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Abstract 

 
Neuropsychiatric disorders have a major genetic component to their etiology and 

manifest with varying and complex set of clinical features. This renders their classification and 

treatment challenging. Recent advances in sequencing technologies and increasing sample sizes 

have allowed for the discovery of a large number of risk variants associated with these 

disorders. However, most studies have focused on univariate statistical approaches for the 

genetic characterization of these complex disorders. Given their polygenic and multifactorial 

etiology, advanced algorithms that can model higher interactions among variants/genes are 

needed. The field of machine learning (ML) is concerned with developing algorithms that learn 

with experience and are able to find complex relationships among input variables for pattern 

discovery and predictive modelling. ML algorithms developed on genomic data, such as data 

from whole exome-sequencing technologies, can assist in shedding light into the complex 

architecture of neuropsychiatric disorders. 

This thesis focuses on applications of ML algorithms for classification and stratification 

of autism (ASD), schizophrenia (SCZ) and bipolar disorder (BD) using whole-exome sequencing 

data. More specifically, we show that ASD and SCZ patients can be successfully distinguished 

from each other based on their rare variants identified through whole-exome sequencing, and 

we identify the top variants and genes contributing most to our best performing model. 

Similarly, we show in another dataset that BD patients can be distinguished from SCZ and 

control individuals using all variants as input features and highlight the most important variants 

in the best performing model. In addition, we implemented a novel topic modelling approach 

for clustering and classification of SCZ, BD and control individuals that identified a genetically 
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more homogenous subcluster of SCZ individuals.  Lastly, we developed a novel graph/network 

approach to model genomic mutations in familial datasets and propose a relational graph 

neural network for node classification of disease status in siblings discordant for ASD.   
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Résumé  

 
Les troubles neuropsychiatriques ont une composante génétique majeure dans leur 

étiologie et se manifestent par un ensemble de caractéristiques cliniques variées et complexes. 

Ceci complique leur classification et leur traitement. Les progrès récents des technologies de 

séquençage et l'augmentation de la taille des échantillons ont permis la découverte d'un grand 

nombre de variantes conférant un risque accru pour ces troubles. Cependant, la plupart des 

études se sont concentrées sur des approches statistiques unidimensionnelles (univariées) pour 

la caractérisation génétique de ces troubles complexes. Compte tenu de leur étiologie 

polygénique et multifactorielle, des algorithmes avancés capables de modéliser des interactions 

plus élevées entre les variantes/gènes sont nécessaires. Le domaine de l'apprentissage 

automatique concerne le développement d'algorithmes informatiques qui apprennent avec 

l'expérience. Ceci peut identifier des relations complexes entre les variables d'entrée pour la 

découverte de modèles et la modélisation prédictive. Les algorithmes d'apprentissage 

automatique développés à partir de données génomiques, telles que les données issues de 

technologies de séquençage d'exomes entières, peuvent éclaircir l'architecture complexe des 

troubles neuropsychiatriques. 

Cette thèse se concentre sur les applications des algorithmes d'apprentissage 

automatique pour la classification et la stratification de l'autisme (TSA), de la schizophrénie 

(SCZ) et du trouble bipolaire (BD) à l'aide de données de séquençage de l'exome entier. Plus 

précisément, nous montrons que les patients atteints de TSA et de SCZ peuvent être discerner, 

avec succès, les uns des autres en fonction de leurs variantes conférant un risque accru 

identifiées par séquençage de l'exome entier, et nous identifions les principales variantes et 
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gènes contribuant le plus à notre modèle le plus performant. De même, nous montrons dans un 

autre ensemble de données que les patients BD peuvent être discernés des patients SCZ et 

témoins en utilisant toutes les variantes comme caractéristiques d'entrée et nous mettons en 

évidence les variantes les plus importantes dans le modèle le plus performant. En outre, nous 

avons mis en œuvre une nouvelle approche de modélisation de sujet pour le regroupement et 

la classification des individus SCZ, BD et témoins qui a identifié un sous-regroupement 

génétiquement plus homogène d'individus avec SCZ. Enfin, nous avons développé une nouvelle 

approche graphique / réseau pour modéliser les mutations génomiques dans les ensembles de 

données familiales et nous proposons un réseau neuronal graphique relationnel pour la 

classification des nœuds de l'état de la maladie chez les frères et sœurs discordants pour les 

TSA. 
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Chapter 1: Introduction 

1.1 Neuropsychiatric Genetics 

Neuropsychiatric disorders, a set of heterogenous and overlapping disorders which 

mainly affect behavior, mood, perception and cognition, are one of the largest causes of 

disability worldwide1–3. It has been known for decades before the era of genomic technologies 

that neuropsychiatric disorders aggregate in families and that they have a major genetic 

component to their etiology4. Psychiatric disorders are clinically diagnosed using the Diagnostic 

and Statistical Manual of Mental Disorders (DSM)5 criteria, and they are considered to be 

polygenic and to follow a complex inheritance. A network of genetic variations across the 

genome, along with environmental factors, increases one’s risk to psychiatric disease. The 

genetic architecture of most psychiatric disorders consists of many inherited common variants 

with small effects, as well as, rare, de novo mutations with large effects on risk6,7. However, 

their exact genetic pathophysiology still remains elusive.  

This project focuses on three neuropsychiatric conditions, namely, autism spectrum 

disorder (ASD), schizophrenia (SCZ), and Bipolar Disorder (BD). 

Autism Spectrum Disorder 

 
Autism spectrum disorder (ASD) is a set of heterogenous neuropsychiatric disorders, 

affecting nearly ~1% of the population, with heritability estimated to be around 70-90%8,9. 

Children with ASD show deficits in communication and social behaviour and exhibit repetitive 

behaviours9. Affected children show highly variable clinical features ranging from severe 

impairment and intellectual disability to above average academic abilities. The prevalence of 

ASD varies by sex, as males are four times more likely to be diagnosed than females10.  
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The exact etiology of ASD is still unknown. The role of de novo and inherited variants, 

both rare and common, has been well established11–14. Through linkage and exome sequencing 

studies, rare de novo variants in 100-1000 genes have been estimated to play a role for 

ASD12,13. However, most of ASD heritability is now attributed to common inherited variants with 

small effects14.  

Schizophrenia 

 
Schizophrenia (SCZ) is a chronic neuropsychiatric condition with up to ~0.5-1% 

prevalence in the population and estimated heritability of ~80% from twin studies15.  It affects 

perception, emotion, and cognition, and is characterized by hallucinations, disorganized 

thinking, incoherent speech and abnormal motor behavior, as well as negative symptoms16.  

SCZ is typically an adult-onset disorder, emerging in the early twenties for males and, slightly 

later, in mid to late twenties, for females17.  

The role of both common and rare disruptive variants in the genetic architecture of SCZ 

has been established18–20. The largest and most recent GWAS study for SCZ, performed by 

Psychiatric Genomic Consortium (PGC), reported the association of 108 independent loci which 

were enriched for genes expressed in the brain20. Of the identified loci in the study, 75% 

correspond to protein-coding genes and an additional 8% are located within 20 kb proximity of 

a gene. Similarly, studies of rare variants through whole-exome sequencing (WES) have 

identified a polygenic burden of rare mutations in many genes for SCZ19.  
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Bipolar Disorder 

 
Bipolar disorder is a chronic neuropsychiatric disorder with an estimated lifetime 

prevalence of 1-2%21. It’s heritability has been estimated to be 70-90% from twin studies and is 

characterized by recurrent periods of mania and hypomania22–24. Each manic and depressive 

episode can last for several weeks and affects mood, perception, emotion, activity, and energy 

levels. BD is an adult-onset disorder. Affected individuals have 10-30 times higher rate of 

suicide and a decreased life expectancy of 9-17 years compared to the general population25.  

The most recent GWAS from PGC has identified 30 loci to be associated with BD, 8 of 

which had been previously reported for association with SCZ, thus supporting the genetic 

overlap of the two conditions26. The role of rare variants has not been as well-established, but 

recent family studies using whole-genome sequencing (WGS), whole exome sequencing (WES), 

and microarray data have provided some preliminary evidence to support this27,28. 

 

1.1.1 The role of SNP arrays and GWAS in psychiatric genetics  

 
Earlier genetic methods, such as linkage and candidate gene studies, were largely 

unsuccessful in reliable identification of risk loci for common neuropsychiatric disorders. The 

invention of SNP arrays that could genotype hundreds of thousands of common variants (SNPs) 

simultaneously gave rise to genome-wide association studies (GWAS). In these studies, the 

entire genome is scanned for genetic markers in large numbers of cases and controls, which are 

then tested for association with the trait of interest using a univariate statistical test29. This was 

a major improvement over candidate gene and linkage methods, as it improved scale of 

coverage, statistical power, and allowed for an unbiased assessment of the genome29,30.   
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GWAS revolutionized the field of psychiatric genetics and allowed for systematic 

discovery of loci with large sample sizes. With the growing number of samples, GWAS has been 

successful in identifying a large number of common risk variants. To date, a total of 241 

significantly-associated loci have been identified for 10 neuropsychiatric disorders, which 

include 400 different protein coding genes1.  

Many of the psychiatric disorders are genetically correlated, with some overlapping 

variants conferring risk to multiple disorders, as evidenced from GWAS results where many of 

the identified loci have shown association for multiple psychiatric disorders (i.e. 

pleiotropy)18,31,32. The most recent cross-disorder genomic study by Lee et al.32 reported 109 

loci to be associated with at least two disorders, 23 of which shared association with four or 

more different disorders. The study analyzed 232,964 cases of autism, schizophrenia, bipolar 

disorder, anorexia, ADHD, major depression, OCD, and Tourette syndrome, as well as 494,162 

controls from GWAS studies. It performed pairwise genetic correlation using LD-score 

regression and showed high correlation of 0.7 between SCZ and BD, 0.22 between ASD and SCZ 

and 0.14 between BD and ASD.  

 

1.1.2 Polygenic risk score in psychiatric genetics 

 
 Polygenic risk score (PRS) is generally used to capture the cumulative additive impact of 

GWAS identified variants for risk prediction and cross-disorder association. When PRS is used 

for explaining the variance between cases and controls of a particular disorder, Nagelkerke’s 

R^2 (a measure of the proportion of the variance explained) is reported in GWAS studies. So 

far, in SCZ, R^2 of 0.035 (3.5%), in BD mean R^2 of 0.08 (8%) and in ASD R^2 of 0.0245 (2.45%) 
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at GWAS significance threshold have been reported20,26,33. The lack of success of PRS in clinical 

settings is not surprising, given it is only focused on one type of common variant (Single 

Nucleotide Polymorphisms, SNPs) and does not take epistatic interactions of variants into 

account. 

 

1.1.3 Whole exome sequencing (WES) 

 
Recent advances in sequencing technologies have allowed for the sequencing of the 

whole exome (i.e. the protein coding part of the DNA), which represents 1-2% of the entire 

genome. WES is more cost effective than WGS and has facilitated the elucidation of different 

Mendelian disorders34. WES can capture rare variants which cannot be detected by the 

genotyping arrays commonly used in GWAS. In addition, unlike GWAS, point mutations 

identified by WES point to specific genes, and can thus be interpreted within the context of 

their gene.   

WES has allowed for identifying variants with high functional impact. It has also 

uncovered the role of rare and de novo mutations through case control and family studies for 

neuropsychiatric disorders35. For example, it has shown associations of gene-disrupting de novo 

mutations in ASD for genes expressed in brain tissues13,28,36,37.  Similarly, for SCZ, the role of 

excessive gene-disrupting mutations in the postsynaptic genes and calcium ion channel 

signalling has been reported using WES data19,38. 

Given the amount of data generated by WES, machine learning (ML) analysis of WES 

data may advance our understanding of psychiatric genetics. 
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1.2 Machine learning (ML) 

 
The field of machine learning focuses on developing computer algorithms that learn 

with experience, automatically39. ML offers methods for pattern detection and knowledge 

discovery in high throughput data, rendering it one of the most promising approaches for 

understanding the human genome40. ML algorithms can uncover complex relationships in large 

dimensional data which would otherwise be impossible for humans to detect.  

Owing to the recent improvements in computational hardware such as graphical 

processing units (GPUs) and advances in deep learning, machine learning has revolutionized 

many fields such as image and speech recognition, natural language processing, and patient 

diagnosis based on electronic health records41–44. It has also offered methods for analyzing and 

processing of single cell transcriptomic data, but also for the deconvolution of bulk RNA 

expression to estimate cell type proportions45–47. Another remarkable contribution of ML in 

health sciences was the major breakthrough from Google DeepMind at the end of 2020 in 

solving the protein folding problem, accurately predicting the 3D structure of proteins based on 

their one-dimensional sequence amino acids48.  

Broadly speaking, there are two types of ML algorithms: supervised and unsupervised 

ML. In supervised methods, the algorithm learns from many examples of input to output 

labelled data in order to best explain the observed variance in the output through some 

function or composition of functions of the input features/variables. The trained algorithm can 

then be leveraged to make predictions on future unknown or unlabeled instances.  For 

example, learning to predict disease status based on labeled or classified samples of cases and 

controls using a set of feature values, such as genetic variants or clinical symptoms, falls under 
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supervised machine learning. The target or outcome variable (e.g. disease status) could be a 

discrete number of classes (e.g. case vs. control) or a continuous variable (e.g. height). In 

contrast, unsupervised ML algorithms do not need labeled data, but rather, look for inherent 

patterns within the data. An example would be clustering patients into homogenous groups 

based on their biomarkers, using a similarity or distance function49,50. Another example would 

be topic modelling, which is widely used in natural language processing to find hidden semantic 

structure (topics) within documents, where each document gets defined by a distribution over 

the learned latent topics51.  

 

1.3 Hypothesis and Objectives 

 
 Our hypothesis is that advanced machine learning methods can be used for 

classification and stratification of psychiatric disorders using WES data. Computational methods 

that go beyond the linear sum of genetic risk factors and take epistatic interaction of many 

variants into account are needed to properly characterize the polygenic architecture of these 

disorders and enable subtype identification and risk prediction. Our overall aim was to leverage 

various machine learning methods on WES data of ASD, SCZ, BD and control subjects to uncover 

insight into the genetic architecture and etiology of (these) complex neuropsychiatric disorders.   

First, given ASD and SCZ are highly heritable disorders, with overlapping genetic risk 

factors, our first objective was to implement a supervised ML approach to classify patients with 

ASD and SCZ based on their rare genetic variants and identify important genetic features that 

distinguish them from each other.  
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Our second objective was to compare the exomes of individuals with BD, SCZ, and 

controls, using a different ML approach, called topic modelling. In this approach, we model the 

exome as a book and try to learn a small number of interpretable latent variables called topics 

(or dimensions) that could characterize the differences in the conditions targeted. We also 

explore if these topics could be used to identify homogenous clusters of subjects having the 

same clinical DSM diagnosis.  

Our last objective was to develop a novel method that takes a family-based approach to 

predict affected and unaffected status in a given psychiatric disease. More specifically, we used 

exome data from families with ASD and compared affected to unaffected siblings, while 

integrating the parental genomic information. We modeled family relationships, variant 

inheritance (i.e. de novo vs. inherited), as well as variant features (e.g. predicted functional type 

and minor allele frequency) in a large graph and approached the problem as a semi-supervised 

node classification task for affected status. 
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Chapter 2: Materials and Methods 

2.1 Whole-exome sequencing datasets 

2.1.1 Autism WES dataset 

 
 Autism WES data (NDAR trios and quads): The whole-exome sequencing data for 2,392 

families with an affected ASD child were obtained from the National Database of Autism 

Research (doi: https://doi.org/10.15154/1169318; doi: https://doi.org/10.15154/1169195). 

Genomic DNA was extracted from whole blood samples. This dataset includes 1800 quads 

(unaffected parents with one affected and one unaffected child),  and 592 trios (unaffected 

parents and affected child) with the original sequencing data gathered by the Simons 

Foundation Autism Research Initiative (SFARI) under Simons Simplex Collection (SSC)52. Affected 

children younger than 4 or older than 18 years of age were excluded from the study. In 

addition, children with some conditions such as severe neurological deficits or genetic evidence 

of fragile X or Down Syndrome were excluded from the study52.  

2.1.2 Schizophrenia and Bipolar Disorder WES Datasets 

 
Schizophrenia WES data (dbGaP trios): This WES data for 623 Bulgarian trios was 

obtained from the database of Genotypes and Phenotypes (dbGaP) where it is available under 

phs000687.v1.p1 study ID. Genomic DNA was extracted from whole blood samples. Unrelated 

families (of parent-offspring trios, with parents not having positive history of schizophrenia) 

participated in the original study. For probands to be included in the study, they had to have 

positive history of hospitalization for schizophrenia and to have graduated from school, to 

exclude probands with intellectual disability from the cohort53.  

https://doi.org/10.15154/1169318
https://doi.org/10.15154/1169195
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Schizophrenia, Bipolar disorders WES data (dbGaP): This dataset accessed through the 

dbGaP (study phs000473.v2.p2) contains WES data for 12,380 individuals from a Swedish 

population with 4969 SCZ cases, 1,166 Bipolar disorder cases, and 6,245 controls (CTL). In order 

for SCZ case individuals to be included as part of the study, they had to be between 18-65 years 

of age, alive, hospitalized two or more times with SCZ, born in Sweden or other Nordic country 

and both parents born in Sweden as well54. For controls, similar criteria except for never being 

hospitalized for SCZ in the past were used. 

2.1.3 WES data filtering criteria 

 
From the variant call format (VCF) files of ASD (NDAR) and SCZ (dbGaP trios) which were 

annotated using ANNOVAR according to the reference genome GRCh37 (hg19), we filtered for 

rare variants (MAF < 0.01) predicted to be functionally important, with genotype quality of 90.  

To explore the impact of all good quality variants, for the Swedish SCZ/BD/CTL WES cohort, we 

selected for all variants with mean genotype quality of greater than 60, and the data was 

annotated using the reference genome GRCh38 (hg 38). 

2.1.4 WES data representation 

 
For ML analyses, we represented each genetic variation to take values in one of {0, 1, 2} 

corresponding to whether the variant is wildtype, heterozygous, or homozygous. Wildtype 

refers to the non-mutant or standard form of a gene where both alleles correspond to the 

reference (i.e. 0/0).  Heterozygote implies two different forms of an allele have occurred in the 

same position, where one corresponds to the reference and the other does not (i.e. 0/1).  

Lastly, in homozygous alternate, both alleles in a particular position do not correspond to the 
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reference and thus are mutant (i.e. 1/1).  The output variable in our ML analyses is the 

phenotype: affected vs. unaffected, ASD vs. SCZ vs. BD vs. CTL depending on the dataset (i.e. 

binary or multi-class), also treated as a continuous variable when adjusting for population 

structure.  

 

2.2 Resources for integration of pathway information and tissue specific gene expression 

2.2.1 MSigDB canonical pathways 

 
 This annotated dataset of genes to pathways was downloaded from MSigDB (Molecular 

Signatures Database) which compiles this information from various databases and biomedical 

literature55–57. We converted this information into a numeric matrix of pathway by gene for 

machine learning analysis. The values of the matrix are binary indicating whether a gene is 

involved in a particular pathway.  

2.2.2 GTEx RNA-Seq data 

 
 Tissue-specific gene expression data was downloaded from The Genotype-Tissue 

Expression (GTEx) project online portal58. We downloaded the V8 Gene TPM and filtered for 

brain tissues only.  

 

2.3 ML analysis of WES data to contrast the genomic architecture of ASD & SCZ 

2.3.1 Population stratification correction: 

 
Before training a machine learning algorithm to differentiate between ASD and SCZ 

samples, we corrected for population stratification. Population stratification can bias an 
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association or classification task due to the systematic allele frequency differences that exists in 

different subpopulations driven by non-random mating59,60. If not corrected, a ML algorithm 

could capitalize on such population structure and not learn the underlying genetic differences 

that are important in differentiating the two disorders.  Our focus on rare variants reduced the 

impact of such a confounder. However, we still performed a principal component analysis (PCA) 

based stratification correction method (called Eigenstrat) proposed by Price et al.61 to properly 

address this.  

 We applied Eigenstrat on our curated individual x variant matrix of ASD and SCZ samples 

to infer the top axes of variation which captures population structure differences. Afterwards, 

we fit a generalized linear model by regressing each variant on the four axes of variation and 

assign the residuals of this regression to be the corrected values of the particular variant. This 

essentially removes the impact of population structure from each variant. We do the same for 

the phenotype, as for a variable to be considered a confounder, it needs to be associated with 

both the target and input variables60. As a result, the genetic variants which used to have 

integer values of 0,1,2 becomes continuous after this correction. Similarly, the phenotype 

values, from binary (indicating ASD vs. SCZ), became continuous. After the correction, the 

adjusted phenotype values all but one fell within the range of -4 to +4, so we capped the 

phenotype values to this range.  

2.3.2 Regularized Gradient Boosted Machines (GBM) 

 
 GBM is an ensemble method of weak learners, where each base learner is added to the 

ensemble iteratively to correct for the errors of previous ones62,63. Each base learner in the 

ensemble can be one of any possible classification and regression trees (CARTs) in the space of 
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all possible CARTs. GBMs can be trained to optimize any differentiable loss function. Therefore, 

they can be trained for either classification or regression tasks. We chose GBM, and specifically 

its extreme gradient boosting implementation (XGBoost)64, for the problem of ASD vs. SCZ due 

to its state-of-the-art performance on cartesian data, better interpretability, and parallelized 

and regularized implementation. Given that our data is large dimensional, we prefer a heavily 

regularized algorithm to penalize complexity and to avoid overfitting. The regularization and 

embedded feature selection methodology of XGBoost reduces the number of input variables in 

the model and ranks them based on their relative importance for predictive power. 

2.3.3 ASD vs. SCZ classification at the variant level (Variant-Level Approach): 

 
In this approach we took the actual genetic variants and their values (i.e. 0,1,2 based on 

their genotype) to be our features set.  We initially trained and optimized XGBoost without any 

population stratification (PS) correction but then repeated the analysis after correcting for PS 

using Eigenstrat. After the correction and rounding up/down, the phenotype became 

continuous valued from initial binary which denoted SCZ and ASD classes. We thus approached 

the analysis: (1) By keeping the phenotype adjustment as a continuous variable based on Price 

et al.61 methodology. (2) By converting the adjusted phenotype to binary. The latter was done 

by looking at the distribution of the adjusted phenotype values. All SCZ samples had adjusted 

phenotype values in the interval [-4,-1] and ASD samples in interval [1,4]. Therefore, we 

assigned the two classes 0 or 1 values based on the two clusters clearly segregating with 

regards to the two phenotypes.  A 70:30 data split was used for training and testing purposes.  
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2.3.4 ASD vs. SCZ classification at the gene level (Gene-Level Approach): 

 
In this approach, we summed up the corrected variant-level genotype values to their 

genes, then trained an optimized XGBoost using genes as opposed to variants as the input 

features. Similar to the variant-level approach above, we took two methodologies for training: 

regression (when directly using the adjusted phenotype) and classification (after converting the 

adjusted phenotype to binary). Similarly, we used the 70:30 ratio for splitting our data for 

training and testing. 

 

2.4 ML analysis of WES data to contrast the genomic architecture of SCZ, BD and controls. 

2.4.1 Supervised SCZ vs. BD vs. CTL classification approach 

 
This is an extension of the SCZ vs. ASD approach, but focusing on SCZ vs. BD, and 

including controls, all from the same population. We first performed a supervised ML analysis 

using all high-quality variants in the exomes of these individuals using a regularized linear 

model (LASSO) and XGBoost. We kept 25% of the original data for testing, and then used 25% of 

the remaining 75% for validation. This left ~56% of the data for training purposes. We made 

sure each set had the same distribution of classes. Given the dataset is unbalanced, especially 

for BD where its ratio is close to 1:11 in the overall data as shown in supplementary Figure 1, 

we weighted the loss function based on the inverse frequency of each class. This was used to 

ensure that the majority class does not dominate the training process in supervised ML. We 

trained our model on the training set by minimizing the cross-entropy loss, while 

simultaneously controlling the loss on validation to prevent overfitting. During the training 
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process, the best model is saved based on its evaluation on the validation set, and then used on 

the test set for computing final evaluation metrics. 

 2.4.2 Embedded Topic Modelling Approach: 

 
Topic models have been widely used in natural language processing to discover hidden 

semantic structure within documents. They model each document as a mixture of ’topics’ 

which need to be inferred from the data, generally in an unsupervised fashion. Inspired by this 

approach, we modeled the whole exome of each person as a document, the genes as words, 

and the frequency of mutations in a gene as the frequency of words in a document. Our goal is 

to infer a small number of latent variables (called topics), which could model the underlying 

semantic structure of the exomes. Biologically speaking, the latent variables can be thought of 

as endophenotypes (e.g. a set of symptoms or biological processes/pathways) that can be 

explained by the underlying structure of genetic variance in the whole exome. We used these 

interpretable topics to cluster genomic data, as a way to explain phenotypic variation in the 

corresponding subjects. 

The model we used is called Embedded Topic Model (ETM)65. ETM is an extension over 

the common topic modelling approach called latent Dirichlet allocation (LDA) which models 

each document as a mixture of topics and each topic a distribution of words. ETM 

simultaneously performs topic modelling and word embedding. The word embedding extension 

can be thought of as learning a low dimensional representation (i.e. meaning) of words (genes 

in our case), where similar words end up with similar representation. We trained an ETM model 

using the negative evidence lower bound (NELBO) loss function.  
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The extracted latent variables were used for downstream clustering, but also for 

classification tasks in an XGBoost model with performance being evaluated on held out test 

data. We performed our ETM analysis in two levels: one at the variant genotype level (where 

each variant can be thought of as a word) and another at the gene level where we aggregate 

the number of variants within a gene (here, each gene is the equivalent of a word in the ETM 

analysis). In addition, for the gene approach, we further modified the algorithm by including 

pathway x gene binary matrix as the fixed gene embedding in order to guide the algorithm to 

learn biologically meaningful topics based on the gene embedding approach mentioned above. 

We defined gene embedding (or meaning) based on the molecular signature of the different 

genes, which was extracted from MSigDB and converted into a binary matrix. By fixing the gene 

embedding matrix and not allowing the ETM to learn it, we are explicitly defining that genes 

which are more frequently involved in same pathways are semantically (‘functionally’) more 

similar. 

While implementing ETM models, we experimented with different numbers of latent 

variables/topics (from 20 -100), as well as various neural network architectures for the encoder 

in each approach. We used a linear decoder in order to keep the model interpretable. We 

trained each ETM model in unsupervised fashion for 5,000 to 10000 epochs until the model 

under training converges. 
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2.5 ML analysis of WES data to predict ASD status using affected and unaffected siblings 

2.5.1 ASD Sib-pair Approach 

 
In the ASD sib-pair approach, we took matched pairs of affected and unaffected siblings 

and removed SNVs with mutations in less than 5 individuals (sparse features) to significantly 

reduce data dimension, since such variants are not informative enough in a supervised ML 

model. This reduced the number of features/variants significantly to ~56,000 (i.e. 3,600 x 

56,000 matrix).  Then an XGBoost model was trained and optimized through cross validation on 

70% of the balanced dataset while using accuracy as the performance measure.  

2.5.2 Network based approach and data representation of ASD families and their variants 

 
 Using the ASD quad family data, we created a heterogenous graph/network to model 

the relationships in our data. We used two types of nodes (i.e. individuals and variants) and 

three types of edges: one type of edge to denote child-parent relationship and two other edge 

types to connect individuals with their variants (homozygote edge and heterozygote edge).  

Unlike the traditional ML methods on Cartesian data, here the affected and unaffected child 

nodes are not independent anymore as they are connected to each other through their parent 

nodes (Figure 1).  

We also enriched our network by including variant information such as minor allele 

frequency, functional type, and variant type. Each variant node was enriched further by 

including information about the extent of its gene being expressed in brain tissues. We also 

encoded genetically meaningful topological structures in our graph as inherited and de novo 

variants form different structures with human nodes (Figure 2). Therefore, our graph neural 
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network algorithm not only learns from the information within each node, but also from the 

embedded topological structure surrounding it.  

 

Figure 1: Mini heterogenous illustrative graph of the proposed network 
 

  

Figure 1: A mini example representation of our graph with three families and sixteen variants. 

Filled nodes denote variants and white filled nodes denote human nodes. Parent child 

relationship (edge type) is denoted in green. Human to variant is denoted in two different 

shades of red (depending on the zygosity of the human in for the particular variant). 
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Figure 2: Sample homogeneous illustrative graph 

 
 Figure 2:  A small homogeneous example of our large heterogeneous graph shown to 

demonstrate some important topological structures in the graph that translate into important 

genetic concepts. It’s crucial in genetics to understand the possible source (i.e., inheritance 

pattern) of each mutation in one’s genome and how it compares between affected and 

unaffected children across a population. The graph here is showing the difference among de 

novo mutation (snv1), a paternally inherited variant (snv2) and a homozygous variant (snv3) 

where one copy was inherited from each parent. They can be distinguished by the triangle(s) 

pattern formation, or lack thereof, between the child and each parent with a given SNV. 

 

After defining our network, we set up our problem as a node classification task where 

we are interested in predicting the disease status of human children nodes (i.e. binary 

classification) in our proposed graph. To this end, we divide our target nodes (i.e. 1800 nodes) 

in the graph into training, validation and testing sets of 70:15:15 ratio, where we mask the 
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labels of validation and testing sets during training. We performed node classification in two 

ways, one using all rare variants in quad families. In the second approach, we limited our 

analysis to only variants classified as pathogenic or likely pathogenic variants in ClinVar66 for the 

quad families in the network. 

2.5.3 Proposed node-classification algorithm for the heterogenous graph/network 

 
 Traditional machine learning and deep learning methods have been quite successful at 

learning from Euclidean (tabular) data but cannot generalize to graphs which are irregular 

objects, and important notions from deep learning such as convolution are not well-defined on 

them67. Therefore, we are not able to use classes of methods used in our earlier analyses. 

However, there has been a significant amount of research done lately to extend neural 

networks to graph structured data and generalize the convolution operation to graphs. One 

main concept behind these methods is the recursive propagation and aggregation of feature 

information from node neighborhoods using neural networks68–70. 

However, most of these methods are focused on homogeneous graphs where there is 

only one type of edges and nodes which is not the case in our ASD network where we have 

multiple edge and node types. In an effort to generalize graph convolutional neural networks 

(GCNs)  to relational or heterogeneous graphs, Schlichtkrull et al.70 proposed Relational GCNs 

(R-GCNs) which extends the GCN convolutional operator to apply relation type specific 

transformations to the message-passing framework of GCNs. The authors demonstrate the 

effectiveness of their model on both entity/node classification as well as link prediction tasks 

among nodes. Similarly, Zitnik et al.71 proposed Decagon which implements an R-GCN variant 
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on a heterogeneous drug-drug with protein interaction networks to perform link prediction task 

of polypharmacy side effects.  

Motivated by the R-GCN model, we implemented relation-specific transformations using 

separate neural networks per canonical relation type instead of a linear transformation 

proposed in the original model. Therefore, each node’s feature content and embeddings get 

transformed and reduced differently based on the type and direction of the relations on which 

it’s being propagated.  

 



36 
 

Chapter 3: Results 

3.1 ASD vs. SCZ results 

 
The classification algorithm accuracy of ASD vs. SCZ analysis without adjustment for 

population structure and using variants as features was 86%, with a higher sensitivity of 97% 

than specificity of 79%.  After adjusting for population structure, the accuracy in the regression 

approach (as per section 2.3) was 85.7% using variants as features, with 97.8% sensitivity and 

78.6% specificity. In the classification approach, the accuracy was slightly higher at 87.4% with 

99.2% sensitivity and 80.0% specificity (Table 1).  

In addition, the gene-level regression approach had 88.5% accuracy, with 95.9% 

sensitivity and 83.2% specificity, while the corrected gene-level classification approach 

performed the best with 91.5% accuracy, with 97.4% sensitivity and 87.1% specificity (Table 1). 

The top 10 features (variants and genes) from the best performing population-adjusted 

classification algorithms are shown in Table 2 where we note some overlap in the genes 

identified using the different approaches. After overlapping the genes utilized in the two 

models, 151 were shared, with 4 genes in the top 10 of both models shared as well. These 4 

genes were SARM1, QRICH2, PCLO and PRF3, with the first two being the top 2 of both 

algorithms. 
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Table 1: ASD vs. SCZ analyses results on test data 
 

Model Accuracy Sensitivity Specificity Precision Recall 

ASD vs. SCZ approach with no 
pop. strat. correction, variant-
level (Classification) 

86.3% 97.1% 79.5% 

 

74.8% 

 

97.1% 

 

ASD vs. SCZ approach with 
pop. strat. correction, variant-
level (Regression) 

85.7% 97.7% 

 

78.5% 

 

73.0% 

 

97.7% 

 

ASD vs. SCZ approach with 
pop. strat. correction, variant-
level (Classification) 

87.4% 99.2% 

 

80.2% 

 

75.3% 

 

99.2% 

ASD vs. SCZ approach with 
pop. strat. correction, gene-
level (Regression) 

88.5% 95.9% 83.2% 80.3% 95.9% 

ASD vs. SCZ approach with 
pop. strat. correction, gene-
level (Classification) 

91.6% 

 

97.4%  

 

87.0% 

 

85.4% 

 

97.4% 

 

 

Table 1: A summary of the performance of different approaches taken to ASD vs. SCZ on the 

test set is shown. First, the algorithm performance using variant-level data without correcting 

for population stratification is shown. After adjusting for population structure, both the 

genotypes and phenotypes become continuous. Therefore, regression XGBoost algorithms 

were trained, but for the test set, the resulting continuous values were turned into two classes 

of -1 and +1 depending on whether the output value was > 0 or not in order to report 

performance measures in terms of accuracy. For classification tasks, since the continuous 

phenotypes clustered around -1 and 1, the output variable was turned into binary before 

training the classifiers. 
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Table 2: Top 10 features from best-performing variant-level and gene-level approaches to 
ASD vs. SCZ ML analysis 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 

 

 

Table 2: The top 10 features of population-corrected variant-level and gene-level classification 

approaches to separating ASD vs. SCZ using XGBoost is shown. The variants and genes are 

shown in order of relative importance inside each algorithm (from most to least important). For 

variant-level approach, the underlying features used in the algorithm are variants, but their 

gene is shown in parenthesis for comparison to the gene-level approach. Genes highlighted in 

bold indicate the genes identified in both approaches (i.e. SARM1, QRICH2, PCLO, PRPF31). 

Combining both lists results in 16 unique genes which make up the top 10 informative features 

of each algorithm. 

Variant-level approach Gene-level approach 

rs71373646 (SARM1) SARM1 

rs6501878 (QRICH2) QRICH2 

rs34535433 (AKAP1) PRPF31 

rs77721383 (PCLO) SEC24D 

rs147405274 (TSPO2) SCN4A 

rs11568605 (ABCC3) CACNA1S 

rs41267712 (KIF13A) CDSN 

rs150393409 (FAN1) HERC2 

rs201671744 (CCDC155) MUC16 

rs199870856 (PRPF31) PCLO 
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3.2 Results of ML analysis of WES data to contrast the genomics of SCZ, BD and controls 

3.2.1 Results of supervised classification approach for SCZ vs. BD vs. CTL 

 
As shown in the confusion matrix in Figure 3, analyzing the raw genotype data in a 

supervised classification of SCZ vs. BD vs. CTL, using XGBoost, the overall accuracy was only 

58%. However, very good classification results were noted for the BD samples (precision: 89%, 

recall: 87%), in the presence of SCZ and CTL samples. Table 3 shows that the performance of 

LASSO (overall accuracy: 56%), was not as good as that of XGBoost, but again the results were 

better when classifying BD samples than other classes (precision: 70% precision, recall: 89%). 

 
 
Figure 3: Confusion matrix of supervised analysis of controls vs. SCZ vs. BD 

 

Figure 3.   Confusion matrix of the best performing model (XGB) on variant-level genotype data 

which obtains 58% accuracy with high precision (89%) and recall (87%) for BD class. Classes are 

denoted as Control: 0, SCZ: 1, BD: 2. We can see that the BD samples are highly accurately 

classified. Out of the 301 samples in the test set, the algorithm classified 261 of them as BD, 

while 32 as control and 8 as SCZ. 
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We then took a look into the top features of the XGBoost model to see which features 

drive the classification results the most. The result for top 20 features is plotted in Figure 4 

where we see a few deletions to be quite informative within XGBoost. However, this only 

quantifies the significance of the top variants within the overall model (by gain). To understand 

the relationship of each of the top features with the three classes (i.e. CTL, SCZ, and BD), we 

drew the hierarchical cluster heatmap of these top features against each phenotype (i.e. DSM 

based diagnosis). Figure 5 shows that the deletions in the top features of the algorithm are 

enriched mainly in BD samples. 

 

Table 3: Classification results using genotypes and topics approach on SCZ, BD, CTL WES Data 
 
 

Classifier Input Data Accuracy 
Precision Recall 

CTL SCZ BD CTL SCZ BD 

XGB Variant genotypes 58% 57% 50% 89% 73% 34% 87% 

LASSO Variant genotypes 56% 58% 49% 70% 58% 47% 89% 

XGB Gene topics 52.4% 55% 48% 0% 73% 37% 0% 

XGB Variant topics 50.5% 51% 38% 0% 94% 6% 0% 

 

Table 3: A summary of model performance on the test set for SCZ vs. BD vs. CTL using different 

approaches. XGB denotes gradient boosting model (XGBoost implementation). The variant 

level XGB classifier generally outperformed models trained on topics of variant and gene level 

data.  It outperformed LASSO linear model as well on variant level data. Both LASSO and XGB 

performed well in classifying BD samples using variant level genotypes for classification, with 

89% precision and 87% recall for XGB, and 70% precision and 89% recall for LASSO. 
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Figure 4: Relative importance of variants in the SCZ vs. BD vs. CTL classification algorithm 
 

 

 

 

 

 

 

 

 

 

 

Figure 4: XGBoost model was trained and optimized to predict SCZ vs. BD vs. CTL classes based on all 

quality variants in the WES data. The model was able to identify BD samples with high accuracy on 

the test set and here we show the top 20 features of this model based on their relative 

importance (by gain). The three deletions and 17 single nucleotide variants shown in the figure 

are quite important in accurate prediction of classes within the model. 
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Figure 5: Heatmap of the top 20 features of SCZ vs. BD vs. CTL XGBoost model against samples 
 
 

 

Figure 5: Top 20 features of the XGBoost model of SCZ vs. BD v. CTL are plotted with 

hierarchical cluster heatmap against all samples in the data to understand where 

these variants are enriched. As seen in the figure, the three deletions are mainly 

occurring in the BD samples (blue coloured samples) as indicated by non-zero and 

normalized genotype values mostly in BD samples. 
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3.2.2 Results of topic modelling approach 

 
Using the learned topics from the variant-level ETM approach for clustering did not 

produce any interesting results, despite experimenting with different model architectures and 

hyperparameters. As shown in Figure 6(a), the training for topics quickly plateaued and did not 

decrease the loss function after 200 epochs. We used the resulting 100 topics from this model 

in t-SNE and visualized the labeled samples, as shown in Figure 6(b). There were no obvious 

clusters or subclusters of any specific phenotype.  

However, for the gene-based ETM approach, three distinct small subclusters, forming 

mainly of SCZ samples, were noted after the resulting 20 topics from our best model were 

projected using t-SNE (Figure 7(b)). The remaining subclusters were quite mixed and did not 

isolate particularly well with regards to a specific clinical phenotype.  

In order to understand what drives the clustering of the three SCZ subclusters identified, 

we delved deeper into uncovering which of the 20 topics show correlation with the clusters 

identified which consisted almost exclusively of SCZ patients (possibly representing SCZ 

subtypes). The result is shown in Figure 8, in the hierarchically clustered heatmap for samples 

and topics. Topic 4 is correlated with the three SCZ subclusters, as shown in the t-SNE in figure 

7. To understand which genes have the highest probability under topic 4, we plot the top 5 

genes under each of the 20 topics (Figure 9). Looking under topic 4, the most important genes 

are MUC16, TTN and WASL in order of highest probability.  

After fixing the gene embedding with the molecular signature of the genes, the ETM did 

not yield as well-separated and homogenous subclusters of SCZ as the earlier gene-level topic 
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approach. However, it still showed formations of more homogenous SCZ clusters than the 

variant-level topic approach (Figure 10(b)). 

Figure 6: Variant-level topic modelling and clustering of individuals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Variant level ETM model training loss (NELBO) as a function of epochs (top), and 

the t-SNE plot of the learned topics on samples from the final model (bottom). No clear 

clustering pattern is forming when the resulting topics is used to look for clusters. 
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Figure 7: Training and clustering result of gene-level topic modelling (with no fixed gene 
embedding) 
 

 
 

 

Figure 7:  Gene level ETM model training loss (NELBO) as a function of epochs (top), and the 

t-SNE plot of the learned topics from the final model (bottom) with the dots denoting 

individuals coloured based on their phenotype. The three homogenous SCZ subclusters 

identified through clustering gene-level topics can be observed in the bottom figure.  
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Figure 8: Hierarchically clustered heatmap of topics (gene-level approach) and samples 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: This figure shows the hierarchically clustered heatmap of subjects by topics. As each 

individual gets defined by a mixture of the 20 inferred topics summing to 1, we are seeing that 

a large subcluster of SCZ is almost exclusively defined by one topic (topic 4). Individuals in this 

subcluster are the same as in Figure 7 where they formed three smaller subclusters.  
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Figure 9: Top 5 genes per each topic under the ETM model for gene-level topic modelling 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: This figure shows only the top 5 genes for each of the 20 topics inferred with the gene 

level topic modelling. For example, looking for the top genes of topic 4, we see MUC16, TTN, 

WASL and PKHD1 genes to be in its top 5 most important genes. The values of the heatmap are 

the probability of each gene under the topic. Each topic gets defined by a probability over a 

number of genes. 
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Figure 10: Gene-level topic modelling (with fixed gene embedding) and clustering of 
individuals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10:  Gene level (with fixed gene embedding) ETM model training loss (NELBO) as a 

function of epochs (top), and the t-SNE plot of the learned topics from the final model 

(bottom).  SCZ clusters (green dots) appearing to form a homogenous cluster at the top. 
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Lastly, the performance of using the learned topics of variant-level and gene-level 

(without fixed gene embedding matrix) as input features in a classifier are shown on the test set 

in Table 3. The overall accuracy of the supervised models on both gene-level and variant level 

topics is poor. Using the gene-level topics in XGBoost had better predictive power with overall 

accuracy of 52.4% with the majority class being ~50% of the test data. It’s not predicting any of 

the BD samples correctly. It has better precision (55%) and recall (73%) for the control (majority 

class) compared to SCZ (48% precision and 37% recall) and BD (0% precision and 0% recall), 

even though the model was trained to weigh the classes based on their inverse frequency in the 

training set. The performance of variant-level topics in XGBoost was as good as random with 

50.5% overall accuracy, basically defaulting to predicting the majority class in almost all cases. 

3.3 Results of ML analysis of WES to predict ASD status in affected and unaffected siblings 

3.3.1 Results of ASD Sib-pair Approach 

 
In the ASD sib-pair approach using XGBoost on cartesian data representation, the 

performance of the model was not significant, as the balanced accuracy was 52.87%, only 

slightly better than random prediction (50%) (Table 4). 

3.3.2 Results of Network Approach 

 
For node classification of disease status within the large network, our relational graph 

convolutional neural network (R-GCN) model using all variants and families within the network 

did not outperform random classifier (average accuracy: 50%). Repeating the analysis using only 

pathogenic and likely pathogenic variants in quad families had similarly low accuracy (52%) 

equivalent to random guessing, as summarized in Table 4. The original network consisted of 
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1800 quads. Only 567 families had pathogenic or likely pathogenic variants, for a total of 1100 

such variants in the new network. 

   

Table 4: Predicting ASD status in affected and unaffected siblings 

 

Table 4.  A summary of the performance of different approaches to ASD sib-pair problem is 

shown here. In the ASD sib-pair problem, we trained an algorithm to differentiate between 

affected vs. unaffected siblings using XGBoost on genotypes of raw variants, and network 

approach of node classification where enriched the network with further family and variant 

features. The latter was performed in two ways, one where all rare variants were used, and 

another where only pathogenic and likely-pathogenic variants were kept in the network. All 

three approaches as shown had very low performance on the test set close to ~50% accuracy. 

Model for ASD Sibpair analysis Accuracy Sensitivity Specificity Precision Recall 

XGBoost 53% 70% 51% 10% 70% 

Graph App. All variants 50% 50% 0 100% 50% 

Graph App. Path./L.Path. variants 52% 92% 11% 51% 92% 
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Chapter 4: Discussion 

4.1 ASD vs. SCZ ML analysis 

In the ASD vs. SCZ supervised ML approach, we were able to train an algorithm using 

WES data to successfully differentiate the two classes. Even though this is not clinically useful, 

since ASD and SCZ are clinically very easy to separate based on differential symptoms, it helped 

us contrast the genomic architecture of these two genetically overlapping diseases. The 

performance was similar before and after adjustment for population structure, as expected 

given this analysis focused on rare variants which are not affected as much by population 

structure as the more common variants. 

We focused on the top 10 genes from each approach (16 unique genes) and performed 

literature review which showed evidence of these genes being previously linked to one or both 

of ASD and SCZ, as described in detail in our published manuscript72. For example, KIF13A, a 

member of the kinesin superfamily proteins which are important for cellular transport and 

signal transduction has evidence in the literature for a link to SCZ73–76. Similarly, Fanconi-

associated nuclease 1 (FAN1), a DNA repair enzyme, is located in the chromosome 15q13.3 

locus, and is associated with increased risk of both ASD and SCZ77,78. 

 

4.2 ML analysis of WES data to contrast the genomics of SCZ, BD & CTL 

 
We used a similar supervised ML approach as SCZ vs. ASD, and developed a predictive 

model for SCZ and BD, two closely related complex disorders, in the presence of control 

samples (multiclass classification). In the supervised variant-level approach, our best performing 

model had an overall accuracy of 58% on the test set. The boost in performance mainly came 
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from the model accurately classifying the BD samples, which were identified with 89% precision 

and 87% recall. Looking under the hood of our classifier model, we extracted the top 20 most 

predictive features (by gain) and analyzed their correlation with the three clinical 

phenotypes/DSM-based diagnoses. Among the top 20 variants, there were 17 point-mutations 

and 3 deletions. The deletions were mainly enriched in BD samples. The most important 

deletion chr3:19918216del is located in chromosome 3, and particularly within the EFHB gene. 

This deletion has not been previously reported to play a role in BD.  However, EFHB is involved in 

calcium ion transportation, the role of which has been well established in psychiatric disorders. 

The second most important feature was Chr17:76733507del which has also not been previously 

reported to play a role in BD but it’s located within METTL23 gene, the product of which acts as 

a regulator in the transcriptional pathway for cognition79. Mutations in this gene have also been 

reported for association in intellectual disability80.  

We then applied a novel topic modelling method (ETM) to shed further light into the 

complex genetic architectures of SCZ and BD. More specifically, our goal was to infer a number of 

latent variables (called topics), which could model the underlying semantic structure of the 

exomes, and to use these interpretable topics to cluster and explain phenotypic variation in the 

subjects.  We hypothesized that each patient's clinical status can be modelled by a latent 

distribution of underlying ’topics’ (which can be thought of as endophenotypes) caused by 

complex genetics. And that a mixture of these ’topics’ may explain the variance in the observed 

clinical phenotypes and aid in the identification of genetically homogeneous clusters for 

precision medicine.  
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We trained and optimized two different ETM models, one at the gene level using 20 

topics, and another at the variant level using 100 topics. We used a higher number of topics in 

the variant level, due to the significantly larger size of the dataset. However, we still kept the 

number of topics small (<= 100) to improve interpretability and identify highly important topics 

in the model. The variant level topics were not very informative in either clustering or 

supervised classification model. However, the gene level ETM identified three small subclusters 

consisting predominantly of SCZ samples (Figure 7), which are not driven by population 

structure (supplementary Figure 2). These patients may constitute a genetically homogeneous 

subtype of SCZ. After looking at the correlation of each topic with the samples of each 

phenotypic class, we identified one particular topic to have high association with these 

subclusters, topic 4. The top 3 genes with highest probability under the topic were MUC16, TTN 

and WASL.  The role of these genes in neuropsychiatric disorders has not been well established. 

However, MUC16 was reported to be differentially expressed in the brains of BPD patients vs. 

controls, albeit not in SCZ vs. controls81. WASL has been reported to be part of a gene-gene 

interaction network that is overrepresented in SCZ cases82, while rare de novo mutations have 

been reported in TTN in patients with autism83.  

Next, using the learned topics above, we performed supervised classification for each 

variant level and gene level ETM model outputs. Our classifier trained on the gene level topics 

(accuracy 52.4%) performed only slightly better than using variant level topics (50.5%). 

Although neither classifier performed well and the performance difference noticed is small 

(Table 3), if combined with fact that clustering of SCZ samples was better at the gene level 

approach discussed above (Figure 7) may suggest that dividing up the exome at the gene level 
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has a more informative semantic power than using the more granular variants level genotypes 

in the topic approach.    

Lastly, in order to guide our ETM model to learn biologically meaningful topics, we 

modified the algorithm by fixing the gene embedding to the pathway x gene matrix in the gene-

level topic modelling approach.  This essentially guides the algorithm not to learn gene 

embedding based on the underlying co-variation of the genes but rather from the biologically 

defined gene molecular signature. However, the topics learned from this approach were not as 

informative for downstream clustering (Figure 10 vs. Figure 7), suggesting that gene similarity 

defined by co-involvement in similar pathways does not have more semantic power in a topic 

model than using co-occurrence of mutations in the genes. 

 

4.3 ML analysis of WES to predict ASD status in affected and unaffected siblings 

 
The last part of this project focused on predicting ASD status among affected and 

unaffected siblings using WES rare variants. Our previous approach, shown to be useful in 

separating BD cases against controls and ASD vs. SCZ, was not useful using the family dataset 

for ASD. This is likely due to the embedded assumption in most supervised ML algorithms, that 

each sample is independent of all others (i.i.d. assumption). It is clearly not the case in our ASD 

dataset, as we are dealing with siblings, not unrelated cases and controls. Each sibling pair is 

independent, but not each individual. Another factor to keep in mind when interpreting the 

above results is that, as per current knowledge, for an individual to be affected, a number of 

hits (in different susceptibility genes) need to accumulate beyond a certain threshold. Overall, 

there is a very large number of susceptibility genes so the combination of affected genes will 
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not be the same in different families. We expect that siblings share most of the disease-causing 

variants with each other but have small differences in their network account for the discordant 

disease status.  Obviously, the genetic background and differences of the different sibpairs vary 

a lot across different families.   

To address the limitations of supervised learning on cartesian representation of sibling 

data, we created a network/graph representation of the data. As a result, interconnectedness 

of individuals (family relationships) and variant features were taken into account in the new 

data structure. More specifically, we placed each sibling pair within the context of their source 

of genetics (i.e. parents) and each family within the broader context of all other families in a 

large heterogenous network. As a result, when training a graph neural network for disease-

status classification in children, not only will the feature information from the local 

neighborhood nodes propagate to the children, but also the topological structures that these 

neighborhood nodes form with the children and their surrounding nodes.  

We modified the R-GCN algorithm such that when information from each node gets 

propagated to its local neighbourhood, a relation-type specific multi-layered neural network 

learns the best way to transform the incoming data for aggregation at the source node for 

disease status classification. When limiting the approach to pathogenic and likely pathogenic 

variants, the approach performed slightly better than when all of the rare variants were 

included in the network. However, the overall performance was still poor, barely outperforming 

chance and underperforming XGBoost on Cartesian data format where siblings were considered 

independent and parent genomics were not taken into account (Table 4). The lack of success 

could, at least partially, be attributed to the large number of parameters in the model and high 
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sparsity in the network. It is also possible that our graph neural network architecture could 

benefit from transformation and aggregation functions which are inspired by genetics rather 

than using complex neural networks.  

 

4.4 Machine learning in neuropsychiatry 

 
Machine learning algorithms have been used for a wide variety of tasks in 

neuropsychiatry, with a main focus on disease status prediction and drug treatment response84. 

Most studies have based their models on neuroimaging data84. Using neuroimaging data for 

early diagnosis of neuropsychiatric disorders has grown exponentially since the early 2000’s, 

with applications in Alzheimer’s, ASD, SCZ, mood disorders and others, using methods ranging 

from early support vector machine (SVM) to more recent deep learning methods85. For 

example, recent deep learning models have achieved a balanced accuracy of up to 90%  for 

identifying Alzheimer’s and ADHD from MRI and fMRI neuroimaging data84,86.  

However, the use of machine learning methods on genomic data for risk prediction is 

more nascent, and mostly limited to using GWAS SNPs as indicated in the recent meta-analysis 

of research papers on the topic. Bracher-Smith et al87 showed that ML on genetic data were 

mainly used in Schizophrenia (7 studies), bipolar disorder (5 studies) and ASD (3 studies), with 

GWAS SNPs data as the main input in almost all studies, and only two using WES data. For 

example, Krapohl et al.88  combined summary statistics from 81 GWASs to train an elastic net 

model to predict genetic risk for educational attainment, general cognitive ability, and BMI 

outperforming traditional PRS methods. Another study by Cao et al.89 combined SNPs and 

neuroimaging data (fMRI voxels) for biomarker discovery in SCZ samples using a generalized 
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sparse model, and evaluated the effectiveness of their method by training for accuracy on ~200 

SCZ case control sample data. 

Machine learning methods have also been used to analyze SNP data in precision 

psychiatry, a field of study concerned with personalized treatment of patients based on their 

genetic profile and environmental factors90. A recent study used a feed-forward fully-connected 

neural network architecture to predict antidepressant treatment response and remission in 

MDD patients using genetic (SNPs) and clinical biomarkers as input variables91. More 

specifically, Fernandes et al. used clinical biomarkers and ten SNPs, that had shown significant 

association with treatment response, as input features to train a neural network to predict 

treatment response. Their model showed a performance of 0.82 AUC on the test set. Similarly, 

they trained another neural network to predict remission, which showed a performance of 0.80 

AUC. Other studies, such as the one by Chang et al.92, have used multi-omic data (genetic 

variant + DNA methylation), along with neuroimaging data, to predict treatment response in 

MDD patients.  

In contrast to the previous studies, our work focused on WES data, different ML 

approaches and contrasting patients with different genetically overlapping DSM diagnoses and 

controls. Our datasets were larger; focused on both rare and common variants; tried to 

integrate knowledge about genes expressed in the brain and gene-pathway information; and 

tried to tackle family-based data. We developed new approaches and methodologies that can 

be useful in advancing the field of complex (neuropsychiatric) genetics. 
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Chapter 5: Conclusion and Future Directions 

 
When designing ML algorithm for WES data, an important problem affecting model 

performance and the ability to uncover meaningful relationships or insights is how the input 

data is represented. It is a part of the ML design process where domain expertise can add 

significant value. For example, addressing questions such as whether one should use the raw 

sequence of the exome/genome, or focus on individual variants versus on the aggregation of 

variants at the gene level, can greatly impact model performance. This thesis has offered some 

insights and novel ways of thinking about analyzing genomic data through ML and contributed 

towards this interdisciplinary direction of research. 

We showed different machine learning approaches to the analysis of the whole exome 

sequencing data of neuropsychiatric disorders and controls that may help pave the way for 

methodology development that can enable better objective clinical risk prediction, subtyping, 

and classification of patients. A good predictive model could help medical geneticists diagnose 

patients at very high risk in pre-symptomatic stage and potentially allow for preventative 

measures or early treatment initiation. An example of how genetic factors can be used to this 

end may be our supervised model that successfully identified BD samples among SCZ and 

control individuals. In addition, the identification of genetically homogeneous clusters, such as 

the ones shown for SCZ samples using unsupervised interpretable ML methods, may enable 

targeted drug development as well as inform clinical trials for precision medicine in 

neuropsychiatric disorders.  Overall, our methods were intentionally designed to focus on more 

interpretable ML models to help identify important genes and variants in order to enable better 

characterization and interpretation of the results. As a result, in addition to model 
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performance, we were able to report and interpret our findings from each approach, shedding 

further light on the biological characterization of the disorders under study. 

It is worth noting that using whole exome sequencing data has its limitation as it is only 

focused on variants located inside protein-coding genes. Given the already established role of 

copy number variants (CNVs) and non-coding variants in neuropsychiatric disorders which are 

not captured through WES, the work summarized in this thesis is missing some important 

informative variables. Future studies can focus on whole genome sequencing to allow for 

training of more comprehensive ML models, which can combine different input datasets and be 

used for precision medicine.  

In order to fully characterize the underlying molecular mechanism of neuropsychiatric 

diseases, we need to integrate several levels of biological information, using up to date 

technologies (e.g. genome sequencing rather than SNP arrays), and take into account the 

relationships among dependent biological entities (e.g. multi-omics data). However, integrating 

different data types brings its own set of challenges as each omic data type has different data 

modality. Interdependence among different entities such as variant, gene, protein etc. will need 

to be modeled as well, and methods such as the graph neural networks proposed in the ASD 

family-approach section may be useful to this end. 
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Supplementary Figures 

Supplementary Figure 1: Distribution of classes in each training, validation and testing sets 

 

 

Supplementary Figure 1. Class distribution in training, validation and testing sets for controls 

(CTL), schizophrenia (SCZ) and bipolar disorder (BD). The bipolar class is an extreme minority 

within the data. The same distribution of classes as in original population is kept in each of 

the three sets. During supervised learning analyses, the minority classes are weighted 

according to their inverse frequency in the population. 
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Supplementary Figure 2: PCA analysis of Swedish WES 

 
 

 
 
 
 

 
  

 

 

 

 

 

Supplementary Figure 2. Result of population stratification using PCA on raw genotype data 

of the Swedish WES data shown here. Class 0 is control, class 1 SCZ and class 2 BD. We see 

overlapped samples from each control, SCZ and BD samples denoting no population 

stratification as expected given all samples come from a homogenous Swedish population. 

During plotting, control samples were drawn first, then SCZ and lastly BD resulting in covering 

each other samples in one large cluster. The small cluster (< 1% of total samples) shown on 

the right consist of both SCZ and controls. 
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