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Abstract

Ultra Wideband (UWB) is a rapidly growing technology for digital wireless communica-

tions. UWB utilizes low power, ultra short, pulses and is specifically suited for short-range,

high-rate indoor wireless communications as well as fine localization applications. The at-

tractive properties of UWB are a direct consequence of its very wide bandwidth that also

implies an extremely high Nyquist sampling rate, so digital processing of UWB signals re-

quires the use of fast and efficient, and therefore, expensive, Analog to Digital Converters.

UWB systems are commonly used in indoor environments in which propagation is char-

acterized by long but sparse multipath channels. Multi-path channels cause intersymbol

interference (ISI) and introduce distortion to the received signal. To counter the effects of

the channel, the channel impulse response must be accurately estimated at the receiver.

There are two main estimation approaches for UWB channels: Compressed Sensing (CS)-

based and Adaptive Filter (AF)-based. The former combine sampling and compression

into a single linear measurement process that operates at sub-Nyquist rate by capitalizing

on the sparsity of UWB signals. The latter, uses Least-Mean-Square filtering principles to

obtain low complexity channel estimation methods. The problem we consider in this thesis

is the estimation of a long sparse multi-path channel in an UWB system. We focus on

systems that use Pulse Position Modulation (PPM) that is one of the most commonly used

modulation schemes in UWB systems. We review CS and AF based methods and then we

propose new AF-type methods specifically for the estimation of sparse multi-path channels

with PPM inputs. The main idea behind the proposed methods is to estimate the long

channel in sections in order to reduce the computational cost and improve the estimation

performance. Finally, we present simulation results showing the superior performance of

the proposed algorithms.
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Résumé

Ultra Wideband (UWB) est une technologie en croissance rapide de communications numér-

iques sans fil. UWB utilise une faible puissance, ultra court, impulsions et est spécifiqu-

ement adapté á courte portée, haut-débit sans fil intérieure communications ainsi que la

localisation fine applications. Les propriétés intéressantes de UWB sont une conséquence

directe de son très large bande passante, ce qui implique également un taux extrêmement

élevé Nyquist (taux d’échantillonnage, traitement numérique des signaux UWB requiert

l’utilisation de rapide et efficace, et donc, cher, convertisseurs analogiques-numériques.

UWB systèmes sont couramment utilisés dans les environnements intérieurs dont la propa-

gation est caractérisé par un long mais clairsemée multipath canaux. Multi-canaux chemin

cause intersymbol causant des interférences (ISI) et introduire de distorsion du signal

reçu. Pour contrer les effets du canal, le canal réponse impulsion doit être estimée avec

précision au niveau du récepteur. Il existe deux principales approches estimation pour UWB

canaux: Comprimé de télédétection (CS)-fondée et filtre adaptatif (AF)-fondée. L’ancienne

moissonneuse-batteuse d’échantillonnage et de compression dans une seule mesure linéaire

processus qui fonctionne en sous-fréquence Nyquist en capitalisant sur la faible densité des

signaux UWB. Ce dernier, utilise moins Mean Square filtrage principes pour obtenir une

faible complexité canal méthodes d’estimation. Le problème que nous considérons dans

cette thèse est l’estimation d’un long sparse multi-chemin canal d’un système UWB. Nous

nous concentrons sur les systèmes qui utilisent Pulse Position Modulation (PPM) qui est

l’un des plus couramment utilisé schémas de modulation en systèmes UWB. Nous revoir CS

et AF fondées sur des méthodes et ensuite nous proposer de nouvelles AF-type méthodes

spécifiquement pour l’estimation des sparse multi-chemin canaux avec PPM entrées. L’idée

principale derrière les méthodes proposées est d’estimer le long canal en sections afin de

réduire les coûts informatiques et améliorer les méthodes d’estimation des performances.

Enfin, nous présentons les résultats de simulation montrant la supériorité de la performance

des algorithmes proposés.
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Chapter 1

Introduction

1.1 Overview

Digital wireless communication has experienced a significant growth in recent years driven

by increasing demand for more effective and reliable data communication. In particular,

the Ultra-Wideband (UWB) technology has gained in popularity because of its high data

rate capabilities in indoor wireless applications. UWB signals are formed of ultra-short

(nanosecond-scale) pulses whose position or phase encodes information. The short duration

of the pulses results in a very wide spectrum in the frequency domain (up to 7GHz), hence

the name UWB.

Due to their wide bandwidth UWB signals propagate through frequency selective chan-

nels, also called multi-path fading channels, that cause Intersymbol Interference (ISI) in

the received signal. Indeed, the received signal comprises of time-shifted and attenuated

versions of the transmitted signal. To recover the transmitted signal, accurate knowledge

of the channel impulse response is required at the receiver. This information is usually

obtained by a channel estimator based on the known sequence of transmitted symbols.

In UWB systems, the very fine time resolution of the transmitted signal results in a

very large number of resolvable multi-path components which makes the channel estima-

tion a particularly challenging problem [2]. In addition, the Channel Impulse Responses

(CIRs) are typically sparse as they contain a large number of zero or negligible coefficients.

These two characteristic properties of UWB channels have motivated research of efficient

CIR estimation techniques along two main avenues: Compressed Sensing (CS)-based and

Adaptive Filter (AF)-based approaches. Both approaches capitalize on the sparsity of the
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CIR to offer improved performance but they exploit this property in different ways.

CS-based methods combine sampling and compression into a single linear measurement

process that operates at sub-Nyquist rate. The main motivation behind these methods is

cost reduction through the use of inexpensive Analog-to-Digital Converters (ADCs). Due

to the large bandwidth of UWB signals, the corresponding Nyquist rate is very high and

Analog-to-Digital conversion requires very costly high-speed Analog-to-Digital Converters

(ADCs), in addition to very high storage and processing demands. CS-based methods avoid

the use of high-speed ADCs; however, they require the use of advanced and very complex

signal processing techniques.

AF-based methods, on the other hand, rely on Least-Mean-Square (LMS) system iden-

tification principles. They are conceptually simple, have low complexity, and they offer

improved channel estimation performance and tracking speed by enforcing a sparse struc-

ture on the channel estimate. However, they require sampling at the Nyquist rate.

1.2 Motivation and Objective

The problem we consider in this thesis is the estimation of multi-path channels in UWB

systems. We focus on systems that use Pulse Position Modulation (PPM) that is one of the

most commonly used modulation schemes in UWB systems. Motivated by recent advances

in CS and adaptive signal processing of sparse signals, we propose novel, simple and cost

effective methods for UWB channel estimation. Conventional channel estimation methods

do not work well for the typically very long and highly sparse UWB channels. The reason

is that they assume relatively short and dense CIRs and they cannot take advantage of the

sparse nature of the UWB channels in order to effectively estimate them. The proposed

methods are based on LMS system identification method and its zero-attracting variants

that were developed for the identification of sparse systems. LMS is a low complexity

iterative procedure for the estimation of the impulse response of a linear system given pairs

of inputs and the corresponding outputs. In the proposed methods, and in contrast to

traditional LMS methods the CIR is not estimated as a whole but in parts. This allows us

to handle long channels in an efficient manner. We give a detailed analysis of the scenarios

where the algorithm can be utilized to its maximum potential to estimate an UWB channel.
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1.3 Thesis Outline

The thesis is organized as follows. In Chapter 2, we provide a general overview of UWB

systems including the signal model, the UWB channel model, and introduce the notation

and terminology used throughout the thesis. In Chapter 3, we provide the essential back-

ground material relating to this thesis. More specifically, we describe the basic theory of

data compression by CS, and channel estimation using adaptive filtering. In Chapter 4,

we describe the proposed channel estimation method in detail and analyze our findings

regarding the channel estimation of the very long sparse multi-path channel in the case of

UWB PPM input signals. Simulation results investigating the effect of the various design

parameters on the performance are presented. Finally, in Chapter 5, we summarize our

work and provide directions for future research.
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Chapter 2

Ultra-Wideband Systems

An UWB signal consists of a train of ultra-short (nanosecond-scale) pulses called monocy-

cles whose position or phase encodes information. The name UWB is due to the fact that

very narrow pulses in the time domain result in a very wide spectrum in the frequency

domain.

2.1 UWB definition

An UWB system, according to the Federal Communications Commission (FCC), is a radio

system having a bandwidth exceeding the lesser of 500 MHz or 20% of its center frequency

(fc) [3]. The center frequency is defined as [2]

fc =
fH + fL

2
, (2.1)

with fH (fL) being the upper (lower) frequency of −10 dB bandwidth emission point (i.e.,

the frequency at which the magnitude spectrum has 1/
√
10 of its peak value). The 10-dB

bandwidth of the signal is then defined as [4]

B10dB = fH − fL. (2.2)

Prior to 2001 the interest in UWB devices was restricted to radar systems, mostly for

military applications. There was a drastic change in 2002 when FCC allowed the operation

of UWB radios over a frequency band, namely 3.1 − 10.6 GHz [3], of width up to 7.5
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Figure 2.1 Power spectral density of UWB radio system.

GHz. As a result, UWB technology is presently being explored for high capacity wireless

communications systems. However, the FCC imposes limits on the Power Spectral Density

(PSD) of UWB signals; it should not exceed −41 dBm/MHz and should fall rapidly to

−60 dBm/MHz at frequencies below 3.1 GHz [5]. The FCC imposed limits are shown in

Fig. 2.1. The advantages, disadvantages, and application of UWB technology are described

next.

2.1.1 Advantages and Disadvantages

The main advantages of UWB technology are listed below:

1. High data rate UWB communication technology is capable of achieving very high

data rates (greater than 100 Mbps) over short and medium distances (20− 50m) [6].

2. Immunity to multi-path fading. The very wide bandwidth of UWB signals implies a

very fine time resolution that, in turn, allows the resolution of multi-path components

in dense multi-path environments. Thus, it can result in low vulnerability to multi-

path fading in dense multi-path environments [7, 2].

3. Increased security. UWB signals are hard to intercept because of their low average

transmission power. In addition, UWB pulses are time-position-modulated with codes

unique to each transmitter/receiver pair. This time modulation results in increased
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security, because detecting picoseconds-wide pulses without knowing their distinct

code is extremely difficult [8].

4. Low power and low interference. The average transmitted power spectral density of

UWB signals as dictated by the FCC spectral mask is extremely low (−41.3dBm/MHz).

This allows UWB systems to coexist with narrowband radio systems on the same

spectrum without creating excessive interference [6].

On the other hand, UWB exhibits several disadvantages in real-world applications. Some

of these are listed below:

1. Low transmission power. The low transmission power could be a disadvantage for

UWB systems as it limits the communication range. As a result, UWB is not appro-

priate for long-range applications [6].

2. Potential interference. UWB shares a very wide bandwidth with other radio frequency

technologies, resulting in increased risk of interference, from and to existing systems

[9, 10].

3. Long synchronization times. The ultra-narrow pulses require use of complicate signal

acquisition and time synchronization methods. It can take up to a few milliseconds

for a transmitter and receiver to reach synchronization [11].

To counter these drawbacks, advanced Digital Signal Processing (DSP) methods can be

utilized [2].

2.1.2 Applications

UWB radio is a promising technology with attractive features in wireless communications,

networking, radar, imaging, and positioning systems. The motivations for commercial use

of UWB radios are: (a) the rising demand for inexpensive portable devices with high-rate

wireless communication capabilities at low power; (b) the crowding of the spectrum and

lack of available frequencies [12]. There have been increased efforts by research institu-

tions, industry, and government agencies to utilize the potential of UWB radios in different

application areas, such as

1. Localization with centimetre-level precision for indoor environments. GPS only pro-

vides location estimates within meters and is unsuitable for indoor applications.



2.2 UWB indoor Multi-path channels 7

2. High-resolution ground-penetrating radar and through-wall imaging. The lower fre-

quency components allow signal propagation through the ground (1GHz bandwidth)

[13] and walls (2GHz bandwidth) [14] while the larger bandwidth provides higher

resolution [15].

3. Monitoring patients dynamically and remotely [15].

4. Asset tracking for increased security using distance measurements between radios,

UWB signals provide the potential of highly accurate location estimation. Rescue

services could benefit by using UWB technology to find people inside buildings during

emergencies [15, 2].

2.2 UWB indoor Multi-path channels

In wireless data communication environments, the receiver observes a superposition of at-

tenuated and delayed versions of the original transmitted radio signal, called multi-path

signal components. Reflections and refractions from obstacles and buildings are the cause of

the multi-path propagation phenomenon. The multi-path effect is demonstrated in Fig. 2.2.

Delays that are smaller than the information symbol duration Ts, are combined into a single

propagation path with its corresponding delay and attenuation [16, 17]. In some cases, the

different propagation paths add destructively and produce significant attenuation called

fading in the received signal amplitude. When different frequency components of a trans-

mitted signal experience different amounts of fading then frequency-selective fading occurs.

For a mobile radio moving in an area that has many reflective obstacles, the rapid change in

the geometry of the reflected propagation path causes fast fading. Fast fading is especially

bothersome at frequencies above 1GHz because the relative phases of the multi-path sig-

nals can drastically vary with small differences in the lengths of the propagation paths [18].

However, UWB systems transmit ultra-short pulses, they are able to resolve multi-path

components with much higher resolution than technologies using longer pulse durations

[19].

The long delay spread of the channel (typically, several nanoseconds) relative to the mono-

cycle duration implies that UWB systems are subject to less severe fading effects because

fewer multi-path components combine during monocycle’s duration. However, a long de-

lay spread can have negative influence on the system performance the transmitted signal
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Figure 2.2 Multi-path propagation.

energy is distributed amongst too many multi-path components.

We now briefly describe the wireless channel model that IEEE 802.15.3a standardization

group has established for the assessment of UWB communications systems and we consider

the measurements that form the basis of this model. UWB multi-path channel are modelled

as a linear time-varying system [20, 21]. In addition, it has been found that the channels are

sparse, i.e., their impulse response has a large number of zero taps. The impulse response

of the channel for the kth is given by [15]

hk(t) =
L∑

�=1

K∑
k=1

a�k(t)δ(t− τ�k(t)). (2.3)

In Eq. (2.3) t is the observation time, L is the number of the resolvable paths, τ�k(t) is the

arrival time of the received signal via �th path for the kth user, a�(t) is the random time

varying amplitude attenuation, and δ(·) indicates the Dirac delta function [22]. Fig. 2.3

shows a multi-path channel realization obtained using the Saleh-Valenzuela (SV) [23] model

with a pass-band (real) impulse response. The baseband (complex) impulse response of the

original SV model has to be converted to a pass-band (real) impulse response by multiplying
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with a complex exponential of the appropriate carrier frequency and then taking the real

part. The parameters involved in the multi-path channel generation are in Table 2.1.

Figure 2.3 A typical multi-path propagation realization.

2.3 UWB Modulations

Time-Hopping Pulse Position Modulation (TH-PPM) and Time-Hopping Binary Phase

Shift Keying (TH-BPSK) are the most common forms of signal modulation in UWB com-

munications [7, 24, 25]. In TH-PPM, the information is conveyed by time shifts [19]. In

TH-BPSK instead of modulating the signal by a time delay, 180o phase shifts are used for

binary signalling by multiplying each pulse by a user data code of amplitude ±1 [26]. TH-

PPM is the preferred scheme for the system architecture considered in this thesis because

of its good spectral properties [27] and its simplicity [28].
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Table 2.1 Parameters used for generating the multi-path channel realization
in Fig. 2.3 (adopted from [1]).

Parameters definitions and notations Values of parameters

Number of rays per cluster (κ) 25
Mean number of Clusters (L̄ ) 3
Ray arrival rate for mixture of poisson processes
(λ1)[rays per ns] 1.54
Ray arrival rate for mixture of poisson processes
(λ2)[rays per ns] 0.15
Mixture probability (β) 0.095
Rate of cluster arrival (Λ) [1/ns] 0.047
Ray decay factor (γ0) [ns] 12.53
Time dependence of ray decay factor (κγ) 0
Standard deviation of normally distributed variable
for cluster energy (σcluster)[dB] 2.75
Cluster decay factor (Γ) [ns] 22.61
Mean of log-normal distributed nakagami-m factor
for Small-scale Fading (m0)[dB] 0.67
Time dependence of m0 (km) 0
Standard deviation of log-normal distributed
nakagami-m factor (m̂0) 0.28

Time dependence of m̂0 (k̂m) 0

2.3.1 Monocycles

Commonly used monocycles are the Gaussian monocycles defined as the first derivative of

the Gaussian pulse. The Gaussian pulse is given by [29]

f(t) =
1√
2πσ

e−
1
2
( t−μ

σ
)2 , (2.4)

where t represents time, the parameter σ is the standard deviation and controls the width

of the pulse, and μ is the mean and controls the location of the peak of the pulse. Taking

the derivative of (2.4) we can see that the Gaussian monocycle (also shown in Fig. 2.4) has

the form [30]

p(t) = [1− (t− μ)2

σ2
] e−

1
2
( t−μ

σ
)2 . (2.5)



2.3 UWB Modulations 11

The Gaussian monocycle is simple to generate using a step-recovery diode and alternating

current [31]. The parameter σ is related to the monocycle’s duration Tp, that is, the effective

time duration of the pulse over which 99.99% of the total monocycle energy is concentrated.

It can be shown that Tp = 2πσ where σ = 0.1 ns. When the transmitted pulse is the

Gaussian monocycle, the received pulse will have the form of the 2nd derivative of the

Gaussian pulse. Indeed, the antenna’s filtering effect can be modeled as a differentiator in

UWB transmission [32]. The derivative of the Gaussian monocycle is illustrated in Fig. 2.5.

Figure 2.4 Gaussian monocycle pulse (Gaussian monocycle), μ = 0, σ =
0.1ns.

2.3.2 UWB signal model

In TH-PPM (which is represented in Fig. 2.6), an information bit is transmitted over a

symbol time interval Ts, which is divided into Nf frames of length Tf . Each frame is divided

to Nh sub-frames called chips with time duration Tc. Moreover, Ns is the number of pulses

required to transmit a single data bit that is set to 1 for simplicity [33, 7, 31, 34]. Let the

number of users in the system be K. The kth user’s, 1 ≤ k ≤ K, PPM transmitted signal
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Figure 2.5 First derivative of Gaussian monocycle (μ = 0, σ = 0.1ns).

s(k)(t) is given by [35]

s(k)(t) =
Nu∑
k=1

∞∑
i=−∞

Nh−1∑
j=0

A(k)p(t− iTs − jTf − c
(k)
j Tc − εd(k)), (2.6)

where

t represents time;

Nu number of users;

A(k) is the signal amplitude;

p(t) represents the transmitted pulse waveform that begins at time zero at the transmitter.

The pulse p(t) is assumed to be normalized, i.e.,
∫
p2(t)dt = 1 [7, 24, 25];

Tf is the frame length, that is, the pulse repetition period. This is usually greater than

the pulse width resulting in a low duty cycle signal [36];

Nh is the number of chips or sub-frames of a frame;
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Figure 2.6 Representation of TH-PPM.

Tc is the chip time duration, where NhTc ≤ Tf ;

c
(k)
j is the distinct time-hopping sequence, 0 ≤ c

(k)
j < Nh;

d(k) ∈ {0, 1} is the data symbol transmitted by the kth user. It introduces an additional

shift ε to distinguish between pulses carrying bit 0 when ε = 0 and bit 1 otherwise;

ε is the additional time shift of PPM.

For PPM, we assume constant unit signal amplitude for all users; that is, A(k) = 1, in

which case (2.6) becomes

s(k)(t) =
Nu∑
k=1

Nh−1∑
j=0

p(t− jTf − c
(k)
j Tc − εd(k)), where t ∈ [0, Ts]. (2.7)
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The received signal r(t) after transmission over the fading channel described by Eq. (2.3)

is given by

r(t) =
L∑

�=1

K∑
k=1

[
a�k

Ns∑
j=1

q(t− τ�k − jTf − c
(k)
j Tc − εd(k))

]
+ w(t). (2.8)

where L is the number of resolvable paths, q(t) is the received pulse waveform, a�k and τ�k

are the attenuation and delay of the �th path of kth user’s channel, respectively. Finally,

w(t) is the Additive White Gaussian Noise (AWGN) with double-sided power spectral

density N0/2. When only a single active user is in the system, i.e., K = 1, the received

signal can be simplified to

r(t) =

L∑
�=1

a�

Ns∑
j=1

q(t− τ� − jTf − cjTc − εd) + w(t). (2.9)

where a� and τ� are the attenuation and delay of the �th path [35].
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Chapter 3

Background: Processing of Sparse

Signals and Channel Estimation

3.1 Compressed sensing

As discussed earlier, UWB communication systems use ultra-short pulses that spread the

signal energy over a wide frequency spectrum. According to the Nyquist’s theorem, the

sampling rate must be at least twice the maximum frequency of a signal to avoid losing

information due to aliasing. Therefore, due to the high bandwidth of the received UWB

signal, its analog to digital conversion requires high-speed ADCs. However, high speed

ADCs are expensive, consume a lot of power, and have low resolution. Even if sampling at

the Nyquist rate was possible the resulting large number of samples would require expensive

storage systems and processing methods. To achieve the required sampling rates and bit

resolution, Compressed Sensing (CS) has been investigated for use in UWB systems. CS is

a new signal acquisition technique where sampling is done at a rate considerably below the

Nyquist rate. In CS, the compression and the sensing process are performed together, i.e.,

CS compresses the signal and samples it at a reduced rate. The critical assumption is that

the signal is sparse, i.e., it can be written as a linear combination of a few basis vectors

[37, 38, 39]. CS utilizes linear projections to project a high-dimensional sparse signal onto

a lower-dimensional space preserving enough information for signal reconstruction.

In the following, we elaborate on CS in the context of discrete-time signal processing. A

sparse discrete-time signal is a linear combination of a few vectors called atoms chosen
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from an over-complete dictionary. Formally, an over-complete dictionary is a collection of

redundant atoms such that the number of atoms exceeds the dimension of the signal space,

so that any signal does not have a unique representation as a linear combinations of atoms.

Let f ∈ R
N denote the discrete-time signal to be sampled. We assume that f is of the form

f =
N∑
i=1

xiψi, (3.1)

where ψi ∈ R
N , xi ∈ R, i = 1, . . . , N . The last equation can be written in matrix form as

f = Ψx, (3.2)

where

Ψ = [ψ1,ψ2, . . . ,ψN ], (3.3)

and

x = [x1, x2, x3, . . . , xN ]
T . (3.4)

We assume that only a few of the coefficients xi are non-zero, i.e., that f is sparse on the

columns of Ψ. In CS, f is acquired by projecting it on K vectors φ1,φ2, . . . ,φK with

K � N to obtain K measurements y = [y1, y2, y3, . . . , yK]. By defining

Φ = [φ1,φ2, . . . ,φK ]
T , (3.5)

this projection operation can be written in matrix form as

y = Φf = ΦΨx = Ax, (3.6)

where Φ ∈ R
K×N is the sensing (measurement) matrix, y ∈ R

K the an observation vector

K � N , and A = ΦΨ is the effective measurement or holographic matrix.

3.1.1 Feasibility of signal recovery

We now focus on the problem of reconstructing the signal f from the observation vector y.

From Eq. 3.6 we see that this is equivalent to recovering x from y by solving the linear

system y = Ax. Unfortunately, the system does not have a unique solution unless we take
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into account the fact that x is sparse [40].

Restricted isometry property

In recovering the sparse signal, the over-complete matrix A agrees to the condition known

as Restricted Isometry Property (RIP) [41] introduced below.

Let A = [a1, . . . , aN ] ∈ R
K×N , with K � N . Then, ai, where i = 1, . . . , N atoms are

normalized, that is, ‖ai‖2 = 1. Now, for integers k = 1, 2, . . ., where k is sparsity of x, i.e.,

‖x‖0 = k. Exact signal recovery can be guaranteed if matrix A obeys the RIP of order k,

that is, there exists kth-restricted isometry constant δk ∈ (0, 1) such that

(1− δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22. (3.7)

If A has sufficiently small δk (e.g., δk < 1/3), it approximately maintains �2 distances

between k-sparse signals. Specifically, δk quantifies how close to isometrically A acts on

k-sparse vectors [42].

Mutual incoherence

The measurement matrixΦmust be incoherent withΨ in order to guarantee signal recovery

[43, 37, 44]. The measure of mutual incoherence of Φ and Ψ is defined as follows

M(Φ,Ψ) = supφ∈Φ,ψ∈Ψ| 〈φ,ψ〉 |. (3.8)

where the notation, φ ∈ Φ (ψ ∈ Ψ) means that φ (ψ) that is a row (column) of Φ

(Ψ). Therefore, when Φ and Ψ have a very small value of M , that is, they are mutually

incoherent and when signal x obeys the relation

‖x‖0 < 1/2(1 +M−1) (3.9)

the k-sparse signal x can be recovered uniquely using convex optimization techniques [45,

46, 38, 39].
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3.2 Sparse approximation with pursuit algorithms

There are two fundamental approaches to reconstruct the original signal from CS measure-

ments: (1) convex optimization and (2) pursuit algorithms. If the measurement matrix

obeys the RIP with sufficiently small δk and no measurement noise exists, it is possible to

exactly recover signals from the measurement vector y using the convex optimization as

follows.

To reconstruct x, we look for the sparsest solution to the linear system Ax = y. Since the

number of non-zero elements of x is equal to its �0-norm, ‖x‖0 , the signal reconstruction

problem can be formulated as

min‖x‖0 subject to Ax = y. (3.10)

The reconstruction problem can be rewritten by allowing an approximation error δ

min‖x‖0 subject to ‖Ax− y‖2 ≤ δ, (3.11)

where δ > 0 and ‖.‖2 denotes the �2-norm. Since exact solutions to the above problems can

only be obtained by high computational complexity optimization methods, less complex

methods called pursuit methods are used to solve (3.11) [47, 48].

3.2.1 Basis pursuit

The basis pursuit (BP) replaces the �0-norm condition in (3.10) by the �1-norm to be able

to solve the problem through linear programming [49]. Eq. (3.10) can be written in terms

of �1-norm minimization as

min‖x‖1 subject to Ax = y, (3.12)

Considering the approximation errors δ > 0, the problem can be posed as

min‖x‖1 subject to ‖Ax− y‖2 ≤ δ, where δ > 0. (3.13)
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Now, these problems are transformed into linear programming problems as

min
c

cTx subject to Ax = y, x ≥ 0, (3.14)

where cTx is the objective function, Ax = y is a collection of equality constraints, and

x ≥ 0 is a set of bounds. By dropping the condition x ≥ 0 and doing further manipulations,

Eq. (3.14) can be simplified as an equivalent dual linear program in terms of the dual

variables ν and e:

max
b

yTb subject to ATb− 2ν = −e, 0 ≤ ν ≤ e. (3.15)

Now, Eq. (3.15) has more variables than constraints and that can be solved by standard

optimization techniques. Although Eq. (3.14) is different from the original problems in

(3.10) and (3.11), solving this problem results in approximate solutions to the �0-norm

minimization [50, 51].

3.2.2 Matching pursuit

BP algorithms produce perfect reconstructions of y under the conditions described in the

previous section but their computational cost can be still high. A popular alternative to

BP are the Matching Pursuit (MP) algorithm [52] and its variant Orthogonal Matching

Pursuit (OMP) [53, 54, 55] that we describe next.

MP is an iterative method to compute a linear expansion of y over a set of vectors selected

from the dictionary matrix A. Let ai, 1 ≤ i ≤ N , denote the ith column of A [43, 37].

Each iteration in the MP and OMP algorithms consists of two steps: (1) an atom selection

step and (2) a residual update step. The atom selection step is done as follows.

At the beginning of the first iteration, the residual or the approximation error r0 is equal

with the given signal y, i.e., r0 = y. After the first iteration, the largest projection (or the

highest correlation) of r0 that is in the direction of a1 (the first column of A) is selected,

as shown in Fig. 3.1. Next, in the residual update step, r1 is obtained from subtracting

the correlated part in the direction of a1 from r0. As one can see in Fig. 3.1, in the next

iteration, r1 is projected in the direction of a0 resulting in the residual r2. αn is the atom
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Figure 3.1 First and second iteration of decomposing y in a three element
dictionary by MP.

selected in the nth iteration, n = 1, 2, . . ., is shown as

αn = argmax
ai∈A

| 〈rn−1, ai〉 |, (3.16)

where 〈rn−1, ai〉 represents the weight of the selected atomαn, and rn−1 denotes the residual

at the (n− 1)th iteration. Then, the algorithm updates the residual as

rn = rn−1 − cnαn. (3.17)

where the constant cn denotes the weight of the selected atom αn. The algorithm stops if

the norm of the residual goes below a desired approximation error threshold, or when the

number of distinct atoms in the approximation reaches a desired limit. Finally, the selected

atoms weighted by their respective correlation values are combined to give the final sparse
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approximation [56]. The approximation at the nth iteration is given as

yn =

n∑
k=1

ckαk = [α1 α2 . . . αn][c1 c2 . . . cn]
T . (3.18)

3.2.3 Orthogonal matching pursuit

OMP does not reselect atoms during the process of signal reconstruction and instead it

updates the coefficients of all the previously selected atoms so that the residual at each

iteration is minimized. Thus, the last derived residual is orthogonal to all the atoms selected

at previous iterations and not only to the last selected one. This way, a faster convergence

for OMP is possible compared to MP. At the first iteration, similar to MP, the residual r0

is equal with the given signal y. The nth iteration the algorithm computes

αn = arg max
ai∈(A/An−1)

| 〈rn−1, a〉 |, (3.19)

where rn−1 denotes the residual at the (n − 1)th iteration, An−1 denotes the set of atoms

selected up to the (n − 1)th iteration, and the operator ”/” denotes the set difference

operator. The approximation at the nth iteration is given as the projection of the original

signal vector onto the subspace spanned by the selected atoms, as shown below

yn = An(A
T
nAn)

−1AT
ny = Ancn, (3.20)

where An = [An−1,αn] and An−1 is the matrix of atoms selected up to the (n − 1)th

iteration. Also, cn stands for the coefficient vector at the nth iteration. Next, in the

updating step, the algorithm updates the approximation error as

rn = y−Ancn. (3.21)

The algorithm does not proceed to the next iteration if the norm of the residual falls below

the desired residual threshold. Also, if the desired limit for the number of approximated

atoms is reached, that is, iteration number is equal maximum allowed sparsity, n = k.

Moreover, because the selected atoms by any iteration are always linearly independent, the

matrix inverse operations in above computations are valid. Since the selected atoms are

all distinct, the nonzero components of the approximated sparse vector are equal to the
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elements of the coefficient vector at the last iteration.

3.2.4 Matching pursuit versus orthogonal matching pursuit

In the MP algorithm, reselection of atoms of the dictionary is possible. At any iteration

step in MP, the newly obtained residual is orthogonal only to the last selected atom and

it may not be orthogonal to all the atoms selected at the previous steps. As a result,

some atoms selected at an earlier iteration may get reselected, resulting in a slowdown

of the convergence speed. However, since MP algorithm yields an approximation error

which decreases with each iteration, the algorithm is guaranteed to converge. MP can

initially select an atom that is not part of the optimal sparse representation; in many of

the subsequent iterations the atoms selected by MP only try to compensate for the poor

initial selection [57, 58].

On the other hand, in OMP atom reselection is avoided by projecting the signal vector on

to the subspace spanned by all selected atoms. In other words, by updating the coefficients

of all previously selected atoms, the residual at each iteration is orthogonal to not only

the last selected atom, but also to all the atoms selected at previous iterations and so

that atom reselection is prevented resulting in converging in fewer iterations. Although

OMP converges in fewer iterations compare to MP, the required computational effort still

depends on the choice of the dictionary. In short, MP achieves an accurate decomposition

of the signal with a low complexity alternative to BP, but needs an unbounded number of

iterations for convergence. OMP converges in a fixed number of iterations but requires the

added complexity of the orthogonalization at each step.

3.3 Channel estimation using adaptive filtering

As explained earlier, the transmitted signal undergoes multipath fading before it reaches the

receiver. The process of reversing the channel’s effect and recovering the transmitted signal

is called equalization. Successful equalization relies heavily on the availability of accurate

channel estimates. Channel estimation is, therefore, a critical part of a communication

system’s receiver structure [59, 60, 61]; given the transmitted signal and the channel output,

we want to reconstruct the channel. This can be done using gradient descent adaptive

filtering [62, 63] that employs a gradient descent optimization procedure that attempts to

closely approximate a given system, as shown in Fig. 3.2. The received signal (channel
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Figure 3.2 Block diagram of a gradient descent adaptive process.

output) x(n) is the sum of the channel output due to the transmitted signal or desired

response signal d(n) and the additive noise v(n). For simplicity in the system structure,

we assume that the channel and linear adaptive filter are both Finite Impulse Response

(FIR). The coefficients for a filter of order N − 1 are defined as

w(n) = [w0(n), w1(n), . . . , wN−1(n)]T , (3.22)

where n = 0, 1, 2, . . . is the iteration index, and

d̂(n) =
N−1∑
i=0

wi(n)x(n− i) = w(n)Tx(n). (3.23)

where an input signal vector is

x(n) = [x(n), x(n− 1), . . . , x(n−N + 1)]T . (3.24)

The goal is to find the coefficients of w(n) such that its output, d̂(n), is closest to d(n).

In other words, we want to find a filter such that the estimation error is

e(n) = d(n)− d̂(n). (3.25)
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reaches the smallest value [62, 64].

3.3.1 Implementation of the steepest descent algorithm

The method of steepest descent (SD) [65, 66] is an iterative procedure that aims at locating

the minimum point of a smooth surface that in our case is the cost function J(w) that is

the MSE between the filter output and the desired response:

J(w) = E[(d(n)−wTx(n))2]. (3.26)

where w is the filter tap weight vector and E[·] denotes statistical expectation. The location
of the lowest point, wopt, defines the optimum values for the tap weight vector. It can be

shown that if the cross-correlation vector of the desired response signal and the channel

output x(n) is given by

pdx = E[d(n)x(n)], (3.27)

and the autocorrelation matrix of the input vector is given by

Rxx = E[x(n)x(n)T ], (3.28)

and both are constant (do not change with n) then J(w) is minimized at

wopt = R−1
xxpdx, (3.29)

where R−1
xx is the inverse of the autocorrelation matrix of the input vector. We will provide

a proof of this later. The SD algorithm converges at the steady-state to a minimum point,

called the Minimum Mean Square Error (MMSE) [62] solution, on the MSE surface. The

starting point w(0) can be arbitrarily chosen to any value. The aim is to iteratively descend

to the minimum point of the cost function surface. This iterative procedure is graphically

explained in Fig. 3.3, which shows a MSE cost function for a single-tap FIR filter. Clearly,

at the optimum point the tangential slope of the cost function is zero and the further from

this point we go the larger the slope magnitude becomes. This is a direct consequence of

the fact that the MSE error is a quadratic, i.e., a convex function with respect to the filter

coefficients. Also, the sign of the cost function to the right and left of the optimal point is

positive and negative, respectively. The SD algorithm makes large (small) adjustments of
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Figure 3.3 MSE cost function for a single-tap FIR filter.

the parameter value when its value is far from (close) to the optimum value. Considering

the MSE cost function, the updating coefficients algorithm becomes

∂w(n + 1) = ∂w(n)− μ/2
∂E[e2(n)]

∂w
, (3.30)

where the factor 1/2 is used for notational convenience, and the step size μ controls the

convergence rate and stability of the algorithm. e(n) is the error at the current sample n

and E[e2(n)] is the mean square error. To implement the SD algorithm, we have to evaluate

the partial derivatives of the cost function with respect to the coefficient values. We have

∂E[e2(n)]

∂w
= E[

∂e2(n)

∂w
],

= E[2e(n)
∂e(n)

∂w
]

= E[2e(n)
∂(d(n)−wTx(n)

∂w
]

= −2E[e(n)x(n)]. (3.31)
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Thus, the SD iteration can be written as

w(n + 1) = w(n) + μE[e(n)x(n)]. (3.32)

The expectation term E[e(n)x(n)] is given by

E[e(n)x(n)] = E[x(n)(d(n)− d̂(n))], (3.33)

Then, we have

E[e(n)x(n)] = E[d(n)x(n)]− E[x(n)x(n)Tw(n)],

= pdx −Rxxw(n). (3.34)

Therefore, the updating rule becomes

w(n+ 1) = w(n) + μ(pdx −Rxxw(n)). (3.35)

3.3.2 Steady-State Properties of the algorithm

Assume that the autocorrelation matrix and cross-correlation vector are constant over time,

i.e.,

Rxx(n) = Rxx, (3.36)

and

pdx(n) = pdx. (3.37)

The SD update can be written as

w(n+ 1) = w(n) + μ(pdx −Rxxw). (3.38)

Let wss be the coefficient values of w(n) in the steady-state. In the steady-state, the

gradient of the cost function, pdx −Rxxwss is zero, that is

pdx −Rxxwss = 0, (3.39)
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so, w(n+ 1) becomes

w(n + 1) = w(n) = wss. (3.40)

and the system converges. To find the stationary point, we can solve the N system of linear

equations defined by Eq. (3.38):

Rxxwss = pdx. (3.41)

If the inverse of the autocorrelation matrix exists, the optimal solution for the MMSE

estimation is

wss = R−1
xxpdx = wopt. (3.42)

3.3.3 Stochastic gradient based adaptive filter Least-Mean-Square algorithm

The SD procedure utilizes the statistics of the input and desired response signals and not

the actual measured signals. In practice, the input signal statistics, Rxx and pdx, are not

known a priori, instead, we have access to pairs of input x(n) and corresponding outputs

d(n). Therefore, the SD estimation procedure is not applicable in most practical situations.

Hence, a practical adaptive approach called the stochastic gradient adaptive algorithm is

introduced. The least-mean-square (LMS) [67, 62, 62] adaptive filter is the stochastic

gradient version of the method of SD. Computational simplicity and robust adaptation

properties have made the LMS the most popular algorithm for FIR filters. This algorithm

is an approximate implementation of the SD procedure in which an instantaneous estimate

of e(n)x(n) is used instead of the expected value E[e(n)x(n)], as below. Here, the vector

e(n)x(n) is an approximation of the true gradient of the squared error function e2(n)/2

with respect to the coefficient vector w(n):

∂e2(n)

∂w(n)
= (1/2)2e(n)

∂(d(n)−w(n)Tx(n))

∂w(n)
,

= −e(n)x(n). (3.43)

The LMS recursion is obtained by using Eq. (3.43) in place of the true gradient in the

steepest descent recursion, that is,

w(n+ 1) = ∂w(n)− μ
∂e2(n)

∂w(n)
, (3.44)
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becomes

w(n+ 1) = ∂w(n) + μe(n)x(n). (3.45)

Denote R as the covariance matrix of the input vector x(n) and λmax as its maximum

eigenvalue. Then, the convergence condition for LMS is

0 < μ ≤ 1

λmax
. (3.46)

A value of μ in the above range guarantees that LMS is convergent in mean sense [68]. In

practice, the adaptive filter coefficients fluctuate around the optimal filter coefficients and

are never equal to them. The excess mean square error is the difference between the MSE

introduced by the adaptive filter and the minimum MSE produced by corresponding filter

[62]. The steady-state excess MSE of LMS is

Pex(∞) =
η

2− η
P0, (3.47)

where P0 is the power of the observation noise P0 = E[ν2(n)] and η = tr(R(I− μR)).

3.3.4 Zero attractor LMS algorithm

From Eq. (3.45), we can find that the LMS-based channel estimation method never takes

advantage of a possible sparse structure of the filter. We can exploit the channel sparsity

to improve performance by introducing �p-norm penalties (0 ≤ p ≤ 1) to the LMS-based

cost function. The Zero attractor LMS (ZA-LMS) [69] cost function denoted as JZA(n)

is constructed by merging the instantaneous square error with the �1-norm penalty of the

coefficient vector

JZA(n) = (1/2)e2(n) + γZA‖w(n)‖1, (3.48)

where γZA is a regularization parameter which balances the adaptive estimation error and

sparseness penalty of w(n). The corresponding update equation of ZA-LMS is

w(n+ 1) = w(n)− μ
∂JZA(n)

∂w(n)
. (3.49)
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Then, by substituting for JZA(n) we have

w(n+ 1) =w(n)− μ
∂((1/2)e2(n) + γZA‖w(n)‖1)

∂w(n)

= w(n)− ρZAsgn(w(n)) + μe(n)x(n), (3.50)

where ρZA = μγZA and sgn(·) is the component-wise sign function. The main difference

between the ZA-LMS update in Eq. (3.50) and the standard LMS update in Eq. (3.45) is

the additional term

−ρZA sgn(w(n)). (3.51)

This term attracts the small filter coefficients towards zero, which accelerates convergence

when a lot of the channel coefficients in w(n) are zeros. The strength of this zero attrac-

tor is controlled by ρZA. The convergence conditions of the ZA-LMS are presented in the

following theorems:

Theorem 1. ([69]) Assume that μ satisfies Eq. (3.46). Then, the mean coefficient vector

E[w(n)] converges to a vector w(∞) such that

E[w(∞)] = w− ρZA

μ
R−1E[sgn(w(∞))]. (3.52)

According to Eq. (3.52) the ZA-LMS filter gives a biased estimate of the true coefficient

vector. However, for sparse systems choosing a suitable ρZA results in lower MSE for the

ZA-LMS compare to the standard LMS.

Theorem 2. ([69]) Let the index set of non-zero taps be denoted by NZ, that is, wi �= 0

when i ∈ NZ. Assuming ρZA is sufficiently small so that for every i ∈ NZ in steady-state

we have

E[sgn(wi(∞))] = sgn(wi), (3.53)

The steady-state excess MSE of the ZA-LMS is

Pex(∞) =
η

2− η
P0 +

α1

(2− η)μ
ρZA(ρZA − 2 α2

α1
), (3.54)
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where α1 and α2 are given by

α1 = E[sgn(w(∞)T )(I− μR)−1 sgn(w(∞))] ∈ (0,
N

1− μλmax
) (3.55)

and

α2 = E[‖w(∞)‖1]− ‖w(n)‖1. (3.56)

The first term on the RHS of Eq. (3.54) is the excess MSE of the standard LMS in

Eq. (3.47). So, the excess MSE of ZA-LMS in Eq. (3.54) is lower than that of the standard

LMS when α2 > 0, or, equivalently, when ρZA lies between 0 and 2α2/α1. To specify α2

further, we have the following result.

Lemma 1. ([69]) Let Z and NZ be the index sets of the zero and non-zero taps, respectively.

A first-order approximation of α2 while w(n) is assumed to be Gaussian distributed, is given

by

α2 

∑
i∈Z

√
2

π
Φii(∞)− ρZA

μ

∑
i∈NZ

|bi|, (3.57)

where Φii(∞) and bi are the ith element of the diagonal of Φ(∞) and b, respectively,

described as follows:

Φ(∞) = E[(w(∞)−w(n))(w(∞)−w(n))T ], (3.58)

b = R−1E[sgn(w(∞))]. (3.59)

The first term in the RHS of Eq. (3.57) is related to the taps associated with zero

coefficients of w(n) and its value always varies about zero. The second term is a bias which

is related to the shrinkage of the taps associated with non-zero coefficients of w(n). When

the number of taps with zero coefficients is larger than the number of taps with non-zero

coefficients, the first term of Eq. (3.57) dominates the second one and positive α2 can be

obtained.
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3.3.5 Reweighted zero attractor LMS algorithm

To obtain a better performance gain compared to LMS and a wider margin for choosing

ρZA, a large α2 is essential for the ZA-LMS. However, the bias term in Eq. (3.57) reduces α2

and the MSE performance deteriorates. The reason of this behaviour is that in the ZA-LMS

the shrinkage does not distinguish between zero taps and non-zero taps. Therefore, for less

sparse systems, the ZA-LMS performance worsens because all the channel taps are forced

to zero uniformly. In order to refine the zero attractor behavior, RZA-LMS is introduced

in [69] that is motivated by Reweighting in CS [70]. The RZA-LMS is derived using the

cost function JRZA(n):

JRZA(n) =
1

2
e2(n) + γ′

N∑
i=1

log(1 + |wi|/ε′). (3.60)

where γ′ > 0 is a regularization parameter which trades off the estimation error and channel

sparsity and ε′ is the threshold. The log-sum penalty
∑N

i=1 log(1 + |wi|/ε′) acts more

similarly to the �0-norm than �1. Let

ρRZA = μγ′/ε′, (3.61)

and

ε = 1/ε′. (3.62)

then, the coefficient vector update equation is

w(n+ 1) = w(n)− ρRZA
sgn(w(n))

1 + ε|w(n)| + μe(n)x(n). (3.63)

RZA-LMS selectively shrinks taps with small magnitudes comparable to 1/ε; and there is

shrinkage applied on the taps with coefficient weight |wi(n)| � 1/ε, i = 1, . . . , N . Conse-

quently, the bias of the RZA-LMS can be reduced [69].

The performance of the ZA-LMS (Eq. (3.50)) and the RZA-LMS (Eq. (3.63)) are com-

pared with that of the standard LMS (Eq. (3.45)) in the figures below. An experiment is

designed to demonstrate their tracking and steady-state performances. In Fig. 3.4, there

are 16 coefficients in the system and the 5th tap is set to value 1 and other taps to zero,

i.e., a sparsity of 1/16. One can see from the results, when the filter is very sparse, both
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the ZA-LMS and the RZA-LMS result in a faster convergence rate and better steady-state

performances than the standard LMS. In addition, the RZA-LMS achieves lower MSE than

the ZA-LMS. The LMS approaches towards the optimal filter weights by updating the filter

weights in an ascending/descending manner down the MSE versus filter weight curve, as

seen in Fig. 3.3.

In Fig. 3.5, all the odd taps of adaptive filter are set to 1 while all the even taps are zero, i.e.,

a sparsity of 8/16. It can be seen that as the number of non-zero taps increases, the per-

formance of the ZA-LMS gets worst while the RZA-LMS maintains the best performance

among the three filters. In Fig. 3.6, all the 16 taps are set to value −1 while all the odd taps

are maintained to be 1, resulting in a completely non-sparse filter. Here, the adaptive filter

is non-sparse and the RZA-LMS performs comparably with the standard LMS. Moreover,

the performance of the ZA-LMS deteriorates compared to standard LMS and RZA-LMS

in both convergence rates and steady-state behaviors. In all three experiments, the input

signal and the observed noise are white Gaussian random sequences with variance of 1 and

0.001, respectively. The parameters are set as μ = 0.05, ρZA = ρRZA = 0.0005 , and ε = 10.

The three filters are run 200 times to obtain an average estimate of MSE.

Effects of the step size μ

The choice of the step size μ considerably affects how the adaptive filtering system will

behave in terms of convergence. A small value of the step size ensures convergence, however,

the trade off is slowing down the response time of the system. If the value of the step size

is too small, the adaptive filter will not adapt fast enough because of the excessive number

of iterations needed for reaching the vicinity of the minimum point on the error surface.

On the other hand, in the case of μ being too large, the adaptive filter may not converge;

even if it does, the behavior of the coefficient vector will be erratic. Therefore, the value μ

should be chosen considering the trade off between tracking speed and convergence.
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Figure 3.4 MSE of LMS vs ZA-LMS and RZA-LMS, considering sparse
filters. There are 16 coefficients in the system and the 5th tap is set to value
1 and other taps to zero, i.e., a sparsity of 1/16.

Figure 3.5 MSE of LMS vs ZA-LMS and RZA-LMS, considering less sparse
filters. All the odd taps of adaptive filter are set to 1 while all the even taps
are zero, i.e., a sparsity of 8/16.



34 Background: Processing of Sparse Signals and Channel Estimation

Figure 3.6 MSE of LMS vs ZA-LMS and RZA-LMS, considering non-sparse
filters. All the 16 taps are set to value −1 while all the odd taps are maintained
to be 1, resulting in a completely non-sparse filter.
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Chapter 4

Estimation of highly sparse channels

Channel estimation is a long standing problem in communications and signal processing.

The current study aims at developing new techniques for the estimation of a long and

sparse indoor multi-path channel whose input is an IR-UWB PPM signal. According to

the experimental studies in [7, 71, 72, 73, 70], when the impulse response is very long, the

convergence time and MSE of traditional least-squares estimate methods can deteriorate

substantially. Similarly, channel estimation using MP-type algorithms can be impractical

when there is high interference from dense clusters within a multi-path sparse channel [17].

In this study the LMS, ZA-LMS and, RZA-LMS algorithms will be used to impose a sparse

structure on the multi-path channel estimate. Moreover, the LMS, ZA-LMS and RZA-LMS

algorithms will be modified by incorporating a novel sectional LMS method that improves

the convergence rate through section-by-section probing and estimation of the channel.

4.1 Sectional LMS-based channel estimation

We consider a PPM input signal denoted as x(n) that goes through a very sparse multi-

path channel w(n) of size J , as shown in Fig. 4.1. At the receiver side, we observe the noisy

desired output of the channel, d(n). Now, the aim is to estimate the unknown multi-path

channel knowing the input. In order to do this, in place of the adaptive filter in Fig. 4.1,

we propose to use the Sectional-LMS-type (S-LMS) adaptive filter. This method helps in

estimating the very sparse channel section by section to prevent losing any information

resulting from applying the all-zero parts of the PPM input signal to non-zero elements of

the channel and vice versa. Besides, the selection of initial vector for each set of S-LMS-
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Figure 4.1 Block diagram of S-LMS algorithm

type iterations will be very accurate; that is, each iteration uses the latest estimation of

the channel as the part of its initial vector for estimating the next section of the channel.

The input signal x(n), when passed through the channel w(n) gives the output y(n):

y(n) = wT (n)x(n). (4.1)

As shown in the block diagram of Fig. 4.1, ŷ(n) is the output of the adaptive filter, ŵ(n),

with input x(n). The adaptive filter output is given by:

ŷ(n) = ŵT (n)x(n). (4.2)

The adaptive filter attempts to mimic the unknown multipath channel by adapting its

coefficients so that the MSE between its output, ŷ(n), and d(n) is minimized. The signal

d(n) that the filter tracks, is obtained from the addition of the unknown sparse channel

output y(n) and Additive White Gaussian Noise (AWGN) v(n) that are both not directly

observable signals, that is,

d(n) = y(n) + v(n). (4.3)
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Our hope is that, when the filter produces outputs that are close to the observed channel

outputs then the filter coefficients will also be close to the channel tap weights.

As shown in Fig. 4.2, x(n) is passed through a filter ŵ1(n) (i.e., k = 1, where k =

1, . . . , K) of size N that is initialized to an all-zero vector, i.e., w1(0) = [0, 0, . . . , 0]T . Then,

the estimate of the first section of channel called w1(n) of size N , is obtained recursively

through the following LMS-type update equation:

ŵ1(n+ 1) = ŵ1(n) + μe1(n)x(n), (4.4)

where ŷ1(n) is the filter output due to the input x(n) passing through the filter ŵ1(n), that

is,

ŷ1(n) = ŵT
1 (n)x(n), (4.5)

and its corresponding error is given by

e1(n) = d(n)− ŷ1(n), (4.6)

where e1(n) is the error related to the input x(n) passed through w1(n).

Figure 4.2 The adaptive filter structure

At the second set of S-LMS iterations, we are going to estimate w2(n) (of size 2N)



38 Estimation of highly sparse channels

that is the first section of the sparse channel of size 2N . Therefore, the size of the vector

ŵ2(n) entering the second set of S-LMS is set to 2N that is the size of the last updated

estimate of the adaptive filter ŵ1(n + 1) appended with N zeros. The filter output ŷ2(n)

is the output of x(n) passed through the filter ŵ2(n), i.e.,

ŷ2(n) = ŵT
2 (n)x(n), (4.7)

and its corresponding error is given by

e2(n) = d(n)− ŷ2(n), (4.8)

where e2(n) is the error related to the input x(n) passed through the first section of the

channel of size 2N , w2(n). Moreover, the updating equation for the channel estimates of

the first k sections of channel of size kN is given by:

ŵk(n + 1) = ŵk(n) + μek(n)x(n). (4.9)

The sectional channel estimation continues until the Kth set of S-LMS iterations when the

entire size of the channel (KN = J) is reached.

4.1.1 Zero-attracting S-LMS type algorithms

Sectional-ZA-LMS and Sectional-RZA-LMS are obtained by similar modifications for S-

LMS, as was mentioned in Section 4.1. Accordingly, the filter update equation for S-ZA-

LMS and S-RZA-LMS are given by:

ŵk(n + 1) = ŵk(n)− ρSZA sgn(ŵk(n))ek(n) + μek(n)x(n), (4.10)

ŵk(n+ 1) = ŵk(n)− ρSRZA sgn(ŵk(n))/(1 + ε‖ŵk(n)‖)ek(n) + μek(n)x(n). (4.11)

respectively. As one can observe, an additional factor ek(n) is added to the second term

of the right-hand side formula for S-ZA-LMS and S-RZA-LMS. The motivation behind

the introduction of the additional factor is described next. In S-ZA-LMS and S-RZA-

LMS, many elements of the filter are attracted to zero and the number of zero coefficients

presenting the sparsity rises considerably compared to S-LMS. The reason for this additional

term is to compensate for the effect of the zero sections in the UWB PPM input signal
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and the channel. Throughout the adaptive filtering process, if a section of input signal

x(n) is all-zero, the expression μek(n)x(n) is forced to zero. Likewise, the same situation

occurs when x(n) is non-zero but the corresponding part of the sparse multi-path is all-

zero. Thus, to prevent any loss of information and any unnecessary update for ŵ(n) (where

x(n) is a vector of zeros), we add the error ek(n) (equal to zero for this case) to S-ZA-LMS

updating term −ρSZAsgn(ŵ(n))ek(n) and to that of S-RZA-LMS, −ρSRZA sgn(ŵk(n))/(1+

ε‖ŵk(n)‖)ek(n) thereby forcing this term to be zero.

4.2 Channel estimation performance of S-LMS-type algorithms

In Section 4.1, we stated the specific claims that were to be investigated in this thesis.

In this section, we will give details on the corresponding experiments and analyze the

obtained results. We will look at the effects of different factors on the performance of the

modified adaptive filtering. The length of the filter specifies how accurately a given system

can be modeled by the adaptive filter. Increasing the filter length also affects reversely

the convergence rate by increasing the computational time. In the case of increasing the

channel length, the step size will have to be decreased to preserve the stability of the

algorithm.

Fig. 4.3 shows the performance of the proposed S-LMS-type algorithms: S-LMS, S-ZA-LMS

and S-RZA-LMS channel estimation schemes. To generate the MSE in this experiment for

S-LMS-type algorithms, variance of noise is 10−7, ε = 10, μ = 0.005, ρSZA = 0.0005, and

ρZA = 0.0005. Also, the long highly sparse multi-path channel, as explained in Chapter 2,

is considered. The number of iteration needed for algorithms to converge is 3×106. As one

can see, the MSE is erratic at the beginning, but with more iterations the MSE tends to

converge closer to zero. S-RZA-LMS performance in estimation of the long sparse multi-

path channel is superior to that of S-LMS and S-ZA-LMS. The reason is that its reweighting

zero attraction property accelerates the convergence and improves the adaptive filtering.

The sudden jumps on the graph, when MSEs go to zero, are from applying the all-zero parts

of the PPM input signal to non-zero elements of the channel and vice versa. S-LMS-type

algorithms minimize the number of times these situations happen and result in smoother

MSE curves. The same experiment with similar setting is done on the LMS-type algorithms,

however, there is no result obtained because of the high error. In Fig. 4.4, comparing the

estimated multi-path channel from S-RZA-LMS algorithm and the channel obtained from
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Figure 4.3 MSE of S-LMS, S-ZA-LMS, and S-RZA-LMS. The MSE of S-
RZA-LMS exhibits superior performance compare to that of S-ZA-LMS and
S-LMS, respectively.

the theoretical values is done. The impulse response of the indoor multi-path channel is

as modeled by IEEE 802.15-02/279r0-SG3a and based on the Saleh-Valenzuela model from

Chapter 2 and compared with our estimated channel. The plots are closely matched that

shows the small error and good estimation using S-RZA-LMS. The graph in Fig. 4.5 shows

the result of applying the proposed S-LMS, S-RZA-LMS, LMS, and RZA-LMS algorithms

on three short filters of different sparsities with non-modulated signal as the input. The

input signal and the observed noise are white Gaussian random sequences with variance of

1 and 0.001, respectively. The parameters are set as μ = 0.05, ρRZA = 0.0005 , and ε = 10.

For the first 500 iterations, sparsity of filter is set to 0.063 and the filter is of length 16.

So, one can see that with very sparse filter the convergence of MSE is very fast. When the

sparsity of the filter is set to 0.5, from the iterations 500 to 1000, the performance of S-

RZA-LMS has the fastest convergence rate among all other algorithms. Also, for iterations

after 1000, the filter is set to be non-sparse and still the algorithm S-RZA-LMS is the most
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Figure 4.4 Estimated multi-path channel using S-RZA-LMS closely
matches the multi-path channel (the Saleh-Valenzuela model)

efficient compare to others. The shrinkage property and the sectional adaptive filtering of

S-RZA-LMS result in its improved performance. Moreover, one can see that the MSE is

higher when the filter is non-sparse compare to the sparse filter. Fig. 4.6 presents the effect

of using a very large value of μ = 0.001 on the MSE convergence of S-LMS, S-ZA-LMS,

and S-RZA-LMS in the case of the sparse multi-path channel. Except μ, all the other

parameters are the same as those in the experiment of Fig. 4.3. The number of iteration is

9× 105. The MSE graph shows a very fast convergence at the beginning for S-LMS, S-ZA-

LMS, and S-RZA-LMS, however, as expected from the theory explained in Section 3.3, a

large μ leads to the instability of the algorithms around the minimum value and leads to an

erroneous result. S-LMS shows the least affected in the case of a large μ compare to S-ZA-

LMS and S-RZA-LMS This might be because of its slower convergence rate compare to that
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Figure 4.5 MSE of S-LMS, S-RZA-LMS, LMS, and RZA-LMS algorithms
on three filters with different sparsities with a non-modulated input signal.

of S-ZA-LMS and S-RZA-LMS, so that it can handle the larger μ better and has a more

stable performance. Fig. 4.7 presents the effect of using a very small value of μ = 0.0005 on

the MSE convergence of S-LMS, S-ZA-LMS, and S-RZA-LMS. The experiment setting is

as the experiment related to Fig. 4.3. The number of iteration is 9× 105. The MSE graph

shows that S-LMS, S-ZA-LMS, and S-RZA-LMS algorithms converge very slowly because

of the excessive number of iterations needed to reach the minimum point, as expected from

the theory. As mentioned earlier, the jumps on the graph are related to the times when

the all-zero parts of the PPM input signal (or channel) are applied to non-zero elements of

the channel (or the PPM input signal).
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Figure 4.6 Effect of a very large μ in the behaviour of the MSE curve for
S-LMS, S-ZA-LMS, and S-RZA-LMS. The large μ leads to the instability of
the algorithms around the minimum value and leads to an erroneous result.
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Figure 4.7 Effect of a very small μ in the behaviour of the MSE curve for
S-LMS, S-ZA-LMS, and S-RZA-LMS. The MSE of S-LMS, S-ZA-LMS, and
S-RZA-LMS algorithms converge very slowly because of the excessive number
of iterations needed to reach the minimum point due to the very small μ.
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Chapter 5

Summary and Conclusions

In this thesis we considered the problem of multi-path channel estimation in UWB systems.

First, we presented the essential background material relating to this thesis. This material

included a general overview of UWB systems, the UWB signal and channel models, and CS

theory. In addition, we described in detail previous work on AF-based channel estimation

methods, namely the LMS, ZA-LMS and RZA-LMS algorithms that formed the basis for

the methods developed in this thesis. It was demonstrated that the ZA-LMS and RZA-

LMS algorithms that enforce sparsity on the channel estimate throughout the estimation

process, offer significant speedups in identifying sparse systems. Then, we applied the three

above-mentioned AF methods to the channel estimation problem of UWB channels and we

presented modifications of them that are capable of handling estimation of long multi-path

channels with sparse inputs such as PPM input signals. The principal algorithm proposed

is the S-LMS algorithm, described in Section 4.1. In contrast to traditional LMS methods,

in the S-LMS algorithm the CIR is not estimated as a whole but in parts. This approach

allows the efficient estimation of long channels. We extended S-LMS using ideas borrowed

from ZA-LMS and RZA-LMS algorithms to the problem of sparse channel estimation and

we developed the S-ZA-LMS and RZA-LMS methods. Finally, we demonstrated using

simulations results and comparisons the channel estimation performance of the proposed

methods.

The proposed methods have been designed specifically for long sparse channels with

sparse inputs, a scenario where traditional methods fail as they struggle to deal with the

large amount of parameters (channel tap weights) to be estimated in the presence of in-
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formation loss. The results in this thesis show that significant performance gains can be

attained by developing algorithms that capitalize on certain structural properties of the

channel being estimated and its input signal.

Future research directions

In this work, we have focussed on the UWB multi-path channels estimation with AF-type

algorithms. However, there are many issues, some of which are listed below, that warrant

additional investigation.

• Even though the S-LMS channel estimator shows a promising performance, its im-

plementation is restricted by the Nyquist sampling rate requirement. Therefore, it

would be interesting to investigate the combination of CS theory that can circumvent

this requirement, with S-LMS towards the development of a CS variant of S-LMS.

To that end, we can use a random filter structure to form the compressed version

of the original impulse response. This FIR filter is added to the transmitter front

end. Then, we can interpolate the transmitted pilot (input) signal at the transmit-

ter. The original sparse system can be reconstructed by the conventional recovery

algorithms where the de-noising property of CS can be deployed. This approach has

the potential to offer accurate channel estimation at low computational (due to use of

AF techniques) as well as low implementation (due to the use of inexpensive ADCs)

costs.

• Another suggestion for future research is the extension of the developed methods to

the case of multiuser systems where many users communicate simultaneously over the

UWB spectrum. In these systems, the users utilize unique time-hopping or direct-

sequence codes that can be used to decouple their transmissions. A possible approach

towards that end could be to precede the channel estimator by a multiple user inter-

ference (MUI) reduction block that uses the knowledge of the code of a user to cancel

the interference from other users; the channel estimator would have to be modified

to be able to handle the residual MUI at its input signal.

• Further research can take place on estimation of the highly sparse multipath channel

using different modulation schemes, such as TH-BPSK that is another common form
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of signal modulation in pulsed UWB communications. The BER performance of

TH-PPM and TH-BPSK should be compared for highly sparse channel estimation.
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