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(̈·) Second-order time derivative
˙(·) First-order time derivative

(̂·) Operator (Note that not all operators have this accent.)
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(·)AO Atomic orbital basis

(·)MO Molecular orbital basis
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MO Molecular spin-orbital
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QFT Quantum Fourier transform
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SPSA Simultaneous perturbation stochastic approximation

TDSE Time-dependent Schrödinger equation

TISE Time-independent Schrödinger equation

UCC Unitary coupled cluster

UCCSD Unitary coupled cluster singles-and-doubles
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Abstract

Using the laws of quantum mechanics, it is possible to simulate the time evolution of

molecular systems. The results of these simulations are of great importance to fields such

as combustion, materials science, and drug design. They can be used to determine chemical

properties such as critical points and reaction rates. However, the dimension of the Hilbert

space that describes the wave function of a molecule scales exponentially with the size of

the system. A solution to this scaling problem is to use quantum computers to simulate

molecules. In this thesis, a strategy for conducting molecular dynamics simulations is ex-

plained in detail. This strategy involves using a hybrid algorithm known as the variational

quantum eigensolver (VQE). The algorithm takes advantage of the computational power of

both classical and quantum computers. It works by varying optimization parameters as-

sociated with the electronic wave function until the total electronic energy is minimized.

Born-Oppenheimer molecular dynamics is then employed to determine the motion of the

nuclei based on the results of the VQE. This method was tested by simulating the time

evolution of H2 using a quantum computer simulator. Attempts were also made to repeat

this simulation with a superconducting quantum computer.

Additionally, techniques to improve the efficiency of the VQE and the BOMD method

are presented in this thesis. The first strategy consists in varying the number of quantum

measurements during the VQE’s optimization procedure. It was demonstrated that the num-

ber of measurements needed could be reduced by a factor of almost 3 for H2 by varying the

number of measurements based on an exponential relationship. It was also shown that the

initial guess for the optimization parameters could be improved during a BOMD simulation
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by utilizing results from previous time points. The average relative difference between the

guessed parameters and the optimal ones was 2.5% when using a linear extrapolation tech-

nique to simulate the time evolution of H2. On the other hand, it was 35% when employing

perturbation theory to generate guesses.
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Abrégé

À l’aide des lois de la mécanique quantique, il est possible de simuler l’évolution tem-

porelle de systèmes moléculaires. Les résultats de ces simulations sont d’une grande im-

portance dans plusieurs domaines tels que la combustion, la science des matériaux et la

conception de médicaments. Ils peuvent être utilisés afin de déterminer des propriétés chim-

iques comme un point critique et la vitesse de réaction. Toutefois, la dimension de l’espace

de Hilbert décrivant la fonction d’onde s’accrôıt exponentiellement avec la taille du système.

Une solution à ce problème est d’utiliser un ordinateur quantique au lieu d’un ordinateur

classique pour simuler des molécules. Dans cette thèse, une stratégie pour simuler la dy-

namique des molécules sera expliquée en détail. Cette stratégie implique l’utilisation d’un

algorithme hybride connu sous le nom de «Variational Quantum Eigensolver» (VQE). Ce

dernier exploite la puissance non seulement d’un ordinateur quantique, mais aussi d’un ordi-

nateur classique. Il fonctionne en variant les paramètres d’optimisation associés à une fonc-

tion d’onde électronique jusqu’à ce que l’énergie électronique totale soit minimisée. La dy-

namique moléculaire de Born-Oppenheimer (BOMD) est ensuite employée pour déterminer

la position des noyaux d’après les résultats du VQE. Cette méthode fut testée en simulant

l’évolution temporelle d’une molécule de H2 à l’aide d’un simulateur d’ordinateur quantique.

Ce test fut aussi tenté avec un ordinateur quantique composé de circuits supraconducteurs.

Additionnellement, des techniques pour améliorer l’efficacité du VQE et de la BOMD

sont aussi présentées dans cette thèse. La première stratégie consiste à varier le nombre

de mesures quantiques lors de la procédure d’optimisation du VQE. Il fut démontré que le

nombre requis de mesures peut être réduit par un facteur de presque 3, pour une molécule
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d’hydrogène, en variant le nombre de mesures d’après une fonction exponentielle. Il fut aussi

illustré que la valeur de départ des paramètres d’optimisation pouvait être amélioré pendant

la BOMD en utilisant les résultats des temps précédents. Par exemple, la différence relative

moyenne entre les paramètres de départ et les paramètres optimaux pour la simulation d’une

molécule d’hydrogène fut de 2,5% en employant une technique d’extrapolation linéaire. En

terme de comparaison, elle fut de 35% pour des paramètres de départ déterminés à l’aide de

la théorie de la perturbation.
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CHAPTER 1
Introduction

1.1 Motivation

Quantum mechanics is needed to predict the dynamics of atoms and molecules at small

scales [1–3]. One of the postulates of quantum mechanics states that any system of particles

can be described using a wave function Ψ [4]. Knowing the wave function, which is also

called the quantum state, it is possible to determine any property of the system.

To determine Ψ and how it evolves in time t, the time-dependent Schrödinger equation

(TDSE) can be employed. This equation is defined as [1, 4]:

i~
∂Ψ
∂t

= ĤΨ, (1.1)

where ~ is the reduced Planck constant and Ĥ is the Hamiltonian of the system. The

Hamiltonian corresponds to the sum of the kinetic energy operator T̂ and the potential

energy operator V̂ .

Unfortunately, attempting to solve the TDSE using a classical computer is challenging

due to the scaling of the resources required to describe a quantum state. For a single particle,

the quantum state can be described using a vector |Ψsub,0〉 in a Hilbert space with dimension

d0. If a second particle with a Hilbert space of dimension d1 is added to the system, one

might expect from classical mechanics that the Hilbert space of the system would have

the dimension d0 + d1. However, in quantum mechanics, a system |Ψ〉 composed of two

subsystems, |Ψsub,0〉 and |Ψsub,1〉, is expressed in terms of a tensor product ⊗ as shown in

1



1.1. MOTIVATION 2

the following equation:

|Ψ〉 = |Ψsub,0〉 ⊗ |Ψsub,1〉. (1.2)

The Hilbert space of such a system has dimension d0d1. For a system composed of nsub

subsystems, the dimension of the Hilbert space corresponds to d0d1 . . . dnsub−2dnsub−1 [5].

This means that the Hilbert space scales exponentially with the number of particles in a

quantum system.

To circumvent this issue, scientists have developed methods over the years to compute

approximate solutions to the TDSE [6]. These methods take advantage of techniques such

as the Hartree-Fock method [2, 7], perturbation theory [8, 9], or density functional theory

(DFT) [10, 11]. While they provide sufficiently accurate results in some instances, they fail

in a number of other cases. For example, the first two approaches are typically unable to

correctly predict dissociation energies [12] while the last one tends to fail for transition states

and covalent bonding [13].

As an alternate solution to this dimensionality problem, Richard Feynman proposed

using computers that take advantage of the laws of quantum mechanics [14] in order to

simulate quantum systems. On such a computer, the amount of data that can be processed

scales exponentially with the number of quantum bits (qubits) available. Each of these qubits

corresponds to a two-level system. The state of a single qubit is the following [15]:

|Ψ〉 = γ0|0〉+ γ1|1〉, (1.3)

where |Ψ〉 is normalized and γ is a complex coefficient. For a system of two qubits, the

quantum state becomes the tensor product of two single-qubit states. The resulting state
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can be represented as:

|ψ〉 = γ00|00〉+ γ01|01〉+ γ10|10〉+ γ11|11〉. (1.4)

As more qubits are added, |ψ〉 becomes the tensor product of a larger number of single-qubit

states. This means that a system containing Nq qubits can store 2Nq values [15, 16].

Constructing a quantum computer that can run quantum algorithms is proving to be a

challenging task, however. This is partly because quantum computers are not closed systems.

In reality, they interact with their surrounding environment. Some of these interactions are

necessary, like when measuring the state of a qubit. However, other interactions are unde-

sired and can adversely alter a qubit’s quantum state. Those unwanted changes are known

as quantum noise or decoherence [15]. To quantify the impact of decoherence, characteristic

times known as decoherence times τQ can be used to quantify the rapidity at which the envi-

ronment affects the state of a quantum computer. The decoherence times therefore impose a

limit on the maximum number of quantum operations that can be applied to a qubit [17]. To

be more precise, the maximum number of operations that can be applied is proportional to

τQ/τO, where τO corresponds to the time required to perform an operation [15]. Fortunately,

there exist methods for correcting errors such as those which are due to decoherence. One

approach, known as quantum error correction, involves employing multiple qubits to encode

a single-qubit state. Using this strategy, it is then possible to measure errors and apply

corrections without destroying the encoded state [18]. According to an estimate made by

Fowler et al. [19], though, the number of qubits needed to encode a single-qubit state is on

the order of 103 to 104. In contrast, today’s largest quantum computers only contain a few

dozen qubits [20].
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Despite these challenges, simulations of quantum systems using multiple qubits have

been successfully carried out using trapped ions [21] and superconducting circuits [22]. How-

ever, no one has yet been able to simulate the time evolution of a molecule using a quantum

computer. Successfully completing such a computation would be an important milestone in

the quest to solve quantum chemistry problems that are intractable on classical computers.

Moreover, it is worth noting that these problems have a wide range of applications. For

example, it would become possible to simulate combustion reactions more accurately. Such

simulations would help provide a better understanding of combustion reaction mechanisms

and they could be used to determine reaction rates [23]. This would provide additional tools

to engineers who are designing increasingly efficient combustion engines.

Another area that would greatly benefit from the ability to solve complex molecular

dynamics problems is materials science. For example, it would become easier to study

materials under extreme conditions such as high temperatures, high pressures, and radiation.

It can be very difficult or even impossible to study materials which are under such conditions

in a laboratory setting. These conditions are encountered when trying to generate energy

using nuclear fusion for instance [24]. A key concern in nuclear fusion power plants is the

ability of the first wall to resist high levels of neutron radiation. This radiation can lead to

a reduction of the wall’s fracture toughness. Being able to efficiently simulate the effects of

neutron radiation on the wall would help select the optimal wall material [25]. In a similar

manner, the computational power of quantum computers could be harnessed to help study

oxidation reactions such as corrosion [26]. Additionally, it could be used to develop new gate

dielectrics for field effect transistors [27] or to find new materials that could improve the

efficiency of solar cells [28].
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Lastly, the arrival of quantum computers could also have a great impact on the field

of medicine. For example, predicting how proteins fold could be done more accurately.

Being able to make those predicitons is an invaluable tool when designing new drugs [29].

Furthermore, quantum computers could help design artificial molecular machines. These

machines could be utilized to replicate the behaviour of natural biomolecular machines or,

even, to interact with them [30]. It has already been shown that artificial molecular machines

can be used to alter the mechanical properties of materials [31]. They can also act as

photoswitchable catalysts, which only become active when exposed to light [32].

1.2 Literature Review: Ab Initio Molecular Dynamics

The focus of this thesis will be on ab initio molecular dynamics (AIMD) methods. The

term ab initio indicates that the methods rely on first principles, which in this case are the

laws of quantum mechanics [6]. At the other end of the spectrum, there also exist a wide

range of molecular dynamics approaches which use parameterized potentials to predict the

time evolution of molecules. Although they are less computationally expensive than AIMD

methods, they rely on a set of parameters which have been fitted to experimental data. As

a consequence, they tend to provide inaccurate results when used to simulate systems that

are markedly different from the experiments used to determine the parameters [33, 34].

One of the first techniques for simulating the time evolution of molecules was developed

by Ehrenfest [35] in 1927. It works by treating all the nuclei in the system as classical point

particles and removing the kinetic energy operator for the nuclei in the Hamiltonian. In this

form, the Hamiltonian is known as the electronic Hamiltonian Ĥe. To predict the position

of the nuclei at future points in time, the TDSE and the electronic Hamiltonian are used

to determine a time-dependent wave function Ψe (t). This wave function is then employed
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to determine the force acting on each nuclei. Afterwards, the positions of the nuclei at the

next time point are found by integrating Newtonian equations of motion. The advantage of

this method is that the Hamiltonian only needs to be diagonalized at the beginning of the

simulation. However, the time steps must be chosen based on the motion of the electrons

which evolve at a much shorter time scale than the nuclei [6].

An alternative approach is to replace the TDSE in Ehrenfest molecular dynamics by

the time-independent Schrödinger equation (TISE), which corresponds to:

ĤeΨe = EΨe, (1.5)

where E is called the total electronic energy. This different method is known as Born-

Oppenheimer molecular dynamics (BOMD) [6]. In this case, since the electronic wave func-

tion is solved using the TISE, the time step is selected based on the time scale associated

with the motion of the nuclei. The drawback though is that the electronic Hamiltonian must

be diagonalized at each time step. This is a computationally expensive task for a classical

computer.

In 1985, Car and Parrinello [36] developed an approach that can be considered a com-

promise between Ehrenfest molecular dynamics and BOMD. This method works by adding

a fictitious kinetic energy term, which is associated with the dynamics of the electronic wave

function, to the Lagrangian describing the system. The resulting equations of motion then

describe not only the dynamics of the nuclei with mass MI , but also the dynamics of com-

ponents of Ψe with fictitious mass µ. The consequence is that the electronic Hamiltonian

only needs to be diagonalized once like for Ehrenfest molecular dynamics, but a longer time
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step can be chosen. This time step must still be about an order of magnitude smaller than

one that is selected for the BOMD method however [6].

As explained in the previous section, the issue when using one of these three methods on

a classical computer is that the computational resource requirements scale exponentially with

the size of the simulated system. As an altenative, Lloyd [37] showed in 1996 that quantum

computers could be used to simulate the evolution of a quantum system in polynomial time.

Mathematically, this time evolution can be described as:

|Ψ (t)〉 = Û (t) |Ψ (0)〉 = exp
(
−iĤt

)
|Ψ (0)〉, (1.6)

where Û (t) is a unitary operator. In his seminal paper, Lloyd demonstrated that this oper-

ator can be approximated using Trotter decomposition, as shown in the following equation:

Û (t) ≈
(

exp
(
−iĤ0t

j

)
. . . exp

(
−iĤj−1t

j

))j
. (1.7)

The operator Û (t) can be expressed in this manner as long as the Hamiltonian can be written

as the following sum:

Ĥ =
j−1∑
i=0

Ĥi, (1.8)

where each term Ĥi only involves a portion of the qubits on a quantum computer. To be

able to simulate the time evolution of |Ψ (t)〉 in polynomial time, the number of terms in the

Hamiltonian must also scale polynomially with the size of the system.

Following this breakthrough, Wiesner [38] and Zalka [39] suggested representing a sys-

tem’s wave function using 2Nq points in space. These points can then be stored in the

quantum state of Nq qubits. Furthermore, since the kinetic portion of the Hamiltonian

is diagonal in the momentum basis, they suggested using the quantum Fourier transform
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(QFT) [40] when applying Û (t). The purpose of the transform and its inverse is to change

the basis of the qubits from the position basis to the momentum basis and vice versa. With

this approach, Lidar and Wang [41] showed in 1999 that it was possible to compute the

thermal rate constants of chemical reactions in polynomial time. Then, in 2008, Kassal et

al. [42] improved Zalka and Wiesner’s method and demonstrated that molecular systems

could be simulated in O (N2
totε

2
V ) time, where Ntot is the number of particles and εV is the

precision of the discretized potential energy function. They also developed strategies for

efficiently determining reaction probabilities and state-to-state transition probabilities.

The previous approaches for simulating the time evolution of a quantum state all use the

first quantization language. In this formulation of quantum mechanics, the wave function can

be expressed in terms of position or momentum coordinates. An alternate strategy, known

as second quantization, is to express |Ψ〉 as an occupation-number vector. This vector is

shown in the following equation:

|Ψ〉 = |k0k1 . . . kNSO−1〉, (1.9)

where NSO is the number of spin-orbitals that could be used to represent the wave function.

If ki is 1, it means that the ith spin-orbital is occupied, while if it is 0, it is unoccupied [12].

Using the second quantization language, Abrams and Lloyd [43], developed an algorithm in

1999 to simulate the time evolution of a quantum state on a quantum computer. In their

algorithm, the state of the qubits is set such that it represents the occupation-number vector

associated with a quantum state. The simulation then proceeds by applying the unitary

operator given in eq. (1.7). Like for the first quantization methods, their algorithm can

complete a simulation in polynomial time. Since then, numerous improvements have been
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made to improve the scaling of this approach, which is now known as the phase estimation

algorithm (PEA) [44–46].

Another strategy for solving the time-dependent Schrödinger equation in polynomial

time is to combine the power of classical computers and quantum computers. In 2017, Li

and Benjamin [47] developed an algorithm that employs a variational approach for solving

the TDSE. It works by expressing the quantum state in terms of parameters θ. The evolution

of these parameters is then described using the following Euler-Lagrange equation:

∑
q

Mk,qθ̇q = Pk. (1.10)

Here, θ̇q is the time derivative of θq, while Mk,q and Pk are real coefficients which are defined

as:

Mk,q = i
∂〈Ψ|
∂θk

∂|Ψ〉
∂θq

+ H.c., (1.11)

and

Pk = ∂〈Ψ|
∂θk

Ĥ|Ψ〉+ H.c. (1.12)

In this case, H.c. stands for Hermitian conjugate and 〈Ψ| is the Hermitian conjugate of

|Ψ〉. To begin the algorithm, the coefficients Mk,q and Pk are evaluated using a quantum

computer at the initial time point. The Euler-Lagrange equations are then solved on a

classical computer in order to determine new parameters θ at the next time point. This

process is repeated until the total time is reached. At this stage, the final quantum state

can be obtained using the final parameters.

Finally, it is also possible to conduct molecular dynamics simulations by using a quantum

computer to solve the TISE at every time point. A classical computer computer can then be

employed to solve the Newtonian equations of motion for BOMD. At the moment, there exist
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a few methods for solving the TISE using quantum computers. These will be introduced in

the following section. For instance, it was mentioned by O’Malley et al. [48] that one could

run molecular dynamics simulations by using the variational quantum eigensolver (VQE) to

compute the forces acting on the nuclei of a molecule.

1.3 Literature Review: Electronic Structure Methods

On a classical computer, the most expensive part of the BOMD method is to diagonalize

the electronic Hamiltonian in order to determine the electronic structure of the molecule.

However, Aspuru-Guzik et al. [44] showed in 2005 that it was possible to use the phase esti-

mation algorithm to solve the electronic structure problem in polynomial time. To determine

the total electronic energy E, they took advantage of the fact that, when applied to |Ψe〉,

the unitary operator Û (t) given in eq. (1.6) can be written as:

Û (t) |Ψe〉 = exp
(
iĤet

)
|Ψe〉 = exp (iEt) |Ψe〉 = exp (i2πϕ) |Ψe〉. (1.13)

Here, ϕ corresponds to the phase of the quantum state’s eigenvalue. Since then, several

variants of this algorithm have been developed to increase its efficiency [49, 50]. So far, the

PEA has been used to determine the dissociation curve of H2 using photonic devices [51, 52]

and superconducting qubits [48].

As an alternative, Peruzzo et. al [53] proposed a method known as the variational

quantum eigensolver (VQE) in 2014. This algorithm takes advantage of both classical and

quantum computers. It works by first parameterizing the electronic wave function. Given

some parameters θ, the total electronic energy E is measured using a quantum computer.

The parameters are then updated using a classical optimization algorithm. This process is

repeated until E is minimized. One of the main advantages of this method is that it requires
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a smaller number of quantum gates than the PEA for small molecules. Additionally, its vari-

ational nature makes it more resilient to noise than the PEA [54]. In their paper introducing

the VQE, Peruzzo et al. were able to obtain the potential energy surface (PES) of HeH+

using a quantum photonic chip. The algorithm has also been tested on superconducting

quantum computers. For example, O’Malley et al. [48] used it to determine the PES of H2,

while Kandala et al. [55] achieved the same goal for H2, LiH, and BeH2. On trapped-ion

quantum computers, Shen et al. [56] obtained the dissociation curve for HeH+, while Hempel

et. al [57] did the same for H2 and LiH. Total electronic energy values for H2O were also

computed by Nam et al. [58] using trapped-ions.

1.4 Objectives

As demonstrated in Section 1.1, quantum computers promise to solve, in polynomial

time, a plethora of chemistry problems which have engineering applications but are in-

tractable on classical computers. However, no one has yet been able to take advantage of

quantum computers to simulate the time evolution of molecular systems. For that reason,

the goal of this research project was to develop numerical schemes and methods that are

able to perform molecular dynamics simulations using today’s small and noisy quantum

computers. To achieve this objective, it was decided to use the BOMD method along with

a quantum computer algorithm that can find approximate solutions to the TDSE. This ap-

proach was selected since it has already been demonstrated that the PES of molecules could

be determined using real quantum devices. To solve the electronic structure problem, the

VQE was chosen because it is more resilient to noise than the PEA and it requires less

quantum gates for small molecules. As for the second objective, it was to simulate the dy-

namics of H2 using the BOMD method on a quantum computer simulator. There are a few
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reasons why H2 was selected to test the quantum algorithm. Firstly, molecular hydrogen

only contains two electrons. This number is large enough for H2 to experience interelectronic

interactions [12]. Yet, it is sufficiently small to allow the time evolution of H2 to be predicted

using today’s quantum computers [48]. Furthermore, simulating a small number of electrons

makes analyzing the results of a simulation an easier task. Other sub-objectives were also

defined in order to improve the efficiency of the VQE and the BOMD method. One of these

sub-objectives was to minimize the number of quantum measurements required during the

optimization procedure of the VQE. Another sub-objective was to use results from previous

time points in the BOMD method in order to compute more accurate initial guesses for the

VQE’s optimization parameters.

1.5 Organization of the Thesis

In this thesis, an overview of Born-Oppenheimer molecular dynamics is first presented

in Chapter 2. Afterwards, a detailed description of the variational quantum eigensolver

is given in Chapter 3. Results of VQE simulations conducted to determine the potential

energy surface of H2 are analyzed in Chapter 4. These calculations were performed using a

quantum computer simulator. A strategy for reducing the number of quantum measurements

in the VQE’s optimization procedure is also presented in this chapter. As for Chapter 5,

it details how to compute the energy gradient and integrate the equations of motion in the

BOMD method. In Chapter 6, a molecular dynamics simulation of H2 is conducted using a

quantum computer simulator. A strategy for improving the initial guess of the optimization

parameters in the BOMD method is also described and tested. As for Chapter 7, it contains

the results of an attempt to run a molecular dynamics simulation using a superconducting
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quantum computer. To complete this thesis, some concluding remarks as well as suggestions

for future work are given in Chapter 8.



CHAPTER 2
Overview of Born-Oppenheimer Molecular Dynamics

2.1 Molecular Hamiltonian

As with other AIMD methods, the goal of Born-Oppenheimer molecular dynamics

(BOMD) is to find an approximate solution to the TDSE. Assuming relativistic effects are

negligible, the Hamiltonian Ĥ for a system of molecules is defined as [12]:

Ĥ =
N−1∑
I=0

T̂nuc,I +
n−1∑
i=0

T̂elec,i +
N−1∑
I<J

V̂nuc−nuc,I,J +
N−1,n−1∑

I,i

V̂nuc−elec,I,i +
n−1∑
i<j

V̂elec−elec,i,j, (2.1)

where N and n are the number of nuclei and electrons in the system, respectively. The

kinetic energy operator of nucleus I corresponds to

T̂nuc,I = − ~2

2MI

∇2
I , (2.2)

while the kinetic energy operator of electron i corresponds to

T̂elec,i = − ~2

2me

∇2
i . (2.3)

In the two previous equations, ~ is the reduced Planck constant, MI is the mass of nucleus I,

me is the mass of an electron, and ∇2 is the Laplacian with respect to the spatial coordinates

of either nucleus I or electron i. The operator for the potential energy due to Coulomb forces

between nuclei I and J is defined as

V̂nuc−nuc,I,J = e2ZIZJ
4πε0|RI −RJ |

, (2.4)

14



2.2. JUSTIFICATION OF ELECTRONIC AND NUCLEAR WAVE FUNCTION
DECOUPLING 15

where e is the elementary electric charge and ε0 is the vacuum permittivity. Additionally,

ZI and RI are the atomic number and the spatial coordinates of nucleus I, respectively.

Lastly, the nuclear-electron potential operator V̂nuc−elec,I,i and the electron-electron potential

operator V̂elec−elec,i,j, which are also based on Coulomb forces, can be found using

V̂nuc−elec,I,i = − e2ZI
4πε0|RI − ri, |

, (2.5)

and

V̂elec−elec,i,j = e2

4πε0|ri − rj|
, (2.6)

where ri are the spatial coordinates of electron i.

2.2 Justification of Electronic and Nuclear Wave Function Decoupling

When deriving the equations for BOMD, a few assumptions need to be made. One of

these assumptions is that the total wave function Ψ can be expressed in terms of electronic

wave functions Ψe,l and nuclear wave functions Ψn,l, as shown in the following equation [59]:

Ψ (r,R, t) ≈
∑
l

Ψe,l (r,R) Ψn,l (R, t) . (2.7)

It is further assumed that the electronic wave functions are solutions to the time-independent

Schrödinger equation (TISE)

ĤeΨe,l = ElΨe,l, (2.8)

where El are electronic eigenenergies and Ĥe is the electronic Hamiltonian. This Hamiltonian

is the same as the molecular one except that the kinetic energy of the nuclei is not included.

The assumption that the total wave function can be expressed in terms of solutions to

the TISE is typically valid since electrons evolve on a shorter time scale than the nuclei.
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This is primarily due to the relatively high kinetic energy of electrons. The result is that the

electrons can adjust to the position of the nuclei rapidly. In other words, the nuclei appear

to be fixed in comparison to the electrons. This means that the electronic wave functions

Ψe,l practically reach steady state for every new configuration of the nuclear wave functions

Ψn,l.

The difference in magnitude between the kinetic energy of the electrons and the nuclei

can be expressed quantitatively as well. The upcoming analysis follows the one that was

presented by Goodisman [60] for diatomic molecules. As a starting point for estimating the

electronic kinetic energy Telec of a diatomic molecule such as H2, the Heisenberg uncertainty

principle [61] can be employed. For position and momentum, this principle is expressed

as [62]:

〈(∆x)2〉〈(∆p)2〉 ≥ ~2

4 , (2.9)

where 〈(∆x)2〉 is the variance of position and 〈(∆p)2〉 is the variance of momentum. For a

diatomic molecule, the variance in the position of the electrons is approximately equal to

the interatomic distance d. As for the variance of momentum, it is defined as:

〈(∆p)2〉 = 〈p2〉 − 〈p〉2, (2.10)

where 〈p2〉 is the expectation value of momentum squared, while 〈p〉 is the expectation value

of momentum. Since electrons do not have a preferred direction in which to move, 〈p〉 is

zero. This means that 〈p2〉 is of the following order of magnitude:

〈p2〉 ∼
(
~
d

)2

. (2.11)
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Furthermore, because the kinetic energy of an electron can be written in terms of momentum,

the size of Telec can be approximated as:

Telec = 〈p
2〉

2me

∼ ~2

2med2 . (2.12)

As for the nuclei, their kinetic energy Tnuc is mainly dependent on their vibrational

energy Evib [60]. To approximate the vibrational energy, a harmonic oscillator can be used.

The energy of a harmonic oscillator is proportional to ~ω, where the angular frequency ω

corresponds to:

ω =
√

k

MI

. (2.13)

Here, the force constant k can be estimated by noting that stretching the molecule for a

distance of approximately d will cause it to dissociate. The energy required for dissociation

is nearly equal to the ionization energy of an electron, which in turn is approximately equal

to the kinetic energy of an electron. Using eq. (2.12), the dissociation energy Edis can be

written as:

Edis = 1
2kd

2 ∼ ~2

2med2 . (2.14)

Solving for the force constant and substituting it into eq. (2.13) gives:

ω ∼ ~
d2
√
MIme

. (2.15)

This means that the vibrational energy of the nuclei has the following order of magnitude [60]:

Evib ∼ ~ω ∼ ~2

d2
√
MIme

. (2.16)
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Figure 2–1: A plot showing the effects of atomic number on the ratio Telec/Tnuc.

As a result, the ratio of the kinetic energy of an electron to the one of a nuclei is of the

following order of magnitude:
Telec
Tnuc

∼ 1
2

√
MI

me

. (2.17)

Since a proton is nearly 2000 times the mass of an electron [63], the ratio is on the order of

20 to 1 for a hydrogen nucleus. As illustrated in Fig. 2–1, it is even larger for more massive

nuclei. For instance, Telec/Tnuc is nearly 60 to 1 for a lithium nucleus, while it is about 90 to

1 for an oxygen nucleus. At worst, Telec is at least an order of magnitude larger than Tnuc.

Therefore, it is justified to use the TISE to solve for Ψe,l when simulating the molecular

dynamics of molecules.
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2.3 Derivation

Having justified the use of the electronic TISE, it is now possible to substitute the total

wave function expansion, given in eq. (2.7), into the TDSE, shown in eq. (1.1). Multiplying

the resulting equation by the complex conjugate Ψ?
e,l of the electronic wave functions and

integrating over the spatial coordinates r of the electrons gives the following set of differential

equations: (
−

N−1∑
I=0

~2

2MI

∇2
I + El

)
Ψn,l +

∑
k

ĈlkΨn,k = i~
∂

∂t
Ψn,l. (2.18)

Here, Ĉlk is the nonadiabatic coupling operator which is defined as [6]:

Ĉlk =
∫

Ψ?
e,l

(
−

N−1∑
I=0

~2

2MI

∇2
I

)
Ψe,kdr

+
N−1∑
I=0

1
MI

(∫
Ψ?
e,l [−i~∇I ] Ψe,kdr

)
[−i~∇I ] . (2.19)

The goal of this operator is to account for the interactions between the multiple electronic

and nuclear wave functions.

Afterwards, the set of differential equations given in eq. (2.18) can be decoupled. This

is achieved by assuming that the effects of the coupling operator on the time evolution of Ψ

are negligible, which gives:(
−

N−1∑
I=0

~2

2MI

∇2
I + El

)
Ψn,l = i~

∂

∂t
Ψn,l . (2.20)

These decoupled differential equations correspond to the Born-Oppenheimer approximation

[64]. This decoupling allows Ψ to be approximated as the product of an electronic and a

nuclear wave function

Ψ (r,R, t) ≈ Ψe,l (r,R) Ψn,l (R, t) . (2.21)
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The assumption that the coupling term is negligible is valid as long as the energy gap between

different electronic wave functions remains small. This is not the case though in reactions

that involve electron transfer for instance [65].

The last step in the derivation of the governing equations is to assume that the nuclei

behave as classical point particles. According to the correspondence principle, the more

massive a particle is, the better it will follow the laws of classical mechanics [66]. Since a

proton is almost 2000 times the mass of an electron [63], this approximation is often valid.

However, this approach can break down if effects such as zero-point vibrations and quantum

tunneling of protons play an important role in the dynamics of a molecular system [6]. This

is the case for hydrogen-bonded systems, such as those involving water, ice, or enzymes,

where proton transfer affects properties like reaction rates [67].

2.4 Summary

Overall, applying the previous approximations leads to the following set of equations:

MIR̈I (t) = −∇I〈Ψe,0|Ĥe|Ψe,0〉 (2.22)

E0Ψe,0 = ĤeΨe,0, (2.23)

where R̈I is the acceleration of the Ith nucleus, Ψe,0 is the wave function of the electronic

ground state and E0 is the corresponding eigenenergy. These equations form the core of the

Born-Oppenheimer molecular dynamics method. The purpose of the first one is to determine

the classical nuclear motion. The right-hand side of that equation corresponds to the forces

acting on the nuclei. These forces are found by computing the negative of the gradient of the

potential energy surface (PES) 〈Ψe,0|Ĥe|Ψe,0〉. They include all forces involving electrons as
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well as the repulsion forces between the nuclei. To determine the PES, the second equation is

used. This equation is the time-independent electronic Schrödinger equation. The interested

reader can refer to Refs. [6, 68] for a detailed derivation of the equations defining the BOMD

method.

Since the goal of this research project is to harness the power of quantum computers to

run molecular dynamics simulations, the PES was determined at every time step using the

variational quantum eigensolver (VQE) [53]. This is an algorithm that takes advantage of

both classical and quantum computers. Once the PES is known, its gradient is calculated on

a classical computer to determine the forces acting on the nuclei. Afterwards, the position

of all nuclei for the following time step is computed by numerically integrating the equations

of motion associated with eq. (2.22). This process is repeated for all subsequent iterations

[6]. A flowchart of the BOMD method, where the VQE is used to compute energy values on

the PES, is shown in Fig. 2–2.
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Figure 2–2: A flowchart of the BOMD method used for this research project.



CHAPTER 3
Variational Quantum Eigensolver

3.1 Overview

The variational quantum eigensolver (VQE) was presented by Peruzzo et al. [53] in 2014

as a method for solving the time-independent Schrödinger equation in polynomial time with

the help of quantum computers. Even though the VQE takes advantage of the computational

power of quantum computing, most of the steps in the algorithm take place on a classical

computer. A flowchart showing the major tasks that must be undertaken is shown in Fig.

3–1.

The first step of the VQE is to select a reference quantum state |Ψref〉 based on the

position of each nuclei in a molecular system. This is achieved on a classical computer

by using techniques such as the Hartree-Fock method [7] or the multiconfigurational self-

consistent field (MCSCF) method [69, 70]. A unitary operator U (θ) known as an ansatz or

an entangler is then selected. The goal of the ansatz is to generate trial states |Ψt〉 given

some parameters θ. A trial state is created by applying the ansatz to the reference state, as

shown in the following equation:

|Ψt〉 = U (θ) |Ψref〉. (3.1)

At this point, the ansatz and the electronic Hamiltonian are expressed in terms of fermionic

creation and annihilation operators. These operators cannot be used directly by a quan-

tum computer. Instead, they must be converted to Pauli operators which are suitable for

23
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Figure 3–1: A flowchart of the VQE algorithm. The step in a dashed box is completed using
a quantum computer while the others are completed using a classical computer.
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quantum computation. U (θ) and Ĥe can then be transformed into quantum gates and

qubit measurements [53]. More details regarding the fermionic operators will be given in

Section 3.3, while methods for converting fermonic operators into quantum gates will be

presented in Sections 3.4 and 3.5.

For the VQE’s following step, the expectation value of the electronic Hamiltonian 〈Ĥe〉

for a trial state is determined using a quantum computer. This expectation value corre-

sponds to a point on the potential energy surface. To approximate it, a technique known

as Hamiltonian averaging is employed [45]. First, the computer’s qubits are initialized such

that they are in the state |Ψref〉. Then, a series of gates which implement U (θ) are applied

to transform |Ψref〉 into |Ψt〉. Afterwards, 〈Ĥe〉 is estimated by measuring |Ψt〉 in an ap-

propriate way. This procedure, from initializing the qubits as |Ψref〉 to measuring |Ψt〉, is

repeated multiple times to improve the accuracy of 〈Ĥe〉. Mathematically, determining the

total electronic energy E associated with the trial state |Ψt〉 can be expressed as:

E = 〈Ĥe〉 = 〈Ψt|Ĥe|Ψt〉 = 〈Ψref |U † (θ) ĤeU (θ) |Ψref〉, (3.2)

where 〈Ψref | and U † are the conjugate transpose of |Ψref〉 and U , respectively. The Hamil-

tonian averaging procedure will be explained in more details in Section 3.6.

Once E is determined, it is sent along with the parameters θ to an optimization algo-

rithm on a classical computer. The optimizer then determines a new set of parameters in

an attempt to minimize E. Those parameters are utilized to modify the ansatz and create

a new trial state. Next, a new value for the energy is obtained on a quantum computer

by using Hamiltonian averaging. This process is repeated until E is minimized [53]. It is
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important to note that the electronic TISE follows the variation principle [12]

〈Ψ|Ĥe|Ψ〉
〈Ψ|Ψ〉 ≥ E0, (3.3)

where E0 is the true ground state eigenenergy of Ĥe. As a result, the difference between E

and E0 diminishes as lower values of E are determined. The optimization process that is

employed to minimize E will be explained more thoroughly in Section 3.7.

3.2 Reference State

The first step in the VQE is to construct a reference wave function Ψref . The wave

function must describe all the electrons in the molecular system. A convenient way to

do so is to use spin-orbitals ψ. Each spin-orbital can be occupied by an electron. One

spin-orbital is the product of a spatial orbital φ (r), where r are spatial coordinates, and

a spin eigenfunction σ (ms), where ms is a discrete spin coordinate. The two possible spin

eigenfunctions are defined as:

α (ms) =


1 if ms = 1

2

0 if ms = −1
2

, (3.4)

and

β (ms) =


0 if ms = 1

2

1 if ms = −1
2

. (3.5)

Here, α is associated with a spin-up electron while β is associated with a spin-down one [12].

Since electrons in a molecule are indistinguishable fermions, they must satisfy the following
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antisymmetry requirement [4]:

Ψe (x0,x1, . . . ,xNSO−1) = −Ψe (x1,x0, . . . ,xNSO−1) , (3.6)

where only the coordinates of electrons 0 and 1 have been interchanged and NSO is the

number of spin-orbitals used to construct the electronic wave function. Additionally, x0

includes both the spatial and spin coordinates of electron 0. For a system of two electrons,

an electronic wave function containing two spin-orbitals can be written as:

Ψe (x0,x1) = 1√
2

(ψ0 (x0)ψ1 (x1)− ψ0 (x1)ψ1 (x0)) . (3.7)

As a consequence, it is not possible to have electrons that have the same spin and the same

spatial orbital. This is known as the Pauli exclusion principle [71].

In order to enforce the antisymmetry requirement when constructing a wave function,

a Slater determinant can be used [72]. For a system containing n electrons, a possible n× n

Slater determinant ψSD is

ψSD = 1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ0 (x0) ψ1 (x0) · · · ψNSO−1 (x0)

ψ0 (x1) ψ1 (x1) · · · ψNSO−1 (x1)
... ... . . . ...

ψ0 (xn−1) ψ1 (xn−1) · · · ψNSO−1 (xn−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.8)

It should be emphasized that a single Slater determinant may not be sufficient to describe the

exact wave function Ψexact that satisfies the electronic TISE. To better approximate Ψexact,

a linear combination of Slater determinants can be taken. This is shown in the following
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equation:

Ψexact ≈
∑
i

ai (ψSD,i) , (3.9)

where ai are expansion coefficients. It is also important to note that the number of spin-

orbitals must be greater than the number of electrons when multiple Slater determinants

are needed [12]. In practice though, accurately approximating Ψexact is difficult because the

number of possible Slater determinants grows factorially with the number of spin-orbitals

[73]. Fortunately, the reference state used in the VQE does not need to be a highly accurate

approximation of Ψexact.

For this research project, a method known as restricted Hartree-Fock (RHF) [7] was

used to obtain the reference state. This approach works by finding the spin-orbitals that

minimize 〈ΨRHF |Ĥe|ΨRHF 〉, where ΨRHF contains a single Slater determinant. The method

is referred as restricted since the spatial orbitals are forced to be the same for both α and β

spin-orbitals. This ensures that, similar to the exact wave function, ΨRHF is an eigenstate of

the total and projected spin operator [12]. This is not the case for unrestricted Hartree-Fock

where the spin-orbitals are allowed to differ spatially regardless of their spin [74].

Before proceeding any further, some terminology needs to be introduced. To start, the

spatial orbitals which are optimized in the RHF method are known as molecular orbitals

(MOs) and are denoted as φi. Each molecular orbital is composed of a linear combination

of atomic orbitals (AOs), which are labeled as χj. This can be written as:

φi =
∑
j

Cjiχj, (3.10)

where Cji are the coefficients that need to be optimized [7]. Those atomic orbitals are

in turn made up of a linear combination of functions such as Gaussians orbitals. When
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these Gaussian orbitals are used, the AOs are known as contracted Gaussian-type orbitals

(CGTOs). The generalized form of a CGTO which is centered at point A is shown in the

following equation:

χ =
∑
µ

dµNµ (xnGA )
(
ylGA
)

(zmGA ) exp
(
−αµr2

A

)
. (3.11)

Here, Nµ is a normalization constant, αµ and dµ are scaling coefficients, rA is the norm of

the vector from point A to r, while xA, yA, and zA are the components of that vector. In

addition, the shape of a CGTO is greatly influenced by the exponents nG, lG, and mG. For

instance, the sum of these exponents determines whether a CGTO is an s, p, or d orbital

[75].

At this point, it is important to note that the atomic orbitals do not vary when employing

the Hartree-Fock method. They are instead taken from what is called a basis set. Each basis

set provides a set of equations with coefficients such as αµ and dµ. These coefficients are

determined by optimizing the AOs so they minimize the energy of a single atom. An example

is the STO-3G basis set that was created by Hehre et al. [76] in 1969, where each atomic

orbital is represented by taking a linear combination of three Gaussian-type orbitals.

Once a basis set is selected, the molecular orbitals are optimized by solving the Roothaan

equations [7]. These equations can be written as follows [7, 12]:

FC = SCε, (3.12)

where F is the Fock matrix, C is the matrix containing the MO coefficients, S is the overlap

matrix, and ε is a diagonal matrix containing orbital energies. The Fock matrix depends not

only on the kinetic and potential energy of atomic orbitals but also on the MO coefficients.
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To be precise, each element of F is defined as:

Fij = hAOij +
NAO−1∑
k,l,m=0

CkmClm
(
2gAOijkl − gAOilkj

)
, (3.13)

where hAOij and gAOijkl are one- and two-electron integrals, respectively, NAO is the number of

atomic orbitals, and Ckm is an element of matrix C. The integrals are determined using the

following equation:

hAOij =
∫
χ?i (r)

(
−1

2∇
2 −

N−1∑
I=0

ZI
|RI − r|

)
χj (r) dr, (3.14)

and

gAOijkl =
∫ ∫ χ?i (r1)χ?k (r2)χj (r1)χl (r2)

|r1 − r2|
dr1dr2, (3.15)

where AO indicates that the integrals are computed in the basis of atomic orbitals and χ?i

is the complex conjugate of χi. It must also be pointed out that atomic units are used

in eqs. (3.14) and (3.15). This means that the electron mass me, the elementary charge

e, the reduced Planck constant ~, and the Coulomb constant 1/ (4πε0) were set to one [4].

As a result, the first term in the one-electron integral is the kinetic energy of an electron,

while the second term is the Coulomb attraction energy between an electron and all the

nuclei. Similarly, the two-electron integral is needed to compute the interelectronic Coulomb

repulsion energy [12]. It is also important to note that the Fock matrix is not related to the

total electronic energy itself, but rather to the variation in total electronic energy [77]. As

for the overlap matrix S, it appears in the Roothaan equations since the molecular orbitals

are constrained to be orthonormal [78]. Each of its elements Sij are computed using the

integral

Sij =
∫
χ?iχjdr. (3.16)
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This integral along with those given in eqs. (3.14) and (3.15) can be obtained using a method

such as the McMurchie-Davidson scheme [75].

Once all the integrals are computed, it is then possible to solve the Roothaan equations.

Although eq. (3.12) appears to be a generalized eigenvalue problem, that is not the case due

to the presence of MO coefficients in the Fock matrix. An iterative procedure is therefore

needed to determine C and ε. The procedure may go as follows [7]:

1. Make a guess for matrix C. This can be done by neglecting the term containing the

two-electron integrals for the Fock matrix and then solving eq. (3.12).

2. Update the Fock matrix by substituting the new values for C into eq. (3.13).

3. Solve eq. (3.12) using the updated Fock matrix.

4. Repeat steps 2 and 3 until convergence is reached.

In this approach, values of C from only a single iteration are included when updating F.

This can make convergence difficult or it may even lead to divergence. To prevent this

issue, it is possible to take into account values of C from multiple iterations by employing a

method such as the direct inversion in the iterative subspace (DIIS) [79, 80]. The result of

both approaches is a matrix C where the columns correspond to the coefficients for a single

molecular orbital. Each molecular orbital is associated with a spin-up molecular spin-orbital

(MSO) and a spin-down MSO.

Since there are typically more MOs than there are electrons in the system, the MOs

which contribute to the total energy must be determined. To do so, the MOs are divided into

two categories based on the orbital energies. The n/2 molecular orbitals, φi, that have the

lowest orbital energies εii, are classified as occupied MOs. The rest of the MOs are defined

as virtual. They are also sometimes known as unoccupied MOs [4].
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With the MSOs divided into four categories based on spin and electron occupancy, it is

now possible to define the reference state. For the VQE, |Ψref〉 is defined according to the

second-quantization language. In this language, each entry of a state vector represents an

MSO. If an MSO is occupied, its entry is set to 1. Otherwise, it is set to 0. How the MSOs

are ordered in a state vector is arbitrary however. For this research project, it was decided

to place the entries in the following order:

|Ψref〉 = |kα,occkα,virtkβ,occkβ,virt〉. (3.17)

Here, k represents a string of occupation numbers (0 or 1) associated with a set of MSOs.

The occupation numbers kα,occ are for the occupied spin-up MSOs, while those for the virtual

spin-down MSOs are represented by kβ,virt. For example, the reference state for H2 in a basis

set containing 1 atomic orbital per hydrogen atom is:

|Ψref〉 = |1010〉, (3.18)

where the first two entries are associated with spin-up MSOs. For the interested reader,

detailed introductions to second quantization are given in Refs. [12] and [81].

It should be stressed that knowing |Ψref〉 is not sufficient for fully characterizing the

reference state when using the second-quantization language. It is also essential to define the

electronic Hamiltonian. In this alternative formulation, Ĥe is represented using fermionic

annihilation and creation operators, ai and a†i , respectively. The effect of these operators

depends greatly on the occupancy number of entry i in a state vector. Once again, the

interested reader should refer to Refs. [12] and [81] for an introduction to these fermionic
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operators. With them, Ĥe can be written as [12]:

Ĥe =
NMSO−1∑
P,Q=0

hMSO
PQ a†PaQ + 1

2

NMSO−1∑
P,Q,R,S=0

gMSO
PQRSa

†
Pa
†
RaSaQ + hnuc, (3.19)

where NMSO is the number of MSOs. The one-electron integral hMSO
PQ is in the MSO basis

and it corresponds to:

hMSO
PQ =

∫
σ?P (ms)hMO

pq σQ (ms) dms (3.20)

where σP (ms) is a spin eigenfunction. The first NMSO/2 eigenfucntions are spin-up while

the remainder are spin-down. As for the one-electron integral in the MO basis, it is defined

as:

hMO
pq =

∫
φ?p (r)

(
−1

2∇
2 −

N−1∑
I=0

ZI
|RI − r|

)
φq (r) dr, (3.21)

where p is related to P according to the following relationship:

p =


P if P < NMSO

2

P − NMSO

2 otherwise
. (3.22)

The index q is related to Q in a similar way. On the other hand, the two-electron integral

in the MSO basis can be written as:

gMSO
PQRS =

∫ ∫
σ?P (ms,1)σ?R (ms,2) gMO

pqrsσQ (ms,1)σS (ms,2) dms,1dms,2, (3.23)

where the two-electron integral in the MO basis corresponds to:

gMO
pqrs =

∫ ∫ φ?p (r1)φ?r (r2)φq (r1)φs (r2)
|r1 − r2|

dr1dr2. (3.24)

Once again, the indices r and s are defined in a similar way to p. As for hnuc, it is the inter-

nuclear Coulomb repulsion energy. It can be calculated in atomic units using the following
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equation:

hnuc = 1
2

N−1∑
I,J=0,I 6=J

ZIZJ
|RI −RJ |

, (3.25)

where N is the number of nuclei in the system [12].

To obtain hMO
pq and gMO

pqrs, it is possible to utilize the integrals hAOij and gAOijkl that were

computed in the RHF method. Assuming the MO coefficients are real, the matrix containing

the integrals hMO
pq corresponds to:

HMO = CTHAOC, (3.26)

where CT is the transpose of C. As for the integrals gMO
pqrs, they can be computed by using

the following equation:

gMO
pqrs =

NAO−1∑
i,j,k,l=0

CipCjqCkrClsg
AO
ijkl. (3.27)

The previous equation can be applied efficiently by employing a scheme such as the one

created by Nakata et al. [82].

Furthermore, eqs. (3.20) and (3.23), which are used to determine the integrals in the

MSO basis, can be simplified by applying the spin orthonormality requirement [12]

∫
σ?P (ms)σQ (ms) dms = δσP σQ , (3.28)

where δσP σQ corresponds to the Kronecker delta. For the one-electron integrals, the result

is:

hMSO
PQ =


hMO
pq if σP = σQ

0 otherwise
. (3.29)
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As a consequence, the only nonzero values of hMSO
PQ are those involving two MSOs that have

the same spin. As for the two-electron integrals, the simplification yields:

gMSO
PQRS =


gMO
pqrs if σP = σQ and σR = σS

0 otherwise
. (3.30)

It is important to note that σP does not necessarily have to be equal to σR for gMSO
PQRS to be

nonzero.

3.3 Parameterized Entangler

Once a reference state is determined, the next step in the VQE is to select a parame-

terized entangler U (θ). This entangler is sometimes referred to as an ansatz. It generates

trial states |Ψt〉 that are made up of a linear combination of computational basis states [53].

On a two-qubit computer, the effect of applying the entangler to the reference state can be

the following:

U (θ) |Ψref〉 = a (θ) |00〉+ b (θ) |01〉+ c (θ) |10〉+ d (θ) |11〉. (3.31)

For the VQE to be tractable, the number of qubit operations required to apply the

entangler must scale polynomially with the size of the system. In this case, the size of

the system includes both the number of electrons and the number of MSOs. Furthermore,

the entangler must be able to generate quantum states that contain a large number of

computational basis states. To be more specific, the number of basis states must scale

exponentially with the size of the system [48, 53]. This exponential growth is essential

since the Hilbert space associated with the quantum state of a molecular system also scales

exponentially.
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In order to generate multiple basis states, the entangler must take advantage of entan-

glement. A set of qubits is said to be entangled when it cannot be expressed as a tensor

product of single-qubit states [15]. For example, two qubits are entangled if they are in the

state

|Ψent〉 = 1√
2

(|00〉+ |11〉) , (3.32)

but they are not entangled if they are in the state

|Ψsep〉 = 1√
2

(|00〉+ |10〉) = 1√
2

(|0〉+ |1〉)⊗ |0〉. (3.33)

One way to entangle qubits is to use the following entangling operator [15]:

Uent,c,t = HcUCN,c,t, (3.34)

where c is the control qubit, t is the target qubit, Hc is the Hadamard gate, and UCN,c,t is

the two-qubit controlled-NOT gate. A mathematical description of these two gates is given

in Section 3.5. The effect of applying the entangling operators to a two-qubit system, which

is initially in the state |00〉, is the following:

Uent,0,1|00〉 = 1√
2

(|00〉+ |11〉) . (3.35)

The result is a quantum state spanning two computational basis states. For a three-qubit

system, two entangling operators can be applied to generate the quantum state

Uent,1,2Uent,0,1|000〉 = 1
2 (|000〉+ |011〉+ |100〉 − |111〉) . (3.36)
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Entangled states can be created in a similar manner on quantum computers containing more

qubits. For a system made up of m qubits, it is therefore possible to generate a quantum

state spanning 2m−1 computational basis states using only 2× (m− 1) quantum gates.

An entangler which can be used to produce trial states is the unitary coupled cluster

(UCC) ansatz. This ansatz was proposed by Kutzelnigg [83] in 1977. It is defined as:

UUCC (θ) = exp
(
T̂ (θ)− T̂ † (θ)

)
, (3.37)

where T̂ (θ) is a cluster operator. This operator can be written as:

T̂ (θ) =
∑
i

T̂i (θ) , (3.38)

where T̂i (θ) is an excitation operator. The purpose of each of these excitation operators

is to include contributions from other configurations than the Hartree-Fock reference state.

These configurations are generated by replacing a group of occupied orbitals in the reference

sate by another group of virtual orbitals. For single and double excitations, these operators

are defined as:

T̂1 =
∑
i∈occ
k∈virt

θki a
†
kai, (3.39)

and

T̂2 =
∑

i<j∈occ
k<l∈virt

θklija
†
ka
†
laiaj. (3.40)

Here, θklij corresponds to an excitation amplitude where the virtual orbitals k and l have

become occupied while the occupied orbitals i and j have become virtual [12]. In the same

manner, it is also possible to define triple and quadruple excitation operators. However, the

number of parameters in the VQE must scale polynomially with the size of the system. For
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this reason, it is common to truncate the UCC ansatz such that only single and double exci-

tations are included. The result is the unitary coupled cluster singles-and-doubles (UCCSD)

ansatz [84].

To be able to apply this entangler to the reference state using a quantum computer

however, it is convenient to express it as a product of exponential functions. This can be

accomplished by utilizing a technique known as trotterization [85]. When applied to the

UCCSD ansatz, this technique generates the following approximation:

UUCCSD (θ) = exp
∑

j

θj
(
τj − τ †j

) ≈
∏

j

exp
[
θj
ρ

(
τj − τ †j

)]
ρ

, (3.41)

where θj is an excitation amplitude, τj is a product of creation and annihilation operators,

and ρ is known as the Trotter number [84]. Although the previous approximation becomes

an equality when taking the limit as ρ→∞ [85], the Trotter number will be set to one for

the remainder of this thesis. This will reduce the number of quantum gates needed to create

the final state |Ψ〉. In addition, it is not necessary to apply the UCCSD ansatz exactly. The

goal is only to modify |Ψref〉 such that the energy associated with Ĥe is minimized.

After selecting an entangler, the next step is to pick initial values for the parameters θ.

The option that will be chosen in this case is to use estimates for the excitation amplitudes

from second-order Møller-Plesset perturbation theory (MP2) [9, 84]. These can be calulated

using the following equations:

θki = 0, (3.42)

and

θklij =
gMSO
likj − gMSO

ljki

εi + εj − εk − εl
, (3.43)
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where εi is the orbital energy associated with the molecular spin-orbital i that was computed

in the Hartree-Fock method.

3.4 Fermion-to-Qubit Mapping

So far, the electronic Hamiltonian and the parameterized ansatz have been defined in

terms of fermionic annihilation and creation operators. However, these operators cannot be

applied directly to the qubits on a quantum computer. Instead, they be must be converted

into Pauli operators [15], which are defined as follows:

X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 , and I =

1 0

0 1

 (3.44)

To complete such a conversion, it is important to ensure that applying a qubit creation

or annihilation operator has the same effect as applying a fermionic operator. For instance,

the effect of “creating” an orbital i is the following [12]:

a†i |k0 . . . ki−10ki+1 . . . kNMO−1〉 = (−1)ζi |k0 . . . ki−11ki+1 . . . kNMO−1〉, (3.45)

a†i |k0 . . . ki−11ki+1 . . . kNMO−1〉 = 0, (3.46)

where kj is an occupation number and ζi is the parity, which is defined as:

ζi =
i−1∑
j=0

kj. (3.47)

Similarly, applying a fermionic annihilation operator to a quantum state results in this

outcome:

ai|k0 . . . ki−11ki+1 . . . kNMO−1〉 = (−1)ζi |k0 . . . ki−10ki+1 . . . kNMO−1〉, (3.48)
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ai|k0 . . . ki−10ki+1 . . . kNMO−1〉 = 0. (3.49)

Based on the previous equations, the properties that must be accounted for when ap-

plying a qubit creation or annihilation operator are the occupation number and the parity

associated with an orbital. A method that was used during this research project to generate

qubit operators that meet these requirements is the Jordan-Wigner transformation [86, 87].

Using this method, the state of a qubit determines if an orbital is occupied. For example, if

a reference state is represented using the following occupation number vector:

|Ψref〉 = |1010〉, (3.50)

then the quantum state which is stored by the qubits is also:

|Ψref〉 = |1010〉. (3.51)

In matrix form, this state can be written as:

|Ψref〉 =

0

1

⊗
1

0

⊗
0

1

⊗
1

0

 , (3.52)

where ⊗ stands for the Kronecker product.

Knowing that the qubits are in the occupation basis, all that must be done to change

the occupation number of orbital i is to update qubit i. For a fermionic creation operator,

the qubit creation operator Q† must replace the qubit state by |1〉 if it encounters state

|0〉, while it needs to set the state to 0 if it is applied to state |1〉. Mathematically, this is
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achieved by defining Q† as [88, 89]:

Q† = |1〉〈0| = 1
2 (X − iY ) =

0 0

1 0

 . (3.53)

In a similar fashion, the qubit annihilation operator Q is defined as:

Q = |0〉〈1| = 1
2 (X + iY ) =

0 1

0 0

 . (3.54)

By themselves, Q and Q† are not sufficient to represent the fermionic operators a and a†.

Additional Pauli matrices must also be included to keep track of parity. They must be

applied to all the qubits preceding qubit i and multiply the quantum state by −1 if an

occupation number of 1 is encountered. The matrix that can achieve this task is Z. As a

result, the fermionic creation and annihilation operators are equivalent to [88, 89]:

a†i = Q†i ⊗
j<i

Zj = 1
2

(
Xi ⊗

j<i
Zj

)
− i

2

(
Yi ⊗

j<i
Zj

)
, (3.55)

and

ai = Qi ⊗
j<i

Zj = 1
2

(
Xi ⊗

j<i
Zj

)
+ i

2

(
Yi ⊗

j<i
Zj

)
, (3.56)

where ⊗
j<i
Zj means that the matrix Z is applied to all qubits with index j < i. For example,

on a quantum computer with 4 qubits, creation operator a†2 is defined as:

a†2 = 1
2 (Z0 ⊗ Z1 ⊗X2 ⊗ I3)− i

2 (Z0 ⊗ Z1 ⊗ Y2 ⊗ I3) = 1
2 (Z0Z1X2)− i

2 (Z0Z1Y2) , (3.57)

where I is the identity matrix.

Once the method for mapping fermionic operators into qubit operators is chosen, it be-

comes possible to express the electronic Hamiltonian in terms of Pauli operators. The result
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is a linear combination of tensor products of Pauli operators Pi. The electronic Hamiltonian

can therefore be written as:

Ĥe =
∑
i

diPi, (3.58)

where di is a real coefficient. It is important to note that each tensor product can be simplified

such that at most one Pauli operator is associated with each qubit. This is because the

Pauli matrices along with I and the multiplicative factors ±1 and ±i form a group. As

a consequence, the product of two members of the Pauli group is another member of that

group [15]. For example, the tensor product,

P = Z1Z1 ⊗X2Y2 ⊗ Y3, (3.59)

can be simplified to:

P = iZ2 ⊗ Y3. (3.60)

After writing the electronic Hamiltonian in terms of Pauli operators, there still remains

the task of transforming the parameterized entangler. In the case of the UCCSD ansatz, the

result is a product of exponential operators containing entangler parameters θj and Pauli

operators. The transformed ansatz is shown in the following equation:

UUCCSD (θ) =
∏
j

exp
(
iθj

∑
l

cj,lPj,l

)
, (3.61)

where cj,l are real coefficients that arise when applying the transformation and Pj,l are

tensor products of Pauli operators. Additionally, the Trotter number was set to 1 in this

case. However, the ansatz is not in its simplest form at this point. It is in fact possible to
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write the entangler as:

UUCCSD (θ) =
∏
j,l

exp (icj,lθjPj,l) . (3.62)

This simplification is valid since, as Romero et al. [84] demonstrated, the tensor products of

Pauli operators associated with the same parameters θj commute with each other. Mathe-

matically, this means that:

[Pj,l1 , Pj,l2 ] = Pj,l1Pj,l2 − Pj,l2Pj,l1 = 0. (3.63)

Knowing that these operators commute, it is then possible to use the Baker-Campbell-

Hausdorff formula to rewrite eq. (3.61) as eq. (3.62). This formula states that:

exp (A) exp (B) = exp
(
A + B + 1

2 [A,B] + . . .
)
, (3.64)

where A and B are sufficiently small matrices and terms corresponding to “. . . ” contain

additional commutators involving A and B [90].

3.5 Quantum Circuit Construction

The implementation of an algorithm on a quantum computer is typically represented

by a quantum circuit. Such a circuit shows in which order quantum gates are applied to

the qubits on a quantum computer. An example of a quantum circuit is shown in Fig. 3–2.

All the circuit diagrams shown in this thesis, including this one, were generated using IBM’s

Qiskit library [91].

The circuit of Fig. 3–2 contains two qubits, represented by the first two horizontal lines,

as well as two classical bits, represented by the last two horizontal lines. The horizontal

axis represents time. This means that the quantum gate which is the furthest to the left is

applied first. In this case, the qubits are initially in the ground state |00〉. The first gate
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Figure 3–2: A sample quantum circuit made up of two qubits and two classical bits. It
contains a Pauli-X gate, a CNOT gate, and two qubit measurements.

of the circuit is a Pauli-X gate that is applied to the second qubit. It is sometimes called

the bit flip gate since it replaces |0〉 by |1〉 and vice versa [15]. After this gate, the quantum

computer is in state |01〉.

The next gate that is applied in Fig. 3–2 is a two-qubit controlled-NOT or CNOT gate.

The black dot in the gate’s diagram is placed on the control qubit’s line while the large circle

is positioned on the target qubit’s line. The effect of a CNOT gate is to apply a Pauli-X

gate to the target qubit if the control qubit is |1〉, but to leave it unchanged if the control

qubit is |0〉. Mathematically, it is described as:

|0〉〈0|control ⊗ Itarget + |1〉〈1|control ⊗Xtarget. (3.65)

In matrix form, the CNOT gate shown in the previous figure corresponds to:

UCN,0,1 =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, (3.66)
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where the first index in UCN,0,1 is associated with the control qubit while the second one

represents the target qubit [15].

The last elements of Fig. 3–2 are qubit measurements. These operations change the value

of a classical bit based on the state of a measured qubit. The result of these measurements

is probabilistic in nature. For example, if measurements are taken on a two-qubit quantum

computer when it is in the following state:

|Ψ〉 = α|01〉+ β|11〉, (3.67)

the first classical bit will be set to 0 with probability |α|2 and to 1 with probability |β|2. On

the other hand, the second classical bit will always be set to 1. To determine the probability

p|Ω〉 of measuring a state Ω, the next equation can be employed:

p|Ω〉 = |〈Ω|Ψ〉|2 = 〈Ω|Ψ〉〈Ψ|Ω〉, (3.68)

where |Ψ〉 is the state which was generated on the quantum computer [62]. For the sample

circuit, the quantum computer’s final state before the measurements is:

|Ψ〉 = UCN,0,1X1|00〉 = UCN,0,1|01〉 = |01〉. (3.69)

This means that the first classical bit will always be set to 0 while the second one will always

be set to 1.

In the case of the VQE, a quantum circuit is needed to generate the final state |Ψ〉. The

first portion of this circuit is dedicated to creating the reference state |Ψref〉. If this state is

not in a superposition, it can be initialized by applying Pauli-X gates to qubits which need
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Figure 3–3: The quantum circuit used to initialize state |1010〉.

to be set to 1. For instance, if the reference state is |1010〉, it can be generated as follows:

|Ψref〉 = X0X2|0000〉 = |1010〉, (3.70)

where this circuit is presented graphically in Fig. 3–3.

After initializing the reference state, the next task is to apply the parameterized en-

tangler. For an entangler that is based on the UCCSD ansatz, the quantum operation that

needs to be applied was presented previously in eq. (3.62) and corresponds to:

UUCCSD (θ) =
∏
j,l

exp (icj,lθjPj,l) . (3.71)

To understand how to generate the circuit for this operation, it is helpful to look at a single

exponential term. For instance, a term in eq. (3.71) could be the following:

Uj,l (θj) = exp (icj,lθjX0X1Y2X3) . (3.72)

That term can be reexpressed as the product of a unitary operator UCB, and an exponential

function containing only Pauli-Z matrices,

Uj,l (θj) = U †CBexp (icj,lθjZ0Z1Z2Z3)UCB. (3.73)
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Figure 3–4: The quantum circuit that applies the operation exp
(
−iγ2Z0Z1Z2Z3

)
.

The exponential operator which is present in eq. (3.73) can be applied on a quantum com-

puter by placing a z-rotation gate, Rz (γ), in between series of CNOT gates, as shown in

Fig. 3–4 [92]. The effect of the circuit given in Fig. 3–4 is to apply the following unitary

operator:

Uexp = exp
(
−iγ2Z0Z1Z2Z3

)
, (3.74)

where γ corresponds to the rotation angle associated with the Rz (γ) gate. This z-rotation

gate can be written as [15]:

Rz (γ) = exp
(
−iγ2Z

)
=

e−i
γ
2 0

0 ei
γ
2

 . (3.75)

For the exponential operator of eq. (3.73), the rotation angle must be set to

γ = −2cj,lθj. (3.76)

At this stage, all that remains for creating the quantum circuit associated with eq. (3.72)

is to determine the quantum gates for the operators UCB. Their effect is to change the basis
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Figure 3–5: The quantum circuit that applies the operation exp (icj,lθjX0X1Y2X3).

from Z to either X or Y . To change the basis from Z to X, a Hadamard gate H is employed.

On the other hand, placing a qubit in the Y basis can be accomplished by using an x-rotation

gate Rx (γ) with an angle of π
2 . The H and Rx (γ) gates are defined as follow:

H = 1√
2

1 1

1 −1

 , (3.77)

Rx (γ) = exp
(
−iγ2X

)
=

 cosγ2 −isinγ
2

−isinγ
2 cosγ2

 . (3.78)

After the CNOT and z-rotation gates are applied, it is also important to return the qubit

to its original basis. To return from the X basis to the Z basis, another Hadamard gate

can be used. For the change of basis from Y to Z however, an Rx (γ) gate with an angle of

−π
2 must be utilized [92]. As a result, the exponential operator of eq. (3.72) can be applied

using the quantum circuit shown in Fig. 3–5. This means that the circuit for the ansatz of

eq (3.71) corresponds to a series of sub-circuits, such as the one in Fig. 3–5, where each of

these sub-circuits is associated with an exponential term.
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3.6 Hamiltonian Averaging

In order to efficiently determine the energy which results from applying the electronic

Hamiltonian Ĥe to the trial state |Ψt〉, a method known as Hamiltonian averaging is em-

ployed [53]. This method takes advantage of the fact that the Hamiltonian is a linear combi-

nation of Pauli operator products. This means that the expectation value 〈Ψt|Ĥe|Ψt〉 is equal

to the linear combination of the expectation value of Pauli operator products 〈Ψt|P̂i|Ψt〉, as

shown in the following equation:

〈Ψt|Ĥe|Ψt〉 =
∑
i

hi〈Ψt|P̂i|Ψt〉, (3.79)

where the coefficients hi are real.

By convention, reading out a qubit is completed in the basis of the Z operator. As

a result, additional quantum gates must be applied to qubits where readout needs to be

achieved in the X or Y basis. To perform a change of basis from Z to Y , an x-rotation gate

with a π
2 angle is applied. Similarly, in the case where the qubit must be placed in the X

basis, a y-rotation gate with an angle of −π
2 is used. This y-rotation gate Ry (γ) is defined

as [15]:

Ry (γ) = exp
(
−iγ2Y

)
=

cosγ2 −sinγ
2

sinγ
2 cosγ2

 . (3.80)

Consequently, measuring the expectation value 〈Ψt|X0Z1Y2Z3|Ψt〉 can be achieved by us-

ing the circuit shown in Fig. 3–6. The result of each qubit readout is stored as a value

of 0 or 1 in a classical bit. It is important to note however that a single measurement

is not sufficient to determine an expectation value. To compute the expectation value
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Figure 3–6: The quantum circuit used to measure the expectation value 〈Ψt|X0Z1Y2Z3|Ψt〉.
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〈Ψt|Z0Z1 . . . ZNr−2ZNr−1|Ψt〉, the following equation can be used:

〈Ψt|Z0Z1 . . . ZNr−2ZNr−1|Ψt〉 =
∑

(−1)η p|b0b1...bNr−2bNr−1〉, (3.81)

where p|b0b1...bNr−2bNr−1〉 is the probability of measuring state |b0b1 . . . bNr−2bNr−1〉. The sum in

this case is taken over every possible state. Additionally, Nr represents the number of qubit

readouts and bi can take a value of either 0 or 1. The exponent η is determined according

to this equation:

η =


0 if

Nm−1∑
i=0

bi is even

1 if
Nm−1∑
i=0

bi is odd
. (3.82)

As a consequence of eq. (3.81), determining an expectation value requires taking multiple

measurements in order to approximate the probability of measuring each state |b0b1 . . . bNr−2bNr−1〉.

As an example, if two qubits are measured on 100 occasions and the outcomes 00, 01, and

11 are obtained 29, 48, and 23 times, respectively, then the expectation value 〈Ψt|Z0Z1|Ψt〉

is approximated as follows:

〈Ψt|Z0Z1|Ψt〉 ≈ p|00〉 − p|01〉 − p|10〉 + p|11〉 = 0.04. (3.83)

It must be emphasized however that it is necessary to recreate the quantum state |Ψt〉

every time a new measurement needs to be taken. This is because the state collapses after

it is measured. For instance, if the outcome of reading out a qubit which is initially in state

α|0〉 + β|1〉 is 1, then taking any new readouts of that qubit will always yield a value of

1 [62]. This means that the steps of initializing |Ψref〉 and applying UUCCSD (t) need to be

repeated multiple times for approximating each 〈Ψt|P̂i|Ψt〉 in eq. (3.79).
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Another important aspect of Hamiltonian averaging is to predict how many measure-

ments are needed to calculate an expectation value with a certain uncertainty ε. If the total

number of measurements required mreq is divided equally among the M nonconstant terms

in eq. (3.79), the following number of measurements required can be used [54, 93]:

mreq =
(
Mz2

ε2

)
M∑
i=1

h2
i , (3.84)

where z corresponds to the z score associated with the upper bound of the interval 〈Ψt|Ĥe|Ψt〉±

ε. More details regarding this equation and how it was derived are given in the Appendix.

3.7 Energy Optimization

The last part of the VQE algorithm is the classical optimization scheme. Its purpose is

to update the parameters θ of the entangler such that the expectation value of the electronic

Hamiltonian is minimized [53]. For this research project, the simultaneous perturbation

stochastic approximation (SPSA) algorithm was used [94, 95]. This algorithm is well suited

for the VQE since it requires a small number of objective function evaluations and it performs

well in the presence of noise.

In order to determine new parameters θ, the SPSA algorithm uses the following ap-

proximation for the directional derivative:

∇̃vE (θk) = E (θk + δkv̂k)− E (θk − δkv̂k)
2δk

, (3.85)

where E corresponds to the total electronic energy, 〈Ψt|Ĥe|Ψt〉, and δk is the derivative step

size for iteration k. As for the direction vector vk, each of its entries is randomly chosen

from a Bernoulli distribution where the outcomes 1 and -1 can be selected with an equal

probability. It is important to note however that the normalized form v̂k of the direction
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vector is utilized. In the case of the step size, it is computed using the following equation:

δk = ck|vk|, (3.86)

where |vk| is the norm of the direction vector and ck is the derivative gain sequence. The

latter variable is defined as:

ck = c

(k + 1)γ , (3.87)

where k is set to 0 for the first iteration. The value for γ on the other hand is set to 0.101.

This value is considered to be practically optimal by Spall [95]. As for c, it can be chosen

by first noting that it is related to the step size according to:

c = δ0

|v0|
. (3.88)

The parameter c must therefore be selected based on the desired directional derivative step

size for the first iteration. If the step size is increased, the error resulting from employing

the finite difference method to approximate the directional derivative will be larger. On the

other hand, if the step size is decreased, the number of measurements required to compute

the directional derivative with a certain uncertainty rises.

Once the directional derivative is approximated, the parameters are updated by using

this equation:

θk+1 = θk − ak|vk|
(
∇̃vE (θk)

)
v−1
k , (3.89)

where ak corresponds to the parameter updater gain sequence and v−1
k is obtained by re-

placing each entry of the direction vector by its reciprocal. The gain sequence in this case is
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defined as:

ak = a

(A+ k + 1)α , (3.90)

where the optimal value of α is 0.602, while A and a are user-defined parameters. According

to Spall [95], A should be set to approximately 10% of the number of expected iterations.

As for a, it should be chosen based on the desired change in θ for the initial step. Rewriting

eq. (3.89) as:

θk+1 = θk − skv̂−1
k , (3.91)

where sk is related to the change in θ, allows a to be selected using the following equation:

a = s0 (A+ 1)α

|v0||v−1
0 |

(
∇̃vE (θ0)

) . (3.92)

The value of a will affect the rate of convergence of the SPSA algorithm. For example, it

might require a large number of iterations for θ to change appreciably if a is too small. On

the other hand, choosing a value of a that is too large can cause the algorithm to repeatedly

overestimate the value of sk required to reach the optimal point.

After new parameters θk+1 are determined, k is updated and this process is repeated

until some termination conditions are satisfied. A convenient choice in this scenario is to stop

the optimization algorithm once the absolute value of the directional derivative is below a

certain threshold. It is also important to emphasize that the success of this algorithm depends

greatly on the accuracy of the values that are computed for the directional derivative. For

this reason, an equation which determines the total number of energy measurements required

md,req to calculate ∇̃vE (θk) with uncertainty εd was derived. The derivation was based on

the approaches used by Wecker et al. [93] and McClean et al. [54] to determine eq. (3.84).
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The equation for md,req is the following:

md,req =
(

(zd)2M

δ2ε2
d

)
M∑
i=1

h2
i , (3.93)

where δ is the derivative’s step size and zd is the z score of the upper bound of the interval

∇̃vE (θk)± εd. Additional details concerning this equation and how it was derived are given

in the Appendix. Furthermore, this result is useful in choosing a value for c. The effect

of c is to vary the step size in the directional derivative. If c is too small, the number of

measurements required to reach a certain uncertainty will be very large. On the other hand,

if c is too large, the accuracy of eq. (3.85) will decrease.



CHAPTER 4
Potential Energy Surface of Molecular Hydrogen

4.1 Implementation

Before implementing the entirety of the BOMD method, it was essential to first test

the VQE. To do so, the expectation value of the electronic Hamiltonian was computed for

molecular hydrogen (H2) at different interatomic distances. To calculate these values, C++

libraries for almost every step of the VQE were created by the author of this thesis. For

generating a reference state |Ψref〉, the STO-3G basis set was employed [76]. This is consid-

ered a minimal basis set since it contains the minimum number of atomic orbitals required

to accommodate the electrons of an atom. The advantage is that a small number of qubits

are needed since the number of molecular orbitals generated is kept to a minimum. Another

benefit is that the number of quantum gates required to entangle qubits in order to generate

a trial state |Ψt〉 is also small. To integrate the atomic orbitals which are needed for the

Hartree-Fock method, the McMurchie-Davidson scheme [75] was implemented. One of the

only external libraries that was used to help create reference states was the Elemental li-

brary [96]. It was utilized to perform matrix operations and to solve the Roothaan equations,

given in eq. (3.12).

Additional C++ libraries were created by the author to perform tasks such as generating

parameterized entanglers, transforming fermionic operators into Pauli operators, creating

quantum circuits, and optimizing the trial wave function. On the other hand, it was decided

to use IBM’s Qiskit library [91] in order to determine the expectation value of the electronic

56
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Hamiltonian. This library contains two quantum computer simulators known as the state

vector simulator and the QASM (Quantum Assembly Language) simulator. The former

simulator works by applying quantum gates to an initial quantum state vector |Ψi〉 in order

to generate a final quantum state vector |Ψf〉. The expectation value of a Hamiltonian Ĥ

can then be computed exactly by performing the following matrix multiplication:

〈Ĥ〉 = 〈Ψf |Ĥ|Ψf〉. (4.1)

On the other hand, the QASM simulator replicates the behavior of an ideal quantum com-

puter. To obtain an expectation value, each quantum circuit must be applied and measured

numerous times as per the Hamiltonian averaging procedure. Another feature of the Qiskit

library is the ability to remotely access one of IBM’s quantum computers. As of July 2019,

they allow users to run quantum simulations on three of their computers. The largest one

contains 14 qubits, while the other two have 5 qubits.

4.2 Potential Energy Surface

The first test was to calculate the total electronic energy 〈Ĥe〉 at the equilibrium in-

teratomic distance deq for molecular hydrogen. For this molecule, the experimental value

of deq corresponds to 0.7414 Å [97]. For this test, Qiskit’s state vector simulator was used.

Coefficients a and c for the SPSA optimization algorithm were set to 0.7 and 0.001 respec-

tively. For comparison, the energy 〈Ĥe〉 was determined using the restricted Hartree-Fock

(RHF) method with the author’s code as well as with the full configuration interaction (FCI)

method in Gaussian 16 [98]. The FCI method requires using all possible Slater determinants,

given a certain basis set, when generating the electronic wave function [12]. For the three

previous simulations, the STO-3G basis set was used. It should be noted that it is not
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Table 4–1: The total electronic energy of H2 at the equilibirum distance. The energy calcu-
lated using FCI with the aug-cc-pV6Z basis set was set as the reference for determining the
energy error.

Method RHF VQE FCI FCI
Basis set STO-3G STO-3G STO-3G aug-cc-pV6Z

Energy (Eh) -1.1166 -1.1373 -1.1373 -1.1744
Energy error (mEh) 57.7 37.1 37.1 0.0

possible to determine the total electronic energy experimentally. As an alternative reference

point, the FCI calculation was repeated in Gaussian 16 using a large basis set known as

aug-cc-pV6Z [99, 100]. The results of these simulations are shown in Table 4–1. It is also

important to note that the energy error was calculated with reference to the FCI calculation

with the aug-cc-pV6Z basis set. Furthermore, energy values in Table 4–1 are reported in

Hartree (Eh).

As desired, the energy values are the same for both the VQE and FCI methods using the

STO-3G basis set. This signifies that the UCCSD-based ansatz contained enough parameters

to fully optimize the trial state |Ψt〉. However, the STO-3G basis set is not large enough to

allow the results to be within chemical accuracy, which is defined as 1 kcal/mole (1.6 mEh).

This target accuracy was set such that numerical results for atomization energies or heats

of formations, for instance, would also be within experimental accuracy [101]. Additionally,

it should be emphasized that all the methods that were used to compute the energy satisfy

the variation principle of eq. (3.3). As a result, the values of energy error given in Table 4–1

are greater or equal to the exact energy error, which is calculated with respect to the exact

energy.

To further test the validity of the VQE implementation, the potential energy curve was

also obtained for H2. The same methods as those used for calculating the total electronic
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Figure 4–1: A plot showing potential energy curves for H2 obtained using RHF, the VQE,
and FCI.

energy at the equilibrium bond distance were employed in this case. Energy values were

computed for interatomic distances ranging from 0.30 to 3.00 Å in increments of 0.05 Å. The

resulting potential energy curves for all the tested methods are showed in Fig. 4–1. This

graph shows that the potential energy curve for the reference state |Ψref〉, which is obtained

using the restricted Hartree-Fock method, remains fairly close to the FCI (STO-3G) curve

for interatomic distances which are near or less than deq. For larger distances though, the

reference state is unable to represent the wave function correctly using only a single Slater

determinant. As for the VQE potential energy curve, it agrees once again with the FCI

curve when the minimal STO-3G basis set is employed. However, it is not within chemical
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accuracy of the FCI curve which was obtained using the large aug-cc-pV6Z basis set. This

further illustrates the importance of using a sufficiently large basis set when running quantum

chemistry calculations.

4.3 Variable Directional Derivative Uncertainty Scheme

In order to obtain precise values for the total electronic energy when using a real quan-

tum computer or Qiskit’s QASM simulator, it is crucial to take an adequately large number

of measurements during the final Hamiltonian averaging procedure. However, it is not neces-

sary to take such a large number of measurements for each Hamiltonian averaging procedure

in the VQE. Therefore, a scheme which varies the number of measurements for each itera-

tion of the optimization algorithm was developed and implemented. The idea of using an

adaptive strategy to improve the efficiency of the VQE was first mentionned by Hempel et

al. [57].

Since the SPSA algorithm was utilized to optimize the trial state for this project, the

variable uncertainty scheme works by decreasing the uncertainty in the directional derivative

∇̃vE (θk) as its magnitude approaches zero. This requires setting up a relationship between

the expected magnitude of the directional derivative |∇̃vE (θk) |exp and the uncertainty εd.

A value for εd is needed to determine the number of measurements required according to

eq. (3.93). When setting up the relationship, it is important to first specify minimum and

maximum uncertainty values, εd,min and εd,max, respectively. This prevents expectation

values from being computed using too many measurements or too little.
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In total, two different functions for selecting εd given |∇̃vE (θk) |exp were tested. The

first one is a linear relationship, which is defined as:

εd =



εd,max if |∇̃vE (θk) |exp ≥ A

εd,min if |∇̃vE (θk) |exp ≤ B

c
(
|∇̃vE (θk) |exp − A

)
+ εd,max otherwise

, (4.2)

where A and B are user-defined parameters, and c corresponds to:

c = εd,min − εd,max
B − A

. (4.3)

The parameter A should be chosen such that it is near |∇̃vE (θ0) |exp. If A is much larger

than |∇̃vE (θ0) |exp, part of the relationship for selecting εd between B and A could remain

unused. This might lead to an increase in the total number of measurements taken. If A is

much smaller than |∇̃vE (θ0) |exp, the number of measurements taken could be too low as

the optimization algorithm approaches the stationary point. This could make convergence

difficult. As for B, it should be selected such that it is near the value |∇̃vE (θk) | below which

the optimization algorithm stops. If B is much smaller than that value, the final directional

derivative might not be computed with the minimum uncertainty εd,min. This could result

in a misidentification of the stationary point. On the other hand, employing a large value

for B might unnecessarily increase the number of measurements taken near the stationary

point.
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The second function for selecting εd is an exponential relationship that can be written

as:

εd =



εd,max if |∇̃vE (θk) |exp ≥ A

εd,min if |∇̃vE (θk) |exp ≤ B

a
(
exp

[
−λ

(
|∇̃vE (θk) |exp −B

)])
+ b otherwise

, (4.4)

where a and b correspond to:

a = εd,min − εd,max
1− exp [−λ (A−B)] , (4.5)

and

b = εd,min − a. (4.6)

Here, λ is a parameter that alters the shape of the exponential function. As a control, a

constant function εd = εd,min was also tested. Examples of uncertainty functions are shown

in Fig. 4–2. In this figure, the effects of λ on exponential functions are apparent. For

exponential functions with larger values of λ, the value for the uncertainty εd has a smaller

rate of change near A, but a greater one near B.

In order to utilize the variable uncertainty scheme, the following steps need to be applied:

1. Select an uncertainty function. This requires choosing εd,min, εd,max, A, and B.

2. Set |∇̃vE (θk) |exp equal to A.

3. Use the uncertainty function to select a value for εd.

4. Calculate the number of measurements required md,req by utilizing eq. (3.93) and εd.

5. Estimate ∇̃vE (θk) and its magnitude using the Hamiltonian averaging procedure. Set

the estimated magnitude equal to |∇̃vE (θk) |exp.
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6. Use the uncertainty function to select a new value for the uncertainty εd,new. If εd,new

is greater than εd, proceed to Step 9. Otherwise, go to Step 7.

7. Calculate the new number of measurements required md,req,new using eq. (3.93) and

εd,new. If the inequality

∆md,req = md,req,new −md,req > ∆md,req,min (4.7)

is satisfied, go to Step 8. Otherwise, proceed to Step 9. Here, ∆md,req,min is the mini-

mum increase in md,req that is needed to run another Hamiltonian averaging procedure

in the current iteration of the optimization algorithm. Furthermore, if ∆md,req,min is

too small, computational resources may be used inefficiently since the estimate of the

directional derivative only changes negligibly when ∆md,req is small.

8. Update the estimate of ∇̃vE (θk) and its magnitude by taking ∆md,req additional

measurements. Set εd equal to εd,new and |∇̃vE (θk) |exp equal to the magnitude of the

new directional derivative estimate. Then, return to Step 6.

9. If the termination criteria of the optimization algorithm are satisfied, end the opti-

mization procedure. Otherwise, go to the next iteration of the optimization procedure

and set εd equal to εd,new. If md,req,new was determined in the previous step, also set

md,req equal to md,req,new and proceed to Step 5. If it was not, proceed to Step 4.

In order to test the variable uncertainty scheme, multiple VQE simulations were con-

ducted for molecular hydrogen using Qiskit’s QASM simulator. The goal of these simulations

was to determine the average number of measurements required to reach the stationary point

for different uncertainty functions. The equilibrium interatomic distance deq of 0.7414 Å was

utilized for all simulations. The values of A and B were set to 0.2 and 0.01, respectively,
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Table 4–2: The number of measurements required to reach the stationary point for H2 at
the equilibrium bond distance for various uncertainty functions

Number of measurements in millions

Uncertainty
function λ (Eh

-1) Average
Average

lower
bound

Average
upper
bound

Standard
deviation

Constant - 23.46 22.28 24.64 4.15
Linear - 10.63 9.99 11.26 2.23

Exponential 5 10.10 9.47 10.72 2.20
Exponential 10 8.70 8.34 9.06 1.27
Exponential 20 8.41 8.01 8.81 1.40
Exponential 40 8.72 8.11 9.34 2.17

while εd,max and εd,min were set to 0.1 and 0.01, respectively. Additionally, zd was set to 1

in eq. (3.93). As for the termination criterion of the optimization procedure, it was chosen

such that the SPSA algorithm stopped once the estimate of |∇̃vE (tk) | was lower than 0.01.

To put this into perspective, the difference between the expectation value 〈Ψt|Ĥe|Ψt〉 for a

directional derivative of 0.02 and the expectation value at the stationary point is less than

10-4 Eh when the UCCSD-based entangler is used for H2 at deq. Results for these simulations

are shown in Table 4–2. VQE simulations for each uncertainty function shown in the table

were repeated 50 times. The columns labeled “Average lower bound” and “Average upper

bound” correspond to the lower and upper bound of the 95% confidence interval associated

with the average number of measurements.

Overall, Table 4–2 shows that varying the uncertainty of the directional derivative of

energy is an effective way of reducing the number of measurements in the SPSA algorithm.

For the particular case that was examined, using an exponential uncertainty function with a

λ value of 20 was the optimal option. The uncertainty function needs to provide a balance

between reducing the number of measurements at each iteration and increasing the total
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number of iterations. For the exponential uncertainty functions with lower values of λ, the

number of measurements taken in the earlier iterations was unnecessarily large. Conversely,

the function with a λ value of 40 computed directional derivatives that were too imprecise

in the earlier iterations. This lead to an increase in the total number of iterations, which in

turn lead to a rise in the total number of measurements.

It is important to note that further testing needs to be done in order to better quantify

the efficiency of this variable uncertainty scheme. One aspect that needs to be studied is the

effect of increasing the number of optimization parameters. For H2 and the UCCSD-based

ansatz, only the parameter associated with the double excitation operator is needed. Creat-

ing trial states |Ψt〉 for most molecules will require utilizing a larger number of parameters.

Furthermore, all of the simulations shown in Table 4–2 were conducted using the same initial

guess for the optimization parameter. The robustness of the scheme could be examined by

randomly selecting initial values for θ when testing various uncertainty functions. Another

element that needs to be studied is the effect of the objective function’s shape on the optimal

choice of uncertainty function. However, the ultimate test would be to employ the scheme

when running the VQE on noisy quantum computers.



CHAPTER 5
Implementation of Born-Oppenheimer Molecular Dynamics

5.1 Energy Gradient

As shown in Chapter 2, the goal of a Born-Oppenheimer molecular dynamics simulation

is to predict the motion of the nuclei in a system of molecules by using the following equations:

MIR̈I (t) = −∇I〈Ψe,0|Ĥe|Ψe,0〉, (5.1)

and

E0Ψe,0 = ĤeΨe,0. (5.2)

In Chapters 3 and 4, it was demonstrated that an approximate solution to eq. (5.2) can be

found in polynomial time by utilizing the VQE on a quantum computer. The outcome of a

VQE simulation is the total electronic energy E, which corresponds to the expectation value

〈Ψt|Ĥe|Ψt〉. Here, |Ψt〉 is an approximation to the exact ground state |Ψe,0〉.

In the case of eq. (5.1), its purpose is to predict how the position of a classically-behaving

nucleus evolves in time. The first step in solving this equation is to obtain the gradient of

the potential energy surface ∇I〈Ψt|Ĥe|Ψt〉 with respect to the coordinates of nucleus I. For

conciseness, the gradient will also be written as ∇IE (Rj), where Rj contains the position

of all nuclei for each iteration j. Every iteration is associated with a time

tj = j∆t, (5.3)
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where ∆t is the time step.

In order to estimate the gradient, it was decided to use the finite difference method [102].

With this approach, an approximation of a component of the gradient ∇̃ûE (Rj) is computed

using the following equation:

∇̃ûE (Rj) = E (Rj + δû)− E (Rj − δû)
2δ , (5.4)

where δ is the step size and û is a unit vector. The process of approximating the gradient is

repeated for all N nuclei in the system. Overall, this requires computing the total electronic

energy 6N times using the VQE.

It must also be emphasized that the selection of the step size plays a crucial role in the

number of measurements required to approximate the gradient with a certain uncertainty.

As for the directional derivative used in the classical optimization procedure, the number of

measurementsmd,req needed for each component of the gradient is determined using eq (3.93),

which, as a reminder, corresponds to:

md,req =
(

(zd)2M

δ2ε2
d

)
M∑
i=1

h2
i . (5.5)

In this case, the step size must be sufficiently small to avoid introducing excessive numerical

error in eq. (5.4), but it must also be sufficiently large to avoid taking too many measurements

given an uncertainty εd. More details concerning eq. (5.5) are given in the Appendix.

5.2 Integration of the Equations of Motion

One of the last steps in every iteration of the BOMD method is to integrate the equations

of motion given in eq. (5.1). For this research project, the velocity Verlet algorithm [103]

was utilized to complete this task. Assuming that a particle has a single degree of freedom,
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the algorithm is able to determine its position Rj and its velocity Ṙj at iteration j. Knowing

the initial position R0 and the initial velocity Ṙ0 of a particle, Rj and Ṙj can be found by

using the following equations:

Rj = Rj−1 + ∆tṘj−1 + (∆t)2 f (Rj−1)
2 , (5.6)

and

Ṙj = Ṙj−1 + ∆t [f (Rj) + f (Rj−1)]
2 . (5.7)

In this case, f (R) is found by rearranging the equations of motion such that it is written in

this form:

R̈ = f (R) , (5.8)

where R̈ is the acceleration of a particle. As a result, the position xI,j and the velocity ẋI,j

of nucleus I along the x-axis at time tj is obtained by utilizing the equations:

xI,j = xI,j−1 + ∆tẋI,j−1 −
(∆t)2 ∇̃xIE (Rj−1)

2MI

, (5.9)

and

ẋI,j = ẋI,j−1 −
∆t

[
∇̃xIE (Rj) + ∇̃xIE (Rj−1)

]
2MI

. (5.10)

It is important to note that the error associated with the nuclei positions when using

the velocity Verlet algorithm is of order ∆t4, as demonstrated by Frenkel and Smit [104].

Therefore, care must be taken when selecting a time step. One way to verify that the chosen

time step is sufficiently small is to compute the total energy of the system Esys at each

iteration. This energy corresponds to:

Esys = 〈Ψt|Ĥe|Ψt〉+ 1
2

N−1∑
I=0

MI |ṘI |2, (5.11)
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where the first term is the sum of the potential energy in the system and the kinetic energy of

the electrons, while the second term is the kinetic energy of the nuclei. If no external forces

are applied to the system, Esys should remain constant for the entirety of the simulation.

Another measure than can be tracked is the velocity of the center of mass of the system. Its

value should also remain constant during the simulation [104]. Therefore, if the total energy

of the system or the velocity of the center of mass varies excessively during the simulation,

the step size should be reduced.



CHAPTER 6
Dynamics of Molecular Hydrogen

6.1 Born-Oppenheimer Molecular Dynamics Simulation

In this section, results regarding simulations of the time evolution of an H2 molecule

will be presented. These simulations were conducted to ensure that the VQE could be used

in the BOMD approach to find approximate solutions to the TISE given in eq. (5.2). They

were inspired by those run by Wathelet et al. [105], who utilized Car-Parrinello molecular

dynamics on a classical computer to detemine the equilibrium bond distance deq and the

harmonic vibrational frequency ν of diatomic molecules. In order to mitigate the impact of

anharmonicity on the results, Wathelet et al. used initial bond distances that were near deq.

For this reason, the hydrogen nuclei were set 0.8 Å apart to begin the simulations of H2.

This is close to the experimental equilibrium bond distance of 0.7414 Å [97]. Additionally,

the initial velocities were set to zero for both hydrogen nuclei. As for most of the VQE

parameters, they were the same as those chosen for determining the potential energy surface

of molecular hydrogen in Section 4.1.

In total, two simulations were conducted, one using the state vector simulator and

another using the QASM simulator. In both cases, the time step in the velocity Verlet

algorithm was set to 0.2 fs and the simulation was allowed to run for 14 fs. As for the

numerical approximation to the energy gradient with respect to the nuclear coordinates, the

step size was chosen as 0.001 Å for the state vector simulator, while it was chosen as 0.05 Å

for the QASM simulator. The step size was increased for the QASM simulator in order to
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Figure 6–1: A plot showing the bond length of H2 as a function of time. The results were
obtained by a running a BOMD simulation on IBM’S QASM simulator.

reduce the number of measurements required to compute the gradient with an uncertainty

of 0.005 Eh. To further accelerate the simulation, an exponential uncertainty function with

a λ value of 20 and the same parameters as in Section 4.3 was utilized. It should also be

noted that both the velocity Verlet algorithm and the numerical approximation to the energy

gradient were implemented in C++ by the author of this thesis.

After running the simulations, the equilibrium bond length and the harmonic vibrational

frequency were determined by examining the time evolution of the molecule’s bond length.

For the QASM simulation, a plot of the bond length as a function of time is presented in

Fig. 6–1. To determine the equilibrium bond length, the mean of the minimum and maximum

bond lengths in the first period was taken. As for the harmonic vibrational frequency ν, it
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Table 6–1: A comparison of vibrational frequency and bond length results for H2
QASM relative difference (%)

Method

Harmonic
vibrational
frequency

(cm-1)

Equilibrium
bond length

(Å)

Harmonic
vibrational
frequency

Equilibrium
bond length

BOMD
(QASM) 4811 0.7408 - -

BOMD
(State
vector)

4976 0.7388 3.32 0.275

FCI
(STO-3G) 4953 0.7380 2.87 0.389

Experimental 4401.213 0.74144 9.31 0.080

is expressed as a wavenumber ν̃. This wave number corresponds to [4]:

ν̃ = ν

c
= 1
Tc
, (6.1)

where c is the speed of light and T is the period of oscillation.

To ensure that the values of deq and ν̃ that were computed in both simulations are

accurate, they were compared to results from experiments [97] and from a full configuration

interaction simulation. The uncertainty associated with the experimental equilibrium bond

length should be less than ±9×10−5Å while the one associated with the vibrational frequency

might exceed ±0.010 cm-1 [97]. As for the FCI calculation, it was performed using Gaussian

16 [98]. The vibrational frequency was determined in Gaussian by computing the second

derivative of energy with respect to the spatial coordinates of the nuclei at the stationary

point. The STO-3G basis set was also used for this simulation. The results are summarized

in Table 6–1. The last two columns in this table show the relative difference between the
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results obtained using the QASM simulator and those obtained using other methods.

For the vibrational frequency, there is a large error of 9.31% between the QASM value

and the experimental one. This error is primarily due to the fact that the STO-3G basis set

is not sufficiently large. In that basis set, the force on the nuclei is overestimated. Using the

STO-3G basis set, the initial magnitude of the force on each nuclei was found to be 0.0442

Hartree per Bohr radius (Eh/a0), while for aug-cc-pV6Z, it was found to be 0.0340 Eh/a0.

These values were obtained from FCI simulations conducted in Gaussian 16 [98]. In the

presence of larger forces, the nuclei accelerate faster towards each other. This means that

they have a shorter period of oscillation, and thus a larger vibrational frequency.

As for the difference between the frequencies calculated using the QASM simulator and

the one obtained with FCI, it is mostly due to the uncertainty associated with measuring

the total electronic energy and its gradient. Unfortunately, the number of measurements

md,req required to determine a component of the gradient with uncertainty εd is inversely

proportional to ε2
d and δ2. To decrease md,req, the gradient could be computed analytically

instead. As a result, md,req would no longer depend on δ2. However, this approach requires

deriving an analytical gradient equation for every entangler.

Another minor source of error is the size of the time step used in the velocity Verlet

algorithm. The result is a deviation in the position and the velocity of the nuclei. To quantify

the severity of the errors due to the uncertainty εd and the time step size, the total energy

of the system Esys can be tracked. In Fig. 6–2, a plot of the relative total energy drift for

both BOMD simulations is shown. The relative total energy drift ∆relEsys is defined as:

∆relEsys = Esys − Esys,0
Esys,0

, (6.2)
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Figure 6–2: A plot showing the relative drift in total system energy for both the state vector
and QASM simulations of H2.
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where Esys,0 is the total system energy before the first time step. As expected, the total

energy drift was less significant for the state vector simulation since εd is zero in that case.

For the equilibrium bond length, the sources of error are similar, but their impact is not

as important. For instance, increasing the size of the basis set in this case does not result

in a major change in deq. A source of error that could have slightly affected the results is

anharmonicity. This would partly explain why the equilibrium bond length is larger in the

BOMD simulations than in the FCI one. The anharmonicity causes the difference between

the maximum bond length and deq to be larger than the one between deq and the minimum

bond length. This is because the magnitude of the forces acting on the nuclei is greater

at deq − ∆d than at deq + ∆d, where ∆d is a small change in bond length. Since deq was

approximated in the BOMD simulations as the average of the minimum and maximum bond

length, this lead to a slight increase in the estimated deq.

6.2 Optimization Parameter Extrapolation

There are a multitude of parameters that have an impact on the efficiency of the VQE.

One of them is the initial guess for the optimization parameters θ. Since the VQE is run

multiple times at each time point in a BOMD simulation, it is possible to utilize results

found at previous time points to make an initial guess for θ. Because the same entangler

is used throughout the simulation, the optimization parameters are not expected to vary

greatly between time points if the time step size ∆t is small. For a VQE simulation of H2

with the UCCSD-based entangler and the STO-3G basis set, the relationship between the

double excitation amplitude θ13
02 and the bond length is shown in Fig. 6–3.

In this section, three different approaches for selecting initial optimization parameters

will be tested. The first one consists in taking advantage of perturbation theory by using
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Figure 6–3: A plot showing the relationship between the double excitation amplitude in the
UCCSD-based ansatz and the bond length.
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eqs. (3.42) and (3.43) to calculate an initial guess. In the second approach, the optimal

parameters from the previous time point are used to generate the first trial state. However,

it is also possible to generalize this method by making use of results from multiple time

points. Therefore, for the last approach, the optimal parameters from two previous time

points are used to extrapolate a value for the new optimization parameters. To find the

extrapolated value, the directional derivative of a parameter θi with respect to the spatial

coordinates of the nuclei along a vector v is first approximated as:

∇̃vθi (Rs−1) = θi,s−1 − θi,s−2

|v|
. (6.3)

Here, s represents the time point with the unknown optimization parameters and v is a

vector from the nuclear coordinates at s − 2 to those at s − 1. Mathematically, v can be

written as:

v = Rs−1 −Rs−2. (6.4)

Similarly, another vector w is defined as:

w = Rs −Rs−2. (6.5)

The scalar projection p of w onto v is then determined using the following equation [106]:

p = w · v
|v|
. (6.6)

Afterwards, the optimization parameter ti,s is found by performing a linear extrapolation

along v using the equation:

θi,s = θi,s−2 + p
[
∇̃vθi (Rs−1)

]
. (6.7)
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Table 6–2: A comparison of vibrational frequency and bond length results for H2
Simulation Zero initial nuclei velocity

Method Perturbation Previous time
point Extrapolated

Average relative
difference (%) 36.6 11.7 1.2

Maximum
relative

difference (%)
40.8 17.5 2.6

Simulation Nonzero initial nuclei velocity (100 pm/fs)

Method Perturbation Previous time
point Extrapolated

Average relative
difference (%) 34.7 7.1 2.5

Maximum
relative

difference (%)
40.4 10.1 5.3

This procedure is then repeated for all the other optimization parameters.

To test these three approaches, BOMD simulations were conducted using the state

vector simulator. Each approach was tested twice using a H2 molecule, the UCCSD-based

entangler, and the STO-3G basis set. In the first case, the hydrogen nuclei were placed 1.0

Å apart on the x-axis and given initial velocities of zero. The simulations were run for 14

fs using time steps of 0.5 fs. In the other case, the initial velocities were instead set to 100

pm/fs in the plus and minus y-direction. This was done to determine the impact of having

nonparallel vectors v and w. The average and maximum relative difference between the

optimal parameter θ13
02 and the initial guess was then calculated for each simulation. The

results are shown in Table 6–2. It should be noted that the first two time points were not
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included in the averages since there are not enough previous results to use the extrapolated

strategy before the third time point is reached.

From these results, it appears that using perturbation theory to calculate the initial

optimization parameters is a poor approach. Using extrapolation to compute new parameters

seems to be the best strategy. However, the accuracy of the extrapolated guesses deteriorated

slightly when v and w were not parallel. The robustness of this method should be tested

further. For example, additional simulations could be run using different entanglers and

different molecules. The impacts of increasing the number of parameters or adding noise

should also be studied. For large number of parameters, it might be advantageous to use the

optimal parameters from the previous time point instead of spending computational power

determining an extrapolated guess for every parameter. It should also be mentioned that

the effectiveness of this method on reducing the number of optimization iterations depends

greatly on the chosen optimization strategy.



CHAPTER 7
Born-Oppenheimer Molecular Dynamics using Superconducting Quantum

Computers

7.1 Quantum Circuit Depth Reduction

The ultimate goal of this research project was to simulate the time evolution of H2 using

a real quantum computer. To achieve this, however, it was first necessary to reduce the depth

of the quantum circuits used in a BOMD simulation. The depth of a circuit is defined as the

number of time steps between the input state and the qubit measurements. Each time step

can contain multiple quantum operations that are applied in parallel [107]. When the depth

of a quantum circuit is too large, the qubits are more likely to be affected by interactions

with the environment, resulting in decoherence. The outcome is a loss of accuracy [108].

Therefore, reducing the circuit depth is crucial since today’s quantum computers are sensitive

to environmental noise [48, 55].

In order to reduce the depth of a quantum circuit, one method is to utilize the Bravyi-

Kitaev transformation [89, 109] instead of the Jordan-Wigner one to replace fermionic oper-

ators by Pauli operators. For a computer with m qubits, the former mapping procedure only

generates O (log (m)) quantum gates per fermionic operator, while O (m) gates are needed

using the latter approach. When using the Bravyi-Kitaev transformation, the qubit state

vector bm is obtained from the fermionic occupation state vector fm by using the following

equation:

bm = βmfm. (7.1)
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Here, βm is a matrix which is defined as:

β2x =


β2x−1 0

0 β2x−1

← 1→

, (7.2)

where ← 1→ indicates that the bottom row is filled with ones and β1 corresponds to:

β1 =
[
1
]
. (7.3)

For instance, the reference state for H2 when using the STO-3G basis set is mapped from

the fermionic occupation basis to the qubit basis in the following manner:

b4 = β4f4 =



1 0 0 0

1 1 0 0

0 0 1 0

1 1 1 1





1

0

1

0


=



1

1

1

0


, (7.4)

where sums are computed using mod(2). As for the procedure utilized to generate the

Pauli operators with the Bravyi-Kitaev transformation, it will not be presented here. The

interested reader can refer to Ref. [89] where the procedure is described in great details. For

the electronic Hamiltonian associated with the reference state shown in eq. (7.4), applying

the transformation leads to this result:

Ĥe = h0 + h1 (Z0 + Z2) + h2 (Z0Z1 + Z1Z2Z3) + h3 (Z1 + Z1Z3) + h4Z0Z2

+ h5 (X0X2Z3 −X0Z1X2 −X0Z1X2Z3 +X0X2) + h6 (Z0Z1Z2Z3 + Z0Z1Z2)

+ h7Z0Z2Z3, (7.5)
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where hi is a real coefficient.

In order to simplify the molecular Hamiltonian, a strategy used by O’Malley et al. [48]

can be employed. They noted that only Z operators act on qubits 1 and 3. Since the

maximum and minimum expectation values of Z occur when the qubit state is an eigenstate

of Z, qubits 1 and 3 must be in states |0〉 or |1〉 to minimize 〈Ĥe〉. Furthermore, because the

reference state was obtained using the Hartree-Fock method, the configuration |1110〉 must

be part of the optimal wave function. This means that qubits 1 and 3 are in states |1〉 and

|0〉, respectively, in the optimal quantum state. As a result, the operators Z1 and Z3 can

be replaced by their eigenvalues -1 and 1, respectively. After removing qubits 1 and 3, the

electronic Hamiltonian becomes:

Ĥe = h0 − 2h3 + (h1 − h2) (Z0 + Z1) + (h4 − 2h6 + h7)Z0Z1 + 4h5X0X1, (7.6)

where qubit 2 was relabeled qubit 1. Similarly, the reference state can be simplified to:

|Ψref〉 = |11〉. (7.7)

Since two qubits were removed, it is also necessary to simplify the UCCSD-based ansatz.

This can be achieved by following a strategy that was developed by Hempel et al. [57]. The

first step is to recognize that the single excitation operators have no effect on the reference

state. This is due to the Brillouin theorem which states that [12]:

〈ΨHF |Ĥea
†
aai|ΨHF 〉 = 0, (7.8)
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where |ΨHF 〉 is a Hartree-Fock state and a†aai|ΨHF 〉 is an excited state generated by inter-

changing a virtual orbital and an occupied one. Additionally, since

〈ΨHF |Ĥ|ΨHF 〉 ≤ 〈ΨHF |a†iaaĤea
†
aai|ΨHF 〉, (7.9)

the presence of a singly-excited Hartree-Fock state can only increase the expectation value

of the electronic Hamiltonian. Therefore, the single excitation operators can be removed and

the ansatz becomes:

U = exp
(
−
iθ1,3

0,2

8 Y0X2

)
× exp

(
−
iθ1,3

0,2

8 X0Y2

)
× exp

(
iθ1,3

0,2

8 Y0Z1X2Z3

)

× exp
(
iθ1,3

0,2

8 X0Z1Y2Z3

)
× exp

(
iθ1,3

0,2

8 X0Z1Y2

)
× exp

(
iθ1,3

0,2

8 Y0Z1X2

)

× exp
(
−
iθ1,3

0,2

8 X0Y2Z3

)
× exp

(
−
iθ1,3

0,2

8 Y0X2Z3

)
. (7.10)

Once again, the Z operators which are applied to qubits 1 and 3 of the unsimplified reference

state can be replaced by their eigenvalues. The result is the following:

U = exp
(
−
iθ1,3

0,2

2 Y0X1

)
exp

(
−
iθ1,3

0,2

2 X0Y1

)
, (7.11)

where the Pauli operator indices were relabeled to match those of the simplified Hamiltonian.

Because the reference state contains a single configuration, it is also possible to combine the

two remaining exponential operators into one [57]. This is achieved by using the fact that a

Pauli operator can be written as the product of the other two Pauli operators. For instance,

X can be expressed as −iY Z, while Y can be expressed as iXZ. Thus, the ansatz can be

written as:

U = exp
(
−
iθ1,3

0,2

2 Y0X1

)
exp

(
−
iθ1,3

0,2

2 Y0Z0X1Z1

)
. (7.12)
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Figure 7–1: The largest quantum circuit obtained after simplifying the UCCSD-based ansatz
and the electronic Hamiltonian.

Replacing the Z operators by their eigenvalues, the ansatz becomes:

U = exp
(
−iθ1,3

0,2Y0X1
)
. (7.13)

After these simplifications, the largest quantum circuit that needs to be submitted to

the quantum computer is the one which requires computing the expectation value 〈X0X1〉.

This circuit is shown in Fig. 7–1. It has a circuit depth of 7 gates. By comparison, the

largest quantum circuit that was used in the previous sections of this thesis had a circuit

depth of 73 gates. However, it is possible to create an ansatz for H2 in the STO-3G basis set

that has an even smaller circuit depth. This will be shown in the following section.

7.2 Minimal Circuit Depth Ansatz

To maximize the chance of successfully conducting a BOMD simulation on a quantum

computer, it was decided to create an ansatz which is specific to the molecule and the basis

set of interest. As a starting point, it is helpful to determine the form of the possible trial
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states. For H2 in the STO-3G basis set, the trial states all have the following form:

|Ψt〉 = a
(
θ1,3

0,2

)
|1010〉+ b

(
θ1,3

0,2

)
|0101〉, (7.14)

where a
(
θ1,3

0,2

)
and b

(
θ1,3

0,2

)
are real coefficients, while |1010〉 and |0101〉 are fermionic occupa-

tion state vectors. Applying the Bravyi-Kitaev transformation, the trial states then become:

|Ψt〉 = a
(
θ1,3

0,2

)
|1110〉+ b

(
θ1,3

0,2

)
|0100〉. (7.15)

Qubits 1 and 3 can afterwards be removed as was done in Section 7.1. This results in the

following trial states:

|Ψt〉 = a
(
θ1,3

0,2

)
|11〉+ b

(
θ1,3

0,2

)
|00〉. (7.16)

Previously, |11〉 was used as the reference state. However, initializing this state requires

applying an X gate to each qubit. To minimize the circuit depth, the reference state is

instead chosen to be |00〉. The goal of the entangler is therefore to transform state |00〉 into

one of the trial states, as shown in this equation:

U
(
θ1,3

0,2

)
|00〉 = a

(
θ1,3

0,2

)
|11〉+ b

(
θ1,3

0,2

)
|00〉. (7.17)

It turns out that it is possible to generate the trial states by using an ansatz that only

contains two quantum gates. This ansatz corresponds to:

U (γ) = UCN,0,1Ry0 (γ) , (7.18)

where γ can be related to θ1,3
0,2 by noting that

exp
(
−iθ1,3

0,2Y0X1
)
|11〉 = UCN,0,1Ry0 (γ) |00〉. (7.19)
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Figure 7–2: The largest quantum circuit obtained by using the ansatz given in eq. (7.18).

The parameter γ can then be expressed in terms of θ1,3
0,2 by solving the following equations:

sin
(
θ1,3

0,2

)
= −cos

(
γ

2

)
, (7.20)

and

cos
(
θ1,3

0,2

)
= sin

(
γ

2

)
. (7.21)

Using the simplified electronic Hamiltonian, which was derived in Section 7.1, the depth of

the largest quantum circuit is reduced to only 3 gates. This circuit is shown in Figure 7–2.

The smallest circuit, on the other hand, has a depth of 2 gates. It is needed for terms in the

electronic Hamiltonian that only involve Z operators.

To verify if the ansatz given in eq. (7.18) can be used to run a BOMD simulation using

one of IBM’s superconducting quantum computers, calculations to determine the expectation

value 〈Z0Z1〉 for a certain parameter γ were performed. In this case, γ was set to -2.789,

which corresponds to the optimal parameter for an H2 molecule with an interatomic distance

of 1.0 Å. The expectation value was approximated using three different quantum computers.

One was located in Melbourne and had 14 qubits, while the other two were in Tenerife and
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Table 7–1: A comparison of the measurement probabilities and the expectation value
〈Z0Z1〉 calculated using different quantum computers

Quantum
computer

Melbourne
(14 qubits)

Tenerife (5
qubits)

Yorktown (5
qubits)

State vector
simulator

p|00〉 (%) 5.15 10.88 1.91 3.08
p|01〉 (%) 6.05 11.57 7.02 0.00
p|10〉 (%) 6.05 22.95 4.38 0.00
p|11〉 (%) 82.75 54.60 86.68 96.92
〈Z0Z1〉 0.758 0.310 0.772 1.000

Yorktown, but had 5 qubits. For each quantum computer, the 2 qubits with the lowest

single-qubit and two-qubit gate error rates were selected. To verify the accuracy of these

computations, the expectation value was also determined using the state vector simulator.

The values that were obtained for 〈Z0Z1〉 are given in Table 7–1 along with the probability

associated with each measurement outcome.

An important task that had to be completed before comparing the results presented

in this table was to determine the uncertainty ε of the Hamiltonian averaging procedure.

For the calculations performed on quantum computers, 24 576 measurement were taken. To

compute the uncertainty, eq. (8.14), which is explained in further details in the Appendix,

was employed. Since the variance of 〈Z0Z1〉 is 1, the equation simplifies to:

ε2 = z2

m
. (7.22)

For a z value of 3, the uncertainty turns out to be 0.019. In other words, there is a 99.7%

probability of calculating an expectation value that is within 0.019 of the exact value of

1.000 when taking 24 576 measurements. This demonstrates that the inaccuracy of the re-

sults which were obtained using quantum computers is due to systematic errors. A common
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Table 7–2: A comparison between expectation values computed by the IBM quantum
computer in Yorktown and those found using the state vector simulator

Quantum
computer 〈Z0〉 〈Z1〉 〈Z0Z1〉 〈X0X1〉 〈Ĥe〉 (Eh)

Yorktown (5
qubits) -0.8213 -0.8741 0.7719 -0.1258 -1.0114

State vector
simulator -0.9384 -0.9384 1.0000 -0.3464 -1.1012

source of such errors is crosstalk [110]. In a superconducting quantum computer, the qubits

are electromagnetically coupled to transmission lines such that they can be controlled and

entangled. However, these electromagnetic interactions can also affect qubits in an undesir-

able way. For instance, applying an Ry (γ) gate to one qubit could affect the state of another

qubit. Apart from crosstalk, errors can also be caused by sending imperfect microwave pulse

sequences to the qubits [48]. As an example, an imprecise pulse could lead to the application

of a gate Ry (γ + δγ) instead of the intended Ry (γ), where δγ is the deviation from the correct

angle γ. It is also common for errors to affect the state preparation and the measurement

procedures [111].

To further demonstrate the impact of these errors, the total electronic energy was de-

termined for H2 with an interatomic distance of 1.0 Å. This was accomplished by taking the

same number of measurements as for Table 7–1 for each quantum circuit. The energy was

computed using the 5-qubit quantum computer located in Yorktown and the state vector

simulator. The expectation values associated with each term of the electronic Hamiltonian

and the total electronic energy are given in Table 7–2 for both methods. Additionally, the

energy determined using the quantum computer in Yorktown was compared to values ob-

tained using the restricted Hartree-Fock (RHF) method and full configuration interaction
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Table 7–3: The absolute error in total electronic energy for the IBM quantum computer in
Yorktown and methods relying exclusively on classical computers

Method RHF Yorktown
(5 qubits)

State
vector

simulator
FCI FCI

Basis set STO-3G STO-3G STO-3G STO-3G aug-cc-pV6Z
Total electronic

energy (Eh) -1.0661 -1.0114 -1.1012 -1.1012 -1.1476

Absolute
energy error

with respect to
STO-3G (mEh)

35.1 89.8 0.0 0.0 -

Absolute
energy error

with respect to
aug-cc-pV6Z

(mEh)

81.5 136.2 46.4 46.4 0.0

(FCI). The FCI calculations were performed in Gaussian 16 [98] using both the STO-3G

and aug-cc-pV6Z basis sets. The results are presented in Table 7–3 along with the absolute

energy error.

The magnitude of the error values given in Table 7–3 demonstrates that it is not pos-

sible to conduct a BOMD simulation with one of IBM’s quantum computers by measuring

〈Ψt|Ĥe|Ψt〉 at the theoretically optimal VQE parameters θ. Furthermore, chemical accu-

racy (1.6 mEh) was not reached using the quantum computer in Yorktown. In fact, the

quantum computer provided a worse energy approximation than the restricted Hartree-Fock

method, which was employed to contruct the reference state. To obtain better results, an

error-mitigation scheme could be utilized. So far, methods such as Richardson extrapola-

tion [47, 112] and probabilistic error cancellation [112] have been proposed to reduce the

impact of errors. As an alternative, a hardware-based entangler, such as the one created by
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Kandala et al. [55], could be used to find the experimentally optimal VQE parameters that

minimize 〈Ψt|Ĥe|Ψt〉. Since the VQE takes advantage of the variation principle, the energy

computed at the experimentally optimal parameters is either equal or more accurate than

the energy found at the theoretically optimal parameters [53].



CHAPTER 8
Conclusion

8.1 Concluding Remarks

The advent of increasingly powerful quantum computers promises to revolutionize fields

such as computational chemistry. It will become possible to solve problems that are in-

tractable on classical computers. Such problems can be found in areas like combustion,

materials science, and drug design. Therefore, the goal of the present work was to develop

numerical schemes and methods to perform BOMD simulations on a quantum computer.

These schemes were tested on a H2 molecule using a quantum computer simulator. The

results showed that it was theoretically possible to use the VQE to conduct a BOMD sim-

ulation on a quantum computer. However, it should be noted that results which are within

chemical accuracy cannot be obtained using the minimal basis set that was utilized through-

out this thesis. A larger basis set is required to attain that level of accuracy. This implies

running simulations with a larger number of quantum gates and more qubits.

Furthermore, it was shown that techniques such as linear extrapolation could be em-

ployed to improve the initial guess of the VQE’s optimization parameters. For simulations

involving H2, the average relative difference between the initial guesses and the optimal

parameters was improved from 35%, using perturbation theory, to 2.5%, using linear ex-

trapolation. This technique can also be applied to other entanglers than the UCCSD-based

ansatz which was utilized in this thesis. However, further tests still need to be completed
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using more complex molecules and a larger number of parameters in order to better quantify

the effectiveness of this strategy.

Additionally, the efficiency of the VQE was improved by allowing the number of mea-

surements taken to vary for each iteration of the classical optimization procedure. That

was accomplished by establishing relationships, known as uncertainty functions, between

the uncertainty of the measured directional derivative of energy and the expected value of

that derivative. The directional derivative in this case is taken with respect to the optimiza-

tion parameters. Using an exponential uncertainty function, the number of measurements

needed to determine the total electronic energy of H2 was reduced by a factor of almost 3.

Although this strategy was used for the SPSA algorithm, it could also be applied to other

gradient-based algorithms.

8.2 Future Work

In order to reach the goal of running a molecular dynamics simulation using a quantum

computer, some modifications need to be made to the VQE algorithm that was implemented

for this thesis. One important aspect is the need to perform error mitigation. A strategy

similar to the one developed concurrently by Li and Benjamin [47] as well as Temme et

al. [112] could be employed. Their approach works by intentionally increasing the noise on

the quantum computer and then extrapolating to the zero-noise limit to obtain more accu-

rate results. Another modification that could be made is to use a hardware-based entangler

instead of a chemically-inspired one like the UCCSD-based ansatz. Such an entangler was

employed by Kandala et al. [55] to determine the PES of H2, LiH, and BeH2 using super-

conducting qubits. This type of entangler generates trial states by taking advantage of the
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natural entanglement present on a quantum computer. It is therefore less reliant on the

device’s ability to apply quantum gates accurately.

An additional aspect of the BOMD method that must be improved is the calculation

of the energy gradient with respect to the spatial coordinates of the nuclei. The finite

difference approach that was used in this thesis has several drawbacks. One of them is

that the number of energy evaluations needed to compute the gradient is 6N , where N

is the number of nuclei. Furthermore, the number of quantum measurements required to

achieve a target precision εd is proportional to 1/δ2, where δ is the step size employed in the

finite difference method. An alternative approach is to compute the gradient analytically.

This method has the advantage of being less computationally expensive than its numerical

counterpart [6]. Recently, analytical expressions for the energy gradient were determined

by O’Brien et al. [113] and Mitarai et al. [114] for the VQE. A third strategy that is also

worth considering is automatic differentiation, proposed by Tamayo-Mendoza et al. [115],

which calculates the gradient by analytically evaluating the derivative of every operation in

an algorithm. The main advantage of this differentiation technique is that it can compute

gradients with machine precision without the need to derive analytical expressions for every

algorithm.

Finally, it is also important to improve the variable uncertainty scheme which is em-

ployed to reduce the number of measurements taken in the VQE. At the moment, the effi-

ciency of this method depends greatly on the several parameters which need to be selected

for the uncertainty functions. As an alternative, the parameters for the uncertainty function

could be optimized automatically during the optimization algorithm of the VQE. This could

be achieved, for example, by computing multiple estimates of the directional derivative of
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energy for a single iteration. A different uncertainty value would be used to obtain each

estimate. The energy at the next iteration would then be calculated for each directional

derivative. Afterwards, the results would be compared to update the parameters of the

uncertainty function. The parameters would only be updated at every few iteration. As a

consequence, the variable uncertainty scheme would be more robust and would not depend

as much on the initially selected parameters for the uncertainty function.



Appendix: Hamiltonian Averaging Uncertainty

Being able to predict the uncertainty of the Hamiltonian averaging procedure is cru-

cial for obtaining meaningful results when running the VQE. For this reason, equations

which approximate the number of measurements required to evaluate the expectation value

〈Ψt|Ĥe|Ψt〉 and its directional derivative with a certain amount of uncertainty will be derived

in this appendix. The approach employed to do so in this section is similar to those used by

Wecker et al. [93] and McClean et al. [54].

For the first step, the electronic Hamiltonian can be reexpressed as:

〈Ψt|Ĥe|Ψt〉 = h0 +
M∑
i=1
〈Ψt|Ĥe,i|Ψt〉 = h0 +

M∑
i=1

hi〈ξt|P̂z,i|ξt〉, (8.1)

where h0 and hi are constants, Ĥe,i is a nonconstant term in Ĥe, and M is the number of

nonconstant terms in Ĥe. Additionally, P̂z,i corresponds to a product of Pauli-Z matrices

while |ξt〉 is the state |Ψt〉 after changing the basis of the qubits in order to take a measure-

ment. In a similar manner, the value which is calculated during the Hamiltonian averaging

procedure, known as the estimator ̂〈Ψt|Ĥe|Ψt〉, is defined as:

̂〈Ψt|Ĥe|Ψt〉 = h0 +
M∑
i=1

̂〈Ψt|Ĥe,i|Ψt〉 = h0 +
M∑
i=1

hi
̂〈ξt|P̂z,i|ξt〉, (8.2)

where ̂〈Ψt|Ĥe,i|Ψt〉 and ̂〈ξt|P̂z,i|ξt〉 are the estimator of their respective expectation value.

Each estimator ̂〈Ψt|Ĥe,i|Ψt〉 corresponds to the average value X̄mi associated with the inde-

pendent random variables Xk, where mi is the number of measurements taken.
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Afterwards, the central limit theorem is applied. The theorem states that if mi is

sufficiently large, the distribution of X̄mi for a random variable Xk with mean µi and variance

σ2
i is approximately normal. The expectation value E

[
X̄mi

]
and the variance Var

[
X̄mi

]
of

this normal distribution are defined as follows [116]:

E
[
X̄mi

]
= µi, (8.3)

Var
[
X̄mi

]
= σ2

i

mi

. (8.4)

As a result, the variance of the estimator ̂〈Ψt|Ĥe,i|Ψt〉 corresponds to:

Var
[

̂〈Ψt|Ĥe,i|Ψt〉
]

=
Var

[
〈Ψt|Ĥe,i|Ψt〉

]
mi

. (8.5)

With this equation, it is then possible to determine the variance of the estimator ̂〈Ψt|Ĥe|Ψt〉.

To do so, the variance of the sum of two random variables X̄mi and Ȳmj needs to be obtained.

This can be done by using the following equation [117]:

Var
[
X̄mi + Ȳmj

]
= Var

[
X̄mi

]
+ Var

[
Ȳmj

]
+ 2Cov

[
X̄mi , Ȳmj

]
, (8.6)

where Cov
[
X̄mi , Ȳmj

]
is the covariance between X̄mi and Ȳmj . Since all estimators ̂〈Ψt|Ĥe,i|Ψt〉

are independent of each other, the covariance will always be zero. Therefore, the variance of
̂〈Ψt|Ĥe|Ψt〉 corresponds to:

Var
[

̂〈Ψt|Ĥe|Ψt〉
]

=
M∑
i=1

Var
[

̂〈Ψt|Ĥe,i|Ψt〉
]
. (8.7)

It is also important to note that the sum of two independent random variables that are

normally distributed follows a normal distribution [118]. For this reason, the uncertainty ε
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is defined according to this equation:

ε = z

√
Var

[
̂〈Ψt|Ĥe|Ψt〉

]
, (8.8)

where

z =
X̄m − E

[
X̄m

]
√

Var
[
X̄m

] = 〈Ψt|Ĥe|Ψt〉 − ̂〈Ψt|Ĥe|Ψt〉√
Var

[
̂〈Ψt|Ĥe|Ψt〉

] . (8.9)

The variable z corresponds to the z score associated with the upper limit of the interval

〈Ψt|Ĥe|Ψt〉 ± ε [118]. If z is set to 1 for example, this means that in 68% of averaging

procedures, ̂〈Ψt|Ĥe|Ψt〉 is at most ε away from 〈Ψt|Ĥe|Ψt〉.

Next, in order to express the uncertainty in terms of the number of measurements taken

for each estimator ̂〈Ψt|Ĥe,i|Ψt〉, eqs. (8.8) and (8.5) are substituted into eq. (8.7). The result

is shown in this equation:

ε2 = z2
M∑
i=1

Var
[
〈Ψt|Ĥe,i|Ψt〉

]
mi

 . (8.10)

It is then possible to rewrite eq. (8.10) in terms of the variance of 〈ξt|P̂z,i|ξt〉 by using the

following rule [117]:

Var
[
cX̄m

]
= c2Var

[
X̄m

]
, (8.11)

where c is a constant. The outcome therefore corresponds to:

ε2 = z2
M∑
i=1

h2
iVar

[
〈ξt|P̂z,i|ξt〉

]
mi

 . (8.12)

For the next step of this derivation, the uncertainty must be expressed in terms of the

total number of measurements m taken during the Hamiltonian averaging procedure. The

most efficient way to do so is to set the number of measurements mi such that they are
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proportional to |hi| [93]. However, this approach was not chosen for this research project.

This is because each job that is sent to one of IBM’s quantum computer using Qiskit [91]

contains an array of quantum circuits. Unfortunately, the number of measurements must

be the same for all circuits in the array. The alternative would be to group circuits with

the same mi together and to submit a job for each of these groups. Since each job that is

submitted is placed in a queue before it is processed though, this would drastically increase

the time required to run a simulation. For this reason, it was decided to assign the same

number of measurements to all circuits. Mathematically, this corresponds to:

mi = m

M
. (8.13)

Substituting this equation into eq. (8.12) then gives the following:

ε2 =
(
Mz2

m

)
M∑
i=1

h2
iVar

[
〈ξt|P̂z,i|ξt〉

]
. (8.14)

The only variable that is unknown in eq. (8.14) is the variance of 〈ξt|P̂z,i|ξt〉. Fortunately,

there is an upper bound to this variance. This maximum value occurs when 〈ξt|P̂z,i|ξt〉 is

zero. The only possible measurement outcomes in this case are 1 or -1. This results in a

variance of 1. Therefore, the variance of 〈ξt|P̂z,i|ξt〉 can be expressed as:

Var
[
〈ξt|P̂z,i|ξt〉

]
≤ 1. (8.15)

Substituting this inequality into eq. (8.14) then gives:

m ≤
(
Mz2

ε2

)
M∑
i=1

h2
i . (8.16)
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Assuming that z is set to 1, choosing the upper bound of this equation for m means that
̂〈Ψt|Ĥe|Ψt〉 will be at most ε away from 〈Ψt|Ĥe|Ψt〉 in at least 68% of averaging procedures.

This statement is true as long as m is sufficiently large.

For the energy derivative with respect to a variable x, a similar approach to the one

given above will be used to determine the number of measurements required to obtain a

certain uncertainty εd. In this case, the energy E (x) is defined as the expectation value

of the electronic Hamiltonian and the derivative is computed using the finite difference

method [102]. The numerical approximation of the energy derivative as well as the associated

estimator are respectively given in the two following equations:

dE (x)
dx ≈

(
dE (x)

dx

)
num

= E (x+ δ)− E (x− δ)
2δ , (8.17)

d̂E (x)
dx ≈

̂(
dE (x)

dx

)
num

=
̂E (x+ δ)− ̂E (x− δ)

2δ , (8.18)

where δ corresponds to the step size. Since the energy estimators are independent random

variables, the variance of the derivative’s estimator corresponds to:

Var
 ̂(

dE (x)
dx

)
num

 =
Var

[
̂E (x+ δ)

]
+ Var

[
̂E (x− δ)

]
4δ2 . (8.19)

Moreover, when the energy estimator variances are assumed to be equal because δ is small,

this equation can be rewritten as:

Var
 ̂(

dE (x)
dx

)
num

 =
Var

[
Ê
]

2δ2 , (8.20)

where Var
[
Ê
]

is the variance of an energy estimator.
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Since the estimator for the energy derivative is also a normally distributed random

variable, εd was defined in the following manner:

εd = zd

√√√√√Var
 ̂(

dE (x)
dx

)
num

, (8.21)

where

zd =

(̂
dE(x)

dx

)
num
−
(

dE(x)
dx

)
num√√√√Var

[(̂
dE(x)

dx

)
num

] . (8.22)

Then, substituting the previous equation and eq. (8.14) into eq. (8.20) gives:

m =
(

(zd)2M

2δ2ε2
d

)
M∑
i=1

h2
iVar

[
〈ξt|P̂z,i|ξt〉

]
. (8.23)

To complete the derivation, the total number of measurements md is defined as twice the

number of measurements per energy value m and the inequality in eq. (8.15) is used. The

outcome is the following inequality:

md ≤
(

(zd)2M

δ2ε2
d

)
M∑
i=1

h2
i . (8.24)

This result shows that it is possible to reduce the number of measurements required for a

given uncertainty by increasing the step size. However, increasing the step size will also

increase the error in the numerical derivative. This error corresponds to O (δ2) [102].
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