only serves in the final produc-

tion of a contour. An integrated segmentation and registration framework was first

proposed by Bensal et al. [123] where a 2D portal image was rigidly registered to a

3D CT volume using an entropy based objective function. Yezzi in 2001 [124] using

a variational segmentation method along with a rigid registration of the level set

functions in order to couple the two processes. Since then several more advanced

joint algorithms have been published [125][126].

130



Gooya et al. [122] used an estimation maximization algorithm to simultaneously

register and segment skull stripped MR images with a brain atlas. Xue et al. [125]

used a 4-D elastic deformable registration in step with a custom temporal clustering

algorithm to perform regmentation of 4-D CT images. Ayvaci et al.[126] combined

registration into the segmentation of CT images using a template combined with a

graph cuts method. A watershed filter was ued to simplify the graph-cuts segmen-

tation by only considering discrete homogenous regions.

The proposed algorithm derives from previous work using the Jensen Rényi di-

vergence as an optimization criteria for a level sets segmentation technique [158]. The

Jensen Rényi objective function showed an improved robustness to noise compared

to a similar technique using mutual information. The proposed implementation com-

bines registration with segmentation through the use of a coupling term that seeks

to optimize the energy function of the segmentation through movement of the con-

trol points, aligning the reference image in the proximity of the contour boundary.

Additionally the flexibility of this theoretical framework allows the inclusion of any

number of volumes and thus can be used to perform temporal multimodal joint

registration/segmention.

5.3 Materials and Methods

5.3.1 Theoretical Background

The Jensen Rényi Divergence

Let us define a set of samples from either outside or inside a contour by xi, i =

1, 2, ...n where n is the sample size and i is the sample index. Using these samples to
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define the probabilistic intensity distributions inside and outside, the JR divergence

criterion is defined by the following conditional expectation:

E(θ) =
1

1− α

(
log

∫
<

(w1P1(J(x),Ω) + w2P2(J(x),Ω))α dx−

w1log

∫
<

(P1(J(x),Ω))α dx− w2log

∫
<

(P2(J(x),Ω))α dx

)
(5.1)

where w1,w2 are the weighting parameters for the probability distribution func-

tions P1 and P2. P1 and P2 in this context are defined by the intensity distributions

inside and outside the evolving level set, respectively. The symbol < covers the do-

main of possible intensity values. For our implementation, volumes were discretized

to 55 levels in order to reduce processing requirements. A higher number of levels

was found to be too memory intensive for the hardware the algorithm was run on,

which included 3GB of GPU ram on an nVidia GeForce GTX 560M. The geomet-

ric space Ω varies depending on the task. For segmentation Ω− and Ω+ define the

sample space inside and outside the contour boundary respectively. For registration

Ω defines the volumes enclosed within the tetrahedra connected to the control point

in question. The curvature of the energy function is determined by the choice of pa-

rameter α which determines the weighting of infrequently versus frequently occuring

intensity values. This has been shown to be an effective method for dealing with noise

where the noise contributes to values outside the expected distribution [73]. When

α is equal to 0.5, the divergence is proportional to the log of the Bhattacharyya
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coefficient. When α is chosen to be 1 the measure becomes the Jensen-Shannon di-

vergence, which is equivalent to mutual information when the weighting parameters

are chosen equal to P1 and P2.

The probability distributions are defined using Gaussian kernels.

P (J(x),Ω) =
1

n

n∑
i=1

Kψ (J(x)− J(xi)) (5.2)

Kψ (z) = (2π)−p/2 |ψ|−1/2 exp

(
−1

2
(z)T ψ−1 (z)

)
(5.3)

Here n defines the number of samples, z the input vector and p represents the di-

mensionality of the inputs for the probability density. For example when performing

registration the dimensionality p is 2 since the inputs are defined by the reference and

target image. Additionally, Kψ is the Gaussian kernal used for the Parzen window

estimation of the probability density. Here ψ represents the covariance matrix of the

feature vector J. This can be calculated be directly from the vector J, however this

makes the assumption that the data is best represented by two unimodal distribu-

tions. Since we want to make no assumptions about the shape of the distributions,

every covariance matrix was set as a p× p matrix with every diagonal element set to

8.

A flow chart is shown in Figure 5–1 outlining the steps of the overall algorithm.

Segmentation Using Level Sets

The application of the Jensen Rényi divergence as an energy function for use in

level sets segmentation and non-rigid deformable registration is outlined here. Both
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Figure 5–1: An outline of the algorithm highlighting the adaptive mesh generation
using a 3D Floyd-Steinberg dithering filter and the iso2mesh package for mesh cre-
ation. The level set segmentation function is updated by calculating the gradient
of the JR divergence with respect to raising or lowering the level set function. The
iterative update to the deformation vectors is calculated from the regular registration
gradient and a coupling term which applies deformation vectors in order to better
align the image in the local region surrounding the segmentation target.
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processes are optimized using a gradient descent technique. This is outlined for

calculating the update to a level set function for segmentation, the position of the

registration control points and similarly the control points that belong to elements

that overlap with the contour when calculating the coupling term. The level set

function is an implicit contour representation that use a scalar function, φ(x, y, z)

overlayed on the image space where the contour is defined by the zero crossing

(φ(x, y, z) = 0). As defined in our previous work [158] the energy function is of the

form in Equation 5.4.

E(φ) =

∫
Ω

(JRD(φ(x)) + µ |∇H(φ(x))| − ν) dx (5.4)

Where JRD(φ) is the Jensen Rényi divergence, ν is a scalar velocity term, dx is a

euclidean voxel coordinate represented by x, Ω is the set of sampled voxels in the

image, |∇H(φ)| is the magnitude of the gradient of the Heaviside function (which

forces a smooth boundary) and µ is a weighting factor controlling the roundness of

the contour. Growth and shrinkage of the contour is controlled through raising and

lower of the level set function and is inhibited by the velocity term ν.

The level set function of the segmentation algorithm is evolved by the following

derivation

∂E(J(x), θ)

∂C
=

1

1− α

(∫
< α (w1P1 + w2P2)α−1 (w1

∂P1

∂C
+ w2

∂P2

∂C

)
dx∫

< (w1P1 + w2P2)α dx
−

w1

∫
< αP

α−1
1

∂P1

∂C
dx∫

< P
α
1 dx

− w2

∫
< αP

α−1
2

∂P2

∂C
dx∫

< P
α
2 dx

)
(5.5)
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Where P1 and P2 is a simplified notation of P1(J(x),Ω−) and P2(J(x),Ω+). The

partial derivatives of the probability densities are

∂P1

∂C
=

1

|Ω−|
(−Kψ1(J(C)− J(x))− P1(J(x),Ω−)) (5.6)

∂P2

∂C
=

1

|Ω+|
(P2(J(x),Ω+)−Kψ2(J(C)− J(x))) (5.7)

where C refers to voxel samples in the local region around the edge of the

contour.

5.3.2 Adaptive Meshing

In order to reduce the number of control points needed to register two images,

an adaptive meshing approach was implemented in order to more efficiently place

control points in areas of high information content (such as high contrast borders)

while reducing the control point density in homogenous regions. This is accomplished

through the use of the Floyd-Steinberg dithering filter [159]. Dithering is a technique

originally developed for newsprint in order to convey gray scale when the only options

available for printed were a binary ability to place ink or leave the page blank.

By regulating the density of dots, shades of gray can be conveyed to the human

eye at a larger scale. A dithering filter is a method of transforming a grayscale

image into a binary one without the loss of conveyed shade as shown in Figure 5–2.

Our implementation begins by determining a mask that encompasses the object of

interest, in this case the lungs through simple thresholding. The iso2mesh package

developed by Qianqian Fang [160] was used to convert the binary mask into an outer

shell mesh for the lungs. Due to the fact that the iso2mesh package deals exclusively
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Figure 5–2: Adaptive meshing pipeline beginning with uing the eigenvalue of the
Hessian matrix to exemplify image features. The Floyd-Steinberg dithering filter is
used to determine the locaton of points which after randomly selecting can be used
to produce a 3D mesh.

with presegmented image volumes, the Floyd Steinberg dithering filter was used to

extract control point locations. The input to the filter was the first eigenvalue of the

Hessian matrix derived for each voxel in the image. To control the total number of

control points, the control points generated from the dithering filter were selected

using a randomized permutation and checked to ensure that they fell outside of

a user-defined radius of any other previously chosen control points. This simple

method regulated the size of the final tetrahedra created in the mesh. These chosen

control points were then added to the initial mesh shell using the mesh refinement

tool included in iso2mesh.

Registration

The overall energy criteria for the registration process is presented as a com-

bination of the registration and coupling term. The coupling term is zero for most

control points unless they are part of an element overlapping with the contour. The

control point positions are defined by [px, py, pz].
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∂pi
∂t

=

∫
Ω

∂JRreg (px, py, pz)

∂pi
+ C

∂JRcoup (px, py, pz)

∂pi
dx+ Si (px, py, pz) (5.8)

In this formulation i refers to any one of the dimensions x, y or z (in 3D) while

the regularization term is represented by Si to ensure a smooth vector field and

t is the time step. The function Si in this implementation represents a Gaussian

smoothing function using Equation 5.9, where di is the distance between the current

control point (px, py, pz) and an adjacent control point indexed by i.

S(px, py, pz) =
1

3

n∑
i

pi

1
r
√

2π
exp− d2

i

2r2∑n
j

1
r
√

2π
exp− d2

j

2r2

(5.9)

In this context r represents a radius parameter set by the user which scales the

distance of influence for each of the control points. The variable n represents the

collection of control points connected to [px, py, pz] through the mesh structure.

The registration force is calculated from Equation 5.10 where P1 represents the

probability of an intensity value belonging to the distribution of the target image and

P2 the reference image. Since moving the control points only deforms the reference

image, finding the gradient requires taking the derivative with respect to P2.

∂JRreg

∂t
=

α

1− α

∫
< (w1P1 (J(x),Ω) + w2P2 (J(x),Ω))α−1w2

∂P2(J(x),Ω)
∂t

dx∫
< (w1P1 (J(x),Ω) + w2P2 (J(x),Ω))α dx

−w2

∫
< (P2 (J(x),Ω))α−1 ∂P2(J(x),Ω)

∂t

P2 (J(x),Ω)α dx
(5.10)
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Applying the chain rule, the derivative of P2 is calculated using the Guassian

kernel from Equation 5.2 to produce Equation 5.11.

∂P2 (J(x),Ω)

∂t
=
∑
xi∈A

(2π)−
p
2 |ψ|−

1
2 (J(x)− J(xi))

T ψ−1 ·(
∂J(Xi)

∂t

)
exp

(
−1

2
(J(x)− J(xi))

T ψ−1 (J(x)− J(xi))

)
(5.11)

Where (J(x),Ω) ∂t is calculated from Equations 5.23, 5.24, 5.25 and 5.25. For the

coupled metric, the inputs are multi-dimensional (from each image) and thus for the

simplest case of two images, it is defined by

∂J((x,Ω)

∂t
=

(
∂u(xi)

∂t
,
∂v(xi)

∂t

)
(5.12)

Further derivations regarding the gradient terms including the coupled gradient

definition are presented in the appendix.

The mapping function is outlined in a paper by Wang et al. [161] which uses

any mesh comprised of triangular elements. The 3D extension, using tetrahedrons,

is outlined in the appendix (see Equation 5.29. The forward mapping function can

be represented in the affine form

wtm(u) =

 a1 + a2s+ a3t

b1 + b2s+ b3t

 (5.13)
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where the coefficients are calculated from the control point coordinates of the

element vertices ([x1,y1],[x2,y2] and [x3,y3]) in the reference space.
a1

a2

a3

 =


x3

x1 − x3

x2 − x3

 (5.14)


b1

b2

b3

 =


y3

y1 − y3

y2 − y3

 (5.15)

The Jacobian of this mapping function is

Am = a2b3 − a3b2 = x1y2 + x2y3 + x3y1 − y1x2 − y2x3 − y3x1 (5.16)

5.3.3 4D Phantom Based Evaluation

A 4D biomechanical phantom (shown in Figure 5–3) was produced in house in

order to provide a dataset with a well known yet realistic ground truth. A Bioquest

preserved swine lung was used as the tissue phantom due to its similarity to human

lungs and MR compatibility. The ground truth for segmentation is provided by a

dual-compartment vacuum sealed natural sea sponge. Each compartment is accessi-

ble through rubber tubing attached to a Microclave connector (ICU Medical Inc, San

Clemente, CA). Figure 5–4 shows an example of the synthetic tumor compartments.

The inner compartment acts as the target with the surrounding outer compartment

as the background.
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Figure 5–3: Photo of the computer controlled respirator connected to the preserved
swine lungs. A 186 watt motor is used to manipulate the rubber bellows at the end,
inflating and deflating the lungs.
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Figure 5–4: Photo of the synthetic tumor consisting of multiple vacuum sealed com-
partments.

The registration ground truth is provided by the bifurcations of the bronchi of

the lungs which act as anatomical landmarks for comparison. A bifurcation tracking

pipeline was created to automatically detect and match congruent bifurcations be-

tween two datasets. The pipeline first segments the bronchial tree of the lungs using

region growing with the seed planted in the airway of the bronchi. Following this a

3D skeletonization procedure is used to reduce this binary image to a 1 voxel thick

medial axis that runs through the center of the bronchi as shown in Figure 5–5.

The skeleton is used to determine where bifurcations occur by using a 3D ex-

tension of the rotationally invariant masks used by Bhuiyan et al. [162]. A library of

3264 3x3x3 voxel neighbourhood templates of possible patterns was used to detect

bifurcations in the skeleton. The templates were compared to 3x3x3 voxel neighbour-

hoods in the binary mask of the skeleton that contained exactly 4 voxels belonging
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Figure 5–5: The bifurcation pipeline used to provide a ground truth for registration
evaluation.
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to the skeleton. Once bifurcations are detected in the target and reference images,

they’re matched by first determining an appropriate rigid transormation. The trans-

formation is estimated using fuzzy clustering to determine cluster centers of the

bifurcation point clouds of each lung in both images. After rigidly translating the

reference point cloud, a modified version of the thin plate spline robust point match-

ing algorithm[163] written by Jinzhong Yang in 2011 [41], was used to match point

pairs. The algorithm uses a non-rigid transformation to match point clouds and

allows for an unequal number of points in each set. A user interface was developed

to present the results to the user as a final verification of the candidate point pairs,

allowing the user to accept, reject or re-match them.

The lungs were controlled pneumatically using a computer controlled in-house

respirator with the ability to provide highly custom breathing profiles. The breath-

ing profiles themselves were traced from patient breathing data taken during CT

simulation using a pneumatic belt (Philips Medical Systems, Cleveland, OH, USA).

The respirator is connected to the lungs via a 7.6 m long PVC tube which runs into

the scan room.

5.3.4 Noise Simulation

Noise was artificially added to CT images of the lung using a simplified tech-

nique similar to the technique published by Massoumzadeh et al. [164] involving the

following steps.

• Export data from CT scanner
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• Convert Hounsfield units to units of linear attenuation coefficient under the

assumption of a monenergetic photon source matching the average energy of

the CT energy spectrum.

• Produce sinograms of the volume using the radon transform.

• Convert the sinograms units to those linearly scaled to flux.

• Additional noise is added to the sinogram by generation of Poisson distributed

noise with a mean value equivalent to the flux values contained within the

sinogram. An multiplicative amplitude coefficient is added here to the mean

value in order to manually scale the final noise variance.

• Using the new noisier sinogram, convert back to units of integrated linear atten-

uation coefficients and reconstruct the images using inverse radon transforms

and a Ram-Lak filter.

• Convert back to Hounsfield Units.

The listed approach ignores a number of factors such as beam current, colli-

mation area and the detector noise variance due to the presence of a bowtie filter.

Since our goal was to observe the effects of lower SNR CT scans on algorithm perfor-

mance we deemed the simplified method sufficient. The resulting images are shown

in Figure 5–6.

5.3.5 Sensitivity Analysis

The dependency of registration and segmentation accuracy on three key param-

eters was investigated in this work. The coupling parameter c, the α term within

Equation 5.1 and the contrast and noise characterized by the signal to noise ratio.
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Figure 5–6: Examples of the addition of artificial noise to the CT volumes for varying
SNR values.

Alpha Dependency

In our previous work [158] we determined that the most appropriate α value

is highly modality dependant and thus appropriate values were discerned for the

modality combinations tested. A similar tuning had to be performed here, the results

of which are shown in Figure 5–7.

Figure 5–7 was collected with the assumption that the chosen α used for the

registration term of Equation 5.8 was equal to that used during the segmentation

phase. Preliminary results showed that segmentation accuracy was not optimized by

the same α value used during the registration step. As such two α values were used

to mitigate this divergent relationship. Figure 5–8 shows the results of the parame-

ter space search using the Dice Similarity Coefficient (DSC) with the segmentation

ground truth as the figure of merit.

An α2 of 0.5 was found to optimize the segmentation results for targets 1 and 2

while the performance of target 3 increased slightly past 0.5 up to 0.65.

5.3.6 Coupling Dependency

Figure 5–10 demonstrates the relationship between target registration accuracy

(TRE) and the coupling parameter C shown in Equaton 5.8. TRE was measured
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Figure 5–7: Tuning of the α parameter with regard to use with CT. Overall tar-
get registration was minimized with a value of 0.7. Error bars represent the 95%
confidence interval.
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Figure 5–8: Tuning of α2 the seperate α value applied solely to the segmentation
step of the regmentation process. Error bars represent the standard deviation across
10 trials for each data point.
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Figure 5–9: Example of the registration performed on the lungs at two adjacent
phases of breathing. Shown is a)the reference image, b) the deformed reference
image and c)the deformed image along with the registrations vectors in proximity to
that slice. Also shown is d) the difference image between the reference and target
images before registration and e) following registration.

from the mean difference in voxel units between the ground truth vector field and

that calculated by the JR regmentation algorithm.

Each data point shown in Figure 5–10 represents the mean of registrations per-

formed using the stated coupling parameter, an example of which is shown in Figure

5–9. Alpha was kept constant at 0.7, utilizing the information from Figure 5–7.

The TRE within the local region of the targets is plotted along with the overall

TRE for the entire lung. A clear minimum is seen for the local TRE around a C-value

of 0.55. The coupling term has an inverse relationship with the overall TRE for the

entire lung. The increase in alignment accuracy around the objects being segmented

comes at the cost of accuracy elsewhere in the image.
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Figure 5–10: Dependancy of target registration error (TRE) on the coupling pa-
rameter within the local region of the targets being segmented and for overall lung
region.
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Figure 5–11: Dependency of the DSC on the coupling term C for the three targets
within the biomechanical phantom.

The segmentation accuracy unfortunately does not show a distinct relationship

to the coupling term as shown in Figure 5–11.

A modest curve can be seen for target 2 which reaches a maximum at C = 0.55,

which is in agreement with the results of Figure 5–10. The DSC of targets 1 and 3

remain relatively stable up until C = 0.6 where they then begin to decline.

SNR Dependancy

As previous literature has reported upon the relationship between the Jensen

Rényi divergence and the signal to noise ratio [73] this was also evaluated using the

151



Figure 5–12: Dependency of the JR regmentation method compared to the Demons
algorithm and Lucas-Kinade optical flow method for various SNR values.

lung phantom. Figure 5–12 summarizes the registration results using the Jensen

Rényi based regmentation algorithm (C = 0.55, α = 0.7) using the lung phantom for

a variety of simulated noise images. The proposed algorithm was compared to two

alternative registration algorithms, an implementation of the Lucas-Kinade optical

flow method or non-rigid registration [165] and an alternative Demons implemen-

tation using a multi-resolution pyramid approach included in Matlab 2015a (The

Mathworks, Inc., Natick, MA).
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Figure 5–12 shows an increase in TRE of 26%, 30% and 4% for the optical flow,

demons and JR regmentation method respectively when decreasing the SNR from 37

to 6.8 dB. The overall TRE for the JR regmentation method is however consistently

higher than the other two methods.

5.4 Discussion

This works presents the joint coupling of segmentation and registration processes

using the Jensen Rényi divergence in order to investigate optimal parameter choices

for α and C along with a characterization of response to increased artificial noise.

The proposed method has direct applications to adaptive radiotherapy planning and

has the potential to improve replanning efficiency and robustness.

Using an in-house built phantom along with synthetic lesions and a software

pipeline for bifurcating tracking of the lung airways we were able to evaluate both

the segmentation and registration accuracy under varying SNR and parameter val-

ues. For CT regmentation an optimal α value of 0.7 was found to maximize the

registration accuracy where as the optimal α2 parameter to use for the segmentation

step was not as clear. A value of 0.7 lies close to the recommended value of 0.85 found

during our previous work [158] for CT. Considering that a different subject was being

scanned along with a different application (registration versus segmentation) this is

not surprising. We also note that a systematic parameter search was not presented

in our earlier work. We saw that segmentation accuracy was maximized for targets 1

and 2 at a value of α2 = 0.5 which also differs from earlier results. When discussing

this value it is also important to consider that there is a more complex interplay at

work as the segmentation accuracy affects the registration accuracy and vice versa.
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Optimization of the coupling parameter, demonstrated in Figures 5–10 and 5–

11 was found to be less complex with an optimal value found at C = 0.55 for both

registration and segmentation tasks. The dependency of segmentation accuracy on

C shown in Figure 5–11 was much less pronounced with the largest variation shown

by target 2. This is unsurprising as it contained the smallest active compartment of

the three and would thus be more susceptible to registration errors.

When investigating the effect of CT noise on registration performance we found

a significant reduction in TRE for the Lucas-Kinade optical flow and Demon algo-

rithms on the order of 26% and 30% respectively compared to the case when no

artificial noise was added. While the overall TRE was worse for the JR regmenta-

tion algorithm the performance was remarkably resilient to added noise with a TRE

reduction of only 4%. This would agree with previously published results regarding

the use of the Jensen Rényi divergence [73, 158]. The difference in TRE between

the JR regmentation algorithm and the other two algorithms can be attributed to

the choice of a dense control selection scheme and our adaptive approach along with

a less advanced regularization technique. Unfortunately, the sampling requirements

of our algorithm prevent the use of a dense selection approach (where every voxel

is a control point), not to mention that such a high density would make gradient

calculations prohibitively intensive.

While the phantom used in this work is used to simulate different target sizes,

arrangements, deformation magnitudes and noise conditions, evaluation (even if sub-

par) on a clinical dataset is necessary. This will highlight glaring differences in per-

formance and confirm the performance of the algorithm in a clinical context.
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5.5 Conclusions

We have presented a framework for coupling a level sets segmentation algorithm

with a non-rigid deformable registration algorithm using the Jensen Rényi statis-

tical divergence metric. With the use of a custom biomechanical phantom made

specifically to simultaneously evaluate joint segmentation/registration algorithms,

we optimized the choice of parameters α and the coupling coefficient C. Values of α

= 0.7 for registration and α2 = 0.5 for segmentation were found to maximize the reg-

istration and segmentation accuracy respectively. A coupling coefficient of 0.55 was

determined to also minimize the local registration accuracy surrounding the targets

being segmented and maximize segmentation accuracy. The regmentation algorithm

was also compared to a Lucas-Kinade optical flow and Demons registration algorithm

and despite showing a higher overall TRE, was found to exhibit significantly less (4%

compared to 24% and 30% for the optical flow and Demons) variance in TRE for

SNRs as low as 6.8.
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5.7 Appendix

5.7.1 Continuing the 2D Case

The coupled metric is defined here by Equation 5.18 where in this case P1 and

P2 represent the probability of a sample belonging to the inside and outside of the

contour respectively. Since each distribution relies on the two-dimensional sample

155



from the reference and target image, they’re both influenced by movement of the

control points and hence both are treated as variables in the derivation.

∂JRcoup(θ)/∂t = 1
1−α

∫
< α(w1P1(J(x),Ω)+w2P2(J(x),Ω))α−1

(
w1

∂P1(J(x),Ω)
∂p

+w2
∂P2(J(x),Ω)

∂p

)
dx∫

<(w1P1(J(x),Ω)+w2P2(J(x),Ω))αdx
−

1
1−αw1

∫
< αP1(J(x),Ω)α−1 ∂P1(J(x),Ω)

∂p
dx∫

< P1(J(x),Ω)αdx
− 1

1−αw2

∫
< αP2(J(x),Ω)α−1 ∂P2(J(x),Ω)

∂p
dx∫

< P2(J(x),Ω)αdx

(5.17)

In this formulation, J is a two dimensional list of voxel intensity samples from each

image [J1, J
′
2]. In this case J ′2 is the transformed reference image. In Equation 5.18

w1,m and w2,m refer to the forward and inverse mapping functions to and from the

master domain D2,m.

J ′2(p) = J2 (w1,m (w2,m(p))), p ∈ D2,m (5.18)

The partial derivative then becomes

∂J ′2(p)

∂p
= ∇J2 (w1,m (w2,m(p)))

∂w1,m (w2,m(p))

∂p
(5.19)

The forward mapping functions shown here are were defined earlier in Equation

5.13, while the Jacobian Am of Equation 5.16 is used to simplify the inverse mapping
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function defined by inverting Equation 5.13.

w−1
m (u) =

 ξ−1
m

η−1
m

 =
1

Am

 (x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2) y

(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3) y

 (5.20)

 ∂J1(w1,m(w−1
2,m(p)))

∂x1

∂J1(w1,m(w−1
2,m(p)))

∂y1

 =

 ∂J1(w1,m(w−1
2,m(p)))

∂w1,m(w−1
2,m(p))

· ∂w1,m(w−1
2,m(p))

∂x1

∂J1(w1,m(w−1
2,m(p)))

∂w1,m(w−1
2,m(p))

· ∂w1,m(w−1
2,m(p))

∂y1

 (5.21)

To simplify notation, let us refer to w1,m

(
w−1

2,m(p)
)

as [wx, wy] from now on. ∂wx
x1

∂wx
y1

 =

 a2
∂ξ−1
m (x,y)
∂x1

+ a3
∂η−1
m (x,y)
∂x1

a2
∂ξ−1
m (x,y)
∂y1

+ a3
∂η−1
m (x,y)
∂y1

 (5.22)

=

 a2
−ξ−1

m (x,y)(y2−y3)
Am

+ a3

(
(y−y3)
Am
− η−1

m (x,y)(y2−y3)
Am

)
a2
−ξ−1

m (x,y)(x3−x2)
Am

+ a3

(
(x3−x)
Am

− η−1
m (x,y)(x3−x2)

Am

)


Similarly, ∂wy
x1

∂wy
y1

 =

 b2
−ξ−1

m (x,y)(y2−y3)
Am

+ b3

(
(y−y3)
Am
− η1

m(x,y)(y2−y3)
Am

)
b2
−ξ−1

m (x,y)(x3−x2)
Am

+ b3

(
(x3−x)
Am

− η1
m(x,y)(x3−x2)

Am

)
 (5.23)



∂wx
x2

∂wx
y2

∂wy
x2

∂wy
y2


=



a2

(
−ξ−1

m (x,y)(y3−y1)
Am

+ (y3−y)
Am

)
+ a3

(
η1
m(x,y)(y1−y3)

Am

)
a2

(
−ξ−1

m (x,y)(x1−x3)
Am

+ (x−x3)
Am

)
+ a3

(
η1
m(x,y)(x3−x1)

Am

)
b2

(
−ξ−1

m (x,y)(y3−y1)
Am

+ (y3−y)
Am

)
+ b3

(
η1
m(x,y)(y1−y3)

Am

)
b2

(
−ξ−1

m (x,y)(x1−x3)
Am

+ (x−x3)
Am

)
+ b3

(
η1
m(x,y)(x3−x1)

Am

)


(5.24)
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
∂wx
y3

∂wy
x3

∂wy
y3

 =



a2

(
−ξ−1

m (x,y)(y1−y2)
Am

+ (y−y2)
Am

)
+ a3

(
−η−1

m (x,y)(y1−y2)
Am

+ (y1−y)
Am

)
a2

(
−ξ−1

m (x,y)(x2−x1)
Am

+ (x2−x)
Am

)
+ a3

(
−η−1

m (x,y)(x2−x1)
Am

+ (x−x1)
Am

)
b2

(
−ξ−1

m (x,y)(y1−y2)
Am

+ (y−y2)
Am

)
+ b3

(
−η−1

m (x,y)(y1−y2)
Am

+ (y1−y)
Am

)
b2

(
−ξ−1

m (x,y)(x2−x1)
Am

+ (x2−x)
Am

)
+ b3

(
−η−1

m (x,y)(x2−x1)
Am

+ (x−x1)
Am

)


(5.25)

5.7.2 Extension to 3D

The following affine function is used to fit the forward mapping function in the

3 dimensional case.

φ(s, t, u) = a1 + a2s+ a3t+ a4u (5.26)

with coefficients



a1

a2

a3

a4


=



ψ4

ψ1 − ψ4

ψ2 − ψ4

ψ3 − ψ4


(5.27)

wtm(u) =


a1 + a2s+ a3t+ a4u

b1 + b2s+ b3t+ b4u

c1 + c2s+ c3t+ c4u

 (5.28)
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M =


a2, a3, a4

b2, b3, b4

c2, c3, c4

 (5.29)

M−1 =
1

Am


b3c4 − b4c3, a4c3 − a3c4, a3b4 − a4b3

b4c2 − b2c4, a2c4 − a4c2, a4b2 − a2b4

b2c3 − b3c2, a3c2 − a2c3, a2b3 − a3b2

 (5.30)

Where Am = a2(b3c4 − c3b4)− a3(b2c4 − c2b4) + a4(b2c3 − c2b3)

= (x1 − x4)((y2 − y4)(z3 − z4)− (z2 − z4)(y3 − y4))− (x2 − x4)((y1 − y4)(z3 − z4)

- (z1 − z4)(y3 − y4)) + (x3 − x4)((y1 − y4)(z2 − z4)− (z1 − z4)(y2 − y4))


s

t

u

 = A−1
m


(x− x4)(b3c4 − b4c3) + (y − y4)(a4c3 − a3c4) + (z − z4)(a3b4 − a4b3)

(x− x4)(b4c2 − b2c4) + (y − y4)(a2c4 − a4c2) + (z − z4)(a4b2 − a2b4)

(x− x4)(b2c3 − b3c2) + (y − y4)(a3c2 − a2c3) + (z − z4)(a2b3 − a3b2)

(5.31)



δs
δx1

δs
δx2

δs
δx3

δs
δx4


=



−s(b3c4 − c3b4)A−1
m

[s(b2c4 − b4c2)− ((y − y4)c4 − b4(z − z4))]A−1
m

[(c3(y − y4)− b3(z − z4))− (b2c3 − b3c2)s]A−1
m

[s(b2c3 − b3c2 − b2c4 + b4c2 + b3c4 − c3b4)− ((y − y4)(z2 − z3)− (y2 − y3)(z − z4) + b3c4 − b4c3)]A−1
m




δs
δy1

δs
δy2

δs
δy3

δs
δy4


=



s(a3c4 − a4c3)A−1
m

[(c4(x− x4)− a4(z − z4))− s(a2c4 − a4c2)]A−1
m

[−(c3(x− x4)− a3(z − z4)) + (a2c3 − a3c2)s]A−1
m

[(x− x4)(z2 − z3)− (x2 − x3)(z − z4) + a3c4 − a4c3) + (a3(z1 − z3)− a2(z2 − z3)− a4(z1 − z2))s]A−1
m




δs
δz1

δs
δz2

δs
δz3

δs
δz4


=



−s(a3b4 − b3a4)A−1
m

[−(b4(x− x4)− a4(y − y4))− s(a4b2 − a2b4)]A−1
m

[(b3(x− x4)− a3(y − y4))− (a2b3 − a3b2)s]A−1
m

[−((x− x4)(y2 − y3)− (x2 − x3)(y − y4) + a3b4 − a4b3) + (a2(y2 − y3)− a3(y1 − y3) + a4(y1 − y2))s]A−1
m


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

δt
δx1

δt
δx2

δt
δx3

δt
δx4


=



[((y − y4)c4 − b4(z − z4))− (b3c4 − c3b4)t]A−1
m

t(b2c4 − b4c2)A−1
m

[−(b2c3 − b3c2)t− ((y − y4)c2 − b2(z − z4))]A−1
m

[((y − y4)(z1 − z3)− (y1 − y3)(z − z4) + b2c4 − b4c2) + (b2c3 − b3c2 − b2c4 + b4c2 + b3c4 − c3b4)t]A−1
m




δt
δy1

δt
δy2

δt
δy3

δt
δy4


=



[−((x− x4)c4 − a4(z − z4)) + (a3c4 − a4c3)t]A−1
m

−t(a2c4 − a4c2)A−1
m

[((x− x4)c2 − a2(z − z4)) + (a2c3 − a3c2)t]A−1
m

[−((x− x4)(z1 − z3)− (x1 − x3)(z − z4) + a2c4 − a4c2) + (a3(z1 − z3)− a4(z1 − z2)− a2(z2 − z3))t]A−1
m




δt
δz1

δt
δz2

δt
δz3

δt
δz4


=



[((x− x4)b4 − a4(y − y4))− (a3b4 − a4b3)t]A−1
m

−t(a4b2 − a2b4)A−1
m

[−(a2b3 − a3b2)t− ((x− x4)b2 − a2(y − y4))]A−1
m

[((x− x4)(y1 − y3)− (x1 − x3)(y − y4) + a2b4 − a4b2) + (a2(y2 − y3)− a3(y1 − y3) + a4(y1 − y2))t]A−1
m




δu
δx1

δu
δx2

δu
δx3

δu
δx4


=



[−((y − y4)c3 − b3(z − z4))− (b3c4 − c3b4)u]A−1
m

[((y − y4)c2 − b2(z − z4)) + (b2c4 − b4c2)u]A−1
m

−u(b2c3 − b3c2)A−1
m

[((y1 − y2)(z − z4)− (z1 − z2)(y − y4)− b2c3 + b3c2) + u(b2c3 − b3c2 − b2c4 + b4c2 + b3c4 − c3b4)]A−1
m




δu
δy1

δu
δy2

δu
δy3

δu
δy4


=



[((x− x4)c3 − a3(z − z4)) + (a3c4 − a4c3)u]A−1
m

[−((x− x4)c2 − a2(z − z4))− (a2c4 − a4c2)u]A−1
m

u(a2c3 − a3c2)A−1
m

[(a3(z1 − z3)− a4(z1 − z2)− a2(z2 − z3))u− ((x1 − x2)(z − z4)− (x− x4)(z1 − z2)− a2c3 + a3c2)]A−1
m




δu
δz1

δu
δz2

δu
δz3

δu
δz4


=



[−((x− x4)b3 − a3(y − y4))− (a3b4 − a4b3)u]A−1
m

[((x− x4)b2 − a2(y − y4))− (a4b2 − a2b4)u]A−1
m

−u(a2b3 − a3b2)A−1
m

[((x1 − x2)(y − y4)− (x− x4)(y1 − y2)− a2b3 + a3b2) + u(a2(y2 − y3)− a3(y1 − y3) + a4(y1 − y2))]A−1
m



δwtm(u)

δψi
=


a2

δs
δψi

+ a3
δt
δψi

+ a4
δu
δψi

b2
δs
δψi

+ b3
δt
δψi

+ b4
δu
δψi

c2
δs
δψi

+ c3
δt
δψi

+ c4
δu
δψi

 (5.32)
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CHAPTER 6
Conclusions

6.1 Thesis Summary

The work presented in this thesis investigates the optimal usage of the Jensen

Rényi divergence as applied to the tasks of segmentation and deformable registra-

tion, performed both independently and simultaneously. A custom biomechanical

phantom capable of full reproduction of patient breathing traces was constructed for

the purpose of evaluating joint segmentation/registration algorithms in a deformable

manner with the possibility of scanning with PET/CT and MRI. The development

of the algorithms outlined in this work is primarily motivated by the need to improve

the practicality of adaptive radiotherapy planning. Our intention is the mitigation

of possible errors introduced through the use of low quality images from CBCT [166]

or PET [91].

This work began as the application of the Jensen Rényi divergence to the task

of segmentation using a semi-automated level sets approach as detailed in Chapter 3.

Previously this had only been applied as an edge detection filter [73]. Using an en-

tropy based approach in this manner presented several attractive features such as the

use of multiple modalities, lack of limits on the number of input images, robustness

to noise and the ability to tailor the algorithm behaviour to the modality, or combi-

nation of modalities, in question. Our results were evaluated using 7 macroscopically

derived contours from histological slides of resected pharyngolaryngeal squamous cell
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carcinoma samples. Comparing to the results of 9 other algorithms evaluated using

the same dataset the Jensen Rényi based segmentation technique had the second

lowest mean classification error of 65% compared to 55% for the highest performing

algorithm (FCM-SW). Additional evaluations were performed on thoracic PET/CT

scans of non-small cell lung carcinoma patients where the maximal tumor diameter

was the ground truth. Mean errors of 63%, 19.5% and 14.8% were found when using

CT, PET and PET/CT for segmentation. Comparisons using a phantom scanned

with varying parameters using CBCT showed a resilience to noise that was not seen

when plotting the mutual information metric.

Following these promising results, we decided to investigate the utility of cou-

pling our segmentation technique to a deformable registration algorithm, shown in

Chapter 5. A non-rigid registration algorithm was designed using an adaptive mesh-

ing technique for control point selection. The two procedures were performed si-

multaneously. The coupling of the registration to the segmentation is dependent

on the segmentation procedure using both the reference and target images as in-

puts. With improved registration accuracy, the segmentation also improves. The

coupling in the other direction was achieved by introducing a coupling term into

the registration gradient calculation. This term seeks to maximize the Jensen Rényi

divergence as applied to the segmentation task, but by way of moving the control

points. In order to properly evaluate this technique however, we first required the

construction of a multi-modal deformable phantom with segmentation targets. This

is covered in Chapter 4 with the utilization of preserved swine lungs, deformed using

a computer controlled airflow system. Segmentation was evaluated through the use
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of synthetic targets with multiples compartments and the use of modality specific

contrast agents. Registration was evaluated using an in-house bifurcation tracking

pipeline. With this dataset providing a reliable ground truth, the maximum overall

registration accuracy was found to be 1.14 voxel widths or 2.01 mm with an α value

of 0.7. An optimal coupling coefficient of 0.55 was found, improving the local regis-

tration accuracy surrounding the targets by 26% at the cost of overall registration

accuracy.

6.2 Discussion and Future Work

The segmentation algorithm produced competitive results when applied to PET

alone and with regard to PET and CT combined. As the algorithm has been observed

to contain sensitivity to low contrast boundaries we envision that there are potential

applications to the delineation of liver lesions, in particular when imaged with CT or

CBCT[167]. MRI scans of the phantom described in Chapter 3 were also acquired

using a T1-weighted fast field echo sequence on a Panorama 0.23 T (Phillips Medical

Systems, Cleveland, OH, USA). By varying the TE time, SNRs of approximately

11.6-28.3 dB were acquired as shown in Figure 6–1.

Regarding the work presented in chapter 3, there was difficulty in acheiving con-

sistent segmentations of the inner jar when using MRI due to field heterogeneities

leading to gradients in the image intensity. This led to incomplete segmentation of

the inner jar which is the reason these results were not included in the publication of

Chapter 3. This is a possible artifact for many MRI scanning protocols which may

lead to sub-par results when using the JR based level-set algorithm. A correction sim-

ilar to the steps outlined in Figure 3–4, Chapter 3 could be applied but they are not
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Figure 6–1: T1-weighted 3D FFE scans of the jar phantom with SNR values of
11.6,14.3,18.,21.7,25.7 and 28.3 dB.

practical for application in a clinical case. There are already established methods for

inhomogeneity corrections of MRI images which would likely be better suited [168].

Alternatively, a piecewise formulation of the level sets method[169] using the Jensen

Rényi divergence may be able to segment MRI volumes in cases where these artifacts

exist without the need for inhomogeneity corrections. Segmentation accuracy with

regard to macroscopically heterogenous tumor appearances in MRI may also benefit

from this tactic. Similar difficulties with MRI images were experienced when using

the simultaneous registration/segmentation algorithm presented in Chapter 5. This

was primarily due to the loss of contrast between the lung and the background air in

MRI compared to CT. This is caused by microscopic tissue inhomogeneity in the lung

leading to a loss of signal. For this reason the modalities presented were somewhat

limited. A larger study to investigate the relationship of α to the imaging modal-

ity would allow further adoption of this technique for other purposes whether they

are research or clinically oriented. More complex interpolation and regularization

methods would allow smoother deformations which were observed to compromise

image quality during our experiments. An interesting observation made during the

experiments was the fact that overall registration error increases as local registration

error is reduced in the vicinity of the segmentation targets. This is understandable
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when one considers the regularization as a smoothing filter and that influences from

the coupling term on regions outside the targets from smoothing may account for

this. This could be remedied by implimenting an anisotropic filter that differentially

smooths the local regions occupied by the segments similar to that proposed by Pace

et al.[170].

A necessity of the biomechanical phantom to be considered for QA use in the

clinic is longevity and reproducibility. While the manufacturers (Nasco, Fort Atkin-

son, WI) have suggested that the preserved swine lungs will last 6 months, the author

would like to note that the samples used in this work have thus far remained func-

tional following 2 years of proper storage. An additional procedure was conducted

when dealing with 3D scans in order to ensure that the lungs were static throughout

the acquisition. A ruler clamped to a tort stand was used to provide simple visual

comparison of the inflation level in order to adjust the pump such that internal pres-

sure of the lungs remained constant. This procedure was repeated 3 times for the

same inflation level beginning from a deflated state. Volume measurements of the

lungs from the acquired CT scans revealed a standard deviation of 3.75% of the mean

volume. While this level of uncertainty is fairly low, it stresses the importance of

further work to account for compromised tissue samples from the supplier.

As mentioned briefly in the final remarks of chapter 4, the addition of an outer

shell in order to complete the appearance of a human torso is an obvious next step for

the lung phantom. This is required not only for added realism and completeness but

because intensity based registration accuracy is heavily influenced by high-contrast

regions such as between the lung and chest wall. Currently the dataset presented
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in this thesis can be considered challenging as the boundaries between lung and air

are not as pronounced. Such an addition would not be challenging considering the

availability of high quality plastinated specimens [171].

Further use of the lung phantom could be made by evaluating the accuracy of

target tracking algorithms used to account for intra-fractional motion. This could be

performed by accomodating the inclusion of a MOSFET, TLD or film measurement

into the phantom in order to perform dosimetric comparisons with values predicted

by the treatment planning system.
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