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Web Appendix A Technical Details

No Unmeasured Confounders Assumption: Consider the unobserved history up to time

k, Fk = {(y, zt, xt, ut), t = 1, ..., k}, where ut are unobserved covariates. Furthermore, consider

observed history up to time k is given by Hk = {(y, zt, xt), t = 1, ..., k}. Then, the sequence of

treatments {zt} is unconfounded relative to latent variables {ut} if for each k, zk and {ut, t =

1, .., k} are conditionally independent given (Hk−1, xk). Mathematically, this may be written as

pO(zk|Fk−1, uk, xk) = pO(zk|Hk−1, xk), k = 1, ...,K.
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De Finetti Representation: Below we consider a more general form of the De Finetti repre-

sentation presented in the main paper. We do this by considering the vector (yi, x̄i, z̄i, ui), where

ui are determinants of the outcome and intermediate variables. We assume that these vectors are

infinitely exchangeable in order to deduce the de Finetti representation in the observational world:

pO(b1, ..., bn) =

∫
φ,γ,τ

n∏
i=1

[∫
u
pO(yi|x̄i, z̄i, ui, τ)

K∏
j=1

pO(xij |z̄i(j−1), x̄i(j−1), ui, φ1j)pO(ui|φ2)dui

K∏
j=1

pO(zij |z̄i(j−1)x̄ij , γj)

 p(φ, γ)dτdφdγ.

The absence of ui in the treatment assignment probability is due to the no unmeasured confounders

assumption. We can also look at the representation in the experimental measure by considering:

vi = (bi, gi) ≡ (yi, x̄i, z̄i, gi), and assuming infinite exchangeability in order to obtain

pE(v1, ..., vn) =

∫ n∏
i=1

[∫
u
pE(yi|x̄i, z̄i, gi, uiτ)

K∏
j=1

pE(xij |zi(j−1), xi(j−1), ui, gi, φ1j)pE(ui|φ2)dui

K∏
j=1

pE(zij |zi(j−1), xi(j−1), gi, αj)p(gi)

 p(φ, α)dτdφdα.

Change of Measure Details Corresponding to Equation (2.3):

Let us first see how to fully develop the importance sampling argument, and then how to obtain the
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form of the weights. We connect the experimental world with the observational world as follows:

EE [U(b∗, g, β)|b̄] =EGE

[
Eb∗E |g[U(b∗, g, β)|g, b̄]

∣∣∣b̄]
=EGE

[∫
b∗
U(b∗, g, β)pE(b

∗|g, b̄)pO(b∗|b̄)
pO(b∗|b̄)

∣∣∣∣b̄]
=EGE

[
EO

[
U(b∗, g, β)

1g(x̄∗)(z̄
∗)∏K

k=1 pO(z∗k|z̄∗k−1, x̄
∗, b̄)

∣∣∣∣∣b̄
]∣∣∣∣∣b̄
]

=EO

[
1
CG

∑
{r∈I} U(b∗, gr, β)1gr(x̄∗)(z̄

∗)∏K
k=1 pO(z∗k|z̄∗k−1, x̄

∗, b̄)

∣∣∣∣∣b̄
]
.

=EO

 1

CG

∑
{r∈I}

w∗rU(b̄∗, gr, β)

∣∣∣∣∣∣b̄
 .

Now let us examine how we may obtain the weights w∗ for DTR-MSMs. Note that we need only

consider the single-stage problem, as the multi-stage case follows directly.

pE(Y = y, Z = z,X = x|G = g)

=
pE(Y = y, Z = z,X = x|G = g)

pO(Y = y, Z = z,X = x)
pO(Y = y, Z = z,X = x)

=
pg(Y = y, Z = z,X = x)

pO(Y = y, Z = z,X = x)
pO(Y = y, Z = z,X = x)

=
pg(Y = y, g(X) = z,X = x)

pO(Y = y|Z = z,X = x)pO(Z = z|X = x)pO(X = x)
pO(Y = y, Z = z,X = x)

=
pg(Y = y|g(X) = z,X = x)pg(g(X) = z|X = x)pg(X = x)

pO(Y = y|Z = z,X = x)pO(Z = z|X = x)pO(X = x)
pO(Y = y, Z = z,X = x)

Note that in the above argument, when we condition on g(X) = z,X = x, we may run into

issues if g(x) does not equal z. However, in practice this is not a concern as the joint probability

pE(Y = y, g(X) = z,X = x) would take the value zero in such a situation, and so this term would

not contribute to the calculation. Continuing, we find:

pE(Y = y, Z = z,X = x|G = g)

=
pg(Y = y|g(X) = z,X = x)pg(g(X) = z|X = x)

pO(Y = y|Z = z,X = x)pO(Z = z|X = x)
pO(Y = y, Z = z,X = x)

=
pg(Y = y|g(X) = z,X = x)1g(x)(z)

pO(Y = y|Z = z,X = x)pO(Z = z|X = x)
pO(Y = y, Z = z,X = x).
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Now, we are looking for cancellation between the outcome probabilities. We have already es-

tablished that when g(x) 6= z, the numerator is equal to zero. When g(x) = z, we have that

pg(Y = y|g(X) = z,X = x) = pO(Y = y|Z = z,X = x). Thus we may finish by writing:

pE(Y = y, Z = z,X = x|G = g)

=
1g(x)(z)

pO(Z = z|X = x)
pO(Y = y, Z = z,X = x),

yielding the weights that we were seeking.

Web Appendix B Discussion on Non-Regularity in DTRs

We note that the arguments presented in this paper are Bayesian. Thus, conditional on the posited

model, the resulting inference is valid for any sample size. We emphasize that the premise of

the Bayesian bootstrap is not related to attaining asymptotic consistency, but simply it is about

proposing a specific model for the data, and carrying out inference conditional on this model. That

being said, we may still ask how well we would expect these methods to perform as more data

are observed. As noted in the main paper, the parameters of dynamic MSMs can be shown to

be consistent (Orellana and others, 2010a; van der Laan and Petersen, 2007). We mainly make

use of the estimator for the value of a specific DTR, and this is also asymptotically normal and

regular as laid out by Murphy and others (2001). In what follows, we emphasize that estimation

of dynamic MSMs do not suffer from non-regularity as is the case with other methods, like Q-

Learning, G-estimation of structural nested mean models, and dynamic weighted ordinary least

squares (dWOLS) (Wallace and Moodie, 2015).

We proceed by discussing the relevant literature on non-regularity in order to understand why

it does not play a role in the estimation of parameters in dynamic MSMs. Additionally, we present

a simulation that illustrates our point. Our simulation is similar in spirit to that of Chakraborty

and others (2010), where we draw 1000 bootstrapped samples and evaluate whether the obtained

coverage differs significantly from the nominal 95%. As we expect, the parameters in the MSM do

not exhibit issues with non-regularity.

It was Robins (2004) who first raised the issue of non-regularity in methods aimed at estimating
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parameters relevant to identifying optimal DTRs. The key issue is illustrated in the context of

estimating the absolute value of a population mean, |µ|, from n i.i.d observations. A maximum

likelihood approach may first estimate the mean µ̂, and then this may be plugged into | · | to

obtain an estimator for |µ|. What Robins (2004) emphasizes is that |µ̂| has different asymptotic

distributions depending on the value of µ (when µ = 0 vs. µ 6= 0). This is what yields a non-regular

estimator, and the crux of this issue is in the fact that the absolute value function is discontinuous

at zero. Consequently, Wald-type confidence intervals do not perform well. Chakraborty and others

(2010) examine whether bootstrap confidence intervals yield appropriate inference in non-regular

settings, but they point out that the success of the bootstrap relies on the smoothness of the

estimator. Accordingly, one should not expect the bootstrap to provide adequate inference at or

near the point of non-regularity.

For Q-learning, it is clear where non-regularity arises. Consider a two-stage setting where the

stage II model is yi = γ20 +γ21z1 +γ22x1z1 +γ23z2 +γ24x2z2. The stage I pseudo-outcome becomes

ỹi = γ20 + γ21z1 + γ22x1z1 + 1(γ23z2 + γ24x2z2 > 0). This pseudo-outcome is discontinuous at

γ23z2 + γ24x2z2 = 0. Therefore, we should expect that plugging-in γ̂20, γ̂21, γ̂22, γ̂22, γ̂22 to compute

ˆ̃yi will cause issues with the estimation of stage I parameters, as these will depend on a discontinuous

function of other parameters. Non-regularity is not only an issue at γ23z2 + γ24x2z2 = 0 but also

near it; Chakraborty and others (2010) explored this via simulation and found non-regularity to

impact inference. Earlier works also noted non-regularity to arise in G-estimation (Moodie and

Richardson, 2010).

The parameters in dynamic MSMs do not suffer from the above-mentioned issues. Unlike G-

estimation, DWOLS, and Q-learning, dynamic MSMs do not require recursively solving estimating

equations, where the stage I equation has plug-in estimators obtained by solving a stage II esti-

mating equation. Therefore, for dynamic MSMs, the estimators are not functions of discontinuous

functions of other estimators. Ultimately, this means that the parameters in dynamic MSMs do

not suffer from the same types of difficulties with non-regularity. Let us now examine an example

in which non-regularity impacts inference in Q-learning but plays no role in the inference of pa-

rameters in dynamic MSMs. We consider a family of regimes that says treat if xk > θk for k = 1, 2.

The proposed data-generating mechanism is one that allows for straightforward marginalization so
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that we can pose a correct model for E[Y θ1θ2 ]. The outcome is given by:

Y = γ0 + γ1z1 + γ2x1z1 + γ3z2 + γ4x2z2 + ε (1)

Variables are distributed as: x1 ∼ N(0, 9), x2 ∼ N(0, 4)z1, z2 ∼ bern(0.5). Then,

E[Y θ1θ2 ] = γ0 + γ1C11(θ1) + γ2C12(θ1) + γ3C21(θ2) + γ4C22(θ2) (2)

where,

C21(θ2) = E[1(x2 > θ2)|x1, z1] = p(x2 > θ2),

C22(θ2) = E[x21(x2 > θ2)|x1, z1] =
4√
2π
exp(−θ2

2/(2 · 42)).

C11, C12 have an analogous form. Then, we have an analytic form for the marginal model. We

assume further that γ3, γ4 > 0 and consider the following scenarios:

� Scenario I: γ0 = 1, γ1 = 1, γ2 = 1, γ3 = 0, γ4 = 0.

� Scenario II: γ0 = 1, γ1 = 1, γ2 = 1, γ3 = 0.001, γ4 = 0.001.

� Scenario III: γ0 = 1, γ1 = 1, γ2 = 1, γ3 = 1, γ4 = 1.

Scenario I explores inference in a non-regular setting; scenario II explores a near non-regular setting,

and scenario III explores a regular setting. We make use of B = 1000 bootstrap samples, a sample

size of n = 1000, and R = 500 replications. We first examine these scenarios in the context of

Q-learning. The correctly specified models that we fit are as follows:

Stage I : γ10 + γ11z1 + γ12x1z1

Stage II : γ20 + γ21z1 + γ22x1z1 + γ23z2 + γ24x2z2

The pseudo-outcome in stage I is: γ20 + γ21z1 + γ22x1z1 + (γ23 + γ24x2)1(γ23 + γ24x2 > 0). Note

that because of the specific data-generating mechanism, these models are correctly specified.

Web Table 1 shows that, as expected, the parameters for the stage II model present no evidence

of non-regularity as measured by coverage or bias. We note that apart from the point estimates,

6



stage II inference is the same for all scenarios, hence the shorter table. From Web Table 2, we

see where the non-regularity becomes present. The stage I intercept exhibits coverage that is

significantly different from nominal in the non-regular case. This persists even in the close-to-non-

regular setting. Furthermore, as is shown in supplementary Web Table 5, evidence of non-regularity

disappears in a gradient, as the data-generating mechanism gets further from the completely non-

regular setting.

Web Table 1: Scenario I Coverage of 95% CI for Q-learning stage II parameters.
B = 1000;n = 1000;R = 500.

Parameter Coverage Mean Bias SD

γ20 0.946 0.9997 -0.0003 0.0112
γ21 0.958 1.0004 0.0004 0.0124
γ22 0.952 1.0001 0.0001 0.0029
γ23 0.940 0.0000 0.0000 0.0131
γ24 0.938 0.0000 0.0000 0.0045

*indicates significant difference from 0.95

Web Table 2: Coverage of 95% CI for Q-learning stage I parameters γ10, γ11, γ12.
B = 1000;n = 1000;R = 500.

Parameter γ3 = γ4 Coverage Estimate Bias SD

γ10 0 0.884* 1.0059 0.0059 0.0098
γ11 0.958 1.0004 0.0004 0.0124
γ12 0.952 1.0001 0.0001 0.0030

γ10 0.001 0.898* 1.0065 0.0051 0.0098
γ11 0.958 1.0004 0.0004 0.0124
γ12 0.952 1.0001 0.0001 0.0030

γ10 1 0.944 2.3997 0.0041 0.0653
γ11 0.954 0.9948 -0.0052 0.0927
γ12 0.954 0.9998 -0.0002 0.0213

*indicates significant difference from 0.95

The Q-learning results are only presented for the frequentist bootstrap, as the use of the

Bayesian bootstrap has not been studied in this literature. In the following, we look at the resulting

inference for the Frequentist and Bayesian dynamic MSMs. The θ used to create the augmented

data required for these methods are {−4,−2.5,−1, 0.5, 2, 3.5}. As expected, there are no issues

with any coverage probabilities; this can be seen in Web Tables 3 and 4.

7



Web Table 3: Results frequentist dynamic MSM; B = 1000;n = 1000;R = 500.

Parameter γ3 = γ4 Coverage Estimate Bias SD

γ0 0 0.954 1.0038 0.0038 0.4194
γ1 0.952 0.9597 -0.0403 1.5826
γ2 0.948 0.9913 -0.0087 0.7859
γ3 0.958 0.0439 0.0439 1.2823
γ4 0.944 -0.0046 -0.0046 0.8172

γ0 0.001 0.954 1.0037 0.0037 0.4194
γ1 0.952 0.9597 -0.0403 1.5826
γ2 0.948 0.9913 -0.0087 0.7859
γ3 0.958 0.0448 0.0438 1.2823
γ4 0.944 -0.0036 -0.0046 0.8172

γ0 1 0.956 0.9921 -0.0079 0.5344
γ1 0.946 0.9944 -0.0056 2.0336
γ2 0.958 1.0081 0.0081 0.9960
γ3 0.946 1.0114 0.0114 1.6185
γ4 0.956 0.9900 -0.0100 1.0225

*indicates significant difference from 0.95

Web Table 4: Results Bayesian dynamic MSM. B = 1000;n = 1000;R = 500

Parameter γ3 = γ4 Coverage Estimate Bias SD

γ0 0.000 0.950 0.9922 -0.0078 0.4183
γ1 0.934 1.0303 0.0303 1.6094
γ2 0.952 1.0099 0.0099 0.7619
γ3 0.938 -0.0270 -0.0270 1.2993
γ4 0.952 -0.0092 -0.0092 0.7893

γ0 0.001 0.950 0.9922 -0.0078 0.4182
γ1 0.934 1.0302 0.0302 1.6095
γ2 0.952 1.0099 0.0099 0.7618
γ3 0.938 -0.0260 -0.0270 1.2994
γ4 0.952 -0.0082 -0.0092 0.7892

γ0 1.000 0.966 1.0130 0.0130 0.5264
γ1 0.956 0.9613 -0.0387 2.0571
γ2 0.956 0.9826 -0.0174 0.9608
γ3 0.958 1.0305 0.0305 1.6333
γ4 0.952 1.0102 0.0102 0.9893

*indicates significant difference from 0.95

In what follows, we examine how inference is impacted as γ3 = γ4 get further away from the

non-regular case. For Web Table 5, we see that as we get further from non-regularity, the closer to

nominal coverage becomes in Q-learning. Note that only results for the γ10 parameter are shown

as this is the parameter that most clearly exhibits issues with non-regularity in Q-learning. From
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Web Tables 6 and 7, we see that the frequentist and Bayesian bootstrap yield adequate inference

with the dynamic MSM, regardless of proximity to the non-regular case.

Web Table 5: Results of Q-Learning for different levels of non-regularity; B = 500, n = 1000, R =
500.

Parameter γ23 = γ24 p-value Coverage Mean Estimate Bias SD

γ10 0 < 0.001 0.854 1.0064 0.0064 0.0099
γ10 0.001 < 0.001 0.858 1.0069 0.0056 0.0098
γ10 0.005 < 0.001 0.906 1.0101 0.0031 0.0097
γ10 0.010 0.031 0.928 1.0156 0.0017 0.0097
γ10 0.050 0.051 0.930 1.0700 0.0002 0.0104
γ10 0.100 0.473 0.942 1.1397 0.0001 0.0121
γ10 1.000 0.356 0.940 2.3963 0.0007 0.0672
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Web Table 6: Frequentist dynamic MSM; B = 500, n = 1000, R = 500.

γ2 = γ4 p-value Coverage Mean Estimate Bias SD

γ0 0 0.356 0.960 0.9777 -0.0223 0.4193
γ1 0.608 0.944 1.1461 0.1461 1.5732
γ2 0.758 0.954 1.0355 0.0355 0.7879
γ3 0.608 0.944 -0.1176 -0.1176 1.2878
γ4 0.608 0.944 -0.0476 -0.0476 0.8202

γ0 0.001 0.356 0.960 0.9777 -0.0223 0.4193
γ1 0.608 0.944 1.1461 0.1461 1.5732
γ2 0.758 0.954 1.0355 0.0355 0.7879
γ3 0.608 0.944 -0.1165 -0.1175 1.2878
γ4 0.608 0.944 -0.0465 -0.0475 0.8202

γ0 0.005 0.356 0.960 0.9778 -0.0222 0.4193
γ1 0.608 0.944 1.1459 0.1459 1.5730
γ2 0.758 0.954 1.0352 0.0352 0.7879
γ3 0.608 0.944 -0.1124 -0.1174 1.2875
γ4 0.758 0.946 -0.0423 -0.0473 0.8202

γ0 0.010 0.259 0.962 0.9780 -0.0220 0.4193
γ1 0.608 0.944 1.1457 0.1457 1.5728
γ2 0.758 0.954 1.0350 0.0350 0.7879
γ3 0.608 0.944 -0.1073 -0.1173 1.2872
γ4 0.758 0.946 -0.0370 -0.0470 0.8203

γ0 0.050 0.259 0.962 0.9791 -0.0209 0.4198
γ1 0.758 0.946 1.1441 0.1441 1.5725
γ2 0.918 0.948 1.0328 0.0328 0.7887
γ3 0.608 0.944 -0.0663 -0.1163 1.2857
γ4 0.918 0.948 0.0053 -0.0447 0.8214

γ0 0.100 0.259 0.962 0.9804 -0.0196 0.4210
γ1 0.918 0.952 1.1421 0.1421 1.5743
γ2 0.758 0.946 1.0302 0.0302 0.7909
γ3 0.608 0.944 -0.0149 -0.1149 1.2856
γ4 0.608 0.944 0.0582 -0.0418 0.8240

γ0 1.000 0.918 0.952 1.0052 0.0052 0.5519
γ1 0.608 0.956 1.1056 0.1056 1.9877
γ2 0.473 0.958 0.9821 -0.0179 1.0391
γ3 0.356 0.960 0.9086 -0.0914 1.5885
γ4 0.608 0.956 1.0101 0.0101 1.0772
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Web Table 7: Bayesian dynamic MSM; B = 500, n = 1000, R = 500.

Parameter γ3 = γ4 p-val percent Estimate Bias SD

γ0 0 0.051 0.930 0.9857 -0.0143 0.4521
γ1 0.259 0.962 1.0905 0.0905 1.5410
γ2 0.081 0.932 1.0211 0.0211 0.8449
γ3 0.608 0.956 -0.0709 -0.0709 1.2483
γ4 0.356 0.940 -0.0363 -0.0363 0.8702

γ0 0.001 0.051 0.930 0.9857 -0.0143 0.4521
γ1 0.259 0.962 1.0906 0.0906 1.5411
γ2 0.081 0.932 1.0211 0.0211 0.8449
γ3 0.608 0.956 -0.0699 -0.0709 1.2484
γ4 0.356 0.940 -0.0353 -0.0363 0.8702

γ0 0.005 0.051 0.930 0.9856 -0.0144 0.4521
γ1 0.259 0.962 1.0909 0.0909 1.5414
γ2 0.081 0.932 1.0212 0.0212 0.8449
γ3 0.608 0.956 -0.0661 -0.0711 1.2486
γ4 0.356 0.940 -0.0314 -0.0364 0.8702

γ0 0.010 0.051 0.930 0.9855 -0.0145 0.4521
γ1 0.259 0.962 1.0912 0.0912 1.5418
γ2 0.081 0.932 1.0212 0.0212 0.8449
γ3 0.608 0.956 -0.0613 -0.0713 1.2489
γ4 0.356 0.940 -0.0264 -0.0364 0.8701

γ0 0.050 0.051 0.930 0.9847 -0.0153 0.4524
γ1 0.356 0.960 1.0941 0.0941 1.5459
γ2 0.081 0.932 1.0218 0.0218 0.8455
γ3 0.473 0.958 -0.0233 -0.0733 1.2519
γ4 0.473 0.942 0.0131 -0.0369 0.8704

γ0 0.100 0.051 0.930 0.9838 -0.0162 0.4534
γ1 0.356 0.960 1.0977 0.0977 1.5531
γ2 0.051 0.930 1.0225 0.0225 0.8473
γ3 0.259 0.962 0.0243 -0.0757 1.2573
γ4 0.182 0.936 0.0624 -0.0376 0.8719

γ0 1.000 0.051 0.930 0.9668 -0.0332 0.5651
γ1 0.918 0.948 1.1624 0.1624 2.0210
γ2 0.356 0.940 1.0355 0.0355 1.0660
γ3 0.918 0.948 0.8805 -0.1195 1.6245
γ4 0.259 0.938 0.9507 -0.0493 1.0883

Web Appendix C Considerations for Double Robust Estimator

In this section, we present additional details related to ideas discussed in Section 3 of the main

paper. This includes details about how to fit outcome models in the double robust estimator.
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Web Appendix C.1 Outcome Models

In this section, we provide details about how to fit outcome models for the double robust estimator.

Recall that for k = K, φ∗K+1 is defined as

φ∗K+1(x̄∗K) = EO[y∗|x̄∗K , z̄∗K = ḡK(x̄K), b̄],

and for k = K − 1, ..., 1, φ∗k+1 is defined as

φ∗k+1(x̄∗k) = EO[φ∗k+2(x̄k+1)|x̄∗k, z̄∗k = ḡk(x̄
∗
k), b̄].

First, note that based on the prior we have selected (which yields the non-parametric Bayesian

bootstrap as the posterior), it is enough to fit these models on the observed data, conditional on a

draw from the Dirichlet weights. In a regression setting, the weights would just be incorporated into

the weights argument in the lm function. We now focus on how to pose these models, based on the

data generating mechanism in the single threshold simulation, which can be found in Appendix C.

The outcome is generated via y = x1−(−θopt+x1)(1x1>θopt−z1)−(−θopt+x2)(1x2>θopt−z2)+
√

0.5ε.

Note that θopt is a constant and ε ∼ N(0, 1). Then, we may look to fit the following model:

E[y|x̄, z̄] =β21x1 + β221x1>θopt + β23z1 + β24x11x1>θopt + β25x1z1

+ β261x2>θopt + β27z2 + β28x21x2>θopt + β29x2z2.

(3)

We use this model to compute ψ2 = E[y|x̄, z1, z2 = g(x2)]. We then seek to fit a model conditional

on just stage one information. This requires marginalizing over x2 when z2 = g(x2) in equation 3.
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For this, we need to compute a few quantities:

1)E[1x2>θopt |x1, z1] = p(θopt − z1 − 0.5x1 < ε|x1, z1)

= 1− Φ(θopt − z1 − 0.5x1)

:= T1(x1, z1)

2)E[g(x2)|x1, z1] = E[1x2>θ|x1, z1]

= 1− Φ(θ − z1 − 0.5x1)

:= T2(x1, z1)

3)E[x21x2>θopt |x1, z1] = E[(z1 + 0.5x1 + ε)1θopt<z1+0.5x1+ε|x1, z1]

:= T3(x1, z1)

4)E[x2g(x2)|x1, z1] = E[(z1 + 0.5x1 + ε)1θ<z1+0.5x1+ε|x1, z1]

:= T4(x1, z1)

T1, T2, T3 may be approximated numerically through quick draws of a normal distribution. This

leads us to the model:

E[ψ2|x1, z1] = β11x1 + β121x1>θopt + β13z1 + β14x11x1>θopt + β15x1z1

+ β16T1(x1, z1) + β17T2(x1, z1) + β18T3(x1, z1) + β19T4(x1, z1).

When θ = θopt, then we have T1 = T2 and T3 = T4, and so two of these terms must be taken out of

the model in this special case. Note that marginalization becomes slightly complex as, x2 depends

on both z1 and x1. If it only dependent on z1 which is binary, things would be simplified as stage

1 terms would absorb any marginalization terms. Of course, in practice it is difficult to correctly

specify these models, but one would hope that specifying a flexible enough model would lead to

improved results with regard to efficiency. Once these two models have been fit, we may compute

φ2(x1) = β11x1 + β121x1>θopt + β13g(x1) + β14x11x1>θopt + β15x1g(x1) + β16T1(x1, g(x1))

+ β17T2(x1, g(x1)) + β18T3(x1, g(x1)) + β19T4(x1, g(x1))
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and

φ3(x̄2) =β21x1 + β221x1>θopt + β23g(x1) + β24x11x1>θopt + β25x1g(x1)

+ β261θopt>x2
+ β27g(x2) + β28x21θopt>x2

+ β29x2g(x2).

We then use these last two expressions in the double robust estimator.

Web Appendix C.2 Bayesian Double Robustness

If we are able to show the equivalence between expressions (10) and (11) in the main article, then

we will have demonstrated the double robustness property. Consider:

φ∗2(x̄∗0) +

K∑
k=2

w∗k−1(φ∗k+1(x̄∗k)− φ∗k(x̄∗k−1)) + w∗K(y∗ − φ∗K+1(x̄∗K)))

= φ∗2(x̄∗0) + w∗K(y∗ − φ∗K+1(x̄∗K)) +
K∑
k=2

w∗k−1φ
∗
k+1(x̄∗k)−

K−1∑
k=1

w∗kφ
∗
k+1(x̄∗k)

= φ∗2(x̄∗0) + w∗K(y∗ − φ∗K+1(x̄∗K)) + w∗K−1φ
∗
K+1(x̄∗K−1)− w∗1φ∗2(x̄∗1)−

K−1∑
k=2

(w∗k − w∗k−1)φ∗k+1(x̄∗k)

= w∗Ky
∗ −

K∑
k=1

(w∗k − w∗k−1)φ∗k+1(x̄∗k)−
K+1∑
k=2

w∗k−1(h(B̄)− h(b̄))

= w∗Ky
∗ − w∗Kh(b̄) + w∗0h(b̄)−

K∑
k=1

(w∗k − w∗k−1)φ∗k+1(X̄∗k) +
K∑
k=1

(w∗k − w∗k−1)h(b̄)

= h(b̄) + w∗K(y∗ − h(b̄))−
K∑
k=1

(w∗k − w∗k−1)(φ∗k+1(x̄∗k)− h(b̄)),

recalling that w∗0 = 0 and that h(b̄) = Eg[y
∗|b̄]. From the first expression we may see that this is

an unbiased estimator when the conditional means are correctly specified. This is obtained from

an iterated expectation argument, and by showing that E[w∗k−1(φ∗k+1(x̄∗k) − φ∗k(x̄∗k−1))|x̄k−1] = 0.

The full argument can be seen in Orellana and others (2010b). The last expression allows us to

see this is unbiased when the treatment assignment models are correctly specified by noting that

E[w∗k|x̄∗k, z̄k−1] = w∗k−1 and by again using an iterated expectation.
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Web Appendix D Simulation Details

This appendix explores inference for the following regimes types: 1) single threshold regimes,

2) double threshold regimes, 3) weighted regimes, and 4) weighted regimes where the threshold

depends on a binary baseline covariate. Simulations 2) and 4) are those in the main paper.

Web Appendix D.1 Thresholding DTRs

The data generating mechanism is given by:

� x1 ∼ N(0, 1), x2 ∼ N(0, z1 + 0.5x1)

� z1 ∼ Bern(p = expit(1.5x1)), z2 ∼ Bern(p = expit(2x2 − 0.5z1))

� y = x1 − (−θ1opt + x1)(1θ1opt>z1 − z1) − (−θ2opt + x2)(1θ2opt>z2 − z2) +
√

0.5ε, ε ∼ N(0, 1)

and θ1opt, θ2opt the location of the desired optima. In the single threshold simulation, we have

that θ1opt = θ2opt = θopt.

Note that “expit” is the inverse logit function. For the out of sample prediction, we used a pop-

ulation of n = 10, 000 and x1 ∼ N(0.6, 1), x2 ∼ N(0.1 + z1, 1). Web Figure 1 plots the expected

outcome under the DTRs considered in this section.

(a) (b)

Web Figure 1: (a) Response surface for single threshold simulation with Normal covariates; (b)
Response surface for double threshold simulation with Normal covariates.
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Web Appendix D.1.1 Single Threshold Simulation

Web Table 8 shows results for single threshold simulation, under a sample size of n = 500. This

contrasts the sample size of n = 1000 shown in Web Table 9. Here, θopt = 0.6, and the value at

the optimum is 0. Generally, the results follow the same pattern though with an overall loss of

precision corresponding to the reduction in sample size.

Web Table 8: Results for single threshold simulation (Normal covariates; n = 500;500 Monte Carlo
replicates).

Method Model
Correct

θ̂ Estimated
Outcome

Train Pop.

Coverage
Probability

θ

Mean
Outcome
Test Pop.

Frequentist None 0.416 (0.110) 0.217 (0.120) — 0.587 (0.013)
Frequentist Treat 0.637 (0.189) 0.038 (0.070) — 0.589 (0.014)
Frequentist Outcome 0.580 (0.176) 0.015 (0.069) — 0.591 (0.014)
Frequentist Both 0.618 (0.159) 0.013 (0.057) — 0.593 (0.010)
Frequentist IPW 0.638 (0.183) 0.029 (0.066) — 0.590 (0.013)

Bayesian None 0.414 (0.118) 0.232 (0.119) 0.664 0.586 (0.014)
Bayesian Treat 0.648 (0.201) 0.057 (0.068) 0.976 0.587 (0.015)
Bayesian Outcome 0.573 (0.188) 0.026 (0.068) 0.980 0.590 (0.016)
Bayesian Both 0.624 (0.168) 0.021 (0.057) 0.972 0.592 (0.012)
Bayesian IPW 0.641 (0.196) 0.045 (0.065) 0.976 0.588 (0.015)

Web Table 9: Results for single threshold simulation (Normal covariates; n = 1000; 500 Monte
Carlo replicates).

Method Model
Correct

θ̂ Estimated
Outcome

Train Pop.

Coverage
Probability

θ

Mean
Outcome
Test Pop.

Frequentist None 0.419 (0.093) 0.209 (0.084) — 0.588 (0.011)
Frequentist Treat 0.635 (0.172) 0.024 (0.047) — 0.591 (0.013)
Frequentist Outcome 0.599 (0.122) 0.012 (0.044) — 0.596 (0.006)
Frequentist Both 0.608 (0.122) 0.010 (0.038) — 0.596 (0.007)
Frequentist IPW 0.624 (0.155) 0.018 (0.045) — 0.593 (0.011)

Bayesian None 0.418 (0.097) 0.218 (0.083) 0.516 0.588 (0.012)
Bayesian Treat 0.642 (0.178) 0.038 (0.045) 0.976 0.590 (0.014)
Bayesian Outcome 0.597 (0.132) 0.018 (0.044) 0.980 0.595 (0.008)
Bayesian Both 0.611 (0.128) 0.016 (0.038) 0.972 0.596 (0.008)
Bayesian IPW 0.634 (0.172) 0.030 (0.044) 0.968 0.591 (0.013)

Note: Standard deviations are Monte Carlo standard deviations

We also investigate the results when intermediary covariates are Gamma-distributed as follows:
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x1 ∼ Gamma(α = 2, β = 2), x2 ∼ Gamma(α = z1 + 0.5x1, β = 1). The known mean outcome

under the optimal threshold is 1 in the training population. In the test population, the distribution

of intermediary covariates was changed to be x1 = Gamma(α = 1.5, β = 1) and x2 = Gamma(α =

z1+0.5x1, β = 2). The exploration grid was the same as the Normal setup except that the thresholds

started at 0.05, given that Gamma covariates are positive. The results mostly parallel the already

observed results, see Web Table 10 and 11. Notable is that the resulting credible intervals appear

to be slightly more conservative.

Web Table 10: Results for single threshold simulation (Gamma covariates; n = 500; 500 Monte
Carlo replicates).

Method Model
Correct

θ̂ Estimated
Outcome

Train Pop.

Coverage
Probability

θ

Mean
Outcome
Test Pop.

Frequentist None 0.127 (0.165) 1.065 (0.058) — 1.444 (0.016)
Frequentist Treat 0.609 (0.160) 1.024 (0.054) — 1.489 (0.011)
Frequentist Outcome 0.578 (0.192) 1.044 (0.084) — 1.485 (0.014)
Frequentist Both 0.624 (0.136) 1.020 (0.047) — 1.490 (0.010)
Frequentist IPW 0.654 (0.167) 1.044 (0.059) — 1.486 (0.015)

Bayesian None 0.181 (0.219) 1.132 (0.062) 0.774 1.450 (0.021)
Bayesian Treat 0.632 (0.167) 1.092 (0.052) 0.998 1.487 (0.014)
Bayesian Outcome 0.614 (0.182) 1.155 (0.087) 1 1.486 (0.013)
Bayesian Both 0.649 (0.138) 1.080 (0.046) 0.998 1.489 (0.011)
Bayesian IPW 0.706 (0.173) 1.124 (0.061) 0.962 1.482 (0.018)

Web Table 11: Results for simulation I (Gamma covariates; n = 1000; 500 Monte Carlo replicates).

Method Model
Correct

θ̂ Estimated
Outcome

Train Pop.

Coverage
Probability

θ

Mean
Outcome
Test Pop.

Frequentist None 0.076 (0.079) 1.051 (0.045) — 1.439 (0.008)
Frequentist Treat 0.608 (0.131) 1.015 (0.037) — 1.491 (0.008)
Frequentist Outcome 0.587 (0.146) 1.027 (0.065) — 1.490 (0.009)
Frequentist Both 0.610 (0.106) 1.010 (0.033) — 1.493 (0.005)
Frequentist IPW 0.632 (0.153) 1.025 (0.042) — 1.488 (0.012)

Bayesian None 0.106 (0.146) 1.085 (0.044) 0.546 1.442 (0.014)
Bayesian Treat 0.625 (0.131) 1.062 (0.036) 1 1.491 (0.009)
Bayesian Outcome 0.608 (0.143) 1.107 (0.065) 1 1.490 (0.009)
Bayesian Both 0.626 (0.111) 1.052 (0.032) 1 1.492 (0.007)
Bayesian IPW 0.671 (0.160) 1.080 (0.044) 0.974 1.486 (0.014)
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Web Appendix D.1.2 Double Threshold Simulation

In Web Table 12 we examine the results of the double threshold simulation with normal covariates

and a larger sample size than presented in the main paper. Here, θ1opt = 0.4, θ2opt = 0.8, and

the value at the optimum is 0. There is a general gain in precision due to the larger sample size;

additionally, the coverage of the confidence intervals deviates slightly farther from the nominal

coverage.

Web Table 12: Results for double threshold simulation (Normal covariates; n = 1000; 500 Monte
Carlo replicates).

Method Model
Correct

θ̂1 θ̂2 Estimated
Outcome

Train Pop.

Coverage
Probability

θ1, θ2

Mean
Outcome
Test Pop.

Frequentist None 0.254 (0.097) 0.677 (0.142) 0.236 (0.086) — 0.591 (0.008)
Frequentist Treat 0.470 (0.204) 0.788 (0.175) 0.031 (0.045) — 0.588 (0.015)
Frequentist Outcome 0.393 (0.164) 0.783 (0.156) 0.016 (0.043) — 0.593 (0.008)
Frequentist Both 0.416 (0.152) 0.801 (0.145) 0.013 (0.037) — 0.594 (0.007)
Frequentist IPW 0.443 (0.179) 0.790 (0.180) 0.023 (0.044) — 0.590 (0.012)

Bayesian None 0.252 (0.104) 0.682 (0.154) 0.250 (0.085) 0.770, 0.918 0.590 (0.008)
Bayesian Treat 0.473 (0.217) 0.795 (0.179) 0.047 (0.043) 0.970, 0.988 0.587 (0.016)
Bayesian Outcome 0.390 (0.171) 0.787 (0.179) 0.026 (0.043) 0.986, 0.992 0.591 (0.010)
Bayesian Both 0.419 (0.159) 0.809 (0.148) 0.021 (0.037) 0.982, 0.982 0.593 (0.008)
Bayesian IPW 0.456 (0.191) 0.798 (0.183) 0.036 (0.043) 0.978, 0.988 0.589 (0.014)

Note: Standard deviations are Monte Carlo standard deviations

Next, we can examine the results when intermediary covariates are Gamma-distributed as de-

scribed in the previous section. Web Tables 13 and 14 show the results for this setup. Overall,

we observe that the optimal threshold are unbiasedly estimated, and that credible intervals are

somewhat conservative leading to higher coverage probabilities. Part of this is due to the choice of

increments: larger increments leading to higher coverage. The value at the optimal thresholds is

also unbiased.
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Web Table 13: Results for double threshold simulation (Gamma covariates; n = 500; 500 Monte
Carlo replicates).

Method Model
Correct

θ̂1 θ̂2 Estimated
Outcome

Train Pop.

Coverage
Probability

θ1, θ2

Mean
Outcome
Test Pop.

Frequentist None 0.129 (0.074) 0.751 (0.210) 1.145 (0.076) — 1.481 (0.005)
Frequentist Treat 0.379 (0.181) 0.791 (0.173) 1.038 (0.049) — 1.488 (0.010)
Frequentist Outcome 0.401 (0.211) 0.757 (0.177) 1.055 (0.068) — 1.485 (0.014)
Frequentist Both 0.406 (0.168) 0.792 (0.149) 1.024 (0.043) — 1.490 (0.009)
Frequentist IPW 0.456 (0.197) 0.785 (0.188) 1.050 (0.052) — 1.485 (0.016)

Bayesian None 0.136 (0.087) 0.757 (0.216) 1.197 (0.072) 0.810, 0.974 1.481 (0.005)
Bayesian Treat 0.393 (0.190) 0.806 (0.177) 1.099 (0.049) 0.998, 0.964 1.487 (0.012)
Bayesian Outcome 0.446 (0.208) 0.760 (0.186) 1.131 (0.069) 0.994, 0.988 1.484 (0.017)
Bayesian Both 0.426 (0.171) 0.807 (0.150) 1.076 (0.043) 1.000, 0.994 1.489 (0.010)
Bayesian IPW 0.494 (0.213) 0.800 (0.186) 1.128 (0.053) 1.000, 0.952 1.482 (0.021)

Web Table 14: Results for double threshold simulation (Gamma covariates; n = 1000; 500 Monte
Carlo replicates).

Method Model
Correct

θ̂1 θ̂2 Estimated
Outcome

Train Pop.

Coverage
Probability

θ1, θ2

Mean
Outcome
Test Pop.

Frequentist None 0.109 (0.034) 0.780 (0.163) 1.131 (0.060) — 1.480 (0.002)
Frequentist Treat 0.386 (0.150) 0.805 (0.150) 1.024 (0.037) — 1.491 (0.006)
Frequentist Outcome 0.383 (0.180) 0.790 (0.140) 1.035 (0.052) — 1.489 (0.009)
Frequentist Both 0.401 (0.125) 0.809 (0.128) 1.014 (0.032) — 1.493 (0.005)
Frequentist IPW 0.419 (0.150) 0.784 (0.164) 1.030 (0.040) — 1.490 (0.009)

Bayesian None 0.110 (0.038) 0.785 (0.175) 1.159 (0.058) 0.542 0.980 1.480 (0.003)
Bayesian Treat 0.387 (0.162) 0.821 (0.152) 1.066 (0.036) 1.000 0.970 1.490 (0.007)
Bayesian Outcome 0.426 (0.188) 0.786 (0.151) 1.088 (0.053) 1.000 0.990 1.488 (0.013)
Bayesian Both 0.408 (0.136) 0.819 (0.127) 1.049 (0.031) 1.000 0.990 1.492 (0.006)
Bayesian IPW 0.451 (0.164) 0.805 (0.168) 1.082 (0.040) 1.000 0.962 1.489 (0.011)

An analogous individualized decision rule graph can be produced for the thresholds in this

simulation, however this is no more instructive than the figure for the single threshold rule.

Web Appendix D.2 Weighted DTRs Simulation

Next, we explore one additional simulation. For this family of regimes, patients are treated in stage

one if ψ1x1,1 + ψ2x1,2 > 0.5 and in stage two if ψ1x2,1 + ψ2x2,2 > 0.5. Here, ψ1, ψ2 > 0 such that

ψ1 +ψ2 = 1. The optimal parameters are chosen to be ψ1opt = ψ2opt = 0.5. The response surface is

this setting is similar to that in Simulation II. The data generating mechanism proceeds as follows:
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� x1,1 ∼ N(1, 1), x1,2 ∼ N(0, 1)

� z1 ∼ Bern(expit(1.5x1,2 + 2x1,1))

� x2,1 ∼ N(0.2z1 + 0.1x1,1, 1), x2,2 ∼ N(0.5z1 + 0.1x1,2, 1)

� z2 ∼ Bern(p = expit(1.5x2,2 − 0.6z1 + 2x2,1))

� z1,opt = 0.5x1,1 + 0.5x1,2 > 0.5, z2,opt = 0.5x2,1 + 0.5x2,2 > 0.5,

� y = x11 +x12− (0.5x11 +0.5x12−0.5)(z1,opt−z1)− (0.5x21 +0.5O22−0.5)(z2,opt−z2)+
√

0.5ε,

ε ∼ N(0, 1)

The value at the optimal threshold can bee seen to be 1. For the test population, we used a

population size of n = 10, 000 and x1,1 ∼ N(0.1, 1), x1,2 ∼ N(0.5, 1), x2,1 ∼ N(0.1 + 0.2z1 +

0.1x1,1, 1), x2,2 ∼ N(0.5 + 0.5z1 + 0.1x1,2, 1). Results are presented in the Web Table 15 and 16,

and we observed that we obtain unbiased results. Surprisingly, even with both nuisance models

misspecified, the estimator performs quite well in terms of coverage, though it estimates the outcome

under the optimal regime with high bias. Note that although there are two-parameters in this

decision rule, the condition that ψ1 +ψ2 = 1, makes it so that it is enough to evaluate the coverage

probability of only one parameter; this is also why the Monte Carlo standard errors in the ψ1, ψ2

columns are the same.

Web Table 15: Frequentist and Bayesian results (n = 500; 500 Monte Carlo replicates).

Method Model
Correct

ψ̂1 ψ̂2 Estimated
Outcome

Train Pop.

Coverage
Probability

ψ1

Mean
Outcome
Test Pop.

Frequentist None 0.719 (0.251) 0.282 (0.251) 0.208 (0.206) — 0.509 (0.078)
Frequentist Treat 0.477 (0.193) 0.523 (0.193) 1.110 (0.274) — 0.551 (0.045)
Frequentist Outcome 0.518 (0.122) 0.482 (0.122) 1.022 (0.096) — 0.571 (0.027)
Frequentist Both 0.474 (0.117) 0.526 (0.117) 1.038 (0.124) — 0.571 (0.027)
Frequentist IPW 0.464 (0.208) 0.536 (0.208) 1.215 (0.559) — 0.545 (0.049)

Bayesian None 0.754 (0.258) 0.247 (0.258) 0.258(0.201) 0.944 0.496 (0.078)
Bayesian Treat 0.473 (0.199) 0.527 (0.199) 1.142(0.272) 0.964 0.550 (0.048)
Bayesian Outcome 0.523 (0.131) 0.477 (0.131) 1.034(0.095) 0.980 0.569 (0.030)
Bayesian Both 0.476 (0.119) 0.524 (0.119) 1.047(0.119) 0.968 0.571 (0.027)
Bayesian IPW 0.460 (0.211) 0.540 (0.211) 1.264(0.563) 0.950 0.544 (0.050)
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Web Table 16: Frequentist and Bayesian results (n = 1000; 500 Monte Carlo replicates).

Method Model
Correct

ψ̂1 ψ̂2 Estimated
Outcome

Train Pop.

Coverage
Probability

ψ

Mean
Outcome
Test Pop.

Frequentist None 0.731 (0.249) 0.269 (0.249) 0.184 (0.140) — 0.507 (0.079)
Frequentist Treat 0.462 (0.170) 0.538 (0.170) 1.061 (0.140) — 0.557 (0.041)
Frequentist Outcome 0.521 (0.104) 0.479 (0.104) 1.015 (0.062) — 0.575 (0.024)
Frequentist Both 0.469 (0.109) 0.531 (0.109) 1.021 (0.066) — 0.573 (0.026)
Frequentist IPW 0.454 (0.190) 0.545 (0.190) 1.117 (0.242) — 0.551 (0.046)

Bayesian None 0.759 (0.250) 0.241 (0.250) 0.217 (0.136) 0.958 0.497 (0.079)
Bayesian Treat 0.455 (0.173) 0.545 (0.173) 1.086 (0.138) 0.988 0.556 (0.042)
Bayesian Outcome 0.526 (0.112) 0.474 (0.112) 1.023 (0.062) 0.972 0.573 (0.027)
Bayesian Both 0.471 (0.107) 0.529 (0.107) 1.029 (0.064) 0.970 0.573 (0.025)
Bayesian IPW 0.448 (0.193) 0.552 (0.193) 1.156 (0.236) 0.968 0.549 (0.047)

Now, we may examine the individualized inference for this scenario. Web Figure 2 shows us

that there are combinations of xk1, xk2 where there is high certainty about following the optimal

regime and areas of low certainty.

(a) (b)

Web Figure 2: Weighted DTR simulation individualized treatment probabilities using double robust
estimator; (a) Stage 1 treatment (b) Stage 2 treatment.

Web Appendix D.3 Weighted DTRs with Binary Covariate Simulation

Here, we provide the details for simulation II in the main paper. In this family of regimes, patients

are treated if ψ1xk1+ψ2xk2 > 0.5−3ψ3u, k = 1, .., 4, where ψ1+ψ2 = 1, ψ1, ψ2 > 0. The exploration

grid is given by ψ1, ψ2 ∈ [0.2, 0.8] in increments of 0.05 and ψ3 ∈ [-0.3,0.3] in increments of 0.1.

This yields a grid of 91 points, with known optima ψ1opt = 0.5, ψ2opt = 0.5, ψ3opt = 0.1. The specific

data generating mechanism used is given by:
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� x11 ∼ N(1, 1), x12 ∼ N(0, 1), u ∼ ·Bern(0.5), z1 ∼ Bern(expit(0.5x12 + x11))

� xk1 ∼ N(0.2zk−1 + 0.1xk−1,1, 1), xk2 ∼ N(0.5zk−1 + 0.1xk−1,2, 1), k = 2, 3, 4

� zk ∼ Bern(p = expit(0.5xk2 − 0.6zk−1 + xk1)), k = 2, 3, 4

� zk,opt = 0.5xk1 + 0.5xk2 + 0.3u > 0.5, k = 1, .., 4

� y = x11 + x12 −
∑4

k=1(0.5xk1 + 0.5xk2 + 0.3u− 0.5)(zk,opt − zk) +
√

0.1ε, ε ∼ N(0, 1)

Web Table 17 shows the results for a sample size of n = 1000. Generally, we observe a gain in

precision as compared to the n = 500 table in the main paper. Additionally, we note that when

all models are correct, we estimate ψ3opt very well. This reflects the fact that the value function is

more peaked in this direction as compared to other parameters. For the test population, xk1, xk2

were shifted by 0.1 and 0.5, respectively and u ∼ Bern(0.7); we observe that the double robust

estimator yields the highest value, as expected.

Web Table 17: Frequentist and Bayesian results (n = 1000; 500 Monte Carlo replicates).

Method Model
Correct

ψ̂1 ψ̂3 Estimated
Outcome

Train Pop.

Coverage
Probability
ψ1, ψ3

Mean
Outcome
Test Pop.

Freq. None 0.570 (0.099) 0.092 (0.091) 1.871 (0.282) — 0.546 (0.051)
Freq. Treat 0.472 (0.136) 0.107 (0.101) 1.096 (0.111) — 0.544 (0.051)
Freq. Outcome 0.503 (0.040) 0.100 (0.004) 1.002 (0.048) — 0.583 (0.006)
Freq. Both 0.502 (0.025) 0.100 (0.000) 0.999 (0.045) — 0.585 (0.004)
Freq. IPW 0.478 (0.137) 0.099 (0.110) 1.120 (0.139) — 0.543 (0.051)

Bayes. None 0.571 (0.108) 0.097 (0.085) 1.995 (0.272) 0.95 0.996 0.558 (0.021)
Bayes. Treat 0.465 (0.133) 0.105 (0.103) 1.164 (0.100) 0.986 1 0.547 (0.026)
Bayes. Outcome 0.501 (0.036) 0.100 (0.000) 1.006 (0.049) 0.992 1 0.590 (0.003)
Bayes. Both 0.499 (0.022) 0.100 (0.000) 1.001 (0.045) 1 1 0.592 (0.002)
Bayes. IPW 0.459 (0.142) 0.102 (0.105) 1.206 (0.117) 0.984 1 0.544 (0.026)

Web Appendix E Details of the NA-ACCORD Analysis

In what follows, we describe the procedure used to create the data, the analysis plan, the specific

models utilized, and we address questions of positivity, individualized inference, and balance.

22



Web Appendix E.1 Data Creation

Study Start: Study initiation (time zero) is the first instance of ART treatment on or after 2004

in the NA-ACCORD database.

� Study start is not enrollment date as many patients have a long lag between cohort enrollment

and ART initiation.

Censoring: Last ART record that has continuous follow-up from study start and that has CD4

and viral load measurements available. This entails the following:

1. There is a monthly ART record from month one up until the month of study exit.

� Note: some patients have no records for several months and then continuous follow-up

resumes. Study exit for these patients is the last month of the first instance of continuous

follow-up.

� There is one exception to the above: If patients have four or fewer months of ART records

missing and then continuous follow-up begins again, these months are filled with the last

observed treatment. This approach is reasonable as patients do not switch treatment

very often.

2. Each record can be associated with a viral load and CD4 cell count measurement.

� Associate each ART record with CD4 and viral load measurement by taking closest

measurement date to ART record date, and using last observation carried forward.

� With the exception of missing baseline lab values, patients who have missing lab values

are censored at the first instance of missingness.

� Patients who have missing lab values at study start are kept in the study and we create

a status variable which indicates baseline missingness.

Stage-specific Censoring Details:

� Stage 1: Patients lost to follow up after stage 1 covariates are observed but before stage 2

covariates are observed are censored at stage 1.
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� Stage 2: Patients lost to follow up after stage 2 covariates are observed but before stage 3

covariates are observed are censored at stage 2.

� Stage 3: Patients lost to follow-up after stage 3 covariates are observed but before final

outcome is observed are censored at stage 3.

Study End: Study end is 18 months after study start; the outcome FIB4 is taken to be the first

FIB4 measurement recorded after study end, within 12 months.

Details of the follow-up can be observed in the following diagram:

Web Figure 3: Study Stages

Treatment: We dichotomize all ART treatments to PI based or another ART medication. Some

patients receive dual therapy in combination with PI; these are included in “other ART” group.

Treatment Decisions: We consider 6-month observation intervals thereby leading to three treat-

ment decision points: one in the first month of the study, one in the 7th month of the study, and

one at 13th month.

Augmented Data Creation

The regimes we explore are of the family: start on a non-PI based ART therapy and switch into PI

when FIB4 > θ. Refer to a dataset with information about patients adhering to a regime in this

family by Rθ. In addition to the censoring described in the section above, we must take care to keep

track of artificial censoring in Rθ. A patient is artificially censored with respect to a regime with

threshold θ when they stop adhering to the regime. If they never adhere to the regime, then they

are artificially censored at baseline. Adherence to Rθ can be determined based on the following

category of patients:

1. Indicated to Switch but did Not Switch (ISNS): Artificial censoring at Indicated switch date.

2. Indicated to Switch and Switched (ISS): No artificial censoring. If patient switches more than
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once during the study period, then they are artificially censored at the time of their second

switch.

3. Not Indicated to Switch and did Not Switch (NISNS): No artificial censoring.

4. Not Indicated to Switch but Switched (NISS): Artificial censoring at switch date.

5. No Regime (NR): Initial therapy was PI; artificial censoring at baseline.

Note on creating Rθ:

� Each Rθ dataset will contain all patients in the study population. Even patients who are

artificially censored at baseline will contribute to fitting outcome models, and toward the fit

of the double robust estimator.

� To determine the θ that will be used in the data augmentation, look at the distribution of

FIB4 measurements at baseline and create equally spaced increments of 0.2. Based on the

data, it turned out that the starting value was 0.4.

Final Datasets: At the end of the above data creation we should have two datasets:

� DATA in long format constitutes of patients in the study population up until their censoring

or the study end date. This dataset does not contain any variables that reference regime

adherence.

� AUGDATA is the stacked Rθ datasets. Each Rθ datasets is a long-format dataset of patients

who adhere to regime Rθ with threshold θ, for the full follow-up period. Each of these dataset

have an additional variable providing the regime index θ.

Web Appendix E.2 Analysis

For simplicity, we first describe the frequentist analysis, and then describe the Bayesian adapta-

tion.

Treatment Propensity Models: Use DATA to fit a logistic regression model for each stage.

Possible time-varying confounders include CD4 Cell count and Viral load. These variables are cer-

tainly used to assign treatment, and were proxies for level of HIV infection. There is some evidence
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to suggest that HIV is associated with decreased liver health. Therefore, these variables may also

mediate previous treatment effects.

Censoring Models: Fit censoring models for each decision point.

Outcome Models: The first conditions on baseline information; the second conditions on infor-

mation up to stage 2; the third conditions on information up stage 3.

Weight Construction:

� Estimate stage-specific treatment and censoring models.

� For all patients in AUGDATA use the treatment propensity model to compute the probability

that they received their observed treatment at each time point.

� Invert each of these probabilities to obtain a weight for each patient for each decision point.

Collapse AUGDATA into one observation per patient per regime, and multiply all patient

weights in order to create a final weight variable for each patient.

Inverse Probability Weighting Analysis: This analysis is only performed on the subset of

cases who are neither censored nor artificially censored. Fit a weighted regression with FIB4 as the

outcome and with regime index as the predictor. The weights are the ones calculated in the above

step. This fit yields the normalized IPW estimator.

Double Robust Analysis: Make use of double robust estimator. This estimator makes used of

all observations censored or uncensored (up to the censoring point).

Bayesian Inference Adaptation:

� Draw a vector of Dirichlet weights for as many patients as in DATA. Assign one of these

weights to each patient by adding a Dirichlet weight variable to DATA. Note that this variable

will not have variation within patients. Additionally, merge these weights into AUGDATA.

� Fit the treatment propensity, censoring, and outcome models as above, but this time incor-

porate the Dirichlet weights into the fitting. Construct the weights for the collapsed data as

before, using the predictions from the treatment propensity model.

� For the IPW analysis, fit the marginal mean model by multiplying the final weights in the

collapsed AUGDATA by the Dirichlet weights of each person in AUGDATA.
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� For the double robust analysis, run regression, where outcome for each patient is the person-

specific contribution to equation (12) in the main paper, and where the predictor is index.

� Repeat this over many iterations in order to obtain the posterior distribution of interest.

Analysis Models:

We now specify the models used for analysis.

Censoring Models:

Stage 1 : status+ status× rcs(log(CD4)) +AgeBaseline+ Insurance+AtRiskAlcohol

+ Sex+ Smoking +DrugUse+Race+ CalendarY ear

Stage 2 : rcs(log(CD4)) +AtRiskAlcohol + Smoking +DrugUse+Race+ CalendarY ear

Stage 3 : rcs(log(CD4)) +AtRiskAlcohol + Smoking +DrugUse+Race+ CalendarY ear

Treatment Models:

Stage 1 : status+ status× rcs(log(CD4)) +AgeBaseline+ Insurance+AtRiskAlcohol

+ Sex+HCV +Race+ CalendarY ear

Stage 2 : rcs(log(CD4)) + Sex+ Insurance+HCV + Stage1Treat+Race+ CalendarY ear

Stage 3 : rcs(log(CD4)) + Sex+ Insurance+HCV + Stage2Treat+Race+ CalendarY ear

Note: rcs denotes a restricted cubic spline; Stage1Treat denotes stage 1 treatment and Stage2Treat

denotes stage 2 treatment. Some patients have missing lab values at baseline; this is indicated by

the status variable in the models above.

Outcome Models:

Stage 1 : index+ index× (Sex+AgeBaseline+ Smoking +DrugUse+HBV +HCV

+ Insurance+ Treat+ status× rcs(log(CD4)) + status× rcs(log(V iralLoad)))

Stage 2 : index+ index× (Sex+AgeBaseline+ Smoking +DrugUse+HBV +HCV

+ Insurance+ Stage1Treat+ Treat+ rcs(log(CD4)) + rcs(log(V iralLoad)))

Stage 3 : Sex+AgeBaseline+ Smoking +DrugUse+HBV +HCV + Insurance

+ Stage1Treat+ Stage2Treat+ Treat+ rcs(log(CD4)) + rcs(log(V iralLoad))

Note: The index variable in the models above is fit as a categorical variable, denoting the regime
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index.

Sensitivity Analyses: The following sensitivity analyses were performed:

� Sensitivity Analysis I: All models the same, except that outcome model restricted cubic splines

are replaced with log(CD4) and log(V iralLoad) terms.

� Sensitivity Analysis II: All models the same, except for outcome model restricted cubic splines

are replaced with rcs(log(TimeBetween×CD4)) and rcs(log(TimeBeteween×V iralLoad))

terms. This model attempts to account for the fact that not all lab measurements are taken

within the same amount of time of the decision point.

� Sensitivity Analysis III: All models the same, except for outcome model restricted cubic

splines are replaced with log(TimeBetween × CD4) and log(TimeBeteween × V iralLoad)

terms.

Conclusion of sensitivity analysis: results changed only minimally across models.

Web Appendix E.3 Positivity

Two types of positivity violations are of concern: structural positivity and practical positivity

(Petersen and others, 2012). The former refers to when patients with specific sets of characteristics

are precluded from receiving a treatment; we do not think this is an issue here. The latter refers

to the fact that we do not observe all treatments covariate combinations, due to a finite sample

size. This is of concern in our setting, as therapeutic switches were infrequent. Zhu and others

(2021) mention that if propensity scores (PS) are used for achieving balance, then the focus should

be on assessing PS overlap between treatment groups. We assessed positivity for each candidate

regime by checking whether the distribution of the propensity score at each interval for the modeled

treatment are similar in the regime adherent group and the regime non-adherent group. This must

be done separately for each regime of interest (each θ). In the first stage, all regimes start by

evaluating they hypothetical world in which all patients start on a non-PI regimen. Therefore,

at this stage the treatment was the probability of receiving PI. For this reason, we only need to

perform one comparison across all regimes for this stage (there is no dependence on θ at this stage).

We observe that there is overlap from Web Table 18. For the second and third stage, the propensity
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of interested was in those who switched treatment. Therefore, we compared the probability that

a patient switched into PI in the adherent group vs. the non-adherent group; these comparisons

are specific to a threshold θ and are presented for a subset of regimes in Web Table 18. Propensity

score overlap indicated that patients who adhered have similar covariate distributions to those who

did not adhere. Therefore the types of patients who switch in the regime-enforced world are well

represented in the observational world. The propensity to switch treatment was generally small,

highlighting that relatively few individuals contribute to the estimation of our regime of interest –

a limitation that must be acknowledged.

Web Table 18: Propensity score overlap between patients who adhered to a specific regime and
patients who did not adhere for a subset of regimes. (Adh.=“Adherent”)

Regime θ Group 0% 10% 25% 50% 75% 90% 100%

Adh. Stage 1 0.198 0.440 0.515 0.606 0.693 0.747 0.835
Non-Adh. Stage 1 0.179 0.383 0.453 0.537 0.628 0.698 0.820

0.4 Adh. Stage 2 0.012 0.018 0.023 0.037 0.056 0.071 0.119
0.4 Non-Adh. Stage 2 0.011 0.018 0.023 0.035 0.052 0.067 0.130
0.4 Adh. Stage 3 0.006 0.010 0.013 0.018 0.030 0.041 0.050
0.4 Non-Adh. Stage 3 0.006 0.010 0.012 0.017 0.027 0.036 0.062

1.0 Adh. Stage 2 0.012 0.017 0.022 0.033 0.051 0.067 0.123
1.0 Non-Adh. Stage 2 0.011 0.019 0.024 0.037 0.053 0.070 0.130
1.0 Adh. Stage 3 0.006 0.010 0.013 0.018 0.027 0.037 0.062
1.0 Non-Adh. Stage 3 0.006 0.011 0.013 0.020 0.029 0.037 0.062

1.6 Adh. Stage 2 0.011 0.018 0.022 0.034 0.051 0.066 0.123
1.6 Non-Adh. Stage 2 0.012 0.020 0.026 0.039 0.056 0.073 0.130
1.6 Adh. Stage 3 0.006 0.010 0.013 0.019 0.028 0.037 0.062
1.6 Non-Adh. Stage 3 0.007 0.011 0.014 0.021 0.030 0.039 0.062

2.2 Adh. Stage 2 0.011 0.018 0.022 0.034 0.051 0.067 0.123
2.2 Non-Adh. Stage 2 0.012 0.021 0.028 0.041 0.059 0.075 0.130
2.2 Adh. Stage 3 0.006 0.010 0.013 0.019 0.028 0.037 0.062
2.2 Non-Adh. Stage 3 0.007 0.011 0.015 0.022 0.032 0.040 0.061

2.8 Adh. Stage 2 0.011 0.018 0.022 0.034 0.051 0.066 0.123
2.8 Non-Adh. Stage 2 0.012 0.021 0.029 0.043 0.062 0.077 0.130
2.8 Adh. Stage 3 0.006 0.010 0.013 0.019 0.028 0.037 0.062
2.8 Non-Adh. Stage 3 0.007 0.012 0.016 0.023 0.032 0.042 0.061

Web Appendix E.4 Normalization of Weights

In real data analyses, the variability of the estimators is an important consideration. One approach

to arrive at more robust estimates is to use weight normalization, as this can reduce the variability

of the resulting weights. A discussion of weight normalization can be found in Chapter 12 of Hernán
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and Robins (2020), and it has been further explored in the literature for example in Xiao and others

(2010). For a sample of Dirichlet weights π = (π1, ..., πn), the normalized IPW estimator for the

value of a regime gr is: ∑n
i=1

πi1gr(x̄i)
(z̄i)yi∏K

j=1 pO(zij |z̄ij−1,x̄ij−1)∑n
i=1

πi1gr(x̄i)
(z̄i)∏K

j=1 pO(zij|z̄ij−1,x̄ij−1)

Taking the expectation in the numerator and the denominator across Π, yields the familiar frequen-

tist estimator. The same approach can be taken with the weights in the double robust estimator.

Web Appendix E.5 Balance Diagnostics

Next, we assess the balance obtained from the resulting weighting We used standardized mean

differences to assess balance. Web Table 20 shows the treatment balance assessment at each stage,

using the full weights. Some standardized mean differences are moderately large, even after weight-

ing, but this must be considered in the context of having a finite sample size and several probabilities

contributing to the weighting of each observation.

Web Appendix E.6 Results for Individualized Inference

By looking at Figure 3 in the main paper, it may be tempting to conclude that there is no benefit to

tailoring. This is actually not the case. We remind the reader that we are after the computation:

θmin = argmin(Eθ1 [Y ], ..., Eθ13 [Y ]). From Web Figure 4, we note that across draws of Π, the

expected outcome under regime θ follows a predictable pattern. That is, for small θ the outcome

tends to be lower than for high values of θ. We conclude that Figure 3 in the main paper does not

display all necessary information.

Web Figure 4: Values for six different samples of the posterior distribution
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To enrich our analysis, we consider the posterior distribution of two types of θ: one is θmin,

which was the original target and which is thought to minimize end-stage FIB4; the second is θmax,

which corresponds to the worst decision rule we can obtain by maximizing end-stage FIB4. We

now see from Web Table 19 that the outcome-minimizing and outcome-maximizing threshold are

not equiprobable. Consequently this does allow us to consider individualized inference, though we

should realize that even if we can identify an optimal threshold, it is still clear that the expected

change in final FIB4 is minimal and therefore the resulting optimal decision rule will have limited

clinical value.

Web Table 19: Posterior Distribution of outcome minimizing/maximizing regimes (500 posterior
draws).

Threshold 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

θmin 232 3 192 36 6 7 18 0 0 1 0 0 5
θmax 2 17 0 2 11 8 3 16 4 32 57 182 166

From Web Figure 5(a), we see that the when a patient’s FIB4 score is at 0.8 or greater, they

should switch into PI if they hope to follow optimal therapy. From figure 5(b), we see that we

should be careful regarding when to switch into PI. Operationalizing a rule that says switch when

FIB4 is greater than 2.6 means that we might actually be following the least optimal regime. Of

course, we remind the reader that the difference in effect size that each of these regimes yield is

small.

(a) (b)

Web Figure 5: Cases study individualized treatment probabilities using double robust estimator;
(b) Treatment based on θmin (a) Treatment based on θmax.
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Web Table 20: Balance diagnostics on the weighted sample: NA-ACCORD.

Stage 1 No PI PI SMD

n 7438.8 5182.2
Smoking (%) 4112.9 (55.3) 2888.7 (55.7) 0.009

At Risk Alcohol (%) 1971.3 (26.5) 1478.1 (28.5) 0.045
Drug Use (%) 1495.4 (20.1) 992.7 (19.2) 0.024

Sex (%) 1258.4 (16.9) 1240.3 (23.9) 0.175
Age at Baseline (mean (SD)) 40.07 (11.05) 40.89 (10.56) 0.076

Race Group(%) 0.067
Black 2874.1 (38.6) 1875.4 (36.2)

Missing 533.6 ( 7.2) 444.5 ( 8.6)
Other 405.3 ( 5.4) 273.6 ( 5.3)
White 3625.7 (48.7) 2588.7 (50.0)

Insurance (%) 3148.4 (42.3) 1946.2 (37.6) 0.097
HCV at Baseline (%) 736.3 (9.9) 772.8 (14.9) 0.153
HBV at Baseline (%) 381.5 (5.1) 359.6 (6.9) 0.076

Stage 2 No PI PI SMD

n 7138.2 5482.8
Smoking (%) 3921.4 (54.9) 2921.8 (53.3) 0.033

At Risk Alcohol (%) 1871.6 (26.2) 1466.8 (26.8) 0.012
Drug Use (%) 1381.3 (19.4) 900.8 (16.4) 0.076

Sex (%) 1267.1 (17.8) 1333.8 (24.3) 0.162
Age at Baseline (mean (SD)) 40.77 (11.02) 41.41 (10.37) 0.060

Race Group (%) 0.100
Black 2792.0 (39.1) 2063.4 (37.6)

Missing 500.8 (7.0) 535.6 (9.8)
Other 386.5 (5.4) 301.1 (5.5)
White 3458.9 (48.5) 2582.8 (47.1)

Insurance (%) 2959.3 (41.5) 1975.0 (36.0) 0.112
HCV at Baseline (%) 723.5 (10.1) 847.7 (15.5) 0.160
HBV at Baseline (%) 366.9 ( 5.1) 398.0 ( 7.3) 0.088

Stage 3 No PI PI SMD

n 7156.6 5464.4
Smoking (%) 3946.3 (55.1) 2895.3 (53.0) 0.043

At Risk Alcohol(%) 1863.6 (26.0) 1445.0 (26.4) 0.009
druguse (%) 1393.1 (19.5) 884.4 (16.2) 0.086

Sex(%) 1287.5 (18.0) 1365.2 (25.0) 0.171
Age at Baseline (mean (SD)) 40.78 (11.00) 41.24 (10.34) 0.043

Race Group (%) 0.105
Black 2792.9 (39.0) 2111.3 (38.6)

Missing 504.9 (7.1) 541.4 (9.9)
Other 391.9 (5.5) 298.8 (5.5)
White 3466.9 (48.4) 2513.0 (46.0)

Insurance(%) 3010.2 (42.1) 1940.8 (35.5) 0.135
HCV at Baseline (%) 732.6 (10.2) 844.8 (15.5) 0.157
HBV at Baseline (%) 372.2 ( 5.2) 387.4 ( 7.1) 0.079
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