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CC»tPU'l'ER SYNTHES IS OF LINE DRAWINGS 

USING SEMAN'l'IC NETS 

Raymond D. Giustini 

Abstract 

~. thesis deacribes a program whiéh employa 
• fi 

memory ~ the generation 0:J~imple line drawings. 

the program la by'means"of a Picture'Language (PL) 

à semantic 

Input to 

\o1hose syn-: 

tax i. alllo defined in thia th,ea1a. Ifbe .tlll&nt~c memory uaed 

is moc:!eled after Q~illian IS. COiftpilation of a PL input by the 
of 

program resulta in tJ:le creat'ion of a' Short-'l'erm Memory (STH) 

which partially ~efinea the" objec:ta to be drawn. ,Any m~asing 

information which ia necesàary to draw the objecta ia aupplied 

by the semantic memory • . 
, 

A number of examplea which demonatrate some featurea and , 

.bortcomdnga of ~e system are described. The resulta,of thea. 
~ ----~ 

'va~';, together with propoaèd changea /Which would improve Jhe 
,~ 1 

///-<'fl~ .. tility and efficiency of th~ prog~~. demonatrate the fea-
~ ( 

.ibllity of incorporating a semantic .~ry into the software 

of an interactive graphie. display system. 
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SYNTB!SE DE DESSINS sAAPHIQUES ~ 
DE lA MEMOIRE SEMANTIQUE 

L'EMPLOIE 

Raymond D. Giustini 

Cette thêse dé~Lt la prOgrammation faisant emploi de la 
.... , i 

~ 

... 

-'moire ,sémantique pour générer des traoés simples le dessins •. 

La programmation est cQntrollée au moyen d'un langage spécial 

"c!ont la Ii'yltt.axe .st aussi d'finie dans cette th~8e. La mé-
1 

\ . 
moire,s'manti e employêe est basée sur le principe de Quil-

liane tion du lan9agé spécial par la programmation 

r'aulte éation d'une ~àire à court terme, laquelle 

, d4finit doivent être tracés. 

Toute autre information non transmiae à l'entrée mais nécessaire , 

a la g6nération du trac6 est continu'e dans la mêmoire sémantique • 
. .., 

Lea exempies démontrent le.'eharacteristiques et les dé-

t'iciences du tfyat_e y sont Md:-"iita. Le r~ault de 

.~ le. Chan9~t. propoa6s pout.am61iOrer 

cee exemples 

/ . 
rendement de la programmation, 

la ver.*tili~~ e~'le 

d'montrent la pos.ibili té "d\ur-
corporer UAe mémoire .'mantique dan. le logiciel d'un ayat .... e 

a ~t .. action pour la 96ruiration de _ ~J'~ aur 'cran. 
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Chapter l 

Introduction 

1.1,OVerviai ) 
A semà.ntic ptemory i8 a data structure in which factua'l asser--.. 

tions representi computer's kn~ledge of the uhiverse are 

etored. sis describes a-procedur~ whereby a se~ntic me-
" 

mory and an inpu~ Lan9~age (PL) are used by a compiler to 

synthesize liné wings. 

It must be 8 essed at the out.et that the purpose of this 

thesis is not to pr sent a practical graphies language. Rather, 

i'i. purpose is to f 

Which could be 

atrate-- the inherent 

an outline 

The fir.t 

ture synthesis 

though this thesis i 

cU.eu.aad for two r-

ulate the stru~ure of a semantic memory 

rated into a graphies system and to demon-

a memory. The following 18 

ies Which ~ill bé discussed. 
1 

r su~iZ:S pertinent previous .wor~ in pic~ 

ter gr;aphics) and pattern recognition. ' Al­

co~cerned vi th the former, the latter Js 

Pirst, it .hares Many concepts with 

picture synthe.t" /. Indee4, some previou. work concerns systems 

lèh can be u8èsd. for bath pattérn recognition and picture synthe-, 

ia. Second, a .ai.cu.aion of 'some ~tWelopmentli in pattern rec6g-
.. 

Ilitifn techniqu •• yi.W. an -inaight into .om8 of the concepts in-

f 
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volved in this thesis. The brief'summary of research in semantic 

~,. l " 

memorie~ in the latter part of the chapter is especially relevant. 

The second'chapter describes the ~uthor's semantic memory and 

how its co~ncepts and str~cture compare, ,W~h those of earli,er models. 
, -

I~~lso discusses the feature set and primitives of objects which , . 

comprise the line drawings and formalizes the syntax of the PL. 

The third:chapter discusses the operation of 
• 

the way in Which it in~acts with the PL and the 

theJcompi l~r and 

sèmaAic memory 
. 

to produc~ line drawings. The features of the present implemen-

tation of the compiler are dealt with as are its shortcomings. ' 
, 

The four th chap.ter .dea.ls with the reaults obtained from some 
~ - . . 

,. picture synthesis problems posed to the semantic memory il\ the PL., 

Bach problem is chosen to demonstrate certain ~spects of the oper-

ation of the,'proqram. The chapter alao discusses improvements 

wbich could be implemented on the ~mantic memory and cOmpile~' to 

eliminate some of their sbortcanings • 

" .. ' , 
i 

. . --.'-.,- / 
. ~f 
.. 1 

( , 
... 

" 

. '. 

.' , 1 
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~ Picture Synthesis \ 

The follawing i~'a brlef summary of the historical develop-

ment of computer graphics software systems. This summary iS,re-

~tricted to systems which deal with the synthesis of line drawings 

representing two-dimensiona~ objects. The synthesis of grey-level 

images, the two-dimensional rendering of.three-dimensional solids 

and related areas of research are not consid~ed here because 

these have no bearing on th~scope of the work discussed in 'this 

thesis. 

1.2.1 Ear1y Graphics Systems 

lri recent years an abundance of hardware has been d~loped 

for "the graphical input-output (I/O) of information. This hard-
" 

ware inc1ude~ CRi dfsp1ays, 1fg~ pens, joysticks and tab1ets (for 

a description of these devices see Poore et al. (1969), and also 
~ 

Rewman and Sproul1 (1973». Such hardware packages often contain 

aupporting software for the genera~on of, primitive objects such 
Q 

'" .. 
a. ints, "lines and ar&". unfortunate1y, this ia inade<alate for 

the ation, modifica~ion and storage of complex pictures on 

interactive baaia. 

this ~ifficu1ty have invo1ved 

the extension of programming. ngu~.e8 auc::h as POR'l'RAN and ALGOL 

include e graphics ~dling capability,. Languages 
~' 

clr rè.ulting frOID 
c 

approach hav8/ found applications in thé 

• 

, 
: 
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fil' 
gen~ation of patterns composed of a number of "template" sub-

patterns. Examples of sùch applications ~e the generation of 

integrated-circuit masks, circuit diagrams and architectural 

drawings. The visible drawback of these languages is that they 

do not passess the facility for storing a structural description 

of the patterns they crea te. This shortcoming restricts their 

applicability to the generation and modification of pictures 
, 

having an unnecessarily rigi~ description of their subcomponents 

and constrains the user to law-level methods of picture synthesis~ 

For example, the crudest method of picture representation involves, 

using an array to store a digitized picture point by point. Such 

â representation is too cumbersome to modify because it does not 

explicitly define the elements of the picture and their interre-

lati'onships. The Graphical Data Structure (GDS) definE!d in the 

next section cons,1!itutes an attempt to surmount this difficulty • 

1.2.2 The Graphical Data Structure 

~ de.irable feat~ of a graphies language' is its ability to 

.elly modify the cbmpo~en;s of a ~icture by modifying a structural 

d~ecription of it. Thia can be accomplished by inçorporating a 

Graphical Data Structure. (GOS) in,to the language. Such a structure 

i~ eompaaed of intereonnected lista Which consiat of strings of . 
~ 

nod~.. 'l'h •• e nodes -.ra structures in the PLll sensel and contain 

r 
1 

1 . S-- tootnote on next page. 
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information about the picture components and their interrelation-

ships. Pioneering work on the specification of GD~'s was dane 
o 

with the SKETCHPAD system (Sutherland, .1963). In SKETCHPAD, the 

defined GDS is called a ring structure because the last node of 

each list is connected to its first node. To speed accessing of 

information, the nodes contain forward and backward poi~t~rs to 

their nearest neighbors in the liste A picture represented by 

a SKETCHPAD-GDS can be altered by the insertion or deletion of 
( 

nodes or by altering the infor~tion content of the nodes. Because 

of their compact nature, many such ring structures can be stored 

~in the secondary storage facilitie~ of a computer. 
1 

A modification of the SKETCHPAD ring structures is defined 

in CORAL (Class Q.rientèd !iing !.ssoc:iated ~nguage) (Roberts, ,~964). 

The nodes in a CORAL-GDS contain a forward pointer as in SKETCHPAD, . 
but the. backward pointer of ev..ery alternate node is replaced by 

a pointer to th,e header node of the liste 

It is possible, to define Many variants of the ~DS depending on j 

the types of prO with- which it must interact. The GDS defJ.ned 

by th. altthor i this theais :ls called a Short-Tarrn Memory (STM) • . . 
" A discussion of ~s structure and c;:a~bili ties is deferred until 

\ 
\\ 

1 pLI'l structure: a tre. 'Whos. leaves (terminal .lementa) repre­
aent variable.. Specification.of these varia­
bles is ~ name and type (e.g_ pointer, arith-

. ('> •• tic real, ebaraeter string, etc). 
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Cha/ter 3, 
As is true 'with any system, the GDS has advantages and dis~ 

1 

a antages. 
! 
/ 

One of its favorable aspects is its high information 

nsity. Furthermore, the manipulation of pictures represented 

~ a GDS is at a higher level than that of pietures not represented 

/~aGDS. r 
; 

A disadvantage is that the information tends to be "burie " 
, ,f 

n the structure and subsequently can take appreciable time to 

ccess. lndeed_ accessing and modification of information may . 

equire rather complex manipulation procedures. However, it is 

generally agreèd that the advantages of a GDS greatly outweigh 
1 

its disadVan1ges. The next section discusses sorne graphies lan-

guages which ,mpioy a GDS. . , \ 

1.2.3 Graphic~ Languages, Which Employa GDS 

A requirîment for a graphies 1anguage-GDS çombination is that 

the language must be capable of handling the GDS in addition to ' 
1 // 

controlling the llO peripherals. Kulsrud (1968) discus~es ~me 

r~isite features of such a language and presents his ~ version. 
/ 

Se also proposes the uae of a metaebmpiler or a compiler-compiler , ' 
\ 

to generate an object program 'from ~e source languaÇJé input. The 
/ 

metacompiler accepta inputs representing the syn~ and semantics 
/ 

of th. graphies language and generatea a comp~ for the language. 

Although XU1Îlrud' a language presenta improvements over 1&n-

'9U&9 •• whiéh do not employ a ODS, it still .ullers some of their 

/ 

,\ 

---li.--------_______ ~~~?I ... , \ 1 
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shortcomings, but to a lesser extent. The problem ia that the 

interaction be~een man and computer is still at a low level. 

In general, this language and those like it are essentia~ 
,1 

extensions of programming languages with three added features. 

First, they possess a subroutine package for the implementation 
• 

of graphical operations. Second, they can interact with the 

additional 1/0 devices associated with the graphics. Third, they 

are capable pf handling the GDS (albeit at a low level)., Unfor-

tunately, the subroutine calls required 'to implemeht these fea-

tures often involve ,the specification of lengthy parame ter lists. 

Such cumbersome procedures constrain the solution of problems to 

an unnecessarily low level and increase the possibility of pro-

grammer errors. 

An attempt to rectify sorne of the problems asaociated with 

the abovementioned Languages ia provided by GPL/l (Smith, 1971) 

which is an extension of PL/le Smith choo~es PL/l because of its 

built-in ability to generate and act on interrupts (a feature use-
l 

~ 
fuI for ha~dlin9 110 devices), because of its Many data types and 

structures, and because of its list processiQg capability. GPL/l 

ie a higher-level language than those already discussed becaùse. 

it manipulates the GOS in such a way as to ~sk its existence from 

the programmèr. The GPL/I language ie of particu~ inter est to 

the author because the compiler preeented in this thesie vas im-

plemented in PL/le '!'he compilation of the' author' e PL by GPL/l 

,h 
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would facilitate the interaction of 'the PL with a graphies sys-

t~m, a capability which it does not now P9ssess. 

Lecarne (1971) defines a graphies è~tension of FORTRAN called 

EUPHEMIE. Its advantage is that the subroutine calls with lengthy 

parame ter lists are replaced by graphies instructions which gener-

ate the subroutine calls. The syntax of these instructions speei­

'fies most of the parameters assoeiated vith the-subroutines. The 

remaining parameters (e.g. numerieai eoordinates) are speeified 

by the position of a light ~en on a CRT display. This etf~tive 

use of the keyboard-light pen eombination produces a high levei 

interactive graphies language. 

A problem associate& with GDS's is that for aIl but the Most 
~" 

simple pietures their storag~~cessitates the usage of large seg-

menta of, computer, memory. French and Teger (1972) have developed 

GOLO (Graphieal On-Line Design System) whieh uses GOS' s but par-

titions them for secondary disk st~rage so that thè graphies sys­

tem can be operated fram a minieomputer. Thé obvious advantage 

of auch a system is that it all s the implementation of high-

level graphies languages in re small computer installations 

with but a SDiall inerease in pro ~ssing time of programs. French 

and 'rager bave applied GOLO to_.tJt design of integrated-cireui 1; 
"t~ ~ 

._ka.· 
Stack and wanez: (1971) have proposed a sophisticated multi­

tenûna1 graphie. di.play syat_ c:a11ed AIDS (Advaneed Interactive 

• 
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Display System) whose GDS is simi1ar to Bel1graph's (Christensen 
J 

9 

and Pinson, 1967). The A IDS, language retains the a1gebraic fea-

tures of FORTRAN and appends to them graphical and interactive 

capabilities. In brief~ objects in pictures are defined by trees 

whose e1ernenes ~re images, instances, sets and labels. Images ,are 

the points, vectors or characters which define t~~ objecte In-
~"V. 1 

stances are specifie occurrences of an image. Sets are collections 

of instances,and labels are non-graphica1 data associated with a 

graphical e1ernent. These trees comprise the GDS' s of AIDS. 

A basic difference between this language and previous ones i5 

tbat the execution of an AmS program is described by a seqUence 

of states and their transitions. During each transition between 

states, anr num~er of operations which alter sUbsequent execution 

of the program may he perforrned. 

More recent work in the specification of graphies languages 

which employ a GD~ has been performed by GOnza1es and Vidal (1975), 

and williams and Giddings (1975). 

A shortcoming of languages like AIDS is that subpatterns are 
l , ., 

still essential1y specified by templa1;es. Sucli an a~proach to 
f 

picture synthesis is useful where fixed patterns. recur frequently, 

,but i. too rigid for general line drawings. 0 '!'he PL described in / 

thia thesi. constitutes an attempt to s.urmount this difficulty by 1 

u8ing a semantic memory in eonjunction vith the GOS. 

• f~l • ••••.• t,- ~''!k .. \ 
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This section completes the historical discussion of computer 

graphies. The following sections will con~in a short history of 
\ 

pattern recognition techniques. 
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~ Pattern Recognition 
, 

A brief historical review oC: some aspects of the field of 

pattern recognition or picture ana1ysis now fo11ows. While sorne 

of the techniques d~scussed do not deal primarily with the recog-

nition of 1ine qrawihgs, their description is included in order 

to i11~strate both the features and the shortcomings of tech-

niques pertinent to ,this thesis. The development of the field 

is demonstrated by a discussiqn of the classification model, the 

descriptive model, and the semantic memory model. 

1.3.1 The Classification Model 

The classification model represents a procedure by which pic-

tures can be classified as illlltancea of objects from a given al-

10wable set. Its objective ls to minimize the, probability of error 
[) 

for picture classification while also minimizing the processing 

time r$ired. 

Evans (1968, 1969) discuases the classification model (Fig. 

1-1) • Its operation can he described as follows. 'rhè transducer 

acta as an interface between the input ptcture and the fea ture 

extractor. It may consiat of a sC8nning device and a software or 

hardware filter which altera the i.nput to a form suitab1e for ,fur-

ther processing. f 'l'fle output of this stage ia passed on to the 

feature extractor which usea property filtera Pl'.'. ,p~ to obtain 

the feature vector [fl ~2 ••• f.,] T from the (prepraceBsed) input. 
'" ,-
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~PUT 

Pl\C.TURE 

TRANS DUC ER 
WITH 

(OPTIONAL) 
PREPROCESS ING 

• 

'" -1 

FEATURE 
EXTRACTOR 

Fig. 1-1: The Classification Madel. 
P1' ••• 'P are property filters while c1, ••• ,ck are 
possiblenclassifications of the input picture. 
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The decision mechanism then maps the vector into thé n-dimensional 

feature space and, in accordance wi th a .previous parti tioning of 

the space, classifies the input as a member of the set of 'possible 

alternatives cl, ••• ,ck- Fig. l-~ shows the feature spacewith a 

partitioning scheme for the case of two property filters and 

three alternative classifications (i.e. n=2, k=3) • 

According ~-Duda and Bart (1973), the distinct~on between 

the concept of a feature extractor and that of a decision mecha-
• . 

nism is fluide A sufficient1y pow-erful version of one renders the 

task of the other trivial. However, it i. obvious fram the nature 

of the feature extractor that ita operation -is more problem-depen­

~t than ~ of the deeioion mechanism. The former may vary 

.' 
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~ig. 1-2: A pictorial representation of a two-dimensional par­
titioned feàture space in which three types of inputs 
(x, 0 and +) are defineq. 

for each type- of input and for each feature while the latter can 

-or 
be a general algorithm to partition the n-dHnensional feature .. 
space into k ragions and then to cl~ssify an input according to 

the value of its feature vector. 

As was stated earlier, an objective of the fl{lssification . " 

model is to minimize the probability of error in pattern ~lassi-

fication by ehoosing optimal partitions of the feature space. 

'1'h1s mod,el has been suceeseful in the analysis of simple pictures 

auch as alphanumeric characters,. 
~ 

Unfortunately, the mode1 haB Baverai limitations. One is 

that ita operation .doeB not parallel the way that humans assimilate 

" 

and bandle pictur... 'l'herefore, the model iB not aesthetic:ally " 

pleasing: its •• thodology appè&rs bighly artificial ta a buman user • 
f~ \ j 

~ 

~ 
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A more severe limitation of the med~l becomes obvious with in-- \ 
creaaing complexity of input pictures. If the probability of .. 
errer in classification ià to remain acceptable for these complex 

~ ;::'-,pic;tures, an inc;reasingly large fea ture set as weIl as more com-
,--r ' 

;'plex property filters and decision mechanisms become necessar~ 
! 

As this feature set grows, the model becomes increasingly cu~ber-

sorne. Consequently, it becomes necèssary to question the wisdom 

of arbitrarily attempting to force the information content of a 

complex pictux::e into a: rigid feature vector description. 

An equally severe ,limitation of the classification model i5 

~at it i8 oriented t~rd a single task. Specifically, it does 

not consider the structural content of picturèS. This limitation 

severely limits its versatility in the performance of other tasks. 

For example, if such a model ia to be incorporated into a question­

answering system, then the questions which may be asked of it must 

be of a limited nature (e.9. What object ia th'ia? or, What is the 

value of its feature vector?). If, for example, the picture con-

tains several triangles, it is not possible ta aSK the model to , 

fing. all the triangles unless that number ia repreaented by a mem-

• ber of the fea ture veetor. 

What i. needed, then. i. a more general approacn ta picture 

analysie which incorpora tes ~ atructural elamenta of a picture 

in it. operation. The de.criptive app::oach di.eu •• ed next fulfila 

thi. objectiv •• 

Q • 
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1.'\3.2 The Descriptive Mode 1" 

As its name implies, the descri~tive model entails the des­

cription of the structure of a scene in 'terms of its primitives 
_J 

,,, ,(or some more complex subcomponen ts of the picture) and 

<' 

metrica1 relations between them. The detai1s of such a 

tion are dicta ted by the nature of tp,e prob1em. 

Firschein and Fisch1er (1971, 1972) have made a strpng case 

for the use of piC'ture-description techniques in question-answer- A 

.ing systems. Referring to Fig. 1-3, it should be noteç that the 

crue;i..al step itl the implementation of a workab1e descr'iptive 
\ 

F ------a~eme is the preparation of the picture description. Specifical1y, 

the picture representation in symbo1ic form must he amenab1e to C··\ 

formal use in the question-answering system • 

. 
P:ICTURE PICTURE DESCRIPTION 
aECORDED - PREPARED 

t 1 

l,) ~ 

ORIGINAL PICTURE DESCRIPTION 
Pl:CTURE STOREO 

''\ 
FILE 

t j , _J USER 1 
L 1 , 

. [ 

Fig. 1-3: Question~swerin9 System using a Picture Description 
Pile. Picture taken from Firschein and Fisehler (1971). 

1 
Q 

su~~ent to the p10neering work of Grimadale (1959), Kirsch 
o 

(1964) and others, 'th. descriptive approach bas largely repla~ed 

th~ c:J,aSllif1cat1on model 1n c:omPlex picture analyaia problem~ •. 

) 
t 
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Furthermore, as sha11 soon becoma apparent, a suitab1y designed 

descriptive scheme is usefui for both picture analysis and picture 

synthesis. In the pages that follow three descriptive modela will 

be discussed: the grammar-based model, the descriptor-based model 

and the procedure-based model. In addition, the advantages and 

"drawbacks of these models will bè considered: '" 

1.3.2.1 Grammer-Based Models 
; 

Because of the conceptual par~11els between sorne early imple-

mentations of the descriptive model and the theory of formaI lan-

.fV guages, these imp1ementa:fiions have been ca1:l.ed grammar-based 

(also syntax-based and linguistic). ). " 
In such schemes the pl.cture, 

viewed as a statement in the picture language, is, translated into 

a linear string which describes the picture. The grammar of the 
....... 

language th.en ~rses the Srin? yielding th~ recognition of the' -

picture. This parsing is accomplished using a set of rewriting 

rules which const.itute ~e grammar. Not.e that the parse of the 

string is obtained when the grzlmmar ia used in the analytic mode. 

When the generat.ive mode (picture synthesis) ia employ~d, new sta­
\ 

tem.ents (l. e. pict.QX'ea) are synthesized us.ing existing primitives 
o 

and rewriting rulea. 

- , ' {] 

J 
Barly attaapta to implement llnguistic method, j are exempli-

, \l 

fied bf the work of Grimsdale et al. (1959). TheIr research in-

volves obtaining de.cr iptions of simple hand-drawn line figures. 

." 
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These descript~ons consist of the primitive carves in the figures, 

their properties, and ,fbeir connectivi ty. 
\ 

An interesting approach is that of Kirsc'h, (1964). He pro-
1 

poses a tWo-dimensional 'grammar ins~ead of one~hich produces , 

linear string representations of piciures. 
\ . 

As an example, he con~ 

siders the~class of forty-five degree right-angled triangles. 

His grammar consists of an alphabet and ten rewriting rules. Ele-
, 

ments of the alphabet are line segments and are represented by 

capital lètters. For example# the three rules shawn in Fig. 1-4 

~n be used to describe the hypotenuse of this class of triangles •. 

Ohfortunately, Kirsch's grammar appears to have severe limita-~ 

tions: ,for more complex. objects, the rules and alphabe.t must 

under~o radical expansion and would probably become too cumber-

some to be practical. 

Pige 1-4: 

* =# ~# 
4" ~ 14~ -n-- ,J'! 

'!riree of Kirsch 18 rewritin~ ru1es f:~e des'!rktion 
of the hypotenuse of a 45° right-angled ,tr.iâmgle,. 
V 'and W &l:'e two vertices, H i. a hypotenu-se segment, 
and. L ia a vertical line segment;. 

, . 

• 
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More recently, Pfaltz (1972) and Rosenfeld (1973, 1975) 

have proposed the u~age of multidimensional array grammars (or 
• 
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"wèb" grammars) for the representation of pictures. The e1ements 

of these versatile grammar~ are sets of arrays or graphs rather 

than linear strings., It can,be seen that. the language proposed ., ' 

by Kirsch in the previous paragraph defines a primitive array .... 
/' grammar. 

Breeding (1965) and~.~ and Breedlng (1970a, 1970b) have 

proposed the PADEL (~~ern ~escription ~nguage) language for 

«-
/fit both the generation and synthesis of line drawings. In PADEL, 

an' object is defined by a set of nodes and paths. A path ls a 

sèt of 1ine segments joined end-to-end whi1e anode is any point 
'. .... 

where three line segments meet. unfortunately, picture descrip-

tions generated by PàDEL are not unique for aIl but the simp~est 

1ine ~awings. 
...... This, together with the hl.ghly artificia1 nature 

) 

of the descriptions generated by PAnEL, appear to be i~ major 
, 

drawbacks. 

Among the more versatile schemes which have Qeen developed, 

Shaw's syntax-based Picture Description' Language (PDL) (l968a, 

1968b, 1969, 1972), is sui table for the generation and analysis 
, 

of 1ine drawings •. '!'he primitives of PDL are two-dimensiona1 objects 

baving both a head and a ~il. Concatenation of the primitives 

may occur only at tb.se endPointa. por example, if the + operator 

concatenates head ta tatl, the /' + ~ ia equivalen,t to ~ • 
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In such a language, a picture becomes a directed graph with pri-

mitives forming the directed edges. 

The w0Z;,k of other notable proponents in the field such as 

Fu and Rosenfe1d is referenced in tihe bib1iography. For a some-

what dated but neverthe1ess excellent survey paper, see Anderson 

'(1971). 

Grammar-based description schemes ha ~ seribus disadvan-
, " 

tages, however. First, there ia the rig'aity a~ a~tificia1ity 

of these approaches. exte~t than the C1ass['-

ficati9n Fde1, the .;;;thods I>Y which th e~~:nthesize an ,) 
~ -~ 

analyze pictures are in contrast. to the methods by W~Ch humans,/ 

accomp1ish these ,tasks. The rigidity of existing sche~~rs 
~ç 

them unab1e to cope with grey-1evel pictures. JÜso, these approach-

-es inherent1y contain a lack of semantic capabi1ity. That is, they 

"" . 

""". 

do not possess knowledge of a universe to which a particular scene 

rela~es and ~ich can faci1itate its processing. 

/'-~-The models which will be discussed in the next pages represent 

attempts to circumvent theae difficultiès. 

" 
1.3.2.2 Desc;iptor~Based and Procedure-Based Models 

Of t~e three categor,ies of descriptive techniques cônsidered 

in thi. thesi., the fiAt which ia a grammar-based model has al-

ready been discussed. This section brie~y considera the remain-• iJl9 two technique •• 

) 

P 
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One of these is the class of des~riptor-based models. The 

primitives of such desçriptions are individual p~ases which des-

cribe the picture. Firschein and Fischler (1971) diseuss the ap- ~ 

lications of such schemes to still photography, movie film and 

videatape, and indexer aids. The problem with such schemes is 

to obtain a consistent terminology which ean be used by a human 

for interaction on a question-answering basis. 

The last category of descriptive techniques to be considered 

is the class of goal-directed or knowle~ge-based models. These 

consist of a system, either grammar-based or descriptor-based, 

whieh is capable of producing a large number of descriptions of 

a picture. The system also contains a control mechanism which 

selects a specifie description according to the context ~n which 

the description is desired. Fischler (1969), who has used such an 

approach in, the description of Sanskrit characters, eoncludes that 

it may be able te surmount the problems inherent in the grammar-

based approach. 

Prepar~ta and Ray (1972) and YakimovskY and Feldman (1973), 

have applied goal-oriente~ models to the computer recognition of 

color photographs. More recent 1rork in the same vein bas been 

performed by Bajcsy and Lieberman (1974). The procedure used by 

n1c:illlOvsky and Feldman entails the genera~ion of ragions from a 

picture and the subsequent use of ë~extual information defined 

by re·lationships betveen-ne.ighboring ragions ta decide on what .. 
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the picture represents. The contextual information required is 

stored in a semantic memory ,(the concept of such a memory is dis-

cussed in the next section). The control mechanism is a probabi-

lity function whose members are the probabilities that given re-

giona can be ~ssigned a defined interpretation given the results 

of the cootextual information applied t~he reg~ns and the meas-

urements on the features of the regions. The goal is to maximize 

the probability function which is the product of these members~ 

It'can be perceived from this exam~le that the procedure-based 

mode,! represents a powerful technique for the analysis of scenes 

by compu ter • 

This section completes the brief survey of the development 

of the descriptive model for picture analysis. It has already . , 

been stated that a failing of both grammar-based and descriptor-

based mode~s is that they lack semantic capability. On the other 

band, a 1cnowledge-based model used in conjunction with a semantic 

~ory can overcome these failings. The semantic~emory model 
• 

necessary for the implementation of such an approach is the nèxt 

topie of discus.ion. 

1.3.3 The Semailtlc Mernary Model 

Except for the procedure-based models, a 8hortcom~ng of the . ' 

picture manipulation schemes described 80 far la that they do not 

interact with information at the ume level that humana do. One 
J 

j 

J 
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reason for this is tha t the structures they' emp1oy: for, informa tion 

storage and retrieva1 are not as f1exLb1e and powerfu1 as those 

employed by humans. What is therefore reqUired is a memory capa-

ble of performing tasks by method~ 

human memory. 

those used by a 

Frijda (1972) has specified four pro~erties of a human memory 

which must be possessed by an artificial intelligence if it is to 

be capable of human-like fnteraction with information. First, the 

memory structure must be associative. In such a structure, 'the in­
'j,. 

put data which requests information is associated with an abbrevi-

• ted map of the memory. A match between \.lie inpu t da ta and the 

map imp1ies that the desired information can be loca1ized to re-

gions of the memory specified by the matching rnap entry. with 

\ each additiona1 match of input data with map entries the location , 

of the required information within the memory is further loca1ized. 

Znformation May then be 10cated and retrieved by entry and search 

of the appropriate portions of the memory structure. Second, the 

memory must be teachab1e: it must be capable of receiving informa-

tion, of determining' the truth or fa1seness of tbat information 
fi 

and of incorporating the information within itself if.it is recog-

nized a8 a truth.' Third, the memory n'lust be inferential: i t must 

, be able ta deduce facts not-directly contained within it by infer-

ence on facts which are. Pinally, it should possess the abi1ity 

\ 

to retrieve information given input data whose structure differs 

, 
~ 

, 
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from that by which the memory previously. learned the information. 

Such a quality adds to the flexibility of the intelligenc~ employ-

ing the memory structure. 

The determination of the format of a memory structure suitable 

for information storage and retrieval as specified by the above 

requirements is an appropriate starting point in the realization 

of a system capable of displaying human-like intelligence. As a 

result, an increasing amount of research has been dedicated to the 

determination of the attributes of such a c1ass of structures 

called semantic memory networks or semantic nets. The primitive 

'e:tl!ments of such structures are nodes and links. Each node defines 

a concept in the net whi1e each link defines a relationship between 

two nodes. ,~,," 

The LEAP-language deve10ped by Rovner and Fe1dman (1969) is 
! 

especia1ly sui table for the manipulation of semantic nets. It 

defines operations on the relationa1 structure ( 0 A V ) where 0 

is an object, V is its value and A is the attribute 1inking the 

object to the value. For example, in the re1ationa1 structure 

(SBOE COLOR BROWN) the ~bject is SHOE, the value is BROWN and the 

attribute is COLOR. Each relational structure may itself be an 

elem.ent of another s.uch structure as in (CLO'l'H:mG EJ<AMPLE (SHOE 

COLOR BROWN». 

In relating theS8 idea. to those of a semantic net it can be 

..en that 0 and V are node. (concepts' while A is a link (relation-
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ship). The link may itself be considered as a concept in other 

re1ationa1 structures as in (COLOR INTENSITY BRIGHT). In genera1, 

a relational structure as app1ied to a semantic net has the form 

(node 1ink node). 

The discussion bas thus~ar centered on the concept of a se-

mantic net. However,the net is only one of the two components of 

\ a semantic memory. The other component is the sémantic map. This 

map is a list pf aIl the concepts,; defined in the net together wi th 
~ \ 

the appropriate net entry points for each concept. It a110ws the 

semantic memory to fulfi1 the requirement that it be an associative 

structure. 

Considerable work has been performed in the imp1ementation , 

of semantic nets in various applications. Oui11ian (1968, 1969a, 

1969b),is the first to have applied them to the computer process-

ing of E?9lish texte As defined by Quillian's net, a concept May 

be a word, a phrase or even a paragraph or more of texte Each 

concept is represented by a semantic plane. A semantic map ca11ed 
~ 

a dictionary contains a list of al1 the concepts which are defin~d 

by the net. 'Each dictionary entry contains pointers to at 1east' 
\ 

one plane in the net which defin~s that entry. FOr examp1e, the 

ward p~ may have three pointers from tne dictionary to the net 

corresponding to three different meaningB of the word (i.e. (1) 

the verb to plant, (2) a living plant, or (3) an industrial plant). 

~e method by vhich thia la accomplished ia shawn on the next page 
, , 

" 
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(Fig. 1-5). 

In Qui11ian's semantic net, concepts are defined by superset 

modification. ~or examp1e, a horse can be defined as a four-

legged animal. In terms of the net structure, horse is the con-

cept, animal is the superset ~nd four-Iegged is th~ modifier. With 

reference to ,the LEAP re1ationa1 structures, it can be seen ,that 

for this simple examp1e the net contains information of the type 

(SUPERSET MODIFIER CONCEPT). Unfortunate1y, the structure o~ the 

net is far more comp1ex than this as will be seen shor~ly. Thus it 

is difficult to mode1 Quillian's net' in terms of a sequence of 

nested relationa1 structures. Instead, a genetal description of 

. t 
the net will be used to demonstrate sorne of ~ts features. 

SEMANTIC MEMORX 

~ SEMANTIC NET 
DICTIONARY 
Entry no. 1: - - - Plane for .. Plane for 
Entry no. 2: - - - _ ... lst def'n 2nd def'ri - of of 

- - - PIANT PIANT 
ft ,j 

Entry no. n: PIANT 1 I~ 
, 

l 1 Plane for , 
3rd def 'n - - -

" 
of 

PIANT 

l·' 

Pig. 1-5: The Semantic Memory showing links trom the Dictionary 
to the Semantic Net for thé definitions of PLANT. 



\ 

"'" l 

r , 

t 0 ~ . ~ 
.. 

r. 
:. , 

;0. ~ :" 

'. 

\ 

" \ 

Bach plane. of the semantfc net consists of both unit and 

~ropert~ nodes. These in turn contain pointers to other unLt 

~d propé~ty nodes both in their own semantic plane as weIl as 
\ 

in \~er semantic planes. A unit node represents a concept. Its 

first element is a 'poin~er tO .. the unit representing the concept's 

superset. The second and subsequent elements (as,many as are de-

'8ired) are pointers to property nodes in the semantic plane. Pro-

pert y nodes rèpresent predication of concepts. The' first eiement 

of a property node is a pointer to a unit node representing ~ 

~property's attribute: the seoond element is a pointer to a unit 

• DOde representing its value. These ~o elements represent an 

attribute-value pair. Subsequent elements, if any, are pointers 

ta subproperty nodes of the property. The property node may thus 

~. 

represent a noun clause, an adverb clause, a true attribute-value 
/ , 
pair such as (COLOR WHITE) 1 or any other grammatical construct en-

tailing prédication. 

From the above, it may be inferred that Quillian's. semantic 

net i8 not a hierarchical structurei instead it is a gen~ral graph' 
; , 

of interconnected nodes having no patriarchal node but rather ., 
many points of entry specified by the dictionary liste 

.... 
An example 

of the netts structure i8 given by Quillian (1969a) for the deff-

nition of ·client" (Fig. 1-6). 

one .avantage of .\1ch a memory structure ls that each concept 

1" 



• os 

1 
Il 

= 

DICTIONARY SEMANTIC NET 

Figl • ,1-6: -The semantic plane for the concept CLIENT where [ ] is 
a unit node and ( ) ia a property node. Pointers to 
words in b10ck letters are pointers to planes defining 

1 

1 

" 
these words. 

need be de~ined on1y once. For examp1e, assume that the concept 

of a tr~ng1e'has been defined and one wishes to define an isos-

........ 
celes triangle. Fig .'\1-7 i11ustrates the required semantic memory. 

\ 
DICTIONARY ,/'" SEMANTIC NET 

--- l ) . , ---
TRIANGLE 1 .. [ * 1J --- 1 TRIANGLE ---

predication of triangle 
ISOS. TRIANGLE 1 0- concept stating equa1ity 

--- of two sides. , 
'. ---

Piq. 1-7s Representation of the'semantic plaÀe for the concept 
of an iao8ce1es-trianq1e. 

\ 
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• 
It is important to note that the extent of a concept is not 

1imited to its semantic plane because each node in the plane con-.. 
tains pointers to concepts outside the plane. Indeed, a concept's 

full meaning consists of aIl the nodes accessible either directly ... 
or indirectly from its semantic p~ane.~ This feature permits the 

~ 

usage of the semantic net for the inference of the common meaning 

betweén two concepts. For example, let the definition of CRY be 

TO MAKE 'A SAD SOUND: let the def irri tian of COMFORT be TO MAKE LESS 

SAD~; The net can find the common meaning between these two con-

cepts by searching outwards from the entry points specified by the 

dictionary uptil the, search graphs intersect at a concept. In 

this case, the concept of intersection is SAD. 

The above paragraphs have constituted a brief discussion of 

some of the f~tures of Quillian's semantic memory structure. 

The rest of this section discusses sorne of the work performed on 

8èmantic nets for picture analysis. Preparata and Ray (1972) have 

defined a semantic net containing objects of a uni verse, binary 

relations and an algorithm which, under the guidance of the· net, 

iterprets an4 categorizes simple color photographs. Their method, 

like that of Yakimovsky and Feldman (Section 1.3.2.2) ia a knowl-

edge-ba~ed descriptive model for scene analysis. In both cases, . 

the 8tllQantic net ia the control mechanism which determines th~ 

pat.h of the solution. 
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'p{rsChein and Fisch1er (1972) have also employed a semantic 

net for picture descriptions. Specifically, they have emp10yed 

-the descriptions of photographs by human/- to construct networks • 

in which concept kernels (phrases) and relations are represented 

by nodes and pointers respectively. Thus, from the description 

Rit is an aerial photograph whose most arrestin~ feature is a 

waterway, pos'tiblyan estuary or part of a barbour, with many ship 
, 

docks" they obtain the network of Fig. 1-8. 

'1 r--. ------11 PICTURE 1-1 ------:....,'1 _ 
PIC~ " ATTRIBOTE 

f 

PROPERTY most'arresting 

~ feature i8 

t;;;J . r-:--------1IL!WA~TER~! WA~Y~J 
. 1 i 

~SSIFlCATION SET MEMBERSHIP 

1 1 
doubt bas part 

1 

QUANTITY l\.TTRIBUTE , 
many 

. J " 
/ sh!p' 
~-

Pige 1-8: A Semantic Network based on _ Description. 

,. 
,'l'bi. cbâ.pter has di.cu.sed, the historical aspects of picture 

,.. 
aynth~J.s and ~ttern recognition. The concepts of a GDS and a 

~ 

• 
a..-ntic 1Il8IDOry have been presenteeS in .~ datail. The following 

1 

1 

/' 
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1> 
chapter' will present the semant:ic d by the author 

and Chapter 3 will diseuss ~Short-Term Memere (STM) and
4

the 1 

. . 
associated compiler. In bath chaptersj 
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1 

Chapter 2 

l'he Semantic Memory and PL 

2.' 1 Ov,erv iew r. 

The next two chapters will describe the system irqplemenbed 

by the author for the synthesis of lihe drawings. An overview 

Of the method is now presented. 

If the system did not passess a s~ntic memory, its struc-

ture could be modeled by the block diagram of Fig_ 2-1. As such 
1 ,. , 1: . 
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, 
the system would not be materially different from those described 

1n the first part of Chapter 1. The compiler would accept state­

r''\. ments in the picture language and would incorporate thei~ infor-

mat10n into the GDS using the language's syntaxe 'When aIl the 

" statements would have been processed the compiler wou Id, in con-

junction with the GDS , output the res~lting pictures. with the 

addition of a semantic memory, the block diagram becomes that 

shawn in Fig. 2-2. As was the case for the system depicted by 

Fig. 2-.1, the c~mpiler accepts statements in the picture langua.ge 

SEMANTIC 

" 
.... MEMORY 

, \ 

, ,~ 
, 

+ \ 

PICTURE -
JI. -

. LANGUAGE -..,. CœPlLER -
INPUT . - + 

1.. 

"\ 8TH , llr ... ~ 

, 
)-- OUT POT 

, 
. 

.~ 

J \ 
Pige 2-21 picture synthe.i. plan employing a .emantic a.mary. 
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... 
and processes them into the GDS (called the Short-Terrn Memory or 

STM) using the languagels syntaxe The difference with this meth-

ad is that the pieturé language staternents need not provide aIl 

the information about the objects to be drawn'since that infor-

mation resides within the semantic mernory. Inde~, the existence 
"-

of the semantic memory alloWs the programmer to s~~J~y as much or 
, 

as littlè informati9n as is desired about the objects to be drawn 

sinee any missing information ~s~pplied by the memory. 

In this scheme the picture language provides the syntax 

while the semantie memory provides the semantics. As will be seen 

in the rest of th4s thesis, it i8 this feature which allows a high 

level of interaction between man and computer. Another feature of 

interest is the nature of this model. It will be seen later in 

this chapter tbat ft is descriptive because of the structure of 

the picture language. However, because the semantic memory "guides" 

the solution path for picture synthesis, it is also ~owledge-

based or goal-direoted. It. is t.herefore in the sarne ca teqory as 
1 

the work of Preparata and Ray (1972) and Yakirnovsky and Feldman 

(J973). The author's system differs from theirs in that it is 

primarily aimed at picture synthesis While theirs are employed 

in scene analysie. 

Thi. cbapter diseuse.. the structure of the aemantic net and 

the synt.ax of the picture l.anquaqe. Cbapter 3 will deal with t.he 

compiler and the 8TM. 

'" 

1 

1 

1 
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'The semantic memory presented in this thesis i9 modeled 
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after Oui11ian ' s. However, its primary task which is the synthe-

sis of simple line drawings is different if not simp1er than those 

which Oui11ian ' s memory must perform. It is therefore reasonab1e 

to assume that simplifications to Oui11ian ' s memory May be incor-

porated into the present imp1ementation. The example which f01-

lows will demonstrate not on1y the possibility but a1so the ne-

cessity of such simplifications. 

Consider the definition.of a tria~gle. According to the 
~ 1 

Bncyclopedia.'Sritannica (1963), a triangle is "the geometrica1 

figure composed of three points ca11ed the vertices (not 1ying 

in one straight line) and thrèe straight 1ines joining these 
1 

cal1ed the sides·'. Using the éoncepts of units and properties 

~escribed in Section 1.3.3, a realization of the semantic plane 

for the ~i~ngle definition might be as shawn in Fig. 2-3. Unfor-

tunately, the linguistic definition of a triangle is not immedi-

ately useful for the synthesis of a drawing. The reason for this .. 
is that Buch concepts as GBOMETRlCAL FIGURE, CONSISTrNG OF and 

,1 

RONCOLLINEAR have not yet been defined. Indéèi:l, their definition 

would be in terms of other undefined concepts and so on. However 

rich and esthetically pleasing s~ch a description ~ a triangle 

might eventually be, it doea not iDaediately permit drawing the 

obje~t:. 
. -

, . 

'. , . 
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DICTIONARY SEMANTIC NET 
. 

- - -
TRIANGLE 1 

- - -

[ * * ) ~ ( * * * ) 

•• 
1 - J 

GEOMETRICAL CONS IST:r:-J 
FIGURE OF . 

... [! ~Ir 

* * ! J [ * * * * )4 

~ ! ! , 

POINT ( "* * ) LINE 

NOT - 1 + 
~ COLLINFAR 

( *, * ) ---
+ + 

, 1 

, ( * * ) ( * * ) 
=1= 3 !! ~ 

1 

! 
CALLEn VERTEX SIDE 

( * * * ') ;; 

~, ~( * * ) 

+ l , 
JOIN 

BY 

Fig. 2-3: A possible.realization of the semantic plane for the 
concept of a triangle in Quillian's semafitic net. 
An English-like description of the above plane migpt be: 

triangle, geometrical figure çons~sting of 
point number th,ree 
point not collinear 
point called vertex 
line number three 

1 line called side 
line join point 

join point by line 
Certain simplifications have been incorporated into 
the definition of the plane in order to facilitate 
it. und~.tanding. ~ 

. ~?t~.' /~ J' .... .....~; ,- ..,... '~ . ~ f~" ~..... • ,~~'( f .. ," "'- "''t' ' ~ ... \'~":r< .J .... 

.... il': ~.-' :;<1, :,., • ..' .. .,.. 
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The solution to this ~oblem is·the creation of a semantic 

memory employing" mathematical rather than linguistic descriptions 

of objects. Such ma,thematical descriptions involve the specifi­

cation of objects in terms of their primiti~es and the relation-

ships between them. It will be seen later in this chapter that 

the resulting structure is hierarchical, that is, it i5 a tree 

rather than a network. While it is a practical structure for the 

tasks it must perform, it i5 more restricted and therefore less 

versatile than Ouillian's.' SpecificallYf it can only "understand" 

a limited set of English words while Ouillian's could theoretically 

he built up to encompass the entire Engli'sh language .. 
fi 

This restriction is not as serious as it might at first 

appear to be. The semantic memory May be thought of as part of 
! 

a larger memory which contains linguistic definitions of cà'ncepts. 

These two memories would he interlinked. wh~nëver the linguistic 

memory would receive queries or commands which re~ired computa-

tions of feature values of an object, the mathematical memory 

would be accessed. 

Given the restrictions on the capabilities of the sémantic 

memory, i t is now possible to describe the syntax of the picture 

language. This i, the tapic of' the next section. A discussion . " of the structure of the aemantic memory !s deferred until la~~ 

in this chapter. 

'1 t" 
r 
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2.3 The Picture Language (PL) 

Before a formal definition of the syntax of the PL can be 

given, it is necessary to define bath the, primitives and the 

feature set of the geometrical objects considered in this thesis. 

2.3.1 The Primitives 

While a versatile set of primitives for the synthesis of 

line drawings 1::onsists of a point, a straight line and a conie 

section, it was decided at the outset that the primitive of the 

'present realization would be the straight l~ne only. Such a 

decision is of considerable irnport because it affeçts both the 

syntax of the PL and the structure of the memory. ~t was fel t 

'that this choice would allow for sufficient versatility to demon-

strate the concepts involved in the semantic memory while reducing 

the programming of such a system to manageable levels. 

2.3.2 ,The Feature Set 

The impact of the choice of a primitivé set is immediately' 

apparent on the resultant feature set necessary to completely 

, ' 

deacribe the abjects to be draWI:1. In the present framework a 

8ufficient and in fact redundant set consists of size, location, 

of the contour vertice. and orientation. A redundant set has 

been çhosen ~or the purpose of allawing sufficient flexibility 

in the system. The com.ponents of the feature set are naw' dé-
\ 

8cribed. 
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The defintion of the size feature is dependent upon the 
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topology of the object to be described. If a closed object is 

~ing described, size is defined by the perimeter of the object. 

If an.open object is being described, size is the length of those 

lines whiéh define its boundary (Fig. 2-4). A problem arises if 
/ 

: -

, 
1 

t 
1 
t 
1 

t 

.... ---

1 1 
L.-. _____ .... ______ :.J 

.. 

Fig_ 2-4: E~mples of the definition of size for a closed object 
(a) and an open object (h). In both cases the,size is 
equal to ~e length of the lines paralleled by the broken 
line. 

objecta which are not simply connected are allowed (Fig. 2-5).~ , , 

l'or thi. reafOn, this implementation of the semantic memory is 

r •• trioted to simply-connected objects_ If one wished ta incor-

,orate multiply-connected objects. one could define_a~other feature 

for linea wbieh would determine whether they were visible or 

! 
~r 

)\ 

1 .. 

Î 
1 
,( 
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1 . ; 

Fig. 2-5: An obj ect which is not simply-connect.ed and for which 
the present definition of size is not applicable. Such 
an object is not allowed in the present memory implemen­
ta~ion. 

invisible. 
~ 
,/ 

Then if size were made applicable ta both "visible 

and invisible lines its present'definition woqld remain valid 

~2-6). It. was fe1t. that the aëldition of this capability 

roUld not, sufficiently inc~ease the versatility of 

~uatify the ,additJ:onal programming effort required. 

the syst.em to 

For this 

rea.aon, thi. feature was not incorporated l.ntQ the system. The 

ai •• fature ia repr •• entec1 by the PL' ~trinq S:r:ZE. 
\ 

t 

~. -..da' .~;'\;. ~_. 

\ ' 
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Fig. 2-6: The addition of invisible (dotted) '1ines renders the .. 
definition of size consistent. 

'!he contour vertices of an object represent those points at 

the object 's boundary where two or more lines meet. Because the 

aemantic memory is defined for two-dimensional objects only, each .... ... 
contour vertex V is repres8nted by ~ ~_~tures which specify the 

X and Y coordi' tes of the vertex relatJ.,ve to some arbitrary frame 
\ 

of referenc. '.rhé fea turea of the i th contoUX" vertex Vi are 

ther.fo repr •• ented in the PL by Vx1 ,and Wi. The contour ver-< 

--tic. of an abject are labeled aequentially in a counterclockwise 

/ 

• 
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manner with the first vertex belng the lowest left vertex of the 

oojeet wh en it ls in the horizontal orientation (Fig- 2-7). From 

the above discussion, it is obvious thât th~ number of contour 

vertex features for a given object is twice the number of vertiees 

ainee eaeh vertex is described by ~o eoordinates_ 

... .... 
Vs V3 

D 
... .... 
Vl V2 

Fig. ,2-7: The contour vertices of a house. In this case there are 
• ten contour vertex features since there are five vertices 

each of which i. described by two coordinates. 

The orientation featûr. of an object is represented in the PL 

by OR:IENT- and ia defined as the inclination to the horizontal of 
, ... ... 

the 11ne specified by the contour vertices Vl and V2 of that ob-

ject. Orientation 1. meaaured in degreea. :Ita value increases 
_.... \ 

ail the dir.:.ected Une specified by Vi to V2 la rotated counterc1ock-

w1 ••• 

., 
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The features sufficient to describe the primitive of the PL 

(i.e. a line) are SIZE, ORIENT, VXl, VX2, VYl and VY2. These 

features are common to all objects in the ~L_ More complex objects 

such as the house of Fig- 2-7 require the additional features VX3 

and VY3, VX4 and vy4, ••• which represent·third and subsequertt 

contour vertices. For reasons which will become apparent in chap-

ter 3, it is convenient to label the members of the former set 

as primary features while the members of the latter set are called 

8ècondary features. 

This completes the'definition of the feature set. The next 

eection describes the syntax of the PL • 

. ' 

L _______________________________ ... __ •• CE:.,] . • ~. [; .. f,:", 
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2. \~. 3 The PL Syntax 

As was stated earlier in this chapter, input to the program 

ia accompli shed using the PL. Analogous ta some previous work 

(Chapter 1), a linear string language similar to LISP has been 

chosen. HO'IIIever ,~because sorne of the informa.tion necessary to 

draw piqtures is supplied by the semantic memory, the PL is sim-, 
pler than those previously discussed. The statement types pre­

sently accep~ed by the language are the {draw) command and the 

(lOg'ic) and (topOJ) statements. These will now he defined. 

The <draw) cO'mInand specifies ah object which is to be drawn 
-. 

by the program. The < ld'gic) statement specifies predication on 
'. 

an object. In effect it yièlds intormation about the value of 

one of the object's features. The (topol),statement yields infor-

-!Dation about the topological relationship between two objects. 

The syntax of the PL in BackuB-N'orma'l Form is given below: 

(1) (numeral*) ::= 11213141516171819 l 

(2) <numeral> ::c: <numeral*)IO 

(3) <in'teqer) ::a (numeral)l<numeral)<integer) 

(4) <nwnber} ::- (inteqer)l.I"}i{(integer)1 "}.(Jmteger) 2 

'-. ---'---'------

, 1 ~eept for the symbola "1" (the "o~" delimiter), "i"'and "}" 
, ("{" and "}" are.delirdt!ng 'lxacketa), aIl strings not enclo­
aec! by the <, > braeketa repre8ent valid' DalleS, nuatbers or char­
actera, in the PL. 

2 The 8ymbol .. i. the RaIl .trift~. 

~S'à.~J'!_. t:,Jr..-:Yid-__ ~ ____ ·_--------

1 

! 
( 

t 
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,;~ (-5) <'object*~ ::= LINEITRIANGLEIISOSTRIIEQUILTR~IEECTANGLEI 
'SQUARE! GABLE 1 WINDOW 1 DOOR 1 FRAME 1 HOUSE l 

(6) <object' ::= (object*){(numera1*)1 "}{«object»! "} 2 

(1) (feature*) ::= SIZEloRIENT!vx(numera1*)1 w<numeral*) 3 
\ 

(8) < feature) ::~ < f~ature*>{ «o:Qj ect» 1 "} 

(9) < function> ::= SINlcoslARCCOslSQRISQRT 4 . 
(10) (operator) }== SUMloIFF\PROD\OUOT 5 

(11) (logic.a1) ::= EblNE(GTIGEILTILE 6 

(12) <term>::= (feature)l(number)t 
OP<operato~> «term>~ <term»! 
FCN(function)«term» 7 

( 

.. 

l This list specifies the objects presently defined in the semantic 
memory. 'l'o ease the programJ'tdng effort, the maximu.!O number of 
characters in a name,has been specified ta he ten. For thi. 
f,f&son the ç~jects "isosce1es triangle" and "equilatera1 triangle" 
are represented by the strings ISOSTRI and EQUILTRI respectively. 

2 It will 1ater hecomé apparent that (object*> represents generic 
objects in the semantic memory while <object*><num~+al*) repre­
.ents_specific instances of these abjects defined by the PL and 
incorporated into the Short-Term Memory (S'l'M). 

3 These are the strings repreaenting the feature set previously 
discuased. 

4 These are the strings repreaenting the functions ~ecoqnlzed by 
the compi 1er. SQR ia the function specifying the square of i ta 
ar9ument~ the remaining funetions are self-explanatory. 

S'The.e are the strings'representing the four arithmetic operat;ons. 

6 Th •• e are the strings representlng the ~ality/inequality con­
atrainta recognized by the compil~r. 

~v 

./' 7 Ter .. are the equivalents of athematical expressions 
(e.9- .ln(_ + bx»). 
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, 
('13) (predicate)::= <feature)tl(term) ~,' 

(14) < topre 1) : : = LEFTOF 1 RIGHTOF 1 ABOVE 1 BEWW1 

. 
(15) (draw>:: = DRAW«object*>{(nurneral*>I"}) 

(16) <l09ic>:: = LOGIC «l~ical> «predi~ate») 

(17) < topol) ::= TOPOL«toprel)«object*){~l1meral*> 1 "}1Iil 
(object*>{ (numeral*) l''l})) 

The P~ input consists 0) a stream of ~aracters on punched 

cards. 2 Statements may begi~'or end in any column and may he 

continued on as many cards as is dèsired. Blanks may he inserted 

anywhere except within a n~me or a number. 

" 
A PL statemeat may contain errors in either ~yntax or', seman'-

tics. Whi:le the present implementation of the compiler checks the 
~~ 

synta~tic validtty of PL statements, it only ~tially checks their 
J 

, 

sema.ntic validi ty. By usin,g a sufficiently powerful compiler in 

conjunction wi'th the semantic memory, it would be possible to fully 
"1. 1 1 

~ determine semantic validity. The availability of such a compiler 

would permit simplifications to the structure of the semantic me-

mo:a:y implemented in this thesis. More 'will he said ~bout this in 
, 

Chapters 3 and.4. 

l These are 
tiORS'hips 

\ 

the 8~i1'9:~re8entinq the 
reeoqnized by the compiler. 

four topol,ogieal rela-

"4' " ' , 
2 Obviou.ly,a -praetical system would primarily input this infor-

mation in an interactive fa.hion vi. a graphies t~al. 
,1 

'\. . 
jI • 

" 

1 

! • 

" .' 
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As an exarnp1e of the capabi1ities of the PL, cons'ider the 

prob1~rn of drawing a square and a triangle subject to'the fol-

lawing constraints: 

A 

size(square) ~ (5 + sin 52)2 ,Ci) 

VXl (square) .. 63 (ii) 

triangle is to 1eft of square (iii) 
• 

PL prograrn coding of this prob1em is: 

DRAW(SQUARE) 

LOGIC(LE(SIZE FCNSQR(OPSUM(S FCNSIN(52»») 

LOGIC (BQ (VXl 63» 

DRAW (TRrMlGLE) 

1'OPOL(LEFTOF(TRIANGLE SQUARE» 

. , 

,*' 

This examp1e dernonstrates that the DRAW command possesses 

a "sphere of inf1uence~ which extends to statements between it 

46 

and the next DRAW commando For statements within this "sphere" 

~e object being predicated i8' implicitly defined. j,!I,Th, .... us the th~rd 
line of the program realll' rneans , " 

t 

LQGZC(BQ(VXl(SOpARE)63». 

'Rote that the arder of atatementa between J;:wo DRAW.,commands ia .. 

uniaaportant. . . 
!his aection CQmplet~a the diseu •• ion of the· PL for the 

.,..ent. It will he r •• ume4 in Chapter ~ Whera the translation 

of PL atat-.nta into the STM by the compiler will be eonsidered. 
\ 
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The remainder' of this chapter is concerned with a description ~ 

~f the author's semantic memory. 

, 

l ' , ~ 

! • 

1 
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:!:.! The Semantic Memory 

As was stated earlier, the semantic memory consists of both 

a semantic map and a semantic net. The structure of each of these 

will be de~d l'atelj in this chapter. For the moment it suffices, 

to make the following observation. Analogous to Quilli~n's work, 

objects in the author's sèmantic net are repres~nted by planes. 

Bach object is a concept and each concept need be defined only 

once. Complex objects are defined by specifying a pred1c~tion of 

their constituent objects. For example, if RECTANGLE has been 

defined then SQUARE is represented by a plane which con tains the 

infe~mation necessary to modify the RECTANGLE concept-so as to 

pro'duce the definition of SQUARE. The way in which this is done. 

will become apparent in due course. 

The following section describes the types of nodes present 

in the sema~tic memory. 

2.4.1 NOd~pes 
The aemantic memory contains three types of nodes: OBJECT, 

MODIFIER and LIST. Theae nodes consist of s,everal fields each 
~, 

of which centains either a c~acter string or a pointer to another 

DOde. 

The firat of these, the OBJÈCT node, ia a "header" noder there 
Il 1, 

:1. only one for each semant:1c ,plane (Fig. 2-8). The NAME field 
, , 

of the OBJECT node specifies the object ta be defined, the SUBOBJ 
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" 

field i9 a pointer to the subobject list, the ATTS field. points 

to the predicates On the object's'features an? the PARENT' field 
) ; :' . 

---- --'" " ~ "'.,,~ ~ 

points to the object's parents. This last field ls 'unused in the 

present implementation of the programi it has be~n included in the 

no de for possible f~ture applications of the semantic memory to 

p~ture analysis. It also demonstrates a difference between Quil-

- lian' s memory and the au thor 1 s model. Irt the former eaçh conce~t 

had only'one parént wher~as in the latter many parents are permit-

ted. For exa.mple, two parents of DINE are RECTANGLE and TRIANGLE. 

NAME 

PARENT 

SUBOaJ 1 ATTS 

Pig. 2-8: Th~;.pBJECT node. The NAME field contains a chat'acter 
string while the other fields contain pointers. 

The primary function of the MODIFIER node ie the Plication 

of the features of an object. Ite TYPE and FCN fields escribe 

the type of predica tion to be performed whi le i ta PTRI and Pl'R2 

f~.ld. contain pointers to the left and JUght operande involved 

('ig. 2-9).1 Some applications of this versatile node will be 

1 ~.~e tbat in drawinqs, the 08JBC'l' and MODIFIER -node. are distin­
guiabable becaua. of doUble bara on the, former and 'single bars 
011 the latter. 
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described in the examples of the' next section • 

. 
TYPE 

FCN 41 

PTRl J PTR2' 

/ 
Fig. 2/9: 'The MODIFIER node. The TYPE and FeN fields contairt char-

i acter strings while the PTRI and PTR2 fields ,contain 
/ pointers. " 

/ 

The'LIST node is a general-purpose link for stringing to-

gether the other two types of nodes. Its ~IS field is a pointer 

to the node being referenced'while its NEXT field is a pointer 

to the next LIST node on ,the chain (Fig. 2-10). 

THIS NEXT 

~ 
Pig_ 2-10: The LIST node. 

pointers 
Both the THIS and NEXT fields contain 

This concludes the discussion of the node types found in 

the •• mantic metnQry. The next sections detail the memory' s 

atructure. 
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2.4.2 Structure of the Semantic Map 
r 

\!he st:ructure of the semantic map i8 very simple: it forms 

a chain consisting of LIST nodes. Each member of the chain repre-
- ~ 

sents a concept by pointing to a plane in the semantic net which 

defines the concept (Fig. 2-11). The DIèTIONARY pointer locates 

the header node of the semantic map. Furthermore, the LIST nodes 
. 

are ordered so that the conc~pts they·access are in 1exicographical 

order. 

DICTIONARY ------~ 

/ 

concept :( 
, . 

• a()nc~ 2 

_t_ 

concept n-l 

concept n 

P1g. 2-11 .. The structure of the Semantie Map. 'lbe names of 
conceptl' c9ncept2, ••• , concept n-l' concep~n 
are in lexfcographical order. Note that the NEXT 
field of the last node of the map contains the NOL!. 
pointer. 'i 

) 

" 
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/' - 2.4.3 Structure of the Semantic Net 
, 

The semantic net consists of a co11ecti.on of inf:erlinked 

planes each of which is accessed by the semantic map. A suitable 

starting point for the specification of its structure is the de-

scription of the way in which the planes are interlinked. Consider 

the concept of a square. Because i t' is a specifie type of rectan-

9le and because a rectangle contains lines, i~ is expected that 

the SQUARE, RECTANGLE and LINE planes should be somehow linked. 

This is indeed the case as is shawn in Fig. 2-12. 

Fig. 2-12 also demonstrates the two types of links which 

. are used between semantic planes. The first type, ,the subobject 

1ink, yields the subobjects of an objecte It is the one which 

links the headers of the SQUARE and RECTANGLE planes to the header ' 

of the LINE plane. The second type, the predicate link, is the 

one which allows a co~cept to be defined as the predication of 

'. another concept. It is the usage of this link which yie1ds a 

compact structure. for the semantic net. An illustrative example 

of its function is given in Fig. 2-13. The examples that fol1ow 

will demonstrate the u~ility of the predicate link. 

The next step in the description of the system is an analysis 

of the structure of the semantic, planes. It was decided a t the 

,. o outset that planes should be defined for bath opjects and features. 

The former are predicated by the valués of the features and their 
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SEMANTIC MAP SEMANTIC NET 

,. 

DrCT~ONARY Semantic Plane 
of SQUARE 

SQUARE 
, 

l , 1 1 -.. 
~ 1 {~rediCa tes --- of SQtm.RE 

J 

, 1 t 1 1 # 

1 ~8ubobject - predicate -=r 
link link, 

~ 

l , 1 1 
I-

I- Il 

Semantic Plane 

1 , 1 f l of RECTANGLE 
1 

1 RECTANGLE , 
0 

1 1, 1 ... { predica tes 

~-
of RECTANGLE 

H 

1 ,. - -;-
':' 

C· Semantic Plan~ 
of LINE 

LINE 
0 

1 - { predica tes , 
of LJ:NE 

-:;-

. ' 

Pig: 2-12: The Unki~ of the SQUARB,' RECTANGLE and LINE semantic 
plan... The nodes are atructured as de8cribed in 

. Section 2.4.1. 
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SEMANTIC NET 

/ Semantic Plane 
r 1 of SQUARE 

SQUARE 
0 

.. 1 .. 1 ... I-t- - , 1 . 
1 + ~ , . 

lat predicate 2nd predicate mth predicate 
of SQUARE of SQUARE of SQ~ 

,.. 
Semantic Pl~ne 
of RECTANGLE 

~CTANGLE 
j 

• .~ 

0 1 
__ ..1 

J _~- 1 _-=t- -~ j 1 ~ ...-

~r .r 
, 

let Predicate i th predica te n th predicate 
of RECTANGLE of RECTANGLE of RECTANGLE 

pig. 2-13: lxample of the function of the predicate link. 

1 

<~--
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planes may be quite 6omp1ex. On the other hand the latter, 

b~ing themse1ves features, have no predicates~ their semantic 
. 

planes consist of a sole OBJECT node with a11 pointers set to 

NULL (Fig. 2-14). The features which are assigned semantic planes 

Sema.ntic 
Plane for 

VX 

Fig- 2-14: The semantic plane for the VX feature. Simi1ar 
planes exist for VY, SIZE and ORIENT. 

are SIZE, ORIENT,VX and VY. Note that the contour vertices VX 
~ 

VY have no SUffe::: The next examp1e exp1ains the reason 

this supposed oversight. 

and 

for 

Consider the LINE plane. One of its predicates may be vx2~ 0, 
~ 

• 
where vX2 is the x-coordinate of the second vertex af the 1ine. 

Its repre8en"ti~n in the aemantic net ia shawn in Fig. 2-15. 

~ee app cations of the usage of the MOPIFIER node as spec!fied 

by its PB field are evident frOID Wa eXample. When the field 

COD ln. the Itring LOOIe then the PeN field conli~ts of a string 

na.tng the llinary relation between the two op91"ands accessed by 

• 0 

, 

1 

l ' 
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/ 
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• 
) 

.. 
LINE 1,[ 

0 / , 1 ... 1 1 - - - - ~'. .. 
-!- IJ ,~ . 

': 

LOGIC CONSTANT s 
0 GE 

1 - , 1 , 
to other predicate 
of LINE 

, 
~ 4- + 

WORD 
2 , 1 • 

Semantic plane for LIRE 

+ ,~ 
. 

(' 

to VX-<lBJECT node' 

Pige 2-15: The ~emAntic plane for LINE shoWing the structure 
of the predicate LOGIC(GE(VX2 0». 

the PTRl and PTR2 fields,. When the field contains the string 

CONSTANT then the FCN tield consists of a string specifying a 

numeric constant. The usage of the node when the TYPE field 

56 

con~ins the string MORD pertains to toe discussion of the pre­

viou. paragraph and requirea some explanation. According to the 

8Yntax of the PL di.cua.ad in Section 2.3.3, VX2 is a member of 

<f_t~.>. Although .the conce~t VX has been defined (as W8S 

abown in the previOU8 example), VX2 ha. note W'bat ia then re-
, " 

, quired i •• predication of VX.· Thi. ia accompliahed by the cre-
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~ion of a modifier node whose TYPE field contains the string 

WORD and whose function field con tains a s~ri?g which is to be 

appended onto the concept specified by the node's PTR2 field. 

In the example of Fig. 2-15, this procedur~ yields YXll21 or VX2. 

The node's PTRl field is set to NULL because no further qualifi-

cation of the feature is requ~red. Fig.) 2-16 considers a more 

complex example of the usage of WORD. In this case the feature 

as specified by the PL is VX2(LINE1(TRIANGLE}). 

WORD 
2 

1 
,b 

WOItD 
l 

1 

WORD 

t 
..1. -. 

Il 

1 

. to VX-oBJECT node 

~ 
to LINR~BJECT node 

- 1 

to TRIANGLE- OBJECT nade 1 i 
1 
!.. 

Pi,_ 2-161 Semantic net representatlon of VX2(LINE1(TRZANGLE». 
lIOte that in the bottom node the null string i8 to 
be apS*l4ed to TRIANGLE as required. 

;, 
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~ It can now be explained why the contour vertex features were 

1 

defined without a suffix. If this were not done then a plane 
'"", Ça-:J A ( 

would have to be defined in the s€mantic net for each of VXi and 

VYi corresponding to the i th contour vertex. But with 2n such 

pla~es, the ~emantic net would be unable to describe objects 

having more than n contour vertices since the character strings 
.' 

for thé (n + l)th vertex would not exist. One could, of course. 

work within such a restriction assuming that one were prepa.ed 

ta make n sufficiently large so as to provide for an object 

having a large number of contour vertices. Besides being inele-
• 

gant, such a procedure would clutter the semantic map with point-

~ 

ers to 2n VX and VY planes. The solution to the problem imple-
1 

mented in the last e~mple allows thé specification of an ùniim-

ited number of contour vertices by defining semàntic planes for 

on1y one. It can also be seen from the last example that th~s 

scheme allows the names ~f objects to be defined by an unsu~ixed ~_~ 

character string with the sarne resultant simplicity of the seman-

tic map. 
\ 

The next example in this section further illustrates the 
" 

camplexity of pr!dicates which can he incorpora:ted into the seman-
li 

tic net ... Con.ider the PL string LOGIC (BQ(SIZE "FCNSORT(GPSUM(VX2 

VX2)~')}. %ts representation in the eemantlc nét ls shawn in 

Plg. 2-17.. It can he .~!Ul frOID An examination of the figure that 1 ~ 
1 
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$ = , . 

, 
the MODIFIER node ia being employed using both the OP and FCN 

/ 

strings in its TYPE field. When the OP mode is used PTRl and 

pra2 point to the left and r~ght operands while the FCN field 
1 

specifies the operation. When the FCN mode is used the.PTRl 
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c 

field is set to NULL while the FCN field specifies the function 

Q and PTR2 points te the argument. 

• 

( 

" .-
1 o 1 

LOGIC 
BQ 

~t'" 1-

WORD 
" . 

, J 

.. 

Ir 
t:o SIZE­
OSJBCT 
node. ,. 

SBMANTIC NET 

PCN OP 
SQRT SOM 

f 1 - 1 .+ ' ., 
. 

WORD' 

2 
f f 

. ..... 
Pig_ 2-17: Semantic net r~e8entation of the predicat. 

LOGIC (BQ (S IZE FCNSQRT (OPSUM (VX2 vx2»»_ 

, . , 
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One usage of the modifier node no~ yet discussed is the 

J<NOWN mode. It will not be described in ~his chapter because 

its usage arises not out of a conceptual necessity but rather to 

compensate for a shortcoming of the compiler. The details of its 

usage will be given in Chapter 3. 

'The next example of this section illustrates a method by ~ 

which the predicate link yields a compact structure for the seman-

tic net. Consider the semantic plane for LINE. Certainly one of 
- " -

.L~·s prediea.tes' is LOGIC(CT(SIZE 0» sinee eyery line must have 
\ 

a nonzero length. Consider \now the sernantie plane for TRIANGLE. 
1 

,'~One of its predieates must ,'lao be LOGIC(GT(SIZE 0» sinee every 
( 

triangle must have a nonzero perimeter. Sinee these predicates 

,will have the sa me structure in the semanti~ ne~! it would be 

wasteful to speeify bath separately. The predieate link a~lows 
..... 

. ' 

the specification of both'while using only one structure. The 

way in which,this is done'is shawn in Fig. 2-18. 

Tke prediçate ·link may also he used ta link subcomponents 

of predicates. Consider the two PL strings LOGIC(GE(VX3 0» and 

LOGIC(LE(VX3 5». The representation of these in the semantic 
t 

net i •.• how~ in Fig. 2-19. Rote thAt the nade èymbolizing VX3 ls 

ahared between the two predicàtes. 
1 • 

0,: I.t iB obviou8 that the usage o~. the predic:ts.te link yields 

) a compact saman tic 

~~~ 
network po_Be.sing' a minimal amoun~ of dupli-

" 1 . 
,1 

.~ 

f 
1 

, 
• 
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SEMANTIC NET 

TRIANGLE 
• 
1 , 1 -+- , 1 -+- ~ 

~ 
1 ~ .... 

l ";" 

'11 ).,. 

1 ' l 1 l , 1 
1 c 

• -!- > . 

semantic plane ~predicate 1ink 
of TRIANGLE , 

0 

LINE 
• 

f 1 .. -: , 1 -1-- ~ T-4 --.j 

E~ .J:-
o 

t " 
,~ . 

LOOIC 1 
1 GT ~ 

l .. CONSTANT 
Semantic Plane 0 Ir of LINE . 

t 1 , 
WORD . + 1= ) " 

t 1 t '. 

+ L.. to SIZE-oBJECT 
node 

Pig. 2-18: 'the aemantic planes for TRIANGLE and LINE showing the 
usage "of the predica~. link. ,,-

" 

'1 

,f 
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"l' 

, 
! 
1. 

~ 

! 
\ 

Pig_ 2-19: Th~"~e of the predicate 1ink in 1ink~ng ~ther 
subcomp:ments of the predicates LOGIC (qE (~3~ :";" 
and LOGlè'(LE(VX3 5»:- '''-~ 

cated information. 

'l'he examp 

feature of the 

of Fig_ 2-18 i11ustrates another'interesting 

As many a lready been noticed by 

the a1ert reader, the 'p~~scriPtion of the predica}.es were 
"-

....................... ",'-

incomplete in that the feature were not sufficiently qua1if~ed. 

To fu11y qua1+fy the SIZE feature first, predicate should 

have been LOGIC(GT(SIZE(LDtE) 0)') and thè' •• cond predicate shou1d 

• ~':>.~>"'I ',."... .. : ."' .... ,. :t"" .~. . JY~~" ~ ,~~ ~.~<'111':!"~" .. ~"" 

.. ' J'i;"~' ~t " 

.: 
r 
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have been LOGIC(GT(SIZE(TRIANGLE) 0). This was not done because, 

ana1ogous to the PL language structure, each plane in the semantic 

net possesses a "sphere of influence". Thus the name of the ob-

ject of the plane which accesses a predicate is automatically 
, 

appended to each of the conditions on features specified by the ~ 

...... 
predicate. 

It is now possible to generalize the structure of a predicate 

if one omits from this discussion the structures whieh result from 

the use of the KNOWN mode of the MODIFIER nod~. Specifically, any 

predicate can be modeled by a binary tree l whose patriarch is a 

MODIFIER node of the LOGIC type~ For example the predicate spe-

cified by the example of Fig. 2-17 can be modeled by' the binary 

tree of Fig. 2-20. Note that the leaves of the tree are either 

OBJECT nodes, NULL 'pointers or MODIFIER nodes containing the CON-

STANT string in their TYPE field. 

The exa~les of this chapter have ~erved to explain and high-

1ight representations of various soncepts within the semantic 

memory. Fig. 2-21 depicts a pictorial description of the memory 

in general. 

l 8~~ tree: Ra finite set of nodes Which is either empty or 
consists of a roo~and two disjoint binary tree:,~ ca'lled the 
18ft and right subtr)aes of the root" (Knuth, 1968, p309). 

( 
,.'0 : 

.. 
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1 
1 
1 
1 
r 
1 

1 
J 

1 
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, 
. 

WORD 

2 W 

vx 

. 

, 

NULL 

WORD 

2 

... 

vx 

. Fig. 2-20: The binary ue. representation of the predicat. of 
Pig. 2-17. , ' 
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DICTIONARY SEMANTIC PLANE 

~"4---lil3-::), 
, 

OBJECT 
! l , 1 

1. 1 
1 

~ 

1 
1 
1 

~ 

r r 1 l 
1 f 

1 
1 
I-

1 

Il , 1 4 1 
1 ·1 

-.;-

J'ig. 2-21: 
1 ) 
-~, 

~ 

NODE 
\ ~ 1 --

'" K!) to predicates 

+- T .. 
, '":' 

01--- + 
CD @ 

@+--- + 
~ \ SEMIINT:tC PlANE 

, t..--

" OBJECT 
... NODE , ,. 

~ to predicate 1ist 
"""'" 

~~0 
to subobj ect list 

( 

I 

U:BJECT 
SEMAlrt'IC ,PIANE 

~ '. 

~ NODE ...... 1 , 

~ to predica te list \ 1 .. 
~~(!) 

1 
~~ 

to subobj ect 1ist 

Genera lized form of a Semantic Memory, <D and @ ref er 
to sUQopject links and predicate links respeçtively. 
While the predicate link is shawn externa1 to semantic 
'planes only, it also exists within\ individua1 planes 
( ••• Fig. 2-19). 
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• 

Given the details of the structure o~ the semantic mernory, " 

it is possible to justify the 1C1aim that it can supply aIl the 
1 

information necessary ta draw an object. The memory has been 

define~ so that it contains e ough information to limit the value 

of each feature (fv ) of an object as follaws: 
6 t-

either (i) fv = a 

or (ii) fvE [b,c]l and fv:/: di i = 1 , 2, .•• 

where a,b,c and di 's are constants .nd the di 's are members of 

the (possibly null) set of forbidden values of fv. If the con-

straint on fv is type (i), th~n ~e feature v.alue is fixed. Other-

wise, a random selection of fv subject to the constraints of (ii) 

will yield an adceptable value. Any constraints supplied by PL 

statements serve to further limi t the range of acceptable values 

for fv. 

The way in which the semantic memory's information is acèessed 

and used is the subject 

this chapter formalizes 

point. 

of the next '$apter'­

some of the co~~~~\ 

'<li 

The next section of 

descr ibed to this 

1 This notation means: "the value of fv fall~ withtn the interval 
bounded by the points b .. tram below and c 
from above·. 'I 

r 

, • 
\ 

, \ _ ... ----------~~'---' 



.-
2.4.4 Concepts 

» 

This section formalizes the structure of the semanticnet. 
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Its objective ~s the definition 9f what constitutes a concept and 
f 

the determination of whether it is possible to represent all con-

cepts by the rela tionaf LEAP structures of Section 1. 3.3. 

A characteristic of a semantic net ie that it containe ~uc­

tures called concepts which need be defined only once. The con-

verse of this statement is now assumed. That ia, any structure 

which need be defined only once is a concept of the semantic net. 

By definition, a structure consists of anode called the patriarch 

and all the nodes accessed by it, either directly or indirectly . 
• 

Because of the rnanner. in which the semantic net had been structured, 

the above definitions imply that choosing any node in the net as 

patriarch will isolàte a structure which,represents a concept. 

It is contended that each structure may be represented by one or 

more LFAP triples or by a 'member of a triple. 

The specification of a relational triple in the LEAP language 

May fo1low either the ( 0 A V ) format discussed in Chapter '1 or 

the more general ( A RB) format. The former is especially 

auited to 1inguistic descriptions whi1e the latter simply states 

tha t two concepts A and B are 1inked by a relation R. Because 

the author 's net i$ mathematica1 rather than linguistic, its 

concepts are more amenab1e to represent:ation by ( A RB) triples 
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than by ( 0 -A V ) triples. 

Consider the set of nodes in each plane of the author1s net 

which may be patriarchs. Reference to F'ig. 2-21 yields the fol-

lawinq members: 

(i) Any MODIFIER node. This node accesses either all or 

part of a predicët"te within a plane. 

(ii) Any one of the LIST nodes accessed ei'her directly or 

indirectly by a pointer from the ATTS field of an OBJECT 

node. The LIST node accesse~ both a predicate as well 

as the next LIST node (if any) in the list of predicates 

(aee Fig. 2-21). 

(iii) The OBJECT (i.e. header) node of a semantic plane. This 

node accesses a set of subobjects through its SUBOBJ 

field and a set of predicates through its ATTS field. 

(iv) Any one of the LIST nodes access~d either directly 0+ 

indirectly by a pointer from the SUBOBJ field of an 

OBJECT node. Thé LIST node accesses both a subobject 

(i.e. the header of another plan~) as well as the next 

LIST node (if any) in the list of subobjects (see Fig. 

2-21). ~ 
The conc~pts described by (i) can easily be shawn to be 

) 

repre.entable by, either a relat10nal triple or by a member of 
( 1. 

web a. triple. It WBa ahawn in the previous section t.hat any 

.. 1 ~\ 
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predicate can be modeled by a binary tree" 'Because any po~iOn 

of a binary tree is either a leaf or another binary tree, any 

,part of a predicate can be a1so so modeled. 

A binary tree can be modeled by a relational triple as can 

be seen from Fig. 2-22_ rherefore, any part of a predicate de-

scribed by (i) can either be modeled ~!I a relational triple or 

-- ( A R ( AI RI BI » 
( A Ra) 

2-22: Representatiop of a binary tree by ( A RB) where 
B (AI RI B' ). 

as a member of one. ~e only e~ception to this occurs ~hen the 

patriarch node la a, MODIFIER node containing the string WORD. In 

this case the étructure represents a feature and ia represented 
,-

by a termihal member of a triple. For example, the predicate of 

Fig. 2-20 is represented by the triple: 

(BIZE BQ (NULl'.. SQRft' (VX2 SOM VX2) ) ) 
1 1 .,., 

+ + AN;" /B" 
A' R' - "B' 

"t~ . B A R 
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Because the function of a LIST node is to AND' together 

groups of OBJECT br MODIF;tER nodes, the concepts described by (ii) ~ 

are representable by an AND'ed set of relational triples each of 

which Symbolize~ a predicate in the semantic plane. Thus type 

The concepts deacribed by (iii) are representable by AND'ing 
, 

two c~sses of relational triples. The first class describes the 

'1 
predication of an object by it~ subobjects and ca~ be constructed 

by observing that the SUBOBJ pointer from the OBJECT node can be 

represented by the relation R= "has-as-subobject". The subobjects 

of the patriarch node which are linked by LIST nodes become the 

"B" ~embers of the tr iples and the class of triples is modeled by: 

( OBJECT has-as-subobject OBJECTl ) 
(\ ( OBJECT has-as-subobject OBJECT2 ) 

, 

('\( OBJECT rui's-as-~~bobject OBJECTn ) 

In a similar manner, tbe second..-class of relational triples de-

Bcribes predication 'of an object by restrictions on values of its 
.' \ 

features. It can he cons~ucted by observing that the ATTS pointer 
1 

fram the O~ECT node can 

R=: "has-as-predic8te". 

he represented by the r.elation 

The predicates of the patriarch node 

which are linked, by LIST nodes become the "B" members of the 

triples and the class of ~iples is modeled by: 

( OBJECT has-as-modifier MODIFIERI ) 
n ( OBJECT haB-as-~difier' MODIFIER2 ) 

••• 
(\ ( OBJECT ha8-as-modifier-MODIPIERn ) 

\ 

--.." 
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In summary , the concepts described by) (iii) can be represented 

by.~ND'in9 the two sets of relational triples described abOve. 

In a manner similar to that used for type (ii) concepts, 

those of type (iv) can be represented by an AND'ed,set of sub­

Obj~cts each of which can be r~prèsented by an AND'ed set of re-

lational triples. Thus type (iv) concepts are rnodeled as: 

( SUBOBJECTI ) n ( SUBOBJECT2 ) ('\ ••• fl { SUBOBJECTn 

where each of the SUBOBJECTi is representable by the set of re­

lational triples outlined·in the preceding paragraphe 

This section has formalized the structure of the author's 

semantic net in two ways. First i t has defined a coricept as any 

structure in the semantic net. Second i t has shawn tha t any 

" concept can be represented by an AND'ed set of relational triples 

or by a member of a relational triple. The next section briefly 
c.. . 

considers whether thé semant'1c memory is a viable model of a hu,man 
! 

, long-term memory in accordance with the precepts outlined in 
, J 

Sect:ion 1.3.3. 

2.4.5 A Brief COIDparison with ftuman Long-Term MemOry 

',1 
1.:, 
i , 

1 

Ac::cording to Chapter l, four features of a human long-term 
\ ' 

meatory are that it is associative, teacbable, inferential and 

tbat it bave a flexible retrieval mechani~. This section will 

.briefly conaider whether the author '8 semantic memory possess,es 

th •• e features • 

J 

. ~ ______________ .. ~ ................ """""""""""""""'~~~_~,~_J~.~~~~=~~~~~.~ _____ __ 
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That the memory is associative follows by the dejinition of 
. 

a semantic mem~ry. First, ~h\ existence of the semantic map means 
\, 

that entry into the net is on a content-addressable rather than 

location-addressable hasis. Second, bec~use the semantic net 

consists of linked sets of relational triples, accessing of infor-

mation within the net·is also on a content-addr~ssable basis. 

These two features define the author's mem~ry to be associative . 
• 

While the memory is theoreticafly teachable~ this f~ature 

bas not been implemented. Indeed, the techniques required to . ' 

make the memory teacha~lè constitute a complex procedure which is 

.' 
beyond the scope of this thesis. Sorne attributes of such a pro-

cedure will be discussed in Chapter 4. 

That the memory i8 inferential is demonstrated by the fol-· 

lawing example. Consider the semantic plane of a triangle. On~ 

of its predicates is LOGIC(LT(SIZE(LlNE1) OPQUOT(SIZE 2)) which 

states that the length of line number one is less than half the 
..-. 

" 1 
pèrimeter of thb! tri~n9le. If the size of the triangle ia g!ven, 

then the compil~ will be able to infer a limit to the size of 

11ne one. " 

If the m~ry ls to have a flexible retrieval mechanism, it 
1 , 
" must be able to retrieve information given data whose format 

differs from that by wh1ch.the memory previously learned' the infor-

_tion'! This feature is not present in the author's semantic 

'" memory because of its specialized (mathematical) nature. However, 
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, ' ~ 
. 'X,., , 1t can be assumed that the morè 'general l1.~U1st1c memory of which 

it\WOUld be à part would possess this capability insofar as it 

m~t be able to translate input data to a form reCOgni~ble by 

the mathematical memory. 

This section compl~tes Chapter 2 which·has heen concerned o 

with the pt and the semantic memory. œhe next 'chapter will 
.. . . 

discuss the com~iler and the method ôy which it incorpora tes 

information fro~ th~ ~L and the semantiè memory into the STM. 

~ 

'J • 

. . 

., 

1 

, ' 

1 .. 

" 

.... 

1 • 

" \ 
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Chapter 3 

The Compiler and STM • 
" 

3.~ OVervi~ 

This chapter describes ~he compiler whose function ia the 

translation of information from both t~e-PL and the semantic 

memory into the STM so that the information can be used in the 

syntheais of line drawings. A f10wchart Df the operation of the 

compiler appears in Fig. 3-1. 

As can be seen f~m the flowchart, compilation occurs in 

three steps. In the first step, the compiler accepta a PL pro-

gram, checks i ta syntax and uses it ta crea-te the STM. The next 
, 

step, which is repèated for each object to be drawn, consists of 

locating the semantic plane representing the object, creating a c' 
1 

Subobj ect Tree (s.ee Section 3.4. 2) , ~ farming a 11 predica'tes of the 

object and translating these into the STM ùaing information stored 

in the SUbobject Tree. In t.\le third étep, the Feature Value Selec-

tion Algorithm (aee Section 3.5.3) is executed. This a~90rithm 
~). 

1 

yields a numeri~al value for every feature of'each object to be ~ 

drawn cona:istent with the -:.constraints specified by the STM. Thé 

, fea'ture values are then uaed to produae a line drawing. 
\ 

,.. 

The reaaainder "of ~ia c~pter presents li detailed ~escription 

of' the above proc~é1~e and pointa 'out ~e'~limitationa!lf -th~ pre-
~ ~ 0) " c ...$-

... t;. " ;" \ 

1.. /' u 

__ ~ ____________ ..I.._ .... __ -'-_____ IIIIiI_I'!.'!'U~.":" ... 1:I:Ci!iirh \\\""I:'tt!~, ",:;,,-7;JI(\.:.~~ .'t. " 

• 
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sent implementation of the compiler. 

r------------------------------------------------~--------------, 
1 
1 

1 
1 

START, 

TRANSIATE 
PL STRINGS 

INTO STM 

,N 

INPUT PL 
PROGRAM STEP 1: PL INPU'D' 

HALT 

r------------ -------------------------------------------------T' 

, 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 • 1 

GET FIRST 
OBJECT TO BE 

DRAWN FROM STM 

FORM 
SUBOBJECT 

TREE 

GET 
NEXT N 

. . 
STEP 2: SEMANl'IC MEMORY INPUT 

HALT 

GET PREDlCATE 
ON OBJECT FROM 

SEMANTIC NET 

\ 

TRANSIATE 
INTO 

STM 

1 

1 -~~ ~ 
r-----------~-~------------------- ------------------------------, 1 • 
1 y 
1 SIMPLIFY 
1 S'l'M 
1 
1 
1 

STEP 3: COMPUTATION AND OUTPUT ' 

1 
1 EXECu!rE FFA'l'lJRE PRODUCE 
l '" VALUE" SELECTION LINE END" 

,1 .-

L ________ ~~~~~~ _____________ ~~:~~ ____ ~--~:-------__ ~ ___ . _____ .J 
. , ., ,,, 

'" \ . 
ri9~ l~ll 'General Flowchart of the 9~eration of the compiler. 
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',3.2 Structure of the STM 
... 

The operation of the compiler on the PL and the semantic 

memory produces the STM. Before the procedure by which this is 

aAcomplished is described, it is instructive to consider the struc-

ture of the STM in general. 

The information stored within the STM represents specifie 

instances of concepts defined in the semantic memory. It is there-

fore reasonable to assume that the structures of the STM and the 

semantic memory will be sirnilar. A cornparison of Fig. 3-2 with 

Fig. 2-21 shows this to be the case. l 

These sirnilarities in structure permit a carryover of Many 

, ideas evolved in Chapter 2 to the present discussion. For example, 

it will be shawn that the STM contains LIST, OBJECT ~nQ MODIFIER 

-~qdes as dges the semantic memory. Furthermore, the usage of 

theae nodes will·often be the sarne for the two structures. 

A description of the methods by which the compiler crea tes 

the S~M from a PL pr6qra~ and the semantic memory is the topic of 

the fOllowing sections. 

l '!'he TOPOLOGlCAL REIATIONSHIP block of" Fig. 3-2 i8 a temporary 
Itructure whoee function will he deec:ribed in Section 3.'3J3. 
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LIS'b OF FEATURES 
AND PREDlCATES 

O~ FEATURES 

, 
\ 

OBJECT 
NODE 

ECTS ~. 

OBJECT 
NODE 

., 

Fig. 3-2: OVerview of bhe a the STM. -The function of 
the TOPOLOGlCAL "'""J~'" block ia' deacribed in a 
later section. PACE ia a header poin,ter which 
locatea the 
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~ Translation of PL Str!ngs 
-

Th~ first task whi~h must be performed by the compi1er is 

the translation of PL strings into thecSTM. The a1gorithm used 

by the compiler to check for syntax errors will not be described. 

Instead, it is assumed that the algorithm functions properly and 

that any syntax errors are detected and cause termination of 

compi la tion. 

It was shown in Chapter 2 that the PL contains three s~e-

ment types: DRAW, LOGIC and TOPOL. The way in which these are 

incorporated into the STM is discussed next. 

3.3.1 ~L Statements of the DRAW Type 

The DRAW statement def_ines an instance of an object. Compi-

lation of the statement creates a structure within the STM which 

represents- the object. The details of this structure are now 

considered. 

According to the syntax of the PL (Section 2.3.3), the DRAW 

atatement has the forro DRAW «obj ect*> {<numera 1*>/ "}> ~ Givee,. 

auch an input the ~ompiler can deduce that an object having a .. 
feature set is to be drawn. It was shawn in Chapter 2 that each 

object possesses six primary features. ~ese-are StzE, ORIENT, 

1 If no numerical suffix is attached to the name of the object r 

a -1" ia appended by the compiler. Thus, DRAW(LDœ) becomes 
DBAW(L:tNE1)'~ 

• l'l 

6. 

- .... -:r-----. -,;-, .. :~ _ •• ~ li 
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VXl, VYl, VX2 and VY2. Depending on its complexity, it may also 

possess secondary features. Because the compiler cannot a priori 

know about the existence of the latter, the DRAW statement results 

. in the creation of the· STM depicted in Fig. 3 -3. 

/ STM 
., 

WtRKSPACE 

1 t' 1 ~ 1 note( 1) 
1 ... 

-!- ?' J 
J..~ 

17 
-:;:-

0-+- - ... ---",J l _, J 
17 -!-

SIZE V'i2 
~ 

1 

~ ~ 

1 t t 1 l , 9 1 

++ .++ . 
-

Pig_ 3-3: The STM which results from a single DRAW statement. 
conventions fo~ drawing LIS'r, -OBJECT and MODIFIER nodes 
are the same as 'those used in Chapter 2. The string 
r.pre.~tad by "note ( 1)" is <object*><numeral*) where 

1 (object*) is as defined in the DRAW statement. 

~-.~-.":""'> ,-".:.t.""'!':~--- -.~' 
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\ 

It c n be s n from this figure that the OBJECT node iden-.... 

tifies the\ object tô 'he drawn.. Its ATTS field points to the Hst 

of prirnary features 'each of which is represented by a modifier 

node. A backward pointer from each of these MODIFIER nodes per-

mits the identification of the OBJECT node to which the feature 

pertains. Each MODIFIER node also contains à pointer to a LIST 

nope. This node can he used to set up a list'of Value Dependence 

Pointers (VDP's) wbose function will be described in this chapter. 

This completes th~ description of the compilation of the DRAW 
. 

statement. Each time one of-these is encountered by the compilee, 

another structure like that described above is created within the 

STM., 

The next section describes the compilation of statements of 

tl'le LOGIC type • 

\ 

\. 

f 
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3.3.2 PL Statements of the LOGIC Type 
\ 

\ 

) 

The LOGIC statement specifies predication on the features 

81 

of an objecte By its very nature it may also reference second­

ary feature~l an~ subobjects which have not yet been encoded 

into the STM. By using two exa~les, this section will des~ribe 

the compilation of the LOGIC statement into the SrM. The first 

/1 

example will aiso demonstrate the incorporation of secondary 
• -~l 

! 

features into the STM while the second will illustrate the incbr-

Consider 
\ 

the PL statements 

poration of subobjects. 

DRAW (TR IANGLE 2 ) 
LOGIC(LE(VX3 OPSUM(VY2 5»). 

\ 

The DRAW statement causes a structure similar to that of Fig. 3-3 

to be set up in the STM. In compiling the LOGIC statement the 

compiler r~cegnizes VX3 as a feature because of its pO~ition in 

the statement2 • But because VX3 is not a primary feature in that 

ft contains the suffix "3", it is recognized as a secondary feature. 

A new node representing it i8 therefore app~nded to the feature . 
set of TRIANGLE2. Fûrthermo~e, the LOGIC statement speci~ies a 

predication on VX3 and this information is aiso encoded into the 

S'fM (Fig. 3-4). 
.t 

1 See Bection 2.3.2. 

l' 

2 Ref er to the BIO' cleBer lption of the PL (Bee Sectiort 4Q • 3. 3) • 
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STM 

W~RKSPACE , 

TRIANGLE 2 
1 f 1 l 

l 
~ \ --'- --!-~ d7 

-:-

-, \ 
1 o-l-- 1 .. 1 ... 1 ..... ... , 

t 1 .~ 
":' 

SIZE VY2 .. 
VX3 ~ ~,/ 

V ~ 

1 1 . 
,h , 1 ~ 17 

? -1 "1 r 1 
1 

1 ?' 1 -::!:- 1+ --±= b .J:-
I · 1 

, 

" J 
-:- l l '1 

-*-) . LE 
.:.. 

'VDPJ 
.. 

'" 
, . 

OP . 
, . SOM . 

, 
CONS'rAN'r 

i 5 
, , , 

-t- + 
o ,. 'i9.,3-4: 8TM representation of 

. DRAW (TRIANGLE2) ç 

LOGle (LE (VX3 OPSQM(VY2 5») " 

N VDP is ~he Value Depend_nce Pointer described in the texte 
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The LOGIC statement of the above example stipulates that 

VX3 is a functio~ of VY2. As a result of this functional de-

pendence, a backward pointer called a vÂlue Dependence Pointer 

(VOP) is set up from the independent va~iab~' (VY2) to the pre-
1 

dicate (see Fig. 3-4). The purpose of this pointer will be ex-

plained later in this chapter during the discussiok of the Fea-

ture Value Selection Algorithm. 

It can be seen from Fig. 3-4 that the structures of the STM 

and the semantic memory are similar in that MODIFIER nodes play 

a dominant role in the encoding of information. Their structures 

differ to the extent that the STM's is tailored to the specifi-

cation of instances of objects defined by the memory. The re-

sultant STM s~cture represents these instances in a manner 

which facilitates the "computation of feature values. 

The second 'exampie of this section illustrates the usage of 
1 

r 
1 

the LOGIC statemen~/in the specification of subobjects of an 

objecte Consider the PL atatements 
\) 

DRAW(RECTANGLE1) 
LOGIC (NE (SIZE (LINE2) SIZE». ' 

Because of its location witbtn the LOfIC statement1, the compiler 

recognizes LINE2 as an objecte Furthermore, because the LOGIC 

atatement is within the ".phere, of influence" of RECTANGLEl, 

Mm;! 1 

1 Refer to the BlITP de.cr ipdon of the PL (see Section 2.3.3). 

! 
~ , 
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LINE2 is 'lt"ecognized as a .subobject ot RECTANGLEl. The STM 
, 

which results form the compilation of these statements is de-

picted in Fig_, 3-5 • 

.. -
STM 

. WOrPACE 
, 

r , 1 1 RECTANGLE 1 
1 -

1 .. ' r4- Î ~ 

-: .~ ... ... ---
f 117 III 117 

. 
,I~ SIZE 

.-. + ~ .... 
1 LINE2 

.... -, 
17 

• , IJ 

~-!- ~ 

~ T -: 1 r.. - - -... 
1" 

~ SIZE 
,. 

- ... , 1 1 ..... r ... 1 W'I 

~ + ,17 

L....(;. , 
1 

1 
. 

Pig. 3-5. STK r •• ultinq trom the PL atatements 
DRAW (RECTANGLE1) 
LOGXC(NE(SIZB(L1MB2)SIZE» 
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It can be seen from Fig. 3-5 that the PARENT field of LINE2 
1 • 

\ 

' . 
contains a'pointer to RECTANGLEl. The purpose of this pointer 

is to allow the identification of the parent of an object ~iven 

the objectes location in the STM. This usage is in con~ast to 

that in the semantic memory where the PARENT field is presently 

undefined. 

Thi,s example concludes the description of the compilation 

of LOGIC statements. The next section conside~s ithe compilation 

of tne last type of PL input~ the TOPOL statement. 

3.3.3 PL Sta±eme~ts of the TOPOL Type 

The TOPOL statement defines a topological relationship 

be~een the ~o obj~cts which are its arguments. Its position 

in a PL program must be such that its arguments have bee~ pre-

viously d~fined by appropriate DRAW commands • 
.. 

As waa seen in Chapter 2, its syntax is specified by the 

expression TOPOL«topre~>(argl arg 2H. 1 In this form, the ToPOL 

statement does not yie1d useful informat~n on the features of 

ita arguments. What ia required, then, ia that the atatement ,be 

tranalated into a set of predicates op theae features. The methOd 

by whicb this ia done ia now deacribed. 

1 ar91' arg2 are the objecta for Vhich the topologieal relation­
.hip i. biing derine&!. In" fora, 1ll"91... aniS ar92 are members 
of t!be •• t of .tring. define4 by (object-,{*waeral*)I"}. 

(' 

" . 
,c 
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A sufficient (but not necessary) condition for t~e TOPOL ,,' 

statement ta he valid is that ~ of the contour vertices of 

its arguments also satisfy the topological relationship speci~ 
1 

J 

,fied by the statement. Fortunate+y, it is an easy matter to 
-( ~ 

determine àppropriate constraints for the contour vertices. Thus, , 
,'7 fi 

for the general statement of the previous pa~agraph, a SUffiiie~t , 

ri set of constraint~ are 'as 
" \ 

if <toprel) : : = LEFTOF 

if <tC?prel) ::= RIGHTOF 

if itoprel>\~:= ABOVE 

if (toprel) ::= BELOW 

follows: 

then 

then 

then 

then 

• l,. 

~ 

v· = .... ~ 
V. ? J ' 

(vXi'VYi) and 
(VXj ,vy~) where 

.... 
vi are the contour ver~ 

tices of arg'l and 

*. are the contour ver­
) tices of ;{rg2 • 

In order. to reduce the ~ogramming effort, this sufficien~ set of 

constraints fs the one employed in the present implementation of 

the compi 1er. 
1 : \ 

, 
It would ~herefore appear that When a TOPOL statement ~ould'\ 

, ' " ) .. 
be encountered, the compiler need' only.generate a suitable set 

of predicates on the contour vertices of the a~propriate objects~ 

'" tTh~se predicates could then be incorporated into the 5TM using 

the teèhniques described in the previons section. ,,-
, 

Unfortuna.tely, this is not possible beca~se so~e of the 
. ( 

,c~nto~ vertices'of the abjects may be seeondary features whose 
\ : 

.xr.tence i. pnknown ta the compiler. The p~oce.8in9 of TOPOL e 

" 

0 

1 
" 

" 

1 • 

l' 
.l, 
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statements into·thé 5TM must therefore be delayed until aIl Jke 

pertinent information of ~è semantic net which includes predi-

~~, cates on aIl secondary features has beÉm a,ccessed and compiled. 

,1 

1 
) 

. , 

So that the compiler may "remember" the TOPOL statement, a tem-

porary representation of ita infor~tion is set up in the STM. 

For example, the PL program 

DRAW(LINEI) 
DRAW(LINE2) 
TOPOL(ABOVE(LINEI LINE2» 

results in the structure of Fig. 3-6. 

STM 

WO~PACE 

,~ 

LINEl l , 1 1 ~ 

9 1 - - --
:~ , ~ 

LINE2 
~ 

l , 1 1 
.... 

1 - 'i 1 
.... , -- -

, + -.!-" . 
\ 

l , 1 \) l, 'l'OPOL 

'" "' ... p 1 -1 .. , .. 
-=- "..f- -~, ~ -, . . . 

ABOYE 
, , l 

l 

... 

Pig. ~-61 'l'emporary repr •• entation in the S'l'M of the atatement 
'l'OPOL(ABOVE(LlNBl LDŒ2».' 

f 
J 

1 

'1 

, ., 

, 
i 1 
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Onçe All the pertinent predicate~of the ,emantic, net have 

been accessed and incorporated into the STM, the information of 

the'TOPOL statement can be translated using the methods describeda 

The resulting LOGIC statements whieh represent pred~ates on the 
~ 

contour vertex features of the arguments ?an then be easily inte- l 

grated into the STM. Upon completion of this procedure, the 

topological relationships block ia deleted from the structure of 
df 

Fig. 3-2. 
1 

• \II 

This s~ction comple,es the description of the compilation of 

PL statements. The next sections discuss the algorithms for the 
" . ~ l ' 

retrieval of predicates from ~he aemantic net and for their sub-
, " 

sequent compilation into the STH. 

/ 

',' 

" 

;~ . '; 
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3.4 Translation of 5emantic Net redicates into the 5TM -
The following sections wil descr~be the algorithms required 

Ifor the transfer of informatio from the semantic memory to the 

5TH. It is assumed that a PL~nput proqram ha. been succes.fully 

compiled. What ls required s that the compiler access the per-
\ " [~ 

tinent pr~dicates of the~~ ntic net and incorporate théir infor-

omPI~~~i~~~-:~S') task, the 5TM will 
C.J 

mation into the STM. Upon 

conta in aIl the inforrnati necessary to draw the objec,ts specified 

by the PL program. / 

It was seIn in Cha er 2 that aIl semantic net predicates 

can be represented by GIC .statements. Fur thermor e , Section 3.3.2 

" 
described a procedure for th~·translation of such ~tatements into 

the STM. T'berefore,/the procedure which shal~ be adopt'éd wil,l be 

the translation of ~emaptic net predicates into LOGIC statements 

and ~hen the trans{ation ~f these into the STM using the methods 

of Section 3.3.2. ' 
. 

It can bd'" seen from the flowchart of Fig. 3-1 that ,the trans-

lation procedure which ~il1 be described is repeated for each 

object defined in the STM by a DRAW commando The first step in 

the procèdure ia ~e localization of the object to be drawn in the 

.emantic net. "l'he syntax of the PL states that the name of an 

object in the STH i8 defined by the BNF string <object'!')(numeral*> 

while its counterpart in th- semantic net is defined by < object'*'). 

,.' 

1 
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Therefore, the compiler truhcates <numeral*) from the object's 

name and compares the remaining string ta that contained in the 

OBJE~ node of each semantic plane. r If a match is not found, 
.. .----. 1 

the compiler aSSUmes that the object is undefined and execution 

of the program is terminated. 

Assuming that a match has been found, one mig~t assume that 

the compiler need only generate PL strings from the semantic net 

predicates pertaining to thè object to be drawn and incorpora te 

these into the STM. Unfortunately, this ~s untrue becau~e the 

---strings generated in thi~ manner' do not sufficiently qualify the 

features of the object. Nevertbeless, the translation of semantic 

net predicates into PL statements does constitute part of the 

solution. The next ~ection describes the methodology of this 

translation procedure as well as its shortcomings. 

3.4.1 Synthesizing PL Strings from Semantic Net Predicates 

The translation of a semantic net predicate ~nto a PL string 

must involve accessing i ts information by traversing i ts nOdes'~ 
accordance with an a1gorithm. It was stated in Chapter 2,t~t 

..... -.. each predicate may be mode1ed by a binary tree. Therefore, it is' 

worth considering whether an alqorithm for the -traversal of binary 
"b 

trees may~be of use. Knuth (196B).considers three such a190-
Of"'-

o ' rithms: preorder traversa l, postorder traversal and endorder 
(1 
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Of these, preorder ~aversal is the most useful for 

the required application. It stipulates that the traversaI of a 

binary tree is to be accomplïshed recursively in the following 

sequence: 

(i) viait the root node 

(ii) traverse the left 'subtree 

~ . (iii) traverse the r~ght subtree 

Thus the sequence for ._,~ t~ng the nodes of the tree of Fig. 3-7. 

is a Q d hie c f j k g. 

. . 

Pi.g. 3-7: A typic;al binary tre. 

t 0 
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The algorithm em~loyeJ for the traversaI of semantic net 

predicates uses preordet traversaI as its hasis. It will be 

derived using an illustrative example. Consider the predicate 
"," 

92 

of Fig. 3"::'.B. The ,traversaI algor,ithm for this pre~i~!te must be 

capable of prod~cing its PL representation. That is, it must be 

.. 
. 

LOGIC 
~ 

1 
( .... 

GE -

• 1· 

'7 '7 

WORD '; FeR f' 
1 ( 

Il SQRT " 

1 

..... SIZE 'i' \. 
-1-

f 1 , n 

+ ,+ - OP , - . 
-' . 

PRODÎ 
" . 

1 -
WORD , 
, Il ~~ 1 . " 

? 
.... TRIANGLE -WORD CONSTANT 

. ..1- l ' 5 

-!. '1 ? ~ 
, 1 r 

- ~ -l- ~ ~ -1.. .-J:. ' 
;~ ~7 . u 

\ 1 1 VX' ".,. to predic;:ates 
and 8ubobjects 

-!-of TRIANGLE 
, , 

l' 

1- 1. 
.. 

Fig". 3-8: A aemantic net predj,.cate. 
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capable of pro?ucing the ~tring LOGIC(GE(SIZE(TRIANG~)FCNSQRT 

(OPPROD(VXI5»». 
(, 

Application of preordèr traversaI to the structure of ~ig. ,3-8 

yields the following strings: 

LOGIC, GE, WORP.~ ", WORD, ", SIZE, TRIANGLE',' 
FCN, SQRT, OP, "PRaD, WORD, l, VX, CONSTANT and 5. 

In order to convert these strings to that which is required, the 

foll~ing changes must be made to the traversaI algorithm: 
1 

1. Subtr~es whose patriarch is a MODIFIER node containing the 

string WaRD are tc1 be traversed recursively using a "mirror 

imac;Je ll postorder algorithm1 defined by the.following steps: 

( i) vièit the right subtree 
, 

(ii) visit ~he root node 

:t ~ ... 
(ii!) visit the lef.t subtree 

of t~is'algorithm and 
r 

Usage removal of the strings WORD 

and CONSTANT results in: ~ 

: 

LOGIC, GE, SIZE 1 • 
Il TRIANGLE,. Il SORT, PROD, 

... , , FCN, OP, VX, 

land 5. • 

,2. Concatepation of the.strings in OP-and FCN-MODIFIER nodes 
, .. 

. a.~w~~l as the concatenation of those in OBJECT nodes to 
.. 

their immediate successo~ fro~ the traversal algorithm 
~ y 

yields LOGIC, GE, ·sIzk,. ~IANGLE, FCNSOR'r, OPPROD, VXl and 5. 

/ .. ----------------------------
1 Por a more detailed di.cu •• ion on binary tree traversal, see 
~uth (1968), pp. 315-328. 

, ' 
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/V-
3. Merging these strings and using brackets where appropriate1 

results in LOGIC(GE(SIZE(~RIANGLE)FCNSqRT(OPPROD(VXl '5»» 
/ 

which is the required string. 

The algorithm which has been described is the one used by th~ 

compiler in th~ $ynthesis of 'PL strings from semantic net predi-

cates. unfortynately, thestring~ generated in this manne~ are 
1 

unsuitable for direct translation into the STM in the sense that 

they do not contain a sufficient amount ot information. To see 

" 

why this is so, consider the semantic net representation of the 
J 

concept TRIANGLE. It can be seen from Fig. 2-18 that this concept 

is defined by the two semantic planes TRIANGLE and LlNE and by the 
r 

~ubobject link2 between them. In incorporating the concept 

TR~GLE into the STH; the a190rithm of this section would first 

traverse~~he predicat~s of TR~GLE and then those of LINE. 

However, a typic~l 'PL string resu~ting from the traversaI of 

LINE wou 112 he 

LOGIC(GT{SIZE 0» - - - iii-Cl) 
r 

such a string is clearly inadequate for usàge by the compiler 

\ , 

bBcause of its ambiguity. Ind,ed, the required set of strings ia 

1 While it is not described here, a procedure for the insertion 
of brackets does exist and has beèn tmplement~d in the present 
compiler. , 

2 ~ , 
. See Sectionc 2.4.2. 

• 
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LOGIC (~T (S IZE (LINEl (TRIAN4el 0 l l 

LOGIC(GT(SIZE(LINE2(TR~GLE) 0» 

LOGIC(GT(SIZEtL!NE3(TR~GLE) 0» 

~5 

- - - iii- (2.) 

- iii-(3) 

- - - iii-(4) 

A comparison of these expressions demonstrates two short-

comings of the strings which are generated by the traversal'~go-

'" " rithm. First, the qualification of features ia insufficiently 
, 

,deep. 'For example, 1:he PL string of iii-( 1) is ambiguous inso-

far as it does not specify whether the feature SIZE pertains to 

i8 insufficient. 

TO reaolvé 'these ~na4equacies, an a1gorithm which resolves a 
/~ 

string like iii-(l) into the strings iii-(2) to iii-(4) i8 re-

quired. JUCh '~n algorithm must employ hierarchical' and quanti ta-

tive information glea,ned from the semântic memory. The hierarchi-

cal information would alleviate the first shortcoming discussed 
< • 

above wh,i,le the quantitative information would alleviat'e the second • 

~ 
A structure which contains the requirep information is the 

Subobject Tree. Its structure and the way it is used by the com­
t' ---- .( 

piler are the topics of the next section. 

" 
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( , 

3.4.2 The Subobject Tree 

The Subobject Tree is a temporary struct~e created in the , 

"scratchpad" memory of the contputer. Its purpose ia to determin~ .. 
the extent to which a PL representation of a semantic net predi-

cate must be modified so that it can be translated into the STM. 

As can be seen from the flowchart'in Fig. 3-1, a new Subob-

j,ect Tree is created each time that the compiler first enters the 

• semantic net to retrieve the predicates of an object to be drawn. 

Its structure is derived as a result of a breadth-firstl traversaI 

of the OBJECT nodes of aIl the semantic planes accessed by the 

Bubobject links in the plane of entry. This traversaI proceeds 

outwards from plane to plane until the terminal planes which repre-

sent the primitive of the semantic net have been accessed. The 

resultant tree consists of nodes which represent the semantic' 

planes visited and branches whiçh represent the subobject links 

between thern. Thus, the patriarch node of the tree represents 
, 

the object to be drawn while the remaining nodes represent both 

i ts direct and indirect su):)Obj ects. For e;,carnple, 'the Subobj ect 

Tree for a'house might be struc~ured as shawn in Fig. 3-9. 

1 Breadth-first traversal involves visiting the nodes of a tree 
in order of their distance from the root node. Thus the root 
node is visited firet. All nodes Which are direct descendants 
of the root node are visited next. 1\11 nodes which arellfirect 
descendants of~se nodes are visited next, and so on. For a 
discussion of th.l}s and other traversal techniques for trees, a.. Ni lason (1971), Chapter 3. 
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(a) 
" 

HOUSE\ 
, 

~ j . 
'-

l. 
, 

1 1 1 

FRAME WINI)OW ENTRANCE 

1 1 
1 

1 1 

LINE LINE DOOR DOORlQ!TOB 
, 

1 1 "' .. , 
v 

JI 

LINE LINE 

(b) 

conceptual representation of a particular Subobject Tree. 
(a' Aline drawing for 'a house. 
(b) The resulting Subobjeét Tree. 
Note that a GABLE is in reality, an isosceles triangle, , 
PRAME, WINDOW and DOOR are rectangles and DOORKNOB ls an 
equilater __ l triangle. This implies that the definition 
of, aay, GABLE in the semantic memory requires the addi­
tiob of only two nodes: an OBJECT node in the semantic 
net whieh contains the strinq GABLE as wert as ai set of 
pointer~âcce8s1nq the aemantic plane for ISOSTRI, and 
• LIST n&de in the aemantic map which àccesses the OB­
-'Be'!' 'node. 

\ 

... 
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The SuboQject Tree defined by the âùthor consis~p of nodes 

each of whiéh contains four pï~ces of infor~ation. The first 

98 

elements of each node is a string which represents the name of the 

object .represented by the node. The second element is an integer 

which indicat~s the requi~e~quantitY of the Objec~1,2. The third 

and fourth elements of e~ch node are pointers which link the~node 

to the other nodes in the' Subobject Tree. Thus, after aIl perti-

nent p~edic~tes have been accessed, the tree for the house of 

Fig. ~-9 is as shawn in Fig. 3-10. 

Let us examine the method by which the compiler creates the 

Subobject Tree.' It was Eitated ear1ier in this section that a new 

Subobject Tree is for}tled each tlme that the compiler first enters 

\ 

the semantic net to retrieve the predicates of an object to be 

drawn. Upon entry, t~e compiler threads through ~e set ,of OBJECT 

nodes r~presenting aIl the subobjects accessed etther directlY,or 

indirect1y by the plane of entry. In doing this, it creates the 
/ . ~ 

nodes of the Subobject Tree , assigns a na me to each node, ~nd li~ks , 

them together in the manner shawn Dy the example of Fig. 3~IO. 

1 Referring to Fig. 3-9(b), the 
tain .~he int~ger 3 to i\~nify 
draw a gablt? ~y 

.~ 

LINE node beneath GABLE would con­
that threé lines are required to 

2 The patriarch node of the Subobject Tree 1s an exception. Its 
~econd element containe an integer which references the instance 
of t~e objeçt specified by the STM. Thue, if the object current1y 
referenced in the STM 18 H00886, then the node ~ill contain the 
integer "6". 

... 

1 
1 
f 
1 
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, l' 
pig_ 3-101 The.Subobject"Tree for'HOUSE6. The house itsslf is 

arawn in Eig_ 3-9(a). 

lat the OBJICT nodes of th~ semantic memory contain~no.information 

a1:»oat th. required quantity of thè objecte Therefore, the second 
'- , 

,. 

".l-.nt o( · ... ch node of the uee ia initÙllly unae~ined. This ~s-. '~ 

.ing information must be obtainea fram the predicat •• of,th~ 8e-
, '\ 

_ntlc net. 
-, 

'1'0 proye that the al~.in9 information re.idés wlthin the pre-
t' 

. --
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dicates, consider any semantic plane that represents an obje~t · . 

which is not a primitive. This plane will contain two types of 

predicates. The first type will yield conditions on the features 

of the object and as such is not pertinent here. H~~ever, the 

second type will yield' conditions on the features of its subo~jects • 
. 

This"is useful because it informs the compiler about the existence 

of these subobjects. New the predicates of each sernantic plane 

must mention each direct subobject at least once. If tnis were 

not true, it would mean that the compiler would have no way of . . \ ' 

\ 
récognizing sorne sub6bject and its existence would remain unknown. 

" 
Such a subobject would be useless and could therefore be disregard-

1 ed. This argument impli'es that once a semantic plape has been tra-.-
versed'and/its predicates incorporated into the STM, the compiler 

can obtain the requi~ed quantity of each direct subobject by scan-
r~ 

ning the contents of the STM. Furthermore, this procedure can be 

.repeated for each node of the Subobject Tree. In this manner, the 

second element of each node of the tree can be def~ed before the 

compi.ler enters the sernantic plane of that subobject. 

Now that the SUbobJect Tree has been defined, its utility 

can be explained. It ia employed to resolve PL strings like 

that of iii-Cl) into the strings iii-(2), to iii-(4) and so complet~ 

tbe tran8lation of 8emantic n~ predicate8 into s~in9s sui table 
"~ 

for incorporation into the S'l'M'. Thu8 , each feature of a PL string 

can he qualifiee! by the name of' the abject to which that feature . 

;~~~~~--------------------------~--------------------------------------------



( 
.. ,,, ·"r 

o 

o .' 

-

iOl 

~ .. eer~.i-P;; .~~~ w~~l a!! 'py .the ~~e~_ qf ,th-; 'obj~~~ ~.s ~e~'t~!iI ,det~~:::>.,. 

mined ~n the Subobject Tree. The second element of each pertinent 

node of the tree (except for the patriarch) then deterrnines the 
- 1 

number of. strings which must be generated ,for the obj eçt repre-

( . 

sented by that node. 

~ 

Th . th 1 f h . t' .' " us, 1n e examp e 0 t e prev10us sec 1on, 

thè string LOGIC(GE(SIZE 0» becomes LOGIC(GE(SIZE(LINE) 0». Fur-

.therm9re, because there are three lines in a triangle, the LINE 

node of the" Subobject Tree will contain the integer "3" and the 

above'PL stat~ent becomes the required strings i1i-(2) to 1ii-(4). 

This section bas shawn how the Subobject Tree is formed 2and 

how it is used to modify predicates from the semantic net ta a 

form amenable for transl~tion into the STM. It can nOW be aesumed 

that the STM containe all the information necessa~y to draw a set 

of. Obj ects. The sections that follaw will dis~uss thê algorithms 
1 

" 
used for the computatiolY"'Of' the feat~e values of the obje ets to 

bedrawn. 
, ~) 

() 

o ,/ 
) 

. , 

" 

,1 

" '< , 



~ , 
l 

-
102 

__ hl çOmB\l'tati~Feat;.ure Valu~Q ~ 
~ . 

The compiler implemented in this thesis h~s been shawn to be 

adequate for the performance of the tasks described in the previous 

sections of this chapter. The seétions that follow will discuss 

the algorithms used for both the simPlifica~i~of the STM and the 

selectibn of feature values. In explaihing these algorithms, the 

\ 

/sections will also demonstrate the inadequacies of the compiler. 

3.5.1 Simplification of the STM 

It has been shawn in Chàpter 2 that the ,translation of per-

tinent semantic net predicates into the STM produces a structure 

,which contains aIl the information necessary to draw an objecte 

It therefore follaws that the additional incorporation of the pre-

dicates of an input PL program results in a structure which contains 

redundant information. This section presents an algorithm which 

partially checks the sernantic validityl of aIl information encoded 

lnto tbe STM and which also eliminates sorne redundancies inherent 

in that information • 

. Defore the simplification algorithm for the STM can be de-

• 
l A statement ia semantically valid if ~ts meaning is consistent J 

with that ,implied by. any other statements which have already been f 
defined. Thua, the PL statement LOGIC(QT(VX2 5» i8 syntactically ,"' 
and aemantically valld if taken by itself. If, however, it i8 f 
atated in conjunction vith the atatement LOGIC(LT(VX2 3», an in- . 
conaiatency arisea and one of the atatements ia assumed to be se­
mantically invalide 

<' 
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scr1bed 
• • 

it is necessary to explain why it is only partially ',. 
effective in the ~~s it must perform. 

, .. ~.'" ,. 
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The STM contains two types of predicates. The first type, 

called the numeric predicate, ,imposes a numeric bound on the value 

of a feature. The second type, called the symbolic predicate, 

stipulates that the value of a feature is functionally dependent 

upon the values of other featurès. The algorithm described in 

this section is only çapable of checking the semantic validity , 
of numeric predicates and eliminating those which are redundant. 

A compiler for an algorithm which would be capable of handling 

symbolic predicates would have to be able to perform symbolic 

manipulations on strings. For 'example, such a compiler would 

have to be capable of accepting conditions like 

and,subsequently deducing that 

Beeause the purpose of thls thesis ls to demonstrate the inheient 

adVantages of ineludlng a semantic memory in a graphies system, i~ 

vas felt that the effort requirèd for the incorporation of a sym-

bolie compiler vas unwarranted. The implications of using a sym­

bollc compiler in conjunction with the sem&ntie m~~~y will be 

considered in Chapter 4. 

1 
1/ 
/ 

______________ lIlIlIi~~.", 
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Naw that the class of allowable predicates has been defined, 

it is possible to describ~ the simplification algorithme For each 

feature in the 5TH, the algorithrn performs thè following tasks: 

(1) If no more than one numeric predicate is defined, then no 

action i8' performed on the p~edicates of ëhat feature • 

. (2) If more than one numeric predicate is defined, then the 

following steps are performed for aIl possible pairs of 

numeric predicates l : 

(a) The sernantic validity of each pair of predicates 

is tested (see Fig. 3-llY. 

(b) If any inconsistency i8 detected, then an error 

message listing the inconsistent predicates is 

printed and program execution is'terminated • . 
(c) If no inconsistency is detected then any redun-

... 
dant predicate ia eliminated from the 5TH. 

Thus, the comparison of two numeric predicates as outlined in 

step (2) above causes one of three effects: termination of compi-

-lation due ~o inconsistency (T), si~plification of the STM due to 

redundancy (S); or no action '(N). The table presented in Fig. 3-11 

yields a aummary of the possible outcomea resulting fram the com­

parison of any two numeric '\tX'edicatea,. 

1 If n ia the number of numeric predicat •• pertaining to a featuré, 
then th. posaible number of ;aira of th.a. la De2 - n(n-l)/2 • 
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EQ NE LT LE GT GE 

. 
EQ T, Sb, T Sb,T,Sb Sb,T,T Sb,Sb,ll' T,TiSb T,Sb,Sb 

* * NE Sa,T,Sa N,Sb,N N,Sa,Sa N,Sa,Sa Sa,Sa,N Sa, Sa,N 

LT T,T,Sa Sb,Sb,N Sb, Sb, Sa Sb,Sb,Sa T,T,N T, T,N 

LE T,Sa,Sa Sb,st,N Sb,Sa,Sa Sb,Sb,~a T,T,N T, St,N 
'" 

GT sa, T, T N, Sb, Sb N,T~T N,T,T Sa,Sb,Sb Sa,Sb,Sb 

GE Sa,Sa,T N, st,Sb N,T,T N,St,T Sa,Sa,Sb Sa, Sb,Sb 

Fig. 3-11: Resu1t matrix for the simplification algorithm •. The 
rows represent the operand for the condition f (op) a 
whi1e the columns represent the operan~ for the con­
dition f (op) b (i.e. f ia a feature, (op) is one of 
EO,NE,L~/LE/GT,GE and a,b are numbers). ' For each ele­
ment, the three eneries represent the results of a 
comparison of the two conditions given that a < b, a:;b 
and a> b, respectively. 
Thé lettera N, T and S ~ignify no action, terminatIon 
and simplification respectively. The letter appended 
to each S-entry stipulates the predicate which is to 
he deleted from the STM as a resu1t of a simplification. 

• 1 

Thus, Sa states that the predicate symbolized by f (op) 
a is to he deleted, while Sp states that the predicate 
f (op) b i8 to be deleted. For example, the first 
entry of the element in the fourth row, third column 
specifies that: if the conditions f ~ a and f < b where 
a < b exist, then f < b is redundant and can be elimi­
natea. The'S-entries wit~ an asterisk specify that 
besides the deletion of a predicate, further simplifi­
cations to the surviving predicate ate possib}e. Thus, 
for f ~ a, f ~b and a=b, then f ~ b ~can be eliminated and 
f~a can he siI'llplified to f=a. In süch cases, aIl 
numeric predicates for the affected feature must he 
retested. 
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The simplification algorithm presented in this section has 

been used for the simplification of numeric predicates within the 

STM. It has been shawn that the lack of a symbolic manipulation 

capability within the compiler restricts the versatility of the 

algorithme The next sectionl~ll discuss how this shortcoming in 

the compiler aiso affects the resultant structure of the semantic 

~. memory. It will âlso outline restrictions on the typés of allow-

able statements in PL input programs. 
! 

3.5.2 Restrictions on the structure of the Semantic Memory 

This section discusses the implications to the semantic memory . 
of the ïnability of the canpiler to perform symbolic manipulations 

on strings. It will be shown that, as à result of this shortcoming l 

• 
the resultan~ structure of the semantic memory becomes unnecessar-

1 

ily restricted. 

The basic restriction is that the translation of bath a PL 

input and the pertinent semantic net predicates into the STM should 

not result in the creation of a self-loop within the STM. To un-
, 

der.tand the meaning of the term "self-loop", c::onsider a set of 
~ 

predicatea (fl,f2,f3) and the following constraints on them: 
'1 

il -f(f2 ) • (f2,) 2 -'--- iii-CS) 

f 2 -9(f3 l - COB fJ - ii~-(6) ... 
f3 -h(fl ) • f 1/2 1ii-(7) 

y 

\ 



~.' 

! • 

1 

1 
i 
1 
Î 

J 

o 

-

107 

This set of predicates contains a self-loop in the sense that no 

one variable ean be interpreted as the 'independent variable. Thus, 

The way in whieh these se1f-1oops arise is now desc~ibed. 

Consider the semantie plane for a line. The predieates of 

this plane can be represented symbo1ical1y by the fo1lowing eon-

ditions: 

0<: s ~ (1002 + 502)~ - iii-(8) 

o ~ 9<360 (e in degrees) -,iii-(9) 

O~ vxl ,vx2 :5l00 - - - iii-(lO) 
• 

o ~ vy l' vy 2 ~ 50 - - -iii-(1l} 

vx2 = vx1 + s cos e - - - iii- (12) 

vy 2 = vy 1 + s sin e - iii-(l3) 
r .-

The numbers 100 and 50 evident in iii-(8), (10) and (11) have 

been ehosen so that the resultant line can fit in~ide a 100 point 

'-
by 50 point raster field. It ean be seen from ~ above that s, 

9, vxI and VYl are the independent variables sinee their values 

are independent of the values of other features. On the other 

band, vx2 and VY2 are dependent variables. 

l In fact, this set of equations can 'he simplifie4 to 
fI - (cos f /2) 2 usinq symbolic manipulation. The further use 
of an iterative solution technique yields the) values fI "" .835, 
f 2 • .914 and fJ = .418. 

2 \ . 
WherEV (8,e,VXl'~..2'VYl'VY2) repreaent 
. / (SIZE, ORIENT, vxl, VX2, VYl, VY2) respectively. 

.. 

)0 

( 
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A PL input consisting of the cammanà DRAW(LINEl} would result 
",'J 

in the translation of the above predicates into the STM. Because 

of the careful rnanner in which these predicates have been stated 

in the semantic memory, no self-loops would be incorporated into 

the STM. " 1 

However, the addition of the PL state~ent LOGIC(EQ(VXl VX2» 

would result in the creation of a self-loop because vXl would then 

become a function of itself (i.e. vXl = vX2 = vxl + s cos e). 

A possible'solution to this prbblem in the absence of symbo-

lic manipulation is to'store many alternate sets of constraints 

within each plane. Each set of constraints would then represent 

the predicates necessary to s'pecify an object g~ven a particular 

set of independent variAbles. For example, the branch within the 

LINg plane of Fig. 3-12 would allow the choice of either vXl or 

VX2 as the indepen~en t var iable. The n, depending on whether a PL 

input program had set the value for vx2 or not, the appropriate 

branch could be taken.in the traversaI of sernantic net predicates 

to forestall the creation of a self-loop within the STM • 

SEMANTIC PIANE FOR LINE 

VX2 = vxl 

---} 
e 

aREDlCATES 
OF LINE 

Pige 3-13: Portion of 8eDantic plane for 'LlNE showing alternateo 
patha for the, .tipulatJJon of predicates. 

... " 

~ 
" 

" 
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• E*cept for very limited applications, this is not a feasible 
fi 

solution sinee the resuiting semantic memory ~ùId soon become too 

unwieldy to be useful. ,To see why this i5 so, consider a semantic 

plane which represents an o~ject having n features fl,f 2, ..• ,fn . 

Of these features, sorne will represent independent variables whose , 
value can be chosen at random from a range of acceptable values , 

... 
whi~e other~ will represent dependent variables. If, however, PL 

, 
inputs which change the set of independent variables are allowed, 

, 
then the semantic plane must contain alternate paths which a]tow 

1 

the set of independent variables to be as smaii or as large as is 
\ 

required. 
t 

For even a smaii number of fea tures, the number of these "de-

c:i.eion paths" required is too large. Thus, two paths would exist 

for the feature fI' Each of these would then split into two paths 

for f 2 resulting in 2 x 2 = 4 paths. For n features, then, the 

resulting "decision path~11 wculd produce 'a binary tree having 2n 

leaves l each of which could represent a set of predicates on the 
# 

objecte 

Even for LINE which is a primitive, th1s methodology would 

create a tree havinq 26 = 3'2 alternate paths. Clearly, this iB 

an 'unwieldy stracture which would destroy the concept that the 

.ema!ltic memory ls an inherently compact structure., 

l A leaf ia a terminal node of a tree. 

" 
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It was therefox:é decided that, un1ess a portion of an "a1ter-

nate pàth" struoture was required by the sernantic memory i tself , 

9'Uch a struature would not he imp1emented. In fact, one such "al-

/ 

ternate 'path" is r~quired in the senantic plane for RECTANGLE. 

The details of the se1f-1oop whieh wou1d otherwise oceur in this 

plane will not he discussed. However, the implementation of this 

lla 1ternate path ll within the sem~ntic plane results in the usage 

"-~-

of the KNOWN mode of the MODIFIER node mentioned in Section 2.4.3. 

'The type of structure required in th'e sernantie memory for the def-

inition of an a1ternate path is shawn in Fig. 3-13. 

~e decision to restrict alternate paths in the semantic rne-

Mory a1so results in a restriction on the types of a110wable PL 

" inputs to the compiler in that o~ly those which specify a predicate 

on an independent feature are-' al1awed. 

This section c~mpletes the discussion\o! the restrictions im-

• 
posed on the stl;'ucture of the semantic memory and the content of 

the PL due to the inadequacies of the compiler. The next section • 

will diseuss the Feature value Selection Algorithm. 

" 

/ 

/ 
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SEMANTIC NET 

. from 
predicates }-

to OBJECT node' of } ...... _-1 

affected feature 

{
next 

~~L!:!~ predica~e 
1 

r---" , 
to predicate if 
value knawn 

• 

",....,.-1\ ,., , 
,_. . l.' f to predl.cate 
va lue not known 

:;, 

Pig. 3-13: Usage of the KNOWH mode of the MODIFIER node. 
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3.5.3 The Feature Value Selection Algorithrn 
\ 

The Feature Value Selection A!gorithm (FVSA) implemented in 

this thesis was selected with due consideration to the inadequacies 

of the compiler. This section constitutes a brief description of 

. 
the operation of the algorithm. Chapter 4 will discuss a more . ) 

'powerful algorithm which could have been implemented had a symbolic 

compiler ,been available. 

For the discussion that fo11ows, it is assUmed that the struc-
~ . 

ture of the STM has been simplified to the extent possible by ,the 

simplification algorithm of Section 3~5:l.' The remaining tasks 

are that a consiste,nt set of feature values be s;lected for IIthe 
,.. r' 1 

objects ta be drawn and that a picture of these objects be produced. 
, 

The latter task is a trivia~ one'which will be discussed in Chapter 

4. On the other hand, the former task which is executed by the 

FVSA is bot so trivial. This algorithm is now described. 

The first step in the FVSA is the traversa! of the STM and 

the subsequeht creation of a stack, ea~h.element of which represents 
o 

the feature of an object in the STM. The method of traversaI of 

the STM is unimportant as is the prdering of the elements in,~he 

.tack. What. is important is that aIl thé features of the objects 

in the STM be represented in the stack. Bach stack element does 
o 

not name the affected feature but rather contains a pointer to the 
, 

MODIFIER node in the 8TM which identifies that teature. In this , 
vay, the stack not only aCC88ses the feature but also aIl the pre-

.. 
D J. _________________________________ .., .. rrr:'Awilim .. ,lIiii:Oj!ij, ~ .. d~.,tf .... " 
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dicates on·it as well as all the Value Dependence Pointers (VDP's)l 

which emanate from it. 

The next step in the FVSA is the ordering of the features in 

the stack,so that those which represent independent variables are 

p1aced "higher up" in the s1:ack than those which rew;-esent depend­

~n~~bles. 'If the features in the ST~ contain any self-loops 

Whi~~ discussed in the previous section, then this step of 
~ ~ 

the algorithm dete~ts these and execution is terminated. 

The feature ordering is accomplished by using the VDP's ap-
, -1 

pended to each feature. It.was stated earlier in this chapter 

that ;(uch poin~ers are set up in the STM from the independent va­
l 

riables to the dependent variables. As a result, each VDP from a 

feature'x to a feature y stipulates that x is an independent va-

riable relative to y or that x-< Y (where "x < y" is read as "x pre-

cedes y"). Because of .this, each element in the stack can be used 

to access the VDP's which emanate from the feature Xi represented 

by that element. A s.et. of precedence relations Xi < YI' Xi < Y2' ••• ' 

~i -< Yn can then he defined. Once thes-e precedence relations have \ 

been defined, it is a relatively simple matter to order the el&­

ment. in t'ne stack in the desired manner. '. Knuth (1968)2 defines 
{,' 

a qeneral.1.zed "Topoloq!cal sor.t~ algorithm which accomplishes this 

• 

1 '!'he VDP waa dlacua.ad in Section 3. 3.2. 

2 Bee lCnuth (1968), Section 2.3."3 on Linked Allocation • . 

1 
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1 

task. This algorithm will not be:'described here. The interested 

reader is referred ~ the pertinent section of Knuth's text for 

a descr;iption. 

For the last step of the FVSA, it is assumed that an order~d 

feature stack as described above has been successfully produced. 

What' is required, then, is th<Î't suritable values be determined for 
r 

1 

aIl features. If the intent of tHis work were to produce a prac-

tical interactive' graphies language, then a generalized algorithm 

for the performance of this task would have been defined. Because 

the intent of this project was not so ambitious, a more modest 
{) 

solution to this problern was implernented. ~ 

lt was stated in chapter 2 that the sernantic memory provides 

sufficient information to limit the value of each feature so that 

its value may be chosen from a finite interval. The FVSA there-

fore performs the following task for each elernent in the feature 

stack in order of its "independence" as determined in the previous 

Each predicate on that feature is trahslated into a "soft-

e arithmetic unitl. within the compiler. This arithmetic unit 

a nu~eric limit on the value of that feature from the 

stores ~this,number in the TYPE field of the MODIFIER 

which heads that predica.te. Thua, for the 'pre-

in the SlM, "the PVSA produces the result 
, ' 

shawn in ,i9. 3-14. predicates on that feature have 

'4 
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Deen evaluated, ·a suitable feature value which satisfies aIl the 
,. 

predicates can be randomly chosen. ~is value can then be used 

in the evaluation of predicates of subsequent features which are 

dependent variables. 

STM 

1 

f VX2 
, 

to other 
c 1 l 1 ....J T - l _ 

-... -, .... -.... predicates 
1 j~ 

~ 117' .17--- " 

to OBJ ECT to VDP's LT CONSTANT 
5 • 5 
l ..... , 1 .t 

J... -L 

Fig. 3-14: Determination of numeric bound on a feature. Note 
the number "5" which h~s been encoded into the TYPE 
field of the MODIFIER-LT node. 

The shortcoming of this approach is that if the value of 

8o~e independent variable has been poorly chqsen, then the cal-

culated value for a subsequent dependent variable may be outside 
t , . 

of the allowable limits for that variable. The solution to' this 

probletl) as imp.lemented in this thes'ia was to make tne third step 

of the algorithm iterative. That ia, if the computed\ value of' 

aome ~ariable vere outaide acce~table limita, then thé value of 

an independent variable of which it waa a function could be chos­

en again. HOpeful:J,y, .uch a choioe would prc:Xtuce an acceptab1.e 
,,,. 
f 

1 

• 
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value for the dependent variable. Such a procedure is clumsy at 

best sinee it is time eonsuming and sinee it ean result in the 
\ 

creation of infinite loops during program exeeution. However, 

the procèdure was found to work without too mueh diffieulty for 

the simple objects defined in thi8 thesis. A more powerful al­

gorithm based on the usage of an optimization technique i8 dis-, 
eussed in Chapter 4. 

It can now be assumed that the FVSA has computed.appropriate 
1 

values for the features of all the objects to be drawn. The next 

ehapter diseusses the method used to draw thesè objects as well 

as some sample PL programs which were run using the compiler. 

The chapter also diecusse~ modifications which could have been ,.,q 

implemented in the system described in these chapters. 

, / 

" 

., , 
1 
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Chapter 4 

Results and Conclusions 

4.1 Overview 
--r 

The previous two chapters have described the methods by 

which the systeml implemented by the author is 

a consistent set of feature values for objects 

PL program. The following is an outline of the top'cs discussed' 

in this, the final èhapter. 

The firet part of this c~apter describes the method by which 
"-

the system outputs 1ine drawings. !t also discusses the results 

obtained from the compilation ot six selected PL programs. Each 

program demonstrates sorne features or shortcomings of the system. 
. . 

Thè second part of this chapter discu~ses sorne possible 
'. 

modifications to the system. Emphasis is placed on those changes 

which would al~eviate the shortcomings of the compiler discussed 

in the previous chapter. 

1 In this chapter, the \rord "syat." will rt!fer to the c~mpile~, 
semantic m~y, STM and aIl associated data 8truc~ures imple­

, manted in this th.sis. 

... 
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4.2 Output Procedure and Results 

4.2.1 Output Procedure 

Chapter 3 has described a procedure for the creation of an 

STM which contains the predicates on the features of objects to 

be drawn. The chapter has also described ~e algorithms used by 

the compiler for the determination of a consistent set of values 

for these features. What is now required is a procêdure which 

\ draws pictures of the objects defined in the STM. 

It was stated in Chapter 2 that the features of an object 

define a redundant set. In fact, only t~e contour vertex fea-

tures of the straight line segments which comprise each object 
~ 

are require4 to draw that object. Therefore, the output proce-

dure which has been implemented extracts the contour vertex pairs 
_ ...... 1 

(Vl 'V2) of each line segment defined within the STM and uses 

these pairs to produce a line drawing on a digital plotter. 

The next section ~escribe~some results which were obtained 

using the system discussed in ,this tl).esis. 

l ) 
Recall ~t each line consists of the six features S'IZE, ORIENT, 
VXl, VYl, VX2 and VY2. 
VXi and VYi. 

• 

-The notatio~ Vi represents the features 

.............................................................. IIII~illi~·.,[.~~t~.ï~j!~. 
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4.2.2 Resu 1 ts 

The semantic mernory, compiler and STM discussed in this' 

thesis were implemented in PL/l on an IBM 360/75 Digital Computer 
1 -

and a CALCOMP 663 Digital Incremental Plotter. This section 
'. 
'-" describes six PL programs which were executed ,using this system. 

For each example, a description of the PL prograrn and the result-

ant picture are given as are the prograrn execution time and core 

requirern~nts.l It will becorne apparent in these examples that 

the execution tirne and core require~ents of each'program are 
' .. 

quite large. However, it must be remernbered that the system im-

plernented was not rneant to he a practical interactive graphies 

system. Consequently, little effort was expended in improving 

its operating efficiency. The modifications described later in 

this chapter would serve to alleviate this problem. Nevertheless, 

the execution time and core requirements obtained are useful in 

that they illustrate the relative c~plexity of the selected 

programs. The results of the six examples are now described. 

The first two examples were selected to demonstrate the ef-

fort required to draw the simplest and the Most comple~ objects 

defined in the sémantic memory. Zn the first example, the PL 

l 
Core requirements include the storage area required for the 
compiler, the sema.ntic memory, the 8TM, the PL program and all 
&.sociated temporary structures such as the Subobject Tree. 

.' 
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program consisted of the single command DRAW{LINE). Both the 

input prograrn and the PL representation of the derived semantic 

net predicates are shawn in Fig. 4-1 while the fea'ure stack1 

both before ana after ordering is shawn in Fig. 4-2. The re-

sul tant STM after execution of the Feature Value Selection Algo-

rithm.is depicted in Fig. 4-3. Execution of the prograrn required 

4.1 seconds of Cen~al Processing Unit (CPU) time and 162K bytes2 

of core. The resultant line drawn by the pIotter is shawn in 

Fig. 4-4 (a) • 

The PL prograrn of the second example consisted of the single -
command DRAW(HOUSE). Execution of the prograrn required 45.1 se~ 

conds of çPU time and 196K bytes of core. The resultant house 
"~~' 

drawn by the pIotter is shawn in Fig. 4-4 (b) • 

A comparison 'of these e~mples shows that the arnount of 

core required by the system is quite large and does not appear 

to he very dependent on the complexity of the object xo be drawn. 

This is due ta the fact that a large portion of core required is 

expended for Il fixed overhead Il items such as the s/torage of the 

compiler and the semantic memory. This probl~ is not serious 

because core r~irements could he substantially reduced by pro-

1 The feature ,tack was defined in Section 3.5.3. 

2 A ~te of core ia ~al to eight bits (binary digits) • 
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Fig. 4-1: A listing of both the PL input program and the perti­
nent semantic net predicates of Example 1. 
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Pig. 4-2: The initial and final 
Bxample 1. 
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LEFT-VU 
lEFT-Y'l 
l EFT-VU 
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LOGIC-U 
LOGlC-'E 
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FUT~E·VX2 
lOGlC-L É 
LOCIC-:;E 
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L EFT-YU 
lHT-yxl 
lEF T-VX~ 

tONDS-lUT 
III:;'H-tOO 
IIICHT-O 
IIIGHT-r 

( 1 

fEATURf-SllE P~RENT-LIHEI tl,OS-LIST 
!A(KWIRO POINTE' TO-)VI2 LINEI 
BlCKWARO POIN7. To-)VY2 LI Net 

lOCIC-LE lEFT-Slte III~'4T-lll 
lOGIC-GT t. IFT-S IZE • Il ICHT-O 

'EATUIIE-O"lf~T PARENTaLINEI CONOS-LIST 
."CICWUO ~o NTU tO-)YU LI,H 
."CKWIIIO P NTE" fO-)"'2 LINEI 

lOGtt l T liFT-ORIENT ,'U$ .. T-)60 
lIlGI -GE. lIFT-OIIIENT" 16HT-0 

PlAT"'E-YX 1 \ P.A"ENT-LI "'t COMDS-L1 ST 
UCKWUO POINTER TO-)YK2 . LI'4U' 

LOGIC-U L (ft-YU "I&HT-IOO 
LOGIC-GE LEFT-VII IIICHT-O 

fUTURE-'" l ""E"T-L1 NEl CONO S-li ST 
"(KW'RO POINTER TO-)V'! LI,ll 

LOCIC-LE LEfT-Y't .IGHT-5~ 
LOGle-GE y. LEn-Y" .U'4T-O 
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Pige 4-3: The structure of th. STH of Example l after execution ' 
of the FVSA. 
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(b) • 

. Pig. 4-41 Digital Plotter output for Bxamp1 •• ,1 and 2. , 
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gramming the system in a law-level assembler language rather 
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than in PL/l and by eliminating the ùsage of character strings , 

to encode information into the semantic memory and the STM. 

The above examples also show that the increase in the exe-
. ' 

cution time required to draw a house instead of a line is more 

than tenfold. In part, ~his occurs because the greater complex-

ity of a house in relation to a line requires the retrieval of 

more predicates from the semantic memory, the creation of a more 

complex STM, and the determination of a greater number of fea-

tures'j However, part of tl1is increase dm be attributed to in­

efficiencies of- the Feature Value Selection Algorithm. An alter-

native approach'to feature value selection which would result in 
\ ' 

efficient à+gorithm will be described lat~r in this a more 

chapter. 
j 
(~ , 

The third anliourth examples were chosen to demonstrate the 

effort required to draw an object given two different ways of 

specifying it. In both cases, the, object drawn was an equilateral 

triangle. The "high-level lt specification of the object'in Exa!'lple 

3 resulted in the following PL program: 

DRAW(EOUILTRI)~ 
LOGIC{EQ{ORIENT 0» 

\ 
'Bxecution of this program required 10.3 seconds of' cPO time and 

\ 

168J( byte8 of core. 'the re8ultant triangle drawn by the plotter 

i. 8bown iA ~ig. 4-5(a). 



'e 

, . 

• 
The "law-1eve1'! specifiCâ,tion of the object in Examp1e 4 

resu1ted in the follawing PL program: 

DRAW(LINE1) 
LOGIC(EQ(ORIENT 0» 
DRAW{LINE2) 
LOGIC(EQ(SIZE SIZE(LINEI») 
LOGI~(Ee(ORIÉNT OPSUM(ORIENT(tINEI) 60») 
U>GIC (EQ (VXI VXl{LillEI») 
LOGIC (BQ (VYl VYI (LillEI) » 
DRAW(LINE3) _ 
LOGIC(EQ{SIZE SIZE(LINEl») 
LOGtC(EQ(ORI~ OPSUM{ORIENT(LINEl) l20»} 
LOGIC(EQ(VXl VX2{LINEl») 
LOGIC (BQ (VY1 VY2 (LillEl») 

125 

Execution of this progra~ required 7.4 seconds of CPU tirne and 

166K bytes of core. The resu1tant triangl~ drawn by the pIotter 

ls shown in Fig. 4-5(b). 

It can he ;Jeen from .these -two examples that a "low-Ievel" 

specification of an object results in a slightly more efficient 
1 

program in terms of execution timè and core requirements than a 

-high-1eve1" specification of that abject. tJnfortunately, this 

increased efficiency can only be obtained by specifying an object 
1 

in terms of its subobjects and the relationships between them. 
'V . 

For aven the simple case of a t,riangle, the above examples 'show 

that thi. ia too great a priee to paye The extra effort required 

te specify a PL program for an object using a "law-level" ap-

proach more ~n offseta &Dy advantage gained by tmproved effi-

clancy of exec:ution. ., 
, 
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EXAMPLE 3 
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The last two examPlt~') w~e selected tQ demonstra te the 
, 1 

types of pictures whic~ can-easily be drawn by, the present im-
1 

plementation of the system. Fig. 4-6(a) depicts two equilateral 

triangles of equal size and orientation joined at one vertex. 

The PL program required to draw these was: 

DRAW(EQUILTRIl) 
LOGIC(EQ (ORIENT 0» 
DRAW(EQUILTRI2) 
LOGIC(EQ(ORIENT 0» 
LOGIC(EQ(SIZE SIZE(EQUILTRIl») 
LOGIC(EQ{VXl VX2(EQUILTRI~») 
LOaIC(EQ(VYl VYl(EQUIL~Il») 

Execution o~ this program required 19.1 seconds of CPU time and 
) 

'174K bytes Jt ~~re. 
The final example demonstrates the usage of the, TOPOL state-

ment in defining a set of topological relationships between 
, , 

bj "'*'- • 1 0 . o ects. ~lle PL program execute~ cons1sted of the fol ow1ng 

ata temen ta: 

DRA~ ( ISOSTRI 1) 
LOGIC(LT(SIZE ~O» 
LOGIC(GT(SIZE 30» 

" 

LOOIC (!Xl (ORIENT 90» .. 
DRAW(LINE1) 0 

..,// 

TOP6~(BELOW(LINEl ISOSTRI1» 
œAW(RECTÀNGLEl) 
LOGIC(GT(SIZE 25» 

. LOGIC(LT(SIZE 100N 
LOGIC(EO(ORIENT 0» 
TOPOL(RIGHTOF (REC'l'ANGLEl ISOSTRI1» 

Bxecution' of thia .program requir~ 22.3 seconds of CPU time and 

17ex byt,u of core. fte reaultant _picture dra~ by the piotter 
• 

le ahawn in Fig. 4-6(b). 

.. 
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X 

.. 
1 

• 
Ji, 
;,: 1 

,-

\ 

., 
(a) ! 

o 
>-0 

• a 
N 

o 
a 

EXAMPLE 6 
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.,~----+-~-------p------~------__ ~----~ 9J. 00 . 00 Il. ao 60 . 00 ' 80 . 00 t 00. 00 
X 

. (b) 
.. 

Pig. ~-6t Digital Piotter output for Bxamples 5 and 6. 
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Th~ above six e~mples have demonstrated both the f1exi-

bili ty and drawbacks of ~ present, system. The remaining 
- . '\ ' 

sections of this chapter will briefly propose ~odifications 

which would greatly enha~ce its flexibility and·e1imin~te it~ 

drawbacks. 
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~ System Modifications 

The discussions of the previous chapters have detai1ed the 

1 
structure and operation of the author's system. In so doing, 

1 

1· 
they have also drawn attention to its shortcomings. In the pages 

that fo1low, several improvements rtd' the system will be proposed. 
[; ~ 

The practicality of ;t" , sorne of these"~mprovements ~s dependent upon 

the availability of a symbolic compiler, while other improvements 

could be implemented on the present system. The aim in proposing 

\ 

these changes will be to demonstrate the feasibility of incorpo-

rating a modified version of the present system into the software 

of an interactive graphies display system. 

4.3.1 Implications of a Symbolic Compiler 

A symbolic compiler is one which i8 capablè of accepting 

réssions containing variables and opera tors, and of subse-

quently manipulating those variables in accordance with the con-

straints defined by the operators~ pne of the capabilities of 

such a compiler would be ta solve a group of expressions for any 

variable or variables. Por example, given the expressions 

ax+by-c 

and y <' d + 5. 

the compiler coula solve for x and produce the expressi,on 

o x > (c - b(d + 5» / a, 

~e i~lication8 of including a aymbolic compller in the 
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j 

t 
present system will be discussed belaw. It will be shawn that 

the usage of such a compiler permits a greater,versatility in 

the types of statements allowed in a PL program, simplifies the 

structure of the semantic meroory and STM, affords a cneck for 

the semantic validity of predicates, and allows the usage of a 

more powerful Feature vaiue Selection Algorithm (FVSA). 

It was stated in Chapter 3 that the method of representing 

predicates within the STM partitions the features into two 

types: independent and dependent. By definition, an independent 

feature is one whose value is restricted or det~rmined only by 

numeric predicates, while a dependent feature i8 one whose value 

i8 restricted or determined by both symbolic and numeric predi-

cates. l Ta state thi8 conc~pt mathematically, let Yl'Y , ••• ,y 
2 m 

be independent featu~es and let y l'Y 2' ••• 'y be dependent 
m+ m+ n 

features. Furthermore, let (op)represent a member of the set 

of operators {=,~,>,~,<,~. By-definition"the predicates on 

the independent features are defined by the constraints 

where alto a r are numbers. 

y <op) a 
m r 

./ . 
On the other hand, the predicates on the dependent features are 

1 ,_ Numeric and symbolic predicates were defined in Section 3.5.1. 

! 

• 

1 
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defined by the constraints 

where j is the no. 
of constraints on 
the dépendent fea­
tures and ,1 ~ i ~ j. 

y n < op > f j (y 1 ' Y 2 ' .•• ,y m' ••• , y n -1 ) 

Note that j ~ n - m because there may be more than one constraint 

assigned to any feature. 

It has already been shown that, in the absence of a symboliç. 

compiler, such a partitioning scheme imposes severe restrictions 

on the capabi1ities of the system. This is because such a scheme 

preciudes the migration of members of one elass of feature into 

the other c1ass. For example, the predicate vx2=vx1+s cos a of 

LINE makes vx2 a dependent variable and VX1' sand 9 independent 

with respect to it. A PL input such as LOGIC (EQ (VX2 (LmE)" 5» 

cannot therefore he allowed sinee it could produce a value for 

VX2 inconsistent ~ith that derived from the predicate. 

A method of circumventing this difficu1ty by using "alter-

nate paths" was outlined in Section 3.5.2. Besides being clumsy 

and inefficient, the unrestricted usage of s~ch a method would 
1 

quickl~estroy e effectiveness of the semantic memory. 

The a ilability of a symbolic cOlnp'iler, 'however, forestal1s 
1 

this difficulty without increasing the complexity of the s~ntic 

memory. rndeed; the· inclusion of such a compiler into the 

, 1 
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present system would eliminate the need for any feature parti-

tioning. This is because all features would then become·vari-

ables without rega~d to their being either d~pendent or inde-

pendent. The constraints on the feature set {Yl'Y2' ••• 'Yn} of 

an 6bject would tren become 

where YI' •.• 'Yn are features 

f1, ••• ,fn are predicates 

and (op) is a member of the 

set {=,:I:,), ~,( ,~}. 
\ . 

Unlike the compiler of the present system, a symbolic com-

piler would be capable of rnanipulating both sYffib9lic and numeric .. . 
predicates. It could ther~fore be programmed to delete redundant 

information from the predicates fI to fj. In so Qoing, it could 

aiso check their semantic validity. For example, let the predi-

cates on an object he 

fI = YI + Y2 = 0. 

f 2 .. YI - Y2 ... 0 

iv-Cl) 

iV-(2) 

iV-(3) 

In simplifying these constraints, the compiler would substitute 

5 for Y2 in iv-(ly~and iV-(2) and would subsequently obtain the 

~n~nsistent conditions 
~ . 

fI .. YI + 5 - 0 
J 

and f 2 • YI - 5 • o. 
1 
t-

1 
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Thus, one implication of a symbo\ic compilef is that it could 

check the semantic validity of a set of predicates. 

Furthermore, if a symbolic compiler w~e available,' the 
. 

inclusion of a PL input into a set of prediicates would serva.-to...., 

modify thern. For example, consider the predicates of LINE which 

weré listed in Section 3.5.2. Translation of these into thé' 
~) 

present notation yields 

f l = s > 0 

f 2 '= s ... (100 2 + 502) 1/2 ~ 0 

~3 = ,9 ~ 0 

f4 = 9 - 360 < 0 

fs "'" vx
1 

;:r. 0 

f6 "'" vxl- 100 ~O 

f7 = '" l:;' 0 

fa = VYl -50 ~ 0 

fg = vx2 ~ 0 

f lO=- vx
2 

- 100 E 0 

f ll= VY2 ~ 0 

f 12- VY2 - 50 <- 0 

f l3- vx2 - vxl - 8 COS , 

f l4- Yy2 - vy -1", 8 sin 

./ 

, 

9 =,0 

e == O. 

'. 

1 

'the addition of the' PL statement LOGIC(IQ(VY2 V?t2» would preci-
4 ~ J 

pitate the following simplifications to ·th.above'coDstraints. 

~!~ 
~ ! 

J 
1 

f 

l' 
~ i ~t~IJ.~!l.'$~ ____________________________________ --""-"~' .,. ~,~ ... 
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The PL input would be translated into the constraint 

f
lS

= VY2 - vx
2 

= O. 

By using this equality constraint, the compiler could then eJimi­

nate VY2 from fI to f 14 " This would cause fIl and f 12 tolœcomé ; 

f ll= vX2~ 0 

f 12= vX2 - 50 ~ O. 

Since fIl would then be identical to fg, it could be deleted. A 

cornparison of flO and f 12 using the table of Fig. 3-11 would re-

\ 

Next, f would' be replaced by 14 r 
su 1 t in the de letion of f 10 • 

f 14= vx2 - VYl - s sin Q = o. 

Finally, evaluating for vx2 in f 14 and substituting for fl3 would 

elimina te f 14 and yield 

f 13+ VYl - vx l + s(sin Q - cos 9) = O. 

In ~he above paragraphs, i t has been shawn tha t the inc lu-

.. sion of a symholic compiler would eliminate the necessi ty of 
"<. 

. differentiating between dependent and independent features. It 

would also p~t PL inputs specifying restrictions on any fea-

ture without necessitating the usage of "decision paths" within 

the sema.ntic memory. This would eliminate the usage of the 

KNOWN mode of the MODIFIER node described in Section 3.5.2. Xt 

wi Il now he demqnstra ted tha t the structure of the STH and tPe 

nature 'of the FVSA would bath he altered bY the inclusion of a 

snmolic compi 1er. 

• 
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The requirement that the compiler be able to create an or-

dered feature stack to be used by the FVSA results in the incor-

poration of VDP's into the STM. Since a symbOlic compiler would 

eliminate the classification of features into either dependent 

or independent types, the VDP would become redundant and it 

could be deleted from the STM. In addition, a symbolic compiler 

would permit other changes to the structure of the STM. This 

would occur because each predicate would no longer pertain to 

6nly one feature but rather to all features. The structure of 

t~e STM which would result appears in Fig. 4-7 and can be com-

par,ed to that of the present version which appears in Fig. 3-2. 

The main differen~e between the two structures is that in the 

new one, the predicates are grouped together in the PREDlCATE 

block and do not conta in VDP's: in the old STM, they were 

accessed through the OBJECT·node to which they pertained. 
\, 

As an example of the structural differ~nces between the 

two structures, consider the PL input 

DRAW (TR IANGLE 2 ) 
LOGIC (LE (VX3 OPSUM (VY2 5»). 

In the absence of a symbolic compi1~r, the STM which would resu1t , 
from this input was drawn in Fiq. 3-4. Usinq the modifications 

'defined in this chapter, the predicate contained in the PL string 

can be represented Dy 

f l - VX3 - vy 2 - 5 ~ O. 

i 
i 1 

( 1 
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8TH 

WORKSPACE 

~ 
. 

1 , 1 1 • OBJECT LIST OF 
1 r- NODE 

~FATtJl:tES 
FEATURES 

.... 
, 

SUBOB.J. ~ 

f f 1 ... OBJECT 
1 .. NODE 

1 
FEATURES 

1 ? 
_ ..... -

1 , 
SUBOBJECTS 

1 
r-

I -, 
1 1 j 

1 
OBJECT' 

1'0 NODE 
-...:- FEATURES ,..., -

SUBOBJECTS -
. 

1 

LrJ 1 
1 . TOPOLOGlCAL -... 

REIATIONSHIPS 

- " 
. 

~ 

l ,le 1 'J 

LIST OF l' 

1 
~ .. PREDlCATES ---..... v . 

Fig_ 4-7: Overview of the structure of the STM whieh would result 
if a Bymbolie compiler- were available. 
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The translation of this input into the new STM would.result in 

the structure of Fig. 4-8. Note that because the right hand 

side of the constraint fi is always zero, the PTR2 field of the 

predica te 1 s patriarch MODIFIER node is set to NULL~ Note a lso 

the lack of a VDP in Fig. 4-8. 

It has been shawn that the usage of a symbolic compiler 

eliminates the need for a VDP and results in modifications to 

the structure of the STM. The remainder of this section dis-

eusses the type of FVSA which would·be required by a symbolic 

compiler and how it woul~ differ from that discussed in 

Chapter 3. 

The discussions of this section have shawn that the predi-

cates on an unpartitioned set of features can he represented by 

the constraints \ 

iv-(4) 

What i8 required, then, i8 an algorithm which yields a solution 

vector for the- feature set subject ta the a~e c6nstraints. 

In his discussion of the Nonlinear Programming Problem, 

Pierre (1969) describes some techniques which are used~for the 

solution of a similar problem. Specifically, he considers the 

\" ~,problem of minilDizinq the nonlinear perfor_nce lIleasure 
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STM 

WORKSPACE 

J 
TRIANGLE 2 l , l 1 
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1 t ... 
l' 

,-1- ~' 

., 
1 1 -t - , 1 --"" l 

't7 + 1 ":" 

SIZE VY'2 VX3 
, 

l l 

~~ t 
1 t 1 1 

PREDlCATE 

1 ~ 

l , .... 
T -_ .... -!- ~ 

1 1 
~17 -:-

LE . 
1 
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OP OP' \. Jl'II~' ,NT 

DIFF SOM 5 
..... l j- J 

+ 
, 

Fig. 4-8: STM representation of 
DRAW(TRIANGLE2) 
LOGIC (LE (VX3 OPS~ (VY2 5») 

assuminq availability of a symbolic compi'ler. 
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J. 

.... 
where X represents the n variables of the problem subject to the 

constraint equationa 
... 

~'(X) = c. i=1, 2, ••• , k n iv-(S) 
~ ... 

, ~ and f (X) ~ c. i=k+l,k+2,.;-. ,m iv-CG) , 
~ ., ~ 

\\ 
Pierre, power fu l approach the solution of According to a to 

..... 
such a problem i8 the addition of the penalty functions Pi(X) 

'to the performance measure P. For each constraint fi' a new ... 
penalty function Pi(X) is defined. This penalty function in-

creases the value of P as a function of the amount by which the 
..... 

value of X is outside the limita specified by the constraint f .. 
1. 

The solution to the Nonlinear PrOgranuning Problem then resta on 
. 

the minimization of the Penalized Performance Measure 

Where.the W, are suitably chosen weighting factors. 
~ 

It la a simple matter to formulate the problem detailed by 

iv-(4) in terms of thé Nonlinear Pl:ogramming Problem. Since our 

objectiye la only to produce a Bet of feature values which 

lIatis~y the. constrainta f l , ••• " fj' the performance measure 
.... 

P • fQ(X) Cân he set equal to zero.. What remains, then, is to 
!" 

tranaform the con8traints of iv-(4) ~nto those of iv~(S) and 

iv-(6). 
1 
, 
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,,r, For constra,iI\ts where(op>is n=JI or "~", a direct corre-

s~ndence to those of iv-(5) and iv-(6) exists. Those con-

straints where (op> is .. ~n can be easi1y transformed by noting 

that if fi(Y1' •.• 'Yn)~ 0, then multiplying bath sides by -1 re-

sults in fil = -fi~'O which is in the required form. Those con-

straints where (op> is "<" or ">" can also be easily transformed 

by notin<J that if fi < 0, then fi +1 ~O where ~ is an arbitrarily 

small number. Finally, while the constraint fi 4 0 cannot b~ 

put into the required form., a penalty function for it can be in-

It can be seen, then, that the formulation of iv-(4) as a 

Nonlinear Programming Prob1em is a simple matter. The subsequent. 
1 

solution of the constraint equations subject to the Penalized 

Performance Measure can be accompli shed by any of a number of 

optimization techniques. l 

The procedure outlined above represents a suitable FVSA for 

a system which includes a ~lic compiler. It differs from 

that described'in Chapter 3 in that,.it seeks a viable "solution 

space" within the n-dimensional feature space without regard to 

which features are dependent variables or Which are, dependent. 

As such, it represents a much more powerfu.l technique than that ~ 

presented in Chapter 3. 

., 

1 See Pierre (1969), Chapter 6 for seve;al pertinent techniques. 
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The'next section will briefly discuss an improvement to the 

system ~mp1emented in this thesis which would not require a sym-

bo1ic compiler. 

4.3.2 The DEFINE statement 

It has been stated\in chapter 1 that one of the propertLes 

of a human memory which must be possessed by an artificia1 intel-

..,j,. 

ligence if it is to be capable of human-1ike interaction with in-

formation is tha.t it be teachable. This means that the artificial 
:;. 

!Y 

intelligence must becapable of receiving information, of deter-

mining the tru~h or falseness of that information, and of' incor-

porating that information within itself if it is recognized as a 

truth. 
, 
,! • 

It is ~bv10US that the semantic memory presented in this 
, 

thesis does not yet possess this capability. Instead, the a priori 

,existence of the memory has been assumed and no procedures for 

augmenting or modifying its information by PL inputs have been 
( 

provided. The incorporation of thé DEFINE statement into the PL 

would be the first step in ma~ng the semantia memory teachable. 

~ Its function would be to inform the compiler that information re-
'). 

gaDding an object'~s to be incorporated into the semantic memory. 
- ) 

The form of the DEFINE sta~ement in' the BNF notation would he 

< def ~ne > 1 : 1:1 DEP INE < name ') 
( /, ~. ")' 

Where "name/ can 'be any character string.' 
'':-' 

Upen encounterill9 a' 

• j 
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DEFIN~ statement in a PL program, the compiler would search the 

semantic map to determine whether the object specified byr(name> 
/ 

had already béen defined in the net. If the object did not ex-

ist, the compiler would create ~ppropriate nodes in the semantic 

memory to define it. If the object did exist, the compiler would 

access its semantic plane. In either case, any LOGIC statements 

following the DEFINE statement would describe possibl~ inputs to 
• 

the semantic memory. The techniques used for testing the seman-

tic validity of these LOGIC statements and for incorporating them 

\. 
into the semantic memory constitute a complex procedure which 

will not be described here. Indeed, the implementation of such 

a procedure would be an appropriate subject for future research. 

It can be seen, howevér, that additional types of PL statements 
,j 

would be required in order to implement this procedure. For ex-

ample, assume that the concept HOUSE were not yet included in 

the semantic memory. Then the incorporation of the predicates 

of HOVSE into the memory would require statements to inform the 

compiler that GABLE, say, was in fact an isosceles triangle, and 

that sui table links to reflect this fact ahould be set up between 

the MBLE and ISOS'l'RI semantic planes. 

The incorporation of predicates into the semantic memory 

without regard to their semantic validity would not require a 

eymbolic compilek. Tbi. a8sumes that the programmer would be 
j 

.:.~-C,."'!"~~ _____________________ ~ 
~j.,';"~ 
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\ 

• 1 



o 

-

144 

able to encode the predica~es into the net without creating s"lf­

'1 
1oops. On the other hand, the avai1ability of a symbolic c~m-

piler,would allow a more flexible format for the ~L s;atements 

which cou1d be incorpor'ated. Such a compiler would also permit 

checks on the semantic validity of these predicates. 

This section hàs briefly considered sorne of the modifications 

which would be required to make ~he s~mantic memory teachable. 
'\ 

The next section summarizes the work which has been described in 

this thesis. 

, 
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4.4 Conclusions 

The primary objective of this thesis has been to demonstrate 

the feasibility of incorporating a semantic memory into the soft-

ware of an interactive graphies display system. It can be èon-

cluded that the system describe~ in the previous chapters fulfils 
1 

this objective. Specifically, it has been shawn that the use of 

a semantic memory in conjunction with a compiler and a short-term 

memory resùlts in a system which allows a high level of inter-
" 

action betwe~n man and computer. 

While the program which was implemented is limited in the 

types of problems which it can solve, it is contended that the 

concepts which it embodies would be applicable to the solution 

of more complex graphies problems. The modifications proposed 

in this chapter repr,~sent sorne steps which could be undertaken 

to improve the versatility of the system. 

l ' 
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