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Abstract

In this thesis we investigate gapped and gapless topological states, their connection to
entanglement and their response to perturbations such as disorder and external magnetic
fields. We start out by analyzing numerically and analytically the entanglement entropy
of a spin-orbit coupled topological superconductor and its signature of the topological
phase transition. We find that the entanglement entropy obeys the area law and that it
displays a second order phase transition at the phase transition point. Subsequently, we
investigate the effect of a random disorder potential on the topology of the system by
using a real space Chern number and comparing it with the results obtained by looking
at the disorder averaged entanglement entropy.

In the last part, we investigate the Landau level spectrum of a gapless Weyl semimetal
slab when exposed to an external magnetic field. Due to the Fermi arcs in the surface
Brillouin zone it is possible to form magnetic orbits involving states on both surfaces
with characteristic thickness dependence. Using an effective surface theory for a Weyl
semimetal, we are able to calculate the surface density of states and determine the phase
offset.
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Résumé

Dans cette thèse, nous étudions les états topologiques gaps et gapless, leur connexion
à l’enchevêtrement et leur réponse aux perturbations telles que le désordre et les champs
magnétiques externes. Nous commençons par analyser numériquement et analytiquement
l’entropie d’enchevêtrement d’un spin-orbite couplé supraconductrice topologique et
sa signature de la transition de phase topologique. Nous constatons que l’entropie
d’enchevêtrement obéit à la loi de la zone et qu’il affiche une transition du deuxième
ordre au point de transition de phase. Par la suite, nous étudions l’effet d’un potentiel
de désordre aléatoire sur la topologie du système en utilisant un numéro de Chern
de espace réel et en le comparant avec les résultats obtenus en regardant l’entropie
d’enchevêtrement.

Dans la dernière partie, nous étudions le spectre de niveau de Landau d’un gapless
Weyl semi-métal lorsqu’il est exposé à un champ magnétique externe. En raison des arcs
de Fermi dans la zone de Brillouin de la surface, il est possible de former des orbites
magnétiques faisant intervenir des états sur les deux surfaces ayant une dépendance à
l’épaisseur caractéristique. L’utilisation d’une théorie efficace de la surface pour un
métalloïde Weyl, nous sommes en mesure de calculer la densité de surface d’états et de
déterminer le décalage de phase.
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Introduction

1.1 Symmetry protected topological states

Recently the field of topological states of matter[1–9] has attracted a vast amount of

interest and research activity by physicists. Up until its discovery the general principle

of distinguishing different phases was connected to spontaneous symmetry breaking

and local order parameters. When a system would change from one phase to another,

generally, it would break one or more of its symmetries. Thus, the discovery of topo-

logical states of matter represented a paradigm shift due to the fact that the ground

states of different phases would not be distinguishable by the absence or presence of

any symmetries and connected order parameters. This necessitated that concepts from

topology were introduced in order to describe the new states of matter.

Mathematically, two topological spaces are equivalent if there exists a homeomor-

phism between them, meaning a continuous mapping with a continuous inverse that

preserves all topological properties of the space. These maps can be imagined to be

deformations of the space such as stretching or bending. Thus, a circle and a square

are homeomorphic as they can be deformed into each other, whereas a circle and a ring

1
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are not. The number of holes is usually called the genus and is one of the most simple

topological invariants.

How does this translate to physical systems and quantum states? In order to under-

stand the connection we will consider a local quantum system that is described by a

family of Hamiltonians H(s), where s is a continuous parameter and |φ(s)〉 is its ground

state with an excitation gap to its excited states. We say two states |ψ(0)〉 and |ψ(1)〉 are

in the same phase if we can vary the parameter s smoothly from 0 to 1 without closing

the gap. This is the equivalent of having a homeomorphism between two topological

spaces. Conversely, if there is a phase transition somewhere in the interval [0, 1] there

will be a gap closure and it is not possible to smoothly deform |ψ(0)〉 into |ψ(1)〉. Thus,

it defines an equivalence class of ground states that can be smoothly transformed into

each other. In physical terms this is the universality class that defines the phase in which

the two connected states are in.

So far, we have disregarded any possible symmetries of the system in this discussion,

as we have found that systems can undergo a quantum phase transition without changing

its symmetries, leading to conceptually new quantum states. Physical realizations of this

are quantum spin liquids[10, 11] and fractional quantum hall states[12–14]. Moreover,

there are even finer distinctions of the universality classes when we do take into account

symmetries of the system. If we restrict the deformations to only those that respect a

certain symmetry, we can realize so-called symmetry protected topological states. In

the stricter sense developed above these states are trivial as they can be deformed to

the trivial state by using deformations that violate the specific symmetry of the system.

However, if the deformations preserve the symmetry, it is not possible to reach a trivial

state without closing the gap of the system. Thus, these states are distinct from trivial

states and exhibit characteristic properties such as gapless edge states and unconventional

electromagnetic responses.
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Generally, there is no order parameter, given by the expectation value of a local

operator, connected to a topological phase transition that would be comparable to the

situation of the Landau symmetry breaking phases. Consequently, one has to rely on other

quantities in order to determine if one is in a topological phase or not. Generally, these are

called topological invariants and most commonly are either integer or binary indicators

of the topology of a system. This raises the question of how one can characterize a

system and determine which topological phases are possible. There has been a lot

of work[15–18] to classify the different possible symmetry protected states that can

be realized in condensed matter systems in order to answer this exact question. An

important topological invariant in systems with broken time reversal symmetry that will

be used throughout this work is the Chern number that is obtained by integrating the

Berry curvature over the Brillouin zone. This is done by constructing a so-called fibre

bundle L, where the Brillouin zone B is the base space and the filled Bloch states are

the fibre F . Locally this looks like the product space B × F , whereas globally the

fibre bundle can have a different topological structure. The Berry connection A(k) =∑
n i〈ψn(k)|∇|ψn(k)〉 then enables one to describe how a Bloch state changes when

we move from one point k0 to another point k1 in the Brillouin zone. Further, one can

calculate the Chern number by integrating the Berry curvature Ω = ∇×A.

The systematic approach to classify symmetry protected topological states is based

on the possible generic symmetries of the Hamiltonian H , time reversal symmetry T ,

particle-hole symmetry P as well as chiral symmetry C. The latter is sometimes also

called sublattice symmetry (and denoted with a letter S) in condensed matter physics due

to the fact that a natural realization is often the fact that a system has two sublattices and

the Hamiltonian solely couples sites in different sublattices. The restriction to these three

symmetries is due to the fact that, in general, unitary symmetries enable the Hamiltonian

to be brought into a block-diagonal form with a number of irreducible blocks that can



1.1. SYMMETRY PROTECTED TOPOLOGICAL STATES 4

Cartan Dimension d
T P C 0 1 2 3 4

A Z 0 Z 0 Z
AIII X 0 Z 0 Z 0
AI 1 Z 0 0 0 2Z

BDI 1 1 X Z2 Z 0 0 0
D 1 Z2 Z2 Z 0 0

DIII −1 1 X 0 Z2 Z2 Z 0
AII −1 2Z 0 Z2 Z2 Z
CII −1 −1 X 0 2Z 0 Z2 Z2

C −1 0 0 2Z 0 Z2

CI 1 −1 X 0 0 0 2Z 0

Table 1.1: Classification of symmetry protected topological states by spatial dimension d and
symmetry class, denoted by its Cartan label. Here, Z (Z2) means that the possible phases are
described by an integer (binary) invariant. The existing symmetries of the system are indicated
by checkmarks (C) or the square of the symmetry operator, i.e., T 2 = ±1 and P2 = ±1.

subsequently be analyzed independently. However, the aforementioned symmetries act

differently by constraining the irreducible parts of the Hamiltonian. Time reversal as

well as particle-hole symmetry are anti-unitary and thus involve complex conjugation.

Chiral symmetry is unitary but anti-commutes with the Hamiltonian, which can easily be

seen by using the fact that the presence of both anti-unitary symmetries implies chiral

symmetry, C = P · T . Due to their anti-unitarity, both P and T can either square to +1

or −1. Counting all possible combinations, there are 10 distinct cases, all distinguished

by their respective symmetry properties. Depending on the dimension d of the system,

one can derive the possible phases and their topological invariants through very general

arguments. The result is summarized in table 1.1[19]. This classification is in no way

exhaustive and it is possible to further extend it and take into account, for example,

crystal symmetries and thus realize so-called crystalline topological insulators[20–23].

Some of the most important consequences of topologically non-trivial states are

the properties of the boundary. When a topological system encounters another system

at its edge (in real applications this will most likely be the vacuum or another trivial
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system), the topology changes abruptly from a topologically non-trivial to a trivial state.

Due to this fact, the energy gap needs to close at the boundary, leading to gapless

excitations on the boundary of the topological system. This fact is called the edge

boundary correspondence. Caused by their topological nature, these zero-energy states

are robust against small deformations as long as the topological properties of the system

are not changed. As a consequence, weak disorder or applied fields do not destroy the

topological nature as long as the gap is not closed due to the perturbations.

A class of symmetry protected topological states that has attracted a lot of attention

and research activity in recent years are topological superconductors. In these systems

the edge states, caused by the topological nature of the phase, are so-called Majorana

modes. Historically, Majorana fermions were discovered[24] as the real solutions to the

Dirac equation, the relativistic equation describing electrons while taking into account

their spin-1
2

structure. These particles are their own anti-particles and thus behave

fundamentally different from electrons. Throughout the twentieth century, particle

physicists have searched for a realization of Majorana fermions as a fundamental particle,

but so far none have been found. A popular theory to explain the neutrino oscillation[25–

27] assumes that both left- and right-handed neutrinos are Majorana fermions and would

explain the small neutrino masses through the seesaw mechanism. However, to date no

experimental evidence that would support this theory has been found. On the other hand,

topological superconductors present the first opportunity to investigate Majorana physics

directly in experiment.

However, it is important to distinguish between the condensed-matter realization[28]

of a Majorana mode γ and the particle proposed as the solution to the neutrino problem.

Whereas the latter would be a fundamental particle obeying Fermi statistics, the Majorana

modes in topological superconductors are emergent excitations and are so-called non-

abelian anyons. These types of (quasi-) particles have non-trivial exchange statistics and,
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as the name suggests, permutations of two or more Majorana modes are non-commutative.

Due to this fact, Majorana modes are promising candidates for realizing topologically

protected qubits as a step towards quantum computing[29].

At first glance, superconductors present a natural choice for realizing Majorana

modes as the excitations are composed of both electrons and holes and one could easily

construct self-adjoint operators that can act on the ground state. Unfortunately, due to

the singlet spin structure of the the Bogoliubov operators in BCS superconductors with

s-wave pairing, this easy construction does not work. In order to resolve this, one can

look at systems with unconventional triplet pairing, so called px + ipy-pairing. However,

these are rare and so far have not conclusively been observed in experiment. The layered

superconductor Sr2RuO4 is believed to possess this type of triplet pairing but the available

indirect evidence remains inconclusive[30–33].

The emergence of Majorana modes can be seen when considering a one-dimensional

toy model, often called the Kitaev model[28]. It is a spinless lattice model with p-wave

order parameter ∆, hopping amplitude t and chemical potential µ,

HKM = −
N−1∑
i=1

(
tc†ici+1 + tc†i+1ci + ∆c†ic

†
i+1 + ∆∗ci+1ci

)
− µ

N∑
i=1

c†ici. (1.1.1)

Assuming periodic boundary conditions it is straightforward by using the Fourier trans-

formation cj = 1√
N

∑
k e
−ikxjck to write down the Bogoliubov-de-Gennes Hamiltonian,

HBGD =



εk 0 0 ∆ sin k

0 ε−k −∆ sin k 0

0 ∆∗ sin k −εk 0

∆∗ sin k 0 0 −ε−k


. (1.1.2)
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By diagonalizing this matrix, we can derive the eigenvalues of the Hamiltonian as

Ek =

√
(−2t cos k − µ)2 + |∆|2 sin2 k. (1.1.3)

From this we can immediately see that the quasiparticle spectrum has a finite gap except

when |µ| = 2t. At these points the quasiparticle gap closes and the system can undergo

a topological phase transition. There exists a simple way to calculate the topological

invariant connected to the phase transition at the gap closure. This is the so-called ground

state parity Q[10]. It is defined as

Q =
Pf(HBDG iτx)√
det(HBDG iτx)

, (1.1.4)

where τx acts on the particle-hole space and Pf is the Pfaffian, defined through

Pf(A) =
1

2nn!

∑
σ∈S2n

sgn(σ)
n∏
i=1

aσ(2i−1),σ(2i). (1.1.5)

Here, S2n is the symmetric group of dimension (2n)!. The Pfaffian is generally defined

for any anti-symmetric matrix A and has the property Pf2(A) = det(A). Due to this

fact the Pfaffian possesses an additional sign degree of freedom that is not present in

the determinant. This is exactly what is extracted when calculating Q. Accordingly, the

parityQ can only change its value when the Pfaffian changes its sign and vanishes. From

the above stated connection one can see that this in turn implies that the determinant has

to vanish as well. Moreover, it implies that the Hamiltonian has a zero-energy eigenvalue,

thus closing the energy gap. Hence, deformations of the Hamiltonian that leave the

excitation gap unchanged cannot change the parity Q, making it a topological invariant.
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Applying (1.1.4) to the Kitaev model, we find

Q = sgn(ε0επ) = sgn(µ2 − 4t2), (1.1.6)

which shows that Q = 1 for the strong-pairing phase |µ| > 2t and Q = −1 for the

weak-pairing phase |µ| < 2t. Thus, we see that for a given pairing ∆ the model exhibits

two distinct phases, a trivial one which is topologically equivalent to the vacuum with

even parity Q = 1 and a topological phase with odd parity Q = −1.

In order to understand the appearance of Majorana modes, we will now consider a

finite Kitaev chain with an even number of lattice sites N and for simplicity choose the

superconducting phase φ to be zero. As discussed above, when introducing a boundary or

a defect into a topological system, we would expect to have gapless edge modes appear

there. We now write the Hamiltonian (1.1.1) in terms of Majorana modes,

ci =
1

2
(γi,1 + iγi,2) ,

c†i =
1

2
(γi,1 − iγi,2) ,

(1.1.7)

which at this point is merely a mathematical transformation. We have split the fermionic

operator from each site into its real and imaginary part. The easiest point in parameter

space to analyze the Hamiltonian is µ = 0 and ∆ = t. With this, the Hamiltonian reads,

HKM = −it
N−1∑
i=1

γi,2γi+1,1. (1.1.8)

However, if we now combine Majorana modes from neighbouring sites into new

fermionic operators,

c̃i =
1

2
(γi+1,1 + iγi,2) , (1.1.9)
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the Hamiltonian for the Kitaev chain is,

HKM = 2t
N−1∑
i=1

c̃†i c̃i. (1.1.10)

In this Hamiltonian, we see that the N th fermionic operator c̃N = 1
2

(γN,2 + iγ1,1) does

not appear anymore. This highly non-local state thus has zero energy and the ground

state is consequently degenerate. This also explains why the topological invariant Q is

called the ground state parity. The ground-state in the topological phase can either have

an even number of electrons which are paired up as Cooper pairs or an odd number of

electrons where the zero-energy state is occupied. Further, even though we have shown

the emergence of localized Majorana modes on the boundary of the chain only for the

special values µ = 0 and ∆ = t, the calculation of the topological invariant has shown

that we would expect the argument to hold even for general values as long as |µ| < 2t.

Additionally, in two dimensions, one can show that there appear Majorana modes in

vortices in the superconducting pairing amplitude[34, 35].

The Kitaev model is very simple, and due to the lack of spin, unrealistic. Nonetheless,

there have been multiple proposals[36] in order to realize topological superconductivity

with more readily available ingredients that effectively realize the Kitaev model or a two

dimensional generalization of it. One of the first proposals by Fu and Kane[37] introduced

the idea to use heterostructures consisting of a 3D topological insulator in contact

with an ordinary s-wave superconductor in order to realize a px + ipy-superconductor

at the interface. This sparked a flurry of further proposals such as a trilayer device

where a semiconducting quantum well would be brought into contact with an s-wave

superconductor and a ferromagnetic insulator[38] or a bilayer device consisting of a

quantum well with both Rashba and Dresselhaus spin-orbit coupling and an s-wave

superconductor with an applied magnetic field[39]. In addition, multiple proposals have
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been brought forward that set out to realize spinless p-wave pairing in one-dimensional

systems[40, 41]. Despite the very different nature of these proposals, the main ingredients

stay the same in both one as well as two dimensions. One has to break the degeneracy of

the electrons caused by their spin in order for the system to be effectively spinless. Further,

one has to give the electrons a non-trivial spin structure that allows the system to enter

a topological phase. In the last couple of years there have been multiple experimental

groups that have reported evidence for Majorana modes in various different hybrid

systems[42, 43] observing zero bias peaks in conductivity measurements. However, a

direct proof of Majorana modes still remains elusive as not all alternative causes for the

zero bias peak have been ruled out[44–46].

1.2 Entanglement entropy

It has been realized that there exists a deep connection between topological states of

matter and entanglement[47–51]. This connection is intriguing and lends itself to further

investigation. In fact, this is one of the objectives of this work. In order to achieve this

task, we need to introduce some of the concepts that are used to analyze entanglement in

condensed matter systems.

Entanglement has a rich and long history[52–54] and is a purely quantum phe-

nomenon without a classical analogue. But given a quantum ground state |ψ〉, how can

we extract information about its entanglement? This is generally done by dividing the

system into two or more subsystems with respect to some degree of freedom and then

analyzing the entanglement of each subsystem with the complement. For example, one

can divide the system into two parts of different shape in real space, in momentum space

or even with respect to internal degrees of freedom such as spin.

There is a general way for how one can explicitly show the correlation between
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two subsystems in |ψ〉 and it is called the Schmidt decomposition[55]. When dividing

the system into subsystems, one divides the Hilbert space into two separate parts with

orthonormal bases |ψ1
m〉 and |ψ2

n〉 and can write the ground state as

|ψ〉 =
∑
m,n

Amn|ψ1
m〉|ψ2

n〉. (1.2.1)

Generally, the dimensions of the two subsystems are not equal and thus Amn will not be a

square matrix. However one can diagonalize this construction by using the singular-value

decomposition A = UDV , where U is a unitary square matrix, D is diagonal and V is a

rectangular matrix with orthonormal vectors as rows. With this, the ground state reads

|ψ〉 =
∑
m,n,o

UmnDnnVno|ψ1
m〉|ψ2

o〉 (1.2.2)

Defining |Φ1
m〉 = U |ψ1

m〉 as well as |Φ2
n〉 = V |ψ2

n〉 and one arrives at the Schmidt

decomposition,

|ψ〉 =
∑
n

Dnn|Φ1
n〉|Φ2

n〉 (1.2.3)

Now, both |Φi
n〉 are orthonormal in both Hilbert spaces where the number of elements is

limited by the dimension of the smaller Hilbert space. From this construction one can

immediately read off the information about the entanglement between the two subsystems.

For this purpose it is instructive to look at the two extremal examples. On the one hand,

if only one element of D is finite, the ground state is a product state and consequently

no entanglement is present. On the other hand, if all elements of D are equal, one has a

maximally entangled state.

More generally, the entanglement is most often described[56] via the reduced density

matrix of the bipartition. It is calculated from the full density matrix of the system,
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ρ = |ψ〉〈ψ| by tracing over the degrees of freedom of one of the subsystems, i.e.,

ρ1 = tr2(|ψ〉〈ψ|). (1.2.4)

Using the Schmidt decomposition, we can see the connection to the entanglement of the

ground state,

ρ1 =
∑
n

|Dnn|2|Φ1
n〉〈Φ1

n| =
∑
n

λn|Φ1
n〉〈Φ1

n|. (1.2.5)

Here, we have chosen to trace out the degrees of freedom of subsystem two, but the result

would hold equally for the opposite case. One can show[56] that the finite eigenvalues for

both cases are identical and hence the reduced density matrix is a well-defined measure

of the entanglement between subsystems. The set of eigenvalues is often called the

entanglement spectrum and contains the full information about the entanglement of the

two subsystems. Since the reduced density matrix is hermitian, one can define

ρi =
1

Z e
−Hi , (1.2.6)

where Z = Tr(ρi). The matrix Hi,called the entanglement Hamiltonian, is defined

through (1.2.6). In a free electron model, one can show[56] that the entanglement

Hamiltonian is quadratic as well.

It is possible to define the von Neumann entropy with respect to the reduced density

matrix, generally called the entanglement entropy,

Si = −tr(ρi ln(ρi)) = −
∑
n

λn ln(λn). (1.2.7)

As was discussed above, the finite eigenvalues of the reduced density matrices of each
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subsystem are equal and consequently this is true for the entanglement entropies of the

different subsystems as well. In addition, for a product state, the entropy vanishes. Hence,

the entanglement entropy is commonly used as a measure for the entanglement as it is

easily computed and can be interpreted as the logarithm of the number of effective states

of the Schmidt decomposition.

It has been shown[49, 50] that the entanglement entropy contains information about

the topology of the system in the form of a universal constant, called the topological

entanglement entropy, that depends on the topological properties of the system. However,

as we have seen above, symmetry protected topological states are not topological in the

strict sense and thus, the topological entanglement entropy vanishes. Nonetheless, there

can be some signature of a topological phase transition in a topological superconductor,

as will be shown in this thesis.

1.3 Weyl semimetals

Up to this point we have solely talked about gapped topological phases, but recently

it was discovered that having a gap is not a requirement for topologically protected

states. Topological semimetals[57–60] have sparked an intense research activity in

recent years and most prominently Weyl as well as Dirac[61–65] semimetals have been

discovered experimentally. In these three dimensional materials the band gap is closed at

a certain number of points in the Brillouin zone which has severe consequences for their

response functions as well as edge states. In Weyl semimetals, the Hamiltonian can be

approximated around these band touching points, also called Weyl nodes, as

H(k) = χvF (σxkx + σyky + σzkz) , (1.3.1)
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where one can think of σi denoting the spin of the electron and any possible anisotropy

has been absorbed into the definition of the momentum k. Here, χ = ±1 denotes the

chirality of the node.

In two-dimensional systems, for example the topological superconductors discussed

above, one could apply a magnetic field B to gap out the system. However, in the

semimetal case, the application of the magnetic field will have the effect of shifting

the momentum vector k → k + B/vF , but not inducing a gap, implying some sort of

topological protection that prohibits a gap from opening.

In order to understand the cause of the protection, we need to look at the Berry

connection A(k) =
∑

n i〈ψn(k)|∇|ψn(k)〉, where the sum is over the occupied bands,

from which the Berry curvature Ω = ∇×A can be derived. The band-touching points

k± are sources and drains of the Berry curvature and at these points the Berry curvature

takes the form Ω = ±δ3(k − k±) and consequently can only be annihilated when two

points of opposite chirality merge. Thus, the existence of the band touching points is

protected by the separation of the Weyl nodes in momentum space.

This topological nature has direct consequences on the surface excitations of a

Weyl semimetal. If we consider a model with only two Weyl nodes separated in the

z-direction in momentum space, each perpendicular two-dimensional slice is a gapped

Chern insulator. As we have seen above, each node is the source (or drain) or Berry flux

and thus when we sweep along z, the Chern number must change at the Weyl node. Thus,

between the two Weyl nodes of opposite chirality the two-dimensional subsystem will

be non-trivial with Chern number C = 1 and outside it will be be trivial. Introducing a

slab geometry, for example by introducing surfaces parallel to the y − z-surface, will

add a surface to each two-dimensional Chern insulator. Consequently, when looking

at a non-trivial slice between the two Weyl nodes, there must be a zero-energy mode

somewhere along the boundary. This must be true for each surface spanning the range
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from one node to the other. Only when going from a slice with C = 1 to the regime with

C = 0 does the zero mode vanish. Hence, the zero-energy states for each slice form an

arc spanning from the projection of one Weyl node to the other, a so-called Fermi arc.

A second consequence, as mentioned above, is the response to applied electromag-

netic fields due to the fact that a Weyl node is the source for the Berry Curvature and

possesses a chiral anomaly. Looking only at a single node, charge conservation is violated

and this leads to the continuity equation,

∂µj
µ = −χ e2

4π2~2c
E ·B, (1.3.2)

where χ again denotes the chirality of the node. Consequently, nodes always appear

in pairs of opposite chirality in real systems, restoring charge conservation. This is the

physical interpretation of the Nielsen-Ninomiya theorem[66, 67]. This somewhat subtle

response leads to directly measurable phenomena such as the chiral magnetic or the

anomalous Hall effect.

It is important to stress that the aforementioned effects require for the Weyl nodes to

be separated in momentum space. This assumes, first of all, that either time reversal or

inversion symmetry is broken as otherwise the bands would be degenerate and would

combine two nodes of opposite chirality at one point in the Brillouin zone. Second

of all, the distinction between two different points in the Brillouin zone assumes that

crystal momentum is well-defined and translational symmetry is intact. This implies

that when translation invariance is lost, for example by the introduction of disorder,

the clear separation of the Weyl nodes is also lost as impurities could introduce non-

zero amplitudes to scatter between two distinct nodes, thus introducing a finite energy

gap. However, in applications disorder is normally not strong enough to completely

destroy the topological nature of the Weyl nodes and the band structure should retain its
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characteristic features.

1.4 Outline of this Thesis

The remainder of this thesis is organized as follows. Chapter two starts off with the nu-

merical calculation of the entanglement entropy for a spin-orbit coupled two-dimensional

superconductor that experiences a topological phase transition. The focus of this chapter

is to establish whether or not the entanglement entropy is sensitive to the phase transition

and what effect the different possible partitions can have on the result. In chapter three

this analysis is augmented by an analytical calculation for the large-Zeeman-coupling

limit and a specific shape of partition. Again, the topological phase transition is examined

and its signature in the entanglement entropy is derived. Subsequently, chapter four takes

a step towards realistic quantum systems and introduces a random disorder potential

to the system of chapter two. Through the application of a real-space Chern number,

the entanglement entropy and a perturbative approach, the effect of the disorder on the

topological phase transition occurring in the clean system is analyzed. Chapter five

extends the scope of the thesis to gapless topological phases and analyzes the effect of an

applied magnetic field on a Weyl semimetal. Chapter six then completes the work with a

conclusion.

Before moving on to the first manuscript, a few remarks are in order. All four chapters

following the introduction were written to be self-contained with their own introduction

and bibliography. In order to maintain a coherent structure of the thesis, each chapter has

a preface that places the manuscript in the context of the thesis as a whole and provides a

connection to the preceding and following chapters.
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Preface to Chapter 2

In this first manuscript we introduce the entanglement entropy for a topological super-

conductor and establish its ability to indicate the phase transition when moving from the

trivial to the topological phase. We show how the use of different partitions of a system

enables one to extract various different properties of the topological superconductor.
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Abstract

The classification of electron systems according to their topology has been at the forefront

of condensed matter research in recent years. It has been found that systems of the same

symmetry, previously thought of as equivalent, may in fact be distinguished by their

topological properties. Moreover, the non-trivial topology found in some insulators and

superconductors has profound physical implications that can be observed experimen-

tally and can potentially be used for applications. However, characterizing a system’s

topology is not always a simple task, even for a theoretical model. When translation

and other symmetries are present in a quadratic model the topological invariants are

readily defined and easily calculated in a variety of symmetry classes. However, once

interactions or disorder come into play the task becomes difficult, and in many cases

prohibitively so. The goal of this paper is to test whether the entanglement entropy and

entanglement spectrum bare signatures of the system’s topology. Using quadratic models

of superconductors we demonstrate that these entanglement properties are sensitive to

changes in topology.
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2.1 Introduction

Over the past several years the study of topology in condensed matter systems has

become a topic of great interest. The topological properties of quantum Hall systems

were studied since the 80’s[1], topological systems with time-reversal symmetry were

only predicted[2, 3] and realized[4] recently. The introduction of topology into the

discussion of solid-state phenomena has revolutionized the classification of materials.

For instance, two insulating states in the same dimension and symmetry class, formerly

thought of as being equivalent, could have a different topology and are not the same

state of matter. This classification is also supported by the direct physical implications of

non-trivial topology, namely localized modes on system boundaries[5–7]. These modes

are current carrying states on sample surfaces and Majorana fermions in vortex cores of

topological superconductors.

In light of the above, it is desirable to assign a label which carries the information

about the topology to any system of interest. This is easy to do in a non-interacting

system with translation invariance as it is described by a periodic, quadratic Hamiltonian.

This label is the ‘topological invariant’, which is an integer number, related to Berry

curvature in the Brillouin zone. Loosely speaking, the invariant measures the phase

winding of single-particle states as the momentum is scanned in the Brillouin zone. For

example, in a two-dimensional superconductor with broken time reversal symmetry, such

as the model in the following discussion, the topological invariant is a Chern number, the

integral of the Berry curvature over the Brillouin zone. Calculating the Chern number

requires knowing the single particle wave function at any point in the Brillouin zone

and the presence of additional symmetries (like mirror or particle-hole) simplify the

procedure greatly.

The ease with which one can evaluate the topological invariants in a non-interacting,
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clean system, unfortunately, does not carry over to dirty and/or interacting systems. While

breaking of translation invariance by disorder prevents the use of lattice momentum,

interactions invalidate the notion of a single particle wave function altogether. K-theory

classification[8–10] itself is valid in non-interacting dirty systems and there are formal

ways of evaluating the topological invariants for interacting systems. This could be

based on flux insertion, similar to Laughlin’s argument for quantum Hall systems[3] or

using Green’s functions[11, 12]. However, these methods are not easy to implement,

especially in situations where the ground state (only) is found numerically and given as a

superposition of many configurations. It is therefore desired to devise an alternative way

of distinguishing a topological state from a trivial one in the presence of disorder and

interactions and in a way that utilizes the ground state only, without requiring the full

spectrum (or Green’s function). For this reason we turn to study the entanglement entropy

(EE) and entanglement spectrum (ES). We follow several authors who considered clean

and non-interacting systems [13–15] and extend the study to other models of topological

superconductors. Like previous authors we find that the topology is manifested in the

entanglement properties in various ways. We extend the previous studies and point to

universal behaviour that can be potentially used in more complicated cases[16].

The entanglement entropy and spectrum will be defined in the next section. Before

presenting the formal definitions, let us simply note that these include dividing the

system into subsystems A and B and tracing out degrees of freedom associated with

subsystem B. Early applications of the entanglement entropy were concerned with

how the entanglement entropy depends on the length of the boundary between the

two subsystems. It was shown that, in two dimensions, if one considers a system with

vanishing correlation length that the leading term in the entanglement entropy is linear[17,

18], a property referred to as the area law. Interestingly, in certain cases, the subleading

length dependence of the entanglement entropy is directly related to topology. This
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subleading term, −γ is called the ’topological entanglement entropy’. The cases for

which γ is non-zero are gapless topologically ordered states[19, 20] to be distinguished

from the systems discussed in this work.

Although related to the topological ordering discussed above, topological insulators

and topological superconductors are a different class. A topological superconductor (or

insulator) is a ‘symmetry protected topological state’ (see for example Ref. [21] for

the distinction), meanwhile the topological order discussed above (where γ is nonzero)

is defined through long-range entanglement[22]. The bulk of a symmetry protected

topological state is trivial from the point of view of topological order and therefore

posses no topological entanglement entropy, i.e., γ = 0. 1

For the reason discussed above we cannot rely on γ to distinguish between a topo-

logical and a trivial superconductor (or insulator). It is therefore natural to ask if the

entanglement entropy contains any other signature that can be used to distinguish be-

tween a topological and a trivial phase in a symmetry protected topological state. Several

proposals have been made over the past couple of years and we will outline the ones

relevant to the current work. First, it has been shown that as one tunes model parameters

across a topological phase transition a peak in the derivative of the entanglement entropy

can be seen[13]. This singularity occurs despite a lack of a rapidly changing γ, signalling

the sensitivity of other terms in the entanglement entropy to the (symmetry protected)

topology change. Second, one may also look for other subleading terms that contain

potential information on the topology of the system. For example, there are logarithmic

terms in the presence of corners and long range order[25].

Signatures of the topology of symmetry protected states can also be found in the

1The charged topological entanglement entropy [23], which is a universal sub-leading term of the
charged entanglement entropy[24], distinguishes symmetry protected topological phases from trivial
phases. On the other hand, as we show below, the leading term is sensitive to the topology, as might be
expected, since the entanglement entropy is closely related to correlations.
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entanglement spectrum. Again, the entanglement spectrum will be defined in the next

section. It is the spectrum of an auxiliary hamiltonian associated with the entanglement

entropy. The entanglement spectrum is sensitive to the type of partition applied. For a

partition whose boundary prevails throughout the whole sample, it has been shown that

the low-lying entanglement spectrum mimics the excitation spectrum near a physical

boundary, although the system may be fully periodic[26, 27]. Moreover, Hsieh and

Fu[28] showed that for an extensive partitioning the topological spectrum is related to

bulk properties. In this case, discussed below, a topological phase transition in the form

of a gap closure can be seen in the entanglement spectrum by varying the partition only,

even when the system parameters are unchanged.

The goal of this paper is to apply the tools outlined above to models of topological

superconductors relevant for the search for Majorana fermions. In particular, the two

models we consider describe spin-orbit coupled superconductors with various order

parameters. We consider a superconductor with d+ id-wave order parameter symmetry.

This model is the mean field limit of an interaction driven superconductor with spin orbit

coupling which has been studied previously by two of us[29–31]. We also consider an

s-wave order parameter, motivated by recent proposals to realize topological supercon-

ductivity in heterostructures[32, 33]. In these proposals superconductivity is achieved

by proximity to an s-wave superconductor. It should be noted that in both the above

models the pairing term is in the singlet s- or d-wave channel. However, the presence

of spin-orbit coupling forces the projection of this order parameter on to the spin-orbit

coupled band. In each band the projected order parameter acquires additional phase

winding which alters the order parameter symmetry. When there’s only one relevant

band the superconductor is topological with effective p- or f - symmetry.

The main findings of our study are as follows. (i) When varying model parameters

such that the system changes its topology, the derivatives of the entanglement entropy
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with respect to model parameters are sharply peaked at the transition. This extends a

previous observation by Oliveira[13] to an additional system. This result holds even for

very small subsystem sizes and could therefore find potential use in a more complicated

system. (ii) Any effort to find subleading terms to the area law in our models using a

’finite’ partition to A and B subsystems were overwhelmed by finite size effects. This is

in contrast to previous studies[13, 14] where no such problems were reported. Owing to

this, studies based on subleading terms of more complicated systems may be of limited

scope. However, by adopting a corner-less partition we were able to simulate large

systems. We establish that any possible subleading terms in the EE have to be due to

corners[34], as all sub-leading contributions are negligible in the corner-less partition.

Moreover, this shows that the slope in the area law is sensitive to the topology of the

system and discontinuous at the phase boundary. Plotting this coefficient in parameter

space is then a useful method for searching for a topological phase boundary. (iii) The

entanglement spectrum of the corner-less partition provides a nice illustration of the

connection between the low energy states in the entanglement spectrum of a partition

with a prevailing edge and the low energy states of a physical system[26, 27] with an

edge for this model. (iv) In our model of a topological superconductor, a topological

phase transition can be seen in the entanglement spectrum by varying the partition. This

result extends the work of Hsieh and Fu[28] on topological insulators to the case of

topological superconductors and supports their general arguments.

The rest of this Paper is organized as follows: In the next section we introduce the

entanglement spectrum, entanglement entropy, and our model framework. In Section 2.3

we present and discuss our results of the entanglement entropy in parameter space while

in Section 2.4 we study the entanglement entropy as a function of system size. Section

2.6 contains our partition tuning study and concluding remarks are presented in Section

2.7.
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2.2 Model and Methods

2.2.1 The Reduced Density Matrix, Entanglement Spectrum and

Entanglement Entropy

We start by defining the reduced density matrix, the entanglement spectrum, and the

entanglement entropy. We also discuss how they are obtained relatively simply in a

non-interacting system. Starting from a ground state |ψ〉 one defines the reduced density

matrix by dividing the system into two parts, A and B. The reduced density matrix[26]

of subsystem A is given by

ρA = TrB (|ψ〉〈ψ|) ≡ e−HA

ZA
, (2.2.1)

where the trace is over all configurations of subsystem B and the above equation serves

as the definition of HA, the entanglement Hamiltonian. The entanglement spectrum is

defined as the set of eigenvalues {Ei} of the entanglement Hamiltonian, HA. ZA =

TrA(e−HA) is the partition function. The entanglement entropy (EE) we choose to work

with is the von-Neuman entropy, defined by:

SA = −Tr (ρA log ρA) (2.2.2)

We now specialize our discussion to the system at hand: a quadratic system with super-

conductivity. In order to calculate the ES we appeal to the fact that the entanglement

spectrum of a quadratic system is completely determined by its correlations. To show

this we generalize a method proposed in Refs. [35, 36]. We briefly review the main

steps of the method here, adjusted to the case of a superconductor. Consider a state |ψ〉

which is the ground state of some quadratic Hamiltonian. |ψ〉 is a Slater determinant of
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single particle states and therefore obeys Wick’s theorem. Now let us consider averages

Ci,j = 〈c†icj〉 where i, j are both in subsystem A. This average must be completely

determined by the reduced density matrix ρA. Moreover, since |ψ〉 is a determinant all

averages must obey Wick’s theorem. Therefore for any local operator OA in subsystem

A, 〈OA〉 = Tr (ρAOA) and the trace must obey Wick’s theorem. It follows that ρA is an

exponent of a quadratic entanglement Hamiltonian. Further, if |ψ〉 is a ground state with

some pairing (i.e. a BCS like wave function) then the anomalous averages 〈c†ic†j〉 must be

non-zero. From this it follows that HA must also contain pairing.

The considerations above lead us to write a general form for HA as follows

HA =
∑
i,j∈A

(
c†ihi,jcj +

1

2

(
c†i∆i,jc

†
j + h.c.

))
(2.2.3)

where i, j label both site and spin in subsystem A. The above Hamiltonian can be

written as HA = ψ†Hψ where ψ = (c1...cN , c
†
1..c
†
N)T . The matrixH obeys particle-hole

symmetry and thus it can be diagonalized as H = WDW † where D = diag(E,−E)

where E = diag(E1....EN) with Ei > 0 ∀i and

W =

u v∗

v u∗

 , (2.2.4)

where u and v are matrices in position and spin space. If we now define the correlation

matrix

G =

〈cic†j〉 〈cicj〉
〈c†ic†j〉 〈c†icj〉

 (2.2.5)

and calculate the averages in terms of traces over ρA, one can show that G can be rep-

resented as G = WG̃W † where G̃ = diag(I − f, f) with f = diag(nf (E1)....nf (EN))

with nf (x) = 1/(1 + ex). We now make the observation that G andH are diagonalized
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by the same transformation. Therefore if we define the first N eigenvalues of G as

ζi = 1− f(Ei) then the entanglement spectrum is given by Ei = ln
(

ζi
1−ζi

)
. Thus the

entanglement spectrum is obtained via the following program. Using a ground state

|ψ〉 we calculate Gi,j for i, j in subsystem A, diagonalize the matrix G and then use its

eigenvalues to obtain the entanglement spectrum.

Using the relation between the entanglement entropy and the entanglement Hamilto-

nian in Eq. (2.2.2) and ζi = 1− f(Ei), we find

SA = −
∑
i

(ζi ln ζi + (1− ζi) ln (1− ζi)), (2.2.6)

which is just the entropy of a free fermionic gas with energies Ei. For a vanishing

correlation length, as expected for an insulator, the entropy has the form

SA = αL− γ +O(1/L), (2.2.7)

where L is the length of the partition between the two sub-systems. The first term,

proportional to L is referred to as the area law and the sub-leading term γ is called the

‘topological entanglement entropy’[17, 18]. This term only depends on the topology of

the ground state and is thus universal. Since the entanglement Hamiltonian of a 2+1d

topological system is related to the Hamiltonian of (1+1)d conformal field theory[17],

one could obtain the above expression by taking the large L limit of the CFT partition

function.

For our bulk model we expect γ to be zero[13, 14] since our topological state is a

symmetry protected one. The assumption of a vanishing correlation length ξ is justified,

as long as the characteristic length of each subsystem is large compared to ξ. However,

this assumption is violated due to the presence of corners, where the size of the partition
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necessarily becomes comparable to the correlation length. Thus, one gets,

α→ α(ξ), −γ → −γ(L, ξ). (2.2.8)

This can then lead to sub-leading terms in the entanglement entropy. In the following

sections we show that in our systems any such term is associated with partition corners.

2.2.2 Quadratic Hamiltonian with Pairing

In our model we look at quadratic states with p-wave or f -wave pairing. These pairing

states are the result of adding momentum-spin locking (via spin-orbit coupling) to

systems which otherwise tend to pair in the singlet s- or d-wave channel[29–31]. These

systems have translational invariance and can thus be diagonalized in momentum space

and therefore their Chern number (the relevant topological invariant) can be calculated

exactly. This means, conveniently, that the topological phase diagram is known. We

can therefore use this to analyze the results given by the entanglement spectrum and

entanglement entropy.

The model we consider is as follows

H = T +HSO +HSC , (2.2.9)

where,

T = −
∑
〈i,j〉,σ

c†i,σti,jci,σ (2.2.10)

is the tight binding kinetic energy where ti,j are the hopping amplitudes. Here we take

ti,j = ti−j and define its Fourier transform as εk. For nearest neighbour hopping on the
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square lattice εk = −2t(cos kx + cos ky). Next,

HSC =
∑
k

(ck,↑∆kc−k,↓ + h.c.) , (2.2.11)

where ∆k is the superconducting order parameter. In what follows when we refer to the

s-wave model we mean an order parameter of the form ∆k = ∆0 while d + id-wave

symmetry means we have used ∆k = ∆1(cos(kx)−cos(ky))+i∆2 sin(kx) sin(ky). These

electron pairing functions in the singlet channel transform into p- or f -wave functions

when written in the spin-orbit coupled band basis. This alone does not guarantee

topological superconductivity as there is usually two bands with opposite chirality.

Therefore the condition for topological superconductivity is that only one relevant band

participates in the pairing [33]. The spin-orbit coupling term takes the form

HSO =
∑
k

Ψ†kHkΨk, (2.2.12)

where Ψk = (ck,↑, ck,↓)
T ,Hk = dk · ~σ (with ~σ a vector of Pauli matrices acting on the

spin). dk could in principle take any form which is convenient to describe spin-orbit

coupling. Here we choose dk = (A sin kx, A sin ky, 2B(cos kx + cos ky − 2) + M)

(A,B and M are material parameters which describe the various spin-orbit coupling and

Zeeman strengths). This choice resembles the spin-orbit coupling term used by Bernevig,

Hughes and Zhang[37] in the description of 2d topological insulators.

The hamiltonian (2.2.9) satisfies

UCH
∗(−k)U−1

C = −H(k), (2.2.13)

where UC is a unitary operator σy ⊗ I2 in the basis of (ψk, ψ
†
−k). Since U∗CUC = −I4,

this topological superconductor belongs to Class C[8–10].
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One can block diagonalize this hamiltonian by a unitary transformation and the

topological number is given by a doubled Chern number. Defining ξk = εk−µ the Chern

number is given by[12, 29, 30]

C1 =
1

iπ
log

[
Q(0, 0)Q(π, π)

Q(π, 0)Q(0, π)

]
, (2.2.14)

where Q(k) = sgn(|∆k|2 + ξ2
k − d2

k). For our particular model we have Q(0, π) =

Q(π, 0), regardless of parameters. We are therefore left with

C1 =
1

iπ
log
(
sgn
[
(|∆0|2 + ξ2

0 − d2
0)(|∆Q|2 + ξ2

Q − d2
Q)
])
, (2.2.15)

where Q = (π, π). Using the above formulation we can map the topological phase

diagram of the superconductor described by the Hamiltonian H .

2.3 Topological Phase Boundary and Entanglement

Entropy

When plotting the entanglement entropy and its derivatives with respect to the model’s

spin-orbit coupling parameters we see the following intriguing property. The topological

phase boundaries of our model coincide with “kinks" in the entanglement entropy. That

is, there’s a change in behavior of the entanglement entropy at the transition from a trivial

superconductor to a topological superconductor. These kinks are seen as a strong peak in

the derivative of the entanglement entropy with respect to material parameters. To make

a rather loose analogy with standard thermodynamic variables, the transition appears to

be a second order phase transition. A similar property was found in a spin-orbit coupled

triplet superconductor in Ref. [13].
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Figure 2.1: Plot of the entanglement entropy across the phase boundary for the d-wave system.
Figure (a) shows the entanglement entropy SA for subregion A a square of side length 12, figure
(b) gives ∂SA

∂B for the same geometry and figure (c) plots the bulk energy gap as a function of B.
In the figure we have fixed µ = 0, A = 0.25t,M = 0.8t,∆1 = 0.8t and ∆2 = 0.4t. B/t = 0.6

is the critical point and B/t < 0.6 (B/t > 0.6) corresponds to the trivial (topological) phase.
Notice that the entanglement entropy takes larger values in the trivial phases. This result is
different than that of the s-wave topological superconductor shown in Fig.2.3.
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Figure 2.2: Plot of the entanglement entropy for the d-wave system and its derivatives in MB

space. We have (a) the entropy, SA, (b) its derivative
∣∣∣∂SA
∂M

∣∣∣, and (c) the derivative
∣∣∣∂SA
∂B

∣∣∣ . In all
figures we have picked a subregion A a square of side length 20 and fixed µ = 0, A = 0.25t,∆1 =
0.8t and ∆2 = 0.4t. The critical line is B/t = (M/8t + 0.5) and B/t < (M/8t + 0.5)
(B/t > (M/8t+ 0.5)) corresponds to the trivial (topological) phase.

In general, phase transitions between states of different topology but the same sym-

metry are not characterized by an order parameter. The entanglement entropy in this case

serves as a substitute to a thermodynamic potential and exhibits a kink at the transition.

One may expect that exactly at the transition the bulk gap should close, giving rise to

that kink.

In Fig. 2.1 we present a cut through the phase diagram, where only the spin-orbit cou-

pling parameter B is changed. In panel (a) we see that the behavior of the entanglement

entropy changes abruptly at B = 0.6t. This change is more apparent in the derivative
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of SA in panel (b). Checking with the Chern number calculated above, we expect a

topological phase transition for this choice of parameters at B = 0.6t; precisely where

this peak occurs. B < 0.6t and B > 0.6t correspond to the trivial and the topological

phases respectively. One might expect that a trivial phase has a smaller value of the

entanglement entropy than that of a topological phase because of the absence of the

mid-gap entangled states. However, the entanglement entropy of the d-wave supercon-

ductor shows the opposite result; the trivial phase has a larger value of the entanglement

entropy. This suggests that in general the leading term of the entanglement entropy

cannot be used alone to distinguish trivial phases from topological phases. However, it

does change abruptly at the transition. In Fig. 2.1c we have plotted the bulk gap of our

full (unpartitioned) system. The most noticeable feature of the gap is that it closes at

B = 0.6t, as is necessary for a topological phase transition. One may also note that the

maximum value of SA occurs around B = 0.48t. While we are presently not certain

about the origin of this maximum, we may speculate that it is related to some correlation

length increase which approaches the system size at B = 0.48t, before the true transition

at B = 0.6t.

To further explore this behavior we plot SA and its relevant partial derivatives in

parameter space and compare its behavior to the expected phase boundaries. First

we explore this for a d-wave superconductor. We fix µ = 0, A = 0.25t,∆1 = 0.8t

and ∆2 = 0.4t and explore M − B space. For this specific choice of parameters and

focusing on positive values of B, we expect a topological phase boundary along the line

B/t = M/8t + 0.5. We have generated data for SA , ∂SA

∂M
, and ∂SA

∂B
for this particular

choice of parameters, these are presented in Fig. 2.2.

Studying Fig. 2.2a, we see a fundamental change in the behavior of the entanglement

entropy across the phase boundary line B/t = M/8t+ 0.5. The entropy is large in the

trivial phase (B/t < (M/8t + 0.5)) and then decreases to a lower and much slower
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Figure 2.3: Plot of the entanglement entropy and its derivatives in M −∆0-space for an s-wave
system. From left to right we have the entropy, (a) SA, (b)
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B = 0. |∆0| = |M | is the phase transition line and |∆0| > |M | (|∆0| < |M |) corresponds to
the trivial (topological) phase. Notice that the entanglement entropy takes on larger values in the
topological phase, which is opposite to the d-wave case.

changing value across the phase boundary line. This sudden change is more transparent

in the derivatives of the entanglement entropy as panels 2.2b and 2.2c. We see in both of

these figures that the derivatives are comparatively small away from the phase boundary

lines and increase substantially as these critical points are approached. The exact position

of the peak in the derivatives is better seen in the B derivative, as the phase boundary

is rather shallow along lines of fixed B which limits our resolution in the M derivative

data. Focusing on the plot of ∂SA

∂B
, one can see a line that is formed by looking for the

maximum value of ∂SA

∂B
for a given value of M . Fitting this line gives, to 3 decimal

places, a slope of 0.125 and an intercept of 0.500t, providing a rather convincing case

that ∂SA

∂B
is peaked along the line B/t = M/8t+ 0.5.

To further study these peaks and also to provide evidence that this behaviour isn’t

unique to the d-wave system, we have also studied the parameter space dependence of

SA in a system with s-wave superconductivity. Here we have chosen parameters such

that we make as close a connection as possible with the model of Sau et al in Ref. [32].

We therefore set B = 0 and define µ̃ = µ+ 4t. In this case our model reduces to that of

Ref. [32] when the continuum limit is taken.

Using B = 0, µ̃ = µ+4t, Eq. (2.2.15) and assuming 64t2 > −∆2
0 +M2− µ̃2 +16tµ̃,
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the Chern number is simplified to

C1,s =
log(sgn [∆2

0 + µ̃2 −M2])

iπ
, (2.3.1)

where the subscript s denotes s-wave. It then follows that if ∆2
0 + µ̃2 −M2 < 0 the

system is topological. Thus the topological phase boundary is defined by the equation

∆2
0 + µ̃2 = M2.

We choose to fix µ̃ = 0 and study the resulting behavior in the M -∆0 plane. Accord-

ing to the Chern number we should see phase boundaries at ∆0 = ±|M |. Indeed, we

see strong indications of a phase boundary along this line. This behavior isn’t overtly

obvious in the entanglement entropy in Fig. 2.3a, however upon taking derivatives of the

data with respect to M and ∆0 it becomes more apparent. This can be seen in Figs. 2.3b

and 2.3c, where strong peaks appear along the lines ∆0 = M and ∆0 = −M . Thus we

have a second clear indiction that SA changes its behaviour across a topological phase

transition. Comparing to Fig. 2.2, this demonstration has come from not only a different

order parameter symmetry but also from varying a different parameter.

2.4 Functional dependence of the entanglement

entropy

The study of the functional dependence of the entanglement entropy SA on the ‘surface

area’ of a partition A enables one to make conclusions about the ground state of the

system. Deviations from the area law have been studied extensively for a variety of dif-

ferent models in different dimensions (see [38] for a review) and depend on the particular

model and ground state under investigation. An example of this in d-dimensional models

can be found in Ref. [25]. This work shows that in models with a spontaneously broken
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Figure 2.4: Upper panel: Schematic plot of the different shapes used for the partition of the
system. From left to right: square, cross and (reflected) L-shape. Lower panel: Plot of the linear
coefficient in the entanglement entropy for d-wave coupling for M = 0, µ = 0, ∆1 = 0.8t,
∆2 = 0.4t, and A = 0.25t by varying B for a square (red plus), an L-shaped (green cross), a
cross shaped partition (blue star) as well as the left right partition (pink square). For this M -value
the critical point is at B = 0.5.

continuous symmetry, the Goldstone mode causes the entanglement entropy to have a

sub-leading corner correction proportional to lnL, where L is the circumference of the

partition. Additionally, for two-dimensional critical fermionic models, one also expects a

logarithmic term, not associated with corners[39].

One difficulty in analyzing the area law is that the circumference of the partition in a

lattice model is not uniquely defined. In our calculations we chose the boundary as the

line that divides the distance between the outer layer of the partition and the first layer of

the complement into half. This is a natural definition as every single lattice point in a

line will contribute evenly to the circumference. Other definitions are possible, however,

the particular choice should not affect the qualitative behavior of the area law slope, α.



43 CHAPTER 2. NUMERICAL ENTANGLEMENT ENTROPY

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

0 20 40 60 80 100 120 140 160

Ssub

L

B = 0
B = 0.04t
B = 0.05t
B = 0.07t
B = 0.09t

(a)

-20

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000 3500 4000

Ssub

L

-1000

0

1000

0 2000 4000

Ssub

L

(b)

Figure 2.5: Subleading dependence of a d-wave superconductor on partition size. (a) Ssub of a
square partition as a function of L in the trivial phase for different B-values: B = 0 (red plus),
B = 0.04t (green cross), B = 0.05t (blue star), B = 0.07t (pink square) and B = 0.09t (cyan
diamond). (b) Ssub of a left/right partition in the topological phase in a for varying B-values:
B = 0.7t (red solid line), B = 1.2t (green dashed line), B = 1.4t (blue dashed line). The inset
shows Ssub at the critical point B = 0.5t. The remaining parameters are fixed at A = 0.25t,
µ = 0, ∆1 = 0.8t, ∆2 = 0.4t, and M = 0.

For all cases studied in this paper, the leading behavior of the entanglement entropy

is linear. The coefficient of the linear term is a non-universal constant denoted by α

and dependent on the parameters of the Hamiltonian. In Fig. 2.4 we plot α for d-wave

coupling for several B-values and different shapes of the partition. Directly at the critical

point, the value of α jumps whereas in the topological phase, the change is rather small.

Thus, we find that the very distinct signature of the phase transition described in the

preceding section is due to the change in α. In addition, the dependence of α on the

partition shape is rather small and does not change the qualitative behavior. Only for

very large B-values, a slight difference can be seen.

As the sub-leading nature of these corrections makes it very hard to see them directly

in the entanglement entropy, we look at the quantity[14].

Ssub(L) = LSL+1 − (L+ 1)SL, (2.4.1)
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in which the leading linear term is eliminated. In the case of only a constant sub-leading

term and in the limit of large L, Ssub ∝ const. For a logarithmic term, the behavior is

Ssub ∝ lnL, whereas for a power law we have Ssub ∝ Lη for some exponent η. We will

also study the dependence of the entanglement entropy on the geometry of the partition.

To this end, we will look at a square partition, a cross shaped partition and an L-shaped

partition (see the upper panel of Fig. 2.4).

In Fig. 2.5(a) we show results for Ssub of a square partition in the trivial phase for the

d-wave case. It can clearly be seen that in the large L limit, Ssub converges to a constant

value, which indicates a constant negative correction to the entanglement entropy. The

constant (independent of L) it changes with the model parameters. In order to further

understand the constant sub-leading term we study differently shaped partitions, such

as a cross or an L-shaped partition (c.f. Fig 2.4). As suggested earlier[34], this constant

is an effect of the corners, where the dimensions of the partition are of the order of the

correlation length. Thus, we would expect to find a constant ratio of the constant of

a cross (L-shaped) partition with the constant of a square partition to be 3 (1.5). And

indeed, throughout the trivial phase (far away from the critical point), we find the ratios

of the constants to be ccross/csquare ≈ 3, and ccross/cL ≈ 1.5, as expected for a system with

zero topological entanglement entropy, γ. The topological phase, unfortunately, is not

reachable in this approach due to finite size effects.

Near a topological phase boundary one must exercise caution when analyzing the

functional dependence of SA on the system boundary size L. As the system nears the

phase boundary the correlation length grows and so finite size effects become very large.

For partitions such as those in Fig. 2.4, these finite size effects become important as

we are technically limited to modest sized subsystems by the computational time and

memory required to diagonalize the matrixG in subsystem A. Using a reasonable amount

of memory limits our system size to a side length of 50− 60. Thus, when the correlation
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length is large we do not have the ability to make our subsystem large enough to see

the finite size effects subside. If one is not careful one could misinterpret the finite size

effects in this region as some sort of non-trivial subleading contribution to SA, such as

logL or Lη.

To further illustrate our observation that any subleading terms to SA for our system

originate from corners and at the same time show just how important finite size effects

become with an increased correlation length, we use a ‘corner-less’ partition, where

subsystem A is a ring on our torus. If the torus dimensions are L× Ll where Ll is the

longer dimension wrapped around the doughnut hole then our ring dimensions are L× l

and we take l = L/4. The boundary of A is then varied by varying the entire system

size. Besides having no corners this partition has the advantage that translation symmetry

along the ring’s azimuthal direction is conserved.

Our results for this type of subsystem are illustrated in Fig. 2.5(b). The first striking

feature is that Ssub converges to zero for large L for all parameter choices. This leads to

the conclusion that any subleading terms we have seen above must be a result of corners

and subsequently that all subleading behavior beyond the area law for SA is zero. This is

consistent with the observation that the topological entanglement entropy for this system

should always be zero.

The second purpose of Fig. 2.5(b) is to illustrate the importance of finite size effects

when looking at area laws for spin-singlet superconductors. As the spin-orbit parameter

B is increased Ssub acquires a damped oscillatory behavior as a function of L. For larger

B the amplitude and decay length of these oscillations increase. The way in which L is

changed for this partition requires changing both the boundary length of subsystem A and

the total system size. Thus inherent in Ssub are both finite size effects from the fact that

SA depends on the total system size (for smaller lattice sizes, before the thermodynamic

limit is reached) and finite size effects from non-area law behavior in SA. The system
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size required to overcome these effects increases with B. We see that even for B = 0.7t

a very large system size is required before finite size effects vanish. This system size is

unreachable using partitions with corners, such as those in Fig. 2.4.

Another indication for finite size effects can be seen in the inset of Fig. 2.5(b), where

we show the subleading correction to the entanglement entropy right at the critical point.

It displays oscillatory behavior with a very large amplitude which increases with L. At

this point, the correlation length diverges.

In summary, the current model shows that evaluating the exact subleading dependence

of the entanglement entropy on L proves to be far from trivial. This is in contrast

to previous work[13, 14] where such problems did not arise. Therefore, using such

subleading terms as a way to evaluate the topology of a specific system (whether they

exist or not) may be a prohibitively difficult task. That being said, analyzing the functional

dependence on L is not a complete loss in this respect. Looking at the linear coefficient, α

the above results suggest that it exhibits a discontinuity at the topological phase boundary.

In Sect. 2.3 we found that the entanglement entropy is singular at the phase boundary,

this could in principle come from a discontinuity in any term in SA, regardless of the L

dependence. The plot in Fig. 2.4 shows that this singularity is in fact coming from α.

For a finite system with corners we essentially do not know the subleading dependence,

whereas in the corner-less partition we find no subleading term at all. Regardless of

these two differences we see the same pathological dependence of α on B at the phase

boundary.

2.5 Edge States in the Entanglement Spectrum

Let us discuss another interesting characteristic of the corner-less partition introduced

above. This partition introduces an artificial boundary into the system and therefore
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we are able to probe boundary physics in a bulk model by looking at the entanglement

spectrum of subsystem A[26, 27]. First let us think about a simple s-wave model (whose

topological phase is a p-wave superconductor). If we were to introduce a boundary we

would expect to see a zero energy edge mode when the Chern number is 1 and no edge

mode when the Chern number is zero[12]. We can see this same physics in the bulk

model by looking at the entanglement spectrum of the A subsystem. To illustrate this we

have plotted the spectrum in the trivial phase and in the topological phase by properly

changing parameters. Our results are presented in Fig. 2.6. We see quite unmistakably

the development of a zero mode upon crossing into the topological region. This zero

mode is localized on the boundary of subsystem A, as is shown in the inset of Fig. 2.6.

Finally we explore the edge physics of the bulk d-wave model (whose topological

phase is a p- or f -wave superconductor). The solution of a d-wave system with an edge

results in a spectrum which is slightly more complicated than the one above for the

s-wave case[40]. From a topological standpoint one expects to see an even number (odd

number) of zero energy states when the topology of the system is trivial (non-trivial). We

have compared the low-lying states in our corner-less partition entanglement spectrum to

those of a physical system with a boundary found, for example, in Reference [40]. We

find consistency between the two with respect to the number of zero energy states, their

position in k space as well as their low energy dispersion. A representative example of

our results is shown in Fig. 2.7a. Our choice of parameters is such that the low lying

states of this plot should be compared with those of Fig. 5II of Ref. [40].

Another interesting feature of the data in Figs. 2.6 and 2.7a is the nature of the

eigenstate itself, both at and away from zero energy. At lower energies the wave functions

are very localized on the edges of the system, with localization length increasing with

energy. This state, however, does not become truly delocalized at any energy.

A second interesting feature of the eigenstates comes from studying the E = 0 states
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Figure 2.6: Entanglement spectrum of an s-wave superconductor. Both sets of data are for
∆0 = 0.3t, A = 0.25t, µ = −4t. The red squares are for a system with a M = 0.29t (trivial
state) while the black circles are from a run with M = 0.31t (topological state). The inset shows
the density of the zero energy state in the M = 0.31t system as a function of position. The
boundaries of subsystem A are at x = 0 and x = 150 in this inset figure. The gap in the trivial
spectrum is shaded to showcase the in-gap states of the topological spectrum.
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and, in particular, looking for Majorana modes. We note that it is futile to look for a

single Majorana state, as these modes must come in pairs in a finite system. We therefore

look for pairs of Majorana states that are spatially separated and reside on opposite sides

of the partition.

We notice that the entanglement spectrum exhibits particle hole symmetry, therefore

if |ψ〉 is an eigenstate with energy E then (Λ|ψ〉)∗ is an eigenstate with energy −E,

where Λ = I ⊗ σx with σx acting on Nambu space and I is the identity on a space of

lattice sites and spin. This leads to the observation that at E = 0, |ψ〉 and (Λ|ψ〉)∗ are

degenerate eigen states. All eigenstates at E = 0 are highly localized on the boundary of

the system, an example of this is the state plotted in the inset of Fig. 2.6. Looking for

Majorana zero energy states then becomes a task of looking for linear combinations of

|ψ〉 and (Λ|ψ〉)∗ that give states localized at opposite ends of the system and obey the

following condition: given two generic linear combinations

|φM,i〉 = α1,i|ψ〉+ α2,i(Λ|ψ〉)∗ = (ui, vi)
T , (2.5.1)

where ui and vi are themselves vectors (each with dimension of one half the dimension

of subsystem A) we require ui = v∗i .

As an example we have studied the gap closure in the d-wave spectrum in Fig. 2.7a

at ky = 0 in detail. Our numerical results give two states with very small energy

(approximately ±10−12t). Treating these two states as degenerate it is possible to form

two linear combinations of them which we denote |M1〉 and |M2〉. We have plotted the

density of these states in Figs. 2.7b and 2.7c. The average local electron density in these

states per lattice site n is defined as

ni(n) = |u↑i (n)|2 + |u↓i (n)|2 + |v↑i (n)|2 + |v↓i (n)|2, (2.5.2)
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Figure 2.7: Entanglement spectrum and Majorana Modes in a d-wave superconductor. This
data is for ∆1 = 0.5t ,∆2 = 0.8t, A = 0.5t, µ = −2.5t and M = 2t. (a) The entanglement
spectrum; We note the three zero energy states and therefore the topological nature of the spectra.
(b) and (c) The probability densities (see Eq. (2.5.2)) of the Majorana modes found through
orthogonalization as a function of n, the number of lattice sites along the direction of the ring
which makes up subsystem A.

where ui(n) is the nth entry in the vector ui and is itself a 2-component object (spin-up

and spin-down) and the label i = 1, 2 denotes which state we are interested in. Note

that this definition is also used in the inset of Fig. 2.6. The two combinations |M1〉 and

|M2〉 are highly localized on the respective boundaries of subsystem A. Averaging the

modulus of the difference between ui and v∗i of both of these states over every lattice

site (and spin projection) in subsystem A gives a result which is of order 10−5. Thus

these two states are localized on different boundaries and (to a high numerical precision)

satisfy the Majorana condition ui = v∗i .
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2.6 Bulk entanglement spectrum and partition induced

gap closure

Looking further into the entanglement spectrum we note that it is important to specify

what kind of partition is used. For example, by partitioning a gapped system into a left

and a right part, the low entanglement spectrum is similar to the excitation spectrum near

a physical boundary [26, 27, 41], as seen above. In fact, states in the ES that are related

to bulk degrees of freedom tend to lie very high in the spectrum of such a partition and

barely contribute to the entanglement entropy.

Nonetheless, one may extract information about the bulk by defining ‘extensive

partitions’, as defined by Hsieh and Fu in Ref. [28]. These partitions divide the system

into two parts such that the boundary between the two extends throughout the whole

system in every direction. Thus, the partition forms a superlattice. The periodicity of an

extensive partition removes the edge modes from the ES and lead it to resemble a bulk

spectrum.

An example for an extensive partition is show in Fig.(2.8) where one subsystem is a

collection of square islands while the other is the remaining sea. Using these partitions

we demonstrate that the ES may exhibit a topological phase transition as the partition is

changed. Throughout the following discussion we fix the parameters of the model such

that it represents a topological state. The only thing we change is the partition. As the

result of this change a phase transition appears in the entanglement spectrum while the

physical spectrum is always gapped and topological.

The tuning of partitions is done as follows. In the beginning system B consists of

islands while A is the sea. In one extreme case the island size is shrunk to zero so that

B is an empty set while A is the whole physical system. We then gradually enlarge the

islands. At some point the islands corners touch. This is called the symmetric point.
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(a) (b)

Figure 2.8: (a) Schematic display of an asymmetric partition where the green squares are
subsystem A and B its compliment. (b) Symmetric partition

When the islands grow further they overlap such that system B becomes the sea and

system A breaks into isolated islands. In Ref. [28] Hsieh and Fu argue that in both

extremes (A or B being the full system) subsystem A is gapped. However, when A

includes the full system it is in a topological state (like the physical system) but when it is

a collection of vanishingly small islands it is connected to the atomic limit (a trivial state).

They conclude and demonstrate for a topological insulator that somewhere between

these two limits the ES of subsystem A undergoes a topological phase transition which

manifests itself as a gap closure.

Following Hsieh and Fu we apply the above idea to a topological superconductor. In

Fig. 2.8a, we have sketched an extensive partition while the symmetric point is shown in

Fig. 2.8b. In both cases, for a d-wave as well as an s-wave SC, the ES in the asymmetric

cases are gapped, as can be seen for the case of a d-wave SC in Fig. 2.9 independent

of the phase the system is in. Staying in a topologically non-trivial physical state, we

can now induce a phase transition in the entanglement spectrum by varying the partition
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across the symmetric point. As can be seen in Fig. 2.9, this indeed induces a gap closure.

Using the fact that the symmetric partition forms a superlattice, one can define k-

vectors with respect to the superlattice and arrange the states in the ES with momentum.

The ES can then be compared to the spectrum of an unpartitioned system, whose

parameters are set to the critical point. The result can be seen in the lower part of Fig. 2.9.

In Fig. 2.9(c) we can see the ES of the symmetric extensive partition qualitatively mirrors

the physical spectrum of a critical, unpartitioned system (Fig. 2.9(d)). The parameters

for the system in Fig. 2.9(c) where chosen to be in the topologically non-trivial phase.

Thus, the symmetric partition realizes the critical system without changing the model

parameters. The gap closes at the K-point, where the spectrum has a massless Dirac

cone.

2.7 Conclusion

In this chapter we have studied several proposed signatures of topology in the entangle-

ment entropy and spectrum of superconducting models with topological phases. Our

systems of interest are spin-orbit coupled superconductors, motivated by recent progress

in the search for Majorana fermions[29, 32]. We have compared our results with those

obtained in previous work as well as evaluated the potential use of each of the methods

for the study of more complicated (disordered/interacting) systems, where the topology

is not known a priori[16].

We have analyzed the dependence of a bipartite partition on the circumference of the

partition and found a dependence of the form S(L) = αL+ . . . , where the first term is

the celebrated area law and the dots stand for sub-leading terms. The coefficient α was

found to have a sharp kink right at the phase transition such that it captures the transition

very clearly. In the trivial phase, the only sub-leading term was found to be a constant
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caused by corner effects. Meanwhile, the topological phase is not easily classified using

a small finite system (due to finite-size effects) and we must defer to a corner-less system.

In the corner-less partition the EE is given by the area law without any subleading terms.

We conclude that any non-area law contributions in this finite system must be due to

corners. As expected, throughout all phases the topological entanglement entropy, γ,

was found to be zero. Therefore, calculating α for a corner-less partition and looking for

singular behaviour may be of potential interest in more complicated systems.

Another signature of the topology of the system can be found by looking at the

entanglement spectrum. Depending on the choice of partitioning one may obtain different

topological properties of the entanglement Hamiltonian. A phase transition between

the topological and the trivial phase can be seen as a gap closure in the entanglement

spectrum. This is obtained by changing the extensive partitioning while leaving the

physical parameters unchanged. This property is related to the non-trivial topology of

the underlying state. Moreover, this finding implies that one has to apply special care

when using the entanglement spectrum to extract information about the ground state of a

physical system as it can undergo a phase transition while the physical system does not.

In addition to our goals stated in the introduction we would also like to emphasize

the versatility of the approach outlined in this whole paper; it can be applied to all

quadratic models with or without translational invariance where in the latter case the

system sizes are limited by computational power. The use of various forms of partitions

leads to a consistent picture of the different topological phases of a system, as shown for

a spin-orbit coupled superconductor with d+ id- and s-wave coupling.
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Figure 2.9: (a) Low energy part of the entanglement spectrum of the asymmetric partition in
the topological phase of a d-wave superconductor with B = 0.7t, M = 0.3t, µ = 0, ∆1 = 0.8t,
∆2 = 0.4t, and A = 0.25t. (b) Low energy part of the entanglement spectrum of the symmetric
partition in the topological phase of a d-wave superconductor (with the same parameters as in (a)).
(c) k-space spectrum for the symmetric partition of a 112 by 112 square lattice with the same
parameters as in (a), where the k-vectors are defined with respect to the superlattice. (d) The
physical spectrum of the system when its parameters are tuned to the critical point at B = 0.5t

and M = 0.
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Preface to Chapter 3

In the previous chapter we showed numerically the fact that the entanglement entropy

is able to detect the topological phase transition of a topological superconductor with

either s- or d-wave coupling. Thus, it is a great tool to analyze a system when no easy

way exists to calculate a topological invariant.

In order to extend and deepen the understanding of the connection between entan-

glement entropy and topology we now set out to get an analytical understanding of

the entanglement entropy of a topological superconductor in the case of large Zeeman

coupling. In this limit it is possible to project the system onto a single and effectively

spinless band which is accessible to an analysis via the entanglement entropy.
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Abstract

We study a model of two dimensional, topological superconductivity on a square lattice.

The model contains hopping, spin orbit coupling and a time reversal symmetry breaking

Zeeman term. This term, together with the chemical potential act as knobs that induce

transitions between trivial and topological superconductivity. As previously found

numerically, the transitions are seen in the entanglement entropy as cusps as a function

of model parameters. In this work we study the entanglement entropy analytically by

keeping only its most important components. Our study is based on the intuition that

the number of Fermi surfaces in the system controls the topological invariant. With our

approximate expression for the entanglement entropy we are able to extract the divergent

entanglement entropy derivative close to the phase transition.
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3.1 Introduction

Entanglement[1–3] is one of the most fascinating fundamental aspects of quantum

systems that has no classical equivalent. Its most straight forward demonstration is

through thought experiments on a system of few particles. Nevertheless, in recent

years the degree of entanglement in large systems, measured, for example, through its

entanglement entropy (EE), has become a standard tool in characterizing many body

systems.[4, 5]. More specifically, the EE (or bipartite entanglement) is found by dividing

the system into two parts, A and B. The reduced density matrix of subsystem A is

defined as the result of tracing out the degrees of freedom associated with subsystem

B in the density matrix. The logarithm of the reduced density matrix is then used to

define the entanglement entropy. This, in general, leads to two categories of systems:

entangled or separable. If the two subsystems are not entangled the density matrix of the

full system contains two separate blocks corresponding to each of the subsystems. In

this case the system is called separable and contains no entanglement. If this is not the

case, the system is entangled.

The entanglement entropy has been shown to be a sensitive indicator of the topology

in systems with intrinsic topological order[6] and recently it has also been studied in

the context of symmetry protected topological states. It has been studied numerically

in the clean limit[7–10] as well as in disordered systems[11–16], critical systems[17]

and topological states[18–20]. Furthermore phase transitions in gapless states have been

examined via the EE[21]. It should be noted, however, that in general the EE is not

measurable except for certain, well designed situations[22–26]. It is usually used as a

theoretical tool for characterizing model systems. In particular, the EE of symmetry

protected topological states has been shown to exhibit a cusp as a function of model

parameters when the parameters are tuned across a topological phase transition[10, 16].
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This is the focus of the current manuscript.

Topological insulators and superconductors are normally characterized by topological

invariants (a Chern number or Z2-invariant, depending on the class). In non-interacting,

clean systems these invariants can be easily computed using the Berry curvature while

in interacting systems the calculation requires knowing the full Green’s function and

therefore the full spectrum. However, the full spectrum of large interacting systems is

usually not accessible as most numerical methods are geared toward finding the ground

state or a thermally averaged energy. In this respect the EE may prove useful as it can

be defined using the ground state alone. This motivates our study of EE in symmetry

protected topological systems.

There are several contributions to the entanglement entropy. For two-dimensional

free-electron systems it has been shown that the entanglement entropy has the form

S = αL− γ + . . . , (3.1.1)

whereL is the cross section of the partition used to calculate the entanglement entropy and

. . . stands for subleading terms. The fact that the entanglement entropy is proportional

to the cross section of the partition instead of the volume is called the area law[27]

where ’area’ refers to the size of the boundary of the partition, in two dimensions this

is a length. The term γ is called topological entanglement entropy. In systems with

intrinsic topological order the entanglement entropy acquires this contribution, which

equals the logarithm of the total quantum dimension of the system[28, 29]. This term is

not applicable for symmetry protected states (SPTs) and is strictly zero in topological

insulators and superconductors.

Additional terms can arise due to corners in the partition[7]. This can be understood

as follows. In a finite partition, call it A, of size comparable to or smaller than the
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correlation length, the entanglement entropy is enhanced due to correlations between

states in the other partition, B, on different sides of the partition. In a large partition

with corners, close to the corner of partition A there could be two states of subsystem

B which are closer than the correlation length. The path connecting them goes through

subsystem A and affects the entanglement entropy. This leads to additional terms in the

entanglement entropy provide subleading corrections to the area law.

The reduced density matrix as well as the entanglement entropy are often difficult

to evaluate analytically and are only accessible numerically. This is due to the fact that

the calculation includes large matrices with non-generic features, making it hard to find

general solutions. Additionally, partitioning the system breaks translation invariance in

one or more directions, requiring a real space treatment. Moreover, the specific shape

of the partition may also have contributions to the entanglement entropy. We therefore

adopt a corner-less partition and avoid the effects of corners. The system is divided into

left and right subsystems, A and B, respectively, and consequently preserves translation

invariance in one spatial direction, this is depicted in Fig. 3.1.

The model we study is inspired by proposals for realizing two-dimensional topologi-

cal superconductors in heterostructures[30–32]. In these heterostructures different layers

provide the following essential ingredients needed to realize the topological supercon-

ductor. One or more layers provide non-trivial topology through spin-orbit coupling and

a Zeeman field and an additional layer provides pairing through the proximity effect. The

combination of these ingredients leads to chiral p-wave pairing in the valance band.

The paper is structured as follows: In section 3.2, starting out with a spin-orbit

coupled s-wave superconductor, we derive the effective p-wave model in the large

Zeeman limit. In section 3.3 we derive the expression for the entanglement entropy and

analyze the correlation functions of the system. We conclude in section 3.4.
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3.2 Model Hamiltonian

We describe our system via the Hamiltonian[31, 32]

H = T +HSC +HSO. (3.2.1)

With the kinetic term,

T = −t
∑
〈i,j〉,σ

c†i,σcj,σ − µ
∑
i

c†i,σci,σ (3.2.2)

which includes nearest neighbour hopping on a square lattice as well as the chemical

potential, µ. The second term introduces the pairing and reads,

HSC =
∑
k

(∆sck,↑c−k,↓ + h.c.) , (3.2.3)

where ∆s is a superconducting s-wave order parameter. The last term includes the

spin-orbit coupling and Zeeman field,

HSO =
∑
k

Ψ†kHkΨk, (3.2.4)

with Ψk = (ck,↑, ck,↓)
T ,Hk = dk · ~σ, where the Pauli matrices ~σ act on the spin degree

of freedom and dk = (A sin kx, A sin ky,M). Here A and M represent the Rashba

spin-orbit coupling and Zeeman strength, respectively.

Starting from the tight binding model with Rashba spin-orbit coupling and no pairing,

one finds that this coupling has the effect of aligning the spin of the electrons in the plane

orthogonal to their momentum, leading to a Dirac cone at the gamma point. Introducing a

finite Zeeman coupling gaps out the Dirac point. When the Zeeman massM is larger than
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the band width (determined by t and A) the two spin-orbit coupled bands do not overlap.

The chemical potential then determines which band contributes to superconductivity. In

this work we first focus on the regime M > 4t+ µ where the Fermi level crosses only

the lower band. We then discuss other possible cases.

In spin orbit coupled bands it is often convenient to work in a band basis, rather than

a spin basis. We therefore introduce creation/annihilation operators for electrons in the

upper and lower bands, Ψ± and Ψ†± and write

Ψk = φ−(k)Ψ−(k) + φ+(k)Ψ+(k). (3.2.5)

where φ±(k) are scalar function representing the basis transformation. In the absence

of pairing this transformation diagonalizes the kinetic part of the Hamiltonian, H0 =

T +HSO and leads to the following dispersion:

ε± = −2t(cos kx + cos ky)− µ±
√
A2(sin2 kx + sin2 ky) +M2. (3.2.6)

In this basis the pairing part of the Hamiltonian reads

HSC =
∑
k

[
∆+−(k)ψ†+(k)ψ†−(−k) +∆−−(k)ψ†−(k)ψ†−(−k)

+ ∆++(k)ψ†+(k)ψ+(−k) + h.c.
]
.

(3.2.7)

Here, ∆+− denotes an interband pairing function of s-wave symmetry; the other two

terms are intraband pairings of p-wave symmetry. The intraband pairing is given by

∆−−(k) =
A∆s(sin ky − i sin kx)

2
√
M2 + A2(sin2 kx + sin2 ky)

= ∆∗++(k) (3.2.8)
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As shown previously[10, 32, 33], this model exhibits a topological phase transition,

when varying the parameters of the Hamiltonian. This can be seen by calculating the

Chern number. More intuitively, one sees that a topological phase arises when there is

only one spin-orbit coupled band which participates in the pairing. For fixed µ,A and ∆s,

one can show that the phase transition takes place at M± =
√

∆2
s + (±4− µ)2 where

the topological phase is for M ∈ (M−,M+).

It can be shown that in the large Zeeman coupling regime and in the limit of small

order parameter ∆s, the interband ∆+− pairing can be neglected. Thus, we can project

out the upper band altogether and arrive at a chiral p-wave model:

H =
∑
k

[
ε−(k)ψ†−ψ− + ∆−−(k)ψ†−(k)ψ†−(−k) + h.c.

]
, (3.2.9)

where in this limit we may approximate

∆−−(k) ≈ A∆

2|M |(−i sin kx + sin ky). (3.2.10)

We therefore drop the subscripts and arrive at an effective spinless model.

As mentioned above the system partitioning breaks translation invariance in the

x-direction. We therefore introduce a mixed real- and momentum-space representation,

ckxky = 1√
N

∑
ix
e−ir

x
i kxcixky . Our model can therefore be regarded as a collection of

chains in the x direction with ky controlling the chain parameters. The kinetic part of the

Hamiltonian, H0 = T +HSO, is given by:

H0 =
∑
ky

[∑
ix

(−2t cos ky − µ− |M |)c†ixkycixky −t(c
†
ixky

cix+1ky + h.c.)
]
, (3.2.11)
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where we have ignored the parameter A. The pairing is,

HSC = α
∑
ky ,ix

[
−c†ix+1,ky

c†ix,−ky + sin ky c
†
ix,ky

c†ix,−ky + h.c.
]
, (3.2.12)

where α = A∆
2M

.

Figure 3.1: The cornerless partition with the left (right) part being subsystem A (B)

We therefore arrived at an effective spinless Hamiltonian with M � ∆, A, t. As a

consistency check, we examine the topological properties of the effective Hamiltonian

compared to the full model. For the full spin-orbit coupled s-wave superconductor the

large M phase transition from a topological phase to the trivial phase takes place at

M+ =
√

∆2
s + (4− µ)2. For the effective model the phase transition takes place at
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| − µ−M | = 4. Thus, for small ∆s our approximation will reproduce the behaviour of

the full system reasonably well.

Due to translation symmetry in the y-direction it is possible to treat the HamiltonianH

as a sum of one-dimensional Hamiltonians with a parameter ky. Thus, when partitioning

the system, we can think of it as cutting each one-dimensional chain into two parts.

Another way to look at our current model is as follows. Each of the ky-dependent

chains in our system is a one dimensional Kitaev model[34]. Depending on its parameters

the chain could be in the strong coupling trivial phase of the weak coupling topological

phase. We find that our full system is topological as long as some of the chains are in

the topological regime. Therefore, a phase transition from a trivial to a topological state

occurs as soon as one chain becomes topological. Conversely, a phase transition from a

topological to a trivial state occurs when all chains become trivial.

3.3 Calculation of the Entanglement Entropy

The first step in calculating the EE is to define the reduced density matrix ρa by integrating

out the degrees of freedom associated with subsystem B. The reduced density matrix

can then be used to define the entanglement Hamiltonian HA via ρA = e−HA

ZA
, where ZA

is the partition function with respect to ρA. The eigenvalues of HA are the entanglement

spectrum. We denote these ’energies’ by Ei, and use them to calculate the EE. Moreover,

it has been shown[35, 36] that the entanglement spectrum is related to the eigenvalues of

the correlation matrix G, which is defined as:

G =

〈cic†j〉 〈cicj〉
〈c†ic†j〉 〈c†icj〉

 , (3.3.1)
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where each term is a matrix and the indices i and j run over the sites of subsystem A,

the left part of our system of length Lx. The averages are calculated with respect to the

ground state ψ. Denoting the eigenvalues of G by ζi, the entanglement spectrum levels

are given by Ei = ln( ζi
1−ζi ), and therefore the EE can be written as

S =
∑
i

[ζi log ζi + (1− ζi) log(1− ζi)] (3.3.2)

The general structure of the eigenvalues of G consists of eigenvalues very close to 0

and 1 reflecting the fact that most bulk states are almost completely localized either

in subsystem A or B and consequently do not contribute to the entanglement entropy.

Intermediate values of ζi are caused by states that are entangled across the partition

boundary and thus contribute the most to the EE.

Diagonalizing the matrix G was done numerically in Refs. [10, 16] and the Chern

number of the same model was calculated explicitly in Ref. [33]. In these works it was

seen that the Chern number changes whenever a Fermi surface appears or shrinks to a

point and disappear. We therefore test this assumption by stripping the correlation matrix

G of any ingredients which are unnecessary for detecting the phase transition. As we

shall see shortly the crude approximations we make lead to an analytic expression for the

EE which mimics the numerical one around the topological phase transition.

We begin by ignoring any off-diagonal (anomalous) terms in the correlation matrix

due to α� 1, and are therefore left with the usual particle-hole correlation. Of course,

with the off-diagonal piece ignored, there is no need to keep the Nambu notation and

one can focus on terms like 〈cαc†β〉. We are therefore left with on-site and longer range

correlations. For the regime we are investigating these long range correlations decay

rapidly and thus it is reasonable to ignore higher order correlations. Hence, diagonalizing

such a matrix is analogous to finding the eigenstates of a tight binding model in one
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dimension with open boundary conditions[37]. However, we find that including only the

on-site correlations and ignoring even nearest neighbour ones is easier and sufficient in

our case. Of course, this is a good approximation only when the correlation length is

not too long. A second assumption we make is that the system is large enough and the

correlations die off quickly such that the correlation functions are position independent.

We are left with evaluating the onsite correlation for each ky dependent chain,

〈cix(ky)cix(ky)
†〉. Since we’ve ignored superconductivity this amounts to summing

all of the occupation numbers 〈ckc†k〉 = 1 − nk over the kx momentum. At zero tem-

perature, this amounts to the fraction of a 2π long line, along the kx direction in the

Brillouin zone, which contains (un)occupied states. In other words, if we draw the Fermi

surface in the Brillouin zone and draw a line at a specific ky, what fraction of this line is

(outside)inside the Fermi surface. The answer is given by

ζky = 〈cix(ky)cix(ky)
†〉 =

∫
〈ckc†k〉dkx =


1−2k0x(ky)

2π
particle− like Fermi surface

2k0x(ky)

2π
hole− like Fermi surface

(3.3.3)

where k0
x(ky) is the x-component of the Fermi vector when the y-component is given by

ky. With our quadratic lattice dispersion we get:

k0
x(ky) = arccos

(
cos(ky)−

µ+ |M |
2t

)
(3.3.4)

which is only defined for ky values where there is a real solution (otherwise the contribu-

tion to the EE vanishes).

Putting all of the above together we are now able to write an expression for the
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entanglement entropy as a sum of the EEs of each chain:

S =
∑
ky

S(ky) ≈
Ly
2π

∫ 2π

0

dky S(ky), (3.3.5)

S(ky) = ζky ln ζky + (1− ζky) ln(1− ζky). (3.3.6)

The first line above clearly shows the area law as the EE explicitly depends on the length

of the partition, Ly, which is the number of sites along the y direction. Together with the

second line this expression is not yet a closed form but can be evaluated easily in simple

cases.

Another simplification comes from the fact that transitions happen when Fermi

surfaces appear and disappear. This amounts to the Fermi surface passing through

the center or the corner of the Brillouin zone. We can therefore replace the sum over

the ky momentum by these points only and define a = 1
π
<[arccos(1 − µ+|M |

2t
)] and

b = 1
π
<[arccos(−1− µ+|M |

2t
)]. This reduces the EE to:

S =− L [(1− a) (a ln a+ (1− a) ln(1− a))

+(1− b) (b ln b+ (1− b) ln(1− b))] .
(3.3.7)

In this expression we have two contributions, the a-term from a possible phase transition

at ky = π and the b-term from the Γ-point.

We can now compare the entanglement entropy calculated via Eq. (3.3.7) with the

exact numerical value calculated by diagonalizing the full correlation matrix G. As

can be seen in FIG. 3.2(a), the analytic formula underestimates the the entanglement

entropy by a factor of O(1), which is not surprising due to the way we approximated

the correlation matrix. Nonetheless we can see that the formula captures very well the

qualitative behaviour of the EE and in particular its behaviour near the phase transition.
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Figure 3.2: (a) Entanglement entropy S for µ = −4t, A = 0.25t and Ly = 400 calculated
numerically (green) as well as analytically (red). In the inset we show the position of the two
bands with respect to the Fermi energy of the system without superconductivity. (b) Derivative
of the entanglement entropy with respect to M for µ = −10t. Again, the inset shows the band
spectrum with respect to the Fermi energy. Note that the two panels represent different phase
transitions with similar behaviour of the EE and its derivative

As we have shown previously[10, 16] the EE is indeed sensitive to the topological

phase transitions. With the simple, approximate expression above we see that the

topological phase transition is indeed governed by the appearance and disappearance of

Fermi surfaces. At the transition the EE has a cusp and a singularity in its derivative:

∂S

∂M
= <

[
Ly [2(1− a) ln (1− a) + (2a− 1) ln (a)]

π
√

(|M |+ µ)(4t− |M | − µ)
+ (a→ b)

]
(3.3.8)

From this one can immediately see the change in behaviour at the topological phase

transition, where the derivative jumps to zero as shown in FIG. 3.2(b).

With the intuition about the topological phase transitions from the approximate,

single band model we can now relax our single band requirement slightly. Including

the model’s upper band has two consequences: (i) more Fermi surfaces and therefore

more transitions may occur (ii) the singlet, inter-band pairing may not be negligible.

Therefore, if we allow M to be smaller we might view more phase transitions. The
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inter-band pairing is relevant when there is an over lap in energy between the two bands

and in particular when the Fermi surface lies in this overlap. If we choose to ignore this

inter-band pairing ∆+− we may assign a ’topological’ label to a trivial superconductor.

However, as there is an even number of Fermi surfaces in this case, the system will have

an even Chern number and an even number of Majorana branches on each edge. In this

respect it is equivalent to a trivial superconductor. We therefore extend our analysis by

relaxing the constraint over M while still ignoring interband pairing. The EE in this case

is simply the sum of EE of the two bands S = S− + S+, while the upper band EE is

given by Eq. (3.3.7) with |M | → −|M |. Accordingly, the derivative receives a second

term,

∂S+

∂M
= <

[
Ly [2(1− b) ln (1− b) + (2b− 1) ln (b)]

π
√

(−|M |+ µ)(−4t+ |M | − µ)
+ (b→ a)

]
(3.3.9)

Comparing the analytic and numeric evaluation of the entanglement entropy of our

model we see that all phase transitions are captured as a singularity in ∂S/∂M . The

cusps in the EE occur in places where the Chern number of the system changes, i.e., a

topological phase transition. However, there are some additional points where the EE

exhibits a cusp but there is no phase transition. This happens when the parity of two

time reversal invariant momentum (TRIM) points change simultaneously as a result of a

lattice symmetry. If this symmetry is lifted, these points in parameter space will become

phase transition points.

3.4 Conclusion

In this work we have analytically calculated the entanglement entropy for a spin-orbit

coupled superconductor in the large Zeeman coupling limit. In this regime the spectrum
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has a large gap, even without any pairing. Looking at the low energy part of the

entanglement spectrum, one arrives at an effective p-wave superconductor. We are

able to show explicitly that the entanglement entropy obeys the area law as expected.

When comparing with the exact EE calculated through numerical diagonalization of the

correlation matrix one finds that both indicate the same phase transitions. The derived

formula is in qualitative agreement with the numerical evaluation.

The above calculation is enabled by crude approximations which relay on the pairing

being small compared to the bandwidth and predominantly in the intra-band channel. The

intuition behind these approximations comes from the understanding that the topology of

the superconductor is inherited from the spin winding in each spin-orbit coupled bands

and depends crucially on the number of Fermi surfaces.

3.5 Acknowledgments

The authors are grateful for useful discussions with A. Farrell and O. Motrunich. Fi-

nancial support for this work has been provided by the Alexander McFee award (JB),

NSERC and FQRNT (JB and TPB).



79 CHAPTER 3. ANALYTIC ENTANGLEMENT ENTROPY

References

1A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777–780 (1935).

2E. Schrödinger, Mathematical Proceedings of the Cambridge Philosophical Society

31, 555–563 (1935).

3E. Schrödinger, Mathematical Proceedings of the Cambridge Philosophical Society

32, 446–452 (1936).

4L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80, 517–576 (2008).

5R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81,

865–942 (2009).

6J. Wildeboer, A. Seidel, and R. Melko, unpublished arXiv:1510.07682.

7T. P. Oliveira, P. Ribeiro, and P. D. Sacramento, Journal of Physics: Condensed Matter

26, 425702 (2014).

8L. Ding, N. Bray-Ali, R. Yu, and S. Haas, Physical Review Letters 100, 215701 (2008).

9N. Bray-Ali, L. Ding, and S. Haas, Phys. Rev. B 80, 180504 (2009).

10J. Borchmann, A. Farrell, S. Matsuura, and T. Pereg-Barnea, Phys. Rev. B 90, 235150

(2014).

11I. Mondragon-Shem, M. Khan, and T. L. Hughes, Phys. Rev. Lett. 110, 046806 (2013).

12E. C. Andrade, M. Steudtner, and M. Vojta, Journal of Statistical Mechanics: Theory

and Experiment 2014, P07022 (2014).

13M. Pouranvari, K. Yang, and A. Seidel, Phys. Rev. B 91, 075115 (2015).

14I. Mondragon-Shem and T. L. Hughes, Phys. Rev. B 90, 104204 (2014).

15S. Vijay and L. Fu, Phys. Rev. B 91, 220101 (2015).

http://dx.doi.org/10.1103/PhysRevB.91.220101


REFERENCES 80

16J. Borchmann, A. Farrell, and T. Pereg-Barnea, Phys. Rev. B 93, 125133 (2016).

17T. H. Hsieh and L. Fu, Phys. Rev. Lett. 113, 106801 (2014).

18E. Prodan, T. L. Hughes, and B. A. Bernevig, Phys. Rev. Lett. 105, 115501 (2010).

19M. J. Gilbert, B. A. Bernevig, and T. L. Hughes, Phys. Rev. B 86, 041401 (2012).

20B. J. Brown, S. D. Bartlett, A. C. Doherty, and S. D. Barrett, Phys. Rev. Lett. 111,

220402 (2013).

21M. Rodney, H. F. Song, S.-S. Lee, K. Le Hur, and E. S. Sørensen, Phys. Rev. B 87,

115132 (2013).

22I. Klich, G. Refael, and A. Silva, Phys. Rev. A 74, 032306 (2006).

23J. Cardy, Phys. Rev. Lett. 106, 150404 (2011).

24D. A. Abanin and E. Demler, Phys. Rev. Lett. 109, 020504 (2012).

25T. J. Elliott, W. Kozlowski, S. F. Caballero-Benitez, and I. B. Mekhov, Phys. Rev. Lett.

114, 113604 (2015).

26K. H. Thomas and C. Flindt, Phys. Rev. B 91, 125406 (2015).

27J. Eisert, M. Cramer, and M. B. Plenio, Reviews of Modern Physics 82, 277 (2010).

28A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).

29M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006).

30L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).

31J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. 104, 040502

(2010).

32J. Alicea, Phys. Rev. B 81, 125318 (2010).

33A. Farrell and T. Pereg-Barnea, Phys. Rev. B 87, 214517 (2013).

http://dx.doi.org/10.1103/PhysRevB.93.125133
http://dx.doi.org/10.1103/PhysRevB.87.115132
http://dx.doi.org/10.1103/PhysRevB.87.115132
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1103/PhysRevB.87.214517


81 CHAPTER 3. ANALYTIC ENTANGLEMENT ENTROPY

34A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).

35I. Peschel, J. Phys. A: Math. Gen. 36, L205 (2003).

36I. Peschel and E. Viktor, J. Phys. A: Math. Theor. 42, 504003 (2009).

37R. Jullien, Canadian Journal of Physics 59, 605–631 (1981).

http://stacks.iop.org/1063-7869/44/i=10S/a=S29


REFERENCES 82



Preface to Chapter 4

In the previous two chapters we established the fact that the entanglement entropy is

able to detect the topological phase transition of a topological superconductor both

analytically as well as numerically. Thus, it is a great tool to analyze a system when no

easy way exists to calculate a topological invariant.

Building on these results, we extend our analysis of the topological superconductor

from clean to disordered systems. To this end, we use the entanglement entropy and

the results obtained in the previous chapter and complement the entanglement entropy

treatment by analyzing the disordered system with the help of a real space Chern number

as well as Gaussian disorder. Through this combination we are able to further analyze

the predictive power of the entanglement entropy for disordered systems.
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Abstract

In this paper we study the phase diagram of a disordered, spin-orbit coupled supercon-

ductor with s-wave or d+ id-wave pairing symmetry in symmetry class D. We analyze

the topological phase transitions by applying three different methods which include a

disorder averaged entanglement entropy, a disorder averaged real-space Chern number,

and an evaluation of the momentum space Chern number in a disorder averaged effective

model. We find evidence for a disorder-induced topological state. While in the clean

limit there is a single phase transition from a trivial phase with a Chern number C = 4 to

a topological phase with C = 1, in the disordered system there is an intermediate phase

with C = 3. The phase transition from the trivial C = 4 phase into the intermediate

phase with C = 3 is seen in the real-space calculation of the Chern number. In spite of

this, this phase transition is not detectable in the entanglement entropy. A second phase

transition from the disorder induced C = 3 into the C = 1 phase is seen in all three

quantities.
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4.1 Introduction

Symmetry protected topological[1, 2] (SPT) systems include the quantum spin Hall state,

topological insulators in two and three dimensions as well as topological superconductors.

These systems, which are generally described by models with multiple phases, share

the property that they experience distinct phases which cannot be smoothly transformed

into each other while preserving a certain symmetry. In the topological phases, unique

properties such as anomalous magneto-resistance and edge/surface states are the result

of the topology. This topology is characterized by topological invariants which are the

discrete expectation values of non-local operators. When parameters change across a

phase transition the bulk gap closes, allowing the topological invariants to change their

values. In particular, in a clean, non-interacting lattice system one can define the Berry

curvature in momentum space and integrate it over a relevant area, such as the Brillouin

zone. This integral yields the Chern number in broken time reversal symmetry states or a

Z2-invariant in time reversal symmetric states.

While surface states are protected against weak perturbation by the topology, a

strongly disordered system can be classified differently than its clean counterpart. It

is therefore interesting to study SPT systems in the presence of disorder. An example

for such a change in classification can be found in two dimensional[3–5] and three

dimensional[6] Anderson topological insulators. In these systems the disorder can be

thought of as renormalizing the parameters of the clean system and thus driving the

system across topological phase boundaries. Moreover, while in the clean system the

gap in the spectrum is crucial for preventing surface states from scattering into the bulk,

in a disordered system, it is the mobility gap which plays this role.

From the point of view of identifying a topological phase transition, disorder poses a

challenge. The introduction of disorder breaks translation invariance and consequently
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the usual method of computing a topological invariant is invalid as it relies on the

existence of a Brillouin zone. Alternative approaches, which do not rely on translation

invariance, involve integrals over twisted boundary conditions[7, 8]. These integrals

involve a large number of real-space Hamiltonian diagonalizations and consequently are

very numerically costly. Efficient alternatives use the same principle and define the Chern

numbers via traces[9] or commutators[10] of the coordinate and the projection operator.

A particularly efficient method of calculating the Chern number has been proposed via

the calculation of so-called coupling matrices[11].

Another method by which transitions between trivial and topological SPT states can

be seen is through calculating the entanglement entropy[12–15] (EE). In a previous work

we have shown that the EE of a clean system exhibits a cusp as a function of some

model parameters at the point of a topological phase transition[16]. It should be made

clear, however, that in SPTs the EE obeys the area law and it is this area-linear EE term

which exhibits the cusp. This should be contrasted with the case of systems with intrinsic

topology where a term referred to as ’topological entanglement entropy’, γ, appears[17,

18]. This term does not appear in SPTs.

In this chapter we address the problem of disorder in a two dimensional topological

superconductor (TSC). Our TSC is a fully gapped, spin orbit coupled, superconductor

in which time reversal symmetry is broken by a Zeeman field. It is therefore in class

D. We have studied this model previously in the clean limit and found topological

phase transitions, which are evident from changes in the Chern number as well as the

entanglement entropy cusps.

We introduce disorder and search for topological phase transitions. This is done

in three ways (i) by evaluating the Chern number in real space, (ii) by calculating the

entanglement entropy and looking for a cusp when varying parameters and (iii) by

calculating a disorder averaged self energy and using it to define an effective clean
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Hamiltonian for which the Chern number is easily found. While topological phase

transitions are found in all three ways, there are significant differences. In particular, in

the case of a d-wave superconductor with multiple gapped Fermi surfaces the real-space

Chern number reveals a disorder induced topological phase. This phase appears in the

real-space Chern number calculation as an intermediate phase where a single phase

transition in the clean limit splits in to two transitions. When using the self-consistent

Born approximation to account for the renormalization of parameters one sees a hint of

this intermediate phase, although its extent in parameter space is considerably smaller.

Surprisingly, the split into two phase transitions is not seen as a cusp in the entanglement

entropy.

Our model is a two dimensional spin-orbit coupled topological superconductor on

a square lattice with either d + id- or s-wave pairing symmetry. We look at these

two pairing symmetries due to their fundamentally different response to nonmagnetic

impurities. While in general, an s-wave[19] superconductor is robust against non-

magnetic impurities, a d-wave superconductor is sensitive to this kind of scattering

since its pairing amplitude depends on the momentum which is not conserved in the

scattering process[20, 21]. This often leads to sub-gap states which, for a large number

of impurities, can combine to form impurity bands. These sub-gap states can have a

significant effect on the topology of the system[22] when such a band crosses the Fermi

surface and thus creates zero energy states. It has been shown that this can lead to gapless

topological phases[23] in disordered semiconducting nanowires.

It should be noted that although the pairing term is of even angular momentum, when

projected on to the spin-orbit coupled bands it acquires an additional phase winding.

This leads to effective p or f -wave pairing in the bands[24, 25]. The question of whether

the (clean) system is topological is therefore related to the number of spin-orbit coupled

bands present. If there is an odd number of bands this will lead to an odd Chern number.



4.2. MODEL 90

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C

B

W = 0
W = 0.2
W = 0.5
W = 1
W = 2
W = 3

(a)

-1

-0.8

-0.6

-0.4

-0.2

0

0.9 0.95 1 1.05 1.1 1.15 1.2

C

M

W = 0
W = 0.2
W = 0.5
W = 1
W = 2
W = 3
W = 4

(b)

-300

-250

-200

-150

-100

-50

0

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

∂S
∂B

B

top

triv

18

22

26

30

0.4 0.6 0.8

S

B

W = 0
W = 0.2
W = 0.5
W = 1
W = 2
W = 3
W = 4

(c)

-5

0

5

10

15

20

0.9 0.95 1 1.05 1.1 1.15 1.2

∂S
∂M

M

top

triv

4

6

8

0.9 1 1.1 1.2

S

M

W = 0
W = 0.2
W = 0.5
W = 1
W = 2
W = 3
W = 4

(d)

Figure 4.1: (a) Chern number C for d + id-wave coupling ∆1 = 0.8t,∆2 = 0.4t,M =
0.8t, µ = 0 and A = 0.25t, (b) Chern number C for s-wave coupling ∆s = 1t, B = 0, µ = −4t
and A = 0.25t. Derivative of the Entanglement entropy for (c) d+ id-wave coupling , (d) s-wave
coupling. The insets show the entanglement entropy.

4.2 Model

We use the Hamiltonian[26] H = HK + HSO + HSC + HD, where the kinetic energy

part is given by nearest neighbour hopping,

HK = −t
∑
〈i,j〉,σ

(
c†iσcjσ + c†jσciσ

)
. (4.2.1)
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The spin-orbit part is given by,

HSO =
∑
k

ψ†k (σ · dk)ψk, (4.2.2)

with ψk = (ck↑, ck↓)
T , σ = (σx, σy, σz) and,

dk = (A sin kx, A sin ky, 2B(cos kx + cos ky − 2) +M) . (4.2.3)

Here, A,B denote the strength of the Rashba and Dresselhaus spin-orbit coupling[24],

respectively, and M is the strength of the Zeeman term. The superconducting part is

HSC =
∑
k

(∆kck,↑c−k,↓ + h.c.) , (4.2.4)

where we look at two different pairing functions. For the fully gapped d + id-wave

we have ∆k = ∆1(cos(kx)− cos(ky)) + i∆2 sin(kx) sin(ky) and for the s-wave pairing

∆k = ∆s.

We include the effects of disorder by adding an on site, random potential term[27],

HD = −
∑
i

wic
†
ici, (4.2.5)

where wi ∈ [−W
2
, W

2
] is a random number with a uniform distribution in the interval. W

is the overall disorder strength and a specific realization of the disorder is given by the

set {wi}. When choosing and characterizing the size of the disorder strength, we are

guided by the typical energy scales of the system, the gap and the bandwidth. Comparing

with the gap, c.f. Fig. 1c in Ref. [16], one can see that W = 1 is larger than the gap.

W = 3 is of the order of the bandwidth. We compute disorder averaged quantities,

namely, the Chern number and EE, by calculating the quantity for a specific realization
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of the disorder and then averaging over a large number (≥ 400) of realizations {wi}. The

number of disorder realizations is taken such that the average quantities and standard

deviations have saturated and do not change upon including more disorder realizations.

We find that for low disorder strength 400 realizations are sufficient while for higher

disorder we need larger samples.

4.3 Real Space Chern number

In order to analyze the behaviour of the system in the presence of disorder, one can

calculate the topological invariant of the ground state by using a real space formula[10,

11]. This formula is derived by writing the wavefunctions on the torus and constructing

their Fourier components with twisted boundary conditions in both directions. The Chern

number can then be evaluated as the response to the twists. By using the twisted boundary

conditions, the ground states induces the structure of a U(1)-fibre bundle over the torus

of phase twists, whose Chern number gives the topological invariant.

In order to make a connection with our previous work[16], we look at the phase

transition in the d-wave system which, in the clean limit, takes place at the value

Bc = 0.6t (and the other parameters are set to M = 0.8t, µ = 0 and A = 0.25t). In the

clean system, for B < Bc the superconductor is trivial1 with C = 4 and for B > Bc it is

a topological superconductor with a Chern number of C = 1.

In Fig. 4.1(a) we show the result of the Chern number calculation in real space for

the clean system and for various disorder strengths in the d-wave system. Looking at the

graph, the first striking feature is that compared with the clean system, the disordered

system has an additional phase. While in the clean limit one finds a single, sharp

1We call this phase trivial due to the fact that the even number of edge modes will hybridize due to the
broken time reversal symmetry.
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transition between a trivial C = 4 phase on the left to a C = 1 phase on the right, for

disorder strength of W = 0.5t to 1t the transition splits to two and an intermediate phase

with C = 3 appears. The transition from C = 4 to C = 3 appears before (for lower B)

the clean limit transition and does not cause a cusp in the entanglement entropy. The

second transition from C = 3 to C = 1 occurs after the clean limit transition and shows

as a cusp in the EE. At the C = 3 plateau a large majority of the disordered systems,

ranging from 65% up to 95 %, have a Chern number of 3, while a small fraction have

C = 4 or C = 2 moving the average slightly away from 3. At the two other phases, with

C = 4, 1 all of the systems in the average have exactly the same Chern number.

For W = 3t the disorder averaged Chern number does not saturate to 1 anymore.

This is caused by the fact that the system becomes gapless[23] and the Chern number is

no longer well defined. Specifically, this behaviour implies the vanishing of the mobility

gap as localized states do not influence the Chern number. Consequently, the real space

Chern number is not a good indicator of the topology of the system in this regime.

Furthermore, for low B the Chern number starts deviating from its clean value due to the

fact that it is sensitive to another phase transition taking place at B = −0.4t.

One can speculate on the origin of the new disorder-induced topological phase. First,

a Chern number of 4 is an indication that multiple Fermi surfaces contribute to the

topological invariant. Therefore it is possible that the change in Chern number does not

occur simultaneously in all Fermi surfaces. Moreover, one can imagine that localized

states may reduce the life time of the bands and change the overall topological nature.

Indeed, a disordered induced topological phase is not seen in the s-wave superconductor

where potential disorder is not expected to cause localization. We should also note that a

similar effect of localization was encountered in the case of symmetry class DIII[22].

The disorder averaged Chern number in the s-wave system is shown in Fig. 4.1(b).

In general, for this pairing symmetry, the system only exhibits phase transitions with
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∆C = ±1. We choose to focus on one of these transitions, which is controlled by the

model parameter M . Note that due to the momentum independence of the s-wave order

parameter, no pair breaking is induced by the disorder and no sub-gap states appear. We

therefore expect the effect of disorder in this superconductor to be different from that of

the d+ id case.

4.4 Disorder Averaged Entanglement Entropy

Several authors have studied the entanglement properties of disordered systems[28–32].

In particular, the relation between the level spacing in the entanglement spectrum and

the topology was explored in Refs. [10, 33]. In the current work we focus on the

entanglement entropy of disordered SPTs and investigate whether a topological phase

transition is seen as a kink in the EE as was seen in the clean limit[16]. We follow the

above kink as the strength of the disorder is increased.

The disorder averaged entanglement entropy can be defined as the disorder averaged

von Neumann entropy of the reduced density matrix, SA = −Tr (ρA ln ρA), where A is

a partition of the original system. For our calculations we define A as a 12x12 square

in a 40x40 lattice with periodic boundary conditions, where the remaining degrees of

freedom of the original system were traced out. We calculate the reduced density matrix

via the two-point correlation function[34]. The size of the system is limited by the fact

that these calculations are done in real space as well as the need for statistical averaging.

In Fig. 4.1(c) we show the entanglement entropy of the d-wave model (inset) and

the derivative of the entropy with respect to the parameter B. While the EE exhibits a

cusp at the phase transition, it is easier to recognize the transition in the derivative. The

figure shows that the clean system’s sharp transition at Bc is shifting to higher values of

B when the disorder is increased and becomes less sharp at the same time. For strong



95 CHAPTER 4. ANDERSON TOPOLOGICAL SUPERCONDUCTOR

disorder the transition is completely washed out. One can see that the derivative of the

EE displays only a single kink, coinciding with the position of the phase transition from

C = 3 to C = 1, while any signature of the first phase transition is completely absent.

In Fig. 4.1(d) the EE for the s-wave system is presented as a function of the parameter

M . We note that in this system the transition is not as pronounced as in the d-wave case

even in the clean limit. When following the transition we see that once the disorder is

applied the transition moves to higher values of M and its position coincides well with

the one obtained via the real space Chern number. It also becomes less sharp and washes

out completely for strong disorder.

4.5 Disorder Averaged Self Energy

Another approach that is often used to deal with disordered systems is using the Gaussian

disorder properties to define an averaged Green’s function and restore the translation

symmetry. In other words, the disorder induces a self energy which renormalizes the

model parameters. In the case of an Anderson topological insulator it was shown that

a Gaussian disorder leads to a change in the Zeeman field parameter (M in our model)

which in turn leads to a change in topology[3]. We therefore apply the same method

here.

To this end, we use the variance of the random potential above and write, V (q)V (q′) =

W 2

12V δq+q′,0, where V = L2 is the volume of our (L× L lattice) system. With this, the self

energy in the self-consistent Born approximation (SCBA) reads

Σ(ω) =
W 2

12V
∑
q

(σ0 ⊗ τz) · (ω −H(q)− Σ(ω) + iη)−1 · (σ0 ⊗ τz) (4.5.1)

where τi are Pauli matrices acting on the particle and hole degree of freedom and σi denote
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Figure 4.2: (a) Renormalization of the chemical potential (solid line) and Zeeman coupling
(dashed line) for varying disorder strengths for d+ id-wave and (b) Chern number Cren (solid
line) calculated from the renormalized parameters and through a real space formula CRS (dashed
line).

the spin. The self consistent summation includes all non-crossing diagrams. Focusing

on the static limit we can think of Σ = Re (Σ(ω = 0)) as renormalizing the parameters

of the Hamiltonian. Consequently we can define the effective Hamiltonian[35, 36]

HΣ = H + Σ in which one can easily calculate the relevant Chern number in momentum

space.[37, 38] Due to the parameter renormalization the topological phase transition

moves in parameter space with respect to the clean system. The fact that Σ is independent

of momentum, limits the possible quantities that can be renormalized to M,µ as well as

∆s in the s-wave pairing case. Thus, most generally this can be written as[20, 21]

Σ = −µR (σ0 ⊗ τz) +MR (σz ⊗ τz)− i∆sR (σy ⊗ τx) , (4.5.2)

where the renormalized parameters are MR = M + MΣ, µR = µ + µΣ and ∆sR =

∆s + ∆Σ. Looking at the results in Fig. 4.2 we see that there is good agreement between

this method and the real-space Chern number calculation as well as the EE cusp with

respect to the transition between the C = 3 and the C = 1 phases. On the other hand,
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the first transition, from C = 4 to C = 3 which appears in the real-space Chern number,

appears in the self energy at a higher B value and is completely absent from the EE.

Overall, the intermediate C = 3 phase appears in the self-energy calculation but its range

is smaller by about an order of magnitude than its range in the real-space Chern number

calculation. We note that the chemical potential renormalization is the most important

one when it comes to creating the C = 3 phase. We speculate that the SCBA, which

neglects cross diagrams, might not be sufficient when estimating the C = 3 phase range.

4.6 Conclusion

In this work we have presented evidence for a disorder induced topological phase for

certain ranges of disorder strength. The calculation of the real space Chern number

as well a disorder averaged self-energy predict the appearance of a new, C = 3-phase

between the C = 4 and the C = 1 phase which exist in the clean system. However, the

range of parameters over which the disorder induced phase occurs is much smaller in the

self-energy method compared with the real-space Chern number. This is perhaps a result

of the self-consistent Born approximation which neglects cross diagrams. In addition,

we find that the disorder averaged entanglement entropy is a useful indicator in some

topological phase transitions but not others. In particular, in the d-wave case, it has a

cusp in the transition between the new, disorder induced topological phase and the C = 1

phase but does not have a cusp at the transition between the C = 4 and C = 3 phase.
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Preface to Chapter 5

In the last chapter we have investigated the effect of disorder on the topological properties

of a topological superconductor with various pairing symmetries. We have seen how

the random disorder potential has a small effect on the topology of the ground state to

a surprisingly large disorder strength when compared to the hopping amplitude in the

model. However, this is only one example of a perturbation that can affect a physical

system. In this chapter we will investigate the effect of an applied magnetic field on a

gapless topological state, a Weyl semimetal. We will analyze the topological properties

when exposed to the external field and investigate specifically the topological surface

states via an effective surface theory.
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Abstract

In this work we construct an effective surface theory for a Weyl semimetal in a slab

geometry. We apply this theory to the problem of Fermi-arc-induced quantum oscillations.

Through this approach we are able to probe the system beyond the semiclassical limit and

investigate the effect of small arc lengths on the phase offset of the quantum oscillations.

In addition we find no contribution from the Berry curvature to the phase offset. Our

findings are confirmed numerically via an exact diagonalization of a full lattice model

for a Weyl semimetal slab. These serve as verification and extension of the semiclassical

theory.
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5.1 Introduction

Topological semimetals[1, 2] have recently attracted a lot of attention and have become

the focus of intense research. In general, these materials are characterized by band cross-

ings between the conduction and valence band which cannot be removed by perturbations

preserving certain symmetries such as translational invariance. In this work we specifi-

cally deal with Weyl semimetals[3–7] (WSM), a class of materials which possesses an

even number of Weyl nodes separated in momentum space. This requires either inversion

or time-reversal symmetry breaking in order for the bands to be non-degenerate. Generi-

cally, these kinds of band touching points require three dimensions without the presence

of special symmetries such as lattice symmetries. Around the nodes, the Bloch states

acquire a topological character which in turn stabilizes this phase against perturbations.

Recently, evidence for the discovery of WSMs has been presented in TaAs[8–13] as well

as TaNb[14], NbP[15] and TaP[16] and another kind of WSM, called type-II has been

predicted in WTe2[17] as well as MoTe2[18, 19]. Additionally, there several theoretical

predictions of Weyl semimetals have been made including in SrSi2[20], HgCr2Se4[21],

TaIrTe4[22] and MoxW1−xTe2[23].

Since the low energy states are found around the Weyl nodes, we may expand our

Hamiltonian in their vicinity. We then arrive at the Weyl Hamiltonian in three dimensions,

HW = ~v · k σ0 +
∑

i,j=x,y,z

~hijkiσj, (5.1.1)

where i, j run over spatial directions and σn are Pauli matrices. The second term in the

Hamiltonian is the usual Weyl Hamiltonian in which the matrix h determines the spinor

direction. The first term is unique to condensed matter systems, as it breaks Lorentz

invariance, and unlike the second it is proportional to the unit matrix. Therefore it does
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not influence the spin direction but has an effect on the spectrum. It tilts the Weyl cone in

the energy-momentum space and we therefore refer to it as ’tilt’. The importance of the

tilt relative to the Weyl term provides a distinction between two Weyl point types. In type

I Weyl points the tilt is not dominant when compared to the Weyl part of the Hamiltonian.

In type II Weyl points the tilt is dominant such that there is non-zero density of states at

zero energy. The two types differ in their thermodynamic responses[17].

Each of the Weyl nodes acts as a monopole of the Berry curvature and its charge is

χ2π, where chirality, χ = det(hij) at each node. As a consequence, WSMs experience a

chiral anomaly[24–26] which leads to a variety of transport effects[27] such as negative

magnetoresistance[24], the anomalous quantum Hall effect[4, 21, 28–32], the chiral

magnetic effect[32–34] as well as coupling between magnons and plasmons[15].

When introducing a surface in the otherwise infinite system, one can still define the

momenta in directions parallel to the surface while using real space coordinates along

the direction perpendicular to it. The surface momenta define the surface Brillouin zone

(SBZ). The zero energy surface states form Fermi arcs[3] in the SBZ. The arcs begin and

end at the projections of the Weyl nodes on the SBZ. Recently, the Fermi arcs have been

observed[35] through photoemission measurement in TaAs. It has been proposed[36, 37]

that the Fermi arcs in the surface Brillouin zone can give rise to quantum oscillations

in a WSM with a slab geometry when a magnetic field B is applied perpendicular to

the surface of the slab. Semi-classically, one can imagine that the two Fermi arcs on

each surface connect though the bulk by the chiral bulk Landau level. This way a closed

magnetic orbit is formed and quantum oscillations appear. The equation for the Landau

levels reads

εn =
πv

ka
eB

+Ny

(n+ γ) , (5.1.2)
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where γ is a phase offset determined by the quantum details of the theory. Here, ka is

the length of the Fermi arc in the SBZ, Ny is the thickness of the slab and v is the Fermi

velocity. One can identify two contributions to the period of the oscillations. The first is

given by the propagation of the electrons along the arc. The second contribution is due

to the fact that the electrons have to tunnel through the bulk to reach the arc on the other

side of the slab. This specific dependence of the quantum oscillations on the geometry of

the sample can lead to interference effects and experimental evidence for this kind of

quantum oscillations has been presented[38] by using triangular samples of the Dirac

semimetal Cd3As2.

This rest of this paper is structured as follows: In part 5.2 we introduce the generic

model we are using and develop the effective surface theory. In section 5.3 we apply

a magnetic field to the system and use the effective surface theory to investigate the

surface quantum oscillations and investigate the short arc length regime. In part 5.4 we

compare our findings to a full numerical treatment of the WSM slab. Our conclusions

are summarized in 5.5.

5.2 Effective Surface Theory

5.2.1 The model

In order to study the surface theory of a WSM, we start with a spinless, two-orbital tight

binding model[39],

H3D = ts (sin kxσx + sin kyσy + sin kzσz) + (m+ t′(2− cos kx − cos ky))σz,

(5.2.1)
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where time-reversal symmetry H(k) = σyH
∗(−k)σy is broken by the second term. The

choice to break time reversal symmetry is not limiting as one could devise a similar, time

reversal invariant Hamiltonian. Our choice here is made in order to work with smaller

matrices of dimension two. The energy eigenvalues are,

E± = ±
[
t2s
(
sin2 kx + sin2 ky

)
+ (ts sin kz +m+ t′(2− cos kx − cos ky))

2
] 1

2
.

(5.2.2)

Throughout the remainder of the paper, we will set t′ = 1 and measure the other quantities

with respect to t′. From Eq. (5.2.2), one can see that the model has different phases

depending on the parameters m and ts. When keeping ts fixed and varying m, one finds

the following phases:

• For ts < m the model is gapped and trivial.

• At m = ts a gap closure appears at k = (0, 0,−π/2) and for −ts < m < ts

the gap closure splits into two Weyl nodes which recombine for m = −ts at

k = (0, 0, π/2).

• For−3ts < m < −ts there are two pairs of Weyl nodes which appear form = −ts
at k = (π, 0,−π/2) and k = (0, π,−π/2). The Weyl points recombine again at

m = −3ts at k = (π, 0, π/2) and k = (0, π, π/2).

• For −5ts < m < −3ts there are Weyl nodes which start at k = (π, π,−π/2) and

recombine at k = (π, π, π/2).

• For m < −5ts the model is again gapped and trivial.

We choose to work in one of the Weyl semimetal regimes above, where |m| < ts. The

analysis can be extended easily to other regimes.
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In order to look for the surface states, we will introduce a slab geometry with (010)

surfaces such that kx and kz remain good quantum numbers. This amounts to performing

a Fourier transform from ck-operators to ciy ,~k-operators, where ~k = (kx, kz). Here, the

variable y is a discrete layer index ranging between 1 and Ny, where Ny is the number of

layers. In this new basis, the matrix element of the interlayer terms can be written as,

R =

−1
2
− ts

2

ts
2

1
2

 . (5.2.3)

For further reference we define the layer Hamiltonian (the remaining diagonal term with

respect to the y-layers) as,

H0 = ts sin kxσx + (m+ 2− cos kx + ts sin kz)σz

≡ g1(~k)σx + g3(~k)σz.

(5.2.4)

Due to the broken time reversal symmetry, this model exhibits multiple phases with pairs

of Weyl points. When placed in a slab geometry, the surface Brillouin zone includes

Fermi arc states between the projections of the Weyl points onto the surface Brillouin

zone. In our lattice model and in the regime we choose to work in, the arc connecting the

two Weyl nodes is a straight line along the kz-axis of length ka = 2 arccos (m
ts

).

5.2.2 Effective surface propagator

In order to derive an exact effective surface theory, we treat the surface degrees of

freedom independently from the bulk degrees of freedom. Note that the two surfaces

in layer 1 and layer Ny are treated as one subsystem while all other layers are the bulk

subsystem. In this non-interacting model it is possible to integrate out the bulk degrees

of freedom and arrive at an effective theory for the surface field. Following Marchand
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and Franz[40], we derive an expression for the surface Green’s function,

Geff(iωn) =
[
G−1
s (iωn)− T †Gb(iωn)T

]−1
, (5.2.5)

where Gb,s(iωn) = −(iωn −Hb,s)
−1 are the bulk and surface Greens functions, respec-

tively. The matrix T is the coupling between the surface and the bulk. The propagator

in Eq. 5.2.5 is not directly related to an effective Hamiltonian since it contains a finite

lifetime due the decay of surface states into the bulk.

5.2.3 Numeric evaluation of the effective Green’s function in a slab

geometry

For the slab geometry the Hamiltonian can be written as a Ny-by-Ny block matrix,

H3D =



H0 R 0 0 . . . 0 0

R† H0 R 0 . . . 0 0

0 R† H0 R . . . 0 0

...
...

...
... . . . ...

...

0 0 0 0 . . . R† H0


, (5.2.6)
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where H0 and R were defined above. Dividing the three dimensional Hamiltonian matrix

into block one can read the parts of Eq. (5.2.5),

Hb =



H0 R 0 0 . . . 0 0

R† H0 R 0 . . . 0 0

0 R† H0 R . . . 0 0

...
...

...
... . . . ...

...

0 0 0 0 . . . R† H0


, (5.2.7)

T =



R† 0

0 0

...
...

0 0

0 R


, (5.2.8)

and Hs = diag(H0, H0). For realistic system sizes, the matrices involved are very large

and the solution to Eq. (5.2.5) is only accessible numerically. In Fig. 5.1 we show the

spectral function A = − 1
π
=[Tr(Geff)] for various values of m as well as for different

cuts in the surface Brillouin zone. In Fig 5.1 (a) one can see the spectral function for the

combined top and bottom surfaces for fixed kz. One can see the top and bottom surface

Fermi arcs, respectively, with opposite chiralities. Further, we show the spectral function

for fixed kx for different values of m, where one can clearly see the structure of the Fermi

arcs in the surface Brillouin zone.
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Figure 5.1: (a) Surface spectral function as a function of energy ω and momentum kx for fixed
momentum kz = −π

2 and η = 0.01 in the middle of the Fermi surface arc. (b) Surface spectral
function as a function of momentum at energy ω = 0 and η = 0.01 for varying arc lengths
m = 0.9, (c) m = 0.5, (d) m = −0.5

5.2.4 Analytic Green’s function at low energy, semi-infinite sample

In order to advance analytically, we change the geometry of the system to a semi-infinite

slab in y-direction by taking Ny → ∞. Thus, we set Hs = H0 and T is changed

accordingly. Looking at a semi-infinite slab has the advantage that the system with one

layer removed is identical to the system before removing the layer. We therefore envision

that we’re looking for the effective Green’s function for the nth layer when the effective

Green’s function for the (n+ 1)th is known. Since the system is unchanged by removing

a single layer, the two Green’s functions above are identical. This leads to the following
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recursive equation:

Geff =
[
G−1

0 (iωn)− T †GeffT
]−1

, (5.2.9)

where we have defined G0 = (iωn − H0)−1. The equation for Geff is now simply an

equation for a 2-by-2 matrix and can be solved analytically. Nonetheless, for general

parameter values, the solution is still quite complicated and not insightful. It is therefore

useful to simplify it by transforming the system via the unitary transformation U =

exp
(
−iπ

4
σy
)
, which corresponds to a rotation around the y-axis in orbital space. In

addition, we set ts = t′ in order to simplify the result. This leads to,

R̃→ R =

0 0

ts 0

 ,

H̃0 → H0 = g1(k)σz − g3(k)σx.

(5.2.10)

The solution for the Green’s function reads,

G(iωn, k) =

G(2)
eff G

(3)
eff

G
(3)
eff G

(1)
eff

 , (5.2.11)

where

G
(1)
eff =

1

2t2s(iω + g1)

(
t2s + (iω)2 − g2

1 − g2
3 ±
√
p
)
,

G
(2)
eff =

iω + g1

2t2sg
2
3

(
−t2s + (iω)2 − g2

1 − g2
3 ±
√
p
)
,

G
(3)
eff =

1

2t2sg3

(
t2s − (iω)2 + g2

1 + g2
3 ∓
√
p
)
.

(5.2.12)
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and

p =− 4t2s(iω − g1)(iω + g1) + (−t2s − (iω)2 + g2
1 + g2

3)2. (5.2.13)

Analytic continuation then yields the retarded/advanced Green’s functions. The low

energy part of the spectrum is governed by the poles of G1 at ω = −g1(k).

As mentioned in the introduction, one of the most prominent aspects of Weyl semimet-

als are the surface Fermi arcs. In order to see that the effective surface theory correctly

predicts their existence, we can approximate the retarded Green’s function G(1)
eff for low

energies around the poles as

G
(1)
eff,ret =

t2s − g2
3 + |t2s − g2

3|
2t2s (ω + sin kx + iη)

, (5.2.14)

which leads to the spectral function

A
(1)
eff =


(1− g23

t2s
)δ(ω + sin kx) for g23

t2s
< 1

0 else
(5.2.15)

At low energy the weight of the spectral function is concentrated in a limited part of the

Brillouin zone. The zero energy states are obtained from the Green’s function by setting

ω = 0 and therefore kx = 0. For ts = 1, this gives the condition:

|m+ 1 + sin kz| < 1 ⇒ m+ sin kz < 0. (5.2.16)

The left hand side of the above expression is zero right at the Weyl nodes and is negative

between them. Therefore the zero energy states reside on a straight line between the two

Weyl point projections on the surface momentum space.
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5.3 Application of a magnetic field

In a varying magnetic field metals produce quantum oscillations. In two dimensions

these are the consequence of changing the Landau level spacing such that the Fermi level

traverses the Landau levels. In three dimensions the Landau levels are broadened by

the dispersion along the dimension parallel to the field. Alternatively in a semiclassical

picture electrons form closed orbits in the plane perpendicular to the field. In momentum

space these orbits trace the cross section of the Fermi surface perpendicular to the field.

In a Weyl semimetal one can expect both three dimensional bulk quantum oscillations

as well as surface quantum oscillations. The bulk quantum oscillations are most apparent

at high magnetic fields. The surface quantum oscillations appear due to semiclassical

orbits along a path composed of Fermi arcs on the top and bottom surfaces as well as the

bulk chiral Landau level. Therefore, the spectrum of a slab of a WSM in a magnetic field

contains a low energy fine quantization of levels, in the place of the single chiral mode

as well as Landau levels of index n > 1 with bulk degeneracy.

5.3.1 Bulk Landau levels of a WSM

The bulk Landau levels can be obtained by considering the low energy Weyl Hamiltonian

(5.1.1) in the case of our effective model. Here, v = 0 and only the diagonal elements of

hij are finite,

H = tskxσx + tskyσy + χvzkzσz, (5.3.1)

where we defined vz =
√
t2s −m2 and χ is the chirality of the node. We apply a magnetic

in the y-direction via substituting the canonical momentum π = k + A and choosing the
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Landau gauge, A = −Bxez. Defining harmonic oscillator operators this gives:

vzπz = − i
√
vz√

2`B
(a† − a), πx =

√
vz√

2`B
(a† + a). (5.3.2)

The spectrum is found by squaring the Hamiltonian:

H2 =

(
2vz
`2
B

(a†a+
1

2
) + k2

y

)
σ0 − χ

vz
`2
B

σy, (5.3.3)

where the second term comes from the commutation relation. Clearly the eigenstates

of H are eigenstates of σy. With the ansatz ψ0 = (|0〉, iχ|0〉)T , the zeroth Landau level

is easily found to have energy E0 = χky. Thus, we end up with a single chiral Landau

level, independent of the magnetic field. Higher Landau levels are given by

En = ±
√

2vz
`2
B

n+ k2
y. (5.3.4)

Note that each Weyl node exhibits only one zeroth Landau level. As explained by the

Nielsen-Ninomiya theorem[41, 42], Weyl nodes always come in pairs with opposite

chiralities and in the full lattice model the chiral Landau levels are connected at high

energy.

5.3.2 Surface quantum oscillations

Now we are in a place to analyze the Fermi arc induced quantum oscillations through the

effective surface theory. Semi-classically, when applying a magnetic field perpendicular

to the surface of a slab, the field will induce movement of the electrons along the Fermi

arc perpendicular to the Fermi velocity and the magnetic field. Moving along the arc the

electron ultimately reaches the Weyl node. Once reaching the node, the only accessible
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state is the bulk chiral Landau. Using this level the electron tunnels to the opposite

surface where it can again move on the arc. This motion leads to the other Weyl node

and eventually the cycle is closed.

The above surface-bulk cycle leads to fine quantization of energy which is given in

Eq. (5.1.2). This semiclassical approach assumes that the Weyl node separation is large

compared to the inverse magnetic length, ∆k `B � 1, so that the Weyl nodes decouple.
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Figure 5.2: Zeroth bulk Landau level for varying m from numerics (data points) and WKB
approximation (lines) for varying magnetic fields B = 2π

q .

The effective surface theory enables us to go beyond this limit and analyze the system

when the Weyl node distance is comparable to the inverse magnetic length, i.e., either

small arc lengths or large magnetic fields. In this regime, one has to take into account the

fact that there will be a non-zero probability for a state from one node to tunnel to the

other and vice versa, leading to a finite energy for the lowest Landau level even at the
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node. In the appendix we show that the energy offset is given by,

∆ε =
√

2C(m∗v2
Fω

2
c )

1
3 exp

(
−2

3

∆k3m∗v2
F

ωc

)
, (5.3.5)

where

C =
1√
2

(
2

√
π

2

Γ(7
4
)

Γ(1
4
)

) 2
3

. (5.3.6)

The Fermi velocity vF , the effective mass m∗ for our model are defined in the appendix

and ωc is the cyclotron frequency. This offset fully derives from the bulk model and in

Fig. 5.2 we compare the gap in Eq. (5.3.6) to the value of the zeroth Landau level at

ky = 0 for the full bulk lattice model. One can see that the construction overestimates

the energy gap by a small amount. This is due to the fact that the WKB approximation

used in the derivation works better for higher Landau levels and the fact that we ignored

the linear term in the potential. Nonetheless, the approximation captures the behaviour

of the full system well.

In Fig. 5.3 (a) we show the surface density of states (DOS) calculated using the

effective Greens function Eq. (5.2.5) for varying arc lengths in the long arc length regime

for a fixed magnetic field and fixed slab thickness. We repeat this analysis in Fig. 5.3b

for varying slab thickness, given that the slab thickness is large enough such that the

surface states cannot tunnel from one side to another, except in the vicinity of the nodes.

In these cases we find that the observed oscillations the effective surface theory coincide

well with the semiclassical theory in Eq. (5.1.2). In addition, one can read off the phase

offset γ = 1
2
, which indicates that the Berry phase contributions of the two Weyl nodes

cancel each other. This is consistent with the fact that the chiral Landau levels from both

Weyl nodes (with opposite chiralities) are involved in forming the magnetic orbit.
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Figure 5.3: Surface density of states for (a) varying arc length at magnetic field with q = 30 and
thickness Ny = 30, (b) varying slab thickness with q = 30 and m = 0. (c) Energy offset of the
zeroth Landau level for varying arc lengths. (d) Surface density of states for q = 30, Ny = 30
and m = 0 for varying parameter t2.

When moving from long arc lengths towards the small arc length regime, one would

imagine a regime shift in the contributions to the phase offset. Indeed, when analyzing

the energy offset in Fig. 5.3c one can see that for short arc lengths, the bulk energy gap

from the approaching Weyl nodes is dominating and the contribution from the quantum

oscillations is vanishing when approaching the point where the two Weyl nodes fuse at

m = ts.

Additionally, this phase offset is a direct signature of the fact that the Fermi arcs hy-

bridize with the chiral bulk Landau levels to form magnetic orbitals. As was shown above,
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the offset is acquired by the bulk Landau level due to the finite tunnelling probability and

carries over directly to the surface quantum oscillations.

Another interesting regime is a type II Weyl semimetal. In this regime, due to the tilt

term there is no chiral Landau level[17] while other bulk Landau levels are present. As

suggested by the semiclassical analysis, the existence of surface Landau levels depend

crucially on the bulk chiral Landau level. In its absence we do not expect to see surface

level quantization.

To test whether the surface states are quantized in Landau levels in a type II WSM

we add a term to the Hamiltonian:

H2 = t2 sin(kz), (5.3.7)

which will turn the Weyl nodes into type-II Weyl nodes for t2 > ts. As mentioned above,

in this regime the chiral Landau level is absent. This absence can be understood when

analyzing the large t2-limit. In this regime H2 completely dominates and applying a

magnetic field in a direction perpendicular to z will lead to a gapped spectrum. In Fig. 5.3

(d) we show the results for various values of t2, where one can see that when increasing

t2 the low energy regime which is dominated by the Fermi arc quantum oscillations

shrinks until it completely vanishes for t2 > ts. Our results therefore support the claim

that the chiral Landau level is necessary for the formation of surface Landau levels.

5.4 Numerical Analysis

In order to test the predictions of our effective surface theory, we use exact numerical

diagonalization of a lattice model with an applied magnetic field via Peierls substitution.

As in previous sections, the magnetic field B is oriented in the y-direction and in Landau
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gauge, the vector potential reads A = −Bxez. In this gauge the hopping along z acquires

an x-dependent phase which breaks the translation invariance in the x-direction. We

therefore define a magnetic unit cell, elongated along the x-direction. Choosing a cell

of length q lattice constants through which a flux quantum Φ0 is threaded amounts to a

magnetic field B = Φ0/qa
2 where a is the lattice constant. We vary q to control the field

strength. With this gauge the hopping along z acquires a phase of exp
(
−i2πnx

q

)
, where

nx is the index of the nth lattice site inside the magnetic unit cell. This increases the

sizes of the matrices H0 and R to 2q-by-2q and the y-layer Hamiltonian reads

H0 =
∑
kx,kz

∑
n

(m+ 2 + sin (kz − 2π/q · n))σzc
†
ncn +

∑
〈n,m〉

(
iσx − σz

2
)c†ncm

−1

2
e−ikxσzc

†
1cp +

1

2i
e−ikxσxc

†
1cp + h.c.

]
,

(5.4.1)

where the indices n,m run from 1 to q and we have suppressed the k-indices. The

coupling between different y-layers is given by

R =

(
−1

2
σz +

1

2i
σy

)
⊗ 1q, (5.4.2)

where 1q is a q-by-q unit matrix in the magnetic unit cell basis. The full 2qNy-by-2qNy-

Hamiltonian can be easily constructed. When diagonalizing the full system, we expect

the low energy spectrum to be dominated by the Fermi arc quantum oscillations and bulk

contributions at higher energies.

In Fig. 5.4 (a) we show the low energy spectrum (with respect to the parameter ts) of

a WSM slab in a magnetic field. At low energy (below 0.6ts in our model) one can see

the Fermi-arc Landau level structure. For higher energies, one can observe bulk Landau

levels mixed with the surface Landau levels. This is shown explicitly by varying the slab

thickness. The frequency of the Fermi arc induced quantum oscillations varies with slab
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Figure 5.4: (a) Bulk spectrum for a slab with model parameters q = 80, Ny = 40 and m = 0.
(b) Energy difference of the first and zeroth Landau level for q = 60 and Ny = 60. (c) Energy
offset as a function of arc length for the same parameter values as in (b).
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thickness, but the bulk Landau level spacing is almost constant.

Analyzing the frequency of the the Landau levels in energy space enables us to

test the predictions of the semiclassical theory and in addition further investigate the

behaviour of the slab in regimes not accessible by the semiclassical theory. This is done

in Fig. 5.4(b) where we confirm that the semiclassical approach accurately describes the

frequency of the quantum oscillations when varying the slab width. Further, in Fig. 5.4(c)

we vary the arc length ka of the Fermi arcs in the surface Brillouin zone and compare

the energy difference of the first and zeroth Landau level with the semiclassical theory

Eq. (5.1.2). One can see that only for long arc lengths does the semiclassical theory

describe the full quantum model well. This was done by taking into account the diabatic

correction[36] to the arc length ∝ `−1
b which is due to the fact that an electron on the arc

can tunnel through the bulk even before reaching a Weyl point. For small arc lengths the

behaviour significantly diverges from the semiclassical theory and converges towards the

behaviour for the merged Weyl points derived in appendix 5.A.

Further, we can analyze the phase offset through the full bulk system and compare it

to the findings from using the effective surface theory. In Fig. 5.4c we show a comparison

of the energy offset in the full bulk system with the semiclassical expectation with γ = 1
2

as well as the tunnelling gap. One can see the expected crossover behaviour from the

offset governed by the surface contribution to the bulk behaviour for m→ ts.

5.5 Conclusion

In this work we have analyzed the explicit surface character of quantum oscillations in

Weyl semimetals involving the surface Fermi arcs. We found clear signatures of the

quantum oscillations in the surface density of states and have analyzed contributions to

the phase offset. We identified an additional contribution to the phase offset due to the
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proximity of the two Weyl nodes and showed that there is no contribution from the Berry

curvature. In addition, we have presented direct evidence that the semiclassical picture is

accurate when the Weyl nodes are well separated.

5.6 Acknowledgements

Financial support for this work has been provided by the Alexander McFee award (JB),

NSERC and FQRNT (JB and TPB).

5.A Bulk Landau levels for overlapping Weyl nodes

For large Weyl node separations, one can model each Weyl node separately and arrive

at the usual Weyl Landau levels. However, when the two Weyl nodes approach each

other, they can not be treated separately. As a result chiral Landau level becomes massive

(gapped).

In order to address this we consider a bulk model with an applied magnetic field in

y-direction, ~B = B~ey and vector potential ~A = Bz~ex. As discussed in the first section,

the system experiences a gap closure at m = ts. Lowering m further, the gap closure

splits into two Weyl nodes which traverse the Brillouin zone and recombine for m = −ts.

The point of the gap closure for m = ts is ~k0 = (0, 0,−π/2)T . Around this point one

can expand the Hamiltonian as

H = vFkxσx + vFkyσy + (γ +
k2
z

2m∗
)σz, (5.A.1)

where γ = m− ts and we have omitted the quadratic terms in kx and ky. We defined the

Fermi velocity vF = ta and m∗ = 1
a2ts

, where we explicitly wrote out the lattice constant
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a. Adding the magnetic field to the system, we arrive at

H = BvF z̃σx + vFkyσy + (γ +
k2
z

2m∗
)σz, (5.A.2)

where we have defined z̃ = z + kx/B. Normally one arrives at a zeroth Landau level

which depends on the momentum along the field direction, in this case ky, and is gapless

for ky = 0. Here, however, the zeroth Landau level acquires a mass which is estimated

below.

Defining the new variables Z = z̃
α

and K = αkz with α = (vFm
∗B)−

1
3 , we arrive at

H = (m∗v2
Fω

2
c )

1
3

(
Zσx + (Γ +

K2

2
)σz

)
, (5.A.3)

with the now dimensionless Γ = γ

(m∗v2Fω
2
c )

1
3

and the cyclotron frequency ωc = B
m∗

.

Squaring the Hamiltonian leads to

H2 =(m∗v2
Fω

2
c )

2
3

Z2 + (Γ + K2

2
)2 −1

2
[Z,K2]

1
2
[Z,K2] Z2 + (Γ + K2

2
)2


=(m∗v2

Fω
2
c )

2
3

[(
Z2 + (Γ +

K2

2
)2

)
σ0 +Kσy

]
,

(5.A.4)

where we have used [Z,K2] = 2iK. Ignoring the prefactor for now, one gets the

eigenvalue equation,

(
Z2 + (Γ +

K2

2
)2

)
c1 − iKc2 = E2c1,

iKc1 +

(
Z2 + (Γ +

K2

2
)2

)
c2 = E2c2.

(5.A.5)
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Using the ansatz c2 = ic1, we get

(
Z2 + (Γ +

K2

2
)2 +K

)
c1,2 = E2c1,2. (5.A.6)

This has the general structure of the differential equation for an anharmonic oscillator

when the operators are written in the momentum space basis as opposed to the real space

basis. Using this analogy, we can solve this by defining the ’potential’ in momentum

space, V ≡ V (K) = (Γ + K2

2
)2 +K. In order to analyze the equation, we approximate

it by ignoring the linear term. We want to investigate the m = ts limit, i.e., Γ = 0. In

this case the two Weyl nodes are combined to one single gap closure and one can solve

the problem via the WKB approximation. The quantization condition reads,

∫ x+

x−

√
E2 − V =

(
n+

1

2

)
π, (5.A.7)

where x± = ±
√

2E
1
2 are the turning points. The left hand side can be transformed,

E

∫ x+

x−

dK

√
1−

(
K

x

)4

=

√
2E

3
2

2

∫ 1

0

dt

t
3
4

√
1− t, (5.A.8)

with t =
(
K
x

)4. The integral is defined as the Euler beta function,

B(x, y) =

∫ 1

0

dt tx−1 (1− t)y−1 , (5.A.9)

at x = 1
4

and y = 3
2

and therefore,

π

(
n+

1

2

)
=

√
2E

3
2

2
B
(

1

4
,
3

2

)
. (5.A.10)
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With B
(

1
4
, 3

2

)
=
√
πΓ( 1

4
)

2Γ( 7
4

)
we get

En =

(
4

√
π

2

Γ(7
4
)

Γ(1
4
)
(n+

1

2
)

) 2
3

, (5.A.11)

and reinstating the prefactor leads to

En = (m∗v2
Fω

2
c )

1
3

(
4

√
π

2

Γ(7
4
)

Γ(1
4
)
(n+

1

2
)

) 2
3

. (5.A.12)

As usual, the WKB approximation works better for higher Landau levels and we have

ignored the linear term. When comparing to the numerically calculated Landau levels of

the full system, only the first couple of Landau levels acquire a correction ζ(n). We find

numerically that the zeroth Landau level gets a factor of ζ(0) ≈ 0.811 and already for

n ≥ 1 we find ζ(n) ≈ 1, which is very close to what the authors in [43] have found.

5.B Chiral Landau level for small Weyl node

separation

In order to estimate the energy shift of the chiral Landau level as a function of the

Weyl node separation, we will start from equation (5.A.4), from which one can read

off the potential in momentum space as V (K) = (Γ + K2

2
)2 +K. This is the potential

of an anharmonic oscillator in momentum space and for Γ < 0 we have two distinct

minima. Ignoring the linear term, we have a symmetric double well problem[44], where

Γ = m−ts
(m∗v2Fω

2
c )

1
3

controls the separation of the two wells. We approach the problem by

restricting our Hilbert space to that spanned by two wavefunctions, ψr and ψl. These

are the ground states of the left and right wells located at ±
√

2Γ, when they are com-

pletely separated form each other. When the two wells approach each other, the two
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wavefunctions hybridize due to the finite tunnelling probability. The new eigenstates are

the symmetric and anti-symmetric combinations,

ψ±(K) =
1√
2

(ψr(K)± ψr(−K)) . (5.B.1)

The wavefunctions obey the Schrödinger equations,

ψ
′′

r + (V − Er)ψr = 0,

ψ
′′

± + (V − E±)ψ± = 0

(5.B.2)

where the first equation is valid due to the fact that the double well potential equals the

single well potential in the regime of ψr. In addition, the amplitude of ψr in the left

well is vanishingly small. Without loss of generality, we pick ψ+. Multiplying the first

equation by ψ+ and the second one by ψr, subtracting the first equation from the second

and subsequently integrating from 0 to∞ and using integration by parts, one arrives at,

∆E = 2ψr(0)ψ
′

r(0). (5.B.3)

Restoring the prefactor from (5.A.4) and taking into account that we squared the Hamil-

tonian in order to derive Eq. (5.A.4), via ∆ε = (m∗v2
sω

2
c )

1
3

√
∆E we arrive at,

∆ε =
√

2(m∗v2
Fω

2
c )

1
3

(
ψr(0)ψ

′

r(0)
) 1

2
. (5.B.4)

In order to evaluate this expression, we use the WKB approximation and we have,

ψr(0) =
C

V
1
4

exp

(
−
∫ √2Γ

0

|
√
V |
)
, ψ

′

r(0) =
√
V ψr(0) (5.B.5)
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Evaluating the integral we arrive at,

∆ε =
√

2(m∗v2
Fω

2
c )

1
3C exp

(
−|Γ| 32

(
√

2 +
2

3
2

6

))
(5.B.6)

The distance of the Weyl node from the middle point around which we have expanded the

Hamiltonian, is given by ∆k = arccos(m/ts) ≈
√

2 (ts−m)
ts

, where we have expanded

around m = 1. With this, we arrive at the final result,

∆ε =
√

2(m∗v2
Fω

2
c )

1
3C exp

(
−2

3

∆k3m∗v2
F

ωc

)
. (5.B.7)

The constant C can be inferred from the lowest Landau level at m = ts (see Ap-

pendix 5.A) and we get

C =
1√
2

(
2

√
π

2

Γ(7
4
)

Γ(1
4
)

) 2
3

. (5.B.8)
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6

Conclusions

6.1 Summary of the thesis

This thesis has dealt with the topological properties of gapped as well as gapless topo-

logical states. It was investigated how entanglement and topology interact in symmetry

protected topological states and how perturbations influence the topological state. To

this end, we looked at disorder in topological superconductors as well as an external

magnetic field in a Weyl semimetal.

We started out in the second chapter and analyzed numerically the entanglement

entropy of a spin-orbit coupled superconductor with either s-wave or d-wave pairing.

In symmetry protected topological states the topological entanglement entropy is zero,

but nonetheless there remains a signature of the topological phase transition in the

entanglement entropy. We analyzed some of the different possible partitions of the

system and found that the subleading contributions are mainly governed by corner

contributions. In addition, the analysis showed the fact that the topological entanglement

entropy is in fact zero.

In the third chapter we complemented the numerical analysis with an analytical
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calculation of the topological superconductor with s-wave pairing in the large Zeeman

coupling limit. We explicitly review the derivation of the projection to a single band,

spinless superconductor with effective px+ipy-wave pairing and use the simpler structure

of the system to derive an analytic expression of the entanglement entropy. We were

able to explicitly show that the entanglement entropy obeys the area law and shows a

signature of the topological phase transition.

Based on these results, in chapter four, we were subsequently able to investigate

the topological superconductor when subjected to a random disorder potential. Using a

real space Chern number construction we were able to investigate the topological phase

transition for varying disorder strengths and to detect a new topological phase that was

not present in the clean system. This result was then confirmed by using a Gaussian

disorder potential in connection with perturbation theory. In addition, we were able to

investigate the disorder-averaged entanglement entropy and compare its behaviour to the

other two methods.

In the last chapter we subsequently moved on to gapless topological phases and

subjected a Weyl semimetal to an external magnetic field. In this system we then

specifically investigated the surface of the Weyl semimetal in a slab geometry via an

effective surface theory. When exposed to a magnetic field we found that the surface

density of states experiences a clear Landau level structure stemming from magnetic

orbits formed by the surface Fermi arcs, special to Weyl semimetals. These orbits inherit

a characteristic dependency of the thickness of the slab that we were able to confirm

using the effective surface propagator.
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6.2 Future Directions

There are several possible extensions of the work contained in this thesis and we want to

discuss some of them in this section.

A straight forward generalization of the work on the entanglement entropy would

be to extend it to different symmetry protected topological states in different symmetry

classes and dimensions in order to further investigate its behaviour around topological

phase transitions. Further, it might be interesting to investigate the critical properties

of the entanglement entropy in the vicinity of the phase transition point. However,

this already involves considerable computational effort even without considering self

consistency.

In addition, the analysis of the disordered topological superconductor from chapter

four could be extended as well. Specifically, the perturbation approach using a Gaussian

disorder potential could be extended to include crossed diagrams. These diagrams should

lead to contributions to the renormalization of the parameters of the Hamiltonian that

could explain the observed discrepancy between the real space Chern number approach

and the perturbation theory.
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