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Abstract

Many processes can be represented in a simple form as infinite-order linear
series. In such cases, an approximate model is often derived as a truncation of the
infinite-order process, for estimation on the finite sample. The literature contains
a number of asymptotic distributional results for least squares estimation of such
finite truncations, but for quantile estimation, only results for finite-order processes
are available at a level of generality that accommodates time series processes. Here
we establish consistency and asymptotic normality for conditional quantile estima-
tion of truncations of such infinite-order linear models, with the truncation order
increasing in sample size. The proofs use the generalized functions approach and al-
low for a wide range of time series models as well as other forms of regression model.
As an example, many time series processes may be represented as an AR(∞) or an
MA(∞); here we use a simulation to illustrate the degree of conformity of finite-
sample results with the asymptotics, in case of a truncated AR representation of a
moving average.
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1. Introduction

Many processes can be represented as infinite-order linear series or as infinite-
order approximations involving other processes. An example important in econo-
metrics is the time series context in which such infinite-order series may have an
AR(∞), MA(∞) or ARCH(∞) form. The autoregressive model in particular has
been very widely applied, despite the fact that a finite-order autoregression may
not be a plausible representation of the true process. Instead, the justification for
its use lies in the fact that when a low-order parametric model describing a process
precisely is not known or is not convenient for estimation, the process may nonethe-
less be well characterized by a finite truncation of an infinite-order representation,
where the truncation order increases in sample size. The fundamental asymptotic
results on LS estimation of such truncated autoregressions date to Berk (1974) and
Lewis and Reinsel (1985). Numerous treatments of econometric time series prob-
lems have used such results, for example Braun and Mittnik (1993), Galbraith and
Zinde-Walsh (1994, 1997), Lütkepohl and Poskitt (1996), Saikkonen and Lütkepohl
(1996), Lütkepohl and Saikkonen (1997), Inoue and Kilian (2002), Gonçalves and
Kilian (2005), and many others. Of course, infinite-order processes occur in many
other circumstances, and the results of the present paper apply much more widely
than to these time series cases.

Another important literature, originating with Koenker and Bassett (1978),
addresses asymptotic properties of quantile estimation (of which Least Absolute
Deviations, LAD, is a special case) of regression models. The primary techni-
cal challenge in this literature, shared by the present paper, arises from the non-
differentiability of the LAD or quantile criterion function. Although now fairly
extensive, this literature in general treats the order of the estimated model as be-
ing finite, or treats the process as having i.i.d. errors, either of which may be
inadequate for the treatment of many cases of interest in econometrics.

The present paper lies at the intersection of these two literatures and provides
results which link the two and extend each of the classes of result. In particular,
we present a general result on quantile estimation for finite truncations of infinite-
dimensional processes. This result implies consistency and asymptotic normality of
estimates from truncations of a wide range of processes, including but not limited
to the time series examples just given.

The next section of the paper describes key results in the two literatures to
which the present paper is related. Section 3 describes the general result on con-
sistent estimation of conditional quantiles in a process which may be represented
as an infinite-order approximation to another process, truncated to finite order.
Section 4 provides a simulation example in which a finite truncation of an AR(∞)
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representation of an MA process is estimated by LAD regression.
The proof of Theorem 1 is given in the Appendix.

2. Existing asymptotic results for OLS and quantile estimation

A number of asymptotic results for OLS estimation of truncations of infinite-
dimensional regressions are available. The critical requirements for consistent es-
timation are (i) an increase in the number of regressors as sample size increases,
and (ii) a model in which the contribution of the infinite non-included part can be
made small relative to that of the included part. Such requirements can be shown
to be met in time series models such as the AR(∞), examined by Berk (1974),
who provided the assumptions under which a rate of increase in the number of
regressors satisfying (ii) can be determined. Berk’s results and their applications
and extensions have involved mainly processes considered in L2 Hilbert spaces (e.g.
the space of stationary stochastic processes) and their L2−norm approximations
(usually by lagged values of the process, as in AR approximations). (Below we
address a similar question concerning approximation in L1 space, corresponding
with the absolute value criterion in LAD estimation for median regression, and
with criteria based on quantiles for quantile regression.)

Berk studied a case in which a stationary process meeting weak regularity
conditions is modelled as an autoregression. Because estimation is of a truncation
of an infinite-order process, consistency requires that the order of truncation (that
is, the order of the approximating autoregression) increase without bound as the
sample size T →∞. The rate at which this order, k, must increase is a key result; it
is sufficient that k3/T → 0 and that T
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∑∞
i=1(|ak+i|) → 0, where the {ak+i}, i > 0,

are the coefficients of the truncated part of the true process. Consistency is proven
for estimation by least squares.

These results were extended to cover the prediction problem for infinite-order
univariate AR processes by Bhansali (1978), and by Lewis and Reinsel (1985) to
multivariate cases, both for estimation and prediction. The Lewis and Reinsel re-
sults, which involve conditions like Berk’s on the rate of growth of truncation order,
have been important in allowing econometric applications to finite truncations of
important classes of multivariate model such as the infinite-order VAR; see for ex-
ample Lütkepohl and Poskitt (1996), Saikkonen and Lütkepohl (1996), Lütkepohl
and Saikkonen (1997).

The other literature immediately relevant concerns the asymptotics of quantile
regression estimates. The proof of the consistency of LAD (or minimum L1−norm)
estimates dates to Koenker and Bassett (1978), and has been developed and gen-
eralized by several authors including Bloomfield and Steiger (1983), Chen et al.
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(1990), Knight (1989, 1991), Pollard (1991) and Davis, Knight and Liu (1992);
see Pollard (1991) for a review of the related literature to that date and Zhao
(2000) for a review of some later results. The Pollard, Knight, and Davis et al.
approaches are related in basing results on the convexity of the LAD criterion func-
tion. Knight (1989, 1991), as well as Phillips (1995), Hercé (1996) and Koenker
and Xiao (2004), treat LAD or conditional quantile estimation in non-stationary
processes, and Knight (1999) in heteroskedastic processes. The methods of proof
in the present study, using generalized functions to represent the LAD/quantile
estimator, are most closely related to those of Phillips (1991, 1995).

Each of the contributions just listed deals with estimation in a process with a
finite number of parameters. Some results are available for increasing-order mod-
els in the literature on M− estimators, which for sufficiently weak restrictions
on the objective function includes quantile estimation as a special case. Port-
noy (1985), for example, examines M−estimation in regression contexts where the
number of parameters grows without bound, but the conditions in this and related
papers include differentiability of the objective function, ruling out quantile esti-
mation. Welsh (1988) requires weaker conditions on the objective function which
allow quantile estimation, and provides an explicit application of his results to
that context, but treats cases of regression models with i.i.d. errors, and so cannot
accommodate many time series applications. Davis and Dunsmuir (1997) prove a
limit theorem for estimation of finite-order ARMA processes and regression models
with finite-order ARMA errors, but do not consider increasing-parameter models.

We therefore have well-established asymptotic results for OLS in truncations
of infinite-order processes, and for quantile estimation in finite-order processes or
increasing-order cases with conditions that rule out many time series applications.
The next section of this paper contributes analogous results for quantile estimates
of parameters of truncations of infinite-order processes, applicable in cases with
dependence. As an example, the results can be applied where an AR(p) model
is used to model a more general process which may be approximated arbitrarily
well as p→∞, p

T → 0, (T being the sample size), and is therefore a case which
is of substantial practical importance in time series problems; however, they are
applicable much more generally.

3. Asymptotic theory for conditional quantiles of an infinite-order regression

We first present the general result; the proof of the theorem, using generalized
functions to represent the conditional quantile estimator (including LAD, for the
conditional 50th percentile), is in the Appendix.

Consider a pair of discrete stochastic processes {yt, Xt}, and an increasing
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sequence of σ-fields {=t}, where the vector (of possibly infinite dimension) Xt is
measurable w.r.t. =t. The process {yt} is related to {Xt} by an approximation
of possibly infinite order. Denote by χq(yt) ≡ χq (yt|=t) the qth quantile of the
conditional distribution of yt. Define the check function:

fq(x) ≡
[(

q − 1
2

)
+

1
2
sgn(x)

]
x; (2.1)

this function, which is the basis of the criterion function for estimation of the
parameters of the quantile regression model, reduces to the function |x| where
q = 1

2 . Like the absolute value function, it is non-differentiable at x = 0. However,
following Phillips (1991, 1995), we can treat the function fq(x) as a weak limit of
a sequence of smooth functions fm

q (x) (defined in the Appendix, at A.1), which
have the property of being continuously differentiable. For the purposes of the
present paper, we need only consider functions which are three times continuously
differentiable. We can also define the generalized derivatives for the generalized
function fq(x), allowing us to speak of f ′q(x) and f ′′q (x) as weak limits of fm′

q (x)

and fm′′

q (x) (see the Appendix, A.7). These operations are treated in detail in
the Appendix. For a general reference on generalized functions, see Gel’fand and
Shilov (1964).

Next define the row vector Xt (k) ≡ (X0,t, X1,t, . . . , Xk,t) with X0,t = 1; we
allow for infinite k and corresponding Xt (∞) . For any k < ∞, Xt (∞) can be
partitioned as
Xt (∞) = (Xt(k), Xt(k + 1,∞)); analogously, partition the column vector γ(∞) as
(γ(k)′, γ(k + 1,∞)′)′.

The assumption following uses a scaling matrix VT (k), which may be thought
of as being such that VT (k)′VT (k) = Σ, the covariance matrix of Xt(k), where the
latter exists.

Assumption 1. For a sequence of (possibly random) non-singular matrices {VT (k)},

- (a)Xt(k)VT (k)−1 is =t-measurable for all T, k

- (b) χq (yt|=t) = Xt (∞) γq (∞)
- (c) et −$q = yt −Xt(∞)γq(∞), where $q is a constant, is such that
. (i) {et, Xt} is a stationary ergodic sequence
. (ii) the p.d.f. of e, pe(x), exists and is continuous at x = $q

. (iii)
{
f ′q(et −$q),=t

}
is a m.d. sequence
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- (d)4. sup1≤t≤T max
∣∣Xt(k)V −1

T (k)
∣∣ = op(1)

- (e)

max

∣∣∣∣∣
T∑

t=1

VT (k)−1Xt(k)′Xt(k)VT (k)−1 − Ik+1

∣∣∣∣∣ = op(1)

- (f) There exists a monotonically increasing function ω(x) such that k =
ω(T ) →∞ as T →∞ and

sup1≤t≤T |Xt [k + 1,∞) γq [k + 1,∞)| = op(T−
1
2 ).

Parts (a) through (e) of this assumption have antecedents in the previous
literature. Parts (a), (d) and (e) are similar to parts (ii), (iii), (iv) respectively
of Theorem 2 (LAD with random regressors) of Pollard (1991). Part (b) states
linearity of the conditional quantile function, also assumed in typical treatments of
LAD asymptotics. Part (c) is analogous to the error assumption of Pollard (1991),
and embodies the common requirement that the density of the error exist and be
continuous at a particular point (typically 0). Part (f) is particular to the case
we treat here: it states that the approximation error induced by a truncation to
order k of the infinite linear process can be made suitably small as k, T→∞. Note
that condition (f) is satisfied if components of Xt are bounded in probability and∑∞

i=1 |γqi| < ∞ (as for example for an AR(∞) representation of an ARMA(p, q)),
or if γ(k) and Xk,t satisfy complementary conditions such as that γ(k) declines
exponentially in k while Xk,t grows at most at a polynomial rate as k→∞, for
k = Tα, α ∈ (0, 1

2 ).
We denote by γ̂q(k) the quantile estimator of γq(k):

γ̂q(k) = arg min
γ

T∑
t=1

fq (yt −Xt(k)γ) . (2.2)

For any fixed5 k′ < k, define Ωk′ ≡
[

Ik′ 0
0 0

]
, where Ik′ is the identity matrix of or-

der k′. We are ready now to formulate the result about the asymptotic distribution
of the quantile estimator.

4For any matrix X, max |X| denotes in this paper the absolute value of the largest
component of the matrix.
5While k′ could be defined to grow with k, we concentrate here on a fixed k′ to
simplify the derivations below.

5



Theorem 1. Under Assumption 1, as T →∞, k = ω (T ),

Ωk′VT (k) (γ̂q(k)− γq(k)) ⇒ N

(
0,

q(1− q)
pe($q)

Ωk′

)
.

Proof: See the Appendix.

With additional conditions (sufficient conditions would comprise the existence
of the first two moments of X, and a rate condition such as k = o(T−

1
2 ) —see for

example Berk 1974) consistent estimates of VT (k)−1 can be obtained as Σ̂−
1
2 , where

Σ̂ is a consistent estimate of the k × k covariance matrix of Xt(k). The theorem
then fully characterizes the asymptotic distribution of the estimated quantiles.

4. Simulation example

In this section we illustrate the application of these results using the example
of the approximation of a moving average process by an autoregression, estimated
by quantile regression. Consider the MA(`) process with ` = 2,

yt = εt + θ1εt−1 + θ2εt−2, (3.1)

where {εt} is a white-noise process and the roots of the polynomial z2 + θ1z + θ2 =
0 are all inside the unit circle, implying an invertible MA. This process (or its
analogue for other values of `) can be represented as an infinite-order autoregression
yt =

∑∞
i=1 αiyt−i + εt, where the coefficients are absolutely summable, so that the

approximation can be made arbitrarily good for a finite number of autoregressive
terms p, as long as p→∞ and p

T → 0 at an appropriate rate. Properties of this
autoregression are well understood in the LS regression case; see Galbraith and
Zinde-Walsh (1994) on estimation of an MA via this approximation. The results in
section 3 of the present paper establish that we can also estimate the autoregression
consistently via quantile regression.

To illustrate the results of doing so, we generate examples of (3.1) by simula-
tion, using relatively heavy tailed t5− distributed errors to emulate a case in which
LAD (or other quantile) regression might be chosen for its robustness to large er-
rors. (In this case the estimated quantiles are essentially the same except for the
values of the intercept, although in other contexts one might wish to allow different
models for different quantiles of the distribution.) We use values of the parameter
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vector (θ1, θ2) of (0.8, 0.15), (0.6, 0.3), (0.6, -0.2) and (- 0.6, 0.3) respectively, and
10 000 simulated samples. The Figures 1(a–d) and 2(a–d) present results for LAD
estimation (q = 0.5) of the first AR coefficient; similar results are obtained for
other quantiles (the empirical conditional quantiles differ primarily in the value of
the intercept) and the other AR coefficients. For a first sample size of T = 200,

the infinite-order AR representation of the process is truncated to an AR(8), and
this truncation is estimated by quantile regression. The empirical distribution of

the t-type statistic for this first coefficient, γ̂
(1)
q (k)− γ

(1)
q (k) scaled by its standard

error,6 is presented in Figure 1 for each case, together with the normal distribution
scaled to the same empirical variance. We see reasonably good conformity with the
normal at this sample size and AR order, although some considerable finite-sample
truncation bias is observable in Figure 1c, a process for which the coefficients in
the AR expansion decay relatively slowly. Next, in Figure 2, we present analo-
gous results, but for T = 1000 and an AR order of 16, so that the truncation
bias is smaller. We now observe very good conformity with the asymptotic normal
distribution even in the less-well-behaved case c.

5. Concluding remarks

Theorem 1 states that consistent and asymptotically normal estimates result
from application of the quantile estimator to a finite truncation of an infinite-
order model that represents a true process, where the order of truncation increases
with sample size. In time series contexts, the results will be useful for quantile
estimation where a process can be represented by, e.g., an infinite-order AR, MA
or ARCH process, but where a representation with fixed, finite order is not valid;
the simulations reported in Section 4 for one such case suggest that the asymptotics
provide a reasonable guide to the finite-sample distributions for moderately large
samples and appropriate truncation order. As well, the results can be applied to
series expansion for a conditional quantile.

Note that we assume only that a specific quantile is represented as in As-
sumption 1(b), and that the approximation error satisfies the other conditions
formulated in Assumption 1. With respect to time series applications, note also
that while we can use this method to estimate parametric models such as the
ARMA, the infinite-order representation addressed in this theorem is more general
than representations such as the ARMA. For ARMA estimation we would take yt

in Assumption 1 to be an observable process and {Xt} to be a sequence of lags

6The coefficients γ of the infinite-order representation can be obtained from the
standard recursive expression; see for example Fuller (1976).
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of this process and innovations. However, Theorem 1 says nothing specific about
the nature of the set of series used for approximation of the original series: it
can consist of other non-linear functions of the innovations, or the set can include
auxiliary variables. Such variables in the linear representation need only meet the
requirements of Assumption 1.

This result therefore complements those listed earlier which have established
asymptotic properties of L1−norm estimates in finite stationary linear processes,
unit root processes, infinite-variance processes, and heteroskedastic processes, and
validates L1−norm estimation in a class of cases for which the estimated model
is used non-parametrically as an approximation to some underlying process whose
precise form may be unknown or non-finite.

8







References

Berk, K.N. (1974) Consistent Autoregressive Spectral Estimates. Annals of Statis-
tics 2, 489–502.

Bhansali, R, (1978) Linear prediction by autoregressive model fitting in the time
domain. Annals of Statistics 6, 224-231.

Bierens, H.J. (1994) Topics in Advanced Econometrics. Cambridge University
Press, Cambridge.

Bloomfield, P. and W.L. Steiger (1983) Least Absolute Deviations: Theory, Appli-
cations, and Algorithms. Birkhauser, Boston.

Braun, P.A. and S. Mittnik (1993) Misspecifications in Vector Autoregressions and
their Effects on Impulse Responses and Variance Decompositions. Journal of
Econometrics 59, 319-341.

Chen, X.R., Z.D. Bai, L.C. Zhao and Y.H. Wu (1990) Asymptotic Normality of
Minimum L1− Norm Estimates in Linear Models. Science in China A, 1311-1328.

Davis, R.A. and W.T.M. Dunsmuir (1997) Least Absolute Deviations Estimation
for Regression with ARMA Errors. Journal of Theoretical Probability 10, 481-497.

Davis, R.A., K. Knight and J. Liu (1992) M-estimation for autoregressions with
infinite variance. Stochastic Processes and Applications 40, 145-180.

Fuller, W. A. (1976) Introduction to Statistical Time Series. Wiley, new York.

Galbraith, J.W. and V. Zinde-Walsh (1994) A Simple, Non-iterative Estimator for
Moving Average Models. Biometrika 81, 143–155.

Galbraith, J.W. and V. Zinde-Walsh (1997) On Some Simple, Autoregression-
based Estimation and Identification Techniques for ARMA Models. Biometrika
84, 685–696.

Gel’fand, I.M. and G.E. Shilov (1964) Generalized Functions, Vol.1: Properties
and Operations. Academic Press, San Diego.

Gonçalves, S. and L. Kilian (2005) Asymptotic and bootstrap inference for AR(∞)
processes with conditional heteroskedasticity. Working paper.
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