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Abstract

This thesis discusses the design and implementation of a relational database programming lan­

guage. focusing on the domain algebra for nested relations. \Vhile the relational algebra provides

operations to manipulate relations as data primitives: the domain algebra allows the manip­

ulation of the attributes of relations. With the nested relational model: the domain algebra

subsumes the functionality of the relational algebra. The conventional relational operations

Ce.g. selection and projection) may be applied to the attributes of a relation.

The domain algebra for nested relations has many advantages. For example: the domain

algebra makes the nesting and unnesting of relations very easy. This ensures that any hierarchical

database schema can be validly translated into a conventional INF database schema. \-Vith the

nested domain algebra, defining abstract data types for domains can he achieved as weIl.

The system consists of three modules; the relational algebra, the domain algebra and com­

putations. This thesis deals with the domain algebra module.

The implementation is part of the jRelix project at :\IcGill University. The most significant

feature of jRelix is the support for the nested relations with an arbitrary but finite level of

ncsting. The Object-Oriented programming language Java was used exclusively during the im­

plementation, which secures jRelix as a platform independent database programming language.
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Résumé

Cette thèse documente la conception et l'implantation d~un langage de programmation de base de

données relationnelle, se concentrant en particulier, sur l'algèbre des attributs pour les relations

imbriquées. Alors que l'algèbre relationnelle offre des opérations qui manipulent des relations

comme données primitives, l'algèbre des attributs permet la manipulation des attributs des re­

lations. Avec le modèle des relations imbriquées, l'algèbre des attributs inclus le fonctionnement

de l'algèbre relationnelle. Les opérations de l'algèbre relationnelle (e.g. selection et projection)

peuvent être appliquées aux attributs des relations.

L'algèbre des attributs pour les relations imbriquées a plusieurs avantages. Par exemple, elle

facilite l'imbrication et la désimbrication de relations. Ceci assure que n'importe quel schéma

hiérarchique de base de données peut être traduit en un schéma conventionnel de base de données

en prenIière forme normale. En plus, l'algèbre des attributs pour les relations imbriquées permet

la définition des ADT.

Le système comprend trois modules; l'algèbre relationnelle, l'algèbre des attributs et les

computations. Cette thèse traite le module de l'algèbre des attributs.

L'inlplantation fait partie du projet jRelix de l'univerité NlcGill. Le trait le plus significatif de

jRelix est le support pour les relations imbriquées à des nivealLx arbitraires mais finis. Le langage

de programmation orienté objet Java fut utilisé pour 1~implantation. Ceci rend le langage de

progranlnlation de base de données jRelix indépendant de la plate-forme sur lequel il est utilisé.

ix
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Chapter 1

Introduction

This thesis describes the design and implementation of a relational database language in the

.Java programming language in general, and the implementation of domain algebra in particular.

The purpose of our work is to support the traditional relational model with an extension of

nested relations.

1.1 Background and Motivation

Starting in 1986, a relational database language called Relix was designed and developed at the

.-\.ldat lab of School of Computer Science in ~fcGill [LaI86]. The purpose of the original work

was to provide an experimental interactive environment for exploring the concept of the so-called

Relational Database Model proposed by Dr. E. F. Codd in his pioneering paper '~A Relational

~Iodel of Data for Large Shared Data Banks" [Cod70]. The original system was developed

in C language and ran on UNIX operating system. Relix was firstly designed to support both

relational algebra [Cod70] and domain algebra [~Ier84] for flat relations. Following the progress

of development in the Aldat lab, the Relix system has been enhanced \Vith further conceptual

functionalities such as procedures, event handling, computations, and concurrent control etc. In

1996~ an improvement to the system made Relix capable of supporting the basic operations of

the so-called Nested Relational Model [Nlak77] introduced in 1977, although the operations were

limited to one-Ievel of nesting [Re9i] .

1
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In the summer of 1997, a new project team \Vas formed with the intention to redesign the

whole system in an Object-Oriented manner in general, and to implement it in a ne\V program­

ming language i.e. .Java [GJS96J [AG96J in particular. The ne\V system \Vas named jRelix

and was supposed to cover the most important functionalities of the original Relix system, \Vith

a further extension to support the concept of a nested relational model \Vi th an arbitral")· but

limited level of nesting.

The project is still in progress at the time of this writing, although most most expected

functionalities have been implemented. In general, the system \Vas classified into three major

Inodules, i.e. Relational Algebra, Domain Algebra and Computation. The relational algebra

module was designed and implemented by Biao Hao, a graduate student in Computer Science

at :\IcGill. 1 have designed and implemented the domain algebra module. Patrick Guillaume

Baker, another graduate student at NlcGiIl, was responsible for the computation module. This

thesis will discuss the system design and implementation of the jRelix, \Vith a focus on Domain

Algebra, i.e. what 1 have been working 00.

Domain Aigebra for Nested Relations

As mentioned before, the purpose of our work is to design and implement a database lan­

guage/model that supports the Relational Database Model with the extension of Nested Rela­

tions. To achieve this, the domain algebra needs to subsume the capability of dealing with nested

relations.

\Vhy do we need a domain algebra for nested relations? \Vith domain algebra capable of

dealing with nested relations, the r..esting and unnesting of relations can be easily performed,

which ensures that any hierarchical database schema can be validly translated into a INF re­

lational database schema. On the other hand, the potential of defining abstract data types for

domains can be achieved by nested domain algebra as weil.

The idea is to integrate the notion of "nested relations" into both the relational algebra

and the domain algebra. In other words, the key point is to make relational expressions part of

domain expression so that relational operations can be applied to the nested attributes/domains.

This way, any operations that are performed on the top level relations can he performed at the
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lower level attributes which are also relations.

Apparently, in order to fulfill this achievement, the domain algebra must be given more

power. Le. apart from its original ability to perform domain operations, it must be compe­

tent in relational operations as weIl. In fact, the way jRelix domain algebra was designed and

implemented shows that domain algebra in the nested relational model is a super set of both

traditional domain algebra and relational algebra, i.e. it subsumes almost a11 the functionalities

of relational algebra, and becomes the most important concept in the Nested Re/ationai Model.

Java Programming Language

The oid version of Relix \Vas developed in C programming language, and has being running in

C.\1X environment. Rather than continue development on the C version of the Relix system,

we decided to choose Java as our developing language and start the design from scratch. There

are multiple reasons behind this decision.

First of aIl, Java is an Object-Oriented programming language. The Objeetory methodology

i.e. to develop a system in an Object-Oriented manner gives much more benefits than the

traditional methodology of structured system design and implementation, e.g. the easiness of

system development and maintenance supported by the Objectory concepts of data encapsulation,

inheritance and polymorphism.

Second, development using the Java programming language results in an abject system that

is platform-independent, as a declared feature of Java's ""neutral architecture 11. The benefit is

significant: it realizes many software designers' dream of "compile once, and run everywhere".

Compared \Vith the C version of the RelLx system which runs in U~IX environment (and needs

a new compilation for each UNIX system), jRelix runs on almost a11 operating systems without

additional compilation, as long as the operating system has a ".Java Virtual ~\Iachine" running.

And as we know, the fact is that almost aIl non-trivial operating systems have become .... Java­

capable" .

Third, .Java has a strong connection \Vith Internet. The Java development environment

provides abundant libraries of networking facilities. It is very easy for a Java application to

migrate into Internet applications. The jRelix system, with no exception, can be converted
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into an Internet application that will become accessible by a remote web browser e.g. Netscape

Navigator, which gives the strong potential of system scalability. A further migration of the

jRelix system into a so-called Client/Server model, which theoretically takes less effort than

that of a non-Java application, can enhance the system performance dramatically.

The discussion of the benefits that Java provides is beyond the scope of this thesis. However,

the advantage of choosing Java as the developing language instead of staying \Vith C/C++ for

jRelix system development is obvious and desirable.

1.2 Thesis Outline

Chapter 1 of this thesis introduces the thesis tapie. In Chapter 2, a background review of

the literature and related work done at NIcGill is given. Chapter 3 describes in detail how the

relational database operations are performed using the system developed as our implementation.

)'Iuch discussion is focused on the nested relational model in this chapter. Chapter 4 explores

the implementation issue involved in the design of a relational database language that supports

nested relational model in general, and so-called domain algebra in particular. In Chapter 5~ a

conclusion of our present work as weIl as the future work for this topic is discussed.
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Chapter 2

Background and Related Work

The well-known and widely used relational database systems aIl confonn to the basic relational

model first proposed by Dr. E. F. Codd in his pioneering paper "A Relational ~'[odel of Data

for large Shared Data Banksn [Cod70]. The relational model, unlike other data models~ has a

rigorous mathematical definition that is beyond the scope this thesis~ but it has since then been

recognized for its simplicity, uniformity~ data independence~ integrity and evolvability [Ger75].

The basic technology shared by aIl relational databases can be summarized simply as follows:

• The database system maintains a clear distinction between the logical views of the data

presented to the user and the physical structure of the data as it is stored. The user need

not understand the physical structure of the data in order to access and manage data in

the database.

• There is a simple logical data structure that is easily understood by users who are not

database specialists.

• There are high-Ievel languages provided for accessing the data in the database~ and for

performing various operations on databases.

Codd later \Vent considerably beyond just providing this model~ however [Cod72b]. 1t also

included:

• Relational calculus, a mathematically rigorous definition of the "set operations~~ that a

relational database should support for manipulation of tables .

5
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• Rules defining how a relational database should operate. The rules cover matters ranging

• from the database access that must be provided for users, to issues of data security.

2.1 Relational Model

In his relational model, Codd showed that a collection of tables that he termed relations could

be used ta model aspects of the real world and store data about objects in the real world. The

form of a relation is deliberately chosen to he simple, yet it is capable of capturing many of the

relationships represented by the more complex data structures.

The relational model for representing data specifies that information is represented in a table

forrnat \Vith the following characteristics:

• aU rows are distinct

• the ordering of the rows is immaterial

• each column has a unique label, and, hence, the order of the columns in a row is insignificant

• the value of a given column in a row is of a simpLe type such as an integer or a fioating
point or a character string, as opposed to complex type such as a table

Student Record Table
,TU(1/~

•

~ ----------------------- ~
: __ ~i_l:~_":."_ ~~:r: :~~ __8_5 _

Bailey P. Math 211 ~Q

Bailey P. Art 301 ':?:).-----.Altribul~Vcllu~
Jones J. Math 100 92

Jones J. Math 175 76

Jones J. Art 110 79

Figure 2.1: Relational ~'[odeI

As showed in Figure 2.1, the terminology associated with a relational modeI consists of:

• tuple: a row in the relation

• attribute: a column in the relation

• domain: the set of Legal values that an attribute can have
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AIl data within a relational database is viewed as being held in tables or relations. Each relation

is a model of real-world data relationships. At the same time, a relation is a simple enough

structure that users can readily understand. A system that supports the relational model can

perform well-defined operations on these relations to retrieve information.

On the other hand, relational algebra (which is based on function application and the evalu­

ation of algebraic expressions) is a procedural query language which is used to process relational

data. The basic operations of relational algebra \Vere first suggested by [Cod7a]. He also estab­

lished that queries formulated using his calculus DSL-ALPHA could be formulated in algebra

and vice versa (1972); in consequence he called both languages rp.lationally complete [Cod7!]. In

the relational algebra, there is no concept of tuples. The relational operators take relations as

operands and return a relation as a result which can be further manipulated. The property that

any relational algebra operation evaluates to a relation is also called the '"closure principle~~ of

relational algebra. The closure principle allows complex relational expressions by building up a

series of simple operations.

The relational algebra operations are usually c1assified as unary or binaI"y~ depending on the

number of their operands. Unary operators act on a single relation, binary operators act on two

relations~ and both produce a single relation as their result.

•
2.1.1 Operations on Relations

• {jnary operations

Projection: makes a copy of a relation with a specifie subset of the attributes

Selection: selects tuples that satisfy a specifie condition

• Binary operations

Mu-join: join operators that generalize set-valued set operations

Sigma-join: join operators that generalize logic-valued set operations

2.1.2 Operations on Domains

•
The need for arithmetic and sirnilar processing of the values of attributes in individual tuples is

apparent. The domain algebra [~1er84] \Vas proposed entirely to avoid tuple-at-a-time operations

for processing attributes in individual tuples. It allows the user to create new domains from
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existing ones. It allows the generation of a new value from many values within a tuple or from

values along an attribute. The domain algebra operations are defined as follows:

• horizontal operations

Constant

Rename

Function

If-then-else

• vertical operations

Reduction

Equivalence Reduction

Functional Mapping

Partial Functional Mapping operations

Various combinations and permutations of the above-mentioned operations e.g. selections.

projections and joins etc. are used in practice to retrieve information from a collection of

relations in a relational database. Nlany of these ha,oe been implemented on commercial DB~IS

in the farm of SQL (Structured Query Language) and other specialized devices. The actual data

retrie"al process thus becomes transparent to the user making the query. The user only sees the

output as a relation [TPB87].

2.2 Normalization of Relational Databases

Normalization is a prominent aspect of relational database theory. It addresses how data ought

to he organized within a database in order to rnake the database as compact and as easy to

manage as possible and to ensure that is produces consistent resultso Normalization rules provide

guidelines for defining the schema (design) of a relational database. Simply put, the rules specify

ho\\" a database should be divided into tables and how the tables should be linked together. There

are two major objectives of normalization:

1. :\Iinimize the duplication of data.
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SIudent

Courus
NaIne Adviaor eour-- u.tl

U".h lm j;l-;

Bailcy P. Smith A. U".h '11 QG

An 101 77

U ... h lm Q'

JoncsJ. ThonwP. U".h 17.. 7f\

Art lin 79

u"",... 'ln AA

Martin R.. Smith A.
U ...h I/YI ,. ..
Math 191 100

Figure 2.2: Nested Student Record Table
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2. ~vlinimize the number of attributes that must be updated when changes are made ta the
database~ thereby making maintenance of the data easier and reducing the possibility of
error.

There are several ways in which data in a database can be normalized, three initially defined

by [Cod72a], (Cod72b], and sorne others defined by others since then. They are called normal

fonns. In order for a datahase ta conform to the first normal form (1 NF), attributes must be

atomic; that is, an attribute must not be an n-tuple and therefore can~t be a set, list or, most

importantly, a table or a complex object. This means that tables can not be nested in a INF

database. Figure 2.2 shows a nested table that does not conform with INF. Figure 2.3 shows

how the nesting of Courses is eliminated by creating a separate Student table and Courses table~

and creating a relationship between these two tables! i.e. the student and his/her course records.

.-\.dherence ta the first normal form is a matter of the design of the database or relations. If

the database does not support non-atomic attributes, then the user has no choice and conformity

\Vith the first normal form is guaranteed.

The second through fifth normal forms (hereafter the higher normal forms) define certain

conditions for each of the normal forms that must be met. For example, the second normal

form declares that if a table has a multi-valued key and contains an attribute that depends on

only part of a multi-valued key, then that attribute should be moved to a separate table. The

conversion of the table in Figure 2.4 ·which is necessary ta achieve 2NF conformance is shawn

in Figure 2.5. The example illustrates how conforming to 2NF can reduce the amount of data
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Student

N..... Advi80r

8ailc:y P. Smith A.

Jones J. Thomas P.

Martin R. Smith A.

+

Cou,...

N..... Cou,... "'rk
8ailey P. Math 100 85

8:liley P. Math 211 99

8:liIc:y P. Art 301 77

Jones J. Math 100 92

Jones J. Math 175 76

Jones J. Art 110 79

Jones J. Music 210 88

Martin R. Math 100 ilS

Martin R. Malh 191 100

•

Figure 2.3: INF-conformant Student Record Table

Figure 2.4: INF(but Non-2NF) conformant Student Record Table



CHA.PTER 2. B.4CKGROUND _41VD RELA.TED "lORI< Il

•
stored in the database and the number of values that must be modified when a change is made.

In Figure 2.4~ the Advisor name is stored once for every occurrence of a student record. In

Figure 2.5, the Advisor name is stored only for each student. If it were necessary to change a

student's advisor, there would he many fewer fields in Figure 2.5 that would require updating

than in Figure 2.4.

S1UdMt...... Advtear

&ilcy P. SmllhA.

Jones J. Tbom:as P.

ManinR. Smith A.

+
~Wtin R. Math 191 [00

•

Figure 2.5: 2NF-conformant Student Record Table

3~F~ -lNF and 5NF similarly define increasingly stringent requirements, and adherence to

each likewise can reduce storage space, the number of updates required, or both.

The normalization technique has been discussed by Ullman [üllB2] and by Date [DatBI],

while several others have presented informaI outlines of it [GraB5L [Ken83], [KSB6], [5a186].

Yao [):"aoB5] and Ceri et al. [CG86] have summarized the various normalization algorithms that

are available, including sorne of their own modifications. Yang [Yan86] has discussed a graph­

theoretic approach ta normalization.

2.3 Limitations of INF Relational Databases

As with any relational database system, conformance to the higher normal forms is completely up

to the database designer - the software imposes no constraints that prevent attaining an optimal

schema~ whether fully conformant or not. But databases that provide for the storage of atomic

values give the designer no choice but ta conform with INF. Conforming \Vith the higher normal

foruls generally produces an optimal schema, albeit at the expense of greater complexity. But

database confonnance with INF often increases the amount of storage used, makes maintenance
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more difficult, and most irnportantly greatly increases the processing required to produce results~

while still making the schema more complex. \Vhen comparing Figure 2.2 and Figure 2.3, the

follow observations can be achieved:

• The number of tables increases from one to two.

• ?\ormalization of the tables requires the student Name attribute to be stored twice for each

student.

• Producing a report to show the student data requires that the two tables be joined. Joins

are highly compute-intensive operations.

For sorne potential users of relational databases, the joins that would be required ta resolve

relations in INF databases would affect performance enough to preclude the use of relational

databases. For example, 1NF relational databases are generally acknowledged to be unacceptable

for CAD/CA~I systems, which are used to design mechanical parts for manufacturing [~[RS88].

One reason is that CAO/CA~'1 data are inherently hierarchical in nature and the database

structure used ta store the part information must be traversed very quickly in arder ta display

the part on the user's screen within an acceptable response time. Hundreds or thousands of join

operations are required ta display a complex part. These joins simply cannat be performed fast

enough ta provide acceptable display times. That is one reason INF databases are not used for

CAD/CA:\I data. Such systems instead use proprietary hierarchical databases that provide high

performance but are expensive to develop and maintain.

Apart from performance considerations, 1NF relational databases also have practicallimita­

tions for many applications. \Vhile any hierarchical database schema can validly be translated

ta a lXF relational database schema, the practical considerations in doing so are daunting.

Takc for cxample a mechanical part. A hierarchical structure naturally and compactly stores

the data that describe the part. The translation (mapping) of that hierarchical structure to a

l:'\F schema, however, is far from intuitive and leaves a confusing, awkward, complicated set

of interrelated tables, including many tables for storing relationship relations. As a practical

matter~ such schemas are not possible to implement. These same considerations apply to many

other types of data.
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2.4 Nested Relation Mode}

Consideration of the limitations imposed hy the INF constraint lead naturally to the question,

'~Can the 1NF constraint he removed from relational database without invalidating the under­

lying relational mode!?"

As mentioned earlier, the relational model has a mathematically rigorous definition to guar­

antee predictahle, correct results on any database systems that faithfully implements the model.

Detailed examination [AB84] [FT83] [KK89] [Nlakïï] [SP82] [S586] has been made of the re­

lational model with the 1NF constraint removed. The analysis has proven that the resulting

model is equally robust. In other words, removing the 1NF constraint will not cause a relational

database to produce invalid or inconsistent results as long as the database conforms to higher

normal forms.

The removal of the 1NF restriction has led ta investigations which retain much of the ad­

vantages of the relational model. The need to introduce complex abjects into relations in order

to make them more qualified to handle non-business data processing applications such as image

and map processing, CAD/CAwl, office automation, expert systems and certain scientific appli­

cations was realized in the late 1970's and lead to the introduction of nested relations [:\:fak77]

and non-first-normal-form (1'1F 2 )) [J582].

Due to extensive research, significant progress has been made in the field of nested rela­

tions since the nested relational model was first proposed in 1977 [~[ak77]. Fisher and Van

Gucht [FG85] discussed the one-Ievel nested relations and developed a polynomial time algo­

rithm to test if a structure is an one-Ievel nested relation. Jaeschke and Schek (.1582] introduced

a generalization of the ordinary relational model by allowing relations with set-valued attributes

and adding two restructuring operators, the nest and unnest operators, to manipulate such

(onc-lc\"cl) nested relations. Thomas and Fischer[TF86] generalized Jaeschke and Schek's model

and allowed nested relations of arbitrary (but fixed) depth. The definition of recursively nested

relations was also discussed [L588].

On the other hand, various query languages have been introduced for the nested relational

model, and extensions have been proposed to practical query languages such as SQL to accom­

modate nested relations [PA86] [KR89] [PT86]. Graphics-oriented query languages [HP87]
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and datalog-like languages [BK86] [BNR+87] have been introduced for this model or slight gen­

eralizations of it. AIso, various groups [BRS82] [DKA+86] [DPS86] [SPS87] have started with

the implementation of the nested relational database model, sorne on top of an existing database

nlanagement system [DG88] [SAB+89], others from scratch.

2.4.1 Nested Relations

~[ost information cao he represented in a hierarchcal structure. The hierarchical database struc­

ture is base on a tree structure. Every data item except the roots of trees has a parent in the

structure and may be the parent for other data items. Ta illustrate this idea, let us consider

an example of a datahase for a university with a record for each department. Each depart­

ment has students and professors. Each student has an ad,";sor and a list of courses etc. These

relationships can he represented diagramrnaticallyas a tree, as shawn in Figure 2.6.

Figure 2.6: Schematic of Hierarchical Structure Example

As weIl, the contents of above information structure can he illustrated more or less like that

shown in Figure 2.7.

:\lternatively, the information can be described in a table of format of nested relations as

illustrated in Firgure 2.8.

The relation Student in Figure 2.8 gives an example of nesting. Relation Student consists of

three tuples each having three attributes:

• Name: The name of the student. Its data type is string (atomic) .
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Art 301 77
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M;I!h 175 76

Art 110 ~

Mus~ 210 1111

Figure 2.Î: An Example of a Hierarchical Record

Stuclenl

Courus
Heme Advlsor Cour... _rk

U~ ... IIV\ l;Ie

8ailey P. SmilhA. """,,,h")ll 00

An ~O, T7

M'uh Inn Q")

Jones 1. TholTUS P. M~," 17';: 7~

.....~ 110 ")Q

u,,~;~ '''0 Il li

""",,rh Inn Ile
M3nin R. Smith A.

Malh 191 100

Figure 2.8: An Example of a Nested Relation Representation
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• Advisor: The narne of this student's advisor. Its data type is string (atomic) .

• Courses: A nested relation containing the course information the student is regjstered in.

Each tuple in relation Course.l5 contains a whole relation as an attribute. The first tuple

contains a relation \Vith 3 tuples. The second tuple contains a relation \Vith 4 tuples.

The i.VF2 relations have sorne advantages over 1NF relations, such as:

• N"ested relations minirnize redundancy of data. Related information can be stored in one

relation onlr without redundancy. For example, if relation Student in Figure 2.8 were ta

be represented by INF, either it would have had to have redundant values for attribute

:'\ame and Advisor, or it would have had to be split into two different relations i.e. Student

and Courses, with a foreign ker Course#;

• ~ested relations allow efficient query processing since sorne of the joins are realized within

the nested relations themselves. In our example in Figure 2.8, if information about the

student,s marks needed to be retrieved in the INF representation, a join would have had

to be perforrned between Student and Courses, while no joins are needed in the .1.VF 2

representation.

• Low level implementation techniques such as clustering and repeating fields can be repre­

sented using the formalism defined by the nested relation model.

2.4.2 Abstract Data Types for Domains

•

A traditional database application involves storing large numbers of similar records of a few

varieties, ,,"ith insertions, updates, deletions, and simple queries being performed on these data.

Recently, many application areas with more complex and varied data are being explored, \Vith

quantities of data being large and important enough that archiving these data in a database is

desirable to help organize and keep track of the data as weil as to gain security and consistency.

Such applications might have variable-Iength character strings which are very long, such as

abstracts or full text of articles or books, geographic maps, information describing a single

tclcvision image, the pixels for a raster scan image, programs and their version, VLSI chip
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designs, and so on. For snch applications, sorne attributes in each relation will be of the standard,

built-in types, whereas other attributes will he defined as being of "new data types" such as

;;program" or "picture" [OH86).

The nested relational model allows abstract data types to be defined for domains, and allows

operations to be defined on them. In the nested relational model, the domain algebra subsumes

the functionalities of relational algebra, which means domain algebra is also capable of relational

operations such as selections, projections and joins. A so-called virtual domain that is defined

by domain algebra couId have a complex data type of relation instead of atomic types of integer

or Boat etc. As weil, the virtual domains are capable of implying different kinds of relational

operations performed upon other non-virtual domains which are lower-Icvel relations. This gives

a equivalent scheme of abstract data type in the relational data mode!.

2.4.3 Nesting and Unnesting

In the literature, defining nested relational models was done by extending relational operators

to nested relations, and adding two restructuring operators, nest and unnest. The nest operator

creates partitions which are based on the formation of equivalence classes. Tuples are equivalent

if the values of the same attributes which are not nested are the same in the different tuples. AlI

equivalent tuples are replaced \Vith a single tuple in the resulting relation; the attributes of this

tuple consists of aIl the attributes that are not nested, having the cornrnon value in the original

tuples, as weIl as a nested relation whose tuples are the values of the attribute to be nested.

Figure 2.9: Nest and Unnest (which holds)

The Unnest operator undoes the result of the nest operator. It creates a Dew relation whose

tuples are the concatenation of ail the tuples in the relation being unnested to the other attributes

in the relation. Thus the equation in Figure 2.9 always holds. On the other hand, however, the

reverse does not necessarily hold, i.e. the equation in Figure 2.10 is not always true.
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Figure 2.10: Nest and Unnest (which does not always hold)
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As the priee of the advantages over INF relations, nested relations pose a non-trivial problem

of data representation. That is, generally there are alternative representations of data in a nested

relation, while the data is uniquely represented by a INF relation.

There are two different assumptions [Tak89J \Vith respect to whether these alternative rep­

resentations are the same. The first one [Nlak77] takes the structure of the representation into

account, since it catches certain semantics of the application. 1t follows that each nested rela­

tion should be recognized as a unique representation of data. This assumption, however, has a

drawback that the information is 10st \Vhen it is normalized into a set of simple tuples. This

assumption poses a semantic gap between INF and nested form relations although it enables us

to represent complex objects in a natural way using nested relations. The second one, on the

contrary, assumes that each set of values is just a union of single values rather than a specific ob­

ject. This assumption allows us to identify the different nested representations with their unique

L'\F relation. In fact, this is an implicit assumption of many research papers such as transfor­

mation between lNF relations and nested relations using NE5T and UNNEST operators (.1582]

[FT83], designing nested relations [OY87], and data manipulation [A~\'I~I83].

2.4.4 Domain Aigebra for Nested Relations

In arder to implement the nested relation model, not only is the relational algebra required ta

handle different joins of nested relations, more importantly, the domain algebra must be capable

of dealing \Vith lower-Ievel nested relations. With a domain algebra capable of nested relational

operations, the nesting and unnesling of relations can be easily performed, which ensures that any

hierarchical database schema can be validly translated into a lNF relational database schema.

On the other hand, the potential of defining abstract data types for domains can be achieved by

nestcd domain algebra as weIl .
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ln the jRelix system conceming the implementation of the domain algebra for nested rela­

tions, the basic strategy is to integrate the notion of "nested relations~' into the domain algebra

and make relational expressions part of domain expression so that relational operations can be

applied to the nested attributes/domains. This way, any operations that are performed on the

top level relations can be performed at the lower level attributes which are also relations.

Clearly, in order to fulfill this achievement, the domain algebra must be given more power, i.e.

apart from its original ability to perform domain operations, it must be competent in relational

operations as weIl. In fact, the way jRelix domain algebra was designed and implemented shows

that domain algebra is a super set of both traditional domain algebra and relational algebra, i.e.

it subsumes almost aIl the functionalities of relational algebra.

Since 1 \Vas mainly responsible for implementation of domain algebra in jRelix, 1 will give

nluch more details about this in the rest of this thesis.

2.5 Introduction to Relix

Relix, a Relational database programming language in Unix, \Vas developed at the Aldat lab of

School of Computer Science, NIcGill, starting in 1986 [LaI86]. Relix is based on an algebraic data

manipulation language proposed by NIerrett [~Jer7ï]. It is basically an experimental interactive

cnvironment built to explore the concept of the relational database model described in [Mer84].

This section discusses the conceptual framework of the existing Relix system. Since current

implementation of jRelix is heavily based on the existing ReHx system, a background knowledge

of Relix helps the reader to better understand the rest of this thesis.

Generally speaking, Relix is an interpreted language \Vritten in the C programming language.

It can accept and execute commands or statements interactively from the command Hne; while

it also can run a batch file of Relix commands and statements.

2.5.1 Domains and Relations

•
Relix mainly deals \Vith two kinds of data, i.e. domains and relations. A relation is defined on

one or more attributes, and the data for a gjven attribllte is from a particlliar domain of values.
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The domain of a given attribute determines its data type_

There are totally sLx atomic data types defined in the original Relix system, whieh are

il1ustrated in Figure 2.11. Some eomplex data types sueh as nested relation were implemented

subsequently following the development of the system (He97]_

o...T". SIMJft Form Dom8in

inreger intg signed inreger

shan short signed shan inreger

long long signed long integer

real real signt:d floating point

boolean boal true Of" false

string strg sc:quc:nce of characlers

Figure 2_11: Atomic Data Types Defined in Relix

Given the relation illustrated in Figure 2_1, Figure 2_12 shows the declaration and initial­

ization of a Relix domain and relation.

>do~~n ~ce s:rlr.1;
>~c~~in Course st~lng;

~dc=~in ~~rk ln:eger;
>~~la~lcn S:~d~~:Rec~rd(~a=e. C~~:Se. ~~:~J <.

1 (-B.uley l',-, .!".3:.'1 lOC-, ES!. r-~llt!Y ?", -!'la~!". 2::-, 991,
1 (-B41ley l'. -, -Art. ,0:-, 77). I-Jcnes J,', '!".at.h :00-, 921.
{(-';cr:es J,-, ':-la::: 175-,7';1. I-J;:n",s J,', -Ar: ::C·, 79)};

Figure 2_12: Declaration and Initialization in Relix

2.5.2 Relational Algebra

•

Relix supports relational algebra operations including selection, projection, j.L-joins and a-joins.

Selection is the operation that creates a new relation by extraeting specifie tuples that satisfy

certain conditions from the source relation; while projection is the operation that creates a new

relation by extracting named domains from the source relation,

j.L-joins are derived from the set operations such as intersection, union and difference etc.

The Il-joins on two relations are based on three parts:
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1. center, the combined tuples of the two relations that have equal values on the join at­

tributes.

2. left, the tuples of the left operand relation, such that the value of ïts joïn attributes is the

difference between the value of join attributes of the left operand relations and the right

operand relation.

3. right, the tuples of the right operand relation, such that the value of its join attributes is

the difference between the value of joïn attrïbutes of the right operand relations and the

left operand relation.

U=12!!!1 Y:1Qin=gptrJ'Qt 8tsytting Btfat!on

Natural Jojn 'natjan'~ ~jOln' centre

UnIonJon 'UJooo' lelt U centre U ngnt

Laft Join 'ÎOln' Ielt U centre

RigntJClln ''Join' ngtlt U centre

lait Difference .Iotn 'djan' or 'd1join' lelt

Right Difference Jojn 'dtJOln' ngtlt

Symmetne DIfference Jon 'spn' 18ft U nght

Figure 2.13: Il-joins in Relix

In Relix system, JL-joins include natural join (i.e. intersection join), union join, symmetric

difference join, left and right joins, as weIl as left and right difference joins etc. They are

iIlustrated in Figure 2.13.

On the other hand, a-joins are based on set comparison operators and they include division

(super set 2), proper super set (:J), equal set (=), proper subset (c), subset eç), intersection

(n), and the their corresponding negative operations. Figure 2.14 illustrates the sigma joins

defined in the Relix system.

Readers may refer to [Nler84] for a formaI definition and detailed explanation of both j.l-join

and a-join implemented in Relix.
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~ SiaIMC 'sul)' 01"'"
(Ô\ InMruIcIlon EIr1IfY 'sep'

~ PnIcIw~ 'glIOIn'

C F'rtlC* Sc.Cls8t 'llpn'

~ Not~1 '-51.4)'

1 Not Eqla/ Set '-eqcllrI'

~ Not SuIlser '-Slb'

Ç1I 111C8tMCllOn Nol EtrcJry "1COfr'C)'

1> Noe Prot- s.c-ser '-gIpn'

rt Nor~Scbsar "-~

Figure 2.14: a-joins in Relix

2.5.3 Domain Algebra

22

•

Rclationai algebra considers relations to be the data primitives [~Ier84] and therefore does

nat provide the power to manipulate attributes. As a resulL domain aIgebra is proposed to

avercome this problem [~ler77]. Even though attribute and domain hold different meanings~

thcy are sometimes used interchangeabIy in ReIix literature.

.-\part from creating a domain by deeIaring its type as illustrated in Figure 2.12~ a new

domain can be created by expressing the domain as operations on existing domains. Domains

defined in this \Vay are called "virtual domains~~ in the sense that there are no actual values

associated \Vith them. The value of virtual domains is actualized in a Relix statement, notably,

projection or selection etc.

The domain algebra is usually cIassified into two categories, Le. horizontal and vertical

operations. The horizontal operations work on a single tupIe of a relation. The horizontal domain

expressions are formed by applying renaming mechanisms, mathematical operators, predefined

functions, and if-then-eise clauses on constants or attribute names. On the other hand~ vertical

operations are those domain aIgebra operations that combine values from more than one tuple

in a relation. They include simple reduction, equivalence reduction, functional mapping, and
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•
partial functional mapping. Given the relation illustrated in Figure 2.1, Figure 2.15 sho"vs sorne

examples of declaring virtual domains using both horizontal and vertical operations of domain

algebra. Readers may refer to [~1er84J for a fonnal definition and detailed explanation on domain

algebra operations implemented in Relix.

>let StudentName be Name;
>lee NewHark he Mark-5;

Il RenamioQ'
Il Arit~tic operation

Il If-tben-else clause
>let Result be if MArk>=60tben "Pass· else "Fail";

Il Simple reduction
>let AveraQ'e be (red· of MArkl/lred. of 1).

Il Equ~valent reduction
>let SubToeal be equiv. of Mark by NalDe;

Figure 2.15: Examples of Domain Aigebra in Relix

2.6 Scope of the Present "W"ork

•

This thesis discusses the design and implementation of Relix as a database language which is

built with a new Object-Oriented programming language, i.e. Java. The purpose of our work

is to extend Ilelix with a set of full-fledged functionalities for the nested relational mode!. The

system developed in accordance with this thesis is called jRelix (i.e. .Java implementation of

Relix). A detailed description of ho\\" to use jRelix to perform relational database operations

and programming is firstly given. The concept and idea for jRelix design and implementation

in generaL and the domain algebra for nested relations (which was my major responsibility) in

particular, will he explored thereafter.
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Chapter 3

User's Manual on jRelix

This chapter serves as a jRelix tutoria1. It descrihes how to use jRelix to perform relational

database operations and programming. Section 3.1 describes how to start and exit the jRelix

system. Section 3.2 explains how to declare domains and relations, and how to initialize a

relation (both fiat and nested). In this section, jRelix data types will also be introduced briefly.

Section 3.3 tells reader ho\\" to remove a declared domain or relation, and what kind of restrictions

may be encountered when trying to remove a domain or relation. The fundamental operations

of relational algebra e.g. projection, selection and joins etc. will be explored in section 3.4.

Subsequently in section 3.5, the use of domain algebra operations will be explained in detai1.

In section 3.6 and section 3.7, the usage of views and computations will be briefly introduced.

Details cao be found in [Ha098} and [Bak98}. Finally in section 3.8, sorne of the more advanced

system commands in jRelix will he presented.

In this manual, the jRelix commands are basically introduced in a practical way which is

casy to understand and yet sufficient for basic operations. On the other hand, readers who are

intercsted in details can find a complete description on jRelix command synta..x in Appendix A.

3.1 Starting and Exiting jRelix

Suppose both the Java run-time system and jRelix software are successfully installed on the user

systenl. To start jRelix, the following command is typed on the command line of the operating

24
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system:

> java Interpreter

25

As the result, jRelix copyright information is displayed in its mn-time environment, as ilIus­

trated in Figure 3.1. After certain internai initializations, jRelix shows its prompt sign ••> "

and waits for user input.

c;\jrelix\>java Interpreter

.---------------------------~----.1 RelixJava version 0.4 1
1 copyriQht (cl 1997. Aldat ~b r
f Schoal of Cccputer Science 1

l ~~:~~_~:~:~~::~ l
>

Figure 3.1: Initial Screen upon Starting jRelix

Ta exit the system, the user types "quit;" after the system pronlpt slgn. Upon receiving

this command, jRelix performs its clean-up procedure and then returns ta the original operating

system.

In the jRelix environment, it is required that commands and statements end \Vith a semi­

colon Co;"). :\Jultiple lines of commands can be entered by the user but jRelix only starts to

interpret the command when it catches a semi-colon, which serves as an end-of-command signal.

This pro'-ides an efficient way of inputting multi-line commands and statements in jRelix.

3.2 Declarations

••

\Yhcn entering a new jRelix environment, the first thing a user may want to do is to declare

sOlnc attributes (i.e. domains) and relations which are based on the attributes already declared.

This section describes both domain and relation declarations.

As we know, a relation is defined on one or more attributes, and the data for a given attribute

is from a particular domain of values. The domain of a given attribute determines its data type.

j Rclix provides several data types, which will also be introduced in this section.
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•
The terms "domain" and "attribute" usually have different meanings. However, throughout

this thesis, these two terms are used interchangably. In general, they both refer to the same

concept as "'attributti'. In the case a confiiet of concepts exists, rcaders will he notified explicitly.

3.2.1 Declare Domains

•

There are two kinds of actual domain declarations in jRelix, i.e. atomie-typed domains and

complex-typed domains. The term 'latomic data type" means the primitive types such as integer,

string etc., as opposed to "complex data type" sucb as text, statement, computation and nested

relation etc.

Figure 3.2 gives sorne examples of declaring atomic-typed domains.

>domain A. intQ';
>d=ain B fl04t;
>domain C looQ';
>domain 0 bo01;
>d=ain E strinQ;

Figure 3.2: Declaring Atomic-Typed Domains

In general, the syntax used to declare a domain/attribute of atomic data type is as follows:

> domain dom_namel, dom_name2 data_type;

:\"ote that jRelix provides seven atomic data types for domain declaration, as showed in

Figure 3.3.

o.e. Type ShoItFom DcJIMln

inlcger inlg signe<! inleger

short short signed shon integer

long long signe<! long inleger

f1();l[ no:u signed n();l[ing point

double double signed double poinl

boolcan bool lrUe or f:l!sc

string slTg sequence of characlers

Figure 3.3: Atomic Data Types in jRelix
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On the other hand, t\Vo complex data types have been implemented in CUITent jRelix. i.e.

nestcd relation and computation. Nested relational domain is used when the attribute in a

relation is a further relation, Le. the attribute in a table is a table as weIl. This mechanism

constructs a nested table, and as a matter of fact, multi-Ievel (though not recursive) nesting is

allowed in jRelix. A computational domain is a virtual computation which will he actualized

based on the actual tuple data in the source relation [Bak98].

Figure 3.4 gives some examples of declaring both nested relational domains and computa­

tionai domains.

>doma.in A iocq;
>damain B fladC; ,,~st~JJomain

>damain F lA. BI; - - - - - - - - - _ "~st~J Jomain ...ith 1.1~1'~1 n~stin1(
>damain GIA. FI; --------- -
>domain H camp lA. B);- - - - - - -_ compuralio1Ul/ JotrUlin

Figure 3.4: Declaring Complex-Typed Domains

Note that in Figure 3.4, domain F is a nested domain which is defined on atomic-typed

domains A (integer) and B (float). Domain G is a 2-levei nested domain which is defined

on an atomic-typed domain A (integer) and a complex-typed domain F (Le. nestcd domain).

Something that needs to be mentioned here is that when a new nested domain is declared, an

invisible relation (whose name starts with a".") is created automatically in the system. This

relation is supposed to hold the data that helong to the nested domain in question. The invisible

relation can he seen by using a jRelix command introduced in section 3.8.2, while its contents

can be printed by a command described in section 3.2.5, although readers do not need to bother

with that at the present stage.

In general, the syntax used to declare a nested relational domain is as follows:

> domain nesLdom_name(dom_namel, dom_name2, ...);

As weIl, the syntax for declaring a computational domain is as fo11ows.

> domain comp_dom_name CODlp (dom_namel, dom_name2~ ... ):

It is required by eurrent jRelix implementation that the domains on whieh a new nested

relational domain or eomputational domain is defined must be declared already, i.e. the domains
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•
of (dom_namel, dom_name2, .. .) in ahove synta.x must be declared and he existing in the system;

Othenvise~ a "domain not found" warning message is generated and the user is notified.

Finally as a complement~ Figure 3.5 lists five complex data types that are included in the

jRelix system (though not completely implemented yet).

D"'Type SborI Fonn ~n

rk:Slcd domain idlisl ncslcd n:lacionaJ dorrulin

compuc:uion comp compul31ion

Il:XI tCXI (ool implcRk:nlcd ycl)

st:lICmenl slml (noc implcRk:ntcd YCl)

expression expr (nol implcRk:nled yet)

Figure 3.5: Complex Data Types in jRelix

3.2.2 Show Declared Domains

•

This section descrihes ho\\" to display the domain items that have been declared in the system.

This is particularly useful when user wants to check if the domains are declared correctly or to

sec which domains are available for further relational declaration. On the other hand~ readers

who are more interested in relation declaration and relational operations may skip this section

and jump to section 3.2.3 for information on relation declaration; and refer back to this section

latcr when a need occurs.

The command to list ail domains that have been declared in the system is "sd;:'. Given

the domains declared in the previous sections, a sampIe output of this command is shown in

Figure 3.6.

It is clear that domain information is displayed in a table format with four fields, Le. Name,

Type~ NumRef and DomList. A type of idlist indicates a nested relational domain~ with corre­

sponding DomList field indicating the attributes/domains on which the current nested domain

is defined. The NumRef field contains an integer value called "reference counter~' that indicates

how many times current domain is used by other domains or relations. For example, domain A

in Figure .3.6 is used by domains F, G and H~ hence its NumRef value is 3. Needless to say that
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>lId;

------------------------------- OOœ4in Table -----------------------------Na:le Type NumRef Dom_List
------------------------------,._,-------------~---~----------------------
A inteqer '~ .3,'"
B float 2
C lo~ 0
o boolean 0 ~~

E strir19 0 "', ,
l ,

F idl.ist l . id •• A .• B.
G idHst 0 . id.: A.: F.

~----------_:~~~~~~~~---------~----------~~~:~~~-~:_--------------------
>

Figure 3.6: Sample Output of "sd;" Command
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•

when a new nested domain or a new relation is declared, the NumRef value of the referenced

domains will be incremented by 1. Later in section 3.3~ we will see that a domain is Dot allowed

to be removed when it is used by any other domains or relations. i.e. when its N-umRef \"alue is

not equal to O.

\Vhen "sd" is followed by a domain name~ this particular domain ~s information will be

displayed as illustrated in Figure 3.ï. If the relevant domain is Dot found in domtable~ a "domain

not found" warning message will be generated.

>sd G;
------------------------------- 00m41n Table -----------------------------
tl4llle Type NU:nRef DoIl'l_List
----------------------------------~--------------------~------------------G idlist 0 .1d. A. F.
-------------------------------------------------------------------------->

Figure 3. ï: Sample Output of Displaying a Particular Domain Information

Finally, combined \Vith a command described in section 3.8.2, the 4'sd~' command can also

display sorne invisible domains which are so-called ô'system domains". Details will be presented

Iater.

3.2.3 Declare and Initialize Relations

As mentioned before~ relations are defined on one or more attributes (or domains) which must

ha\'e been declared before the relation is declared or initialized. Otherwise~ a "domain not

found~ crror message will be generated and the declaration fails. Figure 3.8 gives sorne examples
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of relation declaration.
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>relacion RIA.B.C); --------
>reldcion WIA. F) ; - - - - - - - -
>relacion X IG. El ; - - - - - - - -
>relacion y lA. B. HI; - - - - - - - -

flal r~ialion

n~s/~d rldalion ( /-It!Vd nest;ngJ
nesled rldalion (2-1~·tdnesting)
reUll;on 1O';lh compWaI;otUJi domain

•

Figure 3.8: Declare Relations

In this figure, relation R is a Bat relation since it is solely defined on atomic data types.

Relation W is a nested relation \'âth l-level nesting since one of its attributes F is a nested

domain; and relation X is a 2-level nested relation because of domain G (refer to Figure 3.4 for

information on dornains F and G). Finally~ Y is a relation with cornputational domain (i.e. If)

involved.

:\Ieanwhile, it is not hard to see from above exarnples that the general syntax for declaring

a relation is as follows:

> relation reLname( dom_namel, dom_nam2, ... );

Xote that the doarnin dom_name~s can be any valid domain declared already in the system~

e.g. atomic-data-typed domains, nested relational domains and computational domains etc.

They can also be virtual domains which will be introduced later in section 3.5.l.

On the other hand~ however, the synta.x given above declares only a relation structure in the

system~ which means it is an empty relation without any tuple data insïde. A relation can also

be declared \Vith actual data tuples. This is called relation initialization~ and the tuple data

is contained in a so-called initiaLization List. Sorne examples ''lill he given below to illustrate

different types of initialization.

Declare and Initialize Flat Relations

A fiat relation is a relation whose domains are of atomic type. Usually a 1NF-relation is regarded

as a fiat relation, snch as relation Studentl in Figure 3.9.

As showed in this figure, the initialization list in a relation declaration is surrounded by a

pair of curly brackets. Inside the curly brackets, each tuple is represented by a pair of round
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inilializaliun lisl
'-.• S1ucMnt1,.... Couru M.-tc

Bailc:y P. Math 100 85
Bailey P. An 301 71
Jones J. Math 100 92
Jones J. Music 210 88
Martin R. Math 100 85

, ,
>domain Name, Course string;
>doma-(n "'.ark incg ; _
>relat'i,.on S~ud~m::1.1Name, coursë;- l!ëU!'kJ _ <- (

... --C-8ailey P.", "Math 100-, 85)-,-
,< C-Bailey P.", "Art 301", 771, "',
\ C"Jones J. -, "Math 100", 92), '
...... ("Jones J.", "M~ic 210", aa),_'

"'''':Martin R.", "Math 100-, as~-);

------------------

•

Figure 3"9: Declare a Flat Relation

brackets separated by comma signs. Different domain values in each tuple are separated by

commas as weil,

In general~ the syntax for relation initialization is defined as follows:

> relation reLname( dom_name1, dom_nam2, .,.) < - initialization_list;

Different data types can he figured out in the initialization list by a type-tag associated with

the actual values, For example, a long integer 101245 is represented as 101245l with the trailing

'·r implying a "long' -type; and strings are surrounded by quotation-marks as illustrated by the

JVame and Course field value in Figure 3.9, Sorne examples about the type-tag usage are give

in Figure 3.10. Note that same rule is used when declaring constant domains e.g. "let x he

23. 8657d~'~' etc.

D.... Type ShortForm Ex.mples

inlegcr inl 12.150

shon shon 12s.78s

long long 1201.4561

floal tloal 23,5f. 125.45f. 2.1 c8f

double double 56.86d, 102.137d. S.3c9d

boolean 0001 true. false

string strg "Mark P.". "1234S"

Figure 3.10: Type-tags in Initialization List
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Declare and Initialize N ested Relations

One of the most important features of jRelix is that nested relations (i.e. LVF 2 relations) are

supported; which means, for example, tables such as Student2 in Figure 3.11 are allowed to

further contain table fields (e.g. the Courses field is another table).

initiali:.alion list
\

Student2

Cou,..
ta...

Cou,.. "'rk

Bailey P. Matta 100 8S
Art 301 TI

Jones J. Math 100 92
Music 110 88

Martin R. Math 100 8S

,,,,
>do~in Name. Course string;
>do~in Kark intq;
>domain Courses(Course. Kark};
>relat'ion Student2 Ul~_ ...J:ou=es.L cS=. {

'. _(.. ... 8ëri."lëi P.~. ("Kath 100-=;-135r.--_
....- ("Art 30l". 77)} J.

.' ("JonesJ.", (("Hat.hlOO~, 921,
("Music 210". 88)} ),

- -(- ~aEt:.i.!1_ ~ '_":. _{_(~~_t~ _1~~ ~.: _ ~5)J _J.- -;;'

,,

Figure 3.11: Declare a Nested Relation

It is clear from this figure that same rule is used in the initialization list for nested relation

declaration, i.e.

• .-\ relation/table is always surrounded by a pair of curly brackets.

• Inside a relation, each tuple is surrounded by a pair of round brackets.

• Different tuples are separated by comma signs.

ObYiously, this rule also applies to the nested domain fields, e.g. Courses in Figure 3.11. In

ather words, the Courses field values are themselves relations surrounded in curly hrackets, as

it is showed in the initialization list. Theoretically, jRelix supports multi-Ievel nesting (though

not recursive), but this will cause the initialization list to he much more complicated than what

is showed in this example.

Something that needs to be clarified here is that, although it seems only one relation (e.g.

Student2 in this case) is initialized during a nested relation declaration, multiple relation ini­

tializations might potentially be involved. As mentioned in section 3.2.1, when a nested domain

•
is declared, an invisible relation whose name is prefi.xed with a "" is creatcd in the system
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•
automatically, and this relation is supposed to hold the data that belongs to the nested do­

main. Therefore, during a nested relation initialization, tuples for nested domains are saved

in their corresponding relations which are Dot visible. In the example given in Figure 3.11~

aIl the Courses data including Names and Marks are stored in the relation .Courses which \Vas

generated when the nested domain Courses is declared.

The linkage between the tOp"level relation (e.g. Student2 in this case) and the relations

associated with each nested domain (e.g. .Courses) is achieved through a so-called "surrogaté',

which is represented as a long iDteger in jRelix implementation. Figure 3.12 illustrates this

mechanisffi.

~, .CoU""
.Id Cou,. "rk

~.,

1 Malh 100 85----. : 1 An 301 1 77

- - -.~ :2 Malh 100 92

:2 Music:210 88
---~ Malh 100 853

: 2~-----­

.... 3:~_

Bailey P.

Joncs J.

Martin R.

Studeft12

. .

.::...~~,:"~~1;~~,!~::::.

Figure 3.12: Link Two Relations Through Surrogates

Finally as a reminder, the invisible relations that are associated with nested domains can be

listed by using a command introduced in section 3.8.2, and section 3.2.5 describes how to print

the contents of a relation, regardless of whether it is visible or not.

3.2.4 Show Declared Relations

•

This section describes how to display the relation items that have been declared in the system.

This is particularly useful when the user wants to check if the relations are declared correctly or

to sec which relations are available for further operation.

The command to list aIl relation entries that have been declared in the system is "sr;".

Given the relations declared in previous sections, a sampie output of this command is shown in

Figure 3.13.
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>sr;
----------------------------- Relacion Table -----------------------------Name ~ Aricy trruples Sorc
------------------------------------------------------------------------~~
R relacicn 3 0 0
w relacion ;;: 0 0
X relacicn 2 0 0
y relacion 3 0 0
Scudencl relacicn 3 5 3
Scudenc2 relacicn 2 3 2

>

Figure 3.13: Sampie Output of "sr;n Command
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Obviously, relation entries are displayed in a table format \Vith five fields, i.e. Name y Type,

A rity: NTuples and Sort. The type field indicates the type of the current entry, which can be

~~relation", "view" and "computation" as aIl of the three types are co-existent in the system. The

A ritY field contains an integer which tells how many attributes/domains this relation is defined

on (however, another command neecl to he used in order to display exactly which domains are

used in the current relation. Details in this connection will be described in section 3.2.6). In

the case that a relation contains tuple data, field NTuples indicates how many tuples there are

in that relation. For example in Figure 3.13, it is easy to know that relation Studentl contains

5 tuples. Finally, the Sort field tells how many attributes the CUITent relation is sorted on.

\Vhen ;;sr" is followed by a relation name, the information of this particular relation will be

displayecl as illustrated in Figure 3.14. If the relevant relation entry is not found in the system

(e.g. relation is not declared), an error message will be displayed.

>:lr ScudencI;
----------------------------- Relacion Table -----------------------------
U~e Type Aricy trruples Sorc
--------------------------------------------------------------------------Scudencl relacion 3 5 3

>

Figure 3.14: SampIe Output of Displaying a Particular Relation Information

:\ote that the "sr" cornmand also displays the information on aIl views and computations

that have been declared in the system. Details will be explained in section 3.6 and section 3.7

respectively.

Finally, combined with a command described in section 3.8.2, the ';sr" command can display
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•
those invisible relations mentioned in section 3.2.1 and section 3.2.3, as weil as so..called "system

relations" mentioned in section 3.2.6. Details will he presented later.

3.2.5 Print Contents of Relations

•

To print the contents of a relation, the command "pr" is used and followed by the relation name

as illustrated in Figure 3.15.

>pr Studentl:
.---~----------.--------------.-------.r Na:z:e 1 Course 1 Mark 1
+--------------+--------------.-------+

1

::it:~ ~: 1 ~~h3~~0 " ~~Jones J. Ma~ 100 92
Jones J. Music 210 88
Martin R. Math 100 85

+--------------+--------------+-------+
relation Studentl bas 5 tuples
>

>pr Student2:
.--------------+--~-----------.
1 Name 1 Courses r
.--------------.-~~-----------.

1

Bailey P. 1,'1', 1
Jones J. .2 •
Martin R. '3 ,

;;ï~~i~~-S~~d;~~~;-3-~~;ï;;·
>pr . Course~7 '

i-~id---:~,----i-ë~~;;;-------i-~;k--i

.~,ït~~;'~-------·I-~~:ï~~~-----·I-~~----·
2 1 Math 100 92

1 21 Music 210 88
• 3' Math 100 es
.~~------------.--------------.-----~-.
relation .Courses bas 5 tuples
>

Figure 3.15: Sample Output of "pr;" Command

The general synta.x is as follows! where reLname can also be a relation name prefixed by a

'".". In other words, the "pr" command prints a relation no matter the relation is visible or note

~eedless to say: this helps to print the tuple data of nested domains.

> pr reLname

Ideally, the "pr" command should print the tuple data of a nested relation along \Vith the

data of aH the nested domains. However, this is not implemented in the current jRelix system

yet. :\.S described in subsection "Declare and Initialize Nested Relations:' of section 3.2.3, in

the case of nested relations, the top-Ievel relation is connected \Vith the nested domain relations

by long-integer-typed surrogates~ as illustrated in Figure 3.12. Therefore, when the command

"pr" is used to print the contents of a nested relation, the surrogate value instead of the nested
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•
damain tuples are printed, as illustrated by the output of Stude.nt2 in Figure 3.15. In order to

see the actual Courses data (e.g. course name and marks) instead of surrogates, another pr

cammand has to he issued with the name of the nested domain Courses (prefixed hy a ...~') as

the parameter, as illustrated in the same figure. It is clear that two relations (Le. Student2 and

.Courses) are linked together hy the surrogates.

Note that the "pr" command can also be used to print a view information when it is followed

by a view name. Upon receiving this command, jRelix will evaluate and actualize the view based

on its definition and corresponding tuples' data will be generated and printed on the fty. For

details please refer to section 3.6.

3.2.6 Show Relation-Domain Information

As mentioned in section 3.2.4, the A ritY field displayed by "show relation'~ command '~sr( only

indicates haw many attributesfdomains the relation is defined on. In order to know exactly which

domains are used in a relation (i.e. on which domains a relation is defined), a ~~show relation­

damain (RDr command "srd;" is provided by jRelbc This command basically displays the

relationships between relations and domains, i.e. which relation is defined on which domains.

Figure 3.16 is a sample output of this command, given the relations declared in previous sections.

>srd;

P-
R
R
;/

;/

X

X
"{

"{

"(

S~udentl

Studentl
Studentl
Student2
St.udent.2

1 A
1 B

1 C
1 A
r F
r c
1 E
1 A
1 B

1 K
1 fI.ame
1 Course
1 Mark
1 flame
1 Course"

1 0

1 l
1 :2
1 0
1 l
1 0
1 l

1 0
1 l
1 :2
r 0
r l
1 :2
1 0
J l

•
Figure 3.16: Sample Output of "srd;" Command

Obviously, "RD" entries are displayed in a table format \Vith three fields, Le. reLname,
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•
dom_name and position. The position field indicates the index of a domain in the relation. For

example, relation Student2 is defined on two domains Name and Courses, while Name is tae first

attribute in the relation and Courses is the second one.

Note that the "srd;" command also produces information on system relations which arc not

illustrated in the sample figure. Although readers may not he interested in this information at

the eurrent stage, it is necessary to mention that there are three system relations ulaintained

by jRelix system, Le..rel, .dom and .rd, which can also be used in normal relational operations

such as joins etc.

3.3 Removing Domains &; Relations

Removing an existing domain or relation is quite easy in j Relix. The synta~ for remo\ring a

domain is as fo11ows.

> dd dom_namel, dom_name2, ... ,

:\nd the syntax for removing a relation is as fo11ows.

> dr reLnamel, reLname2, ... ;

Error messages will be displayed if the user tries to remove domains or relations which are

Dot existing in the system, or if the user tries to remove a domain which is being used by other

donlains or relations (othenvise those domains or relations will reference ta something which is

not existing). On the other hand, after a domain or relation is removed, the NumRef field yaIue

(i.e. reference counter) of those domains that were used by the removed domain or relation will

he decremented correspondingly. Figure 3.1 ï illustrates this case.

Finally as a remainder, when a nested relational domain is removed, the invisible relation

that is associated \Vith the nested domain will also be removed automatically.

3.4 Relational Aigebra

•
Relations provide a simple but static structure that can be used to represent both entities and

relationships. The relational algehra provides the operations needed to manipulate information

stored logically in this form [RS95J .
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>doIDain A into;
>demain S lA) ;
>relation R(A. S);

>sd;
---------------------------- Domain Table ----~------::::==:::-~~~~:::-­
Name 'tYPe NumRef D-= lol.s t •• ' - rrt_lW:, CfIfUUIIr -'.

~-----------~~~~~;--------·--~:~F::~-::::--~:~~::··~~~~~~~~·:.:I

----------------------------------------------------------------------->sr;

---------------------------- Relation Table -------.-------------------
Name 'tYPe Arity IlTI.lllles Sort

38

R relation

>dr R;
>dei S;

~:~.:-------------------------OOllk'lin Table ---~---;··;.;;~;;;~~i;-·.-
Na:Ile Type lll..lmRef Dcm_Ll.st: ûcri.'~ID'hÙlc,·A· o

•

~~~~~~~~~~~~~~~~~~~~~~~~==~~~~::-:~~=:~-~~=:~-~~==~-~:~:~!!!~~..,:-

Figure 3.17: Removing Domains and Relations

The relational operators are classified as unary or binary, depending on the number of their

operandso Unary operators act on a single relation, binaI)' operators act on two relation, and

both produce a single relation as result.

This section firstly introduces a basic relational operation assignment which may be involved

in other relational operations introduced later. After that, two relational operations associated

"'ith unary operators, i.e. selection and projection are described. A more flexible operation

tseieetion which combines the two unary operations together is introduced thereafter. BinaIT

operations Le. various joins will be explored subsequently. In addition, a special relational

operation update is described.

3.4.1 Assignment

•

The assignment operation assigns a "relation value" to a relation. In other words, it establishes

an instance of a relation. There are two types of assignment in jRelix, i.e. nonnal assignment

and incremental assignment. The former creates a new instance of the source relation, while the

latter adds the tuple data of the source relation to the assigned relation. Figure 3.18 gives sorne

examples of assignment operation.

In this figure, the first assignment creates a new relation instance StudentRec which has

exactly the same tuple data as the source relation Student; whereas the second incremental
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>domain Name, Course string;
>domain Mark incg;
>relation ScudencCName. Course. Mark) <- (

("Bailey P.", "Music 210". 65)};
>relacion Studenc1(Name. Course, Mark) <- {

("Bailey P.". "Mach 100·. 85).
("Bailey P.". "Art 301". 77).
("Jones J .• , ·Math 100", 92),
(·Jones J.", "Music 210", 88).

__ - - - - - - -C-Merrt±rr ·R:,~._ ':Math 100·, 85) };
_::.sj:~<:!e.:::~e=_-:.-_ ~t_u~~n_ci __ ::l... - - - - _ NDnruUAuiplfII'"
>pr StudentRec;

j Name 1 Course 1 Mark 1
.--------------+--------------.-------+
1 Bailey P. 1 Music 210 1 65 1
+--------------+--------------.-------.
relat~o~_~denLa~_has l tuple

"';St;dentRec <+ Stude~tJ..;_-.i _
- - - - - - - - - - - - - - - - -'"CRllle"'tI' AssiglllflMI>pr StudentRec;

+--------------+--------------+-------+
1 Name 1 Course 1 Mark 1

39

1
Bailey P.
Bailey P.

1

Bailey P.
Jones J.
Jones J.
Martin R.

Art: 301
Math 100
Music 210
Math 100
Music 210
Math 100

77
85
65
92
88
85

•

relation StudentRec has 6 tuples
>

Figure 3.18: Assignment Operations

assignment adds the tuple data of relation Studentl to relation StudentRec.

The general syntax for assignment operations is as follows:

> newJelname < - sourceJelation; (normal assignment)

> newJelname < + sourceJelation; (incremental as.5ignment)

It is important to mention here that the source_relation in the above syntax for assignment

operation is not necessarily an actual relation entry. It might however be a arbitra!")" combination

of multi-step relational algebra operations such as selections, projections and joins etc. which

will be introduced soon in the next sections. The multi-step arbitraI1' combination of relational

algebra (and also domain algebra) operations are usually called "'relational expression".

On the other hand, assignment operation with nested relations involved is exactly the same

a..ç; the case of Hat relations. \Vhen assigning a nested relation to a ne\\" relation, the surrogates'

data is copied instead of the actual data values. For the definition of "surrogate", the reader can

refer to the subsection Declare and Initialize Nested Relations of section 3.2.3.
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3.4.2 Selection

•

•

The selection operation creates a new relation by extracting specifie tuples from the source

relation. The result relation contains the subset of tuples in the source relation that match

a "selection condition". The selection condition may be any logical expression that can he

evaluated to true or false on any one tuple of the source relation.

Given the sampie relation Studentl in previous section (refer to Figure 3.18), Figure 3.19

illustrates sorne examples of selection.

> (Q1: find aU .tudent~~Q. ~.~ tbe.. Cœa.rSIL ':~b_1_°9:.1
>StudentRec <- ::.~'t Cour.e=·.... th 100· in Student1 ... =::>
>pr StudentRec: - - - - - - - - - - - - - - - - - ~ - - - -
+--------------.--------------+-------+ \
1 Name 1 Course 1 Mark 1 \.--------------+--------------+-------. ,
!

Bai1ey P. 1 Math 100 1 85 1 \
Jones J. Math 100 92 \
Martin R. Math 100 85 '-

+--------------+--------------+-------+ \
relation StudentRec has 3 tuple. \
> \
>IQ2:find .~l students who take the course "Math 1~"
> and whose marks __r!_ :11.::. -U1_the_C:O~!i..e~ 1.. _ _ _ \
>StudentRec <- ,'were course=·~th 100" - ":- \

- -~ Mark>;:;;90 l.n Studen':l;__ - - \
>pr StudentRec; - - - - - - - - - - - - - - - - ... '-

i-N;;;--·------i-ë;~;;;-------i-K;;k--i ""~ ;
+--------------+--------------.-------+1 Jones J. 1 Math 100 1 92 ~kcÂOft+--------------+--------------.-------.
relation StudentRec has l tuple
>

Figure 3.19: Examples of Selection Operation

In this figure, Query 1 retrieves information of aIl students that take course "Math 10(/',

while Query 2 finds all students that secured "A" in the same course. Both queries create a new

relation StudentRec as their search result.

The general syntax for selection is as follows:

where selection_condition in source-relation

A more general syntax for selection with two advanced keywords is as follows:

wherelwhen selection_condition fromlin sourceJelation

Here the keyword when is of advanced usage, Le. it provides a syncbronization primitive

for a multi-process environment [Dou91], which reader may put aside at the present stage.
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j
Boiley P.
Jones .1.
M.1lrt:.in R.

•

•

The keyword from combines two operations together, i.e. selection and update (which will

be introduced in section 3.4.6): the matched tuples are selected and removed from the source

relation. Note that although these two advanced keywords are acceptable by jReli.x, they are

.ret to be implemented.

On the other hand, selection on nested relations is a little different from that of fiat relations.

In Figure 3.20, Query 1. asks to find the students who take the course" Nlath 100" from the

nested relation Student2 given in section 3.2.3 (refer ta Figure 3.11). To perform this query, the

empty projection list, 0, is used to indicate that '1.here is something in the ... r~.

>(Ql:fir~ che sCudenc5 who cake "Kach 100"'
>SCudenc <- INameJ where II where Course:"K4Ch 100" ~n SCudenc2,
>pr Scudenc;

1 Name 1.--------------+
1

relacion Scudenc bas 3 t:.uples
> 102: find ti1e eourse il1(D~ian..cf.. .:5<U.le:ll. Po.·J
>ScudencRec ",= ~;;e- ~ame:"Bailey P.' in scudencï:::: ~
>pr Scudent:.Rec:; - - - - - - - - - - - - - - - - - - - - - -,-

i-:~~~---------i-~~~;;;;------i '\
i-~iï;;-p~----i-:i~~----------T ~

.--------------.,'""------- o. S~kc:tio"
relacion scudo;ntRec: bas l t:.uple tonil- slIrro,:arr
>pr .Course;;:" \·UJllr.f arr

i-~id-~-;;4----i-ë~~;;;-------i-~;k--i srkc~JJ

·r:~~----------·I-~~;3r~g-----·I-!~----+1
2 MuSle 210 88
3 M.1lch 100 85

.--------------.--------------.-------.relat:.ien .Course~ hd~ 5 t:.upl@s
>

Figure 3.20: Selection on Nested Relation

Another way ta perform selection on nested relations is quite similar to the selection on

fiat relations. Instead of actual nested domain data, the corresponding surrogates' data are

investigated and selectcd. Query 2. in Figure 3.20 illustrates this case.

It is clear from the example that the result relation StudentRec in Quen) 2. only contains

the surrogate value of nested domain Courses. As explained in section 3.2.3 and section 3.2.5,

this surrogate is the linkage between relation StudentRec and. Courses (as illustrated in the

figure). The final realization of this relationship can be achieved by join operations introduced

in section 3.4.5.
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The projection operation creates a new relation by extracting named dornains from the source

relation. The result relation contains only the domains specified in the "projection lise'. It is

therefore a subset of the domains of the source relation.

Given the sample relation Studentl in the previous section (refer to Figure 3.18), Figure 3.21

illustrates sorne examples of projection.

•
3.4.3 Projection

>(Ql:creace a new relation with studenc DAmeS and
al! of the c0w:.s.:~_t!ln L4ke... l _

>ScudenCRec <-'{~. course) in StudenCl: _ _-J
>pr scudentRec: - - - - - - - - - - - - - - - - - - - \
+--------------+--------------. \

relacion StudentRec bas 5 cuples
> (Q2: create a stude~ JlaIIle -l.i.&t-.~ _

>StudentRec <- ·:Üi.amel in Student1: -=:>
>pr StudentRec: - - - - - - - - - - - - - - - ,

1

Bailey P.
Bailey P.
.J'ones .J'.
Jones J.
Marcin R.

! Course

1

Art 301
Math 100
Kath 100
Music 210
Kath 100

\

\

\

\

\

\

\
\

\

\

\

\

\

\

\

\

J Name.------------_......

1

Bailey P.
Jones .1.
Kartin R.

relation StudentRec has 3 tuples
>

•

Figure 3.21: Examples of Projection Operation

In this figure, Query 1 extracts student names and names of courses that the students regis­

tered for. The marks field is however cast out. Note the if we project just the Name attribute

from Studentl, the result has only three tuples as illustrated by Query 2 in the same figure. The

name "BaiLey P." and "Jones J.l' occur twice in the source relation, but only once in the result.

This is because each tuple in a relation must he distinct from aIl others. Project extracts the

required domains and also removes any duplicate tuples from the result.

The general syntax for projection (including assignment after projection) is as follows:

[ dom_namel, dom_name2, ... ] in sourceJelation

~ote that the sequence of dom_name's in the brackets in ahove syntax definition is called

"projection list' .
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•
On the other hand, projection on nested relations is similar to the case of fiat relations.

Instead of actual nested domain data,the corresponding surrogates' data are projected. As this

is similar to the selection operation introduced in section 3.4.2, examples are omitted.

3.4.4 T -selection

•

T-selection is a combination of selection and projection. It provides more flexible operations on

relations. Figure 3.22 gives sorne exarnple of T-selection using the sampie relation Studentl from

the previous section.

>(Ql:creace a new relation with scudenc names and
che course names by whiStt. t~~_~_<Ul-. :;0.,. J _

>StudencRec <- t~~-ë;urseJ where Mark>=85 in Scude~~j;-_--~
>pr SCudencRec; - - - - - - - - - - - - - - - - - - -, - - - - - -
+--------------+--------------. \
L~~ L:~~:~~ ! ..

1

Bdiley P. 1 Mach 100 l '.
Jones J. Mach 100 l '
Jones J. Music 210 '

l-~::~~-~:----L~:~-:~~ • '.
relation StudentRec bas 4 tuples
>(Q2:create a name list for those students ~ho ever'qot
an .;". in the cours~_~hJ!lt'J.eqi.:l.t.e.:ed_------_ '.

>StudentRec <- '~~l where Mark>=85 in Studentl~ :.-:~
>pr StudentP.ec; - - - - - - - - - - - - - - - - ":: - ..
r;~;---------+ --" ;
·I-;;'iï;;-p~----+ T·u/~etio"

Jones J.
Martin R.

relation StudentRec has 3 tuples
>

Figure 3.22: Examples of T-selection Operation

The queries in the exarnples are straight-fonvard, hence explanations are omitted. The

general synta.x for T-selection is as follows~ although variations exist:

[ doml, dom2, ... ] where select-condition in sourceJel

According to the closure principle of relational model, any relational expression e\·aluates

to a relation. This allows the arbitraI1' combinations of primaI")" constructs to form cornplex

expressions in T-selection, which is a type of "composition~~. Query 1. in Figure 3.23 gjves an

cxarnple of T-selection \vith composition. ~fluch more complicated T-selections can be forrned

with composition, e.g. the Query 2. in Figure 3.23.
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>(Ql:an exa=ple ot ne~~i.r-51_T'::l~C~~J__ - _
>St:ud..ntRec <- [~""I where "'.arit>R!!S in [~e. "'.ari<]
>pr S:;udent:Rec: - i_n_~t:..u~~:":.t:.!:. __ ~-----

1 Na::le t.--------------.
/

Il..üley ...
.Jenes .J.
Mart:in R.

relat:lon St:u~entRec bas ~ t:u~les
>
>(02:anct:her ~xacple o! ~re cc:pllcat:ed 7-selec:;icn.l
>$t:uden:;Rec <- [Na::l.. ! where Marit>·E5 and Karit<·95

in tsa=e. Karitl
wher.. Ccurs ... ·Ma:;h laC· or C~urs..z·~~SlC 210·
ln St::oéen:;l:

Figure 3.23: Examples of T -selection with Composition

44
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3.4.5 Joins

The relational model divides aIl objects, no matter how complex, into simple normalized relations

and represents relationships between them by cornmon values in shared attributes. Information

retrieval thus depends on the ability to realize relationships by combining relations according

to these shared attributes. This is achieved using joïn operators. For this reason, join is the

characteristic relational operation [RS95].

Joins are made according to a join or linkage condition over a pair of (possibly compound)

attributcs, one in each relation: which are draw from the same domain. There are two classes of

join operations defined in jRelLx, Le. J-l-joins: the family of set-valued set operations; and a-joins:

the farnily of logical-valued set operations [~Ier84].

Csually joins can be implemented by two approaches, i.e. pointer-based join algorithms

and non-pointer-based algorithms [SC90l. The former approach takes advantage of pointer

c1ereferencing, and provides significant performance gains in the situation where few tuples

are involved in joins; while the latter: also called "bulk algorithm~~, usually deals \Vith rela­

tions with large amounts of tuple data. Bulk algorithms include nested-Ioops [S~I94L sort­

nlerge [ICRR81J [LT95L hash-join [KÜ90] [ZJ~I94L hybrid-hash join [Se90] and partitioned

band join [DNS91] algorithms etc. In jRelix implementation, the traditional sort-merge algo­

rithm is applied for joins.
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Jl-joins

Jl-joins are derived from set operators such as intersection, union, dïfference, etc. in mathematical

set theory. Figure 3.24 lists the J.t-joins that are defined and implemented in CUITent jRelLx, while

detailed descriptions cao be found in (~ler84].

Joina Ducription Implementecl

ijoi~ ~or n:uural join (or intersection) yesnalJolD)

ujoin unionjoin yes

sjoin symmetric dirference join yes

Ijoin leff jojn yes

rjoin righl join yes

d!i.0i.n (or leff diffcrence join yes1010 )

drjoin righl difference join yes

Figure 3.24: J.t-join Operations

The most frequently used joïn is natural join (i.e. ijoin or natjoin), which secures equality

between the join attributes, and combines tuples from two relations together. Therefore, it can

he regarded as the intersection of the two join relations. Figure 3.25 gives sorne exarnples of the

natural join operation.

In Figure 3.25, a new relation Coursel is introduced, which describes the course information

e.g. the course narne, credit of the course and the text book for the course. :\ naturai join between

relation Studentl used in previous examples, and relation Coursel, gives aH information on the

students and the courses they registered for, as illustrated in Query 1. Query 2 perforrns a

projection on certain attributes after the join operation. Sorne explanations will be made below.

In generaI, the syntax for natural join is as follows:

reLnamel ijoin reLname2

or:

reLnamel [dom_namel, .. :ijoin:dom_name2, .. ]reLname2

In the first synta.x, two relations reLnamel and reLname2 are joined on their common at­

tributes. In the case that there are no common attributes among the join relations, the cartesian
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>dc:&~n Na:e. Ccu~s•. Ccurs~Na:e. 7.x~90ck s~r~n;;
>dc:&~n ~~rk, Cr.d~~ ~n~g;

>~ela~~on S~uden~l(N~.• , Course, ~~~kl <-

::~iî:~ ~::: :~~h3~~~~'7;;~'
1:~onu ~.:- :l'~~h lO~·::. ~~~.
( ~cn.s w. • Mus~c 2.0 .•e].
('M4r~:'n R.·, ·~.ach lOO·. eS! );

>~Q14t~on =~u:sal(Cours•. =~.~~. ~.x:eoo~J .
(·l'.a~h 100', 5. 'A-~~~c~ ~.ach*=4~:.==·I,

('Arc ~Cl'. ~. 'H~scory c~ F:.ne Ar~-'.

(·~.,;.s:.c 2:'0·. 4. ·C~a5s;.~a1 !!;.;s:.c·) j;

>(Cl:~@~ al: :.~!=~~~o~ abcu: :~. s~~den:: a:~ ~~. =~~:s.s
chey re~~sC.r..d. 1 •• __ • •

>Scuden~RotC <. ,--.-.S.CudeaC1 1j101l c:oura.l~ _-....-.
>~:-S:.....den=.Rec: ---------------- \

.----------._--------~--.-----.------.-------,---------------1 =o~rs. ! S4~~ , ~~r~~C~~~~! 7ex~Soek

.----------._--------~--.------------.--------~------------.-

1

Ar- '01 1 Sa' 'ey r. 1 77 : j 1 H~"~::ry ';:~ F:.r.e Ar~ ,

~~~-igg ~~~!~.;~. ~; Il ~~ 1 ~;~~;~ ~~~~~t;~ !
~~~~c1~~0 ~~~;;n./. 1 ~~ 1 ~ 1 ~~;;~~~:~~~;.a~~=$ i

+---------_._-----------._----.------._----------~;---------.
~el4~~on S:~den:Rec r~s 5 :~pl.s

:>;;~~~~ J 51: ~r:fOr-~:i~~_a~u....c_ :h..e_!~u=~n_:~ _:,~::u::'vq ':~e

>5~ud@n~R@c <- .~4=@. C::urse. Cred:.:. ~:kr:'n -~~
'- - - j~~U ljo1D Cour••l1 L • -.

:~:_::::~::~~:.:--------_._~:_----:_--~=--.---,~ \

46

i S4~:"'Y r.
1

Sa~:otY r.
':cnes .:.

! ';c~es .;.
; ~.Ar:;.::. R.

1 ArC ~O: 1;
1

l'.a:h :00 5
~.4th :00 5

1

x'"s~= :l:l .;
l'..ath lOO , 5

1"
1 ~~
1 2S

•

re14~;.=n S~~dentRec ~~S S ~~pl@s

>
> (-c=~:s~· ;'$ c~~~.d :0 ·Cc~rsa~a=~~ :.n r~:4':1=~ ~=~r5@:_J

>~elac:.::n Coursel(Cc~r$eN4:e. ~red~~. 7_x~Scok) <- (
(·~a~r. leo', 5, ·Advar.ced Ma~he=at~=s·l.

( '.\r~ :! C:' '. 3. 'H~s~c:-y::~ F:.n. Ar~' 1 .
(·~.:s.:.= :lO·~ .:.. -=:655:'::41 ~~s:.c:·) !;

>(CJ;qe: s:l :.n!o~-a'::.en about :he s:~de~:s ~~~ ,:h~ C~~~:.$

':t:."Y reg:.sc.red.) ... - - - - - - - - - -. - - - - __ ...
>St·.;den~Rec <- ScwSeDcl .(~~.llj01D.cour~~),cour••l1

-- --.--- - -----....
AttriblJl, List

Figure 3,25: Examples of Natural .loin i.e. ijoin
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product of the two join relations will be generated. The second syntax tells how to join two

relations which do not have common attributes. In this case~ two relations join on the at­

tributes listed in a pair of brackets (" [' and "]"). In particuIar, these attributes are called "join

attributes"; and the set of attributes surrounded by the brackets are called "join attributes Lisf~.

Taking the exampIe in Figure 3.25, consider the case that the name of domain Course in

relation Course1 is changed from "Coursé' to "CourseName". The two relations Student1 and

Coursel cao not be joined as expected in Query 1, since they do not have common attributes.

In that case, the join attributes List is used to achieve the correct result for Query 3.

In addition, there are sorne ruIes that need to be mentioned here.

• In both cases, the common attributes will be listed as the starting attributes in the result

relation. This is illustrated by the result of Query 1 in Figure 3.25. To generated a relation

with a desired attribute sequence, a projection arter join operation is usually necessary, as

illustrated by Query 2 in the same figure.

• Domain names in common attributes List must exist in their respective join relations (e.g.

in above syntax, dom_namel must he existing in reLnamel while dom_namel' must be

existing in reLname2). Otherwise, an error message is generated by the system and the

join fails.

• In the case that common attributes exist in the join relations, they must appear in the

common attributes List when the second natural join syntax is used. Otherwise, a warning

message is generated by the system and the join fails .

• It is clear that the result of a join operation is a relation. Therefore, ijoin operations can be

combined \Vith other operations e.g. selection, projection etc. as illustrated in Figure 3.26.

~StudentP.~ <- Studentl ijoin [Course. Credit) in Coursel;
~StudentR&C <- [N4me. Course. Credit] in (Studentl ijoin Coursell;
>S~udentp.ec <- 5tudentl ijoin ~here Course.-Matn 100' in Coursel;
>StudentP.ec <- (Name. Course. Credit) where Name.·Jones J.- 1n

CStudentl ijoin where Course."K4en 100' in Cour=ell;

Figure 3.26: Combine ijion with Other Operations
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• The syntax for the natura! joïn operation listed above is basically applicable to aIl Jl-joins,

except that the keyword ijoin is changed to corresponding jL-join keywords. As weIl, the

common rules for natural join are also applicable to other J.l-join operations.

On the other hand, natural joins involving nested relations behave a little differently:

1. \Vhen the join attributes are not nested relational domains, natural joïn is the same as the

ijions with fiat relations as described above, except that the surrogates of nested domains

are copied to the result relation. Figure 3.27 illustrates this case. In this example, a

ne\\' relation Student3 (which is defined on student Name and his/her Advisor) is created.

The ijoin between Student2 and Student:J happens on their common attributes Name, and

the surrogates of nested domain Courses are copied to the result relation StudentRec as

illustrated in the figure.

>dcmain Name. Course. Advisor string;
>domain Mark intg;
>domain Courses (Course. Mark);
>relation St;udent2(Name. Coursesl <- {

( "Bailey P.". {(·Math 100·. 85).
("Art 301·. 77) 1 1.

( "Jones J .•. {(·Math 100·. 921.
(·Music 210-. 881) l.

( ·Martin R.·. {(·Mat.h 100·. aS)} ) };
>relat.ion Student.3(Name. Advisor) <- {

(·Bailey P.·. ·Smith A.·).
(-Jones J.·.·Thomas P.·).
(·Martin R.·.·Smith A.·)};

>pr St.udent2;
.--------~---~---~------.
1 Name 1 Courses
·------------+-7:'------+

1
Bailey P. Il .... ----1- ------.. surrog!JIu g~'
Jones J. ca l , cop.ed
Martin R. 3-.,' "

;;;ï~ëi~n-St~d;;;tï-h;~-3-tuples~' 4
>pr Student3; ,''-
.------------.------------. ,
1 Name 1 Advisor 1 "

·I-~iï;;-p~--·l-s;i~h-A~---+l "
Jones J. Thomas P. '
Marcin R. Smith A. '

;~ï~ti~;-St~d;;t3-hi;-3-~pi~ "_----r ------_~

>Student:Rec <- rStudent2,'ijoin St.udent3; --,
>pr ScudentRec; - - - - _ J - - - -

.------------.-------~--.--------------+
1 Name 1 coursés 1 Advisor 1
.------------.----~----.--------------.

1

Bailey P. 1 f '. 1 Smith A. 1Jones J. ~ 1 Thomas P.
Martin R. j, Smith A.

+------------+--~~------.--------------.
relat.ion StudentRec has 3 tuples
>

Figure 3.27: Natural .Join of Nested Relations (on Atomic Domains)
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•
2. \Vhen the join attributes are nested relational domains, it is the tuple data of the nested

data that are compared, but not the surrogate value, as illustrated in Figure 3.28. In

this example, a new relation Student4 (which is defined on domain SName and nested

domain Courses) is introduced. There is only one student (Le. '~Jenny k.") declared in

this relation. Her registered courses and the course results are exactly the same as that of

student ;'Jones J.n in relation Student2. The natural join of Studnet2 and Student4 finds

out those students who take exactly the same courses and whose course marks are exactly

the same, as illustrated in the figure. Clearly, the nested domain data are compared when

the join is performed.

An exception oecurs when one of the join attributes is '~.ir!', which wHI he explained next.

'" t
same value

>domain Name. SName. Course. Advisor string;
>domain Mark intg;
>domain Courses (Course. Mark);
>relation Student2(Name. Courses) <- {

( - Bailey P. -, {( - Ma th 100 -. 85).
(-Art 30l-. 77)} ).

( - Jones J. -. _{-{ "Ma~l! ""1.'00' ...... - 9'21 ';' - _
• -{~~usic 210 -. 8BJ 1_1 )

( -Martin R.-. {(-Math-IO"o-;-S5)} '} };
>relation Student4 (SName. CoursesL.$=. _{- - - __1_

(-Janny K.- ••r0"Math 100-, 92.,---)
>pr Student2: ["1'It%s-i..E:,-2.1iJ =-.- .a~~ t -}-;
·------------+----------T ','
1 Name 1 Courses "

'.... 1
.... 1+I-B~iï~~-p~--+I:l~-------+f

Jones J. 12:
Martin R. \3 1"

+------------+-~~--~~---+relation Student2 has ~"tuples

>pr Student4: ""
~------------T----------+
1 SName 1 Courses 1 ....·------------+T:-r------+
1 J anny K. 1 \.; 1 1 SUlTOgales
.------------+_~~_------+ ~
relation Student4 has 1 tupl~ ,

>StudentRec <-,Stu'd;;t2 - ;jo~n ~~u~~~t"4 ~ - - ")
>pr St.udentRec:'" - - - - - - -
.----------+------------+------------+
1 Courses 1 Name 1 SName 1+----------.------------+------------+
1 2 1 Jones J. 1 Janny K. 1
+----------+------------+------------+
relation StudentRec has l tuple
>

Figure 3.28: Natural Join of Nested Relations (on Ncsted Domains)

•
3. \Vhen ".ù!' is one (or two) of the join attributes, the surrogate value of the nested domain

is used for comparison during the join operation. Figure 3.29 illustrates this case. In this
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•

•

example: the nested relation Student2declared in the previous section (refer to Figure 3.15)

is used. The result is a fiat relation containing student information inc1uding the course

he/she registered for and their marks. This joïn is obviously a way of convertïng a nested

relation into a fiat relation.

>pr Studenc2;
+--------------+--------------+
1 Name 1 Courses 1

+I-~~~:;~~~----+,:~~:----------+I
Marcin R. '3 1

;;ï~~i~~-S~~d;~~~;-3-~~~ï;;+
>pr . Courses;.' ,
+---------~---~--------------+-------+
1 .id,' 1 Course 1 Mark 1
.-~----~-------+----~---------.-------.

1

,' l\F' Art 301 77
l, Math 100 8S
2. Mach 100 92

1 2' Music 210 88
\ 3' Math 100 85
+~~------------+--------------+-------.
relation .Courses has 5 tuples
> ------------------------->StudentRec <, -['Name. Course. Mark) in - --

- f..S::udent2 [Courses: ijoin: . id] .Courses).. _ --
>pr StudentRec; - - - - - - - - - - - - - - - - ""- - - - - --
+------------+------------+--------+ "
1 Name 1 Course 1 Mark l "
+-------~----.------------+----~---. ,

Bailey P. Art 301 77 "
8ailey P. Math 100 85
Jones J. Math 100 92 ijoill on.ù1
Jones J. Music 210 88
Martin R. Math 100 85

+------------+------------+--------+
relation StudentRec has 5 tuples
>

Figure 3.29: Natural Join of Nested Relations (on ••. ici')

Union joÏn (ujoïn) is another frequently used J.l-join. It is an operation that results in a union

of the set of tuples from the natural join, together with the tuples from the relations of both

sicles that are not equal to each other in their join attributes: \Vith the missing attributcs filled

up with so-called "null value" Le. DG whïch denotes don't care and which describes irrelevant

information. Figure 3.30 gives an example of union joïn.

In this example, an union join is performed between relations Student and Course. Since

··Bailey P." takes a course "Art 30r' that is not in the Course relation, and since nobody takes

the course '·Chemistry 108", the corresponding (missing) attributes are filled with de. Apart

from DC! there is another Dull value DK which denotes don 1t know and implies missing data.

Readers _may consult [l\,ter84] for detailed descriptions of null values.
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>domain Name. Course, TextBook string:
>doœain Credit intg:
relation StudentCName, Course} <- (

C'Bailey E'.', 't"'Ath 100"1,
C'Bailey P.'. "Art 301"),
( 'Jones J.". "Math 100"),
{'Jones J.", "Music 210" l,
("Martin R.", "physics 202") l:

relation Course (Course, Credit, TextBookl <- r
C"Math 100", S, "Advanced Mathematics' 1 ,
{'Physics 202", 3, "Principle of Physics" 1 ,
("Chemistry lOS", 3, 'Elementary Chemistry" 1 ,
("Music 210", 4, "Classical Music") }:

>StudentRec <- [Name, Course, Credit! in (8tudeDt Qjoin Couz••);
>pr StudentRec;

T-N~;-------i-ë~~;~;---------T-ë;;di~-T

.------------+----------------+--------.
lie Chemistry lOS 3
Bailey P. Art 30l. lie
Bailey E'. Math 100 5
Jones J. Math 100 5
Jones J. Music 210 4
Martin R. physics 202 3

relation StudentRec bas 6 tuples
>

Figure 3.30: Union .loin
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•

The operations of other Jl-joins e.g. symmetric difference join (sjoin) etc. are similar to

the natural join (ijoin) introduced above, except that different keywords (as illustrated in Fig­

ure 3.24) are used in the place of ij ion. Therefore, detailed descriptions are omitted here.

CT-joins

The family of a-joins are based on set comparison operators. In operations, the tuples in each

of the operand relations are grouped such that for each group, aIl the non-join attributes are

idcntical. Then, the set comparison operator is applied to the cartesian product of the groups.

The \'alues of the non-join attributes of the comparing groups are accepted if the specified set

comparison on the joïn attributes is satisfied,

Figure 3.24 lists the CT-joins that are defined in jRelix, while detailed descriptions can be

found in [~Ier84J.

One of the frequently used a joins is natural composition! Le. icomp. The operation and

result of natural composition are quite similar to that of natural joïn (Le, ijoin), except that

the join attributes are removed from the result relation. Figure 3.32 givcs an example of natural

composition.

In this example, natural composition is used to find the relation of a parent and their grand-
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.JoIn• Description ImplelMnted

icomp (or rullural composition yesnatcomp)

sup (or super-set join or division no
div. gejoin)

gtjoin proper super-set (no incision) no

eqjoin c:qual set join (=) no

lejoin (or sub-set join nosub)

Itjoin proper sub-set join no

Figure 3.31: a-join Operations
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children. Note that the pair of joïn attributes Child and Parent are not part of the result

relation.

P=r P:&rkcr

~ /" et>
Peter Parker

Tom John Jimmy /\.. •" • SqoU ~bxJm M=')'

s.,~oU ~bxim !\.Iany

><1om5:.n Parent.. Ch.':'d 5:.r-U:9;
Jor"~":'4t..:.cn P.1rO"'.:.':'d.(Par~r..tr C~.:.ld) .:- {

( • Pet;er-. --:-ce:.- J • C-':'c:n-. ·Se9al- ~. (-":"c:n-. -)(&x ..:':-'.
'·P05rk~r·. -.:ot"_',·,. (·Park@r- ••.;~~.). (.,J:.~•• -K.lrr";- ~ 1;

~ParCr.1ndCh.:.:d <- PllrCh:.:d(Chlld: i~art!'1"'.~lP4r:::hl:d:;

>'s::r P-ar-::;r.1r.dC'h:. :';j;.-- ---- --- ---. -- -- -_ .. -- _.. -.
1 ?2S:cn~ 1 C'::.:c 1.- - - - -- - - ----. -- - - - - - - - ...--.
~ P~t.er 1 Soeqal 1

l, ?p~;~"r F. Max:.: "
_..... 1 ~arrye .... _. •

Figure 3.32: Example of Natural Composition (i.e. icomp)

a-joins are not implemented in current jRelix yet. Therefore, introductions to the usage of

a-jain operations are postponed.

3.4.6 Update

•
:\dding and deleting tuples of a relation is relatively straightfonvard using the relational algebra

described so far, but changing values of tuples in a relation is a little more complex. This section

introduces a special relational operation update that provides a mechanism to change a relation

locally.
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>domain Name. course. TextBook string;
>domain Mark. credit intq;
>relation StudentlCName. Course, Markl <- {

(-Bailey P. -, "Math 100", 85).
(-Hailey P.", -Art )01-, 77).
(-Jones J. -, -!".4th 100-, 92),
(-Jones J.", -Music 210", 88),
(-Martin R.", "Math 100". 851 };

>relation StudentS(Name, Course, Hark) <- {
(-Hailey P. -, "Math 100-, 85),
("Jones J.", "Kath 100-, 92),
("Jenny K.", -Physics 201", 821);

>update StudeDt1 delete .tudeDt51
>pr Studentl;
.------------.------------.--------~
1 Name 1 Course 1 Mark 1
+------------+------------+--------+
1

Bailey P. 1 Art 301 1 77 1Jones J. Music 210 88
Martin R. Math 100 85

+------------+------------+--------+
relation Studentl bas 3 tuples
>update .tudeDt1 add StudaDtS,
>pr Studentl;
.------------.------------.--------+
1 Name 1 Course 1 Mark 1
+------------+------------+--------+
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Bailey P.
Bailey P.
Jenny K.
Jones J.
Jones J.
Martin R .

Art 301 77
Math 100 85
physics 201 82
Math 100 92
Music 210 88
Math 100 85

•------------+--------~---+--------+
relation Studentl nas 6 tuples
>

Figure 3.33: Update Operations: Add and Delete

Three types of update are provided in jRelix, i.e. add, deLete and change. Figure 3.33 gives

sorne examples of the update operation for addition and deletion.

In the delete example~ those tuples in relation Studentl that appear in relation Student5

are taken off or removed; while in the add operation, ail the tuples of relation Student5 are

added to relation Studentl. Note that duplicate tuples are removed in the result relation for add

operation.

Figure 3.34 shows the update operation that changes the attrihute data in a Relation. As

illustrated in the example, marks are decremented by 5 for the course ""Math 10rT.

The general syntax for update is as follows:

update src_rel add add_rel;

update src_rel delete deLrel;

update src_rel change change_,'>tmt using reLexpr;

•
As illustrated in Figure 3.34, the change_stmt (change statement) tells what kind of change

should be performed for certain attributes; while the reLexpr (relational expression) constrains

the tuples in the source relation that should he changed. Note that reLexpr can be any valid



•
CHAPTER 3. USER'S AL4NUAL 01'1 JRELIX

>domain Name. Course. Tex~Bock scrinq;
>domain Mark. credi~ incq;
>relacion Scuden~l(N~. Course. Mark 1 <- {

(·Baile-..... P.·. ·Math 100·. a51.
(·Bailey P.·. ·Ar~ 301·. 77l.
(·Sones J .•. ·Hath 100·. 92J.
(·Jones J... ·Music: 210·. Bal.
(·Mar~in R.". "Math 100·. 65 J );

>pr Scuden~l;

.------------.------------.--------.
1 Name 1 course 1 Mark
.------------.---~--------.--------.

1

Bailey P. 1 Art 301 1 77 1Bailey P. Math 100 85
Sones J. Math 100 92
Jones J. Music 2~0 B9
Marcin R. Math 100 85

+------------.------------.--------+
rela~ion S~uden~l has 5 cuples
>apcSat. Sta4eDtl cbaDp ~k <- 1lar1t-5

u.tag ljoiD ~. Coar••• •..~ 100· ~ Stadeatl,
>pr Studen~l;

+------------+------------+--------+
1 Name f Course 1 Mark 1

1

Bailey P. 1 Art 301 1 77 1aailey P. Math 100 80
Jones J. ~~t.h 100 87
Jones J. Music: 210 88
Martin R. Math 100 80

.------------+------------+--------+
relation Scudent1 has 5 tuples

Figure 3.34: Update Operations: Change
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conlbination of relational operations introduced so far, e.g. projection, selection and joins etc.

Readers may consult [Ha098] for more information on the update operation.

3.5 Domain Aigebra

•

Rclational algcbra considers relations to be the data primitives [~Ier84] and therefore does not

give the user the power to manipulate attributes. On the other hand, domain algebra [i\Ier77] [)'Ier84]

consists of a set of operations to manipulate attributes such as mathematical operations, at­

tribute group and ordering etc. Domain algebra is used through the declaration of virtual

attributes and the actualization of them on relations.

During the development of the jRelix system, my major responsibility \Vas to design and

implcment the domain algebra. This section firstly discusses the virtual domain declarations,

followed by a general description of actualization including the various error checking performed

by jRelix. After that, horizontal operations e.g. renaming, function and if-then-else operation

etc. as weIl as vertical operations e.g. reduction (both simple and equivalent) are explored

respectively.
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Virtual domains are dornains that do not originallyexist in a relation. They are declared on a set

of actual dornains or virtual domains which are subsequently based on actual domains. Virtual

dornains usually appear in projection introduced in section 3.4.1 and are actualized based on the

actual dornains' data in the source relation. However, virtual dornains can theoreticallyappear

wherever actual domains existe

•
3.5.1 Virtual Domain Declaration

Virtual dornains must be either directly or indirectly defined on the actual domains of the

relation in question in order to he actualizable. Dedaring a virtual dornain is quite similar ta

defining a srnall procedure calI in sorne prograrnrning languages such as C, with the procedure

body represented in the form of an expression.

Figure 3.35 gives sorne exarnple of declaring virtual dornains, as weIl as displaying the declared

domains.

:>dornain A in~q;

>demain B float:;
>domain F CA. BI;
:>domain H compCA.BI;
:>rela~ion RIA. B. Cl;
:>rela~ion WCA. FI;
:>rela~ion YCA. B. Hl;
:>le~ x be A-B;
:>le~ y be equiv+ of B by A;
>let: : be F ijoin H;
>sd;
---------------------------- Domain Table -----------------------------
Name ~ Nu::tRef Dom_Ll.S~

idlist:

float:y

-----------------------------------------------------------------------A in~eqer 3
B floa~ 3
C idlist: a . id. A. B.

o computation a _-------.id. A. B. Tr~~SITUclur~

x floa~ •• 1)- •• --,' l
,.- Add:300;332:null:0 '.- ,

Ide~~ifier:~30:230:A:A 1

--LQ.entifier:230:2lcr:1:1:0 " ,
__0---:.-------:.------ -- -----_L' 1

,- "'Ver~ical:308: 332 :null:O - _, ,
, Identifier:230:230:B:O ~ '
, _ ExpressionLis~:592:592:n,:U:AS

--ad~~ifier:230:2JQ.:.A.<Cl- "
_c-_:::===;;J:.:i.. B. '

" -jol.n:J01:361:null:O --',,'
, Ideneifier:230:230:F:O'
'--_ Identifier:230:230:I1:-O'"'

------------------------------_::=:_~~=:_~~==:_~::_--------------------

•
Figure 3.35: Declaring \/Ïrtual Domains

In general, the synta..x to declare a virtual dornain is as follows:
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> let vir_dom_name he expression;

There are however somethings that need to be mentioned here:
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•

1_ Virtual domain declaration does not affect the reference counter of the referenced domains

(For the meaning of "reference countef', please refer back to section 3.2.2). For example,

the virtual domain x in Figure 3.35 is defined on domain A and B, but the reference counter

of domain A and B are not incremented because of this facto

An exception is for virtual domain z, which is defined on actual domain C and D. Obviously,

the reference counters of domain C and D are not affected by this facto However! since the

resulting type of virtual domain z is idlist 3.2.2, this nleans domainz is a nested relational

domain. It is not hard to figure out that this nested domain (z) has an attribute list of

(. id, A, B). As we know, a nested domain is always associated with an invisible relation

(refer to section 3.2.1) which is supposed to hold the tuples data of this dOlnain. Hence,

an invisible relation .z is automatically generated in the system when virtual domain z

is declared, and this relation is defined on domain A and B. As the result, the reference

COllnters of domain A and B are incremented by 1.

2. The reslllting type of a virtual domain is decided according to certain rules illustrated in

Figure 3.36. For example, virtual domain x is defined on domain A which is of integer type,

and domain B which is of float type_ The resulting type of x is howe\'er fioat. Similarly,

dornain z is defined on the domains of type idlist and computation, and the resulting type

is idlist. On the other hand, if a virtual domain is declared on domains with incompatible

types, an error message "mismatched types:' will he generated by the system and the

declaration fails.

3. The expression part of virtual domain declaration is interpreted by jRelix system as a tree

stnLctu7-C which can be seen by displaying the definition of virtual domains using "sd(

commando For example, in Figure 3.35, virtual domain ":i' is defined as domain A plus

domain B. When displaying the definition of x, a tree structure is printed apart from the

basic information such as Type 1 NumRef and DomList etc.

The interpretation of a virtual domain 's expression tree is a little cryptic, but readers are
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Opentor Left. Right OpeI.lds ResultType

min. max. p'ius numeric type (Le. numericminus, multiply short. inte~er. long. type (*)divide. mod
uplus. uminus 003t, dou e
pow

C3l string & string string

eq. neq. gt. It numeric & numeric 0001
ge.le text & text

0001 & 0001

or, and. unOl 0001 & 0001 0001

Üoi.n. ujo.in idlist & idlist idlist
sJo~n. à<?'~ idlisl & computation
~~II!. IJom computation & idlist1J0m

(*) if one of the operands is of double ty~. the result tvpe is double
otherwise. if one of the operands is of 003t type. tfie result type is float
otherwise. if one of the operands is of long type. the result type is long
otherwise, if one of the op'crands is of integer type. the resulnype is integer
otherwise. the result type is short.

Figure 3.36: Rule of Type Operations
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not required to understand it completely in order to perform domain algebra operations.

Basically~ an expression tree is made of a set of nodes each of whieh has the attributes

identifier, type, opcode and name~ where identifier tells the node~s name~ type describes the

general type of the node, e.g. "bi-operation~~ in this example~ opcode indicates the more

specifie type~ e.g. '"plus~'; and name tells the actual identifier's name that the current node

represents. The display of a virtual domain~s expression tree is a list of these nodes with

indentations implying parent-children relationships. For each node, a list of its attrihutes

is printed. Figure 3.3i gjves an example of the expression tree of virtual domain x in

Figure 3.35.

4. During a virtual domain dec1aration, aH identifiers (i.e. domains) in the expression tree

must he already dec1ared in the system; otherwise, an error message will be generated and

the declaration will faiL This is a weak check to make sure that the virtual domain is

actualizahle. Usually we call this a "deciaration chee/;'. It is however possible that a valid

virtual domain definition is changed to become inva.l.id later by the user, as illustrated in

Figure 3.38. Therefore, a stronger eheck has to he performed whenever the virtual domain

is aetualized. This is called a '"mn-time checli'. Details about mn-time check will he



CHA.PTER 3. USER1S AJANUAL ON JRELI.X 58

•
x

.·Add: 300: 332 :null: 0
..' Idencifier:230 :230:A:O
.Idencifier:230:230:B:O

Node identifier Type Opcode .....
.... p:In:I1l -Add- OP_BIOPERATOR OP_PLUS

<i.e. 300) (i.e. 332)

"- lert cbild -Identifier'" OP_IDENllFlER OP_IDEflmAER A
<i.e. 230) (i.e. 230)

" righlcbild -Identifier'" OP_'DENllFlER OP_IDENIlAER B
(Î.e.23O) (i.e. 230)

Figure 3.37: Example of an Expression Tree

described in section 3.5.2.

>dclNlin A int:Q;
>dClNlin 8 ~nt:Q;

>l .. t: x bol> A.8;
>sd:
---------------------------- Demain TAbI .. -----------------------------
~ T-.{p<' !lUmRef Oom_List:
-----------------------------------------------------------------------int:"ger

int"ger
in:.eqer

A

8
o
o
o

Add:300:332:null:O
Id..ntifier:230:230:A:O
Id..ntifier:230:230:8:0

_~_~~~~:~:-::::-::::~-;:-~Â-~~~-------------------------------

---------------------------- Oomain TAbl .. -----------------------------
r~ ~ NumP.ef Oom_List:
-----------------------------------------------------------------------B ~nt:"9..r 0

~nt..q ..r __ ••0. - - - - - - -'" - - -". _'.
,_ Add:300:332:null.O ,
. Id..ntifier:230::DO:A,O',
"o. Id..nt:ifi ..r:2JO:2JO:8.0"

------------------------~:;i.-~::::.~:::::::=::-~--~--------------------

dD";" r sllo"ltI"", H rcli4 fÏlKr iltII/iltM0" 1Ito-.;"
.. wlllidr tJ-s .", U:/SI vry .._.

Figure 3.38: Example of a Valid Virtual Domain Declaration Becomes Invalid

3.5.2 Virtual Domain Actualization

•
Generally speaking, once declared, virtual domains can appear wherever an actual domain ap­

pears, e.g. they can appear in the projection list of project operations, in the selection condition

expression of select operations etc. The virtual domains are actualized when the relational

algebra operations are performed. Given the domains and relations declared in Figure 3.35,
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Figure 3.39 gives sorne examples of virtual domain actualization.

>Result <- (A.B,x] in R;
>Result <- [x,YJ in (R ijoin y);
>Result <- where x=lOO in R;
>Result <- [A,B] where y=x in y;
>Result <- [z) in [F.H] where x=lOO in (W ijoin y);
>

Figure 3.39: Actualize Virtual Domains
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As mentioned in last section, a "run-time checK' which is much stronger than the "declaration

checK' will be performed during actualization. If a virtual domain is found to be unactualizable~

an error message is generated and the actualization fails. Apart from the condition described

in last section under which a virtual domain is not actualizable~ jReli..x also considers a yirtual

domain as unactualizable if this virtual domain is recursively defined on itself, i.e, there is

a recursive loop in the definition of virtual domains in question. Figure 3.40 illustrates this

condition.

>demain A ineq;
>demain 8 fLoae; c;)(
>let. x be B; L-0
>Lec y be x.8: - - - - - - - -- x y
>Lee x be y+A; - - - - - - - - --
>reLat.ion RCA.S);
>Resule <- (x,y] in R;
IncerprecError; domain 'x' is unacCuali:able: a recursive Loop exises.

>Lec y be 8;
>LeC ~ be 8;
>LeC x be y.;"; - - - - - - - - - --~
>Lec y be (;:.S)·2; --------~

>Lee ~ be (x+;"+8)/103; -----­
>Resulc <- [x.yl in R;
IneerpreeError: demain 'x' is unaceuali:abLe: a recursive Leop exisCs.
>

Figure 3.40: Recursive Loop in Virtual Domain Declaration

In this figure~ two examples of recursive definition are given. In the first case, virtual domain

x is defined on virtual domain y, while y is further defined on x. The result is that virtual domain

x is dcfined on itself. In the second example, domain x is defined on itself at a three-hop, i.e.

through virtual domain y and z as illustrated in the figure. AIl thcse de6nitions are not allowed

by jRclix.
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Horizontal operations of domain algebra work on a single tuple of a relation. They generate the

value in a tuple for the virtual attribute in terms only of the values in the same tuple of the

operand attributes.

In the jReli.x system, horizontal operations inc1ude constant definition, renaming, arithmetic

functions, conditional statements (if-then-else) etc. which are calied "basic horizontal opera­

tions" here; and most notably, aIl relational operations on the tuple level etc.

Figure 3.41 gives sorne examples for basic horizontal operation. Since the examples are quite

self-explainable and easy to understand, the detailed explanation is omitted.

•
3.5_3 Horizontal Operations

>domain length, width intg;
>relation Square (length, widthl <-

{(2.3I,/12.l7I,(S.101);

~i:~ ~~: ~; ~~~~~..~~~~.~~.; ::::~ ClJluranrsdtt/inition
>let hight he width; - rf!naming

>NewSquare<-[length,hight.=oom.nameJ in Square;
>pr NeWSquare;

1 length 1 hight 1 zoom 1 name 1 "
.-- -- - --. -- - --- -.-------.----------- - --+ marllfllnerlun

1
; 1 io 1 ~ 1 ~=i: ~::;;I.. :~.,.
12 17 2 samp1e s~"re1 .

;;ï;;i~~.~;.;;~;;; -hc;;- 3·~~~ï;;-::::"""-.----~·· ct,nditÎtJnu/ stlltt:mt:nl

>lee area be length-hight; ...." "
>lee :oomed he (length-:ooml"(hight"=oom);
>let name be if :oomarea>SOO then -big square"

else "small square";
>NewSquare<-[length.hight.area,=oomed,nameJ in Square;
>pr NeWSquare;

1 lengthl hight 1 area 1 =oomedl name
+-------+-------+-------.-------?----------------+

l ia
17 1

6
50
204 1

24
200
816 1

small square
small square
big square

•

relation NewSquare bas 3 tuples
>

Figure 3.41: Basic Horizontal Operations

Figure 3.42! 3.43 and 3.44 together give an example how relational algebra is in\"olved in

horizontal operation of domain algebra.

Figure 3.42 lists a table of students and the courses they registered for the fall and winter

terrns. Sorne courses can he taken by a student in both terrns continuously; while sorne were

taken in one of the terms. The queries to be perforrned are to find those courses that a student

registered for both terms and to find a surnmarization of courses that a student registered for
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N... F811 Wi.-r
Cou,.. lIbtk Cou,.. Mn

B:liley P. Math 100 88 Math 100 77
An 301 75 Pf1ysics 200 90

Math 100 82 Music 210 83
Jones J. Music 210 89 Physics 200 100

Physics 200 90

Math 100 73 Math 100 91
Manin R. An 301 79 An 301 78

Music 210 93 Music 210 90

Fa•• Win",
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Figure 3.42: Example of Student Course Registration

>domain Name, Course s~ring;

>domain Mark in~q;

>domain FalllCourse, Markl;
>domain Winter(Course. ~4rkl;

>relation Student(N~e, Fall, Winterl <- (
('Bailey P.', (C·~.ath 100',881, ('Art 301',75»).

(C'Math 100',771, C'Physics 200'.9011',
('Jones J.', «·Mad1100·.821. C'Music 210',89', ('Physics 200',9011.

('Music: 210',83" ('Physics 200·,lOO'}1.
('Martin R.·, «'Math 100',73', ('Art 301'.79). ("Music 210·,93l).

("Math 100',91'. C'Art 301",78', ("Music 210',90)}'
);

>(Ol::ind courses a studene regiseered both in fall te~ ~~d in winter term.)
>let; aaco~ be ([COUZ'•• ] iF- -blV ljoiA ([coar••] :lA W1Dt;.z) 1

>StudentRec:ordl <-(Name,:~ec:ordJ ~tn Student:

:~:_~:~~~~:~~:~:~::_------.-- - --- - - - ..
1 Name 1 ~~cord 1 acIIUI/i:'t! ,';nuai dumain -Rr:cord-
.---~--------.,--,--------.

1
BaJ.ley P. l' 7 1 - - - - - - t----- surro..arr:S
Jones J. '8 l "

Martin R. '9'. .~~J_--------.

relation St:udentReco:.d}_~.=r_3_~YRJ.~::i _
>F14tRecordl <- --fNa::1c ... Course 1 in (StudentReCordl [Record: ijoin: . id) . Recor.>fl ;,.-_---~
>pr FlatRecordl; - - - - - - - - - - - - - - - - .:: - - - - - - - - - - - - - - - - - - -

1 Name 1 Course 1
+------------.--------------+

B4iley P.
Jones J.
Jones J.
Martin R.
Martin R.
Martin R.

Math 100
Music 210
Physic:s 200
Art 301
Math 100
Music 210

''"con\'~n Ih~ r~sultto fiaI rdatiun

relation FlatRecordl bas 6 tuples
:> - to be continued -

•
Figure 3.43: Relational Aigebra ln Horizontal Operation of Domain Aigebra
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- concinue -

•
d uring the two terms.

As illustrated in Figure 3.43, a nested relation Student is created with attributes Name, FaU

and Winter where FaU and Winter are nested domains defined on Course and Mark. The nested

domains hoId the information of courses a student may register for during a term. To answer

the first query, a virtual domain Record is declared to be the natural join of the nested domains

FaU and Winter projected on their Course attributes. This will give the intersection of courses

taken in both the FaU and Winter terms, which is supposed to be the result of query 1. As we

will see, the virtual domain Record itself is a nested domain which will bold the result courses. A

projection is performed on relation Student with Record as one of the domains in the projection

Iist, which causes Record to be actualized. The result StudentRecordl is a nested relation that is

defined on Name and Record where the Record field contains only surrogates. A. further natural

joïn is perform between relations StudentRecordl and .Record which converts the nested relation

StudentRecordl to a fiat relation FlatRecordl. It is clear that FlatRecordl lists the courses the

students registered for in both terms (readers may consult Figure 3.42).

reldtion FlatRecord1 has 6 tuples

> (Q2: find courses d st:udent: regist:ered ei c.'ler in f{Jll r:erm cr in winr:er r:erm. J
>let "co~ be ([cour••) i.!l_w.a11l QjoiA ([Coar•• ) iA WiAter) 1

>$tudentRecord2 <-[Name.:~ecord) _in Student:
>pr StudentRecord2: - - - --- - _

+------------.------------.
1 Nèlme 1 ~'(cord 1 actua/i:.e ~'irrlla/ dOn/ain -Record-
.---~--------.~--\--------+

1

B<lJ.ley P. 1'10.------~-----sllrro"att!s
Jones J. '11. l "
Martin R. '12'.- .~~J---------.

rel<ltion StudentRe:::~dl_~§_3_ .!-~~~ _
>FlatRecord2 <- 'Oiame __CQurse) in CStudentRecord2 [Record: ijoin; . id) . RecordJ ~ __ --..
>pr FldtReCord2; - - - - - - - - - - - - - - - - - ,- - - - - - - - - - - - - - - - - - -
+------------+--------------+
1 Name 1 Course 1
.------~-----.--------------.

Bailey P.
B<liley P.
Ediley P.
Jones J.
Jones J.
Jones J.
Martin R.
Martin R.
Martin R.

Art 301
Ma~h 100
Physics 200
Math 100
Music 210
Physics 200
Art 301
Math 100
Music 210

''"com'err tlle rt!sult to fiat relation

•

+------------+--------------.
~eldtion FlatRecord2 has 9 ~u?les

Figure 3.44: Relational Algebra in Horizontal Operation of Domain A.lgebra

Similarly as illustrated in Figure 3.44, query 2 is performed by declaring a virtual donlain

which is a union join between FaU and Winter, and by actualizing this virtual domain on relation
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•
Student. The result is listed in relation FlatReeord2.

A point that needs to be mentioned here is that theoretically any operation that can be

performed in relational algebra (e.g. selection, projection, t-selection and aIl kinds of join oper­

ations) can also be performed on nested domains by using the horizontal operations of domain

algebra. Figure 3.45 and Figure 3.46 together give a more complex example of horizontal oper­

ations on nested domains.

....... FMI Win'"
eau,. _rtE

Course
_rtE

B;uley P. MadllOO 88 MadllOO 77
An 301 75 Physics 200 l)()

Millhloo 82 Music 210 83
Joncs J. Music 210 89 PhYSlcs200 100

PhyslCS 200 90

Malhloo 73 MoIlh 100 91
M:utJn R. AnJOI 79 AnJOI 78

~luslC 210 93 MusIc 210 90

Cou,...
NIl...

Couru Ibrtl

AnJOI 75
Badey P. Malh 100 82 C·l

PtIY$ICS 200 'Xl

MalhlOO 82
JonesJ. MuSlc 210 86(·1

PtIyslCS 200 95 C·l

AnJOI 78 (.)

~bnmR. M.u.b 100 82 (·1
Music 210 91 (·1

•

Figure 3.45: Calculate Average ~Iarks of Fall and \Vinter Terms

The same student record information in Figure 3.42 is used in this example. A new record

list is to be created which contains the student 's name~ the courses registered for in both terms

and their marks. In the case that same course was taken during both terms. the average mark

needs to be calculated. The result is illustrated on the right-side of the table in Figure 3.45.

As illustrated in Figure 3.46, various horizontal operations (e.g. renaming~ union join~ pro­

jection, math and if-then-else etc.) are involved in order to finish the query. Firstly, domain

Jvlark has to be renamed in order to perform ujoin \Vith FaU, since they are supposed to join on

attribute Course only. Second, null value de is used in the if-then-else construct, which calculates

an average mark if the courses were taken both in fall and winter. The result SludentRec is a

nested relation which is defined on the student's Name and the Courses information which is a

further relation with attrihutes Course and average.

Horizontal operations with relational algebra can also he applied to deeper levels of nested

domains. They hehave in the same \Vay previously introduced. However, due to their complexity,

further explanations are omitted here.
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>let mark be Mark;
>let record be Fall ujoin (Course. mark) in Winter;
>let average be if(Mark=dc or mark=dcl

then (Kark.mark) else (Hark+markI/2;
>let Courses be [Course. average) in record;
>StudentRec <- [Name. Coursesl in Student;
>pr StudentRec;

1 Name 1 Courses 1

·I-~~~~;:~~--·I~-':--------·I
Martin R. '~,'

+------------.~----------+

relation StudentRec has 3 tuples,
>pr . Courses-:
.----------~-.--------------+--------.
1 _ id " 1 Course 1 average 1••-~---,~----+--------------.--------.
, 7', Art 301 75
, 7 ' , Math 100 82
, 7'1 Physics 200 90

8 1 Kath 100 82
8 1 Music 210 86
8 1 Physics 200 95

1 9' Art 301 78
1 9' Kath 100 82
'9/ Music 210 91

+l~--__------~--------------.--------.
relation .Courses has 9 tuples

Figure 3.46: ~;[ore Relational Aigebra in Horizontal Operation of Donlain Aigebra
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3.5.4 Vertical Operations

•

Vertical operations [~[er84] of domain algebra work on attribute values of aIl tuples in a relation.

Basically~ four types of vertical operations are defined in jRelix, although only the first two are

inlplemented in current version:

• SiInple reduction

• Equivalence reduction

• Functional mapping

• Partial functional mapping

Simple reduction produces a single result from the values from aIl tuples of a single attribute

in the relation, while equivalence reduction provides a grouping mechanism not present in simple

reduction [iVler84]. Figure 3.47 gives sorne examples of the reduction operation.

In this example, toLall calculates the total mark regardless of the student and course; sub_tot

calculates the total mark for each student; and average computes the average mark for each

student .
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"'domain Name. Course scrinq;
>domain Mark incq;
>relaeion ScudentCName, Course, Mark) <- C

C"Bailey P.". "Mat.h 100", B51,
C"Bailey P.". "An 301', 771,
C"Jones .1.", "Madt 100",92),
C"Jones .1.", "Music 210", BB),
C"Martin R.". "Madt 100". B51 1;

>CQl:calculace che cocal marks.)
>1.1: t:oI: &11 be re4. o~ IlarJu
>CQ2:calëulace che sub-total marks for each studenc.)
>1.t: 1IUb_t:ot: be equJ.•• of IlaE'lt bsr _,
> CQ3: calcu!ace che average mark for ellc.'1 scudenl;.)
>1.t: .~... be

(equi•• gf IlaE'lt br _)/(eqai_ of 1 br __"
>StudencRec<-[Name, tot_aIl, sUb_tol;.llverllge) in Sl;udenl;;
>pr Sl;udentRec;
.~-----------+---------.-------~-+---------.
1 Name [ tot_aIl 1 sub_toc 1 average 1
.------------.---------.---------.---------+
1

Bailey P. 1 427 [ 162 1 81Jones J. 427 IBO 90
Martin R. 427 B5 85

relacion ScudeneRec bas 3 cuples

'"

Figure 3.47: Example of Reduction Operations
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•

The general synta..x for declaring a virtual dornain that performs a reduction operation is as

follows:

> let v-imame he red operator of expr; (simple reduction)

> let vimame be equiv operator of expr by expr_Iist; (equivalence reduction)

In the syntax for equivalence reduction, the expr-list after the keyword by describes the sort

attributes according to which the reduction is perforrned. The list is aiso called "by-lisr of

equivalence reduction.

The operator in the above synta..x must be both commutative and associative. The op­

erators satisfying this condition are addition (+), multiplication (*), max and min for numeric

operations~ and and or for boolean operations, and ijoin, ujain and sjain for relational opera-

tions etc.

As mentioned already, reiationai operations can be involved in vertical operations as weIl.

Figure 3.48 gives sorne examples for this case.

This exarnple uses relation Student introduced in Figure 3.42 and Figure 3.43~ and produces

a nested relation Courses which contains aIl the courses given in the raIl and winter terms

respectively (which happen to he same). As it is illustrated in the example~ "reduction of ujoin~'

is used ta generate such a nested relation.
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F.-coun.
An 301 AnJOI
~blb 100 M~IOO

MusIC 210 MUSIC 210
Pb~sICS 200 Ptaysics 200

~ ,
,

------<

>lec tall be [Course 1 in Fall;
>lec w~ter be [Course} ~ Winter;
>lec FallCourse be ~ _joila of tal1;
>lee W~tercours. be ~ u:foilaof "inter;
>Courses<-[FallCcurs•• Wincerecurs.1 in Studant;
>pr CouroS.s;
.------~-------.--------------.1 F&l.lC:ourse 1 Wintereourse 1
.--------------+--------------+1 7 1 8 1
.------------~-.--------------.relacion Courses hAs l tupl.
>pr . FallCourse;
+------------+--------------+
·l'-;~~--------l!~~~i;ï:=---~'''l' "

7 : K4th 100 :
7 ,', Music 210 ,
7 " ~Pbysics 200 '

.-----~-----.-------:=--_.:.
rel~on .FallC:ourse has • tuples

~;!:_:~~~~~::~~:~~:_---------.

, .~I-;:~-------:·tl~~~i~::---::--I'"
B 1 K4th 100 :- !l-------, Music 210 ,
li Jhysics 200 "

• -- - - - - - ---- -+ - -----.....-~ -=..------.
relacion .Wint8rec~rs. ha~ C tuples
:.

Figure 3.48: Example of Reduction \Vith Relational Operation

Vertical operations can also be applied to lower-Ievel (sub-)relations in a nested relation.

This is illustrated in Figure 3.49.

In this example, the average marks are calculated for each student in each term. This

requires vertical operation to work on nested damains FaU and Winter~ as illustrated by the

virt ua1 domain Ave combined with nested virtual domains fallRec and winterRec.

Finally, horizontal and vertical operations of domain algebra my be combined together to

produce quite sophisticated queries. However, detailed explanations are omitted here.

3.6 Views

•

Views are computed relations defined on relations (including computations and views them­

selves). Cnlike a relation, view does not hoId actual data upon being declared (and initialized).

They are usually regarded as a functional definition which is similar ta a procedure call in other

programming languages such as C and Java etc. Tuple data are generated on the fly for a view

when it is invoked by certain mechanism, which is similar to the actualization of a virtual do­

main. Readers are encouraged to refer to [Hao98] for detailed information on views in the jRelix

system.
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• >let: Ave ce (~. of ~Il)/(~. of 111

>let: fallRec be [Cou~se.Kar<.Avel ~r. Fall;
>lee win~erRec he [Course.~~rk.~veJ ~n Wincer;
>S:udent:Rec<-[N4=e. ~alIRec. win:erRe~l ~n Student;
>pr St:udent:Rec;

relation St~dentR~c ~~S ; ~~~les

>~r talloRec;

.------------.--._--------.------------.
1 Bailey P. 1 7 1 ë !
1 Jones .1. 1 9 1 : ~

1 Kart:in R. i 11 1 12
.------------.~-----------.------------.

1 "'l:~t:erRec 11 Cal ~ReC

1 . i.d 1 CC"~se 1 Ka~k 1 ...y~ 1
--------------------------------- •. ,--ç-.
1 7 i Art: :: (j: 1 7S 1 € 1 , 1

1 1 1 Ka t:h le (j 1 a!i l " a 1 ',1
1 9 l "'..a::t le 0 1 a 2 1: 5 7 : l

3 ! ~s ~ c ;<: 0 ~ è 9 :: ë 1 , 1

9 ! P!':ys:.=s ~·.::o 1 <to :1 Si ::

II 1 Art ~o: : 19 1:;;1; 1

_1_-=: ...I_~~~~_::~ __ i._?2 __ j~s_: " i
1:: l~s~c;<:O 19~ 1";1,1
• - - - - - - - - - - - - • - - - - - - - - - - - - • - - - - - - • - \ - -fi- - •-.

.... F" ...,
Cau... -- 1 ... eau... .... Ave

BaaJcy P. Maah 100 Ill! :XI Mm! (00 77 IJ
An 301 7S • XI ,~2Œ 90 13

M~IOO 112 ' 17 'M"'1C210 13 91

JUlIO J. l\oIlDIC:1O 19 17 ;PbyslCS 20C 100 'II

Pbysic:s :0 90 17 r

MxhlOO 73 : III :M~IOO 91 Kl>

~brtJll R An 301 79 0111 An 301 71 Ill'>

MIDIC :!IO 93 ',iiI MIDIC:!JO '10 86

~

Figure 3.49: Example of Reduction on Lower-Ievcl Nested Relations

3.7 Computations

Basically, computations are similar to the procedure caUs in sorne programming languages such

as C and Java etc. They accept parameters which are usually relations and output a relation as

the result of computation. Readers are encouraged to rerer to [Bak98] for detailed information

on computations in the jRelix system.

3.8 Advanced System Commands

System commands can be used to set the jRelix environment and display system information.

This section introduces sorne of the more advanced jRelix commands. By using these commands,

the user can know more about his/her environment upon starting the jRelix run-time system.

3.8.1 Setting Up Environment

•
In the current jRelix implementation, two types of environment modes (i.e. debugging mode and

timing nl0de) are provided like switches. The commands to toggle these switches are described

as follows:
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•
• debug; turn the debugging mode on/off. \Vhen the debugging mode is OD, the system

prints a syntax tree for the user command or statement whenever the user rnakes an

action. This is particularly useful when doing debugging and when the syntax tree needs

to be investigated. Figure 3.50 gives an example of this mode.

>d...b\;q;

N(;~e: dl!bu9 lDOde .:1 en

>let. x be '-""S:
5YmAJC :tŒE :
oec!4r4C:'::~: 1'0: ~44 ;r.t,,;.l:: 0

: d..r:~.!."r : 2 JO: 23 C : " : 0
Iodd: JCO: 3 32 :null: 0

:d4!nt.lfler:23C :21~:A:C

:dll!:",c:,! .er;2 3e ~2Ja:6;0

Figure 3.50: Turning Debugging ~'Iode On

• time; turn the timer on/off. \Vhen timer is turned on~ the interpretation time of user

command is displayed in seconds whenever the user makes an action. Figure 3.51 gjves an

example of this mode.

~C:\!; ::.:.=er :.s ,,;:':
ln:'erJ:ret..at..:.cn ~~:::e O.:Jl:l
)0 ~c:. x. be A-8:
:.r~t.en::re't.a.r.:..:r:. "::.~c 'J.~~2~

Figure 3.51: Turning Timer On

3.8.2 Displaying System Table Information

•

As nlentioned in section 3.2.6, there are three system relations maintained by jRelix, i.e. .dom,

.rel and .rd. They have corresponding memory versions i.e. domtable and reltable etc. which

are usually called "system tables". System tables are maintained by the jRelix system. System

table information is consulted and modified when declaring actual or virtual domains~ relations~

and views etc.

The commands to show system tables are introduced in sections 3.2.2 and 3.2.4. However~

thesc commands usually display normal relation/domain information. There is, on the other
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•

hand, certain information that is not displayed by the commands introduced so far, and that

may be of interest to the jRelLx user. This section introduces two jRelix commands that deal

with this problem.

• ssd; toggles the mode of the "sd;" commando \Vhen this switch is on, the "sd;" command

displays both user-defined and system-defined domain information. A sample output of

this case is shown in Figure 3.52.

>s&d;
Not:e: sh"", .rf5t:eD1 demain lllOde is cn
>sd'
---:--------------------------- Comain Table -----------------------------

~~----,-~:~~:::_:::_---~~:_------~::_------------------------
· int:eoo!r U1Ceqer - - _ l
·s~c short: • • l
~ lonq lonq ...... ,1

•. tioat: flo...c r,
•. double double l •

. st:rinq st:rinq l '

.expr expression l

.id idlist: t

.4t:cril:lut:l!s int:eqer l ,. __

.t:uples 1nt:eqer l, - - S\·sr..",.J..{utrJ JutrtaUIS
• .sort: inceqer l
.rel~ s~r~Q :
.doaLnAme scrinq 2 :

\.~posit.ion ineeoer 1.,'
~çount inteQer ,i
· cyPe ince'ger " l
· rvc·· _ inceqer , l _r UJrr-J..finrJ dowwl1l.J

~~~:-::~-~~~~~~~-~----~-------~~:~~
, Il' inl:eqer 2

C fIo... t:

~:~:;:_~---~~~;~~::::~~-:::~-:::~-:==~-:,_-:~~::~::~:_--------------------

Figure 3.52: Sample Output of ~'ssd;!' + '"sd;"

1t's clear to see from the sampIe output that the system-defined dornain name starts with

a"." .

• ssr; toggles the mode of the "sr;" commando \Vhen this switch is on, the "'sr;" command

displays both user-defined and system-defined relation entries in reltable. Since a nested

relational domain is always connected \Vith a (sub)relation entry in reltable, this entry will

also be displayed. A sampIe output of this case is shown in Figure 3.53.
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>ssr;
Note: show ~fstem relation œode is on
>sr;
----------------------------- Relation Table -----------------------------Na=e ~fPe Arity NTuples Sort
;~;~-:=:~~-:~;~~n----·-~-·-~s·----------3·,~-:=~~-:ë::------;;;~~~~~

.dOD'l relation 3 8 0;'" .~ .. nWiDtis
~rèr - - - - __ -z;:elatlon J 10 __ - - - - -cr - nWülIU

-~~~~~~==~;~r~~:::::::::~:::;~~~~-~;;~===~~-~:-_C~~6
,-~ t"elation :2 0 a _~ _ 1U~,-4~/ütM

v--------_yi~ ~ 9_-------~- ~~~

Figure 3.53: Sample Output of "ssr;" + "sr;"

iD

3.8.3 Batch Processing

•

In jRelix~ large databases (relations) are usually created as text files by hand by using a text

editor~ and then loaded into the jRelLx run-time system by using the input commando In fact~

"inpue~ is a usefuI command to perform batch processing, which means~ any jRelix commands

and statements can be stored as batch files on disk and be loaded into the system like a sequence

of jRelix commands. For example, suppose that the disk file combat is edited to hold a batch of

jRelix commands and statements such as dornain and relation declarations and initializations~

and certain operations of relational as weil as domain algebra. The following command is used

ta load and perform aIl the operations in the jRelix run-time system.

> input "combaC;

The contents of file combat might look like something listed in Figure 3.54.
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domain Name, Course string;
domain Mark intq;
relation Student(Name. Course, Markl <- {

{"Bailey P.", "Math 100", 851,
("Bailey P.". "Art 301", 77l.
("Jones J.". "Math 100". 921.
("Martin R.·. "Math 100·. 851 );

StudentList <- [Name) in Student;
CourseList <- [Course) in Student;
let average be (equiv+ of Mark by Namel 1 (equiv+ of l by Namel ;
StudentRecord <- [Name. average) in Student;
pr StudentList;
pr CourseList;
pr StudentRecord;

Figure 3.54: Example of Batch File combat
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Chapter 4

Implementation and Solution Strategy

As introduced in chapter 3, the jRelix system consists of such conceptual modules: relational al­

gebra~ domain algebra and computations. In the jRelix implementation, each conceptual module

is designed to correspond to several low-Ievel function nlodules (or components) in an object­

oricnted manner. The goal is to break the problem down into a nunlber of smaller problems that

are easier to understand and implement. Ideally, the function modules (or components) can be

implemented directly as objects in the Java language.

In this chapter, we will explore sorne of the implementation details in jRelix. In section 4.1,

the jRelix developing environment and tools are briefty discussed. The advantage of the Java

programming language over other programming languages is shown to readers. Section 4.2 gives

a gcneral overview of the jRelix system. Different function modules and their relationship are

dcscribed.

In section 4.3, something regarding the jRelix parser and interpreter is generally discussed.

Thc jRelix parser and interpreter together serve as the front-end processor for the entire system.

They are the interface between the end user and the central jRelix database engine.

Section 4.3 also roughly talks about the top-Ievel expression evaluator. In the jRelix system,

aIl user inputs are captured and translated into a syntax tree by parser/interpreter; while the

evaluator makes the syntax tree understandable by the rest of the jRelix system. In addition,

the top-Ievel expression evaluator is also involved in actualization of lower-Ievel nested virtual

domains.

72
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Section 4.4 deals with the system table mechanism in jRelix. Apart from user-defined rela­

tional or domain information, jRelix maintains so-called "system information" which describes

the current system execution state and controls the system bchavior either during a single jRelix

session or across multiple sessions. As an example, the three system relations .rel, .dom and .rd

mentioned in section 3.2.6 contain highly important information about user-defined relations

in the system. Any error \Vith these system relations may result in the malfunctioning of the

entire system or a system crash in the \Vorst case. System information is maintained in several

so-called ··system tables". System tables exist both in memory and on hard disk with different

formats, which will also be described in section 4.4.

Section 4.5 explores the virtual domain actualizer, which deals \Vith domain algebra in jRelh:

and is therefore one of the most important modules in jRelix. Apart from the implementation

of horizontal and vertical operations in domain algebra, the actualizer is also in charge of the

\'irtual domain's validation check, operands' type compatibility testing and mutually recursive

definition detection etc., which will also he discussed in this section.

A virtual domain is usually actualized on a tuple-by-tuple level, which means the relation

on which the virtual domain is to be actualized is scanned from the first tuple to the last

one, and for each tuple data, the virtual domain's value is calculated. This is particularly

true with the horizontal operation of domain algebra. For vertical operations, the relation

is still scanned and relevant tuple data is stored somewhere for the vertical (e.g. reduction)

caIculation. This approach is called as r.:'tuple-by-tuple approach". On the other hand, the tuple­

by-tuple approach has efficiency problems since a loop within the entirc relation is involved. This

poses an even more serious problem when actualizing a virtual domain with relational operations

on a nested relation, since, for example, joins on a tuple level are supposed to slow down the

whole actualization procedure, as highly time-consuming sorting and disk 1/0 are involved with

joins. Therefore, an alternative \Vay named "top-LeveL approach" is also available in the jRelix

system. The top-Ievel approach deals \Vith top-Ievel relation operations during virtual domain

actualization, and yet fulfills the same result as tuple-Ievel data calculation. Both approaches

are discllssed in section 4.5.

Note that the so-called "reLational processorJ' and "computation processor' are not discussed
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in this thesis due to the space and time constraints. The relational processor is in charge of im­

plementing relational algebra. Sorne of the most important relational operations e.g. projection,

selection and various join operations are implemented within this module. The computation pro­

cessor deals \Vith computations in the jRelix system. As both of these modules are of the same

importance and weight as the virtual domain actualizer, detailed descriptions are documented

in [Hao98] and [Bak98] respectively.

4.1 Developing Environment and Toois

\Vhen choosing a developing environment, the following questions might firstly come to the

decision-maker's mind.

• What 's the target operating system?

• Which programming language should be chosen?

• Are there any handy developing toolsjutilities to speed up the development procedure?

• How about the experimental/testing environment, e.g. profiler?

These questions are frequently asked in the initial stage of almost aIl software development.

They will he well discussed in this section. Certain comparisons between jRelix and its countcr­

part (C version Relix) will also he discussed briefly.

4.1.1 Java Programming Language

The aid version of Relix \Vas written in C programming language, and is portable across different

platfarms running the UNIX operating system. Although C language pro\"ides applications with

high performance in speed, flexibility in programming, and portability across different UI'\IX

cnvironments, it is fairly hard to program and debug C code due tO the complexity of mem­

ory manipulation etc. This is especially true when building a medium/large-sized application

snch as a database engine like Relix. On the other hand, there are no built-in network facili­

tics with standard C. To gain the power of network, C language will need additional network

Iayers/libraries, which are mostly platform dependent however.
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The Java programming language [AG96) [GJS96), developed at Sun NIicrosystems under the

guidance of James Gosling and Bill Voy, \Vas designed ta he a machine independent programming

language that is bath powerful enough ta replace native executable code and safe enough to

traverse networks. The authors of Java have \Vritten an influential '"\Vhite Paper" that explains

their design goals and accomplishments. Their paper is organized along the characteristics as

showed in Figure 4.1 [GJS96) [Gos96):

- Object Orit!nt~d

- Arehit~clure Neutral &: Portability

• Simple

- NeMork Facility and Distribution

- Robust &: Secure

- MlIltithreaded

Figure 4.1: Java Buzzwords

It is aimost impossible ta discuss aIl the details about the above-mentioned features in this

thesis. From Relix' point of view, Java is a good choice because of the following reasons.

1. It is an Object-Oriented language hence it is easy to program.

2. ft is platform independent.

3. ft has both robust and safe built-in network facilities.

4. It supports multi-threading.

The biggcst program with Java is its speed. Java is an interpreted language. Generally

speaking, Java compiler generates bytecodes which are interpreted by the Java Virtual ;\·Iachine

(JV)'I). Needless to say, this procedure slows down the execution speed especially for an ap­

plication as database engine. However, there are ways to circumvent this drawback, e.g. Java

bytecodcs cao be translated by a native code compiler (such as .lIT) into machine code for the

particular CPU the application is running on. This makes the target executing code just as fast

as code written in other languages such as C.
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4.1.2 JavaCC and JJTree

To build a non-trivial application that can intercept the user commands and respond interac­

tively, a grammatical parser and a syntactic interpreter must he built as the front-end modules.

In the Java world, two utility applications are freely available as tools ta create such front-ends

with sophisticated functionalities and \Vith less design and coding efforts.

the Java Compiler Compiler (JavaCe) [SDV96] is a parser generator for use with Java appli­

cations. A parser generator is a tool that reads a high-Ievel grammar specification and converts

it ta a Java program that can recognize matches in the grammar. In addition to the parser

generator itself, .lavaCC provides other standard capabilities related ta parser generation such

as tree building, actions, debugging etc. JavaCC uses the top-down parsing technique [ASU86].

J.lTree is a preprocessor for JavaCC that inserts parse tree building actions at various places

in the .lavaCC source. The output of .lJTree is run through .lavaCC ta create the parser. The

relationship between .lavaCC and J.lTree is illustrated in Figure 4.2.

Figure 4.2: .lavaCC and J.JTree

.lavaCe and JJTree are used to build the front-end parser for the jRelix system. Details will

be introduced later in this chapter.

4.1.3 Debugger and Profiler

Two utility programs called ''jdb" and 'javap:: are shipped \Vith the Java Development Kit

(JDK). jdb is the official debugger provided by Sun ~Iicrosystems© for developing Java appli­

cations, while javap is a profiler provided by Sun ~Hcrosystems© for the Java developers ta

statistically measure the perfornlance of different code pieces.



CHAPTER 4. IMPLEAtIENTATION AND SOLUTI01V STRATEGY 77

•
However, since both of these utilities are hard to use, they have not heen adopted by the

jRelix project tearn.

4.2 System Overview

Theoretically there are three conceptual aspects in the jRelix system, i.e. relational algebra~

domain algebra and computation. They correspond to three basic function modules in the

ilnplementation~ which work together (and also support each other) ta fulfill the tasks of a

database engine. Apart From the three modules, there are other supporting modules such as

parser and interpreter which function as the front-end processor~ and act as an interface between

the end-user and the central database engine. Figure 4.3 is an overview of the system.

Function:aJ ModuJes Disk Files

,

•

Figure 4.3: jRelLx System Overview

.-\ jRelix command entered by the end-user is first accepted by the parser. The parser is a Java

class named Parser which is generated by JavaCC (refer ta 4.1.2). It reads the command-linc

inputs and performs syntax analysis and finally translates jRelix commands into intermediate

codes which have a tree structure. In JavaCC terminology, they are called syntax trees. :More

about the parser will be discussed in section 4.3.

The interpreter receives synta..x trees passed by the parser and does certain evaluations such

as crror checking etc. It then caUs different function modules to perform the operations. In the

jRelix implementation, an Interpreter cIass is built to represent the interpreter. The evaluator
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is embedded in the interpreter. See section 4.3 for details on the interpreter.

The central database engine is represented by three modules i.e. the Relation Proces­

sor [Hao98L the Virtual Domain Actualizer (see section 4.5) and the Computation Proces­

sor [Bak98]. Three Java classes (i.e. Relation, A.ctualizer and Computation) are built corre­

spondingly.

It is clear to see from Figure 4.3 that only the relation processor is responsible for disk 1/0

in a jRelix relation, whereas other modules access secondary storage via the relation processor.

On the other hand, the system table maintainer is in charge of disk 1/0 for the system tables.

Details are given in section 4.4.

4.3 Front End Processor

This section briefly discusses the front-end processor which consists of the parser, interpreter and

top-Ievel evaluator. The front-end processor is the interface between the end-user and the central

jRelix database engine. The relationship of the three components in the front-end processor is

illustrated in Figure 4.4.

:n't.r~r.":.r .•vahJ.4~eJ:;:J':' ,1. .'
n:WionaJ.t.Igcbn

R.l.t.:.on.:::II.,i.;C:':l(I.

Figure 4.4: jRelix Front End Processor

As mentioned before, a jRelix command entered by the end-user is first accepted by the jRelix

parser. The parser reads the command-line input, analyzes the command syntax and finally

translates the command into an intermediate code which has a tree structure and is therefore
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called the syntax tree. The jRelix parser is created by using JavaCC (refer to section 4.1.2). The

Backus-Naur form of aIl the jRelix command grammar is summarized in appendix:\. In the

jRelix implementation, a Parser class is created to correspond with this module.

The former version of RelLx \Vas developed in the C programming language and used Lex

as its lexical analyzer and Yacc as its parser generator. The combination of these two utilities

created a parser for the Relix interpreter which mns in the UNIX environment. In the jRelix

implementation~the JavaCC utility introduced in section 4.1.2 is used to generate the front-end

parser. In fact, .lavaCC works as both lexical analyzer and parser generator which improves the

processing efficiency.

On the other hand, the J.JTree utility (refer to section 4.1.2) is used as an auxiliary program

for .lavaCC to specify the actions to he performed when a syntax match is round by JavaCC.

Specifical1y, a source conforming to the .JJTree syntax, which defines the jRelix grammar and

actions for a match of the grammar, is introduced to the J.JTree utility, which generates the

intermediate code for JavaCC. JavaCe, upon receiving the output of J.lTree, continues the

process and generates source code in Java which is supposed to work together as the front-end

parser of jRelix. Figure 4.2 depicts the procedure of parser generation in jRelLx.

,,::~d C==->"dll IC=,..ct ,
{ 7oic.er. ~ =: nu11; )
i

<HE:..P~ [ t '# < :::E::-:-: f::Eï'> J

i ~~~~g!s~s;t~3p~~::.~~~. ~o~~~h.?~ :'s;~~y~;
1
<;U!7> ( Jj~7h~5.5~~ICP_C~~~~. O?_OU:71,

~ :~?'_~, :: ::: <STR!NG_:"'!T'~>
~ j;:.":"hls.se~(CP_CC~. ~?_!SP"':r. :..~:::.ac:1t!l;

1

j~EBUG> ~ )J~Th<s.setla?_CC~~'~. :?_~EB~Gt,

1~7CH> 1 JJ~~<s.set{a?_C~~~'~. C?_BA7CHt, ;

<:::E:...:» n::::"i st. ( •1 JJ~Th<s.3e~IC?_C~~~~. C?_:~l;

<:::;lc::...R> :t::~:..st.()

1 ;;~Th<s.se~IO?_~~~'~. Ç?_C~I, }
1
<?R> Exp ....ss<cnll
1 lJ~7~~s_se~IO?_~~. C?_?RI,

~S~> r :. os < =::E:.-:'IFIER> i
i S~:-<r.g 5 ' lt •• nul~l ? null : t.~=ge,
r JJc7h<5_se~{O?_C~~~D. O?_SC, 51; )

<$îi> ( :. ~ < I:Je-~:F::El'.> l
( Senng 5 • le •• nulU ' "ull , t. <::'047'"
1 Jj~~~lS.SC~(O~_CC~~'~. CP_Srt. 5J; ~

<SftO> ( jj~7his.se~(C?_CC~~. C?_S~=t. :
1
<PRI~7> C = <~:~G_~IT~>

1 nt7~us_se~IC?_cc.~~'J:). C?_?":~;:-. ~.<=...geJ; 1

IS~> ( JJtTh~s.5et(C?_O:~~~D. O?_55:/; 1

<S5R> l ;;~7hls.5etIC?_:C~~~. O?_SS~I; )

Figure 4.5: .J.JTree Source Code
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Figure 4.5 gives a simplified example of the JJTree source code for the jReli.x "Command"

syntax, where the syntax for a11 jReli.x commands e.g. "deld", "delr" etc. are specified. As well~

the actions to be performed when various jRelbc commands are entered by the end user are also

declared here. The description for how to write JJTree source code is beyond the scope of this

thesis. Readers may, however, refer to corresponding documentation on JJTree and JavaCe for

detailed explanation.

ACter the parser is generated by J.JTree and JavaCC, the generated Java code is rearly ta

be compiled in order to produce the object code for the jRelbc parser. When executing the

parser~ the input is the user command, while the output is the so-called "syntax tree~. A syntax

tree is an internai representation of the user commando It comprises nodes and relationships.

Figure 4.6 illustrates the syntax tree of the jReli.x command ·~let SumAB he A + B;~~. In the

figure! the nodes are represented by labeled circles (e.g. '·Declarationt
') , and the relationships

are represented by arrows. Details of the jRelix syntax tree will be explored later in this chapter.

rool

•

Figure 4.6: An Example of Syntax Tree Produced by the Parser

The jRelix interpreter receives synta.x trees passed from the parser and does certain c\"alua­

tions such as error checking etc. It then caBs different function modules to perform operations.

In the jRelix implementation, an Interpreter class is built to represent the interpreter. The

evaluator is embedded in the interprcter.

In the jRelix system, aIl user inputs are captured and translated into a syntax tree by the

parser/interpreter; the evaluator makes the syntax tree understandable to the rest of the jRelix

system. In addition, a tOp"level expression evaluator is also involved in actualization of lower­

level nested virtual domains.
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As mentioned before, upon declaration and initialization, a relation is stored in a file whose

name corresponds to the name of the relation. User-defined relations induding domains etc.

are maintained in a jRelix database. Every jReli.x database maintains a set of "system tablei'

which represent the data dictionary of the database and are stored permanently as system files.

Three basic system tables are used to store information about domains, relations and relevant

components. Sections 4.4.1 to 4.4.3 discuss these system tables respectively. The term "system

table~' has two different meanings regarding their storage formats, Le. the storage format as

pernlanent files on hard disk, and the memory format stored in RA.~·L Both formats will be

discussed.

Figure 4.7 describes the maintenance of the system tables. Details about the maintenance

mechanism will be explored in section 4.4.5.

•
4.4

4.4.1

System Table Maintainer

Figure 4.7: System Table ~Iaintainer

Domain Table

•

In the jRelix implementation, the memory version of the infonnation on aIl domains in the

database is maintained in a hash-table, with domain names as hash keys. Each item in the hash­

table has the structure depicted in figure 4.8. The hash-table is maintained by a DomTable class,

which performs various operations on domain items (e.g. adds a new domain to the hash-table

etc.); the domain item structure is represented by a DomEntry class.
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• nem Type Deecription

namc: suing domain name

type integer domain type - - --
tn:e SimpleNode the synux tree if it's a vinuaJ domaine

ocheiwise null

numref in~ger lhe number of limes that lhis domain is
referenced

,--.

----..-1,
1
1
1

1,
1

,--..

8001..EA.~

SHORT
l:'IoïEGER
LONG
FLOAT
DOUBLE
STRCliG
TEXT
snrr
EXPR
IDLJ~ï

COMP

Figure 4.8: Domain Table Format (In-R.A~iI Version)

Csually we call the memory-version of the domain table "domtablë~;On the other hand! the

domain table information that is stored permanently in a disk file is named ".dom". The storage

format of a .dom file is depicted in Figure 4.9. Obviously, the format of file .dom is quite similar

ta that of the "In-RAM' version domtable. The only difference is the storage of the syntax tree

for virtual domains. Section 4.4.4 describes how jRelix handles the syntax tree information~and

section 4.4.5 explains the details of domain table maintenance.

Item Type Description

name string damain name

type integer damain type

numref integt:r the number of timc:s lhat this damain is
refc:renced

Figure 4.9: Storage Format of File. dom

4.4.2 Relation Table

•

Information on aIl relations in the database is also maintained by a hash-table in memory~

with relation names as hash keys. Each item in the hash-table has the structure depicted in

figure ..1.10. In the jRelix implementation, the hash-tahle is maintained by the RelTable class,

which performs various operations on the system relation table (e.g. add a new relation to the

hash-table); and the Relation class describes the relation entry structure, as well as perform the

relational operations (e.g. joins, projections and selections etc.) .
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hm Trpt Dacriplion

n:unc: string n:lalion n:une

rvc intcger type (RELATION. VIEW or COMPUTATION)

numtuples intcgc:r the number of luplc:s in this n:lation

numanrs intcger the number of attributc:s in this rdaliOfl

numsortattrs intcger the number of sonc:d attributcs

tn:c: SimpleNode synlax trec rool if il is a view

domaios Domainf) array ofdamain objects

data Objc:et() poinler lo n:lalion data

ç;)pacily inl ç;)pacily of data

Figure 4.10: Relation Table Format (In-R.ANI Version)
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The memory-version of a relation table is usually called "reltahle". On the other hand, the

relation table information that is stored permanently in a disk file is named ". rel'. The storage

format of a .rel file is illustrated in Figure 4.11. The items in file .rel are part of the items of

the /n-RAM version of reltable. The information about domain items a relation is defined on is

not stored in file .rel, instead it is maintained in another file called .rd~ which will be discussed

in section 4.4.3. AIso, syntax tree information for views is not stored in file .rel. Section 4.4.4

describes how jRelix handles the syntax tree information, and section 4.4.5 explains the details

of reltable maintenance.

Item Type DHc:ription

name string relalion name

rvc mtegc:r type (RELATION. VIEW or COMPUTATION)

numluples inu:ger the: number of luples in t1lis relation

numatlfS inleger [he number of altribules in t1lis relation

numsortanfS inreger the number of sorled illtribules

Figure 4.11: Storage Format of File .rel

4.4.3 RD Tab!e

•
Information t.hat Iiilks the relations \Vith the domains on which they are defined is maintained

by the so-called RelDom (or RD) table. This kind of information is stored permanently in a disk
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file named ".rd'. Figure 4.12 describes the file format for this .rd table. However, different from

domtable and reltable, there is no memory-version of RD table. As explained in section 4.4.5,

RD table information is loaded from the .rd disk file by Interpreter and inserted into reltable and

domtable on the fiy. The same is true when jReli.""<: stores RD information to the disk file .rd.

Item Type DncrlplJon

reiName string relation name

domName string domain name

position integer the position of ttùs domain in cureent relation

Figure 4.12: File Structure of .rd

4.4.4 Expression in System Tables

As wc know, the definitions of virtual domain and views are represented by expression syntax

trees which are a set of SimpleNode's connected in a tree structure. Figure 4.13 depicts the

expression tree of virtual domain x, where x is declared by "let x be S ijoin T ujoin U;".

rll<,t .?------- ujoi

0~ (0

Figure 4.13: Expression Tree of ~let x be S ijoin T'Ujoin U;"

A tenlporary hash-table is used by the ExprTable class ta store expression trees when load­

ing/saving the trees from/to a system disk file .expr. It is temporary because only when the

system is starting/exiting is this hash-table used to hold the expression trees. During most of

the execution time, the expression trees are maintained within domtable (for virtual domains)

and rel table (for views).

Since expression trees are composed of SimpleNode objects, they are stored in the .expr
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file by means of Java's serialization 1/0. ExprTable is in charge of serializing the tree streams

to/from the disk. Details are explained in section 4.4.5.

4.4.5 System Table Initialization and Saving

As illustrated in Figure 4.7, jRelix maintains three basic system tables on disk, i.e. domtable

(.dom), reltable (.rel) and "ni' table (.rd). The Java serialized expression table (.expr) is a

complementary table that maintains the syntax tree for virtual domains and views. During a

system session, jRelix basically maintains the domtable and reltable in memory. Ail information

contained in the "ni' table and expression table is loaded into or extracted from the domtable

and reltable during the system initialization and/or the system exiting time.

System Table Initialization

Figure 4.14 illustrates the system table initialization procedure.

Q

-----<
........ y'

l '

, '-
G -,,1 \',

"

rumc o-c lfluplo ltl:'C dum;unIL~

• ,
1 1

, 1,

-----
Dame l)llC ln:.: numrel

•1
1

1,

•

Figure 4.14: System Table Initialization Procedure

1. Upon starting the system, the interpreter firstly initializes the reltable which involves

constructing a RelTable abject. The RelTable constructor calls its load() method which

loads the .rel from disk. The loading is achieved by using a BlocklnputStream. At this
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stage however, the expression trees for view and the relations domain list are not yet

loaded.

If no .rel file is round in the current database directory, jRelix initializes the reltable \Vith

the items illustrated in Figure 4.15~ which are basic system relation items- This deals with

the case where the jRelix database is newly created. Obviously, the system relation's name

starts with a'"." .

N8... • Tupl.. .AttrIbut•• Type

.rel 3 5 RELATION

.dom 8 3 RELATION

.rd 10 3 RELATION

Figure 4.15: Initial Entries in Reltable

2. The interpreter then initializes the domtable by constructing a DomTable abject. The

DomTable constructar calls its load() method which loads the .dom from disk. The loading

is achieved by using a BlocklnputStream. At this stage, the expression trees for virtual

domains are not yet loaded into domtable.

If no .dom file found in the current database directory, jRelix initializes the domtable \Vith

the items illustrated in Figure 4.16, which are basic system domain items. This deaIs with

the case where the jRelix database is newly created. Obviously, the system domain's name

starts with a"." .

3. :'\ext, an ExprTable abject is constructed by the interpreter, and thus the expression trees

are loaded from .expr file. As mentioned in section 4.4.4, expression trees are stored on

disk by Java's abject serialization mechanism. Hence, an Obje:ctlnputStream is used to

load the expression information.

Expression trees are loaded inta a temporary hash-table which is maintained by the Ex­

prTable class. ExprTable then calls the insertRJot() methods of damtable and reltable ta

insert loaded tree objects inta these two tables respectively.
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,..,.. Type ....,
.rel llôUIle smng 2
.tuples integer 1
.anributes integc:r 1
.rve integer 1
.son inreger 1
.dom_nanlc: string 2
.type lDteger 1

.count integer 1

.position inreger 1

.id idlist 1

.boa1 boolean 1

.shan short 1

.intcger lDteger 1

.long long 1

.flO3t flo3t 1

.double double 1

.smng smng 1

.lext text 1

.expr expression 1

.slml slalement 1

Figure 4.16: Initial Entries in Domtable
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As we'll see in next section (System Table Saving), expressions for a virtual domain are

prefixed by a"." before saving, sa that the loader of ExprTable can correctly decide which

expression goes to domtable and which goes to reltable.

..1. Finally, the interpreter calls its loadRD Table{) method to load the RD information from

the .rd file using a BlockInputStream. As mentioned in Section 4.4.3, RD information

describes which relation is defined on which attributes. Attributes that belong to a relation

are inserted in the reltable by its insertIDListO method calI.

If no .rd file is found in the current database directory, jRelix initializes the RD information

\Vith the items illustrated in Figure 4.17, which are basic system relations corresponding

to their attributes (i.e. domains). This deals with the situation where the jRelix database

is newly created.

It 's easy to see that the initial system relations (Le..rel, .dom and. rd in Figure 4.17) are

predefined in Figure 4.15, which includes the initial relation items. Their corresponding

domains are predefined in Figure 4.16.
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.lei .dom .rd

.rel_rwne .dom_narne .rel_narne

.Iuples .type .dom_n:une

.altribules .counl .position

.rve

.5Ort

Figure 4.17: Initial RD Entries

System Table Saving

88

System table saving is kind of a reverse procedure of the system table initialization explained

previously. Figure 4.18 illustrates the system table saving procedure which occurs at the end of

a jRelix session.

ExprT:able.dump()

G
h h -- - -- - -- - - - - - --~ .dom J

o ,-4 .rel J
-----~---------<',

"-L .rd J
G

- h - - - - - - - - - - - h h - -l expr J

•

Figure 4.18: System Table Saving Procedure

1. Right before exiting, the jRelix interpreter caBs DomTable's dump() method, which saves

the domtable information to the .dom file by using a BlockOutputStream. Note however,

that this procedure only saves dornain's name1 type and #reference fields to disk. 1t does

not touch the expression tree of virtual domains, because the expression tree information

will be handled by ExprTabIe object, as explained in step 3.

2. The interpreter then caBs RelTable's dump{) method which saves the reltable information

to .rel by using a BIockOutputStream. It also saves the relation and its corresponding
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domain information to .rd. But it does not do anything for a view's expression tree due to

same reason as that given in step 1.

3. Finally, ExprTable's dump() method is called by the interpreter. This method extracts the

expression trees from domtable and reltable by calling their fillExprTable() methods: and

serializes the tree objects to the disk file .expr. Before that, DomTable's fillExprTable()

method prefi..xes a"." to the virtual domain's name. This tells the loader of the expression

trees which expression tree belongs to virtual domains, and which belongs to views.

4.5 Virtual Domain Actualizer

•

The virtual domain actualizer is responsible for the functionalities of domain algebra in jRelix.

Hence, it is needless to say that it is one of the key components in the system. The actualizer

implenlents both horizontal and vertical operations on a relation. In particulaL it supports

nested domain operations such that domain algebra and relational algebra are weil integrated.

In other words, domain algebra becomes a super-set of relational algebra in the jRelix imple­

mentation. '-Vhen the user funs a nested domain operation, relational operations are invoked

and fun against a set of sub-relations which are attributes of the upper-Ievel relations.

Computation is also integrated into the actualizer. It can be regarded as a virtual procedure

call which accepts parameters from its environment, and outputs the result as a relation. From

the actualizer point of view, the computation is applied onto a tuple-by-tuple level, which is

quite similar to a virtual domain. But compared \Vith the domain actualizer, the computation

processor provides a much stronger handling capability of complex operations.

Figure 4.19 illustrates the basic control flow of a virtual domain actualizer.

Apart from actualization, a virtual domain actualizer is also in charge of virtual domain

\·alidation checks" operand type compatibility testing and mutually recursive definition detection

etc. This sort of run-time check is much stronger than the checking during declaration time.

Since the virtual domain declaration has a close relationship \Vith the actualizer, we move its

description from section 4.4 to the next section. Section 4.5.2 describes the procedure used ta

COllstruct a virtual domain actualizer. The details of virtual tree building and various validation



CH.4.PTER 4. Il\!IPLEAfEl\lTATION A,ND SOLUTI01V STR.4TEGY 90

• No

Figure 4.19: Basic Control Flow of a Virtual Domain :\ctualizer

checks are explored in section 4.5.3. Section 4.5.4 and 4.5.5 describe the detailed actualization

procedures for the tuple-by-tuple approach and the "top-Ievel approach respectively, which are

central parts of an actualizer.

4.5.1 Virtual Domain Declaration

Declaring a virtual domain is quite similar to defining a procedure call in other programming

languages such as C and Java, with the procedure body represented in the form of an expression

tree. Figure 4.20 illustrates this idea.

procedure x(A. B)

r
n:lum A+B;

1

<=>

let x ~A+B; ....
a procl!durl! dl!c1arat;on \';nuai doma;" dt:clarat;oll and iu I!xprl!ssitm trl!l!

•

Figure 4.20: Virtual Domain Declaration

On the other hand, the virtual domain declaration command itsclf is in the form of a syntax

tree as depicted in Figure 4.21. Obviously, this syntéL~ tree includes the expression tree for the

\'irtual domain definition (the dashed rectangle in Figure 4.21). Therefore, the synta.x tree of a

virtual domain can be simply "eut off" from the syntax tree of the dedaration commando
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Figure 4.21: Synta-x Tree for the Command "let x be A +B~-"

However~ before the virtual domain expression tree is cut off from the syntax tree of the

declaration command and is inserted into the domtable, the foUowing procedure is performed.

1. Traverse the expression tree to make sure that aU identifiers in the tree have been already

declared in domtable or reltable (for top-Ievel relations). This rneans that a virtual domain

must be defined on something that already exists, otherwise! an error message is displayed.

This procedure is executed by DomTable.traverseTree().

2. If we are redeclaring an existing dornain~ we just insert/replacc the expression tree in that

domain!s ~tree~ field. Note, the reference counters of those referenced dornains are not

incremented. However, before we do sorne actual work~ we must make sure that old/new

domains~ types are identical even if we \Vant to ovenvrite a virtual domain. This procedure

is partially done by Dom Table. traverse Type().

3. If we are declaring a new virtual domain~ simply put a new Domain entry \Vith the expres­

sion tree in the hash-table maintained by DomTable. Note, the reference counters of those

refercnced domains are not incremented.

4. If the type of the new virtual domain is idlist (as returned by DomTable.travseType()L

this must be a nested relational domain (refer back to section 3.2.2 for introduction of

the idlist type). The attributes list of this virtual domain is figured out by calling the

DomTable.getIDList() method and a new relation entry is added into reltable by using

Relation. addRel() method. This relation has the same name as the virtual domain except

that it is prefixed \Vith a"." (hence is an invisible relation. Refer to section 3.2.1). It is
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supposed to hold tuples for the nested relational domain. Finally, as described in section

3.2.2, the reference counters of those domains that are used by this invisible relation are

incremented by one.

DomTable.traverseType() traverses the expression tree and checks the type compatibilities.

Figure 4.22 lists possible type combinations for various operators. Any operation that does not

agree \Vith the rules illustrated in this figure cause a type-mismatch error message.

ow-- L-" ...... 0per8ndI ...... T....

man. m:u. l'Ius numc",: lyI'C lI.c. numen.:
nun~mtiJbrly
dl'vulc:.mud ~~~J~.long. 1)'pC (0)

uplus. UIIIlnus
(lOW

QI 'inDIC ok 'lnng ~nng

cq. ncq. gL Il numem: ok numcnc bual
gr. le 11:11 &t 11:11

bool &t 0001

or. and. UJl()l b.101 &t 0001 boal

'lOIn. uJl'.n Idhsl &t !dlui !dlasl
S}OIO. :n'IO Idh'l "" com(lUblJon
~tn. JOIO comrulalJon "" Idhsl010

Figure 4.22: Possible Type Combinations

Even though a virtual domain's expression tree is inserted in the memory version of domtable~

it is Dot stored in the .dom file on disk~ which is the system file for domtable information. It is

actually stored in a separate .expr file as explained in section 4.4.4 and 4.4.5.

One thing that should be noted here is that domtable does not hold the attribute list for

an idlist-type nested relational domain. As already explained~ when declaring an idIist-type

domain, a new relation is inserted iuta domtable which will hold the data for this domain. The

attribute list of the new nested relational damain is retrievable from the reltable but not the

domtable. Hence, when displaying damain information using the '·S(r show-domain command,

jRelix has ta go get the correspanding attribute Iist from reltable for this nested domain and

then display other information using domlable. Figure 4.23 illustrates this scenario.
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: domain T(A.· ;
: 1 he S .join; :
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---

Name

.' x

,.....
N3JIle 1DomList 1 ... ~- l.id.A.B.C 1.X

4.5.2

Figure 4.23: Displaying an IDLIST-typed Domain

Using an Actualizer

•

This section discusses how to use the actualizer from the application programmer~s point of

view. The Actualizer in jReli..x is implemented as a source code component which can be reused

by other modules e.g. relational algebra or computation at the source code level. This section

talks about the usage of this source code component~ i.e. the construction of an actualizer,

the central actualization procedure~ and the final clean-ups when finished using an actualizer.

Readers who are interested in implementation issues regarding the use of the existent actualizer

mechanism to build other functional modules may want to read this section, whereas the details

about how an actualizer works to fuI fi Il the actualization task are described in the rest of the

chapter.

ln the jRelix implementation, an Actualizer class is designed to take the responsibility of the

virtual domain ~s actualization. \Vhenever actualization is necessary (e.g. when virtual domains

are involved in projection, selection and joins etc.), an object of the Actualizer class must be

constructed.

From an application developer's point of view, constructing an actualizer is quite simple.

\ Vhen an actualizer is involved, there must be a set of virtual domains which need to be ac­

tualized, and a source relation on which these virtual domains will be actualized. Hence, the

constructor of the actualizer accepts these hvo elements as parameters, Le. it has the following

prototype:

Actualizer(Domain!] domains1 Relation srcrelation),o
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Usage of an actualizer is also very easy. \Vhen the actualizer is constructed, the virtual

domains' actualization can be performed at any time by calling Actualizer's actualize() method,

which returns a destination relation containing the actualized virtual domain 's fields. The ap­

plication programmer can subsequently do certain operations e.g. projection and selection etc.

on the destination relation.

\Vhen the operations are finished, an actualizer user should not forget to call Actualizer's

cleanup() method. As we will see in subsection Virtual Tree Truncation of section 4.5.4, tem­

porary interrnediate dornains may be created (and inserted into the system tables) during the

virtual dornain's actualization, and data for those intermediate domains will be filled into their

corresponding data columns. The cleanup() method is in charge of removing ail intermediate

domains from the domtable in arder ta make it consistent with the system status before running

an actualizer. This is important since system tables will be permanently stored on disk. If cer­

tain intermediate domains (or relations) are not removed cleanly, they will exist on the system

forever.

--------
,

- - - ,'Actuali:er actualizer ~ ,
" = new Actuali:erldoms.rel); "

l "- - - Re14tion dest.rel ~ \
: act:uali:er.dctu41ize(); 1

1
1 1

_l.r' desc:rel. name = "mydesc:"; ,
: \ destrel.save(); 1

- ~ Relac:ion r = 1

, destrel.project (doms. !ileruuneJ;.',
- - ~ '" ...destrel. cleanup () ;

---------

Figure 4.24: An Example of Using an Actualizer

Figure 4.24 gives an example of using an actualizer.

4.5.3 Actualizer Initialization

•
As mentioned in section 4.5.2, to initializc an actualizer for a (set of) virtual domain(s), two

parameters (i.e. the source relation and an array of the domains which are to he actualized)
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necd ta be passed ta the constructor of the Actualizer class. Upan receiving these parameters.

the Actualizer's constructor does the following initialization procedure:

1. Initializes aIl the internal buffers and data members which are used during the actualiza­

tion. This includes creating internai vectors and hash tables that are supposed to hold

various intermediate data objects such as synta.x trees for aIl the virtual domains, and

virtual domains that perform vertical operations etc.

2. Goes through the domain list and for each domain, does the following:

• If it is an actual domain which already exists in the source relation, adds this domain

to the actualizer's actdoms vector. This domain 's data can be found in the source

relation directly. No further actualization is necessary.

• If it is an actual domain which does not exist in the source relation, gives an error

message since it cannot be actualized.

• If none of the above cases occurs, this domain must he a virtual domain. The con­

structor expands this domain 's expression tree.

3. If it is a nested relational domain and a top-Ievel approach is being used~ the expanded

expression tree must be passed to a processIDListDom() method to do further processing.

The last step is very important in order to make sure the virtual domain is actualizable. The

basic idea is that after tree expansion, aIl nodes in the tree must be actual domain (identifier)

nodes which can be actualized on the source relation. An exception is reduction nodes. As

we will see later, virtual domains including reductions must be actualized in multiple passes.

Figure 4.25 gives an example of this case.

In this example, virtual domain x is defined by '~let x be A +(red+ of (equiv* of B by A))" .

There are two reduction nodes in domain x's expression tree. Since it is impossible for the

actualizer to actualize this tree in only one pass, temporary domains e.g. domain 0 and 1 must be

created to hold the intermediate data. In the tuple-by-tuple approach, this work is basically done

by the tree expansion procedure (i.e. buildTree() method); whereas in the top-Ievel approach,

it is done by the processIDListDom() method. Note that processIDListDom() method also does
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Figure 4.25: A Virtual Domain's Expression Tree \Vith Reduction Nodes

sinlilar work for ,,;rtual domains with multi-Ievel joins involved, as illustrated by Figure 4.26.

For a detailed description of processIDListDomain(), readers may refer ta section 4.5.6.

le~ x be S uJoin T ijoin u;

o~

o 0
ICmp dolT13in -o·

'''g
cD 0

dom:ùn -,.-

Figure 4.26: A Virtual Domain's Expression Tree with Nlultiple .Join Nodes

The reason for this is that although virtual domains with multiple joins involved can be

actualized directly in the tuple-by-tuple approach, it cannot be handled directly by the top-Ievel

approach, in which only one join can be dealt \Vith at a time. Details will be explained in

section 4.5.5 and section 4.5.6.

4.5.4 Building Virtual Trees

•

Virtual tree building is quite an important procedure during actualization. The purpose of

building virtual trees is ta make sure that the virtual domain (the tree is associated with) is

sardy actualizable on the source relation in the future. There are many possibilities that hinder

the virtual tree from "blossoming" Le. being actualized, for example:
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• the virtual domain is defined on sorne actual domains which can never he actualized on
the source relation, or which do not exist in the system at aIl.

• the virtual domain is defined on sorne other virtual domains which can never he actualized
on the source relation.

• the virtual domains that this virtual domain is defined on are mutuaUy defined on each
other, i.e. there is a transitive loop in the virtual tree.

• there are semantic errors in the virtual tree, e.g. the type-mismatch error in "'let x be
.string_name + relation_name;".

Apart from these potential prohlems, a virtual tree must be reorganized, and intermediate

virtual domains must he generated in order ta handle the situations mentioned in last section.

In the jRelix implementation, a buildTree() method is created for the Actualizer class to

handle the task of virtual tree building. Its major functions will now be descrihed.

Validity Check

The buildTree() method is basically a recursive routine which frequently caUs itself by passing

a SimpleNode parameter during tree building. The node passed to buildTree() is carefully ana­

lyzed and its children are taken out and passed ta buildTree() again as a lower-Ievel invocation.

buildTree() analyzes the node according its type field. \Vhen an identifier norle is encountered.

a validity check has ta be performed. The idea of a validity check is quite simpl~, i.e. the

domtable is first consulted. If no entry is found in domtable but the current node's parent is

an IDLI5T-related node (e.g. of OP_JOINûPERATüR type), the rel table is consulted. If no

entry is round in bath cases, the validity check fails and further processing is stopped by the

actualizer.

\Vhen a relevant entry is found in the system tables (either domtahle or reltable) ~ the actu­

alizer looks into its source relation and verifies that this entry belongs ta the source relation 's

attribute (or domain) liste In that case, the identifier node representing the current entry is

actualizable; otherwise, the actualizer continues ta check if the CUITent node represents a virtual

domaine In this case, the tree has ta be expanded as described in the next sub-section; otherwise,

it is clear that the eurrent entry represents an actual domain which is however not actualizable

on the source relation. Figure 4.27 illustrates this procedure.
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Virtual Tree Expansion

Figure 4.27: Validity Check

•

As we know! building the virtual tree is an important procedure during virtual domain actual­

ization. \Vhen the final actualization happens, the virtual domain!s syntax tree is passed to the

actualizer engine, which subsequently consults the tree definition and generates tuple data based

on different approaches i.e. the tuple-by-tuple approach (refer to section 4.5.5) or the top-lc\'el

approach (refer to section 4.5.6).

Thc purpose of tree expansion is ta make sure that there is no virtual domain node in the

resulting tree. In other words! ail identifier nodes in the final syntax tree must be actual domains

which are actualizable on the source relation. Figure 4.28 illustrates the idea.

In this example, virtual domain z is ta he actualized. Since it is defined on two other virtual

domains x and y, its syntax tree must he expanded in order to replace x and y with actual

domains they are defined on. Furthermore! virtual domain y is defined on virtual domain x,

hence another expansion is required ta insert dornain x's syntax tree inta where node x resides

in the syntax tree of domain y. As illustrated in the figure, there is no virtual dornain node in

the final syntax tree of virtual domain z.

Figure 4.29 gives a more complex example in which relational operations such as projection,

selection and joins are involved. Although the syntax trees for relational operations are much

more complicated than those of normal arithmetic operations, the basic idea for tree expansion
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• Ict x be A + B;
Ict y be C· x;
Ict z be x Iy;

------------
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Figure 4.28: Example of Tree Expansion

remains the same. Therefore, detailed explanations for this example are omitted.

Tree expansion occurs when the buildTree() method finds that nodes passed to it are virtual

domain nodes (of type OPJDENTIFIER). The first thing it will do is to duplicate the syntax

tree of that virtual domain. This is important since further operations including tree expansion

nlÏght be performed on the syntax tree of that virtual domain, and the original syntax tree of

the virtual domain maintained in the jRelix system table should not be modified. buildTree()

caBs SimpleNode's jjtDuplicate() method to create a copy of the original syntax tree node. Any

further operations will only he applied to this copy.

Secondly, the syntax tree of the virtual domain in question needs ta be inserted where the \'ir­

tuaI domain node \Vas residing. buildTree() handles this by calling SimpleNode's jjtReplaceChild{)

or jjtReplace() methods. After this, the syntax tree of the top-level virtual domain is expanded

to become bigger.

Due to its rccursive nature, buildTree() continues to analyze the lower-Ievel syntax tree just

inserted, and performs further tree expansion when necessary. Finally, the so-called "big-tree"

is generated, which only contains node of actual domains.
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let Il be S ijoin T:
let y be whcre A+8 = 100 in Il:

let z be [A. 8} in (x ijoin yI:

1,

" rQ, , , ,,,,
\

\,
1
1..,,,,

,,,
,

~
- __ ..t''''''.

,"",,_,,'t

S T

----------

Final SYllllU rruofDorruWt "z"

,,,,,,,

,,
\ , , ,

\

.,

•

Figure 4.29: N[ore Complex Example of Tree Expansion

Recursive Loop Detection

•

As illustrated in Figure 3.40, a virtual domain is regarded unactuaLizabLe if it is recursiyely

dcfined on itself, i.e. there is a recursive loop in the definition of the virtual damain in question.

The mechanism used ta detect a recursive loop is quite simple. It is exemplified in Figure 4.30.

Since buiLdTree() is a recursive method which analyzes each node of the syntax tree that is

passed ta it, it sees aIl the domain nodes (either virtual or actual) contained in the final syntax

tree. buildTree() remembers the domains it has seen so far, therefore, when it starts ta analyze

a new domain, recursive definitions can be detected. In the jRelix implementation! a vector

abject curpath is used to store aIl the damains (aetually, only the virtual domains are relevant)

buildTree() has seen along the path to the eurrent node. If the current virtual domain node

already exists in the curpath veetor, it means that this domain is samehow (reeursively) defined

on itself, and an errar message should be generated ta notify you of the problem. To make this

mechanism work, a virtual domain node is inserted into the veetor before buildTree() reeursiyely

calls itself, and the same doulain node is removed from the veetor after buildTree() returns from
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>let y be B;
>let ::: be B;
>let x be y+A;
>let y be (:::+Bl·2;
>let ::: be (x+A+BI/I03;
>Test <- [xl in R;
(error: virtual do~in x is not
<Jctuali=able. J

Action Remc:mber

bcgin 3Ctu3lize lt x
analyzc x (defined on y. Al x.y
3nalyzc y (ddincd on z. BI x. y. z
:uuJyzc z (defined on JI. A. Dl z.~. :::. z
stop since no more vinuaJ domam errer: li.

>let y be B;
>let ::: be B;
>let x be y+A;
>let y be (:::+BI·2;
>let ::: be (A+BI/I03;
>Test <- [xl in R;

(ok! J

Action Remember

bcgin acruaJize lt x
analyze x (defined on y. Al x. y
analyzc y (dcfined on z. BI x. y. z
anaJyze z (dcfined on A. Dl :r.~.::

SIOP sinee no more vinual domain ok!

Figure 4.30: Examples of Detecting Recursive Loop
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Figure 4.31: Procedure for Recursive Loop Detection
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Virtual Tree Truncation

102

•

Apart from expanding a syntax tree for a virtual domain actualization, (as described in pre­

vious sub-sections), it is sometimes necessary to truncate a syntax tree in order to fu1611 the

actualization. There are certain situations in which the actualizer cannot actualize a syntax

tree using only one pasSe In this case, the virtual tree has to be truncated and separated into

several sub-trees, each sub-tree being actualized in seperate passes. Two examples were gjven

in Figure 4.25 and 4.26 of section 4.5.3.

There are altogether three situations when syntax tree truncation must be performed, two

of which are mentioned in section 4.5.3. The first case is when a virtual domain is defined on

nlultiple vertical operations (i.e. reductions). and so the vertical operations must be separated

and actualized in seperate passes. This is illustrated in Figure 4.25, where intermediate virtual

domains '~(r and 111" are generated and are responsible for actualizing the reduction operations

red+ and equiv* respectively. In addition, the sequence of actualization is of significant impor­

tance, i.e. domain "(J' must be actualized peior to the actualization of domain "1", since domain

"1" depends on the value of domain '~U'.

The second situation is when the top-Level approach is used to actualize a nEsted \rirt ual

domaine The virtual tree is truncated and separated into sub-trees when multiple joins are

in\'oh"ed, with each sub-tree in charge of the actualization of a single join. This is because only

one join can be performed by the top-Ievel approach of actualization. An example \Vas given in

Figure 4.26.

The third case is that the by-list (refer to section 3.5.4) in equivalence reduction contains

(arithmetic) expressions rather than domains. Since tuples must be sorted according ta the

by-List, ail expressions in the by-list must be evaluated before the reduction operation. This

requires that the expression tree in by-List be truncated and be associated with an intermediate

\'irtual domain, which must he actualized first. This also poses a sequence problem. Figure 4.32

illustrates this situation.

In this example, the sub-tree for the expression "A +B' in the by-list is truncated and asso-
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let x be A+(red+ of lequiv· of B by A+B. CI);

Icmp domain "(" Icmp domain "Z" domain ·x"

•

Figure 4.32: Virtual Tree Truncation

ciated with a temporary domain "(J', which is subsequently used in the temporary domain 'ô['

etc. Needless to say, the sequence for (intermediate) domain actualization is 0, 1, 2 and finally

domain x.

In the jRelix implementation, syntax tree truncation for the first and third cases is handled

by the buildTree() method, while the second case is dealt \Vith by a processIDListDom() method.

Both methods generate intermediate domains which are inserted into system domtable. There­

fore, clean-up is required to remove these temporary domains after actualization. This c1ean-up

procedure is done by a cleanup() method, as described in section 4.5.2.

To secure the sequence of actualization, three vectors are used for vertical operation do­

mains, nested domains and normal virtual domains respectively. Vertical operation domains are

actualized first, then normal virtual domains (including nested domains when the tuple-by-tupLe

approach is applied), and final1y nested domains (in case the top-LeveL approach is applied). In

addition, an integer-typed Level-tag is associated \Vith each vertical operation domain. Domains

whose level-tags are larger are always actualized first.
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4.5.5 Actualization by Tuple-by-Tuple Approach

As mentioned at the beginning of this chapter, a virtual domain is usually actualized on a tuple­

by-tuple level, which means that the relation on which the virtual domain is to be actualized is

scanned from the first tuple to the last one. The virtual domain value is calculated according

to the data in each tuple. This is particularly true with the horizontal operations of domain

algebra. For vertical operations, the relation is still scanned and relevant tuple data is stored

somewhere for final vertical calculation. This section describes the tuple-by-tuple approach used

by the actualizer.

Horizontal Operations

3CtUaJ domains virtuaJ domains MethodCaU

dom1 dom2 dom3 vdom1 vdom2 __ :.~~~-.. -- --- ,,~~...~......-::"--,- - -

f f
integer nested relation

actFloatCd/(\·trui)

····

•

Figure 4.33: Actualization: Fill the CeUs

As illustrated in Figure 4.33, to actualizing a virtual domain is similar to filling calculated

values into corresponding positions in a table. These positions are termed "cells!' in the jRelix

inlpleOlentation. The actualized value of a virtual domain occupies a column of cells in the table!

i.e. relation. The task of actualization is to calculate each virtual domain ceIrs data by using

cell data of actual domains in the same row (or tuple).

In the jRelix implementation, several methods are developed for cclI data calculation. Thcse

methods are called "cell-methods" and are listed in Figure 4.34.

Cell-methods basically accept a syntax tree as their only input parameter and return a

calculated value corresponding to their types. Figure 4.35 gives an example of actualizing an
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• lIeIhod Type of Actu8IiIM Dom8in

aetJnlCellO inleger. shan

aetBoolCellO boolc:an

aetLongCcll( ) long integer

aetDoublcCcll() 0001. double

aetSuCcllO string

aetR.a:ICell( ) ncsled damain

Figure 4.34: NIethods for Actualizing CeUs

integer ceIl. In this example, a virtual domain ··x" is defined as <;let x be A +B;II. The cell-method

act!ntCeil takes a virtual tree as input and realizes that domains A and B are to be involved in

the actualization. It then goes through the source relation, grabs the values for A and B from

each tuple and performs the computation according ta the syntax tree. For example, for the first

tuple, the values of A and B are 1 and 2 respectively, which are retrieved by actlntCeli method

\\Tho sllhsequently produces 3 as the result.

'.Vhen multiple types are involved (e.g. actDoubleCell() method takes care of bath double

and fioat eeUs), an explicit type cast is necessary ta avoid ambiguity. For each virtual domain

actualization, a corresponding cell-method is called in a scanning loop from the first tuplc of

the source relation to the last. For each tuple of the source relation, a cell-method is firstly

invoked by being passed the virtual domain's syntax tree which has been preprocessed by the

tree expansion procedure previously described. Therefore, the cell-method knows there will he

no problem by using this tree as it \Vas cleaned up at previous stage.

,,~~~

" ac:tlntCell(~)
{ \

1 \
l ,

1 81
.. +

-<:1 / '\-',' (0 8

Ic! X he: A+B;

A B x

1 .., 1 ....
1 .1 '7 ....
<; fi, Il f-

•
Figure 4.35: Actualizing Integer CeUs (Horizontal Operations)
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The cell-methods analyze the syntax tree by parsing its structure; access the actual celIs' data

in the source relation, and calculate the virtual cell values. Sometimes cell-methods may cut off

a sub-tree from the big-tree, and recursively pass the sub-tree to themselves in order to perform

a part of the calculation. This means that cell-methods are basically recursive caUs. In addition,

cell-methods may caU other cell-methods when necessary. Figure 4.36 gives a simplified pseudo

code for the actlntCell() method implementation (horizontal operations only).

__ 1:ttl aclua/ da/a fmm sourCt~ r~lalion

;~cuni",d~·cali ilsdf
_ - , t

, .
, .

6" '.

• actlntCell(riqhiéhild~;

- actlntCelllrightChild~;
1.

int actlntCell(nodel
(

~~itchlnode.typel{

case IDEYI'IFIER:
retUIn data_value;~-

case BIOPEP.ATOR:
leftChild = node.qetFirstChild{);
riqhtChild = node.qetSecondChildll;
switchlnode.opcode){
case PLUS:

return lactlntCell (leftChildl
case MINUS:

returnCactlntCelllleftChild)
case MULTIP[,Y:

returnCactlntCell(leftChild) • actIntCellCriqhtChildl;
case DIVIDE:

ifCactlntCellcriqhtChild) == Ol
errorC·divide by zero!·);

else
return(actIntCelllleftChild) 1 actlntCelllrightChild);

j

case UOPEAATOR:
onlyChild = node.getFirstChild();
s~itchlnode.opcode)(

case UPLUS:
returnlactlntCelllonlyChild)) ;

case UPLUS:
returnlO - actlntCellConlyChild) 1;

}

case IITHENELSE:
ifChild = node.qetFirstChildC);
thenChild = node.qetSecondChild();
elsechild = node.getThirdChild(};
~!(ac~8001c:.ll(ifChl.ld,;: true)--

return(actIntCell(thenChild));
else

return(actIntCellCelsechild));

cali anothttr c~II-'"t:th(JJ

---

case RED:
case EQUIV:

Il Described later ...

Figure 4.36: Pseudo Code for actIntCellO Nlethod (Horizontal Operations)

•
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Vertical Operations

Cell-methods are also responsible for vertical operations. Each node in a synta.x tree has a

field called "info", which is designed as an Object type and is supposed to store any possible

intermediate values. Naturally, this info field is used by cell-methods to save the temporal}·

results of vertical operations. Figure 4.37 illustrates an example of actualizing an integer virtual

domain x, defined as ':'let x be red+ of (A +B)/'. Actualization of virtual domains \Vith vertical

operations takes a two-run procedure, Le. the method needs to go through the relation twice.

In the first run, the cell-method scans the relation tuple by tuple, retrieves the tuple values and

performs computations according to the syntax tree. The intermediate result calculated for the

vertical operations is stored in the info field of the current Dode. In the second run, the final

result in the node's info field is retrieved by the cell-method and is saved in cach tuple of the

relation.

In Figure 4.37, method actintCell keeps on modifying the ::'info" field of the ::'Red+" Dode

in the first run, i.e. upon scanning the first tuple, the result of A+B (i.e. 3) is stored in field

info; after scanning the second tuple, the result of A+B plus the old info value (Le. 10) is stored

again. \Vhen the end of a relation is reached, the final result of the vertical operation (i.e. 21)

is stored again. In the second loop, the final result in the info field is fetched from the node and

stored in the relation.

A 8 x

1 " "1 ~

'\ .J ", ~

" ~ "1 f-

let x he n:d+ of(A+8>:
r-----------------~r-

1 1
, 1

: x value: in node.lnfo: :
1 1

1 ~

~ Ist run 2nd run '
,') " ~

_',1 -',
, 1 '- '" " -',,'

•
Figure 4.37: Actualizing Integer CeUs (Vertical Operations)

Equivalent operations have similar behavior, except that the source relation is firstly sorted

by the cell-method on the "by-lisf' of the equivalent expression, and the cell-methods kcep track
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of the change of the by-list value in arder ta decide when ta store the calculated result in the

source relation. Detailed descriptions for equivalent operations are omitted due ta complexity.

Figure 4.38 illustrates the pseudo code of the actlntCell() method for vertical operations.

io~ ac~IncCellleodel

(
swiechloode.typel{

case IDENTIFIER:

case BIOPERATOR:

case UOPERATOR:

case IFTHENELSE:

case RED:
case EQl1IV:

ine acevalue= aceInecell(IS~leNode)node.jjt~tChild(OII;

swiechlnode.opcode){
case OP_PLUS:

ifloode.info == nulll node.iofo = new Inceger(OI:
node.info = new Inceqerl(IInteqerlnode.iefol.intValue()-actValue);
break:

case OP.-HUL:
iflnode.info == nulll node.info = new Iotegerll):
node.iofo = new Ineegerl ((Incegerlnode.info).iDtValuell"actValue);
break:

case OP_MUL:
iflnode.info == null) node.info = new IntegerIIneeqer.~~_VALUEI;

node.iofo = new Ineeqerl
Math.min( 1(Integerlnode.infol .intValue(). actValuell:

break;
case OPJ«1L:

if(node.info == nulll node.iofo = new InteqerIInteger.MIN_VAL~"EI:

node.iefo = new Inteqer(
Haeh.max«(IIneegerlnode.infol.intValue(l. actValue»):

break:

return actValue:

Figure 4.38: Pseudo Code for actIntCellO ~Iethod (Vertical Operations)

4.5.6 Actualization by Top-Level Approach

•

As mentioned before, the tuple-by-tuple approach has efficiency problems since a loop within the

entire relation is involved. This poses a even more serious problem when actualizing a virtual

clomain with relational operations on a nested relation, because! for example, joins on a tuple

lcvel are supposed to slow down the whole actualization procedure, as highly time-consuming
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sorting and disk 1/0 are involved with multiple joins. The top-Ievel approach described in

this section deals with this prohlem by going another way, Le. it joins two top level nested

relations directly, and then does sorne kind of post-processing which results in the same result

as tuple-Ievel actualization.

However, the top-Ievel approach has severallimitations which are listed as follows:

• It can only he applied to actualize nested relational domains in a nested relation. For

non-nested virtual domain actualization, the tuple-by-tuple approach is unavoidable.

• The algorithm for the top-Ievel approach can only work for certain relational operations

,,,;thout foreseeable problems. Although three types of relational operations Le. ijoin.

ujoïn and sjoin can guarantee that the post-processing combined \Vith top-Ievel joins is

able to produce the same result as tuple-Ievel actualization, it is not sure that other types

of operations will achieve the same results.

• Actualization of virtual domains with multiple relational operations (e.g. let x be S ijoin

T ujoin D) requires additional reorganization (i.e. truncation) of the syntax tree before

performing the actualization (refer to next subsection).

Pre-processÎng of Syntax Trees

In the top-LeveL approach, after finishing the basic "buiLding tree" procedure described in sec­

tion 4.5.4, the syntax tree of a virtual domain is passed to a processlDListDomain() method for

additional processing, as mentioned in the "Virtual Tree Truncation" of section 4.5.4 as weil as

in section 4.5.3.

As declared before, the reason for this additional pre-processing is that only one relational

operation can be performed at a time by the top-Ievel approach due to its algorithm. Therefore,

tree truncation or reorganization occurs when composition of relational operations exists in the

syntax tree of a virtual domain, and intermediate domains are generated for those truncated

sub-trees (refer to "Virtual Tree Truncation" in section 4.5.4).

Figures 4.26 and 4.39 give sorne examples of this kind of pre-processing of syntax trees by

the top-Ievel approach.
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(A.BI in (S ijein Tl;

II!mp domain ·0·

lec x be where A=lOO in (S ijoin T ujoin U);

110

tcmp demain ·0·

I~

05 0
tcmp dotmin -1-

•

Figure 4.39: Pre-processing of Synta..x Trees by the Top-Ievel Approach

It is clear from the figure that the result of the pre-processing is that the original syntax tree

is separated ioto a set of sub-trees corresponding to a set of intermediate virtual domains. Note

that this kind of tree separation or truncation is not necessary in the tuple-by-tuple approach~

since in that case, the whole synta..x tree (along \Vith tuple data) is passed to the relational

processor~ which is in charge of the calculation which is transparent to the virtual domain

act ualizer.

The subsequent implementation of horizontal and vertical operations of domain algcbra in

the top-Ievel approach is based on the result of this pre-processing, i.e. only one operation at a

time is involved in the actualization.

Horizontal Operations

The basic idea of the top-Ievel approach can be summarized as "Lift the Lower-Level nested domain

data up to the top Level and join them as top-LeveL relations". This section describes the procedure

of implementing horizontal operations, Le. joins, selection, and projection.

Given a sample relation R defined on nested domains S(A, B) and T(A, C), Figure 4.40

illustrates the procedure used to actualize a virtual domain x that is defined on '~S ijoin T' .
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Figure 4.40: Actualizing a Virtual Domain with ijoin by the Top-Ievel Approach

As described in the above figure, the steps used to actualize x are as follows:

1. Extract the relevant tuple data in nested relation S.

As described in "Declare and Initialize Nested Relations~~ of section 3.2.3 and illustrated by

Figure 3.12~ lower-Ievel nested relation .S is associated with top-Ievel relation R by means

of surrogates, which is indicated by the internaI representation of the nested relation R in

Figure 4.40. In arder ta extract the actual tuples in S that are connected with relation R,

a natural join between top-Ievel and lower-Ievel relations Rand S is performed, and the

jaïn attributes are the surrogates' names.

In the jRelix implementation, this join requires a syntax tree as depicted in Figure 4.41 to

be created first, and then both the syntax tree and the nested relations Rand .S are passed

ta the top-Ievel evaluator which subsequently evaluates and passes the same information

ta the relational processor ta fulfill the join. This is procedure (1) in Figure 4.40.

•
2. Prepare the next join between the resulting relation from step 1 and the nested relation

T.
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Figure 4.41: Syntax Tree for Natural Join Between Rand .S

112

•

The previous joïn generates a relation RJ which contains domain T. In order to join

relation Rl with the nested relation Ton domain T which represents the surrogate name~

the domain name Tin RJ must he changed to ". ill'. This is done by renarning and certain

projections. A new relation is generated~ i.e. relation R2 as illustrated by step (2) in

Figure 4.40.

3. .Join the result relation from step 2 with the nested relation T.

The join is performed on the common attributes of the t\\"o source relations R2 and T. This

\Vay, the tuple data of nested relation T is saCely associated with the tuple data of nested

relation S. The result relation R3 is what is expected apart from the surrogate values. This

is step (3) in figure 4.40.

-1. Finally~ change the surrogate values in the rcsult relation from step 3, and append the ne\\"

tuple data to the nested relation x. This concludes the actualization of virtual domain x,

as illustrated in step (4) in Figure 4.40.

In jRelix, the above-mentioned procedure is implemented byan "aclualizeNestedJoinDom()"

method in the actualizer.

The cases of selection and projection are quite similar, or even simpler. In jRelix, they are

implemented byan "'actualizeNestedPrjSelDom()" method. Figure 4.42 illustrates the procedure

to actualize virtual domains defined by projections and selections. Due to its self-describing

nature, detailed explanations are omitted.
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RIS{A. BI. TcA. Cl) Internal Representation:

RIS. n
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1 1.. 5. 3 ' ~ 1 ~ 9: -..-

___ \~: 8. 9 1 .aJ 5. 8

- : .a: 8. 1
surroxau.r - - - - - - - - - - - - - - - - .. .a; 8. 3

$.
CV

S T

AIB Ale
:! s :! 1
S 3 :! 9

Il 9 5 Il
Il 1
Il 3

To -=tuel_ -let li be (A] ln S;-

Il} RI <- R [S ijain .idl 5:

RI(S• .id. T. A. B)

1. 1. 1. 2. 5
1. \. 2. 5. 3

3. 3. ol. S. 9

C2} R2 <- [. id.AI in RI;
R21.id. A)

1. !
1. S

3. S

1) GeneraCe new surraqaces far '.id" in R2 and inserc che cuples
inca descinacion relacian.

III RI <- R [5 ijoin .idl 5;

RUS•.id. T. A. B}

1.1.2.2.5
1. 1. 2. 5. 3

3. 3. .a. 8. 9

C2} R2 <- where A.B=8 in RI:
R2IS..id. T. A. BI

1. 1. 2. 5. 3

C21 R3 <- [.id. A. BI in R2: RJ( .id. A. B)

1. 5. 3

(31 GeneraCe new surrogates for -.id" in R2 and inserc che cuples
inta destination relacion.

Figure 4.42: Actualize Virtual Domains by Top-Ievel Approach

•
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Vertical Operations

Similar to horizontal operations~ vertical operations are also implemented by ·'lifting' lower-Ievel

nested relations to an upper level, and then doing corresponding vertical operations.

Civen the same sampIe relation R defined in Figure 4.40, Figure 4.43 illustrates the procedure

to actualize a virtual domain x that is defined on "red ujoin of g' _

RISlA. SI. TIA. C))

1 ~ : I~ !. S " ~, 2.. 7
Jol' 1J 5. 3 : !.: .2. .9

4 _ \ 3! K. 9 : olJ 5. K
, __ - - - - - '" , : ..~ K. 1

surro-atrr - - - - - - - - - - - - - - - -. ol' K 3... \_' .

5
AIB

.. : S

S : 3

Il : '1

T

Ale
2 7

'1

S
K

Il

81>.-
-. ­..

RIS. n S( .•d. A. BI TI.Jd. A. CI

To -=tu.laze ..... Ile red ulo4n of 5;"
ln .,...... c· [5. .) ln R;·

(ll Rl <- R [S ijoin .id] s;

(21 R2 <- [A. BI in RI:

(31 Genera~e new surroqa~es for
·.id- in R2 and inser~ ~he

~uples ln n~~ rela~~on.

RIlS..,,1. T. "- ,B)

1. 1. !J':!" 5\
1. 1. ~ 5. 3:

·'i--J.·'·~·.i:~·~i

1U{A._l" ,, , ,
, 2. S'" ,.': 5. 3;-
\~,_'I'

rlC'A·RcICS. x J

•

Figure 4.43: Actualize a Virtual Domain \Vith Reduction by Top-Ievel Approach

As described in the figure, the steps used to actualize x are as follows:

1. Extract the relevant tuple data in the nested relation S- This is exactly the same operation

as in the horizontal operation described in the previous section. The result is a new relation

Rl as illustrated in step (1), Figure 4.43.

2. Project the same attributes as in nested domain S from relation Rl. Since reduction of

ujoin on S produces all tuples of S (associate \Vith the top relation R without duplicate

tuples), the projection is in charge of removing the duplicate tuple.

3. Finally, generate a new surrogate. This surrogate is for the result relation of ujoin, i.e. for
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aIl the newly generated tuples in the nested domain .x. Needless to say, the result tuples

are appended to the invisible relation .x. This finishes the actualization of virtual domain

x, as in step (3) Figure 4.43.

For the reduction of ijoin, step 2 in the above procedure will be slightly different. As the

operation ijoin calculates the "minimum common sef' between two operand relations, a "red

ijoin~' operation is equivalent to calculating the minimum common set among a set of operand

relations. Therefore~ in the case of "red ijoin", step 2 in Figure 4.43 is modified and extended

by the following steps, which are also illustrated in Figure 4.44.

RLS<A.Bl. Tl .... 01 Internai Representation:

Sl.K1, A. 81 T..1d. A. Cl

1 2

3 4..

RIS. n
: I~ ~ 5 "2, 2. 1
1 I.J S. 3 l' ~.:. 2. ~

__\~: ll. '1 : 4) S. K

~ .a: ~. 1
surroKul..r----------------.. ~; K. J

S T

" 1 B Ale
: 5 : 7
5 J 2 '1

Il 9 5 Il
li 1
li J

To~ • Il ... ,.... uioin of S:-
in c- [5. Il] in A;-

Il) R1 <- R [S ijoin .id] S;

RIlS.Ill. T. A_ BI

L 1,. :'./2.. S\
1. 1. 2: S. 3:
J.. 3. 4...~.~ ~\

l~lJ R20 <- (.id. A. BI in R1;
!l2l11 d. A. BI

I.,'i S\
I~S. 3 ~.'

3.\K. 9,'
-.'

1~2l p~ <- find smallest qroup in R20; R:! ..1d. A. BI

3. K. '1

(231 p~ <- p~ ijoin the first group in P~O;

(231 R2 <- R2 ijoin the second qroup in R20;

R2 Clll. A. BI

lempcyl

1231 p~ <- p~ ijoin the last qroup in P~O; R2 ..od. A. BI

c"mpcyl

(3) Generate new surroqates for
·.id· in R2 and insert the
tuples in new relation.

newRdIS. xl

Ic:mPlyl

xilÛ. A. BI

f"mplyl

Figure 4.44: Actualize a Virtual Domain \vith Reduction of ijoin by Top-Ievel Approach

•
1. Project the same attributes as in the nested domain S including the .id domain from the

relation Rl. The result relation is assigned to R20. Note that the .id domain in relation

R20 serves to categorize different groups of tuples which will be used in the next step.
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2. According to the value of dornain .id, find the group of tuples in relation R20 that has the

minimum nurnber of tuples, and put thern in relation R2.

3. According to the value of domain .id, do a natural join between relation R2 and the first

group of tuples in relation R20, and overwrite the result in relation R2. Note that relation

R2 is now the minimum cornmon set of the two operand relations that participated in the

natural join.

4. Do the above natural join \Vith the next group of tuples in relation R20. Continue until

getting to the last group of tuples in relation R20. Note that relation R2 is now the

minimum cornmon set of aIl groups of tuples in relation R20.

.-\.s mentioned above, the result relation (i.e. R2) in the above procedure is the minimum

con1nlon set of operand relations involved in the natural join, i.e. the result of -'vertical ijoin".

This is exactly what the --reduction of ijoin" operation is supposed to accomplish.
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Chapter 5

Conclusion: Results and Future Work

This ehapter summarizes the result of the jRelix implementation and discusses sorne future

work that may be done to improve the functionality of the eurrent jRelix systern. Section 5.1

foeuses on the performance issue - a big coneern of the current system. Testing procedures

and results are described. As weIl, the potential of performance improvement is discussed.

Section 5.2 discusses the possibility of multi-threading control in jRelix~ which may hopefully

result in certain performance improvements. :\.lso discussed in this section is the potential of

building a client/server jRelix system. In section 5.3, sorne aspects of converting the current

Java application inta a jRelix applet which can be displayed in a web browser such as :\"etscape

~avigator are discussed. Sorne graphical user interface (GUI) samples are also presented.

5.1 Performance Issue

During the development of jRelix, system performance has been taken care of and the perfor­

rnance problem has been kept under control. The major method used to measure the system

performance was to time the joins on nested relations. A join on nested relations theoretically

consists of multiple sub-joins on the nested attributes which are also relations (or even nested

relations). During the process of join operations, CPU-bound sorting as weIl as access ta the

secondary storage is intensively involved. Therefore, the speed/time of joins becomes a major

performance issue. In order to trace the performance of domain algebra in j Relix, the actualiza-

117
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tion time of a nested virtual domain is regarded as the indicator of the join speed since joins on

nested attributes are performed during aetualization.

In order to test the speed of joins, two sample nested relations \Vere created and used. As

illustrated in Figure 5.1, relation R is defined on domains S and T, which are nested and are

defined on 2 integer attributes (A, B) and (A, C) respectively. Relation R eonsists of 1,000

nested tuples (of domains Sand T), in each tuple, both domains Sand T further contain about

.:5 tuples on the nested level. On the other hand 7 as illustrated in Figure 5.2, relation W is defined

on integer domains A, Band C (henee a fiat relation) and contains 10,000 tuples.

domain A. B. C integer:
domain S(A. B);
domain T(A. 0;
relation R(S.n <- { ... 1.000 nesle<! luples. each has -5 luples in S & T... }

a.o.dl~tfend DumP-tng T«*tAction ActUIII tIon
(ma (ma) (ma)

let x. bc: S ijoin T: 22.4\0 6.110 28.520lmp<-[x.) in R:

IcI II bc: S ijoin T ijoin S: 31.860 6.OS0
J7.~lmp<·[lt) in R:

IcI l{ Ile S(A.B:ijoin:A.C}T: 19.170 5.910 15.080lmp<-[x.)ID R:

IcI x. Ile ~A. B. q ID (S ijoin n: 28.802 6.220 35.021lrnp<-[lt in R:

IcI y Ile A + B + C:
31.630 5.870 37.500Icl x bc: ~~. B. y) ID (S ijoin n:

lmp<-[x ID R:

rCI x. Ile whc:n: A:;\O 0(' 8:;20 in (5 ijoin n: 32.070 6.070 38.1-W
lmp<-[xl in R:

Figure 5.1: Actualization on Nested Relations

Figure 5.1 gives the timing results of aetualizing virtual domains on relation R. For example,

to actualize a virtual domain ax' defined on "let x be S ijoin T', 22,410 milli-seconds were used

to load the relations (i.e. R, Sand T) from the hard-disk into memory as weIl as the actualization

of damain ":i'; 6 7110 milli-seconds were used to dump the resulting relation ;,:.tmp" onto the disk.

This givcs the total time consumed as 28 7520 milli-seconds. Note that the dumping times are

almost constant.

Figure 5.2 illustrates the timing results of aetualizing virtual domains when top-Ievel relations

are involved in the virtual domain declaration. Figure 5.3 gives a eomparison of actualizations

bctween using the top-Ievel approach and the tuple-by-tuple approach. Note that when using
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domain A. 8. C integer.
domain S(A. B);
domain T(A. C);
rel:ltion R(S.T) <- 1 1.000 nested luples. each h3s -5 luples in S & T I
relation W(A.B.C) <- 1... 10.000 luplc:s. tlat relation ..• }

Action LaMfiF ~=ng TO..\
~ (ms

ICi" he S'JOtO W; 18,620 6.130 201,750Im-<-I.. J ID R;

ICi Xhe S 'JOtO W IJOID S: 28.450 5.680 3-1.130Im-<,[xlln R;

ICi li he S(AB:'Joan:A.BIW; [7.740 5.910 23.650Im-<,[xlln R;

ICi Xhe lA. 8. q ln (S 'J",n \\1: 25.760 6.120 31.980lm-<-{x ln R;

ICi Yhe A + B + C;
25.980 6.310 32.2'XlICI li he lA. B. YI ID IS IJOtn W);

tm-<·{x ln R;

lei x he whcrc A=IO or 8=2 ID (S 'JOIn W); 27.190 6.510 33.800tm-<-{"Iln R;

Figure 5.2: Actualization on Nested Relation joined with Top-Ievel Relation

dolll<lin A. B. C intc:gc:r.
domain S(A. BI;
domain TC A. Cl;
relalion RIS'T) <- 1 ... 1.000 n.:stc:d tuplc:s. c:xh h:1s -5 IUPIc:S in S & T I

~
T""'" ("'a) TupIe-by-Tu.... (ma)

Loedlng ActueilullOl' C~-.up Loedlng Ac:t....1ulIcMI ~.·up

I~ x he S ijotn T;
2.0120 20,1170 ~30 22.JOOun-<-(xJ ,n R;

ici x he S UJUln T;
013.060 S6.115OIm-<-( .. r ln R; 2.220 - 2.100

Figure 5.3: Comparison of Different Approaches
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the tuple-by-tuple approach, the actualization time is only a little longer than when using the

top-Ievel approach.

Noticed that during join time measurements, the sort procedure invoh-ed in the join opera­

tions consumes a large portion of the actualization time. Sorting is an intensive memory-bound

process; if the basic sort routine that resides in the Relation Aigebra could be given more fine­

tuning, the performance of joins is expected to be enhanced significantly. The same is true with

the secondary storage access problem. In the current implementation, intermediate relations are

frequently saved to, and retrieved from the hard-disk. Should a mechanism be developed that

utilizes the capability of memory instead of secondary storage for join operations~ the perfor­

mance of jReli.x will also be improved remarkably.

5.2 Multi-Threading and Client-Server Model

The current jRelix implementation did not take advantage of the multi-threading construction

provided by the Java programming language. Nlulti-threading mechanism can he introduced in

future jRelix designs and implementations in order ta improve performance and functionality.

•
Figure 5.4: Nlulti-threading in jRelix

For example, when performing relational or domain algebra operations, apart from the main
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•
operational thread which handles the major task, an additional auxiliary thread cao always he

used to dump the results onto the secondary storage aCter the main thread finishes the major

task. \Vhy use an auxiliary thread specifically? This is because when a task is entered br an end­

user, the main thread performs the operation and retums control (i.e. the system prompt) to the

end-user when the task is finished. In this scenario, the response time includes the time used for

dumping the result relations to the hard-disk. By using an auxiliary thread to dump the result,

the main thread can return control to the end-user without having ta wait until the results are

saved ta the disk. As displayed in Figure 5.1 or Figure 5.2, the dumping time is usually several

seconds; while the time consumed by the end-user ta type the next jRelix command is also that

long (or longer). This gives the "dumping' thread enough time to finish its job silently in the

background without attracting the end-user's attention. Figure 5.4 illustrates this improvement.

.......................... .

Punt!r )

, ~:

fn/t!rpnott!r) :

ClientSlde 5ervwSlde

Figure 5.5: A Client/Sen'er Nlodel in jRelix

•

On the other hand, a client/server jRelix can also be built in future work in order ta release a

certain amount of work from the server system ta its clients, especially when the jRelix function­

ality becomes more complex or the central databases become much larger. A client/sen'er model

implernentation might involve a redesign of the current jRelix architecture, which is beyond the

scope of this thesis. The basic idea in this regard is to move the front-end interpreter etc. to the
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•
client side. The server wouid only contain the service Iogic Le. the Iogic providing the operations

of relation algebra, domain aigebra and computations, as illustrated in Figure 5.5.

5.3 Migration ta Internet: Applet and GUI

•

The current jRelix system is a Java application program which runs on the command line of the

operating system. It is easy to convert a graphical Java application into an applet which can be

embedded in a web page by following sorne generai steps listed beIo\\':

Figure 5.6: SampIe G ur Design for j Relix Applet

1. :\Iake an HT~'IL page \Vith an APPLET tag.

2. Derive the starting class of the application (Interpreter class in our case) from the Applet

class provided by the Java Development Kit.

3. Eliminate the main() method in the starting class, and mo,re the major functioning code

into a method called init (). \Vhen the bro\Vser creates an object of the applet class, it

caBs the initO method.
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•

•

4. Create a proper layont manager to organize the graphical components of the applet .

As the current jRelix system is not a graphical application, the graphicallayout needs to be

designed for the applet version of jRelix. An example of the design is illustrated in Figure 5.6.

Figure 5.7: New GUI Design for jRelix Applet (Incomplete)

In addition, a completely new version of the user interface dealing with aIl operations and

functionalities of jRelix can he developed, from which the user can perform jRelix operations by

interacting with certain graphical components of the applet. For instance, during dedaration,

the end-user can inform the system what he/she wants to declare (e.g. domain, relation etc.)

by selecting the items from a list box. He/she then types the identifier for the ne\\" dec1aration

and chooses the type of the identifier (e.g. integer, boolean or relation etc.) from another

list box. Expressions for the new declaration can be entered in a text area. \Vhen the user

clicks the "Confirm" button, the system checks the validity of the declaration and accepts the

new dec1aration if everything is OK. Figure 5.7 illustrates the implementation of such an idea

(incomplete ).

Finally, an auxiliary user interface can be designed to support the main working applet

illustrated in Figures 5.6 and 5.7. Figure 5.8 gives an example of a user interface used to
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.,
,...!--~.:~- '~"'1 '~- .. --. " __~_Jl;.;' •.:-"':: ... ü. _._~

Figure 5.8: GUI Design for jRelLx System Environment Settings

...J~g~~=cn~bra
~ Selectlon
~Jll.u J01l\!l

~ SlC}U J01.l\3

~ Update
...J Do.un Alqebra

t
~ Declare Vutual Daaa1n3
~ Honz:antal Operatlo~
~ Vertlcal Operatl~

...J Coaputatian

...JJ!IiID

t
~ Systea .a1.ntenance
~ Advanced SY3tea Coaaands
~ Data Dlctlonary

i":

Figure 5.9: jRelix Help Information
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•

manage the system environment; the system variables, the text display's color and font settings

etc. are managed. Figure 5.9 illustrates a user interface that provides end-users with help

information; where definitions of varions concepts involved in the jRelLx system (e.g. relation

algebra and domain algebra etc.) as weIl as the usage information of the jRelix applets are

provided in detail.
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Appendix A

Backus-Naur Forlll for jRelix
COllllllands

This appendix describes jRelix grammarlsynta.x in the Backus-Naur Form (BNF) format. The
convention of this BNF definition is explained in table A.l.

Form ~Ieaning

<SYi\IBOL> SY~IBOL is a definition of token and must be substituted
~~SY~,IBOL~~ S'Y~1BOL is reserved word or symbol and must be typed as it is
51 1 S2 either SI or S2 can be used
(SY~\'IBOL)? SYNIBOL is optional
(SY:\IBOL)* SYNIBOL may appear zero or more times
(SY:\IBOLS) grouping SYNIBOLS as one unit for high precedence

Table A.l: BNF convention.

The grammar is created from the grammar specification (in file Parser.jjt), using the JavaCC
documentation generator called jjdoc. Because JavaCC is a top-down parser! left-recursion is
Ilot allowed in the grammar specification. Therefore the grammar looks different from that of
the former Relix which is intended for the bottom-up parser generator Yacc.

There are five token definitions: <EOF> for end-of-file; <IDENTIFIER> for identifier;
<I~TEGER.LITERAL> for integer constants; <FLOAT-LITERAL> for floating constants;
and <STRING.LITER.AL> for string constants.

Start := Command ";" 1 Statement ";" Il • "
J 1 <EDF>

•

Command := "help" «IDENTIFIER»?
l "quit" l "input" FilePath 1 "debug" l "batch" l "expert"
1 "time" 1 "deld" IDList 1 "delr" IDList l "pr" Expression
1 "sd ll «IDENTIFIER»? l "sr" «IDENTIFIER»? 1 IIsrd ll

1 "ssd" 1 "ssr " l "print" <STRING_LITERAL>
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Statement := SequentialStatement

SequentialStatement := ParallelStatement ("__ 11 ParallelStatement)*

ParallelStatement := ChoiceStatement ("11" ChoiceStatement)*

ChoiceStatement := PrimaryStatement ("??" PrimaryStatement)*

PrimaryStatement := Declaration 1 Assignment 1 Update
1 ComputationCall 1 Conditional 1 ForLoop 1 WhileLoop
1 Exit 1 DeadLock 1 Exec 1 StatementBlock

StatementBlock := "{" Statement (";" Statement)* (";")? "}"

Conditional := !tif" Expression lfthen" Statement (lfelse " Statement)?

ForLoop := ("for" Identifier)? ("fromlf Expression)?
("to" Expression)? ("by" Expression)?
(l'do" f lfloop") Statement

WhileLoop := "while lf Expression (lfdo ll 1 "1oop ll) Statement

Exit := "exit"

DeadLock := "deadlock"

Exec := "exec" Identifier

Declaration := " rel ation" IDList "(" IDList ")11 (Initialization)?
Identifier ("initial" Expression)? "is" Expression
(

t1 target" Expression)?
"domain" IDList Type
"let" Identifier (Ilinitial" Expression)? "be" Expression
("computation" l "comp") Identifier
"(" (ParameterList)? ")11 "is" ComputationBody

Initialization := "<-" ("{" ConstantTupleList "}II f Identifier)

12ï

ConstantTupleList ConstantTuple (11,11 ConstantTuple)*

•
ConstantTuple := "(" Constant ("," Constant)* ")"

Constant := LiteraI f "{II ConstantTupleList Il}''
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.-lPPE1VDIX .4. B.4CKUS-1VAUR FO~[ FOR JRELIX COAJAtI.4.1VDS

Identifier := <IDENTIFIER>

FilePath := <STRING_LITERAL>

Assignment := Identifier
( ("<_11 1 "<+") Expression

1 "[U IDList ("<_" 1 1f<+U) ExpressionList "]" Expression
)

Update := " update" Identifier
( (lladd ll 1 udelete lf

) Expression
l "change" (StatementList)? (UsingClause)?
1 "[11 IDList ("add" 1 "delete") ExpressionList "]" Expression

)

StatementList := Statement (11," Statement)*

UsingClause := Uusing ll

( JoinOperator Expression
1

11[" ExpressionList ":11 JoinOperator (":")?
ExpressionList "]" Expression

)

IDList := Identifier (11,11 Identifier)*

ExpressionList := Expression (11." Expression)*

Expression := Disjunction

128

Disjunction

Conjunction

Conjunction «"or ll

Comparison «"and ll

"1 11
) Conjunction)*

"~") Comparison)*

•

Comparison := Concatenation (ComparativeOperator Concatenation)?

Concatenation := MinMax (" cat" MinMax)*

MinMax := Summation «"min" 1 umax") Summation)*

Summation := JoinExpression «"+" 1 "_") JoinExpression)*

JoinExpression := Projection
( JoinOperator Projection



•
A.PPE1VDIX .4. B.4CKUS-NA.UR FORA'[ FOR JRELIX COlvIAL41VDS

1 Il [" ExpressionList ":" JoinOperator (": ")?
ExpressionList "]" Projection

)*

Projection := Projector «"in" 1 "from") Projection 1 Selection) 1 Selection

129

Projector

Selection

(QuantifierOperator)? "[" (ExpressionList)? "]"

Selector 1 QSelector 1 Term

Selector := (lIwhere" 1 II when") Expression ("in" l "from") Projection
1 " edit" (Projection)? 1 " zorder" Projection

QSelector := "quant" QuantifierList «"where" 1 "when") Expression)?
("in ll 1 "from") Projection

QuantifierOperator := ". Il 1 "1." "#U

QuantifierList := Quantifier (u.u Quantifier)*

Quantifier := "(" Expression ")" Expression

Terrn := Factor «"*" "/II 1 IImod") Factor)*

Factor := ("+" "_II "not ll Il!") Factor 1 Power

Power := Primary (1/**" Power)*

Primary := LiteraI 1 QuantifierOperator 1 ArrayElement
1 PositionalRename 1 Identifier 1 Cast J "(" Expression ")"
1 Pick 1 Eval 1 Function 1 IfThenEIseExpression 1 VerticalExpression

ArrayElement := Identifier "[If ArrayIndexList "JII

ArrayIndexList := (Expression)? ("." (Expression)1)*

PositionalRename := Identifier "(" (IDList)? ")"

•

Cast

Pick

Eval

"(" Type Il)" Primary

"pick ll Selection

"eval ll Expression



•
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Function := FunetionOperator 11(" Expression ")"

LiteraI := II nullll l "dc Il 1 "dk" l "trne" 1 IIfaIse"
1 ("+" 1 "_,,)? «INTEGER_LlTERAL> 1 <FLOAT_LlTERAL»
1 <STRING_LlTERAL>

IfThenElseExpression := "if ll Expression "then ll Expression
"else" Expression

VerticalExpression := "red" AssoCommuOperator "of" Expression
"equiv ll AssoCommuOperator "of" Expression
"by" ExpressionList
"fun" OrderedOperator "of" Expression
"order" ExpressionList
"par" OrderedOperator "of" Expression
( "order" ExpressionList "by" ExpressionList

l "by" ExpressionList liarder" ExpressionList
)

130

Type
1

1

1

1

1

1

1

- ("boolean" l "bool") 1 Il short "
(" integer" 1 Il intg ll

) l "long"
("float ll l "real") l "double"
(" stringll 1 Il strg") l "text"
(" statement" 1 Il stmt")
(llexpression" l "expr ll

)

(Ilcomputation" l "comp") 11(" IDList ")"
"(" IDList ")"

AssoCommuOperator := ("or" 1 111 11 )

1 ( Il and" 1 "l11 ) 1 Ilmin" l "max" 1 Il +" l " • "

1 (" ij oin" l "natjoin") l "uj oin Il l "sj oin Il

OrderedOperator := AssoCommuOperator
l "cat" 1"-" l "/" l "mod" 1"**" l "pred" l "suce"

ComparativeOperator := "substr ll

loinOperator := "nop" 1 Muloin
1 «lInot" 1 "!"»? Sigmaloin

"=" "! =" 1 ">" 1 "<" 1 ">=" 1 "<="

•
Muloin := ("ijoin" l "natjoin")

1 Il U j 0 in Il 1 Il S j 0 in Il 1 III j 0 in Il l "rj 0 in"
1 ( "dlj 0 in" l "dj 0 in Il ) l "drj 0 in Il



•
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SigmaJoin := (Ilicompll 1 IInatcompll) 1 "eqjoin"
1 ("gejoinll 1 I SUp" 1 IIdiv") 1 "ltjoin"
1 ("le joinll 1 II sub") 1 <"iejoin" 1 " sep")

FunctionOperator := " abs ll

l "sqrt" 1 II s in" 1 "as in" l "cos" 1 "acos" 1 Il tan Il

l "atan ll 1 II s inh ll 1 IIcosh" 1 "tanh" 1 Il logIl 1 "logl0"
1 "round" 1 " ceil" l "floor" l "isknown" 1 " chr ll 1 "ord"

ParameterList := Parameter <Il J Il Parameter) *

Parameter := <IDENTIFIER> (":11 " seq")?

ComputationBody := ComputationDeclarationAndInitialization
ComputationBlock ("aIt" ComputationBlock)*

ComputationBlock := "{" ComputationStatements "}"

ComputationDeclarationAndlnitiaIization :=
( LocalVariableDeclaration

1 StateVariableDeclaration
1 Computationlnitialization

)*

131

LocalVariableDeclaration

StateVariableDeclaration

IIlocal" IDList Type
(VariableInitialization)?

"state ll IDList Type
(VariableInitialization)?

Il. Il
J

Il.11
J

ComputationInitialization := IDList "<_" Expression

Variablelnitialization := 11<_" Expression

ComputationStatements := Statement (";" Statement
"al so" Statement)* (II;")?

Il.11
J

•

ComputationCal1 := Identifier "(" (CallParameterList)? ")"

CallParameterList := CallParameter (J' J Il CallParameter) *

CallParameter := (lIin" 1 lI out") <IDENTIFIER>
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