
Density Functional Theory Techniques for

Electron Energy Loss Analysis of Lithium

Materials

Quentin Stoyel, Mining and Materials Engineering, McGill University,

Montreal

November 2018

A thesis submitted to McGill University in partial fulfillment of the requirements of the

degree of Masters of Science

©Quentin Stoyel 2018



Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
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Abstract

Electron energy loss spectroscopy (EELS) is an electron microscopy technique ideal for char-

acterizing lightweight elements. The technique relies on using reference spectra to fingerprint

and analyze results. These references can be obtained either through experiments on stan-

dards or through simulation. Simulations provide the ability to produce spectra for previ-

ously unstudied or sensitive materials, but rely on numerous approximations. Central to the

simulation of EELS are the approximations treating core holes and shielding. In this work,

a new method of calculating the magnitude of core hole screening in the case of lithium ma-

terials is developed and implemented in density functional theory calculations. The method

is used to verify the validity of performing electron energy loss spectroscopy at 30 keV to

reduce beam damage. EELS fine structure are calculated for metallic lithium, Li2O, and LiF

and marked improvements in agreement between calculation and experiment are observed.

The technique uses linear response theory to relate the electron density to the core hole

shielding contribution. This contribution is then implemented via a non integer core hole

in final state rule density functional theory calculations. The improvements enabled by the

technique open the possibility of conducting increasingly quantitative EELS analysis.
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Abrégé

La spectroscopie par perte d’énergie des électrons (EELS) est une technique de caractérisation

sensible aux éléments de faible masse. L’analyse EELS requiert des spectres de références

pour valider les résultats obtenus. Les simulations de spectres offrent une faon d’obtenir

des références pour des nouveaux matériaux. Bien que les simulations soient utiles, elles

requièrent des ajustements de paramètres. Un de ces paramètre est la façon de gérer un

trou d’état de cœur. Une nouvelle technique pour calculée l’intensité de masquage des trous

d’électrons est proposée, ce qui a pour effet d’augmenter la précision des spectres EELS des

matériaux contenant du lithium. La méthode est appliquée pour vérifier la pertinence de

conduire des expériences EELS à 30 keV, ce qui a pour effet de minimiser l’endommagement

des échantillons induits par de le faisceau d’électron. La méthode est basée sur la théorie de

la réponse linéaire, qui relie la densité des électrons aux effets de masquage. Ces effets sont

par la suite représentés par un trou partiel dans les calculs par la théorie de la fonctionnelle

de la densité d’états d’électrons. En utilisant la technique proposée dans ce travaille, les

spectres EELS calculées pour le Li2O, le LiF et le lithium métallique sont en meilleur accor-

dance avec les résultats expérimentaux de ces matériaux. Ces résultats ouvrent la porte à

des méthode quantitatives basée sur la spectroscopie EELS.
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Chapter 1

Introduction

The study of lithium materials has become increasingly relevant in recent years [1]. In par-

ticular, the field has been driven by the need to develop improved and more cost effective

battery materials [1]. This drive has come from increasing demands for electric vehicles and

portable electrical devices demanding longer lifetimes and faster charging. Many aspects of

batteries can be improved as the theoretical limits have not yet been achieved in fundamental

areas such as capacity, charge density, and charge/discharge rates.

The theoretical limits in the case of lithium ion batteries are especially high, as lithium

offers a range of advantages relative to other charge carriers. As the third element on the

periodic table, lithium is extremely lightweight, allowing lithium ion batteries to be smaller

and lighter without sacrificing lifetime [2]. Lithium’s small ion size makes it highly mobile,

which leads to superior discharge rates [2]. Furthermore, as an alkali earth metal with a

single weakly bound valence electron, lithium is highly electropositive. As a result, lithium

ion batteries can achieve higher operating voltages than alternatives such as nickle-cadmium

or lead-acid batteries [2]. Some of these comparative performance advantages to these alter-

natives are illustrated in Fig 1.1 [2].

The pursuit of further improving the performance of lithium batteries has shifted analysis
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Figure 1.1: Plot illustrating the the power and energy densities achievable by three types of

battery, as well as the minimum requirements for various types of electric vehicle, including

hybrid electric vehicles (HEV), plug in hybrids (light vehicle). From Etacheri, 2011 [2].

of these materials increasingly towards measuring microstructure properties [3–5]. Identify-

ing microscale features such as crystal structure, diffusion mechanics, and composition is an

essential component of characterizing new battery materials [6]. These features are being

increasingly analyzed through electron microscopy, which offers the high spatial resolution

needed to analyze them and is becoming increasing accessibility [7–9].

Lithium materials however, present a range of challenges to electron microscopy. Battery

materials are becoming increasingly intricate and lithium’s light weight and ionizable nature

make it particularly susceptible to electron beams [10]. This sensitivity limits analysis largely

to low dosage techniques to avoid damaging the samples long enough to acquire results. One

such technique that is targeted for light elements, such as lithium, is electron energy loss

spectroscopy (EELS) [11]. However, even using low dosage techniques, beam damage re-

mains problematic for lithium materials. Recent developments such as low voltage EELS

are allowing lithium analysis to become more routine [12]. As these new experimental tech-

niques produce unprecedented results, a degree of theoretical support is required to confirm

the methods and explain any irregularities.

Theoretical support for EELS comes most predominantly from methods based in density
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functional theory (DFT). DFT is a first principles method capable of calculating materials

properties using only the crystal structure as input. As in experiment however, lithium’s

lightweight nature complicates DFT calculations and results have been limited to qualitative

findings [13; 14]. Much of the challenge in simulating EELS for lithium lies in the treatment

of the electron hole created in excited atoms. Lithium’s few electrons mean that core hole

effects will almost always be present in the spectra which current methods in literature lack

the subtlety to treat.

The goal of this work is to calculate meaningful EELS spectra of lithium materials, in

particular, the K edge near edge structure, in the unprecedented context of EELS at 30 keV.

This is accomplished be improving the treatment of core electron holes of lithium in DFT

simulations.

The outline of this thesis is as follows: Chapter 2 presents an overview of EELS, DFT

and theoretical EELS calculations. Chapter 3 describes the improved method developed in

this work, and Chapter 4 applies the method to a number of lithium materials. Chapter 5

concludes the results and addresses future work.
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Chapter 2

Literature Review

The focus of this work lies in first principle theoretical calculations of EELS calculations,

designed to be performed without experimental input. However, new theoretical techniques

must be validated through comparison to experiment. To this end, this chapter presents an

overview of experimental electron microscopy and energy loss spectroscopy (EELS) before

discussing the basics of first principles calculations. The chapter concludes with a review

of the various methods used to calculate EELS theoretically. The particularities of lithium

materials are discussed at each step of this process.

2.1 Electron Energy Loss Spectroscopy (EELS)

2.1.1 Electron Microscopy

The drive to improve battery materials relies on characterizing nano scale features which

define their properties [15]. At these length scales, even state of the art optical light micro-

scopes lack the resolution to discern these features [16]. This limitation is due to the fact

that nano scale features fall well below the diffraction limit of such microscopes, given by

[17]:

d =
λ

2n sin(θ)
(2.1)
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Where n is the refractive index and d is the smallest distance between two discernible

objects. For optical light (λ = 400-800nm), it is impossible to routinely achieve the desired

resolution (∼ 1-50 nm) for characterization [16]. Electrons however, have a wavelength

dictated by [15]:

λ =
h√

2m0eE
(2.2)

Where h is Planck’s constant, m0, e and E are the rest mass, charge and energy of an elec-

tron. In an electron microscope, electrons are accelerated to energies in the order of 1-100

keV, giving them wavelengths in the range from 1-100 pm (1pm = 10−12m), far smaller than

the distances between atoms (∼0.5 nm) [18]. Electron microscopes can therefore achieve a far

lower theoretical diffraction limit and are in fact currently limited by the technological con-

straints of the electron lenses [15]. This high resolution has made electron microscopy a key

part of investigating material microstructure and is compared to other methods in Fig 2.1 [8].

In order to obtain images using electrons, electron microscopes use magnetic lenses to

focus a beam of high energy electrons onto a sample, and collect the assorted types of signals

resulting from the interaction, see Fig 2.2.

The large number of different signals generated when the electron beam interacts with a

sample, (depicted in Fig 2.3), can be used to perform a multitude of types of analysis [19]. A

full discussion of the analysis methods at the disposal of electron microscopes is beyond the

scope of this work and is well documented elsewhere [11; 15; 19; 20]. Instead, this discussion

is limited to electron energy loss spectroscopy (EELS). EELS is an electron microscopy

technique that analyzes the transmitted inelastically scattered electrons, Fig 2.3[11]. It is

mainly an analytic technique, however it is also possible to perform imaging with EELS

[21]. EELS consists of collecting electrons that have passed entirely through the sample

and binning them according to how much energy each one has lost, resulting in a spectrum

such as shown in Fig 2.4. The numerous distinct features arise from the various mechanisms

through which beam electrons can lose energy in the sample. Each interaction mechanism
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Figure 2.1: Resolution achievable by various techniques including Transmission and Scanning

electron microscopy (TEM/SEM) and light microscopy, on a log-log scale. Taken from

Inkson, 2016 [8].

(a)
(b)

Figure 2.2: Example of an electron microscope (a) and working principles behind data

acquisition (b) in an electron microscope.
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Figure 2.3: The numerous types of signals emitted when an electron beam encounters a

sample in an electron microscope. Redrawn from Williams and Carter 2008 [19].

results in a particular feature in the spectrum, of which the main ones are described below:

• Zero Loss Peak (ZLP): The majority of the electrons in EELS pass through the

specimen without experiencing an inelastic interaction, and retain their initial energy.

The width of the ZLP defines the resolution of the spectrum and is due to energy

spreading as the beam passes through the electron lenses [22]. For thin samples, the

ZLP is also the most intense feature on a spectrum [11].

• Background: Beam electrons can excite loosely bound sample electrons close to the

Fermi level into the unoccupied conduction band, see Fig 2.5. Due to the large number

of possible transitions and the fact that high energy events are less favourable, this

results in a smoothly decaying background [11].

• Plasmon Peak: The electron beam can excite multiple atoms in a solid collectively,

creating a wavelike oscillation in the electron cloud of the solid [11]. These are called

plasmon excitations and result in a peak appearing between 5eV-30eV [11]. The shape

and intensity of the plasmon peak is dependent on the bond strength of the material

and can be used to probe properties such as thickness and surface topology [23; 24].
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Figure 2.4: Sample EELS spectra identifying the main features, the zero loss peak, plasmon

peak and ionization edges with fine structure. The intensities are on a log scale, and span

approximately 6 orders of magnitude between the zero loss and the ionization edges.

• Ionization Edges: Beam electrons can excite core electrons in a sample to the con-

duction band, see Fig 2.5. Core states are largely isolated from their surroundings and

have a consistent energy relative to the fermi level. As a result, the “edges” for each

element will occur at specific energy locations, independent of sample, analogous to

characteristic x-rays [11]. These can be used to determine sample composition [11].

The array of independent interaction mechanisms occuring in EELS opens the possibility

of beam electrons undergoing multiple inelastic events in the sample, referred to as plural

scattering. In order for meaningful data to be extracted from a spectra, plural scattering

must be minimized [11]. This is achieved by using samples thinner or at least comparable to

the path length of the beam electrons [11]. If samples are too thick, duplicate plasmon peaks

appear which drown out the relatively weaker ionization edges, see Fig 2.6. Consequently,

samples must be made thin enough to analyze the more sensitive parts of EELS spectra,

amongst others near edge structure.
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Figure 2.5: Schematic of excitation events leading to the features in an EELS spectrum.

Near Edge Structure

Ionization edges in EELS possess features extending up 50 eV beyond the onset of the edge,

referred to as energy loss near edge structure (ELNES) [11]. These features are a reflection

of the unoccupied states in the conduction band that represent the final states available

to sample electrons, see Fig 2.5. The band structure of the conduction band is largely de-

pendent on the local bonds of the atom in question. Because of this, ELNES can be used

to investigate properties dependent on the local environment of each element. Properties

include crystal structure, strain, identifying dopants, etc[25]. An example of using ELNES is

in distinguishing different crystal structures of the same element; such as carbon in graphite

vs diamond vs amorphous, see Fig 2.7 [26]. The large decay in intensity with increasing

energy seen in Figure 2.4, limits the useful range ionization edges to those less than ∼2keV

which corresponds to approximately the K edge of silicon (Z=14) [27]. Heavier elements

can be analyzed in EELs by investigating L and M edges. The relatively small intensity of

ELNES make their analysis highly dependent on the sample preparation and experimental

9



Figure 2.6: Two spectra demonstrating the importance of thin samples and single scattering

events. In the thicker sample, plural scattering results in multiple evenly spaced plasmon

peaks with intensities larger than the zero loss extending well past 100eV. The high back-

ground from the plasmon peaks and the thicker sample drown out any structure due to

ionization edges [11]. Taken from Egerton, 2011 [11].

setup, which is discussed in the following section.

2.1.2 EELS in Experiment

In order to collect EELS spectra, electrons must pass entirely through the sample, making

EELS a transmission electron microscope(TEM) technique[11]. In order to collect these

transmitted electrons and divide them according to energy, a magnetic prism is placed below

the specimen to redirect the electrons into a detector, Fig 2.8. Inside the magnetic prism,

there is a B field perpendicular to the beam direction which exposes the transmitted electrons

to a Lorentz force (bold text indicates vector quantities) [28]:

FB = q(v×B) (2.3)

As the force varies according to the velocity of the electrons, the magnetic prism separates
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Figure 2.7: Carbon K edge taken at 30keV at McGill. The different crystal structures

(diamond, carbon nanotube, and amorphous) result in distinctly different ELNES which can

be used for identification. The spectra have separated with a vertical offset to facilitate

comparison.

the electrons according to their energy:

FB = e(v×B) =
mv2

r
= Fc (2.4)

r =
mv

eB
=

√
2mE

eB
(2.5)

Where r is the radius of curvature, and E is the energy of each electron after passing

through the sample. Spectra are obtained by mapping each location on the detector to a

corresponding energy loss value. Images are produced by rastering the beam over the sample

and using the intensities of a specific energy loss value to create an image.

The quality of EELS results depends numerous factors in the microscope. Foremost

among these are properties of the electron beam. In order to obtain accurate results with

regards to the finer features, the beam electrons must have very similar energies before

striking the sample, within a range of a few eV. The larger this spread (δE), the worse

the energy resolution on the sample, which obscures features in ELNES. The energy spread
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Figure 2.8: Experimental EELS setup, with the various magnetic lenses depicted in blue.

is dictated by the electron gun and lenses, with the optimal choice for EELS being a field

emission gun (δE ∼ 0.5 − 1eV ), as older style tungsten and LaB6 guns are unsuitable for

EELS where δE > 2 eV [27]. The energy resolution can be further improved to the order of

∼10 meV through the use of monochromators [29]. This improved energy resolution however

comes at the cost of beam current which is another essential parameter for performing

EELS. This is because sufficient signal needs to be collected to render the statistical
√
N

noise small enough for features to become discernible. For high energy loss, introducing

a monochromator can result in a trade off between experimental error from the beam and

statistical errors due to lack of counts. Lower current also translates into longer acquisition

times, which expose the sample to more beam damage. In addition to the beam properties,

EELS results also depend largely on the imaging mode being used in the electron microscope

as is discussed below.
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TEM vs SEM EELS

There are two main branches of electron microscopy: scanning electron microscopy (SEM)

and transmission electron microscopy (TEM). TEM typically operates with beam energies

between 100-300 keV designed to penetrate through thin samples, while SEM operates be-

tween 1-30 keV targeted towards analyzing bulk samples. Each method has its own advan-

tages. The thin samples in TEM’s result in a minimal interaction volume, far higher spatial

resolution and have the ability to image individual atoms [9]. SEM’s are optimized to scan

the surfaces of samples and the large interaction volumes allow them to analyze bulk proper-

ties. SEM is also a more economical and flexible tool as it has far fewer sample requirements.

EELS has been conventionally performed in TEM’s as it requires the beam to pass through

the sample and higher beam energies allow for thicker samples. Recent advances however

have allowed EELS to be performed using an SEM with accelerating voltages of 30 keV [12].

As in a TEM, EELS in an SEM at 30keV requires thin samples, but offers the advantage of

reducing the beam damage which has been essential for investigating lithium materials.

2.1.3 Beam Damage

As the various technological restraints of electron microscopes improve, the limiting factor

in probing materials shifts increasingly towards dosage limits [27]. The various electron

beam sample interactions that occur can damage materials in a multitude of ways. These

can include, charging, heating, sputtering (mass loss) and crystal deformation [27]. The

resulting damage impacts results, decreases signal, and limits sample use. Mass loss and

crystal deformation are most relevant to EELS as they reduce signal and disrupt the local

symmetry that is measured in the ELNES. These effects are caused largely by knock-on and

radiolysis damage.
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Figure 2.9: Plot relating Emax to beam energy for a variety of elements, as calculated in Eq.

2.7. Taken from Egerton, 2010 [31].

Knock On Damage

Knock on damage results from a beam electron transferring enough energy to a nucleus in the

sample to displace it from its lattice site. The effect arises from high angle elastic scattering

as the energy transferred for this interaction is defined by [30]:

E = Emaxsin2(θ/2) (2.6)

Where Emax depends on the beam energy and the atomic mass, as:

Emax ≈ E0(E0 + 2M0c
2)/(Mc2) (2.7)

Because Emax is inversely proportional to atomic mass, lithium materials are particularly

sensitive to knock on damage, see Fig 2.9. As can be seen in the plot, in TEM conditions

(100+ keV), Emax is considerable (30+ eV) for lithium, well above the energy required to

cause lithium diffusion ( ∼ 10eV) [6].
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One means of reducing knock on damage is to perform EELS at lower operating voltages,

which reduces Emax and the probability of displacing an atom. At these beam energies,

it is possible to drop Emax below a threshold energy and eliminate knock on damage for

heavier elements. However even at 30keV, Emax is large enough to damage lithium containing

specimens [6].

Radiolysis

Radiolysis refers to the breaking of atomic bonds, which ionizes atoms and results in dif-

fusion and loss of crystal structure. Organic materials with low electron conductivity are

highly susceptible to radiolysis, especially as it removes highly mobile hydrogen atoms from

hydrocarbons. Metallic samples are less affected as the free electrons can screen the re-

sulting charge discrepancies long enough for atoms to reform the bonds. Lithium materials

are vulnerable to radiolysis due to their non conductive nature and lithium’s high mobility.

Particularly affected are strong insulators such as the lithium halogens [32]. In these ma-

terials, radiolysis forms F-centres and H-centres, separating the elements and allowing the

halogens to diffuse from the material [32]. Radiolysis is dependent on temperature and using

a cryogenic sample holder is one option of limiting this effect by impeding diffusion.

2.1.4 Lithium in EELS

Lithium materials present a number of challenges to EELS analysis. Lithium ion battery

materials are in general semiconductors with band gaps of varying sizes and high lithium

conductivity. Both of these properties make these materials more vulnerable to beam dam-

age. Lithium diffusion is particularly problematic because it requires only a small amount of

energy (∼ 0.2− 3eV) to displace it through a crystal [33]. Lithium’s sensitivity to the beam

make EELS’s short acquisition times, on the order of seconds, well suited for its analysis.

Beyond the experimental essentials, EELS analysis of lithium materials is complicated by

lithium’s only ionization edge being located around 55eV. 55eV is at the boundary of what

15



is considered reasonable for analysis as it lies close to the plasmon peak. The decay of the

plasmon peak complicates background subtraction and makes it highly vulnerable to sample

thickness and plural scattering. This energy range also often results in overlap between the

lithium K edge and the M2/3 and M4 edges of transition metals. In particular, the edges of

Mn, Fe and Ni, all fall between 40-70eV. As these elements are key components to cathode

materials, they can require further steps for analysis to be possible.

2.1.5 Preprocessing

There are two key steps to be performed upon acquiring an ELNES spectra before it can be

used for meaningful analysis, background subtraction and deconvolution.

Background Subtraction

The smooth decaying background in EELS spectra needs to be removed in order to isolate

and analyze ELNES. However, the EELS background does not decay at a fixed rate and

varies with energy and based on the presence of edges [34]. Consequently, it is not possible

to fit a single function to an entire spectrum. Instead, the method of choice relies on fitting

to a window directly before an ionization edge and refitting for each edge as needed. The

most prevalent function used for this purpose is a power law decay [11]:

Ibg = AE−r (2.8)

Where E is the energy loss and A and r are fitting factors, typically determined through

a least squares procedure [27]. This method has limitations due to different regions of the

spectra decaying at different rates, with r ranging from 2 to 6.5 [27]. A fit must therefore be

performed for every feature being analyzed in a spectrum [35; 36]. A downside of this method

is the dependency on the size and location of the fitting window which results in instability in

the fits, as shown in Fig 2.10. Difficulty in removing the background is further complicated

in situations when edges overlap or when attempting quantitative analysis. Coupled with

the instability of power law fitting, this has resulted in a number of alternate models, such
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as polynomials, being proposed for specific cases. The power law method however, remains

the most prevalent [35; 37].

(a)

(b) (c)

Figure 2.10: Results of power law background removal from raw spectrum (a) of metallic

lithium K edge, using an appropriate (b)and inappropriate (c) window choices.

Deconvolution

Despite significant improvements in experimental equipment, there is still a degree of energy

spread on beam electrons, typically in the range of ∼0.5-3eV. This energy spread results in

the observed ELNES on a spectra to be a convolution between the “actual” ELNES and the

ZLP. Additionally, the probability of plural scattering must also be addressed, as the low

loss region of the spectrum is convoluted into the output spectra. In order to recover the

single scattering spectrum, the output must undergo deconvolution. A number of techniques
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can be adopted for this purpose which can be split into either Fourier or Bayesian methods.

Fourier techniques rely on describing the signal as a number of convolutions:

J(E) = Z(E)) ∗ [δ(E) +
S(E)

I0

+
S(E) ∗ S(E)

2!I0

+ ...] (2.9)

Where δ(E) is a delta function, J(E) is the obtained spectra, Z(E) is the zero loss peak,

S(E) is the single scattering spectra, and I0 is the integrated intensity of the zero loss. The

double scattering term is the convolution of the two single scattering terms, weighted by the

decreased probability according to Poisson statistics. Taking a Fourier transform turns all

of the convolutions into products( lower case indicates Fourier transform):

j(ν) = z(ν)

(
1 +

s(ν)

I0

+
s2(ν)

2!I0

+
s3(ν)

3!I0

+ ...

)
(2.10)

Which can in turn be collapsed into an exponential:

j(ν) = z(ν)exp[s(ν)/I0] (2.11)

This equation can then be solved for s(ν) and reverse Fourier transformed to obtain the

single scattering spectra [38]. In order to avoid amplifying the noise in the original spectra,

represented by high frequency terms in Fourier space, the result must be broadened by a

modifier. Thus, deconvolution can improve the energy resolution of the spectra only to a

certain extent.

More recently, Bayesian methods have found success as well, in particular the Richardson-

Lucy technique [39]. This technique is based on iterative methods initially developed in

astronomy and used for the deconvolution of images, including those taken with the Hubble

space telescope [40]. Similar to Fourier methods, the starting point is a convolution of the

ideal spectra with the low loss, or point spread function (R(E)):

J(E) = R(E) ∗ S(E) (2.12)
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As an EELS spectra is inherently pixilated by the CCD, the convolution can be trans-

formed into a sum, defining the observed intensity at a pixel based on the intensity of the

surrounding pixels:

J(i) =
∑
j

P (i, j)S(j) (2.13)

Where P (i, j) defines how much the intensity at pixel j affects pixel i. From here, the

Richardson-Lucy algorithm applies Poisson statistics and iteratively calculates the single

scattering spectra as [39]:

Sk+1(j) = Sk(j)

(∑
i

P (i, j)J(i)∑
l P (i, l)Sk(l)

)/(∑
i

P (i, j)

)
(2.14)

Where k is the iteration number. As with Fourier methods, the final spectra cannot gain

any more information, and excessively increasing iterations results in increased noise and

artifacts, this effect is demonstrated in Fig 2.11.

2.1.6 Other Experimental Techniques

EELS is not the only experimental technique available for the analysis of material microstruc-

ture, nor is it the only electron microscopy technique available for the task. Other techniques

capable of obtaining comparable results to EELS include x-ray based analysis such as x-

ray absorption spectroscopy and energy dispersive spectroscopy. The following paragraphs

briefly describe these methods and compare them to EELS.

X-ray Absorption Spectroscopy (XAS)

XAS operates on a similar principle to EELS. However, instead of probing the sample with an

electron probe, a beam of x-rays is directed through the sample and like EELS the resulting

energy losses in the output spectrum are binned [41]. This difference in probe type does not

effect the measured quantity which is the same as in EELS: the unoccupied density of states

of the material [41]. Because of their similarities, parallels have been drawn between EELS
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Figure 2.11: Effect of increasing iterations in Richardson-Lucy Algorithm. Iterations increase

left to right, starting from the unprocessed background removed spectra on the top left,

followed by 5, 25, 50, 100 iterations of deconvolution applied.
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and XAS when developing theories. XAS however is typically used to measure far larger

energy losses (> 5 keV) and consequently has limited applicability to lithium [42]. The most

significant benefit of XAS is it’s superior energy resolution (∼0.1 eV) when compared to

EELS (∼1 eV) allowing for more features in near edge structures to be identified[11; 41].

This benefit comes at a cost however, XAS needs to be performed in a synchrotron, making

it far more costly and less accessible to perform than EELS.

Energy Dispersive Spectroscopy (EDS)

EDS is another form of analytic spectroscopy performed in electron microscopy. Unlike EELS

and XAS which measure the unoccupied density of states, EDS measures the occupied DOS

[15]. Like EELS, EDS probes the sample with an electron beam, but then collects the

emitted x-rays produced when the sample electrons return to their relaxed states following

excitation. These x-rays have the same characteristic energies as in EELS, but lack the

resolution to distinguish fine structure. As such, it is limited to providing only composition

information on samples. The benefit of EDS is less strict sample requirements as it does not

require the thin samples needed by EELS and can therefore be used to analyze both bulk

and microscale features in samples [15].

2.2 Density Functional Theory (DFT)

Many of the results from EELS have non-intuitive interpretations, particularly in the case of

ELNES which relies primarily on qualitative comparisons between measured and database

spectra. Consequently, new materials require theoretical support to analyze results. This

support often comes from ab initio calculations, such as density functional theory (DFT).

This section describes the basis of DFT and its various implementations, as well as the

peculiarities of simulating lithium materials.
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Figure 2.12: Various methods available to compute material properties and their correspond-

ing regions of use.

2.2.1 DFT Background

DFT is an ab initio method that requires only atomic positions as input and is independent

of experimental support. By solving a modified version of the Schrodinger equation, it

is possible to obtain the ground state energy of the system, and from there determine a

range of properties, including EELS spectra. This almost direct treatment of quantum

mechanics makes DFT one of the most accurate techniques of first principle simulations.

However, the quadratic to cubic scaling of the method with the number of electrons, limits

its applicability to small scale systems, typical size limitations shown in Fig 2.12. DFT’s

accuracy and flexibility have resulted in the development of a large number (90+) of codes,

both open source and commercial [43].

2.2.2 Formulation

DFT is centred on solving the many bodied Schrodinger equation [44]. The quantity in

question is a solution for ψi, the electron wavefunctions from which observable properties

can be calculated:

−h̄2

2

N∑
i

∇2ψi
mi

+
N∑
i

V (ri)ψi = Eψ (2.15)
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In this case, the non-relativistic, spin independent, time independent case is considered,

although more in-depth derivations can be found elsewhere [45]. The Born Oppenheimer

approximation is now applied, which assumes that the nuclei can be separated from the

electrons and will act classically. The validity of this assumption stems from the fact that

nuclei are over 1000 times more massive than electrons [46]. Applying the Born Oppenheimer

approximation results in only needing to solve for the ψ of electrons and allows the potential

to be broken up:

[
−h̄2

2me

N∑
i

∇2 +
N∑
i

V (ri) +
N∑
i

∑
j<i

U(ri, rj)

]
ψi(ri) = Eψi (2.16)

Where me is the mass of an electron, N is the number of electrons, and ri is a position

vector. The terms inside the square brackets are collectively known as the Hamiltonian and

are respectively: the kinetic energy of all the electrons, the Coulomb interaction between

the electrons and the nuclei, and the electron-electron Coulomb interaction [44]. At this

point, the equations are still too unwieldy to solve, depending on 3N variables (the position

coordinates of each wavefunction), not to mention the many body problem lurking inside

the double sum. Facing this conundrum, the Hohenberg-Kohn Theorems are applied which

postulate that [47]:

• The ground state energy of the system is a unique functional of the ground state

electron density.

• The electron density which minimizes the overall energy corresponds to the real ground

state electron density.

By changing the variables being solved for to the density and not wavefunctions, the

problem is reduced down to only three variables: the three coordinates of the density field.

The Hohenberg-Kohn theorems indicate that the observables can all be made into functionals

of electron density and that any density other than the groundstate will result in a higher

energy in the system [48]. The term functional is defined as an object that acts similar to a

function, except that it takes other functions as input instead of variables, eg:
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F [f(x)] =

∫
f(x)dx (2.17)

In DFT, the relevant functional is the energy which is a functional of the density: E[n(r)].

Using the Hohenberg-Kohn theorems, it is possible to work towards a more manageable

equation for energy as a functional of density by breaking down the potentials:

− h̄

2me

∑
i

∫
ψ∗i∇2ψid

3r+

∫
V (r)n(r)d3r+

e2

2

∫ ∫
n(r)n(r′)

|r − r′|
d3rd3r′+Enuclei+EXC = E[n(r)]

(2.18)

Where the second term is the energy from the electron density-nuclei interaction, the

third term is the electron density-electron density Coulomb interaction and Enuclei is the

contribution from nucleus-nucleus interaction. The final term, EXC is the exchange and

correlation term, where all of the quantum features of the electrons are grouped the result

of basing the analysis in terms of density. This equation cannot be directly solved from first

principles by itself as a means is needed to obtain the electron density. On this front, the

Kohn -Sham equations are introduced, which assume that the electrons can be decoupled

into single particle equations:

[
Ti + V (r) + VH(r) + VXC(r)

]
φi(r) = εiφi(r) (2.19)

Where φi and εi are the Kohn sham wavefunctions and eigenvalues respectively and VH

is the Hartree potential or:

VH = e2

∫
n(r’)

|r− r’|
d3r′ (2.20)

The Hartree potential represents the interaction of the electron in question (the one at r, not

r’) and all the electrons in the sample. This results in some interaction between the electron

and itself, a term that must be corrected for in the VXC term. The Kohn-Sham equations

can be readily solved, but require the density to calculate the Hartree potential. The density

is in turn obtained from the wavefunctions:

nKS(r) = 2
∑
i

φ∗iφi (2.21)
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Where the factor of two is to account for electron spin. As the density is needed to calculate

the wavefunctions and vice versa, a self consistent approach must be taken in order to obtain

a valid result:

1. Assume a starting density

2. Use the initial density to calculate the Hartree potential and use it to solve the Kohn-

Sham equations for the wavefunctions

3. Calculate a new density using Eq. 2.21.

4. Compare the new density to the initial and update the initial density.

5. Repeat steps 2-4 until the density converges and the energy is minimized. This density

then represents the groundstate for the system.

This method is the starting point for DFT calculations, from which there are a number

of variations with regarding how to proceed with these steps. Amongst these, the treatment

of the exchange-correlation potential and choice of basis for the wavefunctions separate the

various methods common in DFT packages.

Exchange-Correlation Potential

The exchange-correlation potential was introduced above, but not explicitly defined. That

is because there no easily solvable form, for this term as it collects all of the unknown

attributes not accounted for in the Kohn-Sham equations. These include accounting for

electron’s being indistinguishable, the self interaction term, etc. There have been a number

of proposed potentials, many designed for specific situations the most common of which

will be discussed here. Like the potentials in the Kohn-Sham equations, the XC potential

is defined as a functional of density. The various potentials vary according to accuracy

and computational cost. The first attempt, originally proposed by Kohn and Sham in 1965

was the local density approximation (LDA) in which the exchange and correlation potential

depends only on the density [49; 50]:
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EXC[n(r)] =

∫
n(r)εXC[n(r)]d3r (2.22)

LDA is exact in the case of a free electron gas and has obtained good success when

applied to metallic solids. By also considering the gradient of the density, a more involved

potential is obtained, called the generalized gradient approximation (GGA) [49; 51] :

EXC[n(r)] =

∫
n(r)εXC[n(r),∇n[r]]d3r (2.23)

Other parameters can also be taken into consideration, such as the potential energy

(meta GGA), empirical factors, or mixing with the exact Hartree-Fock (hybrid functionals)

[49; 52]. Depending on the desired property and available computing power, an appropriate

functional must be chosen for each case.

Basis Sets

A second defining feature for various DFT methods is the choice of basis set for the wave-

functions, φi. A number of options have become prevalent in the available programs. These

are divided into two distinct types, localized and periodic [44]. Localized basis sets rely on

using orthogonal functions which decay rapidly away from the origin [44]. An example is

Gaussian peaks, as is used in the Gaussian16 software package [53]. The very localized basis

set is useful for handling single, isolated molecules, which is ideally suited applications in

quantum chemistry and biology. Poor scaling with electron number (typically N3 or worse)

limits the maximal size of system that can be studied [54]. In materials science, a typical

system of interest is a bulk material and thus unsuitable for this approach. To handle these

cases, periodic basis sets are used, by defining a unit cell and repeating it infinitely in all di-

rections. The solution to the Schrödinger equation under these periodic boundary conditions

is given by Bloch waves, defined as [55]:

ψ = u(r)ei·k (2.24)
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Figure 2.13: The two regions in an augmented plane wave approach. (I) Atomic Basins

modelled with Psudopotentials or atomic orbitals and (II) interstitial space modelled with a

plane wave basis set. Taken from Schwarz, 2002 [58].

Consequently, a natural basis choice for periodic boundary situations are plane waves,

which are used in a number of DFT packages including VASP, Quantum Espresso, and

WIEN2k [56–58]. The periodic boundary method allows for accurate calculation of in infinite

samples, representative of bulk materials. The computational limits then apply to the size

of the unit cell, typically limited to at most a few hundred atoms [54]. These limits render

features such as defects and grain boundaries computationally expensive as they must be

contained in a cell large enough to isolate them from their repeated images in adjacent

cells. As large numbers of plane waves would be required to handle the fine features in the

electron density close to nuclei, often an augmented plane wave (APW) technique is used.

APW lowers the computational cost by dividing the unit cell into two regions: interstitial

space and atomic basins (sometimes referred to as muffin tins), illustrated in Fig 2.13 [58].

The ability to divide electrons into two groups is valid as the core electrons surrounding

each atom are largely isolated from the local environment by the outer shells [58]. The choice

of which basis set is used inside the muffin tins provides additional options distinguishing

DFT codes. One option is pseudopotentials, which are pre-generated densities for each ele-

ment and can be varied to match the plane waves at the boundary [59]. The pseudopotential

method is used in programs such as VASP and Quantum Espresso [56; 57]. Alternatively,
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Figure 2.14: Flowchart depicting the various choices of basis set available to DFT codes.

spherical harmonics corresponding to the atomic orbitals can be used for increased accuracy

[55]. This type of DFT is referred to as all-electron or full potential, as every electron is

represented in the basis set, unlike the pseudopotential method where core electrons are

absorbed into the pre-calculated pseudopotential [58]. Fitting for all of the electrons in the

sample comes at a computational cost, yet allows for more a accurate analysis of the prop-

erties dependent on core states, such as ELNES spectra in EELS.

A flowchart demonstrating the various properties of some common DFT codes is illus-

trated in Fig 2.14. The DFT code used primarily in this work is WIEN2k and is presented

in the following section.

2.2.3 WIEN2k

WIEN2k is an all electron code that uses a linearized augmented plane wave (LAPW) for-

mulation, combining plane waves with spherical harmonics illustrated in Fig 2.13 [58]. In

WIEN2k’s standard formalism, the basis sets for the Kohn-Sham wavefunctions can be rep-

resented as:
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φkn =


Σlm[Alm,knul(r, El) +Blm,knu̇l(r, El)]Ylm(r̂) r ≤ rRMT

1√
ω
eikn·r r > rRMT

(2.25)

Where n, l, and m are the principle, azimuthal and magnetic quantum numbers re-

spectively, Ylm(r̂) are the spherical harmonics and ul(r, El) are the solutions to the radial

Schrödinger equation. The coefficients Alm,kn and Blm,kn are set to match the value and

slope of the plane waves at the boundary [58]. The use of an all electron code is essential for

computing EELS accurately as it allows for a more flexible treatment of the core electrons

not granted in pseudopotential codes.

2.2.4 Quantum Theory of Atoms in Molecules

Before continuing to the application of DFT to EELS, a more direct application of DFT

is briefly presented: defining atoms and bonds from the electron density. Initial work on

this front was performed by Bader, resulting in the field sometimes being referred to as

Bader Theory [60]. The electron density can be divided into regions, with each atomic basin

delimited by surfaces satisfying [61]:

∇ρ(r) · n(r) = 0 ∀r ∈ S(Ω, r) (2.26)

That is, surfaces with no flux of electron density through them which can be pictured as

a “valleys” in the electron density “landscape,” see Fig 2.15. In order to rapidly calculate the

location of these surfaces, critical points in the density field are located, satisfying∇ρ(r) = 0.

These critical points will always satisfy Eq. 2.26. With the exception of critical points at

maximas in ρ(r) which are located at nuclei, all of the critical points lie on interatomic

surfaces [62]. The nature of the critical points can then be evaluated (minima, first or

second order saddle point), and the location of bonds which are centred on first order saddle

point critical points, can be determined [62]. The bonds can then be characterized to provide

first principles chemical bonding analysis for quantum chemistry [63].
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Figure 2.15: Density plot (left) and identification of atomic basin (right) in a diborane

molecule. From Bader, 1998 [60].

2.2.5 Lithium in DFT

Lithium’s low atomic number requires a number of special treatments in DFT. These are

mainly due to its loosely bound electrons with large orbitals resulting from lithium’s small

nuclear charge. Even the 1s level electrons in lithium can have orbitals extending well past

2.5 Bohr from the nuclei, far further than in heavier elements, see Fig 2.16 where a range of

orbital sizes are compared [13]. This results in a number of issues. One of these is that it is

difficult and sometimes impossible to set the atomic sphere radii large enough to contain all

these 1s core electrons. As atomic spheres cannot overlap, they are typically limited to ∼

2.0 Bohr. Depending on the compound, the sphere size can be further constrained as all the

spheres must be roughly the same size (within 30%) [58]. If the sphere sizes are too varied,

convergence time and accuracy can deteriorate dramatically. The alternative to large sphere

size is to allow a degree (∼0.5%)of core leakage into the calculation [58]. The downside to

allowing leakage is that it may result in non physical effects at later stages in the calculation,

or in the appearance of “ghostbands” in the calculation [58].

2.3 EELS Calculations

Having described the inner workings of EELS and DFT, the means to use the ground state

density and the Kohn-sham wavefunctions and eigenvalues to calculate EELS spectra are
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Figure 2.16: Orbital charge densities as a function of distance from nucleus, demonstrating

the varying degrees of localization. From Mauchamp et al, 2006 [13]
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discussed. Central to this challenge is the fact that DFT is a ground state theory; the

Hohenberg Kohn theorems only guarantee that agreement between the calculation and reality

for the lowest energy state [47]. As EELS inherently involves exciting an atom above its

ground state, assumptions must be made to address this issue. The various approaches to

the issue of handling excitations are defining attributes of the various techniques used to

calculate EELS. Additionally, the varying requirements of the wide array of EELS spectra

features further diversify the techniques. Broadly, there are three methods for calculating

EELS: multiple scattering, atomic multiplet and band structure methods. A number of the

band structure methods as well as their advantages and applicability are described below.

2.3.1 Time Dependent Density Functional Theory (TDDFT)

In TDDFT, the EELS spectrum is computed through the macroscopic dielectric function

(εM). The method is centred on Fermi’s Golden Rule, which is used to define matrix elements,

which determine the probability of an electron being driven to a new state by a propagator.

In EELS these matrix elements are calculated as:

Mnmk = 〈nk|e−i(q+G)r|n′k+q〉 (2.27)

Where q is the momentum transfer from the beam to the sample and G is the Fourier

coefficient of the probe. The initial and final states are the key parameters taken from DFT

[64]. These matrix elements can be used to determine the independent particle polarizability

χKS [64]:

χKS
G,G’(q, ω) =

1

V

∑
nmk

fnk − fmk+q

εnk − εmk+q + ω + iδ
Mnmk(q,G)M∗

nmk(q, G’) (2.28)

Where fnk is the fermi distribution and V is the volume of the cell. χKS can be related

to the reducible polarizability through the Dyson equation:

χ = χKS + χKS(ν + fxc)χ (2.29)
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Where fxc is the exchange and correlation potential. A common approximation is to set

fxc to zero, a method called the Random Phase Approximation (RPA) [65]. At this point

two more approximations are introduced. q is set to 0, referred to as the optical limit. This

assumes that the momentum transfer to the sample is minimal, an approach that is valid

for low energy losses (<50 eV). Secondly the probe wavelength is assumed to be much larger

than the resulting perturbations, ( G→ 0). This is know as ignoring local field effects. Both

approximations can be relaxed on a case by case basis, at increased computational expense

[64]. With these approximations, first element of the dielectric tensor can be calculated as:

ε−1
00 (q, ω) = 1 + vχ (2.30)

from which the macroscopic dielectric function can be obtained, which relates to the

energy loss function (L(q, ω)):

[εM(q, ω)]−1 = ε−1
00 (q, ω) (2.31)

L(q, ω) = −Im[εM(q, ω)]−1 (2.32)

The energy loss function is what is directly measured by EELS and is the standard

of comparison for TDDFT. TDDFT is accurate for low losses, so ideal for calculations of

plasmons, and in the limit of the optical approximation low energy M edges of transition

metals and the lithium K edge [14]. Limitations of the approach are that it is based on the

final state rule, and is consequently susceptible to excitonic effects in 〈f |. Additionally, local

field effects can require subtle interpretations and may require additional computational cost

[14]. TDDFT is also applicable to x-ray absorption spectroscopy where the optical limit is

more valid. The only required modification to the theory is replacing the propagator in Eq.

2.27 by the appropriate x-ray propagator [66]:

eiq·r → eik·rε · r (2.33)
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2.3.2 Cross Section Approach

TDDFT is a suitable choice for low loss EELS. For higher energy ionization edges with

non-negligible momentum transfer, Fermi’s Golden Rule can be used to compute a double

differential cross section instead of the dielectric function. The differentials are with respect

to energy and scattering angle, the two relevant parameters in an EELS experiment. The

relationship is given by [67]:

∂2σ

∂Ω∂E
=

[
4γ2

a02q4

]
kf
ki

∑
i,f

| 〈f |eiq·r|i〉 |2δ(E − Ef + Ei) (2.34)

Where a0 is the Bohr radius, E the energy loss and γ =
√

1− β2, the relativistic factor.

As in TDDFT, the approach can be modified to solve for XAS, by replacing the Rutherford

cross section with the Thompson cross section in the prefactor and changing the propagator

according to Eq. 2.33.

The cross section formalism can be modified to account for anisotropic samples as well

as some experimental parameters [67]. Similar to TDDFT, the essential parameters are the

initial and final states, taken from DFT (〈f | and |i〉). The simpler approach with fewer

approximations can be attributed to the states being investigated: in low loss EELS, both

the initial and final states depend heavily on the band structure, whereas for core losses the

initial states are relatively constant and well defined [67]. Cross section methods however

still suffer from the limitations of a one particle final state rule approach and their lack of

ability to deal with excitonic effects.

2.3.3 Beth Salpeter Equations (BSE)

The largest drawback of TDDFT and cross section calculations is the single particle for-

malism, which prevents proper treatment of excitonic effects. Solving the BSE is a two

particle method that rigorously calculates the interaction between the excited electron and

the resulting hole in the core state [68]. It is applicable to both low and core loss EELS
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calculations [64]. The core of the BSE is in solving the eigenvalue problem involving the

effective two particle Hamiltonian, in order to obtain an improved final state, 〈f | [69]:

Ĥeff |Aλ〉 = Eλ |Aλ〉 (2.35)

The effective Hamiltonian can be broken into three parts: the diagonal, exchange, and

correlation components[69]. The diagonal component accounts for single particle transitions:

H
(diag)
vck,v′c′k’ = (εck − εvk)δvv′δcc′δkk’ (2.36)

The exchange component accounts for the repulsive interaction between the excited elec-

tron and its hole:

H
(x)
vck,v′c′k’ =

∫
d3r

∫
d3r’ϕvk(r)ϕ∗ck(r)v̄(r,r’)ϕ∗v′k’(r’)ϕc′k’(r’) (2.37)

Where ϕ are the single particle states of the hole and electron and v̄ is the unscreened

Coulomb potential. Finally, the the correlation component accounts for the attractive inter-

action between hole and electron:

H
(c)
vck,v′c′k’ = −

∫
d3r

∫
d3r’ϕvk(r)ϕ∗ck(r)W (r,r’)ϕ∗v′k’(r’)ϕc′k’(r’) (2.38)

Where W is the screened Coulomb potential on the hole. By treating the hole created by

the excited electron as a particle, solving the BSE produces superior results to single par-

ticle approaches, particularly in those with moderate screening [69]. However, this method

is vastly more computationally demanding and can only be performed on the simplest of

structures. This large computational trade off has led to the continued prevalence of single

particle techniques.

2.3.4 Core Hole Approximations

The computational cost of the BSE method and the difficulties in handling excitonic effects

in single particle approaches have resulted in additional approximations being made to im-

prove single particle results. The most significant of these are related to treatment of the
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core hole and subsequent shielding.

The need to include core hole effects was recognized in early attempts at calculating

ELNES [70]. The initial solution was to replace the element in question with the next ele-

ment on the periodic table, called the Z+1 approximation [70]. This method was effective on

a selection of materials. However, it lacks the flexibility to handle excitations from different

shells as is needed to differentiate between K,L, and M edge core holes. As a result, the Z+1

approximation has been largely replaced by the core hole approximation [67].

The core hole approximation involves manually decreasing the occupancy of a core or-

bital, and adding a charge to the background to conserve the electron number [58]. This

allows for more flexibility than the Z+1 approximation although, effectiveness of the core

hole approximation is also mixed. In some cases, including a core hole results in excellent

agreement with experiment, whilst in others, ignoring a core hole produces more accurate

results [67]. Additionally, many cases lie between these two extremes and are better mod-

elled using a half core hole, a phenomena and solution initially identified by Luitz, 2001 [71].

Luitz also demonstrated that ELNES simulations could be “fit” to experiment by varying the

magnitude of the core hole between zero and one [71]. The challenge in simulating ELNES

of using the correct size of core hole, is currently managed by comparing various simulated

spectra to experiment. In order to increase the predictability of simulations, several methods

have been proposed.

Initial intuition regarding core hole shielding, dating back to the Z+1 method, was based

on material properties: insulators require a hole and metals do not. The reasoning is that

the high electron conductivity of metals allows free electrons to easily shield the positively

charged core holes. The reasoning has been moderately successful in predicting whether a

full or no core hole will be more accurate,and is still cited currently. Numerous exceptions

(copper requires a hole, TiO2 does not) have led to more further investigation [71–74]. The
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impact of core hole effects has been related to the electronegativity of the atom in question by

Gao et al 2008, [73]. Cations and elements with low electronegativity (eg. Lithium,) are pre-

dicted to be heavily impacted by the insertion of a core hole due to their inability to attract

valence electrons to shield the hole [73]. The work however makes no comment regarding

the necessity of a core hole, only how much it will effect each case. The issue of determining

when a core hole is required can be resolved by investigating the density of states (DOS) [72].

There is a direct connection between the ELNES and the unoccupied DOS (〈f |) through

Fermi’s Golden Rule. As the core hole is isolated onto a single atom, the excited atom must

make a sufficient contribution to the unoccupied DOS to actually manifest excitonic effects

[72]. An example of this can be seen in lithium carbonate, where the unoccupied density of

states is dominated by carbon and oxygen, Fig 2.17. Even if the lithium DOS are impacted

by a core hole, the total DOS of the crystal will remain unchanged, and core hole effects will

not be observed. In contrast, core hole effects are predicted to be present on carbon and

oxygen edges as both of these elements contribute strongly to the conduction band in the

DOS.

By analyzing the DOS, it is possible to predict whether or not a core hole is required on

a given case. Considering the electronegativity of the elements involved can provide insight

regarding the strength of excitonic effects. However, neither technique directly accounts for

core hole screening which can obscure excitonic effects predicted in the DOS, in low elec-

tronegative elements (eg metallic lithium) [13]. The lack of a robust means of including core

hole screening into calculations has led to the continued prevalence of comparing experiment

to the better match between either a full or no hole spectrum. This state of development

has remained unchanged for the past 30 years and consistently led to unsatisfactory results,

Fig 2.18 [75–86].

The treatment of core holes is particularly relevant for lithium, the least electronegative
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Figure 2.17: Density of State of Li2CO3. Note the minimal contribution of lithium to the

conduction band at ∼ 5eV relative to carbon and oxygen

element, which indicates strong excitonic effects and weak shielding. In order to calculate

lithium ELNES, a more rigorous approach to core hole screening is required. Developing a

deterministic method of introducing non-integer core holes is the focus of this work
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(a) (b)

(c)

Figure 2.18: The three typical results of inserting a core hole. In (a) the core hole results in

good agreement with experiment. In (b) and (c), the core hole overestimates the excitonic

effects, resulting in errors in peak intensity. In (c), a fractional core hole is inserted resulting

in good agreement at the cost of physicality. Results from Herbert et al, 2003 (a,b) and

Luitz et al, 2001 (c)[71; 87] .

.
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Chapter 3

Methods

The lack of flexibility and accuracy of the core hole approximation combined with the com-

putational deterrent of solving the BSE presents a barrier to expanding EELS calculations.

Lithium in particular, being highly sensitive to these effects requires an improved method to

continue EELS studies. To address this, a means of calculating the core hole shielding effect

in lithium is developed. It is based in the single particle approach so as to reduce compu-

tational effort and does not require any empirical results. In this chapter the formulation

and implementation of this method is discussed as well as the calculation and experimental

parameters used in this work.

3.1 Improvement to Core Hole Shielding Calculations

To improve ELNES simulations, the core hole shielding contribution must be calculated. To

maintain a low computational cost, the method developed here is based on a single particle

approach. In particular, the relativistic cross section method using the final state rule (Eq.

2.34) [88]:

∂2σ

∂Ω∂E
=

[
4γ2

a02q4

]
kf
ki

∑
i,f

| 〈f |eiq·r|i〉 |2δ(E − Ef + Ei) (3.1)

As mentioned in Section 2.3.4, shielding effects are contained in the 〈f | term. These
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effects originate from changes in the Hamiltonian arising from the introduction of a core

hole and manifest themselves when solving for 〈f | in the Kohn Sham equations (Eq. 2.19)

[89]:

[
Ti + Vext(r) + VH(r) + VXC(r)

]
φi(r) = εiφi(r) (3.2)

The core hole alters the Hartree and the exchange and correlation potentials, and this

effect is reduced somewhat by shielding. The total change in the potential due to introduction

of a core hole can be expressed as:

∆Vtot(r) = ∆VH(r) + ∆VXC(r) = VCH(r)− VS(r) (3.3)

where VCH(r) is the potential of a core hole and VS(r) represents the shielding potential.

The current convention in literature when performing core hole calculations is to ignore this

shielding term, despite the large effects it has been shown to have on ELNES. The shielding

potential can be divided into two parts, core electron shielding Vc(r) and valence electron

shielding Vv(r). Core shielding is due to electrons occupying core orbitals on the excited

atom reducing how much the core hole can be “felt” outside of the atom. Valence screening

is caused by valence and interstitial electrons being attracted to the positively charged hole.

Neither of these terms are readily solvable for using current methods. When calculating

ELNES for the lithium K edge, the core electron screening can be ignored. This assumption

arises from lithium’s low electron count and simplifies the screening calculation considerably.

The valence electron screening can be calculated through linear response theory, as

∆VH(r) and ∆VXC(r) cannot be computed exactly [90]. Linear response theory relates

changes in electron density to changes in potential, such as from the introduction of a core

hole, as described by Shirley, Soininen and Rehr [90]:

∆n(r) =

∫
d3r’χ0(r, r’;ω = 0)∆Vtot(r’) (3.4)

Where χ0 is the irreducible polarization function, given by χ0(r) = δn(r)/δV (r). At this
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point, the screening is set to zero (VS(r) = 0), to be reintroduced later as a perturbation.

Restricting the region of interest to only the excited atom gives:

∆nbasin =

∫
f

d3rnf (r)−
∫
i

d3rni(r) = −1 (3.5)

Where the basin defining the integration limits is defined by Bader theory as described in

Section 2.2.4. This equation indicates that, when there is no screening, the excited core

electron has entirely left the basin, with no response from the material. Assuming the

polarization is constant inside this basin, gives:

∆nbasin

VCH

= χ0
basin =

∆nbasin

∆Vtot

(3.6)

The second equality assumes the polarization is independent of changes in shielding

potential. This is verified by checking that ∆nbasin vs VCH is linear, see Fig 3.1. The

shielding term can then be reintroduced by perturbing the right hand side of Eq. 3.6 to

obtain:

−1

VCH

=
−1 + δnbasin

VCH − δVv

(3.7)

Which can be reduced to:

δVv

VCH

= δnbasin (3.8)

Equation 3.8 connects the screening due to valence electrons to a change in electron

density, a rapidly calculable quantity. The screening potential is given in “units” of the core

hole potential which allows the screening to be accounted for by modulating the occupancy

of the core hole state. Additionally, while perturbed from the no screening case in Eq. 3.7,

it should be noted that this argument holds when approached from the full screening case.

This indicates that these approximations are valid over the entire range of screening cases

(δVv = 0 → VCH). The implementation of this theory in EELS calculations is discussed

below.
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Figure 3.1: Effect of varying the core hole potential on atomic basin population, for LiF and

LiBr. Solid lines represent the case of constant χ0
basin

3.2 Implementation

To calculate and implement the shielding term in Eq. 3.8, a series of calculations are per-

formed. First, a standard DFT calculation is executed with no core hole and the DOS is

calculated to verify that a core hole is indeed necessary. If so, a full core hole is performed.

Depending on cell size, the full core hole calculation is performed using a supercell so as to

isolate individual core holes in the periodic boundaries. For both calculations, the electron

occupancy inside the lithium atomic basin is calculated and used to calculate the screening

potential according to Eq. 3.8. This returns a decimal value between 0 and 1 which is

subtracted from the magnitude of the hole. A third calculation is then performed with using

this non integer “shielded” hole, again using supercells as necessary.

3.3 Calculation Details

Before discussing specific cases, it should be noted that all calculations are run in a manner

to account for the peculiarities of lithium in DFT. In particular, atomic sphere radii on

the lithium are maximized to minimize core leakage and monopole effects are verified to be
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negligible [13]. The standard DFT convergence tests (K points, RKmax) are performed and

all cells are relaxed according to volume. All supercell calculations are performed using non

conventional symmetries ( eg. P1 ) so as to only produce a single core hole atom per cell and

avoid any interaction between core holes. The final spectra are converged based on supercell

size. Density calculations are preformed using Critic2 [62]. Detailed calculation and crystal

parameters can be found in Appendix A.

3.4 Experimental Details

All of the experimental results are obtained at McGill on a Hitachi SU9000 field emission

SEM. EELS spectra are acquired at 30 keV to minimize the beam damage to the lithium

materials. The energy resolution is measured on the ZLP as 0.7 eV. The collection angle

and convergence angle are taken as 5.0 mrad and 1.8 mrad respectively. All spectra undergo

background removal through a power law fit (see Section 2.1.5) and are deconvoluted using

the Richardson-Lucy algorithm (also Section 2.1.5). Powdered LiF samples prepared by

drop casting onto carbon grids. Metallic lithium spectra are collected from crystals that are

observed to grow in the vicinity of the electron beam, as reported by Liu et al, [32; 91].
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Chapter 4

Results and Discussion

Having developed a method and the means to implement screening calculations, ELNES are

calculated for three common lithium compounds with a variety of properties; Li2O, LiF, and

metallic lithium . A mixed compound obtained after observing beam damage on LiF during

a transformation into metallic lithium is also analyzed and discussed. Following results from

the individual cases, the overall effectiveness and applicability of the method is discussed.

4.1 Lithium Oxide

Li2O is investigated and screening calculations are performed as described in Section 3.2.

The DOS is calculated and demonstrates considerable lithium components in the unoccu-

pied DOS suggesting that a core hole is necessary, Fig 4.1. The electron density around the

excited lithium atom is plotted for each, before and after insertion of a core hole, see Fig

4.2.

The density plots show valence electrons in the material being attracted to the excited

atom. This response in the electron density indicates that core hole screening should have

a noticeable effect on the final states. Additionally, the closest unexcited lithium atom in

the density plot is largely unaffected by the core hole, in agreement with the supercell size
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Figure 4.1: DOS for Li2O (left) and Lithium P states (right). Note the comparable Li vs

O contributions in the unoccupied DOS around 5-7.5 eV, as well as the dramatic changes

resulting from insertion of a core hole.

Figure 4.2: Electron density map of Li2O before (a) and after (b) introduction of a core hole

on the starred atom. The contours are on equal logarithmic scales.
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being sufficient to isolate core holes. Calculating the difference in electron occupancy shows

a decrease of 0.88 electron in the basin of the excited lithium atom. This decrease is smaller

then would be expected in the no screening limit, and according to Eq. 3.8 indicates that

the hole is 12% screened. A third calculation is performed using a correspondingly decreased

hole size to obtain a final spectra. The K edge ELNES from all three simulations are com-

pared to experiment in Fig 4.3.

In comparison to experiment, the full hole provides good agreement, as previously pre-

dicted in the literature [13]. However, the screened hole provides a superior result, which

can be emphasized by measuring the ratio of the two peaks at ∼55eV and ∼58 eV. A quan-

titative comparison of the values, presented in Table 4.1, reveals a dramatic improvement,

decreasing the error in the peak ratio, from 20% to 6%.

Table 4.1: The ratio of intensities in the Li2O spectra between the two peaks at 55 eV and

58 eV. Errors were calculated relative to experiment.

Ratio Error

Experiment 0.71 -

Full Hole 0.85 20%

Screened Hole 0.66 6%

4.2 Metallic Lithium

Metallic lithium has been predicted to exhibit no core hole effects due to a large degree of

valence screening [32; 92; 93]. Being elemental, it inherently satisfies the DOS conditions,

and only the PDOS is calculated, Fig 4.4. A density plot supports the notion of heavy

shielding, revealing that core holes attract a large number of neighbouring valence electrons,

see Fig 4.5. The response to the excited atom is more aggressive than in Li2O, implying a

stronger screening impact. Calculating the screening factor reveals that the lithium core hole
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Figure 4.3: Lithium K edge of Li2O from the three calculations taken with varying degrees

of core hole.

is ∼41% screened, larger than in Li2O, but less than the full screening predicted in literature.

A comparison of the various core hole cases with experimental spectra is presented in Fig

4.6. The literature again predicts the superior agreement between full hole and no hole, but

both are inferior to the screened hole result. Of particular note is the small peak located at

∼58 eV, which is underestimated, in the no hole spectra, overestimated in the full hole, and

correctly accounted for in the screened case. The only moderate (41%) screening goes against

common convention in the literature that metals do not exhibit core hole effects. Other cases

of metals requiring core holes have been previously highlighted such as the copper L3 edge

and the significant improvements observed with lithium suggest that screened core holes

should be included or at least calculated in all cases [87]. It should be noted that lithium’s

lack of core electron screening may be contributing to larger core hole effects, which would

be lessened for deep core states in heavier elements.
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Figure 4.4: PDOS of lithium P states in metallic lithium, with and without a core hole.

Figure 4.5: Electron density map of metallic lithium, before (a) and after (b) introduction

of a core hole on the starred atom. The contours are on equal logarithmic scales.
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Figure 4.6: Lithium K edge of Li from the three calculations taken with varying degrees of

core hole. On the left, the full and no hole results are presented, on the right the screened

hole spectrum is compared to the no hole spectrum, both normalized to the experimental

result at 56 eV. No vertical offset is applied on the right hand graph to better illustrate the

differences between the spectra.

4.3 Lithium Fluoride

LiF has been one of the more published EELS results for lithium and simulations have

obtained good agreement with a full core hole approximation [13; 73]. The DOS indicates

that core hole effects should be included, Fig 4.7. A qualitative probe of the electron density

after introducing a core hole reveals lesser effects than observed in Li and Li2O, see Fig 4.8.

The introduction of a hole produces minor responses from the electron density, and these

are largely limited to slight distortions in the fluorine electron clouds. Additionally, despite

the loss of a core electron, the density around the excited lithium atom retains much of its

initial form. The minimal effect of introducing a core hole is reflective of fluorine’s high

electronegativity and the ionic nature of LiF which “freezes” all of the electrons in place and

minimizes valence electron screening. This effect is confirmed by calculating the screening

coefficient which was determined to be zero in this case. Consequently, LiF represents the

no screening case of Eq. 3.5 and the full hole spectra can be taken as the final spectrum.

Plotting the spectra against experiment confirms that a full hole does indeed produce good
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Figure 4.7: DOS for LiF (left) and Lithium P states (right). Note the comparable Li vs

O contributions in the unoccupied DOS around 8-15 eV, as well as the dramatic changes

resulting from insertion of a core hole, the large peaks at 10eV,13 and 14 eV.

agreement, Fig 4.9. The lack of screening in LiF also explains the good results obtained

previously in literature when using only a full hole. It also confirms the theory that inserting

a full hole can be sufficient in the case of strong insulators, although again, lithium’s lack of

core electron screening may be contributing to this result.

4.4 Li-LiF Mixture

The full importance of including screening in core hole calculations is demonstrated when

investigating a mixed phase crystal. When obtaining the spectra for LiF, a transformation to

metallic lithium is observed, due to the beam damage. Such a transformation has been pre-

viously reported in alkali earth metal-halogen compounds and is attributed to the formation

of F-centers allowing the halogen to diffuse and evaporate [32]. During this transformation,

an acquired intermediate spectra displays both LiF and metallic lithium components. To

investigate the transformation and confirm the mechanism, a linear combination of the spec-

tra from metallic lithium and LiF is compared to the experimental result, see Fig 4.10a. The

good agreement obtained here supports both the inclusion of screening in metallic lithium
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Figure 4.8: Electron density map of LiF, before (a) and after (b) introduction of a core hole

on the starred atom. The contours are on equal logarithmic scales.

Figure 4.9: Lithium K edge of LiF from the two calculations taken with varying degrees of

core hole.
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(a) (b)

Figure 4.10: Lithium K edge of Li-LiF mix using full hole LiF spectrum and screened (a)

and unscreened (b) metallic lithium spectrum.

and that the sample contains only metallic lithium and LiF, with no intermediate phases or

contamination. The importance of screening is highlighted in Fig 4.10b, where the no hole

lithium spectra is used, resulting in a fit that fails to reproduce the peak at 59eV. This un-

accounted for peak would prevent such an analysis from confirming the purity of the sample

and the mechanism behind the transformation.

4.5 Discussion

The cases analyzed above highlight the importance of including a core hole and screening

effects when calculating ELNES of the lithium K edge. In every case, a core hole was nec-

essary, including metallic lithium which has been predicted to not exhibit core hole effects.

Additionally, every case except LiF exhibited non negligible amounts of screening and ap-

plying the first order method developed in Chapter 3 results in dramatic improvements to

experimental agreement. The impact of including screening in ELNES calculations is made

more apparent when dealing with unknown cases such as the Li-LiF mixture where it is

essential to fingerprinting the near edge structure. The improvement to the peak ratio in
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Li2O is another key feature in terms of identifying oxidation on lithium edges, or taking the

steps to quantitative analysis.

Having confirmed that the method improves the accuracy of results, the effectiveness and

applicability of the method is discussed below. The screening calculations presented in this

work do not depend on any additional empirical data relative to standard DFT. Addition-

ally, while three spectra are presented in each case for comparison (no hole, screened hole,

and full hole), the technique predicts only a single correct result. The current method in

literature of choosing between hole or no hole introduces a degree of uncertainty, as mul-

tiple correct spectra are predicted for each case. Any resulting disagreement can then be

attributed to either screening effects or error. By only producing a single calculation which

includes screening, this uncertainty is removed. Another major benefit to the method is that

it scales at the same rate as conventional DFT. The largest computational cost occurs in the

requirement to perform a third DFT calculations in order to obtain the screened result, an

increase that scales at the same rate as the initial calculations. Consequently, the method

can be reasonably applied to any system that could be analyzed previously. It is also of note

that the shielding calculations presented in this work are implemented in the cross section

method, one of the more lightweight first principle methods of calculating ELNES.

The success of the screening calculation when applied to lithium materials brings the

generality of the approach into question. There are two regions where the technique is likely

to fail: core electron screening and handling covalent bonds. As mentioned in Section 3.3,

core electron screening is ignored when calculating screening on the Li K edge. For the K

edges of heavier elements this component will increase, and be required when determining

the valence electron screening. The degree of core electron screening of heavier elements

can be tested by investigating the effect of replacing lithium with sodium, the next alkali

earth metal. Sodium has an additional eight core electrons relative to lithium, but has sim-

ilar properties. Using the method developed in this work to calculate the valence electron
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response of LiCl and NaCl gives them as 0.16 and 0.14 respectively. The 0.02 electron differ-

ence can be attributed to core electron screening and suggest that this is small enough to be

ignored for elements up to sodium. The sodium K edge lies around 1080 eV, which indicates

that core electron shielding can be ignored for the majority of commonly used ELNES edges.

More rigorous Hartree-Fock shielding calculations are required to fully confirm this result.

While core electron shielding may be negligible, covalent systems present a different set of

challenges. The complications arise from more involved charge compensation mechanisms,

which inhibit well defining the atomic basins. A more subtle method of determining the

electron response is therefore required before a truly general approach can be implemented

for all elements.

On a final note, the reliable agreement between calculation and experiment helps solid-

ify the validity of performing EELS at 30 keV to analyze beam sensitive materials. The

obtained experimental results were successful in reproducing agreement with the literature

predictions when ignoring screening effects. The ability to detect fine features such as the

small second peak in metallic lithium and perform quantitative ratio analysis in Li2O em-

phasize the benefits of this method in analyzing beam sensitive materials.
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Chapter 5

Conclusion

The main objectives of this work have been to develop a better means to simulate EELS

spectra in the context of lithium materials and further verify the reliability of EELS at 30

keV. The first order screening method presented in Chapter 3 is a step in the right direc-

tion. It represents a dramatic improvement to the current methods and results in superior

agreement between simulation and experiment in every case treated in this work. Most

importantly, the method achieves these improvements without requiring empirical data or

ad hoc assumptions and maintains the computational scaling rate of previous methods. En-

suring that the method relies only on first principles enables it to reveal unintuitive results

such as the unscreened hole in metallic lithium, and predict unknown systems such as the

metallic lithium-lithium fluoride compound. The success of the method at matching the

experimental 30 keV EELS is a strong argument for both the validity and potential of low

energy EELS as a tool to analyze beam sensitive materials.

However, there is still considerable room for improvement in EELS calculations. Exper-

imental equipment and techniques continue to advance to study more intricate materials.

The screening calculations in this work were tailored to lithium’s various peculiarities and re-

stricted to crystalline materials. The improvements for lithium materials highlight the need

for more general methods to support all elements, as well as amorphous and non infinite
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samples. Additionally, the majority of theoretical EELS analysis remains qualitative and

the realm of quantitative EELS presents an entirely new set of challenges. The ultimate goal

of entirely predictive methods capable of performing quantitative analysis on any material

remains out of reach and presents a target for future efforts.
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Appendix A

Calculation Details

In this appendix detailed, various calculation parameters are presented for the lithium cal-

culations performed in this work.

A.1 Crystal Structures

The unit cell crystal structures and atomic locations are presented below:

Table A.1: Cell parameters for Li2O. Space group 225, Fm3̄m, lattice parameter: 4.66Å

Atom x y z

O 0.0 0.0 0.0

Li 0.25 0.25 0.25

Li 0.75 0.75 0.75

Table A.2: Cell parameters for metallic lithium. Space group 229, Im3̄m, lattice parameter:

3.51Å

Atom x y z

Li 0.0 0.0 0.0
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Table A.3: Cell parameters for LiF. Space group 225, Fm3̄m, lattice parameter: 4.057Å

Atom x y z

Li 0.0 0.0 0.0

F 0.5 0.5 0.5

A.2 DFT Parameters

Table A.4: Calculation parameters used for ground and core hole state calculations of ma-

terials. Supercells for Li2O and LiF were 2×2×2 and for metallic lithium 3×3×3 and used

non-conventional symmetries to isolate core hole onto a single atom.

Case K points RKmax RMT Li

Li 17×17×17 8.0 2.8

Li Supercell 6×6×6 8.0 2.8

Li2O 15×15×15 8.0 2.0

Li2O Supercell 8×8×8 8.0 2.0

LiF 15×15×15 8.0 2.0

LiF Supercell 8 ×8×8 8.0 2.0
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