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Abstract

Recently, robotic technology has begun to play an important role in forestry operations. An
important class of forestry machines is comprised of systems equipped with a mobile
platform fitted with an articulated arm carrying a tree processing head. The dynamics of
such systems are needed for simulation and control purposes. In contrast to conventional
industrial manipulators, which are mounted on stationary bases, a mobile manipulator is
dynamically coupled with its base. Base compliance, non-linearity and coupled dynamics
result in positioning inaccuracies which in turn give rise to control problems.

The dynamics of the FERIC forwarder forestry machine including its compliant tires
were developed and implemented symbolically in compact form with the help of an iterative
Newton-Euler dynamic formulation. Various models with increasing complexity were
derived. Based on a simplified dynamics model, a valve-sizing methodology was
developed and used to size hydraulic proportional valves of the machine's actuators.

System parameters have been obtained by various methods, including use of
blueprints, weighing, solid modeling and various experiments. A set-point feedforward
controller was designed and the machine's responses for various inputs were obtained to
analyze the dynamic behavior of the system. Although initial simulations were done in
Matlab and Simulink, C programs were developed for increased speed of execution. In
addition, techniques to minimize computation time have been developed and applied to

result in almost real time simulation.



Résumeé

Récemment, la technologie robotique a pris de ['importance dans le secteur des
opérations forestiéres. Une importante classe de machines forestieres comprend les
machines a plate-formes mobiles auxquelles on a ajouté un bras articulé opérant une téte
multi-fonction. La dynamique de tel systémes est requise pour fins de simulation et de
commande. Contrairement aux manipulateurs industriels conventionnels, qui sont montés
sur une base fixe, un manipulateur mobile est couplé dynamiquement a sa base. Les
déformations de la base, de méme que la non-linéarité du systéme et la dynamique couplée,
résultent en des positionnement imprécis qui, a leur tour, ameéne des problémes de
commandes.

La dynamique de la machine forestiere FERIC, incluant la déformation des pneus, a été
développée et réalisée symboliquement sous forme compacte, en utilisant la formulation
dynamique itérative de Newton-Euler. Différents modéles a complexité croissante ont été
développés. Basé sur la dynamique d’un modéle simplifié, une méthodologie de
dimensionnement des valves a été développée et utilisée pour dimensionner les valves
hydrauliques proportionnelles des actuateurs de la machine.

Les paramétres du systéme ont été obtenus a I’aide de différentes méthodes, incluant les
plans originaux, pesage, modelage solide, et diverses expériences. Un systeme
d’asservissement a boucle ouverte avec consigne a €té congu et les réponses temporelles de
la machine furent obtenues pour différents signaux d’entré afin d’analyser le comportement
dynamique du systéme. Quoique les simulations initiales ayant été faites avec Matlab et
Simulink, des programmes en C ont été développés pour augmenter la vitesse d'exécution.
De plus, des techniques pour minimiser le temps de calcul ont été développées et appliquées

de sorte que des simulations et animations en temps quasi-réel ont pu étre obtenues.
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Nomenclature

a, : coefficient of the ith order polynomial.

A, : average area of the cvlinder (subscript s for stick and b for boom).
b, : coefficient of friction at joint i.

b, : total damping due to four tires in the roll direction.

b, : total damping due to four tires in the pitch direction.

b. : total damping due to four tires in the bounce direction.

B : damping matrix of the tire model.

c : discharging coefficient.

c, : cosine of angle ¢,.

D : volumetric fluid displacement of the motor.

e : position error for the ith joint.

€, : velocity error for the ith joint.

E,, . steady-state error.

f, : force vector at joint 1 expressed in frame i.

‘F, . force vector at the center of mass of link i expressed in frame 1.

g : acceleration due 1o gravity.

G : Vector of gravity terms.

G : gravity terms corresponding 1o joint 1.

I, : moment of inertia of link i with respect to an axis parallel to the x, axis.

located at the center of mass of link i.




Nomenclature

X X

=

NN

Pop

product of inertia of link i with respect to a plane parallel to the plane
x,y, passing through the center of mass of link 1.

inertia tensor of link i with respect to the center of mass of link i

expressed in a frame located at the center of mass and with ortentation

the same as that of the ith D-H frame.

: Jacobian of a three degrees of freedom system.

ith diagonal element of the control matrix for position gains.
ith diagonal element of the control matrix for velocity gains.
total stiffness due to four tires in the roll direction.

total stiffness due to four tires in the pitch direction.

total stiffness due to four tires in the bounce direction.
stiffness matrix of the tire model.

diagonal control matrix for position gains.

diagonal control matrix for velocity gains.

length of link i.

mass of link 1.

element (i, j) of a mass matrix.

mass matrix.

gear ratio from swing to swing motor.
moment vector at joint 1 expressed in frame i.

moment vector with respect to the center of mass of link i expressed in

frame i.

operating pressure.



Nomenclature

a_ b

P

(5.b.sw)

4

4

min? max

position vector of origin of frame c, with respect to point b and

expressed in frame a.

power required for a trajectory (subscript s for stick, b for boom and sw

for swing).

joint variable of link i.

angular velocity of link i.

angular acceleration of link i.

desired (3x1) set-point vector to the controller.

steady-state condition (3x1) vector.

flow in the swing motor.

flow in the cylinder (subscript s for stick and 4 for boom).
rotation matrix from frame i-1 to frame i.

sine of angle q,.

time variable for a trajectory.

final time (end of a trajectory).

period of oscillation.

transformation matrix from frame i-1 to frame i.

linear acceleration vector of link i expressed in coordinate frame i.
linear acceleration vector of center of mass of link i expressed in

frame i.

Vector of Coriolis and centrifugal terms.

Coriolis and centrifugal terms corresponding to joint i.

minimum and maximum link position.



Nomenclature

x.r.b

(xjvy"?zl')

X

Ap,
Apx.b
Apv.(s.b‘m)

velocity of the piston (subscript s for stick and b for boom).

unit vectors along the x, y, and, z directions in the coordinate frame i.
generalized position vector of the base center of mass of the base with
respect to world frame.

generalized velocity vector of the base center of mass with respect to
world frame.

pressure drop in the swing motor.

pressure drop in the cylinder (subscript s for stick and b for boom).
pressure drop at the valve (subscript s for stick, & for boom and m for
motor).

controller damping for ith joint.

controller frequency for ith joint.

torque vector.

gravity compensation feedforward term for the ith joint.

torque vector at joint i.

frequency of oscillation.

angular velocity vector of link i expressed in frame i.

angular acceleration vector of link i expressed in frame i.



1. Introduction

1.1 Manipulators on Forestry Vehicles

Although industrial robots do not look like humans they may do the work of humans.
Present industrial robots are actually mechanical handling devices that can be manipulated
under computer control. The mechanical handling device, or the manipulator, emulates the
arm of a human. The joints are driven by electric, pneumatic, or hydraulic actuators, which
give manipulators more potential power than human beings. The computer, which is an
integral part of every modem manipulator system, contains a control program and a task
program. The task program is provided by the user and specifies the manipulator motions
required to complete a specific job.

At present, more and more researchers are showing interest in employing manipulators
in dangerous and hazardous environments and performing undesirable jobs. A typical
unstructured and harsh environment includes the forests.

Recently, robotic devices have begun to play an important role in forestry operations.
An important class of forestry machines is comprised of systems equipped with a mobile
platform fitted with an articulated arm carrying a tree processing head. The dynamics of the
system is needed for simulation and control of the machine. In contrast to conventional
industrial manipulators which are mounted on stationary bases, a mobile manipulator is
dynamically coupled with its base. Base compliance, non-linearity and coupled dynamics
resuit in positioning inaccuracies which in turn give rise to control problems.

Many forestry machines are equipped with manipulators mounted on a mobile platform
whose main purpose is to grab a tree close to its roots and cut it, delimb it and cut the main
stemn to small logs. Due to the tire/ground compliance, the base of the manipulator moves.

The total system can be modeled as a manipulator mounted on a compliant base. The degree
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of compliance depends on the compliance characteristics of the ground and on tire

specifications and inflation pressure.

1.2 Motivation

The purpose of the thesis is to develop dynamic models for an electrohydraulic forestry
machine, which will be used to develop a training simulator, for sizing components, and
for system design and control.

Designing of a training simulator: Training simulators become important now-a-days,
as they give the feeling of operating the actual machine without being in it. A simulator can
reduce training costs since it eliminates the possibility of machine damage or even personal
injury of novice trainees. It helps to realize the critical or dangerous maneuvers, which is
risky in an actual machine. In this project one of the goals is to develop a training stmuiator
for the FERIC (Forest Engineering Research Institute of Canada) machine. The simulator is
a visual graphic simulator, which consists of a Silicon graphics workstation coupled with a
joystick to control the graphical image of the actual machine. The dynamics of the system is
necessary to obtain the actual motion of the machine.

Valve Sizing: Field harvesters are heavy duty machines equipped with hydraulically
powered actuators and electrohydraulic valves. Accurate sizing of actuation components
requires a dynamic model of the system. Valves are sized based on two factors, the
pressure drop across the valve and the flow through the valve. The dynamic model is
necessary to calculate the pressure drop across the valve for a desired trajectory (i.e. the
flow through the valves).

Controller design: "Plant" dynamics is essential in designing, verifying, and evaluating
various control algorithms. By playing with different control parameters (especially
controller gains) a control engineer can observe various dynamic behaviors of the system

and finally choose a proper controller to improve actua! machine performance.
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1.3 Literature Survey

1.3.1 Field Robotics

During the infancy of robotics, manipulators were used either for research or for industrial
purposes. Presently, manipulators are applied in different sectors like mining, nuclear,
military, construction, marine, space agriculture and forestry [75]. A large class of these
manipulators are mobile and mounted on a compliant base.

An important application of field manipulators is in mining. Remotely operated and
autonomous ore-excavation technology could eventually eliminate the need for miners to
travel deep underground [4]. A robot named ROSEE, designed by engineers at the
Department of Energy's Hanford site, will minimize the risk of radiation exposure to
workers cleaning up the residue left by America's manufacture of nuclear weapons [83].
The robot vehicle should have some specific properties in order to operate in nuclear
environments, such as being very safe to use [39]. In order to have total control over such
a robotic system, the human and computer control are integrated. The "man in the loop” can
accomplish non-programmable tasks, while a computer can reduce operator fatigue by
performing repetitive tasks [73]. A remote-control shovel [45] allows its operator feel what
is happening from a remote site, making the removal of hazardous waste simple and safe.
In 1992, the first major international conference for exposition on environmental pollution
control and technology to remedy was held [84]. In the case of extraterrestrial surface
construction, transportation and mining, low gravity issues become extremely important
[37].

Application of the concept of mobile robotics to the operation and maintenance of
nuclear facilities has evolved since 1983. The first step in this evolutionary process was the
demonstration of legged locomotion technology. The second step was the use of robotics

technology in conjunction to locomotion. The final stage so far is the incorporation of
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enhanced mobility and dexterity, increased intelligence and greater strength in the
manipulator arm and transporter. The detail of the evolution and technology development is
described by Carlton and Bartholet [7].

The different possibilities of robot applications in underground hard rock mining
operations have been discussed by Vagenas [82]. Field robots are moving beyond
radioactive cleanups to bomb disposal, fire fighting and more [27]. During late 1985 the
Army Materiel Command Headquarters gave a task to the U.S. Army Human Engineering
Laboratory (HEL), AMC's lead agency for field oriented robotics, to develop a program in
robotics which would achieve "critical mass" for a few key programs. A survey was
conducted by Shoemaker in three different domains important in the field of defense,
namely Teleoperated Mobile Antiarmor, Material Handling Robotics and Robotic Combat
Vehicles [76].

For heavy duty work e.g. applications in Civil Engineering (concrete pouring, building
maintenance etc.), a large manipulator with sufficient power is required [74]. A
reprogrammable control system allowing for variable motions in performing a variety of
pre-planned handling tasks was developed by Smidt et al. [79]. A hierarchical control
architecture was designed and a man-machine interface was developed based on a graphic
display and a joystick. The basic methods for trajectory planning with collision detection
and avoidance can be found in reference [79]. There are many difficulties that must be
overcome before robotics can be successfully implemented in construction on an industry
wide basis. One of the severe problems is the need for carrying large payloads and for
machine mobility. In addition, since the base is not fixed, the compliance due to vehicle
suspension and tires affect manipulator accuracy. The various problems include mobility,
sensing, gripper design, modeling and control systems, accuracy, hardware weight and
stability, and lastly the environmental factor [78].

Following the development of the first industrial robots in the USA in 1961, several

companies in UK [12], Federal republic of Germany [87], Finland [41], Canada [61],
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Sweden [71] came forward to cope up with the new technology. Obayashi has described
some social and economical issues due to automation in construction industry [63]. Fukuda
has come up with detailed designs of different parts of a manipulator to be used for heavy
construction. The self leveling mechanism for bucket control has been found quite
interesting and details can be found in [23]. Different concepts of using a robot in Civil
Engineering jobs especially in the construction area have been discussed by Okazaki [64],
[65]. In general, manipulators with very large reach are used in construction engineering
applications. Naturally, low payload devices are not effective while modifications are
necessary in designing controller hardware. Some of these issues have been pointed out by
Wanner [88].

Presently, automatic control systems for construction machinery are getting the
attention of the research community. The control systems consist of a microprocessor
based controller, sensors and hydraulic actuators. The non-linear characteristics of
hydraulic actuators and the low rigidity of the structure of a construction machinery make it
difficult to achieve high control accuracy and high stability performance. Details of a
control algorithm consisting of a combination of feedback and feedforward control with
non-linear compensation, has been discussed by Kakuzen et al. [35].

Remote handling in hostile environments, including space, nuclear facilities, and mines
requires hybrid systems, as close co-operation between state of the art teleoperation and
advanced robotics is needed. Teleoperation with kinesthetic feedback is being investigated
by researchers since it provides an operator with a feel of the robot workload and hence the
robot can be controlled more effectively. Applications such as a prevention of satellite drift
or transferring material at sea can be found in detail in [93].

In the agricultural sector too the application of manipulators is quite frequent now-a-
days. By 1930, farm machinery began making the transition to larger, more comprehensive
machines for large scale farming [33]. Sophisticated agricultural robots can be found in

Australia. The University of Western Australia has done extensive work on a robotic sheep
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shearer [38], [81]. The Agricultural Engineering Department of the Lousiana Agricultural
Experiment Station has developed a laboratory model of five degrees-of-freedom robotic
seedling transplanter [32]. In 1983 different possibilities of using a manipulator in
agriculture were explored by Kulz [43]. Some attempts are made by Edan to control an
agricultural robot to pick up melons using 3D real time vision [18].

Robotics has great potential to meet the need for enhancing the productivity and quality
of U.S. greenhouse industry. A robotic workcell has been developed at the University of
Georgia Experiment Station, which is also where the MSFC (Marshall Space Flight Center)
gripper system has been tested and evaluated. A force sensing robotic gripper system has
been developed at the Productivity Enhancement Complex at the Marshall Space Flight
Center. The details of hardware and software design for the controller and the gripper have
been explained by Gill [25].

In Canada, planning for the application of automatic machines in forest industry started
late 1970's. The economic importance of forestry in Canada and the potential for robotics
in forest operations have been discussed in detail by Courteau [10]. Research on
teleoperated excavators for forest applications was initiated by P. Lawrence and his team in
British Columbia since 1985. A test-bed machine was loaned to a project aiming at
implementing a resolved motion control algorithm. Electric hand controls, on-board
computer, electro-hydraulic pilot valves, machine joint angle sensors and machine pressure
sensors were added to an excavator machine to control it in cylindrical co-ordinates using

inverse kinematics [46].

1.3.2 Dynamics

In order to design, improve performance, simulate the behavior, and finally control a
systemn or "plant”, it is necessary to obtain its dynamics.
In order to develop the dynamics of a manipulator, a kinematic model of the

manipulator is required first. The kinematics modeling is done first by attaching frames to
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every link. The usual convention to attach frames in the links of a manipulator is called
Denavit-Hartenberg notation [14]. The kinematic modeling of a mobile manipulator can be
done by expressing the mobile manipulator's kinematics with homogeneous matrices [62],
[59]. For a serial manipulator with more than four degrees-of-freedom, the inverse
kinematics problem is quite difficult. Sometimes it is not possible to get a closed-form
solution. Thus efficient numerical solution of the inverse kinematic problem has become
popular [2]. Different issues and methods of kinematic analysis are discussed by Gupta
(zero reference position method), Paul (homogeneous transformation representation
method) and McCarthy (dual orthogonal matrix method) [28], [68], [55]. Kreutz-Delgado
et al. presented kinematic analysis for a seven degrees-of-freedom senal link spatial
manipulator with revolute joints. The redundancy is parameterized by a scalar variable [42].
For a mobile manipulator the base frame moves as a result, the motion propagates to all the
links of the manipulator. Minami et al. proposed a method slightly different from the
Newton-Euler method as far as frame attachment is concerned, to calculate inverse
dynamics [60].

The dynamics of a manipulator can be obtained in various ways namely using a
Newton-Euler dynamic formulation, a Lagrangian formulation, Kane's Method. and
others. The Newton-Euler method is based on Newton's second law of motion with its
rotational analog, called Euler's equation. It describes how forces and moments are related
to acceleration. In the iterative Newton-Euler algorithm, the position, velocity and
acceleration of the joints are known. With these as input and assuming that the mass
properties of the manipulator and any externally acting forces are known, the joint torques
required to cause this motion can be calculated. The algorithm is based on a method
published by Luh, Walker, and Paul in [52]. Another iterative method has been proposed
by Featherstone [20] that uses articulated-body inertia and other spatial quantities. However

this method is less efficient for manipulators with many degrees-of-freedom.
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The overall Newton-Euler formulation is based on a "force balance” approach to
dynamics. On the other hand the Lagrangian formulation is an "energy-based" approach to
dynamics. Lagrange's formalism has been applied in two ways. The first employs an
independent set of generalized co-ordinates {85]. The second approach uses dependent co-
ordinates, which requires the use of Lagrange's multipliers [8]. The second approach has
been successfully applied by Megahed and Renaud [57]. Another approach has been
developed by Luh and Zheng [S1]. They use an equivalent tree structure, which is modeled
with a Newton-Euler algorithm, and Lagrange's multipliers to introduce the constraints of
the closed loops.

The classical Lagrangian formulation for manipulator dynamics is inefficient. The
efficiency of Newton-Euler formulation is due to the two factors: the recursive structure of
the computation, and the representation chosen for the rotational dynamics. Recursive
Lagrangian dynamics for rigid manipulators has been discussed previously by Hollerbach
[31] and for flexible manipulators by Book [5]. A general algorithm is developed to model
the dynamic equation of both rigid and flexible arms [50], but the equation is generally
larger than that for rigid links. Silver has shown that with a proper choice of vanables, the
Lagrangian formulation is equivalent to the Newton-Euler formulation [77].

Another method of deriving dynamic equations is by Kane's method which arises
directly from d'Alembert's principle in the Lagrangian form. It has the advantages of a
Newton's mechanics formulation without the corresponding disadvantages. In this method
non-working interactive forces are automatically eliminated from the analysis [36]. Other
methods that can be used to derive equations of motion include Roberson-Wittenburg's
method and Popov's method [70]. A symbolic analytical procedure to obtain a dynamic
model of a manipulator with complex chain structure can be found by using dual vectors
and the principle of virtual work [26]. Another method of manipulator modeling is usage of

spatial operator algebra [72]. The algebra makes it easy to see the relationship between
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abstract expressions and recursive algorithms that propagates spatial quantities from link to
link. It also reveals the equivalence of Lagrangian and Newton-Euler formulations.

For a simple fixed-base serial chain manipulator the derivation of dynamics is simple
and straightforward, but the opposite holds true for a complex robotic system. In deriving
manipulator dynamics, the direct differentiation of kinematic functions is inefficient [47].
The efficiency considerations regarding manipulator kinematics necessitate special
formulations to compute Jacobians [69], [21]. The comparison of six methods for
calculating the Jacobian for a seven degrees-of-freedom manipulator has been reported by
Orin and Schrader [66]. There is an inefficiency due to the growth of common
subexpressions and is readily observed when using the built-in differentiation functions in
symbolic algebra systems such as Mathematica [91], MAPLE [9] and MACSYMA [54].
This problem has been revealed by several researchers [6], [44], [48], [40]. It is well
known that using symbolic algebra to simplify the expressions, especially those involving
trigonometric functions, can improve efficiency greatly.

A complete dynamic model of a robotic system is a set of non-linear coupled differential
equations [30]. Artificial neural networks are well suited for this application due to their
ability to represent complex functions and, potentially to operate in real time. The
application of an artificial neural network to dynamic modeling of robotic system has been

investigated by Eskandarian [19].

1.3.3 Base Compliance

Presently many industrial manipulators are mounted on a fixed rigid base. In order to
increase a system’s workspace, a manipulator can be mounted on a mobile vehicle, but
base compliance hampers system performance. There has been little prior research in the
dynamic coupling of the manipulator and the vehicle. Examples can be found in research

related to control problems [53], [49], [15].
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The dynamic coupling between vehicle and manipulator has been treated as two
separate subsystems by Wiens, thereby decoupling the integrated system [90].

Joshi and Desrochers derived dynamic equation for a two link manipulator mounted on
a platform subject to random disturbances [34]. They used an equivalent angle-axis pair
(K, ©) to describe the orientation of the base. By changing vector K the effect of roll, pitch
and yaw is simulated. In practice, it is not straightforward to know the type of change for
the vector K.

Statically, base compliance gives rise to static errors in positioning the manipulator's
end effector. The system accuracy can be dramatically improved if the base compliance is
incorporated in the model. Further improvement in accuracy has been achieved by West,
Hootsmans, Dubowsky, and Stelman with endpoint feedback control of the position of the
end effector relative to the task frame [89].

A planar manipulator with three degrees-of-freedom and with bounce and pitch
disturbance has been studied by Dubowsky and Tanner [16]. In this study, it was assumed
that the vehicle is far more massive than the manipulator system. The main assumption is
that the motion of the manipulator does not affect the vehicle. This assumption might not be
true for many practical applications. If the masses of the manipulator and the vehicle are of
the same order of magnitude the problem becomes more difficult due to coupling.
Hootsmans and Dubowsky also show that an extended Jacobian transpose control
algorithm can perform well for large motions in the presence of modeling errors and the

limitations imposed by sensors available for highly unstructured field environments.

1.3.4 Stability

High speed motions of mobile manipulators can dynamically disturb their vehicles, and it is
even possible for the vehicle to tip over. Dubowsky and Vance presented a planning
method to ensure the dynamic disturbances do not exceed the capabilities of a vehicle and

compromise its stability, while permitting a mobile manipulator to perform its task quickly.

10
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This method is effective for systems in which there is a substantial friction between the
vehicle and ground [17].

To avoid tumbling of a manipulator mounted on vehicle and carrying a heavy load,
Fukuda et al proposed a center of gravity control method. In this method both the trajectory
of the manipulator and the center of gravity of the manipulator are controlled [24].

Currently much work is going on to ensure stability of mobile robotic systems.
Sugano, Huang and Kato describes the concepts of degree of stability and of valid stable
regions based on the Zero Moment Point criterion {80]. The Zero Moment Point is a point
on the ground where the resultant moment of the gravity, the inertial force of the mobile
manipulator and the external force is zero. Papadopoulos and Rey suggested a new Force-
Angle stability measure which is easy to compute and operates on both even and uneven
terrain. The new tipover stability measure is sensitive to top heaviness and is applicable to
dynamic systems subject to inertial loads and external forces [67].

In the case of rough terrain, it is preferable to use a legged vehicle rather than one with
wheels. Although legged vehicles can negotiate very uneven terrain, the speed of the
manipulator becomes very slow. Messuri and Klein developed a computer controlled
algorithm to include the incorporation of a body accommodation feature and a body
stabilization feature to allow greater vehicle maneuverability, particularly during rough-
terrain locomotion [58]. They introduced the concept of energy stability margin. In case of
a quadruped walking machine the stability algorithm has been developed by Davidson and

Schweitzer [13]. More information on legged locomotion is cited in reference [29].

1.3.5 Real Time Simulation

With the advent of fast digital computers, real time simulation for complex systems has
become very important. Real time simulation is needed for model-based control, simulator

design for animation and detection of system failures. There are many factors that affect the
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speed of execution namely, the method of implementing dynamics, the step of integration,
the numerical integration algorithm, the CPU, the source code, the compiler etc.

In the case of a multiprocessor system, a parallel processing scheme of manipulator
dynamics computation is preferred [86]. McMillan used a supercomputer to simulate
manipulator dynamics [56]. Distributed real time computation of manipulator dynamics has
been reported by Abdalla et al. [1]. They simultaneously evaluated inertial, coupling and
gravity terms. Frenton and Xi reported the use of algebra of rotation is more efficient than
the use of homogeneous transformations [22]. However, in their work they used an
iterative method for the dynamic simulation which is slower than a closed form solution for

the dynamic simulation 3], [6].

1.4 Thesis Organization

The second chapter deals with the kinematic modeling of the forestry machine. This is
required for dynamic modeling. The attachment of Denavit-Hartenberg frames and
singularity analysis are described in this chapter. The dynamics of the forestry machine is
formulated in the third chapter. At first a simplified model of three degrees-of-freedom
(dof) is considered. Increasing complexity is added to the simplified model step-by-step,
and equations of motion are derived for each case. In order to run simulations, validate the
developed code, and obtain results various system parameters are needed. Some parameters
(length, mass, thickness etc.) were obtained by direct measurements, weighing or
industrial blueprints. But the inertial parameters, and the parameters related with stiffness
and damping were found by various experiments. The design of various experiments and
the corresponding results are described in Chapter 4. Chapter 5 deals with system analysis
and design using inverse dynamics. Actuator valve sizing methodology and power
calculations based on system dynamic model are discussed in this chapter. The
implementation of forward dynamics and various techniques to minimize simulation time in

order to achieve real time systems is discussed in Chapter 6. This chapter also describes the
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dynamic response of systems of varying complexity. Conclusions and future work are

discussed in Chapter 7.
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2. Kinematic Modeling

2.1 Introduction

Forestry machines are heavy duty mobile systems capable of working in harsh conditions.
Although such machines usually carry articulated manipulators, they can not be considered
as "robots" since they are not reprogrammable, multifunctional or autonomous. However
kinematic and dynamic modeling methodologies that are routinely applied in robotics can be
used to model such machines too. The mobile manipulator used as a test-bed in this thesis
is shown in Figure 2.1. This machine was constructed for FERIC as a grapple loader and
following structural modifications, it was converted to a harvester. The main links of the
machine manipulator are shown in Figure 2.2. A schematic diagram of the machine is

depicted in Figure 2.3.

Figure 2.1: Picture of the mobile manipulator.
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Figure 2.2: The machine's main links: Swing, Boom, Stick.
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Figure 2.3: Schematic diagram of the machine.
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The mobility of this system is due to its wheels, mounted at the end of the bogies. The
bogies are interconnected in such a way that when one bogie rotates in a clock-wise
direction the other one rotates in a counter clock-wise direction. This design minimizes tilt
of the overall machine when one of the wheels is over a bump. The interconnection

articulation of the bogies is shown in Figure 2.4.

Figure 2.4: Diagram of the base.

In addition to counter-rotations, the bogies can rotate in the same direction with the help
of a piston actuator. This feature helps the vehicle to climb a hill without tilting significantly
the rectangular platform mounted on the bogies. Besides the articulated manipulator, the
major components mounted on the platform include a cabin (encompasses the operator’s
seat, control panels, joystick etc.), a diesel engine, pumps, and a hydraulic reservoir. The
manipulator consists of four major following parts: (1) swing, (2) boom, (3) stick, and (4)
head as shown in Figure 2.3. The head and stick are connected through a pin (having two

hinge joints perpendicular to each other).
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The swing, boom and stick give a PUMA type configuration of the manipulator. The
head is attached at the stick endpoint and is used cutting and processing trees. The detailed
discussion of the head is beyond the scope of the thesis. The manipulator is hydraulically
driven for high power output. The swing is driven by a gear motor while the boom and
stick are moved with hydraulic cylinders. The joints between stick and pin, and pin and
head are not actuated. The head behaves like a compound conical pendulum whose axes are

perpendicular to each other, i.e. as gimbals.

2.2 Kinematics

The kinematics of the manipulator deals with the geometrical and time-based properties of
motion. Hence it deals with the position, velocity and acceleration of the manipulator
without regard to the forces/torques that cause them. The study of the kinematics focuses
on the motion of the manipulator with respect to a fixed co-ordinate system. The complete
kinematic and dynamic modeling of the manipulator has been done by step by step. At first,
only three links were considered. These include the swing, boom and stick and result in a
system with three dof. In the second step, pin and head were attached at the end of the
stick, resulting in a five dof system. Next the stiffness and damping of the tires were
introduced. Due to the tires the machine can bounce, pitch and roll. The yaw effect is
neglected. The complete model has eight-degrees-of-freedom. The details will be discussed

later.

2.2.1 Base Kinematics

In this section, the base kinematic equations are developed. The base consists of a
platform, on which a piston and a set of connecting links are mounted, as shown in Figure
2.4. For a fixed piston position, when one bogie rotates clockwise the other one rotates

counter clockwise direction. As the piston moves, both the bogies move in the same
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direction by the same angle. The complete base configuration can be obtained with two
linear gauges (translation sensors), mounted at a certain distance from the platform. The
schematic diagram is shown in Figure 2.5, where the piston is in home position and the
bogies are not tilted and at this stage the four wheel axes are in same plane, see Figure 2.4.
In this configuration link AB coincides with QP, and side links AF and GE coincide with
HN and PM respectively, see Figure 2.5. In such case, the two linear gauge readings are
equal. If only the piston moves, the length of both gauges will be changed by the same
amount. When the bogies rotate as they go over a bump, the two gauges will indicate
different readings. In this section our main objective is to obtain the two bogie angles from

the two gauge readings.
The two linear gauge readings are denoted by d, (AD) and d, ( BC). The first step is

to find the absolute position (d) and angle (0) from these two parameters (see Figure 2.5).
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Figure 2.5: Schematic Diagram for the Base.
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With reference to Figure 2.5 we get from triangle O'BB’

BB =IG= gsinG
OB =§cos9

BG=BI=0I-0OB =0P-0OB =§—§cose

<~

b
=3(l-c059)

GC=IC-IG=IC-BB =d—gsin0

Again from triangle BCG we get,

BC’* = BG* + GC?

i

9

d,’ = b—(l —cosf)’ +(d - ésinﬂ]
* Ty 2

Similarly from triangle ADH we get
AD’ = AH* + HD'

Similarly from the trigonometry we obtain

d’ = E-(l —cosf)’ +(d +—b-sin9)
4 2
Subtracting Eq. (2.6) from Eq. (2.8) we get,

sin@ = i'_—_—(i'—.- (take the acute angle)
2db

Therefore we have,

cosewﬁ_(ﬁ-_dz;)'
2db

Using this value in Eq. (2.8) we get,

19
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d12=£ 1— {1-— .d‘_._—_dg; + d+é. M (2.11)
4 2db 2\ 2db

Rearranging the terms,

[ 2 232 2 1 42 2
[~ d,” -d, =dl +d,"—b"-2d (2.12)
2db

Squaring, cross muitiplying and rearranging the terms we obtain,

164° - 16(d* + ;> = b*)a* +4|(d} + &2 = b)) —b'[d* +67(d* =) =0 (2.13)
Using, x=d’, we get,

165~ 16(d* +dy* = b7)x* + 4[(d? + 4~ )’ = b* |+ 53(d* - &%) =0 (2.14)
In Eq. (2.14), b is a constant (by measuring the actual distance between the bogies we get,

b = 0.946 m), and d, and d, are the independent readings from the linear gauges. By

solving the equations numerically, we get three values for the variable x of which two
values are complex and one value is real. The positive square root of this real value is the

desired value for d.

Special cases result if, d, =d, =d . From Eq. (2.14) we have,
16x* ~16(2d” -5}’ +4ll:(2d'l -5) —b*}x =0 (2.15)

Case I:
= x=0,= d=0
In such case, A & D and B & C coincide, see Figure 2.5.
Case 2:

2

= 4x-4(247 - b )r+(2d7 - 5) —b* = (2.16)
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Simplifying, we get, d = d". To conclude, using Eq. (2.9) and Eq. (2.14) we can compute
d and @ using the measurements d, and d,. The next step is to compute from d and 6 the
bogie angles ¢, and ¢,.

A body-fixed coordinate frame is attached at the center of the platform. When the piston
is in its home position and the two bogies are not rotated with respect to the horizontal
platform, the Z axis is aligned with the gravity vector. At this position the two linear gauges
will show the same initial reading 4,. The initial position of the hinge points of the bogies
and the two side hinge joints of the base are MN and PQ respectively, see Figure 2.4 and
Figure 2.5. Now due to piston actuation link AB moves by an amount (6 =d, —d ). The
value for 4 can be found from Eq. (2.14). The position of the bogies and link AB
following piston motion are described by KL and IJ respectively see Figure 2.5.

When one tire of the vehicle is on a bump both bogies change angles. In such case the
final bogie angles are ¢, and @,. The final position of the bogies and base are EF and AB
respectively.

Coordinates of A:

X, =—gc056 (2.17)
¥, =5-gsin9 (2.18)
=0 (2.19)
Coordinates of B:
xb=5c050 (2.20)
v, =5+Ssin9 (2.21)
=0 (2.22)

Coordinates of E:
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b

X, ==
2

y, =~l+8+rsing,

z,=—r(l-cos¢,)

Coordinates of F:

y,=—l+8+rsing,

z,=—r(l~cos¢,)

AF: BE=\/EX[’ _xt): +(yb _ye)2 +(zb qu)l =[

Squaring both sides, substituting and rearranging terms we get,

h ]

(%— gcose)- +(—l—§sin9 +rsing, ) +r*(l—cosg,)’ =1

Introducing a dummy parameter,
P=-l- -b—sin )
2

Eq. (2.30) becomes,

2

(%—gcose)- +(B +rsing, ) +r*(1—cosg,)’ =!I

Rearranging terms we get,

(—lz—écos )- —P+P*+2r7
2 2

- +—Lsing, =cos¢,
2r r

Introducing additional dummy parameters, we write,

(é—écos J -+ P +2r
2 2

Q[ =

E)

2r-
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(2.30)

(2.31)

(2.33)

(2.34)
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S = Lit (2.35)
-
and
k, =sing, (2.36)
Eq. (2.33) reduces to the following,
O + Sk =1k’ (2.37)
Squaring and rearranging,
(S +1)k* +20,5k +(Q° -1)=0 (2.38)

Eq. (2.38) results in two roots, but as ¢, is always an acute angle, one solution is obtained

only. For link AF, see Figure 2.5,

O Yy I e 2.39

Squaring both sides, substituting and rearranging terms we get,

ki 2

(g —gcose)- +(—-l +-f—sin6 + rsinq)z) +r(1 —COS¢2): =0 (2.40)
If,
b . ;
P, =—l+55m6 (2.41)
Eq. (2.40) becomes,
b b : : 2 LR
(5—;005 ) +(P, +rsing,) +r’(1—cosg,) =1’ (2.42)
Rearranging terms,
(g—%cose)- - +PB*+2r
> +—%sin¢, = cos¢, (2.43)
2r- r -

By defining,
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By

(é—écose)- P+ P2+2r
2 2 -

Q. = 2r?
5B
’
and
k, =sing,

Eq. (2.43) reduces to the following,
O, + Sk, = 1-k;’
Squaring and rearranging,

(S, + 1)k +20,5.k, +(0,° 1) =0

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

Similarly as ¢, is also always an acute angle, Eqs. (2.48) and (2.46) will yield one solution

only. This completes the procedure for finding ¢,, and ¢,, from gauge measurements d,

and d,. Next, manipulator kinematics are studied.

2.2.2 Denavit-Hartenberg Parameters

The link frames used for the swing boom, and stick are shown in Figure 2.6.

©
o

Figure 2.6: Link Frame Attachment to the 3 dof System.
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According to the Denavit-Hartenberg notation, the manipulator is described kinematically
by four parameters for each link. The link frames are attached as described by Craig [11].
The world or inertial frame is represented by X,j,Z, axes. It can be taken anywhere as
dynamics of the manipulator will not be dependent on the position of the world frame. The

corresponding table of D-H Parameter is shown in Table 2.1.

Table 2.1: D-H Parameters for the 3 dof System.

i o, a._, d, q
1 0 0 d,=0.786m | gq,
2 % | 1,=0.153m 0 4,
3 0 | L=4.118m 0 [ q
4 0 | [,=4.229m 0 -

Lengths /, and /, are the boom and stick lengths respectively, while /, is defined in Figure
2.6. The distance from world frame to swing frame along Z, axis is denoted by d,, and g,
is the joint variable of izh joint. The general form of the transformation matrices can be

obtained by the following formula

cq; —38q; 0 a;_
‘_'T“ _ sqeco,_, cqeo . —SO, —Sai-ld: (2.49)
sq;s0_, cqso_,  cO,_, co;_d,
0 0 0 1

where cg; and sq, are the cosine and sine of the angle g,, respectively. Using Eq. (2.49)
and Table 2.1 the transformation matrices from world to swing, swing to boom and boom

to stick are found as below

q -5, 0 O ¢, —s, 0 | c; -5, 0

0 5, ¢ 0 0f 0o 0 -1 0¢, 55 ¢ 00

I = , L= , L= (2.50)
0 0 1 4 S ls, ¢ 0 0 ¢ 0 1 0
0 0 0 1 0O 0 0 1 0 0 01
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2.2.3 Forward Kinematics

In forward kinematics study, the end-effector position and orientation is found out as a

function of the joint variables. The transformation matrix from frame 3 to frame 4 is given

by
1 0 0 [
iy 01 0O 2.51)
*lo o1 0 '
0 0 0 1
The transformation matnx from world frame to end-effector frame is obtained by
x
O _ 0l 203 OR4 y
T="T,'T,’T,’T, = ! (2.52)
0 0 0 1

where °R4 is the rotation matrix from world frame to end-effector frame and x, y and z are

the co-ordinates of the origin of the end-effector frame (tip) with respect to the world

frame. After trigonometric simplifications we obtain

x=c [l +he, + Loy (2.53)
y = 5[l + Ley + sy (2.54)
z=d, +Ls, +1s,, (2.55)
where
¢y =cos(q, +¢q;) (2.56)
Sy = Sin(q2 + q3) (2.57)
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2.2.4 Inverse Kinematics

In an inverse kinematics study, we compute joint space angles from Cartesian space co-
ordinates. It is not as straightforward as forward kinematics, since there is a possibility of
multiple solutions. In some cases closed form solutions do not exist.

From Egs. (2.53) and (2.54), we get the following relation:

q, = tan"(ij (2.58)
X

Two solutions exist, if only the ratio Yis given. However if x and y are given separately,
X

the function atan2, results in one solution only [11].

g, = atan2(y, x) (2.59)
In our manipulator the joint limits are such that inverse kinematics can be solved in a faster
way. For example the stick angle g, can never be positive, as the stick is driven by a
piston. Our customized faster inverse kinematics is presented below.

From Egs. (2.53) and (2.54), we write

u=>—l=lc,+Ley (2.60)
G
v=z—d =Ls, + 5, (2.61)
Squaring and adding we get
W’ +vi =0+ + 2L, (2.62)
Solving for g,
g, = _Cos_,(ul + v;lz—l:zl - 132) (2.63)

The stick angle can only be negative. So elbow-down solution is discarded in the program.

To solve for the boom angle g,, two dummy variables &, and &, are introduced.

k =1, +Lc, (2.64)
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k, =5, (2.65)
After expanding and rearranging the terms of Egs. (2.60) and (2.61), we get the following

expressions for « and v

u=kc, — ks, (2.66)
v=ks, +kc, (2.67)
Solving for g,
_, uk, + vk,
=tcos ' T2 2.68
9, P ( )

By means of a forward kinematics check, we can choose the proper sign of ¢,. Another

way of computing angle g, is to introduce two new variables r and ¥ as follows

re i (2.69)
Y =atan2(k,,k,) (2.70)
then
k, = rcos(y) (2.71)
k, = rsin(Y) (2.72)

From the Egs. (2.66) and (2.67),we get

= = cos(Y)sin(g,) - sin(Y)cos(g, ) = sin(y + ¢, ) (2.73)
;
 — cos{y)cos(gs) - sin(y)sin{a.) = cos(1+ 4. .74)
-
Y+4q, =atan2(ﬁ,5‘-) (2.75)
rr

From Eq. (2.70) we get

VvV u

g, = atan2( ) —atan2(k, . k,) (2.76)

rr
Timing program execution has revealed that using of Eq. (2.68) and a forward

kinematics check is faster than that using Eq. (2.76).
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2.2.5 Work Space Envelope

To generate the workspace of a manipulator we need to know how the frames are attached,
see Figure 2.6. Here the 3 dof system is considered. The outmost link the stick, and then
boom are rotated from their minimum to maximum joint limits with respect the axes of
rotation (z, and z, for stick and boom respectively see Figure 2.6). The minimum and the
maximum cylinder lengths for the boom and stick are obtained from the blue print
specifications, and those values are used to get the respective minimum and the maximum
joint limits. Figure 2.7, (a) shows the workspace envelope in 2D. The section of the 2D
envelope is rotated with respect to the swing axis (z, see Figure 2.6) to have the 3D

envelope. The sections of the 3D envelope are shown in Figure 2.7, (b).

Vertical Reach (m)

|
BN

Honzontal Reech (m}

(a) (b)
Figure 2.7: Work Space With Short Stick.
In order to increase the workspace and improve its shape close to the ground, the stick
has been made slightly longer and the hinge position has been changed. The workspace for
the new stick is given below in Figure 2.8. Note that although the stick is driven by the

same cylinder, the joint limits are now different.
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(a) (b)

Figure 2.8: Work Space With Long Stick.

2.2.6 Jacobian Matrix

Taking the first time derivative of Eq. (2.53) through Eq. (2.55) we get the components of

the Cartesian tip velocities as written below:

= —[(1l +1,cy + 16y )5,q, +(Lsy + 1555 )eg, + 13(:,3543] (2.77)
y= [([1 +hc, + e )qul —(Ls, + L5y, )54 ‘135152343] (2.78)
= (L:C: +13C:3)‘72 +4Le,q, (2.79)

The mapping from joint space to Cartesian space velocities can be expressed by a Jacobian

matrix J.
P
vi=Jiq, (2.80)
< ds

where
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_(lx +he, +hiey )51 "(lzsz + L5y )Cl =heisy,
J=| (L +bhey +hen)e,  —(Lsy +h5x)s, =SSy (2.81)
0 (Le, + L) Leos

2.2.7 Singularities

A singularity occurs when the determinant of the Jacobian matrix is zero. Usually it arises
when the manipulator is fully stretched out or folded back on itself at the boundary of the
workspace. This phenomenon is called workspace boundary singularity as described in
Eq.(2.83), and the manipulator looses one degree of freedom. Another singularity occurs
when the kinematic structures exhibit degeneracy i.e. rotation of one or more joints does
not affect the movement of the tip in Cartesian workspace. This phenomenon is called
workspace interior singularity as described in Eq.(2.84).

Setting the determinant of the Jacobian matrix equals to zero we get the following equation

LL[L + Loy +Leyls; =0 (2.82)

Case I:
=q,=0,as ,,[;#0 (2.83)

Case 2:
=q,= cos"[——l' HZCI:I—qZ (2.84)

If g, is zero, the manipulator is at a workspace boundary singularity and it has two dof
only. Eq. (2.84) describes the relationship between ¢, and ¢q, for a workspace interior

singularity. Figure 2.9 shows the relationship of boom and stick angle to achieve the above
mentioned singular position. In the case of our experimental machine the joint limits are

such that the manipulator can not reach any of the above singular configurations.
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Singularity Condition

200
B q,vs.4 |-
. \ .
160 — \ _
. \ .
c \ :
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0 80— | _
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Boom Angle (°)

Figure 2.9: Relationship of Boom & Stick Angles for Interior Singularity.




3. Dynamic Modeling

In the study of system dynamics, we consider the forces and/or torques required to cause
motion of manipulator. A number of methods are available to formulate manipulator
dynamics, including the iterative Newton-Euler dynamic formulation, the Lagrangian
formulation, Kane’s method, and others. For the needs of this work, the iterative Newton-
Euler dynamic formulation was chosen because it is easy to implement in the form of
computer code, and it requires a smaller number of computations. In general, in this
method kinematic quantities are calculated with outward computations starting from the
base and ending at the tip, while actuator forces and torques are computed with inward
computations. Gravity forces are included by simply assuming that the base frame is

accelerated upwards with an acceleration equal to that of gravity.

3.1 Modeling for a 3 dof system

As reported in the literature survey, a number of methods are available to formulate
manipulator dynamics. Here the iterative Newton-Euler dynamic formulation is chosen for
the advantages as described in the previous section. In this method, we compute outwards
velocities and accelerations, and inwards forces and/or torques). The detailed algorithm and
notations are available in [11].

The rotation matrices can be found from first three rows and columns of transformation

matrices of Eq. (2.46).

¢ -5 0 c, -5, O ¢ —s3 0
°R=|s, ¢ O|,'R={0 0 -1|,°R=|s, ¢, O (3.1)
0 0 1 s, ¢ O 0 0 1

The link parameters are given in vector form as below, see Figure 2.6.
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0 X, A X2
Pl =10 o ={w | 'pa=|0) R =y
d, z, 0 2
L k
ps=|0|, 3PS, = 'pi=|0 (3-2)
0 % 0

Where “p’ denotes the position vector of origin of frame ¢, with respect to point b and

expressed in frame a. Assuming the fixed base system, i.e., the swing is placed on a rigid

platform, the initial conditions are given by:

0 0 0
%, =10/, ‘0,=|0]{,%0,=|0 (3.3)
g 0 0

Outward iteration for kinematics, starting from swing to stick:

For swing (link 1),

0 0
'w, =} 0].'®d, =0 (3.4)
49 4,
0
19|=]R0[0\"0+Oﬂ)axop:)+0wo Oxo 0 ]_RO vy =10 (3.5)
8

where the superscript ™ converts a vector to the cormresponding skew-symmetric cross-

product matrix.
Y, = +'a pl + o (‘o pl ) (3.6)

Substituting
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— = -

x

X

Tx

0 0llx 0 0)]x
={0[+|0||»|+|O 0] (xn
ng 4] L& 4 RES
0] —_ylél of ‘)’l‘?l1
=|0|(+| x4, |+|0 g
_gj Y 4 0
-_Y|é1 - *rlqlz
= -‘71"1.1‘)’1412
| 8
*0,="R'0, +4,°%
¢, —s, O “To 0] [s.4
=0 0 -1 0 {+| 0 |=|c.q,
s, ¢ O g 9> L 7
d 524, '*'(:2‘?191'72W
:d),z— 20.)-, = C')“ _S-,' --,
) d:( )) =] 6:d S
q, i

Y

v,
For boom (link 2),
Substituting:
20)2
Substituting:
e,
w,={ 0
55

-s, 0
0 -1
G, 0 ]

. 2 -
v2=“Rl[l v+,

coxh ol

35

p2+|(0,x(1(0,xlp;)]

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)



Chapter 3: Dynamic Modeling

Further substitutions are not shown, they are done in Mathematica systematically. A sample

systematic programming is shown in Appendix B.

For stick (link 3),

Newton's Equation:
3 - 3~ 3~ ,3,..x3 3 3.3
EF=mv, ‘m's[ v+ @y P +a, ( ON )]
Euler's Equation:

NEI 0, 0, o,

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

where, *I; is the inertia tensor with respect to a frame located at the center of mass of the

stick and with orientation the same as that of D-H frame 3.

I -1, -1

I ={-1, I, -—I.|, i=1,2and 3 (swing, boom and stick)
—[L(: _[f\': [‘::

Similarly for boom and swing the equations are summarized below

2 2. 2.1 22 2 2 22
F=mv, =mX{"v+,xp, + 0.)2X( mszc.)

N, =X 0,+ 0, x5 X0,
! _ Lo L xl 1 1,0 x 11
A= ml e\ _ml[ v+ @ p. + @, ( ) P, )]

'N=I'o+ 0 o

(3.20)

(3.21)

(3.23)

(3.24)

Inward iteration for dynamics, starting from stick to swing: The manipulator is moving

in free space, so no external forces/torques are applied at the end of the stick, i.e.
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0
‘fi="n,={0 (3.25)
0
Stick:
‘=R f+'F="F, (3.26)
3n3=3N3+3R44n4+3p31 ‘E+p) R f,
x (3.27)
=3N3+3Pc3, JFs
Boom:
H="R’f,+'F, (3.28)
n,="N,+'R’n,+°p. P F+7p] R (3.29)
Swing:
'fi='R, f,+'F, (3.30)
'n,='N,+'R,’n,+'pl "'F+'py" 'R £,y (3.31)

Extracting the Z components of the ‘n,, we find the expression of the joint torques as listed

in Appendix A.

3.2 Head Attachment

In the previous sections the three dof system modeling was described. As the manipulator
will be used to cut trees, there must be a head/end-effector on which a saw is mounted. The
end-effector is mounted at the end of the stick with a pin. The total system now has five dof
and link attachments as shown in Figure 3.1. As there is no torque/force input at the tip of

the stick, the two gimbals will swing like a compound conical pendulum.
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Center of mass
of Tree

Figure 3.1: Link Attachment for the 5 dof System.

The total system now has five dof with the D-H parameters are shown in the following

Table 3.1.

Table 3.1: D-H Parameters for the 5 dof System.

[ ] il a,, d, g, _!
1 0 0 d, q
2 % A 0 9,
3 0 L 0 g
4 0 A 0 q,
5 - % [ 0 gs
6 0 [ d, 0

Where the new parameters /, (= 0.24 m) and /,; (= 2.0 m) are the pin length and distance

from Z; to I, along X respectively, and d, (= 0 m) (is the distance from X to ¥, along Z,
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see Figure 3.1. For the dynamic formulation of the five dof manipulator we need additional

rotation matrices and link parameters. The additional rotational matrices are given by

cg =55 0 1 00
*Re=f0 0 I[|.°R=[0 1 O (3.32)
-s; —cs 0 0 0 1
and the link parameters are
X, L X
JP:. =1 JP; =10}, Spcs, =1 s (3.33)
) 0 25
The velocity and acceleration propagation are give below
‘0,="R’w, +4,*, (3.34)
. d
‘o, =d—t(‘w4) (3.35)
=*‘R3[393+3a') “pi+ ey (Co "Jpj‘)] (3.36)
b, =N+ e, pl e (P L) (3.37)
‘w,="R,* 0, + 4" (3.38)
. d
5 5
w,=—"® (3.39
5 dt( 5) )
=R, 0,0, i+ 0, (Y0, pi )| 3.40
5= )V, Ps r Ps (3.40)
%, =+ 05" pl H oy (Co pl) (3.41)
Newton's Equation:
F=mg,, =m5[5\>5+5a)5"5pf + e, ( w5’ p;, )] (3.42)
Euler's Equation:
NI o+ 0 I o (3.43)

For pin the Newton's and Euler's equations are given below
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‘Fo=m*v, = m4[4\34+4(i)4“p:‘ +'o,(*0,**p;, )] (3.44)
N=T o+ e, o, (3.45)

The end-effector of the machine will move freely in space after cutting a tree. There is no

external force/torque applied at the end. Hence we can write

*f.=°n,=|0 (3.46)

Inward iteration for the outer link to inner links is given below

End-effector:
s‘f;:sRﬁﬁf;+5F;=5F; (347)
=N+ R0 45 R,
5 (3.48)
="Ny+’p. °F,
Pin;
4ﬂ=4R55j'5+JF; (3.49)
‘n,="N,+'R’ns+'pl F+'py RS £, (3.50)

The rest of the equations are same as described before.

The equations of motion are now quite complex. In matrix form they are expressed as
MG+V(g.q)+G(g)=1 (3.51)
where M is a S X 5 mass matrix, V includes the Coriolis and centrifugal terms, G includes

the gravity terms, and 7 is the torque vector. Their structures are as follows

[my, my, my omy my (V] (G, [7,]

m, My My My My v, G, T,
M={m, my my m, myg|, V(g.q)=|V; |, Gq)=|G | t=|7,| (3.52)

my My My omg My Vi G, 0

LMys Mys My My Mg | LV LGs | L0
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As there are no actuators in the head, the corresponding entries in the torque vector are

Z€ro.

3.3 Base Compliance

The vehicle and all other sub-systems excluding the manipulator, are modeled as a lumped
mass, called thereafter as the ‘base’, see Figure 3.2. The base may oscillate around its
home position, but it will not translate, i.e. the wheels are assumed locked. A body-fixed
frame O is attached to the base, that coincides with a world-fixed frame when the vehicle is
at its home position. The &, axis of the body-fixed frame is along the direction of forward
motion of the vehicle, while at home position, its 3, axis is in opposite direction to the
gravity vector.

A forceftorque set, (f, n), is applied to the base through the tires and the ground. Here it
is assumed that the soil has been compacted, and that most of the base compliance is due to
the vehicle’s pneumatic tires. Therefore, these forces depend on the state of the tires. The
four tires of the forestry vehicle are modeled as four parallel springs and dampers. The
simultaneous vertical motion of the springs gives rise to a bouncing effect of the system.
Due to the parallel spring structure, the base is also subject to pitch (rotation of the base
around the 3, axis) and roll (rotation of the base around the i, axis) motions. For small
deviations from the home position, the yaw effects are negligible, and are therefore
neglected.

The iterative Newton-Euler algorithm was developed for fixed-base systems in which
all dofs are actuated. In such case, known desired trajectories for all joints, or dofs, are
used to calculate numerically the forces and torques necessary to cause the desired motion.
This is not possible in the case of a manipulator mounted on a compliant base, since the
base is not actuated, and its position, velocity and acceleration will depend on how fast the

arm moves, the load being manipulated, etc. However, if this formulation is applied
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symbolically, then it results in a closed set of symbolic equations of motions. This is the

approach taken here, and is explained in detail below.

a 7
s L
e /
20 Y2 @
N Base OE! t". q;
> g, Y‘ %,
. /) -Swing
World %, ] %
Frame
»
n
Tire ////
Model

Y
@ 7/
.:‘\ q; L
23 @
-
Stick 3 YT N
Boom Pin I,
{'l :\‘7&——» ;A;S
l
Grapple s
Vs N 3'6

Center of mass
of Tree

Figure 3.2: The 8 dof System as a Lumped Model.

On all five links, frames are attached following the modified Denavit-Hartenberg

methodology as described earlier. Frame O, i.e. the base frame (%,5,3,), is attached at the

center of mass of the base and has the same orientation with the swing frame, when the

angle of swing rotation is zero. The rotation matrix that transforms the vector in the base

frame to those in the world frame is computed based on a zyx Euler angle succession and is

given by

42
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where c, is the cosine of g, and s_ is the sine of ¢_, etc. The angles q,, ¢,, and 4, are the
roll, pitch and yaw respectively. Since the yaw is neglected, gq. is set equal to zero and this

rotation matrix becomes

c, 0 s |1 0 O
"Ry=[0 I Of0 ¢, -5 (3.54)
-5, 0 ¢ [0 s ¢
The position vectors are shown below
X, X, 0]
“py=|x | "ol =y | P =|0 (3.55)
- :0 O

<l
The manipulator dynamics will not depend on the values of x_, v , and, Z, but it will
depend on the parameters x,, ¥,, and, Z, (will be available by solid modeling of Auto-

CAD with Advanced Modeling Extension (AME) package). The initial conditions are given
below

0 0 0 0
v, ={0{, v, =[0}|, "o, =|0{, "0, =|0 (3.56)
0 g 0 0

Velocity and acceleration propagation equations are derived below, assuming that roll, g, .
and pitch, g, angles are small
q.
0,="R, @, +| 4, (3.57)
0

(]

Only vertical motion (bounce) effect is considered here, so

0
OvozﬂRw(u~v“'+u-wwxu.p0)+ 0 (3.58)

-
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0] [o
“5=R,[ "V +" 0, P+ 0, ("0, " p} )]+ 2(°R,"®,) | 0| +{ 0 (3.59)
%, =20+ @, " p) +° @, (@, Pl )="%, (3.60)
°Fy=my°v, (3.61)
ON,="I{° @y +° 0, I w, (3.62)
*fo="R'fi+'F, (3.63)
%ny="N,+°R, 'nl+°pfo FR+°p"°R'f, (3.64)

The force and torque vectors at the center of mass of the base (° f, and °n,) can be found as

the last component of the inward iterations as shown by Eq. (3.63) and Eq. (3.64). This

force and torque can be expressed in world frame as follows
“£,="R,’f, (3.65)
“';10=“'R0°n0 (3.66)
where "R, can be found from Eq. (3.54). Next, a generalized force vector (F) is

introduced as

p=[wf5] (3.67)

n,
Vector F can be equated with a force and torque generated by the tires, as follows
F=-KX-BX (3.68)

where X and X are generalized displacement and velocity vectors with respect to world

frame as given in (3.69).
X=[x y z 6, 6, 6] (3.69)

where x, y and z describe the position of the center of mass of the base with respect to

world frame, and 6,, 6, and 6, are the rotation of the base with respect to &, y, and Z,
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respectively see Figure 3.2. K and B are the stiffness and damping matrices and capture the
effect of the tire model. For simplicity, and for small motions, these matrices are assumed

to be diagonal.

K = diag(k,.k,.k .k k,.k;) (3.70)

B = diag(b,.b,.b..b,,b,.b,) (3.71)
The symbols k,,k, and k. represent the total linear stiffness along the corresponding
directions, as denoted by subscript with respect to the world frame. The term ‘total’

stiffness is used to represent the combined stiffness of the four tires. The other parameters

k,, k, and k, represent the total angular stiffness namely roll, pitch and yaw (rotation with

respect to X,,y, and Z  as experienced at the center of mass of the base). The same

notation is applied in case of damping. Since only three base motions are considered
important, i.e., bounce, roll and pitch, the remaining base equations are dropped. When
this is done, the other two displacements are constant and the yaw angle is zero.
Finally, the equations of motion are written as
MG+V(q.q)+G(g)=T (3.72)
where M is an 8 x8 symmetric and positive definite mass matrix, V contains the Coriolis

and centrifugal terms, G the gravity terms and 7 is the force/torque vector. Appendix B

shows the source code for dynamic formulation for an 8 dof system in Mathematica.
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4. System Parameter Estimation

Model parameters are needed to run the simulations, validate the developed code, and
design controllers. Geometrical parameters such as lengths can be found from blueprints,
and verified by direct measurements. Some masses are also found from drawings, or by
directly weighing the body of interest. But parameters like center of mass locations, and
moments and products of inertia, can not be obtained from drawings. In the case of the
boom and stick, pendulum experiments were carried out to measure the moments of inertia
of those links. In the case of products of inertia no such experiments can be made easily.
For these, solid modeling techniques and the Advanced Modeling Extension package of
AutoCAD were used. Another set of parameters was required to characterize the base
compliance due to the tires. The stiffness and damping ratio of the tires are found by static
load-deflection experiments and drop experiments, respectively. From the estimated values

of stiffness and damping ratio the parameters for the roll, pitch and bounce were calculated.

4.1 Pendulum Experiment

Pendulum experiments are not always possible, because they require disassembling a
system to its components. In this case, it was possible to do them while the machine was
disassembled for maintenance reasons. During a pendulum experiment, a rigid body is first
suspended from a point, see Figure 4.1, usually one of its joints. After the body comes to a
rest, it is angularly displaced with respect to some axis, and then it is set free to swing. The
period of the resulting oscillation is recorded, and is subsequently used to calculate the

moment of inertia around the axis of rotation according to the following equation

T V1
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where, @ is the frequency of oscillation, 7T is the period and ! is the length from the point of

suspension to the center of mass of the body.

Center of mass —1

"/

Figure 4.1: Schematic Diagram for Pendulum Experiment

Rearranging the terms of Eq. (4.1) we get

_ mglT?

5 (4.2)
4’

I

Note that the moment of inertia is calculated with respect to the point of suspension. But the
inertia tensor used in the Newton-Euler formulation should be expressed with respect to the

center of mass. Using the parallel axis theorem we get
| L= -m" (4.3)
The calculated mass properties for the boom are reported here. Swinging around the z-
axis (joint axis) results in a period equal to 3.25 sec. For a mass of 635 kg and for a length
(1) of 1.952 m (based on the agreement of experiment and solid modeling) we find that
I =833.65 kgm’
For the y axis (conforms to D-H axis notation) we have obtained a time period equal to

3.33 sec. For a mass of 635 kg. and length () 2.219 m, we find that

I, =756.05 kgm*
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Note that the point of suspension is different here. For the x axis it proved very difficuit to
suspend either the boom or the stick around their x-axis, and therefore these experiments
were not done.

Eq. (4.2) shows that the inertia is proportional to the square of the time period.
Therefore inaccurate timing results in a substantial amount of error in the moment of inertia.
Moreover swinging a body with respect to a single axis is quite difficult. So the pendulum
test is not very satisfactory in obtaining moments of inertia. However with the help of solid

modeling, used with weight matching, we can obtain more accurate mass properties.

4.2 Solid Modeling

Solid modeling techniques can be used in obtaining all mass properties and center-of-mass
positions, assuming that the material and the geometry of a body or link are precisely
known. However, this is not always the case. To match solid modeling estimates to
measurements, links of interest were weighted, and some moments of inertia were
calculated using pendulum experiments. Then, solid models were refined to the point that
both the estimated and measured total mass and moment of inertia were in agreement.

The basic procedure in solid modeling requires that first a closed boundary (polyline in
Auto-CAD) should be drawn around a two dimensional surface, and then the boundary is
extracted to a certain height with an appropriate taper angle to result in a solid shape
(solext). To add holes or cavities in a solid, another cylinder or solid body is drawn, and
then the child solid is subtracted from the parent solid (solsub). A complex rigid body, i.e.
one comprised of many simple bodies, is obtained by uniting these to a single one
(solunion). Different portions of a solid can be verified by observing sections at various
positions (solsect). Once the solid is drawn it can be moved to any position and orientation
(solmove). Also the user co-ordinate system can be moved to any position with respect to

solid (ucs). The measuring system can be chosen according to the specific requirements
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(sollength, solmass). The accuracy of the measurement can be selected according to the
specific requirement (solsubdiv, soldecomp). Once the solid is positioned and oriented
with respect to a frame, the mass properties for the solid with respect to the user coordinate
system can be computed (solmassp) by giving the density of the material (the links are

made of steel, whose density is 7800 kg/m’ ). Some solid models are shown in Figure 4.2,

Swing Pin

Boom Stick

Figure 4.2: Solid Models
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The solid models were refined to the point that both the estimated and measured total

mass were in agreement. The model can be stored in the popular DXF format to be readable

from other software.

The inertia parameters as obtained from the solid modeling are given in Table 4.1.

Table 4.1: Inertia Properties of Different Links.

in kgm’ I, I, I. I, 1 1. I,
Swing 52 53 56 .01 .02 5
Boom 17 926 529 36 09 =70
Stick 6 816 826 33 14 31

Pin 0 3.28 3.28 0 o 0o
Head & Tree 0 1265 1265 0 0 0

Note that pendulum experiments gave the following results: [

v.boom

=756 kgm”,

I poom =833 kgm?®, I . =536kgm® and I__,., =869 kgm®. However, these were not

used due to the problem discussed in Section 4.1.

4.3 Load-Deflection Experiment

To obtain the stiffness of a tire, k, load-deflection experiments were conducted, where

some load was applied on the tire and its vertical deflection was measured. The load on the

tire was measured by weigh scales, see Figure 4.3.
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Hub

Tire

7
Deflection I
Measurement

00 57

Weight Measuring Scales Metallic
Siab

Hydraulic Jack

Figure 4.3: Schematic Diagram for Load-Deflection Experiment.

In executing this experiment, a main problem was to measure the load on the tire
because the weight measuring scale was too small in size compared to the width of the tire.
As two weight measuring scales were available it was decided to place a thick metallic slab
on the two scales and then one tire was placed on the slab. Note that the candidate tire is not
removed from the machine, the vehicle is driven onto the metallic slab. The variation of the
load on tire is performed by operating a hydraulic jack. The sum of the two scale readings
indicated the total load taken by the tire. Table 4.2 shows the actual data obtained from the
experiment, while Figure 4.4 shows the plot corresponding to this data. The graph shows

that the tire behaves like a linear spring. From the average slope we compute the stiffness is

equal to 49.23 kgffmm.

Table 4.2: Load-Deflection Data.

Load in kg Deflection (mm) |
Scale 1 Scale 2
100 1000 25
325 1750 45
650 2400 60
825 2750 73
1125 3000 80
1200 3100 90
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Stiffness Experiment
5000 T — T

-

=x

2000

Load on Twe (kgf)

1000 forr oo spraren om0 ]

Q 20 40 60 80 100

Compression (mm}

Figure 4.4: Measurement of Stiffness of a Tire.

There are four tires in the machine, modeled as four parallel springs. From Figure 4.5 we
compute the relationship between the linear stiffness and roll or pitch stiffness. Basically,
the derivation for the roll and pitch is exactly same; one only needs to use a different length

(), as the four wheels are located at the corners of a rectangle and not of square base.

l

3

d
l 2k F !
W‘W///

Figure 4.5: Schematic Diagram for Estimating Roll Stiffness.

From Figure 4.5 we write

0 (in rad)= =21—8 (4.4)

[/

| o
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2k = g (4.5)
T=Fl=k,0 (4.6)

From Egs. (4.4), (4.5) and (4.6) we get,
kg = ki (4.7)

For stiffness in the roll and pitch directions, we write
k, = ki’ (4.8)
k, =k} (4.9)
Eq. (4.8) and (4.9) give the general relationship between the linear stiffness to the roll and
pitch stiffness respectively. From the average slope of the value of k is estimated as 49230
kgf/m, the total bounce stiffness for the four tires is

k =4k=1931785 ¥
m

From the actual data (length for roll /, = 3./24 m and [, = 3.048 m) we get the following

values for stiffness as listed in Table 4.3.

Table 4.3: Values for Stiffness.

Stiffness
Roll (_N_m) Pitch (M) ‘ Bounce (ﬁ)
rad rad ; m
4713255 4486718 ! 1931785

4.4 Drop Experiment

One of the simplest methods to estimate the damping ratio of a non-rolling tire is the so-
called drop test. The experimental procedure for standard automotive tires is described in
[92]. In the case of a light tire, a load is added to the hub of the tire, which is just in contact

with a steel slab, without deforming it (the load is supported externally). The load is then
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set free, and the loaded tire is allowed to deform freely from its initial position. Throughout
the test, the tire must be in contact with the slab, otherwise obtained results will not be valid
due to the physics of the collisions. An accelerometer mounted on its hub records the tire
transient response, which corresponds to an under-damped oscillation. Figure 4.6 (a), (b)
display typical accelerometer reading during drop experiments. All the data was digitized
with the help of a scope. Different cases have been experimented by dropping the tire on a
metallic slab, concrete or iron grill etc. As only the first few oscillations are needed to

calculate the damping ratio, there is no need to record the entire response.

Drop Expenment 1 Drop Experiment 2

F J 4 T :
4

Rasas

Amplitude (volis)
e
=<
i
Amplitude (Volts)

-1 -0‘5 O 0,5 1 25-1 -0.5 0 g5 1
Time (s) Time (s)
(a) (b)

Figure 4.6: Measurement of Damping Ratio.

The velocity response is obtained by integrating the acceleration curve, shown in Figure
4.7 (a). The data on concrete was used to find the damping ratio. Before starting the
experiment there was a constant drift in sensor output. This drift was identified and
eliminated from the data. The resulting data was integrated again to obtain the position
response as shown in Figure 4.7 (b). The first two oscillations are not taken as they inciude
undesirable spikes. It is to be noted that as the ratio between the two consecutive

amplitudes of oscillation are important, the units and the values in the vertical axes for both
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plots are not important. Hence initial conditions for the velocity or position plots are not
important.

The damping ratio is obtained from the position response, by taking the ratio between
two consecutive amplitudes measured from an average curve manually.

The calculation of damping ratio is shown below

x 2l
In| = |= —= (4.10)
x 1=
2 v =
Velocity Position
0.03 G 0002
002 . - 4 . m—— T R -
s i : o :
Do, : £.0002 = -/ .. - -2
et S : -
2} [ / < :
; Ui feediia L
= | T TP S S O S = / .
o - H ¢ “ Pg Q| / .
E ' S b VA ' E
< gevl - By = < : o /\".
Y . - R T
. [ N J P
D02 - P = <ot . Y.
. r J '\/7
003 z £ 0012 -
05 b] as : 93 %24 25 06 C7 28 =5
Time (s) Time (s)
(a) (b}

Figure 4.7: Velocity Plot.

The ratio of two consecutive amplitudes are found to be /.25, resulting in  is equal to
0.035.
To compute the roll, pitch and bounce damping, we use the following procedure first.

For bounce, the motion of a linear spring mass and damper is expressed as follows

mi+bx+kx=F (4.11)
=>Jr'+£’-x+—x=£ 4.12)
m m m

55




Chapter 4: System Parameter Estimation

where m, b and k are mass, damping coefficient and stiffness of a tire. The natural

frequency of the second order system can be found by

o, = 5 (4.13)
m

The mass of a tire is measured as 759 kg, the value of the stiffness is estimated as 49230
kgf/m (482946 N/m). The natural frequency is found to be 25.22 rad/s. From Figure 4.6
time period is found to be 0.25 s resuiting the natural frequency (2 /T) is equal to 25.13
rad/s.

The relationship between damping coefficient and natural frequency can be found as

below
26w, =2 (4.14)
m
= b=2¢km (4.15)

Substituting the values we get

b =2x.035%49230x9.81 x 759 = 1340 Ns

m
Since there are four tires, substituting the values we get the total damping in bounce
direction for the four tires

b. =4b =5360 Ns

N m
The total damping in roll and pitch direction is found using the model depicted in Figure
4.8. From Figure 4.8 we write

/

F=2bv =2b59 = bl (4.16)
T=Fl=bl"0=b0 (4.17)

Therefore for roll
b, = bl} (4.18)
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and for pitch

b, = b} (4.19)

Substituting the corresponding lengths for pitch and roll we get the following values for

damping coefficients as listed in Table 4.4.

Z

Pitch vy
Roll

7//// ////////////

Figure 4.8: Schematic Diagram for Estimating Roll Damping

Table 4.4: Values for Damping Coefficients.

Damping Coefficients
Roll (N ””) Pitch (N '"s) | Bounce (ﬂJ
rad rad , m
13080 12450 i 5360
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5. System Analysis and Design
Using Inverse Dynamics

In this section various typical trajectories are generated to size valves and to check the total
power required. Trapezoidal, cubic and quintic polynomial trajectories are used. As the
actual power input is provided by the hydraulic cylinders and motor, the trajectory input is
given at the actuator level rather than the joint level. The minimum and maximum piston
position is measured and taken into account. For the swing, the joint limits are taken into
account.

Valve sizing and power calculations are done based on the dynamic models developed
earlier. Trajectories are fed to an inverse dynamics block of the manipulator to result in
torque-time history of the actuated joints. Since the boom and stick are driven by hydraulic
pistons, the force-time history is obtained from the history of torque. The pressure in the
cylinders and pressure drops for the corresponding valves are computed. Also, from the
velocity profile in the joint space, the velocity of the pistons and thereby the flows through
the corresponding valves are computed. Finally, plotting the flow through the valve versus
the pressure drop across it allows us to select a proper valve.

It is very important to know the total power required for the forestry operation. To this
end, power requirements for individual joints are computed and added up. In the simulation

results the total power requirements are shown for various conditions.

5.1 Trajectory Planning

In a typical trajectory, all joints move simultaneously. For the typical trajectory selected
here, the boom and stick pistons move from their minimum to maximum positions, while
the manipulator swing rotates from 0° to 90°. All joints start and finish moving at the same

time, although different time limits can be programmed.
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5.1.1 Trapezoidal Trajectory

The trapezoidal trajectory is a common trajectory used in common practice. Figure 5.1

shows a trapezoidal velocity trajectory.

X
) A
xmnx
]
0] G t
vy 4 s

Figure 5.1: Trapezoidal Velocity Trajectory.

In the first part of the trajectory, OA, the piston of the corresponding link accelerates taking
one fourth of the total time (¢,). In the second part, AB. the piston coasts with constant
velocity x,_ , for half of the total time. Finally in part BD, the piston decelerates for the
same amount of time as that for acceleration. The trapezoidal trajectory is parameterized
using minimum and maximum joint limits ( x_, and x,, ), which are factory-set constants,
and the total time (t,). This particular type of trajectory planning is done in order to have

only one variable, ¢, to characterize the trajectory. For coordinated and simultaneous

!
motion of all actuators, this type of trajectory planning is helpful as all joint movements
start and finish at the same time. The slope of the line OA and the coasting velocity, x,,,

are also a function of the total time, ,. The equations for the different segments can be

written as follows

For the first segment, we can write for piston velocity

X =tan(@)t, 0<r<+ (5.1)
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Integrating we get the piston position,
x= J.q—tan(e)tdt = itan(ﬂ) (5.2)
0 32 ’

The second segment is for coasting with constant velocity, therefore we get,

. t f t, 3,

x=tan(0)z, +—<ts—+ (5.3)
Integrating we get,

! tan(0) (5.4)

oo |

x=%tan(9)j;dz=

For the last segment, the equation for piston velocity becomes,

3,

x =—tan(0)t + tan(0)t, <<y, (5.5)
Integrating we get,
r2
_ ty 1, _ I
x——tan(G)J.i,‘Ltdt+tf tan(e)‘f#dt—3—2tan(9) (5.6)

From Eqs.(5.2), (5.4) and (5.6) we get the total displacement of the piston during the

travel from minimum joint limit to maximum joint limit. Hence by adding we have,

o S > 3,
x.. —x  =tan(@) L +-L+-L|==rtan(6 5.7
rru.lx xnun an( )[32 8 32] 16 f an( ) ( )
= @=tan"| e Tmm (5.8)
0.18752

Eq. (5.8) is important and shows us what should be the value of the velocity gradient of the
pistons so that one joint coasts for the half of the total time span and it accelerates and
decelerates with the same velocity gradient.

For the position trajectory it is easy to calculate the area under the velocity trajectory.

For the first segment we can write,

n+.£_[2[an(8), OSIS'T! (5.9)
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In the next segment the velocity is constant ( x,,, ), the position trajectory will be a straight

line. The equation of the line is given by,

. t . 4 4 3t
x=xm+—xmzf+xm(t—zf], +<t<L (5.10)
and, the maximum velocity is given by,
. {,
X o =—i-tan6 (5.11)

Substituting the expression for x,,, in Eq. (5.10) and simplifying we get,
t t
x=xm-—’tan9+t—ftan9 (5.12)
32 4

For the last segment, the area BCEF in Figure 5.1 is found as follows

.tmu(t, —t)
CE=—7+——+ (5.13)
%
t (, ‘t)z
area of BCEF = itane——-i—tana (5.14)

Therefore, the equation of the last segment can be written as,

e b (3l Yy
x=x, ++X,, —+X,,| ————|+areaof BCEF, 4 <r<i, (5.15)
Timax g 4 4
After simplification we get,
X=X + 50 tan0 -4, —1) tan6 (5.16)

It is very straightforward to compute the acceleration trajectory , for the first segment
acceleration is equal to the slope of the line OA, in the coasting region the acceleration is
zero, and finally for the deceleration region it is equal to the slope of the line BD. Hence we
can write,

i=tanf 0<r<s4 (5.17)

¥=0 LergzL (5.18)
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X=-tané T <t<i, (5.19)
Figure 5.2, (2), (b) and (c) show the actual trajectories for the stick piston, for

Xpax =2.41m, x,,. =1.49m, and 1, =12 sec.

Stick Piston Stick Piston , Stick Piston
2 Y .y Y T T e T T T o T T Y T
ST R R - M RS R
—_ : : : : ) 0 b i E L] et Trmnntrersesss et
é 212 essnvosassencrrmnnannen. (AP | E : * : -
pas P S AT 3 g °oF e
g 2 _é‘ '..-a a b ]
'g § B S e B a QoY ... ... ...,; [N SR
a (Y S I\ S
> X Q <e2f -
e O
902k e ks 7 < qo03
. — " a ek 904
o 2 4 . [] 10 t2 q 2 4 [ ] . tae LR L] 2 4 . . 9 T2
Time (s) Time (s) Time (s)
(a) (b) (c)

Figure 5.2: Trapezoidal Trajectory for the Stick Piston

5.1.2 Cubic Polynomial Trajectory

Another trajectory which was used in the simulation is the cubic polynomial trajectory.
Unlike in trapezoidal trajectories, in this method the velocity is smooth.
The initial and final positions of the piston are given by
X0 = Xy (5.20)

1=

(5.21)

The piston starts from zero velocity at x_, and stops at x_ . Therefore we can write the

following
X_,=0 (5.22)
X, =0 (5.23)

The cubic polynomial can satisfy the above four constraints. It can be written as

x(t)=ay,+ar+a,t’ +a,t’ (5.24)
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( i(t) = a, +2a,t + 3a,t’ (5.25)
#(t)=2a, + 6a,t’ (5.26)
Using the boundary conditions as shown in Eqs. (5.20) through (5.23), we get the four

equations with four unknowns as follows

ay =X, (3.27)

a,=0 (5.28)

ay +at, + al; + at; = x,, (5.29)
a, +2a,t, +3a;t; =0 (5.30)

Solving the above four equations to obtain the coefficients we get,

a, =i,(xm — Xpin) (5.31)
&

2
a, = —t—3(.\'m = Xoun ) (5.32)
f

A candidate trajectory for the boom joint is considered. Substituting the actual joint limits
and the trajectory time ( x_,, =2.21m, x =138 m and ¢, =12 sec) for the boom piston

we get the following graphs as shown in Figure 5.3 (a), (b) and (c).

Boom Piston Boom Piston Boom Piston

24 a ’[— —r 0 04
AT B~ ] g
—_— ——
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E_ b E k] a.%- ----------------------------------------- - : .
c o
% . E—G" £ of - 3 3
o [] <0
O s o - 4 —
a g 8 902
Q
¥ <L 09
Tz L L . a0 .
-] 2 - 4 1] 10 e . L] ] ta 12 [} 2 4 L] ] a 2
Time (s) Time (s) Time (s)
(a) (b) (©)

Figure 5.3: Cubic Polynomial Trajectory for the Boom Piston.
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5.1.3 Quintic Polynomial Trajectory

The acceleration profile of the cubic polynomial starts from a non-zero value. However it is
more realistic to have acceleration and deceleration equal to zero at starting and finishing
time of the trajectory.
This can be obtained using a quintic polynomial is given by
x(t)=ay +at+at’ +at’ +a;t +a’ (5.33)

The desired boundary conditions are written as

Xoo = Xoin (5.34)
Xiar, = Yo (5.35)
%_,=0 (5.36)
X, =0 (5.37)
X,_o=0 (5.38)
x. =0 (5.39)

By taking denivative of Eq. (5.33) and satisfying the boundary conditions we get the

following equations

a, =X, (5.40)

a, +a, + azti +a3ti + a4t'; + astﬁ = X (5.41)
a =0 (5.42)

a, +2ayt, +3at; +4a,t; +Sagt; =0 (5.43)
2a,=0 (5.44)

2a, +6ayt, +12a,t; +20ay4; =0 (5.45)

Solving Eqs. (5.41), (5.43) and (5.45) we obtain the remaining coefficients of the

polynomial as
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10(x, 0 = Xin

a; = ( J )
!

15( X i = Ximax

a, = ( ° )
!

(5.46)

(5.47)

(5.48)

Next, a candidate trajectory for the swing joint is considered. Providing the limits x_, =0’

and x_, =90° we get the following graphs as shown in Figure 5.4 (a), (b), and (c). Note

that the true joint limits are 8,

Swing

Position (deg)

L] z . [] re

Time (s)

(a)

Velocity (deg/s)

D e ats h et e e AR e

Swing

Qumncl:
1 M

]

~ |

Time (s)

(b)

-131.21° and 6, =94.54°.

Acceleration (deg/s?)

Swing

(c)

Figure 5.4: Quintic Polynomial Trajectory for the Swing.

5.2 Simulation Results

Many different desired trajectories were tested for valve selection. However only a few are

reported here. Manipulator loads (head and tree) is modeled as a lumped mass at the end of

the stick. All results are based on quintic polynomial trajectories unless it is mentioned

otherwise.
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5.2.1 Flow Profiles

The flow in the stick cylinder is given by the following
0, =Ax, (5.49)

where Q, is the flow in the stick cylinder, A, is the average area of the stick cylinder, and
x, is the velocity of the stick piston. This analysis assumes there is no compressibility to

the hydraulic oil - probably okay except for large actuators.

Similarly, for the boom

Q, =Ax, (5.50)
where Q, is the flow in the boom cylinder, A, is the average area of the boom cylinder,

and x, is the velocity of the boom piston.

The swing is driven by a gear pump, and the flow equation can be written as
Q.. = D(ng,) (5.51)
where Q_ is the flow in the swing motor, D is the volumetric displacement of the motor
(0.00018 ~/1.), q, is the angular velocity of the swing, and n is the gear ratio from swing

to swing motor, from blue print we calculated the value of n is 221.778. Figure 5.5 shows

the flow in the actuators using a quintic polynomial trajectory for all joints.

Stick Cylinder ) Boom Cylinder Swing Motor ” Total Flow
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Time (s) Time (s) Time (s) Time (s)
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Figure 5.5: Flow Profiles.

Flow is directly proportional to the linear velocity of the piston in case of the boom and
stick, and in case of the swing motor the flow is directly proportional to the angular
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velocity of the swing. So the nature of the curve is the same with the velocity profile of the

corresponding link.

5.2.2 Parameter Changing due to Load Variation

Manipulator loads are modeled here for simplicity as a lumped mass at the end of the stick.
In this three dof system, the stick with the load is modeled as new third link. The inertia

parameters and center of mass of the new link vary as the amount of load to be carried

varies. Figure 5.6 depicts the stick with a load.

Figure 5.6: Stick With Load at the End.

In Figure 5.6, point C denotes the center of mass of the stick only. Point G denotes the
position of the center of mass of the whole link when a load (m,) is attached to the end of
the stick. As the amount of load changes. the location of the point G changes too. Again
with the change in the mass, the inertia parameters of this link change too. In the next
formulation the relationship between the load and the location of the center of mass is
derived.

The stick is assumed symmetric with respect to the x,y, plane passing through its
center of mass. It is also assumed that the machine grips the tree at its center of mass,

otherwise we have to consider the z co-ordinate of the link. Actually at the end of the stick

67




Chapter 5: System Analysis and Design Using Inverse Dynamics

there is a processing head. The head can be modeled as a set of gimbals (two pendulums
with axis of revolution perpendicular to each other). So if the head does not grip the tree at
the center of mass, due to gravity effect the force for the load will act at the end of the stick.
The total mass of the link with the load is

my=m_+m, (5.52)
where m, is the mass of the stick and m, is the mass of the load (head and tree). A moment

balance with respect to point A yields

mx, +ml, = myx, (5.53)
and,
o g =MEEmL (5.54)
m,

Similarly, for y co-ordinate, we get,

my. +m.0=my, (5.55)
=y =) (5.56)
n,

where ( x;, y,), is the new location of the center of mass of the stick with respect to the D-H

frame at the boom-stick joint (point A). Note that if m, is equal to zero, then x; and y, are

equal to x, and y, respectively.

From the parallel axis theorem, we can write the inertia of the whole link as follows

o= +ml*+ml” (5.57)

where, the subscript 3 denotes the third link, s denotes the stick and xx, denotes the inertia

measured with respect to the x axis, similarly for the other axes. The superscript ¢ denotes

the inertia with respect to center of mass. The symbols [ and /" denote the distances

between the points C and G, G and B respectively. The expression for / and /° can be

written as,
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1=CG=(x~x,) +(3— %) (5.58)

[ =BG=+(,-x,) +} (5.59)

Similarly, by inspection for the inertia with respect to x axis can be written as,
I, =1 +m(y,—y) +m(y,—0) (5.60)

Similarly, by inspection for the inertia with respect to y axis can be written as,

IC

o =I5 +m(x - x, ) +m(L - x,) (5.61)
For the product of inertia, the formula can be written as,

I, =1, +m(x; - x, y; -y, )+ m(L — x;)y (5.62)
Other product of inertia are zero due to symmetry of the third link with respect to Xy,
plane passing through the center of mass. Hence we can write,

=0 (5.63)

5. =0 (5.64)

5.2.3 Torque Profiles

From the inverse dynamics we compute the torque-time history applied at the three joints of
the system. Three distinct cases are studied. The first case, labeled as no load & no tilt,’
corresponds to no end point load and to a horizontal base. The second case, labeled as
'loaded & no tilt,’ corresponds to an extreme load of /500 kg and to a horizontal base.
This load is due to the weight of the head (955 kg) and the remaining weight of a large tree
(545 kg). The third case labeled as loaded & tilted' case. Here the machine is carrying a

load of 1500 kg as well as the base is tilted with respect to roll axis X, by an amount of

20°.
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The torque histories as obtained from Eq. (3.71) for the stick are depicted in Figure

5.7. For the stick the torque starts from negative to positive as during the motion the stick

goes through the vertical.
Stick Joint Stick Joint Stick Joint
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Figure 5.7: Torque Histories at Stick Joint for 1500 kg load and 20° tilt.

The torque histories as obtained from Eq. (3.71) for the boom are depicted in Figure 5.8.
Since the boom is heavier than the stick and since it also supports the stick, the values for
the boom torque are much larger than that of the stick. By observing the nature of the
torque history for the boom joint, we observe that, unlike the stick, the torque does not go

from negative to positive due to the configuration of the manipulator and the joint limits.
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= 2 - d
2 1o 2
vswt s i 1 L i ]
2 2 4 L] . AN ' 2 3 2 4 . a 18 ta .
Time (s) Time (s) Time (s)
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Figure 5.8: Torque Histories at Boom Joint for 1500 kg load and 20° tilt.

The torque generated at the swing motor is related to the torque accelerating the

manipulator, 7, by
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7 =tm (5.65)
n

Note that 7_, is the torque used in the equations of motion, see Eq. (3.71). Figure 5.9
shows the torque profiles at the shaft of the swing motor, after gear reduction, from swing
to swing motor. The gravity vector does not affect the torque for the swing, if the base is
not tilted, so in the case of a horizontal base, the torque requirement for the motion of the
swing is considerably less than that of the boom or stick. Note that the initial and final

values for the torque are zero for a horizontal base, see Figure 5.9 (a) and (b).
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Figure 5.9: Torque Histories for Swing Motor in Different Cases.

5.2.4 Force Profile

Figure 5.10 depicts a schematic diagram of the actuation systems of the machine. From the
equations of motion we obtain the actuator torque for the swing, boom, and, stick. In the
case of the boom and stick we have piston and cylinder actuators so we need a mapping
from torque to force. This is obtained from a kinematic analysis as described in the next

section.
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Figure 5.10: Schematic of Actuation Systems

5.2.4.1 Force at Stick Piston

Figure 5.11 shows the connection of the stick with its cylinder.

Cylinder

Figure 5.11: Schematic Diagram of Stick and its Connection (not to scale).
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From Figure 5.11, the stick is connected to the boom at point A. The end of the piston rod
is connected at D, while the other end of the cylinder is connected at E.
The force generated by the stick piston can be found by taking moments with respect to

the boom-stick joint (point A). From triangle ADE by inspection we write the following

T
= . 5.66
* 1, sin@, (5-66)

where 7, is the torque generated at the boom-stick joint, and f, is the force generated at the
piston of the stick see Figure 5.10 and Figure 5.11.
To continue, the relationship between 8, and x, is needed. To this end Figure 5.11

yields

A

f 20 x

1s7s

_ M (5.67)

Note that the angle 6, varies with the time as the link moves. Another important
relationship is the piston position to joint angle. The parameter x, corresponds to the stick
piston position to some angle g,. Physically the stick angle can not be positive. From

Figure 5.11 we get,
v, =4BAD, o, 6 =/ZEAD, ¢ =ZBAC, 6, =LAED

The relationship x,(q,) is found according to geometry as

r

x, =4, +0,* -2l L cosa, (5.68)
= x, =4+ ~2L L cos(T+q, +,) (5.69)
= x, =1, +hL>+2L b cos(q, +y,) (5.70)
From triangle ADE,
cosq, = hivh’ox? (5.71)
2.1
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l 2+1—12—x2
=0, —-T-yY, =cos | l—2 s |_g_ 5.72
q3 5 W.t ( 2[”4: Wf ( )

By taking derivative of Eq. (5.70) we get,

l,.L. sin(g; + .
== - l:,..s (qS W3) s (5-73)
'\/llj- + lZ.r- + 2llsl‘..’.r COS(q3 + Ws)

x

5.2.4.2 Force at Boom Piston

Boom force expressions are derived following the procedure detailed in the previous
section. In Figure 5.12, point A denotes the revolute joint of the boom with swing. The

boom cylinder is connected at point E to the base, and point D to the boom.

\ Cylinder

Figure 5.12: Schematic Diagram of Boom and its Connection (not to scale).

Similarly, as in the case of the stick, the force applied by the boom piston is found by
taking moments with respect to the swing-boom joint (point A). Hence we get by

inspection

(5.74)

74




Chapter 5: System Analysis and Design Using Inverse Dynamics

where, 7, is the torque generated at the boom-base joint, and f; is the force generated by
the boom piston. From triangle ADE see Figure 5.12,

2 2 2
L, +x,” -1,

cos@, = 5.75
’ 2l,x, ( )
Again from Figure 5.12, we get
v, =4BAD, a,=/EAD, ¢, =4«BAC, 6= /AEF, 0,=/AED
From triangle ADE,
cosqQ, = hy *hy =%y (5.76)
2111)L.’b
g, =0a,—-0-y, (5.77)
1y = \L,2 + by =2l L, co8(qy + S+, ) (5.78)
By taking derivative of Eq. (5.78) we get,
i = Lyhs Sm(q: +6+ Wh) p
T by b, =20, c08(q, + 8+ y,) (5.79)
Table 5.1 displays parameters obtained from machine blueprints.
Table 5.1: Values of Parameters.
Stick Piston i Boom Piston
_
L, 1.934m L 0.563 m 1
L, 0.884 m L, 1.786 m
l, 1.249 m L, 1.994 m
v, 2.5° v, 0.3r1°
@, 6.3° ®, 4.18°

The force profiles for the stick piston are computed using Eq. (5.66) and shown in Figure

5.13. The mapping from torque to force is also a function of manipulator configuration as
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the "moment arm” changes with the manipulator configuration. If we compare Figure 5.13

with Figure 5.7, we see changes in the corresponding profiles.

Stick Piston Stick Piston
a4 R4
lgadra E Loadee |
o Ne Tilz = i ‘:‘_;_ Tiltec
g ?: s —: g [ :’;»
-] [~] : o '
o 2 : e 4
o (=] - o
e w w
4 — £
o r
H - L) 12 ] -2 H ke [ ] [ ] 2
Time (S) Time (s)
(a) (b) (c)

Figure 5.13: Force Histories at Stick Piston in Different Cases.

5.2.5 Pressure Profile

The expressions for the pressure drops in the suck cylinder. Ap,, boom cylinder. Ap,.

and. swing motor. Ap, are given below

Ap. =1 (5.80)
A,
Ap, =22 (5.81)
A
T, T
= 2= (5.82)
Ap, D nD ,

The pressure drops at the corresponding valves are given as.

Ap.,=p, —Ap, (5.83)
Ap. . =p, —iAp,] (5.84)
Ap. . =P, —Ap,] (5.85)
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where p,, is the operating pressure. For the stick, boom and swing motor, the pressure

profiles are given for the three cases in the following plots, see Figure 5.14 through Figure

5.16.
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Figure 5.14: Pressure Drop Histories in Stick Cylinder in for the 3 Cases.

Due to Eqgs. (5.80) - (5.82), the pressure drop profiles in the cylinders and motor are a

scaled version of the force at the piston in the case of boom and stick, and the motor torque
in the case of the swing.

Boom Cylinder . Boom Cylinder s Boom Cylinder

§
Ll e Load
E? No Til:
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[ ——
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3 DY e Tie [T

b —————
L T e

Pressure (bar)
Pressure (bar)
Pressure (bar)

Time (s) Time (s) ) ' Time (s)

(a) (b) (c)
Figure 5.15: Pressure Drop Histories in Boom Cylinder in Different Cases.
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Swing Motor Swing Motor Swing Motor
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Figure 5.16: Pressure Drop Histories in Swing Motor in Different Cases.

5.2.6 Power Profile

Note that the dynamic models obtained permit also either sizing of the system power supply
(pumps) or checking whether the desired trajectory can be followed without exceeding the
power capacity of the supply. The total power requirement is the sum of all individual
power requirement for the powered joints. For example the power required for the stick is

given by

Pr ='Tr q3l=‘f: x: (586)
where 7, is the torque required to move the stick at an angular velocity of ¢,. Obviously,

the total power required for a given trajectory can be obtained by

P

total

=P, +P+P+PF, (5.87)
Based on the above equations, the total power, flow and all other variables can be plotted
against time to permit easy evaluation of the system performance and requirements. The
total power is obtained by adding the individual power requirement for swing boom and
stick assuming there are no losses. The power requirements for the three considered cases
are shown in Figure 5.17. It is clear that when there is no load the total power consumption

is much lower than that when load of /500 kg is present at the tip of the stick.
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Figure 5.17: Power Profiles in Different Cases.

5.2.7 Velocity Profile

The magnitude of the absolute velocity of the tip (end of the stick) is also important and for
given joint trajectories. This magnitude does not depend on the load at the end of the stick

or the tilt, see Figure 5.18.
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Figure 5.18: Velocity Profile at the End of the Stick.
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5.3 Valve Sizing Methodology

An important application of the dynamic modeling is sizing of actuators. In the case of the
experimental electrohydraulic machine, it has been decided not to replace the existing boom
and stick hydraulic cylinders, and the swing motor. However, the need to select new
proportional valves for the constant-pressure supply to replace the old load-sensing ones
provided the first application for the derived dynamic models. According to typical
industrial practice, proportional valves are selected based on a nominal load and duty cycle.
However, no such nominal quantities exist for a manipulator arm whose configuration
changes continuously, and may carry no load, or be loaded with a heavy tree. Therefore, a
systematic methodology for valve sizing is needed.

A valve is properly sized when it can supply the demanded flow at the required
pressure drop across it. Therefore to size a valve, flow and pressure requirements must be
obtained as a function of time for a given task. Obviously, the task becomes more
demanding when the manipulator is moving a heavy payload, or when it operates on a
slope.

To this end, typical average as well as worst-case trajectories of the manipulator end-
point were specified by observation of actual forestry machines. Using inverse kinematics
relationships, these end-point trajectories were resolved at the actuator level, to result in
trajectories for the swing angle, and the boom and stick displacements. Then, these can be
used to obtain the flow requirements for all three actuated dofs. The flow through the
valves for the three actuator is obtained from Eqs. (5.49) through (5.51). The pressure
drop across the valves is obtained from Eqs. (5.83) through (5.85). If necessary, these
estimates can be decreased by a 10% factor to allow for pressure drops in the transmission
lines. Eqgs (5.49)-(5.51) and (5.83)-(5.85) can be used to plot valve flow versus valve drop

for the desired end-point trajectories. The resulting Q-Ap curve should lie below the valve
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pressure-flow characteristic at full valve opening, Qy-Apy, typically a curve described by a

relationship of the form,

0, =c./Ap, (5.88)
where Q, is the flow through a valve, Ap, is the pressure drop across the valve and c is the

discharge coefficient. Normally, c is a function of the valve area which is a function of the
applied voltage, therefore c is a function of the applied voltage. The discharge coefficient
depends on the valve spool position which is a function of command voltage. If Q-Ap
curve does not lie below the valve pressure-flow characteristic at full valve opening, this
means that the pressure drop across the valve is less because pressure drop across the
actuator is large, and the value is not able to provide the motion to the manipulator at the
specified speed at a particular operating pressure. In this case a valve of larger capacity

must be specified. For the selected valve, it has been found that c is equal to 16.4%
when Q, is expressed in liter/min. and Ap, is in bar. Figure 5.19 through Figure 5.22

show typical plots of such curves for the boom, stick, and swing, when the base is
working in various conditions. We have shown the simulation for the loaded case with load
at the end of the stick of /1500 kg, which is the simulated mass of the head and a heavy tree.
Again the trajectory duration for all of joints is 12 sec. The boom and stick move from
minimum joint limit to maximum joint limit, while the swing moves from 0° to 90°. Since
all plots lie under the valve characteristic, this valve can be used for driving all manipulator
actuators along the desired trajectory.

Different candidate trajectories were tested with different loads at the tip of the stick to
examine if the selected valve is adequate. It is clear that in the case of no load the pressure
drops across all of the valves are very small. When a load is suspended at the end of the
stick, the pressure drops across all the valves are quite significant. This is depicted in

Figure 5.20.
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Figure 5.19: Pressure Drop Vs. Flow for First Case.
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Figure 5.20: Pressure Drop Vs. Flow for Second Case.
When the base is tilted the gravity effect in the swing becomes dominant as shown in

Figure 5.21. The pressure drop across the valve of the swing motor is larger in the tilted

case than in the no tilt case, shown in Figure 5.20.
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Figure 5.21: Pressure Drop Vs. Flow for Third Case.

Since in all the simulation runs, the Q-Ap curves are well below the valve characteristic

curve, we conclude that the machine will be able to operate with the selected valve.

5.3.1 Addition of Check Valves

Many proportional valves have spring-loaded spools that will center the spool in case of
signal loss. However, the selected valves do not have this feature, and this may cause
safety problems. In addition, valve contamination can cause uncontrolled boom or stick
motion. For this reason, the hydraulic circuit is modified by adding check valves on each of
the ports of the actuator valves. This results in additional pressure drops across the check

valves. The value of the discharge coefficient (k) for the check valve was calculated as
614/ = with pressure drop in bar and flow in lit/min.

The additional pressure drop is also incorporated in the program and simulation results
are shown in Figure 5.22 for the second case (loaded and no tilt). Comparing Figure 5.22

with Figure 5.20, it is observed that the addition of the two check valves does not affect the

Q - Ap profiles much.
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Figure 5.22: Pressure Drop Vs. Flow with Check Valve for Second Case.
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6. Forward Dynamics, Simulations
and Implementation Issues

In Chapter 5 we discussed inverse dynamics of the forestry vehicle where the input is the
trajectory at each joint and the output is the set of joint torques. Based on these torques, the
force in the case of the boom and stick, and the pressure drops in the corresponding
cylinders, and the swing motor were calculated. In this chapter we will discuss the motions
that result when the input is the force/torque at the three joints. Firstly the three dof system
will be considered. Secondly the gimbals will be attached at the end of the stick, and finally
the compliance at the base will be added resulting in an eight dof system. At first, various
Simulink models are developed to simulate systems of various degrees-of-freedom. The
Simulink models are also helpful to integrate the hydraulic controls and to validate the C

code, which was developed later for faster execution speeds.

6.1 Forward Dynamics for Various DOF
Systems

The three dof system consists of the swing, boom and stick. The simulation for the
dynamics will be shown in detail for the three dof system in a Simulink model. As the dof
increase, some Simulink blocks will be changed and a few more branches will be added. In
the five dof system the links, pin and head/end-effector are attached at the end of the stick.
A six dof model corresponds to a system where a three dof base compliance is introduced
at the base. The eight dof system is the complete system of the forestry vehicle, including

compliance, pin and end-effector links.
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6.1.1 Simulink Model of 3 the dof System

In Figure 6.1 the complete Simulink model of the three dof system is shown.

q, - X,
» 4 > X,
—
P
v | P31 )
>
> Dynamics& output
integration
MATLAB
a Function _’4 Demux >
. L g
Trajectory
Mux L MATLAB
Generator > Function
Piston Level to
) Joint Level
Kinematics
’
>
O] b

Clock

Figure 6.1: The Simulink Block Diagram of the 3 dof System.

This model is the test-bed model for all the simulations in Simulink and for all dof
system. The whole system (see Figure 6.1 through Figure 6.3) is run in the same time
frame, as a result the output must match the generated trajectories. The trajectory
generator block produces desired boom, stick and swing trajectories. The closed form
equation of the manipulator dynamics requires joint level information, so piston level
information are converted to joint level information in the piston level to joint level
kinematics block and fed to the inverse dynamics block. Figure 6.2 shows the dynamics

and integration block.
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L

Mux [l MATLAB > To Output
MATLAB Function Block
From Mux - - -—H Demux Integrator
Function Dynamics
Inverse
Dynamics >

Input Torque
History

Figure 6.2: Simulink Block for Dynamics and Integration.

The inverse dynamics block contains the equations of motion for all the joints in
symbolic form. The output of the inverse dynamics block is the torque history. This is the
first step in order to generate the appropriate torque history for the system. In the second
step the torque history is fed to the dynamics block of the system. The dynamics block
contains all the equations of motion also found in the inverse dynamics block. However,
the structure of the block is different than that of the inverse dynamics block. The
integrator is placed after the dynamics block and it integrates the accelerations to compute
the velocity and position information for each joint. The initial conditions of the integrator
should be given in this block.

Figure 6.3 shows the output of the integrator, which includes joint level responses.
This response is fed to the Jacobian block to get the output tip velocity components v_ v,
and v, with respect to the world frame and the velocity magnitude v (the magnitude of the
tip velocity is more important than the components). The Jacobian block contains the

transformation equations from joint space to Cartesian space, see Egs. (2.53) through
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(2.55). In order to observe the response at the piston level, all joint level responses are fed

to the joint level to piston level kinematics block.
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Figure 6.3: Simulink Block for Output Block.

In the case of an actual system with a hydraulic subsystem, the controller generates the
torque-time history so that the end-effector follows operator commands. Here, we give
torque/force input at different joints (as the case should be) and we observe the actual

dynamic behavior of the system.

38
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6.1.2 The 5 dof System

To simulate the forestry machine in a real time environment it has been decided to employ
the five dof system, as the equations of motion can be run fast enough on the available
Silicon Graphics workstation (CPU R4400). The Simulink Block diagram can be modified
easily to simulate the whole system. All function blocks are modified to accommodate the
five dof system. If we want to plot the movement of pendulums, then after the integrator

block we need to add four additional output branches for position and velocity (q,, q,, g,
and ¢;). At the fourth and fifth joint there are no actuator torque inputs, therefore the

Simulink block diagram is modified as shown in Figure 6.4.

T, —P»
) T, ——P»
9 2
o Mux | —p»| MATLAB »{1/sH» To Output
o T, —P Function ] Block
—~ > Integrator
=3 O —P> Dynamics
L d
EZ 0—»

Figure 6.4: Simulink Block for the Dynamics of the 5 dof System.

6.2 Measures to Minimize Simulation
Time

In order to simulate the forestry machine in a real time environment we need to minimize
the simulation time. The simulation time can be minimized at the hardware or software
level. At the hardware level, obviously a machine with a faster CPU results in a faster the
simulation. Our interest is in software level and is described step by step next. At first, we

need to have the "plant” dynamics as efficient as possible. This is done by using special
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functions in Mathematica [91]. Once the dynamics are obtained symbolically, the numerical
values of all the parameters are introduced (such as mass, link length, link twist, inertia
properties etc.).

At first we made the simulation in the Matlab environment faster by compiling all the
Simulink blocks using a utility called CMEX. CMEX results in approximately 18 times
faster simulation for the 3 dof case. Another problem is that to get the simulation results we
need to run Matlab and Simulink. To avoid this, and to make the simulation even faster, the
whole program is written in C code with minimum number of function calls. Unlike in
Matlab, where various integration routines are built in, these need to be developed for the
code in C. The Runge-Kutta-Nystrom numerical integration algorithm is developed here as
this is an accurate fourth order algorithm and is extensively used in many practical
applications. Table 6.1 gives the comparison in execution time for the systems of various

complexity in SGI (R4400) machine.

Table 6.1: Simulation Time Comparison in Different Systems

System dof Simulation time for one time step, dt (ms)
Matlab ' C
3 80 0.23
712 .50
Not Available 11.87

The scheme of Runge-Kutta-Nystrom algorithm is given below:

Implemented Runge-Kutta-Nystrém Method:

B
b =2 4[4.4] (6.1)
Al h(. kY. ]
/%=5q g+3(4+5 Ja+k (6.2)
Rl k(. kY., ,]
k== q+5(q+3‘)q+kz (6.3)
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h . ) .
k=2 dlg+h(g+k)q+2k] (6.4)
9.1 =4, +h{qi +§(k! +k, '*'ka)} (6.5)
4.‘4»1 =g, +§(k1 +k’.’ +k3 +k4) (6.6)
t,=t+h (6.7)

where &, k,, k;, and k, are intermediate variables, g denotes the joint variable, ¢ denotes

the time variable, / represents the time counter of the integrator and A is the step size. From
Eq.(3.71) in Chapter 3 we get the general equation of motion of a robot as follows:
§=M"(t-V(q.9)- G(q))

As the dof of the system increases, the size of the mass matrix M increases too. In
general, to compute the accelerations, we need to invert the mass matrix. The matrix can be
inverted symbolically for a 5 dof case. But as the size of the mass matrix increases, the
symbolic inversion becomes gigantic, and for an 8 dof model the mass matrix can not be
inverted symbolically on an SGI (R4400) machine as it takes a lot of resident memory.

But as the mass matrix is always symmetric and positive definite we do not need to
invert the mass matrix to get the accelerations if we use Cholesky's method. The complete
program of the Cholesky's method is implemented in C code to have the fastest possible
simulation run. This method improves the computation efficiency two times compared to a

standard matrix inversion method. The scheme of Cholesky's method is given below:

Implemented Cholesky's Method:
The general equation of motion can be written as,
Mg=1-V-G (6.8)

Eq.(6.8) can be written in the following form:
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Ag=b (6.9)
As A is symmetric and positive definite, it can be written as a product of two triangular
decomposed matrices transposed to each other as below:

A=LL (6.10)

The elements of the L matrix are given below:

m, =\a, (6.11)
P

m, =\/aﬂ. -ym,;} (6.12)
s=1

m, =2 (6.13)
my,

k~-!
m, = —l—(al.k -Zml_,mh) (6.14)

Ly=b=y=L"b (6.15)
Solving for acceleration (g ):

Ug=y=>4=L"y (6.16)

6.3 Dynamic Response Using Forward
Dynamics

The dynamic behavior of various systems is studied based on torque/force inputs generated
by a set-point feedforward controller. The focus here is to analyze system transient and
steady state response for various commands. Also of interest is tracking performance
degradation due to tire compliance.

The controller is designed mainly to provide the gravity terms required to hold the three
manipulator joints in static equilibrium at some desired configuration. This set of gravity

torque is computed off-line and added to the feedback controller, shown in Figure 6.5.
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This controller is basically a PD type controller with gravity compensation, for improved

tracking and for reducing the static errors.
As shown in Figure 6.5, the 3x1 gravity compensation vector G is evaluated at the

3x1 set-point vector q,, which includes desired swing, boom, and stick angles. However,

G is a function of all the dofs q, and therefore, nominal roll, pitch, bounce and pendulum
angle values are used for the 8 dof system. For a 5 dof system, G is a function of joint
angles (g, to g,). Due to this approximate computation of the gravity term G.itis expected
that the steady-state error given by

E,=q,-q, (6.17)
will be small but not exactly zero, even if all system parameters are exactly known. For 5

dof system the vector, T in Forestry Machine Block see Figure 6.5 is written as

r=[r, O, (6.18)

a
where 7, denotes the actuator torque viz. swing, 7., boom, 7, and stick, 7, as shown

below
7, =[r. 7, 7. (6.19)
Similarly for 8 dof system the vector, T is written as
t=[0,, 7, Osa] (6.20)
The elements of the diagonal control matrices K,, and K,, shown in Figure 6.5, are
computed by
kp =wim, =(2nv,) ' m, 6.21)
ky, =28,0,m; = 4ng,v,m, (6.22)
where m; corresponds to diagonal elements of the mass matrix, { is the damping ratio, and

v the frequency of the controller.
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Off line  Controller

Velocity
Estimation

Forestry Machine

1= Mg+ Viq.9)+Glqg)

Sensors

Figure 6.5: Set-point Feedforward Controller.

Finally, the equation for the applied torque is given by,

T, =kpe, +k, &, +7, (6.23)

where 7, is the gravity compensation feedforward term. Note that this controller is not

f
applicable as such, since in general, in a hydraulic system it is not possible to specify
actuator torque/forces. However, it can be used to evaluate the developed models, and

result in better understanding of system behavior.

6.3.1 Simulation for the 5 dof System

In this section the simulation for the 5 dof system is done and results are shown. An initial
error of 10° is given as a command to each joint, and system response is obtained by
simulation. The input to the program is the damping ratio and frequency of the controller at
each joint (for gain calculation), the initial and desired conditions (position, velocity and
acceleration) for each joint, the step size and total simulation time. As the viscous friction
model is incorporated at each joint, the coefficient of friction (b) at each joint should be
given as input. Depending on the desired conditions, the feedforward torque for the three
joints are calculated off-line. The position and velocity gains are also dependent on the
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desired conditions as the corresponding mass matrix elements are validated with the desired

conditions. The Table 6.2 shows the actual data used for the simulation.

Table 6.2: Input Data for the Simulation.

b Initial Conditions Desired Conditions C | v
et | 4 C) | 4C) | 4, C18Y) | 4, ) | 4, CI8)| Gy CI5Y) | Hz
- Swing 0 0 0 0 10 0 o | 1 .15
Boom | 0 0 0 0| 0 0 [ 34
‘Stick |0 0 0 0 -10 0 0 I : 34
~ Pin ‘ 1500 -90 0 0 -70 0 0 j
" Head 1500 0 0 0 0 0 0 |
' Step Size .01 ~ -
Final Time | 205

The position and velocity gains for each joint (swing, boom and stick) are also calculated

off line. The desired angle for the pin (shown in a shaded box) results from Eq. (6.24) as

the pendulum should remain vertical at steady state due to gravity.

q:, = —(% tq,, T4, )

where, the subscript 4 denotes the desired condition.

(6.24)

Table 6.3 shows the output data for the simulation, including the time step used.

Table 6.3: Output Data for the 5 dof System.

] Calculated Gains Calculated Torque
Position Velocity Initial Feedforward
: N.m N.m
“Swing 91590 | 194360 0 0
“Boom 552740 | 517480 140825 136544
Stick 167314 | 156640 58800 55608
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Figure 6.6 shows how the swing, boom and stick move from initial position to the desired
position. From Figure 6.7 we observe that the velocity for the three powered links settles to

zero as per the desired condition.

Boom Stick

] r T T $ —r— T

, 5 dof |1 ISdufl
[) o |, - - J (]
T T T
[~ c =
S s T 2 ]
D @ Sap a
Q (=] r N 1 O
a a a

19

a . 1 1 12 L n L s L 1
s A 1o 's 2a L] £ ta 15 20 ] (1 1o ts 22
Time (s) Time (s) Time (s)

Figure 6.6: Positions of Powered Links.
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Figure 6.7: Velocities of Powered Links.

The pin automatically settles down to its stable position and end-effector will always settle
to zero angle as the base is horizontal. The two pendulums do not swing forever, as joint
friction, incorporated into the model, slows them down. Figure 6.8 shows the motion of

pin and end-effector after getting command from the controller.
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Figure 6.8: The Motion of Gimbals.
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Figure 6.9 depicts joint tracking error performance. The observed overshoot occurs

because of dynamic coupling, and because the feedforward gravity term is computed at the

desired final position only. Again for the simulator design there must be a trade off, if both

the gains are increased then we need a smaller time step in numerical integration routine for

stability reasons. In such case, it may be difficult to achieve real-time simulation.
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Figure 6.9: Errors Dynamics in Powered Links.

Figure 6.10 shows typical actuator applied torques for a set-point command in the swing,

boom, and stick angles, q,. Note that these are smooth, and therefore valid actuator

torques.
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Figure 6.10: Applied Actuator Torque for the 5 dof System.

6.3.2 Simulation for the 8 dof System

In this section, the model includes tire compliance. The compliance effect is described by
roll, pitch and bounce. The parameters for stiffness and damping are obtained by

experiments and discussed in Chapter 8. The input data for 8 dof system is given in Table

6.4.
Table 6.4: Input Data for Simulation
b Initial Conditions | Desired Conditions g v

s 4, C) 4O G ) 4, )4, C)_4, CI5) H:
Swing 0 0O 0o 0 10 0 0 1 A5
Boom 0 0 0 0O 00 0 I 34
Sick = 0 . O 0 0 . -I0 0 0 [ 34
Pin 1500 ; -90 0 0 - =70 0 0
Head 1500 ~ 0 , 0 . 0O 0 0 0
Bounce = - -104: 0O ! 0
Rol : - . O 0 o0
Pich | - | O 0 | 0
Step Size | .0l

Final Time | 20 s
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Table 6.5: Output Data for the 8 dof System.

Calculated Gains Calculated Torque (N.m)
Position Velocity Initial Feedforward j
| Swing 91593 194366 0 0 }
j Boom 552742 517480 140825 136544
“Stick 167314 156640 58800 55608
Simulation Step dr 11.87 ms 1

As we are not controlling the bounce, roll and pitch, a desired conditions for the compliant
base do not apply. The initial conditions for the base are chosen such that the system is
initially at equilibrium. From the initial configuration the forces and torques at the base are
calculated, and the deflections in bounce, roll and pitch are calculated and supplied as initial
conditions. Another approach is to let the simulation run for a while with any initial
condition for compliance and observe the steady state for a particular manipulator
configuration. In the case of successive simulation runs, the initial conditions are updated
automatically.

Figure 6.11 and Figure 6.12 show the response for the three powered links.
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= . 4 ] - 1
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Figure 6.11: Positions of Powered Links.

For the swing there is a steady state error, as gravity compensation can not be applied to the

base compliance. This kind of behavior is absent in the case of 5 dof system. The steady
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state error can be decreased by increasing the position gain. This can be done by increasing

the bandwidth of the corresponding controller.
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Figure 6.12 Velocities of Powered Links.

The angle histories of the Hooke assembly are shown in Figure 6.13. As expected,
since these links are not actuated, their response is quite oscillatory. However, eventually
this oscillation dies out due to friction at the joints. The desired position of the pin will
come automatically from the desired position of boom and stick. Due to compliance effect
desired position for the pin will be changed from 5 dof case as described in Eq. (6.24). The
modified equation is shown in Eq. (6.25). The swing movement affects the end-effector

movement, if the swing does not move the end-effector would not move (planar case).

g, =—(5+4, +4, - q,) (6.25)

where, g, is the initial pitch angle.
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Figure 6.13: The Motion of Gimbals.
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Figure 6.14 and Figure 6.15 depict the base pitch, roll and bounce motion. Although
these are relatively small, their effect at the end-point is not negligible. This is due to the

length of the manipulator arm.
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Figure 6.14: Base Position & Orientation Due to Compliance.
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Figure 6.15: Base Velocities Due to Compliance.

Figure 6.16 shows joint tracking error performance for the 8 dof system. Unlike the 5 dof
system, there are small non-zero steady state errors, due to the effects of base compliance,
and to the lack of compensation for it. The applied actuator torque are depicted in Figure
6.17. Since the controller uses feedback from the joint sensors, the boom and stick torque
profiles include higher frequency components, compared to Figure 6.10. These frequencies
are due to the coupling between base compliance and joint motion, an effect missing from

the 5 dof system.
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Figure 6.16: Errors Dynamics in Powered Links.

Swing Boom Stick
2%t T — T 2510 T —T 1 vet T T
‘
—_'5 et - SO — 2 10 —_ ot
£ E €
E 1 g . Eysw‘ fL g’lw
23 [+2] o]
3
E‘ g vl % a 1wt
(=] o Q
= = ) =
5 10k, B PIRY}
[ P S A F] Js
L] L) re t s 20 9 L] L] AR 10 Q 5 to Ts 2a
Time (s) Time (s) Time (s)

Figure 6.17: Applied Actuator Torque for the 8 dof System
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7. Conclusions and Future Work

This thesis is primarily concerned with the dynamic modeling of a forestry vehicle. The
dynamic models have been used to develop a training simulator, to size system valves, and
to develop control algorithms. The training simulator is a visual graphic simulator,
developed in Silicon graphics workstation interfaced with a joystick for operation. The
actuator valves are sized based on the dynamics of a simplified system. A computed torque
controller was designed to observe dynamic response of the system (a mathematical model
of the hydraulic subsystem is necessary to design an actual controller) .

The complete dynamic model is developed in three stages of increasing complexity
namely, (a) a three-degrees-of-freedom system, (b) a five-degrees-of-freedom system, and
finally (c) an eight-degrees-of-freedom system. In the three-degrees-of-freedom system the
links are the swing, the boom and the stick. In the five-degrees-of-freedom system two
pendulums (gimbals) namely the pin and the end-effector, were attached at the end of the
stick. The final model is an eight-degrees-of-freedom system where, the five-degrees-of-
freedom system is mounted on a vehicle which rests on four tires. The tires are modeled as
spring-damper systems. The tires introduce compliance to the base, and result in base
motion such as roll, pitch, and bounce. The yaw effect is neglected as the swing does not
rotate at a high speed.

The dynamics were developed using a Newton-Euler iterative algorithm. This algorithm
is chosen as it is easy to implement by computer program and it requires a smaller number
of computations. In the forward iteration, manipulator kinematics were employed while the
dynamics were developed in backward iteration. The dynamics were found in a symbolic
closed form solution of a manipulator.

To get the dynamic response of a system the system dynamics of a manipulator may be
implemented either in numeric iterative form or in symbolic closed form. For a fixed-base

manipulator in which all degrees-of-freedom are actuated both forms (numeric or symbolic)
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can be applied. The numeric iterative form, can only be applied in case of a fixed-base
manipulator, where the desired trajectories for all joints, or degrees-of-freedoms, are used
to calculate numerically the forces and torques necessary to cause the desired motion. The
numeric iterative form can not be applied in the case of a manipulator mounted on a
compliant base, since the base is not actuated, and its position, velocity and acceleration
will depend on how fast the arm moves, the load being manipulated, etc. However, if this
formulation is applied symbolically, then it results in a closed set of symbolic equations of
motions, which is not subject to this problem.

Joint friction was assumed to be described by a viscous friction model, and appropriate
terms were added to the velocity terms in the equation of motion. The dynamics of all three
models were optimized for execution time by applying trigonometric identities, and were
written in matrix form.

To carry out simulations, parameter values are needed. Parameters like lengths, masses
and angles were found from industrial drawings or by simple direct measurements (like
weighing, measurement by scale etc.) and trigonometric calculations. But parameters like
the location of a center of mass, link moments of inertia, products of inertia of a link could
not be estimated from blueprints. In the case of the boom and stick, pendulum experiments
were carried out to measure moments of inertia. However moments of inertia are very
sensitive to the time period of oscillation (they are proportional to the square of the time
period of oscillation). Therefore, errors in obtaining the period of oscillation result in
substantial errors in calculating the moment of inertia. Moreover, swinging a body with
respect to a single axis is also a difficult task. Fortunately, solid modeling techniques can
be used to compute moments and products of inertia very accurately. We used Auto CAD
with the Advanced Modeling Extension package to estimate mass properties of all the links
and the location of the center of mass. Note that solid models were refined to the point that

both the estimated and measured total mass and moment of inertia were in agreement.
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Another set of parameters is required for the base compliance model, attributed mostly
to the tires. The tires are modeled as a spring and damper system, and their stiffness and
damping ratio were found by static load-deflection and drop experiments respectively. It
has been found that the tire behaves like a linear spring in the region of loads of interest. In
the case of drop experiments, the tire must be in contact with a slab throughout the test,
otherwise obtained results will not be valid due to the physics of collisions.

As all the links are driven by hydraulic power the valve characteristic and its sizing
become important. Some typical trajectories (trapezoidal, cubic and quintic) were planned,
and simulations using inverse dynamics were carried out. The flow through a valve, and
the pressure drop across it (obtained from the inverse dynamics calculations) were plotted.
This plots were compared with the provided valve characteristic curve to test if the valve
under consideration is capable of performing the task. This methodology resulted in useful
valve sizing results. The total power consumed for the system was also simulated for
typical trajectories.

The model becomes more complicated as the degrees-of-freedom increase, and
simulations take substantial amount of time. As a remedy, the codes were converted in
compiled C code, and were integrated using a customized numerical integration routine
(Runge-Kutta-Nystrém algorithm). To get the accelerations of all the links, we need to
invert the system's mass matrix. Due to symmetry and positive definiteness of the mass
matrices involved in the dynamic equations of all models, matrix inversion is avoided by
applying Cholesky's method. A customized source code for Cholesky's method was
developed and written in C. As all the codes are on line (no libraries are called), the
execution time became substantially faster compared to Simulink execution, even with the
CMEX option.

In order to observe the dynamic behavior of all the models of the system a computed
torque controller was developed. The position and velocity gains were chosen by

specifying a closed-loop frequency and damping ratio for all the powered joints. Since a
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detailed friction model of the pendulum joints was not available, the damping coefficients
for these joints were chosen by observing the decay of pendulums’ oscillations. Obtained

simulation results show good agreement with observed vehicle response.

7.1 Future Work

The complete base kinematics was developed in Chapter 2, and it allows calculations of the
bogie angles from the two linear gauge readings. However, the bogie angles are not
incorporated in the dynamic models. The model can be extended by introducing one
degree-of-freedom between the platform and the swing and adding a transformation matrix
from platform to swing, whose elements should be a function of bogie angie. Another
important factor is the forward motion of the vehicle; this can be very easily incorporated in
the Newton-Euler iterative dynamic formulation. At the first link frame, an initial condition
should be given depending on the speed of the vehicle. The provision is made in the
computer program but in the presented simulations, the velocity of the vehicle is taken as
zero.

As all the codes are written in C in order to develop a simulator of the forestry vehicle
the codes can be directly interfaced with graphic routines in Open GL or Open Inventor on
Silicon Graphics workstations. Also, the code can be optimized further by removing terms
that are small in magnitude. Finally, all solid models are generated in Auto-CAD and stored
in the DXF format. The DXF files can be converted to .iv files in order to generate

animation in Open Inventor format.
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Appendix A

Expressions of torques in Stick, Boom
and Swing Joints

The following expressions describe the equations of motion for three degrees of freedom
system. The detailed procedure is described in Chapter 3. The left hand side of the Eqgs.
A.1 to A.3 denotes the torques required to cause the motion of the manipulator. The right
hand side of the above mentioned equations have the acceleration, Coriolis and centrifugal,

and gravity terms.

Ty = _[”’353(-"3523 + Y3Cp3) + LoSoy + [0 ]% +[m,3(x32 +yy" Hhxe —hys) + I, ]‘h +
[m3(x32 +y, )+ I, ]‘13 + [m3{llx35‘.’.3 + LXsCoS0y + [ Y3Cay +h Y6160 + Xy yy(€° =5 T) +
Czsszs(xaz ")’32)} + Izc.:)-(czsz ‘3231)"“':3523(13[,\3- ~-I, )]qlz +[m312(x3s3 + ,Vscs)]‘?:l +

”5[-‘3‘:‘5 = Y3y ]g (A.1)

T, = [—m333(x3513 + Y363 +185,) + My, (X8, + 06+ Iy 5oy + [0y + 5 5, + 15, 0y ]ij, +
[my{xs® +yi +42 + 2L, (xc; = yys;)  +ma (6,7 + )+ £, + 15 ]é: +
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Appendix A: Equations of Motion for 3 dof system

2,722 22 22
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Appendix B

This program generates the dynamic mode! in various files in the home directory. Mass
matrix, Coriolis and centrifugal terms, and gravity terms are stored in separate files with
their conventional names. Firstly, all the successive rotation matrices are defined, and
inverted ( Inverse[ ] command), then stored in separate variables. Then the link parameters
(length and location of center of mass) are written in vector form. Velocity and acceleration
propagation are written next and finally the backward propagation is done and actuator
torques are equated.

After each matrix muitiplication the resulting expressions are simplified with
trigonometric flags on, and stored in a variable. Once usage of a variable is finished all the
attributes of that variables are cleared (ClearAll[ ] command) and the name of the variable is
removed (Remove[] command), thus freeing memory. The replacement of the variables
are done by ( /. operator), the recursive replacements are done by (//. operator). For big
symbolic expressions the coefficients are collected (Coefficient{expression, variable]
command) and simplified (Simplify[] command) step by step rather than simplifying the
whole expression. The whole expression is written in a readable form by collecting all the

acceleration, Coriolis and gravity terms, (Collect{] command).




Appendix B: Source Code in Mathematica To Generate Dynamics for 8 DOF System

Source Code in
Mathematica to
Generate the
Dynamics for 8
DOF System

(* mass in kg length in meter *)
(*<<Ssonerule.m. It is a package to
substitute

Sin A2 (theta) + Cos A2 (theta) = 1
instantaneously *)
Off[General::spell];
Off[General::spell1];

rMi=1;r112=
0;r13=0;r21=0;r22=1;r23=0;r31=0;r32=0;r3
3=1;

(*Rotation Matrices®)

qzft] = 0;(*yaw neglected*)

rotationz = {{Cos[qz[t]], -Sin[qz[t]], 0},
{Sin[qz[t]], Cos{qz]t]], 0},

{0,0, 1}k

rotationy = {{Cos[qy(t]],0,Sin[qy(t]]},
{0,1,0},

{-Sin[ayft]],0,Cos[qy(t]]}};

rotationx = {{1,0,0},
{0,Cos{qx[t]],-Sin[ax[t]]},
{0,Sin[qx(t]], Cos[ax(t]]}};

wrOp = rotationz.rotationy.rotationx;
("wrOp=wrOprime"*)

(*from AutoCad*)

zeropr0 =
{{r11,r12,,13},{r21,r22,r23},{r31,r32,r33}};
wrO = wrOp.zeropr0;
(*Print["wr0=",wr0];*)

zerorw = SSonerule[Inverse[wr0]];
zeror1 = {{Cos[q1[t]], -Sin[q1[t]], O},
{Sin[q1{t]], Cos[q1[t]], O},

{0,0, 1}

oner0 = SSonerule[Inverse{zerort]];
oner2 = {{Cos[q2[t]], -Sin[q2[t]], 0},
{Ov 01 -1}'

{Sin{g2(t], Cos[q2{t]], O}};

twor1 = SSonerule[Inverse(oner2]];
twor3 = {{Cos[q3[t]], -Sin[q3[t]], 0},
{Sin[q3[t]], Cos[q3[t]]. O},

{0, 0,1}};

120

threer2 = SSonerule[Inverse[twor3]];
threerd = {{Cos[q4(t]], -Sin[q4lt]], 0},
{Sin[q4[t]], Cos[q4{t]], 0},

{0, 0,1})

fourr3 = SSonerule[Inversethreer4]];
fourrs = {{Cos{g5[t]], -Sin[q5{t]], 0},

{0,0,1},

{-Sin[q5[t]],-Cos{q5[t]},0}};

fiver4 = SSonerule[inverse(fourr5]j;

zerorS = zerori.oner2.twor3.threer4.fourr5;

(*Link Parameters*)

wpO = {{xw},{yw}.{zw}};

(*Dynamics won't be dependent on this
parameters®)

zeropt = {{x0},{y0},{z0}};

zeropim = {{0,-z0,y0},{z0,0,-x0},{-y0,x0,0}};
zeropcO = {{0},{0}.{0}};

zeropcOm = {{0,0,0},{0,0,0},{0,0,0}};

onep2 = {{I1},{0},{0}};

onep2m = {{0,0,0},{0,0,-11},{0,11,0}};

onepct = {{x1},{y1}.{z1}};

onepcim = {{0,-z1,y1},{z1,0,-x1},{-y1,x1,0}};

twop3 = {{I2},{0}.{0}};

twop3m = {{0,0,0},{0,0,-12},{0,12,0}};

twopc2 = {{x2},{y2},{z2}},

twopce2m = {{0,-z2,y2},{z2,0,-x2},{-y2,x2,0}};

threep4 = {{I3},{0},{0}}:

threep4m = {{0,0,0},{0,0,-13},{0,13,0}};
threepc3 = {{x3}.{y3}.{z3}};
threepc3m = {{0,-z3,y3},{z3,0,-x3}.{-
y3,x3,0}}:

fourp5 = {{14}.{0},{0}};

fourp5m = {{0,0,0},{0.0,-14},{0,14,0}};
fourpc4 = {{x4},{y4}.{z4}};

fourpcdam = {{0,-24,y4},{z4,0,-x4},{-y4,x4,0}};

fivepcs = {{x5},{y5}.{z5}};
fivepcsm = {{0,-25,y5},{z5,0,-x5},{-y5,x5,0}};

(*Velocity and Acceleration Propagation®)
wvw = {{0},{0},{O}};

("it does not hamper manipulator dynamics®)
wvDw = {{0}.{0}.{g}}

www = {{0},{0}.{0}};

wwDw = D{www t];

wwwm = {{O,-
www([3,1]],www([2,1]}},{www([3,1]],0,
-www([1,1]]}L.{-www([2,1]],www[[1,1]],0}};
wwDwm = Diwwwm,t];



Appendix B: Source Code in Mathematica To Generate Dynamics for 8 DOF System

Zzerow0 = Zerorw.www +
{{D(ax{t].t]}.{Dfqy(t].t1}.{0}}

zerowOm = {{0,-
Zzerow0[[3,1]],zerow0[[2,1]]},{zerow0[[3,1]],

-zerowO{[1,1]]}.{-
zerow0([{2,1]]),zerow0[[1,1]],0}};

zerowDO = D[zerow0,t];

2erowDOm = D[zerow0Om.t];

zerov0 =

zerorw. (wvw+wwwm.wp0)+{{0},{0},{zd}};
("only motion in z direction*)

ZEeroww = Zerorw.www;

zerowwm = {{0,-
zeroww([3,1]],zeroww([2,1]]},{zeroww[[3,1]],
0,

-zeroww([1,1]1}.{-
zeroww([2,1]],zeroww([1,1]],0}}:

zerovDO =

zerorw. (wvDw+wwDwm.wpO+wwwm.wwwm.
wp0)+2*zerowwm.{{0},{0},{zd}}+{{0}.{0},{zdd}
I

ClearAll[wvDw,zerorw];
Remove[wvDw,zerorw];

zerovDcO =
zerovDO+zerowDOm.zeropcO+zerowOm.zer
owOm.zeropcO;

onewl = oner0.zerow0 +
{{0}.{0}.{D[q1[t].tT}};

onewim = {{0,-
onew1([3,1]],onew1[[2,1]]},{onew1[{3,1]],0.
-onewl1[[1,111}.{-
onewi{[2,1]),onewi{[1,1]].0}};

onewD1 = D[onew1.1];

onewD1 = Simplify[onewD1];

onewD1m = Dlonewim,t];

onevl = onerQ.(zerov0+zerowOm.zerop1);
onevl = Simplify[onevi];

onevD1 = oner0.zerovDO;

onevD1 = Simplify[onevD1];
ClearAll[zerovDO0,0ner0];
Remove[zerovDO,oner0);

onevDc1 =
onevD1+onewD1m.onepci+onewim.one
wim.onepci;

onevDc1 = Simplify[onevDc1];

twow2 = twor1.onew1+{{0},{0}.{D[q2{t].t}}};
twow2 = Simplify[twow2];

twow2m = {{0,-
twow2([3,1]],twow2[[2,1]]},{twow2[[3,1]].0,

'tWOW2[[1 .1 ]]}l{'
twow2[[2,1]],twow2[[1,1]],0}};

twowD2 = D{twow2,t];

twowD2 = Simplify[twowD2};

twowD2m = {{0,-

twowD2([3,1]],twowD2[[2, 1]}},{twowD2[[3,1]
1,0,

-twowD2([1,1]]}.{-
twowD2([2,1]],twowD2[[1,1]].0}};

twov2 = tworl.(onevi+onewim.onep2);
twov2 = Simplify{twov2];

twovD2 =
twor1.(cnevD1+onewD1m.onep2+onewim
.onewim.onep2);

twovD2 = Simplify[twovD2];
ClearAll{twor1,onewD1m,onevD1];
Remove(twor1,onewD1m,onevD1}];
twovDc2 =
twovD2+twowD2m . twopc2+twow2m.twow?2
m.twopc2;

twovDc2 = Simplify{twovDc2];
ClearAllftwopc2];

Remove[twopc2];

threew3 =
threer2.twow2+{{0},{0},{D[q3[i].t]}};

threew3 = Simplify[threew3];

threew3m = {{0,-
threew3([[3,1]],threew3[[2,1]]},{threew3([[3,1
1.0,

-threew3[[1,1]]}.{-
threew3[[2,1]],threew3[[1,1]],0}};

threewD3 = D[threew3,t];

threewD3 = Simplify[threewD3];

threewD3m = {{0,-
threewD3[[3,1]],threewD3[[2,1]]},{threewD3
((3.111.0,

-threewD3[[1,1]]}.{-
threewD3[[2,1]],threewD3[[1,1]],0}};
threev3 = threer2.(twov2+twow2m.twop3);
threev3 = Simplifyfthreev3];

threevD3 =
threer2.(twovD2+twowD2m.twop3+twow2m
twow2m.twop3);

threevD3 = Simplify[threevD3];
ClearAllftwop3,threer2,twowD2m,twovD2];
Remove(twop3,threer2, twowD2m,twovD2];
threevDe3 =
threevD3+threewD3m.threepc3+threew3m.
threew3m.threepc3;

threevDc3 = Simplify[threevDc3];

fourw4 =
fourr3.threew3+{{0},{0},{D[q4[t].t]}};
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fourw4 = Simplify{fourw4];

fourwdm = {{0,-
fourw4{[3,1]],fourw4[[2,1]]},{fourw4[[3,1]],0,
-fourw4([1,1]]}.{-
fourwd[[2,1]],fourw4[[1,1]],0}};

fourwD4 = D{fourw4.t;

fourwD4 = Simplify[fourwD4];

fourwD4m = {{0,-
fourwD4[[3,1]],fourwD4([[2, 1]]}, {fourwD4[[3,
1]1.0,

-fourwD4([[1,1]]},{-
fourwD4([[2,1]],fourwD4[[1,1]],0}};

fourvd =
fourr3.(threev3+threew3m.threep4);
fourv4 = Simplify[fourv4];

fourvD4 =
fourr3.(threevD3+threewD3m.threep4+thre
ew3m.threew3m.threep4);

fourvD4 = Simplify[fourvD4];

fourvDc4 =
fourvD4+fourwD4m.fourpc4+fourwdm.four
w4m.fourpc4;

fourvDc4 = Simplify[fourvDc4];

fivewS = fiver4_fourw4+{{0},{0},{D[qQ5[t].t]}};
fivew5 = Simplify[fivew5];

fivewSm = {{0,-

fivews[[3, 1]],fivew5[[2,1]]}.{fivew5[[3,1]],0,
-fivew5[[1,1]1}.{-
fivew5[[2,1]],fivew5[[1,1]],0}}:

fivewD5 = D[fivew5.t];

fivewD5 = Simplify[fivewD5];

fivewD5m = {{0,-

fivewD5[[3, 1]].fivewD5[[2, 1]]},{fivewD5[[3,1]
1,0,

-fivewD5f{1,1]]}.{-
fivewD5[[2,1]],fivewD5[[1,1]],0}};

fivevs = fiver4.(fourvd+fourwdm.fourps);
fivevs = Simplify[fivev5];

fivevD5 =

fiver4.(fourvD4+fourwD4m. fourp5+fourw4m
.fourwdm.fourp5);

fivevD5 = Simplify[fivevD5];

fivevDc5 =
fivevD5+fivewD5m.fivepcS+fivew5sm.fivew5
m.fivepcs;

fivevDe5 = Simplify[fivevDc5];

I5 = {{I5xx,-15xy,-15xz},{-15xy,ISyy,-I5yz},{-
ISxz,-15yz,1522}};
14 = {{l4xx,-14xy -14xz} {-14xy |4yy - 14yz} {-
14xz,-14yz |422}};
13 = {{13xx,-13xy,-13x2}.{-13xy, |3yy,-13yz},{-
13xz,-13yz,132z}};

122

12 = {{I2x0¢,-12xy,-[2xz},{-12xy I12yy,-12yZ} {-
12xz,-12yz 122z}};
11 = {{I1xx,-11xy,-11xz},{-11xy, [ 1yy,-"yz} {-
NMxz,-11yz,[1zz}};
10 = {{IOxx,-10xy,-10xz},{-10xy,|0yy,-10yz},{-
10xz,-10yz,102z}};

fiveF5 = m5*fivevDc5;
ClearAll[fivevDc5];

Remove[fivevDc5];

fiveN5S = [5.fivewD5+fivew5m.|5. fivew5;
fiveN5 = Simplify[fiveNS5];
ClearAll[l5,fivew5 fivew5m, fivewD5];
Remove[l5,fivews, fivewSm,fivewD5];

fourF4 = m4*fourvDc4,
ClearAli[fourvDc4];

Remove[fourvDc4];

fourN4 = 14 fourwD4+fourwdam.l4.fourw4,;
fourN4 = Simplify[fourN4];
ClearAli[l4,fourw4 fourwd4m, fourwD4];
Removel[i4,fourwd,fourwdm,fourwD4];

threeF3 = m3*threevDc3;
ClearAll[threevDc3];

Remove[threevDc3];

threeN3 =
13.threewD3+threew3m.|3.threew3;
threeN3 = Simplify[threeN3];
ClearAll[I3,threew3,threew3m threewD3];
Remove[l3,threew3,threew3m,threewD3];

twoF2 = m2*twovDc2;
ClearAllftwovDc2];

RemoveftwovDc2];

twoN2 = 12.twowD2+twow2m.[2.twow2;
twolN2 = Simplify[twoN2];
ClearAll[I12,twow2 twow2m,twowD2];
Remove[l2,twow2 twow2m,twowD2];

onefF1 = mi1*onevDc1;
ClearAllfonevDc1];

Remove[onevDc1];

oneN1 = I1.onewD1+onewim.|1.onewt;
oneN1 = SimplifyfoneN1];
ClearAllfl1,onew1,0newim,onewD1];
Remove[l1,onew1,onewim,onewD1];

zeroF0 = m0*zerovDcO;
ClearAll[zerovDcO];

Remove[zerovDcO];

zeroNO = 10.zerowDO+zerow0Om.l0.zerow0;
zeroNO = Simplify{zeroNOJ;
ClearAll[l0,zerow0,zerowOm,zerowDO};
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Remove[l0,zerow0,zerowOm,zerowDO];

precision = .00001;(*below this value will be
treated as zero*)

decimal = 4;(*in output after decimal 4 digits
will be printed”)

(*Backward Iteration for Dynamics®)
(t"'tt"'f"".tt' for torques Q'tt"'ttttfttt)
fivef5 = fiveF5;

fiven5 = fiveNS+fivepcSm.fiveF5;

fiven5 = Simplify[fiven5];
ClearAll{ffivepc5m,fiveF5,fiveNS];
Remove[fivepc5m,fiveF5,fiveN5];

torqueS = fiven5{[3,1]];

torque5 = SSonerule[torque5];

torque5 = torque5 /.{q1[t]->q1,q2[t]-
>Q2,q3[t]->q3,q4[t]->q4.95[t]->q5,qx[t]-
>gx,qy[t]->qy.qz(t]->qz,
q1'[t]->q1d,q2'[t]->q2d,q3'[t]->q3d,q4[t]-
>q4d,q5'[t]->q5d,gx{t]->qxd,qy'[t]-
>qyd,qz'[t]->qzd,
q1"[t]->q1dd,q2"[t]->q2dd,q3"[t]-
>q3dd,q4"[t]->q4dd,q5"[t]->q5dd,qx"[t]-
>qQxdd,qy"[t}->qydd,qz"[t]->qzdd};

torque5 = torque5/.{q4d q5d->q4dq5d,q3d
q5d->q3dq5d,q3d q4d->q3dgdd,q2d q5d-
>q2dq5d,

q2d q4d->q2dg4d,q2d q3d->q2dq3d,q1d
q5d->q1dg5d,

q1d q4d->ql1dqdd,q1d q3d->q1dgq3d,q1d
q2d->q1dqg2d,q5d”r2->q5dsq,q4dn2-
>Qq4dsq,q3d~2->q3dsq,
gq2dA2->q2dsq,q1dr2->q1dsq,q5d gxd-
>q5dgxd,q5d qyd->q5dqyd,q4d qxd-
>q4dqgxd,q4d gqyd->q4dqyd,

q3d qxd->q3dqxd,q3d qyd->q3dqyd,q2d
qxd->q2dqxd,q2d qyd->q2dqyd,

q1d qxd->qidgxd,q1d qyd->qidqyd,
qxdn2->gxdsq,qydr2->qydsq,qxd qyd-
>qxdqyd};

(*TAKE ALL mass matrix element*)

torqueS = Expand[torque5];

torqueS = torque5//.{q4d q5d->q4dq5d,q3d
q5d->q3dq5d,q3d gq4d->q3dg4d,q2d g5d-
>q2dqsd,

q2d q4d->q2dq4d,q2d q3d->q2dq3d,qid
q5d->q1dqg5d,

q1d q4d->q1dq4d,q1d q3d->q1dq3d,qi1d
q2d->qidq2d,q5d/ 2->q5dsq,q4d 2-
>Qq4dsq,q3d 2->q3dsq,
q2dr2->q2dsq,q1dr2->qidsq,g5d gxd-
>q5dqxd,q5d qyd->q5dqyd,q4d qxd-
>q4dqxd,q4d qyd->q4dqyd,

q3d qxd->q3dqxd,q3d qyd->q3dqyd,q2d
gxd->q2dqxd,q2d qyd->q2dqyd,

q1d gxd->q1dqxd,q1d qyd->qtdqyd,
gxdr2->qxdsq,qydr2->qydsq,qxd qyd-
>qxdqyd};

torque5 = Chop[torque5,precision];
torque5 = SetAccuracy[torque5,decimal];
torques = torque5//.{2.0000->2,1.0000-
>1);

file[1]="q4dq5d5";file[2])="q3dq5d5";file[3]
="q3dq4d5";file{4]="q2dq5d5";file{5]="q2d
q4d5";file[6]="q2dq3d5" file[7]="q1dgq5d5"

file[8]="q1dq4d5";file[9]="q1dq3d5";file[10
J="q1dq2d5"; file[11]="q5dsq5";file[12]="q4
dsq5*file[13]="q3dsq5";
file[14)="q2dsq5";file[15]="q1dsq5";file[16]
="q5dqxd5*;file[17]="q5dqyd5";file[18])="q
4dqxd5”;file[19]="q4dqyd5";
file[20]="q3dqxd5";file[21]="q3dqyd5";file[
22]="q2dqxd5";file[23])="q2dqyd5";file[24]
="q1dqgxd5”;file[25]="q1dqyd5";
file[26]="qxdsq5";file[27]="qydsq5";file[28]
="gxdqyd5";file[29]="m88";file{30}="m78";fi
le[31)="m68";file[32]="m58"file[33]="m48"

file[34]="m38"file[35]="m28"file(36]="m18
“/file[37]="G5";

variable[1]=q4dq5d;variable[2]=q3dq5d;vari
able[3]=q3dq4d;
variable[4]=q2dq5d;variable[5]=q2dq4d;vari
able[6]=q2dq3d;
variable[7]=q1dq5d;variable[8]=q1dqg4d;vari
able[9]=q1dq3d;
variable[10]=q1dq2d;variable[11]=q5dsq;va
riable[12]=q4dsq;
variable[13]=q3dsq;variable[14]=q2dsq;vari
able[15]=q1dsq;
variable[16]=q5dqgxd;variable[17]=q5dqyd;v
ariable[18]=q4dqxd;
variable[19]=q4dqyd;variable[20]=q3daxd;v
ariable{21]=q3dqyd;
variable[22]=q2dqxd;variable[23]=q2dqyd;v
ariable{24]=q1dqxd;
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variable[25]=q1dqyd;variable[26]=qxdsq;var
iable[27]=qydsq;
variable{28]=qxdqyd;variable{29]=q5dd;vari
able[30]=q4dd;variable{31]=q3dd;variable[3
2]=q2dd;variable[33]=q1dd;variable{34]=qy
dd;variable[35]=qxdd;variable[36]=zdd;

(*fAUTOMATION FOR ALL TERMS*)
For{counter=1,counter<=36,counter++,var
name=variable[counter];

expr = Coefficient[torque5,varname};
filename = file[counter];

expr = Simplify[expr];

expr = expr//.{Sin[qx]->s6,Sin[qy}-
>s7,Sin[q1]->s1,Sin[q2]->s2,Sin[q3]-
>$3,Sin[q4]->s4,Sin[q5]->s5,
Cos[qx]->c6,Cos[qy]->¢c7,Cos[q1]-
>¢1,Cos[q2]->c2,Cos[q3]->¢3,Cos[q4]-
>c4,Cos[q5]->c5);

expr = expr//.{2.0000->2,1.0000->1,
2.0000-> 2, 1.0000-> 1};

expr =
Collect[expr.{s1,c1,52,c2,53,c3,s4,c4,s5,c5
,$6,¢6,57,¢7});

expr = vamame*expr;

torque5 = torque5/.{varname->0};

stmp = OpenWrite[filename];
WriteString[stmp filename};
PutAppend["=" filename];
PutAppend[expr.filename];
PutAppend[";".filename];Close[stmp];];
torque$S =
Collect[torque5,{s1,c1,s2,c2,s3,c3,54,c4,s
5,c5,s6,¢6,s7,c7}];

filename = file[37];

stmp = OpenWrite[filename];
WriteString[stmp,filename];
PutAppend["=",filename];
PutAppend[torque5,filename];
PutAppend[";" filename];Close{stmp];

time=Date[];
Print["Derivation of torque5 finished
at:" time];

(i'ﬁt"t.'t.'tit'.t for torque4 ""ttt't'tt'tt)
fourf4 = fourr5.fivefS+fourfF4;

fourf4 = Simplify{fourf4];

fournd =
fourN4+fourr5.fiven5+fourpc4m.fourF4+fou
rpSm.fourr5. fivefs;

fourn4 = Simplify[fournd];
ClearAll[fourrs,fourp5m,fourpc4m,fourF4,fo
urN4 fivefs, fiven5);

124

Remove[fourr5,fourpSm,fourpcdm,fourfF4,f
ourN4 fivef5 fiven5];

torque4 = fourn4[[3,1]];

torque4 = SSonerule[torque4];

torque4 = torque4 /.{q1[t]->q1.q2{t]-
>q2,q3(t}->q3,q4[t]->q4,q95[t]->q5,q9x(t]-
>gx,qy(t]->qy.qz(t]->qz,
q1'[t]->q1d,q2'[t]->q2d,q3'[t]->q3d,q4[t]-
>q4d,q5'[t]->q5d,qx'[t]->qxd,qy'[t]-
>qyd,qzt}->qzd,
q1"[t]->q1dd,q2"[t]->q2dd,q3"[t]-
>q3dd,q4"[t]->q4dd,q5"[t]->q5dd,qx"[{]-
>gxdd,qy"[t]->qydd,qz"[t]->qzdd};

torque4 = torqued/.{q4d q5d->q4dq5d,q3d
q5d->q3dq5d,q3d q4d->q3dqg4d,q2d q5d-
>q2dq5d,

q2d q4d->q2dq4d,q2d q3d->gq2dq3d,q1d
q5d->q1dq5d,

q1d q4d->q1dqd4d,q1d q3d->q1dq3d,q1d
q2d->q1dq2d,q5dr2->q5dsq,q4d 2-
>q4dsq,q3dr2->q3dsq,
q2d~2->q2dsq,q1dr2->q1dsq,q5d gxd-
>q5dqxd,q5d qyd->q5dqyd,q4d qxd-
>q4dqxd,q4d qyd->q4dqyd,

q3d qgxd->q3dqxd,q3d qyd->q3dqyd,q2d
qxd->q2dqgxd,q2d qyd->q2dqyd,

q1d gxd->q1dqxd,q1d qyd->q1dqyd,
gxdAr2->qgxdsq,qydr2->qydsq,qxd qyd-
>qxdqyd};

(*get rid of unnecessary mass matrix
element”)
torque4 = torqued/.{qSdd->0};

torque4 = Expand[torqued4];

torque4 = torqued//.{q4d q5d->q4dq5d,q3d
q5d->q3dq5d,q3d gq4d->q3dq4d.q2d g5d-
>q2dq5d,

q2d q4d->q2dgdd,q2d @3d->q2dq3d,qid
q5d->q1dq5d,

qtd g4d->q1dqd4d,q1d q3d->q1dq3d,q1d
q2d->q1dq2d,q5dr2->q5dsq,q4dn2-
>q4dsq,q3dr2->q3dsq,
gq2d”2->q2dsq,q1d*2->q1dsq,q5d gxd-
>q5dqxd,q5d qyd->q5dqyd,q4d gqxd-
>Qq4dqxd,q4d qyd->q4dqyd,

q3d gxd->q3dqxd,q3d qyd->q3dqyd,q2d
gxd->q2dqxd,q2d qyd->q2dqyd,

q1d gxd->q1dqxd,qid qyd->q1dqyd,
gxdr2->qxdsq,qydr2->qydsq,qxd qyd-
>qxdqyd};
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torqued4 = Chop[torque4,precision];
torqued4 = SetAccuracy(torque4,decimal};
torque4 = torque4//.{2.0000->2,1.0000-
>1}

file[1]="q4dq5d4";file[2]="q3dg5d4";file[3]
="q3dq4d4”;file[4]="q2dq5d4" file[5]="q2d
q4d4”;file[6]="q2dq3d4";file[7]="q1dq5d4"

file{8]="q1dq4d4";file[9]="q1dq3d4";file[10
]="q1dq2d4";file[11]="q5dsq4";file[12]="q4
dsq4";file[13]="q3dsq4";
tile[14]="g2dsq4";file[15]="q1dsq4";file{16]
=*q5dqxd4”;file[17]="q5dqyd4";file[18]="q
4dqxd4”;file[19]="q4dqyd4";
file[20]="q3dqgxd4";file[21]="q3dqyd4";file[
22)="q2dqxd4";file[23]="q2dqyd4";file[24]
="q1dgxd4"file[25]="q1dqyd4";
file[26]="gxdsq4";file[27]="qydsq4";file[28]
="qxdqyd4”;file[29]="m77";file[30]="m67";fi
le[31]="m57";file[32]="m4 7" file[33]="m37"

file[34]="m27" file[35]="m17";file[36]="G4";

variable[1]=q4dq5d;variable[2]=q3dq5d;vari
able[3]=q3dq4d;
variable[4]=q2dq5d;variable[5}=q2dq4d;vari
able[6]=q2dq3d;
variable[7]=q1dq5d;variable[8]=q1dq4d;vari
able[9]=q1dq3d;
variable[10]=q1dq2d;variable[11)=q5dsq;va
riable[12]=q4dsq;
variable[13]=q3dsq;variable[14]=q2dsq;vari
able[15]=q1dsq;
variable[16]=q5dgxd;variabie[17]=q5dqyd;v
ariable[18]=q4dqxd;
variable[19]=q4dqyd;variable[20]=q3dqxd;v
ariabie[21]=q3dqyd;
variable[22]=q2dqxd;variable[23]=q2dqyd;v
ariable{24]=q1dqxd;
variable[25]=q1dqyd;variable[26]=qxdsq;var
iable[27]=qydsq;
variable[28]=qxdqyd;variable[29]=q4dd;vari
able[30]=q3dd;variable[31]=q2dd;variable[3
2]=q1dd;variable(33]=qydd;variable[34]=qx
dd;variable[35]=zdd;

(*fAUTOMATION FOR ALL TERMS®)
For[counter=1,counter<=35,counter++,var
name=variable[counter];

expr = Coefficient[torque4,varname];
filename = file[counter];

expr = Simplify[expr];

expr = expr//.{Sin[gx]->s6,Sin[qy]-
>s7,Sin[q1])->s1,Sin[q2]->s2,Sin[q3]-
>s3,8in[q4]->s4,Sin[q5]->s5,
Cosl[qgx]->¢c6,Cos{qy]->¢7,Cos[q1]-
>c1,Cos[q2]->c2,Cos{q3]->c3,Cos[q4]-
>c4,Cos[q5]->c5};

expr = expr//.{2.0000->2,1.0000->1,
2.0000-> 2, 1.0000-> 1};

expr =
Collect{expr.{s1,ct,s2,c2,53,c3,54,c4,55,c5
,56,¢6,57,¢7}];

expr = varname’expr;

torqued = torqued/.{varname->0};

stmp = OpenWrite[filename];
WriteString[stmp,filename];
PutAppend["=",filename];
PutAppend[expr,filename];
PutAppend[";".filename];Close[stmp];];
torqued =
Collecttorque4,{s1,c1,s2,c2,53,c3,54,c4,s
5,¢5,56,c6,s7,c7}];

filename = file[36];

stmp = OpenWrite[filename];
WriteString[stmp,filename];
PutAppend["=",filename];
PutAppend[torque4.filename];
PutAppend[";",filename];Close[stmp];

time=Date[];

Print["Derivation of torque4 finished

at:" time];

(t'.t.'!"*'ttttt'. fOr torqueS --n-tt--t'-'--)
threef3 = threer4.fourf4+threefF3;

threef3 = Simplify[threef3];

threen3d =
threeN3+threer4.fournd+threepc3m.threeF
3+threep4m.threer4.fourf4;

threen3 = Simplify[threen3];
ClearAll[threer4,threep4m,threepc3m,three
F3,threeN3,fourf4,fourn4];

Remove[threer4 threep4m,threepc3m,thre
eF3,threeNg3,fourf4,fourn4];

torque3 = threen3[[3,1]];

torqued = SSoneruleftorque3];

torque3 = torque3 /.{q1[t]->q1,q2[t]-
>q2,q3[t}->q3,q4[t]->q4,q5[t}->q5,qx[t]-
>gx,qy[t]->ay.qz[t]->qz,
q1'[t]->q1d,q2'[t]->q2d,q3'[t]->q3d,q4'[t]-
>q4d,q5'[t]->q5d,qx[t]->qxd,qy'[t]-
>qyd,qz'[t]->qzd,
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qi1"[tl->q1dd,.q2"[t]->q2dd,q3"[t]-
>q3dd,q4"[t]->q4dd,g5"[t]->q5dd,gx"[t]-
>qxdd,qy"[t}->qydd,qz"[t]->qzdd};

torque3 = torque3d/.{q4d q5d->q4dq5d,q3d
q5d->q3dq5d,q3d q4d->q3dqg4d,q2d q5d-
>q2dq5d,

q2d gq4d->q2dq4d,q2d q3d->q2dg3d,q1d
q5d->q1dq5d,

qid g4d-»qtdgdd,qid q3d->q1dq3d,q1d
q2d->q1dq2d,q5d*2->q5dsq,q4d 2-
>q4dsq,q3dA2->q3dsq,
g2dr2->q2dsq,q1dr2->q1dsq,q5d qxd-
>q5dqgxd,q5d qyd->q5dqyd,q4d qxd-
>q4dqxd,q4d qyd->q4dqyd,

q3d gxd->q3dgxd,q3d qyd->q3dqyd,q2d
qxd->q2dqxd,q2d qyd->q2dqyd,

q1d qxd->q1dgxd,q1d qyd->qidqyd,
gxdr2->qxdsq,qydr2->qydsq,qxd qyd-
>qxdqyd};

(*get rid of unnecessary mass matrix
element”)
torque3 = torque3d/.{q5dd->0,q4dd->0};

torque3 = Expand[torque3];

torque3 = torque3//.{g4d q5d->q4dq5d,q3d
q5d->q3dq5d,q3d q4d->q3dq4d,q2d q5d-
>q2dq5d,

q2d q4d->q2dq4d,q2d q3d->q2dq3d,q1d
q5d->q1dq5d,

q1d q4d->qidqdd,q1d q3d->q1dq3d,q1d
q2d->q1dqg2d,q5d"2->q5dsq,q4dA2-
>q4dsq,q3dr2->q3dsq,
g2dr2->q2dsq,q1dr2->q1dsq,q5d gqxd-
>q5dqxd,q5d qyd->q5dqyd,.q4d gxd-
>q4dqxd,q4d qyd->q4dqyd,

q3d qxd->q3dqxd.q3d qyd->q3dqyd,q2d
qxd->q2dgxd,q2d qyd->q2dqyd,

q1d gxd->qi1dqxd,q1d qyd->q1dqyd,
qxd~2->qgxdsq,qydn2->qydsq,qxd qyd-
>qgxdqyd};

torque3 = Chop[torque3,precision];
torque3 = SetAccuracy[torque3,decimall;
torque3 = torque3//.{2.0000->2,1.0000-
>1};
file[1]="q4dq5d3";file[2])="q3dq5d3";file[3]
="q3dq4d3";file[4]="q2dq5d3";file[5]="q2d
q4d3"file[6]="q2dq3d3";file[7]="q1dq5d3"

file[8]="q1dq4d3";file[9]="q1dqg3d3";file[10
]="q1dq2d3";file[11]="q5dsq3";file[12]="q4
dsq3";file[13]="q3dsq3";
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file{14]="q2dsq3";file[15]="q1dsq3";file[16]
="q5dqxd3";file[17]="q5dqyd3";file[18]="q
4dqxd3";fite{19]="q4dqyd3";
file[20]="q3dqxd3";file[21]="q3dqyd3";file[
22)="q2dqxd3";file(23]="q2dqyd3";file[24]
="q1dqxd3"*;file[25]="q1dqyd3";
file[26]="qxdsq3";file[27]="qydsq3";file[28]
="qxdqyd3*;file[29]="m66";file[30]="m56";fi
le[31]="m46" file[32]="m36";file[33]="m26"

file[34]="m16"file[35]="G3";

variable[1]=q4dq5d;variable[2]=q3dq5d;vari
able[3]=q3dq4d:;
variable{4]=q2dq5d;variable[5]=q2dq4d;vari
able[6]=q2dq3d;
variable[7]=q1dq5d;variable[8]=q1dq4d;vari
able[S}=q1dq3d;
variable[10]=q1dq2d;variable[11]=q5dsq;va
riable[12]=q4dsq;
variable[13]=q3dsq;variable[14]=q2dsq;vari
able[15]=q1dsq;
variable[16]=q5dqxd;variable[17]=q5dqyd;v
ariable[18]=q4dqxd;
variable[19]=q4dqyd;variable[20]=q3dgxd;v
ariable[21]=q3dqyd;
variable[22]=q2dqxd;variable[23]=q2dqyd;v
ariable[24]=q1dqxd;
variable[25]=q1dqyd;variable[26]=qxdsq;var
iable[27]=qydsq;
variable[28]=qxdqyd;variable[29]=q3dd;vari
able[30]=q2dd;variable[31]=q1dd;variable[3
2]=qydd;variable[33]=qxdd;variable[34]=zd

("TAUTOMATION FOR ALL TERMS™)
For[counter=1,counter<=34,counter++,var
name=variable[counter};

expr = Coefficient[torque3,varname];
filename = file[counter];

expr = Simplify[expr];

expr = expr//.{Sin[qx]->s6,Sin[qy]-
>s7,Sin[q1]->s1,Sin[q2]->s2,Sin[q3]-
>83,Sin[q4]->s4,Sin{q5]->s5,
Cosfqx]->¢6,Cos[qy]->c7,Cos[q1]-
>c1,Cos[q2]->c2,Cos[q3]->¢3,Cos[q4]-
>c4,Cos[q5]->c5};

expr = expr//.{2.0000->2,1.0000->1,
2.0000-> 2, 1.0000-> 1};

expr =
Collect[expr,{s1,c1,s2,c2,53,c3,54,c4,55,c5
,86,¢6,s7,c7}};

expr = varname*expr;

torque3 = torqued/.{varname->0};
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stmp = OpenWrite[filename];
WriteString[stmp,filename];
PutAppend[“=" filename];
PutAppend[expr filename];
PutAppend[";" filename];Close[stmp];];
torque3 =
Collect[torque3,{s1,c1,s2,c2,53,c3,54,c4,s
5,c5,86,¢6,57,c7}];

filename = file[35];

stmp = OpenWrite[filename];
WriteString{stmp,iilename];
PutAppend["="filename];
PutAppend[torque3,filename];
PutAppend[”;" filename];Close[stmp];

time=Date[];

Print["Derivation of torque3 finished
at:".,time];

(""fﬁ"i""tt"' for torquez '.t".'."""t)
twof2 = twor3.threef3+twoF2;

twof2 = Simplifyftwof2];

twon2 =
twoN2+twor3.threen3+twopc2m.twoF2+tw
op3m.twor3.threef3;

twon2 = Simplify[twon2];
ClearAlltwor3,twop3m,twopc2m,twoF2,two
N2,threef3,threen3];
Remove[twor3,twop3m,twopc2m,twoF2,tw
oN2,threef3,threen3];

torque2 = twon2[[3,1]];

torque2 = SSonerule[torque2];

torque2 = torque2 /.{q1[t]->q1,q2[t]-
>q2,q3[t]->q3,q4[t]->q4.95[t)->q5,qx(t]-
>gx,qy[t]->qy,qz{t]->qz,
q1'[t]->q1d,q2'[t]->q2d,q3'[t]->q3d,q4'[t]-
>q4d,q5'[t]->q5d,qx'[t]->qxd,qy'[t]-
>qyd,qz[t]->qzd,
q1"[t]l->q1dd,q2"[t]->q2dd,q3"[t]-
>q3dd,q4"{t]->q4dd,q5"[t]->q5dd,qx"[t]-
>qxdd,qy"[t]->qydd,qz"[t]->qzdd};

torque2 = torque2/.{q4d q5d->q4dq5d,q3d
q5d->q3dq5d,q3d q4d->q3dq4d,q2d gq5d-
>q2dqg5d,

q2d q4d->q2dgq4d,q2d q3d->q2dq3d,q1d
q5d->q1dq5d,

qi1d q4d->qidq4d,q1d q3d->q1dq3d,qld
q2d->q1dq2d,q5d"2->q5dsq,q4dr2-
>q4dsq,q3d*2->q3dsq,
q2dr2->q2dsq,q1d*2->q1dsq,q5d qxd-
>q5dqxd,q5d qyd->q5dqyd,q4d qxd-
>q4dqxd,q4d qyd->q4dqyd,

q3d gxd->q3dqgxd,q3d qyd->q3dqyd.q2d
qxd->q2dqgxd,q2d qyd->g2dqyd,

qid qgqxd->q1dgxd,q1d qyd->qidqyd,
qxdr2->qxdsq,qydr2->qydsq,qxd gyd-
>qxdqyd};

(*get rid of unnecessary mass matrix
element®)

torque2 = torque2/.{qg5dd->0,q4dd-
>0,q3dd->0};

torque2 = Expand[torque2];

torque2 = torque2//.{q4d q5d->gq4dq5d,q3d
q5d->q3dq5d,q3d q4d->q3dq4d,q2d g5d-
>q2dq5d,

g2d g4d->q2dg4d,q2d q3d->g2dq3d,qtd
q5d->q1dq5d,

q1d g4d->qi1dq4d,q1d q3d->q1dq3d,qtd
q2d->q1dq2d,q5dr2->q5dsq,q4dn2-
>Qq4dsq,q3dr2->q3dsq,
g2dr2->q2dsq,q1dr2->q1dsq,q5d qxd-
>q5dqxd,q5d qyd->q5dqyd,q4d gxd-
>q4dqxd,q4d qyd->q4dqyd,

q3d qxd->g3dgxd,q3d qyd->q3dqyd,q2d
gxd->q2dqxd,q2d qyd->q2dqyd,

g1ld gxd->qildqgxd,qid qyd->q1dqyd,
qgxdr2->qxdsq,qydn2->qydsq,gxd qyd-
>qxdqyd};

torque2 = Chopl[torque2,precision];
torque2 = SetAccuracy[torque2,decimal];
torque2 = torque2//.{2.0000->2,1.0000-
>1};
file[1]="q4dq5d2";file[2]="q3dq5d2";file[3]
="q3dg4d2";file[4]="q2dq5d2";file[5]="q2d
q4d2";file[6]="q2dq3d2";file[7]="q1dq5d2"

file[8]="q1dq4d2";file[9]="q1dq3d2";file[10
]="q1dq2d2" file[11]="g5dsq2";file[12]="q4
dsq2";file[13]="q3dsq2";
file[14]="q2dsq2";file[15]}="q1dsq2";file[16]
="q5dqxd2“;file[17])="q5dqyd2";file[18]="q
4dqxd2";file[19]="q4dqyd2";
file[20]="q3dqxd2";file[21]="q3dqyd2";file[
22]="g2dqxd2";file[23]="g2dqyd2";file[24]
="q1dqxd2";file[25)="q1dqyd2";
file[26]="qxdsq2";file[27]="qydsq2";file[28]
="gxdqyd2";file[29]="m55";file[30]="m45"fi
1e{31]="m35";file[32]="m25";file[33]="m15"

file[34]="G2":

variable[1]=q4dq5d;variable[2]=q3dq5d;vari
able[3]=q3dg4d;
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variable[4]=q2dq5d;variable[5]=q2dq4d;vari
able[6]=q2dq3d;
variable[7]=q1dqg5d;variable[8]=q1dq4d;vari
able[9]=gq1dq3d;
variable[10]=q1dq2d;variable[11]=q5dsq;va
riable[12]=gq4dsq;
variable[13]=q3dsq;variable[14]=q2dsq;vari
able[15]=q1dsq;
variable[16]=q5dqxd;variable{17)=q5dqyd;v
ariable[18]=q4dqxd;
variable[19]=q4dqyd;variable[20]=q3dqxd;v
ariable[21]=q3dqyd;
variable[22]=q2dqxd;variable[23}=q2dqyd;v
ariable[24]=q1dqxd;
variable[25]=q1dqyd;variable[26]=qxdsq;var
iable[27]=qydsq;
variable[28}=qxdqyd;variable[29]=q2dd;vari
able[30]=q1dd;variable[31]=qydd;variabte[3
2]=qxdd;variable[33]=zdd;

(*AUTOMATION FOR ALL TERMS*)
For[counter=1,counter<=33,counter++,var
name=variable[counter];

expr = Coefficient[torque2,varname];
filename = file[counter];

expr = Simplify[expr];

expr = expr//.{Sin[gx]->s6,Sin[qy]-
>s7,Sin[q1]->s1,8in[q2]->s2,Sin[q3]-
>s3,Sin[q4]->s4,Sin[q5]->s5,
Cos[qx]->c6,Cos[qy]->c7,Cos[q1]-
>c1,Cos[q2]->c2,Cos[q3]}->¢3,Cos[q4]-
>c4,Cos[q5]->c5};

expr = expr//.{2.0000->2,1.0000->1,
2.0000-> 2, 1.0000-> 1};

expr =
Collect[expr,{s1,c1,s2,c2,53,c3,54,c4,55,c5
,§6,¢6,s7,c7}];

expr = varname*expr;

torque2 = torque2/.{varname->0};

stmp = OpenWrite[filename];
WriteString[stmp,filename];
PutAppend["="filename];
PutAppend[expr filename];
PutAppend[*;" filename);Close[stmp];];
torque2 =
Collect[torque2,{s1,c1,s2,c2,53,c3,54,c4,S
5,¢5,56,c6,87,c7}];

filename = file[34];

stmp = OpenWrite[filename];
WriteString[stmp,filename];
PutAppend["=",filename];
PutAppend[torque2, filename];
PutAppend[";" filename];Close[stmp];
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time=Date[];
Print["Derivation of torque2 finished
at:",time]j;

(ttt""t""t"lt’ for torque1 ..t""ttt""')
onefl = oner2.twof2+oneF1;

onef1 = Simplify[onefi];

onenl =
oneN1+oner2.twon2+onepcim.oneF1+on
ep2m.oner2.twof2;

oneni = Simplify[onen1];
ClearAll[oner2,o0nep2,0nep2m,onepci,one
pcim,oneN1,oneF1,twof2 twon2];
Remove[oner2,onep2,0nep2m,onepci,on
epcim,oneN1,oneF1,twof2,twon2];

torque1 = oneni[[3,1]];

torque1 = SSoneruleftorque];

torquet = torquet /.{q1[t]->q1,q2[t]-
>q2,q3(t]->q3,94[t]->q4,95[t}->q5,qx(t]-
>gx,qy(t]->qy,qz[t]->qz,
q1'tl->q1d,q2'[t]->q2d,q3'[t]->q3d,q4'[t]-
>q4d,q5'[t]->q5d,qx[t]l->qxd,qy’[t]-
>qyd,qz’[t]->qgzd,
q1"{t]->q1dd,q2"[t}->g2dd,q3"[t]-
>q3dd,q4"[t]->q4dd,q5"[t]->q5dd,qx"[t]-
>gxdd,qy"[t]->qydd,qz"[t]->qzdd};

torquetl = torque1/.{q4d q5d->q4dq5d.q3d
q5d->q3dq5d,q3d q4d->g3dg4d.q2d q5d-
>q2dq5d,

q2d g4d->q2dq4d,q2d q3d->q2dq3d,q1d
q5d->q1dq5d,

g1d q4d->q1dq4d,q1d q3d->q1dq3d,q1d
q2d->q1dq2d,q5d~2->q5dsq,q4dA2-
>Qq4dsq,q3dr2->q3dsq,
q2dr2->g2dsq,q1dr2->q1dsq,q5d gxd-
>q5dgxd,q5d qyd->q5dqyd,q4d gxd-
>q4dqxd,q4d qyd->q4dqyd,

q3d gxd->q3dgxd,q3d qyd->q3dqyd,q2d
gxd->q2dqxd,q2d qyd->q2dqyd,

q1d gxd->qildqxd,q1d qyd->qi1dqyd,
qxdr2->qxdsq,qydr2->qydsq,qxd qyd-
>qgxdqyd};

(*get rid of unnecessary mass matrix
element®)

torquel = torquel/.{q5dd->0,q4dd-
>0,q3dd->0,q2dd->0};

torquei1 = Expand[torque];

torquel = torquei//.{q4d q5d->q4dq5d,q3d
q5d->q3dq5d,q3d q4d->q3dq4d,q2d q5d-
>Qq2dqsd,
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q2d q4d->q2dq4d,q2d q3d->q2dq3d,qi1d
q5d->q1dg5d,

qid q4d->ql1dqd4d,qid gq3d->q1dq3d,qid
q2d->q1dq2d,q5dr2->q5dsq,q4d2-
>q4dsq,q3d"r2->q3dsq,
q2dr2->q2dsq,q1dr2->q1dsq,q5d qxd-
>q5dqgxd,q5d qyd->q5dqyd,q4d gxd-
>q4dqxd,q4d qyd->q4dqyd,

q3d gxd->q3dqxd,q3d qyd->q3dqyd.q2d
gxd->q2dqxd,q2d qyd->q2dqyd,

qld qxd->q1dgxd,q1d qyd->q1dqyd,
gxdAr2->qxdsq,qydr2->qydsq,qxd qyd-
>gxdqyd};

torque1 = Chopltorque1,precision];
torquet = SetAccuracyitorque1,decimal];
torque1 = torque1//.{2.0000->2,1.0000-
>1};
file[1]="q4dq5d1";file[2]="q3dq5d1";file[3]
="q3dq4d1";file[4]="q2dq5d1";file[5]="q2d
q4d1”file[6]="q2dq3d1";file[7]="q1dg5d1"

file[8]="q1dq4d1";file[9]="q1dq3d1";file[10
]="q1dq2d1";file[11]="q5dsq1";file[12]="q4
dsq1“;file[13]="q3dsq1";
file[14]="q2dsq1";file[15]="q1dsq1";file[16]
="q5dqxd1";file[17]="q5dqyd1";file[18]="q
4dqxd1”;file[19]="q4dqyd1";
file[20]="q3dgxd1";file[21]="q3dqyd1";file[
22]="q2dqxd1";file[23]="q2dqyd1";file[24]
="q1dgxd1*file[25]="q1dqyd1";
file[26]="qxdsq1";file[27]="qydsq1";file[28]
="gxdqyd1";file[29]="m44";file[30]="m34";fi
le[31]="m24";file[32]="m14";file[33]="G1";

variable[1]=q4dq5d;variable[2]=q3dq5d;vari
able[3]=q3dq4d;
variable[4]=q2dq5d;variable[5]=q2dq4d;vari
able[6]=q2dq3d:;
variable[7]=q1dq5d;variable[8]=q1dq4d;vari
able[9]=q1dq3d;
variable[10]=q1dq2d;variable[11]=q5dsq;va
riable[12]=q4dsq;
variable[13]=q3dsq;variable{14]=q2dsq;vari
able[15]=q1dsq;
variable[16]=q5dqxd;variable[17]=g5dqyd;v
ariable{18]=q4dqxd;
variable[19]=q4dqyd;variable[20]=q3dqxd;v
ariable[21]=q3dqyd;
variable[22]=q2dqxd;variable[23]=q2dqyd;v
ariable[24]=q1dqxd;
variable[25]=q1dqyd;variable[26]=qxdsq;var
iable[27])=qydsq;

variable[28)=qxdqyd;variable[29]=q1dd;vari
able[30]=qydd;variable[31]=qxdd;variable[3
2]=zdd;

(*AUTOMATION FOR ALL TERMS")
For[counter=1,counter<=32,counter++,var
name=variable[counter];

expr = Coefficient[torque1,varname];
filename = file[counter};

expr = Simplify{exprl;

expr = expr//.{Sin[gx]->s6,Sin[qy]-
>s7,Sin[g1]->s1,Sin[q2]->s2,Sin{q3]-
>s3,Sin[q4]->s4,Sin[q5]->s5,
Cos[qgx]->c6,Cos[qyl->¢7,Cos[q1]-
>c1,Cos[q2]->c2,Cos[q3]->c3,Cos[q4]-
>c4,Cos[qg5]->¢c5};

expr = expr//.{2.0000->2,1.0000->1,
2.0000-> 2, 1.0000-> 1};

expr =
Coilect[expr,{s1,c1,52,c2,53,c3,54,c4,55,c5
,56,c6,s7,c7}];

expr = vamame*expr;

torquet = torquei/.{varname->0};

stmp = OpenWrite[filename];
WriteString[stmp. filename];
PutAppend["=",filename];
PutAppendiexpr,filename];
PutAppend[";" filename];Close[stmp];];
torquel =
Collecttorque1,{s1,c1,s2,c2,53,c3,54,c4,s
5,¢5,s6,¢6,57,c7};

filename = file[33];

stmp = OpenWrite[filename];
WriteString[stmp,filename];
PutAppend[‘=" filename];
PutAppend[torque1.filename];
PutAppend[";",filename];Close{stmp]};

time=Date[];
Print["Derivation of torque1 finished
at:",time};

('t'ﬁtit.tt""'t" for fz Gtt-'tﬁtt'*"tt)

zerofQ = zeror1.onef1+zeroFO0;

zerof0 = Simplify[zerof0];

Zzeron0 =
zeroNO+zeror1.onen1+zeropcOm.zeroF0+z
eropim.zerori.onef1;

zeron0 = Simplify[zeronQ];
ClearAli[zeror1,zerop1,zerop1m,zeropc0,ze
ropcOm,zeroNO,zeroF0,onen1,onef1];
Remove[zeror1,zerop1,zerop1m,zeropc0,z
eropcOm,zeroNQ,zeroF0,onent,onef1};
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wf0 = wr0.zerof0;
ClearAil[zerof0];
Remove[zerof0];

fz = wfO[[3, 1]];

fz = SSonerule[fz];

fz = f2/.{q1[t]->q1,92[t]->q2.93[t]->q3,q4(t]-
>q4,q5[t]->qS,qx[t]->qx.qylt}->qy.qz[t]->qz,
q1'[t]->q1d,q2'[t]->q2d,q3'[t]->q3d,q4"[t]-
>q4d,q5'([t]->q5d,qx[t}->qxd,qy'[t]-
>qyd,qz'[t]->qzd,
q1"[t}->q1dd,q2"[t]->q2dd,q3"[t]-
>q3dd,q4"[t]->q4dd,q5"[t]->q5dd,qx"[t]-
>qxdd,qy"[t]->qydd,qz"[t]->qzdd};

fz = fz/.{q4d q5d->q4dq5d,q3d q5d-
>q3dq5d,q3d q4d->q3dq4d,q2d gq5d-
>q2dqg5d,

Q2d gq4d->q2dq4d,q2d q3d->q2dq3d,q1d
q5d->q1dg5d,

q1d q4d->q1dq4d,q1d q3d->q1dq3d,q1d
gq2d->q1dq2d,q5d"r2->q5dsq,q4dr2-
>Q4dsq,q3d*2->q3dsq,
q2dA2->q2dsq,q1dr2->q1dsq,q5d qxd-
>q5dgxd,q5d qyd->q5dqyd,q4d gxd-
>q4dqxd,q4d qyd->q4dqyd,

q3d gxd->q3dqxd,q3d qyd->q3dqyd,q2d
qxd->q2dqxd,q2d qyd->q2dqyd,

qld gxd->q1dqxd,q1d qyd->qidqyd,
gxdA2->qxdsq,qydr2->qydsq,qxd qyd-
>qxdqyd};

(*get rid of unnecessary mass matrix
element*)

fz = fz/.{q5dd->0,q4dd->0,q3dd->0,q2dd-
>0,q1dd->0};

fz = Expand[fz];

fz = fz//.{q4d q5d->q4dg5d,q3d q5d-
>q3dq5d,q3d g4d->q3dq4d,q2d g5d-
>Qq2dq5d,

q2d g4d->q2dq4d,q2d q3d->q2dq3d,q1d
q5d->q1dq5d,

qld g4d->qidq4d,qid q3d->q1dq3d,q1d
g2d->q1dq2d,q5d 2->q5dsq,q4dn2-
>gq4dsq,q3d"2->q3dsq,
q2dn2->q2dsq,q1d”2->q1dsq,q5d gxd-
>q5dqgxd,q5d qyd->q5dqyd,q4d gxd-
>q4dqgxd,q4d qyd->q4dqyd,

gq3d qxd->q3dqgxd,q3d qyd->q3dqyd,q2d
qxd->q2dqgxd,q2d qyd->gq2dqyd,

q1d gxd->q1dqxd,q1d qyd->qidqyd,
qxd"2->gxdsq,qyd~2->qydsq,qxd qyd-
>qxdqyd};
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fz = Chopifz,precision];

fz = SetAccuracy([fz.decimall;

fz = f2//.{2.0000->2,1.0000->1};
file[1)="q4dq5dz";file[2]="q3dq5dz";file[3]=
"q3dq4dz";file[4]="q2dg5dz";file[S]="g2dq
4dz" file[6]="q2dq3dz";file[7]="q1dq5dz";
file[8]="q1dq4dz";file[9]="q1dq3dz";file[10]
="q1dq2dz";file[11]="q5dsqz";file[12]="qg4
dsqz";file[13]="q3dsqz";
file[14)="q2dsqz";file[15]="q1dsqz";file[16]
="q5dqxdz";file[17]="q5dqydz";file[18]="q4
dgxdz";file[19]="q4dqydz";
file[20]="q3dqxdz";file[21]="q3dqydz";file[2
2]="92dqxdz";file[23]="q2dqydz";file[24]="
gq1dgxdz"file[25]="q1dqydz";
file[26])="gxdsqz";file[27]="qydsqz";file[28]
="qxdqydz"file[29]="m13" file[30]="m12"fi
le[31]="m11";file(32]="Gz";

variable[1]=q4dq5d;variable[2]=q3dq5d;vari
able[3]=q3dq4d;
variable[4]=92dq5d;variable[5]=q2dq4d;vari
able[6]=q2dq3d;
variable[7]=q1dq5d;variable[8]=q1dq4d;vari
able{9]=q1dq3d;
variable[10]=q1dq2d;variable{11]=q5dsq;va
riable[12]=q4dsq;
varniable[13]=q3dsq;variable{14]=q2dsq;vari
able[15]=q1dsq;
variable[16]=q5dqxd;variable[17]=q5dqyd;v
ariable[18]=q4dqxd;
variable[19]=q4dqyd;variable(20}]=q3dqxd;v
ariable[21]=q3dgyd;
variable[22]=q2dqxd;variable{23]=g2dqyd;v
ariable{24]=q1dqxd;
variable[25]=q1dqyd;variable[26]=qxdsq;var
iable[27])=qydsq;
variable[28]=qxdqyd;variable[29]=qydd;vari
able[30]=qxdd;variable[31]=zdd;

(TAUTOMATION FCR ALL TERMS*)
Forfcounter=1,counter<=31,counter++,var
name=variable{counter];

expr = Coefficient[fz,varnamej;

filename = file[counter];

expr = Simplify[expr];

expr = expr//{Sin[qx]->s6,Sin[qy]-
>s87,Sin[q1]->s1,Sin[q2}->s2,Sin[q3]-
>s3,Sin[q4]->s4,Sin[q5]->s5,
Cos[qx]->c6,Cos[qy]->c7,Cos[q1]-
>c1,Cos[q2]->¢2,Cos[q3]->c3,Cos[q4]-
>c4,Cos|[q5]->¢5};
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expr = expr//.{2.0000->2,1.0000->1,
2.0000-> 2, 1.0000-> 1};

expr =
Collect{expr,{s1,c1,s2,c2,53,c3,54,c4,s5,c5
,§6,66,87,c7}];

expr = vamame'expr,

fz = fz/ {vamame->0};

stmp = OpenWrite[filename];
WriteString[stmp,filename];
PutAppend["=" filename];
PutAppend[expr,filename];
PutAppend[“;” filename];Close[stmp];];
fz=
Collect[fz,{s1,c1,s2,c2,53,c3,54,c4,s5,c5,s
6,c6,s7,c7};

filename = file[32];

stmp = OpenWrite[filename];
WriteString[stmp,filename];
PutAppend[°=" filename];
PutAppendi[fz filename]j;
PutAppend[*;" filename];Close[stmp];

time=Date(];

Print["Derivation of fz finished at:" time];
(t"t'tttttt"'tt-i for nx t"t"'ttttl’fi)
time=Date(];

Print["time1="time];

wnQ = wr0.zeronO;

time=Date[];

Print["time2=" time];
ClearAli[zeronQ,wr0];
Remove[zeron0,wr0];

nx = wnO[[1,1]];
time=Date(];
Print["time3=",time];
ny = wn0[[2,1]};
ClearAlllwn0];
Remove[wnO];
time=Date[J;
Print[“time4=",time];
nx = SSonerule[nx];
time=Date[];
Print{"time5=" time];

nx = nx/.{q1[t]->q1,q2[t]->q2,q3[t]-
>q3,q4(t]->q4,q5[t]->q5.qx[t]->qx,qy(t]-
>qy.qz(t}->qz,
q1'[t]->q1d,q2'[t]->q2d,q3"[t]->q3d,q4 [t]-
>q4d,q5'[t)->q5d,.qx'[t]->gxd,qy’[t]-
>qyd,qz'[t]->qzd,
q1"[t]->q1dd,q2"[t]->q2dd,q3"[t]-
>Q3dd,q4"[t]->q4dd,q5"[t]->q5dd,qx"[t]-
>qxdd,qy"[t]->qydd,qz"[t]->qzdd};
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time=Date[];

Print[*time6="time];

nx = nx/.{q4d q5d->q4dq5d,q3d q5d-
>q3dq5d,q3d g4d->q3dg4d,q2d q5d-
>q2dq5d,

q2d g4d->q2dq4d,q2d q3d->q2dg3d,q1d
g5d->q1dq5d,

q1d q4d->q1dq4d,q1d gq3d->q1dq3d,q1d
q2d->q1dq2d,q5d~2->q5dsq,q4dr2-
>Qq4dsq,q3d"r2->q3dsq,
q2dr2->q2dsq,qi1dr2->q1dsq,q5d qxd-
>q5dqxd,q5d qyd->q5dqyd,q4d gxd-
>q4dqgxd,q4d qyd->q4dqyd,

q3d gxd->q3dgxd,q3d qyd->q3dqyd,q2d
gxd->q2dqxd,q2d qyd->q2dqyd,

q1d gxd->qtdqxd,qtd qyd->qidqyd,
gxdr2->gxdsq,qydr2->qydsq,gxd qyd-
>gxdqyd};

time=Date[];

Print["time7="time]J;

(*get rid of unnecessary mass matrix
element*®)

nx = nx/.{q5dd->0,q4dd->0,q3dd->0,q2dd-
>0,q1dd->0,zdd->0};

time=Date(];

Print["time8=",time];

nx = Expand[nx];

time=Date(];

Print["time9=" time];

nx = nx//.{q4d q5d->q4dq5d,q3d q5d-
>q3dq5d,q3d gq4d->q3dq4d,q2d g5d-
>q2dqg5d,

g2d g4d->g2dg4d,q2d q3d->q2dq3d.qi1d
g5d->q1dq5d,

ql1d g4d->qidgdd,qtd q3d->q1dq3d,q1d
g2d->q1dq2d,q5dr2->q5dsq,q4dn2-
>q4dsq,q3d”2->q3dsq,
q2dr2->q2dsq,q1d”2->q1dsq,q5d gxd-
>q5dqxd,q5d qyd->q5dqyd,q4d qxd-
>q4dgxd,q4d qyd->q4dqyd,

q3d gxd->q3dqxd,q3d qyd->q3dqyd,q2d
gxd->q2dqxd,q2d qyd->g2dqyd,

q1d gxd->q1dqgxd,q1d qyd->qidqyd,
qxdr2->qxdsq,qydr2->qydsq,qxd qyd-
>qxdqyd};

time=Date[J;

Print["time10="time];

nx = Chop[nx,precision];

time=Date[];

Print["time11=",time];

nx = SetAccuracy[nx,decimall;

nx = nx/.{2.0000->2,1.0000->1};
time=Date[];

Print["time11a=",time];
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file[1]="q4dq5dx";file[2]="q3dq5dx";file[3]=
"q3dqg4dx";file[4]="q2dg5dx";file[5]="q2dq
4dx";file[6)="q2dq3dx";file[7]="q1dq5dx";
file[8]="q1dq4dx" file[9]="q1dq3dx";file[10]
="q1dq2dx";file[11]="g5dsqx";file[12]="q4
dsqx”;file{13]="q3dsqgx";
file[14]="q2dsqx";file[15]="q1dsqx";file[16]
="q5dqxdx*;file[17]="q5dqydx";file[18]="q4
dqgxdx”;file[19]="g4dqydx";
file[20]="q3dqxdx";file[21]="q3dqydx";file[2
2]="q2dqxdx";file[23]="q2dqydx";file[24]="
g1dqgxdx”;file[25]="q1dqydx";
file[26]="qxdsqx";file[27]="qydsqx";file[28]
="qxdgydx";file[29]="m23";file[30]="m22";fi
le[31)="Gx";

variable[1]=q4dq5d;variable[2]=q3dq5d;vari
able[3]=q3dq4d;
variable[4]=q2dq5d;variable{5]=q2dq4d;vari
able[6]=q2dq3d;
variable[7]=q1dq5d;variable[8]=q1dq4d;vari
able[9]=q1dq3d;
variable[10]=q1dq2d;variable[11]=q5dsq;va
riable[12]=q4dsq;
variable[13]=q3dsq;variable[14]=q2dsq;vari
able[15]=q1dsq;
variablef{16]=q5dqxd;variable[17]=q5dqyd;v
ariablef18]=q4dqgxd;
variable[19]=q4dqyd;variable[20]=q3dqgxd;v
ariable[21]=q3dqyd;
variable[22]=q2dqxd;variable[23]=g2dqyd;v
ariable[24]=q1dqgxd;
variable[25]=q1dqyd;variable[26]=qxdsq;var
iable[27]=qydsq;
variable[28]=qxdqyd;variable[29]=qydd;vari
abie{30]}=gxdd;

(*AUTOMATION FOR ALL TERMS®")
For[counter=1,counter<=30,counter++,var
name=variable[counter];

expr = Coefficient[nx,varname];
filename = file[counter];

expr = Simplify[expr];

expr = expr//.{Sin[gx]->s6,Sin[qy]-
>s7,Sin[q1]->s1,Sin[q2]->s2,Sin[q3]-
>s53,Sin[q4]->s4,Sin[q5]->s5,
Cos[qx]->c6,Cos[qy]->c7,Cos[q1]-
>c1,Cos[q2]->¢2,Cos[q3]->¢3,Cos[q4]-
>c4,Cos(q5]->¢c5};

expr = expr//.{2.0000->2,1.0000->1,
2.0000-> 2, 1.0000-> 1};
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expr =
Collect[expr,{s1,c1,52,c2,53,c3,54,c4,s5,c5
,56,c6,s7,c7}};

expr = varname*expr;

nx = nx/.{vamame->0};

stmp = OpenWrite[filename];
WriteString[stmp . filename];

PutAppend[*=" filename];

PutAppend(expr filename];

PutAppendl”; filename];Close([stmp];];
nx =
Collect[nx,{s1,c1,82,c2,53,c3,54,c4,55,c5,5
6,c6,57,c7}];

flename = file[31};

stmp = OpenWrite[filename];
WriteString[stmp,filename];
PutAppend[*=",filename];
PutAppend[nx,filename];
PutAppend[";".filename];Close[stmp];

time=Date(];
Print["Derivation of nx finished at:".time];

(tt'tfi"t**tttt"t for ny t"f."t'i"..')

ny = SSonerule[ny];

time=Date(];

Print{"time14=",time];

ny = ny/.{q1[t]->q1,q2[t]->q2,q3[t]-
>q3,q4(t]->q4.95[t]->q5.qx[t]->qx.qy(t]-
>qy,qz[t]->qz,
q1'[t)->q1d,q2'{t]->q2d,q3'[t]->q3d.q4'[t]-
>q4d,q5'[t]->q5d,qx [t]->qxd,qy'[t]-
>qyd,qz'[t]->qzd,
q1"[t]->q1dd,q2"[t}->q2dd,q3"t]-
>q3dd,q4"[t]->q4dd,q5"(t]->q5dd,qx"[t]-
>qxdd,qy"'[t]->qydd,qz"[t]->qzdd},
time=Datef{];

Print[*time15=",time];

ny = ny/.{q4d q5d->q4dq5d,q3d q5d-
>q3dq5d,q3d g4d->q3dq4d,q2d q5d-
>q2dq5d,

q2d q4d->q2dq4d,q2d q3d->q2dq3d,q1d
q5d->q1dq5d,

qld q4d->q1dqd4d,q1d q3d->q1dq3d,qid
q2d->q1dqg2d,q5d"2->q5dsq,q4d"2-
>Q4dsq,q3d”2->q3dsq,
q2dr2->g2dsq,q1dr2->g1dsq,q5d gxd-
>q5dqxd,q5d qyd->q5dqyd,q4d qxd-
>q4dqxd,q4d qyd->q4dqyd,

q3d gxd->gq3dqxd.q3d qyd->q3dqyd,q2d
qxd->q2dqxd,q2d qyd->q2dqyd,

q1d gxd->q1dqgxd,q1d qyd->q1dqyd,
gxdr2->qgxdsq,qydr2->qydsq,qxd qyd-
>gxdqyd};
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time=Date[];

Print[*time16=",time};

(*get rid of unnecessary mass matrix
element*)

ny = ny/.{q5dd->0,q4dd->0,q3dd->0,q2dd-
>0,q1dd->0,zdd->0,qxdd->0};

time=Date[];

Print[*time17=",time];

ny = Expand[ny];

time=Date[];

Print{"time18=",time];

ny = ny//.{g4d q5d->q4dq5d,q3d q5d-
>q3dg5d,q3d q4d->q3dg4d,q2d q5d-
>q2dq5d,

q2d q4d->q2dq4d,q2d q3d->q2dq3d,q1d
q5d->q1dqg5d,

qld g4d->qidq4d,q1d q3d->q1dq3d.qid
q2d->g1dq2d,q5d”2->q5dsq,q4dA2-
>Q4dsq,q3dr2->q3dsq,

q2d72->q2dsq,q1d 2->q1dsq,q5d gxd-
>q5dagxd,q5d qyd->g5dqyd,q4d gxd-
>Q4dqxd,q4d qyd->q4dqyd,

q3d gqxd->q3dqgxd,q3d qyd->q3dqyd,q2d
qxd->q2dqxd,q2d qyd->q2dqyd,

qld qxd->qtdgxd,qid qyd->qidqyd,
qxdr2->gxdsq,qydr2->qydsq,qxd qyd-
>qxdgyd};

time=Date(];

Print["time19="time];

ny = Chop[ny,precision];

time=Date[];

Print[*time20=",time];

ny = SetAccuracy[ny,decimal];

ny = ny//.{2.0000->2,1.0000->1};
time=Date(];

Print["time21="time];
file[1]="q4dq5dy";file[2]="q3dq5dy";file[3]=
*q3dq4dy";file[4]="q2dq5dy";file[5]="q2dq
4dy*;file[6]="q2dq3dy";file[7]="q1dq5dy";
file[8]="q1dq4dy";file[9]="q1dq3dy";file[10]
="q1dq2dy";filef11]="q5dsqy";file[12]="q4
dsqy";file[13]="q3dsqy";
file[14]="q2dsqy";file[15]="q1dsqy";file[16]
="g5dqxdy";file[17]="q5dqydy";file[18]="q4
dgxdy";file[19]="q4dqydy";
file[20]="q3dqxdy";file[21)="q3dqydy";file[2
2]="q2dqgxdy";file[23]="q2dqydy";file[24]="
qldgxdy"file(25]="g1dqydy";
file[26]="axdsqy";file[27]="qydsqy";file[28]
="qxdqydy";file[29]="m33";file[30]="Gy";

variable[1]=q4dq5d;variable[2]=q3dq5d;vari
able(3]=q3dq4d;
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variable{4]=q2dq5d;variable[S]=q2dq4d;vari
able[6]=q2dq3d;
variable(7]=q1dq5d;variable(8]=q1dq4d;vari
able[9]=q1dq3d;
variable[10]=q1dq2d;variable[11]=q5dsq;va
riable{12]=q4dsq;
variable{13}=q3dsq;variable[14]=q2dsq;vari
able{15]=q1dsq;
variable[16]=q5dqxd;variable[17]=q5dqyd;v
ariable[18]=q4dqxd;
variable[19]=q4dqyd;variable[20]=q3dqxd;v
ariabief21]=q3dqyd;
variable[22]=q2dqxd;variable[23]=q2dqyd;v
ariable[24]=q1dgxd;
variable[25]=q1dqyd;variable[26]=qxdsq;var
iable[27]=qydsq;
variable[28]=qxdqyd;variable[29]=qydd;

(*AUTOMATION FOR ALL TERMS")

For{counter=1,counter<=29,counter++,var
name=variable[counter];

expr = Coefficient[ny,varname];
filename = file{counter];

expr = Simplify[expr];

expr = expr// {Sin[gx]}->s6,Sin[qy]-
>s7,8in[q1]->s1,Sin[q2]->s2,Sin[q3]-
>s3,Sin[q4]->s4,Sin[q5]->s5,
Cos[qgx]->c6,Cos[qy]->¢c7,Cos[q1]-
>c1,Cos[q2]->c2,Cos[q3]->¢3,Cos[q4]-
>c4,Cos{q5]->c5};

expr = expr//.{2.0000->2,1.0000->1,
2.0000-> 2, 1.0000-> 1};

expr =
Collect[expr,{s1,c1,s2,c2,53,c3,54,c4,55,c5
,86,c6,57,¢7}];

expr = varname*expr;

ny = ny/.{varname->0};

stmp = OpenWrite[filename];
WriteString[stmp,filename];
PutAppend["=",filename];
PutAppend[expr filename];
PutAppend[”;" filename];Close[stmp];];
ny =
Collect[ny,{s1,c1,52,c2,53,c3,84,c4,55,c5,s
6,c6,s7,c7}];

filename = file[30];

stmp = OpenWrite[filename];
WriteString[stmp,filename};
PutAppend[*=",filename];
PutAppend[ny,filename];
PutAppend[";" filename];Close[stmp];

time=Date(];
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time=Date(];
Print["time22=",time];
Quit[];

( Print[*Derivation of ny finished at:* time];
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