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Abstract

This thesis discusses the design and implementation of a relational database programming lan-
guage. focusing on the domain algebra for nested relations. While the relational algebra provides
operations to manipulate relations as data primitives, the domain algebra allows the manip-
ulation of the attributes of relations. With the nested relational model, the domain algebra
subsumes the functionality of the relational algebra. The conventional relational operations
(e.g. selection and projection) may be applied to the attributes of a relation.

The domain algebra for nested relations has many advantages. For example, the domain
algebra makes the nesting and unnesting of relations very easy. This ensures that any hierarchical
database schema can be validly translated into a conventional 1NF database schema. With the
nested domain algebra, defining abstract data types for domains can be achieved as well.

The system consists of three modules; the relational algebra, the domain algebra and com-
putations. This thesis deals with the domain algebra module.

The implementation is part of the jReliz project at McGill University. The most significant
feature of jRelix is the support for the nested relations with an arbitrary but finite level of
nesting. The Object-Oriented programming language Java was used exclusively during the im-

plementation, which secures jRelix as a platform independent database programming language.

viii



Résumé

Cette these documente la conception et I'implantation d’un langage de programmation de base de
données relationnelle, se concentrant en particulier, sur I’algebre des attributs pour les relations
imbriquées. Alors que 'algébre relationnelle offre des opérations qui manipulent des relations
comme données primitives, ’algébre des attributs permet la manipulation des attributs des re-
lations. Avec le modéle des relations imbriquées, I’algebre des attributs inclus le fonctionnement
de l'algébre relationnelle. Les opérations de l'algebre relationnelle (e.g. selection et projection)
peuvent étre appliquées aux attributs des relations.

L’algebre des attributs pour les relations imbriquées a plusieurs avantages. Par exemple, elle
facilite I'imbrication et la désimbrication de relations. Ceci assure que n’'importe quel schéma
hiérarchique de base de données peut étre traduit en un schéma conventionnel de base de données
en premieére forme normale. En plus, I’'algébre des attributs pour les relations imbriquées permet
la définition des ADT.

Le systéme comprend trois modules; l'algebre relationnelle, I'algebre des attributs et les
computations. Cette thése traite le module de I'algébre des attributs.

L’implantation fait partie du projet jRelix de I'univerité McGill. Le trait le plus significatif de
JRelix est le support pour les relations imbriquées a des niveaux arbitraires mais finis. Le langage
de programmation orienté objet Java fut utilisé pour l'implantation. Ceci rend le langage de

programmation de base de données jRelix indépendant de la plate-forme sur lequel il est utilisé.
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Chapter 1

Introduction

This thesis describes the design and implementation of a relational database language in the
Java programming language in general, and the implementation of domain algebra in particular.

The purpose of our work is to support the traditional relational model with an extension of

nested relations.

1.1 Background and Motivation

Starting in 1986, a relational database language called Reliz was designed and developed at the
Aldat lab of School of Computer Science in McGill [Lal86]. The purpose of the original work
was to provide an experimental interactive environment for exploring the concept of the so-called
Relational Database Model proposed by Dr. E. F. Codd in his pioneering paper “A Relational
Model of Data for Large Shared Data Banks® [Cod70]. The original system was developed
in C language and ran on UNIX operating system. Relix was firstly designed to support both
relational algebra [Cod70] and domain algebra [Mer84] for flat relations. Following the progress
of development in the Aldat lab, the Relix system has been enhanced with further conceptual
functionalities such as procedures, event handling, computations, and concurrent control etc. In
1996, an improvement to the system made Relix capable of supporting the basic operations of
the so-called Nested Relational Model [Mak77] introduced in 1977, although the operations were

limited to one-level of nesting [He97].
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In the summer of 1997, a new project team was formed with the intention to redesign the
whole system in an Object-Oriented manner in general, and to implement it in a new program-
ming language i.e. Java [GJS96] [AG96] in particular. The new system was named jReliz
and was supposed to cover the most important functionalities of the original Relix system, with
a further extension to support the concept of a nested relational model with an arbitrary but
limited level of nesting.

The project is still in progress at the time of this writing, although most most expected
functionalities have been implemented. In general, the system was classified into three major
modules, i.e. Relational Algebra, Domain Algebra and Computation. The relational algebra
module was designed and implemented by Biao Hao, a graduate student in Computer Science
at McGill. I have designed and implemented the domain algebra module. Patrick Guillaume
Baker, another graduate student at McGill, was responsible for the computation module. This
thesis will discuss the system design and implementation of the jRelix, with a focus on Domain

Algebra, i.e. what [ have been working on.

Domain Algebra for Nested Relations

As mentioned before, the purpose of our work is to design and implement a database lan-
guage/model that supports the Relational Database Model with the extension of Nested Rela-
tzons. To achieve this, the domain algebra needs to subsume the capability of dealing with nested
relations.

Why do we need a domain algebra for nested relations? With domain algebra capable of
dealing with nested relations, the resting and unnesting of relations can be easily performed,
which ensures that any hierarchical database schema can be validly translated into a 1NF re-
lational database schema. On the other hand, the potential of defining abstract data types for
domains can be achieved by nested domain algebra as well.

The idea is to integrate the notion of “nested relations” into both the relational algebra
and the domain algebra. In other words, the key point is to make relational expressions part of
domain expression so that relational operations can be applied to the nested attributes/domains.

This way, any operations that are performed on the top level relations can be performed at the
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lower level attributes which are also relations.

Apparently, in order to fulfill this achievement, the domain algebra must be given more
power, i.e. apart from its original ability to perform domain operations, it must be compe-
tent in relational operations as well. In fact, the way jRelix domain algebra was designed and
implemented shows that domain algebra in the nested relational model is a super set of both
traditional domain algebra and relational algebra, i.e. it subsumes almost all the functionalities

of relational aigebra, and becomes the most important concept in the Nested Relational Model.

Java Programming Language

The old version of Relix was developed in C programming language, and has being running in
UNIX environment. Rather than continue development on the C version of the Relix system,
we decided to choose Java as our developing language and start the design from scratch. There
are multiple reasons behind this decision.

First of all, Java is an Object-Oriented programming language. The Objectory methodology
i.,e. to develop a system in an Object-Oriented manner gives much more benefits than the
traditional methodology of structured system design and implementation, e.g. the easiness of
svstem development and maintenance supported by the Objectory concepts of data encapsulation,
inheritance and polymorphism.

Second, development using the Java programming language results in an object system that
is platform-independent, as a declared feature of Java’s “neutral architecture”. The benefit is
significant: it realizes many software designers’ dream of “compile once, and run everywhere”.
Compared with the C version of the Relix system which runs in UNIX environment (and needs
a new compilation for each UNIX system), jRelix runs on almost all operating systems without
additional compilation, as long as the operating system has a “Java Virtual Machine” running.
And as we know, the fact is that almost all non-trivial operating systems have become “Java-
capable’.

Third, Java has a strong connection with Internet. The Java development environment
provides abundant libraries of networking facilities. It is verv easy for a Java application to

migrate into Internet applications. The jRelix system, with no exception, can be converted
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into an Internet application that will become accessible by a remote web browser e.g. Netscape
Navigator, which gives the strong potential of system scalability. A further migration of the
jRelix system into a so-called Client/Server model, which theoretically takes less effort than
that of a non-Java application, can enhance the system performance dramatically.

The discussion of the benefits that Java provides is beyond the scope of this thesis. However,
the advantage of choosing Java as the developing language instead of staying with C/C++ for

jRelix system development is obvious and desirable.

1.2 Thesis Outline

Chapter 1 of this thesis introduces the thesis topic. In Chapter 2, a background review of
the literature and related work done at McGill is given. Chapter 3 describes in detail how the
relational database operations are performed using the system developed as our implementation.
Much discussion is focused on the nested relational model in this chapter. Chapter 4 explores
the implementation issue involved in the design of a relational database language that supports
nested relational model in general, and so-called domain algebra in particular. In Chapter 5. a

conclusion of our present work as well as the future work for this topic is discussed.



Chapter 2

Background and Related Work

The well-known and widely used relational database systems all conform to the basic relational
model first proposed by Dr. E. F. Codd in his pioneering paper “A Relational Model of Data
for large Shared Data Banks” [Cod70]. The relational model, unlike other data models, has a
rigorous mathematical definition that is beyond the scope this thesis. but it has since then been
recognized for its simplicity, uniformity, data independence, integrity and evolvability [Ger75].

The basic technology shared by all relational databases can be summarized simply as follows:

e The database system maintains a clear distinction between the logical views of the data
presented to the user and the physical structure of the data as it is stored. The user need
not understand the physical structure of the data in order to access and manage data in

the database.

e There is a simple logical data structure that is easily understood by users who are not

database specialists.

e There are high-level languages provided for accessing the data in the database, and for

performing various operations on databases.
Codd later went considerably beyond just providing this model, however [Cod72b]. It also
included:

e Relational calculus, a mathematically rigorous definition of the “set operations™ that a

relational database should support for manipulation of tables.

s
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e Rules defining how a relational database should operate. The rules cover matters ranging

from the database access that must be provided for users, to issues of data security.

2.1 Relational Model

In his relational model, Codd showed that a collection of tables that he termed relations could
be used to model aspects of the real world and store data about objects in the real world. The
form of a relation is deliberately chosen to be simple, yet it is capable of capturing many of the
relationships represented by the more complex data structures.

The relational model for representing data specifies that information is represented in a table

format with the following characteristics:

e all rows are distinct
e the ordering of the rows is immaterial
® cach column has a unique label, and, hence, the order of the columns in a row is insignificant

e the value of a given column in a row is of a simple type such as an integer or a floating
point or a character string, as opposed to complez type such as a table

Student Record Table

Bailey P. Math 211 '90\
Bailey P. Art 301 ' 77 le_|.__.
Jones J. Math 100 332
Jones J. Math 175 76
Jones J. Art ll0 79

Attribute Value

Figure 2.1: Relational Model

As showed in Figure 2.1, the terminology associated with a relational model consists of:

e tuple: a row in the relation
e attribute: a column in the relation

e domain: the set of legal values that an attribute can have



=
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2.1.1 Operations on Relations

All data within a relational database is viewed as being held in tables or relations. Each relation
is a model of real-world data relationships. At the same time, a relation is a simple enough
structure that users can readily understand. A system that supports the relational model can
perform well-defined operations on these relations to retrieve information.

On the other hand, relational algebra (which is based on function application and the evalu-
ation of algebraic expressions) is a procedural query language which is used to process relational
data. The basic operations of relational algebra were first suggested by [Cod70]. He also estab-
lished that queries formulated using his calculus DSL-ALPHA could be formulated in algebra
and vice versa (1972); in consequence he called both languages relationally complete [Cod71]. In
the relational algebra, there is no concept of tuples. The relational operators take relations as
operands and return a relation as a result which can be further manipulated. The property that
any relational algebra operation evaluates to a relation is also called the “closure principle” of
relational algebra. The closure principle allows complex relational expressions by building up a
series of simple operations.

The relational algebra operations are usually classified as unary or binary, depending on the
number of their operands. Unary operators act on a single relation, binary operators act on two

relations, and both produce a single relation as their result.
e Unary operations
— Projection: makes a copy of a relation with a specific subset of the attributes
— Selection: selects tuples that satisfy a specific condition
e Binary operations

— Mu-join: join operators that generalize set-valued set operations

— Sigma-join: join operators that generalize logic-valued set operations

2.1.2 Operations on Domains

The need for arithmetic and similar processing of the values of attributes in individual tuples is
apparent. The domain algebra [Mer84] was proposed entirely to avoid tuple-at-a-time operations

for processing attributes in individual tuples. It allows the user to create new domains from
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existing ones. It allows the generation of a new value from many values within a tuple or from

values along an attribute. The domain algebra operations are defined as follows:

e horizontal operations

— Constant
— Rename
— Function
— If-then-else
e vertical operations
— Reduction
— FEquivalence Reduction

— Functional Mapping
— Partial Functional Mapping operations

Various combinations and permutations of the above-mentioned operations e.g. selections,
projections and joins etc. are used in practice to retrieve information from a collection of
relations in a relational database. Many of these have been implemented on commercial DBMS
in the form of SQL (Structured Query Language) and other specialized devices. The actual data
retrieval process thus becomes transparent to the user making the query. The user only sees the

output as a relation [TPB87].

2.2 Normalization of Relational Databases

Normalization is a prominent aspect of relational database theory. It addresses how data ought
to be organized within a database in order to make the database as compact and as easy to
manage as possible and to ensure that is produces consistent results. Normalization rules provide
guidelines for defining the schema (design) of a relational database. Simply put, the rules specify
how a database should be divided into tables and how the tables should be linked together. There

are two major objectives of normalization:

1. Minimize the duplication of data.
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Student
Courses
Name Advisor Coursed Mark
|—Math 100 RS
Bailey P. SmithA. | \opar %
An 301 27
Math 100 92
Jones J. Thomas P. |__Math 175 16
An 110 79
Music 210 88
ManinR. | SmithA, |[—Mathl00 -
Math 191 100

Figure 2.2: Nested Student Record Table

2. Minimize the number of attributes that must be updated when changes are made to the
database, thereby making maintenance of the data easier and reducing the possibility of
error.

There are several ways in which data in a database can be normalized, three initially defined
by [CodT72a], [Cod72b], and some othgrs defined by others since then. They are called normal
forms. In order for a database to conform to the first normal form (INF), attributes must be
atomic; that is, an attribute must not be an n-tuple and therefore can’t be a set, list or, most
importantly, a table or a complex object. This means that tables can not be nested in a INF
database. Figure 2.2 shows a nested table that does not conform with 1NF. Figure 2.3 shows
how the nesting of Courses is eliminated by creating a separate Student table and Courses table,
and creating a relationship between these two tables, i.e. the student and his/her course records.

Adherence to the first normal form is a matter of the design of the database or relations. If
the database does not support non-atomic attributes, then the user has no choice and conformity
with the first normal form is guaranteed.

The second through fifth normal forms (hereafter the higher normal forms) define certain
conditions for each of the normal forms that must be met. For example, the second normal
form declares that if a table has a multi-valued key and contains an attribute that depends on
only part of a multi-valued key, then that attribute should be moved to a separate table. The
conversion of the table in Figure 2.4 which is necessary to achieve 2NF conformance is shown

in Figure 2.5. The example illustrates how conforming to 2NF can reduce the amount of data
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Student
Name Advisor
Bailey P. Smith A.
Jones J. Thomas P.
Martin R. Smith A.

Courses
Name Course# Mark
Bailey P. Math 100 85
Bailey P. Math 211 99
Bailey P. Art 301 77
+ Jones J. Math 100 92
Jones J. Math 175 76
Jones J. An 110 79
Jones J. Music 210 88
Marin R Math 100 85
Martin R. Math 191 100

Figure 2.3: 1NF-conformant Student Record Table

Figure 2.4: 1INF(but Non-2NF) conformant Student Record Table

Student
Name Advisor Courses Mark
i Smith A | Mah 100 85
Bailey P SmithA | Muh211 99
| _Railey P | _Smith A An1 301 IZ
lone< | Thamas P Math 100 QP
lones 1 ThomasP. ! Nah 178 26
Iones | Thomas P A 110 79
| Jones! | ThomasP | Music210 1 KK |
Marntin R 1 L Nah 100 XS
Martin R. Smith A. Math 191 100

10
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stored in the database and the number of values that must be modified when a change is made.
In Figure 2.4, the Advisor name is stored once for every occurrence of a student record. In
Figure 2.5, the Advisor name is stored only for each student. If it were necessary to change a
student’s advisor, there would be many fewer fields in Figure 2.5 that would require updating

than in Figure 2.4.

Courses
Name Courses Mark

Student Railey P Math 100 85
Name Advisor i |__Math 221 9
Bailey P. Smith A + . A 301 71
lones 1 Math 100 [ 54

Jones J. Thomas P. Jones 1 \ath 175 26
Martin R. Smith A_ | __fones § An 110 19
Im l unsm' 'IIQ 58

Magtin B Math 100 13

Martin R. Math 191 100

Figure 2.5: 2NF-conformant Student Record Table

3NF, ANF and 5NF similarly define increasingly stringent requirements, and adherence to
each likewise can reduce storage space, the number of updates required, or both.

The normalization technique has been discussed by Ullman [Ull82] and by Date [Dat81],
while several others have presented informal outlines of it [Gra83]., [Ken83], [KS86], [Sal86].
Yao [Yao83] and Ceri et al. [CG86] have summarized the various normalization algorithms that
are available, including some of their own modifications. Yang [Yan86| has discussed a graph-

theoretic approach to normalization.

2.3 Limitations of 1NF Relational Databases

As with any relational database system, conformance to the higher normal forms is completely up
to the database designer - the software imposes no constraints that prevent attaining an optimal
schema, whether fully conformant or not. But databases that provide for the storage of atomic
values give the designer no choice but to conform with 1NF. Conforming with the higher normal
forms generally produces an optimal schema, albeit at the expense of greater complexity. But

database conformance with 1NF often increases the amount of storage used, makes maintenance
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more difficult, and most importantly greatly increases the processing required to produce results.
while still making the schema more complex. When comparing Figure 2.2 and Figure 2.3, the

follow observations can be achieved:

e The number of tables increases from one to two.

e Normalization of the tables requires the student Name attribute to be stored twice for each

student.

e Producing a report to show the student data requires that the two tables be joined. Joins

are highly compute-intensive operations.

For some potential users of relational databases, the joins that would be required to resolve
relations in INF databases would affect performance enough to preclude the use of relational
databases. For example, INF relational databases are generally acknowledged to be unacceptable
for CAD/CAM systems, which are used to design mechanical parts for manufacturing [MRS88].

One reason is that CAD/CAM data are inherently hierarchical in nature and the database
structure used to store the part information must be traversed very quickly in order to display
the part on the user’s screen within an acceptable response time. Hundreds or thousands of join
operations are required to display a complex part. These joins simply cannot be performed fast
ecnough to provide acceptable display times. That is one reason 1NF databases are not used for
CAD/CAMI data. Such systems instead use proprietary hierarchical databases that provide high
performance but are expensive to develop and maintain.

Apart from performance considerations, INF relational databases also have practical limita-
tions for many applications. While any hierarchical database schema can validly be translated
to a INF relational database schema, the practical considerations in doing so are daunting.
Take for example a mechanical part. A hierarchical structure naturally and compactly stores
the data that describe the part. The translation (mapping) of that hierarchical structure to a
INF schema, however, is far from intuitive and leaves a confusing, awkward, complicated set
of interrelated tables, including many tables for storing relationship relations. As a practical
matter, such schemas are not possible to implement. These same considerations apply to many

other tvpes of data.
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2.4 Nested Relation Model

Consideration of the limitations imposed by the INF constraint lead naturally to the question,
“Can the INF constraint be removed from relational database without invalidating the under-
lving relational model?”

As mentioned earlier, the relational model has a mathematically rigorous definition to guar-
antee predictable, correct results on any database systems that faithfully implements the model.
Detailed examination [AB84] [FT83] [KK89] [Mak77] [SP82] [SS86] has been made of the re-
lational model with the INF constraint removed. The analysis has proven that the resulting
model] is equally robust. In other words, removing the 1NF constraint will not cause a relational
database to produce invalid or inconsistent results as long as the database conforms to higher
normal forms.

The removal of the 1NF restriction has led to investigations which retain much of the ad-
vantages of the relational model. The need to introduce complex objects into relations in order
to make them more qualified to handle non-business data processing applications such as image
and map processing, CAD/CAM, office automation, expert svstems and certain scientific appli-
cations was realized in the late 1970’s and lead to the introduction of nested relations [Mak77]
and non-first-normal-form (N F?)) [JS82].

Due to extensive research, significant progress has been made in the field of nested rela-
tions since the nested relational model was first proposed in 1977 [Mak77]. Fisher and Van
Gucht [FG85] discussed the one-level nested relations and developed a polynomial time algo-
rithm to test if a structure is an one-level nested relation. Jaeschke and Schek [JS82] introduced
a generalization of the ordinary relational model by allowing relations with set-valued attributes
and adding two restructuring operators, the nest and unnest operators, to manipulate such
(one-level) nested relations. Thomas and Fischer[TF86| generalized Jaeschke and Schek’s model
and allowed nested relations of arbitrary (but fixed) depth. The definition of recursively nested
relations was also discussed [LS88].

On the other hand, various query languages have been introduced for the nested relational
model, and extensions have been proposed to practical query languages such as SQL to accom-

modate nested relations [PA86] [KR89] [PT86]. Graphics-oriented query languages [HP87]
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and datalog-like languages [BK86] [BNR*87] have been introduced for this model or slight gen-
eralizations of it. Also, various groups [BRS82] [DKA*86] [DPS86] [SPS87] have started with
the implementation of the nested relational database model, some on top of an existing database

management system [DG88] [SAB*89], others from scratch.

2.4.1 Nested Relations

Most information can be represented in a hierarchcal structure. The hierarchical database struc-
ture is base on a tree structure. Every data item except the roots of trees has a parent in the
structure and may be the parent for other data items. To illustrate this idea, let us consider
an example of a database for a university with a record for each department. Each depart-
ment has students and professors. Each student has an advisor and a list of courses etc. These

relationships can be represented diagrammatically as a tree, as shown in Figure 2.6.

DEPARTME
PROFESSOR

COURSE#®

Figure 2.6: Schematic of Hierarchical Structure Example

As well, the contents of above information structure can be illustrated more or less like that

shown in Figure 2.7.

Alternatively, the information can be described in a table of format of nested relations as
illustrated in Firgure 2.8.

The relation Student in Figure 2.8 gives an example of nesting. Relation Student consists of

three tuples each having three attributes:

e Name: The name of the student. Its data type is string (atomic).
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COURSES
Math 100 | 85
Math 211 | 90
Art 301 ke
Jones J.
Thomas P. Math 100 | 92
Math 175 | 76
At 110 i
Mus:c 210| 8%

Main 100 | 85

Math 191 | 100

Figure 2.7. An Example of a Hierarchical Record

Student
Courses

Name Advisor Course# Mark
100 85

Bailey P. Smith A. { Mah 211 99
An 301 77

|__Marth 100 92

Jones J. Thomas P. | __Math 175 16
A 110 29

Music 210 88

MotinR. | SmithA. [—Mathl00 —RS
Math 191 100

Figure 2.8: An Example of a Nested Relation Representation
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e Advisor: The name of this student’s advisor. Its data type is string (atomic).

e Courses: A nested relation containing the course information the student is registered in.
Each tuple in relation Courses contains a whole relation as an attribute. The first tuple

contains a relation with 3 tuples. The second tuple contains a relation with 4 tuples.
The N F? relations have some advantages over 1NF relations, such as:

e Nested relations minimize redundancy of data. Related information can be stored in one
relation only without redundancy. For example, if relation Student in Figure 2.8 were to
be represented by 1NF, either it would have had to have redundant values for attribute
Name and Advisor, or it would have had to be split into two different relations i.e. Student

and Courses, with a foreign key Course#;

e Nested relations allow efficient query processing since some of the joins are realized within
the nested relations themselves. In our example in Figure 2.8, if information about the
student’s marks needed to be retrieved in the 1NF representation, a join would have had
to be performed between Student and Courses, while no joins are needed in the NF?

representation.

e Low level implementation techniques such as clustering and repeating fields can be repre-

sented using the formalism defined by the nested relation model.

2.4.2 Abstract Data Types for Domains

A traditional database application involves storing large numbers of similar records of a few
varieties, with insertions, updates. deletions, and simple queries being performed on these data.
Recently, many application areas with more complex and varied data are being explored, with
quantities of data being large and important enough that archiving these data in a database is
desirable to help organize and keep track of the data as well as to gain security and consistency.
Such applications might have variable-length character strings which are very long, such as
abstracts or full text of articles or books, geographic maps, information describing a single

television image, the pixels for a raster scan image, programs and their version, VLSI chip
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designs, and so on. For such applications, some attributes in each relation will be of the standard,
. built-in types, whereas other attributes will be defined as being of “new data types” such as
“program” or “picture” [OHS86].

The nested relational model allows abstract data types to be defined for domains, and allows
operations to be defined on them. In the nested relational model, the domain algebra subsumes
the functionalities of relational algebra, which means domain algebra is also capable of relational
operations such as selections, projections and joins. A so-called virtual domain that is defined
by domain algebra could have a complex data type of relation instead of atomic types of integer
or float etc. As well, the virtual domains are capable of implying different kinds of relational
operations performed upon other non-virtual domains which are lower-level relations. This gives

a equivalent scheme of abstract data type in the relational data model.

2.4.3 Nesting and Unnesting

In the literature, defining nested relational models was done by extending relational operators
to nested relations, and adding two restructuring operators, nest and unnest. The nest operator
creates partitions which are based on the formation of equivalence classes. Tuples are equivalent
if the values of the same attributes which are not nested are the same in the different tuples. All
equivalent tuples are replaced with a single tuple in the resulting relation; the attributes of this
tuple consists of all the attributes that are not nested, having the common value in the original

tuples, as well as a nested relation whose tuples are the values of the attribute to be nested.

UNNEST nt (NEST ., ( Relanion )) = Relanon

Figure 2.9: Nest and Unnest (which holds)

The Unnest operator undoes the result of the nest operator. It creates a new relation whose
tuples are the concatenation of all the tuples in the relation being unnested to the other attributes
in the relation. Thus the equation in Figure 2.9 always holds. On the other hand, however, the

reverse does not necessarily hold, i.e. the equation in Figure 2.10 is not always true.
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?
NEST _ ... (UNNEST _ .. (Relanon)) = Relanon

Figure 2.10: Nest and Unnest {which does not always hold)

As the price of the advantages over 1NF relations, nested relations pose a non-trivial problem
of data representation. That is, generally there are alternative representations of data in a nested
relation, while the data is uniquely represented by a 1NF relation.

There are two different assumptions [Tak89] with respect to whether these alternative rep-
resentations are the same. The first one [Mak77] takes the structure of the representation into
account, since it catches certain semantics of the application. It follows that each nested rela-
tion should be recognized as a unique representation of data. This assumption, however, has a
drawback that the information is lost when it is normalized into a set of simple tuples. This
assumption poses a semantic gap between 1INF and nested form relations although it enables us
to represent complex objects in a natural way using nested relations. The second one, on the
contrary, assumes that each set of values is just a union of single values rather than a specific ob-
ject. This assumption allows us to identify the different nested representations with their unique
INF relation. In fact, this is an implicit assumption of many research papers such as transfor-
mation between 1NF relations and nested relations using NEST and UNNEST operators [JS82]
[FT83], designing nested relations [OY87], and data manipulation [AMMS83].

2.4.4 Domain Algebra for Nested Relations

In order to implement the nested relation model, not only is the relational algebra required to
handle different joins of nested relations, more importantly, the domain algebra must be capable
of dealing with lower-level nested relations. With a domain algebra capable of nested relational
operations, the nestingand unnesting of relations can be easily performed, which ensures that any
hierarchical database schema can be validly translated into a 1NF relational database schema.
On the other hand, the potential of defining abstract data types for domains can be achieved by

nested domain algebra as well.
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In the jRelix system concerning the implementation of the domain algebra for nested rela-
tions, the basic strategy is to integrate the notion of “nested relattons™ into the domain algebra
and make relational expressions part of domain expression so that relational operations can be
applied to the nested attributes/domains. This way, any operations that are performed on the
top level relations can be performed at the lower level attributes which are also relations.

Clearly, in order to fulfill this achievement, the domain algebra must be given more power, i.e.
apart from its original ability to perform domain operations, it must be competent in relational
operations as well. In fact, the way jRelix domain algebra was designed and implemented shows
that domain algebra is a super set of both traditional domain algebra and relational algebra, i.e.
it subsumes almost all the functionalities of relational algebra.

Since I was mainly responsible for implementation of domain algebra in jRelix, I will give

much more details about this in the rest of this thesis.

2.5 Introduction to Relix

Relix, a Relational database programming language in Unix, was developed at the Aldat lab of
School of Computer Science, McGill, starting in 1986 [Lal86]. Relix is based on an algebraic data
manipulation language proposed by Merrett [Mer77]. It is basically an experimental interactive
environment built to explore the concept of the relational database model described in [Mer84].
This section discusses the conceptual framework of the existing Relix system. Since current
implementation of jRelix is heavily based on the existing Relix system, a background knowledge
of Relix helps the reader to better understand the rest of this thesis.

Generally speaking, Relix is an interpreted language written in the C programming language.
[t can accept and execute commands or statements interactively from the command line; while

it also can run a batch file of Relix commands and statements.

2.5.1 Domains and Relations

Relix mainly deals with two kinds of data, i.e. domains and relations. A relation is defined on

onc or more attributes, and the data for a given attribute is from a particular domain of values.
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The domain of a given attribute determines its data type.
There are totally six atomic data types defined in the original Relix system, which are

illustrated in Figure 2.11. Some complex data types such as nested relation were implemented

subsequently following the development of the system [He97].

Data Type | Shost F Domain
integer intg signed integer
short short signed short integer
long long signed long integer
real real signed floating point
boolean bool true or false
string strg sequence of characters

Figure 2.11: Atomic Data Types Defined in Relix

Given the relation illustrated in Figure 2.1, Figure 2.12 shows the declaration and initial-

ization of a Relix domain and relation.

>domain Name string:
>demain Course string:

»dczain Mark integer:

>srelaticn StudentRecord(Naxze, Course, Mark) «<-

{{*Ba:ley P.-. °*Matn 10C-*. £S). (*Bailey P*. °"Mazh 2ll°, 99,
{({(*Bailey P.*, "Art 301-. 77}, (-Jcnes J.*. *Mach 100-. 32).
{(~Jcres C°.*, *Math 175°, 745)., (°Jsnes J.*. “Art lIC", 79)};

Figure 2.12: Declaration and Initialization in Relix

2.5.2 Relational Algebra

Relix supports relational algebra operations including selection, projection, pu-joins and o-joins.
Selection is the operation that creates a new relation by extracting specific tuples that satisfy
certain conditions from the source relation; while projection is the operation that creates a new
relation by extracting named domains from the source relation.

p-joins are derived from the set operations such as intersection, union and difference etc.

The p-joins on two relations are based on three parts:
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1. center, the combined tuples of the two relations that have equal values on the join at-

tributes.

o

left, the tuples of the left operand relation, such that the value of its join attributes is the

difference between the value of join attributes of the left operand relations and the right

operand relation.

3. right, the tuples of the right operand relation, such that the value of its join attributes is

the difference between the value of join attributes of the right operand relations and the

left operand relation.

usions u-ign-gpergtor  Resylting Relgton
Natural join ‘natjoin’ or ‘ljjoin”  cantre

Union Jan ‘ujoun’ left U centre U ngnht
Left Join Tjony' left U centre

Right Join oin® nght U centre

Lett Difference Join ‘djoin’ or ‘cicin’  left

Right Ditference Join ‘don’ nght

Symmaetnc Ditferance Jan  ‘sjoin’ left U nght

Figure 2.13: u-joins in Relix

In Relix system, p-joins include natural join (i.e. intersection join), union join, symmetric

difference join, left and right joins, as well as left and right difference joins etc.

illustrated in Figure 2.13.

They are

On the other hand, o-joins are based on set comparison operators and they include division

(super set D), proper super set (D), equal set (=), proper subset (C), subset (C), intersection

(M), and the their corresponding negative operations. Figure 2.14 illustrates the sigma joins

defined in the Relix system.

Readers may refer to [Mer84] for a formal definition and detailed explanation of both pu-join

and o-join implemented in Relix.
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RNYUBRENNONU DN wg
%

Figure 2.14: o-joins in Relix

2.5.3 Domain Algebra

Relational algebra considers relations to be the data primitives [Mer84] and therefore does
not provide the power to manipulate attributes. As a result, domain algebra is proposed to
overcome this problem [Mer77]. Even though attribute and domain hold different meanings,
they are sometimes used interchangeably in Relix literature.

Apart from creating a domain by declaring its type as illustrated in Figure 2.12. a new
domain can be created by expressing the domain as operations on existing domains. Domains
defined in this way are called “virtual domains” in the sense that there are no actual values
associated with them. The value of virtual domains is actualized in a Relix statement, notably,
projection or selection etc.

The domain algebra is usually classified into two categories, i.e. horizontal and vertical
operations. The horizontal operations work on a single tuple of a relation. The horizontal domain
expressions are formed by applying renaming mechanisms, mathematical operators, predefined
functions, and if-then-else clauses on constants or attribute names. On the other hand. vertical
operations are those domain algebra operations that combine values from more than one tuple

in a relation. They include simple reduction, equivalence reduction, functional mapping, and
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partial functional mapping. Given the relation illustrated in Figure 2.1, Figure 2.15 shows some
examples of declaring virtual domains using both horizontal and vertical operations of domain

algebra. Readers may refer to [Mer84] for a formal definition and detailed explanation on domain

algebra operations implemented in Relix.

>let StudentName be Name: // Renaming
>let NewMark be Mark-5; // Arithmatic operaction

// 1f-chen-else clause
>let Result be if Mark>=60then “Pass” else “Fail*:

// Simple reduction
>let Average be (red+ of Mark)/{reds+ of 1l);

/7 .Equ'.valent reduction
>let SubTotal be equive of Mark by Name: J

Figure 2.15: Examples of Domain Algebra in Relix

2.6 Scope of the Present Work

This thesis discusses the design and implementation of Relix as a database language which is
built with a new Object-Oriented programming language, i.e. Java. The purpose of our work
is to extend Relix with a set of full-fledged functionalities for the nested relational model. The
system developed in accordance with this thesis is called jReliz (i.e. Java implementation of
Relix). A detailed description of how to use jRelix to perform relational database operations
and programming is firstly given. The concept and idea for jRelix design and implementation
in general, and the domain algebra for nested relations (which was my major responsibility) in

particular, will be explored thereafter.
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User’s Manual on jRelix

This chapter serves as a jRelix tutorial. It describes how to use jRelix to perform relational
database operations and programming. Section 3.1 describes how to start and exit the jRelix
system. Section 3.2 explains how to declare domains and relations, and how to initialize a
relation (both flat and nested). In this section, jRelix data types will also be introduced briefly.
Section 3.3 tells reader how to remove a declared domain or relation, and what kind of restrictions
may be encountered when trying to remove a domain or relation. The fundamental operations
of relational algebra e.g. projection, selection and joins etc. will be explored in section 3.4.
Subsequently in section 3.3, the use of domain algebra operations will be explained in detail.
In section 3.6 and section 3.7, the usage of views and computations will be briefly introduced.
Details can be found in [Hao98] and [Bak98]. Finally in section 3.8, some of the more advanced
system commands in jRelix will be presented.

In this manual, the jRelix commands are basically introduced in a practical way which is
casy to understand and vet sufficient for basic operations. On the other hand, readers who are

interested in details can find a complete description on jRelix command syntax in Appendix A.

3.1 Starting and Exiting jRelix

Suppose both the Java run-time system and jRelix software are successfully installed on the user

system. To start jRelix, the following command is tvped on the command line of the operating

24
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system:
> java Interpreter

As the result, jRelix copyright information is displayed in its run-time environment, as illus-
trated in Figure 3.1. After certain internal initializations, jRelix shows its prompt sign “>

and waits for user input.

c:\jrelix\>java Interpreter
..................................

{ RelixJava version 0.$ |
| copyright (c) 1997. Aldat Lab |
t School of Cerputer Science i
MCGill University {

..................................

Figure 3.1: Initial Screen upon Starting jRelix

To exit the system, the user types “quit;” after the system prompt sign. Upon receiving
this command, jRelix performs its clean-up procedure and then returns to the original operating
system.

In the jRelix environment, it is required that commands and statements end with a semi-
colon (*;"). Multiple lines of commands can be entered by the user but jRelix only starts to
interpret the command when it catches a semi-colon, which serves as an end-of-command signal.

This provides an efficient way of inputting multi-line commands and statements in jRelix.

3.2 Declarations

When entering a new jRelix environment, the first thing a user may want to do is to declare
some attributes (i.e. domains) and relations which are based on the attributes already declared.
This section describes both domain and relation declarations.

As we know, a relation is defined on one or more attributes, and the data for a given attribute
is from a particular domain of values. The domain of a given attribute determines its data type.

jRelix provides several data types, which will also be introduced in this section.
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The terms “domain” and “attribute” usually have different meanings. However, throughout
this thesis, these two terms are used interchangably. In general, they both refer to the same

concept as “attribute’. In the case a conflict of concepts exists, readers will be notified explicitly.

3.2.1 Declare Domains

There are two kinds of actual domain declarations in jRelix, i.e. atomic-typed domains and
complex-typed domains. The term “atomic data type” means the primitive types such as integer.
string etc., as opposed to “complex data type” such as text, statement, computation and nested
relation etc.

Figure 3.2 gives some examples of declaring atomic-typed domains.

>domain
>domain floact:
>domain long:
>demain D bool:
>domain E string;

intg;

nw

Figure 3.2: Declaring Atomic-Typed Domains

In general, the syntax used to declare a domain/attribute of atomic data type is as follows:
> domain dom_namel, dom_name2 data_type;

Note that jRelix provides seven atomic data types for domain declaration, as showed in

Figure 3.3.

Deta Type | Short F Domain
integer intg signed integer

short shont signed short integer
long long signed long integer
float float signed floating point
double double signed double point
boolean bool true or false

string strg sequence of characters

Figure 3.3: Atomic Data Types in jRelix
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On the other hand, two complex data types have been implemented in current jRelix. i.e.
nested relation and computation. Nested relational domain is used when the attribute in a
relation is a further relation, i.e. the attribute in a table is a table as well. This mechanism
constructs a nested table, and as a matter of fact, multi-level (though not recursive) nesting is
allowed in jRelix. A computational domain is a virtual computation which will be actualized
based on the actual tuple data in the source relation [Bak98].

Figure 3.4 gives some examples of declaring both nested relational domains and computa-

tional domains.

>domain A intg; ||
>domain B float:; _ _ - nested domain

>domain F(A. B);-""" o nested domain with 2-level nesting

>domain G(A, F); -~ ~~~~ . 3

>domain H comp{A, B);===--=- o computational domain J
>

Figure 3.4: Declaring Complex-Typed Domains

Note that in Figure 3.4, domain F is a nested domain which is defined on atomic-tyvped
domains A (integer) and B (float). Domain G is a 2-level nested domain which is defined
on an atomic-typed domain A (integer) and a complex-typed domain F (i.e. nested domain).
Something that needs to be mentioned here is that when a new nested domain is declared, an
invisible relation (whose name starts with a “.”) is created automatically in the system. This
relation is supposed to hold the data that belong to the nested domain in question. The invisible
relation can be seen by using a jRelix command introduced in section 3.8.2, while its contents
can be printed by a command described in section 3.2.5, although readers do not need to bother
with that at the present stage.

In general, the syntax used to declare a nested relational domain is as follows:

> domain nest_dom.name(dom_namel, dom_name2, ...);
As well, the syntax for declaring a computational domain is as follows.
> domain comp_dom_name comp (dom_namel, dom_name2, ... )
It is required by current jRelix implementation that the domains on which a new nested

relational domain or computational domain is defined must be declared already, i.e. the domains
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of (dom_namel, dom_name2, ...) in above syntax must be declared and be existing in the system;
Otherwise, a “domain not found” warning message is generated and the user is notified.
Finally as a complement, Figure 3.5 lists five complex data types that are included in the

jRelix system (though not completely implemented yet).

Data Type Short Form{ Domain

nested domain idlist nested relational domain
computation comp computation

text text (not implemented yet)
statement sunt (not implemented yet)
expression expr (not implemented yet)

Figure 3.5: Complex Data Types in jRelix

3.2.2 Show Declared Domains

This section describes how to display the domain items that have been declared in the system.
This is particularly useful when user wants to check if the domains are declared correctly or to
see which domains are available for further relational declaration. On the other hand, readers
who are more interested in relation declaration and relational operations may skip this section
and jump to section 3.2.3 for information on relation declaration; and refer back to this section
later when a need occurs.

The command to list all domains that have been declared in the system is “sd;”. Given
the domains declared in the previous sections, a sample output of this command is shown in
Figure 3.6.

It is clear that domain information is displayed in a table format with four fields, i.e. Name,
Type, NumRef and DomList. A type of idlist indicates a nested relational domain, with corre-
sponding DomLzst field indicating the attributes/domains on which the current nested domain
is defined. The NumRef field contains an integer value called “reference counter” that indicates
how many times current domain is used by other domains or relations. For example, domain A

in Figure 3.6 is used by domains F, G and H, hence its NumRef value is 3. Needless to say that
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( >sd; )
------------------------------- Domain Table -------ccereecccocecccoccacao
Name Type NumRe Dom_List
A integer -’_ .3‘ '~
B float S
c long 0 ‘-‘

D boolean 0 e
E string [1} \’,~
v
F idlise 1 id,s A, B
G idlist 0 id Al F
H cecmputation [} id."As B
>
U ),

Figure 3.6: Sample Output of “sd;” Command

when a new nested domain or a new relation is declared, the NumRef value of the referenced
domains will be incremented by 1. Later in section 3.3, we will see that a domain is not allowed
to be removed when it is used by any other domains or relations. i.e. when its NumRef value is
not equal to 0.

When “sd” is followed by a domain name, this particular domain’s information will be
displayed as illustrated in Figure 3.7. If the relevant domain is not found in domtable, a “domain

not found” warning message will be generated.

>sd G

------------------------------- Domain Tableé --=ccccccemcccncccncamcrcemnne
Name Type NumRef Dom_List

G idlist o id. A, F

Figure 3.7: Sample Output of Displaying a Particular Domain Information

Finally, combined with a command described in section 3.8.2, the “sd” command can also
display some invisible domains which are so-called “systern domains”. Details will be presented

later.

3.2.3 Declare and Initialize Relations

As mentioned before, relations are defined on one or more attributes (or domains) which must
have been declared before the relation is declared or initialized. Otherwise, a “domain not

found’ error message will be generated and the declaration fails. Figure 3.8 gives some examples
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of relation declaration.

>relation R(A.B.C); ~---=---- - flas relation

>relation W(A,F);  =--~-=---- - nested relation (I-level nesting)
>relation X(G.E);  ~------- - nested relation (2-level nesting)
>relation Y(A,B,H); ---~---- - relation with computational domain

>

Figure 3.8: Declare Relations

In this figure, relation R is a flat relation since it is solely defined on atomic data types.
Relation W is a nested relation with 1-level nesting since one of its attributes F is a nested
domain; and relation X is a 2-level nested relation because of domain G (refer to Figure 3.4 for
information on domains F and G). Finally, Y is a relation with computational domain (i.e. H)
involved.

Meanwhile, it is not hard to see from above examples that the general syntax for declaring
a relation is as follows:

> relation rel_name(dom_namel, dom_nam2, ...);

Note that the doamin dom_name’s can be any valid domain declared already in the svstem,
e.g. atomic-data-typed domains, nested relational domains and computational domains etc.
They can also be virtual domains which will be introduced later in section 3.5.1.

On the other hand, however, the syntax given above declares only a relation structure in the
system, which means it is an empty relation without any tuple data inside. A relation can also
be declared with actual data tuples. This is called relation initialization, and the tuple data
is contained in a so-called initialization list. Some examples will be given below to illustrate

different types of initialization.

Declare and Initialize Flat Relations

A flat relation is a relation whose domains are of atomic type. Usually a 1NF-relation is regarded
as a flat relation, such as relation Student! in Figure 3.9.
As showed in this figure, the initialization list in a relation declaration is surrounded by a

pair of curly brackets. Inside the curly brackets, each tuple is represented by a pair of round
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initialization list

A Y
~
Ay
Student1 >go:§ain Nami, Course string:
Mark >domadn Mark intg; _ _ .- - _-___

Name Course >relathion StuderntliName, Courhsei"og!ark.a)s‘f- (
: \,-7("Bailey P.", "Mat -. o~
Bailey P. | Math100 | 85 ﬂé ~<" (-Bailey P.-. art 30l°. 77). “u
Bailey P. Arn 301 77 ', (cJones J.-., -Math 1228 9%;) !

«_{*Jones J.°, -"Music ", . -
Jones ). | Mathi00 | 92 ~{:Martin R.*, -Mach 100-, 854 °7;
Jones J. Music 210 88 e I
Marun R. Math 100 85

Figure 3.9: Declare a Flat Relation

brackets separated by comma signs. Different domain values in each tuple are separated by
commas as well.

In general, the syntax for relation initialization is defined as follows:

> relation rel_name{dom_namel, dom_nam2, ...) < — initialization_list,

Different data types can be figured out in the initialization list by a type-tag associated with
the actual values. For example, a long integer 101245 is represented as 101245l with the trailing
“[" implying a “long’-type; and strings are surrounded by quotation-marks as illustrated by the
Name and Course field value in Figure 3.9. Some examples about the type-tag usage are give

in Figure 3.10. Note that same rule is used when declaring constant domains e.g. “let z be

23.8657d;" etc.

Data Type | Short Form Examples
integer int 12,150
short shont 12s, 78s
long long 1201, 4561
float float 23.5€, 125.45¢, 2.1¢8f
double double 56.86d, 102.137d. 5.3¢9d
boolean bool true, false
stnng surg "Mark P.", "12345"

Figure 3.10: Type-tags in Initialization List
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Declare and Initialize Nested Relations

One of the most important features of jRelix is that nested relations (i.e. NF? relations) are
supported; which means, for example, tables such as Student2 in Figure 3.11 are allowed to

further contain table fields (e.g. the Courses field is another table).

instialization list

LY
A Y
A
A
Student2 N
>dohain Name., Course string;
Name Courses >do:‘:in Mark intg;
Course Mark >domain Courses(Course, Mark);
>relation Student2 (Name. .c(o;ar.sesh). lso: A 35
] _L sBailéy P. -, "Mat} 0=, |
Bailey p. | Math 100 85 L {*Art 301°, 77)) ). ~.
Art 30! n A ( *Jones J.°, {((-Math 100-, 92), M
~_ {*Music 210°, 88)) ). -
Jones J. Math 100 92 ~~-tMartin R.*. {(°Math 100°., 85)}.)}-47
Music 210 88 s T e, a e e e .-
Martin R. | Math 100 85

Figure 3.11: Declare a Nested Relation

It is clear from this figure that same rule is used in the initialization list for nested relation

declaration, i.e.

e A relation/table is always surrounded by a pair of curly brackets.
e Inside a relation, each tuple is surrounded by a pair of round brackets.

e Different tuples are separated by comma signs.

Obviously, this rule also applies to the nested domain fields, e.g. Courses in Figure 3.11. In
other words, the Courses field values are themselves relations surrounded in curly brackets, as
it is showed in the initialization list. Theoretically, jRelix supports multi-level nesting (though
not recursive), but this will cause the initialization list to be much more complicated than what
is showed in this example.

Something that needs to be clarified here is that, although it seems only one relation (e.g.
Student2 in this case) is initialized during a nested relation declaration, multiple relation ini-
tializations might potentially be involved. As mentioned in section 3.2.1, when a nested domain

is declared, an invisible relation whose name is prefixed with a “.” is created in the system
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automatically, and this relation is supposed to hold the data that belongs to the nested do-
main. Therefore, during a nested relation initialization, tuples for nested domains are saved
in their corresponding relations which are not visible. In the example given in Figure 3.11,
all the Courses data including Names and Marks are stored in the relation .Courses which was
generated when the nested domain Courses is declared.

The linkage between the top-level relation (e.g. Student2 in this case) and the relations
associated with each nested domain (e.g. .Courses) is achieved through a so-called “surrogate”,
which is represented as a long integer in jRelix implementation. Figure 3.12 illustrates this

mechanism.

.. surrogates
/ \ .Courses

Studenz  / \ .id Course |Mark
Name Co_un‘s s Math 100 | 85
Bailey P. S A An 301 17
Jones J. S ew|-o oo - 2 Math 100 92
Martin R. N - 2 Music210 | 88
— e 35 | Mamioo | 8s

Figure 3.12: Link Two Relations Through Surrogates

Finally as a reminder, the invisible relations that are associated with nested domains can be
listed by using a command introduced in section 3.8.2, and section 3.2.5 describes how to print

the contents of a relation, regardless of whether it is visible or not.

3.2.4 Show Declared Relations

This section describes how to display the relation items that have been declared in the system.
This is particularly useful when the user wants to check if the relations are declared correctly or
to see which relations are available for further operation.

The command to list all relation entries that have been declared in the system is “sr;”.

Given the relations declared in previous sections, a sample output of this command is shown in

Figure 3.13.
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(o R
----------------------------- Relation Table -------c-c-cccccccccccccea
Name Type Ar NTuples Sort
R relaticn 3 0 [}
w relatica 2 o [*]
X relaticn 2 0 a
Y relatian 3 [*] 0
Studentl relaticn 3 S 3
Student2 relation 2 3 2
\_ _J

Figure 3.13: Sample Output of “sr;” Command

Obviously, relation entries are displayed in a table format with five fields, i.e. Name, Type,.
Arity, NTuples and Sort. The type field indicates the type of the current entry, which can be
“relation”, “view” and “computation” as all of the three types are co-existent in the system. The
Arity field contains an integer which tells how many attributes/domains this relation is defined
on (however, another command need to be used in order to display exactly which domains are
used in the current relation. Details in this connection will be described in section 3.2.6). In
the case that a relation contains tuple data, field NTuples indicates how many tuples there are
in that relation. For example in Figure 3.13, it is easy to know that relation Student! contains
5 tuples. Finally, the Sort field tells how many attributes the current relation is sorted on.

When “sr” is followed by a relation name, the information of this particular relation will be
displayed as illustrated in Figure 3.14. If the relevant relation entry is not found in the system

(e.g. relation is not declared), an error message will be displaved.

>sr Studentl: .

----------------------------- Relarion Table -~-------cccccmoccm e ccae e
Hame Type Arity NTuples Sort

Studentl relation 3 S 3

; )

Figure 3.14: Sample Output of Displaying a Particular Relation Information

Note that the “sr” command also displays the information on all views and computations
that have been declared in the system. Details will be explained in section 3.6 and section 3.7
respectively.

Finally, combined with a command described in section 3.8.2, the “sr” command can display
pla)
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those invisible relations mentioned in section 3.2.1 and section 3.2.3, as well as so-called “system

relations” mentioned in section 3.2.6. Details will be presented later.

3.2.5 Print Contents of Relations

To print the contents of a relation, the command “pr” is used and followed by the relation name

as illustrated in Figure 3.15.

-
>pr Studentl:
............... g Y
| Name | Course | Mark |
Bailey P. Art 301 ' 77
Bailey P. Math 100 85
Jones J. Math 100 92
Jones J. Music 210 a8
Martin R. Math 1l0C 8S

.......................................

| Name | Courses i
----------------- s -’J‘-----------.
Bailey P 3
Jones J. 2
Martin R. 3o

..........................

Mach 100
Mach 100
Music 210
Mach 100
LT T P P porrm e
relaction .Courses has 5 tuples
>

N J

Art 301 ‘ 77 (

Figure 3.15: Sample Output of “pr;” Command

The general syntax is as follows, where rel_name can also be a relation name prefixed by a
“.". In other words, the “pr” command prints a relation no matter the relation is visible or not.
Needless to say, this helps to print the tuple data of nested domains.

> pr rel_name

Ideally, the “pr” command should print the tuple data of a nested relation along with the
data of all the nested domains. However, this is not implemented in the current jRelix svstem
vet. As described in subsection “Declare and Initialize Nested Relations” of section 3.2.3, in
the case of nested relations, the top-level relation is connected with the nested domain relations
by long-integer-typed surrogates, as illustrated in Figure 3.12. Therefore, when the command

“pr” is used to print the contents of a nested relation, the surrogate value instead of the nested
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domain tuples are printed, as illustrated by the output of Student2 in Figure 3.15. In order to
see the actual Courses data (e.g. course name and marks) instead of surrogates, another pr
command has to be issued with the name of the nested domain Courses (prefixed by a “.”) as
the parameter, as illustrated in the same figure. It is clear that two relations (i.e. Student2 and
.Courses) are linked together by the surrogates.

Note that the “pr” command can also be used to print a view information when it is followed
by a view name. Upon receiving this command, jRelix will evaluate and actualize the view based
on its definition and corresponding tuples’ data will be generated and printed on the fly. For

details please refer to section 3.6.

3.2.6 Show Relation-Domain Information

As mentioned in section 3.2.4, the Arity field displayed by “show relation”™ command “sr;” only
indicates how many attributes/domains the relation is defined on. In order to know exactly which
domains are used in a relation (i.e. on which domains a relation is defined), a “show relation-
domain (RD)” command “srd;” is provided by jRelix. This command basically displays the
relationships between relations and domains, i.e. which relation is defined on which domains.

Figure 3.16 is a sample output of this command, given the relations declared in previous sections.

>srd \
.............................................................

| .rel_name | .dom_name | .pesition {

| & | A {o |

| ® | B |1 |

I ® | ¢ |2 |

| « b A | o |

| & | F 11 |

I x I G I o 1

| x | E |1 |

| | A | o !

|« i 8 11 I

Iy | H 12 |

| Studentl | Hame [ o |

| Studentl | Course (B3 1

| Studentl | mark | 2 |

| Studenc2 | tame | o {

| Student2 | Courses |1 H
.............................................................
N2 J

Figure 3.16: Sample Output of “srd;” Command

Obviously, “RD” entries are displayed in a table format with three fields, i.e. rel_name,
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dom_name and position. The position field indicates the index of a domain in the relation. For
example, relation Student? is defined on two domains Name and Courses, while Name is the first
attribute in the relation and Courses is the second one.

Note that the “srd;” command also produces information on system relations which are not
illustrated in the sample figure. Although readers may not be interested in this information at
the current stage, it is necessary to mention that there are three system relations maintained
by jRelix system, i.e. .rel, .dom and .rd, which can also be used in normal relational operations

such as joins etc.

3.3 Removing Domains & Relations

Removing an existing domain or relation is quite easy in jRelix. The syntax for removing a
domain is as follows.
> dd dom_namel, dom_name2, ...,
And the syntax for removing a relation is as follows.
> dr rel_.namel, rel_name2, ...;

Error messages will be displayed if the user tries to remove domains or relations which are
not existing in the system, or if the user tries to remove a domain which is being used by other
domains or relations (otherwise those domains or relations will reference to something which is
not existing). On the other hand, after a domain or relation is removed, the NumRef field value
(i.e. reference counter) of those domains that were used by the removed domain or relation will
be decremented correspondingly. Figure 3.17 iilustrates this case.

Finally as a remainder, when a nested relational domain is removed, the invisible relation

that is associated with the nested domain will also be removed automatically.

3.4 Relational Algebra

Relations provide a simple but static structure that can be used to represent both entities and
relationships. The relational algebra provides the operations needed to manipulate information

stored logically in this form [RS95].
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>domain A intg; \

>domain S(A):

>relation R(A, S}):

>sd

--------------------------- Domain Table ---w-cecccocomcorsrmmmnmo----

Name Type NumRet Demn_List .-- reference coumier < T-.

mmeemeeeccemccccecreccaeoe—o metmms=-sss-——Z----s imcremenied o 2 since ‘A" )

A integer L2 TT e &._isreferenced by 'S and R’ .

s idlist 1 id, A, Yt mamame=""

>sr

---------------------------- Relation Table ---ccccccccccccccanncccanana

Name Type Arity NTuples Sort

R relation 2 0 2]

sar R;  TTTTTTTTTTTTTTTTTIITTTmmmmmmm e

>dd S:

>sd; . eeemmTmea

----------------------------- Dcmain Table ------os) i . "

Naze Ype NumRef Dom_List . g Jeference commter s ',

................................. e ——mm—eoTaaaop s K

A integer I R it —‘f""‘:':"b':f:"r"“‘_,:
e o )

Figure 3.17: Removing Domains and Relations

The relational operators are classified as unary or binary, depending on the number of their
operands. Unary operators act on a single relation, binary operators act on two relation, and
both produce a single relation as result.

This section firstly introduces a basic relational operation assignment which may be involved
in other relational operations introduced later. After that, two relational operations associated
with unary operators, i.e. selection and projection are described. A more flexible operation
tselection which combines the two unary operations together is introduced thereafter. Binary
operations i.e. various joins will be explored subsequently. In addition, a special relational

operation update is described.

3.4.1 Assignment

The assignment operation assigns a “relation value” to a relation. In other words, it establishes
an instance of a relation. There are two types of assignment in jRelix, i.e. normal assignment
and incremental assignment. The former creates a new instance of the source relation, while the
latter adds the tuple data of the source relation to the assigned relation. Figure 3.18 gives some
examples of assignment operation.

In this figure, the first assignment creates a new relation instance StudentRec which has

exactly the same tuple data as the source relation Student; whereas the second incremental
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r>d:::ma:.n Name, Course string;

>domain Mark intg:

>relation Student (Name, Course, Mark) <- (
(*Bailey P.°, °Music 210°, 65)}:

>relation Studentl (Name, Course, Mark) <- {
(*Bailey P.", °"Math 100-, 85),
(*Bailey P.", °"aArt 301-, 77).
("Jones J.°*, *Mach 100-, 92},
(*Jones J.*, “Music 210-, 88),

--------- (*Martirr Rr~,. *Math 100°*, 8S) };

3 - 2L .
~xStudentRec <-_Student;._-> - --. e Normal Assignment
>pr StudentRec;

e ————— e ———————— - - ——— >
I Name | Course | Mark |}
.............. ORI S S
i Bailey P. | Music 210 | 65 ]

............................ e m————

rela::.pn S.Ludem:ae; has_ l tuple

| Name | Course | Mark |

e e e e e e ————- e m e, ———,— - ———— r———— - —— -

[ Bailey P. Art 301 77
Bailey P. Macth 100 85
Bailey P. Music 210 65
Jones J. Mach 100 92
Jones J. Music 210 88
Martin R. Mach 100 85

relar.lon StudentRec has 6 cuples

Figure 3.18: Assignment Operations

assignment adds the tuple data of relation Student! to relation StudentRec.
The general syntax for assignment operations is as follows:
> new_relname < — source_relation; (normal assignment)
> new_relname < + source_relation; (incremental assignment)

It is important to mention here that the source_relation in the above syntax for assignment
operation is not necessarily an actual relation entry. It might however be a arbitrary combination
of multi-step relational algebra operations such as selections, projections and joins etc. which
will be introduced soon in the next sections. The multi-step arbitrary combination of relational
algebra (and also domain algebra) operations are usually called “relational ezpression”.

On the other hand, assignment operation with nested relations involved is exactly the same
as the case of flat relations. When assigning a nested relation to a new relation, the surrogates’
data is copied instead of the actual data values. For the definition of “surrogate”’, the reader can

refer to the subsection Declare and Initialize Nested Relations of section 3.2.3.
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3.4.2 Selection

The selection operation creates a new relation by extracting specific tuples from the source
relation. The result relation contains the subset of tuples in the source relation that match
a “selection condition”. The selection condition may be any logical expression that can be
evaluated to true or false on any one tuple of the source relation.

Given the sample relation Student! in previous section (refer to Figure 3.18), Figure 3.19

illustrates some examples of selection.

>Studen:Rec <- Zuwhege Course=*Math 100° in Studen_c;&_-->
>pr StudentRec: TTTSSs s ssss s T
rm e — - ——---——- et e e a - ————— - v
| Name | Course | Mark | \
-------------- D A e Y

Bailey P. Math 100 8s M

Jones J. Math 100 92 '

Martin R. Math 100 8s ‘
-------------- dmm e e e e e —————— .

:elat;on StudentRec has 3 tuples \
>(Q2 £ind all students who take the course °“Math 10"0

>StudentRec <-  ~where Course=*Math 100° s v
~~and _Mark>=90 in Studentl; .-~ '

>px- StudentRec; = T~ T T Tsme-es==-=7 ~ .

-------------- g \\~ ‘

| Name [ Course | Mark | -

T e e s —w - - - e —--- -

| Jones J. ] Mach 100 | 92 | Selection

relatxon ScudentRec has 1 tuple
> J

Figure 3.19: Examples of Selection Operation

In this figure, Query I retrieves information of all students that take course “Math 100,
while Query 2 finds all students that secured “A” in the same course. Both queries create a new
relation StudentRec as their search result.

The general syntax for selection is as follows:
where selection_condition in source_relation
A more general syntax for selection with two advanced keywords is as follows:
where|when selection_condition from|in source_relation

Here the keyword when is of advanced usage, i.e. it provides a synchronization primitive

for a multi-process environment [Dou91], which reader may put aside at the present stage.
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The keyword from combines two operations together, i.e. selection and update (which will
be introduced in section 3.4.6): the matched tuples are selected and removed from the source
relation. Note that although these two advanced keywords are acceptable by jRelix, they are
yet to be implemented.

On the other hand, selection on nested relations is a little different from that of flat relations.
In Figure 3.20, Query 1. asks to find the students who take the course “Math 100" from the
nested relation Student2 given in section 3.2.3 (refer to Figure 3.11). To perform this query, the

empty projection list, [/, is used to indicate that “there is something in the ...".

f:-(Q'.:find the students who take ~“Math 100-) N
>Student <- [Name] where [] where Course=-Math 1Q00° in Studentl;
>pr Student:

________________

________________

_______________

............... toplpmmanmccac,
| Bailey P. I o1 f )}
................ e .
relation StudemtRec has 1 tuple Selection
(only surrogate
>pr .Coursssr values are
......................................
| .id .-~ | Course | Mark | selected}
s aREEEE Rt D uu R G R -
1Y Arc 301 77
1, Math 100 85
2 Math 100 92
2 Music 210 88
3 Math 100 85
.......................................
relaticn .Courses has S tuples
\> _/

Figure 3.20: Selection on Nested Relation

Another way to perform selection on nested relations is quite similar to the selection on
flat relations. Instead of actual nested domain data, the corresponding surrogates’ data are
investigated and selected. Query 2. in Figure 3.20 illustrates this case.

It is clear from the example that the result relation StudentRec in Query 2. only contains
the surrogate value of nested domain Courses. As explained in section 3.2.3 and section 3.2.5,
this surrogate is the linkage between relation StudentRec and .Courses (as illustrated in the
figure). The final realization of this relationship can be achieved by join operations introduced

in section 3.4.5.
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3.4.3 Projection

The projection operation creates a new relation by extracting named domains from the source
relation. The result relation contains only the domains specified in the “projection list”. It is
therefore a subset of the domains of the source relation.

Given the sample relation Student! in the previous section (refer to Figure 3.18), Figure 3.21

illustrates some examples of projection.

>({Ql:create a new relation with student names and

all of the courses they ¢ YL __

>StudentRec <-“{Name, Course] in Studentl:; __ -~

>pr StudentRec; T T TS ssss--=-< \

--------------- R R L A

| Name | Course | '

e e m— e - A
Bailey P Art 301 \
Bailey P Math 100 '
Jones J Math 100 v
Jones J. Music 210 .
Martin R. Math 100 '

4 cececccmeccceccmemccmme— e \

relation StudentRec has 5 tuples \

>{Q2:create a stugem name 1igtd ~ - _ _ ‘,

>StudentRec <- ‘- [Name] jin Studentl: ___.7%_ '

>pr StudentRec; ~TTT----==°7% ~a \

| Name | “a A

"é;;i;;,';, """ T Projection
Jones J
Martin R.

relation StudentRec has 3 tuples

\ J

Figure 3.21: Examples of Projection Operation

In this figure, Query I extracts student names and names of courses that the students regis-
tered for. The marks field is however cast out. Note the if we project just the Name attribute
from Studentl, the result has only three tuples as illustrated by Query 2 in the same figure. The
name “Bailey P.” and “Jones J.” occur twice in the source relation, but only once in the result.
This is because each tuple in a relation must be distinct from all others. Project extracts the
required domains and also removes any duplicate tuples from the result.

The general syntax for projection (including assignment after projection) is as follows:
[ dom_namel, dom_name2, ... } in source_relation

Note that the sequence of dom_name’s in the brackets in above syntax definition is called

“projection list’.
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On the other hand, projection on nested relations is similar to the case of flat relations.
Instead of actual nested domain data,the corresponding surrogates’ data are projected. As this

is similar to the selection operation introduced in section 3.4.2, examples are omitted.

3.4.4 T-selection

T-selection is a combination of selection and projection. It provides more flexible operations on
relations. Figure 3.22 gives some example of T-selection using the sample relation Student! from

the previous section.

s

:-(Ql create a new relation with studenr. na.mes and w

| Name | Course [ \
tecmeceerememccemc—cececcaaaae -

Bailey P. Mach 100 ! \

Jones J. Math 100 v

Jones J. Music 210 v
| Martin R. | Mach 100 Y
relation StudentRec has ¢ :uples Y
>{Q2:create a name list for those students who ever' got
an *A° in the course Chgy_x:gxszezed __________ \

>pt StudentPec; ~

I Name i A |
Bailey P. T-selection
Jones J
Martin R.

rela;xcn Studentaec has 3 tuples
\ J

Figure 3.22: Examples of T-selection Operation

The queries in the examples are straight-forward, hence explanations are omitted. The

general syntax for T-selection is as follows, although variations exist:
[ dom1, dom2, ... | where select-condition in source_rel

According to the closure principle of relational model, any relational expression evaluates
to a relation. This allows the arbitrary combinations of primary constructs to form complex
expressions in T-selection, which is a type of “composition”. Query 1. in Figure 3.23 gives an
example of T-selection with composition. Much more complicated T-selections can be formed

with composition, e.g. the Query 2. in Figure 3.23.
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>pr StudentRec:  ~ " =~.oo A0 2RBEERCDZ <--

U sase } \

| Bailey 2. | X
e Paeiecion

................

relaticn StudentRec has 3 tuples
>

>(Q2:ancther example 2f mcre ccmplicated T-selecticn.?

>StudentRec <- {Name! where Mark>=E5 and Mark«<=95
in [(Nade, Mark]
where Ccurse=-Math 10C" or Csurse=*Music 210°

n Studentl:
. _J

Figure 3.23: Examples of T-selection with Composition

3.4.5 Joins

The relational model divides all objects, no matter how complex, into simple normalized relations
and represents relationships between them by common values in shared attributes. Information
retrieval thus depends on the ability to realize relationships by combining relations according
to these shared attributes. This is achieved using join operators. For this reason, join is the
characteristic relational operation [RS95].

Joins are made according to a join or linkage condition over a pair of (possibly compound)
attributes, one in each relation, which are draw from the same domain. There are two classes of
join operations defined in jRelix, i.e. p-joins, the family of set-valued set operations; and o-joins,
the family of logical-valued set operations [Mer84].

Usually joins can be implemented by two approaches, i.e. pointer-based join algorithms
and non-pointer-based algorithms [SC90]. The former approach takes advantage of pointer
dereferencing, and provides significant performance gains in the situation where few tuples
are involved in joins; while the latter, also called “bulk algorithm”, usually deals with rela-
tions with large amounts of tuple data. Bulk algorithms include nested-loops [SM94], sort-
merge [[CRR81] [LT95]. hash-join [KO90] [ZJM94], hybrid-hash join [SC90] and partitioned
band join [DNS91] algorithms etc. In jRelix implementation, the traditional sort-merge algo-

rithm is applied for joins.
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p-joins
(-joins are derived from set operators such as intersection, union, difference, etc. in mathematical

set theory. Figure 3.24 lists the u-joins that are defined and implemented in current jRelix, while

detailed descriptions can be found in [Mer84).

Joins Description implemented
2;’(';:”(:)' natural join (or intersection) yes
ujoin union join yes
sjoin symmetric difference join yes
ljoin left join yes
rjoin right join yes
drjgii’l'.. )(0' left difference join yes
drjoin right difference join yes

Figure 3.24: p-join Operations

The most frequently used join is natural join (i.e. ijoin or natjoin), which secures equality
between the join attributes, and combines tuples from two relations together. Therefore, it can
be regarded as the intersection of the two join relations. Figure 3.25 gives some examples of the
natural join operation.

In Figure 3.23, a new relation Coursel is introduced, which describes the course information
e.g. the course name, credit of the course and the text book for the course. A natural join between
relation Student! used in previous examples, and relation Coursel, gives all information on the
students and the courses they registered for, as illustrated in Query 1. Query 2 performs a
projection on certain attributes after the join operation. Some explanations will be made below.

In general, the syntax for natural join is as follows:

rel_namel ijoin rel_name2
or:

rel_namel [dom_namel,.. :ijoin:dom_name2, .. |rel_.name2

In the first syntax, two relations rel_-neamel and rel_name2 are joined on their common at-

tributes. In the case that there are no common attributes among the join relations, the cartesian
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(>dcu;:': Naze, Csurse, CcurseName, TextBock sTring:
>dc- = Mark, Credit inty:
>relazion Studentl(Name, Course, Magk) <- {
(*Bailey P.~. "Math 10 &Sy,
("Ba:ley 2. cArt 3Cl, 77).
(*Jones J.~. °*Mazh 10C°, 32),
“Scnes J.°. "Mus.c 2., i8),
(*Marzint R.-. "Mach IIC=-, 85} :
>relacricn Joursel(Ccurse, Credit, TextBook) <- ¢
{*Mazh 1GG*. S. "Advanced Mathezazics®),
. °"HMistory cf Fine ArzT).
4. *Class:cal Mus:c®) ;:

l:gez all infcocrm=ation abcut the studentc and the Tousses
ey Tegist e—ed R T,
udentRec <-~_ _geudentl 1jion Coursel; . _ .-

smecccmccoqemmcme e ma—

'ex’a"ct

Advanced &at!'e— TiT
Advanced Mathemact:ics
Classzxcal

T[ 'v'&..h !‘Q:-B: *<s
|

has 5 tugles
>(Q::qo_ all -rfcm:i on abcu: :he s:u:'.an:s -..:.\.d = the

credic.) - _,
>SrudenzRec «<- :,'.\a..e. Csurse. Cred:ut. wn
tudantl ifoin C

B ~. i P.
ailey Natwral Joins

CQS-.

relaticn StudentRec has S tuples
se* .s changed %3 “CcursaNaze® 1n relaz:izcn Jou
o Coursel(CcurseNaze, Credit, TextBeok) «<- {
("Mathk 1C0-. S, “Advanced Mathezazics®).
(*Arz 3C2 . "Histery cf Fine ArT”).
(*muszc 210 4. "Class:.c RIRE
>{G3:gex all :nformaticn abou: the s
they reg:istered.) 000 __----T T Tos-eo -~
z:dencRec <- Sctudeantl .[Cmoxijcln:cauxml tauxnl;

H

> (= ~~'_ sel.}

™ Anribute List
_J

Figure 3.25: Examples of Natural Join i.e. ijoin
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product of the two join relations will be generated. The second syntax tells how to join two
relations which do not have commmon attributes. In this case, two relations join on the at-
tributes listed in a pair of brackets (“[” and “]”). In particular, these attributes are called “join
attributes”; and the set of attributes surrounded by the brackets are called “join attributes list’.

Taking the example in Figure 3.25, consider the case that the name of domain Course in
relation Coursel is changed from “Course” to “CourseName”. The two relations Student! and
Coursel can not be joined as expected in Query 1, since they do not have common attributes.
In that case, the join attributes list is used to achieve the correct result for Query 3.

In addition, there are some rules that need to be mentioned here.

e In both cases, the common attributes will be listed as the starting attributes in the result
relation. This is illustrated by the result of Query I in Figure 3.25. To generated a relation
with a desired attribute sequence, a projection after join operation is usually necessary, as

illustrated by Query 2 in the same figure.

e Domain names in common attributes list must exist in their respective join relations (e.g.
in above syntax, dom_namel must be existing in rel_namel while dom_namel’ must be
existing in rel_.name2). Otherwise, an error message is generated by the system and the

join fails.

e In the case that common attributes exist in the join relations, they must appear in the
common attributes list when the second natural join syvntax is used. Otherwise, a warning

message is generated by the system and the join fails.

e It is clear that the result of a join operation is a relation. Therefore, ijoin operations can be

combined with other operations e.g. selection, projection etc. as illustrated in Figure 3.26.

>StudentPec <- Studentl ijoin (Course, Credit] in Coursel:
>StudentRec <- [Name, Course. Credit] in (Studentl ijoin Coursel);
>StudentRec <- Studentl ijoin where Course=<Math 100" in Coursel:

»StudentFec <- [Name, Course, Credit] where Names="Jones J." in
(Studentl ijoin where Course="Math 100° in Coursel):
>

Figure 3.26: Combine ijion with Other Operations
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e The svntax for the natural join operation listed above is basically applicable to all u-joins,

except that the keyword ijoin is changed to corresponding u-join keywords. As well, the

common rules for natural join are also applicable to other u-join operations.
On the other hand, natural joins involving nested relations behave a little differently:

When the join attributes are not nested relational domains, natural join is the same as the
ijions with flat relations as described above, except that the surrogates of nested domains
are copied to the result relation. Figure 3.27 illustrates this case. In this example, a
new relation Student3 (which is defined on student Name and his/her Advisor) is created.
The ijoin between Student2 and Student3 happens on their common attributes Name. and

the surrogates of nested domain Courses are copied to the result relation StudentRec as

illustrated in the figure.

(>dcmaxn Name, Course, Advisor string; N\
>domain Mark intg;
>domain Courses (Course, Mark):
>relation Student2(Name, Courses) <- {
{ *Bailey P.”", {((-Mach 100-, 8S),
(*Azrt 301~, 77)} ).,
( *Jones J.", {{*Math 100-, 92),
("Music 210+, 88)} ),
. ( "Martin R.", {(-Mach 100-, 85)}) ) };
>relation Student3 (Name, Advisor) <- {
(“Bailey P.", -Smith A."),
("Jones J.*, “Thomas P.~),
(*Martin R.*","Smith A.=)};
>pr Student2;
------------ e —— - -
l Name | Courses |
B R R Pt 2 ST T T -

Bailey P. L e & surrogates get

Jones J. g ! + copied

Martin R. ., S
relation Student2 has 3 tuples .’
>pr Student3; t '\

............ b m————————. ’ ~
| Name | Advisor | S N
G- - ———— e cTw oo - - AY

Bailey P. Smith A. ’ N

Jones J. Thomas P. e L

Martin R. Smith A. PR
relar.zon §En_xc-!e;zE3 has_}_:uple; _____ -’/
>StudentRec <- rStudencI!’x]oxn Student3; =,

)p:‘ StudentRec; “~~w o/ _ ___ ___occa=- -

............ ._--_--.'4--.--_-------_--_.

! Name | Courseés | Advisor |
bmmmmmm e & O -

Bailey P. P Smith A

Jones J. 2 1 Thomas P.

Martin R. 3 Smith A.
PO . Nl eemeam e m—ccccae—aa -
relation StudentRec has 3 tuples J

\>

Figure 3.27: Natural Join of Nested Relations (on Atomic Domains)
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2. When the join attributes are nested relational domains, it is the tuple data of the nested
data that are compared, but not the surrogate value, as illustrated in Figure 3.28. In
this example, a new relation Student/ (which is defined on domain SNeme and nested
domain Courses) is introduced. There is only one student (i.e. “Jenny £.”) declared in
this relation. Her registered courses and the course results are exactly the same as that of
student “Jones J.” in relation Student2. The natural join of Studnet2 and Student4 finds
out those students who take exactly the same courses and whose course marks are exactly

the same, as illustrated in the figure. Clearly, the nested domain data are compared when

the join is performed.

An exception occurs when one of the join attributes is “.id", which will be explained next.

>domain Name, SName, Course, Advisor string; I
>domain Mark intg:
>domain Courses(Course, Mark):
>relation Student?2(Name, Courses) <- {
( "Bailey P.~, (("Math 100-~, 85},
(*~Art 301~, 77)} ),
( “Jones J." " A« *Math 1.00""9’2‘)‘
‘*4{sMusic 210", 88)1-)-,,
. ( "Martin R.", ((°Math 10G 7 85)} 1 }:
>relation Student4 (SName, Courses) <= B Ve o
(~Janny K.=", (*Math 100-, 92y, "~
>pr Student2; (‘Hus—"e'uo"‘ ag)-” RE
P, m——— . ———— ———— - - ————— - \ |
| Name | Courses | “s
D B - ‘\ '
Bailey P. S N '
Jones J. 020 U |
Martin R. \3 o~
I S A S same value
'elatlon StudentZ has 3. tuples
>pr Studentg; *\\
- — - - e m—————- + ~ o
| SName | Courses | “a
------------- R e
| Janny K. [v4 ! | surrogates
réiéEIéE'éE&éeﬁEZ'ﬁéé_'_I:c_upleL A
>StudentRec <- lStudem:Z ijoin Studentd: T,
>pr StudentRec: ~~~c e @ e -
---------- D i e ettt o
I Courses | Name | SName |
---------- B et ek 3
I 2 I Jones J. | Janny K. |
e et tm e ———— - +
relation Studentﬁec has 1 tuple
> Y,

Figure 3.28: Natural Join of Nested Relations (on Nested Domains)

3. When “.id" is one (or two) of the join attributes, the surrogate value of the nested domain

is used for comparison during the join operation. Figure 3.29 illustrates this case. In this



CHAPTER 3. USER’S MANUAL ON JRELIX 50

example, the nested relation Student2 declared in the previous section (refer to Figure 3.13)
is used. The result is a flat relation containing student information including the course
he/she registered for and their marks. This join is obviously a way of converting a nested

relation into a flat relation.

>pr Student?2; )
-------------- tmmm e, ————y
| Name | Courses |
B e ' —-I— —————————— -~
Bailey P. 1
Jones J. 12
Marcin R. 3 s
e — e ——————— O N A
relation Studenc has 3 tuples
>pr CourseS/
--------- P e T P DAY
l .id e | Course | Mark |
T T Ao T
1 Lig” Art
i Mach 100 85
21 Mach 100 92
v 2 Music 210 88
‘\3[' Mach 100 85
D it ittt e 3 rm——————— -
relacxon Couzses has S tuples
>SCUdentRec <~ -[Name, Course, Mark] in "'\1
*(\S,ud_esu:z [Courses:ijoin: xd] Courses) . - -
>pz StudentRec; = T T T T T - -------eNTo-TT
------------ P mc e mm et ey “
I Name | Course | Mark | .
P - - - - - > ~
Bailey P. Art 301 77 “a
Bailey P. Mach 100 8s
Jones J. Math 100 92 ijoin on .id
Jones J. Music 210 88
Marcin R. Math 100 85
................................ -
:ela::.on S:ude-xcRec has 5 :uples
\> .

Figure 3.29: Natural Join of Nested Relations (on “.id”)

Union join (ujoin) is another frequently used p-join. It is an operation that results in a union
of the set of tuples from the natural join, together with the tuples from the relations of both
sides that are not equal to each other in their join attributes, with the missing attributes filled
up with so-called “null value” i.e. DC which denotes don’t care and which describes irrelevant
information. Figure 3.30 gives an example of union join.

In this example, an union join is performed between relations Student and Course. Since
“Bailey P.” takes a course “Art 3017 that is not in the Course relation, and since nobody takes
the course “Chemistry 1087, the corresponding (missing) attributes are filled with dc. Apart
from DC, there is another nuil value DK which denotes don’t know and implies missing data.

Readers may consult [Mer84] for detailed descriptions of null values.
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>domain Name, Course, TextBoock string:
>domain Credit intg:
relation Student(Name, Course} <= (
("Bailey P.°, °“Math 100°),
("Bailey P.". °Art 301°),
("Jones J.°*, °Math 100-),
{"Jones J.°, “Music 210°).
(“Martin R.", °Physics 202°) };
relation Course(Course, Credit, TextBook) <-
(“Math 100°, S5, -Advanced Mathematics®).
(“Physics 202°, 3. °Principle of Physics<),
(*Chemistry 108°, 3, "Elementary Chemistry®}.
(*Music 210", 4, °Classical Music®) }:

>StudentRec <- [Name, Course, Credit] in {(Studeant ujocin Course):
>pr StudentRec;

dc Chemistry 108 3
Bailey P. Art 301 de
Bailey P. Math 100 S
Jones J. Math 100 S
Jenes J. Music 210 4
Martin R. Physics 202 3

-
relation StudentRec has 6 tuples

\> _

Figure 3.30: Union Join

The operations of other u-joins e.g. symmetric difference join (sjoin) etc. are similar to
the natural join (ijoin) introduced above, except that different keywords (as illustrated in Fig-

ure 3.24) are used in the place of ijion. Therefore, detailed descriptions are omitted here.

o-joins

The family of o-joins are based on set comparison operators. In operations, the tuples in each
of the operand relations are grouped such that for each group, all the non-join attributes are
identical. Then, the set comparison operator is applied to the cartesian product of the groups.
The values of the non-join attributes of the comparing groups are accepted if the specified set
comparison on the join attributes is satisfied.

Figure 3.24 lists the o-joins that are defined in jRelix, while detailed descriptions can be
found in [Mer84].

One of the frequently used o joins is natural composition, i.e. icomp. The operation and
result of natural composition are quite similar to that of natural join (i.e. ijoin), except that
the join attributes are removed from the result relation. Figure 3.32 gives an example of natural
compaosition.

In this example, natural composition is used to find the relation of a parent and their grand-
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Joins Description implemented
L‘::cr.%‘:n(g{ natural composition yes
3’3 (é)gjoin) super-set join or division no
gijoin proper super-set {no inclsion) no
egjoin equal set join (=) no
ls%ig)i“ (or sub-set join no
Itjoin proper sub-set join no

Figure 3.31: o-join Operations

children. Note that the pair of join attributes Child and Parent are not part of the result

relation.

r Peter Parker
‘ / \ Peter Parker
Tom John Jimmy w / \ ‘
PN ' Segal  Maxim Marry
Scgal  Maxum Marry

>domain Parent. Child string:
rChild(Parent, Child) «<- ¢
°), ("TcmT, “Segalt). (°Tem*, °Maxi=®),
(*Parker®, *). {"Parker®, °Jimmy*®), (*Jifmy". “Marry°)ii
>ParGrandcCh:ld <- pParChild(Ch:ild: icamgparenz]Parch:ila;
>pr ParGran aid:

I Peter Segal [
Peczer Maxizm !
} Parker ! Marzy |
relaticn PardrangadChild nhas 1 tiples
> J

Figure 3.32: Example of Natural Composition (i.e. icomp)

o-joins are not implemented in current jRelix yvet. Therefore, introductions to the usage of

o-join operations are postponed.

3.4.6 Update

Adding and deleting tuples of a relation is relatively straightforward using the relational algebra
described so far, but changing values of tuples in a relation is a little more complex. This section
introduces a special relational operation update that provides a mechanism to change a relation

locally.
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cdomin Name, Course, TextBook string: )
>domain Mark, Credit intg;
>relation Studentl(Name, Course, Mark) <- {
(*Bailey P.", °Math 100°, 8S),
("Bailey P.~", -Art 301-, 77),
{*Jones J.°, °Math 100-, 92),
(*Jones J.°, "Music 210", 88),
("Marcin R.*, “Math 100, 8S) };
>relation Student$ (Name, Course, Mark) <~ (
(*"Bailey P.*, *Math 100°, 85).
(*Jones J.*, "Matk 100°, 92).
{*Jenny K.", °*Physics 201°, 82)};
>update Studentl delete studentS;
>pr Studentl;
e mee s s c e c e e e - ———— rmmm————— -
| Name | Course | Mark |
D ittt a et b T P R Rt -
Bailey P. Art 301 17
Jones J. Music 210 88
Martin R. Math 100 85
R bt e e -
relation S:udem:l has 3 tuples
>update Studentl add sStudent$S;
>pr Studentl;
Gmmemmmmmmmmegememeeeececmmemeeec-—ae
| Name | Course | Mark |
e m e ——— P m e - L LR
Bailey P. Art 301 77
Bailey P. Match 100 8s
Jenny K. Phys:.cs 201 82
Jones J. Math 100 92
Jones J. Music 210 88
Martin R. Mach 100 8s
g -
relation Studencl has 6 cuples
. /

Figure 3.33: Update Operations: Add and Delete

Three types of update are provided in jRelix, i.e. add, delete and change. Figure 3.33 gives
some examples of the update operation for addition and deletion.

In the delete example, those tuples in relation Student! that appear in relation Student5
are taken off or removed; while in the add operation, all the tuples of relation Student5 are
added to relation Studentl. Note that duplicate tuples are removed in the result relation for add
operation.

Figure 3.34 shows the update operation that changes the attribute data in a Relation. As
illustrated in the example, marks are decremented by 5 for the course “Math 100 .

The general syntax for update is as follows:

> new_rel < — update src_rel add add_rel

> new.rel < — update src_rel delete del_rel;

> new.rel < — update src_rel change change_stmt using rel_ezpr;

As illustrated in Figure 3.34, the change_stmt (change statement) tells what kind of change
should be performed for certain attributes; while the rel_ezpr (relational expression) constrains

the tuples in the source relation that should be changed. Note that rel_ezpr can be any valid
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(>domain Nare, Course, TextBook string; )
>demain Mark, Credit incg:
>relation Studencl (Name, Course, Mark) <- {
(*Bailey P.°, °"Math 100°*, 8S5),
("Bailey P.*, °*Art 301-, 77).
(*Jones J.°, “Math 100°, 92),
(*Jones J.*, °"Music 210-, 88),
(*Martin R.*, °“Math 100°, BS} };
>pr Studentl:
e cemcneen rmmm— e eme——— O -
| Name | Course | Mark |
............. J- AR IR S IR R
Bailey P. Art 301 77
Bailey P. Math 100 8s
Jones J. Math 100 92
Jones J. Music 210 85
Martin R. Math 100 8s
tecceecmccscmtman e e e ———— -
relation Studentl has 5 tuples
>update Studentl change Mark <- Mark-$S
using ijoin where Courses*sMath 100° in Studentl;
>pr Studentl:
dommmmmm e mmmmmmm—m— mmmmmem o -
| Name | cCourse | Mark |
Bailey P. Arc 301 77
Bailey P. Mach 100 80
Jones J. Math 100 87
Jones J. Music 210 88
Martin R. Math 100 80
............. PO SE S
relation Studentl has 5 tuples
\> )

Figure 3.34: Update Operations: Change

combination of relational operations introduced so far, e.g. projection, selection and joins etc.

Readers may consult [Hao98] for more information on the update operation.

3.5 Domain Algebra

Relational algebra considers relations to be the data primitives [Mer84] and therefore does not
give the user the power to manipulate attributes. On the other hand, domain algebra [Mer77] [Mer84]
consists of a set of operations to manipulate attributes such as mathematical operations, at-
tribute group and ordering etc. Domain algebra is used through the declaration of virtual
attributes and the actualization of them on relations.

During the development of the jRelix system, my major responsibility was to design and
implement the domain algebra. This section firstly discusses the virtual domain declarations,
followed by a general description of actualization including the various error checking performed
by jRelix. After that, horizontal operations e.g. renaming, function and if-then-else operation
etc. as well as vertical operations e.g. reduction (both simple and equivalent) are explored

respectively.
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3.5.1 Virtual Domain Declaration

. Virtual domains are domains that do not originally exist in a relation. They are declared on a set
of actual domains or virtual domains which are subsequently based on actual domains. Virtual
domains usually appear in projection introduced in section 3.4.1 and are actualized based on the
actual domains’ data in the source relation. However, virtual domains can theoretically appear
wherever actual domains exist.

Virtual domains must be either directly or indirectly defined on the actual domains of the
relation in question in order to be actualizable. Declaring a virtual domain is quite similar to
defining a small procedure call in some programming languages such as C, with the procedure
body represented in the form of an expression.

Figure 3.35 gives some example of declaring virtual domains, as well as displaying the declared

domains.

Fomin A intg: \

>domain B float:

>domain F(A,B):

>domain H comp(A,.B):
>relation R(A, B, C):
>relation W(A. F):
>relation Y(A., B, H):

>let x be A+B;

>let y be equive of B by A;
>let z be F ijoin H;

computation o -id, A, B. Tree Structure

£loat e T T ~-. - 7 4
.7 Add:300:332:null:0 ST )
‘.. Identifier:230:230:A:f SR
“~<Identifier:230;23G:BE:0 ',’ )

"

B

c idlist o .id, A. B.
D

X

Y float O emmmm T e ,
—‘Vertxcal 308:332:null: O 4
Identifier:230:230:8:0
Seo szzessxon!.xs: $92:592: nuu_/6
sdentifier:230:23Q:=Aa0"

= idlist D---""‘rid-nbg‘ﬁ. ,

Figure 3.35: Declaring Virtual Domains

In general, the syntax to declare a virtual domain is as follows:
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> let vir.dom_name be ezpression,;

. There are however somethings that need to be mentioned here:

1. Virtual domain declaration does not affect the reference counter of the referenced domains
(For the meaning of “reference counter”, please refer back to section 3.2.2). For example,
the virtual domain z in Figure 3.35 is defined on domain A and B, but the reference counter

of domain A and B are not incremented because of this fact.

An exception is for virtual domain z, which is defined on actual domain Cand D. Obviously,
the reference counters of domain C and D are not affected by this fact. However, since the
resulting type of virtual domain z is idlist 3.2.2, this means domainz is a nested relational
domain. It is not hard to figure out that this nested domain (2) has an attribute list of
(.id, A, B). As we know, a nested domain is always associated with an invisible relation
(refer to section 3.2.1) which is supposed to hold the tuples data of this domain. Hence,
an invisible relation .z is automatically generated in the system when virtual domain 2z
is declared, and this relation is defined on domain 4 and B. As the result, the reference

counters of domain A and B are incremented by 1.

2. The resulting tvpe of a virtual domain is decided according to certain rules illustrated in
Figure 3.36. For example, virtual domain z is defined on domain A which is of integer type.
and domain B which is of float type. The resulting type of z is however float. Similarly.
domain z is defined on the domains of type idlist and computation, and the resulting type
is idlist. On the other hand, if a virtual domain is declared on domains with incompatible
tvpes, an error message ‘mismatched types” will be generated by the system and the

declaration fails.

3. The ezpression part of virtual domain declaration is interpreted by jRelix system as a tree
structure which can be seen by displaying the definition of virtual domains using “sd;”
command. For example, in Figure 3.35, virtual domain “z” is defined as domain A plus
domain B. When displaying the definition of z, a tree structure is printed apart from the

basic information such as Type, NumRef and DomList etc.

The interpretation of a virtual domain’s expression tree is a little cryptic, but readers are
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Operator Left & Right Operands | Result Type
min, max. plus numeric type (i.e. numeric
er 'r'!‘lgg'ply short. imcg:gz long. type (*)
uplus, uminus | loat, double
pow
cat string & string string
eq. neq. gt, It numeric & numeric

g le - & text & text bool
ge. bool & boot
or, and, unot bool & bool bool
ijoin. ujoin idlist & idlist idlist
SJoun- ! ch)(l;i‘n idlist & computation

foin computation & idlist

3]}

(*) if one of the operands is of double type. the result type is double
otherwise, if one of the operands is of float type, the result type is float
otherwise, if onc of the operands is of long type. the result t is long
otherwise, if one of the operands is of integer type, the result type is integer
otherwise, the result type is short.

Figure 3.36: Rule of Type Operations

not required to understand it completely in order to perform domain algebra operations.
Basically, an expression tree is made of a set of nodes each of which has the attributes
identifier, type, opcode and name, where identifier tells the node’s name, type describes the
general type of the node, e.g. “bi-operation” in this example, opcode indicates the more
specific type, e.g. “plus”; and name tells the actual identifier’s name that the current node
represents. The display of a virtual domain’s expression tree is a list of these nodes with
indentations implying parent-children relationships. For each node, a list of its attributes
is printed. Figure 3.37 gives an example of the expression tree of virtual domain z in

Figure 3.35.

4. During a virtual domain declaration, all identifiers (i.e. domains) in the expression tree
must be already declared in the system; otherwise, an error message will be generated and
the declaration will fail. This is a weak check to make sure that the virtual domain is
actualizable. Usually we call this a “declaration check™. It is however possible that a valid
virtual domain definition is changed to become invalid later by the user, as illustrated in
Figure 3.38. Therefore, a stronger check has to be performed whenever the virtual domain

is actualized. This is called a “run-time check”. Details about run-time check will be
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+Add:300:332:qull:0
7 .. Identifier:230:230:A:0 ’
- _ldentifier:230:230:5:0 P

R Node identifler Type Opcode Name
L % parent “Add™ OP_BIOPERATOR | OP_PLUS
L (i.c. 300) (ie.332)
* Mienchild | “Identifier” | OP_IDENTIFIER | OP_IDENTIFIER A
(i.c. 230) (ie 230
| right child | “Ideatificr” | OP_IDENTIFIER | OP_IDENTIFIER 8
(i.e. 230) (i.c. 230)

Figure 3.37: Example of an Expression Tree

described in section 3.5.2.

@omin A intg; \

>dcmain B intg;
>let x be A+B;
>sd
---------------------------- Demain Table ------orccemcccccccccc e
Name Type NumPef Dom_List
A integer o]
B integer Q
x inzeger [+
Add:300:332:null:0
Identifier:230:230:A:0
Identi£ier:230:230:8:0
et £ 8 B e e h e mmeAasaAm Ao o= ———m——— e mmmecoo—aceoe -
L2dd A; reecemmoe-- o domain A is deleted.
>=-d..’-_
---------------------------- Domain Table --------co---comecccccecnana-"
Bame Type NumPeft Dom_List
B integer 0
x integer e B e .

.--"Add:300:332:null:0 .,

3 Identifier:230:230:a:0 %

*-.. Identifier:230:230:B;0
--------------------------- Pl F S tuindatniiatuinereri e et bbbl bbbkt
> “- ............

K domein x '.‘Ih::.l‘lh nzt b:::‘htdx {:‘u::’w -J:"ﬁ:d on domain J

Figure 3.38: Example of a Valid Virtual Domain Declaration Becomes Invalid

3.5.2 Virtual Domain Actualization

Generally speaking, once declared, virtual domains can appear wherever an actual domain ap-
pears, e.g. they can appear in the projection list of project operations, in the selection condition
expression of select operations etc. The virtual domains are actualized when the relational

algebra operations are performed. Given the domains and relations declared in Figure 3.35,
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Figure 3.39 gives some examples of virtual domain actualization.

>Result <- [A,B.x] in R;

>Result <- [x,y] in (R ijoin Y):
>Result <- where x=100 in R;
>Result <- [A,B] where y=x in Y:
>Result <- [z] in (F.H] where x=100 in (W ijoin Y):
>

Figure 3.39: Actualize Virtual Domains

As mentioned in last section, a “run-time check” which is much stronger than the “declaration

check” will be performed during actualization. If a virtual domain is found to be unactualizable,

an error message is generated and the actualization fails. Apart from the condition described

in last section under which a virtual domain is not actualizable, jRelix also considers a virtual

domain as unactualizable if this virtual domain is recursively defined on itself, i.e.

there is

a recursive loop in the definition of virtual domains in question. Figure 3.40 illustrates this

condition.

{ >domain A intg;

>let
>let
>let

>let
>let
>let
>let
>let

>domain B float;

x be B
y be x+B:

X be yeA; "~ === -
>relation R(A.B):

>Result <- [x,y] in R:
InterpretError: domain

y be B;
be B;

H XN
o
]
n
+
2]

be (x+a+B)/103;

>Result <- {x.yl in R: A . . .
\fé:erpretsrroz: domain ‘x’ is unactualizable: a recursive loop exists.
>

By*2; ~=--

‘%’ is unactualizable:

a recursive loop exists.

Figure 3.40: Recursive Loop in Virtual Domain Declaration

In this figure, two examples of recursive definition are given. In the first case, virtual domain

z is defined on virtual domain y, while y is further defined on z. The result is that virtual domain

r is defined on itself. In the second example, domain z is defined on itself at a three-hop, i.e.

through virtual domain y and z as illustrated in the figure. All these definitions are not allowed

by jRelix.
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3.5.3 Horizontal Operations

Horizontal operations of domain algebra work on a single tuple of a relation. They generate the
value in a tuple for the virtual attribute in terms only of the values in the same tuple of the
operand attributes.

In the jRelix system, horizontal operations include constant definition, renaming, arithmetic
functions, conditional statements (if-then-else) etc. which are called “basic horizontal opera-
tions” here; and most notably, all relational operations on the tuple level etc.

Figure 3.41 gives some examples for basic horizontal operation. Since the examples are quite

self-explainable and easy to understand, the detailed explanation is omitted.

(>domin length, width intg;
>relation Square{length, widcth) <-
((2,3),¢€12, 17),(5,10)};

>let zoom be 2; tcrctcciioeeeeelilll -
>let name be “sample square®; ...-Br c"’"{“””d‘f"""’"
>let hight be width; """~ ot »  renaming

>NewSquare<-[length, hight,zoom, name] in Square;
>pr NewSquare;

-------------- D e e et D marh function
2 3 2 sample square '(
S 10 2 sample squarel
12 17 2 sample square
....... e SR EE TP T SRR 3
relation NewSquare has 3 :Lples ) conditional stutement
>let area be lengthvhight; °° ’ 4

>let zoomed be (length"'oom)'(h:.gh::"'ocm)
>let name be if cocmarea>S00 then "big square-®

else *small square-;
>NewSquare<-(length,hight ,area, zoomed . name] in Square;

>pr Newsquare

______________ g i i e

| leng..h[ hight | area | zoomed| name {
-

---------------------------- P mm e — e
2 3 6 24 small square

5 10 50 200 small square

i2 17 204 816 big square

-
relation NewSquare has 3 tuples
>

Figure 3.41: Basic Horizontal Operations

Figure 3.42, 3.43 and 3.44 together give an example how relational algebra is involved in
horizontal operation of domain algebra.

Figure 3.42 lists a table of students and the courses they registered for the fall and winter
terms. Some courses can be taken by a student in both terms continuously; while some were
taken in one of the terms. The queries to be performed are to find those courses that a student

registered for both terms and to find a summarization of courses that a student registered for
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Figure 3.42: Example of Student Course Registration

Fall Wintar
Name Fall Winter
Course Mark Course Mark - - - Math 100
Bailey p. | Math 100 88  |Mat 100 77 Physics 200
An 301 75 Physics 200 90
Math 100 82 Music 210 83 Math 190
JonesJ. | Music 210 89 Physics 200 | 100 Music 210
Physics 200 90
Math 100 73 Math 100 91
Manin R. | Arnt 301 79 An 301 78 A0l --—--
Music 210 93 Music 210 90 Music 210 = - =

(>demain Name, Course string:

>domain Mark intg:;
>domain Fall(Course, Mark);
>domain Winter (Course. Mark):
>relation Student(Name, Fall, Winter) <- (
(*Bailey P.", ((°*Math 100°,88), {(*Arc 301-,75)}.
{(°Math 100°,77), (°Physics 200°,90)}),
(*Jones J.°, {((°Mazh 100°.,82). ("Music 210-,89). (°"Physics 200°,90)},
{{°Music 210°*,83), (-Physics 200°,100)}).
("Martin R.°, ((°Math 100°,73}, (*Art 301°*,79). (*Music 210°.93)).
((*"Math 100-.91). ("Arc 301°,78), (°Music 210°,90)})
Y
>(Ql:£find courses a student registered both in fall term and in winter term.)
>let Racord be (([Course] in__Pall) ijoin ((Course] in Winter);
>StudentRecordl <-(Name,fecord] _#n Student;
>pr StudentRecordl: i R -
tecemcc e ———— emmcesacem—n- .
| Name | Becoxd | actualize virtual domain "Record”
e m PUA SN -
Bailey P 17 === ————- ’
Jones J ‘B ' l‘ surrogales
Martin R. '\9 '
relation Studen:-Ren:ord_l_h_.a's_B_ =37 3 X
>FlatRecordl <- ~{Rase. Course] in (StudentRecordl{Record:ijoin:.id] .Recordl: .-~
>pr FlatRecordl; =~ TTTT - ----=-s=-s iddddiaddi ittt
R L T e ccaccamm———. - ~ o
| Name | Course | = -
Bailey P. Mach 100 convert the result 1o flur relation
Jones J. Music 210
Jones J. Physics 200
Martin R. Art 301
Martin R. Mach 100
Martin R. Music 210
tcmemcmam—ana et ——————— -
relation FlatRecordl has 6 tuples i
> - to be continued -

Figure 3.43: Relational Algebra in Horizontal Operation of Domain Algebra

61
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during the two terms.

As illustrated in Figure 3.43, a nested relation Student is created with attributes Name, Fall
and Winter where Fall and Winter are nested domains defined on Course and Mark. The nested
domains hold the information of courses a student may register for during a term. To answer
the first query, a virtual domain Record is declared to be the natural join of the nested domains
Fall and Winter projected on their Course attributes. This will give the intersection of courses
taken in both the Fall and Winter terms, which is supposed to be the result of query 1. As we
will see, the virtual domain Record itself is a nested domain which will hold the result courses. A
projection is performed on relation Student with Record as one of the domains in the projection
list, which causes Record to be actualized. The result StudentRecordl is a nested relation that is
defined on Name and Record where the Record field contains only surrogates. A further natural
join is perform between relations StudentRecordl and .Record which converts the nested relation
StudentRecordl to a flat relation FlatRecordl. It is clear that FlatRecord! lists the courses the

students registered for in both terms (readers may consult Figure 3.42).

(!elation FlatRecordl has 6 tuples - continue -
>(Q2:find courses a student registered either in fall term cr in winter term.)
>let Record be ([Course] in_wvall) ujoin ([Course] in Winter);
>StudentRecord2 <-[Name.+Record] _¥n Student:
>pr StudentRecord2; il -
............. PSR
| Name | Rgcord | actualize virtual domain “Record”
............. PO N
Bailey P. 110y ===~ == | .
Jones g ‘11 surrogates
Marcin R. “12'
relation Studengaecordz_kla_s_l L% ~ 3T S
>FlatRecord2 <- <{¥Name,_ CLoursel in (StudentRecord2[Record:ijoin:.id}.Record).: . PR
>pr FlatRecord2; = ~TTTTTTTToos=sse- SOttt TTT
| Name | Course | el
Bailey P. Art 301 . :
Bailey P Math 100 convert the result to flat refation
Bailey P Physics 200
Jones J Matc
Jones J. Music 210
Jones J. Physics 200
Martin R. Art 301
Martin R. Mach 100
Martin R. Music 210
e —memmm———— e mmcemmaeas -
relation FlatRecord2 has 9 tuples
\>__ J

Figure 3.44: Relational Algebra in Horizontal Operation of Domain Algebra

Similarly as illustrated in Figure 3.44, query 2 is performed by declaring a virtual domain

which is a union join between Fall and Winter, and by actualizing this virtual domain on relation
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Student. The result is listed in relation FlatRecord2.

A point that needs to be mentioned here is that theoretically any operation that can be
performed in relational algebra (e.g. selection, projection, t-selection and all kinds of join oper-
ations) can also be performed on nested domains by using the horizontal operations of domain
algebra. Figure 3.45 and Figure 3.46 together give a more complex example of horizontal oper-

ations on nested domains.

Fall Winter Name Cou
Name n
Course Mark
Course Mark Course Mark
Art 301 5
Baley p. | Math 100 88 | Math 100 77 Baley P. | Math 100 82(%)
Ant 301 75 |Physics200 | 90 Phyvsics 200 | 90
Math 100 82 Music 210 83 =% Math 100 g
Jones J. Music 210 89 Physics 200 100 Jones J. Music 210 86(°)
Physics 200 | 90 Physics 200 95(*)
Math 100 73 | Mawh 100 91 A 301 8¢
Moarun R. | Art 301 79 Art 301 78 Martn R. | Math 100 83(*)
Music 210 93 Music 210 90 Music 210 91 (")

() average of fall term and winter term.

Figure 3.45: Calculate Average Marks of Fall and Winter Terms

The same student record information in Figure 3.42 is used in this example. A new record
list is to be created which contains the student’s name, the courses registered for in both terms
and their marks. In the case that same course was taken during both terms. the average mark
needs to be calculated. The result is illustrated on the right-side of the table in Figure 3.45.

As illustrated in Figure 3.46, various horizontal operations (e.g. renaming, union join, pro-
jection, math and if-then-else etc.) are involved in order to finish the query. Firstly, domain
Mark has to be renamed in order to perform ujoin with Fall, since they are supposed to join on
attribute Course only. Second, null value dc is used in the if-then-else construct, which calculates
an average mark if the courses were taken both in fall and winter. The result StudentRec is a
nested relation which is defined on the student’s Name and the Courses information which is a
further relation with attributes Course and average.

Horizontal operations with relational algebra can also be applied to deeper levels of nested
domains. They behave in the same way previously introduced. However, due to their complexity,

further explanations are omitted here.
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(;lec mark be Mark;
>let record be Fall ujoin {Course, mark] in winter;
>let average be if(Mark=dc or marks= dc)

>let Courses be [Course. average] in record;
>StudentRec <- [Name, Courses] in Student;
>pr StudentRec:

| name | Courses |
-------------- T\ ———————

Bailey P. 17

Jones J. 18 1

Martin R. ‘9 !
———————————— 1: - —— -

relacxcn S:udentnec has 3 tuples

>px‘ COU!SES"
------------ B

;
| ~id R | Course I avezage[
R ittt St e T e e — e, — - ————
’7: . Arec 301 75
7, 4 Math 100 82
=y Physics 200 90

8, Math 100 82

8¢ Music 210 86

8! Physics 200 95
v 9! Art 301 78
N Math 100 a2
L9, Music 210 91

+ e e ccm e — e —————— -

relation Couxses has ¢ :uples

then (Markemark) else (Markemark)/2:

\>

Figure 3.46: More Relational Algebra in Horizontal Operation of Domain Algebra

3.5.4 Vertical Operations

64

Vertical operations [Mer84] of domain algebra work on attribute values of all tuples in a relation.

Basically, four types of vertical operations are defined in jRelix, although only the first two are

implemented in current version:

e Simple reduction

Equivalence reduction

e Functional mapping

Partial functional mapping

Simple reduction produces a single result from the values from all tuples of a single attribute

in the relation, while equivalence reduction provides a grouping mechanism not present in simple

reduction [Mer84]. Figure 3.47 gives some examples of the reduction operation.

In this example, tot_all calculates the total mark regardless of the student and course; sub_tot

calculates the total mark for each student; and average computes the average mark for each

student.
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(;domcin Name, Course string;
>domain Mark intg:
>relation Student (Name, Course, Mark) <- (

{"Bailey P."., “Math 100°, 85),

(*Bailey P.", “Art 30L-, 77),

(*Jones J.°, °Mach 100°., 92),

(*Jones J.", “"Music 210°, 88),

("Martin R.®, "Math 100°, 8S5) }):
>(Ql:calculate the total marks.)
>let tot_all be rede of Mark;
>(Q2:calculate the sub-total marks for each student.)
>let sub_tot be equive of Mark by Name;
>(Ql:calculate the average mark for each student.)
>let average be

equive of Mark by Name)/(equive of 1 by Mame);

>scuden:ﬂec<-[name cot_all, sub_tot,average] in S:uden::
>pr Scuden:Rec

Bailey P. 427 162 81
Jones J.
Martin R.

relation S:udencaec has 3 tuples
\= J

Figure 3.47: Example of Reduction Operations

The general syntax for declaring a virtual domain that performs a reduction operation is as

follows:
> let virname be red operator of erpr; (simple reduction)
> let virname be equiv operator of ezpr by ezpr_list; (equivalence reduction)

In the syntax for equivalence reduction, the erpr_list after the keyword by describes the sort
attributes according to which the reduction is performed. The list is also called “by-list” of
equivalence reduction.

The operator in the above syntax must be both commutative and associative. The op-
erators satisfying this condition are addition (4), multiplication (*), maz and min for numeric
operations, and and or for boolean operations, and ijoin, ujoin and sjoin for relational opera-
tions etc.

As mentioned already, relational operations can be involved in vertical operations as well.
Figure 3.48 gives some examples for this case.

This example uses relation Student introduced in Figure 3.42 and Figure 3.43, and produces
a nested relation Courses which contains all the courses given in the fall and winter terms
respectively (which happen to be same). As it is illustrated in the example, “reduction of ujoin’

is used to generate such a nested relation.
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Couwrses l
FallCourse Mn.cu.nl
Arn 301 Amn 301
Math 100 Math 100
Music 210 Music 210
Physics 200 Physics 200

. 13

Figure 3.48: Example of Reduction with Relational Operation

r>1¢c fall be [Course] in Fall;

>let winter be [Ccurse] in Winter;

>let FallCourse be red ujoin of fall:
>let WinterCourse be red ujoinof winter:;

>pr Courses:

...............................

:ela:;on Courses has 1 tuple
>pr FallCouzzc

| id I Course —.__ |
.............. T RSyl 28
7 Are 301 .
7 . | Macth 100 H
7 .| Music 210 ,
7 P <Physics 200 | -

B

,‘
relor!.cn .FallCourse has 4 tuples
>p! dxnt.anur:c

>Courses<-[FallCourse. WinterCourse] in Student:

.............

PR A

Music 210

; JFhysics 200 |

B DR TR )

relacion

.WinterCourse haz 4 tuples

\_>
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Vertical operations can also be applied to lower-level (sub-)relations in a nested relation.

This is illustrated in Figure 3.49.

In this example, the average marks are calculated for each student in each term. This

requires vertical operation to work on nested domains Fall and Winter, as illustrated by the

virtual domain Ave combined with nested virtual domains fallRec and winterRec.

Finally, horizontal and vertical operations of domain algebra my be combined together to

produce quite sophisticated queries. However, detailed explanations are omitted here.

3.6 Views

Views are computed relations defined on relations (including computations and views them-

selves). Unlike a relation, view does not hold actual data upon being declared (and initialized).

They are usually regarded as a functional definition which is similar to a procedure call in other

programming languages such as C and Java etc. Tuple data are generated on the fly for a view

when it is invoked by certain mechanism, which is similar to the actualization of a virtual do-

main. Readers are encouraged to refer to [Hao98] for detailed information on views in the jRelix

system.



CHAPTER 3. USER’'S MANUAL ON JRELIX 67

(>Le: Ave Le (rsde of Mark)/(rede of 1); )
>let fallRec be (Ccurse.Mark.Ave] :n Fall;
>ler winterRec ke [Ccurse.Mark, Ave] 11 wWinter:
>StudentRec<-[Naze, f{allRec, winterRec]! in Student:
>pr StudentRec:
_____________ o ecememmmmmmcmme—s
Name Folt Winter | Nane { fallRec ‘_E_':X!‘.CQ!F.EC 'l
CWIMM Course |Marik Ave | Bailey P. | 7 | & |
Math 100 | 88 |/81) Mantoo | 77( 83 ! Jones 5. | 9 b2 |
Batley P. .} | Martiz R. | 11 |12 !
Art 301 75 |' 81 [ Physcs 200 90 | 83 e T T el
Math 100 | %2 I 87 I‘Mustc!lo 31 9 relation StucentRec has I tugles
Joocs 1. {Music 10| 89 } 87 [|Physca20od  lod 91 YBr fallRecs .
Physics 200 90 § 87| | .id | Ceurse | Mark | Ay |
P P PP Pho. S
Mah 100 | 73 | 81 ['Manio0 | 91 [ a6 i P are ol 135 &1 N |
Marun R} An 30! ™ [+81p An 30l ™| xe |7 ! Math 1G5 | &8 je81
Music 210] 93 | 814 Music210| 90| 36 | 9 | mazn 100 | 82 /571 1
By {9 I music 210 ! &9 U ET 4]
N K] | phys:cs 230( 90 ner 4
. |11 | are 201 P her !
B L2l Mach oG Q73 §\E1 4
| 22 | Music 2:1C ! 92 1wt o,
emcemccccccat-cecaascaeccceca-cacen Aoamee
relation falliRec has £ cuples s
\2 -/

Figure 3.49: Example of Reduction on Lower-level Nested Relations

3.7 Computations

Basically, computations are similar to the procedure calls in some programming languages such
as C and Java etc. They accept parameters which are usually relations and output a relation as
the result of computation. Readers are encouraged to refer to [Bak98] for detailed information

on computations in the jRelix system.

3.8 Advanced System Commands

Svstem commands can be used to set the jRelix environment and display system information.
This section introduces some of the more advanced jRelix commands. By using these commands,

the user can know more about his/her environment upon starting the jRelix run-time system.

3.8.1 Setting Up Environment

In the current jRelix implementation, two types of environment modes (i.e. debugging mode and
timing mode) are provided like switches. The commands to toggle these switches are described

as follows:
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e debug; turn the debugging mode on/off. When the debugging mode is on, the system
prints a syntax tree for the user command or statement whenever the user makes an
action. This is particularly useful when doing debugging and when the syntax tree needs

to be investigated. Figure 3.50 gives an example of this mode.

>derug:
Ncte: debug mode 5 cn
>let x be AsB:

SYNTAX TREE :
Declaraticn:149:144:null:0

Ident:fi1er:230:230:x:0
Add:3C0:3232:null:C

Idenzi1f:er:230:235:A:C

R tdentif3er:239:230:8:0

Figure 3.50: Turning Debugging Mode On

e time; turn the timer on/off. When timer is turned on, the interpretation time of user
command is displayed in seconds whenever the user makes an action. Figure 3.51 gives an

example of this mode.

>tize;

Ncte: timer s on
interpretacicn :ime 0.3212
>let X be A-B:

[ 3nterpretaticn time 1.2429%
>

Figure 3.51: Turning Timer On

3.8.2 Displaying System Table Information

As mentioned in section 3.2.6, there are three system relations maintained by jRelix, i.e. .dom,
.rel and .rd. They have corresponding memory versions i.e. domtable and reltable etc. which
are usually called “system tables”. System tables are maintained by the jRelix system. System
table information is consulted and modified when declaring actual or virtual domains, relations,
and views etc.

The commands to show system tables are introduced in sections 3.2.2 and 3.2.4. However,

these commands usually display normal relation/domain information. There is, on the other
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hand, certain information that is not displayed by the commands introduced so far, and that

may be of interest to the jRelix user. This section introduces two jRelix commands that deal

with this problem.

e ssd; toggles the mode of the “sd;” command. When this switch is on, the “sd;” command
displays both user-defined and system-defined domain information. A sample output of

this case is shown in Figure 3.52.

>s8d; \
Note: show system domajin mode is cn
:f-'- --------------------------- Domain Table ----cocemmeocecme e em s
Name PP ' > il NumRe £ st
integer integer TeL 1
shore short .ot
long long 1
£float float r,
‘ .double double 1
A4 -string sering Lo
!l -expr expression Y
v | .id idlise F
1| .attributes inceger | S
‘| .tuples integer 1! 7Tt e vctem-defined domains
. .sort integer 1
Vo rel_name string 2 ,'
L\ -dom_name string 2 )
‘-position integer 1
Sgount integer 1
.type integer 1
Lrve . integer R} _o user-defined domuins
.bool ~~. _Lboocleam--- - ~T=----] S -
A.-"""" Tirtager " 3 B
-8B integer 2 S
hc float 2 I
S tea_ idlise 0 .id. -k B
o TTEmemeoee-e-mect /

Figure 3.52: Sample Output of “ssd;” + “sd;”

I[t’s clear to see from the sample output that the system-defined domain name starts with

]
a 23]

e ssr; toggles the mode of the “sr;” command. When this switch is on, the “sr;” command
displays both user-defined and system-defined relation entries in reltable. Since a nested
relational domain is always connected with a (sub)relation entry in reltable, this entry will

also be displayed. A sample output of this case is shown in Figure 3.53.
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Fssr; X I
Note: show system relation mode is on
>8r;
----------------------------- Relation Table ==-=-----—c-eamr e mcamemem e
Name Type Arity ples Sort
e X m———————— S S LR S At e e e g T T T T ST ST e e me—e———cea——
,rer-~""7 relation S 3 Te@-a_ system-defined
’_ .dom relation 3 8 o - & relations
v~~~ _xelation 3 S 1 I T- relations
~6----"-"""rélation E) TTTTRT T C-=~-_ .. o COMEIPO
--------- e = - —— m = ———-—— P N 1o nested
T YelaciopzzzzzsIIs: rzozziz: S @ p;
Bo---"""" relation 3 2 B SR
‘T relation 2 1] 0 .7 - u.ur-de.ﬁ‘atl
e view ____________0 0 _._---- 0- iews
N> _/

Figure 3.53: Sample Output of “ssr;” + “sr;”

3.8.3 Batch Processing

In jRelix, large databases (relations) are usually created as text files by hand by using a text

editor, and then loaded into the jRelix run-time system by using the input command. In fact,

“input’ is a useful command to perform batch processing, which means, any jRelix commands

and statements can be stored as batch files on disk and be loaded into the system like a sequence

of jRelix commands. For example, suppose that the disk file combat is edited to hold a batch of

jRelix commands and statements such as domain and relation declarations and initializations,

and certain operations of relational as well as domain algebra. The following command is used

to load and perform all the operations in the jRelix run-time system.

> input “combat”;

The contents of file combat might look like something listed in Figure 3.54.
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( domain Name. Course string;

domain Mark intg;

relation Student(Name., Course, Mark) <- {
{"Bailey P.*, ~Math 100-, 85).
(*"Bailey P.", =Art 301-, 77}.
("Jones J.°, °Math 100-, 92),
(*Martin R.*, *Math 100°, 8S) }:

StudentList <~ [Name] in Student:

CourseList <~ [Course] in Student:

let average be (equives of Mark by Name) / (equive of 1 by Name);

StudentRecord <- {[Name, average] in Student:

pr StudentlList;

pr CourselList;

pr StudentRecord;

Figure 3.54: Example of Batch File combat



Chapter 4

Implementation and Solution Strategy

As introduced in chapter 3, the jRelix system consists of such conceptual modules: relational al-
gebra, domain algebra and computations. In the jRelix implementation, each conceptual module
is designed to correspond to several low-level function modules (or components) in an object-
oriented manner. The goal is to break the problem down into a number of smaller problems that
are casier to understand and implement. Ideally, the function modules (or components) can be
implemented directly as objects in the Java language.

In this chapter, we will explore some of the implementation details in jRelix. In section 4.1,
the jRelix developing environment and tools are briefly discussed. The advantage of the Java
programming language over other programming languages is shown to readers. Section 4.2 gives
a general overview of the jRelix system. Different function modules and their relationship are
described.

In section 4.3, something regarding the jRelix parser and interpreter is generally discussed.
The jRelix parser and interpreter together serve as the front-end processor for the entire system.
They are the interface between the end user and the central jRelix database engine.

Section 4.3 also roughly talks about the top-level expression evaluator. In the jRelix system,
all user inputs are captured and translated into a syntax tree by parser/interpreter; while the
evaluator makes the syntax tree understandable by the rest of the jRelix system. In addition,
the top-level expression evaluator is also involved in actualization of lower-level nested virtual

domains.

72
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Section 4.4 deals with the system table mechanism in jRelix. Apart from user-defined rela-
tional or domain information, jRelix maintains so-called “system information” which describes
the current system execution state and controls the system behavior either during a single jRelix
session or across multiple sessions. As an example, the three system relations .rel, .dom and .rd
mentioned in section 3.2.6 contain highly important information about user-defined relations
in the system. Any error with these system relations may result in the malfunctioning of the
entire system or a system crash in the worst case. System information is maintained in several
so-called “system tables”. System tables exist both in memory and on hard disk with different
formats, which will also be described in section 4.4.

Section 4.5 explores the virtual domain actualizer, which deals with domain algebra in jRelix
and is therefore one of the most important modules in jRelix. Apart from the implementation
of horizontal and vertical operations in domain algebra, the actualizer is also in charge of the
virtual domain’s validation check, operands’ type compatibility testing and mutually recursive
definition detection etc., which will also be discussed in this section.

A virtual domain is usually actualized on a tuple-by-tuple level, which means the relation
on which the virtual domain is to be actualized is scanned from the first tuple to the last
one, and for each tuple data, the virtual domain’s value is calculated. This is particularly
true with the horizontal operation of domain algebra. For vertical operations, the relation
is still scanned and relevant tuple data is stored somewhere for the vertical (e.g. reduction)
calculation. This approach is called as “tuple-by-tuple approach”. On the other hand, the tuple-
by-tuple approach has efficiency problems since a loop within the entire relation is involved. This
poses an even more serious problem when actualizing a virtual domain with relational operations
on a nested relation, since, for example, joins on a tuple level are supposed to slow down the
whole actualization procedure, as highly time-consuming sorting and disk I/O are involved with
joins. Therefore, an alternative way named “fop-level approach” is also available in the jRelix
system. The top-level approach deals with top-level relation operations during virtual domain
actualization, and yet fulfills the same result as tuple-level data calculation. Both approaches
are discussed in section 4.3.

Note that the so-called “relational processor” and “computation processor” are not discussed
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in this thesis due to the space and time constraints. The relational processor is in charge of im-
plementing relational algebra. Some of the most important relational operations e.g. projection,
selection and various join operations are implemented within this module. The computation pro-
cessor deals with computations in the jRelix system. As both of these modules are of the same

importance and weight as the virtual domain actualizer, detailed descriptions are documented

in [Hao98] and [Bak98] respectively.

4.1 Developing Environment and Tools

When choosing a developing environment, the following questions might firstly come to the
decision-maker’s mind.

e What’'s the target operating system?

o Which programming language should be chosen?

e Are there any handy developing tools/utilities to speed up the development procedure?

o How about the erperimental/testing environment, e.g. profiler?

These questions are frequently asked in the initial stage of almost all software development.
They will be well discussed in this section. Certain comparisons between jRelix and its counter-

part (C version Relix) will also be discussed briefly.

4.1.1 Java Programming Language

The old version of Relix was written in C programming language, and is portable across different
platforms running the UNIX operating system. Although C language provides applications with
high performance in speed, flexibility in programming, and portability across different UNIX
environments, it is fairly hard to program and debug C code due to the complexity of mem-
ory manipulation etc. This is especially true when building a medium/large-sized application
such as a database engine like Relix. On the other hand, there are no built-in network facili-
ties with standard C. To gain the power of network, C language will need additional network

lavers/libraries, which are mostly platform dependent however.
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The Java programming language [AG96] [GJS96], developed at Sun Microsystems under the
guidance of James Gosling and Bill Yoy, was designed to be a machine independent programming
language that is both powerful enough to replace native executable code and safe enough to
traverse networks. The authors of Java have written an influential “White Paper” that explains
their design goals and accomplishments. Their paper is organized along the characteristics as

showed in Figure 4.1 [GJS96] [Gos96]:

p
- Object Oriented 7

- Architecture Neutral & Portability

- Simple

- Network Facility and Distribution

- Robust & Secure

- Multithreaded J

Figure 4.1: Java Buzzwords

It is almost impossible to discuss all the details about the above-mentioned features in this

thesis. From Relix’ point of view, Java is a good choice because of the following reasons.

1. It is an Object-Oriented language hence it is easy to program.
2. It is platform independent.
3. It has both robust and safe built-in network facilities.

4. It supports multi-threading.

The biggest program with Java is its speed. Java is an interpreted language. Generally
speaking, Java compiler generates bytecodes which are interpreted by the Java Virtual Machine
(JVMI). Needless to say, this procedure slows down the execution speed especially for an ap-
plication as database engine. However, there are ways to circumvent this drawback, e.g. Java
byvtecodes can be translated by a native code compiler (such as JIT) into machine code for the
particular CPU the application is running on. This makes the target executing code just as fast

as code written in other languages such as C.
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4.1.2 JavaCC and JJTree

To build a non-trivial application that can intercept the user commands and respond interac-
tively, a grammatical parser and a syntactic interpreter must be built as the front-end modules.
In the Java world, two utility applications are freely available as tools to create such front-ends
with sophisticated functionalities and with less design and coding efforts.

the Java Compiler Compiler (JavaCC) [SDV96] is a parser generator for use with Java appli-
cations. A parser generator is a tool that reads a high-level grammar specification and converts
it to a Java program that can recognize matches in the grammar. In addition to the parser
generator itself, JavaCC provides other standard capabilities related to parser generation such
as tree building, actions, debugging etc. JavaCC uses the top-down parsing technique [ASUS86].

JJTree is a preprocessor for JavaCC that inserts parse tree building actions at various places
in the JavaCC scurce. The output of JJTree is run through JavaCC to create the parser. The

relationship between JavaCC and JJTree is illustrated in Figure 4.2.

ree
HTree Source | JJ‘TM

1avaCC Source e JewacCC { Geperated I

Figure 4.2: JavaCC and JJTree

JavaCC and JJTree are used to build the front-end parser for the jRelix system. Details will

be introduced later in this chapter.

4.1.3 Debugger and Profiler

Two utility programs called “db” and “javap” are shipped with the Java Development Kit
(JDK). jdb is the official debugger provided by Sun Microsystems@© for developing Java appli-
cations, while javap is a profiler provided by Sun Microsystems(©) for the Java developers to

statistically measure the performance of different code pieces.
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However, since both of these utilities are hard to use, they have not been adopted by the

jRelix project team.

4.2 System Overview

Theoretically there are three conceptual aspects in the jRelix system, i.e. relational algebra,
domain algebra and computation. They correspond to three basic function modules in the
implementation, which work together (and also support each other) to fulfill the tasks of a
database engine. Apart from the three modules, there are other supporting modules such as
parser and interpreter which function as the front-end processor, and act as an interface between

the end-user and the central database engine. Figure 4.3 is an overview of the system.

Funcional Modules DiskFiles ...
Urer tnper Fonctomal Modles e BRI :

Yy : . Relation . R i - e
Processor m
Paryer .

. . Virtual Domus [ ]
Actualizer

’ m m * ’ ’
Interpreter )_ : -
7 Computanon
] Processor

'_. T : dom
Svstem Tahlrl @ g @

)

Anxili;\ry Modules

Figure 4.3: jRelix System Overview

A jRelix command entered by the end-user is first accepted by the parser. The parser is a Java
class named Parser which is generated by JavaCC (refer to 4.1.2). It reads the command-line
inputs and performs syntax analysis and finally translates jRelix commands into intermediate
codes which have a tree structure. In JavaCC terminology, they are called syntax trees. More
about the parser will be discussed in section 4.3.

The interpreter receives syntax trees passed by the parser and does certain evaluations such
as error checking etc. It then calls different function modules to perform the operations. In the

jRelix implementation, an Interpreter class is built to represent the interpreter. The evaluator
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is embedded in the interpreter. See section 4.3 for details on the interpreter.

The central database engine is represented by three modules i.e. the Relation Proces-
sor [Hao98], the Virtual Domain Actualizer (see section 4.5) and the Computation Proces-
sor [Bak98]. Three Java classes (i.e. Relation, Actualizer and Computation) are built corre-
spondingly.

It is clear to see from Figure 4.3 that only the relation processor is responsible for disk I/O
in a jRelix relation, whereas other modules access secondary storage via the relation processor.
On the other hand, the system table maintainer is in charge of disk I/O for the system tables.

Details are given in section 4.4.

4.3 Front End Processor

This section briefly discusses the front-end processor which consists of the parser, interpreter and
top-level evaluator. The front-end processor is the interface between the end-user and the central
jRelix database engine. The relationship of the three components in the front-end processor is

illustrated in Figure 4.4.

method calls

snaxtrees 000 ] TS ===

intermediate
method calls J

> LRI
relauonal algebra

Relation =icin(l.

Figure 4.4: jRelix Front End Processor

As mentioned before, a jRelix command entered by the end-user is first accepted by the jRelix
parser. The parser reads the command-line input, analvzes the command syntax and finally

translates the command into an intermediate code which has a tree structure and is therefore
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called the syntaz tree. The jRelix parser is created by using JavaCC (refer to section 4.1.2). The
Backus-Naur form of all the jRelix command grammar is summarized in appendix A. In the
JRelix implementation, a Parser class is created to correspond with this module.

The former version of Relix was developed in the C programming language and used Lex
as its lexical analyzer and Yacc as its parser generator. The combination of these two utilities
created a parser for the Relix interpreter which runs in the UNIX environment. In the jRelix
implementation, the JavaCC utility introduced in section 4.1.2 is used to generate the front-end
parser. In fact, JavaCC works as both lexical analyzer and parser generator which improves the
processing efficiency.

On the other hand, the JJTree utility (refer to section 4.1.2) is used as an auxiliary program
for JavaCC to specify the actions to be performed when a syntax match is found by JavaCC.
Specifically, a source conforming to the JJTree syntax, which defines the jRelix grammar and
actions for a match of the grammar, is introduced to the JJTree utility, which generates the
intermediate code for JavaCC. JavaCC, upon receiving the output of JJTree, continues the
process and generates source code in Java which is supposed to work together as the front-end

parser of jRelix. Figure 4.2 depicts the procedure of parser generation in jRelix.

veid Cemzmand!) lC..:mr.d : W
g Token T i)

ER> |
= L) 2 null :otoimage;

1 P_CC‘.-"‘{A.\'D CP_HELP?. s1; |

<QUIT> { 13tThis.set (CP_CCOMMAND, CP_QUIT); !}

£INPUT> T o= <STRING_LITERAL>

i 31tThis.SeT(OP_CCMMAND, CP_INPUT, z.:image); }

|

<CEBUG> { 31tTh:i:s.set(OP_CCMMANT, ZP_DEBUGH: 1

<BA""H> { 2itTR:S.5¢2 (QOP_COMMANT, CP_BATCH!: |

<=E.D> ICList()
13tTR:s .5 (CP_CTMMAND., CP_DELD); }

<JELR> IDList()
§ c3tTh:s.set(OP_CTMMAND. CP_DELR); }
I

<PR> Expressicnl()

f 333ThiS.Set (OCP_CTMMAND., CP_PR); }

<SD> =z = <.-E"'ZF!EF\> i

{ String s ull) 7 nell : t.image;

| j3tThis . set(OP c'w.\o\.\rn CP_SC, s): }

<SR> [ % = <x"E:r"'F's> )

{ String (z == null) ? null : t.image;

| I5%This. se.lDP CC."’.".A.\'“ CP_SR., s1: }

<SRO> ( j3TThis.set (CP_CCMMAND, CP_SRD);
<PRINT> t = <STRING_LITERAL>

§ 33tThis . set(CP_ Cc.“.!'.AN" CP_PRINT, t.izage); }
<SSD> { 3133This.set(CP_CCOMMAND, CP_SST): |}
<SSE> { ;3tThis.sez (CP_CCMMAND, SP_SSR); )

Figure 4.5: JJTree Source Code
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Figure 4.5 gives a simplified example of the JJTree source code for the jRelix “Command”
syntax, where the syntax for all jRelix commands e.g. “deld”, “delr” etc. are specified. As well,
the actions to be performed when various jRelix commands are entered by the end user are also
declared here. The description for how to write JJTree source code is bevond the scope of this
thesis. Readers may, however, refer to corresponding documentation on JJTree and JavaCC for
detailed explanation.

After the parser is generated by JJTree and JavaCC, the generated Java code is ready to
be compiled in order to produce the object code for the jRelix parser. When executing the
parser, the input is the user command, while the output is the so-called “syntaz tree”. Asyntax
tree is an internal representation of the user command. It comprises nodes and relationships.
Figure 4.6 illustrates the syntax tree of the jRelix command “let SumAB be A + B;". In the
figure, the nodes are represented by labeled circles (e.g. “Declaration”), and the relationships

are represented by arrows. Details of the jRelix syntax tree will be explored later in this chapter.

SumAB °

Figure 4.6: An Example of Syntax Tree Produced by the Parser

The jRelix interpreter receives syntax trees passed from the parser and does certain cvalua-
tions such as error checking etc. It then calls different function modules to perform operations.
In the jRelix implementation, an Interpreter class is built to represent the interpreter. The
evaluator is embedded in the interpreter.

In the jRelix system, all user inputs are captured and translated into a syntax tree by the
parser/interpreter; the evaluator makes the syntax tree understandable to the rest of the jRelix
syvstem. In addition, a top-level expression evaluator is also involved in actualization of lower-

level nested virtual domains.



CHAPTER 4. IMPLEMENTATION AND SOLUTION STRATEGY 81

4.4 System Table Maintainer

As mentioned before, upon declaration and initialization, a relation is stored in a file whose
name corresponds to the name of the relation. User-defined relations including domains etc.
are maintained in a jRelix database. Every jRelix database maintains a set of “system tables”
which represent the data dictionary of the database and are stored permanently as system files.
Three basic system tables are used to store information about domains, relations and relevant
components. Sections 4.4.1 to 4.4.3 discuss these system tables respectively. The term “system
table” has two different meanings regarding their storage formats, i.e. the storage format as
permanent files on hard disk, and the memory format stored in RAM. Both formats will be
discussed.

Figure 4.7 describes the maintenance of the svstem tables. Details about the maintenance

mechanism will be explored in section 4.4.5.

: ‘R""‘b"e'

Domrable
Muintainer

@ Compuration

i
il

i

Figure 4.7: System Table Maintainer

4.4.1 Domain Table

In the jRelix implementation, the memory version of the information on all domains in the
database is maintained in a hash-table, with domain names as hash keys. Each item in the hash-
table has the structure depicted in figure 4.8. The hash-table is maintained by a DomTable class,
which performs various operations on domain items (e.g. adds a new domain to the hash-table

etc.): the domain item structure is represented by a DomEntry class.
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Type
Rem Type Description --* BOOLEAN
name string domain name ' fg’%‘&
type integer domain type Rt St o | lr-fgf'r
L}
tree SimpleNode | the syntax tree if it’s a virtual domain, ' DOUBLE
P otherwise null 1| STRNG
numref | integer the number of times that this domain is : SETX},’RT
referenced ' IDLIST
' - -=1 COMP

Figure 4.8: Domain Table Format (In-RAM Version)

Usually we call the memory-version of the domain table “domtable”; On the other hand, the
domain table information that is stored permanently in a disk file is named “.dom”. The storage
format of a .dom file is depicted in Figure 4.9. Obviously, the format of file .dom is quite similar
to that of the “In-RAM’ version domtable. The only difference is the storage of the syntax tree
for virtual domains. Section 4.4.4 describes how jRelix handles the syntax tree information, and

section 4.4.5 explains the details of domain table maintenance.

em Type Description

name string domain name

type integer domain type

numref | integer the number of times that this domain is
referenced

Figure 4.9: Storage Format of File .dom

4.4.2 Relation Table

Information on all relations in the database is also maintained by a hash-table in memory,
with relation names as hash keys. Each item in the hash-table has the structure depicted in
figure 4.10. In the jRelix implementation, the hash-table is maintained by the RelTable class,
which performs various operations on the system relation table (e.g. add a new relation to the
hash-table); and the Relation class describes the relation entry structure, as well as perform the

relational operations (e.g. joins, projections and selections etc.).
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Rem Type Description

name string relation name

rve integer type (RELATION. VIEW or COMPUTATION)
numtuples integer the number of tuples in this relation

numattrs integer the number of attributes in this relation
numsortatirs integer the number of sorted attributes

ree SimpleNode syntax tree root if it is a view

domains Domain(] array of domain objects

data Object(} pointer to relation data

capacity int capacity of data

Figure 4.10: Relation Table Format (In-RAM Version)

The memory-version of a relation table is usually called “reltable”. On the other hand, the
relation table information that is stored permanently in a disk file is named “.rel’. The storage
format of a .rel file is illustrated in Figure 4.11. The items in file .rel are part of the items of
the In-RAM version of reltable. The information about domain items a relation is defined on is
not stored in file .rel, instead it is maintained in another file called .rd, which will be discussed
in section 4.4.3. Also, syntax tree information for views is not stored in file .rel. Section 4.4.4
describes how jRelix handles the syntax tree information, and section 4.4.5 explains the details

of reltable maintenance.

tam Type Description

name stning relation name

ve integer type (RELATION, VIEW or COMPUTATION)
numtuples nteger the number of tuples in this relation

numattrs integer the number of attributes in this relation
aumsortattrs integer the number of sorted attributes

Figure 4.11: Storage Format of File .rel

4.4.3 RD Table

Information that liuks the relations with the domains on which they are defined is maintained

by the so-called RelDom (or RD) table. This kind of information is stored permanently in a disk
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file named “.rd”. Figure 4.12 describes the file format for this .rd table. However, different from
domtable and reltable, there is no memory-version of RD table. As explained in section 4.4.5,
RD table information is loaded from the .rd disk file by Interpreter and inserted into reltable and

domtable on the fly. The same is true when jRelix stores RD information to the disk file .rd.

tem Type Description

relName string relation name

domName string domain name

position integer the position of this domain in current relation

Figure 4.12: File Structure of .rd

4.4.4 Expression in System Tables

As we know, the definitions of virtual domain and views are represented by expression syntax
trees which are a set of SimpleNode’s connected in a tree structure. Figure 4.13 depicts the

expression tree of virtual domain z, where z is declared by “let = be S ijoin T ujoin U:”.

Figure 4.13: Expression Tree of “let £ be S {join T wjoin U;”

A temporary hash-table is used by the ExprTable class to store expression trees when load-
ing/saving the trees from/to a system disk file .expr. It is temporary because only when the
system is starting/exiting is this hash-table used to hold the expression trees. During most of
the execution time, the expression trees are maintained within domtable (for virtual domains)
and reltable (for views).

Since expression trees are composed of SimpleNode objects, they are stored in the .ezpr
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file by means of Java's serialization I/O. ExprTable is in charge of serializing the tree streams

to/from the disk. Details are explained in section 4.4.5.

4.4.5 System Table Initialization and Saving

As illustrated in Figure 4.7, jRelix maintains three basic system tables on disk, i.e. domtable
(.dom), reltable (.rel) and “rd” table (.rd). The Java serialized expression table (.ezpr) is a
complementary table that maintains the syntax tree for virtual domains and views. During a
system session, jRelix basically maintains the domtable and reltable in memeory. All information

contained in the “rd” table and expression table is loaded into or extracted from the domtable

and reltable during the system initialization and/or the system exiting time.

System Table Initialization

Figure 4.14 illustrates the system table initialization procedure.
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Figure 4.14: System Table Initialization Procedure

1. Upon starting the system, the interpreter firstly initializes the reltable which involves
constructing a RelTable object. The RelTable constructor calls its load() method which

loads the .rel from disk. The loading is achieved by using a BlockInputStream. At this
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o

stage however, the expression trees for view and the relations domain list are not vet

loaded.

If no .rel file is found in the current database directory, jRelix initializes the reltable with
the items illustrated in Figure 4.15, which are basic system relation items. This deals with
the case where the jRelix database is newly created. Obviously, the system relation’s name

(1324

starts with a “.”.

Name #Tuples #Attributes Type
rel 3 5 RELATION
.dom 8 3 RELATION
rd 10 3 RELATION

Figure 4.15: Initial Entries in Reltable

The interpreter then initializes the domtable by constructing a DomTable object. The
DomTable constructor calls its load() method which loads the .dom from disk. The loading
is achieved by using a BlockInputStream. At this stage, the expression trees for virtual

domains are not vet loaded into domtable.

If no .dom file found in the current database directory, jRelix initializes the domtable with
the items illustrated in Figure 4.16. which are basic system domain items. This deals with
the case where the jRelix database is newly created. Obviously, the system domain’s name

starts with a “.”

Next, an ExprTable object is constructed by the interpreter, and thus the expression trees
are loaded from .ezpr file. As mentioned in section 4.4.4, expression trees are stored on
disk by Java’s object serialization mechanism. Hence, an ObjectInputStream is used to

load the expression information.

Expression trees are loaded into a temporary hash-table which is maintained by the Ex-
prTable class. ExprTable then calls the insertRuot() methods of domtable and reltable to

insert loaded tree objects into these two tables respectively.
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Name Type #Ref
rel_name stnng 2
{tuples integer 1
.attributes integer 1
Ve integer 1
sort integer 1
.dom_name string 2
dype integer 1
.count integer 1
.position integer 1
id idlist 1
.bool boolean 1
short short 1
.integer integer [
Jlong long i
.fMoat float 1
.double double 1
string string 1
text text 1
EXpr expression 1
stmt statement I

Figure 4.16: Initial Entries in Domtable

As we’ll see in next section (System Table Saving), expressions for a virtual domain are
prefixed by a “.” before saving, so that the loader of ExprTable can correctly decide which

expression goes to domtable and which goes to reltable.

4. Finally, the interpreter calls its loadRDTable() method to load the RD information from
the .rd file using a BlockInputStream. As mentioned in Section 4.4.3, RD information
describes which relation is defined on which attributes. Attributes that belong to a relation

are inserted in the reltable by its insertIDList() method call.

If no .rd file is found in the current database directory, jRelix initializes the RD information
with the items illustrated in Figure 4.17, which are basic system relations corresponding
to their attributes (i.e. domains). This deals with the situation where the jRelix database
is newly created.

It’s easy to see that the initial system relations (i.e. .rel, .dom and .rd in Figure 4.17) are
predefined in Figure 4.15, which includes the initial relation items. Their corresponding

domains are predefined in Figure 4.16.
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Figure 4.17: Initial RD Entries

System Table Saving

System table saving is kind of a reverse procedure of the system table initialization explained
previously. Figure 4.18 illustrates the system table saving procedure which occurs at the end of

a jRelix session.

[ DomTabledumpy |
save DomTable info lﬂ! """""""""" —I dom !
J @ P4

RelTabie.dump() w - ,l rel [
dump RefTablcinfoto | - o o o o L e L. <’
.rel and .rd .
. Yo _
[ ~ '~l o
; ©
ExprTable.dump()
eXIract eXpression trecs —
from reltable & domtabley =~~~ - - - === =======<-- expr

and dump them to .expr

Figure 4.18: System Table Saving Procedure

1. Right before exiting, the jRelix interpreter calls DomTable’s dump() method, which saves
the domtable information to the .dom file by using a BlockOutputStream. Note however,
that this procedure only saves domain’s name, type and #reference fields to disk. It does
not touch the expression tree of virtual domains, because the expression tree information

will be handled by ExprTable object, as explained in step 3.

2. The interpreter then calls RelTable’s dump() method which saves the reltable information

to .rel by using a BlockOutputStream. It also saves the relation and its corresponding
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domain information to .rd. But it does not do anything for a view’s expression tree due to

same reason as that given in step 1.

3. Finally, ExprTable’s dump() method is called by the interpreter. This method extracts the
expression trees from domtable and reltable by calling their fillEzprTable() methods, and
serializes the tree objects to the disk file .erpr. Before that, DomTable’s fillEzprTable()
method prefixes a “.” to the virtual domain’s name. This tells the loader of the expression

trees which expression tree belongs to virtual domains, and which belongs to views.

4.5 Virtual Domain Actualizer

The virtual domain actualizer is responsible for the functionalities of domain algebra in jRelix.
Hence, it is needless to say that it is one of the key components in the system. The actualizer
implements both horizontal and vertical operations on a relation. In particular, it supports
nested domain operations such that domain algebra and relational algebra are well integrated.
In other words, domain algebra becomes a super-set of relational algebra in the jRelix imple-
mentation. When the user runs a nested domain operation, relational operations are invoked
and run against a set of sub-relations which are attributes of the upper-level relations.

Computation is also integrated into the actualizer. It can be regarded as a virtual procedure
call which accepts parameters from its environment, and outputs the result as a relation. From
the actualizer point of view, the computation is applied onto a tuple-by-tuple level, which is
quite similar to a virtual domain. But compared with the domain actualizer, the computation
processor provides a much stronger handling capability of complex operations.

Figure 4.19 illustrates the basic control flow of a virtual domain actualizer.

Apart from actualization, a virtual domain actualizer is also in charge of virtual domain
validation checks,, operand type compatibility testing and mutually recursive definition detection
etc. This sort of run-time check is much stronger than the checking during declaration time.
Since the virtual domain declaration has a close relationship with the actualizer, we move its
description from section 4.4 to the next section. Section 4.5.2 describes the procedure used to

construct a virtual domain actualizer. The details of virtual tree building and various validation
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Figure 4.19: Basic Control Flow of a Virtual Domain Actualizer

checks are explored in section 4.5.3. Section 4.5.4 and 4.5.5 describe the detailed actualization
procedures for the tuple-by-tuple approach and the top-level approach respectively, which are

central parts of an actualizer.

4.5.1 Virtual Domain Declaration

Declaring a virtual domain is quite similar to defining a procedure call in other programming
languages such as C and Java, with the procedure body represented in the form of an expression

tree. Figure 4.20 illustrates this idea.

let x be A+B:
procedure x(A. B) -

: return A+B: == o B @

a procedure declaration virtual domain declaration and its expression tree

Figure 4.20: Virtual Domain Declaration

On the other hand, the virtual domain declaration command itself is in the form of a syntax
tree as depicted in Figure 4.21. Obviously, this syntax tree includes the expression tree for the
virtual domain definition (the dashed rectangle in Figure 4.21). Therefore, the syntax tree of a

virtual domain can be simply “cut off” from the syntax tree of the declaration command.
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syntax tree of virtual domain x

Figure 4.21: Syntax Tree for the Command “let z be A+B;”

However, before the virtual domain expression tree is cut off from the syntax tree of the

declaration command and is inserted into the domtable, the following procedure is performed.

N

. Traverse the expression tree to make sure that all identifiers in the tree have been already

declared in domtable or reltable (for top-level relations). This means that a virtual domain
must be defined on something that already exists, otherwise, an error message is displayed.

This procedure is executed by DomTable.traverseTree().

If we are redeclaring an existing domain, we just insert/replace the expression tree in that
domain’s ’‘tree’ field. Note, the reference counters of those referenced domains are not
incremented. However, before we do some actual work, we must make sure that old/new
domains’ types are identical even if we want to overwrite a virtual domain. This procedure

is partially done by DomTable.traverse Type().

If we are declaring a new virtual domain, simply put a new Domain entry with the expres-
sion tree in the hash-table maintained by DomTable. Note, the reference counters of those

referenced domains are not incremented.

If the type of the new virtual domain is idlist (as returned by DomTable.travse Type()),
this must be a nested relational domain (refer back to section 3.2.2 for introduction of
the idlist type). The attributes list of this virtual domain is figured out by calling the
DomTable.getIDList() method and a new relation entry is added into reltable by using
Relation.addRel() method. This relation has the same name as the virtual domain except

that it is prefixed with a “.” (hence is an invisible relation. Refer to section 3.2.1). It is
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supposed to hold tuples for the nested relational domain. Finally, as described in section
3.2.2, the reference counters of those domains that are used by this invisible relation are

incremented by one.

DomTable.traverse Type() traverses the expression tree and checks the type compatibilities.
Figure 4.22 lists possible type combinations for various operators. Any operation that does not

agree with the rules illustrated in this figure cause a type-mismatch error message.

Operator Laft & Right Operands | Result Type

min, max. plus aumcnc tyne (i.c. aumenc
uns, muIkPlY | short micger. long. | fype )
uplus_ umuinus | float doublc
W
<at sinng & stnng stnny
. ney, gt numenc & numenc
by ;:q ¢ text & lext bool
g boot & bool
or. and. unot buol & bool bool
Hoin, woin idlist & rdlist wdhist
yo. ! N 1dhst & computayon
gnmh ¥ computation & tdlist
(*) 1f onc of the operands ts of double type, the resuit type 1s double
otherwise. 1f oac of the opcrands 1s’of float type. the result type is float

otherwise, if one of the uperands is of long type. the result tvpe s long
otherwise, if one of the operands 15 of mlcggc’r‘lfypc, the ruul{‘:frm [ Ihlt‘gﬂ'
otherwise, the result type is short.

Figure 4.22: Possible Type Combinations

Even though a virtual domain’s expression tree is inserted in the memory version of domtable.
it is not stored in the .dom file on disk, which is the system file for domtable information. It is
actually stored in a separate .ezpr file as explained in section 4.4.4 and 4.4.5.

One thing that should be noted here is that domtable does not hold the attribute list for
an idlist-type nested relational domain. As already explained, when declaring an idlist-type
domain, a new relation is inserted into domtable which will hold the data for this domain. The
attribute list of the new nested relational domain is retrievable from the reltable but not the
domtable. Hence, when displaying domain information using the “sd” show-domain command,
jRelix has to go get the corresponding attribute list from reltable for this nested domain and

then display other information using domtable. Figure 4.23 illustrates this scenario.
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Figure 4.23: Displaying an IDLIST-typed Domain

4.5.2 Using an Actualizer

This section discusses how to use the actualizer from the application programmer’s point of
view. The Actualizer in jRelix is implemented as a source code component which can be reused
by other modules e.g. relational algebra or computation at the source code level. This section
talks about the usage of this source code component, i.e. the construction of an actualizer,
the central actualization procedure, and the final clean-ups when finished using an actualizer.
Readers who are interested in implementation issues regarding the use of the existent actualizer
mechanism to build other functional modules may want to read this section, whereas the details
about how an actualizer works to fulfill the actualization task are described in the rest of the
chapter.

In the jRelix implementation, an Actualizer class is designed to take the responsibility of the
virtual domain’s actualization. Whenever actualization is necessary (e.g. when virtual domains
are involved in projection, selection and joins etc.), an object of the Actualizer class must be
constructed.

From an application developer’s point of view, constructing an actualizer is quite simple.
\When an actualizer is involved, there must be a set of virtual domains which need to be ac-
tualized, and a source relation on which these virtual domains will be actualized. Hence, the
constructor of the actualizer accepts these two elements as parameters, i.e. it has the following

prototype:

Actualizer(Domain[] domains, Relation srcrelation);



CHAPTER 4. IMPLEMENTATION AND SOLUTION STRATEGY 94

Usage of an actualizer is also very easy. When the actualizer is constructed, the virtual
. domains’ actualization can be performed at any time by calling Actualizer’s actualize() method,
which returns a destination relation containing the actualized virtual domain’s fields. The ap-
plication programmer can subsequently do certain operations e.g. projection and selection etc.
on the destination relation.

When the operations are finished, an actualizer user should not forget to call Actualizer’s
cleanup() method. As we will see in subsection Virtual Tree Truncation of section 4.5.4, tem-
porary intermediate domains may be created (and inserted into the system tables) during the
virtual domain’s actualization, and data for those intermediate domains will be filled into their
corresponding data columns. The cleanup() method is in charge of removing all intermediate
domains from the domtable in order to make it consistent with the system status before running
an actualizer. This is important since system tables will be permanently stored on disk. If cer-
tain intermediate domains (or relations) are not removed cleanly, they will exist on the system

forever.
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Figure 4.24: An Example of Using an Actualizer

Figure 4.24 gives an example of using an actualizer.

4.5.3 Actualizer Initialization

As mentioned in section 4.5.2, to initialize an actualizer for a (set of) virtual domain(s), two

parameters (i.e. the source relation and an array of the domains which are to be actualized)
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need to be passed to the constructor of the Actualizer class. Upon receiving these parameters.

the Actualizer’s constructor does the following initialization procedure:

1. Initializes all the internal buffers and data members which are used during the actualiza-
tion. This includes creating internal vectors and hash tables that are supposed to hold
various intermediate data objects such as syntax trees for all the virtual domains, and

virtual domains that perform vertical operations etc.

2. Goes through the domain list and for each domain, does the following:

e If it is an actual domain which already exists in the source relation, adds this domain
to the actualizer’s actdoms vector. This domain’s data can be found in the source

relation directly. No further actualization is necessary.

e [f it is an actual domain which does not exist in the source relation, gives an error

message since it cannot be actualized.

e If none of the above cases occurs, this domain must be a virtual domain. The con-

structor expands this domain’s expression tree.

3. If it is a nested relational domain and a top-level approach is being used, the expanded

expression tree must be passed to a processIDListDom() method to do further processing.

The last step is very important in order to make sure the virtual domain is actualizable. The
basic idea is that after tree expansion, all nodes in the tree must be actual domain (identifier)
nodes which can be actualized on the source relation. An exception is reduction nodes. As
we will see later, virtual domains including reductions must be actualized in multiple passes.
Figure 4.25 gives an example of this case.

In this example, virtual domain z is defined by “let z be A+(red+ of (equiv* of B by A))".
There are two reduction nodes in domain z's expression tree. Since it is impossible for the
actualizer to actualize this tree in only one pass, temporary domains e.g. domain 0 and I must be
created to hold the intermediate data. In the tuple-by-tuple approach, this work is basically done
by the tree expansion procedure (i.e. butldTree() method); whereas in the top-level approach,

it is done by the processIDListDom() method. Note that processIDListDom() method also does
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Figure 4.25: A Virtual Domain’s Expression Tree with Reduction Nodes

similar work for virtual domains with multi-level joins involved. as illustrated by Figure 4.26.

For a detailed description of processIDListDomain(), readers may refer to section 4.5.6.

let x be S ujoin T ijoin U:

f\. f\.
° ° wemp domain “0 domain "x”

Figure 4.26: A Virtual Domain’s Expression Tree with Multiple Join Nodes

The reason for this is that although virtual domains with multiple joins involved can be
actualized directly in the tuple-by-tuple approach, it cannot be handled directly by the top-level
approach, in which only one join can be dealt with at a time. Details will be explained in

section 4.5.5 and sectton 4.5.6.

4.5.4 Building Virtual Trees

Virtual tree building is quite an important procedure during actualization. The purpose of
building virtual trees is to make sure that the virtual domain (the tree is associated with) is
safely actualizable on the source relation in the future. There are many possibilities that hinder

the virtual tree from “blossoming” i.e. being actualized, for example:
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e the virtual domain is defined on some actual domains which can never be actualized on
the source relation, or which do not exist in the system at all.

e the virtual domain is defined on some other virtual domains which can never be actualized
on the source relation.

e the virtual domains that this virtual domain is defined on are mutually defined on each
other, i.e. there is a transitive loop in the virtual tree.

e there are semantic errors in the virtual tree, e.g. the type-mismatch error in “let z be
string_name + relation_name;”.

Apart from these potential problems, a virtual tree must be reorganized, and intermediate
virtual domains must be generated in order to handle the situations mentioned in last section.
In the jRelix implementation, a buildTree() method is created for the Actualizer class to

handle the task of virtual tree building. Its major functions will now be described.

Validity Check

The buildTree() method is basically a recursive routine which frequently calls itself by passing
a SimpleNode parameter during tree building. The node passed to buildTree() is carefully ana-
Iyzed and its children are taken out and passed to buildTree() again as a lower-level invocation.
buildTree() analyzes the node according its type field. When an identifier node is encountered.
a validity check has to be performed. The idea of a validity check is quite simple, i.e. the
domtable is first consulted. If no entry is found in domtable but the current node’s parent is
an IDLIST-related node (e.g. of OP_JOINOPERATOR type), the reltable is consulted. If no
entry is found in both cases, the validity check fails and further processing is stopped by the
actualizer.

When a relevant entry is found in the system tables (either domtable or reltable), the actu-
alizer looks into its source relation and verifies that this entry belongs to the source relation’s
attribute (or domain) list. In that case, the identifier node representing the current entry is
actualizable; otherwise, the actualizer continues to check if the current node represents a virtual
domain. In this case, the tree has to be expanded as described in the next sub-section; otherwise,
it is clear that the current entry represents an actual domain which is however not actualizable

on the source relation. Figure 4.27 illustrates this procedure.
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Figure 4.27: Validity Check

Virtual Tree Expansion

As we know. building the virtual tree is an important procedure during virtual domain actual-
ization. When the final actualization happens, the virtual domain’s syntax tree is passed to the
actualizer engine, which subsequently consults the tree definition and generates tuple data based
on different approaches i.e. the tuple-by-tuple approach (refer to section 4.5.3) or the top-level
approach (refer to section 4.5.6).

The purpose of tree expansion is to make sure that there is no virtual domain node in the
resulting tree. In other words, all identifier nodes in the final syntax tree must be actual domains
which are actualizable on the source relation. Figure 4.28 illustrates the idea.

In this example, virtual domain zis to be actualized. Since it is defined on two other virtual
domains z and y, its syntax tree must be expanded in order to replace r and y with actual
domains they are defined on. Furthermore, virtual domain y is defined on virtual domain r,
hence another expansion is required to insert domain z’s syntax tree into where node z resides
in the syntax tree of domain y. As illustrated in the figure, there is no virtual domain node in
the final syntax tree of virtual domain =z.

Figure 4.29 gives a more complex example in which relational operations such as projection,
selection and joins are involved. Although the syntax trees for relational operations are much

more complicated than those of normal arithmetic operations, the basic idea for tree expansion
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letxbe A+ B:
letybe C * x;
letzbex/y:

~~._ Final Syntax Tree of Domain "'z" _-~

- - ————

Figure 4.28: Example of Tree Expansion

remains the same. Therefore, detailed explanations for this example are omitted.

Tree expansion occurs when the build Tree() method finds that nodes passed to it are virtual
domain nodes (of type OP_IDENTIFIER). The first thing it will do is to duplicate the syntax
tree of that virtual domain. This is important since further operations including tree expansion
might be performed on the syntax tree of that virtual domain, and the original syntax tree of
the virtual domain maintained in the jRelix system table should not be modified. buildTree()
calls SimpleNode’s jjtDuplicate() method to create a copy of the original syntax tree node. Any
further operations will only be applied to this copy.

Secondly, the syntax tree of the virtual domain in question needs to be inserted where the vir-
tual domain node was residing. buildTree() handles this by calling SimpleNode's jjt ReplaceChild()
or jjtReplace() methods. After this, the syntax tree of the top-level virtual domain is expanded
to become bigger.

Due to its recursive nature, buildTree() continues to analyze the lower-level syntax tree just
inserted, and performs further tree expansion when necessary. Finally, the so-called “big-tree”

is generated, which only contains node of actual domains.
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et x be S ijoin T:
let y be where A+B = 100 in x;
letz be [A. B] in (x ijoin y):

Figure 4.29: More Complex Example of Tree Expansion

Recursive Loop Detection

As illustrated in Figure 3.40, a virtual domain is regarded unactualizable if it is recursively
defined on itself, i.e. there is a recursive loop in the definition of the virtual domain in question.
The mechanism used to detect a recursive loop is quite simple. It is exemplified in Figure 4.30.

Since buildTree() is a recursive method which analyzes each node of the syntax tree that is
passed to it, it sees all the domain nodes (either virtual or actual) contained in the final syntax
tree. buildTree() remembers the domains it has seen so far, therefore, when it starts to analyze
a new domain, recursive definitions can be detected. In the jRelix implementation, a vector
object curpath is used to store all the domains (actually, only the virtual domains are relevant)
buildTree() has seen along the path to the current node. If the current virtual domain node
already exists in the curpath vector, it means that this domain is somehow (recursively) defined
on itself, and an error message should be generated to notify you of the problem. To make this
mechanism work, a virtual domain node is inserted into the vector before build Tree() recursively

calls itself, and the same domain node is removed from the vector after build Tree() returns from
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>let y be B; .

>let = be B; ii:i b4 ﬁ g:

>let x be y+A; >let x be y+A:

>let y be (z+B)°2; >let y be (z+B) *2;
>let T be (x+A+B)/103: >let = be (A<B)/103;

>Test <- [x]) in R; .
(error: virtual domain x is not
actualizable.)

>Test <- [x] in R:
{ok!)

e

Action Remember Action Remember
begin actualize x X begin actualize x x
analyze x (definedon y. A) X.y analyze x (defined on y. A) Xy
analyze y (defined on z, B) X.¥.Z analyze y (defined on z. B) X.v. Z
analyze z (defined on x. A. B) ryLrx analyze z (defined on A. B) Iy
stop since no more virtual domain efror: x stop since no more virtual domain ok!

Figure 4.30: Examples of Detecting Recursive Loop
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Figure 4.31: Procedure for Recursive Loop Detection
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its lower-level recursive call. Figure 4.31 illustrates this procedure.

Virtual Tree Truncation

Apart from expanding a syntax tree for a virtual domain actualization, (as described in pre-
vious sub-sections), it is sometimes necessary to truncate a syntax tree in order to fulfill the
actualization. There are certain situations in which the actualizer cannot actualize a syntax
tree using only one pass. In this case, the virtual tree has to be truncated and separated into
several sub-trees, each sub-tree being actualized in seperate passes. Two examples were given
in Figure 4.25 and 4.26 of section 4.3.3.

There are altogether three situations when syntax tree truncation must be performed, two
of which are mentioned in section 4.5.3. The first case is when a virtual domain is defined on
multiple vertical operations (i.e. reductions), and so the vertical operations must be separated
and actualized in seperate passes. This is illustrated in Figure 4.23, where intermediate virtual
domains “F and “I” are generated and are responsible for actualizing the reduction operations
red+ and equiv* respectively. In addition, the sequence of actualization is of significant impor-
tance, i.e. domain “¢F must be actualized prior to the actualization of domain “1”. since domain
“I" depends on the value of domain “&°.

The second situation is when the top-level approach is used to actualize a nested virtual
domain. The virtual tree is truncated and separated into sub-trees when multiple joins are
involved, with each sub-tree in charge of the actualization of a single join. This is because only
one join can be performed by the top-level approach of actualization. An example was given in
Figure 4.26.

The third case is that the by-list (refer to section 3.5.4) in equivalence reduction contains
(arithmetic) expressions rather than domains. Since tuples must be sorted according to the
by-list, all expressions in the by-list must be evaluated before the reduction operation. This
requires that the expression tree in by-list be truncated and be associated with an intermediate
virtual domain, which must be actualized first. This also poses a sequence problem. Figure 4.32
illustrates this situation.

In this example, the sub-tree for the expression “A+B"’ in the by-list is truncated and asso-
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let x be A+(rede of (equiv® of B by A+B. C)}:

N N 2 N
N @-{@\ P\ he o}
@‘ L " em pdomain "0 temp domain "1 temp domain "2°  domain "x"

Figure 4.32: Virtual Tree Truncation

ciated with a temporary domain “(’, which is subsequently used in the temporary domain “1”
etc. Needless to say, the sequence for (intermediate) domain actualization is 0, 1, 2 and finally
domain z.

In the jRelix implementation, syntax tree truncation for the first and third cases is handled
by the build Tree() method, while the second case is dealt with by a processIDListDom() method.
Both methods generate intermediate domains which are inserted into system domtable. There-
fore, clean-up is required to remove these temporary domains after actualization. This clean-up
procedure is done by a cleanup() method, as described in section 4.5.2.

To secure the sequence of actualization, three vectors are used for vertical operation do-
mains. nested domains and normal virtual domains respectively. Vertical operation domains are
actualized first, then normal virtual domains (including nested domains when the tuple-by-tuple
approach is applied), and finally nested domains (in case the top-level approach is applied). In
addition, an integer-typed level-tag is associated with each vertical operation domain. Domains

whose level-tags are larger are always actualized first.
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4.5.5 Actualization by Tuple-by-Tuple Approach

As mentioned at the beginning of this chapter, a virtual domain is usually actualized on a tuple-
by-tuple level, which means that the relation on which the virtual domain is to be actualized is
scanned from the first tuple to the last one. The virtual domain value is calculated according
to the data in each tuple. This is particularly true with the horizontal operations of domain
algebra. For vertical operations, the relation is still scanned and relevant tuple data is stored
somewhere for final vertical calculation. This section describes the tuple-by-tuple approach used

by the actualizer.

Horizontal Operations

actual domains virtual domains Method Call
B %_ﬁ
L T
dom1| dom2| dom3| vdomi | vdom2 _____-,_;,g
- - e ’,”,’:’
- ~=o1 -
=@ »}_ - ‘,"‘, .
— >~
» T B .
- ~ N -
s RN :

integer nested relation

Figure 4.33: Actualization: Fill the Cells

As illustrated in Figure 4.33, to actualizing a virtual domain is similar to filling calculated
values into corresponding positions in a table. These positions are termed “cells” in the jRelix
implementation. The actualized value of a virtual domain occupies a column of cells in the table,
i.e. relation. The task of actualization is to calculate each virtual domain cell’s data by using
cell data of actual domains in the same row (or tuple).

In the jRelix implementation, several methods are developed for cell data calculation. These
methods are called “cell-methods” and are listed in Figure 4.34.

Cell-methods basically accept a syntax tree as their only input parameter and return a

calculated value corresponding to their types. Figure 4.35 gives an example of actualizing an
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Method Type of Actuslized Domain
actintCell() integer, short
actBoolCell() boolean
actLongCell() long integer
actDoubleCell() float. double
actSuCell() string
actRelCell() nested domain

Figure 4.34: Methods for Actualizing Cells

integer cell. In this example, a virtual domain “z” is defined as “let £ be A+B;”. The cell-method
actintCell takes a virtual tree as input and realizes that domains A and B are to be involved in
the actualization. It then goes through the source relation, grabs the values for A and B from
each tuple and performs the computation according to the syntax tree. For example, for the first
tuple, the values of 4 and B are 1 and 2 respectively, which are retrieved by act/ntCell method
who subsequently produces 3 as the result.

When multiple types are involved (e.g. actDoubleCell() method takes care of both double
and float cells), an explicit type cast is necessary to avoid ambiguity. For each virtual domain
actualization, a corresponding cell-method is called in a scanning loop from the first tuple of
the source relation to the last. For each tuple of the source relation, a cell-method is firstly
invoked by being passed the virtual domain’s syntax tree which has been preprocessed by the
tree expansion procedure previously described. Therefore, the cell-method knows there will be

no problem by using this tree as it was cleaned up at previous stage.

let x be A+B;

A B x
1 2 3
3 4 2
b f 1L

Figure 4.35: Actualizing Integer Cells (Horizontal Operations)
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The cell-methods analyze the syntax tree by parsing its structure; access the actual cells’ data
in the source relation, and calculate the virtual cell values. Sometimes cell-methods may cut off
a sub-tree from the big-tree, and recursively pass the sub-tree to themselves in order to perform
a part of the calculation. This means that cell-methods are basically recursive calls. In addition.
cell-methods may call other cell-methods when necessary. Figure 4.36 gives a simplified pseudo

code for the actIntCell() method implementation (horizontal operations only).

—
int actIntCell (node) W
switch(node.type) {
case IDENTIFIER: -
return data_value;
case BICPEEATOR:
leftChild = node.getFirstChild():

_ - get actual datd from source relation

recursively call itself

rightChild = node.getSecondChild{): =
switch(node.opcode) { S S
case PLUS: - , .
return(actIntCell(leftChild) =« accxn:Ceutngh;Chndf..-
case MINUS: N
return(actIntCell(leftChild) - actIntCell(rightChildh;
\

case MULTIPLY: f
return(actIntCell(leftChild) * actIntCell(rightChild)}
case DIVIDE:
if(actIntCell{rightChild) == 0}
error{°divide by zero!°®):;
return(accIntCell (leftChild) / actintCell(rightChild);

- -

else

3
case UQPERATOR:
onlyChild = node.gectFirstChild():
switch{node.opcode!} {
case UPLUS:
return{acctintCell (onlyChild}):
case UPLUS:
return{Q - actIintCell{cnlyChild)):
}
case [FTHENELSE:
ifchild = node.getFirstChild(};
thenChild = node.getSecondChild();
elseChild = node.getThirdChild(}; __-
if (actBoolCell(ifChild ) == true}=”

return(actIntCell (thenChild));

else .
return(actIntCell (elseChild)):

case RED:
case EQUIV:
// Described later...

call another cell-method

}

Figure 4.36: Pseudo Code for actIntCell() Method (Horizontal Operations)
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Vertical Operations

Cell-methods are also responsible for vertical operations. Each node in a syntax tree has a
field called “info”, which is designed as an Object type and is supposed to store any possible
intermediate values. Naturally, this info field is used by cell-methods to save the temporary
results of vertical operations. Figure 4.37 illustrates an example of actualizing an integer virtual
domain x, defined as “let = be red+ of (A+B); . Actualization of virtual domains with vertical
operations takes a two-run procedure, i.e. the method needs to go through the relation twice.
In the first run, the cell-method scans the relation tuple by tuple, retrieves the tuple values and
performs computations according to the syntax tree. The intermediate result calculated for the
vertical operations is stored in the info field of the current node. In the second run, the final
result in the node’s info field is retrieved by the cell-method and is saved in each tuple of the
relation.

In Figure 4.37, method actintCell keeps on modifying the “info” field of the “Red+" node
in the first run, i.e. upon scanning the first tuple, the result of A+B (i.e. 3) is stored in field
info; after scanning the second tuple, the result of A+B plus the old info value (i.e. 10) is stored
again. When the end of a relation is reached, the final result of the vertical operation (i.e. 21)

is stored again. In the second loop, the final result in the info field is fetched from the node and

stored in the relation.

AT
pTTTTTTT oI r- actintCell(-yxRest )
let x be red+ of (A+B): , Il S \_4,,
’ K .
'
! xvaluein node.info: :
' " info @
X 4 Ist run { 2nd run| e

S ol Y

.
e _
21 -7, 3 ) 7L
- ’,
2] - 7 10 2] =7 -
- 21 21 p

=l Pant

b b Jo lo

Figure 4.37: Actualizing Integer Cells (Vertical Operations)

Equivalent operations have similar behavior, except that the source relation is firstly sorted

by the cell-method on the “by-list’ of the equivalent expression, and the cell-methods keep track
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of the change of the by-list value in order to decide when to store the calculated result in the
source relation. Detailed descriptions for equivalent operations are omitted due to complexity.

Figure 4.38 illustrates the pseudo code of the actintCell() method for vertical operations.

r
int actlIntCell (node)

(
switch(node. typel{

case IDENTIFIER:

case UOPERATOR:

case RED:
case EQUIV:
int actvalue= actIatcCell((SimpleNode)node.jjtGetChild(0));

switch({node.opcode) (
case OP_PLUS:

if (node.info == null) node.info = new Integer(0):;
node.info = new Integer{{({Integer)node.info).intValue()+aczValue):
break:
case OP_MUL:
if(node.info == null) node.info = new Integer(l);
node.info = new Integer({((Integer)node.info).intValue()*actValue):
break:
case QP_MUL:
if(node.info == null) node.info = new Integer(Integer .MAX_VALUE):
nede.info = new Integer(
Math.mia( ((Integer)ncde.info) . intValue{), actValue)):
break;
case OP_MUL:
if(node.info == null} node.info = new Integer{Integer.MIN_VALUE):
node.info = new Integer(
Mach.max((({Integerinode.info).incValue(), actValue));
break:

}

return actValue:

Figure 4.38: Pseudo Code for actIntCell() Method (Vertical Operations)

4.5.6 Actualization by Top-Level Approach

As mentioned before, the tuple-by-tuple approach has efficiency problems since a loop within the
entire relation is involved. This poses a even more serious problem when actualizing a virtual
domain with relational operations on a nested relation, because, for example, joins on a tuple

level are supposed to slow down the whole actualization procedure, as highly time-consuming
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sorting and disk I/O are involved with muitiple joins. The top-level approach described in
this section deals with this problem by going another way, i.e. it joins two top level nested
relations directly, and then does some kind of post-processing which results in the same result
as tuple-level actualization.

However, the top-level approach has several limitations which are listed as follows:

e It can only be applied to actualize nested relational domains in a nested relation. For

non-nested virtual domain actualization, the tuple-by-tuple approach is unavoidable.

e The algorithm for the top-level approach can only work for certain relational operations
without foreseeable problems. Although three types of relational operations i.e. ijoin.
ujoin and sjoin can guarantee that the post-processing combined with top-level joins is
able to produce the same result as tuple-level actualization, it is nct sure that other types

of operations will achieve the same results.

e Actualization of virtual domains with multiple relational operations (e.g. let x be S ijoin
T ujoin U) requires additional reorganization (i.e. truncation) of the syntax tree before

performing the actualization (refer to next subsection).

Pre-processing of Syntax Trees

In the top-level approach, after finishing the basic “building tree” procedure described in sec-
tion 4.5.4, the syntax tree of a virtual domain is passed to a processIDListDomain() method for
additional processing, as mentioned in the “Virtual Tree Truncation” of section 4.5.4 as well as
in section 4.5.3.

As declared before, the reason for this additional pre-processing is that only one relational
operation can be performed at a time by the top-level approach due to its algorithm. Therefore,
tree truncation or reorganization occurs when composition of relational operations exists in the
syntax tree of a virtual domain, and intermediate domains are generated for those truncated
sub-trees (refer to “Virtual Tree Truncation” in section 4.5.4).

Figures 4.26 and 4.39 give some examples of this kind of pre-processing of syntax trees by

the top-level approach.
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let x be (A,B] in (S ijoin T):
~a
(join
D D,

temp domain "0

temp domain ™ temp domain ~1~

Figure 4.39: Pre-processing of Syntax Trees by the Top-level Approach

It is clear from the figure that the result of the pre-processing is that the original syntax tree
is separated into a set of sub-trees corresponding to a set of intermediate virtual domains. Note
that this kind of tree separation or truncation is not necessary in the tuple-by-tuple approach,
since in that case, the whole syntax tree (along with tuple data) is passed to the relational
processor, which is in charge of the calculation which is transparent to the virtual domain
actualizer.

The subsequent implementation of horizontal and vertical operations of domain algebra in
the top-level approach is based on the result of this pre-processing, i.e. only one operation at a

time is involved in the actualization.

Horizontal Operations

The basic idea of the top-level approach can be summarized as “lift the lower-level nested domain
data up to the top level and join them as top-level relations”. This section describes the procedure
of implementing horizontal operations, i.e. joins, selection, and projection.

Given a sample relation R defined on nested domains S(A, B) and T(A, C), Figure 4.40

illustrates the procedure used to actualize a virtual domain z that is defined on “S join T".
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RS(A.B). TIA. O internal Representation:
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(3) Generate new surrcgates for *.:3° in R) and insert the tuples
1n29 destinati:on relaticn.
- J

Figure 4.40: Actualizing a Virtual Domain with ijoin by the Top-level Approach
As described in the above figure, the steps used to actualize z are as follows:

1. Extract the relevant tuple data in nested relation S.

As described in “Declare and Initialize Nested Relations” of section 3.2.3 and illustrated by
Figure 3.12, lower-level nested relation .S is associated with top-level relation R by means
of surrogates, which is indicated by the internal representation of the nested relation R in
Figure 4.40. In order to extract the actual tuples in S that are connected with relation R,
a natural join between top-level and lower-level relations R and S is performed, and the

join attributes are the surrogates’ names.

In the jRelix implementation, this join requires a syntax tree as depicted in Figure 4.41 to
be created first, and then both the syntax tree and the nested relations R and .S are passed
to the top-level evaluator which subsequently evaluates and passes the same information

to the relational processor to fulfill the join. This is procedure (1) in Figure 4.40.

2. Prepare the next join between the resulting relation from step 1 and the nested relation

T.
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Figure 4.41: Syntax Tree for Natural Join Between R and .S

The previous join generates a relation RI which contains domain 7. In order to join
relation R with the nested relation 7 on domain T which represents the surrogate name,
the domain name 7 in RI must be changed to “.id’. This is done by renaming and certain
projections. A new relation is generated, i.e. relation R2 as illustrated by step (2) in

Figure 4.40.

3. Join the result relation from step 2 with the nested relation T.

The join is performed on the common attributes of the two source relations R2 and T. This
way, the tuple data of nested relation T is safely associated with the tuple data of nested
relation S. The result relation R3is what is expected apart from the surrogate values. This

is step (3) in figure 4.40.

4. Finally, change the surrogate values in the result relation from step 3, and append the new
tuple data to the nested relation z. This concludes the actualization of virtual domain z,

as illustrated in step (4) in Figure 4.40.

In jRelix, the above-mentioned procedure is implemented by an “actualizeNestedJoinDom()’
method in the actualizer.

The cases of selection and projection are quite similar, or even simpier. In jRelix, they are
implemented by an “actualizeNestedPrjSelDom()” method. Figure 4.42 illustrates the procedure
to actualize virtual domains defined by projections and selections. Due to its self-describing

nature, detailed explanations are omitted.
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Figure 4.42: Actualize Virtual Domains by Top-level Approach
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Vertical Operations

. Similar to horizontal operations, vertical operations are also implemented by “lifting” lower-level
nested relations to an upper level, and then doing corresponding vertical operations.
Given the same sample relation R defined in Figure 4.40, Figure 4.43 illustrates the procedure

to actualize a virtual domain z that is defined on “red ujoin of S”’.

TN
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: s 12 3 La YR PN
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Figure 4.43: Actualize a Virtual Domain with Reduction by Top-level Approach

As described in the figure, the steps used to actualize z are as follows:

1. Extract the relevant tuple data in the nested relation S. This is exactly the same operation

as in the horizontal operation described in the previous section. The result is a new relation

R1 as illustrated in step (1), Figure 4.43.

Project the same attributes as in nested domain S from relation RI. Since reduction of

N

ujoin on S produces all tuples of S (associate with the top relation R without duplicate

tuples), the projection is in charge of removing the duplicate tuple.

3. Finally, generate a new surrogate. This surrogate is for the result relation of ujoin, i.e. for
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all the newly generated tuples in the nested domain .z. Needless to say, the result tuples

are appended to the invisible relation .z. This finishes the actualization of virtual domain
z, as in step (3) Figure 4.43.

For the reduction of ijoin, step 2 in the above procedure will be slightly different. As the
operation zjoin calculates the “minimum common set’” between two operand relations, a “red
1join” operation is equivalent to calculating the minimum common set among a set of operand
relations. Therefore, in the case of “red ijoin”, step 2 in Figure 4.43 is modified and extended

by the following steps, which are also illustrated in Figure 4.44.

f R(S(A.B). T(A. O Intema! Reprasentation:
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“.id* in R2 and insert the newRcl(S. 1) xd A B)
tuples in new relation. (empty) fempty)

Figure 4.44: Actualize a Virtual Domain with Reduction of ijoin by Top-level Approach

1. Project the same attributes as in the nested domain S including the .id domain from the
relation R1. The result relation is assigned to R20. Note that the .id domain in relation

R20 serves to categorize different groups of tuples which will be used in the next step.
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2. According to the value of domain .id, find the group of tuples in relation R20 that has the

minimum number of tuples, and put them in relation R2.

3. According to the value of domain .id, do a natural join between relation R2 and the first
group of tuples in relation R20, and overwrite the result in relation R2. Note that relation

R2 is now the minimum common set of the two operand relations that participated in the

natural join.

4. Do the above natural join with the next group of tuples in relation R20. Continue until

getting to the last group of tuples in relation R20. Note that relation R2 is now the

minimum common set of all groups of tuples in relation R20.

As mentioned above, the result relation (i.e. R2) in the above procedure is the minimum
common set of operand relations involved in the natural join, i.e. the result of “vertical ijoin™.

This is exactly what the “reduction of ijoin” operation is supposed to accomplish.
¥ p pp



Chapter 5

Conclusion: Results and Future Work

This chapter summarizes the result of the jRelix implementation and discusses some future
work that may be done to improve the functionality of the current jRelix system. Section 5.1
focuses on the performance issue - a big concern of the current system. Testing procedures
and results are described. As well, the potential of performance improvement is discussed.
Section 3.2 discusses the possibility of multi-threading control in jRelix, which may hopefully
result in certain performance improvements. Also discussed in this section is the potential of
building a client/server jRelix system. In section 3.3, some aspects of converting the current
Java application into a jRelix applet which can be displayed in a web browser such as Netscape

Navigator are discussed. Some graphical user interface (GUI) samples are also presented.

5.1 Performance Issue

During the development of jRelix, system performance has been taken care of and the perfor-
mance problem has been kept under control. The major method used to measure the system
performance was to time the joins on nested relations. A join on nested relations theoretically
consists of multiple sub-joins on the nested attributes which are also relations (or even nested
relations). During the process of join operations, CPU-bound sorting as well as access to the
secondary storage is intensively involved. Therefore, the speed/time of joins becomes a major

performance issue. In order to trace the performance of domain algebra in jRelix, the actualiza-
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tion time of a nested virtual domain is regarded as the indicator of the join speed since joins on
nested attributes are performed during actualization.

In order to test the speed of joins, two sample nested relations were created and used. As
illustrated in Figure 5.1, relation R is defined on domains S and T, which are nested and are
defined on 2 integer attributes (A, B) and (A, C) respectively. Relation R consists of 1,000
nested tuples (of domains S and T), in each tuple, both domains S and T further contain about
5 tuples on the nested level. On the other hand, as illustrated in Figure 5.2, relation Wis defined
on integer domains A, B and C (hence a flat relation) and contains 10,000 tuples.

domain A. B. C integer:
domain S(A. B):

domain T(A, C).
relation R(S.T) <- { ... 1.000 nested tuples, each has ~5 wuplesin S & T...}

= B | e | w
S o T 22410 6.110 28520
i 2be o oo o - —
T AR e ACIT: 19.170 5910 25.080
tet b [ R Gl 1 (S foin T: 28.802 6.220 35.022
I L be ?\*f? ¥118 (S ijoin T: 31.630 5.870 37.500
tmp<-{x] in R:
{fxﬁ&bfx‘lvfﬁf A=10 or B=20in (S ijoin T): 32.070 6.070 38.140

Figure 5.1: Actualization on Nested Relations

Figure 5.1 gives the timing results of actualizing virtual domains on relation R. For example,
to actualize a virtual domain “z” defined on “let z be S join T, 22,410 milli-seconds were used
to load the relations (i.e. R, S and T) from the hard-disk into memory as well as the actualization
of domain “z’; 6,110 milli-seconds were used to dump the resulting relation “¢mp” onto the disk.
This gives the total time consumed as 28,520 milli-seconds. Note that the dumping times are
almost constant.

Figure 5.2 illustrates the timing results of actualizing virtual domains when top-level relations
are involved in the virtual domain declaration. Figure 5.3 gives a comparison of actualizations

between using the top-level approach and the tuple-by-tuple approach. Note that when using
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Figure 5.2: Actualization on Nested Relation joined with Top-level Relation

CONCLUSION: RESULTS AND FUTURE WORK

domain A. B. C integer:
domain S(A. B);
domain T(A. C);

relation R(S.T) <- { ... 1,000 nested tuples, each has ~S tuples inS & T...}
relation W(A.B.C) <- { ... 10,000 tuples. flat relation ... }
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:f::i!ﬁ]sngokl? w: 18.620 6.130 24.750
:fr:ilﬁlsnglﬂn W yotn S 28.450 5.680 34.130
LcT:ib[cxlSl[nA.n? ajoin:ABIW, [7.730 5910 23.650
:x‘ib[c‘m; E Clin (S 150 W, 25760 6.220 31.580
Eﬁi?gi}si 15 (S o W 25.980 6.310 3229
{::!J&r;ne;AﬂOOdem (S1join W) 27.390 6.510 33.800

domain A. B. Cinteger:
domain S(A. B);
domain T(A. C):

relation R(S.T) <- { ... 1,000 nested tuples. cach has -5 tuples in S & T...}

Approech Top-level (ms) Tuple-by-Tuple (ms)
Action Loeding | Actualizstiony CLean-up| Loading | Actualization CLean-up
fesxbe S foin T; 2420 20,470 - 2530 22300 .
m-<-[x) inR; - < 2
letx be S vjoin T 2339 $3.060 . > 100 $6.850
tm-<-{x] inR; - N - -

Figure 5.3: Comparison of Different Approaches
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the tuple-by-tuple approach, the actualization time is only a little longer than when using the
. top-level approach.

Noticed that during join time measurements, the sort procedure involved in the join opera-
tions consumes a large portion of the actualization time. Sorting is an intensive memory-bound
process; if the basic sort routine that resides in the Relation Algebra could be given more fine-
tuning, the performance of joins is expected to be enhanced significantly. The same is true with
the secondary storage access problem. In the current implementation, intermediate relations are
frequently saved to, and retrieved from the hard-disk. Should a mechanism be developed that
utilizes the capability of memory instead of secondary storage for join operations, the perfor-

mance of jRelix will also be improved remarkably.

5.2 Multi-Threading and Client-Server Model

The current jRelix implementation did not take advantage of the multi-threading construction
provided by the Java programming language. Multi-threading mechanism can be introduced in

future jRelix designs and implementations in order to improve performance and functionality.

[mcrcmm JRelix command J [Uﬂm JRelix command J
maun thread loads source ] G:unlhrudb:hmmc J
relations rclations
thread the
[ maun thread performs the J [ R ol i J

]
TS

result relanon 10 disk.

uscr enters next jRelix J
command

Single-threading scenario

man thread Jumps the ]

Figure 5.4: Multi-threading in jRelix

. For example, when performing relational or domain algebra operations, apart from the main
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operational thread which handles the major task, an additional auxiliary thread can always be
used to dump the results onto the secondary storage after the main thread finishes the major
task. Why use an auxiliary thread specifically? This is because when a task is entered by an end-
user, the main thread performs the operation and returns control (i.e. the system prompt) to the
end-user when the task is finished. In this scenario, the response time includes the time used for
dumping the result relations to the hard-disk. By using an auxiliary thread to dump the result,
the main thread can return control to the end-user without having to wait until the results are
saved to the disk. As displaved in Figure 5.1 or Figure 3.2, the dumping time is usually several
seconds; while the time consumed by the end-user to type the next jRelix command is also that
long (or longer). This gives the “dumping” thread enough time to finish its job silently in the

background without attracting the end-user’s attention. Figure 5.4 illustrates this improvement.

' Parser l e

l lnlerprrler' : .. _ e

: : : Functional Modules |
.

: < — i
Retation :
Processor :

Virtual Domaing -

: Acrualizer B
i | Computation | : .
: Processor T ]

: | lnmprererl :

Client Side

Figure 5.5: A Client/Server Model in jRelix

On the other hand, a client/server jRelix can also be built in future work in order to release a
certain amount of work from the server system to its clients, especially when the jRelix function-
ality becomes more complex or the central databases become much larger. A client/server model
implementation might involve a redesign of the current jRelix architecture, which is beyond the

scope of this thesis. The basic idea in this regard is to move the front-end interpreter etc. to the
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client side. The server would only contain the service logic i.e. the logic providing the operations

of relation algebra, domain algebra and computations, as illustrated in Figure 5.5.

5.3 Migration to Internet: Applet and GUI

The current jRelix system is a Java application program which runs en the command line of the

operating system. It is easy to convert a graphical Java application into an applet which can be

embedded in a web page by following some general steps listed below:

g
s
o, SR

Figure 5.6: Sample GUI Design for jRelix Applet

1. Make an HTML page with an APPLET tag.

2. Derive the starting class of the application (Interpreter class in our case) from the Applet

class provided by the Java Development Kit.

3. Eliminate the main() method in the starting class, and move the major functioning code

into a method called init(). When the browser creates an object of the applet class, it

calls the init() method.
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4. Create a proper layout manager to organize the graphical components of the applet.

As the current jRelix system is not a graphical application, the graphical layout needs to be

designed for the applet version of jRelix. An example of the design is illustrated in Figure 5.6.

i

B

HLATHN R

LR SR A T L2 )

Figure 5.7: New GUI Design for jRelix Applet (Incomplete)

In addition, a completely new version of the user interface dealing with all operations and
functionalities of jRelix can be developed, from which the user can perform jRelix operations by
interacting with certain graphical components of the applet. For instance, during declaration,
the end-user can inform the system what he/she wants to declare (e.g. domain, relation etc.)
by selecting the items from a list box. He/she then types the identifier for the new declaration
and chooses the type of the identifier (e.g. integer, boolean or relation etc.) from another
list box. Expressions for the new declaration can be entered in a text area. When the user
clicks the “Confirm” button, the system checks the validity of the declaration and accepts the
new declaration if everything is OK. Figure 5.7 illustrates the implementation of such an idea
(incomplete ).

Finally, an auxiliary user interface can be designed to support the main working applet

illustrated in Figures 5.6 and 5.7. Figure 5.8 gives an example of a user interface used to
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Figure 5.9: jRelix Help Information
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manage the system environment; the system variables, the text display’s color and font settings
etc. are managed. Figure 5.9 illustrates a user interface that provides end-users with help
information; where definitions of various concepts involved in the jRelix system (e.g. relation

algebra and domain algebra etc.) as well as the usage information of the jRelix applets are

provided in detail.



Appendix A

Backus-Naur Form for jRelix
Commands

This appendix describes jRelix grammar/syntax in the Backus-Naur Form (BNF) format. The
convention of this BNF definition is explained in table A.1.

Form Meaning

<SYMBOL> | SYMBOL is a definition of token and must be substituted
“SYMBOL” | SYMBOL is reserved word or symbol and must be typed as it is
S1]S2 either S1 or S2 can be used

(SYMBOL)? | SYMBOL is optional

(SYMBOL)* | SYMBOL may appear zero or more times

(SYMBOLS) | grouping SYMBOLS as one unit for high precedence

Table A.1: BNF convention.

The grammar is created from the grammar specification (in file Parser.jjt), using the JavaCC
documentation generator called jjdoc. Because JavaCC is a top-down parser, left-recursion is
not allowed in the grammar specification. Therefore the grammar looks different from that of
the former Relix which is intended for the bottom-up parser generator Yacc.

There are five token definitions: <EOF> for end-of-file; <IDENTIFIER> for identifier;
<INTEGER_LITERAL> for integer constants; <FLOAT_LITERAL> for floating constants:
and <STRING_LITERAL> for string constants.

Start := Command ";" | Statement ";" | ";" | <EOF>

Command := “help" (<IDENTIFIER>)?
| "quit" | "input" FilePath | "debug" | "batch" | "expert"
| “time" | "deld" IDList | “delr" IDList | "pr" Expression
| "sd" (<IDENTIFIER>)? | "sr" (<IDENTIFIER>)? | "srd"
| "ssd" | "ssr" | "print" <STRING_LITERAL>
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Statement := SequentialStatement

SequentialStatement := ParallelStatement ("--" ParallelStatement)=*
ParallelStatement := ChoiceStatement ("||" ChoiceStatement)*
ChoiceStatement := PrimaryStatement ("??" PrimaryStatement)=*
PrimaryStatement := Declaration | Assignment | Update

| ComputationCall | Conditional | ForLoop | WhileLoop
| Exit | DeadLock | Exec | StatementBlock

StatementBlock := "{" Statement (";" Statement)* (";")? "}
Conditional := "if" Expression "then" Statement ("else" Statement)?
ForLoop := ("for" Identifier)? ("from" Expression)?
("to" Expression)? ("by" Expression)?
("do" | "loop") Statement
WhileLoop := "while" Expression ("do" | "loop") Statement
Exit := "exit"
DeadLock := "deadlock"
Exec := "exec" Identifier
Declaration := "relation" IDList "(" IDList ")" (Initialization)?

| Identifier ("initial" Expression)? "is" Expression
("target" Expression)?
| "domain" IDList Type
| "let" Identifier ("initial" Expression)? "be" Expression
| ("computation" | "comp") Identifier
"(" (ParameterList)? ")" "is" ComputationBody

Initialization := "<-" ("{" ConstantTupleList "}" | Identifier)
ConstantTupleList := ConstantTuple ("," ComnstantTuple)*
ConstantTuple := "(" Constant ("," Constant)* ")"

Constant := Literal | "{" ConstantTupleList "}"
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Identifier := <IDENTIFIER>
FilePath := <STRING_LITERAL>

Assignment := Identifier
( ("<-" | "<+") Expression
[ "[* IDList ("<-" | "<+") ExpressionList "]" Expression

)

Update := "update" Identifier
( ("add" | "delete") Expression
| "change" (StatementList)? (UsingClause)?
I "[" IDList ("add" | "delete") ExpressionList "]" Expression

)

StatementList := Statement ("," Statement)x

UsingClause := “using"
( JoinOperator Expression

I
"(" ExpressionList ":" JoinOperator (":")?

ExpressionList "]" Expression
)

IDList := Identifier ("," Identifier)s=
ExpressionList := Expression ("," Expression)=*
Expression := Disjunction

Conjunction (("or" | "I|") Conjunction)=*

Disjunction :

Conjunction := Comparison (("and" | "&") Comparison)=*

Comparison := Concatenation (ComparativeOperator Concatenation)?
Concatenation := MinMax ("cat" MinMax)=*

MinMax := Summation (("min" | "max") Summation)=*

Summation := JoinExpression (("+" | "-") JoinExpression)=*

JoinExpression := Projection
( JoinOperator Projection
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| "["* ExpressionList '":" JoinCperator (":")?
ExpressionList "]" Projection
)*
Projection := Projector (("in" | "from") Projection | Selection) | Selection
Projector := (QuantifierOperator)? "[" (ExpressionList)? "]"
Selection := Selector | QSelector | Term
Selector := ("where" | "when") Expression ("in" | "“from") Projection
| "edit" (Projection)? | "zorder" Projection
QSelector := “quant" QuantifierList (("where" | "when") Expression)?
(*in" | "from") Projection
QuantifierOperator := "." | "/" | "#"
QuantifierList := Quantifier ("," Quantifier)s=
Quantifier := "(" Expression ")" Expression
Term := Factor (("=*" | "/" | "mod") Factor)*
FaCtor = (||+n l n_u I "not" l u!u} Factor I Po"er
Power := Primary ("**" Power)x
Primary := Literal | QuantifierOperator | ArrayElement
| PositionalRename | Identifier | Cast | "(" Expression ")"

| Pick | Eval | Function | IfThenElseExpression | VerticalExpression

ArrayElement := Identifier "[" ArrayIndexList "]"
ArrayIndexList := (Expression)? ("," (Expression)?)=
PositionalRename := Identifier " (" (IDList)? ")"
Cast := "(" Type ")" Primary

Pick := "pick" Selection

Eval "eval" Expression

129



APPENDIX A. BACKUS-NAUR FORM FOR JRELIX COMMANDS

Function := FunctionOperator " (" Expression ")"
Literal := "null" | "dc" | "dk" | "true" | "false"
| (v+" | "-")? (<INTEGER_LITERAL> | <FLOAT_LITERAL>)

| <STRING_LITERAL>

IfThenElseExpression := "if" Expression '"then" Expression
"else" Expression

VerticalExpression := "red" AssoCommuOperator "of" Expression

| "equiv" AssoCommuOperator "of" Expression

"by" ExpressionList
| "fun" OrderedOperator "of'" Expression

"order" ExpressionList
| "par" OrderedOperator "of'" Expression

( "order" ExpressionList "by" ExpressionList

| "by" ExpressionList "order" ExpressionList

)

Type := ("boolean" | "bool") | "short"

| ("integer" | "intg") | "long"

| ("float" | "real") | "double"

| ("string" | "Strg") I "text"

| ("statement" | "stmt")

| ("expression" | "expr")

| ("computation" | "comp") "(" IDList ")"

| u(n IDLlSt n)n
AssoCommuOperator := ("or" | "[")

I ("and" ' Il&ll) I Ilminll I llmaxll ' nyn l gt

| ("ijoin" | "matjoin") | "ujoin" | "sjoin"
OrderedOperator := AssoCommuOperator

| "cat" I "w_mn l u/u ' "mod" ' WM l ulpredu I "SUCC“
ComparativeOperator := "substr® | "=" [ "=t | u>¢ | ngw | n>=u
JoinOperator := "nop" | MuJoin

| (("not™ | "!"))? SigmalJoin
MuJoin := ("ijoin" | "matjoin")

| "ujoin" | "sjoin" | "ljoin" | "rjoin"

| ("dljoin" | "djoin") | "drjoin"

Il<=ll
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SigmaJoin := ("icomp" | "natcomp") | "eqjoin"
I (ngejoinu l "Sl.lp" | ndivn) I ultjoinu
I ("lejoin" I "Sl.lb") | ("iejoin" t "sep")

FunctionOperator := "abs"

I "sqrt“ ' "sin" I "a3in" l “"cos" l "3cos" l "tan"

I "at:a.n" | "Sinh" I "COSh" l "ta.nh" l "lOg" I ||1°g10u

[ "I'O'Llnd" I "Ceil" l "flOOI’" ‘ "iSknO“n" I "Chr" I uordn
ParameterList := Parameter ("," Parameter)=*
Parameter := <IDENTIFIER> (":" "seq")?

ComputationBody := ComputationDeclarationAndInitialization
ComputationBlock ("alt" ComputationBlock)*

ComputationBlock := "{" ComputationStatements "}"

ComputationDeclarationAndInitialization :=
( LocalVariableDeclaration
| StateVariableDeclaration
| ComputationInitialization
) %

LocalVariableDeclaration := "local" IDList Type
(VariableInitialization)? " ;"

“state" IDList Type
(VariablelInitialization)? " ;"

StateVariableDeclaration

ComputationInitialization := IDList "<-" Expression ";"
Variablelnitialization := "<-" Expression
ComputationStatements := Statement (";" Statement |

"also" Statement)* (";")?
ComputationCall := Identifier "(" (CallParameterList)? ")"
CallParameterList := CallParameter ("," CallParameter)*

CallParameter := ("in" | "out") <IDENTIFIER>
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