ol ol 2oL IR A

Bl

N

COMPUTER SYNTHESIS OF LINE DRAWINGS

USING SEMANTIC NETS

A thesis submitted to L

the Faculty of Graduate Studies and Research g

in partial fulfillment of ti\e requirements for tﬁe degree of

Master of Engineering !

" Department of Electrical Engineering,
MoGill University,

Montreal, Quebec

August, 1975.

e

PE T VIRG - R o it A Ryt ekl T 4

,‘f}l ’ X . - .)
" COMPUTER SYNTHESIS OF LINE DRAWINGS “

g - " ‘ J : , USING SEMANTIC NETS

' . Raymond D. Giustini

v , Abstract
'l‘piﬁ thesis describes a program which employa a semantic
1 - memory ﬁl:i- the generation of\)simple line drawings. Input to
the.program is by ‘means'of a’Picture' Language (PL) whose syn-
+ - tax is also defined in this thesis. 1fhe semantic memory used
: is modeled after Quillian's. Compilation of a PL input by the
program results in the creation of a-Short-Term Memory (S’mi’) ' .
' . which partially defines the objects to be drawn., Any missing ‘
information which is necessary to draw tl_m objects is supplied

by the semantic memory.
& ' I

A number of examples which demonstrate some features and

ihortcomingg_ of the system are described. The results ,of these

'@21{3/, together with proposed changes which would improve the

e

/
-~ wersatility and efficiency of the program, demonstrate the fea-

//

pibility of incorporating a semantic nqp/pory into the software

e e BT ey

of an interactive graphics display system.

)

S /
SYNTHESE DE DESSINS GRAPHIQUES /gu L'EMPLOIE

DE LA MEMOIRE SEMANTIQUE
Raymond D. Giustind
Résumé

Cette thése décrit la prOgrammat§9n faisaqt emploi de la
mémoiré sémanttie pour générer des tracés simples Me de;sins.‘
La programma;ion est cqn¥rollée au mofenud'un lapgage spécial
;dont la syntaxe est aussi définie dans cette thdse. La mé-
moire sémanti Ae employée est basée sur le principe de Quil-

lian. La vompillation du langagé spécial par la programmation

‘ré;ulte en la création d'une mémoire & court terme, laquelle

définit pirtiellement les objets qui doivent &tre tracés.

A

Toute autre information non transmigse A& l'entrée mais nécessaire

4 la génération du tracé est continuée dans la mémoire sémantique. .

Les exempies démontrent les’éharacggristiques et les Qé—
ficiences dau #yst&me Yy sont déé#}ta. Le ré&sult de ces exemples
-% les chang7;ents proposés pouL‘améliorer la vera&tili% et le
rendement de/la.programmation, démontrent la possibilitéf:\iﬁh

corporer une mémoire sémantique dans le logiciel d'un systéme

pour la génération de graphiques sur ééran.'

a‘iptaraction

-

. - o) !
; - ‘ ACKNOWLEDGEMENTS .
4 T +

e

The author is indé&ted to his thesis supervisor, Dr. M.D.

Levine, for providing him with the opportunity of doing this
onrk, for his guidancg throughout the project, and especially: ’{

for his comments and corrections to preliminary -drafts bf this

L thesis. Without hiq kind he%p and cooperation, the completion
of this project wou}dwﬁégﬁhave been possible. Dr. A. Malowany,

j who ;qted as tﬁé/;;thor's councillor during D;. Levine's sab-
bakical, provide§ numerous comments and suggestions #hich in-.

fluenced the scope of the work. Appreciation is also extended

to Mr. C. Durand who translated the abstract ;yto French and to

B e 2

Miss Irene Lewicky whg‘typed:the manuscript.
S i
1 ' {

I

»

- w

-y~

e A XML e, &

r

TABLE .OF CONTENTS

! Chapter .

1. INTRODUCTION ‘

A

1.1 Overvi
1.2 Picture Synthesis
N 1.2.1 Early Graphics Systems
L 1.2.2 The Gfaphical Data Structure -
- 1.2.3 Graphics Languages Which Employ a GDS
1 1.3 Pattern Recognition
3 1.3.1 The Classification Model
- 1.3.2 The Descriptive Model
3 , 1.3.2.1 Grammar-Based Models ‘
’{ " 1l.3.2.2 Descriptor-Based and Procedure-~Based

Models

1.3.3 /The Semantic Memory Model
2, THE SEMANTIC MEMORY AND PIL

Overview

Constraints on the Structure of the
Semantic Memory

The Picture Language (PL)

' : o ' The Primitives
’ The Feature Set
) Term Memoxry
b

/wﬁ
NN
[] [T]
W W N
L[]
¢

N

.
WN

_The PL Syntax

The Semantic Memory

Node Types

Stxucture of the Semantic Map
Structure of the Semantic Net

L]
. L]

.
M dWN

\

e o

Concepts '
A Brief Comparison with Human Long-

NRNNNNNOMDNNRNON
*
oW
[]

~

* 3. THE COMPILER AND STM

’

i. 3.1 overview . T A
- 3.2 8tructure of the STM . a -

31

34

- 37

37
37
43
48
48

%

67

71

74
76

4

v AT e W

Translation of PL Strings . 78

PL Statements of the DRAW Type ' 78
PL Statements of the IOGIC Type 81 .
PL Statements of the TOPOL Type 85
Translation of Semantic Net Predicates
into the STM 89
Synthesizing PL Strings from Semantic '
Net Predicates .) -90
The Subobject Tree 96
Computation of Feature Values . 102
Simplification of the STM 102
Restrictions on the Structure of the
Semantic Memory 106

The Feature Value Selection Algorithm 112

o™

AND CONCLUSIONS

e

PO DEDOLD

N

[]
bLwWwwNN

[]
-
~

overview 117

Output Procedure and Results 118
Output Procedure - © 118
Results i 119-7
System Modifications ///Igg/
Implications of a Symbolic Compller 130
The DEFINE Statement <7 142
%ggié;gxons — 145

. - - 146

T A S

) e -

2
stz

R

Figure

vt
- 4
3 +
LIST OF FIGURES h
' (e
® «
Clasgification Model 1' \>‘

»
Two-Dimensional Partitioned Feature Space '

Question-Answering System
Kirsqh's‘Picfﬁre Grammar

Semantic Memory for PLANT

Semantic Memory for CLIENT
Semnntic'&emor§ for ISOSCELES TRIANGLE

Semantic Network Based on a Description

Picture Synthesis Plan Without a Semantic Memory

‘Picture Synthesis Plan with a Semantic Memory

. i)
Linguistic Semantic Plane for TRIANGLE

Definition of SIZE Feature S

Mu}tiply—éonnected Object . ..)
Object With Hidden Lines

Contour Vertices of a House

N)

‘.
OBJECT Node 4

MODIFIER Node o
LIST Node

Semantic Map .

Page
12
13
15
17

25

27

27
29

31

35
38
39
40
41
49
50
50

51

e R

"WW%“'% X 53‘: s

——nih o g

' - PFigure
2-12
‘ 2-13
2-14
2-15
2-16
2-17

2+-18

2-20
2-21
2-22
3-1
£ 3=2
-~ 3-3°
| 3-4
3-5
3-6
3w7
3-8

3-9

3=10.

® au

1]

2-19

(N .
Subobject Link

»
Predidate Link
Semantic Plane.for VX Feature)

Predicate of LINE e
| WORD Npde of Modifier .
Semantic Net Predicate for FCN- and OP-Nodes
Predicate Link Between TRIANGLE and LINE -
Predicate Link Between Modifier Nodes
Binary Tree for Predicate
Generalized Semantic Memor‘y
Representation of Binary Tree by (A R B)
Flowchar:t’ of Operation of COmp':i’.ler .
Overview of Structure of STM “
ST for DRAW Command
s:m for Secondary Feature
ST™ ;for Subobject
8TM for TOPOL Statement
' Typical Binary Tree k
Semantic Net Predicate
,'Subol;ject Trea for a House

' 8tructure of Subobject Tree

. Result Matrix

& b ’; /ﬁ_' - J
T v - . ..

57

‘59 .

61
62
64
65
69
75
© 77
79
82
84

87

91

92
97
99

105

S

“
4~2“\\\\Paatupe Stack for Example 1

4-3
4-4
4-5
4-6
4-7

4-8

Alternate Path Ve

B

A

KNOWN Mode of MODIFIER Node
Detérmina?ion’of Numeric Bound on Feature

Input and Predicates for Example 1

*

\\
STM for Example 1

oapput‘for Examples 1 and 2
Output for ‘Examples 3 and 4
Output for Examples 5 and 6
Structure of Modified STM . :

Example of Modified STM

S

'
e g D S RS 4

Page ’j.-

108
111
115
121
;21 .
122‘
123
126
128
137

139

y
34
e

A L e v

AT TLAR T TR A TR R

LI

Chapter 1 ‘ /

Introduction }

\\\
Y . ,

lol‘overViw ,

\

A semantic memory is a data strug}ure in which factual asser-
tions representing a computer's knowledge of the universe are *
stored. This thesis describes a-procedure whereby a semgptic me-
mory and an inpué Picture Language (PL) are used by a compiler to
synthesize line . wings; |

| It must be stressed atnthe outset that the purpose of this
thesis is hot to présent a piactical graphics language. Rather,
it& purpose is to formulate the stx:uc!‘ture of a semantic memory
vwhich could be incorporated into a graphics system and to demon-
lfrate~the inherent @dvantages of such a memory. ?he following is

A

an outline of the topics which will be discussed.

The first chapter summtyiffs pertinent previous~wo}g ih pic-w
ture bynthesis (computer graphics) and pattern recognition. " Al-
though this thesis ig concerned with the former, the latter is
discﬁsled for two reasons. Pirst, it shares many concepts with
picture synthesig. Indead, some previous work concerns systems

i¢h can be uaéd/iar both patéarn recognition and picture synthe-

is. Second, a 8iscussion of ‘some developments in pattern recég-

nitign techniques yields an -insight into some of the concepts in-

R

y

volved in this thesis. The brief:summary of research in semantic

X

-

memories in the latter part of the cﬁapter is espeéially relé;ant.
The sécond*chapter describes the author's Qemantic ﬁemory And
how its c%?cepts and structure comparexwagh those of earlier models.
It also discﬁsses the %Fature set and primitives of objects which
comprise the line drawings and formalizes the syntax of the PL.
The tpirdfchabter discusses the operation of the ycompiler and
the way in which it interacts with the PL and the sémajtic memory
to produce ling drawinﬁs. The features of the present imple@en-
tation of the compilef afe dealt with as are its shortcomings.
The faurth éhapter deals with the results obtained from some
picture synthesis problem§ posed éo the semantic memory in the PL..
Eaéh problem is chosen to demonstfate certain -aspects of the oper-
ation of the'program. The chapter also discusées improvements
which could be implemented on the sgmantic memory and compiler to

!

eliminate some of their shortcomings.

>

)

G

1.2 Picture Synthesis ’ \

The following is' a brief summary of the historical develop-

ORE T O L TR T oo

ment of computer graphics software systems. This summary is re-
stricted to systems which deal with the synthesis of line drawings
representing two-dimensional objects. The synthesis of grey-level

images, the two-dimenhsional rendering of.three-dimensional solids

%
:

and related areas of research are not considered here because
these have no bearing on tﬁg\fcope of the work discussed in this

i thesis.

1.2.1 Early Graphics Systems

In recent years an abundance of hardware has be;n dewveloped
fo&'%he graphical input;output (I/0) of information. This hard-
ware includes CRF displays, lﬂgﬂgvpgns, joysticks and tablets (for
a description of these devices see Poore et al. (1969), and also
Hewman and Sproull (1973)). Such hardware packages often cgntain

supporting software for the ggnerat;on of primitive objects such

ints, 'lines and ards. Unfortunately, this is inadeguate for
ation, modification and storage of complex pictures on

interactive basis.

ag: such as PORTRAN and ALGOL

dling capability. Languages

AL e WE,

Nt g e O

generation of patterns composed of a nu;Ler of "template" sub-
patterns. Examples of such applications are the generation of
integrated-circuit masks, circuit diagrams and architectural
drawings. The visible drawback of these 1anguage§ is that they
do not possess the facility for storing a structural description
of the patterns they create. This shortcoming restricts their
applicability to the generation and modification of pictures
having an unnecessarily rigid description of their subcomponenté
and constrains the user to low-level methods of picture synthesis.
For example, the cridest method of picture representation involves,
‘using an array to store a digitized picture point by point. Such
d representation is too cumbersome to modify because it does not
explicitly define the elements of the picture and their interre-

lationships. The Graphical Data Structure (GDS) defined in the

next section constitutes an attempt to surmount this difficulty.

1,2.2 The Graphical Data Structure

A desirable featuxe of a graphics language is its ability to

-

easily modify the compogents of a gictu.re by modifying a structugal
description of it. This can be accomplished by incorporating a
Graphical Data Structure. (GDS) into the language. Such a structure
is composed of interconnected lists which consist of sérings of

r 4
nodes. These nodes are structures in the PL/] sensel and contain

/

!

1 'gee footnote on next page. .

;— ¥

information about the picture components and their interrelation-

ships. Pioneering work on the specification of GD§'s was done

(o]

with the SKETCHPAD system (Sutherland, .1963). In SKETCHPAD, the

defined GDS is called a ring structure because the last node of

!

»

each list is connected to its first node. To speed accessing of

information, the nodes contain forward and backward pointers to

G i i e

’their nearest neighbors in the list. A picture represented by

a SKETCHPAD-GDS can be altered by the insertion or deletion oﬁ
nodes or by altering the information content of the nodes. Because
of their compact natufé, many such ring strucgures can be stored

?

s in the gecondary storage facilities of a computer.

) .

A modification of the SKETCHPAD ring structures is defined
in CORAL (Class Oriented Ring égso;iated Language) (Roberts,u;964);
The nodes in a CORAL~GDS contain a forward pointer as in SKETCHPAD,
" but the backward pointer of every alternate node is replaced by
a pointef to the header node of the list.
It is possiple,to define many variants pf the GDS depeﬁéing on'
the types of problems with which it mustbinteract. The GDS defined
by the author ifi this thesis is called a Short-Term Memory (STM).

¢

o . A discussion of %Fs structure and caquilities is deferred until

\

\

1

’

PL/1 structure: a tree whose leaves (terminal elements) repre-
sent variables. Specification. of these varia-
bles is by name and type (e.g. pointer, arith-

AN ' metic real, character string, etc).

-4

N W

ccess. Indeed, accessing and modification of information may

its disadvantﬂges. The next section discusses some graphics lan-

1.2.3 Graphics lLanquages Which Employ a GDS

Cha ter 3,

As is true with any system, the GDS has advantages and dis=
/ N

a/ antages. One of its favorable aspects is its high information

nsity. Furthermore, the manipulation of pictures represented

a GDS is at a higher level than that of pictures not represented

A disadvantage is that the information tends to be "burieé;j//'—“\

/by a GDS.

n the structure and subsequently can take appreciabie time to

¥

equire rather complex m&nipulation procedures. However, it is

-

generally agreéd that the advantages of a GDS greatly outweigh

guages which émploy a GDS.

‘guages whiéhrdo not employ a GDS, it still suffers some of their

A requirement for a graphics language-GDS ¢ombination is that -

the language must be capable of handling the GDS in addition to

s 7

controlling the I/0 peripherals. Kulsrud (1968) discusses sOme

requisite features of such a language and presents his n version.

/s

He also proposes the use of a metacompiler or a compiler-compiler

to generate an object program from the source language input. The
Ve

metacompiler accepts inputs representing the syn%;ﬁland semantics

of the graphics language and generates a compiler for the language.

Although Kulsrud's language ére:entu improvements over lan- |

- e SO Fix
R - Py T Sy L SR

r

* .
shortcomings, but to a lesser extent. The problem is that the

interaction between man and computer is still at a low level.

In general, this language and those 1ige it are essentiallty
extensions of programming languages with three added fea%uf;s.
First, they possess a subroutine package for the implemegtation
of graphical operatioq;. Second, they can interact with the
additional I/0 devices associated with the graphics. Third, they
are qapable of handling the GDS (albeit at a low level).. Unfor-
tunately, the subroutine calls required to implément these fea-—
tures often involve the specification of lengthy parameter lists.
S8uch cumbersome procedures constrain the solution of problems to
an unnecessarily low level and increase the possibility of pro-
grammer errors.

An attempt to rectify some of the problems associated with
the abovementioned languages is provided by GPL/1 (Smith, 1971)
which is an extension of PL/l. Smith chooses PL/1 because of its
hui}t—in ability to generate and act on interrupts (a feature use-
ful for handling 170 devices), because of its many data types and
structures, and because of its list processing capability. 6PL/1
is a higher-level language than those already discussed beca;se
it manipulates the GDS in s&ch a way-as to mask its existence from
the programmer. The GPL/1 language is of particular interesé“to
the author because the compiler presented in this thesis was im-

plemented in PL/1l. Theé compilation of thd‘authpr's PL by GPL/1

«

T TN T

e

b ey

would facilitate the intefaction offthe PL with a grgphics sys-
tgm; a capability which it does not now possess.

' Lecarne (1971) defines a graphics éétension of FORTRAN called
EUPHEMIE. Its advantage is that the sub;outine calls with lengthy
parameter lists are replaced by graphics instructions which gener-

ate the subroutine calls. The syntax of these instructions speci-

‘fies most of the pérameters associated with the subroutines. The

remaining parameters (e.g. nqmerical coordinates) are specified
by the position of a light pen on a CRT display. This effective
use of the keyboard-light pen combination produces a high level
interactive graphics language. ‘ "

A problem associateé wiE& GDS's is that for all but the most‘

.

simple pictures their storage Necessitates the usage of large seg-
ments of computer memory. French and Teger (1972) have developed
GOLD (Graphical On-Line Design System) which uses GDS's but par-
titions them for secondary disk storage so fhat the graphics sys-—
tem can be operated from a minicomputer. The obvious advantage

of such a system is that it allows the implementation of high-

level graphics languages in relatively small computer installations

with but a small increase in processing time of programs.‘ French

and Teger have applied GOLD tqjth design of integraéed—circuit

magks.. .
Stack and walker (1971) have proposed a sophisticated multi-

terminal graphics display system called AIDS (Advanced Interactive

Pt 4.

\
Display System) whose GDS is similar to Bellgraph's (Christensen

and Pinson, 1967). The AIDS language retains the algebraic fea-
tures of FORTRAN a;xd appends to them graphical and interactive
capabilities. 1In brief, objects in pictures are defined by trees
whose elements are images, instances, sets and Elabels. Images are
the points, vectors or characters which define tyﬁ object. 1In~-
stances are specific occurrences; of an image. Sets are collections
of instances,and labels are non-graphical data associated with a
graphical element. These trees comprisc;: the GDS's of AIDS.

A basic difference between this lanéuage and previous ones is
that the execution of an AIDS program is described by a sequence
of states and their transitions. During each transition between
states, any num}aer of operations which alter subsequent execution
of the program may be performed.

More recent work in the specification of graphics languages

which employ a GDS has been performed by Gonzales and Vidal (1975) ‘

- and williams and Giddings (1975).

A shortcoming of languages like AIDS is that subpatterns are
. A »
still essentially specified by templates. Such an approach to '

F .
picture synthesis is useful where fixed patterns recur frequently,

but is too rigid for general line drawings., The PL described in

this thesis constitutes an attempt to surmount this difficulty by

™

using a semantic memory in eonjunction with tixe GDS.

e o,

/.

-t

CTRROETETTTR &0 T TRSRRTTTAENRE T T T o o

N
<

This section completes the historical &iscussion of computer
graphics. The following sections will contain a short history of '
CoN ' .
pattern recognition techniques. ‘ '

1.3 Pattern Recognition gt

A brief historical review of‘so?e aspects of the field of
pattern recognition or picture analysis now follows. While some
of the techniques discussed do not deal primarily with the recog-
nition of line draﬁihgs, their description is included in order
to illustrate both the features and the shortcomings of tech-
niques pertinent to this thesis. The development of the field

is demonstrated by a discussion of the classification model, the

descriptive model, and the semantic memory model.

1.3.1 The Classification Model

l

The classification model represents a procedure by which pic-

tures can be classified as ingtances of objects from a given al-

lowable set. Its objective is to minimize the probability of error

a

for picture classification while also minimizing the ptgcessing
time re&uired.

Evans (1968, 1969) discusses the classification model (Fig.
1-1). 1Its opeiation can be described as follows. The transducer
acts as an interface between the input picture and the feature
extractor. It may consist éf a scanning device and a software or
hardware filter wh162 alters the input to a form suitable for fur-
ther processing. The outpué of this stage is passed on to the
feature extractor which uses property filters pl,....pq’to obtain

the feature vector [f; £, ... £;]T from the (preprocessed) input.

R b e,

R e TR AT s T T T

(nind

S

, 12
Py J2L
- TRANSDUCER P, |f2
INPUT | __ WITH DEC ISION
PICTURE (OPTIONAL) i MECHANISM
PREPR&ESS ING * > o0 , l ‘
b P, |Lfn ‘ & . ‘b /
Cl C2 cee Cx
FEATURE
EXTRACTOR

*

Fig. 1-1: The Classification Model. ‘
pl,...,pn are property filters while C1r---,Cy are
possible classifications of the input picture.

v \
The decision mechanism then maps the vector into the n-dimensional
feature space and, in accordance with a previous part;i.tioning of
the space, classifies the input as a member of the set of ‘possible
alternatives Cyreesslye Fig. .1-_2 shows the feature space\ with a
partitioning scheme for the case of two property filters and
three alternativg classifications (i.e. n=2, k=3).

According t6 Duda and Hart (1973), the distinction between
the concept of & feature extractor and that of a decision mecha-
nis}n is fluid. A sufficiently i:owerful version of one renders the
task of the other trivial. However, i»t is obvious from the nature

of the feature extractor that its operation is more problem—depen-

dent than t of the (iecision méchanism. The former may vary

LY A e

P N -

4Fig. 1-2: A pictorial representation of a two-dimensional par-
titioned feature space in which three types of inputs
(x, o and +) are defined.

for each type of input and for each feature while the latter can

be a ganeral algorithm to partition the n-diiensional feature

space int;o k regions amlzl then to classify an input according to

the value of its feature vector.

As was“ stated ear’lier, an objective of the Pl@ssification
model is to minimize the probability of error inh pattern classi-
fication by choosing optimal partitions of the feature space.
This model has been successful in the analysis of simple pictures
\.uch as alphanumeric characters.

®
Unfortunately, the model has several limitations. One is

©

that its operation does not parallel the way that humans assimilate
and handle pictures. Therefore, the model is not aesthetically '

pleasing; its methodology appears highly artificial to a human user.

+ £l

* tains several triangles, it is not possible to ask the model to

A more severe limitation of the model becomes obvious with in-

”»

: §
creasing complexity of input pictures. If the probability of
* B
error in classification is to remain acceptable for these complex

" Spictures, an increasingly large feature set as well as more com-

- .
‘'plex property filters and decision mechanisms become necessary(/

As this feature set grows, the model becomes increasiggly cumber -
some. Consequently, it becomes necéssary to question the wisdom
of arbitrarily attempting to force the information content of a
complex picture into a rigid feature vector description.

a a

An equally severe.limitation of the classification model is

. that it is oriented toward a single task. Specifically, it does

not consider the structural conten£ of pictures. This limitation
severely limits its versatility in the performance of other tasks.
For example, if such a modél is to be incorporated into a question-
answering system, then the que&tions which may be asked of it must

be of a limited nature (e.g. What object is this? or, What is the

value of its feature vector?). 1If, for example, the picture con-

fing all the triangles unless that number is represented by a mem-
ber of the feature vector.

What is needed, then, is a more géneral approach to picture
analysis which incorporates twe structural elements of a picture

in its operation. The descriptive approach discussed next fulfils

this objective. - , z

J

A Y

1.3.2 The Descriptive Model . .o

As its name implies, the descriptive model entails the des-

I

cription of the structure of a scene in 'terms of its primitives

o

.{or some more complex subcomponents of the picture) and the geo-

metrical relations between them. The details of suéh a descrin-

tion are dictated by the nature of the problem. N ‘

Firsqhein and Fischler (1971, 1972) have made a strpng case
for the use of picture-description techniques in question-answer- - s
-ing systems.‘ Referring to Fig. 1-3, it should be noted that the .

»
crucial step in the implementation of a workable descriptive
\ .
scheme is the preparation of the picture description. Specifically,
: .
the picture representation in symbolic form must be amenable to A

formal use in the question-answering system.)

PICTURE PICTURE DESCRIPTION | ¢

RECORDED PREPARED L ' }
1 ['

ORIGINAL PICTURE f/ DESCRIPTION

PICTURE 1 sTorED L FILE

| L Wl

.

Fig. 1-3: Question-Answering System using a Picture Description
File. Picture taken from Firschein and Fischler (1971).

kK ’

g

a

Subsequent to the pioneering work of Grimsdale (1959), Kirsch

0

(1964) and others, the descriptive approach has largely repla%ed

~ln

Iadaalie S SRV

the classification model in comblex picture analysis pxoblemq.

s

e) " =
%ﬁﬁwﬁﬁhﬁinﬂﬁ%X”.A

.
i ,

YNt

16

. ‘
.
J

Furthermore, as shall soon become apparent, a suitably designed
E descriptive scheme is useful for both picture analysis and bicture

: /4 synthesis. In the pages that follow three descriptive models will
‘ PH

; be discussed: the grammar-based model, the descriptor-~based model

and the procedure-based model. 1In addition, the advantages and

* drawbacks of these models will be considered. K ’ &

.

1.3.2.1 Grammar-Based Models

3

Because of the conceptual parallels between some early imple-

mentations of the descriptive model and the theory of formal lan-

« guages, these implementations have been called grammar -based

(also syntax-based and linguistic). In such schemes the picture,

%

viewed as a statement in the picture language, is translated into

a linear string which describes the picture. The grammar of t}f

-

language then parses the s%ring yielding the recognition of the -

) picture. This parsing is accomplished qs’ing a set of rewriting

—

by
o+ g P
N ~

rules which constitute the grammar. Note that the parse of the

string is obtained when the grai.xmnai:‘ is used in the analytic mode. :
When the generative mode (picture synthesis) is employed, new sta-

. . \ ‘
tements (i.e. pictures) are synthesized using existing primitives

and rewriting rules. . , o ’

hd 1

) , : e :
l " Barly attempts to implement linguistic methods> are exempli-

Y .
' - fied by the work of Grimsdale et al. (1959). Their research in- :

volves obtaining descriptions of simple hand-drawn line figures.

These descriptions consist of the primitive curves in the figures,

their properties, and)ﬁheir connectivity.

\

An interesting approach is that ?f Kirscﬁ (1964). He pro-~
poses a two-dimensional 'grammar ins@egd of one\which produces
linear string rep;esentations of picﬁures. As an example, he con=
siders the®class of forty-five degree right-angled triangles.

His grammar consists of an alphabet and tén rewriting rules. Ele-

ments of the alphabet are line segments and are represented by

capital letters. For example, the three rules shown in Fig. 1-4

can be used to describe the hypotenuse of this class of triangles..

Unfortunately, Kirsch's grammar appears to have severe limita-
tions: for more complex objects, the rules and alphabet must
undergo radical ekpansion and would probably become too cumber-

some to be practical.

»

H
v A —— v
- . 2
’ ~ H
H e H
ﬂ -)
H L 1.
-H -—"—-—-——-* HL ‘f!’
' . H
N

Fig. 1—4: THree of Kirsch'® s-rewritin@ rules fé;\the des@rjption
of the hypotenuse of a 45° right-angled\irzangley
V and W are two vertices, H is a hypotenuse segment,
and L is a vertical line segment.

]

1
.

!

T Awam i aw et WAL

s AL ki il Mk

More recently, Pfaltz (1972) and Rosenfeld (1973, 1975)

have proposed the usage of multidimensional array g_rimmars (or
"web" grammars) for the reprgsentation of pictures. The elements
of these\ versatti.le grammars are sets of arrays or graphs rather
than linear strings.. It can be seen that.thé language proposed'
by Kirsch in the previous para%;aph defines a'primitive array
grammar . 4

| Breeding (1965) and /Anoss and Breeding (1970a, 1970b) have
proposed the PADEL (gat-jﬁern _Qescription'_l_.anguage) language for
both the generation and synthesis of 11'.neL drawings. In i;ADEL,

an object is defined by a set of nodes and paths. A path is a
set of line segments joined end-to-end .while ?. node is any point
where three line segments meet. Unfortunately, picture descrip-
tions generated by PADEL are not unique for all but the simplest
line drawings. This, together with the highly artificial nature
of the descriptions generated by PADEL, appear to be its maj‘or
dré.v;baf:ks. “ (

Among the more versatile schemes which have heen developed,

Shaw's syntax~based Picture Description Language (PDL) (1968a,

19’681:, 1969, 1972), is suitable for the generation and analysis
of li.ne drawings. ' The primitives of PDL are twc;-dimensional objects
having both a head and a tail. 'cOncatenation of the primitives

may oceur only at these endpoints. For example, if the + operator

concatenates head to tail, then +\ is equivalent to A\

i

X e T O TR A T ey e e .

-

In such a language, a picture becomes a directed graph with pri-

mitives forming the directed edges.
The work of other notable proponents in the field such as
Fu and Rosenfeld is referenced in the bibliography. For a some-

what dated but nevertheless excellent survey paper, see Anderson ~

e/sgg seribus disadvan-

N

' (1971) .

Grammar-based description schemes ha

tages, however. First, there is the rigydity and artificiality .

" of these approaches. Although to a legser exten§ than the classi=

fication :nodel, the rﬁ;i:hods by which th
analyze pictures are in contrast to the ‘methods by w* ich humans,’
accomplish these .tasks. The rigidity of existing sche rendeérs
them ﬁ!;able to cope with grey-level pictures. Also, these approach-
s inherently corntain a lack of semantic capability. That is, they
do not pos;ess knowledge of a universe to which a particular scene

relates and which can facilitate its processing.

The models which will be discussed in the next pages r/earesent

" attempts to circumvent these difficulties. ' |

M, Fy

1.3.2.2 Descriptor-Based and Procedure-Based Models

Of the three categories of descriptive technigues considered
in this thesis, the fif@t which is a grammar-based model has al-

ready been discussed. This section hrieﬂy considers the remsin-

ing two techniques. | , ' &

20

One of these is the class of descriptor-based modeis. The
primitives of such‘desgriptions are individual phrases which des-
cribe the picture. Firschein and Fischler kl971) discuss the ap-

“lications of such schemes to still photography, movie film and
videotape, and indexer aids. The problem with such schemes is
to obtain a consistent terminology which can be used by a human
for interaction on a question-answering basis.

The last category of descriptive techniques to be considered
is the class of goal-directed or knowledge-based models. These
consist of a system, either grammar-based or descriptor-based,
which is capable of producing a large number of descriptions of
a picture. The system also contains a control mechanism which
selects a specific description according to the context in which
the description is desired. Fischler (1969), who has used such aﬁ
approach in the description of Sanskrit characters, concludes that
it may be able to surmount the problems inherent in the grammar-
based approach.

Preparata and Ray (1972) and Yakimovsky and Feldman (1973),
have applied goal-oriented models to the computer recognition of
color photographs. More recent*Wwork in the same vein has been
per formed by Bajcsy and Lieberman (1?74)._ The procedure used by

Yakimovsky‘and Feldman entails the generation of regions from a
‘ L9}

picture and the subsequent use of cofftextual information defined

by relationships between neighboring regions to decide on what

e

AT T TP PR e A T T e

SRR TN W

the picture represents. The contextual information required is

s£ored in a semantic memory (the concept of such a memory is dis-
cussed in the nexg section). The contrél mechanism is a probabi-
lity function whose members are the probabilities that given re-
gions can be gssigned a defined interpretation given the results
of the contextual information applied td8%&he reg%pns and the meas-
urements on‘the features of the regions. The goal is to maximize
the probability function which is the product of these members.

It can be perceived from this example that the procedure-based
model represents a powerful technique for the analysis of scenes
by ;omputer.

This section completes the brief survey of the development
of the descriptive,mode1 for picture analysis; It has already
been stated that a fa%ling of both grammar-based and descriptor-
based models is that they lack semantic éapability. On Fhe other
hand, a knowledge-based model used in conjunction with a semantic
memory can overcome these failings. The semantic*méTPry model

necessary for the implementation of such an approach is the next

topic of discuss#ion.

1.3.3 The Semantic Memory Model

Except for the procedure-based models, a shortconing of the

picture manipulation schemes described so far is that they do not

interact with information at the same levql that humans do. One

Tamd s

et it

22

reason for this is that the structures they‘employ’férxinformation
storage and retrieval are not as flexible and powerful as those
empioyed by humans. What is therefore required is a memory capa-
ble of performing tasks by methodi\ij;}6§65§\§f tﬁose.used by a
human memory.

Frijda (1972) has specified four properties of a human mémory
which must be possessed by an artificial intelligence if it is to
be capable of human-like interaction with information. First, the
memory structure must be associa£ive. In such a structure, the in-
put data which requests information is assoc;ated with an abbrevi-
ated map of the memory. A match between the input data and the
map implies that the degﬁred information can be localized to re-
gions of the memory specified by the matching map entry. Wwith
each additional match of input data with map entries the location
of the required information within the memory is further localized.
Informat{on may then be located and retrieved by entry and search
of the appropriate portions of the memory ;tructure. Second, the
memory must be teachable; it must be capable of receiving informa-
tion, of determining‘the truth or falseness of that information
and of lnco;Lorating the informat%on witﬁin itself if it is recog-
nized as a truth.’ éhird, the memory must be inferential; it must
be able to deduce facts not directly contained within it by infer-
ence on facts which are. PFinally, it ahduld possess the ability

to retrieve information given input data whose structure differs

R LU AR

b

T e T
*

-

*

T T T Y
oy
,‘-u
. . o

23

Y

from that by which the memory previously learned the informatidn.
Such a quality adds to the flexibility of the intelligence employ-

ing the memory structure.
E |

L

The determination of the format of a memory structure suitable
d

for information storage and retrieval as specified by the above
requirements is an appropriate starting point in the realization
of a system capable of displaying human-like intelligence. As a
result, an increasinghamount of research has been dedicated to the
determination of the attributes of such a class of structures
called semantic memory networks or semantic nets. The primitive
velements of such structures are nodes and iinks. Each node defines
a cazcept in the net while each link defines a relationship between
two nodes.”

The LEAP. language developed by Rovn%r and Feldman (1969) is
especially suitable for the manipulation of semantic nets. It
defines operations on the relational structure (O A V) where O
is an object, V is its value and A is the attribute linking the
object to the value. For example, in the relational structure ‘
(SHOE COLOR BROWN) the object is SHOE, the value is BROWN a;d the
attribute is COLOR. Each relational structure may itself be an
elemené of another such structure as in (CLOTHING EXAMPLE (SHOE
COLOR BROWN)) .

In relating these ideas to those of a semantic net it can be

seen that O and V are nodes (concepts) while A is a link (relation-

asiiaid 2o e Chc I

24

ship). The link may itself be considered as a concept in other
relational structures as in (COLOR INTENSITY BRIGHT). In general,
a relational structure as applied to a semantic net has the form
(node link node).

The discussion has thus *far centered on the concépt ;f a se-

mantic net. However, the net is only oﬁe of the two components of

) ,‘\a semantic memory. The other component is the semantic map. This
map is a list of al& the concept?udefined in the net together with
the appropriate net entry points>for each concept. It allows the
senmantic memory to fulfil the requirement that it be an associative
structure.

Considerable work has been performed %n the implementation
of éemantic nets ih various applications. Quillian (1968, 1969a,
1969b) is the first to have applied them to the computer process-
ing of English text. As defined by Quillian's net, a conéept mnay
be a word, a phrase or even a paragraph or more of text. Each
concept is represented by a semantic plane. A semantic map called
a dictionary contains a list of all the concepts which are defined
by the net."Each dictionary entry contains pointers to at least’
one plane in the net which defines that entry. FOr example, the
word PLANT may have three pointers from the diétionary to the net
corresponding to three different meanings of the word (i.e. (1)
the verd to plant, (2) a living plant, or (3) an industrial élant).

The method by which this is accomplished'is shown on the next page

L)

o

I

AR

25

(Fig. 1-5).

In Quillian's semantic net, concepts are defined by superset
modification. For example, a hérse can be defined as a four-
legged animal. In terms of the net structure, horse is the con-
cept, animal is the superset and four-legged is the modifier. With
reference to the LEAP relational structures; it can be seen that
for this gsimple example the net contains information of the type
(SUPERSET MODIFIER CONCEPT). Unfortunately, the structure of the
net is far more complex than this as will be seen shortly. Thus it
is difficult to model Quillian's net in terms of a sequence of
nested relational structures. Instead, a general description of

%
the net will be used to demonstrate some of its features.

i
*

SEMANTIC MEMORY
» SEMANTIC NET
DICTIONARY
Entry no. l: - - - , Plane for{ * Plane for
Entry no. 2: - - - | 18t def'n 2nd def'n
of of
- - - PLANT PLANT
L] .
Entry no. n: PIANT |bqo- - ‘ *
Plane for
---) *1 3ra gef'n ' .
. of
PLANT
- s

Fig. 1-5: The Semantic Memory showing links from the Dictiénary
to the Semantic Net for the definitions of PLANT.

k)

.
|

Each plane of the semantfc net consists of both unit and T
) : ~

\groperty nodes. These in turn contain pointers to other unit
and property nodes both in their own semantic plane aé well as
in\yfher semantic planes. A unit node represents a concept. Its
firs£ element is a‘poinper to.the unit repreéenting the concept's
superset. The second and subsequeng elements (as many as are de- i

sired) are pointers to property nodes in the semantic plane. Pro-

perty nodes reépresent predication of concepts. The first element

of a property node is a pointer to a unit node representing tHb

‘ property's attribute; the second element is a pointer to a unit
¢
node representing its value. These two elements represent an

attribute-value pair. Subsequent elements, if any, are pointers
to subproperty nodes of the property. The property node may thus

represent a noun clause, an adverb clhuse, a true attribute-value

- Te R

péir such as (COLOR WHITE), or any other grammatical construct en-

| tailing predication. \ Y
; From the above, it may be inferred that Quillian's semantic
gz net is not a hierarchical structure; instead it is a general graphi
Eﬁ%r of interconnected nodgg'having no patriarchal node but rather

. many points of entry specified by the dictionary list. An ‘example

of the net's structure is given by Quillian (1969a) for the deff-
(:) nition of "client" (Fig. 1-6).

One advantage of such a memory structure is that each concept

\

27

]

DICTIONARY) SEMANTIC NET

e SEUTR FE ey T T o AT e
)

S [Eppr——

CLIENT| o
)} (superset) (* w) (%)
- N EMPLOY <) ¥
PROFESSIONAL BY

it v A &

E Fig. 1-6: ‘The semantic plane for the concept CLIENT where [] is
\ r a unit node and () is a property node. Pointers to
words in block letters are pointers to planes defining
] ‘ these words.

l
N

/
/

i need be degined only once. For 'example, assume that the concept

of a trhngle ‘has been defined and one wishes to define an isos~

BN
celes triangle. Fig.\l-—? illustrates the required semantic memory.

N
| pIcTIONARY

e]

___ TRIANGLE-—————J l

SEMANTIC NET

, predication of triangle
/ ISOS. TRIANGLE|e concept stating equality
7 —_— of two sides.

Fig. 1-7: Representation of the semantic plade for the concept
‘ \ of an isosceles triangle. ° .

-

L

It is important to note that the extent of a concept is not
limited to its semantic plane because each node in the plane con-
)
tains pointers to concepts outside the plane. Indeed, a concept's

full meaning consists of all the nodes accessible either directly

-

1

or indirectly from its semantic plane. This feature permits the

- -

usage of the semantic net for the inference of the common meaning
between two concepts. For example, let the definition of CRY be
TO MAKE ‘A SAD SOUND; let the defirrition of COMFORT be TO MAKE LESS
SAD.. Theﬂnet can find the common meaning between these two con-
cepts by searching outwards from the entry points specified by the
dictionary until the search graphs intersect at a concept. In
this case, the concept of intersection is SAD.

The above paragraphs have constituted a brief discussion of
some of the features of éuillian's semantic memory structure.
The rest of this section discusses some of the work performed on
semantic nets for picture analysis. Preparata and Ray (1972) have
defined a semantic net containing objects of a universe, binary
relations and an algorithm which, under the guidance of the-net,
iterprets and categorizes simple color photographs. Their method,
like that of Yakimovsky and Feldman (Section 1.3.2.2) is a knowl~-
edge-haged descriptive model for scene anaiysis. In both cases, °*
the semantic net is the control mechanism which determines the

path of the solution.

29

~
n

‘Ff;schein and Fischler (1972) have also employed a semantic
nét for picture“descriptions. Specifically, they have employed
“the dé;criptions of photographs by humanéfto construct networks
in which concept kernels (phrases) and relations are represented
by no&es and pointers respectively. Thus, from the description
"it is an aerial photograph whose most arresting feature is a

waterway, posgibly an estuary or part of a harbour, with many ship

docks" they\obtain the network of Fig. 1-8,

. “ PICTURE
PICTURE ATTRIBUTE
[PROPERTY , ' |
E most arresting
; feature is
: AERIAL |
PHOTO) | WATERWAY
ClASSIFICATION SET MEMBERSHIP
’ L
‘ ‘ doubt has part
L * | :
. OR | DOCKS |
PART OF| [ESTUARY QUANTITY ATTRIBUTE
OUR| | :

many ‘/ ship-

.

Pig. 1-8: A Semantic Network based on a Description.

0

. This chapter has discussed the historical aspects of picture
<
synthesis and pattern recognition. The concepts of a GDS and a

‘ seantic memory hnvé been presented in some detail. The following

o M

£~

A~ R e, s B R N T T, R

chapter will presené the semantic memory develo

and Chapter 3 will discuss the Short-Term Memory

associétéd;compiler. In both chapters; com

between these structures and those alr

30

d by the author

L
(ST™) and the

* \Axh‘Mw%‘w

= Chapter 2

The Semantic Memory and PL

2.1 Overview

The next two chapters will describe the system implemented
' by the author for the synthesis of lihe drawings. An overview
of the method is now presented.
| | . If the system did not possess a semantic memory, its struc~-

2-1. As such'

o | ture could be modeled by the block diagram of Fig./
; . 1 P N ! 3

.
v
. * -

Bad

PICTURE ’ : \\\

LANGUAGE ———— COMPILER [@&———b> GDS !
INPUT : ' :

h) { p

Y] Ky
. (‘v '

. ') o . -
() Fig.'2-1: Picture synthesis plan which does not employ a se-
mantic memory.

[
L

-

~ el

SRR S

T Lo

the system would not be materially different from those described

in the fifst part of Chapter 1. The compiler would accept state-
ments in the pictdre languaggwshd would incorporate their infor- ‘
mation into the GDS using the langﬁage's syntax. When all the
statements would have been p;ocessed the compiler would, iﬁ con-

junction with the GDS, output the resulting pictures. With the

addition of a semantic memory, the block diagram becomes that

a v

shown in Fig. 2-2. As was the case for the system depicted by ;

Fig. 2-1, the compiler accepts statements in the picture language :

SEMANTIC

-) . ' ~ MEMORY

PICTURE)
"LANGUAGE
‘ INPUT - +
-,
.
A | ST™
Y L3
OUTPUT L4
R) ’ ' ,\\'A 1
[}
J s

Fig. 2-2: picture synthesis plan employing a semantic memory.

’ 4

S
and processes them into the GDS (called the Short-Term Memory or

STM) using the language's syntax. The difference with this meth-
od is that the picture language statements need not provide all

the information about the objects to be drawn since that infor-

{

mation resides within the semantic memory. Indegs, the existence
of the semantic memory allows the programmer to sgzélfy as much or
as little information as is desired about the objects to be drayn
since any missing information %Swﬂapplied by the memory.

In this scheme the pictuge language provides thé syntax
while the semantic memory provides the semantics. As will be seen
in the rest of this thesis, it is this feature which allows a highc
level of interaction between man and computer.‘ Another feature Qf |
interest is the nature of this model. It will be seen later in
this chapter that~}t.is descriptive because of the structure of

&

the picture language. However, because the‘semantic memory "guides"
the solution path for picture synthesis, it is also knowledge-
based or goal-directed. It is therefore in the same category as /
the work of Preparata and Ray (1972) and Yakimovsky and Feldman
(1973). The author's systeﬁ differs from theirs in that it is
prim&?ily aimed at picture synthesis while theirs are employed
in scene analysis. |

This chapter discusses the structure of the semantic net and
the syntax of the picture language. Chapter 3 will deal with the

compiler and the STM.

- e e g

——

{

34

}

2.2 'Constraints on the Structure of the Semantic Memory

‘The semantic memory presented in this thesis is modeled
g
. :

after Quillian's. However, its primary task which is the synthe-
sis of ;imple line drawings is different if not simpler than those
which Quillian‘'s memory must perform. It is therefore reasonable
to assume that simplificatipns to Quillian's memory may be incor-
porated into the present implementation. The example which fol-
lows will demonstrate not only the possibility but also the ne-~
cessity of such simplification;.

Consider the!gefinifion.?f a triangle. Accordinq to the
Encyclopedia;Britannica (1963), a triangle is "the geometrical
figure composed of three points called the vertices (not lying
iﬁ one straight line) and three straight lines joining these
called the sides”. Using the ¢oncepts of units and properties
Adescribed in Section 1.3.3, a realization of the semantic plahe
for the triangle definition might be as shown in Fig. 2-3. Unfor-
tunately, the linguistic definition of a trianéle is not immedi-
ately useful for the synthesis of a drawing. The reason for this
is that such concepts as GEOMETRICAL FIGURE, CONSISTING OF ;nd
NONCOLLINEAR have not yet been defined. Indeéaf their definition
would be in terms of other undefined concebts and so on. However
rich ﬁnd esthetically pleasing such a description af a triangle
might eventually be, it does not immediately permit drawing the
object. ' . | -

CINE N
>

Y «‘Wﬁ-‘&L« w

IS I e A

S T TRTRKET RN et R e R

L.
.

35
DICTIONARY SEMANTIC NET
- - L x * 1 _ (x x %)
4, l
TRIANGLE | o _ ‘
GEOMETRICAL CONSISTING
- - - FIGURE OF
‘ — y
= * * * *] C « * * *) -3
POINT (= *) LINE
) NOT-d——————J *
B § COLLINEAR
(. »)< v
* * (> =) (* *v)
R VLN
CALLED VEBTEX SIDE
(« » =) -a,
‘ Lo (x)
JOIN *
BY

Fig. 2-3: A possible.realization of the semantic plane for the
concept of a triangle in Quillian's semantic net.
An English-like description of the above plane might be:

triangle: geometrical figure qons%sting of
‘ point number three
point not collinear
point called vertex
line number three
! line called side
line join point
! join point by line ‘
Certain simplifications have been incorporated into
the definition of the plane in order to facilitate
its understanding. ’

o

LAl e Lopte, L e
)

The solution to this ﬁfoblem is' the creation of a semantic

meﬁory employing mathematical rather than linguistic descriptions
of objects. Such maphematical descriptions involve the specifi-
cation of objects in terms of their primitives and the relation-
;hips between them. It will beiseen later in this chapter that
the resultihg structure is hierarchical, that is, it is a tree
rather than a networg. While it is a practical structure for thg‘
tasks it must perform, it is more restricted and therefore less
versatile than Quillian's.: Specifically, it can only "understand"
a limited set of English‘words while Quillian's couid theoretically
be built up to encompass the entire Engliéh language. ,

This restriction is not as gserious as it might ;t first
appear to 5e. The semantic memory may be thought of as paf; of
a larger memory which contains linguistic definitions of concepts.
These two memories would be interlinked. Whenever the linguistic
memory woﬁld receive queriés or commands which required computa-
tions of featﬁre values df an object, the mathematic;l m;mory
would be accessed.

Given the restrictions on the capabilities of the semantic

memory, it is now possible to describe the syntax of the picture

language. This ig the topic of the next section, A discussion
.

of the structure of the semantic memory is deferred until lagdi

in this chapter.

Sy o S

-

T R U AT T e

37

2.3 The Picture Lanquage (PL)

Before a formal definition of the syntax of the PL can be
given, it is necessary to define both the primitives and the

feature set of the geometrical objects considered in this thesis.,

2.3.1 The Primitives

*

While a versatile set of primitives for the synthesis of
line drawings‘%onsists of a point, a straight line and a conic

section, it was decided at the outset that the primitive of the

‘present realization would be the straight line only. Such a

decision is of considerable import because it affects both the
syntax of the PL and the structure of the memory. It was felt

(Y
that this choice would allow for sufficient versatility to demon-

strate the concepts involved in the semantic memory while reducing

the programming of such a system to manageable levels.

2.3.2 The Feature Set

e

The impact of the choice of a primitive set is immediately’
apparent on the resultant feature set necessary to completely
describe the objects to be drawn. In the present framework a
sufficient and in fact redundant set consists of size, lqcation,
of the contour vertices and orientation. A redundant set has
been chosen for the purpose of allowing sufficient flexibility

in the system. The components of the feature set are now de-

\ *

scribed.

- - " -
A I

-

.o s,

P canais o 0

Y

The defintion of the size feature is dependent upon the

topology of the object to be described. If a closed object is
L

ﬂEing described, size is defined by the perimeter of the object,
If an.open object is being described, size is the length of those

lines jbich define its boundary (Fig. 2-4). A problem arises if

-— ey Sy o ey o Ts s o

Fig. 2-4: Examples of the definition of size for a closed object
(a) and an open object (b). In both cases the. size is
equal to 4he length of the lines paralleled by the broken

line. ‘
objects which are not simply connected are allowed (Fig. 2-5).
For this reagon,this implementation of the semantic memory is
restricted to simply-connected objects. If one wished ta incor-

porate multiply-connected objects, one could define another feature

for lines which would determine whether they were visible or

<

L

TR i, o, % “
& %

Ly

Fig. 2-5: An object which is not simply-connected and for which
the present definition of size is not applicable. Such
an object is not allowed in the present memory implemen-
tation.

1nvisib1e. Thzn if size were made applicable to both.visible
and in\;isib-le lines its present definition wouyld remain valid
(FIg. 2-6) . It was felt that the addition of this capability
uld not sufficiently increase the versatility of the system to
;:ntify the ,additi"onal pro;raming effort required. For this

reagon, this feature was not incorporated into the system. The

size feature is represented by the PL string SIZE.
? ‘

- -
4\.%,,-* o~

e ew

i

I]

ot TR TS

40

o ¢ o 0 05 00 0 s s 0

St mmn g v mm— . ww e eme eem e e aes dmmm amt et Sy oW G e s wm amm ewme

-

Fig. 2-6: The addition of invisible (dotted) ﬁ]‘.ines renders the .
definition of size consistent.

The contour vertices of an object represent thosle points at
the object's boundary where two or more lines meet. Becau.se the
semantic memory is defined for two—dimer;sional objects only, each
contour vertex V is represented by two ;_gatures which specify the
X and Y coordin tes'of the vertex rehtj;,;te to some arbitrary frame

of reference. Thé features of the i th contour vertex '\71 are

B3

manner with the first vertex being the lowest left vertex of the
object when it is in the horizonta}\orientation (Fig. 2-7). From
the above discussion, it is obvious tﬁat the number of contour
vertex features for a given object is twice the number of vertices

since each vertex is described by two coordinates.

"

V4
Vg - V3
61 ' . V2 ’

Pig. 2-7: The contour vertices of a house. In this case there are
= ten contour vertex features since there are five vertices
each of which is described by two coordinates.

»

The orientation feature of an object is representeé in the PL
by ORIENT and is defined as the inclination to the horizontal of
the line specified by the contour vertices'Vi and'vé of that ob-
ject. Orientation is measured in deérees. Its value increases
as the directed line specified hw'vl to'$§ is ;oéated counterclock-

wise.

LT A e e e v S 3R N T Y L T e

The-features sufficient to describe the primitive éf the PL
(i.e. a ling) are SIZE, ORIENT, VX1, vxX2, vyl and VY?: These
features are common to alllobjects in the PL. More complex objects
such as the house of Fig. 2-7 require the additional features VX3
and VY3, VX4 and VY4, ... which represent.- third and subsequent
contour vertices, For reasonsawhich will become apparent in Chap-

.

ter 3, it is convenient to label the members of the former set
-

as primary features while the members of the latter set are called

, secondary features. .

B -

This completes the definition of the feature set. The next

section describes the syntax of the PL.

R ,:‘_ii‘

a

. 1 Except for the symbols

43

2.3.3 The PL Syntax
| As was stated,earlier in this chapter, input to the program
is accomplished using the éL. Analogous to some previous work
(Chapter 1), a linear string language similar to LISP has been
chosen. However,®because some of the information necessar; to
draw pigtures is supplied by the semantic‘ x;lemory, the PL is sim~
pler than those previously discussed. The statement types pre-
sently acce'pt\ed by the language are the {draw) command and the
{logic) and {topol) statements. These will now be defined.
. The {draw) con;mb.nd Qpecifies ah object which is to be drawn
by the program. The (ldgic? statement ppecifies predication on
an object. 1In effect it yields information about the val;xe of
one of the object's features. The {topol), K statement yields infor-
mation abou: the topological relationship between two objects.
The syntax of the PL in Backus~Normal Form is given below:
(1) {numeral*> ::= 1|2|3}4l5|6l7l8l9 1
(2) {numeral) ::= {numeral*}|o0

(3) (in‘teqer) 1= {numeral)|{numeral){integer)

(4) {number) ::= {integer){:| *}{{(integer?| "}-{integer) 2 +

O ———

“|* (the "or" delimiter), "{" -and "}"
~(*"{" and "}" are.delimiting brackets), all strings not enclo-
sed by the ¢,) brackets represent valid names, numbers or char-
acters in the PL. ‘

2 The symbol * is the null string.

s e B e 5

!

7 ¢5) {‘object*® ::= LINE|TRIANGLE|ISOSTRI |EQUILTR]|RECTANGLE |
: SQUARE | GABLE | WINDOW | DOOR | FRAME | HOUSE 1

(6) {objectd ::= {object*>{¢numeral*}| "} {((object))| "} 2
(7) feature*) ::= SIZEIORIENT|VX<numera1f>|VY(numeralf) 3
(8) { feature) ::= (featureﬁ>{((ob3ect>)|"}
(9) {function) ::= SINICOSIARCCOSISQI}ISQRT 4
(10) <operator) = SUM | DIFF | PROD| QUOT 3
(11) <logical) ::= EQ|NE|GT|GE|LT|LE ©
" (12) <term) ::= { feature|<number) |

oP({operator) ({termdk ¢term))|
FCNS{function) ({term))

{

o

This list specifies the objects presently defined in the semantic
memory. To ease the programming effort, the maximum number of
characters in a namé has been specified to be ten. For thisg

rpason the gbjects "igosceles triangle"” and "equilateral triangle"

are represented by the strings ISOSTRI and EQUILTRI respectively.

It will later become apparent that {(object*) represents generic
objects in the semantic memory while {object*)>{numeral*> repre-
sents specific instances of these objects defined by the PL and
incorporated into the sShort-Term Memory (STM).

These are the strings representlng the feature set previously
discussed. .
These are the strings representing the functions éecognized by
the compiler. SQR is the function specifying the square of its
argument; the remaining functions are self-explanatory.

‘These are the strings repreaenting the four arithmetic operations.

These are the strings representing the equality/inequality con~
straints recognized by the compiler.

Terms are the equivalents of mathematical expressions
(e.g. sin(a + bx)).

-

45

k
(13) ¢ predicate ::= {feature)ncterm)

<

(14) {toprel) ::= LEFTOF|RIGHTOF | ABOVE|BELOW1

(15) <d.ra;w > ::= DRAW(<obj ect*){(numera 1*}|"})
(16) <logic) ::= LOGIC({logical) (Cpredicate))

(17) < topol) ::= TOPOL({topreld ({object*>{(rumeral®) | "I
{object*}{ {numeral*) | i)

‘ The PL input consists of a stream of tharacters on punched

B

cards.? Statements may begin ‘or end in any column and may be

continued on as many cards as is désired_. Blanks may be inserted

: .) Y
anywhere except within a name or a number. N

¥

L' - A PL statemeat may contain errors in either syntax or' seman-

' tics. While the present implementation of the compiler checks the

.)

%

syntaétic validi("ty of PL statements, it only partially checks their
semantic validity. By using a sufficiently powerful compiler in
B conjunction with the semant“ic memory, it would be possible to fully

% , 0
. determine semantic validity. The availability of such a compiler

N R 2he A

would per&nit simplifications to the structure of the semantic me-

mory implemented in this thesis. More wWill be said about this in

SR VRS, T

cmaptex"s 3 and 4.

\
\ o

A

)

X 1 These are the stripgs\bepresenting the four topological rela-
: tionships recognized by the compiler.

£ "‘Y’:‘W‘T;‘," "J -

Dt

< L ' | :
() , 2 Obviously,a practical system would primarily input this infor-
mation in an interactive fashion via a graphics germinal.

- A v

: -
T i, s

As an example of the capabilities of the PL, consider the
problem of drawing a square and a triangle subject to the folj-'

lowing constraints:

size(square) < (5 + sin 52)2 (i)
VX; (square) = 63 (1i)
triangle is to left of square (iii)

A I;L program coding of this problem is:
DRAW (SQUARE) o
- ‘ LOGIC(LE (SIZE FCNSQR(QPSUM(S FCNSIN(SZ))))) . i
LOGIC(EQ (VX1 63)‘)
DRAW (TRIANGLE)
:‘ - TOPOL (LEFTOF (TRIANGLE SQUARE))
This e;sxample demonstrates that the DRAW command possesses
a "sphere of influence" which extends to statements between it

and the next DRAW command. For statements within this "sphere"

the object being predicated is implicitly defined. : {Thus the third

|

~
P

line ’of the program really means
| LOGIC (EQ (VX1 (SQUARE)63)) .
'Note that the order of statements between iwo DRAW..commands is
unimportant. /

'.l‘hi; section ;ompletgl the discussion of the PL for th.e
. moment. It will be resumed in Chapter 3 where the transl;tion

of PL statements into the ST by the compiler will be considered.

«

R A Sl

SRR

3

e e e e e i A U A b e

R R T B " - e T e L e R L

The remainder of this chapter is concerned with a desgcription

.

\ .
of the author's semantic memory. .

- o -

I3

L 2

’

Ay e e e

48’

2.4 The Semantic Memory

As was stated earlier, the semantic memory consists of both
a semantic map and a semantic net. The structure of each of these
will be det’d later in this chapter. For the moment it suffices,
to make the following observation. Analogdus to Quillian's work,
objects in the author's séyantic net are represénted by planes.
Each object is a concept aAd each concept need be defined only
once. Complex objects are defined by specifying a predication of
their constit;ent objects. For example, if RECTANGLE has been
defined then SQUARE is represented by a plane which contains the
information necessary to modify the RECTANGLE concept:so as to
produce the definition of SQUARE. The way in which this is dona'
will become apparent in due course.

The following section describes the types of nodes present

o

in the semantic memory.

2.4.1 Nodd‘&ypes

The semantic memory contains three types of nodes: OBJECT,

MODIFIER and LIST. These nodes consist of several fields each
of which contains either a chaxgcter string or a pointer to another
node.

The first of these, the OBJECT node, is a "header* node; there
is only one for each semantic plane (Fig. 2~8).1‘The NAME field

of the OBJECT node specifies the object to be defined, the SUBOBJ

C

field is a pointer to the subobject list, the ATTS field.points
to the ?redicates on the object's features an<§l.'the PARENT field
points £o the object's parents. This last fi:‘a‘.l'émis unused in the
present implementation of the program; it has been included in the

node for possible future applications of the semantic memory to

picture analysis. It also demonstrates a difference between Quil-

"lian's memory and the author's model. In the former each concept

had only one parent whereas in the latter many parents are permit~

ted. For example, two parents of LINE are RECTANGLE and TRIANGLE.

SUBOBJ ATTS

Pig. 2-8: The OBJECT node. The NAME field contains a character
string while the other fields contain pointers.

The primary function of the MODIFIER node is the px’ication

of the features of an object. 1Its TYPE and FCN fields describe
the type of predication to be performed while its PTR1 and PTR2
fields contain pointers to the left and might operands involved

(rig. 2-9).1 Ssome applications of this versatile node will be

l'gote that in drawings,the OBJECT and MODIFIER nodes are distin-
guishable because of double bars on the forner and single bars
on the latter. '

>

»

50

described in the examples of the' next section.

)

TYPE
FCN

PTR1 PTR2

Fig. 2-9: The MODIFIER node. The TYPE and FCN fields contain char-
. acter strings while the PTR1 and PTR2 fields contain

/ pointers.
/

o,

The LIST node is a general-purpose link for stringing to-
gether the other two types of nodes. Its THIS field is a pointer
to the node being referenced while its NEXT field is a pointer

to the next LIST node on the chain (Fig. 2-10).

™~

THIS NEXT

->

Ey

”
Fig. 2-10: The LIST node. Both the THIS and NEXT fields contain

- pointers

This concludes the discussion of the node types found in

the semantic memory. The next sections detail the memory's
' Noae

structure.

MR e

51

2.4.2 Structure of the Semantic Map

- defines the concept (Fig. 2-11). The DICTIONARY pointer locates

c
V?he structure of the semantic map is very simple: it forms ///
a chain consisting of LIST nodes. Each member of the chain repre- .
b
sents a concept by pointing to a plane in the semantic net which .

the header node of the semantic map. Furthermore, the LIST nodes
are ordered so that the concgpts they -access are in lexicographicéll

order.

DICTIONARY

ﬂ
~4

N

-

> concept 1

o
- ccmc\e}t 2

—_—

& concept n-l

£ concept n

AA

Pig. 2-11l: The structure of the Semantic Map. The names of
concept;, ceoncepts,..., concept n_3, conceptp
are in lexicographical order. Note that the NEXT
field of the last node of the map contains the NULL
pointer. ' ‘

¢

Iﬂ

TERIT Tar
#
o

¥
L3

.

52

2.4.3 Structure of the Semantic Net ’

The semantic net consists of a collection of in@eflinked
planes each of which is accessed by the semantic map. A suitable
starting point for the specification of its structure is the de-
scription of the way in which the planes are interlinked. Consider
the concept of a square. Because it is a specific type of rectan-
gle and because a rectangle contains lines, ig is expected that
the SQUARE, RECTANGLE and LINE planes should be somehow linked.
Thig is indeed the éase‘as is shown in Fig. 2-12.

Fig. 2-12 also demonstrates the two types of links which

.are used between semantic planes. The first type, .the subobject

link, yields the subobjects of an object. It is the one which

links the headers of the SQUARE and RECTANGLE planes to the header -~

" of the LINE plane. The second type, the predicate link, is the

one which allows a concept to be defined as the predication of
another concept. It is the usage of this link which yields a
compact structure for the semantic net. An illustrative example
of its function is given in Fig. 2-13. The examples that follow
will éemonstrate the utility of the predicate 1link.

The next step in the description of the system is an analysis
of the structure of the semantic planes. It was decided at the
outset that planes should be defined for both objects and features.

The former are predicated by the valueés of the features and their

R

t

SEMANTIC MAP

SEMANTIC NET

DICTIONARY

SQUARE |

link

Semantic Plane
of SQUARE

redicates
1 —d® {gf SQUARE

<«g—subobject ~<}+—predicate

link.

RECTANGLE

i

Lot

Semantic Plane
of RECTANGLE

\j

predicates
of RECTANGLE

Semantic Plane
of LINE

predicates
of LINE

Fig: 2-12: The linking of the SQUARE, RECTANGLE and LINE semantic

_ planes. The nodes are structured as described in
s‘ction 2.4. 1.

SEMANTIC NET

~ Semantic Plane
! ' of SQUARE

=] £ T »——!——>E1:E*5L - ‘e—['_FE\— |
1st predicate 2nd predicate mth predicate
of SQUARE of SQUARE of SQUARE ‘

Semantic Plane
of RECTANGLE

RECTANGLE

=1 ér—;—«»f:%:l}—»c?x:el

¥ | 1st predicate i th predicate n th predicate
; of RECTANGLE of RECTANGLE of RECTANGLE

Fig. 2-13: Example of the function of the predicate link.

/

planes may be quite ¢omplex. On the other hand the latter,
being themselves features, have no predicates; their semantic

planes consist of a sole OBJECT node with all pointers set to

l NULL (Fig. 2-14). The features which are assigned semantic planes

Semantic }
Plane for ' i

Fig. 2-14: The semantic plane for the VX feature. Similar
planes exist for VY, SIZE and ORIENT,

1

are SIZE, ORIENT,VX and VY. Note that the contour vertices VX
&

and VY have no suffixes. The next example explains the reason

for this supposed ovérsight.

Consider the LINE plane. One of its predicates may be vx

)

22 0
where vx, is the x-coordinate of the second veréex of the line.
Its represegyétibn in the semantic net is shown in Fig. 2-15.
Three app eations of the usage of the HODIFIER‘nod; as specified
by its TYPE field ar§ evident from this example. Wwhen the field
contains the string LbG;C then the FCN field consists of a string

naming the hinary relation between the two operands accessed by

56
1/
[LmE H |
i e !
!i1°—ql—>ltl°-:}—— - -
to other predicates LOGIC CONgTANT
of LINE GE -
llm T
WORD
Semantic Plane for LINE 2
s 1 9
g ~ L
/ !
to VX-OBJECT node
V™

Pig. 2-15: The semfntic plane for LINE showing the structure
of the predicate LOGIC(GE(VX2 0)).

the PTR1 and PTR2 fields. When the field contains the string
CONSTANT then the FCN field consists of a string specifying a
numeric constant. The usage of the node when the TYPE field
contains the string WORD pertains to the discussion of the pre-
vious paragraph and requires some explanation. According to the
syntax of the PL discussed in Section 2.3.3, VX2 is a member Qf

{teature>. Although the concept VX has been defined (as was

shown in the previous example), VX2 has not. What is then re-
'quired is a pcodication of VX. This is accomplished by the cre-

L

B

ation of a modifier node whose TYPE field contains the string

WORD and whose function field contains a string which is to be

+

appended onto the concept specified by the node's PTR2 field.
In the example of Fig. 2-15, this procedure yields VX]|21 or VX2.
The node's PTR1 field is set to NULL because no further qualifi-

cation of the feature is required. Fig.)z-ls considers a more

complex example of the usage of WORD. In this case the feature

as specified by the PL is VX2(LINEl(TRIANGLE)).

WORD
2
s | —8= to VX-OBJECT node
WORD
1 . a
| —3—> to LINE-OBJECT node

!
T = to TRIANGLE- OBJECT node! |
T - o

W

1

Pig., 2-16: Semantic net representation of VX2 (LINEl(TRIANGLE)).
Note that in the bottom node the null string is to
be appended to TRIANGLE as required.

o

\
]

1 ﬂﬂ;nlnn *concatenated with*,

c
. e v K -
| lspet e g B B

o Fe

i " Y

Py

A ich s o

B (R e

e

It‘%én now be explained why the contour vertex features were

defined without a suffix. If this were not done then a plane

~ @D ‘ [{
would have to be defined in the semantic net for each of VXi and

VYi corresponding to the i th contour vertex. But with 2n such -
.

planes, the gemantic net would be unable to describe objects
having more than n contour vertices since the character s;rings
for thé (n + 1)th vertex would not exist. One could, of course,
work within such a restriction assuming that one were prepared
to make n sufficiently large so as to provide for an object 1
having a large number of contour vertices. Besi@es being inele-

«w

gant, such a procedure would clutter the semantic map with point-

ers to 2n VX and VY planes. The solution to the problem imﬁle—
' i

mented in the last example allows the specification of an aniim-
ited number of contour vertices by defining semantic planes for

only on;. It can also be ;een from the last example that this

scheme allows the na;es‘pf.objects to be defined by an unsuﬁ{ixed .
character string with the same resultant simplicity of the seman-

tic map.

. / :
The next example in this section further illustrates the

tic net. Consider the PL string LOGIC (EQ(SIZE FCNSQRT (OPSUM (VX2

VX2)9d)). 1its representation in the semantic net is shown in

N

complexity of predicates which can be incorporated into the seman-)
&

Fig. 2-17. 1It can be seen from aAn examination of the figure that

oo~) 59 .
4
" the MODIFIER node is being employed using both the OP and FCN
strings in its TYPE field. When the OP mode is used PTR1 and
. PTR2 point to the left and right operands while the FCN field ‘
. . : /)
l specifies the operation. When the FCN mode is used they PTR1
field is set to NULL while the FCN field specifies the function
7 o and PTR2 points to the argument.) i
1 o - S
; . 4 \
E :
L o . - [
[
. [}
§ SEMANTIC NET
—— \%
ﬂ S . , |
} 1 ‘ 4 |
o FCN % oP ~ ‘
,‘ _SQRT SUM o
' ' g | ——{ 1 | ¢ '
i :
z : ki
, : WORD - :
| . 1 1] : : r I 9 A
S
s e S » T
" - P - b
~ to SIZE- to VX~ %
. OBJECT OBJECT a :
node ° noge/‘ 3
' 4
¥
¥
L { '
‘. e Fig. 2-17: Semantic net representation of the predicate i
o . LOGIC (EQ(SIZE FCNSQRT(OPSUM(VX2 VX2)))). .
" C
AN

60

.
EARTE S

One usage of the modifier node not yet discussed is the

-

o, 3

KNOWN mode. It will not be described in this chapter because

-

its usage arises not out of a conceptual necessity but rather to
compensate for a shortcoming of the compiler. The details of its

usage will be given in chaptef 3.

Ty

'The next example of this section illustrates a method by o)
which the predicate link yiélds a compact structure for the seman-
tic net. Consider the semantic plane for LINE. Certainly one of

:.pIEE's predicates is LOGIC(GT(S}%E 0)) since every line must have

Ay

a nonzero length. Consider%mow the semantic plane for TRIANGLE.
i

~ -_One of its predicates mnstwélso be LOGIC(GT(SIZE 0)) since every

triangle must have a nonzero perimeter. Since these predicates

e~ T

-will have the same structure in the semantig net, it would be

wasteful to specify both separately. The predicate link allows
-~) .

the specification of both while using only one structure. The

i

R oty

way in which .this is done'is shown in Fig. 2-18.

.gat]

»

Ry

The predicate -link may also be used to link subcomponents

»

of predicétes. Consider the two PL strings LOGIC(GE(VX3 0)) and

P

~ s

LOGIC(LE(VX3 5)). The represenfation of these in the semantic

Fl

net is shown in Fig. 2-19. Note that the node éymbolizing VX3 is

¢

shared between the two predicdtes.

TAAL e Y SN e v,

It is obvious that the usage of the prediditenlink yields

a compact semantic network possessing a minimal amount of dupli-’

!
\
i
!
s
3

s " g I 7.y, ¥ e Camaraa A ne R " - ; g
i . +
. &% 7

61

SEMANTIC NET

Semantic Plane

of TRIANGLE

-g—predicate link |,

Semantic Plane

of LINE

l—b to SIZE-OBJECT
node

AL
R

s S

e

e

e

Pig. 2-18: The semantic planes for TRIANGLE and LINE showing the
usage ‘of the predicate link.

~

62

SEMANTIC NET.

LOGIC NUMBER
GE _ 0 LE 5
I

3 !

| 1 - +
WORD. ! «3-predicate link

3 <} A ¥y

[—3—>= to VX-OBJECT node

1
1T _

3
<

Fig. 2-19: The uge of the predicate link in linking together
subcomponents of the predicates LOGIC (GE(VX3 O
and LOGIC({LE(VX3 5)). \\\

cated information. -

er e T

. A

I,

63

have been LOGIC(GT(SIZE(TRIANGLE) 0)). This was.not done because,
analojous to the PL 1anguage"structure, each plane in the semantic
net possesses a "sphere of influence". Thus the name of the ob-
ject of the plane which accesses a predicate is ;utomatically
appendeé to each of th; conditions on ﬁgatures specified by the =
predicate. &W

It is now possible to generalize the structure of a predicaté
if one omits from this discussion the structures which result from
the use of the KNOWN mode of the MODIFIER node. Specifically, any
predicate can be modeled by a binary treel whose patriarch ié a
MODIFIER node of the LOGIC type. For example the predicate spe-
cified by the example of Fig. 2-17 can be modeled by' the binary
tree of Fig. 2-20. Note that the leaves of the tree are either
OBJECT nodes, NULL pointers or MODIFIER nodes containing the CON-
STANT string in their TYPE field.

The exarmdples of this chapter have g;rved to explain and high-
-light representations of various concepts within the semantic
memory. Fig. 2-21 depicts a pictorial description of the memory

A}
in general.

1 Binary tree: "a finite set of nodes which is eithq; empty or
congists of a root\and two disjoint binary trees called the
left and right subtrees of the root" (Knuth, 1968, p309).

64

LOGIC v
EQ
WORD FCN
\ .
u SQRT, »
op
NULL SIZE), NULL
sSUM
s
’ WORD WORD
i 2 4 2
|
y /;'
|
VX vX /

Fig. 2-20: The binary tree representation of the predicate of)
Fig. 2-17. W '

o g, - R 10

-

W WL,
.

3,

65

SEMANTIC MEMORY

SEMANTIC
MAD SEMANTIC NET
DICTIONARY \ SEMANTIC PIANE
13
A | o = eI
L] q - Py
NODE . vV, '
. Vv
) to predicates
o153 - =01
> - 9
| ‘ .'

| Dy---y
@4___4

& SEMANTIC PLANE
I_TII : ~ | oBIECT
s £ NODE

e
1 [
| to subobject list

' /
I)

- to predicate list

¥ SEMANTIC -PLANE

OBJECT
NODE .
¢ e—tp to predicate list '

to subobject list

{E-
r
VTV

Pig. 2-21: Generalized form of a Semantic Memory: @ and @ refer
to subopject links and predicate links respectively.
While the predicate link is shown external to semantic
‘planes only, it also exists within individual planes
(see Fig. 2-19).

-

W e e —

S

66

Given the details of the structure of the semantic memory, .
it is possible to justify the Flaim that it can supply all the
information necessary to draw an object. The memory has been
defined so that it contains enough information to limit the value

of each feature (fy) of an object as follows:

s b

either (i) £, = a
or (ii) £y € [b,c]l ana £y # di o i=1,2,...
where a,b,c and d4d;j's are constants and the di's are members of
the (possibly null) set of forbidden values of fy,. If the con-
straint on £, is type (i), then the feature value is fixed. Other-
wise, a random select:"Lon of f, subject to the constraints of (ii)
wiil yield an acceptab‘le value. Any constraints supplied by PL
statements serve to further limit the range of acceptable values
for fv. ’

The way in which the semantic memory's information is accessed

and used is the subject of the 9ex'%: chapter. The next section of

this chapter formalizes some of the concﬁot\s described to this

~

point. i - ‘\‘.

~

S

1 This notation means: "the value of fy falls withdin the interval
bounded by the points b from below and c
from above". \

NN Aenc .

o

67

2.4.4 Concepés

This sect;ion formalizes the structure of the semantic net.

Its objective is the definition of what constitutes a concept and
¥

the determination of whether it is possible to represent all con-

cepts by the relationaf LEAP structures of Section 1.3.3.

A characteristic of a semantic net is that it contains %&;uc-
tures called concepts which need be defined only once. The con-
verse of this statement is now assumed. That is, any structure
which need be defined only once is a concept of the semantic net.
By definition, a structure consists of a node called the patriarch
and all the nodes accessed by it, either directly or indirectly.

[

Because of the manner .in which the semantic net had been structured,
the above‘ definitions imply that choosing any node in the net as
pati'iarch will isolate a structure which represents a concept.
it is contended that each structure may be represented by one or
more LEAP triples or by a member of a triple.

. The specification of a relational triple in the LEAP language
may follow either the (O A V) format discussed in Chapter 'l or
the moré general (A R B) formﬁt. The former is especially
suited to linguistic descriptions while the latter ;simply states
that two concepts A and B are linked by a relation R. Because

the author's net is mathematical rather than linguistic, its

concepts are more amenable to representation by (A R B) triples

than by (OA VvV) triples.

Consider the set of nodes in each plane of the author's net
which may be patriarchs. Reference to Fig, 2-21 yields the fol-
lowing members:

(i) Any MODIFIER node. This node accesses either all or
part of a predicdte within a plane.
(ii) 1Any one of the LIST nodes accessed ei?her directly or
indirectly by a pointer from the ATTS field of an OBJECT
] node. The LIST node accesses bot;h a predicate as well
as the next LIST node (if any) in the list of predicates
(see Fig. 2-21).
(1ii) The OBJECT (i.e. header) node of a semantic plane. This
node accesses a set 04;. subobjects through its SUBOBJ

; field and a get of predicates through its ATTS field.

| (iv) Any one of the LIST nodes accessed either directly or

indirectly by a pointer from the SUBOBJ field of an
OBJECT node. 'rlhe LIST node accesses both a subobject
(i.ﬂe. the header of another plane) as well as the next
LIST‘node (1f any) in the list of subobjects (see F‘ig.
2-21). |

The concepts c)lescribed by (i) can easily be shown) to be

representable by{ either a relcati'onal triple or by a member of

such a triple. It was shown in the previous section that any

¥

predicate can be modeléd by a binary tree;.‘Because any popf?%n
of a binary tree is either a leaf or another binary tree, any
.part of a predicate can be also so modeled.

A binary tree can be modeled by a relational triple as can

be seen from Fig. 2-22. fYherefore, any part of a predicate de-

scribed by (i) can either be modeled as a relational triple or

== (AR (A'R'B'))'

= (ARB)

'g?g. 2-22: Representation of a binary tree by (A R B) where
s B (A*R' B').

as a member of one. The only exception to this occurs when the
patriarch node is a, MODIFIER node containing the string WORD. 1In
this case the/étrhcture represents a feature and is represented
by a termiﬁ;i member of a triple. For example, the predicate of

Fig. 2-20 is represented by the triple: b

3

(SIZE EQ (NULL SQRT (VX2 SUM vxz)))y

\v/

70

Because the function of a LIST node is to AND together
groups of OBJECT br MODIFIER nodes, the concepts described by (ii)
are representable by an AND'ed set of relational triples each of
which symbolizes a predicate in the semantic plane. Thus type
(ii) conc;epts become (A; R; By) N (A, Ry B,)N...N(Ay Ry By).
The concepts described by (iii) are representable by AND'ing
two classes of relational triples. The firlst class describes the
predicaition of an object by its subobjeé\ts and can be constructed
by observing that the SUBOBJ pointer from the OBJECT node can be
represented by the relation‘R_——_: "has-as-subobject". The subobjects
of the patriarch node' which are linked by LIS"T nodes become the

*B" members of the triples and the class of triples is modeled by:

(OBJECT has-as-subobject OBJECT;)
N (OBJECT has-as-subobject OBJECT;)

M (OBJECT hii’s—as-;t.ﬂ-)object OBJECT,)
In a similar manner, the second-class of relational triples de-
scri’bes p;edication ‘of an object by restrictions on values of its
features. It can be constructed by observing that the ATTS pointer
from the O '\ECT node can be represented by the relation
R= "has-as-predicate". The predicates of the patriarch node L
which are linked by LIST nodes become the "B" members of the
trip¥es and the class of triples is modeled by:

(OBJECT has-as-modifier MODIFIER,)
N (OBJECT has-as-modifier MODIFIER?)

N{ OBJECT has-as-modifier MODIFIER;)

[}

’ long—-term memory in accordance with the precepts outlined in

In summary , the concepts described byf(iii) can be represented
by AND'ing the two sets of relational triples described above.
In a manner similar to that u;ed for type (ii) concepts,
those of type (iv) can be repfesented by an AND'ed,set‘of sub-
objgcts each of which can be reapresented by‘an AND'ed set of re-
lational triples. Thus type (iv) concepts are modeled as:

(SUBOBJECT;) N (SUBOBJECT; (AT A KR! SUBOBJECTn)
vhere each of the SUBOBJECT; is representable by the set of re;
lational triples outlined-in the preceding paragréph.

‘This section has formalized the structure of the author's
semantic net in two ways. PFirst it has defined a concept as any
;tructure in the Semahtic net. Second it has shown that any
concept can be represented by ah AND'ed set of relational triﬁles‘
or by a member of a relational triple. The next section briefly

N
considers whether the semantic memory is a viable model of a human
|

{
t
'
’
4

Section 1.3.3. |

!
i

2,4.5 A Brief Comparison with Human Long-~Term Memory

According to Chapter 1, four features of a human long-term
memory are that it is associative, teachable, inferential and

that it have a flexible retrieval mechanighm. This section will

_briefly consider whether the author 's semantic memory possesses

these featureé. -

{

g . .. R T L ™ S . TR T

-

'mmmory because of its specialized (mathematical) nature. However,

-«

That the memory is associative follows by the definition of

¢

a semantic memory. First, thﬁ existence of the semantic map means
that enéry into the net is on a coktent—addressable rather than
location-addressable basis. Second, bechuse the semantic net
consists of linked sets of relational triples, accessing of infor-
mation within the net -is also on a content-addressable basis.
These two features define the author's mémqry to be associative.
While the memory is theoretically teachable, this feature
has not been implemented. 1Indeed, £he Lechniques required to
make‘the memory teachablé constitute é coﬂblex procedure wﬁich is
beyond thercope of this thesis. Some attributes of such a pro-

4

cedure will be discussed in Chapter 4.

That the memor& is inferential is demonstrated by the fol--
lowing example. Consider the semantic plane of a triangle. Ong
of its predicates is LOGIC(LT(SIZE(LINEl) OPQUOT(SIZE 2))) which
states that the length of 1{ge number one is kess than half the
périmetér of thg'triangle. If the size of the triangle is given,
then the compilé; will be able to infer a limit to the size of
line one. *

If the—m%mory is to have a flexible retrieval mechanism, it
must be abl; Eo retrieve information given data who;e form;t

differs from that by which the memory previously learned the infor-

mation, This feature is not pfésent in the author's semantic .

S

73

:
R . W,
3

‘ Sy ;
it can be assumed that the more general lihguistic memory of which

it{would be a part would possess this capability insofar as it

]

ma)t be able to translate input data ﬁo a form recognizable by

the mathematical memory. N

This section completes Chapter 2 whiéh»has been concerned

with the PL and the semantic memory. ‘Fhe next chapter will

»

discuss the compiler and the method by which it incorpofates

¥

information from the PL and the semantic¢ memory into the STM. '

e
-3,

sty

-

Chapter 3

The Compiler and STM e
- I3

3.1 Overview

This chapter describes the compiler whose function is the’
translation of information from both tHe:PL and the semantic .
memory into the STM so that the information can be used in the
synthesis of line draﬁings. A flowchart Af the operation of the
compiler appears in Fig. 3-1.

As can be seen from the flowchart, compilation occurs ip

three steps. In the first step, the compiler accepts a PL pro-

gram, checks its syntax and uses it to create the STM. The next

step, which is repeated for each object to be arawn, consistg of

locating the semantic plane represepting the object, ¢reating a -

Subobject Tree (see Section 3.4.2), forming all predicates of the

»

s) object and translating these into the STM using information stored

*

in the Subobject Treé. In the third step, the Feature Value Selec-
Y tiqp»Algorithm (see Section 3.5:3) is executed. This algorithm

yields a numerical value for every feature of “each object t; be ¢

drawn consistent with the constraints specified Sy the STM. %Pe

' feature values are then used to produce a line drawing.
\

. The remainder of this chapter presents a detailed éescription

of the above procédure and points out the "limitations f the pre-
- < . ~d _ oL - ey

!

’ v o ! ’ . ° , |
~ | AR

R T T

PN W g S

LT

75

INPUT PL
PROGRAM

TRANSIATE
PL STRINGS
INTO STM

—— e @ 0 o

GET FIRST
OBJECT TO BE

DRAWN FROM STM

ERROR
DETECTED

STEP 2:

HALT)

SEMANTIC MEMORY INPUT

"

R o ! 1 - 5
Fig. 3-=l: ‘General Flowchart of the operation of the com;;iler.

FORM GET PREDICATE TRANSIATE
SUBOBJECT ON OBJECT FROM (& INTO
TREE SEMANTIC NET STM
GET
NEXT
- OBJECT
|
—
sm:;:w STEP 3: COMPUTATION AND OUTPUT ' !
EXECUTE FEATURE _ PRODUCE
VALUE SELECTION LINE L—>< END)\ -
ALGORITHM DRAWING ~
———————— -'-3--—-—‘-——-'-"——"—-*r--:———--—-——-'--:"-——--——',:j

b

TP I

|

R . g A

o

S TR IR e,
-, Ter
¥, PR

O

76

~3.2 Structure of the STM

Théubperation of the cémpiler on the PL and the semantic
memory produces the STM. Before the procedure by which this is
aécomplished is de;cribed, it is instructive to consider the struc-
ture of the STM in general. .

The information stored within the STM represents specific
ingtances of concepts defined in the semantic memory. It is there-
fore reasonable to assume that the structures of the STM and the
semantic memory will be similar. A comparison of Fig. 3-2 with
Fig, 2-21 shows this to be the case.l

These similarities in structure permit a carryover of many
ideas evolved in Cﬁapter 2 to the present discussion. For example,
it will be shown that the ST™ contﬁins LIST, OBJECT and MODIFIER
«nqdeg as does the semantic meméry. Furthermore, the usage of
these nodes will.-often be the same for the two structures.

A description of the methods by which the compiler creates

the STM from a PL program and the semantic memory is the topic of

the following sections.

P
v

-

1 The TOPOLOGICAL RELATIONSHIP block ofUFig. 3-2 is a temporary
structure whose function will be described in Section 3.3.3.

e

7

LR , 77
. STM
WFRKSPACE
[Tl OBJECT LISTe OF FEATURES
] NODE AND PREDICATES
, o—{ PREDICATES ON FEATURES
%
| > 117] OBJECT
& NODE
. | o o _EBEDIQAIES_Q, -
|
. * SUBOBJECTS . _
[}
! Lyls] OBJECT
! l . | NODE N
| . o |PREDICATES o _
. L_SUBOBJIECTS . _
b
4 4
OBJECT -
NODE
' . ~—{PREDICATES . _
N | SUBQRIECTS
. GT) TOPOLOGIGAL
v —p= RELATIONSH
L

9

Fig. 3-2: Overview of the strdctutre of the STM. The function of

the TOPOLOGICAL KELATIONSHIPS block is described in a
) later section. YORKS PACE is a header pointer which
i locates the STM. '

¥, 7,
L e
wr

-
b
k]

ey - RS
- -

RS W"’MW

78

-

3.3 Translation of PL Strings

The first task-whiqh must be performed by the compiler is
the translation of PL strings into the STM. The algorithm used
by the compiler to check for syntax errors will not be described.
Instead, it is assumed thatuthe algorithm functions properly and
that any syntax errors are detected and cause termination of
cqmpilation.

It was shown in Chapter 2 that the PL contains three stgge-
»ment types: DRAW, LOGIC and TOPbL. The way in which these are

incorporated into the STM is discussed next.

3.3.1 PL Statements of the DRAW Type

The DRAW statement defines an instance of an object. Compi-
lation of the statement creates'a structure within the STM which
represents the object. The details of this structure are now
considered.

According to the syntax of the PL (Section 2.3.3), the DRAW
statement has the form DRAW({object*>{(numeral*>|"})! Giveg
su;h an input the ¢ompiler can Aeduce that an object having a
feature set is to4§e drawn. It was shown in Chapter 2 that each
object possesses six prima;y features. These are SIZE, ORIENT,

!

-~

1 1f no numerical suffix is attached to the name of the object,

a "1" is appended by the compiler. Thus, DRAW(LINE) becomes
DRAW (LINEL),

- e W

O i
-

TR - s

LY

79

VX1, VvYl, VX2 and VY2. Depending on its complexjity, it may also

possess secondary features.

Because the compiler cannot a priori

know about the existence of the latter, the DRAW statement results

'in the creation of the-STM depicted in Fig. 3-3.

STM
WORKSPACE
BEE ’\Hnote(l) 1
L e 1 % H i
SIZE VY2
e | 9 T 1

!’

Fig. 3-3: The STM which results from a single DRAW statement.
Conventions for drawing LIST, OBJECT and MODIFIER nodes
are the same as those used in Chapter 2. The string
represented by "note(l)" is {object*>{numeral*) where

,{object*) is as defined in the DRAW statement.

]

b 1 -

¥ N , .) \

\
It can be sqen from this figure Ebat the OBJECT node iden-

tifies the object td‘be drawn. Its ATTS field points to the list
of primary features each of which is represented by ; modifier
node. A backward pointer from each of these MODIFIER nodes per-
mits the identificétion of the OBJECT node to which the feature
pertains. Each MODIFIER node also contains a pointer to a LIST
node. This node can be used to set dp a list 'of Value Dependence
" Pointers (VDP's) whose function will be described in this chapter.
This completes thg description of the compilation of the DRAW
statement. Each time one of these is encountered by the &ompiler,
~another structure like that described above is created within the
sTM. |
The next sectioq describes the compilation of statements of

~.
the LOGIC type.

(=9

AT -

Tt o,
.

i w‘_

-

s TR IR TG

b o

81

3.3.2 PL Statements of the LOGIC Type
\ ‘

i

The LOGIC statement specifies predication on the features

of an object. By its very nature it may also reference second-

1

ary features™ and subobjects which have not yet been encoded
> w

into the STM. By using two examples, this section will describe
the compilation of the LOGIC statement into the STM. The first

4
example will also demonstrate the incorporation of secondary -

’

features into the STM while the second will illustrate the incor-
poration of subobjects.
Consider the PL statements

DRAW (TRIANGLE2)
LOGIC (LE (VX3 OPSUM(VY2 5))).

The DRAW statement causes a structure similar to that of Fig. 3-3

to be set up in the STM. In compiling the LOGIC statement the

compiler recSgnizes VX3 as a feature because of its pogition in

the statement?. But because VX3 is not a primary feature in that
it céntains the suffix "3", it is recognized as a secondary feature.
A new nodé representing it is therefoge appended to the feature

set of TRIANGLE2. Furtheémore, the LOGIC statement specifies a

predication on VX3 and this information is also encoded into the

STM (Fig. 3-4). i
¢+ r

1l gee Bection 2.3.2.

2 Refer to the BNF description of the PL (see Section €.3.3). /

. 82
N
L C
SN
’z{ STM
% WORKS PACE
- T TRIANGLE2 ||
. T g 11
| SIZE } .
ﬁ -1 l < S J v -] L ®
7 L3R [SR
m mu
- mnn=0 |
} - 1 57
’ ' * _l_
4 ’ ‘ LE
vop—~ © | jt
oP
. SUM
o | i
CONSTANT
. i . 5
J . e 1 3
i«" . ~ L 1
: . ' ' |

Pig. 3-4: STM representation of
rf QO © DRAW(TRIANGLE2) .
Z LOGIC (LE (VX3 OPSUM(VY2 5)))
* VDP is the Value Dependenee Pointer described in the text. '

1

Eﬁ ' - . N

The LOGIC statement of the above example stipulates that
'vx3 is a function of VY2. As a result of this functional de-
pendence, a backward pointer called a vd lue Dependence Pointer
(VDP) is set up from the independént vagiabke‘(VY2) to the pre-
dicate (see Fig. 3-4). The purpose oflthis pointer will be ex-
plained later in this chapter during the discussiom of the Fea-
ture Value Selection Algorithm,

It can be seen from Fig. 3-4 that thé structures of the STM
and the semantic memory are similar in that MODIFIER nodes play

v

a dominant role in the encoding of informatiori. Their structures

differ to the extent that the STM's is tailored to the specifi-

cation of instances of objects defined by the memory. The re-
sultant STM structure represents these instances in a manner
which facilitates the“ééﬁputation of feature values. -

The second examgie of this section illustrates the usage of

'

the LOGIC statemen;/in the specification of subobjects of an

object. Consider the PL statements
9
DRAW(RECTANGLE1)
LOGIC(NE(SIZE(LINEZ) S1ZE)).
Because of its location within the LOFIC statementl, the compiler

recognizes LINE2 as an object. Furthermore, because the LOGIC

statement is within the "sphere of influence" of RECTANGLEL,

fhaadis LCouaen
PR

1l Refer to the BNF descripeth of the PL (see Section 2.3.3).

A

' 84
§
, LINE2 is wecognized as a.subobject of RECTANGLEl. The STM
é l which results form the compilation of these statements is de-
picted in Fig. 3-5.
t v - £
STM
'| WORKS PACE ¢
1
1 1 s] J RECTANGLE1
t N B sy =S
= ! ' A =) ’
? SIZE
i . [zove2 L —=1 ¢ | =
‘ . =
. H 1. 1 ¢
‘ 0 1
, - -
‘ . \ SIZE
o | °—--—->L-l. | =1 i | *—?—_L
‘ ' L o NE
r = T =
N o
rig. 3~5: STM resulting from the PIL statements)
DRAW (RECTANGLE1) : ‘,
106IC (NE (SI1ZE (LINE2) 81ZE)) -t

T 7T W‘W—-_"W - -
Y - -

”FK“ - .
f,g; . 4

-
»

85

—

It can be seen from Fiq. 3-5 that the)PARENT field of LINE2
confains a pointer to RECTA&GLEI. The purpose of this pointer
is to allow the identification of the parent of an object given
the object's location in the STM. This usage is in contrast to

that in the semantic memory where the PARENT field is presently

S

undefined.

This example concludes the description of the compilation
of LOGIC statements. The next section considers 'the compilation

of the last type of PL input, the TOPOL statement.

\,

3.3.3 PIL Statements of the TOPOL Type \~

The TOPOL statement defines a topologicaz relationship
begyeen the two objects which are its arguments. 1Its position
in a PL program must be such that its arguments have beef pre~-
viously defined by appropriate DRAW commands.

As was seen in Chﬂptgf 2, its syntax is specifiéd by the
expression TOPOL((topre})(argl argz))'.1 In this form, the TOPOL
statement dqes not yield useful information on the features of
its arguments. What is required, then, is that the statement be

translated into a set of predicates on these features. The method

Lo
‘n‘f

by which this is done is now described. '

<

1 arg,, arg, are the objects for which the topological relation-
ship is being defined. In BMf form, arg, and ary, are members
of the set of strings defined by (objoc 1'){(mnwral*)l “}

¢

\

A sufficient (but not necessary) condition for the TOPOL
statement to be valid is that each of the contour vertices of

its arquments also satisfy the topological relationship speci-
‘ |
fied by the statement. Fortunately, it is an easy matter to
hnd

determine appropriate constraints for the contour vertices. Thus,
<

S &

for thle. general statement of the previous paragraph, a suffi}ient
set of constraint$ are'as follows: -
if <topre1> s then vxi<:vx59v : (vxi,vyi) and
, (ij.vy-) where
if {toprel) ::= RIGHTOF then vXx;> VXy 3
L : are the contour ver-
if ﬁtopre]) % 3= ABOVE then vy;> vyj' : tices of arg; and

)

j/ tices of args.

L] -~

- 4

if <topre1> 2 := BELOW then VY; <VY, . aré the cofntour ver -
'In order. to reduce the programming effort, this sufficient set of
constraints is the one employed in the present implementation of

the compiler. *
1

It would thgreforé appear that when a T(‘)?C‘)L statement \(om;ld "
be encountered, the compiler need oniy.generate a suitable set)
of predicates on the contéur vertices of the agprbpriateuoﬁjects;
'g These predicates could then be incorporated into the STM using
the techniques described in tﬁg previous section.

Unfortunately, this is not possible ‘because some of the

- contour vertices of the objects may be secondary features whose

existence is unknown to the compiler. The prjoceuing of TOPOL °

1

%

¢

~

H

87

statements into .thé STM must therefore be delayed until all éke

N

pertinent information of the semantic net which includes predi-

cates on all secondary features has been accessed and compiled.

So that the compiler may "remember" the TOPOL statement, a tem-

porary representation of its information is set up in the STM.

For example, the PL program

DRAW (LINE1)
DRAW(LINE2)

L]

TOPOL (ABOVE (LINEl LINE2))

results in the structure of Fig. 3-6.
ST™
WO, PACE
LINE1 -—
3 ? —
p | o - - — -
L -4 .

rig. 3-6: Temporary representation in the STM of

g 1= &>
I -
TOPOL

a‘¥‘¥’ v

TOPOL (ABOVE (LINEl LINE2)).’

Vb,

the statement

Lo

~

Opge all the pertihent predicates. of the semantic net have
been accessed and incorporated into the STM, the information of
the TOPOL statement can be translated using the methods described:
The resulting LOGIC statements which represent pred%fates on the
contour vertex features of the arguments can then be easily inte-
grated into the STM. Upon completion of this procedure, the

topological relationships block is ggleted from the structure of
Fig- 3-2. !

. "

This section compleges the description of the compilation of

PL statements. The next sections discuss the algorithms for the
retrieval of predicates froh\ﬁhe semantic net and for their sub-

sequent compilation inta the STM.

1

¢

3.4 Translation of Semantic Net Predicates into the STM

The following sections will describe the algorithms required

/for the transfer of information from the semantic memory to the

STM. It is assumed that a PL /input program has been succeséfully
compiled. What is required is that the compiler access the per-

. v
tinent ﬁgpdicates of éﬁé\sg ingﬂggg_ggg\incorporate their infor-
mation into the STM. Upon completion of g%%ﬁ)task, the STM will
contain all the information necessary to dra& the objects épecified
by the PL program. ' /

It was seen in Chapter 2 that all semantic net predicates

can be represented by GIC statementé. Furthermore, Section 3.3.2

- described a procedure /for the ‘translation of such Btatements into

the STM. Therefore, /the procedure which shall be adopted will be
tﬁe translation of pemantic net predicates info LOGIC statements
aﬂd then the trans{ation of these into the STM using the methods
of Section 3.3.2.- ’

It can b& seen from the flowchart of Fig. 3-1 that .the trans-
lation procedure which will be described is repeated for each
object defined in the STM by a DRAW command. The first step in
the procedure is the localization of the object to be drawn in the
semantic net. The syntax of the PL states that the name of an

object in the STM is defined by the BNF string {object*)>{humeral*)

while its counterpart in the semantic net is defined by {object*).

ey R

~

’ .

Therefore, the compiler truhcates {numeral*} from the object's
name and compares the remaining string to that contained in the

OBJESE node of each semantic plane. If a match is not found,

o

r ‘ - 3
the compiler assumes that the object is undefined and execution

of the program is terminated.

Assuming that a match has been found, one might assume thét
the compiler need only generate PL strings from the semantic net
predicates pertaining to the object to be drawn and incorporate
these into the STM. Unfortunately, this is untrue because the
str;ngs generated in tﬁlh\manner‘do not sufficiently qualify‘the
features of the object. Nevertheless, the translation of semantic
net predicates into PL statements does constitute part of the

solution. The next section describes the methodology of this

translation procedure as well as its shortcomings.

3.4.1 Synthesizing PL Strings from Semantic Net Predicates

The translation of a semantic net predicate into a PL string

must involve accessing its information by traversing its nodes<;:\\

accordance with an algorithm. It was stated in Chapter 3 that
each predicate may be modeled by a binary tree. Therefore, it is’
worth considering whetﬁer an aigoiithm for the "traversal of binary

»

» .
trees maysbe of use. Knuth (1968) -considers three such algo-

rithms: preorder traversal, postor;:ler traversal and endorder

a

21

traversal. Of these, preorder traversal is the most useful for

~

the required application. It stipulates that the traversal of a

binary tree is to be accomplished recursively in the following
sequence:
(i) wvisit the root node ‘) .

(1i) traverse the left subtree

-

(iii) traverse the right subtree

Thus the sequence for vikiting the nodes of the tree of Fig. 3-7.

Y 4

isabdhiecfjkag.

» o’
) B

e

-

P ol

Fig, 3-8: A semantic net predicate.

92

The algorii:hm employecf for the traversal of semantic net
prediéates uses preorder traversal as its basis. It will be

derived using an illustrative éxample. Consider the predicate
») ”w
of Fig. 3-8. The traversal algorithm for this predicdate must be

o

capable of producing its PL representation. That is, it must be

LOGIC 3 » (
GE -
) l o
r g \
WORD) FCN ¢
" SQRT
N — SIZE v 1T 1 1.
°> . _L +
4 -
e 1 3 J_
o 4L L - - .__op
: T PROD/
X — o=
WORD » \
. H) . l . |
| o—t+—& TRIANGLE | “WORD CONSTANT

* to predicates
and subobjects
of TRIANGLE

93

1t

capable of producing the string LOGIC (GE(SIZE (TRIANGLE)FCNSQRT

(OPPROD (VX1 5)))). /
f - &
Application of preordér traversal to the structure of Fig. 3-8

P 3

yields the following strings:

LOGIC, GE, WORD, ", WORD, ", SIZE, TRIANGLE,
FCN, SQRT, OP, PROD, WORD, 1, VX, CONSTANT and 5.

[y

In order to convert these strings to that which is required, the

- folloQ}ng changes must be made to the traversal algorithm:

)
!
:
|
}

1. Subtrgeé whose‘patriarch is a MODIFIER node containing the
string WORD are td be traversed recursively using a "mirror
imagé“ postorder algorithm1 defined by the. following steps:

(1) visit the right subtree ‘
(ii) visit the root node
;(* (iii) visit the left subtree
Usage of this'algorithm and removal og the str{ngs WORD
and CONSTANT results in: - |

3 . -

LOGIC, GE, SIZE,.", TRIANGLE, ", FCN, SQRT, OP, PROD, VX,

*

g 1 and 5. o+ |
l

.2. Concatenation of the strings in OP-and FCN-MODIFIER nodes |
' |

!

,as;wal ms the concatenation of those in OBJECT nodes to

»

{ their immediate successor from' the traversal algorithm
v < ~ w

1

yields LOGIC, GE,'SIZtﬁ TRIANGLE, FCNSQRT, OPPROD, VX1 and 5.

/

1 Por a more detailed discussion on binary tree traversal, see
Rnuth (1968), pp. 315-328.

5e

| ®

/Z{;-

3. Merging these strings and using brackets where appropriate

results in LOGIC(GE(SIZE(FRIANGLE)FCNSQRT(OPPROD(VXl‘5))))

-
which is the required string.

The algorithm which has been described is the one used by thg

compiler in the synthesis of PL strings from semantic net predi-

cates. Unfortynately, the strings generated in this manner are

/
unsuitable for direect translation into the STM in the sense that

they do not contain a sufficient amount of, information. To see

¢

why thié is so, considgr the seﬁantic net representation of the
concept TRIANGLE. It can be seen from Fig. 2-18 tha; this concept
is defined by the two semantic planes TRIANGLE and LINE and by the
Qubobject link? between them. 1In incorporating the concept
TRIANGLE into ghe sTM, éhe algorithm of this section woulé first
traverse the prediéatgs of TRIANGLE and then those of LINE.

However, a typicél PL string resulting from the traversal of

LINE would be

LOGIC(GT(SIZE 0)) - - - iii-(1)

r

Such a string is clearly inadequate for usage by the compiler

because of its ambiguity. Ind;ed. the required set of strings is

L

1 While it is not described here, a procedure for the insertion
of hrackets does exist and has been implemented in the present
compiler. '

2 gee Section02.4:3$ ’

1

L1

o - " ———

o Ny AR

E

a5

)

A

Loclc(ET(SIZE(LINEl(TRIANé)ﬂ) 0)) = = = iii-(2)

, . LOGIC(GT(SIZE (LINE2(TRIANGLE) 0)) - - ~ 1ii-(3)
‘ LOGIC (GT (SIZE (LINE3(TRIANGLE) 0)) - - - iii-(4)
- A comparison of these expressions demonstrates two short-
[d

comings of the strings which are generated by the traversal“&fgo—
TN R
rithm, First, the gualification of features is insufficiently

_deep. For example, the PL string of iii-(1) is ambiguous inso-

: far as it does not specify whether the feature SIZE pertains to

_ TRIANGLE or to LINE. Secand, theyquantity of §EEHIEhEéS“§§éEifIEE
} ’ is insufficient.
To ?gg?lve ‘these inadequacies, an algorithm which resolves a
N - string like iii-(1l) into tﬁe strings iii-(2) to iii-(4) is re-
quired../guch‘an algorithm must employ hierarchical and quantita-

v ., v tive information gleaned from the semantic memory. The hierarchi-

cal information would alleviate the first shortcoming discussed

L

< N N
" . above while the quantitative information would alleviate the second.

’ . -
b . . A structure which contains the required information is the

R , Subobject Tree., 1Its structure and the way it is used by the com-
. £

? w ’\ Ll

?ﬁ k piler are the topics of the next section.

E | 3

B i

96

(.
3.4.2 The Subobject Tree -

4
The Subobject Tree is a temporary struct®Wre created in the

"scratchpad" memory of the computer. Its purpose is to determine
the gzkent to which a PL representation of a semantic net predi-
cate must be modified so that it can be translated into the STM.
As can be seen from the flowchart 'in Fig. 3-1, a new Subob-
ject Tree is created each time that the compiler first enters the
semantic net to retrieve the predi;;tes of an object to be drawn.
Its structure is derived as a result of a breadth-firstl traversal
of the OBJECT nodes of all the semantic planes accessed by the
subobject links in the plane of entry. This traversal proceeds
outwards from plane to plane until the terminal planes which repre-
gsent the primitive of the semaptic net have been accesseé.‘ The
resultant tree consists of nodes which represent the semantic:
plapes visited and branches which represent the subobject links
between them. Thus, the patriarch node of the tgee represents
the object to be drawn while the remaining nodes represent both

its direct and indirect subdbjects. For example, ‘the Subobject

Tree for a house might be struc?ured as shown in Fig. 3-9.
= g

”

1l Breadth-first traversal involves visiting the nodes of a tree
in order of their distance from the root node. Thus the root
node is visited first. All nodes which are direct descendants
of the root node are visited next. All nodes which arg‘pirect

descendants of. se nodes are visited next, and so on. For a
discussion of thils and other traversal techniques for trees,

see Nilsson (1971), Chapter 3.

R N y N it T g~ - X
- R Ly,

(a)

~) HOUSEK\

GABLE FRAME WINDOW ENTRANCE
| 1
LINE LINE LINE DOOR DOORKNOB
LINE LINE
(b)
~Pig. 3-9: Conceptual representation of a particular Subobject Tree,

(a) A line drawing for a house.

(b) The resulting Subobject Tree.

Note that a GABLE is in reality an isosceles triangle,
FRAME, WINDOW and DOOR are rectangles and DOORKNOB is an
equilateral triangle. This implies that the definition
of, say, GABLE in the semantic memory requires the addi-
tion of only two nodes: an OBJECT node in the senantzc
net which contains the string GABLE as well as a' set of
pointerabaccessing the semantic plane for ISOSTRI, and
a LIST ndde in the semantic map which accesses the OB-
JECT node.

_ Subobject Tree. It was stated earlier in this section that a new

98

o

The Subobject Tree defined by the author consistg of nodes

] ,(.‘ . .
each of which contains four pieces of information. The first

elements of each node is alstring which reéresents the name of the ‘

object represented by the node. The second element is an integer

which indicategs the requireskquantity of the objectl'z. The third

ané fourth elements of each node are pointers which link the *node ' i
’ {

to the other nodes in the Subobject Tree. Thus, after all perti-
nent predicates have been accessed, the tree for the house of .
Fig. 3-9 is as shown in Fig. 3-10.

Let us examine the method by which the compiler creates the

Suhobject Tree is formed each time that the compiler first enters
the semantic net to retrieve the predicates of an object to be
drawn. Upon entry, the compiler threads through the set.of OBJECT
nodes rgp;esenting all the subobjects accessed ejther directly or .;
indirectly by the plane 2; entry. In doiné tﬁis, it éreates the

*

nodes of the Subobject Tree, assigns a name to each node, and links

K

them together in the manner shown by the example of Fig. 3«l0.

1%

03

\)

1 Referring to Fig. 3-9(b), the LINE node beneath GABLE would con-
tain .the integer 3 to gfgignify that threé lines are required to
draw a gable. W ‘

2 The patriarch node of the Subobject Tree is an exception. Its ;
(hecond element contains an integer which references the instance
of the object specified by the STM. Thus, if the object currently
referenced in the STM is HOUSE6, then the node will contain the i
integer "6".

¥
i

”
99
)
1
. ? ‘ -
: | ENTRANCE |
! 1 y
| - ? 1
Y ‘ ,
- DOORKNOB '
1
| —{ ¢ | ‘——‘i]—
- \
” LINE LINE A
3 3
1 | - s |

Ia)

w

: AN ‘
Pig. 3-10: The.Subobject Tree for HOUSE6. The house itself is
drawn in Fig. 3-9(a). .

. L.
But the OBJECT nodes of the semanti¢ memory contain no -information

»

lhOug the required quantity of the objecf. Therefore, the second
‘slement of each node of the tree is initihlly undefined. This mis-

' v/
sing information must be obtained from the predicates of the se-
A

.
-~

mantic net.

1 4

To prove that the missing information resideés within the pre-

4

i)

. 100

/

y)
dicates, consider any semantic plane that represents an objett ¢
which is not a primitive. This plane will contain two types of
predicates. The first type ;ill yield conditions on the features
of the object and as such is not pertinent here. However, the
second type will yield'éonditions on the features éf its subobjects.

This’ is useful because it informs the compiler about the existence

of these subobjects. Now the predicates of each semantic plane

’

-

must mention each direct subobject at least once. If this were

not true, it wopld\mean tﬁat the cqmpilef would have no way of
récognizing some su;bbject and its existence would remain unknown.
Such a subobject would be ﬁséless and could therefore be disregard-
ed. This argument implies that once a semantic plgpe has been tra-
verged'and/its predicates incorporated into the STM, the compiler
can obtaih the required quantity of each direct subobject by scan-
ning the contents of the STM. ’Furthermore, this pro;edure can be

repeated for each node of the Subobject Tree. In this manner, the

second element qf each node of the tree can be defimed before the

. compiler enters the semantic plane of that subobject.

Now that the éubohject Tree has been defined, its ;tility
can be eiplained. It is employed to resolve PL strings like
that of 1ii-(1) into the strings iii-(2) to iii~(4) and so complete
ﬁxe translation of semantic neﬁ predicates into strings suitable
for incorporation into the STMG\ Thus, each feature of a PL string

can be qualified by the name of the object to which that feature .

=

~}

101

o~

..Eert§3p§,é? wg}l as by the Egggg.qf,th%'oquqpis ggren&ghg? ﬁetei:/ﬂ

4

mined in the Subobject Tree. The second element of each pertinent

’node of the tree (except for the patriarch) then determines the

4

number of.strings which must be generated for the object repre- \

sented by that node. Thus, in the example of the previous section,

' the string LOGIC(GE(SIZE 0)) becomes LOGIC(GE(SIZE(LINE) 0)). Fur-

. thermore, because there are three lines in a triangle, the LINE

node of the”Subobject Tree will éontain the integer “3" and the
above ' PL stateqent becomes the required strings iii-(2) to ii;-(4).
This section has sﬂown how tﬁe Subobject Tree is formed ‘and
how it is used to modify predicates from the semantic net to a
form amenable for translation into the STM. It can now be assumed
that the STM contains all the information necessary to draw a set
of .objects. The sections that follow will dis&uss the aigorithms

f
used for the computationof the feature values of the objects to

Ce

be drawn.

[

M NP, S-Lp S e

"

102

3.5 Computation of Feature Valugs =~ ' e
- !I. Q' |
The compiler implemented in this thesis his been shown to be

" adequate for the'performance of the tasks described in the previous

sections of this chapter. The sections that follow will discuss

¢

the algorithms used for both the simplificatiop’of the STM and the

selection of feature values. In explainhing these algorithms, the
»

_sections will also demonstrate the inadequacies of the compiler.

<

3.5.1 Simplification of the STM

It has been shown in Chapter 2 that the .translation of per-
tinent semantic net predicates into the STM produces a structure
‘which conta}ns all the information necessary to draw an object.

It therefore follows that the additional incorporation of the pre-~
dicates of an input PL program results in a structure which contains
redundant information. This section presents an algorithm which
par£ially checks the semantic validityl of all information encoded
into the STM and which also eliminates some redundancies inherent

in that information,

" Before the simplification algorithm for the STM can be de-

1 A statement is semantically valid if its meaning is consistent
with that implied by any other statements which have already been
defined. Thus, the PL statement LOGIC(GT(VX2 5)) is syntactically
and semantically valid if taken by itself. If, however, it is
stated in conjunction with the statement LOGIC(LT(VX2 3)), an in-
consistency arises and one of the statements is assumed to be se-
mnnticﬁlly invalid.

e e, ’;,%f.»’sﬁgu .

~ o

a e m b

\ ;
. _ ' 103

AN

.) R] -
scribed , it is nepsséary to explain why it is only partially

effective in the #&®ks it must perform.

The STM contains two types of predicates. The firsé type,
called the numeric predicate, imposes a numeric bound on the value
of a feature. The second type, called the symbolic predicate,
stipulates that the value of a feature is functionally dependent
upon the values of other featurés. The algorithm described in
this section is onl% capable of checking the semantic’validity
of numeric predicates and eliminating those which are redundantl
A compiler for an algorithm which would be capable of handling
symbolic predicates would have to be able to perform symbolic
manipulations on strings. For example, such a compiler would
have to be capable of accepting conditions like

vy < (vxy) 2

VXq = 5 ‘ : -
and subsequently deducing that

VXp< 25.
Because the purpose of this thesis is to demonstrate the inh;fent
advantages of including a semantic memory in a graphics system, it
was felt that the effort required for the incorporation of a sym-
bolic compiler was unwarranted. The implication; of usiﬁg a sym-

bolic compiler in conjunction with the semantic mem&éy will be

considered in Chapter 4.

104

) ’ x ' |
(: Now that the class of allowable predicates has been defined,
it is possible to describe the simplification algorithm. Fér each
feature in the STM, the algorithm performs the following tasks:
(1) 1f ﬂo more than one numeric predicate is defined, then no
action is'éerformed on the predicates of that feature.
_(2) If more than one numeric predicate is defined, then the
following steps are performed for all possible pairs of
numeric predicateslz

(a) The semantic validity of each pair of predicates

is tested (see Fig. 3-11).

. (b) If any inconsistency is detected, then an error
message listing the inconsistent pred;cates is
printed ?nd program execution is terminated.

kc) If no inconsisténcy is detected then any redun-
;ant predicate is eliminated frombthe STM.

Thus, the comparison of two numeric predicates as outlined in
step (2) above causes one of three effects: termination of compi-
i;tion due to iﬂconsistency (1), siﬁplification ok the STM due to
redundancy (S), or no action (N). The table presented in Fig. 3-11

yields a summary of the possible outcomes resulting from the com-

parison of any two numeric ‘predicates.
¢

1l 1f n is the number of numeric predicates pertaining to a feature,
then the possible number of pairs of these is "C; = n(n-1)/2.

—— T

v e e w

105
b
b 1 9]
EQ NE LT LE GT GE
a
EQ | T.sb.T |sb.T.sb | sb,T,T $b,Sb,# | T,T,Sb |T,Sb,Sb
NE | sa,T,Sa |N,Sb,N |N,sa,sa |N,sa,sa |sa,sa,N ;a,sé,N
ur | T,7.8a | Sb,sb,N | Sb,Sb,sa| sb,Sb,sa | T,T,N T,T,N
LE | T.,8a,5a | sb,sb,N | sb,sa,sa| sb,sb,sa|T,T,N T,sb,n
Gr | sa,T,T |N,Sb,Sb |N,T,T N,T,T 'sa,sb,Sb | sa,sb,sb
GE | sa,sa,r |n,sB,sb | N,T,7 w,sb,7 | sa,sa,sp | sa,sp,sp
;

Fig. 3-11: Result matrix for the simplification algorithm. The

rows represent the operand for the condition £ (6p) a
while the columns represent the operand for the con-
dition £ (op) b (i.e. £ is a feature, (op) is one of
EQ,NE,IT,LE,GT,8E and a,b are numbers).. For each ele-
ment, the three emtries represent the results of a
comparison of the two conditions given that a< b, a=b
and a> b, respectively.

The letters N, T and S signify no action, termination
and simplification respectively. The letter appended
to each S-entry stipulates the predicate which is to
be deleted from the STM as a result of a simplification.
Thug, Sa states that the predicate symbolized by f (op)
a ig to be deleted, while Sb states that the predicate
f (op) b is to be deleted. For example, the first
entry of the element in the fourth row, third column
specifies that: if the conditions f=<a and f< b where
a <b exist, then f <«b is redundant and can be elimi-
nated. The S-entries with an asterisk specify that
besides the deletion of a predicate, further simplifi-
cations to the surviving p;edicate ate possible. Thus,
for £»a, £<b and a=b, then f<£b'can be eliminated and
f2za can be simplified to f=a. In such cases, all

numeric predicates for the affected feature must be
retested.

0) ' & 106

The simplification aigorithm presented in this section has
been used for the simplification of numeric predicat;s within the
STM. It has been shown that the lack of a symbolic manipula?ion
capability within the compiler restricts the versatility of the
algorithm. The next section/will discuss how this shortcdming in

-ﬂthe compiler also affects the resultant structure of the semantic

memory. It will dlso outline restrictions on the types of allow-

able statements in PL input programs.

R !

A

3.5.2 Restrictions on the Structure of the Semantic Memory

o

This section discusses the implications to the semantic memory
of the inability of the compiler to perform symbolic manipulations

on strings. It will be shown that, as a result of this shortcoming,
‘ .
the resultant structure of the semantic memory becomes unnecessar-

s/

ily restricted. N

’ The basic restriction is that the translation of both a PL
input and the pertinent semantic net predicates into the STM should

not result in the creation of a self-loop within the STM. To un-
' . 2
derstand the meaning of the term "self-loop", consider a set of
y .
predicates (fl,fz,f3) and the following constraints on them:

f, = f*(fz) = (£,)2 - = = iii=(5)

)

fa = g(f3) = cos f3 - - = 1ii-(6)

.

f3 = h(fl) - 51/2 ‘ P e - iii~(7)

——

107

¢ 1

This set of predicates contains a self-loop in the sense that no
one variable can be interpreted as the ‘independent variable. Thus,

g _ £, = £(£,)) = £(g(£;)) = £lgn(epN?

The way in which these self-loops arise is now descrhibed.

. Consider the semantic plane for a line. The predicates of

i this plane can be represented symbolically by the following con-

‘ ditions:
? _ 0< s <(100% + 50%)% - = - iii-(8)
\' 0£06<360 (© in degrees) - = =~ iii-(9)
/) »
Oé VXI,VXZS].OO - - iil—(lO)
L
. /) VX, = VX; + 8 cos 8 - = = iii-(12)
' vy, = vy, + 8 8in @ - - - i1i-(13)

r/

The numbers 100 amd 50 evident in iii-(8), (10) and (11) have

been chosen so that the resultant line can fit inside a 100 point

.
by 50 point raster field. It can be seen from tﬂF above that s,

e, vx, and vy, are the independent variables since their values
s \ are independent of the values of other features. On the other

LN

hand, VX, and vy, are dependent variables.

‘&‘ N

»

 d

??2 . ¢

- ¥
? 1 In fact, this set of equations can be simplified to
. = (cos £ /2) using symbolic manipulation. The further use
E ‘ of an iterative solution technique yields the, values f; = .835,
: 0 fa = .914 and £f3 = .418. \
\ v -
¥ Wherj/ (8,0,vx),vx,, vy-,) represent /
";‘ . (s1zE, ORIBN% in VYl .V¥2) respectively.

’ /

e

108

(A PL input consisting of the command DRAW(LINEL) wpuld result
in the translation of the dbove predicaées into the STM. Because

) of the careful manner in which these predicates have been stated =
in the semantic memory, no self-loops would be incorporated into
the STM. R

However, the addition of the PL statement LOGIC(EQ (VX1 VX2))
would result in the creation of a self-loop because vxj would then
become a function of itself (i.e. vxj; = vxpy = vx; + s cos 0).

A possible solution to this problem in the absence of symbo-
lic manipulation is to'store many alternate sets of constraints
within each plane. Each set of constraints would then represent

the predicates necessary to specify an object given a particular

set of independent varidbles. For example, the branch within the

R

LINE plane of Fig. 3-12 would allow the choice of either vxj or
t

vx, as the independent variable. Then, depending on whether a PL

2

7

‘ » input program had set the value for vX, or not, the appropriate
»" a . 1

branch could be taken .in the traversal of semantic net predicates

8 to forestall the creation of a self-loop within the STM.

\

‘ J-: SEMANTIC PLANE FOR LINE
i) —_— . is value of L e - PREDICATES
i D VX2 known OF LINE
X .
i \ : nq es :
.\ o vx2=vx1+scose vxl-vxz-scose 1
. * ! N 4 ’

Pig. 3-13: Portion of semantic plane for LINE showing alternate"
y o ‘ paths for the stipulation of predicates.

Ekcept for very limited applications, this is not a feasible
e

solution since the resulting semantic memory WYould soon become too
unwieldy to be useful. . To see why this is so, consider a semantic

plane which represents an opject having n features f1,£5,...,fp.

-

Of these features, some will represent independent variables whose
. s,

value can be chosen at random from a range of acceptable values
&

while other’s will represent dependent variables. 1If, ho&eQer, PL
inputs which change the set of independent variables are allowed,
then the semantic plane must contain alternate pathsbwhlch a%}ow

the set of 1nd€pendent variables to be as small or as large as is
¥

regquired. \

n

For even a small number of featuées, the number of these "de-
cision paths" required is too large. Thus, two paths would exist
for the feature £1. Eacﬁ of these would then split into two paths
for £, eesulting in 2 x 2 = 4 paths. For n features, then, the
resulting "decision pathé" would produce -a binary tree having 2"

leavesl

each of whi?h could represent a set of predicates on the
object.

Even for LINE which is a primitive, this methodology would
create a tree having 26 = 32 alternate paths. clearly, this is
an'unwield§ stracture which would destroy the concept that the

semantic memory is an inherently compact structure.

1l A leaf is a terminal node of a tree.

110

#
P v . v
e

It was thereforé decided that, unless a portion of an "alter-

nate path" structure was required by the semahtic memory itself,
such a structure would not be implemented. In fact, one such "al-
ternate ﬁéth" is required in the semantic plane for RECTANGLE.

The details of the self-loop which would otherwise occur in this

plane will not be discussed. However, the implementation of this

"alternate path" within the semantic plane results in the usage

e
of the KNOWN mode of the MODIFIER node mentioned in Section 2.4.3.

,ﬂ,_,grv__...-_
&
.

The type of structure required in the semantic memory for the def-

inition of an alternate path is shown in Fig. 3-13.

JE—

The decision to restrict alternate paths in the semantic me-
L2 N .

mory also results in a restriction on the types of allowable PL

inputs to the compiler in that only those which specify a predicate

v
on an independent feature are allowed.

This section cémpletes the discussion\o} the restrictions im-

. . .)
posed on the structure of the semantic memory and the content of

the PL due to the inadequacies of the compiler. The next section

:A) . will discuss the Feature Value Selection Algorithm.

»

.ﬁ, @ '

e EETT T
L

*

et SRR A
PR 1) .

111
S
J
y /
- SEMANTIC NET o
v I
N
from _- - G .
predicates) N
4 ‘ .._
KNOWN
4 <
to OBJECT node of }-ﬁ——-—
affected feature
next next
predicate predicate
{
4
o \ | N ; =\
to predicate if to predicate if
value known value not known .

¥4

Fig. 3-13: Usage of the KNOWN

4

mode of the MODIFIER node.

Y

o

)

r~ \

3.5.3 The Feature Value Selection Algorithm

The Feature Value Selection Algorithm (FVSA) impl?mented in
this thesis was selected with due Eonsideration to the inadequacies
of the compiler. This section constitutes a brief description of

P
the oéeration of the algorithm. Chgpt?r 4 will discuss a more
‘powerful aléorithm which could have been implemented had a symbolic
compiler been available. |

For the discussion that follows, it is assumed that the struc-
ture of the STM h;s been simplified to the extent poséible by the

simplification algorithm of Section 3.5.1." The remaining tasks

are that a consistent set of feature values be delected for ’th’g‘

}

Sy

objects to be drawn and that a picture of these objects be produced.

The latter task is a trivial one which will be discussed in Chapter
4. On the other hand, the former task which is executed by the

FVSA is nhot so trivial. This algorithm is now described.
. L3 °
The first step in the FVSA is the traversal of the STM and

‘

the subsequent creation of a stack, each element of which represents

the feature qf an object in the STM. The method of traversal of
the STM is unimportant as ig the ordering of the elements in.the .
stack. What is important is that all the features of the objects
in the ST™M b? represented in the stack. Each stack element does

not name the affected feature but rather contains a pointer to the

MODIFIER node in the STM which’identifies that feature. In this

\ ' u
way, the stack not only accesses the feature but also all the pre-

D +

Dbl e SRR . ot

113
|5

[

dicates on-it as well as all the Value Dependence Pointers (vpp's)l
which emanate from it.
The next step in the FVSA is the ordering of the features in

the stack so that those which represent independent variables are

placed "higher up" in the stack than those which represent depend-

-

rd

ent varigbles. 'If the features in the STM, contain any self-loops

.

whic e discussed in the previous section, then this step of
the algorithm detéét; these and execution is terminated.

The feature ordering is accomplished by using the VDP's ap-
pendedléb each feature. It.was stated earlier in this chaptér
that duch poin%ers are set up in the STM from the independent va-
riables to the dependent variables. As a result, each VDP from a
f;ature-x to a feature y stipulates that x is an independent va-
riable relative to y or that x«y (g:here "X<y" is' read as "x pre-
cedes y"). Because of .thig, each element in the stack can be used
to access the VDP's which emanate from the feature xj represented
by that element. A set of precedence relations Xi<Yy: xi‘< Yoreeos

Xi<Yyn can then be defined. Once these precedence relations have

been defined, it is a relatively simple matter to order the ele-

~ments in the stack in the desired manner.v-xnuth (1968)2 defines

_("9
a generalized "Topological Sort" algorithm which accomplishes this

1 The VDP" was dlscussed in Section 3.3.2.

2 gee Knuth (1968), Section 2.3.3 on Linked Allocation. '

g

T e RN A5 S

> 114

i ’

: " task. This algorithm will not be described here. The interested
reader is referred gg the pertinent section of Knuth's text for
a description. \ | .

For the last step of the FVSA, it is assumed that an ordered
1 feature stack as described above has been successfully produced.
What' is required, then, is thdt suitable values be determined for

: ‘ .

all features. If the intent of tﬂis work were to produce a prac-
tical interactive‘graphics language, then a generalized algorithm
for the performance of this task would have been defined. Because

4

; the intent of this project was not so ambitious, a more modest

0

r solution to this problem was implemented. ¢

It was stated in Chapter 2‘@hat the semantic memory provides
sufficient information to limit the value of each feature so that
its valﬁe may be chosen from a finite interval. The FVSA there-
fore performs the following task for each element in the feature
stack in order of its "independence" as determined in the previous

“3

step. Each predicate on that feature is trahslated into a "soft-

e arithmetic unit" within the compiler. This arithmetic unit

compNes a nuferic limit on the value of that feature from the

which heads that predicate, Thus, for the pre-
)) in the STM, :the FVSA produces the result

shown in fig. 3-14. all the predicates on that feature have

-

g R

s - T LS Mo~

115

Been evaluated, :a suitable feature value which satisfies all the
prédicates can be randomly chosen. "his value can then be used

in the evaluation of predicates of subseguent features which are

dependent variables.

ST™

[l I] to other
L3 | 'l 1 | predicates

f‘lz A * e

to OBJECT to VDP's LT CONSTANT

l 7
—

Fig. 3-14: Determination of numeric bound on a feature. Note
the number "5" which has been encoded into the TYPE
field of the MODIFIER-LT node.

The shortcoming of this approachljs that if the value of
some independent variable has been poorly chgsen, then the cal-
culated value for a subsequent dependent variable may,be outside

, . ¢

of the allowable limits for that variable. The solution to this

problem as implemented in this thesis was to maké the third step

of the algorithm iterative. That is, if the computed. value of-

some variable were outside acceptable limits, then the value of

an independent variable of which it was a function could be chos-

en again. Hopefully, such a choice would prdduce an acceptable

CTTRRE S EEET ATEEEETR O TEY Wreip T T T T LT TN S e g e

value for the dependent variable. ‘Such a procedure is clumsy at
best since it is time consuming and since it can result‘in the
creation of infinite loops during program é;ecution. However,
the procedure was found to work without too m;ch difficulty for
the ;imple objects defined‘in this thesis. A more powerful al-
gorithm based'on the usage of an optimization ﬁgchnique ig dis-
cugsged in Chapter 4.

It can now be assumed that the FVSA has computed appropriate
values for the features of all the objects‘to Se drawn. The next

chapter discusses the method used to draw thes& objects as well

as some sample PL programs which were run using the compiler.

’ghe chapter also discusses modifications which could have been

implemented in the system described in these chapteré.

Chapter 4

¥

Results and Conclusions

4.1 Overview
4. Uverview

The previous two chapters have described the methods by

which the systeml implemented by the author is used/to determine
- a consistent set of feature valueé for objects sp¢cified by a
PL program. The following is an outline of the topics discussed
in this, the final chapter. .
The first part of this chapter describes the method by which
the system outputs line drawings. It also discusses the results
obtained from the compilation of six selected PL programs. Each
program demonstrates some features or shortcomings of the systeﬁ.
The second part of this chapter discusses some p6ssib1e "
modifications to the system. Emphasis is placed Qn ghose changes

which would alleviate the shortcomings of the compiler discussed

in the previous chapter.

1 1n this chapter, the word "system" will réfer to the compiler,
semantic memory, STM and all associated data structures imple-
‘"mented in this thesis.

T v e

. 118

<y,

4,2 Output Procedure and Results

4.2.1 Output Procedure

Chapter 3 has described a procedure for the creation of an

Al

STM which contains the predicates on the features of objects to

be drawn. The chapter has also described tffe algorithms used by -

the compiler for the determination of a consistent set of values
for these features. What is now required is a protedure which
\ draws pictures of the objects defined in the STM.

It was stated in Chapter 2 that the features of an object

‘ | define a redundant gset. 1In fact, only the contour vertex fea-

L tures of the straight line segments which comprise each object

-~
i are required to draw that objects Therefore, the output proce-
i .

dure which has been implemented extracts the contour vertex pairs
? >] °

: (V,,Vy) " of each line segment defined within the STM and uses

. these pairs to produce a line drawing on a digital plotter.

“' -

The next section describegdbome results which were obtained

using the system discussed in this thesis.,

L]

+

.
!, 1 Recall that each line consists of thq.six features SIZE, ORIENT,
. vXl, vYl, VX2 and VY2. The notation vi represents the features

o vxi and vyi.

D L

e i

-—

119

4,2.2 Results

The semantic memory, coméiler and STM discussed in this"
thesis were implemented in PL/1 on an IBM 360/75 Digital Computer
. -
and a CALCOMP 663 Digital Incremental Plotter. This section
describes six PL programs which were executed'usigg this systemn.
For each example, a description of the PL program ;nd the‘result—
ant picture are given as are the program execution time and core

1

requirements. It will become apparent in these examples that

the execution time and core requirementsq?f each ‘program are
quite large. However, it must be remembered that the system im-
plepented was not meant to be a practical interactive graphics
system. Consequently, little effort was expended in improving
its operating efficiency. The modifications described later in
this chapter would serve to alleviate this problem. Nevertheless,
the execution time and core requirements obtained are useful in
that they illustrate the relative complexity of the selected

programs. The results of the six examples are now described.
The first two examples were selected to demonstrate the ef-
fort required to draw the simplest and the most complex objects

defined in the semantic memory. 1In the first example, the PL

Core requirements include the storage area required for the
compiler, the semantic memory, the STM, the PL program and all |
' associated temporary structures such as the Subobject Tree.

FeTOR—

- r————a T

A Wit crm g P

AR

{ ﬁ

120 .

program consisted of the ;ingle command DRAW(LINE). Both the
input program and the PL representation of the derived semantic
net predicates are shown in Fig. 4-1 while the feasure stack?!
Soth before anél after ordering is shown in Fig. 4-2. The re-
sultant STM after execution of the Feature Value Selection Algo-
rithm is depicted in Fig. 4-3. Execution of the program required
4.1 seconds of Central Processing Unit (CPU) time ahd 162K bytes2
of core. The resultant line drawn by the plotter is shown in
Fig. 4-4(a).

The PL program of the second example consisted of the single
command DRAW(HOUSE). Execution of the program required 45.1 se=
conds owaPU time and 196K bytes of core. The resultant house
drawn by(the plotter is shown in Fig. 4-4(b).

A comparison of these examples shows that the amount of
core required by the system is quite large and does not appear
to be very dependent on the complexity of the object to be drawn.
This is due to the fact that a large portion of core required is
expended for "fixed overhead" items‘such as the storage of the
compiler and the semantic memory. This problem is not serious

because core requirements could be substantially reduced by pro-

1 qhe feature stack was defined in Section 3.5.3.

2a byte of core‘is equal to eight bits (binary digits).

121

)
INPUT PROGRAN '

\{NTDRAH(lINE) .
ssnn\ IC NET cono|113\§ !
1 \kggIC(GTISIIEllIMfl) o)
2 QOGICILECSEZETLINEL) FCNSQRT(OPSUMIFCNSOR(100)FCNSQRISDIN)}
3 LQGICIGE(ORIENTILINEL) O))
4 LOSICILTIORTENTILINEL) 350))
\\\ S LOGIC{EQIVE2(LINEL) OPSUM{VXI(LINEL) OPPRODISIZE(LINEL) FCNCOS(ORTENT(LIMELIIIN}
)
& LOGICIEQIVY2ILINEL) OPSUMIVYR{LINEL) OPPRODISTZECLINEL) FCNSINCORIENTILINELIY)))Y
)
7
s

LOGICIGEIVX2(LINEL) O)) '
LOGICILE(VX2(LINELD) T00))
9 LOSICIGE(VY2(LINEL) O}) :
- 10 LOGIC(LEIVY2(LINEL) SON)
- \ 11 LOGIC(GELVXL(LINELY O))
. 12 LOGICILE(VXI(LINEL) 100))
13 LOGICHGE(VYLILINELY O))

! 14 LOGICILEULVYRILINELY $0)) -
‘ t
b Y
o |
b
§ Pig. 4-1: A listing of both the PL input program and the perti-
nent semantic net predicates of Example 1.
\ ¢ -
‘ ’) Tt
INITEAL ORDER FINAL ORDER

1 w2 LINEY : 1 SIIE LIENEL

r? wx2 LINEL ® ORIENY LINEL

3 Sile INEL 3w LINEY

4 ORTENT LiIngd . & w2 LINEL

$ i LINEL . s v LINEL ,

& VvVl LINE] & ¥x2 LINE) .

s v
Fig. 4-2: The initial and final order of the feature stack of
Example 1. .
-

- -S

-

- e R Sagr -

.

e

122

a

)
CRJIECT=LINEL PARENT =NULL SUBFIC=NULL
FEATURE=VY2 PARENT=L INEL CONDS=L 18T VALUE®33
. LOGIC=LE LEFTaVY2 RIGHT=50
+ LOGIC=GE LEFTaVY2 VLIGHT =0
LOGIC=FD ° LEFTaVY2 RIGHT=13)
. FEATURE=VX2 PARENT=LINE] CONDS»LIST VALUEsT
' LOGIC=LE LEFTeVX2 RIZMT=100
: LOGIC=SE LEFTevX2 RIGHT=0 L
LDGIC=FQ L LEFTavVX2 RIGHT=T
{ / . ~ “ Q.
FEATURE=S]1E :Ausnr-aluex CONDS=LIST VALUE=65
BACKWARD POINTER T0O->VX2 LINEL !
BACKWARD POINTER TO-DVY2 LINEL
LOGICsLE LEFT=SILE RISHT=111 -
LOGICeGT LEFY=SI2E - RIGHT=0
FEATURE=DRIENT PARENT®LINEL CONDS=LIST VALUE=188
BACKWARD POJYNTER T0->DVK2 LINEL
. SACKMARD POAINTER TO->VY2 LINEL *
LOGICHLT LEFT=ORTENT 4 RIGHT=360
LOGICGE LEFT=ORIENT LIGHT=0
FEATURESVX] " SARENT=LINEL . CONDSwLIST _ VALUE=T2
BACKNARD POINTER TO->VX2 LINED) ;
LOGICsLE LEFT=yX1 RIGHT=100
LOGIC=GE LEFTaYX] RICHT=D
FEATURE=VY] PARENTsL INEL CONDS=LTSY vALUE=4S |
BACKMARD PGINTER TD-DVY2 LINEL !
LOGIC=LE _ LEFTevYl RICHT=50 _ {
LOGIC=GE LEFTsVYYL R15HT=0

LY

Fig. 4-3: The structure of the STM of Example 1l after executioh .

" of the FVSA,

o

-
4 123
4 .
EXAMPLE 1
1Y L
(= .
Q
D." /
> |
-4 \ |
ol \
N
| & ‘
Q
e , ‘
.00 4 20.00 uTo.oox 60.00 . 80.00 100.00
(a) | ,
EXAMPLE 2 |
N - ‘
Q
o
-
1
o E3r1
0.
N
P
9
e .
%.00 . 20.00 ub.oox 80.00 80.00 100.00 :
(b) . *

"Pig. 4-4: Digital Plotter output for Examples 1 and 2.

‘124

gramming the system in a low-level assembler language rather

than in PL/1 and by eliminating the usage of character strings

-

2

to encode information into the semantic memory and the STM.

The above examples also show that the increase in the exe-
cution time required to draw a house instead of a line is more |
: than tenfold. 1In part, this occurs because the greater complex-
L ‘ ity of a house in relation to a line requirgs the retrieval of

more predicates from the semantic memory, the creation of a more

complex STM, and the determination of a greater number of fea-

turésT However, part of this increase can be attributed to in-

N

efficiencies of the Feature Value Selection Algorithm. An alter-
native approaéﬁ\to feature value selection which would result in

\ ’ . .
a more efficient é%gorithm will be described later in this

| 8 | chapter. f}

’ The third angz;%urth examples were chosen to demonstrate the
~ § effort required to draw an object given two different ways of
specifying it. In both cases, éﬁe,object drawn was an equilateral

y triangle. The "high-level" specification of the object in Example

3 resulted in the following PL program:

,
?‘:‘@)
% DRAW (EQUILTRI) ~
. - IOGIC (EQ(ORIENT 0))
g : : : ,
! 'Bxecution of this program required 10.3\seconda of- CPU time and
Lt o 168K bytes of core. The rasu]:hant triangle drawn by the plotter

is shown in Rig. 4-5(a).

o ’
:

The "low-level” specificition of the object in Example 4

resulted in the following PL program:

DRAW(LINE1)
| LOGIC (EQ (ORIENT 0))
i DRAW (LINE2)
LOGIC (EQ (SIZE SIZE(LINE1))) i ot
? LOGIC(EQ (ORIENT OPSUM(ORIENT(.INE1l) 60))) .
3 LOGIC (EQ (VX1 VX1(LINE1))) 1
i LOGIC (EQ (VY1 VY1 (LINEL))) |
E DRAW (LINE3) _ o *
, LOGIC (EQ (SIZE SIZE(LINE1l)))

LOGIC (EQ (ORIENT OPSUM(ORIENT(LINE1l) 120)))
LOGIC (EQ (VX1 VX2 (LINE1l))) |
% . LOGIC (EQ (VY1 VY2 (LINE1)))
Execution of this program required 7.4 seconds of CPU time and
166K bytes of core. The resultant triangle drawn by the plotter
is shown in Fig. 4~5(b).

It can be seen from .these two examples that a "low-level"
specification of an object results in a sligh;ly more efficient
program in terms of execution timeé and core requirements than a
*high-level" specificatibn of that object. Unfortﬁnately, this
increased efficiency can only be obtained by specifying an object
in terms of its subobjects and the relationég}ps between them.
For even the simple case of a triangle, the above examples show
that this %s too great a price to pay. The extra effort required
to specify a PL program for an object using a "low-level" ap-

proach more than offsets any advantage gained by improved effi-

' “' ciency of execution. ' y .

M
| 126
~ /
é
EXAMPLE 3

; .

o

o

=

o

-0

=1

NS

o N LY
| y < ‘ \))
| “b.oo |, 20.00 ub.oox 60.00 80.00 100.00
’ (a)

EXAMPLE U4

[=]

e ‘

°'~ o

=

o

-0

o. -

[4V]

[~]

[~} ') . .

S5.00 . 20.00 ¥b.00 80.00 80.00 100.00

N

!

| (b)
Fig. 4-5: Digital Plotter output for Examples 3 and 4.

!

-t

-
Enioe s, BRI SR e s S

ﬂ\
n—— L:‘}

- 127

()
The last two examplés were selected ta demonstrate the
s N
Lt
types of pictures which can ‘easily be drawn by the present im-

©

\ .
plementation of the system. Fig. 4-6(a) depicts two equilateral
triangles of equal size and orientation joined at one vertex.
The PL program required to draw these was:

DRAW (EQUILTRI1)

LOGIC(EQ (ORIENT 0))

DRAW (EQUILTRIZ2)

LOGIC (EQ (ORIENT 0))
LOGIC (EQ (SIZE SIZE(EQUILTRI1)))
LOGIC (EQ (VX1 VX2 (EQUILTRI1)))
LOGIC (EQ (VY1 VY1(EQUILTRI1)))

Execution of this progrém required 19.1 seconds of CPU time and
) -

174K bytes‘J% core.
The final example demonstrates the usage of the TOPOL state-
ment in defining a set of topological relationships between

objects. The PL program executed consisted of the folléaing
//
statements: .
DRAW(ISOSTRI}) ' , ,
LOGIC(LT(SIZE €0))
LOGIC(GT(SIZE 30))
LOGIC (EQ (ORIENT 90)) 4
DRAW (LINE1) .
TOPOL(BELOW(LINEI ISOSTRII)) ' , :
. DRAW (RECTANGLE1)
~ LOGIC (GT(SIZE 25))
o - * LOGIC (LT (SIZE 100)‘)
- : LOGIC (EQ (ORIENT 0))
- TOPOL (RIGHTOF (RECTANGLEl ISOSTRI1))

Execution of this program required 22.3 seconds of CPU time and
178K bytes of core. &he rciultnnt_bicture drawn by the plotter
‘ Id

is shown in Pig. 4-6(b).

EXAMPLE 5

00.00

o
o
o. ‘
-
Q
-
ol
N
[}
e
.00 20.00) oox 60.00 80.00 1
(@) -
EXAMPLE
a -
o
\s-
Q
-0
ol
N
S \ ’
.00 &Q.oo ub.oox 60.00 80.00 t
“(b)

o

Pig. 4-6: Digital Plotter output for Examples 5 and 6.

00.00

-

3

L) @
The above six examples have demonstrated both the flexi-
bility and drawbacks of thg\present system. The remaining

sections of this chapter will briefly propose modifications

which would greatly enhance its flexibility and-eliminate its
drawbacks.

129

» o mbe t

R e e

cr o A Y

.

{ SR T T
.
»*

130

*

4.3 System Modifications " i

i ot niul i

The discussions of the previous chapters have detailed the
structure and operation of the author's system. 1In so dofng,
they have also drawn attention to its shortcomings. In the pages

that follow, several improvementsrtyﬁthe system will be proposed.

t

@improvements is dependent upon

The practicality of some of these
the availability of a symbolic compiler, while other improvements
could be implemented on the present system. The ai@ in proposing
these changes will be to demonstrate the feasibility of incorpo-

rating a modified version of the present system into the software

of an interactive graphics display system.

4.3.)1 Implications of a Symbolic Compiler

A symbolic compiler is one which is capablé of accepting

sxpressions containing variables and operators, and of subse-
quently manipulating those variables in accordance with the con-
straints defined by the operators. One of the capabilities of
such a compiler would be to solve a group of expressions for any
variable or variables. For exapple, given the expressions
ax + by = d

. and y<d + 5.
the compiler could solve for x and produce the exp¥9ssipn"
x> (c - bld +5)) / as

The implications of including a symbolic compiler in the

B L s
.

e A venen

o

131

} N
present system will be discussed below. It will be shown that
the usage of such a compiler permits a greater. versatility in
the types of statements allowed in a PL program, simplifies the
structure of the semantic memory and STM, affords a check for
the semantic validity of prédicates, and allows the usage of a
more powerful Feature Value Selection Algorithm (FVSA).

It was stated in Chapter 3 that the method of representing
predicates within the STM partitions the features into two
types: independent and dependent. By definition, an independent

feature is one whose value is restricted or determined only by

numeric predicates, while a dependent feature is one whose value
is restricted or determined by both symbolic and numeric predi-
cates.! To state this concept mathematically, let Y ¥pre ¥

be independent features and lét y

m+1l’ Yme2’ 'Yy be dependent

features. Furthermore, let <op>'represent a member of the set
of operators {=,#,>,2,<,<}. By definition, the predicates on
the independent features are defined by the constraints

\

y; <op> a,

- —— > where a, to ar are numbers.

ym <°p> ar

y /

On the other hand,'the predicates on the dependent features are

1

Numeric and symbolic predicates were defined in Section 3.5.1.

i

R b R

e e

S~

.

g,

132
defined by the constraints
. h
a1 SOP2 £1(¥yr¥y0eeeiyy)
Ym+2<(op> PN ST PYRRRY) Ay 1) | where j is the no.
of constraints on
- - the dependent fea-
. tures and 1 £ i € j.
y, <op> £ (Y ¥preeesYpoeeesy, 1)]

Note that j 2 n - m because there may be more than one constraint
assigned to any feature.

It has already been shown that, in the absence of a symbolid
compiler, such a partitioning scheme imposes severe restrictions
on the capabilities of the system. This is because such a scheme
preciudes the migration of members of one class of feature into
the other class. For example, the predicate vx2=vx1+s cos 8 of
LINE makes vx, a dependent variable and VX, B and 6 independent
with respect to it. A PL input such as LOGIC (EQ (VX2 (LINE)~5))
cannot therefore be allowed since it could produce a value for
vx, inconsistent willi that derived from the predicate.

A method of circumventing this difficulty by using "alter-

nate paths" was outlined in Section 3.5.2. Besides being clumsy

and inefficient, the unrestricted usage of such a method would

quicklwdestroy the effectiveness of the semantic memory.

ilability of a symbolic compiler, however, forestalls
!

this difficulty without increasing the complexity of the semantic

memory. Indeed, the inclusion of such a compiler into the

&

+

Y
present system would eliminate the need for any feature parti-
tioning. This is because all features would then become vari-
ables without regard to their being either dependent or inde-

pendent. The constraints on the feature set {yl,yz,...,yn} of

an d¢bject would then become

fl(%l'yz' censyy) <op>oO where y,,...,¥p aré features
fz(}}@l'YZ' ...,yn) Cop>0 L £y,...,f, are predicates

- - - and {op) is a member of the

fj(yllY2""'yn) <°P>0 Set{jr#l>1%1<l$}-
A
Unlike the compiler of the present system, a symbolic com-

piler would be capable of manipulating both symb‘olic and numeric
predicates. It could therefore be programmed to delete redundant

information from the predicates £, to fj' In so doing, it could

1
also check their semantic validity. For example, let the predi-

cates on an object be
=y +y; =0 iv=-(1)
Yy~ Y;=0 iv=-(2)
==y2-5 = 0 ' iv-(3)
In simplifying these‘ constraints, the compiler would substitute
5 for Y in iv-(l)’and iv-(2) and would subsequently obtain the

v

incegnsistent conditions
-

f1*y1+5~0

. }

\

- 134

-

af

Thus, one implication of a symbo%jc compilef is that it could
check the semantic validity of a set of predicates.

Furthermore, if a symbolic compiler were available, the

inclusion of a PL input into a set of predicates would serve-ta

modify them. For example, consider the predicates of LINE which
werd listed in Section 3.5.2. _Translation of these into thé

r
present notation yields

fl=S>0

A
o

f,= s - (1002 + 502)1/2
£. =62 0 -

f, =06 - 360< 0

Fh
Il

fg = vx; - 100 € 0
£, = vy, > 0
fm&vxz - 100 0

f 2> 0

11- Y2

12=vy2—50<-0
f13- VX, = VX; - 8 cos 9“=\0

& vyz‘- vy, - 8 8in 0 = 0,

The addition of the' PL statement LOGIC (EQ(VY2)) would preci- -

4

pitate the following simpl:lficatiOns to thé above constramts.

N
e e
.

s T T

<V n

A A o

135

.

The PL input would be translated into the constraint

b
15 2

By uéing this equality constraint, the compiler could then elimi-

to £f.,. This would cause f11 and f12 t Kecome

nate VY, from fl 14

fll= vxzz 0

o

= - S .
f12 VXy 50 0

Since fll would then be identical to fg, it could be deleted. A

comparison of fy,; and f;, using the table of Fig. 3-11 would re-

-

sult in the deletion of £,,. Next, f14 would be replaced by
\
fl4=vx2 - vy; - s sin 8 = 0.

Finally, evaluating for vx, ‘in f14 and substituting for f,3 would

eliminate f and yield

14
f13+ vy, = vx; + s(sin 8 - cos 8) = 0.
In the above paragraphs, it has been shown that the inclu-

sion of a symbolic compiler would eliminate the necessity of

- differentiating between dependent and independent features. It

would also pe%mit PL inputs specifying restrictions on any fea-
ture without necessitating the usage of "decision paths" within
the semantic memory. This would eliminate the usage of the
KNOWN mode of the MODIFIER node described in Section 3.5.2. It
will now be demonstrated that\the structure of the S;IH and the

nature of the FVSA would both be altered by the inclusion of a

symbolic compiler.

<

ey~

T

- e b

\ 136

The requirement‘that the compiler be able to create an or-—
dered feature stack to be used by the FVSA results in the incor-
poration of VDP's into the STM. Since a symbolic compiler would
éliminate the classification of features into either dependent
or independent types, the VDP would become redundant and it
could be deleted from the STM. In addition, a symbolic compiler
would permit other changes to the dfructu}e of the STM. This
would occur because each predicate would no longer pertain to
only one feature’but rather to ail features. The structure of
tke STM which would result appears in Fig. 4-7 and can be com-~
pared to that of the preéent version which appears in Fig. 3-2.
The main differen¢e between the two structures is that in the
new one, the predicates are grouped together in the PREDICATE
block and do not contain VDP's; in the old SfM, they were
accessed through the OBJECT -node to which they pertained.

As ag‘example of the structural differénces between the

two structures, consider the PL input

DRAW(TRIANGLE2)
LOGIC(LE(VX3 OPSUM(VY2 5))).

In the absence of a'aymbolic compiler, the STM which would result

¢ N

from this input was drawn in Pig. 3-4. Using the modifications

‘defined in this chapter, the predicate contained in the PL string

can be represented by

£, = vxy - vy, -5 € 0.

TR

Fras

v g R

137
{1
STM
WORKSPACE
.
(3141 OBJECT LIST OF
o| NODE FEATURES
o o— EEATURES g
—SUBOBJECTS> T OBJECT
& NODE
| . | FEATURES __ _
: ! SUBOBJECTS __
;
! { p
; i OBJECT |
! , & NODE :
~_ L o .| FEATURES _ _
ok SUBOBJECTS _ _ _
i .
b ‘tl)
1
-] -
: | TopoLOGICAL .
RELATIONSHIPS
"’ e ‘
. ,,
113) LIST OF :)
o PREDICATES
—.-L..
. v)

Pig. 4-7: Overview of the structure of the STM which would result
if a symbolic compiler were available,

138

The translation of this input into the new STM would.result in
the structure of Fig.\4-8. Note that because the right hand
side of the constraint f; is always zero, the PTR2 field of the
predicate's patriarch MODIFIER node is set to NULLy Note also
the lack of a VDP in Fig. 4-8.

It has been shown that the usage of a symbolic compiler

eliminates the need for a VDP and results in modifications to

~

the structure of the STM. The remainder of this section dis- |

cusses the type of FVSA which would .be required by a symbolic

compiler and how it would differ from that discussed in

Chapter 3.
S The discussions of this section have shown that the predi-

cates on an unpartitioned set of features can be represented by
* i

\

the constraints , N\

= . £1(¥) /¥y eeei¥y) <oP>O :
| iv-(4)
N fj'(yl,yz. «wer¥p) <OpD> O
What is required, then, is an algorithm which yields a solution
vector for the feature set subject to the above cénstraints.
In his discussion oﬁ the Nonlinear Programming Problem,
. Pierre (1969) describes some techniques which are used“for the

() solution of a similar problem. Specifically, he considers the

3
%i; , '« .problem of minimizing the nonlinear performance measure

139

()
_/\ STM
WORKS PACE
fim TRIANGLEZ2 I
) = |
. Lo
e
' -y [t | _ij_
w oy : g
SIZE vY?2 . VX3
1 | | <
T
l——-—T—Y—-] H PREDICATE
h O
heud p— ‘ -
Y
: L
| LE
@ L—7
b QP oP’ [constanT |
‘ DIFF SUM 5
= +
Fig. 4-8: STM representation of
DRAW(TRIANGLE2)
O LOGIC (LE (VX3 OPSUM(VY2 5)))

assuming availability of a symbolic compiler.

AR ﬁ"
ey ey SN AN

- T

!

* 140

P=£_(X) | ~
where ;irepresents the n variables of the problem subject to the
constraint equations

fi(i) = ¢, i=1,2,....k n iv-(5)
and fi('i) S ¢ i=k+1,k+2,.00,m % iv-(6)
\

Accofding to Pierre, a powerful approach to the solution of

such a problem is the addition of the penalty functions pi(i)

-

“to the performance measure P. For each constraint fi' a new

penalty function pi(;3 is defined. This penalty function in-
creases the value of P as a function of the amount by which the
value of §'is outside the limits specified by the constraint fi'
The solution to the Nonlinear Programming Problem then rests on
the ménimization of the Penalized Performance Measure

- ’ m S
Pp = £,(X) + zi w3 p; (X)
i= :

BRI 7

where .the wi are suitably chosen weighting factors.

It is a simple matter to formulate the problem detailed by
iv-(4) in terms of the Nonlinear Programming Problem. Since our
objective is only to produce a set of feature values which
satisfy the.constraints £1""ffj' the performance measure
P= fof;3 can be set equal to gzero. What remains, then, is to

~

transform the congtraints of iv-(4) into those of iv-(5) and

A S oSN _ 5 ... o B 0 - -

iv-(6).

rg:&r-'

]

¥

l

- 141

Py

e

Fc;r constraigits where<{op>is "=" or <", a direct cor;*e-
gpondence to those of iv-(5) and iv-(6) exists. Those con-
straints where<{op>» is ">" can be easily transformed by noting
that if f;(yj,...,y,) =0, then ﬁultiplying both sides by -1 re-
sults in fi' = —fiéfo which is in the required form.’ Those con-
straints where <op> is “<“. or "»" can also be easily transformed
by noting that if £;<0, thén f; +3 <0 where 3 is an arbitrarily
small number. Finally, while the constraint fi # 0 cannot be”
put into the required form, a penalty function for it can be in-
corporated into Pp by letting pjlyqs-eevyp) =1/ fi(yl,...,yn).

It can be seen, then, that the formulation o; iv-{4) as a
Nonlinear Programming Problem is a simple matter. The subsequent
solution of the constraint equations subject to the Penalized
Performance Measure can be accomplished by any of a number of
optimization techniques.l

The procedure outlined above represents a suitable FVSA for
a system which includes a symbolic compiler. It differs from
that described in Chapter 3 in that .it seeks a viable “solu;ion
space” within the n-dimensional featgre space without regard to

which features are dependent variables or which are dependent.

As such, it represents a much more powerful technique than that

presented in Chapter 3. h

1 See Pierre (1969), Chapter 6 for several pertinent techniques.

(8]

‘ L : : 142

The next section will briefly discuss an improvement to the
system implemented irr this thesis which would not require a sym-

. bolic compiler.

4.3,2 The DEFINE Statement

It has been stated\in Chapter 1 that one of the properties
of a human memory which must be possessed by an artificial intel-
-,
ligence if it is to be capable of human-like interaction with in-

formation is that it be teachable. This means that the artificial

W
14

intelligence must be ‘capable of receiving information, of deter-

mining the truth or falseness of that information, and of' incor-

T porating that information within itself if it is recognized as a

TR W

i truth.
It is @bvious that the semantic memory presented in this
' k thesis does not yet possess this capability. Instead, the a priori

existence of the memory has been assumed and no procedures for

&f
augmenting or modifying its information by PL inputs have been

: {
] provided. The incorporation of the DEFINE statement into the PL

Hrmre e

would be the first step in making the semantic memory teachable.
» Its function would be to inform the compiler that information re-
garding an object-was to be incorporated into the semantic memory.

The form of the DEFINE statement in the BNF notation would be

R T s ST N

(¢ 2 <{define) ::= DEFINE name’> ‘

‘ . I \
i where <{name) can'be any character string.. Upon encountering a

ol

| 143

DEFINE statement in a PL program, the compiler would search the
semantic map to determine whether the object specified bxxfname>
had already been defined in the net. If the object did not ex-
ist, the compiler would create dppropriate nodes in the semantic
mémory to define it. If the object did exist, the compiler would
access its semantic plane, In either case, any LOGIC statements
following the DEFINE statement would desg;ibe possible inputs to
the semantic memory. The techniques used for testing the seman-
tic validity of these LOGIC'statéments and for incorporating them
into thé semantic memory constitute a complex procedure which
will not be described here. 1Indeed, the implementation of such

a proceduré would be an appropriate subject for ¥uture research.
It can be seen, however, that additional types of PL statements
would be required in order to implement this procedufe. For ex-
ample, assume tha£ the concept HOUSE were not yet included in

the semantic memory. Then the incorporation of the predicates

of HOUSE into the memory would require statements to inform the
compiler that GABLE, say, was in fact an isosceles triangle, and
that suitable links to reflect this fact should be set up between

the GABLE and ISOSTRI semantic planes.

The incorporation of predicates into the semantic memory

without regard to their semantic validity would not require a

symbolic compiler. This assumes that the programmer would be

’

144

able to encode the predicages into the net without creating sg}f—

"1
loops. On the other hand, the availability of a symbolic com-

e e

piler would allow a more flexible format for the PL statements
which could be incorporated.v Such a compiler would also permit
. checks on the semantic validity of these predicates.
This section has briefly\considered some of the modifications
which would be required to make %Pe semantic memory teachable.

The next section summarizes the work which has been described in

this thesis.

i s 2 M S e e

s e = iy § i

®

145

4.4 Conclusions

The primary objective of this thesis has been to demonstrate
the feasibility of incorporating a semantic memory into the soft-
ware of an interactive graphics display system. It can be con-
cluded that the system describeq in the previous chapters fulfils
this objective. Specifically, it has been shown that the use of
a semantic memory in conjunction with a compiler and a short-term
memory results in a gystem which allows a high level of inter-
action between man and computer.

While the program which was implemented is limited in the
types of problems which it can solve, it is contended that the
concepts~which it embodies would be applicable to the solution
of more complex graphics problems. The modifications proposed
in this chapter represent some steps which could be undertaken

to improve the versatility of the system.

#

- e i

-

-

AR Q¥ g AF S

- ey

JRU——

\ 146

REFERENCES

Amoss, J.0., and Breeding, K.J., "A Syntactical Analysis of the
“ pattern Description Language PADEL", Technical Report
2768-2, Ohio State Uniyersity, July 1970.

Amoss, J.0., and Breeding, K.J., "Topological Manipulation of
Line Drawings Using a Pattern Description Language",
Technical Report 2768-3, Ohio State University, Aagust 1970.

Anderson, R.H., "An Introduction to Linguiétic Pattern Recog-
nition", Rand Corporation P-4669, July 1971.

Bajcsy, R., and Lieberman, L.I., "Computer Description of Real
Outdoor Scenes", Second International Joint Conference on
\Pgttern Recognition, August 1974, pp.174-179.

¢ . ' o
Breeding, K.J., "Grammar for a Pattern Description Language",
Technical Report 177, University of Illinois, May 1965.

Christensen, C., and Pinson, E.N., "Multifunction Graphics for
a lLarge Computer System", Proceedings of the AFIPS FJCC,

Duda, R.0., and Hart, P.E., Pattern Clagsification and Scene
Analysis, John Wiley and Sons, New York, 1973.

Encyclopedia Britannica, "Triangle", William Benton, Publisher,
Toronto, 1963, pp. 459-460.

Evans, T.G., "Descriptive Pattern Analysis Techniques", Air -
' Force Cambridge Research Laboratories, Bedford, Mass.,
1968. g

Evans, T.G., "“A Grammar~Conrolled Pattern Analyzer", formation
Processing 68, North Holland Publishing Company¥Y Amsterdam,

1969.

Firschein, 0., and Fischler, M.A., "Describing and Abstracting

Pictorial Structures", Pattern Recognition, vol. 3, 1971,
pp.‘ 421"'443-

Firschein, 0., and Fischler, M.A., "A Study in Descriptive

Representation of Pictorial Data®, Pattern Recogpition,
VOl. 4. 19721 pp- 361-377-

%%%ﬁﬂ;;%;f
AR .

b

g

J

v s g esite

- .

147

Fischler, M.A., "Machine Perception and Description of Pictorial

Data", Proceedings of the International Joint Conference on
~Artificial Intelligence, May 1969.

French, L.J., and Teger, A.H., "GOLD - A Graphical On-Line Design

System", Proceedings of the AFIPS SJCC, 1972, pp. 461-470.

»
Frijda, N.H., "Simulation of Human Long-Term Memory", Psycho-
logical Bulletin, vol. 77, No. 1, 1972, pp. 1-31.

Gonzales,'C., and Vidal, J.J., "GRAL - A Graphic Compiler Lan-

guage for Intelligent Terminals", Proceedings of the Con-
ference on Computer Graphics, Pattern Recognition and Data
Structure, May 1975, pp. 25-30.

Grimsdale, R.L., Sumner, F.H., Tunis, C.J., and Kilburn, T.,
"A System for the Automatic Recognition of Patterns",
Proc. Inst. Elect. Eng., Vol 106 (Part B), 1959, pp.201-211.

Kirsch, R., "Computer Interpretation of English Text and Picture
Patterns", IEEE Transactions on Electronic Computers, Vol.
EC-13, No. 4, August 1964, pp. 363-376.

Knuth, D.E., The Art of Computer Programming: Volume 1/Funda-—
mental Algorithms, Addison-Wesley, Reading, Mass., 1968.

Kulsrud, H.E., "A General Purpose Graphics Language", Communi-—
cations of the ACM, April 1968, pp.-247-254.

Lecarne, O., "A System for Interactive Graphic Programming",
Proceedings of IFIP Congress, Vol. 1, 1971, pp. 440-444.

Newman, W.M., and §prou11, R.F., Principles of Interactive Com-
puter Graphjcs, McGraw-Hill, New York, 1973.

Nilsson, N.J., Problem-Solving Methods in Artificial Intelli-
gence, McGraw-Hill, New York, 1971.

Pfaltz, J.L., "Web Grammars and Picture Description”, Computer
Graphics and Image Processing, August 1972, pp. 193-220.
k“v‘n l
Pierre, D.A., Optimization Theory With ggpllcatlons, John Wiley
and Sons, New York, 1969.

T W

148

poore, J.H,, Davidson, J.E., and Kelley, D.P., "A Survey of Dis-
play Hardware and Software", Technical Report GITIS-69-03,
Georgia Institute of Technology, 1969.

A

Preparata, F.S., and Ray, S.R., "An Approach to Artificial Non-
symbolic Cognition", Information Sciences, Vol. 4, No. 1,
January 1972, pp. 65-86.

Quillian, M.R., "Semantic Memory", from Semantic Information
Processing, Minsky, M. (Ed.), MIT Press, Cambridge, Mass.,
1968, pp. 227-270. .

Quillian, M.R., "The Teachable Language Comprehender: A Simu-
lation Program and Theory of Language", Communications of
the ACM, August 1969, pp. 459-476.

Quillian, M.R., "Capturing Concepts in a Semantic Net",
Technical Report 1885, Bolt Beranek and Newman Inc.,
Mass., 1969.

Roberts, L.G., "Graphical Communication and Control Languages",
Second Congress on the Information System Sciences,

Spartan Books Inc., 1964.
f . &

Rosenfeld, A., and Mercer, A., "An Array Grammar Programming
System", Communications of the ACM, May 1973, pp. 299-304.

IEEE Transactions on Systems, Man, and Cybernetics,
May 1975, pp. 380-383. .

Ros;nfeld, A., "Networks of Automata: Some Applications",

Rovner, P.D., and Feldman, J.A., "The LEAP Language and Data
Structure”, Information Procesbiqg 68, North Holland
Publishing Company, Amsterdam, 1969.

Shaw, A., "The Formal Description and Parsing of Pictures",
Computer Science Report No. 94, Computer:Science
Department, Stanford University (Ph.D. Thesis), 1968.

Shaw, A., and Miller, W.F., "A Picture Calculus", from
Emerqing Concepts in Computer Graphics, Secrest, D., and
Nievergelt, J. (Eds.), W. A. Benjamin Inc., New York,

1968, pp. 101-121.

-

.

[P AN b

149
»

Shaw, A., "A Formal Picture Description Scheme as a Basis for
Picture Processing Systems", Information and Control, -
vol. 14, 1969, pp. 9-52.

f Shaw, A., "Picture Graphs, Grammars, and Parsing"”, from
; Frontiers of Pattern Recognition, Watanabe, S. (E4d.),

Academi¢c Press, New York, 1972, pp. 491-510.

Smith, D.N., "GPL/1 - A PL/1 Extension for Computer Graphics",
Ld pProceedings of the AFIPS SJCC, 1971, pp. 511-528.

; Stack, T.R., and Walker, S.T., "AIDS - Advanced Interactive
' Display System", Proceedings of the AFIPS SJCC, 1971,
.pp. 113-121.

Sutherland, I.E., "Sketchpad - A Man-Machine Graphical Commu-
nication System", Lincoln Lab Technical Report 296,
January 1963.

e e e

Williams, R., and Giddings, G.M., "A Picture-Building System",
Proceedings of the Conference on Computer Graphics,
Pattern Recognition and Data Structure, May 1975, pp. 304-
307. .

R A

Yakimovsky, Y., and Feldman, J.A., "A Semantics-Based Decision
Theoretic Region Analyzer", Third International Joint
Conference on Artificial Intelligence, Stanford, cal.,
1973.

T R 7

