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ABSTRACT

Adaptive radiotherapy is the process of modifying radiation therapy treatment
parameters in order to accommodate anatomical changes that manifest during a sin-
gle fraction (ie. breathing) or over the course of treatment (ie. weight loss, tumor
growth /recession). This process relies heavily on the use of imaging available within
the treatment room such as cone-beam computed tomography (CBCT) and mega-
voltage computed tomography (MVCT), of which image quality is often sub-par
compared to diagnostic scans. Plan adaptation often necessitates re-segmentation of
targets and organs-at-risk as well as registration with previous scans which add time
and cost to their implementation. In this dissertation, we attempt to address these
problems through the investigation of a coupled segmentation and registration algo-
rithm using the Jensen Rényi information objective. This divergence metric can be
tuned to optimize performance depending on the image context such as mono-modal
or multi-modal inputs and specific modalities by using a parameter « contained in
the objective function. Coupling of the two processes has the potential to realize
efficiencies and improved accuracy for both processes. We began by investigating
the usage of the Rényi entropy for the sole purpose of segmentation using an active
contour method based on the level-sets approach. The method was found to have
direct applications to Positron Emission Tomography (PET), where noise, blurring
and variable target contrast make segmentation a challenging prospect. Application
to computed tomography (CT) and the combination of PET and CT was included

to investigate the interplay of the a parameter with choice of imaging modality.
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Registration was then coupled with segmentation using the same metric. The inves-
tigation focused on the performance effects of coupling, the alpha parameter with
regard to registration and artificially modified noise and contrast. In conjunction
with the joint segmentation and registration algorithm we developed a 4D biome-
chanical phantom using preserved swine lungs and a computer controlled respirator
in order to evaluate this specific subset of algorithms. The system contains a set of
synthetic lesions allowing us to determine segmentation ground truths. An airway
bifurcation tracking pipeline was implemented in order to provide points of compari-
son for registration evaluation. Through the use of an in-house phantom we were able
to show benefits from coupling and performance under a varying degree of contrast

and noise conditions.



ABREGE

La radiothérapie adaptative est le processus de modification des parametres des
traitements par radiations afin de tenir compte des changements anatomiques qui se
manifestent durant une seule fraction (exemple : respiration) ou au cours du traite-
ment (exemple : perte de poids, croissance/récession tumorale). Ce processus repose
en grande partie sur 'utilisation de 'imagerie disponible dans la salle de traitement
telle que la tomodensitométrie par faisceau conique et la tomodensitomtrie par haut-
voltage, dont la qualit est souvent inférieure par rapport aux scans diagnostiques.
L’adaptation des plans de traitements nécessite souvent la re-segmentation des cibles
et des organes risques ainsi que le recalage des images avec les scans précédemment
effectués, ce qui ajoute un temps et un cotit considérable a leur mise en ceuvre. Dans
cette thése, nous tentons de résoudre ces problemes via I’étude d’un algorithme cou-
plant simultanément la segmentation et le recalage d’image et utilisant I'information
de Jensen Rényi comme objectif d’optimisation. Cette mesure de divergence per-
met un réglage de 'algorithme pour plusieurs combinaisons spécifiques d’imagerie
en utilisant une pondération de la contribution du bruit de chaque image. Le cou-
plage des deux processus a le potentiel d’améliorer la précision des deux processus
pris séparément, tout en conservant l'efficacité de chacun. Tout d’abord, nous avons
étudié l'utilisation de l’entropie de Rényi dans le seul but de la segmentation en
utilisant une approche dite par “ensemble de niveau”. Nous avons pu déterminer
que la méthode conduit a des applications directes a la tomographie par émission de

positrons (TEP), ou le bruit, le flou et la variation de contraste de la cible font de
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la segmentation une tache difficile. Une application a la tomodensitométrie (TDM)
et la combinaison de la TEP et la TDM a été incluses afin d’étudier I'interaction du
parametre alpha avec le choix du type de modalité d’imagerie. Le recalage d’image
a ensuite été couplé avec la segmentation en utilisant la méme métrique et a été
mis en ceuvre. L’étude s’est concentrée sur les effets de performance du couplage du
parametre alpha vis- a-vis le recalage d’image et le bruit et le contraste d’image arti-
ficiellement modifiés. Conjointement avec ’algorithme de couplage de segmentation
et de recalage d’image, nous avons développé un fantome biomécanique 4D en util-
isant des poumons de porcs préservés et un respirateur controlé par ordinateur afin
d’évaluer ce sous-ensemble spécifique d’algorithmes. Les systemes contiennent un en-
semble de lésions synthétiques nous permettant de déterminer les valeurs réelles de
segmentation. Une séquence de suivi des voies de bifurcation a été mise en ceuvre afin
de fournir des points de comparaison pour I’évaluation de ’algorithme de recalage
d’image. Grace a |'utilisation d’un fantome que nous avons développé, nous avons
pu démontrer les avantages du couplage et les performances pour diverses conditions

de variation de bruit et de contraste d’image.
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CHAPTER 1
Introduction

1.1 Author Contributions

I would like to thank all my co-authors for their contributions to this work and
would like to specify their contributions here.

Dr. Issam El Naqa: Contributed through general guidance, supervision and
acquisition of funding. Dr. El Nagqa first suggested investigating the use of the
Jensen Rényi divergence and contributed example code detailing the use of a 2D
the level-set algorithm in addition to interpolation and filtering using the adaptive
meshing scheme presented in Chapter 5. He also assisted in acquiring data using the
CT simulator in addition to data sets from outside sources. Dr. El Naqa also edited
all documents present in this thesis.

Dr. Habib Zaidi: Dr. Zaidi was kind enough to contribute the Louvain data
set presented in Chapter 3 along with performance data of comparable algorithms.
This was critical for evaluating the Jensen Rényi segmentation algorithm. Dr. Zaidi
also contributed through review and editing of the work presented in Chapter 3.

Dr. Ives Levesque: Dr. Levesque contributed significantly by offering guid-
ance in developing the synthetic tumors presented in Chapters 4 and 5. Dr. Levesque
was also responsible for training in the use of the MRI scanner and developing a pro-
tocol for scanning the lung phantom. Dr. Levesque has also contributed through

editing of this thesis.



Pierre L éger: Mr. Léger was responsible for designing and constructing the
control circuit used to operate the airflow system of the biomechanical lung phantom
presented in Chapter 4.

Joe Larkin: Mr. Larkin contributed significantly through education on the
use of the machine shop and physical construction of the airflow system presented in
Chapters 4 and 5.

1.2 Motivation

Cancer accounts for 1 in 7 deaths worldwide, approximately 8.2 million in 2012.
Lifestyle choices are expected to add to this number with smoking as the number one
contributor. In low to middle-income countries the number of tobacco related deaths
are projected to double by 2030 (as compared to 2002 statistics)[4]. The treatment
of lung cancer is and will continue to be a significant challenge in healthcare.

The choice of treatment in 60-70% of cancer diagnoses includes radiation therapy
for curative or palliative intent[5]. This is accomplished through the delivery of
radiation dose to a pre-defined target while minimizing the collateral dose to healthy
tissue. This is usually achieved with the use of a linear accelerator or radiation
source that will emit photons and/or electrons in order to apply a dose of radiation
to a specific tissue region in the body. This treatment is often divided into many
sessions over the course of weeks due to the radiobiological response, called fractions.
Changes in tumour volume of nearly 2%[6] per day by volume has been observed
throughout courses of treatment. As such, efficacy is largely dependent on knowledge
of the extent of the biologically active tumour region and the ability to account for

these changes through adaptive strategies that tailor treatment to each patient’s



progression. Unfortunately, such a course of action often puts a strain on clinical
resources due to re-planning time of the treatment and equipment requirements,
increasing costs by as much as 40%[7] and compromising its practicality.

With more complex treatment regimens becoming the norm, this considerable
burden has motivated commercial software vendors to include automated planning
tools to assist with planning processes such as segmentation and registration. Seg-
mentation within the context of radiation therapy is the act of partitioning bio-
logically relevant regions within a medical image such as active tumours or critical
organs. Manual segmentation is a time consuming and laborious process prone to
subjectivity and a large degree of variability. The degree of interobserver variability
has been determined to be one of the largest sources of uncertainty in regards to
knowledge of the boundary of the tumor in radiotherapy [8] reaching up to 700% by
volume when using Computed Tomography (CT) information [9].

Registration on the other hand involves warping or transforming one set of im-
ages so that they align with a second set taken at a different time or with another
scanner. These image processing tools allow planners not only the ability to ac-
count for anatomical changes, but also to leverage additional imaging information
from modalities such as Positron Emission Tomography (PET) and Magnetic Reso-
nance Imaging (MRI) in addition to conventional CT. This can be used to increase
knowledge of the anatomy during planning, ultimately leading to improved survival
and reduced risk of toxicity and secondary cancers. An example of this is with
the incorporation of hybrid PET/CT scanners into the treatment planning process.

Future necessity for these tools is further highlighted by the recent emergence of



hybrid MRI-linear accelerators which are able to deliver a prescribed radiation dose
while imaging the treatment site simultaneously. Such a treatment strategy relies
heavily on fast and accurate registration of CT and MRI information assuming that
treatment planning was performed using the CT.

Automated methods have potential to reduce uncertainty and treatment plan-
ning time, ultimately saving costs and making adaptive radiotherapy increasingly
feasible for a larger number of patients.

The difficulty in using automated registration and segmentation tools is the
potential for compromised performance under changing image variables such as con-
trast, image noise and artifacts. Such conditions are common when dealing with
on-board imagers such as Cone-Beam CT (CBCT) and Mega-Voltage CT (MVCT)
or with PET imaging. These are areas where human input and interpretation con-
tributes the largest value but again is susceptible to observer subjectivity.

The processes of registration and segmentation as applied in this thesis are
framed as optimization problems using a chosen cost function. The cost function
is used in this context to determine when the segmentation algorithm has reached
the visual border of an object as seen on an image, or in the case of registration,
when the two images have been accurately aligned with one another. As a cost
function the Jensen Rényi divergence has the potential to partially alleviate concerns
when poor contrast and image noise conditions are present. The divergence measure
relies on a parameter a to determine its curvature and thus how the algorithms
reliant on it will behave. In addition to investigating the usage of the Jensen Rényi

divergence, simultaneous coupling of the segmentation and registration processes can



further improve efficiency and accuracy for both methods by introducing additional
information into the processes of each.
1.3 Challenges

Our work addresses several difficulties faced when using the Jensen Rényi di-
vergence in general and simultaneous registration and segmentation algorithms in
particular.

One of the difficulties faced in incorporating the Jensen Rényi divergence is op-
timization of its o parameter in application to a specific imaging context. The «
parameter determines the curvature of the cost function and significantly influences
the performance of the registration and segmentation processes. We have taken
an experimental approach to optimization of the o parameter, giving recommended
values for the different imaging modalities studied. Additionally, as with the « pa-
rameter, the degree of coupling neccessary between the registration and segmentation
terms was unknown and required its own optimization as well.

The second challenge faced was finding a suitable dataset for evaluating the algo-
rithm. Since the joint registration/segmentation algorithm represents an uncommon
approach, most datasets available lacked the ability to evaluate both registration and
segmentation. Added to this, the fact that our algorithm has the built in flexibility
to tackle multiple modalities requires compatibility of the dataset/phantom to MRI
and/or PET. Anatomical and kinetic realism was another important factor in order
to reproduce the image detail, texture and deformation field seen on clinical scans
rather than resorting to homogenous regions and simplistic movement patterns. To

this end we constructed our own phantom using preserved tissue. In order to evaluate



segmentation and registration algorithms, we need data to compare against in which
we have a reasonable degree of certainty of its validity. This data will constitute our
ground truth. This invites further difficulties as we required a segmentation and reg-
istration ground truth beyond manually selecting a series of points and boundaries
which by the very nature of how they are acquired contain significant uncertainties.

Creating a segmentation ground truth required a target that was MRI/PET/CT
compatible, contained a degree of heterogeneity in appearance and could be obfus-
cated. This requires 'hiding’ the target boundary using a second compartment and
varying the contrast of the target compartment in order to increase the difficulty of
segmentation. In this way we can evaluate performance differences between mutli-
ple segmentation algorithms. When considering PET imaging, user safety becomes a
concern since contact with the radiotracer can lead to contamination and uneccessary
dose.

Extracting a registration ground truth is a challenge within the image processing
field. The use of fiducial markers (artificial objects placed into the object being
scanned acting as landmarks) could be utilized for this purpose, but would potentially
bias the registration since they alter the intensity information in the image used by
the registration algorithms. Artificial digital deformations can be used but ensuring
anatomical correctness then becomes a challenge.

New tools are required to address the aforementioned concerns and perform
simultaneous registration and segmentation evaluation while avoiding the pitfalls to

commonly existing techniques.
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Figure 1-1: A visual example of the ground truths needed for registration and seg-
mentation. In a) Two squares represent an object imaged at two different times and
has undergone rotation. Our ground truth is represented by the vectors that describe
the movement at any point in the first image. Shown in b) and c) is an example for
segmentation, where our ground truth is represented by a curve (in 2D) or surface
(in 3D) that accurately defines the boundary of the object in question. In this case
the dark grey square which exists over a lighter grey background is the object we
wish to segment. The boundary shown in red in ¢) is our ground truth or what we
will compare against.

1.4 Contributions

The work described in this thesis contributes to the fields of radiotherapy and
image processing in three ways.

First, we developed a novel segmentation algorithm by investigating the use of
the Jensen Rényi divergence applied to a level-sets methodology. We reported a
performance on par with current state of the art algorithms for the task of PET seg-
mentation and demonstrated multimodal applications using PET/CT. We describe
the Jensen Rényi segmentation algorithm in Chapter 3.

Second we developed a quality assurance (QA) platform for evaluating joint seg-
mentation/registration algorithms that is MRI/PET/CT compatible, and is physi-

cally and kinetically realistic from an anatomical standpoint. Part of the platform is



a computer controlled respirator that can fully replicate human breathing traces, a
feature useful for evaluating motion prediction algorithms and for testing registration
under realistic conditions. Details on the phantom are included in Chapter 4.
Finally, we combined the segmentation algorithm previously developed with a
non-rigid registration technique to see if simultaneous application could improve
convergence and accuracy for both methods. We optimized the o and coupling co-
efficients through experiments. The simultaneous algorithm is described in Chapter

D.



CHAPTER 2
Background: Information Theory, Segmentation and Registration

In this section we describe the background theory on radiation therapy, segmen-
tation, registration and divergence measures that will be neccessary to understand
the rest of the chapters. An overview of the practice of adaptive external beam ra-
diotherapy will be given to contextualize the image processing algorithms and their
role. The segmentation and registration algorithms in turn are each dependent on an
objective function which they seek to maximize through optimization. The underly-
ing innovation is the exploration of the Jensen Rényi divergence as a cost function
and as such, this chapter will conclude with a review of information theory in Section
2.4.

2.1 External Beam Radiation Therapy

As stated in the motivation section, radiation therapy is a popular choice in
the treatment of cancer, particularly in cases where surgical resection is deemed too
risky, prior to surgery in order to reduce the disease burden or simply in conjunction
following surgery in order to improve survival. External beam radiotherapy involves
the application of radiation from outside the body either using a natural source such
as Cobalt-60 or an electronic one such as with the use of a medical linear accelerator.
The accelerators can usually produce both electrons (in the kinetic energy range of
4-25 MeV) and photons (in the energy range of 4-25 MV). Photon irradiation can

cause cell death or eliminate the ability of cells to reproduce through two approaches,



namely direct or indirect ionization. The first involves the interaction of radiation
directly with the DNA or critical structures of the cell causing ionization in molecules
that lead to a loss of function, or irreversible damage to genetic material through
the breaking of DNA bonds. This may happen through several mechanisms. For
photons they occur primarily through photoelectric effect, compton scattering and
photonuclear interactions. This leads to photon and electron scattering and positron
production which go on to further deposit energy in the surrounding medium. Rather
than direct ionization of critical structures in the cell, additional damage is applied
indirectly through the production of free radicals such as hyodroxyl (OH™) through
the ionization of water particles. These go on to interact chemically which can lead
to further DNA bond breaking. One way of measuring radiation dose is in units of
Gy, equivalent to the deposition of one J/kg of material.
2.1.1 Fractionation

The effect of radiation on cell populations is complex and depends on a number
of factors such as sensitivity, the presence of radiosensitizers and radioprotectors
and the ability of the cell to repair damage. The main goal of radiotherapy and
radiotherapy planning is to maximize the dose delivered to diseased areas of the body
while minimizing the dose received by healthy regions. This leads to a maximization
of what is termed the tumor control probability (TCP) and minimization of the
normal tissue complication probability (NTCP). The ratio of TCP to NTCP is called
the therapeutic ratio and is an indicator of a treatment plan’s quality. In order to
take advantage of the ways in which cells respond to radiation and maximize the

therapeutic ratio, dose is not delivered in one treatment session but usually divided
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Figure 2—-1: Hypothetical cell survival curves for late and early responding cell types
reproduced from Podgorsak, 2005 [1]

into 1-2 Gy fractions. Total treatments are delivered over many fractions over a
few weeks. The rationale for and proper application of fractionated radiotheray
are summarized by the 5 R’s of radiobiology (previously the 4 R’s, so we see some
progress in this area).

Repair: By fractionating treatment, normal tissue is given the chance to repair
while malignant cancer cells often have suppressed repair pathways hindering their
ability to recover from sublethal damage. The application of this idea is a bit more
nuanced in that the proximity and type of tissue around the target area or in the

radiation beams pathway must be considered.
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Sublethal damage can be repaired during the treatment itself and thus tissue
generally exhibit one of two types of behaviour, late or early responding which is of
course relative to other tissues. Late responding tissues react early to repair damage
from radiation but once those repair mechanisms are overwhelmed, cell death occurs
at a greater rate than early responding tissue. This is illustrated in Figure 2-1. This
is the main idea behind fractionation schemes. If the target region responds later
than adjacent healthy tissue than higher doses per fraction are needed to seperate the
cell survival curves of the two tissue types and fewer fractions are needed. Likewise
if the target regions respond earlier, smaller doses spread over a larger number of
fractions becomes more appropriate.

Redistribution: Cell sensitivity to radiation is dependent on the stage of the
cell cycle that it is found in when irradiated. The G2 and M phases of the cell
cycle are the most sensitive while the S-phase is found to be the most radioresistant.
Because of this there is a differential in cell survival based on the distribution of
phases that cells are found in. Fractionating radiotherapy allows the cell population
to redistribute so that those in the S phase during the first fraction have a chance to
change to the G2 or M phase in future fractions.

Reoxygenation: One of the chemical species that radiosensitizes cells to radi-
ation is oxygen. Due to large demands on energy and oxygen that tumors have, they
tend to grow quickly and signal the growth of new blood vessels in highly irregular
patterns. This inefficient distribution of resources leads to hypoxic areas, with oxy-
gen rich regions tending to exist at the edges of a tumor. Higher radiosensitization

in these areas leads to a higher cell kill and thus reduced competition for oxygen,
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allowing areas deeper in the tumor to re-oxygenate following a dose of radiation.
This allows them to be more susceptible to treatment in the following fraction. A
pattern that would not be observed with a single application.

Repopulation: Repopulation of cells in the body plays a large role in treatment
outcome. It is found that cancer cells can undergo rapid repopulation following
radiation treatment. Thus continued and frequent fractions of radiation are necessary
to manage the disease.

Radiosensitivity: Different cell types and tumor types have intrinsicly dif-
ferent sensitivities to radiation which must be taken into account when considering
treatment options and techniques. For example activation of Epidermal Growth Fac-
tor (EGFR)[10], the p53 protein [11] and presence of the Human Papilloma Virus
(HPV)[12] have been identified as sources of radiosensitivity or radioresistance.

The need for fractionation presents a significant problem when considering the
need to ensure consistent geometric accuracy throughout treatment. Patient anatomy
along with tumor dimensions have the very real possibility of changing throughout
the course of treatment which typically stretches over a few weeks and even during
treatment itself due to patient movement.

2.1.2 Planning

Treatment planning for external beam radiotherapy involves several steps follow-
ing initial diagnosis and prescription of a treatment option. The first step in planning
involves a CT simulation in conjunction with immobilization of the patient. A CT
simulation differs from a diagnotic CT scan in terms of quality, a larger bore size

(to allow a larger array of patients and immobilization equipment) and the use of
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a robotic flat-top couch similar to that installed in the linear accelerator treatment
bunker in order to replicate the conditions under which the patient will be treated.
Careful attention is made to immobilize the patient using a combination of devices
such as deflatable polyurethane foam molds, vacuum molded plastic masks for the
head, bite blocks and skin tattoos to precisely reposition the patient in the same
pose the day of the treatment. The CT simulation is used to give planners infor-
mation on the attenuation properties of the patient. This scan is imported into a
sophisticated treatment planning system (TPS) where the 3D anatomy of the patient
is used to simulate the deposition of dose under varying beam configurations. The
planners must then define the boundaries of tissues in the vicinity of the treatment
site that they seek to spare, called organs at risk (OARs). Both the OARs and the
boundaries of the tumor must be defined in a process called segmentation. This is
typically done manually however more recently semi-automated and fully automated
methods have made their way into the clinic [13, 14]. Several contours are defined for
the tumor, the first is the gross tumor volume (GTV) which encompasses the gross
tumor that is visible on the scan. A margin of a few mm is defined around the GTV
to include the sub-clinical extent of the disease that is not visible on the scan, the
boundary is referred to as the clinical target volume (CTV). An additional margin is
defined around this to encompass the positional uncertainty of the target (ie. the full
extent of motion during or between fractions that is expected to occur) called the
internal target volume (ITV). Finally, one last margin is added to account for setup
uncertainties on the day of treatment called the planning target volume (PTV) in

which the planners attempt to ensure a uniform dose. Once the regions of interest
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have been defined, the number of beams, beam geometry and energy are determined
in order to conform the dose to the PTV while attempting to spare the OARs as
much as possible. This may consist of a set of static beams conformed to the shape
of the target volume or more sophisticated approaches such as intensity modulated
radiation therapy (IMRT) or volumetric arc therapy (VMAT). IMRT makes use of
a large number of beams with sophisticated geometries that are planned on a grid
using a multi-leaf collimator (MLC) to shape and vary the fluence from the beam’s
eye view which when added together over all angles, produce a dose distribution
that conforms to the target geometry. VMAT incorporates one fluid motion of the
linear accelerator and MLC around the patient rather than stopping for each beam
position. The beam parameters of the chosen treatment type are optimized using
multiple criteria based on the dose received by the PTV and surround OARs. Based
on the weighting given to each criteria a plan that satisfies each of them (or comes
as close as possible) is presented to the planner and can be accepted or rejected in
order to change the chosen criteria and receive an improved plan.
2.1.3 Imaging

Treatment planning and diagnosis is heavily reliant on medical imaging available
in the clinic and while radiotherapy is primarily concerned with CT, CBCT and
MVCT other imaging modalities can also be incorporated in the cancer treatment.

CT

Computed tomography was first conceived by Sir Godfrey Hounsfield in 1967
while working for EMI [15]. Computed tomography works by using a fan beam of

kilovoltage x-rays that pass through a subject and are measured by an opposing row
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of detectors. Using the attenuation of the beam by subject and rotating the beam
and detector around the subject, a 2D image can be reconstructed using a number
of techniques such as filtered back projection of the data. Modern CT scanners
use multiple rows of detectors in order to acquire hundreds of slices at once [16]
which is particularly useful for 4D imaging of the lungs and heart. As CT makes
use of kilovoltage X-rays, the primary mode of photon interaction is through the
photoelectric effect. Thus image contrast in CT is strongly dependent on electron
density.

CT provides higher soft-tissue contrast compared to X-ray radiographs in ad-
dition to 4D data when multiple volumes are acquired in series and sub-millimeter
spatial resolutions. The values recorded in a CT image are called Hounsfield units

(HU) and are defined in Equation 2.1.

,u - ,uwater

Hwater — Hair

HU = 1000 x (2.1)

The Hounsfield unit normalizes the values of the image to the attenuation coef-
ficient of water.

PET

Positron emission tomography is a functional imaging modality used to image
the distribution of radiopharmaceuticals injected into a subject. The most commonly
used radioisotope in the clinic is Fluorodeoxyglucose (**F-FDG) which has a radioac-
tive isotope of fluorine attached to a glucose molecule in place of a hydroxyl group.
This works as a glucose surrogate for imaging regions of the body with increased

metabolism and glucose uptake such as the brain, heart and tumor lesions. '®F is
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a convenient isotope as it has a decay time of 109.8 min, long enough for practical
use but not too long that it will remain radioactive longer than needed. '®F decays
through beta-plus emission where an emitted positron travels on the order of a few
millimeters before anihilating with an electron. This interaction results in the emis-
sion of two gamma-rays at 180°. A ring of detectors is used to detect the gamma rays
within a time window on the order of 10 ns. By recording these coincidences, activity
is recorded as having occured along the line connecting the location of the two de-
tectors. In this way a sinogram can be constructed similar to how CT reconstruction
is performed. However due the activity statistics and effects such as misregistra-
tion of anihilation events, false detections and non-colinearity due to residual kinetic
energy during anihilation, special reconstruction techniques are required. The most
common of which are the ordered subset expectation maximization (OSEM), 3D-row
action maximum-likelihood (3D-RAMLA) and the maximum likelihood expectation
maximization (MLEM) algorithms. These use statistical models of the detector and
anihilation process that take into account positional uncertainties when iteratively
reconstructing the images through forward and back projection steps. The low en-
ergy of emitted positrons from ¥F-FDG is also ideal as it leads to a shorter path
length before anihilation, reducing the geometric uncertainty of the original decay
event. FDG-PET is a highly sensitive modality, able to detect clonogen densities
as low as 10° cells/cm?® compared to 10°7¢ cells/cm?® for MRI and CT[17]. Hybrid
PET/CT scanners have provided immense clinical utility by offering physically reg-
istered images that combine functional and anitomical information. This has greatly

aided in detection and segmentation of lesions and has also been used to predict
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Figure 2-2: Coronal view of an image acquired with a PET scan on left and fused
PET/CT on the right of a subject with lesions throughout the lymphatic system.
Elevated '8F uptake is seen in the liver and bladder due to elimination of the tracer
by the body. (L. Vaalavirta / CC-BY-SA-2.0)[2]
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Figure 2-3: Sagital view of the head and neck of a patient deemed ‘normal’ using a
T1-weighted scan. (Relgh LeBlanc / CC-BY-SA-2.0)

treatment response [18]. An example image is shown in Figure 2-2. One of the
drawbacks to PET is the reduced spatial resolution (3-6 mm) compared to other
modalities and increased noise that makes precise segmentation of objects difficult.

MRI

Magnetic resonance imaging is a profoundly varied and useful modality that can
offer a wide variety of physical information and instrument flexibility for influencing
image content. The operating principle of MRI is based on the application of high
strength magnetic fields in the range of 0.23-9.4 T (clinical scanners do not tend to
exceed 3 T). The main B-field is used to align the proton spins of molecules (signal is

primarily dominated by water) while a secondary radiofrequency (RF) field is used
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to precess these spins into the tangential plane. This RF field also aligns the phases
of the spins. After cessation of the RF field, dephasing of the spins occurs due to
influence of the microenvironment in addition to a return in spin orientation to the
axis of the main B-field. The loss of RF signal and the increase in signal oriented
in the main B-field direction are measurable properties directly linked to T2 and
T1 weighted images [19]. Figure 2-3 shows an example image of the head and neck
acquired using a T1-weighted scan. Spatial encoding is accomplished through the
use of a linear gradient field applied in the same direction as the main B-field but
varying in field strength over the x and y axes. This alters the precession frequency of
the protons over space. When the fourier transform of the return signal is recorded,
each frequency encodes a specific x and y location.

MRI is advantageous as a non-invasive, non-ionizing imaging technique that
poses no adverse health effect when operated correctly. The disadvantages to using
MRI include cost, scanning time, the preclusion of certain patients with ferric im-
plants and difficulties imaging lung. Difficulties in imaging lung stem from blood
flow, organ movement, molecular diffusion and the heterogenous structure of the
lung parenchyma leading to fast signal loss. Contrast agents for use in MRI consist
mainly of Gadolinium based molecules.

CBCT

Cone-beam computed tomography works on a similar principle as computed
tomography except that it is designed as more accessible option with a smaller form
factor allowing integration onto the linear accelerator itself. Cone-beam CT differs

from conventional CT in that, as its name implies, it uses a cone shaped X-ray beam
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Figure 2-4: CBCT (a) versus conventional CT (b) scan of a pair of preserved swine
lungs demonstrating the differences in contrast and noise.

opposite a flat panel detector. One single rotation over 200° is sufficient to acquire
enough information to reconstruct a 3-dimensional volume. This is advantageous
for ensuring proper alignment of the patient with the planning CT while they lie
on the treatment couch. Due to the differing beam geometry, CBCT requires alter
reconstruction methods.

One major drawback to using CBCT is reduced contrast and increased noise
caused by scattering events resulting from the use of a cone beam as opposed to a
fan-beam where many of these scattering events end up outside of the detector field
of view. An example of this can be seen in Figure 2—4
2.1.4 Adaptive Strategies

Adaptive radiotherapy (ART) encompasses a number of techniques that account
for anatomical changes over different time scales. Intrafractional adaptive therapy
attempts to track tumor and OARs during involuntary movement such as swallowing

or free breathing. While simpler methods such as breath holding during beam on
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time are possible, many patients due to poor physical condition are unable to comply.
Gating is an approach where the free breathing of a patient is tracked using either an
infrared reflective block or using a pressure sensitive respiratory belt strapped around
the thorax followed by the treatment beam turning on during a specific breathing
phase. These two procedures do of course require significantly longer treatment
times. Dynamic tracking of the target using the MLC during free breathing is one
alternative currently being researched but requires a method of imaging the tumor or
an implanted seed. Specialized products such as the Synchrony Respiratory Tracking
System along with the Cyberknife linac (Accuray, Inc., Sunnyvale, California) or the
Calypso 4G localization system from Varian (Palo Alto, California) system often rely
on implanted gold seeds tracked through stereo radiographic panels. A drawback to
this method is the need for invasive insertion of the seed and risks the possibility of
pneumothorax (leakage of air into the pleural cavity surrounding the lungs).
Interfractional adaptive radiotherapy applies to anatomical changes experienced
over multiple fractions of treatment. This can incorporate modalities such as CBCT
and MVCT or offline modalities such as PET, CT or MRI. Typically, compromises
to the treatment planning objectives (usually quantified by TCP, NTCP and dose
coverage to specific structures) are used as a selection criteria for re-planning in
response to limited time and physician resources [20, 21]. Replanning in this con-
text requires adapting patient contours to the current anatomical context. This can
be done through image registration of the original planning scans to the current
scans and deforming the previous set of contours. However, for regions where tis-

sue deformation is insuffienct to account for biological changes (primarily loss or
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gain of tissue), alterations of the contours may necessitate re-segmentation through
manual or computer assisted means. Reoptimization is then required to derive new
beam parameters that will fulfill a new required dose distribution within the pa-
tient. Deformable registration also serves another purpose within ART to track and
accumulate total dose in order to ensure overall dose objectives are met.

Considering their importance in the larger context of image-guided adaptive
radiotherapy (IGART), the theory and knowledge of the approaches to both seg-
mentation and registration are necessary for proper understanding of this work.
2.2 Image Segmentation

Haralick and Shapiro define segmentation as a “partition of an image into a set
of non-overlapping regions whose union is the entire image” [22]. During treatment
planning, this is often referred to as contouring. Image segmentation simply entails
defining an object’s boundaries using an enclosing curve (in 2D) or surface (in 3D)
either manually or using software to assist. Segmentation is a significant challenge
within the medical imaging and computer science field particularly when there is
a lack of information separating the object from its background. This section will
cover the two main approaches to variational methods of segmentation, explicit and
implicit representations. Variational methods revolve around the initialization and
evolution of a contour to satisfy a particular cost function.
2.2.1 Explicit Representation: Snakes

The snakes method of segmentation is where the contour in question is explicitly
defined by a series of line segments connecting an array of points represented by C'

in Fuclidean space. The arc length along C' is defined by s. It was first proposed
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in 1987 by Kass, Witkins, and Terzopoulous [23]. The proposed cost function is

represented by Equation 2.2,

B = [ (a<s> 2050+ s |25

where the first integral refers to the internal energy that stems from the curvature

2) ds + 7/1 P(C(s;t))ds; (2.2)

of the contour. The first and second order terms within this integral correspond to
the membrane and thin plate behaviour (or sensitivity to the degree of stretching and
curvature) of the contour, regulated by the coefficients a(s) and B(s). The second
integral in Equation 2.2 refers to the potential energy which drives the evolution of
a contour based on image information. It may take many forms but it is commonly
a function of the image gradient.

Equation 2.2 can be solved using the following Euler-Lagrange partial differential

equation (PDE),

o [ ac\ & [ 0%
o (ag> t o3 ( @) +VP(C(s,8) =0 (2.3)

One of the general drawbacks to using explicit representations of active con-
tours is that they require additional attention in regulating point density as well as
splitting/combining multiple regions. In particular, handling areas of high curvature
such as object corners can be challenging. This can be seen in Figure 2-5 where the
snakes algorithm is used to attempt to segment an octagon and a circle. In the next

section we will see how an alternative representation can alleviate this challenge.
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Figure 2-5: Application of the snakes segmentation approach applied to an octagon
and a circle. Image a) shows us the algorithm after the 1st iteration after being
initialized through a manual selection of points. In b) we see the algorithm after 30
iterations. It is unable to split the shape without implementing a special procedure
and encompasses both test shapes.

Figure 2-6: Visual representation of a level set surface intercepting a test image
containing an octagon. The contour is defined by this intercept.

2.2.2 TImplicit Representation: Level Set Method

The implicit approach to active contours involves the use of a level sets mapping
to represent the contour boundary. This technique was influenced and developed
from the work of Osher and Sethian [24] in 1988.

A level-set is a scalar function (¢) that adds an additional dimension to the
image space, defining a surface (in a 2D case), the zero-crossing of which defines

the contour boundary (ie. ¢(C,t) = 0). In this case, C' represents the contour
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curve and t, time. In an explicit representation, the expansion and contraction of
the contour is defined by the movement vectors of the boundary points, the level
sets function expands and contracts through raising and lowering of the level sets

function according to Equation 2.4 and shown in Figure 2-6.

0¢

5 V(k)|Vo|+ F(O) (2.4)
This is a simplified representation of a level set evolution function where V' (k)

is a function of the curvature and image gradient and F'(f) represents the external

forces such as shape related constraints. x represents the curvature term and can be

calculated numerically from ¢ using Equation 2.5.

=V (%) (2.5)

Using level sets allows significant advantages such as stability, and intuitive
curve breaking and combining as shown in Figure 2-7. However it is dependant on
image gradients to determine the stopping point. Some objects may not have clearly
defined borders encompassing the entire shape and thus are prone to leakage issues
where the active contours grows beyond the boundary of the object. An alternative
formulation of the variational framework was proposed by Mumford and Shah in

1989 [25]. Here the following energy function is minimized:

P(0.0)= Y [ [ u= gl dudy + 5], (2.6)
- Q
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where u refers to the image in question, particularly the set of intensity values for
each pixel in question and x and y in this context symbolize the Euclidean coordinates
within a 2D image. Here p and v are positive weighting coefficients for the different
terms of the function. The first term attempts to minimize the difference between
the intensity values found in each region, indexed by ¢ and g; the mean value within
these regions. The second term is a shape energy term, and determines the overall
curvature of the final contour. High values lead to more rounded contours with
fewer regions of high curvature (ie. corners). €2 in this context defines the region of
possible values of x and y. For example, the simplest application of the Mumford
Shah formulation contains two regions, inside and outside the contour boundary
usually represented by €2_ and €24, the union of which constitutes the entire image
space. This approach was combined with a level set formulation in the Chane-Vese

implementation in which the proposed energy function follows Equation 2.7 [26].

B0 = Y [ (1) = w)* H@) + (@) = w1~ H@)do +v [ [VHE)|da

i ’ 2.7)

Where E is the energy and u; and wuy are the mean intensity values for inside

and outside the contour. H (1)) is the Heaviside step function where H () = 1 for

¥ >0 and H(1) =0 for ¢ < 0. The edge function H(v)) forces an evaluation of the

function at the edge of the contour solely instead of updating the entire level sets
function which would slow down the algorithm and is potentially unnecessary.

The cost function can be minimized using the following Fuler-Lagrange equation:
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Alternative edge functions (H(v))) have been used in the literature such as by
Zhao et al. [27].
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1 [1+§+ 2sin (%)] if |z| <n
0 if |z| >n

%7 [1 + cos <%)] if |z] <n

Where 7 is a scale factor that scales the smoothness of the edge function. Here,

op(x) = H)(v) = (2.10)

H; (x) represents the spatial derivative of H,(z), used as a smoother approximation
to the 0, (x) function in 2.8. Chan and Vese utilized an alternative edge function of

the following formulation:

H,(z) = %(1 + %arctom(%)) (2.11)
gy LM
02 () = Hy(x) = R (2.12)

This allows a smoother updating to the level set function, increasing the prob-
ability of finding a global minimum. Updating schemes like these have the risk of
making the optimization unstable after a few iterations by introducing sharp gradi-

ents into the level set function. This requires a refreshing step where the level set
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Figure 2-7: An example of the Chan Vese level set algorithm segmenting the same
example from Figure 2-5. The procedure is shown after a) 1 iteration, b) 10 iterations
and c) 25 iterations where the contour has split into two.

function is reinitialized by a distance function of the current contour boundary every
few iterations.

In the case of equation 2.6 the objective function is defined at the distance
between distribution means, however this can be replaced by other distance measures
such as a probabilistic value infering class identity:.

2.3 Registration

Image registration is the act of matching the space of two images through the use
of a geometric transformation. Often one image is designated as the moving image
(or reference image) while the second remains stationary (the target image). Image
registration has been applied widely in the medical field under several strategies.
The first of which is temporal image or intra-subject registration where the two
images are of the same subject taken at different points in time or under different
physical conditions. Some examples of commonly observed anatomical changes that
may require registration include changes to tumor size, weight loss, movement of the

lungs under free breathing, swallowing, filling/voiding of hollow organs and shifts in

29



organ position. This is important for studying disease progession, dose tracking or
as a surgical aid.

The second category is inter-subject registration in which multiple subjects are
registered together. This is often performed during the construction of atlases, which
is a way of defining a population-based anatomical model. In essence it is an average
of a large number of images of registered subjects. It represents an average model
of the human body (or other species). Atlases are commonly used to automate
the identification and segmentation of regular anatomy for radiotherapy treatment
planning [28, 29], the study of variances in anatomy [30] or using abnormalities from
the norm to determine areas of diseased tissue [31].

Multi-modality registration is another area that is commonly required in medical
physics when incorporating information from a variety of imaging techniques such as
computed tomography, magnetic resonance imaging, positron emission tomography,
cone-beam computed tomography or ultrasound to name the more common ones.
This is a particular challenge since each modality retrieves vastly different informa-
tion with different resolving capabilities and contrast. Determining the proper way
to measure image similarity is a challenging area that requires the utilization of alter-
native similarity criteria [32, 33, 34] and deformation constraints[35, 36]. Registering
image information from multiple modalites can allow that information to be bet-
ter utilized such as for improved target definition [37, 38], diagnosis, and prognosis
[39, 40]. This is useful since images from multiple modalities often contain com-
plementary information, such as the anatomical and functional information derived

from CT and PET, respectively. Multi-modality registration is also commonly used
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for intra-subject registration between the planning CT and CBCT during the day of
treatment or patient alignment.

The process of registration requires the selection of several components: an
objective function or metric, a transformation, an interpolation method, an opti-
mization strategy, and regularization.

2.3.1 Metric

The objective function is the metric of similarity between the two images. Lower
degrees of freedom, such as employing sets of points or surfaces to measure similarity
are a quick way to evaluate positional alignment. These are best used to define rigid
transformations however non-rigid applications are possible [41, 42]. The function
defined by Equation 2.13 has been used to correctly match contours in order to
register two radiographic images [43, 44].

el
L (i)

D(X,T(Y)) = Z wid® (X, T(%) = Z w; (2.13)

In this metric D is the overall distance measure, X and Y define surfaces con-
tained in the reference and target images. These surfaces can be defined as a series
of points x; and y; of which there are N. The variable T" defines the transformation
while w; represents a weighting factor associated with point 7. The function d can
be considered the distance function between the two surfaces assuming the point y;
is the closest available point to x; when performing the summation.

One of the drawbacks of using limited degrees of freedom is how ill-posed the
problem is. If the metric is not properly suited to the application such as non-rigid

registration, the resulting transformation may be one of a large number of non-unique
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solutions. To better define the registration problem, intensity based metrics (using
the similarity of pixel/voxel values) are more commonly used, in particular for non-
rigid deformations. The simplest of these is the sum-of-squares differences (SSD)

defined by Equation 2.14.

SSD => " (A; - B)’ (2.14)

In this equation, A and B are the reference and target images, and i represents
the index of summation over the N pixels/voxels contained in these images. Other
variants of this metric include the sum of absolute differences (SAD), zero-mean sum
of absolute differences (ZSAD), locally scaled sum of absolute differences (LSAD),
zero-mean sum of squared differences (ZSSD) and the locally scaled sum of squared
differences (LSSD). Some of the drawkbacks to using this type of metric is suscep-
tibility to non-Gaussian noise [45] and the inability to consider multiple modalities.
This is due to the intensity relationship not necessarily being one-to-one and one may
in fact encounter inverse contrast patterns (ie. bone appearing with high attenuation
in CT but low signal in MRI).

An alternative to this is to use correlative information metrics such as mutual
information or entropy based measures such as those described in Section 2.4. These
have been used to great effect to provide a metric for multimodal image registration
[46, 33, 34].

2.3.2 Transformation
The choice of transformation is dependent on the type of alignment required by

the reference and target images. The simplest transformations are labelled ‘rigid” and
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involve translation and rotation. Additional degrees of freedom are afforded under

affine transforms which add the possibility of shear and magnification.

All four

possible transforms can be defined using a 4x4 transformation matrix which acts on

a 3D coordinate [x,y, z,1]. The definitions for each transform are summarized by

Equations 2.15, 2.16, 2.17 and 2.18.

0
0

0 1 d,
00 1

(2.15)

Where T is the translation matrix defined by the three parameters d,, d,, and

d, defining the translation in the z, y and z euclidean planes.

The rotation matrices R,, R,, and R, are defined around their respective axis

of rotation and the degree of rotation around each is defined by ©,, ©,, and O..

R,R,R. =

(2.16)

1
0
0
0

0
cos(,)
—sin(6,)
0

0 0 11 cos(Oy
sin(©;) 0 0
cos(©z) 0 —sin(©y)

o 1][ o
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Shear, unlike rotation is defined using the combination of two planes and the

magnitude of shear in each plane is defined by the parameters S, S, and S..

1085, 0 15, 00

1 0 0 0
015 0 0O 1 00 S, 1.0 0
S:c,ny,zSy7z =
00 1 O 0S5, 10 S, 01 0
0 0 0 1 0 0 0 1 0O 0 01

(2.17)

Magnification is represented by one simple multiplicative factor for each axis

M, M, and M,.
M, 0 0 O
0 M, 0 0
M=
0 0 M, 0
0 0 0 1
(2.18)

The collection of transformations defined here are considered global transforms (the
transform is applied the same over the entire image). Higher degrees of freedom can
be implemented into the transformation in order to account for deformation that are
local in nature.

Localized transformations such as free-form deformations are defined using a

series of points p; = [Pu, Py, P=,i| referred to as control points that are overlaid on
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an image. These points are moved around, defining a field of vectors which define
the transformation. There is variability in how these points are applied that offer
advantages in efficiency and accuracy. Points can be placed randomly or in irregular
locations as is the case with adaptive bases [47] and thin plate splines [48]. A sparse
representation involves the regular placement of points in a grid at a much coarser
spacing than the voxels of a given image and is a common technique [49] and can
also be applied in a pyramidal fashion with increasingly higher point densities [50].
This is an effective way to reduce processing requirements and improve the ability
to handle large deformations. A dense representation is one where a control point is
placed at the center of every pixel/voxel and has been used very successfully in the
case of the Demons registration algorithms variants [51, 52]. The drawback to using
dense representations of course is the increased complexity and degrees of freedom of
the registration problem and thus efficient ways of computing the deformation vector
field are required.

Much of the work in free-form deformations is focused around applying proper
deformation constraints centered around biomechanical properties of tissue such as
with using Finite Element Analysis [53] or by ensuring diffeomorphism (invertibility)
through maximization of cross-correlation [54] using a flexible algorithm called ANTs.
This lead to success in the BRATS MICCAI segmentation challenge [55] and and
the EMPIRE10 lung registration challenge [56].

2.3.3 Interpolation
The chosen interpolation method determines how the deformation is approxi-

mated away from where the vector field is defined. It also determines how gradient
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calculations are performed and can affect the algorithm complexity. Woods et al.
used a linear summation of polynomials [57] to interpolate their values while Friston
et al. used the Taylor expansion of a series of non-linear basis functions [58]. A
common interpolation technique combined with non-rigid deformable registration is
the use of cubic-B-splines (defined by Equation 2.19) [59] which define a surface and

provide a smooth interpolation, eliminating discontinuities at boundaries.

u(X) = Z Z Z Bl(:ux)Bm(:Uy)Bn(ﬂz)di-i-hj-&-m,k-‘rn (2'19)

In this formulation, ¢ = |z/N,| — 1,5 = |y/N,| — 1,k = |2/N.] — 1, pu, =
x/Ny — |/Ny|,py = y/Ny — |y/Ny| and pp = 2/N, — |2/N,| where N,, N, and
N, represent the image dimensions. B; represents the basis functions of the B-spline
and d represents the displacement of the control point around which values are being
interpolated. The operators || signify taking the floor of whatever value is inside.
While smooth, cubic-B-splines do not prevent meshfolding or insure reversability of
the transformation.

Thin plate spline (TPS) transforms are another widely used method that uses
a series of radial basis functions (RBFs) to approximate the dense vector field from
any number of irregularly spaced control points. TPSs can be defined by the form

of Equation 2.20.

t(p) =ap+b+ > ciR(p—p) (2.20)

=1
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where p defines the coordinate of the point being transformed and thus ¢(p)
defines the forward mapping. In this formulation an affine transformation is incor-
porated into the coefficients a and b in order to account for global transforms first.
The parameters c; are weighting functions of the RBF R while ¢ is the control point
index. A myriad of RBFs are available for use in the TPS [60, 61] so long as they
are radially symmetric.

2.3.4 Optimization

In many cases, registration is an optimization problem involving the search for
a global minima or maxima of the chosen cost function. To this end there are many
techniques for improving the efficiency of the registration procedure by minimizing
the number of search steps required. While there are many optimization techniques,
here we will touch on a few of the more popular choices.

Gradient descent optimization involves calculating the gradient of the objective
function as a result of changes to the parameters defining the transformation. If
the objective function is intensity based, this calculation will heavily incorporate the
chosen interpolation method into the gradient calculation through the use of the
chain rule. The optimizer follows the gradient according to a set step size until a
minima/maxima is reached. Gradient descent has a tendency to get stuck in local
minima/maxima and requires a significant amount of processing to calculate the
gradient.

Evolutionary optimizers randomly choose a number of step directions and sizes

and evaluates the objective function with these new randomly perturbed values. The
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values with the most improved metric value are chosen to replace the previous gen-
eration. The one-plus-one evolutionary optimizer is one such example that evaluates
one offspring at a time. This method is effective for avoiding local minima/maxima
and reducing computation time as it doesn’t require a gradient calculation [62].

The simultaneous perturbation stochastic approximation (SPSA) algorithm is a
compromise between the gradient descent and evolutionary optimizers. The central
idea behind this algorithm is that it evaluates the gradient based on a random per-
turbation of the deformation parameters. It uses two calculations of the objective
function (as opposed to calculating the gradient directly) to approximate the step
direction [63]. The finite differences stochastic approximation (FDSA) method is
similar in approach but differs in that it estimates the gradient through perturbation
of the parameters one at a time rather than all at once. This leads to a larger number
of calculations but a better estimate of the gradient.

Another popular stochastic optimization technique is the simulated annealing
(SA) algorithm inspired by the behaviour of crystalizing molecules during a drop
in temperature and first published by Kirkpatrick, Gelatt and Vecchi in 1983 [64].
The algorithm randomly explores the solutions space in the neighbourhood of the
current parameter values and probabilistically accepts solutions that offer a worse
cost function value which is influenced by an iteratively decreasing temperature value

T according to Equation 2.21.

P(J(t)) = exp —ﬁmax(o, J(t+1) = J(t)) (2.21)
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Here J is the calculated cost function at step t and P is the probability of
accepting a worse solution. For solutions where the cost function increases, the
solution is automatically accepted. This ability to accept poorer solutions allows the
algorithm to search over a wide area to find the global minima/maxima.

2.3.5 Regularization

The problem of registration is an ill-posed one, in that many possible solutions
may exist for a chosen objective function. Additional constraints on the problem are
often required in order to ensure specific properties such as smoothness, invertibility
and proper biomechanical responses to strain in order to narrow down the number
of acceptable solutions.

One way to apply additional constraints to ensure realistic deformations is
through the use of parameterization. In this approach regularization is implicitely
applied through the reduction in degrees of freedom. The transformation becomes
parameterized through the use of basis functions. For examples the use of cubic-B-
splines [59] and radial basis functions [60]. The choice of basis functions can ensure
smoothness and reduce irregularities since if the basis functions are twice differen-
tiable, so is the transformation.

The second approach is by applying a filter to the deformation field. This
often involves the convolution of a kernal such as a Gaussian function [52, 65, 66].
This can be applied in two ways, the first in an elastic manner where the filter is
applied to the deformation field, the second is a fluid approach where it is applied
to the velocity or update to the deformation field [67]. The latter method allows

more extreme deformations to take place. Specialized anisotropic filters that impose
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differential filtering rules in order to approximate the expected deformation rigidity
of certain regions have also been applied [68]. The advantages to using a filter are
simplicity and ease of calculation, the drawback is that by applying it repeatedly, we
homogenize the deformation field. While this may be good for eliminating random
vectors that might arise in homogenous image regions, it reduces the accuracy of
the deformation at the borders of objects or areas of high information content so a
balance is required.

The third approach is the usage of Sobolev spaces in which the deformation is
defined within a space that is already regularized. Examples of this include Trouve
et al. [69] and Chefd’hotel et al. [70] in their application to diffeomorphic image
registration, a technique which seeks to ensure invertibility of the transform.

The final group of methods is to apply penalty terms to the registration pro-
cess. These are additional terms calculated once the vector field velocity has been
calculated and include things such as smoothness by penalizing the first and second
derivatives of the deformation, incompressibility, rigidity and invertibility. These
can be applied as soft constraints where the terms are added to work against the
deformation vector field or as a hard constraint [71].

2.4 Information Theory

In this section we will review the background of information theoretics and how
divergence measures between distinct distributions are estimated. The goal of this
section is an explanation of how the Jensen Rényi divergence and statistical similarity
measures in general are calculated, beginning with the estimation of the probability

densities, from there the calculation of entropy is followed by its further adoption in
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calculating mutual information and finally, a similar divergence metric, the Jensen
Rényi divergence. We begin with a Gaussian distribution shown in Figure 2-8.
Exact calculation of the population histogram would be computationally expen-
sive depending on the population size, so instead, Parzen windows can be used to
approximate the distribution using a subset of samples. This is explained in excellent
detail by Viola and Wells when proposing mutual information for image alignment
[46] and Duda and Hart [72]. A Parzen window is essentially a convolution of a
subset of samples in order to estimate the population histogram. This is defined by

Equation 2.22.

Po(z) = % S K- ) (2.22)

1€0)

Where P;(z) is the probability density of a value x occuring, N is the number
of subsamples taken and K is the Parzen window function. 2 and ¢ refer to the
subset of samples and sample index respectively. x; in this context then refers to the
values of samples contained with the set 2. K does not have to be Gaussian like in

Equation 2.23 but for many applications it allows further simplifications.

K(z) = (27)0/ || exp —%xTz/J_lx (2.23)

In this context, n is the dimensionality of the distribution space. For example if
we were to sample from a color image with RGB channels, the dimensionality would
be 3. If the dimensionality if larger than 1, then x becomes an n-dimensional array
of samples. T in this context refers to the transpose of the array z, and v is the

variance x.
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Figure 2-8: Example of the use of a Gaussian Parzen window to estimate an intensity
distribution. Part a) shows the population distribution, b) three values sampled
from the distribution along with their surrounding Parzen windows. In c) we see
the addition of the Parzen windows of all three samples compared to the original
distribution, this is further refined with more samples in d)-f).

Returning to our previous example we can see how the Parzen window operates
for a subset of samples in Figure 2-8 part b). In Figure 2-8 parts c)-f) we can
see how quickly the subsampled probability distribution approaches the population
distribution. To this end, once the probability distribution can be estimated, it is
relatively straight forward to calculate the entropy of sample set x which in this
thesis exclusively refers to a series of intensity values sampled from an image or

image region. The formula for entropy in this context is shown in Equation 2.24.

Hiz) = — / Po(z)In (Pa(x)) da (2.24)

42



In this case, the integral is over the range of possible values that x can take on.
For the purposes of registration, it is convenient to think of entropy as a measure of
information contained within an image. Similarly, joint entropy is a measure of the
information contained in a superposition of two distributions - e.g. two images - and

is defined by equation 2.25.

H(z,y) = — / Po(z,y) In (Po(x,y)) dedy (2.25)

Where the probability density is now two dimensional and x in Equation 2.23 is
now replaced with the 2D array [z, y] in Equation 2.25. The key to understanding how
these relate is knowing that there will be similarities between the two distributions,
P(z) and P(y), with larger similarities reducing the total information/uncertainty
content or the joint entropy. If we think of the two distributions as a Venn diagram
as shown in Figure 2-9, with two circles representing H(z) and H(y) for the two
distributions, H(x,y) would be the union of the two.

If we wish to measure the information redundancy (or the overlapping region of
the venn diagram) we can calculate a measure known as Mutual Information (MI).

The formulation is fairly intuitive using the given analogy, it is shown in Equation

2.26

MI(z,y) = H(x)+ H(y) — H(z,y) (2.26)

Mutual information is one example of a statistical divergence measure, meant
to quantify the similarity between two distributions. This is particularly useful for

medical imaging applications when comparing images from two modalities such as
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Figure 2-9: A Venn diagram explanation of mutual information, represented as the
overlap symbolizing the redundant informaton described by two populations or in
our context intensity values taken from two images or image regions. Each circle
represents the entropy/image information from each of these populations. The joint
entropy is effectively the union of these two circles/entropies.
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MRI and CT where the intensity values will contain similarities but do not have a
one-to-one relationship.

Another entropy measure that can be used is the Rényi entropy

N

R.(x) = N i - log <; P(x)“) (2.27)

Where « is a new parameter controlling the weighting of frequently versus in-
frequently occurring intensity values defined by z in this case. The logarithm in
this case is of base 2. The Rényi entropy is a generalized entropy metric that can
be formulated as other entropy values with the choice of a. For example an « of 1
produces the Shannon entropy used in mutual information. In this context the Rényi
entropy does not provide a new antropy measure but allows us a method of switching
between a large range of measures using the free parameter a. There is additional
freedom in being able to use it a continuous parameter in this way. The parameter
« plays a large role in how incoherent noise is handled when using this information
metric as values with lower probability density can be minimized in their influence.
As « inreases, the influence of highly probable values increases. This will not affect
how coherent image artifacts are handled since that could significantly shift the mean
value of the intensity distribution. In other words, the image artifact would result in

highly frequent intensity values which this entropy measure would be susceptible to.
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Similar to before, the similarity or divergence measure that we extract from
multiple images is summarized in Equation 2.28.

JR,(z,y) = ﬁ [log (Z (w1 Py(x) + szg(y))a) —log <Z Pl(a:)“) —log (Z Pg(y)o‘>]

=1 =1

(2.28)
Where w; and wy are weights for probability densities 1 and 2. The divergence
measure, termed the Jensen Rényi divergence is named after mathematicians Johan

Jensen and Alfréd Rényi [73]. Further details about the measure are covered in

Chapter 3.
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CHAPTER 3
Novel multimodality Segmentation Using Level Sets and the
Jensen-Rényi Divergence

This chapter represents a print of ”D. Markel, H. Zaidi, and I. El Naqga, Novel
multimodality segmentation using level sets and jensen-rényi divergence, Medical
Physics 40, 121908 (2013)”. In it we describe the application of the Jensen Rényi
divergence as a cost function/metric in optimizing the surface contour for defining
tumor boundaries and the boundaries of image objects in general. Experiments
are performed in order to discern the advantages of using this metric for object
segmentation, particularly in the presence of random noise. Phantom and human
examples are used to test the algorithm.

3.1 Abstract

Purpose: Positron emission tomography (PET) is playing an increasing role
in radiotherapy treatment planning. However, despite progress, robust algorithms
for PET and multimodal image segmentation are still lacking, especially if the al-
gorithm were extended to image-guided and adaptive radiotherapy (IGART). This
work presents a novel multimodality segmentation algorithm using the Jensen-Rényi
divergence (JRD) to evolve the geometric level set contour. The algorithm offers
improved noise tolerance which is particularly applicable to segmentation of regions
found in PET and cone-beam computed tomography.

Materials and Methods: A steepest gradient ascent optimization method is used
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in conjunction with the JRD and a level set active contour to iteratively evolve a con-
tour to partition an image based on statistical divergence of the intensity histograms.
The algorithm is evaluated using PET scans of pharyngolaryngeal squamous cell car-
cinoma with the corresponding histological reference. The multimodality extension
of the algorithm is evaluated using 22 PET/CT scans of patients with lung carci-
noma and a physical phantom scanned under varying image quality conditions.
Results: The average concordance index (CI) of the JRD segmentation of the PET
images was 0.56 with an average classification error of 65%. The segmentation of
the lung carcinoma images had a maximum diameter relative error of 63%, 19.5%
and 14.8% when using CT, PET and combined PET/CT images, respectively. The
estimated maximal diameters of the gross tumor volume (GTV) showed a high cor-
relation with the macroscopically determined maximal diameters, with an R? value
of 0.85 and 0.88 using the PET and PET/CT images, respectively. Results from the
physical phantom show that the JRD is more robust to image noise compared to
mutual information and region growing.
Conclusions: The JRD has shown improved noise tolerance compared to mutual
information for the purpose of PET image segmentation. Presented is a flexible
framework for multimodal image segmentation that can incorporate a large number
of inputs efficiently for IGART.
3.2 Introduction

Radiotherapy is an important modality for treating patients with cancer. About

60-70% of all cancer patients receive irradiation as part of their treatment [74] and
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this remains the main option for advanced stages of disease. However, geomet-
ric and dosimetric uncertainties during fractionated radiotherapy can accumulate
daily from tumor regression, soft-tissue deformations and organ motion. Tradition-
ally, computed tomography (CT) has been the principal modality used for radio-
therapy treatment planning. However, several studies have shown inter- and intra-
observer variability in manual gross tumor volume (GTV) delineation as high as
700% [75, 76, 9] and 80% [77] using CT alone, respectively. The inclusion of PET
into the treatment planning process has provided improved contrast and increased
sensitivity to metabolically active regions of the tumor versus normal background
tissue. However, PET suffers from relatively low spatial resolution, variable uptake
patterns and quantum image noise. These properties can drastically influence the
intended treatment target.

Even assuming perfect initial target definition, a patient’s anatomy as well as the
target itself may change drastically during the course of treatment. Tumor regression
in the lung on the order of 1.2% of the volume per day was observed in a study by
Kupelian et al.[78] using megavoltage CT images. In a study by Barker et al. an
average volume change of 1.8% per day was observed in the head and neck [79]. In the
same study average weight loss of 7.1% of the body mass was observed over the course
of treatment. The feasibility of image-guided adaptive radiotherapy (IGART) relies
on fast and accurate algorithms that can reduce treatment planning time[80]. Often
cone-beam computed tomography (CBCT) or mega-voltage computed tomography

(MVCT) is used to check the anatomical context of the patient. These modalities
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tend to suffer from a reduction in contrast and increase in image noise, thus making
it difficult to redefine the target boundary accurately.

A large number of automated and semi-automated methods have emerged in the
literature attempting to provide consistent interpretation of the tumor boundary.
These have included a large number of soft threshold values ranging within 15-
50% of the maximum Standardized Uptake Value (SUV) [81, 82, 83, 84, 85], and
a hard value of 2.5 SUV [86]. Further work has produced regression formulas to
predict the most appropriate threshold value based on either mean SUV [87], lesion
volume [88] or signal to background ratio (SBR) [89]. However, a few studies have
noted that no appropriate threshold value exists that consistently and accurately
determines the GTV boundary [88, 90]. This is partially due to inconsistent FDG-
PET uptake from patient to patient as well as heterogeneous uptake patterns that
are often seen within the tumor regions themselves. More advanced methods such
as those using fuzzy hidden Markov chains [91] or Markov random fields [92] have
been proposed which make use of stochastic modelling to fit Gaussian functions
to the intensity distributions, using each voxel’s class probability and agreement
with surrounding voxels to randomly shuffle it around into other data classes. This
process eventually converges, and finally classifies the voxels in the image into a
number of hard classes. The information from surrounding voxels is often used to
reduce errors produced by image noise. More recently, clustering methods have been
receiving considerable attention due to the fact that they are able to approximate
the intensity distributions of the segment and background without any knowledge

about the shape of the distributions [93, 94, 95]. Another popular method that has
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often seen commercial implementation is the atlas-based approach that uses the co-
registration of a large database of patient scans to produce a probabilistic map of
expected uptake values for healthy patients and then uses deviations from this map
to determine where abnormal regions lie [96][97]. While there has been a plethora
of work regarding proper PET segmentation, the problem remains a challenging one
that has not been satisfactorily resolved using single modality methods. A more
thorough review of PET segmentation algorithms can be found in surveys by Zaidi
and El Naqa [98] and Sheperd et al. [99].

We have adapted an active contour approach due to its ability to define the con-
tour using a continuous function which can intuitively adapt to topological changes
such as splitting and merging of multiple regions, as encountered in a heterogenous
tumor and to achieve sub-pixel accuracy. Active contours are a class of methods
by which an initialized segment is evolved over time to maximize a chosen energy
function. Internal forces specific to the shape of the contour along with external
forces from the image itself are both used in this evolutionary process which follows
the gradient field of the function. The active contour can be defined explicitly as
is the case with snakes [100] where the contour is given by the positions of a set of
points, or implicitly as with level sets [24, 101], where it is represented by the zero
level of a scalar function.

Another important facet of our work regards the consideration of complemen-
tary information from different modalities to delineate the so called ”biophysical”
target [101]. A study by Milker-Zabel et al. [102] showed that with the inclusion of

PET, CT and MRI modalities into the treatment planning process for stereotactic
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radiotherapy resulted in changes to the target definitions 73% of the time. The chal-
lenge with multi-modality treatment planning stems from registering patient images
that often do not include a high degree of correlating details. The inclusion of hybrid
PET/CT imaging devices over the past ten years has greatly aided in reducing inter-
observer variability in target definition [103, 104] by providing physically registered
datasets. The interpretation of visual information from multiple images is another
source of variability that may be aided by computer automation. A number of algo-
rithms addressing the issue of multimodality segmentation, particularly with regards
to PET/CT segmentation have been recently published [105, 106, 107, 101, 108].
These include a simple region growing method where the user places a seed within
the area to be segmented which then begins to absorb surrounding voxels that fall
within a given intensity range, growing until it fills the entire connected region. This
method has been applied in the context of the lung [105] using PET/CT images
but found to produce systematic overestimation of the tumor boundary. Probabilis-
tic classification using a number of textural filters and machine learning techniques
trained on a set of previously observed cases has been shown to produce accurate
results in the head and neck area [106]. Within the same area of the body, a semi-
automated graph-based method has been tested that uses Markov Random Fields
to produce globally optimal solutions [107]. Within our own group, we have applied
an active contour to the task of PET/CT segmentation with the development of the
multivalued level sets segmentation method [101]. This method employed an energy
metric based on differences between voxel intensity and the mean intensity values

found inside and outside the segment. This approach however, does not account for
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the spread and shape of individual image intensity distribution reducing each to a
single weighting parameter in the algorithm.

The Jensen-Rényi divergence (JRD) is a relatively new generalized information
divergence measure whose curvature can change based on a chosen parameter ().
Our implementation relies on a non-parametric approach that makes no assumptions
about the underlying distribution. Some studies have observed that the JRD is more
robust to image noise than mutual information when applied to registration as long
as the weighting parameters are chosen appropriately [73][109]. Mutual information
is a common objective function for registration tasks, and while it is not commonly
used for segmentation, it is based on entropy terms which a number of authors have
investigated for use in segmentation[110, 111, 112, 113]. The use of entropy based
on intensity value histograms (in particular using non-parametric density estimates)
is an effective objective for statistically based segmentation. Using the metric, it
is possible to partition regions with subtle differences in their intensity distribution
that may be too difficult to detect with simple average intensity methods or the
naked eye. Mutual information also has a similar mathematical formulation to the
JRD and hence is used for comparison in this paper. To date the JRD has not been
applied as a metric for segmentation using a level set active contour framework. The
goals of this work are threefold. First we show that the JRD can improve noise
tolerance when applied to the task of segmentation using PET and CT scans of
an in-house phantom. Second, we evaluate the JRD based level sets method with

regards to PET segmentation using PET scans of patients with pharyngolaryngeal
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squamous cell carcinoma. Third, we demonstrate its application to segmentation of
multimodality PET/CT scans of patients with lung carcinoma.
3.3 Materials and Methods

The implementation and validation of the proposed method is developed in this
section starting with a theoretical background of the energy term used in level sets
method. Here we present the derived solution to the level sets differential equation
using the JRD. The materials and methods for collecting the validation data along
with an explanation of the validation metrics is then provided followed by hardware
and software specifications of our implementation.
3.3.1 Theory

Level Sets

A level set function ¢(u,v,w) is used to implicitly define a contour within our
image where x = (u,v,w) defines a set of 3D cartesian coordinates within the im-
age volume. ¢ is a scalar function that defines the contour edge by its zero level
(6, v, w) = 0).

Let E be a function of a level set. The successive iterations of the minimiza-
tion/maximization of E using a steepest descent/ascent approach corresponds to a

specific evolution of the level set, and hence of its zero level.

E(cb)ZA(JRD(¢($))+MIVH(¢(I))I—V) dx (3.1)

Where JRD(¢) is the Jensen Rényi divergence, v is a scalar velocity term, dz is an
infinitesimally small volume at point x (which is defined by the image resolution), 2

is the set of sampled voxels in the image, |V H(¢)| is the magnitude of the gradient of
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the Heaviside function (which forces a smooth boundary) and is defined by equation
3.3.1, u is a weighting factor. Following curve evolution theory, evolving the energy

function over time is equivalent to finding the derivative over the contour.

9 _ OE(C)
ot oC
Where C'is the contour at the current iteration defined by the zero level (¢(C') =

(3.2)

0) of the level set function.

1 if¢>0
H(¢) = (3.3)
0 ifp<0

The Jensen Rényi divergence

For estimation of the JRD, we start by defining a set of samples from either
outside or inside a contour by x;,i = 1,2,...n where n is the sample size and i is
the sample index. If we let P = (P(J(z1),Q), P(J(22),)....P(J(z,),)) be the
probability density distribution where J(z;) is the intensity value of sample z; then

we can define the Jensen Rényi entropy using equation 3.4.

Ra(P) = 5 alogZP(J(m,-),Q)o‘ (3.4)

Where J(z) is the feature vector at point z made up of the intensity values of
the input images and « defines the curvature of the function. For o € (0,1) the

function is concave, whereas it is neither convex nor concave for o > 1. Choosing an
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a value of 1 gives back the Shannon entropy. The JRD criterion is defined by the

following conditional expectation:

JRD(6) = Ra (S wnPi) = Sy wnRa(Po)

(3.6)
= [log [ (wiPi(J, Q) + wa Py(J,0))* dJ — (3.7)

wilog [, (P1(J,Q2))" dJ — wslog [y (Pa(J,Q4))" dJ]

where wy,wy are the weighting parameters for the probability distribution func-
tions P, and P,. P, and P, in this context are defined by the intensity distribu-
tions inside and outside the evolving level set, respectively. d is the number of
regions/distributions and R is the domain of feature values represented by J. The
set of samples defining these regions is referred to by 2_ for inside the segment and
2, for outside the segment.

The divergence measure changes with the parameter a. For example, when
alpha is equal to 0.5, the divergence is proportional to the log of the Bhattacharyya
coefficient. When « is chosen to be 1, Rényi entropy reduces to the Shannon entropy
(SE in equation 3.8) and the measure becomes the Jensen-Shannon divergence. This
becomes equivalent to mutual information when the weighting parameters w; and
wy are chosen equal to P(J,Q_) and Py(J, Q) for each sample[73]. The weighting
parameters determine the importance of probability distributions P, and P, which

in this case represent the foreground and background. For this work the weighting
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Figure 3-1: Mesh plots of the JRD energy space using Bernoulli distributions for
P, and P,. In this context P, = (pg, 1 — px) replaces P(J(x;),Q2) in equations 3.4
and 3.8. In a) alpha is chosen equal to 1 with equal weights. b) shows the function
with @ = 5 and equal weights. ¢) shows the function with o = 5, wy; = 0.75 and
wy = 0.25. The segmentation algorithm would maximize the JRD, these are the
spots in the energy space where there is the largest difference between P; and P,
if the weighting values are equal. Changing the weighting parameters affects where
these maxima occur.

parameters were chosen to be 0.5 each. On a continuous basis, a can be seen to
change the curvature of the divergence measure as shown in figure 3—1. Here R
covers the domain of possible intensity values. For our implementation, volumes

were discretized to 40 levels in order to reduce processing time requirements.

SE(P) = — Z P(J(;), Q)log(P(J(x;), Q) (3.8)

The probability distribution functions are defined as follows:

PULY) =+ 3" Ko (T = (), (3.9)
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where

Ko (7= ) = @) s cap (=5 (0 = )0 (0= I ) 310

Where K is the Gaussian kernal used for the Parzen window estimation of
the probability density[114]. Here v represents the covariance matrix of the feature
vector J. This can be calculated directly from the vector J, however this makes the
assumption that the data is best represented by two unimodal distributions. Since we
want to make no assumptions about the shape of the distributions, every covariance
matrix was set to a t X t matrix with every diagonal element equal to 8 which was

determined heuristically. Here ¢ is the dimensionality of the feature vector J.

99 Vo
7 = oo ((7)+
1 féR ’LU1P1 J Q_ )+w2P2(J Q+))a ! (wlapl +UJ28P2) dJ_

11—« f% w1P1 J,Qf>+U)2P2(J, Q+)) dJ
L JpaPi(J, Q)2 GRdT
P, Qo )edT

11—«

1 Py(J, Q) 12y
S CULLTD e L (3.11)
l—« Sy Po(J, Q4 )d T
Where 6(¢) (the dirac delta function) is approximated by the following
1
6(¢) (3.12)
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Where € is a small number arbitrarily chosen to be 10~7. The partial derivatives

of the probability densities are

oP _ OP(JQ-) _

ocC ocC

a7 (Ku (J(C) = J) = Pi(J,Q))

OB, _ 9R(JQy)
oc — T oC T

i (P(, Q) = Ky, (J(C) = T))

(3.13)

(3.14)

When using p multiple inputs, or in our case multiple images, the vector of

intensity values, J simply becomes a p X n vector where each data point is sampled

from the same spatial location in the domain of the images. A maximum sample size

of 1600 voxels or the total number of voxels in a sample region (whichever is smaller)

is used to estimate the probability distribution functions for inside and outside the

segment. The samples are randomly taken from the inside of the segment and an

equally sized area surrounding it which is created using a distance transform of the

contour edge and masking the values within the appropriate distance.

A similar derivation can be performed on the mutual information metric using

Equation 3.15.




Where x and y in this context integrate over the intensity value ranges from
images 1 and 2 over the entire image space (assuming a multi-modal segmentation).
For monomodal images, the image was input twice. The inside and outside image
regions are defined by splitting the integral for the inside and outside regions, €2_

and €.

OH (x OP(x OP(x OP(x OP(x
[, (S0P - 22) — fy, (S 0Pw) - 22)  (310)

This is used for attaining the results in Figures 3-8.
3.3.2 Datasets and Validation

Experimental Phantom Studies

A physical phantom was constructed in order to evaluate the performance of
the algorithm under varying conditions of image quality. This was done by placing
a small glass jar with a 64 mm inner diameter with 4 mm thick walls wrapped in
a 3 mm thick bolus sheet inside a larger glass jar with an outer diameter of 111
mm and 7 mm thick walls which is shown in figure 3-2. Thread seal tape was
used to make the larger jar water tight. The phantom was filled with a solution
of approximately 950 ml of water with 8.7875 MBq of ¥*F-FDG radiotracer for a
concentration of 9250 Bq/ml. The inner jar is not sealed allowing the solution to
mix inside the phantom producing a 1:1 concentration between the inside and outside
of the inner jar. The purpose of this phantom was to have the semi-automated
algorithm attempt to segment the boundary of the inner jar without spilling into the

surrounding region. The phantom was scanned using a GE Discovery-ST PET/CT
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Figure 3-2: The inner jar wrapped in the bolus sheet (left) and the two containers,
one inside the other (right).

scanner (GE Healthcare) and reconstructed into a series of 128x128 voxel images
with a resolution of 5.4688 mm in the transverse plane and a slice thickness of 3.27
mm using the ordered subset expectation maximization (OSEM) algorithm.

In order to achieve a variety of SNR values, 6 scan times of 4, 6, 9, 15, 62 and
246 seconds were chosen to produce 6 volumes. The measured SNRs from these
scans were 9.1, 9.2, 10.9, 12.6, 17.8 and 26.0 dB using the definition of SNR given
by equation 3.17. Where 5, and opg are the mean and standard deviation of
the signal and background. The signal in this case is the water within the inner
jar since it contained the FDG where as the wall of the inner jar and the bolus
emitted no signal and was thus considered background. Since the wall and the bolus
occupied very little area, the region over the entire volume was used to provide a

more accurate calculation of standard deviation. For the CT, pug, and o, are the

61



Figure 3-3: Transverse slices of phantom PET scan for scan times of 4, 6, 9, 15, 62,
and 246 seconds (from left to right in the top row). Slices of the phantom taken with
the CBCT are shown in the bottom row with increasing SNR from left to right

mean and standard deviation of the intensity values found in the inner jar wall and
using the inner region of water as the background. Transverse slices from these 6

scans are shown in figure 3-3

SNR =20 - logi (”“9) (3.17)

Obkg

Similarly the phantom was scanned using on-board cone beam computed to-
mography (CBCT). The images were all scanned using a voltage of 100 kV but with
varying current and pulse width. CBCT scans were evaluated due to their poor con-
trast and low SNR. The applied scanning parameters along with the resulting SNRs
are summarized in table 3-1.

Approximately 310 ml of Omnipaque 300 (65% iohexol, GE Healthcare Canada,
Mississauga ON) was diluted in 640 ml of water for the CBCT scan and the bolus

sheet removed. It was observed that the scan contained beam hardening artifacts and
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Table 3—-1: Scanning parameters for the CBCT.

Scan Current (mA) Pulse Width (ms) SNR (dB)

1 10 10 25.3
2 20 10 29.2
3 40 10 31.8
4 40 20 33.9
5 80 20 35.3
6 80 32 35.7

an asymmetric distribution of contrast agent. In order to correct for these hetero-
geneities, the regions of the phantom walls and the space in between were delineated
with circles matching the dimensions of the phantom. A quasi-ideal version of the
phantom was generated by uniformly filling these areas with the mean value found
in the original scan. A third volume was generated using the voxel-by-voxel ratio
of the quasi-ideal phantom to the original scan. This third volume was smoothed
using a 3D bilateral filter and then used to rescale the phantom images to remove the
inhomogeneity. This is shown in figure 3-4. In order to compare the performance
of the Jensen Rényi divergence versus using mutual information, two segmentation
methods using an active contour but each driven by one of the two divergence mea-
sures was used to segment the region surrounded by the inner jar. Additionally a
region growing algorithm were also used to segment the inner jar for comparison.
The region growing algorithm was given an intensity difference threshold of half the
intensity difference between the water and jar wall values. This was found to pro-
duce favourable results in the highest SNR images for both modalities. This was

done two-dimensionally over 19 slices from each volume for both PET and CBCT
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modalities. The performance of each method was measured by the average concor-
dance index comparing the final segmentation to the known boundary of the inner
jar.
3.3.3 Clinical Studies

Louvain Database

In addition to phantom studies, we included clinical validation datasets with
a known reference from previous studies so that our results could easily be com-
pared to other results reported in the literature [3]. PET scans of a subset of 7
patients with T-III to T-IV pharyngolaryngeal squamous cell carcinoma taken from
the Louvain database were used for performance evaluation [115]. Patients were im-
aged on average 5 days prior to treatment which entailed a total laryngectomy. A
60 min dynamic 3-D PET scan using an injection of 185-370 MBq of 8F-FDG was
performed on the selected patients while immobilized with a thermoplastic mask.
This was done with an ECAT EXACT HR camera (CTI Siemens, Knoxville, TN)
and reconstructed using a 3-D Attenuation-weighted Ordered Subsets Expectation
Minimization (AW-OSEM) algorithm into images of 128x128 voxels at a resolution
of 2.1656 x 2.1656 mm in the transverse plane with a slice thickness of 3.125 mm.
Following the laryngectomy, resected tissue was placed in a polystyrene cast that
was filled with a 16% gelatin solution and cooled to -20°C for 48 hours and -80°C
for a minimum of 72 hours. Specimens were cut transversely into 1.7-2 mm slices
that were then digitally scanned on both faces using a flatbed scanner. A reference
segment of the perceived gross tumor volume (GTV) was manually delineated using

the digital scans of the macroscopic specimens and coregistered to the PET volume
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Figure 3-4: Inhomogeneity correction with a) the original CBCT slice (from scan
#6). b)The ideal phantom whose values are equal to the mean within the 4 regions
found in a). ¢) The ratio of b) to a) following a bilateral filter smoothing, using o,
= 13, 02 = 18 and a tolerance of 0.02, and finally d) the corrected image.
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using a semi-automated rigid transformation using segmented structures as described
by Daisne et al. [116].

The PET images were segmented following a denoising procedure which con-
sisted of smoothing using a bilateral 3D filter followed by deconvolution using the
Landweber algorithm. For the JRD algorithm, segments were initialized using an
anisotropic sphere that approximated the size of the GTV and ran for 100 iterations.
The following parameters were used in all studies when evaluating the algorithm for
the JRD (v =0.013,a0 = 1.8, u = 0.1).

MAASTRO Database

In order to evaluate the performance with regard to multimodal data, this
study included a set of 33 patients with stage Ib-IIIb non-small cell lung carcinoma
(NSCLC) treated at the Maastro clinic in Maastricht, The Netherlands. Each has
received a whole-body PET/CT scan using a Biograph SOMATOM Sensation 16
with an ECAT ACCEL PET scanner (Siemens, Erlangen Germany). Patients were
injected with an ®F-FDG tracer following a 6 hour fast. The dosage was determined
using (weightx4 4+ 20 MBq). A spiral CT with contrast was performed. The pa-
tient was then scanned in 5 min intervals covering 7 sections, beginning 45 minutes
post-injection. The CT scan was used for attenuation correction and the PET data
reconstructed using OSEM with 8 subsets and 4 iterations. Of these 33 patients, 22
of which underwent surgical resection of the lung tumor, the maximal diameters of
the tumor were measured macroscopically. This was used for comparison against the
maximal tumor diameters produced by the JRD segmentation algorithm. The data

collection is discussed in more detail in Van Baardwijk et al., [89].
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Validation Metrics
With regards to the Louvain dataset, contours drawn from the images of the
macroscopic specimens were used as a reference and validation was determined by

two frequently used similarity metrics; concordance index (CI) and classification error

(CE):

ANB
Cl="05 (3.18)
PCE + NCE
CE = % x 100% (3.19)

Here positive CEs (PCE) is the volume identified as background that is actually
part of the tumor and negative CEs (NCE) is the volume identified as tumor that is
actually background. Vol is the volume of the histologically derived contours. When
defining CI, A and B are defined as the segmented volume and macroscopically
derived volume, respectively.

The MAASTRO data was evaluated using the percent error of the maximal

tumor diameter defined by equation 3.20:

| maxDseg — maxDpaero |

Yoerror = (3.20)

mazxDopacro

This was done due to the fact that the binary tumor masks were unavailable,

only maximal tumor diameter was used in the original study.
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Hardware and Implementation

The JRD based level sets method was implemented in Matlab on a laptop with
an Intel Core i7-2630QM @Q2GHz using 16GB of RAM and an NVIDIA GEFORCE
GTX 560M with 3 GB of integrated RAM. Each iteration was calculated on the GPU
requiring 0.2-0.4 seconds per iteration using a single modality and 0.4-0.6 seconds
per iteration when using two modalities.
3.4 Results
3.4.1 Phantom Studies

Using a slice from each scan that showed the inner jar wall surrounded by the
outer jar, binary masks of circles of radii varying from 29 to 36 mm were used to
measure the mutual information and Jensen Rényi divergence. Figures 3-5 and 3—
6 show the mutual information and Jensen Rényi divergence for the different radii
using the CBCT and PET scans. The minima for both functions occurs at the wall
of the inner jar. The profiles for both divergences are shown for the lowest SNR
scan and the highest. The profiles show a distinct difference between the two scans,
the minima of the mutual information becomes severely distorted by the decrease in
image SNR. This is reflected in the performance of the two algorithms when measured
using the average concordance index as shown in figures 3-8 and 3-9 when applied
to the CBCT and PET modalities, respectively. The region growing method showed
a drastic decrease in performance for both modalities as noise in the image increase.
Profiles of the JRD are affected by the choice of alpha value as shown in figure 3-7.
Higher alpha values produce a sharper curve upon approaching the inner jar wall.

The tail of the profiles are also increased with increasing alpha, these tails exist due
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Figure 3-5: JRD and mutual information measured for circles of growing radius
centered at the inner jar using the CBCT images. The low SNR scan had an SNR
value of 32 and the high SNR scan had a value of 36. The peak is clearly preserved
using the JRD when applied to the lower SNR image set.

to detection of the outer wall which lies partially adjacent to the bottom of the inner
wall as shown in figure 3-4.
3.4.2 Clinical PET Evaluation: Louvain Database

The results from segmenting the PET images from the Louvain dataset are com-
pared against those presented by Zaidi et al. [3], where a comparison of 9 algorithms
is performed. The results are shown in terms of Classification error and concordance

index in figures 3—10 and 3-11. The JRD algorithm showed an average concordance
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Figure 3-6: JRD and mutual information measured for circles of growing radius
centered at the inner jar using the PET images. The low SNR scan had an SNR
value of 9.2 and the high SNR scan had a value of 26.
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Figure 3-7: The Jensen Rényi divergence measured for the PET scan of the noise
phantom with circles of increasing radii. The profiles are shown with varying choices
of parameter . When « is equal to 1, the values become negative since the Rényi
entropy reduces to the Shannon entropy as shown in equation 3.8.
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Figure 3-8: The average concordance index of the active contour based on mutual in-
formation and the Jensen Rényi divergence for varying CBCT SNR values. The JRD
shows a linear response to noise whereas the mutual information shows a somewhat
exponential decrease in performance.
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Figure 3-9: The average concordance index of the active contour based on mutual in-

formation and the Jensern Rényi divergence for varying PET SNR values, controlled
by the scan time.
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Figure 3-10: The average concordance index of the JRD based active contour com-
pared to 9 other PET segmentation algorithms evaluated using the same data from
Zaidi et al. [3]. Using only the PET intensity, the JRD based segmentation had
an average CI of 0.55 versus 0.59 for the FCM-SW. The error bars represent one
standard deviation.

index of 0.55 with a standard deviation of 0.12. This was second to the fuzzy clus-
tering method incorporating spatial information and the & trous wavelet transform
(FCM-SW) which has a average CI of 0.59 with a somewhat smaller standard devi-
ation of 0.08. Similar results are reflected with regards to the average classification
error where the JRD method had an average CE of 65% second to 55% for the
FCM-SW.
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Figure 3-11: The average classification error of the JRD based active contour com-
pared to 9 other PET segmentation algorithms evaluated using the same data from
Zaidi et al. [3]. The JRD based segmentation had an average CE of 65% versus 50%
for the FCM-SW. The error bars represent one standard deviation.
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3.4.3 Clinical PET/CT Evaluation: MAASTRO Database

Figure 3-12 shows the percentage error of the maximum GTV diameter estima-
tion for the JRD-based active contour when using PET, CT and PET-CT together.
The error is shown for each patient and shows a general trend of having the highest
error when using CT alone and the lowest when using both modalities in conjunction.
The correlation between maximal diameter estimate by the SBR method published
by Baardwijk et al. in 2007 [89] showed an R? value of 0.82. The same comparison
using the results from the JRD based method using the PET image alone is shown
in Figure 3-13 and using the PET-CT together in Figure 3-14. The estimated
maximum diameter by the JRD method shows a higher correlation with the macro-
scopically determined diameter than the SBR technique when using only PET. This
correlation is further improved when using the PET and CT information together
which is not surprising considering the results shown in figure 3-12.
3.5 Discussion

Hybrid imaging is becoming increasingly prevalent within radiotherapy clinics
with the commercial introduction of PET/CT scanners over 15 years ago and more
recently with the advent of PET/MRI scanners. Consequently, radiation oncolo-
gists are required to consider multiple pieces of visual information when determining
treatment targets yet the large majority of commercially available automated and
semi-automated segmentation algorithms do not consider more than one modality
at a time. Presented in this work is a novel multimodality segmentation algorithm

based on the level set active contour method that relies on maximizing the Jensen
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Figure 3-12: The estimation error for the JRD based segmentation method of the
GTYV compared to the macroscopically determined maximum diameter. The average
error was 63%, 19.5% and 14.8% for the segmentations using CT only, PET only
and PET/CT. Particularly, high errors for cases 4 and 21 were seen when using CT
alone due to the small size of the lesions and their proximity to the chest wall causing
contour leakage.

Rényi divergence between the inside and outside domain of the contour. The advan-
tage of using this divergence measure is two-fold. The first is that when compared to
mutual information, the JRD offers an improved robustness to sample variability and
hence image noise. This is demonstrated using the phantom scans where not only is
the difference in the energy space seen between the two measures, but the effect that
this has on the performance for both PET and CT images is demonstrated in figures
3-8 and 3-9. The second advantage is that changing the alpha value can alter the
energy space of the function and thus its tolerance to noise and the sensitivity of the
final solution to subtle changes in intensity distribution.

The algorithm was tested using clinical single and multiple image modalities

when performing segmentations. Considering the improved noise tolerance of the
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Figure 3-13: The correlation of the JRD estimated maximum diameters versus the
macroscopically determined maximum GTV diameters using only the PET image.
The solid line shows the linear fit to the data while the dotted line represents the
ideal 1 to 1 linear relationship. The JRD based method shows a higher correlation
compared to the SBR technique with an R? value of 0.85 versus 0.82.
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Figure 3-14: The correlation of the JRD estimated maximum diameters versus the
macroscopically determined maximum GTV diameters using both the PET and CT.

The incorporation of both modalities shows an improved correlation versus using
PET alone.
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Figure 3-15: A comparison of the JRD method applied to the Louvain (a and b)
and MAASTRO (c and d) datasets with their respective references. In a and b, the
JRD method is shown in blue compared to the macroscopically determined contour
in green. For ¢ and d, the JRD method using the CT only is drawn in magenta,
using PET only in green and using combined PET and CT together in blue. It is
compared to the maximum diameter shown with the yellow arrow.
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JRD and the fact that PET is a modality presenting with a large degree of inherent
noise, it was appropriate to compare the segmentation method using PET alone
versus other PET segmentation methods. This was done using the results from
Zaidi et al. [3] that used data from the Louvain database. The JRD based method
did not perform as well as the FCM-SW in regards to both average classification
error and average concordance index (figures 3-10 and 3-11) however this difference
was not found to be statistically significant (p = 0.52 for CI and p = 0.16 for CE).
It should also be noted that the FCM-SW algorithm utilizes both an anisotropic
diffusion filter as well as the & trous wavelet transform as additional pre-processing
steps whereas the results for the JRD method as implemented incorporated only the
PET intensity values. It may be possible to improve the JRD segmentation results
by using the filters adopted by the the FCM-SW algorithm since the JRD method
can incorporate multiple inputs.

The MAASTRO data shows that the JRD method can estimate maximum GTV
diameter with a better correlation to the macroscopically determined diameters than
using the SBR method which relies on fitting the most appropriate threshold to
the lesion volume. The segmentation results show that using the PET information
results in a higher accuracy than using the CT alone. This result has been observed
previously [106, 9] and can be qualitatively seen on the contours shown in figure 3—-15
(c and d), where the CT contours had little contrast to follow when the GTV was
connected to the mediastinum or chest wall. This led to leaking and overestimation
of the boundary which was the reason for the large errors seen for cases 4, 11 and

21 in the MAASTRO data shown in figure 3-12. By comparing the trends shown in
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figures 3-13 and 3-14 we see an increase in the adherence to a linear fit from the R-
square value but also closer 1:1 linear relationship between the estimated maximum
diameters using both PET and CT than with PET alone. This is seen from the
slope of the trend lines. The combination of both PET and CT provides the most
accurate segmentation, and the highest correlation to the reference, a result that
has been previously observed [106]. Results from a 2011 study using the FCM-SW
algorithm[95] to estimate maximum tumor diameter using the MAASTRO dataset
showed an R-square value of 0.942, much higher than using the JRD with either PET
or PET/CT. The R-squared value of the FCM-S algorithm evaluated in the same
study was only 0.81 emphasizing again the improvement made by including the &
trous wavelet transform.

The JRD is a convenient objective function in that it can also be applied to
the task of registration as investigated by a number of reports [109, 73, 117]. This
may facilitate future work involving the simultaneous segmentation and registration
of multimodality images using this metric in order to reduce computation time and
improve accuracy of both processes. Such an algorithm would have great application
towards IGART where previous plan contours provide a good approximation for
initialization.

3.6 Conclusions

This work has presented a novel multimodality segmentation algorithm using
the Jensen-Rényi divergence with a level set contour. Using phantom CBCT and
PET scans taken at various image quality levels, we demonstrate the improved noise

robustness of the proposed objective compared to a traditional information-theoretic
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similarity measure (mutual information). The solution to the level set differential
equation is presented along with clinical data validation using PET scans of 7 patients
from the Louvain database with pharyngolaryngeal squamous cell carcinoma and
22 PET/CT scans from patients with lung carcinoma taken from the MAASTRO
database. The JRD based approach has shown competitive performance compared to
existing methods without much added pre- and post-processing. More importantly,
the approach allows for easy application to simultaneous multimodality segmentation
as demonstrated in the phantom and clinical results.
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3.9 Appendix
The integrals of equation 3.11 can be simplified using the following property of

convolution theory regarding the integral of two Gaussian functions.

J gp(w; 0, A)gy(a;b, B)dx (3.21)
—[— 1 _3@-aA(za 1 —L(z—b) B~ (z—b
= [ e FE AT 0L e B ) gy

—1(a=b) (A+B)~(a—b)

= —1 (&
(2m)P/2|A+B|'/?

Where a and b are offsets, or other data points in the distribution if we are
referring to how we will apply this. A and B are the covariance matrices of their
respective Gaussian probability functions (G,). If one chooses an alpha value of 2,
this conveniently allows us to take advantage of this property, for example if we can

define
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P12:P21:

Jo P (J,Q0) Py (1,Q4) dJ =

o g‘lgfm Ky, (J — J(;)) x Ky, (J = J(z;))dJ] (3.22)
= nllng i 2(2@_’)/2 [y + @D2|71/2 X
exrp (_% (J<-Tz) - J(l’]))T [% + wQ] (J(.%‘Z) — J(l’j))>
and similarly
= nllnl D2 Ko (J(w) = () (3.23)

We can also define
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Pia (J,9) = [y P (J,Q) Ky (J(C) — J) dT

ny B (3.24)
= 15 (2m) P2 gy + o] P
=1

eap (=4 (J(@) = JO)" [+ ] (J(w) = J(C)))

and using these definitions we can rewrite equation 3.11 as

9p(x)/0C =

QUJ%(1512*1311)+2w1w2(P12*1512+1521*P21)+2w§(P22*1522) i 2w1(1511*P11) + 2w2(P22*1522)
(w%Pu-i-wzwg(P12+P21)+w§P22) P11 Psa

(3.25)
This simplification means the processing time of the algorithm increases as
O (pn®) where p is the number of input images and n is the number of samples
used to estimate P, and P,. This is opposed to an increase of O (n?) which allows
the consideration of a larger number of image features/modalities when segmenting.
In the general case that alpha is an integer greater than 2, the property of equation

3.22 can be applied recursively, for example in the case of the integral of the product

of n Gaussian functions

86



(115 ) Jo i, (7 = TG0

ki= =1

_ (ﬁ 2) poee 1 s X exp (_g’f@- — )" Di(d; — J(kai)))

i=1 gi=1 i |wz-|1/2) (i zp;l)
=1 =1

i+1 ! 2 ity
whereD; = | Y ' and d; = =——,
j=1 '

—_

(3.26)

where s is the total number of samples taken from inside and outside the segment

and k' is the k' sample of the " summation. To similarly reduce the number of

integrals let us define the following terms
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(3.27)
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Here the summations with a &” and k™ refer to summations of the sample sets

from inside and outside the segment. For completeness,
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P, and Py are equivalent to P, and ]531, under the condition that P, ny and
), are substituted for P, ny and €2_.

Considering these definitions, equation 3.11 can be rewritten as

OE(¢) 1 P11+f11+]522+F22+ o wP31—|—P1_ o wp2—p32
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CHAPTER 4
A 4D Biomechanical Lung Phantom for Joint
Segmentation/Registration Evaluation

This represents a print of ”D. Markel, I. Levesque, J. Larkin, P. Léger and I.
El Naga, A 4D Biomechanical Lung Phantom for Joint Segmentation/Registration
Evaluation, Accepted in Physics in Medicine and Biology (2016)”
4.1 Abstract

At present, there exist few openly available methods for evaluation of simulta-
neous segmentation and registration algorithms.These methods allow combination
of both techniques to track the tumor in complex settings such as adaptive radio-
therapy. We have produced a quality assurance platform for evaluating this specific
subset of algorithms using a preserved porcine lung in such that it is multi-modality
compatible: Positron Emission Tomography (PET), Computer Tomography (CT)
and Magnetic Resonance Imaging (MRI). A computer controlled respirator was con-
structed to pneumatically manipulate the lungs in order to replicate human breath-
ing traces. A registration ground truth was provided using an in-house bifurca-
tion tracking pipeline. Segmentation ground truth was provided by synthetic multi-
compartment lesions to simulate biologically active tumor, background tissue and a
necrotic core. The bifurcation tracking pipeline results were compared to digital de-
formations and used to evaluate three registration algorithms, Diffeomorphic demons,

Fast-Symmetric Forces Demons and MiMVista’s deformable registration tool. Three
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segmentation algorithms the Chan Vese level sets method, a Hybrid technique and
the Multi-Valued level sets algorithm. The respirator was able to replicate three
seperate breathing traces with a mean accuracy of 2-2.2%. Bifurcation tracking er-
ror was found to be sub-voxel when using human CT data for displacements up to
6.5 cm and approximately 1.5 voxel widths for displacements up to 3.5 cm for the
porcine lungs. For the Fast-Symmetric, Diffeomorphic and MiMvista registration
algorithms, mean geometric errors were found to be 0.430 + 0.001, 0.416 + 0.001
and 0.605 £ 0.002 voxels widths respectively using the vector field differences and 0.4
+ 0.2, 0.4 £+ 0.2 and 0.6 + 0.2 voxel widths using the bifurcation tracking pipeline.
The proposed phantom was found sufficient for accurate evaluation of registration
and segmentation algorithms. The use of automatically generated anatomical land-
marks proposed can eliminate the time and potential innacuracy of manual landmark
selection using expert observers.
4.2 Introduction

The introduction of hybrid PET/CT and more recently PET /MRI scanners [118§]
has provided physically registered multi-modal datasets for diagnostic purposes and
radiotherapy planning. This provides a large opportunity for multi-modal segmen-
tation algorithms to improve target definition accuracy particularly for cancerous
tumors where the shape, location, intensity distribution and texture is widely vari-
able [119]. For many centers that do not have access to hybrid scanners or when
considering images from multiple fractions or gated scans taken during free breathing,
multi-modal segmentation accuracy relies heavily on the quality of the registration

process used to bring the datasets of images into alignment.
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Segmentation and registration, two common image processing algorithms used
often in the process of adaptive radiotherapy have increasingly been used in a simul-
taneous fashion [120, 121, 122, 123, 124, 125, 126]. For multi-modal segmentation
this improves the alignment of the input volumes while the additional boundary in-
formation can aid in the registration process. In many cases the registration is used
solely to aid in the segmentation process as with Atlas-based algorithms or contour
templates. Numerous benchmarks have been developed for evaluating each method
independently [127, 128, 129, 130, 131]. Kerdok et al. developed a silicone rub-
ber phantom called truthcube to evaluate soft tissue deformation using implanted
Teflon beads. Compared to a simulation using Finite Element Method (FEM) soft-
ware they found discrepancies on the order of 3.5 mm for displacements of 1.5 cm.
This was attributed to lack of refinement of the FEM model and a 2 mm estimated
uncertainty of the bead locations. Serban et al, developed a cylindrical phantom
comprised of natural sea sponges interlaced with nylon wires, lucite beads and round
dermasol tumors. The sponge is actuated by an industrial motor in order to simu-
late breathing phases. Ground truth uncertainty was dominated by the uncertainty
in manual selection of these landmarks, the 2.5 mm diameter of the lucite beads
and scan resolution (0.7x0.7x1.25 mm? at its highest). Liu et al. used foam inserts
within a custom made polymer shell and plastic 1x5 mm seeds as markers. Their
positional uncertainty was dominated by the slice thickness of their scan and esti-
mated at 1.7 mm. Additionally they used an NCAT virtual phantom for evaluation
using estimated deformation vectors from a series of patient breathing scans. Nu-

merical models and virtual phantoms such as NCAT [132], XCAT [133], VIP-man

97



[134], CNMAN [135] among many have been regarded as a pseudo gold standard
for registration benchmarking due to the fact that the final location of any point
in the phantom is accurately known. The short-comings of such phantoms lay in
the difficulty of recreating the complex features observed on clinical scans such as
anatomical details, texture, geometric and temporal deformation patterns as well as
image quality degradations such as artifacts and noise. As such the realism of such
phantoms with regard to these properties is difficult to determine [136].

Physical phantoms can offer additional geometric realism along with realistic
imaging characteristics at the cost of introducing some ground truth uncertainty.
Yang et al. utilized a preserved swine lung in order to improve anatomical realism
and allow MRI compatiblility by placing the pneumatic actuator outside the scanning
room [137]. In this case bifurcations of the lung are used as markers for evaluation
but still rely on proper selection. Simultaneous registration and segmentation and
the evaluation of both in the same setting remains a challenge and there is currently
no gold standard.

Several factors are addressed with the proposed phantom which attempts to
balance the trade-off of realism to ground truth knowledge. The goal of this work
is developing hardware and software tools to provide a well known ground truth for
evaluating both segmentation and registration in the same setting while maintaining
realism through the use of a set of preserved swine lungs and a custom made com-
puter controlled respirator that can precisely mimic real human breathing traces.

The phantom is compatible with multiple modalities including PET, CT and MRI.
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Tracking of bifurcations in the lung airways is used for evaluating registration accu-
racy along with synthetic lesions for evaluating segmentation accuracy.
4.3 Materials and Methods
4.3.1 Lung Tissue

An educational kit consisting of porcine lungs contained within a preservative
solution (74% water, 25% propylene glycol, 0.3% formaldehyde and traces of phenol)
was used to simulate a set of human lungs due to similarities in anatomy and capacity.
The swine lungs are advertised with a vital capacity of approximately 4.6 L. compared
to 3-5 L for humans [138]. The samples are meant to last 6 months but can last longer
with proper storage.
4.3.2 Computer Controlled Airflow System

Shown in figure 4-1 is the airflow system used to inflate the lungs. Air pressure
within the lungs is regulated by a set of bellows actuated by a 186 watt Baldor
industrial motor. An 8 meter long vinyl tube with a 1.27 cm diameter connects the
bellows to the lungs. A second 6.35 mm port is used to supply air from an aquarium
pump into the bellows to account for any leaks in the sample. Ideally, the port is
replaced with a plug in the case of a closed system. In order to attain constant
torque while varying the speed of the motor, a driver circuit was designed to provide
pulse width modulation of the driving voltage. This is controlled by a National
Instrument data acquisition module connected to a laptop running LabVIEW 2013
(32-bit) (National Instruments, Austin, TX). The direction of the motor is controlled
by changing its polarity with a relay. A 2500 point resolution optical encoder was

used to provide feedback to the data acquisition card. The control software relies on a
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Figure 4-1: The computer controlled airflow system model shown from the a)side,
b)top, c)front and d)photographed connected to the swine lungs. The main piston
has a 4 ¢cm range of motion and is held horizontal by a pair of pillow block bearings
attached to a mounting plate.
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proportional-integral-derivative (PID) controller, using the position of the breathing
trace every 40 ms as a new set point. PID controllers are feedback systems commonly

used in industrial automation. Their function is governed by Equation 4.1.

de(t)
dt

u(t) = Kpe(t) + K; /t e(T)dT + kq (4.1)

Where u(t) is the update to the controlled variable based on the error e(t) be-
tween the current variable value and set point. ¢ in this notation is the time and 7 is
a variable of integration the ranges from 0 to ¢. In this case the controlled variable is
the linear position of the respirator piston and the set point is the scaled breathing
trace. K, K; and K, and the proportional gain, integral time and derivative time.
The proportional gain drived the variable value towards the set point in order to
minimize the error between the two. Since the proportional term is linearly depen-
dant on the error, the correction to the controlled variable shrinks as it approaches
the set point, never quite reaching it. The integral term attempts to equalize the
time spent above and below the set point and works towards ensuring the controlled
variable reaches the set point instead of approaching it asymptotically. Often the
interplay between the first two terms can lead to unwanted behaviour such as ring-
ing about the set point. The derivative time, or third term, acts to smooth the
transition to the set point, reducing ringing. In practice, the relationships between
the three terms can be much more complex and optimization of the three variables
Kp,K; and K, can be very difficult. Thus the proportional gain, integral time and

derivative time were optimized using the Ziegler Nichols method [139] (K,=1.82,
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K;=0.11, K;=0.03). Reversal of the motor direction was limited to switching be-
tween the inhale and exhale phases of breathing. Changing the motor direction due
to an overshoot was prohibited in the control software in order to prevent the relay
from switching too quickly and burning out its contacts. In these cases, the motor
was turned off temporarily to allow the breathing trace to catch up with current
position of the motor.

4.3.3 Synthetic Targets

Figure 2 shows the segmentation targets constructed from natural sea sponges.
Each sponge was vacuum-sealed in order to reduce the presence of air bubbles and
increase their rigidity, preserving their shape during the scan and subsequent han-
dling. The synthetic targets consisted of two sealed sponges, one placed inside the
other with the inner sponge approximating a biologically active tumor region and
the outer, typical surrounding healthy tissue. Two synthetic lesions with this config-
uration were attached to the lungs within neoprene pouches while a third designed
with three compartments was also included. This design was meant to mimic a het-
erogenous tumor with a necrotic core. Figure 4-2 shows scans of the three synthetic
targets using CT, MRI and PET.

For each synthetic tumor, two medical injection ports (three for the heteroge-
nous tumor) were attached to allow injection of fluorodeoxyglucose ([18F] FDG)
radiotracer. In order to determine the compartment boundaries, a 65% iohexol CT
contrast agent (diluted to 323.5 mg/mL) mixed with 18-FDG radiotracer at a final
activity concentration of 60 kBq/ml was injected into the inner compartment. The

outer compartment was injected with a mixture of Gadovist gadolinium-based MRI
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Figure 4-2: Transverse views of the synthetic targets scanned with CT (a)-c)), MRI
(d)-f)) and PET (g)-i)). The targets 1-3 are organized from left to right. Target
1 consists of compartments 1.2, 13.9 and 20.2 cm?® in volume from the inside to
the outside. Target 2 is made up of compartments with volumes of 0.85 and 21.9
em?®. Likewise, target 3 has compartments of 10.8 and 13.9 cm? in volume. Maximal
diameters for each compartment are shown in white. Image scaling for each target
may not match.
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Figure 4-3: The compartment obfuscating procedure with a) the original image, b)
the image after the compartment has been replaced with NaN values, ¢) the image
following inpainting and smoothing and d) the original image smoothed using the
same filter. e)-h) show a range of contrast values by varying A in Equation 4.2 from
0.9 to 1.05 in 0.05 increments. These same values were used to evaluate the three
segmentation methods shown in Figure 4-9. A horizontal profile of the synthetic
tumor taken from e)-h) is shown below in i)-1).

contrast agent (diluted to 3.6 mg/ml) and 18-FDG at a final activity concentration
of 30 kBq/ml. Using the contrast provided by the iohexol and Gadovist contrast
agents, the boundaries of the active compartments were discerned by thresholding

the volumes using values of 376 HU, 500 HU for the CT and CBCT images respec-

tively. The MR images were thresholded using a window between 10-60% of the
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maximum signal in the neighbourhood of the synthetic tumors. Any errors resulting
from this were then corrected manually using the open source software 3D slicer.
The contrast agents were used as a means to easily determine the boundaries of
the compartments meant to mimic biologically active tumors. However, this contrast
would also have the effect of compromising the ability to compare the performance of
different segmentation algorithms since the boundary is easily discernable. To rem-
edy this, the intensity distribution of the active compartment was digitally altered
in order to reduce the contrast and obfuscate the compartment boundary according
to Equation 4.2. First an estimate of the background compartments was made using
a HU window of 924-1400 HU. The upper range of this threshold was purposefully
overestimated. To get a more precise estimate of the appropriate upper boundary
on the threshold range, the histogram of the background compartment is taken and
upper leading edge (defined as the first local minima past the peak) was used. This
new threshold range is then used to define the active compartment in such a way
that it includes any partial volume effects around the border. In painting is then
performed on this region using inverse distance weighting with a power value of 11.
A diffusion filter presented by Weickert et al. [140] was used to smooth the region
inside the compartment without blurring the borders significantly (# of Iterations
= 15,7 = 0.7, kernal size = 1, threshold = 0.7). This was also used on the original
image to produce two images A (for the smoothed original) and B for the smoothed
background image, to determine the ratio by which the original image must be mul-

tiplied to reduce the contrast. Smoothed versions are used to retain texture and
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noise information as much as possible when altering the original image according to

Equation 4.2.

ng:a@—x<mm—u@§> (4.2)

Where [ and I’ are the unaltered and altered images, = is the subset of voxels

within the synthetic target. A and B are the smoothed background and original
images. A is a parameter to control the contrast of the active compartment.
ONR = Hls— Fohg (4.3)
Obkg

The contrast-to-noise ratio (CNR) is calculated from Equation 4.3 where fif,, fipkg
and oy, are the active compartment mean, background compartment mean and
background standard deviation respectively. A range of CNR values are shown in
Figure 4-3.
4.3.4 Bifurcation Tracking Pipeline

In order to discern a ground truth for registration evaluation, bifurcations of the
bronchi were used as fiducial points of comparison between scans. The bifurcation
tracking pipeline, outlined in Figure 4-4 begins with a segmentation of the lung
bronchi by using a region growing algorithm in the space surrounding the bronchi
and inverting this binary image. A 3D skeletonization procedure is performed on
the segmented bronchi to reduce them to their medial axis based on the work by
Lee and Kashyap [141]. The bifurcations of this skeleton are detected in a fashion
similar to that used by Nallaperumal et al. [142] extended to the 3-dimensional case

using neighbourhood templates. In order to reduce the search neighbourhood, only
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Figure 4-4: The bifurcation tracking pipeline. This consisted of an initial region
growing of the air in the lungs, followed by morphological hole filling and subtraction
from the original mask to segment the lung airways. A 3D skeletonization proce-
dure determines the medial axis of the airways which are then compared against a
bank of automatically generated 3D templates to detect bifurcations. The detected
bifurcations from two lung volumes are then matched using the estimated diameter
of the bronchi and an initial rigid alignment using cluster centers.

333 voxel neighborhoods in the skeleton mask with exactly 4 voxels belonging to the
skeleton are compared to a lookup table of neighbourhoods that would represent a
bifurcation in the medial axis.

The neighbourhoods of the lookup table were automatically generated by itera-
tively considering every voxel in a 3x3x3 neighbourhood and assigning a value of 1 to
4 of them. Here the center is always given a value of 1. Every other voxel is consid-
ered for the second voxel and the third and fourth are likewise iterively selected from
the remaining set under the condition that they cannot be directly touching another

voxel with a value of 1. In total 9480 templates were automatically generated.
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After detection of the bifurcation points from two volumes they are matched
by first estimating a rigid transformation. A fuzzy clustering algorithm is used to
determine the cluster centers of the bifurcation points of each lung. The difference
in centers between the two data sets is used to initialize the transformation. A
second non-rigid transformation using the thin-plate-spline robust point matching
(TPS RPM) algorithm published by Yang [41] in 2011 was used to match landmarks
between both point clouds. The algorithm was chosen for its ability to match point
clouds where some of the points don’t have a corresponding match in the second
cloud by enforcing a smooth transformation. The energy function of the registration
included the euclidean distance between point pairs and the difference in bronchial
radii, summarized in Equation 4.4. This was estimated from the segmentation mask
of the bronchi. First principle component analysis was performed on a 21x21x21 voxel
neighbourhood surrounding any detected bifurcation. The first eigenvector estimates
the medial axis of the bronchi and the normal of the plane that perpendicularly cuts
through the bronchi. The radius can be estimated by assuming a circular cross
section and inverting the formula for the area of a circle. The formula for the energy

function was given by simple addition

E(i, ) = |7 — @[ + B ri — 4 (4.4)

Where z; and 2 are the euclidean coordinates of bifurcation points ¢ and j and
r; and r; are the radii of their respective bronchi. 3 was determined through trial
and error to be 40 by maximizing the true positive rate of the point pair candidates.

Finally a GUI, shown in Figure 4-5, was written to show the candidate point pairs
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Figure 4-5: Graphical User Interface written for quality control of matched bifurca-
tion points. Red croses show the point pair selected by the iterative point matching
algorithm. Green crosses represent detected bifurcations in each volume. The GUI
shows a CT scan of the lungs from three planes, transverse, coronal and sagittal
(ordered left to right).
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to the user for a final confirmation, rejection or potential reselection of the matching
point. In the event of a mismatch, alternative bifurcations can be selected if they
are found to be the appropriate matching landmark. The pipeline accuracy was
evaluated by applying a known virtual deformation to a CT scan of a patient and
the porcine lung itself. The detected bifurcation locations were compared to the
known final locations.
4.3.5 Scanning Parameters

PET and CT scans were acquired using a GE Discovery 690 hybrid PET/CT
scanner at the PERFORM institute, Concordia University. Four-dimensional (3D+t)
PET scans of the lungs were taken during free-breathing and discretized into 6
bins/phases. The scans were acquired over the course of an hour and reconstructed
with the VUE point HD (VPHD) algorithm using several time periods (first 25 s, 20
min, 30 min and 60 min) in order to vary the resulting quality of the scan. CT images
were taken in CINE mode using a voltage of 140 kVp and currents of 10, 55 and 140
mA. The position of the lungs was tracked using the Real-time Position Management
(RPM) System which relied on a reflective marker placed on top of the lungs. This
was imaged using an infrared illumator and CCD camera in the scan room. The 6
bins were centered at 8%,25%,42%,58%,75% and 92% of the breathing cycle. MRI
scans were acquired at the Cedars Cancer Center using a Philips (Amsterdam, The
Netherlands) 3.0 T Ingenia. The lungs were scanned using a T1-weighted fast field
echo (FFE) sequence (FA = 90deg, TE = 9 ms, TR = 520 ms) and with water fat
shift coefficients of 0.45 and 0.99. Due to the lack of commercial sequences for 4D

MRI imaging of the lungs, the respirator was used to hold the lungs at 6 specific
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breathing phases for the duration of a series of 3D scans in order to match the data
sets acquired using the 4D PET/CT scans. The image volumes were reconstructed
with resolutions of 3.64x3.64x3.27 mm?, 1.7x1.7x5 mm? and 0.61x0.61x3 mm? for
the PET, CT and MRI scans, respectively.

CBCT scans were performed using the on-board imager of a Varian Truebeam
linear accelerator (Varian Medical Systems, Palo Alto, CA) using a potential of 80
kVp and a current of 50 mAs with a spatial resolution of 0.51x0.51x2 mm?.

4.3.6 Human Breathing Reproduction

Three female patients undergoing radiotherapy treatment, all presenting with
carcinoma in either the small intestines or the liver, were chosen to attain a sam-
ple of varied human breathing patterns. Breathing traces were measured using a
Philips (Amsterdam, The Netherlands) respiratory bellows belt. The three profiles
were anonymized and imported to the control software for replication. This was
accomplished by setting the breathing trace as a set point that changed every 40
ms. Reserve and tidal volume of the swine lungs are set by the user, determining the
offset and magnitude of the rescaled breathing trace. Profiles were also smoothed
using a box filter with a 100 ms width in order to eliminate noise in the traces.

4.4 Comparable Methods

As a proof of concept three level-sets segmentation methods were used to seg-
ment the radiologically active portions of the artificial lesions on all four modalities
in which images were acquired. The Chan-Vese model [143], a Hybrid techique pub-
lished by Zhang et al. [144] and the multi-valued level set method [101] were chosen

as example algorithms. The Chan Vese method is a level sets implementation that
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attempts to optimize the Equation 4.5.

F(ci,c2,0) = H/

[ 0ta,) Vol dody + v / H((a, y))dady +

M / oz, y) — a2 H(o(x, y))dady +
Omega

X / fuo(2,) — o (1 — H(p(x,9)))dzdy  (45)

The level set implementation relies on an implicit mapping through the function
é(z,y) (in 2D) where the contour is defined at the zero-level crossing (¢(z,y) = 0).
The first regularizes the roundness of the segmentation contour while the second term
is a retarding velocity parameter which works to limit the expansion or contraction
of the contour. The third and fourth term are the expansion and contraction forces
driving the evolution of the contour, controlled by the weighting parameters A; and
Ao. In our implimentation A; and Ay are equal to the image weight (IW) whereas v
is set to zero and u set to 1. H is the regularized Heaviside function, that ensures
that changes to the level set function occur in the proximity of the contour.

The Second method being evaluated is a hybrid technique built off the Chan-

Vese formulation that proposes the energy function shown in Equation 4.6.

Fo) = a [ (1= wH@@+ 5 [ g]VHE) e (4.6

In Equation 4.6 g is a boundary feature map which is a function of the gradient
of the image intensity /. The variable y in this context takes on the role of the lower
bound of the gray-level of the intended target. As the algorithm is built to enclose

a region with higher values than p this acts as a threshold value. The values o and
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B represent the propogation weight (PW) and geodesic active contour (GAC) terms
respectively. The Multi-Valued Level Set Method was designed to incorporate co-
registered multi-modality information with weights used to enforce the importance

of each modality in the energy function summarized in Equation 4.7.
1
info(C,ct,c) oc plength(C) + — Z )\j/ |1; — CHQ H(¢)dx +
N < Q
- -2 1 +_ )2
A7 X /Q I — ¢ |” (1 — H(¢))dw + Nzij%-(ci — ) (4.7)

Here C represents the contour, ¢ and ¢ represent the regions outside and inside the

contour. Tmage i is sampled N times and A}

, A\;” and ~; represent the weights outside
and inside the contour and the spring force for image 7. Similar the Chan-Vese and
Hybrid formulism, i controls the roundess, or smoothness of the contour.

All three techniques were identically intialized using a sphere with a radius of
4 voxels and allowed to evolve until a convergence criteria was met. In this case we
chose a termination criteria based on the change in volume dropping below 1%. The
smooth weight ;1 for the Chan Vese method was set to 1 and not varied since the
results were found to be relatively insensitive to it.
4.5 Results
4.5.1 Bifurcation Tracking Evaluation

In order to evaluate the bifurcation tracking results, a digital deformation was
applied to a CT scan of the porcine lungs in addition to a human CT dataset acquired
at the MAASTRO clinic (Maastricht, The Netherlands) of a patient with stage-I
non-small cell lung carcinoma. The scan was acquired using a Biograph SOMATOM

Sensation 16 scanner (Siemens, Erlangen Germany). The patient was scanned with
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a spiral C'T with contrast at a resolution of 0.98x0.98x5 mm. This data set was
previously acquired in a study by Baardwijk et al.[89]. The deformations were defined

globally using Equations 4.8, 4.9 and 4.10.

. (X —origin,) X
=—A L 4.
dx sin < dim. 2 (4.8)
. (Y — om'gmy) X T
dy = —Asin ( dimy 2 > (4.9)

dz = —Acos (\/[(X — origin,) /dim,]* + [(Y = origin,) ﬁ/dimy]Q) (4.10)

Where X,Y and Z are the cartesian coordinates of the voxels in each volume,
origin; represents the coordinates of the center of the volume, dim; represents the
dimensions of the volume and A is a free parameter representing amplitude. The
amplitude was varied from 16 to 83 mm in order to discern the relationship to tracking
error which is shown in Figure 4-6. Bifurcation points were detected and matched in
both the deformed and undeformed volumes and compared to the known deformed
coordinates.

4.5.2 Breathing Reproducibility

After optimizing the PID controller coefficients, the breathing traces were com-
pared to the optical encoder feedback for the length of the profiles. A visual com-
parison is shown in Figure 4-7 for the three chosen profiles. Table 4-1 summarizes

the errors of the traces compared to the feedback from the optical encoder.
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Figure 4-6: Bifurcation tracking error as a function of deformation magnitude for

human and phantom lungs

Table 4-1: Summary of the reproduction error for the three profiles.

Profile # Mean Error (%) Standard Deviation (%)

1 2.2 2.1
2 2.0 1.5
3 2.2 1.6
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Figure 4-7: The three profiles tested using the computer controlled respirator. The
measured breathing trace using the respiratory bellows belt is shown in blue with
the feedback from the optical encoder showing the piston position is plotted in red.

116



Modality Target Chan Vese-IW Hybrid-PW Hybrid-GAC MVLS-A; 23

CT 1 Tod 1.4203 Te7 [4.4:4,4.2,2]

2 le-4 1.2e-4 le-7 [4,4;4,4;3.3]

3 le-4 5.4e-4 le-7 [4,4:4,4:1,1]
CBCT 1 4.66-5 de-4 0.02 10,10:10,10;3,3]

2 4.66-5 le-4 0.02 10,10;10,10;2,2]

3 4.66-5 le-d 0.02 [10,10;10,10;2,2]
MRI 1 12 -le-5 le-6 [60,60;60,60;0.5,0.5]

2 24 1e-5 1e-6 [6,6:6,6:0.5,0.5]

3 9 “le-5 le-6 [4,4:4,4;0.5,0.5]
PET 1 5e-7 “26-6 le-7 [4,4:4,4:1,1]

2 9%e-7 “26-6 le-7 [1.5,1.5:1.5,1.5:1,1]

3 2.50-7 266 le-7 3,3:3,3:1,1]

Table 4-2: Optimal parameters for segmenting the targets of the lung phantom. The
A12,3 array is shown such that A™ A~ are represented in the columns with ¢ shown
along the rows

4.5.3 Segmentation Evaluation

The parameters of each segmentation algorithm were optimized through brute
force evaluation of a large range until a maxima was determined for each target. This
was done in order to use the best possible results from each algorithm. The optimal
parameters are summarized in Table 4-2.

The resulting segmentation was compared to the target ground truths for each
modality. Figure 4-8 summarizes the results of the segmentation algorithms for each
of the four modalities.

The active compartment volumes were 13.87, 0.85 and 10.8 cm?®s for synthetic
lesions 1,2 and 3 respectively. The Cone-Beam CT images were altered using Equa-

tion 4.2 in order to evaluate the effect of contrast on the segmentation performance
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Figure 4-8: A summary of the segmentation results for the three algorithms (Chan-
Vese, Hybrid and MVLS) using three synthetic lesions for a) CBCT, b) CT, ¢) MRI
and d) PET.
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Figure 4-9: The Dice coefficient of the three segmentation methods evaluated using
the lungs for varying CNR values of the active compartments of synthetic lesion 1

of the three algorithms. For CBCT the MVLS algorithm has the highest consistent
Dice coefficient for each of the three targets. For the remaining modalities the re-
sults show a lower Dice coefficient for target 2, the smallest of the three, however the
Hybrid algorithm outperforms the other two methods with regard to this target with
the exception of when applied to CBCT. Figure 4-9 summarizes the results of the
three algorithms for varying CNR values where CNR is calculated using the form in
Equation 4.3

From Figure 4-9 we can see that while the MVLS is the most affected by loss

in target contrast, it still performs with the highest DSC when compared with the
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Figure 4-10: Error maps using the vector field differences of the original Demons
algorithm with b) The fast Symmetric Forces registration b)Diffeomorphic demons
and ¢)MiMVista’s deformable registration algorithm. The side bar represents the
error in voxel widths. The red crosses mark detected bifurcation points within the
current slice and adjoining 3 slices.

ground truth across all CNRs tested. At a CNR of 1.2 it performs almost equivalently
with the Hybrid technique.
4.5.4 Registration Evaluation

Three registration algorithms were chosen for evaluation using the swine lung,
these include the fast-symmetric forces Demons[145], Diffeomorphic demons[145] and

MiMVista’s deformable registration engine[146].
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Method Vector Field TRE | Bifurcation Equivalent Vec-

(Voxels[mml]) (Voxels[mml])

(Voxels[mm]) Tracking TRE | tor Field TRE

Fast Symmetric | 0.430[0.73]%0.001[0.003] | 0.4[0.7]%0.2[0.4] 0.5[1.0]+£0.1[0.2]
Forces
Diffeomorphic | 0.416[0.74]£0.001[0.003] | 0.4[0.6]20.2[0.4] | 0.4[0.7]£0.2[0.1]
MiMVista 0.605[1.07]40.002[0.004] | 0.6[0.8]£0.2[0.3] | 0.5[0.8]0.1[0.2]

Table 4-3: Registration error metrics for the three registration algorithms. 1) The
mean error comparing the vector field of the method to the reference vector field,
2)The maximum error of the vector field comparison, 3) The mean bifurcation land-
mark error and 4) the mean vector field error evaluated only at those landmark
coordinates. The uncertainties stated here are the 95% confidence intervals calcu-
lated using Equation 4.11.

The algorithms were evaluated using their vector field differences with the refer-
ence field (calculated with the regular Demons algorithm) as shown in Figure 4-10.
These results are summarized in Table 4-3 using three figures of merit. The first was
a voxel by voxel comparison with a seperate vector field calculated using the regular
demons registration algorithm included in 3D slicer. The warped reference image
using this vector field was used as the target image in the other three registration
procedures to account for any registration errors associated with the regular demons
results. Since information outside the lungs consists of little more than noise and is
of little interest, only the vectors within a mask of the lungs and the synthetic lesions
was used during the evaluation. The second figure of merit consists of the average
target registration error (TRE) of 35 tracked bifurcation points. Target registration
error is simply the euclidean distance between landmarks as defined by Equation

4.11.
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TRE(i) = \/(le — 2i2)? + (i1 — vi2)” + (201 — 22)° (4.11)

Where (2;1,vi121) and (2,9, ¥ 222) represent the euclidean coordinates for the ith
pair of matching landmarks. The third figure of merit is the average of the vector
field errors taken at the location of the tracked bifurcation points in order to observe
an potential bias in using anatomical landmarks to evaluate registration accuracy
since they are by definition areas of high information content. The 95% confidence
interval as discussed by Castillo et al. [147] is the distance representative of the

registration error distribution defined by Equation 4.12.

2s
d95%01 e — (412)

VN

Where s is the pooled standard deviation of the set of error measurements asso-
ciated with one algorithm (in this case we are only relying on our own measurements)
and N is the number of measurements taken. This is calculated for both the error
map and bifurcation tracking distributions.

4.6 Discussion

We have demonstrated the design, construction and application of a joint reg-
istration/segmentation evaluation phantom hardware and software tools using pre-
served porcine lung tissue, synthetic tumors and a bifurcation tracking pipeline.
The construction of a computer controlled respirator allows reproduction of human
breathing traces using the porcine lungs. The results of the bifurcation tracking eval-
uation show that the tracking algorithm is optimally used in human lungs where the

mean error is sub-voxel for displacements up to 6.5 cm. This analysis used digitally
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defined deformations in order to evaluate the tracing error with a high degree of pre-
cision however the drawback in using this approach is the potential loss of detail from
interpolation, meaning that the results included in this paper should be considered
upper limits on the error. The phantom was evaluated using known registration and
segmentation algorithms The comparison of the three registration algorithms shows
that the MiMVista algorithm demonstrated the highest average target registration
error in all three metrics used although this difference was only 0.2 mm. While
the comparison of multiple registration algorithms is a useful exercise, it has been
performed using larger numbers of methods and more rigorously than presented here
[147, 53, 148]. Our purpose of our comparison is to contrast our method with a
known ground truth for evaluation of the algorithms. We can see that by comparing
the bifurcation tracking results to the equivalent euclidean vector field differences in
Table 4-3 that the average values fall well within the other’s 95% confidence interval.
This suggests the bifurcation tracking algorithm is capable of measuring the same
mean error values then when the point correspondence is known explicitly for every
voxel. It is well known that registration error in regions of low image detail and in-
formation tend to be higher than the average registration error[149] which suggests
that using bifurcation points could contain some bias as they are often areas of high
detail. When comparing the mean vector field error to the equivalent bifurcation
point error we see the equivalent error is consistantly lower but not with any statis-
cal significance with p-values of 0.06,0.32,0.87 for the fast symmetric, diffeomorphic

and MiMVista algorithms respectively. The only differences worth remarking upon

123



are those for the results using MiMVistas’ algorithm. This may stem from the dif-
ferences in control point density where the demons algorithm used a dense control
point scheme (effectively 1.7x1.7x5 mm?), MiMVista relied on a sparser grid (3x3x5
mm?) in the transverse plane resulting in a coarser deformation. For these three
evaluations, we were able to discern the accuracy with narrow confidence intervals
of 0.18-0.39 mm using only 35 landmarks. Algorithms with higher error variabil-
ity would require larger point sets to accurately evaluate, which one can infer by
Equation 4.11 assuming we desire an equivalent confidence interval. The number of
landmarks available for comparison is determined by the performance of the tracking
algorithm. The main bottleneck in selecting more points is the size of the bronchi
being considered and the accuracy and sensitivity of the method used to segment the
airways. Our segmentation approach is relatively rudimentary and thus our future
efforts would be well spent in improving this aspect of the tracking pipline. Improved
segmentation of finer structures in the lung would not only provide a larger number
of bifurcations but reduce confusion with points not associated with the bronchial
tree which is currently only excluded through manual intervention with the accep-
tance GUI. We found that compromised quality of the swine lungs and lack of even
inflation led to false positives of bifurcations. This meant larger airways were relied
upon for biurcation tracking in the swine lungs, explaining the differences in perfor-
mance between human and swine point tracking. This is due to the fact that there
is higher uncertainty in determining the medial axis for larger airways. Considering
the differences in performance between the human and swine lungs, the use of lungs

from another species of similar size might solve this issue due to differences in the

124



morphology of the lung. Additional improvements to the point-to-point registration
and the GUI for checking the point pairs would reduce the time necessary to acquire
larger sets of data making the platform more feasible for use beyond research.

Segmentation evaluation showed significantly degraded accuracy with respect to
the smaller lesion for all modalities, a result that is consistent with previous studies
[150, 151]. The hybrid and Chan Vese segmention methods appear to have difficulty
segmenting the first lesion compared to the MVLS for the CBCT and CT modalities.
This may be explained by the hetergeneous configuration of the first lesion as it
was built with three compartments, one of which simulated a necrotic core. This
seems to have a presented a challenge as the algorithms tended to neglect the core,
segmenting the outer boundary of the active tumor region and even the background
in some cases instead. Using CBCT images of the phantom with digitally altered
contrast of the active tumor compartments we can see the effect on the performance
of three segmentation algorithms we tested. The effect is more drastic on the MVLS
algorithm, although this was simply due to the other two algorithms failing with
higher CNR values.

An obvious addition to the phantom would be the inclusion of a flexible out shell
for the lungs that resembled the appearance of a human torso as this would have
a significant effect on registration and segmentation performance. We acknowledge
that while the computer controlled respirator is a good step towards kinetic realism,
the relation between movement of the lung and volume is more complex than the
linear relationship that we have assumed here. The movement of the lungs is 3D

and influenced by the diaphram, intercostal muscles and interaction with the pleural
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cavity among other biomechanical factors. The system presented here inflates and
deflates freely and even with an outer shell can only be considered an approximation
to a clinical case.

Another observation is that the synthetic tumors would mimic clinical conditions
more closely if placed inside the lungs, a feat that was not attempted due to the risk
of compromising the preserved lungs. We further plan to use the phantom in the
future to assess motion prediction algorithms based on custom breathing traces.
4.7 Conclusions

The work presents the development of a multi-modal simultaneous segmentation
and registration platform utilizing a biomechanical lung phantom. The phantom
uses synthetic lesions constructed from vacuum sealed sea sponges and an in-house
bifurcation tracking pipeline for segmentation and registration evaluation. We found
using a PID controller that the airflow to the lungs could be controlled with 2.1%
mean error of the input breathing profile. Bifurcation tracking error was measured
to be sub-voxel for human lungs for displacements up to 6.5 cm and within the
95% confidence interval when evaluating registration error compared to using the
error of the full vector field. The phantom was used to evaluate three segmentation
algorithms (Chan Vese, A hybrid approach and the MVLS methods) on four separate
modalities (CBCT,CT,PET and MRI).
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CHAPTER 5
Simultaneous Registration/Segmentation using the Jensen Rényi
Divergence

This represents a print of "D. Markel and I. El Naqga, Simultaneous Registra-
tion/Segmentation using the Jensen Rényi Divergence, Submitted June to Medical
Physics (2016)”

5.1 Abstract

Registration and segmentation are two commonly used processes in radiother-
apy treatment planning which place a considerable burden on time and processing
resources. With respect to adaptive radiotherapy this can be prohibitive to the prac-
ticality of plan re-optimization. Presented is a simultaneous coupling of the two
methods, termed regmentation, using an information theoretic technique called the
Jensen Rényi divergence as an objective function. The Jensen Rényi covers a num-
ber of mathematical forms very similar to well known statistical similarity measures
such as the Kullback Leibler divergence or the Bhattacharyya coefficient depending
on the selection of a parameter . The coupled regmentation method relies on a
level sets approach along with a non-rigid deformable registration technique using
an adaptive meshing selection of control points for the segmentation and registration
procedures, respectively. An in-house built 4D biomechanical lung phantom with
synthetic lesions was used to evaluate this specific type of algorithm’s performance.

We investigate the optimal use of regmentation parameters within this work. An
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improvement in segmentation accuracy and registration accuracy within the local
region of the segmentation targets was found using a coupling coefficient of 0.55.
Values of a; = 0.7 and s = 0.5 were determined to be optimal for the registration
and segmentation tasks, respectively. Additionally, the regmentation algorithm was
also compared to a Lucas-Kinade optical flow and Demons registration algorithm
using a variety of signal-to-noise (SNR) values which were created using artificially
produced computed tomography (CT) noise. A reduction in target registration error
(TRE) of 4% between 36 and 6.8 dB was observed for the regmentation algorithm
compared to 24% and 30% for the optical flow and Demons algorithm. Our work has
shown improvement in registration and segmentation accuracy attained through the
coupling of the two methods and have demonstrated a robustness to noise compared
to alternative deformable registration algorithms.
5.2 Introduction

The practice of adaptive radiotherapy (ART) attempts to take into account
anatomical changes that occur during the course of fractionated radiotherapy. These
may include, but not limited to, tumor size and shape, weight gain or loss, the
filling or voiding of hollow organs such as the bladder or even movement during
the treatment itself. Many of the tools ART employs include use of resegmentation,
registration and re-optimization. In the last 20 years, partial implimentation of ART
practices into the clinic have been aided through the advancement of computing
power, in-room imaging devices and treatment planning techniques [80, 152, 153].
The practicality of ART is dependant upon the efficiency of the replanning process.

Automated and semi-automated segmentation and registration software has been
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demonstrated to significantly reduce replanning time and observer variability [154,
155, 156].

Regmentation is the process of simultaneously combining segmentation with
registration with the intent of improving the accuracy and efficiency of both processes
[157, 101]. With regards to adaptive radiotherapy (when the target is found within
the lung) and in particular when leveraging multimodal imaging for plan adjustment
several challenges are present.

e Proper re-segmentation of the target boundary in the presence of noise and
weak boundaries

e Registration of data sets with low image quality, particularly for MRI images
of the lung or using cone-beam CT.

e Segmentation of unregistered data from multiple modalities.

Many commercial applications incorporate an atlas to aid in segmentation of
OARs and treatment targets [154]. This technique requires the registration of an
atlas volume to the applied image to segment desired structures but often does so
sequentially. Several experimental methods have applied the two in a joint fashion
[120, 121, 122], however, the registration component only serves in the final produc-
tion of a contour. An integrated segmentation and registration framework was first
proposed by Bensal et al. [123] where a 2D portal image was rigidly registered to a
3D CT volume using an entropy based objective function. Yezzi in 2001 [124] using
a variational segmentation method along with a rigid registration of the level set
functions in order to couple the two processes. Since then several more advanced

joint algorithms have been published [125][126].
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Gooya et al. [122] used an estimation maximization algorithm to simultaneously
register and segment skull stripped MR images with a brain atlas. Xue et al. [125]
used a 4-D elastic deformable registration in step with a custom temporal clustering
algorithm to perform regmentation of 4-D CT images. Ayvaci et al.[126] combined
registration into the segmentation of CT images using a template combined with a
graph cuts method. A watershed filter was ued to simplify the graph-cuts segmen-
tation by only considering discrete homogenous regions.

The proposed algorithm derives from previous work using the Jensen Rényi di-
vergence as an optimization criteria for a level sets segmentation technique [158]. The
Jensen Rényi objective function showed an improved robustness to noise compared
to a similar technique using mutual information. The proposed implementation com-
bines registration with segmentation through the use of a coupling term that seeks
to optimize the energy function of the segmentation through movement of the con-
trol points, aligning the reference image in the proximity of the contour boundary.
Additionally the flexibility of this theoretical framework allows the inclusion of any
number of volumes and thus can be used to perform temporal multimodal joint
registration /segmention.

5.3 DMaterials and Methods
5.3.1 Theoretical Background
The Jensen Rényi Divergence
Let us define a set of samples from either outside or inside a contour by z;,i =

1,2, ...n where n is the sample size and i is the sample index. Using these samples to
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define the probabilistic intensity distributions inside and outside, the JR divergence

criterion is defined by the following conditional expectation:

BO) = — Q@A@uuﬂ@ﬁmmuymmmfm—

l—«

1m%4mu@ﬁww—m@/

§R(PQ(J(x),Q))a dx) (5.1)

where wq,wy are the weighting parameters for the probability distribution func-
tions P, and P,. P, and P, in this context are defined by the intensity distributions
inside and outside the evolving level set, respectively. The symbol R covers the do-
main of possible intensity values. For our implementation, volumes were discretized
to 55 levels in order to reduce processing requirements. A higher number of levels
was found to be too memory intensive for the hardware the algorithm was run on,
which included 3GB of GPU ram on an nVidia GeForce GTX 560M. The geomet-
ric space §2 varies depending on the task. For segmentation €)_ and €2, define the
sample space inside and outside the contour boundary respectively. For registration
Q) defines the volumes enclosed within the tetrahedra connected to the control point
in question. The curvature of the energy function is determined by the choice of pa-
rameter o which determines the weighting of infrequently versus frequently occuring
intensity values. This has been shown to be an effective method for dealing with noise

where the noise contributes to values outside the expected distribution [73]. When

a is equal to 0.5, the divergence is proportional to the log of the Bhattacharyya
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coefficient. When « is chosen to be 1 the measure becomes the Jensen-Shannon di-
vergence, which is equivalent to mutual information when the weighting parameters
are chosen equal to P, and Ps.

The probability distributions are defined using Gaussian kernels.

PUI@),0) = = 3" Ko (@) = J(w) (5.2)
R (2) = (2m) ol eap (5 ()7 07 ) (5.3

Here n defines the number of samples, z the input vector and p represents the di-
mensionality of the inputs for the probability density. For example when performing
registration the dimensionality p is 2 since the inputs are defined by the reference and
target image. Additionally, Ky is the Gaussian kernal used for the Parzen window
estimation of the probability density. Here ¢ represents the covariance matrix of the
feature vector J. This can be calculated be directly from the vector J, however this
makes the assumption that the data is best represented by two unimodal distribu-
tions. Since we want to make no assumptions about the shape of the distributions,
every covariance matrix was set as a p X p matrix with every diagonal element set to
8.

A flow chart is shown in Figure 5-1 outlining the steps of the overall algorithm.

Segmentation Using Level Sets
The application of the Jensen Rényi divergence as an energy function for use in

level sets segmentation and non-rigid deformable registration is outlined here. Both
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Figure 5-1: An outline of the algorithm highlighting the adaptive mesh generation
using a 3D Floyd-Steinberg dithering filter and the iso2mesh package for mesh cre-
ation. The level set segmentation function is updated by calculating the gradient
of the JR divergence with respect to raising or lowering the level set function. The
iterative update to the deformation vectors is calculated from the regular registration
gradient and a coupling term which applies deformation vectors in order to better
align the image in the local region surrounding the segmentation target.
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processes are optimized using a gradient descent technique. This is outlined for
calculating the update to a level set function for segmentation, the position of the
registration control points and similarly the control points that belong to elements
that overlap with the contour when calculating the coupling term. The level set
function is an implicit contour representation that use a scalar function, ¢(x,y, 2)
overlayed on the image space where the contour is defined by the zero crossing
(¢p(z,y,2) = 0). As defined in our previous work [158] the energy function is of the

form in Equation 5.4.

E(9) = / (JRD(6(2)) + u|VH(6(x))] — v) da (5.4)

Where JRD(¢) is the Jensen Rényi divergence, v is a scalar velocity term, dz is a
euclidean voxel coordinate represented by z, 2 is the set of sampled voxels in the
image, |VH(¢)| is the magnitude of the gradient of the Heaviside function (which
forces a smooth boundary) and p is a weighting factor controlling the roundness of
the contour. Growth and shrinkage of the contour is controlled through raising and
lower of the level set function and is inhibited by the velocity term v.

The level set function of the segmentation algorithm is evolved by the following

derivation

OE(J(z),0) 1 Jpa (P waPy)* " (i 52 + w, %) do
oC l—« f%R (w1P1+w2P2)a dz

I an‘_l%dx W s aPQO‘_l%d:v
Jp Pda i Jp Psda

%1
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Where P, and P, is a simplified notation of P, (J(x),Q2_) and Pa(J(x),2). The

partial derivatives of the probability densities are

0P, 1
0P, 1

where C refers to voxel samples in the local region around the edge of the
contour.
5.3.2 Adaptive Meshing

In order to reduce the number of control points needed to register two images,
an adaptive meshing approach was implemented in order to more efficiently place
control points in areas of high information content (such as high contrast borders)
while reducing the control point density in homogenous regions. This is accomplished
through the use of the Floyd-Steinberg dithering filter [159]. Dithering is a technique
originally developed for newsprint in order to convey gray scale when the only options
available for printed were a binary ability to place ink or leave the page blank.
By regulating the density of dots, shades of gray can be conveyed to the human
eye at a larger scale. A dithering filter is a method of transforming a grayscale
image into a binary one without the loss of conveyed shade as shown in Figure 5-2.
Our implementation begins by determining a mask that encompasses the object of
interest, in this case the lungs through simple thresholding. The iso2mesh package
developed by Qiangian Fang [160] was used to convert the binary mask into an outer

shell mesh for the lungs. Due to the fact that the iso2mesh package deals exclusively
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Figure 5-2: Adaptive meshing pipeline beginning with uing the eigenvalue of the
Hessian matrix to exemplify image features. The Floyd-Steinberg dithering filter is

used to determine the locaton of points which after randomly selecting can be used
to produce a 3D mesh.
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with presegmented image volumes, the Floyd Steinberg dithering filter was used to
extract control point locations. The input to the filter was the first eigenvalue of the
Hessian matrix derived for each voxel in the image. To control the total number of
control points, the control points generated from the dithering filter were selected
using a randomized permutation and checked to ensure that they fell outside of
a user-defined radius of any other previously chosen control points. This simple
method regulated the size of the final tetrahedra created in the mesh. These chosen
control points were then added to the initial mesh shell using the mesh refinement
tool included in iso2mesh.

Registration

The overall energy criteria for the registration process is presented as a com-
bination of the registration and coupling term. The coupling term is zero for most
control points unless they are part of an element overlapping with the contour. The

control point positions are defined by [p,, py, p-|-

137



+ CaJRcoup (pwupyapz>

d Sz T y Mz 5.8
o, o, T+ Si Pz, Py, p2)  (5.8)

Ip; :/ 0J Rreg (Po, Py, P=)
ot Jg

In this formulation 7 refers to any one of the dimensions z,y or z (in 3D) while
the regularization term is represented by S; to ensure a smooth vector field and
t is the time step. The function S; in this implementation represents a Gaussian
smoothing function using Equation 5.9, where d; is the distance between the current

control point (p,,py, p.) and an adjacent control point indexed by ¢.

n 1 12
1 V271 €XP — 3,2
S(paspy0:) = 5 Y i - (5.9)
; i Zj r\/127r exXp — QTJZ

In this context r represents a radius parameter set by the user which scales the
distance of influence for each of the control points. The variable n represents the
collection of control points connected to [ps, py, p-| through the mesh structure.

The registration force is calculated from Equation 5.10 where P; represents the
probability of an intensity value belonging to the distribution of the target image and
P, the reference image. Since moving the control points only deforms the reference

image, finding the gradient requires taking the derivative with respect to Ps.

&]Rreg e f?R (w1P1 (J({L‘), Q) + wo Py ( ( ) Q))a 1 8132((](1)79)dm

ot l—a f%(uhpl(a]( ), Q) +wo Py (J(x),82))* d
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Applying the chain rule, the derivative of P, is calculated using the Guassian

kernel from Equation 5.2 to produce Equation 5.11.

OPTD D) _ 5 (o)t ol (@) — Tz w7

T, €A

<%> e (‘% (J() = J (@) 07 (J(2) = J(az»)) (5.11)

Where (J(z),) 0t is calculated from Equations 5.23, 5.24, 5.25 and 5.25. For the
coupled metric, the inputs are multi-dimensional (from each image) and thus for the

simplest case of two images, it is defined by

8J(((;;:, Q) (8ua(fl), avgfl)) (5.12)
Further derivations regarding the gradient terms including the coupled gradient
definition are presented in the appendix.
The mapping function is outlined in a paper by Wang et al. [161] which uses
any mesh comprised of triangular elements. The 3D extension, using tetrahedrons,

is outlined in the appendix (see Equation 5.29. The forward mapping function can

be represented in the affine form

a1 + ass + ast
whw)=| (5.13)
b1+b28+b3t
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where the coefficients are calculated from the control point coordinates of the

element vertices ([x1,y1],[x2,y2] and [x3,y3]) in the reference space.

a; - _ T3

as | = | 21 — 23 (5.14)
as To — T3

by Y3

by | = | y1 —ys (5.15)
bs ] | Y2~ Us

The Jacobian of this mapping function is

Am = a2b3 — CL3b2 = T1Y2 + T2Ys + T3Y1 — Y1T2 — Y23 — Y3y (516)

5.3.3 4D Phantom Based Evaluation

A 4D biomechanical phantom (shown in Figure 5-3) was produced in house in
order to provide a dataset with a well known yet realistic ground truth. A Bioquest
preserved swine lung was used as the tissue phantom due to its similarity to human
lungs and MR compatibility. The ground truth for segmentation is provided by a
dual-compartment vacuum sealed natural sea sponge. Each compartment is accessi-
ble through rubber tubing attached to a Microclave connector (ICU Medical Inc, San
Clemente, CA). Figure 54 shows an example of the synthetic tumor compartments.
The inner compartment acts as the target with the surrounding outer compartment

as the background.
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Figure 5-3: Photo of the computer controlled respirator connected to the preserved
swine lungs. A 186 watt motor is used to manipulate the rubber bellows at the end,
inflating and deflating the lungs.
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Figure 5-4: Photo of the synthetic tumor consisting of multiple vacuum sealed com-
partments.

The registration ground truth is provided by the bifurcations of the bronchi of
the lungs which act as anatomical landmarks for comparison. A bifurcation tracking
pipeline was created to automatically detect and match congruent bifurcations be-
tween two datasets. The pipeline first segments the bronchial tree of the lungs using
region growing with the seed planted in the airway of the bronchi. Following this a
3D skeletonization procedure is used to reduce this binary image to a 1 voxel thick
medial axis that runs through the center of the bronchi as shown in Figure 5-5.

The skeleton is used to determine where bifurcations occur by using a 3D ex-
tension of the rotationally invariant masks used by Bhuiyan et al. [162]. A library of
3264 3x3x3 voxel neighbourhood templates of possible patterns was used to detect
bifurcations in the skeleton. The templates were compared to 3x3x3 voxel neighbour-

hoods in the binary mask of the skeleton that contained exactly 4 voxels belonging
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Figure 5-5: The bifurcation pipeline used to provide a ground truth for registration
evaluation.
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to the skeleton. Once bifurcations are detected in the target and reference images,
they’re matched by first determining an appropriate rigid transormation. The trans-
formation is estimated using fuzzy clustering to determine cluster centers of the
bifurcation point clouds of each lung in both images. After rigidly translating the
reference point cloud, a modified version of the thin plate spline robust point match-
ing algorithm[163] written by Jinzhong Yang in 2011 [41], was used to match point
pairs. The algorithm uses a non-rigid transformation to match point clouds and
allows for an unequal number of points in each set. A user interface was developed
to present the results to the user as a final verification of the candidate point pairs,
allowing the user to accept, reject or re-match them.

The lungs were controlled pneumatically using a computer controlled in-house
respirator with the ability to provide highly custom breathing profiles. The breath-
ing profiles themselves were traced from patient breathing data taken during CT
simulation using a pneumatic belt (Philips Medical Systems, Cleveland, OH, USA).
The respirator is connected to the lungs via a 7.6 m long PVC tube which runs into
the scan room.

5.3.4 Noise Simulation

Noise was artificially added to CT images of the lung using a simplified tech-
nique similar to the technique published by Massoumzadeh et al. [164] involving the
following steps.

e Export data from CT scanner
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e Convert Hounsfield units to units of linear attenuation coefficient under the
assumption of a monenergetic photon source matching the average energy of
the CT energy spectrum.

e Produce sinograms of the volume using the radon transform.

e Convert the sinograms units to those linearly scaled to flux.

e Additional noise is added to the sinogram by generation of Poisson distributed
noise with a mean value equivalent to the flux values contained within the
sinogram. An multiplicative amplitude coefficient is added here to the mean
value in order to manually scale the final noise variance.

e Using the new noisier sinogram, convert back to units of integrated linear atten-
uation coefficients and reconstruct the images using inverse radon transforms
and a Ram-Lak filter.

e Convert back to Hounsfield Units.

The listed approach ignores a number of factors such as beam current, colli-
mation area and the detector noise variance due to the presence of a bowtie filter.
Since our goal was to observe the effects of lower SNR CT scans on algorithm perfor-
mance we deemed the simplified method sufficient. The resulting images are shown
in Figure 5-6.

5.3.5 Sensitivity Analysis

The dependency of registration and segmentation accuracy on three key param-

eters was investigated in this work. The coupling parameter ¢, the o term within

Equation 5.1 and the contrast and noise characterized by the signal to noise ratio.
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Figure 5-6: Examples of the addition of artificial noise to the CT volumes for varying
SNR values.

Alpha Dependency

In our previous work [158] we determined that the most appropriate « value
is highly modality dependant and thus appropriate values were discerned for the
modality combinations tested. A similar tuning had to be performed here, the results
of which are shown in Figure 5-7.

Figure 5-7 was collected with the assumption that the chosen « used for the
registration term of Equation 5.8 was equal to that used during the segmentation
phase. Preliminary results showed that segmentation accuracy was not optimized by
the same « value used during the registration step. As such two «a values were used
to mitigate this divergent relationship. Figure 5-8 shows the results of the parame-
ter space search using the Dice Similarity Coefficient (DSC) with the segmentation
ground truth as the figure of merit.

An as of 0.5 was found to optimize the segmentation results for targets 1 and 2
while the performance of target 3 increased slightly past 0.5 up to 0.65.

5.3.6 Coupling Dependency
Figure 5-10 demonstrates the relationship between target registration accuracy

(TRE) and the coupling parameter C' shown in Equaton 5.8. TRE was measured
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Figure 5-7: Tuning of the a parameter with regard to use with CT. Overall tar-
get registration was minimized with a value of 0.7. Error bars represent the 95%
confidence interval.
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Figure 5-8: Tuning of as the seperate o value applied solely to the segmentation
step of the regmentation process. Error bars represent the standard deviation across
10 trials for each data point.
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Figure 5-9: Example of the registration performed on the lungs at two adjacent
phases of breathing. Shown is a)the reference image, b) the deformed reference
image and c)the deformed image along with the registrations vectors in proximity to
that slice. Also shown is d) the difference image between the reference and target
images before registration and e) following registration.

from the mean difference in voxel units between the ground truth vector field and
that calculated by the JR regmentation algorithm.

Each data point shown in Figure 5—10 represents the mean of registrations per-
formed using the stated coupling parameter, an example of which is shown in Figure
5-9. Alpha was kept constant at 0.7, utilizing the information from Figure 5-7.

The TRE within the local region of the targets is plotted along with the overall
TRE for the entire lung. A clear minimum is seen for the local TRE around a C-value
of 0.55. The coupling term has an inverse relationship with the overall TRE for the
entire lung. The increase in alignment accuracy around the objects being segmented

comes at the cost of accuracy elsewhere in the image.
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Figure 5-10: Dependancy of target registration error (TRE) on the coupling pa-
rameter within the local region of the targets being segmented and for overall lung
region.
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Figure 5-11: Dependency of the DSC on the coupling term C for the three targets
within the biomechanical phantom.

The segmentation accuracy unfortunately does not show a distinct relationship
to the coupling term as shown in Figure 5-11.

A modest curve can be seen for target 2 which reaches a maximum at C' = 0.55,
which is in agreement with the results of Figure 5-10. The DSC of targets 1 and 3
remain relatively stable up until C' = 0.6 where they then begin to decline.

SNR Dependancy
As previous literature has reported upon the relationship between the Jensen

Rényi divergence and the signal to noise ratio [73] this was also evaluated using the
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Figure 5-12: Dependency of the JR regmentation method compared to the Demons
algorithm and Lucas-Kinade optical flow method for various SNR values.

lung phantom. Figure 5-12 summarizes the registration results using the Jensen
Rényi based regmentation algorithm (C' = 0.55, & = 0.7) using the lung phantom for
a variety of simulated noise images. The proposed algorithm was compared to two
alternative registration algorithms, an implementation of the Lucas-Kinade optical
flow method or non-rigid registration [165] and an alternative Demons implemen-
tation using a multi-resolution pyramid approach included in Matlab 2015a (The
Mathworks, Inc., Natick, MA).
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Figure 5-12 shows an increase in TRE of 26%, 30% and 4% for the optical flow,
demons and JR regmentation method respectively when decreasing the SNR from 37
to 6.8 dB. The overall TRE for the JR regmentation method is however consistently
higher than the other two methods.

5.4 Discussion

This works presents the joint coupling of segmentation and registration processes
using the Jensen Rényi divergence in order to investigate optimal parameter choices
for @ and C' along with a characterization of response to increased artificial noise.
The proposed method has direct applications to adaptive radiotherapy planning and
has the potential to improve replanning efficiency and robustness.

Using an in-house built phantom along with synthetic lesions and a software
pipeline for bifurcating tracking of the lung airways we were able to evaluate both
the segmentation and registration accuracy under varying SNR and parameter val-
ues. For CT regmentation an optimal o value of 0.7 was found to maximize the
registration accuracy where as the optimal as parameter to use for the segmentation
step was not as clear. A value of 0.7 lies close to the recommended value of 0.85 found
during our previous work [158] for CT. Considering that a different subject was being
scanned along with a different application (registration versus segmentation) this is
not surprising. We also note that a systematic parameter search was not presented
in our earlier work. We saw that segmentation accuracy was maximized for targets 1
and 2 at a value of ay = 0.5 which also differs from earlier results. When discussing
this value it is also important to consider that there is a more complex interplay at

work as the segmentation accuracy affects the registration accuracy and vice versa.
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Optimization of the coupling parameter, demonstrated in Figures 5-10 and 5—
11 was found to be less complex with an optimal value found at C' = 0.55 for both
registration and segmentation tasks. The dependency of segmentation accuracy on
C shown in Figure 5-11 was much less pronounced with the largest variation shown
by target 2. This is unsurprising as it contained the smallest active compartment of
the three and would thus be more susceptible to registration errors.

When investigating the effect of CT noise on registration performance we found
a significant reduction in TRE for the Lucas-Kinade optical low and Demon algo-
rithms on the order of 26% and 30% respectively compared to the case when no
artificial noise was added. While the overall TRE was worse for the JR regmenta-
tion algorithm the performance was remarkably resilient to added noise with a TRE
reduction of only 4%. This would agree with previously published results regarding
the use of the Jensen Rényi divergence [73, 158]. The difference in TRE between
the JR regmentation algorithm and the other two algorithms can be attributed to
the choice of a dense control selection scheme and our adaptive approach along with
a less advanced regularization technique. Unfortunately, the sampling requirements
of our algorithm prevent the use of a dense selection approach (where every voxel
is a control point), not to mention that such a high density would make gradient
calculations prohibitively intensive.

While the phantom used in this work is used to simulate different target sizes,
arrangements, deformation magnitudes and noise conditions, evaluation (even if sub-
par) on a clinical dataset is necessary. This will highlight glaring differences in per-

formance and confirm the performance of the algorithm in a clinical context.
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5.5 Conclusions

We have presented a framework for coupling a level sets segmentation algorithm
with a non-rigid deformable registration algorithm using the Jensen Rényi statis-
tical divergence metric. With the use of a custom biomechanical phantom made
specifically to simultaneously evaluate joint segmentation/registration algorithms,
we optimized the choice of parameters a and the coupling coefficient C'. Values of «
= (.7 for registration and as = 0.5 for segmentation were found to maximize the reg-
istration and segmentation accuracy respectively. A coupling coefficient of 0.55 was
determined to also minimize the local registration accuracy surrounding the targets
being segmented and maximize segmentation accuracy. The regmentation algorithm
was also compared to a Lucas-Kinade optical low and Demons registration algorithm
and despite showing a higher overall TRE, was found to exhibit significantly less (4%
compared to 24% and 30% for the optical flow and Demons) variance in TRE for
SNRs as low as 6.8.
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5.7 Appendix
5.7.1 Continuing the 2D Case

The coupled metric is defined here by Equation 5.18 where in this case P; and
P, represent the probability of a sample belonging to the inside and outside of the

contour respectively. Since each distribution relies on the two-dimensional sample
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from the reference and target image, they’re both influenced by movement of the

control points and hence both are treated as variables in the derivation.
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(5.17)

In this formulation, J is a two dimensional list of voxel intensity samples from each
image [J1, J5]. In this case J) is the transformed reference image. In Equation 5.18

W1, and ws ,, refer to the forward and inverse mapping functions to and from the

master domain Dy ,.

Jo(p) = J2 (Wim (w2 (), P € Doy (5.18)

The partial derivative then becomes

0Jy(p) Owy y, (W2, (p))
oy VJy (W1m (W2,m(p))) op (5.19)

The forward mapping functions shown here are were defined earlier in Equation

5.13, while the Jacobian A,, of Equation 5.16 is used to simplify the inverse mapping
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function defined by inverting Equation 5.13.
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To simplify notation,

let us refer to0 wy, (w5, (p)) as [w,, wy] from now on.
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5.7.2 Extension to 3D
The following affine function is used to fit the forward mapping function in the

3 dimensional case.

o(s,t,u) = ay + ass + ast + aqu (5.26)
with coeflicients
a1 (I
a J—
2| _ Y1 — Yy (5.27)
as ¢2 - ¢4
| Qy i | g — Uy i

ay + aqs + ast + aqu
wh(u) = | by + bys + bt + byu (5.28)

c1 + 28 + Cgt + cuu
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a2, a3, Q4
M = b27b3ab4 (529)

Co, C3,Cy

b3c4 - b4c37 a4C3 — A3Cy, a3b4 — a,4b3
- 1
Ml = A | bace = baca, ascs — ascy, asby — asby (5.30)

bacg — b3ca, azcy — azcs, azby — azby
Where Am = a2(b304 - 03b4) - a3(b204 - 02b4) + a4(b203 — Cgbg)
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CHAPTER 6
Conclusions

6.1 Thesis Summary

The work presented in this thesis investigates the optimal usage of the Jensen
Rényi divergence as applied to the tasks of segmentation and deformable registra-
tion, performed both independently and simultaneously. A custom biomechanical
phantom capable of full reproduction of patient breathing traces was constructed for
the purpose of evaluating joint segmentation/registration algorithms in a deformable
manner with the possibility of scanning with PET/CT and MRI. The development
of the algorithms outlined in this work is primarily motivated by the need to improve
the practicality of adaptive radiotherapy planning. Our intention is the mitigation
of possible errors introduced through the use of low quality images from CBCT [166]
or PET [91].

This work began as the application of the Jensen Rényi divergence to the task
of segmentation using a semi-automated level sets approach as detailed in Chapter 3.
Previously this had only been applied as an edge detection filter [73]. Using an en-
tropy based approach in this manner presented several attractive features such as the
use of multiple modalities, lack of limits on the number of input images, robustness
to noise and the ability to tailor the algorithm behaviour to the modality, or combi-
nation of modalities, in question. Our results were evaluated using 7 macroscopically

derived contours from histological slides of resected pharyngolaryngeal squamous cell
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carcinoma samples. Comparing to the results of 9 other algorithms evaluated using
the same dataset the Jensen Rényi based segmentation technique had the second
lowest mean classification error of 65% compared to 55% for the highest performing
algorithm (FCM-SW). Additional evaluations were performed on thoracic PET/CT
scans of non-small cell lung carcinoma patients where the maximal tumor diameter
was the ground truth. Mean errors of 63%, 19.5% and 14.8% were found when using
CT, PET and PET/CT for segmentation. Comparisons using a phantom scanned
with varying parameters using CBCT showed a resilience to noise that was not seen
when plotting the mutual information metric.

Following these promising results, we decided to investigate the utility of cou-
pling our segmentation technique to a deformable registration algorithm, shown in
Chapter 5. A non-rigid registration algorithm was designed using an adaptive mesh-
ing technique for control point selection. The two procedures were performed si-
multaneously. The coupling of the registration to the segmentation is dependent
on the segmentation procedure using both the reference and target images as in-
puts. With improved registration accuracy, the segmentation also improves. The
coupling in the other direction was achieved by introducing a coupling term into
the registration gradient calculation. This term seeks to maximize the Jensen Rényi
divergence as applied to the segmentation task, but by way of moving the control
points. In order to properly evaluate this technique however, we first required the
construction of a multi-modal deformable phantom with segmentation targets. This
is covered in Chapter 4 with the utilization of preserved swine lungs, deformed using

a computer controlled airflow system. Segmentation was evaluated through the use
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of synthetic targets with multiples compartments and the use of modality specific
contrast agents. Registration was evaluated using an in-house bifurcation tracking
pipeline. With this dataset providing a reliable ground truth, the maximum overall
registration accuracy was found to be 1.14 voxel widths or 2.01 mm with an « value
of 0.7. An optimal coupling coefficient of 0.55 was found, improving the local regis-
tration accuracy surrounding the targets by 26% at the cost of overall registration
accuracy.

6.2 Discussion and Future Work

The segmentation algorithm produced competitive results when applied to PET
alone and with regard to PET and CT combined. As the algorithm has been observed
to contain sensitivity to low contrast boundaries we envision that there are potential
applications to the delineation of liver lesions, in particular when imaged with CT or
CBCT[167]. MRI scans of the phantom described in Chapter 3 were also acquired
using a T'1-weighted fast field echo sequence on a Panorama 0.23 T (Phillips Medical
Systems, Cleveland, OH, USA). By varying the TE time, SNRs of approximately
11.6-28.3 dB were acquired as shown in Figure 6-1.

Regarding the work presented in chapter 3, there was difficulty in acheiving con-
sistent segmentations of the inner jar when using MRI due to field heterogeneities
leading to gradients in the image intensity. This led to incomplete segmentation of
the inner jar which is the reason these results were not included in the publication of
Chapter 3. This is a possible artifact for many MRI scanning protocols which may
lead to sub-par results when using the JR based level-set algorithm. A correction sim-

ilar to the steps outlined in Figure 3—4, Chapter 3 could be applied but they are not

163



Figure 6-1: Tl-weighted 3D FFE scans of the jar phantom with SNR values of
11.6,14.3,18.,21.7,25.7 and 28.3 dB.

practical for application in a clinical case. There are already established methods for
inhomogeneity corrections of MRI images which would likely be better suited [168].
Alternatively, a piecewise formulation of the level sets method[169] using the Jensen
Rényi divergence may be able to segment MRI volumes in cases where these artifacts
exist without the need for inhomogeneity corrections. Segmentation accuracy with
regard to macroscopically heterogenous tumor appearances in MRI may also benefit
from this tactic. Similar difficulties with MRI images were experienced when using
the simultaneous registration/segmentation algorithm presented in Chapter 5. This
was primarily due to the loss of contrast between the lung and the background air in
MRI compared to CT. This is caused by microscopic tissue inhomogeneity in the lung
leading to a loss of signal. For this reason the modalities presented were somewhat
limited. A larger study to investigate the relationship of a to the imaging modal-
ity would allow further adoption of this technique for other purposes whether they
are research or clinically oriented. More complex interpolation and regularization
methods would allow smoother deformations which were observed to compromise
image quality during our experiments. An interesting observation made during the
experiments was the fact that overall registration error increases as local registration

error is reduced in the vicinity of the segmentation targets. This is understandable
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when one considers the regularization as a smoothing filter and that influences from
the coupling term on regions outside the targets from smoothing may account for
this. This could be remedied by implimenting an anisotropic filter that differentially
smooths the local regions occupied by the segments similar to that proposed by Pace
et al.[170].

A necessity of the biomechanical phantom to be considered for QA use in the
clinic is longevity and reproducibility. While the manufacturers (Nasco, Fort Atkin-
son, WI) have suggested that the preserved swine lungs will last 6 months, the author
would like to note that the samples used in this work have thus far remained func-
tional following 2 years of proper storage. An additional procedure was conducted
when dealing with 3D scans in order to ensure that the lungs were static throughout
the acquisition. A ruler clamped to a tort stand was used to provide simple visual
comparison of the inflation level in order to adjust the pump such that internal pres-
sure of the lungs remained constant. This procedure was repeated 3 times for the
same inflation level beginning from a deflated state. Volume measurements of the
lungs from the acquired CT scans revealed a standard deviation of 3.75% of the mean
volume. While this level of uncertainty is fairly low, it stresses the importance of
further work to account for compromised tissue samples from the supplier.

As mentioned briefly in the final remarks of chapter 4, the addition of an outer
shell in order to complete the appearance of a human torso is an obvious next step for
the lung phantom. This is required not only for added realism and completeness but
because intensity based registration accuracy is heavily influenced by high-contrast

regions such as between the lung and chest wall. Currently the dataset presented
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in this thesis can be considered challenging as the boundaries between lung and air
are not as pronounced. Such an addition would not be challenging considering the
availability of high quality plastinated specimens [171].

Further use of the lung phantom could be made by evaluating the accuracy of
target tracking algorithms used to account for intra-fractional motion. This could be
performed by accomodating the inclusion of a MOSFET, TLD or film measurement
into the phantom in order to perform dosimetric comparisons with values predicted

by the treatment planning system.
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