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Abstract 

There are many methods for truncating finite element (FE) meshes for unbounded 

problems. Among them the Perfectly Matched Layer (PML) is the most promising. In 

this thesis, application of the PML to a high-order FE method is investigated, particularly 

with respect to its ability to analyze horn antennas. 

The anisotropic material properties of the PML can be chosen such that a plane-wave 

incident from free space onto the anisotropic material will have no reflection. The 

interface of the absorber is made reflectionless by choosing the appropriate [; and Ji 

values to be complex diagonal tensors. The performance parameters of this absorber are 

explored. 

For the finite element analysis, high-order hierarchal edge elements are used, and how the 

element size and order of the basis function affect the solution accuracy and 

computational cost are observed. It is possible to achieve very good absorption for 

comparatively less computational co st by using relatively thin absorbing layers along 

with careful consideration of the relations of the element size and the order of the basis 

function. The impedance characteristics and far field radiation pattern of a horn antenna 

are computed and compared with previously-published measured results. 
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Abstrait 

Il Y a beaucoup de méthodes pour tronquer les mailles d'éléments finis (EF) pour les 

problèmes qui sont illimités. Entre elles, la Couche Parfaitement Egalée (CPE) est la plus 

prometteuse. Dans cette thèse, l'application du CPE à la méthode EF haut ordre est 

examinée, particulièrement par rapport à sa capacité pour analyser les antennes de corne. 

Les propriétés matérielles anisotropes du CPE peuvent être choisies tel qu'un incident de 

"plane-wave" qui provient de l'espace libre sur le matériel anisotrope n'aura pas de reflet. 

L'interface de l'absorbeur est faite sans reflet en choisissant les valeurs correspondantes 
j..l et e pour être des tenseurs diagonaux complexes. Les paramètres d'exécution de cet 

absorbeur sont explorés. 

Pour l'analyse d'éléments finis, les éléments d'haut ordre hiérarchique de bord sont 

utilisés, et comment la taille et l'ordre de la fonction de base affectent la précision de 

solution et le coût de calculs ont été observés. C'est possible d'atteindre une très bonne 

absorption pour un coût de calculs comparativement moins en utilisant des couches 

absorbant relativement minces avec une considération prudente des relations de la taille 

d'élément et l'ordre de la fonction de base. Les caractéristiques d'impédance et le modèle 

de rayonnement de champs lointain d'une antenne de corne sont calculés et comparés 

avec les résultats déjà mesurés dans des publications précédemment publiées. 

vi 



• 

1 Introduction 

1.1 Problem Description 

Reflector antennas widely use horns as their primary feed. The purpose of the horn in an 

ideal reflector is to transform the angular distribution of energy emerging from the feed 

into a spatial distribution across the aperture which leads to the desired far-field radiation 

pattern. To predict the performance of a reflector antenna, accurate characterization of the 

feed horn is important. 

In the 1950's, reflector antennas became widely used in terrestrial mlcrowave 

communication systems. Reflector antennas for satellite communications and radio 

astronomy require high performance feeds. In 1962, Kay [1] proposed an idea of using 

corrugated horn for radiating a symmetrical radiation pattern. Subsequently, the horn was 

shown to radiate with a very low level of cross polarization, which is essential for dual­

polarized systems. As a consequence, the horn has become the prime choice for high 

performance reflector antennas. 

The shape and characteristics of the radiation pattern of a feed are the most important 

parameters as these directly influence the fields which are directed at a reflector, thus 

determining the radiation characteristics of the whole antenna. The frequency of 

operation of an antenna, its bandwidth, the voltage standing wave ratio, beamwidth and 

gain are among the key parameters which determine the size of the horn. Usually horns 

have diameters in the range of 40 -100 wavelengths and operate at frequencies above 

l GHz. The reflection coefficient and return 10ss are the other significant performance 

parameters in communication and radar systems. Return 10ss is normally set below -30dB 

for these practical applications [2]. 

There are a number of numerical methods that have been used to solve for the fields 

radiating from a horn. Among them, the finite element method (FEM) leads to very 
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sparse system matrices and can be quickly solved by using iterative techniques, and is 

less demanding on computer storage. However, without sorne method to truncate the 

problem space, the FEM technique would require meshing of the Infinite space 

surrounding the, conducting body. The anisotropic-material based Perfectly Matched 

Layer (PML) [3] is very effective for scattering problems, provided that appropriate 

material properties and geometry of the PML are used. 

In this thesis, an investigation of the Anisotropic PML in the context of the FEM is 

presented and compared with the measured results [4],The main interest for the PML in 

the present case is to use it to absorb the scattered field from a Horn Antenna in free 

space. Thus the PML material must almost totally surround the horn, 

1.2 Literature Survey 

1.2.1 Analysis Methods for Horn Antenna 

The classical method of studying the internaI region of a horn, also known as the simple 

modal approach, is to predict the modal characteristics which describe the fields in the 

aperture. The simple modal approach is a computer method for analyzing horn antennas 

in which the actual profile of the horn is replaced by a series of uniform waveguide 

sections. This method works weIl when the fields are stable along the horn and the 

aperture fields are composed of either one or two discrete modes [5]. However, there are 

two restrictions on the method: first, it does not predict the consequences of 

discontinuities along the horn which will lead to the excitation of multiple modes. 

Second, it gives no information on the impedance properties of the horn. Yet, both these 

restrictions can be overcome by using the modal matching technique which aims to 

predict precisely how the fields vary at aU points along the horn. However, tms is done at 

the expense of a complicated analysis and lengthy computational process. 

The modal matching technique requires matching the total modal field at each junction 

between uniform sections so that conservation of power is maintained. The power of 

modal matching technique stems from the fact that the amplitudes of the mode can be 

2 



expressed as the components of a scattering matrix. Each junction along the horn has its 

own scattering matrix. The matrix for aIl junctions are cascaded and an overall scattering 

matrix is derived, which will contain the input reflection coefficients and the output 

transmission coefficients, from which the aperture fields are computed. Unfortunately, 

modal matching techniques can not be applied to an arbitrary shaped horn. If the shape of 

the horn aperture can not be expanded as an orthonormal set of modes [6], a numerical 

point-by-point technique must be used. 

There are a number of numerical methods that may be used to solve for the fields radiated 

from an arbitrary horn. Two of the most popular methods are: the MoM [7], and the FEM 

[8]. Each of these methods have associated advantages and disadvantages. The MoM 

lends itself weIl to the open-region for very simple geometrical problems in that it 

involves the discretization of the surface of the object only. However, it gets very 

expensive as the geometrical complexity of the device grows, and especially if dielectrics 

are involved. The MoM also leads to a full-system matrix, which requires extensive 

• computer resources for storage and solving. On the other hand, the FEM leads to a very 

sparse system matrix that is quickly solved using iterative techniques and is less 

demanding on computer storage. Without sorne method to truncate the problem space, the 

FEM technique would require meshing of the infinite space surrounding the conducting 

body. Several truncation methods have been studied in previous works, sorne of which 

are presented below. 

1.2.2 Truncation Methods 

To predict the radiation pattern of a horn using the FEM, it is necessary to assign an 

artificial finite boundary that will represent the infinite free space. This is a very active 

research area and several interesting approaches have been proposed. Among them the 

Robin Absorbing Boundary Condition (ABC), the Hybrid FEM and the Boundary 

Element Method (BEM), and the PML hold the most promise [9]. 

The Robin ABC can be viewed as the combination of classical 1 st order ABC and the 
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integral equation method. Remarkable results have been shown using this approach. 

However, the iterative pro cess makes it very expensive and there is no guarantee that it 

will converge for aH electromagnetic problems [10]. 

The hybrid FEM and BEM is an exact mesh truncation method [11]. The major 

drawbacks of this approach are: since the truncation boundary is handled through the 

BEM, dense and non-symmetric matrix blocks are created; and for different 

configurations and applications appropriate Green's functions need to be derived and 

implemented. 

The interface between the PML and free space is reflection-less for aH frequencies, 

polarizations, and angles of incidence. Two types ofPML are well-known: the split-Field 

formulation, introduced by Berenger [12], and the anisotropie material based PML by 

Sacks et al. [13]. Berenger's PML requires modification of Maxwell's equations to allow 

for the specification of material properties which result in a reflection-Iess lossy material. 

Although Berenger demonstrates the validity of his approach with numerical 

experiments, the physical meaning of his modifications to Maxwell' s equations is not 

very clear. The anisotropie material based PML provides a better physical understanding 

of the PML because it can be explained within the frame-work of Maxwell's equation. 

Another advantage of the anisotropie PML is that the FEM is well developed for 

Maxwell' s equations [13]. 

Recently, Bardi and Cendes [14] have automated the PMLs for unbounded scattering 

problems and used them together with h-adaption mesh refinement so that the tetrahedral 

elements in the PML regions can be adjusted according to the numerical solution. In this 

way, extra overhead due to PMLs can be kept to a minimum. Very impressive results 

have been obtained, but occasionally non-physical resonances in the PML regions can 

contaminate the solution within the problem domain. 
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1.2.3 High-order Edge Elements 

The tetrahedral e1ement is the simplest tessellation shape capable of modeling arbitrary 

three-dimensional geometries, and is well suited for automatic mesh generation [18]. 

Edge elements are used because node-based e1ements encounter serious problems when 

trying to represent vector electric or magnetic fields. Spurious modes are observed when 

mode1ing cavity problems using node-based elements. Nodal bases also require special 

care for enforcing boundary conditions at material interfaces, conducting surfaces, and 

geometry corners [15]. By using higher order polynomials greater accuracy can be 

achieved with the same number of tetrahedrons. By using hierarchal high-order 

elements, different orders can be used together in the same mesh. So, p-adaption is 

possible. 

1.3 Outline 

A brief description of the FEM is presented in chapter 2. Special attention is givert to the 

Hierarchal High-Order Edge Element since this is the element used in this work. 

In chapter 3, the behavior of waves in an Anisotropic PML is introduced. The details of 

calculating the material properties for the PML box are presented. How the dimensions of 

the PML box and the properties of the PML material affect the performance of the FEM 

solver is also discussed. 

Chapter 4 outlines the implementation of the computer pro gram for automating the PML 

box and its material properties. The different input and output parameters used in the 

pro gram are discussed briefly. A technique for evaluating far field is also presented. 

In chapter 5, the results of the investigative studies are presented. As a preliminary study 

to confirm that the PML is working properly, the short-circuited and PML-Ended parallel 

plate waveguide and rectangular waveguide were considered. The normalized aperture 

impedance for a waveguide with flange in a rectangular PML Box, and the return loss of 

a horn antenna in a PML Box were investigated next. Finally, far field radiation pattern 
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of a horn was observed. 

Chapter 6 presents sorne important conclusions from tbis study, and briefly discusses 

possible future work in the area . 
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2 Hierarchal High-Order Edge Element 

2.1 Finite Elements 

The finite element method (FEM) is a numerical technique for obtaining approximate 

solutions to boundary-value problems in mathematical physics and engineering. FEM has 

been recognized as a general method with wide applications in electromagnetics. Two 

classical methods, the Ritz variational method and the Galerkin's method, form the basis 

of modem FEM [8]. In the classical Ritz and Galerkin methods, the trial function is 

formulated as a combination of a set of basis functions defined over the entire solution 

domain, which is capable of representing, at least approximately, the true solution of the 

problem. For many problems this is very difficult, if not impossible, and this is true 

particularly for two- and three-dimensional problems. To alleviate this problem, the 

entire domain is divided into small subdomains and trial functions are defined over each 

subdomain. Since the subdomains are small, the trial functions, which are a combination 

of the set of basis functions, are usually in a much simpler form. The procedure that 

employs the Ritz method is usually referred to as the Ritz FEM, or better known as the 

variational FEM, whereas the one that employs Galerkin'smethod is usually referred to 

as the Galerkin FEM. 

After discretizing the problem domain, suitable interpolation polynomials, also referred 

to as shape or basis functions, are used to approximate the unknown function within each 

element. Once the basis functions are chosen, it is possible to write a program to analyze 

complicated geometries. In this chapter, node-based and edge-based basis functions for 

two- and three-dimensional finite elements will be discussed. The hierarchal nature of the 

edge-based functions and their applications in p-based refinement techniques will also be 

discussed. At the end of this chapter, a brief description of the variational method is 

presented. 
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2.2 Node-8ased High Order Elements 

In node-based finite elements, the form of the unknown function E e in the element is 

controlled by function values at its nodes. If the function values Et at the nodes are taken 

as nodal variables, then the approximating function for an element e with n nodes has the 

form 

i;:;.n 

Equation 2-1 Ee = IEts;e 
i~l 

The basis function st must be unit y at node i and zero at all remaining nodes within the 

element. 

Basis functions can be derived either by inspection (Serendipity family) or through 

simple products of appropriate polynomials (Lagrange family) [16]. It is easier and more 

systematic to construct higher order bases using Lagrange polynomials, while 

progression to higher orders is difficult in the Serendipity family. However, Lagrange 

basis functions have undesirable interior nodes and more unknowns than Serendipity 

basis functions of the same order. 

2.2.1 Two-Dimensions 

Two-dimensional finite elements have found widespread use in the modeling of 

structures whose third dimension is significantly larger or smaller than the cross section, 

thus ensuring little variation of the unknown parameters in the third direction. Two­

dimensional finite elements have also been used to obtain reliable estimates of three­

dimensional problems since the computational cost for obtaining two-dimensional 

solutions is lower than that for three dimensions. Another class of problems that can be 

analyzed using the two-dimensional finite element method is that ofaxisymmetric 

problems [8]. Unlike the two-dimensional geometries, which do not exist in reality, the 

axially symmetric geometries, also known as bodies of revolution, not only exist but are 

also very common. In 2-D, the subdomains could be triangles, rectangles, or 2-D 

curvilinear shaped elements, as shown in Figure 2-1. Triangular elements are the most 
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popular because they can model any arbitrary geometry. The basis functions oftriangular 

elements using Lagrange interpolation polynomials will be determined here. 

D 
(a) (b) (c) 

Figure 2-1: 2-D Elements. (a) Triangle (h) Rectangle (c) Curvilinear Element 

Consider a point p within a triangular element shown in Figure 2-2. The area coordinates 

[8] L; are given by 

Equation 2-2 

, , , , , , , , , , , , , , , , , 

, , , , 

, , , , 

i = 1,2,3 

, , 

Figure 2-2: Area coordinates for a triangulaI' element [15] 

where fl is the area of the whole triangle 123, fl1 is the area of triangle P23, fl 2 is the area 

of triangle Pl3, and fl3 is the area of triangle P12. The coordinate L; is zero on the edge 

opposite to vertex i and unit y at vertex i. With the area coordinates defined above, we 

can easily construct the basis functions for a general triangular element. The expression 

for the basis function çje associated with node i, labeled with (1, J, K), can be writien as 

Equation 2-3 ;-e = pp (Le \np (Le \np (Le) 
,:>, 1 1 FJ 2FK 3 

l+J+K=p 
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where p is the order of the basis function and Pf(L~) denotes the polynomial defined as 

Equation 2-4 1>0 

Pt =1 1=0 

and PJ (L~) and PI (L;) are defined similarly. 

In order to guarantee solution isotropy the polynomial expression must be a complete 

polynomial; that is, it must contain aU together m = .! (p + l)cp + 2) terms [8]. 
2 

Consequently, there are m unknown coefficients and m nodes must be placed within the 

element. For the solution to be continuous, it is required to place one node at each of the 

three vertices of the triangle, p - 1 nodes along each of its three edges, and the rest in the 

interior of the element. 

For an example, consider the linear element shown in Figure 2:-3: 

3 (0,0,1) 

1 (1,0,0) 
2 (0,1,0) 
(I,J,K) 

Figure 2-3: Numbering scheme for linear (p =1) element 

10 



Equation 2-5 

p =1 

~I(L~)= L~ 
/",e __ Pll (LeI \no' (Le

2
' \nol (Le

3 
) _- Je . 2 ':> F T, -'-1 usmg Equation 2-4 and Equation -3 

ç; = P~ (L~ )PlI (L~ )P~ (L~ ) = L~ 
/"e _ pl (Le \nI (Le \nI (Le) _ Le 
':> 3 - l 'Fo 2 Tl 3 - 3 

From this example, it can be seen that using this approach the construction of the 

interpolation functions is indeed very convenient. 

2.2.2 Three-dimensions 

While sorne physical problems can be represented or approximated by a one- or two­

dimensional mathematical model, aH physical problems are three-dimensional by nature. 

In 3-D, the subdomains could be tetrahedral, hexahedral or 3D curvilinear shaped 

elements, as shown in Figure 2-4. The tetrahedral element is the simple st tessellation 

shape capable of modeling arbitrary three-dimensional geometries, and is also well suited 

for automatic mesh generation. The basis functions of tetrahedral elements by using 

Lagrange interpolation polynomials will be determined here. 

(a) (b) (c) 

Figure 2-4: 3-D Elements. (a) Tetrahedral, (b) Hexahedral, and (c) Curvilinear Element 

Consider a point p within a tetrahedral element shown in Figure 2-5. The volume 

coordinates [8] L; is given by 

Equation 2-6 i = 1,2,3,4 

11 
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l 

' . 
........ :! ... 

'/P' 
.- .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. 

, 

2 

Figure 2-5: Point P within a tetrahcdral clement 

where Ais the volume of the whole tetrahedron 1234, AI is the volume of tetrahedron 

P234, .1. 2 is the volume of tetrahedron P134, .1. 3 is the volume of tetrahedron P124, and 

.1. 4 is the volume of tetrahedron P 123 . The coordinate L; is zero on the edge opposite to 

vertex i and unity at vertex i. As for the triangular elements, linear (p = 1) basis 

functions are equal to the volume coordinates 

Equation 2-7 i = 1,2,3,4 

2.2.3 High-order Node-Based elements 

Linear elements, also referred to as first order elements (p = 1), have certain advantages 

and disadvantages. The main advantages are the simplicity of the formulation and the 

narrow bandwidth of the system equations [8]. The main disadvantage of the linear 

elements is the poor accuracy and slow convergence of the solution with respect to the 

number of elements. In principle, one can al ways increase the number of elements to 

achieve the desired accuracy. However, this is at the price of increasing computing time 

and memory demand. 

An alternative approach to achieve higher accuracy without increasing the number of 

elements is to employ higher arder basis functions or higher-order elements. The main 

disadvantages in using higher-order elements are the complexity of the formulation, and 

an increase in the bandwidth of the system equations. However, this approach has proven 
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to be very cost effective. 

For example, if a six node quadratic (p = 2 )triangular element is constructed as in Figure 

2-6 and Equation 2-4 is used 

6 
4 

2 5 3 

Figure 2-6: Six node quadratic triangular element 

çt = LI (2LI -1) 
ç; = L 2 (2L2 -1) 

ç; = L3(2L3 -1) 
ç: = 4LIL2 

ç; = 4L2L 3 

ç; = 4L3LI 

2.3 Edge .. based elements 

The basis functions for the traditional node-based finite elements are scalar and they are 

associated with the nodes of the finite element meshes, which was explained in section 

2.2 as node based basis functions. When they are applied to the vector problems, the 

natural approach is to divide the vector field into components and simply treat each 

component as a scalar. However, serious problems are encountered when node-based 

elements are employed to represent vector electric and magnetic fields. First, spurious 

modes are observed when modeling cavity problems using node-based elements [15]. 

Nodal basis functions impose continuity in an three spatial components whereas edge 

bases guarantee continuity only along the tangential component. Webb in [17] provides 

an explanation as to why spurious modes do not appear with edge elements. Second, 
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nodal bases require special care for enforcing boundary conditions at material interfaces, 

and corners. Edge-based finite elements, whose degrees of freedom are associated with 

the edges and the faces of the finite element mesh, have been shown to be free of the 

above shortcomings. 

2.3.1 Two-Dimensions 

Since the edges of an arbitrary triangular element are not parallel to the x - or y -axis, it 

is not easy to guess the form of the vector basis function by inspection. Therefore, the 

vector basis for a triangular element will be expressed in terms of its area coordinates, 

defined in Equation 2-2. Now by considering Figure 2-2 and using the area coordinates 

defined in Equation 2-2, we can define edge bases for triangular a element as 

Equation 2-8 i,} = 1,2,3 

where ç; denotes the basis function and 1 ij is the length for the edge formed by nodes 

i and} of the triangle. ç; has a constant tangential component along the edge formed by 

nodes i and} of the triangle and has no tangential component along other edges. 

Moreover, L~ vanishes along the edge opposite to node i. Thus tangential continuity is 

preserved across inter-element boundaries, but normal continuity is not. The vector field 

inside the triangular element can be writlen as 

_ 3 3 

Equation 2-9 Ee = l E;Ç; = IE;Ç; 
i,j=U#j k=! 

where Ee is the field inside the triangular element, E; denotes the tangential field along 

the edge formed by nodes i and j of the e1htriangle. 

High order vector basis functions involve adding nodes at each edge and including the 

contribution of face elements to the approximating function. 
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2.3.2 Three-dimensions 

The derivation of basis functions for tetrahedral elements follow the same pattern as that 

for triangular vector basis functions. Considering the tetrahedron shown in Figure 2-5, we 

have 

Equation 2-10 i, j = 1,2,3,4 

where again ç; denotes the basis function, li) is the length for the edge formed by nodes 

i and j of the tetrahedron, and L~ is the volume coordinate. The vector field inside a 

tetrahedron element can be written as 

4 6 

Equation 2-11 Ee = L E;Ç; = LE;Ç; 
i,j~l,i",j k~l 

where Ee is the field inside the tetrahedral element, E; denotes the average tangential 

field along the edge formed by nodes i and j of the eth tetrahedron . 

2.4 Hierarchal edge elements 

A drawback of the interpolatory basis functions, that have been discussed up to now, is 

that when the order of the polynomial is increased, completely new basis functions have 

to be generated. It is possible to avoid this by considering a series of basis functions that 

do not depend on the order of the polynomial. This indeed has been achieved with 

hierarchal basis functions. When the basis functions of an elenient are a subset of the 

basis functions of any element of higher order, the elements are called hierarchal [18]. 

The advantage of hierarchal elements is that elements of different orders can be used in 

the same mesh. 

The interpolatory and hierarchic concepts for I-dimensional scalar elements are shown 

pictorially in Figure 2-7. In the interpolatory approximation method, as shown in part (a) 

of Figure 2-7, each time the order of the basis functions is increased or decreased, an the 

basis functions (ç:, ç ~ , ç n need to be regenerated - the previous functions (ç1' ç 2) can 
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not be reused. But when the hierarchical approximation method is used, as shown in part 

(b) of Figure 2-7, the previously existing basis functions , in this case ç: = Ç1 and 

ç; = ç 2' do not need to be regenerated. 

Order 1 

Order 1 

Order 2 

(a) Interpolatory approximation 

ç; 

Order 2 

(b) Hierarchie approximation 

Figure 2-7: Interpolatory vs Hierarchie basis functions 

Hierarchal edge elements, like interpolatory edge elements, impose tangential continuity 

at the field interfaces, but not normal continuity. So, abrupt material interfaces for solving 

the curl-curl equation for Eor H can be handled easily. It also eliminates spurious modes 

[18]. The finite element code that was used to generate results for this the sis uses 

hierarchal edge elements as presented by Webb [19]. 
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2.5 Variational method 

In FEM, the original boundary-value problem with an infinite number of degrees of 

freedom is converted into a problem with a finite number of degrees of freedom, or in 

other words, the solution of the whole system is approximated by a finite number of 

unknown coefficients. Then a set of algebric equations or a system of equations is 

obtained by applying the Ritz (variational) or Galerkin procedures, and finally, the 

solution of the boundary-value problem is achieved by solving the system of equations 

[8]. 

2.5.1 Ritz vs Galerkin method 

The Ritz method, also known as the Rayleigh-Ritz method, is a variational method in 

which the boundary-value problem is formulated in terms of a variational expression 

referred to as a functional. The minimum of the functional corresponds to the governing 

differential equation under the given boundary conditions. The approximate solution is 

• then obtained by finding the stationary point of the functional with respect to its 

variables. 

Galerkin's method belongs to the family of weighted residual methods, which seek the 

solution by weighting the residual of the differential equation. In this method, the 

weighting function is selected to be the same as those used for the expansion of the 

approximate solution. This usually leads to a more accurate solution [8] and is, therefore, 

a popular approach in developing the finite element equations. 

The variational method is one of the two methods often employed to formulate finite 

element solutions. There are several advantages associated with the variational method. 

The primary advantage is its soUd foundation in physics and mathematics. Another 

advantage is that through the variational procedure one can clearly demonstrate the 

differences between the essential and natural conditions, which are difficult to 

comprehend for the beginner. Other advantages include convenience of description and 

elegance of the formulation. Because of these, the variational method was usually 
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preferred over Galerkin's method in the past [8]. 

However, the variational method has several disadvantages that makes it an unpopular 

choice now, particularly in electromagnetics. Unlike Galerkin's method, which starts 

directly with differential equations, the variational method starts from a variational 

formulation. Therefore, the applicability of the method depends directly on the 

availability of such a variational formulation. If a general procedure to derive the 

variational formulation for any given problem can be established, there would be no 

major obstacle, except for personal preference, to prevent from employing the variational 

method for the finite element formulation. 

2.5.2 Formulation of system equation via Galerkin Method 

A formulation employing the electric field E is presented for the solution of a general 3-

D vector problem. A weak formulation [15] is derived through a Galerkin weighted 

residual procedure, and edge elements that impose tangential, but not necessarily normal 

continuity of the approximated field, are used for the presentation of the electric intensity 

and the discretization of the problem. 

2.5.2.1 Derivation of Helmholtz equation 

James C. Maxwell (1831-1879) published his electromagnetic field equations in 1864. He 

brought together previous experimental works and concepts of Gauss, Ampere and 

Faraday and his own knowledge of mathematics to present his analysis of 

electromagnetic fields [20]. Maxwell's equations form the basic for the theory of 

electromagnetic fields and waves. 

For time-varying fields, the differential forms of the two curl equations are 
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Equation 2-12 'VxE=-jmB 

Equation 2-13 'V x H = J + j {j)D 

where E and H are the electric and magnetic field intensities, D and B are the electric 

and magnetic flux densities, J is the CUITent density and w is the angular frequency of the 

field. Electric and magnetic flux densities D and B , and CUITent density J can be defined 

as 

Equation 2-14 B=pH 

Equation 2-15 

Equation 2-16 J=(}E 

where p is the permeability matrix (which could be complex), &' is the permittivity 

matrix, and () is the conductivity matrix of the medium. By substituting Equation 2-14 

into Equation 2-12, the curl of the electric field E can be re-written as 

Equation 2-17 'V xE = - jw pH 

Similarly, the curl of the magnetic field H can be re-written using Equation 2-15 and 

Equation 2-16 as 

Equation 2-18 

where 

Equation 2-19 

'VxH=jw&E 

- () 
&=& +­

jw 

Taking the curl of Equation 2-17 and substituting in the expression for the curl of H from 

Equation 2-18, a second order differential equation known as the vector Helmholtz, or 

curl-curl, equation is obtained: 

Equation 2-20 
-1 1 = =-

'Vx-.-='VxE- jweE=O 
} w p 
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-
The permittivity & and the permeability Ji in Equation 2-20 can be written as 

Equation 2-21 

Equation 2-22 Ji = Jio Jir 

where &0 and Jio are the permittivity and permeability of the free space, and & r and Jir 

are the relative permittivity and permeability of the materiaL Then Equation 2-20 can be 

re-written as: 

Equation 2-23 
1 - =-

\l x ::::::- \l x E - ko & l' E = 0 

Jir 

where the free space wave number ko = (jJ ~ &0 Jio . 

2.5.2.2 Boundary conditions 

A unique solution can be obtained only after the specification of boundary conditions 

which constrain the values of the field at the boundaries of the domain. These boundary 

conditions, also referred to as boundary constraints, come in various forms. Three types 

of boundary conditions were encountered in this thesis: 

The Neumann boundary condition constrains the tangential part of the curl of the electric 

field on the surface, and can be stated as 

1\ 

Equation 2-24 nx\lxE=O onS 

1\ 

where n denotes the outgoing unit normal vector of the domain boundary, as illustrated in 

Figure 2-8. 

1\ 

S (enclosing surface) 
__ -v 
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Figure 2-8: Surface encloser [15] 

Equation 2-24 can be re-written as 

A _ 

Equation 2-25 nxH=O 

which physically represents a magnetic wall [21], also called perfect magnetic conductor 

(PMC). 

The Dirichlet boundary condition constraints the tangential component of the field on the 

surface, and can be stated as 

A _ 

Equation 2-26 nxE = Eo onS 

If Eo = 0, the surface physically represents an electric wall, which can be denoted as a 

short circuit or a perfect electric conductor (PEC). If Eo -:j:. 0, the surface excites the 

problem. However, in this thesis Eo = 0 is assumed . 

2.5.2.3 Port Boundary Condition 

To model microwave circuits, it is required that the sources at the input ports excite the 

circuit. The source modeling issue is critical since it provides the input boundary 

condition for the problem. A small error in the source modeling could lead to large errors 

in the 3-D simulation of the circuit parameters [15]. 

Consider the qth -port junction in Figure 2-9 

et 
Ar. 
i 
1 
i 

<III- Direction of propagation 
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Figure 2-9: A general qth port of a waveguide junction [21] 

In general, a port can support multiple modes of propagation for a particular frequency. 

For each mode k, incident and reflected waves move towards and away, respectively, 

from the port. However, a practical device is usually designed to allow only dominant 

mode propagation and will be treated as such in the formulations in this thesis. 

For the eh mode, let the transverse electric and magnetic fields for the incident wave be 

el and hi respectively, and assume only one mode to be present. If Et and H t are the 

tangential electric and magnetic fields at port q then , 

Equation 2-27 

Equation 2-28 

where f+ and f- are multipliers that do not vary with position over the waveguide cross­

section. If vkq and Ii are terminal voltage and CUITent, respectively, of port q for the eh
_ 

mode, then the tangential electric and magnetic fields Et and H t at port q can be WYitten 

as 

Equation 2-29 

Equation 2-30 

where k1 and k2 are unknowns. Combining Equation 2-27 with Equation 2-29, and 

Equation 2-28 with Equation 2-30 gives give 

Equation 2-31 

Equation 2-32 

From the definition of power in circuit theory and electromagnetic theory, 
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Equation 2-33 

Equation 2-34 1 ri7 -* ( ") Preal = 2Re JEt xHt . - n ds 

where Preal is the real power flow into the port q. Equating Equation 2-33 and Equation 

2-34 and using Equation 2-27, Equation 2-28, Equation 2-31, and Equation 2-32 gives 

Equation 2-35 

Normalization of et and hl of Equation 2-35 corresponds to unit power flow into the 

device. So, 

Equation 2-36 

Now let us assume that voltage and CUITent are normalized, l.e., the characteristic 

impedance, Zo' is unit y: 

Equation 2-37 

We can use this to obtain one more condition for k1 and k2 • For an incident wave at port 

p , the tangential electric field Et and the tangential magnetic field H t of Equation 2-27 

and Equation 2-28, respectively, can be re-written using Equation 2-31 and Equation 2-32 

as 

Equation 2-38 

Equation 2-39 

E f + q k TTq+ q t= ek = lY k ek 

where vkq+ and It are the voltage and current of the wave traveling towards the port q. 

Bence: 

23 



• 

Equation 2-40 

So, 

Equation 2-41 
v q+ k 

Z =_k_= 2 
o Iq+ k 

k 1 

Similarly, for the wave traveling out ofthe port q 

Equation 2-42 
vq- k Z = __ k_= 2 

o Iq- k 
k 1 

From Equation 2-36, Equation 2-37, Equation 2-41, and Equation 2-42 

Equation 2-43 

Thus the tangential electric field Et and the tangential magnetic field H t for an incident 

wave at port q for mode k from Equation 2-38 and Equation 2-39, can be re-written as , 

Equation 2-44 

Equation 2-45 

Similarly, for the re:flected wave, 

Equation 2-46 

Equation 2-47 

When both the incident and reflected waves are present, total tangential fields are the 

surnrnation of the tangential field components of the incident and re:flected waves. Thus 

the total tangential electric field Etat port q for mode k is the summation of Equation 

2-44 and Equation 2-46. 

Equation 2-48 

where the normalized voltage Vk
q at port q for mode k is defined by 

Equation 2-49 
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Similarly, the total tangential magnetic field HI at port q for mode k can be written 

from Equation 2-45 and Equation 2-47 as 

Equation 2-50 

where the normalized current It at port q for mode k are defined by 

Equation 2-51 It =It +Ir 

The incident and reflected current Ir and Ir at port q for mode k of Equation 2-41 and 

Equation 2-42 can be written uSlng Equation 2-43 in terms of incident and reflected 

voltage Vr and Vk
q

- as 

Equation 2-52 I q+ - V q+ 
k - k 

Equation 2-53 I q- - -V q-
k - k 

The total current If at port q for mode k is the summation of incident and reflected 

currents of Equation 2-52 and Equation 2-53: 

Equation 2-54 

Equation 2-54 can be re-written in terms oftotal and incident voltages Vk
q and Vr as: 

Equation 2-55 

Suppose, a unit incident wave is imposed on port p for the dominant mode k = 0, with 

aH the other ports being matched. The incident voltages then become: 

Equation 2-56 

where 8 pq is the Kroenecker delta function. For p = q, V/+ is a unit excitation for the 

dominant mode and is unit y for mode 0 and zero for aU other modes. Now, Equation 2-55 

can be re-written as 

Equation 2-57 

-p -p -p -p 
Let E 0 , and Ho be the total electric and magnetic field and E Ot , and H 01 be the total 
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tangential electric and magnetic field in the device due to dominant mode excitation at 

port p. Using Equation 2-50 on port q total tangential component of electric field E~t 

becomes 

Equation 2-58 

Where the summation allows for an infinite number of modes on port q. Substituting 

Equation 2-47 for the current into Equation 2-58, the total tangential magnetic field 

becomes 

Equation 2-59 H~t = i(20pqOol - v;q ~i 
1=0 

If port q is not the excited port (p :1; q), the incident voltage is at port p, thus the first 

term of Equation 2-59 becomes zero for all modes. 

When port p is excited with the dominant mode, the total tangential electric field Ef:t on 

port q is the sum of aH modal tangential electric fields. Then using Equation 2-48 the 

total tangential electric field becomes 

Equation 2-60 

By taking the cross product with hk and integrating over port q, Equation 2-60 becomes 

Equation 2-61 JE!t xh%-ds = iv;q Je? xh%-ds 
q 1=0 q 

where e? and hi are normalized transverse electric and magnetic fields, respectively. The 

integral part on the right side of Equation 2-61 is evaluated to be the unit power flow into 

the port q. 

Equation 2-62 Je? x hi .ds = 0lk 

q 

Then Equation 2-61 can be re-written as 
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Equation 2-63 fE~ x h%-ds = vkq 

q 

For dominant mode excitation at port p with modal voltages extracted, the k th mode 

voltage at port q from electric field Et can be written as 

Equation 2-64 r%(E~)= fE: xh%-ds 
q 

where r% (E~ ) is a linear operator for extracting the eh mode voltage. The total tangential 

magnetic field H~t at port q, due to the dominant mode excitation at port p, of 

Equation 2-59 can be re-written using Equation 2-63 and Equation 2-64 as 

Equation 2-65 

Equation 2-65 represents two things: (1) The first term represents the dominant-mode 

wave incident on port p; (2) the second term (summation) represents an absorbing 

boundary condition (ABC) for an the reflected, or outward going waves of the device. 

A similar formulation for the reflected waves can be derived; however, assuming only 

incident waves has proven to be an adequately accurate approximation [21]. 

2.5.2.4 Galerkin weighted residual formulation 

Suppose it is required to compute the electric field intensity E~ of an N - port 

microwave device where port pis excited with its dominant mode (k = 0) and aH other 

ports are matched. The equation that govems the behavior of E~ in a microwave device 

is the Helmholtz equation given by Equation 2-23. As is the case with any differential 

equation, a unique solution can be obtained only àfter the specification of boundary 

conditions. These boundary conditions are expressed in as PMC (Equation 2-25), PEC 

(Equation 2-26), and port boundary condition (Equation 2-65), which are pictorially 

shown in Figure 2-10. 
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PMe, 
.4\. : 

PEe 

.................................. 

PEe 

Figure 2-10: Boundary conditions [21J 

Port boundary 

condition 

To find the electric field Eg of the stated problem, with the above boundary conditions, 

terms are added to the usual weighted-residual formulation of the Helmholtz or curl-curl 

equation [22]. The weighted-residual can be defined as 

Equation 2-66 

where B is the bilinear form given by [21] 

Equation 2-67 

(-p -) 1 ~ -p 1 - -p = -j N 00 {-p \ (-) 
B\Eo,w = . _ VxEo.-Vxw-k;Eo.&rW dO+ IIrl\Eo yl w 

Jko17o n Jil' q~l I~O 

where 17 0 is the intrinsic impedance of the free space. The residual R is given by the 

linear function 

Equation 2-68 

2.5.2.5 Discretization with edge elements 

The unknown in tetrahedral edge elements is the circulation of the vector field along the 

edges of the tetrahedron. The basis functions S ij for a typical edge e connecting vertices 

i and j of a tetrahedron edge element are given by Equation 2-10. The electric field is 
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approximated with edge elements which is similar to Equation 2-11, and can be given as 

Equation 2-69 

where S, are the basis functions of edge elements, n is the number of edges of the finite 

element mesh, and the terms Egi are the circulations of the electric field along the edges 

of the mesh. 

If the vector basis functions (of edge elements are used as weighting functions, 

~ = Si , then Equation 2-66 can be discretized as 

Equation 2-70 
[ 

. 1 {[S]+[T]}+[u]l~g]= [b] 
}ko'lo J 

where [s 1 [Tl [U], and [b] are the matrices given as 

Equation 2-71 Su = f~ (VXWi)(VXWj~Q 
Q Jlr 

Equation 2-72 Tu =-kg;r fWi.WjdQ 
Q 

Equation 2-73 

Equation 2-74 

The solution to Equation 2-70 can be obtained with iterative preconditioned conjugate 

gradient technique. Conjugate gradient techniques are often regarded as among the most 

powerful techniques for solving many types of linear algebra problems that strike a 

balance between the simplicity of the steepest descent method and the speed of the 

Newton-Raphson method [23]. These methods are typically simple to implement, 

especially for the quadratic case. In addition, storage requirements are far less than the 

quasi-Newton methods. In practice, these methods exhibit very fast convergence due to 

the orthogonalization of the descent direction. Possibilities for preconditioning exist, 

further improving convergence. 
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3 The Anisotropie Perfeetly Matehed Layer 

3.1 Introduction 

One of the most important aspects of finite-difference and finÏte element implementations 

is the truncation of the computational volume. An ideal truncation scheme must ensure 

that outgoing waves are not reflected backward at the mesh truncation surface. Among 

the truncation schemes used with the FEM, presently the most powerful formulation is 

the Perfectly Matched Layer (PML) approach. In 1994, Berenger [12] introduced the 

concept of PMLs in the FDTD computation. Since then, there has been extensive 

research to address various aspects of this promising approach. Among them, the 

anisotropic PML approach [3] is the most suitable for FEM implementation due to the 

fact that it accomplishes the PML property using an anisotropic material tensor, not by 

splitting the Maxwell equations [3]. Implementation of the anisotropic PML approach is 

straight forward, especially in the frequency domain. In fact, implementing the 

anisotropic PML approach in an existing FEM code requires no modification at aH, 

provided that the code permits diagonally anisotropic material. A brief derivation of the 

anisotropic PML, the behaviour of waves in the PML medium, and the performance 

parameters of the PML are presented below by considering the simple plane wave 

incidence problem shown in Figure 3-1. 

3.2 Waves in Anisotropie media 

As shown in Figure 3 -1, a uniform plane wave in air (,uo' &0) of frequency f is incident 

obliquely at an angle of incidence (Ji on a plane interface at z = 0 with a medium having 

-
permeability and permittivity ,u and &, respectively. 
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Region 1 Region 2 

x 
Ji,S 

Refleeted 
Transmitted 

wave 
wave 

Br 
Bt 

--------------------------------~ 
z 

z=o 

Figure 3-1: A plane wave incident upon a half-space anisotropie media [13] 

The time-harmonie form of Maxwell' s equations in Region 2 can be written as 

---
Equation 3-1 'V.sE = 0 

-- -
Equation 3-2 'V.JiH = 0 

--
Equation 3-3 VxE=-jOJJiH 

--
Equation 3-4 VxH = jOJsE 

Parameters Ji and s are assumed to be eomplex diagonal tensors in the same eoordinate 

system, of the form 
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(JX 

P +.......M... 0 0 x • 
}W 

Equation 3-5 
y 

(J 

P = Po 0 P +.......M... 0 
y jw 

(JZ 

0 0 P +.......M... z . 
JW 

x 
(JE 

0 0 & +-x • 
JW 

y 

0 
(JE 

0 & = &0 & +-
y jw 

Equation 3-6 

z 

0 0 
(JE 

&z +-
jw 

where (J M and (J E are the magnetic and electric conductivities, respectively. When an 

electromagnetic wave traveling in one medium impinges on another medium with a 

different intrinsic impedance, it experiences a reflection [24]. The material properties of 

medium 2 (PML) can be chosen such that the interface between medium 2 and medium 1 

(free space) is perfectly reflectionless. For a reflectionless interface, the intrinsic 

impedance of medium 1 has to be same as the intrinsic impedance of medium 2. To 

match the intrinsic impedances the following condition is required 

Equation 3-7 

Thus the material properties for medium 2 can be written as 

Equation 3-8 

Equation 3-9 

where a,b,andcare, in general, complex. Consequently, in the PML medium, the time­

harmonie form of Maxwell's equations of Equation 3-1, Equation 3-2, Equation 3-3, and 
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Equation 3-4 reduce to 

Equation 3-10 V.AE=O 

Equation 3-11 V.AH=O 

Equation 3-12 

Equation 3-13 v X H = j ())& 0 AE 

The phasor electric field of a uniform plane wave along an arbitrary direction has the 

general form of [24] 

Equation 3-14 E( ) - E - jkxX- jkyy-jkzz x,y,z - oe 

where (0 is the angular frequency of the wave. Wave number vector k is defined as 

A A A 

Equation 3-15 k = ax kx + ay ky + az kz 

phase 

y 
Z 

Figure 3-2: Radius vector rand wave normal to a phase front of a uniform plane wave [24] 

-
and a radius vector r from the origin as shown in Figure 3-2 is defined as 

A A A 

Equation 3-16 
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Then Equation 3-14 can be completely written as 

Equation 3-17 

where E 0 is a constant vector. Similarly the expression for the magnetic field can be 

written as 

Equation 3-18 

where Ho is a constant vector. By substituting Equation 3-17 into Equation 3-10 

then 

So, Equation 3-10 becomes 

Equation 3-19 k.AEo =0 

Similarly, by substituting 

Equation 3'-18 into Equation 3-11 

Equation 3-20 k.AHo =0 

For the vector curl equation of the electric field, Equation 3-17 and Equation 3-18 are 

substituted into Equation 3 -12: 
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which can be simplified to 

Equation 3-21 kx Eo = O)f..JoAHo 

Similarly, Equation 3-13 can be re-written as 

Equation 3-22 k x Ho = -O)&oAEo 

-
The dispersion relation which determines the form of the propagation vector k can be 

determined easily using the following variable transforms [13] 

Equation 3-23 

Equation 3-24 

Equation 3-25 

H~ =(Af Ho 

r =_l_(Afk 
-Jabc 

Applying the transformations of Equation 3-23 and Equation 3-25 to Equation 3-19 

results in: 

k.AEo == 0 

o 
1 

Jb Jb 
o 

o o 

=> -JabC(k~ ~x+k; ~y+k~ ~z)( E6x ~x+E6y ~y+E6z ~z) = 0 

So, in terms of the transformation variables of Equation 3-23 and Equation 3-25, 

Equation 3-19 can be written as 

Equation 3-26 
-1-1 
k .Eo = 0 
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Similarly, using the transformations of Equation 3-23 and Equation 3-24, Equation 3-20 

can be written as 

Equation 3-27 
-1-1 
k .Ho = 0 

For the curl equation, by applying the transformations of Equation 3-23, Equation 3-24, 

and Equation 3-25 to Equation 3-21 results in: 

k x E a = OJf.-lo AH 0 

1 
0 0 

1 
0 0 -ra -ra 

=> -Jabc 
1 (-1 1\ -1 1\ _j 1\ ) 1 

0 
lb 

0 kxax+kyay+kzaz x 0 
lb 

0 

0 0 
l 

0 0 
l 

Fc Fc 

So, in terms of transformation variables of Equation 3-23, Equation 3-24, and Equation 

3-25, Equation 3-21 can be written as 

Equation 3-28 
-j -1 -j 

k x Eo = OJf.-lo Ho 

Similarly, in terms of the transformation variables of Equation 3-23, Equation 3-24 and 

Equation 3-25, Equation 3-22 can be written as 

Equation 3-29 
-1 -j -j 

k x Ho = -0)80 E 0 

-j 

From Equation 3-28 and Equation 3-29 it is seen thatk is perpendicular to 

-j -j 

both E 0 and Ho. So, from Equation 3-28 and Equation 3-29 
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Equation 3-30 
1
-

/ 11- /1 A 1_/1 A k E 0 aH = 0)110 Hoa li 

Equation 3-31 
I
-/II-/IA I-/IA - k Hoa E = -0)&0 E 0 a E 

Multiplying Equation 3-30 and Equation 3-31 results in 

Equation 3-32 
1 22 

1
_1 2 

k = 0) &0110 = ko 

-1 
Taking the dot product of k and its transpose, and substituting Equation 3-32 into the 

resulting expression gives the dispersion relation as 

which reduces to: 

Equation 3-33 
k ? k2 k 2 

x y z k2 -+-+-= 0 
be ca ab 

Equation 3-33 is an equation of an ellipsoid whose solution can be written as 

Equation 3-34 

Equation 3-35 

Equation 3-36 

As in Figure 3-1, the plane wave is restricted to the xz -plane (çb = 0), so Equation 3-34, 

Equation 3-35, and Equation 3-36 reduce to 
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Equation 3-37 

Equation 3-38 k = 0 y 

Equation 3-39 

3.3 Reflection Coefficient 

For a TEy-polarized (Eonly has a y-component) wave, the incident electric field Ei~) 

can be obtained from Equation 3-17 as 

Equation 3-40 
- (_) 1\ --- jk.r Et r =Eayaye 

where k for the incident wave of Figure 3-1 can be defined as 

- 1\ 1\ 

Equation 3-41 k = ka sinej ax+ ka cosej az 

-
and the position vector ris always defined by Equation 3-16. The electric field 

vector Ej~) of Equation 3-40 can be re-written by substitutingk and; by Equation 3-41 

and Equation 3-16, respectively, as 

Equation 3-42 

The reflected electric field E r ~)for TEy -polarized wave of Figure 3-1 is given from 

Equation 3-17 as [24] 

Equation 3-43 

where RTE is the reflection coefficient for the TE -mode, which is given by [15]: 
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Equation 3-44 

COS Bi - (lJ COS BI 
RTE = ___ -:--_a-:-__ 

coslI, +( l}OSIl, 
and the wave number vector k r for the reflected wave of Figure 3-1 is defined as 

- 1\ 1\ 

Equation 3-45 k r = ka sin Br ax-ko cos Br az 

The reflected electric field vector E r~) of Equation 3-43 can be re-written by 

- -
substitutingk,.andr from Equation 3-45 and Equation 3-16 as 

Equation 3-46 

Similarly, for the transmitted electric fieldEt~)for TEy-polarized wave of Figure 3-1 is 

given from Equation 3-17 as [24] 

Equation 3-47 

whereT TE is the transmission coefficient for the TE -mode, which is given by 

Equation 3-48 

-
and the wave number vector kt for the transmitted wave of Figure 3-1 is defined by 

Equation 3-37, Equation 3-38, and Equation 3-39. The transmitted electric field 

vector Et (~) of Equation 3-47 can then be re-written by substituting the values of kt and ~ 

as 

Equation 3-49 

The phase matching conditions at the interface are the Snell' s laws of reflection and 

refraction [24], which are defined, respectively, as [15] 
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Equation 3-50 

Equation 3-51 

In order to make the reflection coefficient RTE of Equation 3-44 independent of the 

incidence angle Bi' from Equation 3-51 it can be seen that this can be obtained by 

assigning $c = 1. So, from Equation 3-51 it follows that Bi = Bt' Reflection 

coefficient RTE of Equation 3-44 can be re-written as 

Equation 3-52 

The zero reflection condition, as required for the PML, is achieved by setting a = b . So, 

from Equation 3-8 and Equation 3-9 

a 0 0 

Equation 3-53 
= f.1 C 
A=-=-= 0 a 0 

f.1o Co 1 o 0 
a 

which makes the PML perfectly reflectionless for any frequency, angle of incidence and 

polarization. 

3.4 Material Properties of Anisotropie PMl 

The PML layer is characterized by the complex number a = Si - j/i as shown in 

Equation 3-53. The design of the anisotropie absorber, therefore, reduces to determining 

the values of/and /i . For / ,/i > 0, the equation for the transmitted wave of Equation 

3-49 can be re-written as 

Equation 3-54 

From Equation 3-54, it can be seen that the parameter /i is crucial since it controis the 
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rate of decay of the transmitted wave in the PML medium [13]. If /1 is too small, field 

decay is insufficient to eliminate reflection. Too large a value of /Ileads to reflection 

since the mesh is insufficient to model the sudden jump in the material property [15]. 

Theoretically, slhas no effect on the absorbing capability of the PML material for plane 

waves, as it only affects the wavelength in the PML. Therefore, to reduce the 

discretization errors, small values of/are prefemid as larger values of / result in larger 

discretization errors due to the fact that the fields inside the PML region change more 

drastically and the mesh loses the capability to model them correctly. However, the 

convergence of the iterative sol ver is slower when / is smaller than /1. As a 

result, / = /1 provides a good compromise [3] and is used for this thesis. 

The main interest for the PML in this case is to use it to absorb the scattered field from an 

object (hom antenna) in free space. Thus, the PML material must totally surround the 

scatterer, and the outer surface of the PML must also be terminated in sorne way. For this 

work, the PML was terminated with a perfect electric conductor (PEe). The PML 

material is placed in the shape of a rectangular box as shown in Figure 3-3 to truncate the 

computational domain. 

Acomer 

a 0 0 z Scatterer AYZ 
edge 

1 

x 

Regular view 0 

N;ide 

A~ide = 0 ~ 0 

r
a 0 0J 

y 0 0 a 
o 0 

a 0 

o a 

A~'ide Free Space (Air) 

Cross sectional view 

Figure 3-3: Geometry of the rectangular PML box surrou.mding the scatterer [3] 
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The material properties of the side regions of the PML box (A\ide ,i = x, y, z) are similar to 

Equation 3-53, which is the material property of the sides parallel to bothx and y axes as 

shown in Figure 3-3, where a = / - j/I is an arbitrary complex number as was 

mentioned above. From electromagnetic theory, any choice would cause sorne diffracted 

field from the edges and corners. One possible approximation for the edge region is to 

choose the edge properties such that they are perfectly matched to the adjacent side 

regions when the edge/side interface is of infinite extent. By going through the analysis 

of a plane wave propagating through an infinite media interface, it can be seen that the 

material property of an edge is [3] 

Equation 3-55 Amn =Am x~ edge side side where m,n = x,y,Z 

A similar approach for the properties of the corner regions is to match the corner 

properties to the adjacent edges. By going through similar analysis, the material property 

of the corner region is [3] 

Equation 3-56 A =Ax xAY xAz 
corner side side side 

After obtaining the material property of each side, corner and edge, it is required to 

assign the thickness d 2 of each side of the PML box and the distance dl between the 

scatterer and the PML box as shown in Figure 3-3. The parameter dl should be kept as 

small as possible to reduce the computational cost. But if dl is too small, the PML is too 

close to the radiator (in this case the horn) which produces spherical waves, and the 

material property for the PML is assigned to absorb plane waves only. Spherical waves 

can be approximated as plane waves when the absorber is far from the radiator. If the 

radiator is too close to the PML, the solution accuracy also degrades due to discretization 

error [3]. So, for a better approximation, the PML should be as far away as possible 

from the radiator. Rence, there has to be a compromise between solution accuracy and 

computational cost. 

The parameter d2 has to be thick enough so that the transmitted wave can be absorbed 

fully before it reaches the outer boundary PEe wall. But to keep the computational cost 
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low, d2 should be as small as possible. The product of// andd2 determines the absorbing 

capability of the PML, so they have to be considered together [3] . 
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4 Software 

4.1 Introduction 

To predict the radiation pattern and reflection coefficient of a horn using the FEM, 

programs such as FullWave [25], Excel [26], and P3D were used. As FullWave doesn't 

have the capability to truncate the computational domain for unbounded problems, 

modules for automating the PML (creating the PML, and assigning material property) 

were implemented. Programs for calculating the far field were also written and combined 

with existing programs. 

4.2 Existing Components 

To create the geometry of the PML Box and to generate the appropriate mesh for the 

model, the simulation software FullWave [25] was used. FullWave is a commercial 

program for solving scattering parameters of high frequency devices. FullWave has a 

good Graphical User Interface (GUI) for drawing microwave devices. It also has an 

Application Programmer Interface (API) to Visual Basic Application (VBA). Excel [26] 

embedded VBA was used to invoke FullWave to draw the geometry as weIl as to 

generate the mesh. Excel was used, because unlike Access or Word, it is a program well­

suited for manipulating numerical data, transforming, plotting, etc. FullWave could not 

be used to solve for scattering parameters of unbounded scattering problems as it does not 

have the capability to truncate the computational domain (e.g. by a PML). Another 

limitation of FullWave is that it does not allow the user to change the order of the basis 

function (which is al ways the lowest order) or to use mixed hierarchal basis functions. A 

program named P3D, implemented in C++, was used to solve for the scattering 

parameters of the problem. 
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4.3 Automating the PML 

To predict the radiation pattern of any type of radiator using the FEM, it is necessary to 

assign an artificial finite boundary that will represent the infirute free space beyond the 

FE mesh. In this thesis, a rectangular PML box is used. The same PML box ean be used 

for different types and sizes of structures. With this in mind, programs for automating the 

pro cess of setting up the reetangular PML box and its material properties were written 

and added to the existing P3D module. 

4.3.1 PML Box 

The reetangular PML box shown in Figure 4-1 is a eomplex structure of 27 different 

eomponents. The reason for having so many components is that different material 

properties ean be assigned to eaeh component as it is required for the refleetionless 

Anisotropie PML absorber [3] . 

Figure 4-1: Rectangular PML box 

To pass the geometric parameters of the PML box to FullWave, a subroutine ealled 

automated yml was implemented in VBA and embedded in Excel. 
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The subroutine has the prototype 

automatedyml(length, width, height, thickness) 

The input parameters were the length, width and height of the central box which are 

paralld to the x, y and z axes, respectively, of the global coordinate frame. It also 

accepted the thickness of each of the outer most rectangular boxes as a parameter. 

Although it is possible to build the outer most boxes with different thicknesses, for 

simplicity this pro gram drew aIl of them with the same thickness. By default, it drew the 

PML box centered at the origin. It can be changed easily by specifying the desired center 

of the PML box. 

4.3.2 PML material properties 

Using the theory presented in the previous chapter, material properties for each of the 27 

components were assigned. A subroutine called WritePML_Input(si, s2, file_name) was 

implemented using VBA to write a material data file that Can be read by P3D. The 

file _ name parameter passed the name of the material data file where the material property 

for each component of the PML box was saved. The parameters si and s2 were 

equivalent to i and il , respectively, which were defined in the previous chapter. A 

module caUed code yml was implemented using C++, which calculated the appropriate 

reluctivity (the inverse of the permeability) and the permittivity of each component of the 

rectangular PML box as explained in the previous chapter, and saved them in the material 

data file. The ordering of the material property of each component of the PML box was 

the same as the order of the creation of the components. It will not contain the material 

properties of the components that are not part of the PML box. So, it was required to 

enter the material property for the components that were not part of the PML box 

manually at the end of the material data file. The material properties were symmetric 

tensors [27], so 6 complex values were needed for the permittivity, and 6 for the 

reluctivity .. 
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If a material has permittivity (8) and reluctivity (v) as 

811-Real + j 811-Imaginary 

821-Real + j 8 21- 1m aginary 

831-Real + j831-lmag;nary 

Vll-Real + jVll-Imaginary 

V 21-Real + j V 21-Imaginary 

v31-Real + jV3I-Imaginary 

Permittivity 

8l2-Real +j812-Imaginary 

822-Real + j 822-lmaginary 

832-Real + j832-Imaginary 

Reluctivity 

Vl2-Real + jV12-Imaginary 

v22-Real + jV22-Imaginary 

V 32-Real + j V 32-Imaginary 

The material property of each component has the prototype 

81l-Real 
8 11_ lm aginary Vil-Real 

821-Real 8 21- lm aginary V 21-Real 

822-Real 8 22- lm aginary V22-Real 

831-Real 831-lmaginary V31-Real 

832-Real 832-Imaginary V32-Real 

833-Real 8 33- lm aginG/y V33-Real 

8\3-Real + j8\3-lmaginary 

823-Real + j823-Imaginary 

833-Real + j833-lmaginary 

V13-Real + jV13-Imaginary 

v23-Real + jV23-Imaginary 

v33-Real + jV33-Imaginary 

V II-lm aginary 

V 21-lmaginary 

V 22-lmaginary 

V 31-lm aginary 

V 32-lmaginary 

V 33-lm aginary 
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For example, air has the material property 

4.4 Far Field 

1 

o 
1 

o 
o 
1 

o 
o 
o 
o 
o 
o 

1 

o 
1 

o 
o 
1 

o 
o 
o 
o 
o 
o 

The radiation pattern of an antenna are three dimensional quantities involving the 

variation of the field or power as a function of the spherical coordinates e and rjJ. Any 

field pattern can be presented in three-dirnensional spherical coordinates, but for 

sirnplicity it is drawn by varying e or rjJ but not both [28]. Usually, the norrnalized field , 

• pattern is drawn. Dividing a field component by its maximum value, the norrnalized or 

relative field pattern, which is a dirnensionless number with the maximum value ofunity, 

is obtained. Thus the norrnalized field E; pattern for the e component of the electric 

field Ee is given by 

Equation 4-1 En=~ 
B E max 

e 

where E;ax is the maximum e component of the electric field. 

The field around an antenna is divided into two principal regions, one near the antenna 

called the near field or Fresnel zone and one at a large distance called the far field or 

Fraunhofer zone [28]. 
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Far field or 

Fraunhofer region 

boundary sphere 

Near field or 

Fresnel region 

Figure 4-2: Fresnel region and Fraunhofer region [28] 

Referring to Figure 4-2, the boundary between the two regions may be arbitrarily taken to 

be at a radius Ras 

Equation 4-2 

where D is the maximum dimension of the antenna, and Â, is the wavelength. The far-field 

region, or Fraunhofer region, is the region where spherical waves radiating from the 

aperture can be assumed to be plane waves with no variation in the plane transverse to the 

direction of travel. In the far field, the shape of the field pattern is independent of the 

distance. In the near or Fresnel region, the longitudinal component of the elèctric field 

may be significant and the power flow not entirely radial. In the near field, the shape of 

the field pattern depends, in general, on the distance. 

In this thesis, far-field radiation patterns were evaluated. Using finite element method, the 

electric field ih the near-field (aperture) of an antenna was computed. Then using 

Huygen's princip le [2], the far-field at a distance r can be evaluated as 

Equation 4-3 
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Equation 4-4 

where ka is the free-space wave number, Eo and Eq, are the magnitude of () and <ft 

components of electric field E at a distance r from the aperture, and lx and f y are 

defined over the aperture as 

Equation 4-5 f, = f fEax (Xl ,/ ~ Vk(xt sinOcosq,+y' sinosinq,)}dx l d/ 
xl y' 

Equation 4-6 f y = f f Eay (Xl, / ~ {jk~1 sinOcosq,+y' sin o sin q,)}dxl d/ 
Xl y' 

where Eax and Eay are the x and y components of electric field at the aperture. 

To calculate the far field radiation pattern of a horn using Equation 4-3 and Equation 4-4, 

it is required to find the electric field at the aperture. To define an aperture, a plane 

perpendicular to the direction of radiation of the horn is selected which must be in front 

of the open-ended side of the horn. Moreover, this plane has to be inside the FE 

computational domain as the field only inside the computational domain is known. To 

find an aperture a function called Find_tet(doubZe z) was implemented in C++ to create 

the data file Tets_onJace.dat, which contains aH the tetrahedrons at the specified z 

coordinate. The xy - plane at the specified z coordinate behaves like the aperture of the 

radiator. To create a table (temp yeZddat) that contains electric field at the aperture a 

C++ function Create _tabZe(doubZe z) was implemented. The temp yeZd dat file contains 

discretized x and y coordinates and the corresponding electric fields at those coordinates. 

A function caUed evaZuate(. .... .) was implemented to evaluate Equation 4-5 and Equation 

4-6. To perforrn the integrations of Equation 4-5 and Equation 4-6, Composite Simpson's 

rule [29] was implemented. To implement Equation 4-5 and Equation 4-6, they were 

rewritten in a general form as: 

Equation 4-7 

First, Simpson's rule was applied on m subintervals of c(x) S y s d(x) to I(x,y) and this 
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internaI integral expression was defined as the functionF(x). Then, Simpson's rule was 

reapplied on n subintervals of a:::; x :::; b to F(x). To calculate the far-field components 

of the electric field of Equation 4-3 and Equation 4-4, a function named 

getJar Jield(. ... .) was implemented in C++. The getJar Jield(. ... .) creates a data file 

far Jield.dat, which contains the e and <p components of the far-field . 
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5 Results 

5.1 Introduction 

The main purpose of this thesis is to investigate the performance parameters of the 

anisotropie PML and the use of PML in hom antenna analysis, using high-order 

hierarchal edge element. AlI the examples chosen are either easy to solve analyticalIy or 

their measured values are known. Thus, the pro gram outputs can be compared with the 

measured or analytical values for validation purpose. 

The results shown in this thesis have been obtained by using the hierarchal tetrahedral 

edge elements described by Webb [19]. The order of the element is designated by a pair 

of indices, (g, r), where g is the order of the gradient space (G g) and r is the order of 

the rotational space (Rr)' Since the convergence rate is limited by the order of the curl, 

• reducing the gradient space by one order should leave the convergence rate unchanged. 

This is also called the reduced-gradient spaces: (g,r) = (0,1), (1,2), (2,3), .... (p -1,p). The 

(p -1, p) element has the same asymptotic convergence rate as the (p, p) element [19]. 

Aiso note that an graphs shown in this chapter have been obtained by using Microsoft 

Excel's "Standard Types - XY (Scatter)" [26] chart type. 

5.2 Parallel Plate TEM waveguide 

A Y -polarized TEM wave propagating in the + z -direction along a uniform parallel­

plate transmission line as shown in Figure 5-1 has been considered. For time-harmonic 

fields, the wave equation to be satisfied in the sourceless dielectric region becomes the 

homogeneous Helmholtz's equation [24] 

Equation 5-1 

where E is the electric field and ris the propagation constant of the wave. In the present 
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case, the appropriate phasor solution for the wave propagating in the + z direction Ïs 

/\ /\ 

Equation 5-2 E = ay Ey = ay Eoe-r: 

The associated magnetic field His of the form 

Equation 5-3 
/\ /\ E 

H H o-r: =ax x =-ax-e 
7J 

where 7J is the intrinsic Impedance of the dielectric medium, defined as 

Equation 5-4 

where f.1 and [; are the permeability and the permittivity, respectively, of the dielectric 

medium. 

y 
PEC 

PEC Air Filled 

(a) Short-Circuited 

x 

d 
1111·· .. ··~ 

PML Filled 

(b) PML-Ended 

Figure 5-1: Short-Circuited and PML-Ended parallel plate 

d 

For parallel plate transmission lines the inductanceL, capacitanceC, conductanceG, and 

the resistance R per unit length can be given as [24] 

Equation 5-5 L = jJd 
w 
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Equation 5-6 

Equation 5-7 R = 2Rs 
w 

Equation 5-8 

where d and ware the length and width, respectively, of the parallel plate as shown in 

Figure 5-1; e=e/ - je/lis the permittivity, andRsis the surface resistivity of the plate. 

Propagation constant r is defined as [24] 

Equation 5-9 

where a is the attenuation constant and J3 is the phase constant. For the lossless case, 

R = G = o. Using Equation 5-5, Equation 5-6, Equation 5-7, and Equation 5-8, Equation 

5-9 can be rewritten as 

Equation 5-10 r=a+ jjJ=jUJ-jLC =jUJJl1e/ =jUJ.Jl1e 

The characteristic impedance Zth of the lossless parallel plate shown in Figure 5-1 is given 

as [24] 

Equation 5-11 

In terms of characteristic impedance of a two wire transmission Hne, Figure 5-1 can be 

redrawn as 

Il,e 

r 

Figure 5-2: Parallel plate in terms of impedance 

where ZLis the load impedance (for PEC ZL =0, for PMC ZL =00, and for PML 
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Z L = Zlh)' II is the length of the waveguide in z -direction, ZI is the equivalent impedance 

at the input port. At the source end of the line, the source looking towards the load sees 

the input impedance Z1 [24] given by 

Equation 5-12 

Using Equation 5-10, Equation 5-12 can be simplified to 

Equation 5-13 
Z = Z ZL + jZth tanpl1 

1 th Zlh + jZ L tan pl 1 

The reflection coefficient r in or S11 at the input end of the waveguide is [24] 

Equation 5-14 r =S = Z1 -Z'h 
in 11 Z Z 

1 + th 

If the paraUel plate is terminated with PEe or PMe, the characteristic impedance Z Lof 

the load is zero or infinity, respectively. From Equation 5-14, the magnitude of the 

reflection coefficientrin for short-circuited (PEe) or open-circuited (PMe) parallel plate 

becomes 1. 

The material property of PML is assigned in such a way so that the characteristic 

impedance ZtI,is the same as the load impedance ZL (in this case the PML) as mentioned 

in chapter 3. So, from Equation 5-14, the reflection coefficient r in for PML ended 

paraUel plate becomes zero as it should, as explained in chapter 3. 

5.2.1 Short-Circuited 8 11 

The reflection coefficient at the input end of the paraUel plate waveguide shown in Figure 

5-1 ( a) with d = 2 m, W = 1 m, and II = 10 m at frequency f = 60 MHz has been studied. 

At the opposite end, PEe has been used. This is a preliminary experiment to ensure that 

the setup of the problem is done properly and the FEM gives the right solutions for the 

real and imaginary part of the reflection coefficient. 
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First, the effect of the element size, by adjusting the length of the longe st edge, is 

demonstrated, by keeping aU other pararneters the same. Note that the (1,2) order basis 

function has been used for each element. From Figure 5-3 , it can be observed that as the 

element size gets smaller, the experimental results become doser to the analytical results, 

as expected. 
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Figure 5-3: Reflection Coefficient Vs Element Size. (a) Real Part, and (b) Imaginary Part 
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The effect ofthe order of the basis function is illustrated in Figure 5-4. Note that element 

size of O. lÀ has been used as it provided good results as shown in the previous 

experiment. 
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Figure 5-4: Reflection Coefficient Vs Order of the Rasis Function. 
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From the figure it can be seen that as the order of the basis function increases, the 
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solution accuracy also increases. It is known that as the order of the basis function 

increases, the number of unknowns increase, wmch in turn increases the computational 

cost, defined as the number of unknowns multiplied with the number of iterations. So, 

there has to be a compromise between computational co st and solution accuracy. In fact, 

solution accuracy can be increased by either reducing the mesh size (h-adaption) or by 

increasing the order of the basis function (p-adaption) or both (h-p adaption). The FEM 

solution of this problem is compared to the analytic solution and a good agreement is 

observed, which demonstrates that the setup of the problem and the hierarchal edge based 

FEM are working properly. 

5.2.2 PML-Ended 5 11 

In this example, the same waveguide of section 5.2.1 is used, but with a metal backed 

PML layer instead of PEe at the opposite end, as shown in Figure 5-1 (b). The effects of 

changing the values of the width d2 of the PML layer and the material properties / and 

/1 as defined in chapter 3 are explored. In these experiments, d2 = 5 m, the element size 

is 0.2 m and (2,3) order basis functions have been used. This is just a preliminary 

experiment to observe if the PML is doing what it is supposed to do. As the purpose of 

the PML is to absorb the incident wave, the return 10ss, which is 2010gJO 1 Sil l , should be 

as small as possible. 
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Reîurn loss Vs / = Sil 
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Figure 5-5: Return Loss Vs / = /1 

The effect of the material propertiess l and/I can be observed in FIgure 5-5. The 

value/ = Sil has been used to improve the convergence rate as explained in chapter 3. 

The return loss shown in Figure 5-5 is a very small number as expected. From Figure 5-5, 

it can he seen that the patterns keep changing as the values of/and Sil are increased. 

However, after a particular value ofsl and Sl/ any larger values of SI and Sil do not , 

improve the solution accuracy very much. In fact, larger values of/and Sil result in 

larger discretization errors due to the fact that the fields inside the PML region change 

more and more drastically and the mesh becomes less and less capable of modeling them 

correctly. It has been observed that for a fine mesh there exists a range of values for SI 

and Sil that results in good absorption. 

5.3 Rectangular Wave .. Guide 

In this case the wave propagating along a straight guiding structure with a uniform 

rectangular cross section of sides a and b as shown in Figure 5-6 has been considered. 
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Suppose the waves propagate in the + z -direction with propagation constant r. In 

. general, r is a complex number: 

Equation 5-15 r = a + jf3 

For lossless transmission line r becomes purely imaginary: 

Equation 5-16 r = jf3 

For TE wave, the transverse component of the electric fieldEz is zero. The transverse 

component of magnetic field Hz =It:(x,y)e-l' can be solved by using the following 

Helmholtz's equation [24]. 

Equation 5-17 

where k is the wavenumber defined as: 

Equation 5-18 

where frequency (jJ = 2if , f = ~ and velocity u = A:-
Â ~~8 

y 

z 
x Air filled PML filled 

x (a) Short-Circuited (b) PML-Ended 

Figure 5-6: Shori-Circuited and PML-Ended Rectangular Waveguide 

For TEmn, r can be solved as [24] 

Equation 5-19 

Every combination of the integers m and n defines a possible mode that may be 

designated as the TEmn mode; thus there are a doubly infinite number of TE modes. Using 
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Equation 5-18, Equation 5-19 can be rewritten as 

Equation 5-20 
• • 2 2 mrr nrr 

( )
2 ( )2 r = Jj3 = J 4rr J f.18 - --;; - b 

The frequency Je' at which r = ° is caHed the cutoff frequency. So, from Equation 5-20, 

Je can be derived as 

Equation 5-21 

Waves of frequencies below the cutoff frequency of a particular mode cannot propagate, 

and the power and signal transmission at the mode is possible only for frequencies higher 

than the cutoff frequency. If a > b , the cutoff frequency Je is the lowest when m = l and 

n=O: 

Equation 5-22 

Hence the TE 10 mode is the dominant mode of a rectangular waveguide with a > b . 

Because the TE lO mode has the lowest attenuation of aIl modes in a rectangular 

waveguide and its electric field is in one direction everywhere, it is of particular practical 

importance [24]. 

The wave impedance Zth for the TE waves can be written as [24] 

Equation 5-23 

Using Equation 5-4 and Equation 5-22, Equation 5-23 can be rewritten as 

Equation 5-24 

In terms of the characteristic impedance of the two wire transmission line, Figure 5-6 can 
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be redrawn as Figure 5-2. So, the equation for calculating the reflection coefficient will 

be the same as Equation 5-14, where ZI is obtained from Equation 5-12 or Equation 5-13, 

and Zth is obtained from Equation 5-24. 

5.3.1 5hort-Circuited 5 11 

The reflection coefficient at the input end of a rectangular waveguide shown in Figure 

5-6 with a = 0.0157988 m, b = 0.0078994 m, and length II = 0.02286 m at frequency 

13.997GHz has been studied. At the opposite end, PEe has been used. This is a 

preliminary experiment using rectangular waveguide to ensure that the setup has been 

done properly and the FEM gives the right solutions for the real and imaginary parts of 

the reflection coefficient, as it will be used in the following examples as the feed. The 

effect of the element size and the order of the basis function on the solution accuracy are 

illustrated here. 
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1 Vs Element Size - - -.- - - Analytical 
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Imaginary Part of Reflection Coefficient -m--computed 

Vs Element Size ---.- -' Analytical 
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Figure 5-7: Reflection Coefficient Vs Element Size. (a) Real Part (b) Imaginary Part. 

Used (2, 3) Order Basis Function. 

First, the effect of element size on the FEM solution is illustrated. In particular, six 

different sizes of elements (0.18, 0.20, 0.24, 0.30, 0.36, and 0.48 wavelength) have been 

selected for illustration. Note that (2,3) order basis functions have been used for aIl six 

sizes of the elements. From Figure 5-7 it is seen that as the element size becornes srnaIler, 

the cornputed results becorne closer to the analytical results. A smaller sized element 

keeps the discretization error srnall. However, as the elernent size becornes srnaller, 

degrees of freedom increases. So, computational cost becomes more significant. 
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Figure 5-8: Reflection Coefficient Vs Order ofthe Basis Function. (a) Real Part (b) Imaginary Part. 

Used Element Size of 0.24A 

In this case, element size of 0.30A gives comparatively accurate results for a relatively 

low computational cost. Further decreasing the element size does not improve the 

solution accuracy as much compared to the computational cost. The best element size 

depends on the problem geometry, the order of the basis function, and the accuracy one is 
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looking for. 

Next the effect of the order of the basis function has been tested. In particular, four 

different orders ((0, 1), (1, 2), and (2, 3)) have been selected for illustration. Note that 

element size of 0.24A has been used for aIl four orders. It can be seen from Figure 5-8 

that the solution accuracy increases as the order of the basis function increases. However, 

as the order of the basis function becomes higher, computational cost becomes more 

significant. So, there has to be a compromise between solution accuracy and 

computational cost. In this case, the (2,3) order basis function gives an almost accurate 

solution. Further increasing the order of the basis function does not have any significant 

effect on the solution accuracy as the computed and analytical results are already 

overlapping. In practice, the choice of the order of the basis function must be made in 

conjunction with the element size. For a sufficiently fine mesh, a lower order basis 

function can be used. For a relatively coarse mesh, higher order basis functions must be 

used to get accurate results. But if the mesh is too coarse, increasing the order of the basis 

function will not provide accurate results. 

These results suggest that there is a compromise between solution accuracy and 

computational co st. Smaller element size gives higher accuracy but requires more 

computational resources. Higher order polynomials give higher accuracy and require 

more computational resource. In this case, it can be seen that element size of 0.24A with 

(2,3) order basis gives very accurate results with comparatively low computational cost. 

5.3.2 PML-Ended 5 11 

In this case, the waveguide of the same dimensions as of Section 5.3.1 has been used. 

But, at the opposite end, instead of PEe, a metal backed PML layer has been used as 

shown in Figure 5-6. In the next couple of experiments, PML surrounded scattering 

problems will be considered, by using various values of the width d2 of the PML layer 

and material properties Si and /1 in order to find values that will provide very good , 

absorption for comparatively lower computational cost. 
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In this part, the effect of the width d2 of the PML layer is observed with the same 

material property / = /1 = l, element size 0.242 and the order of the basis function (2, 

3). 
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i 

0.8 

In this case, eight different values for d2 (0.12, 0.24, 0.36, 0.47, 0.59, 0.83, and 0.95 

wavelength) have been selected for illustration. Figure 5-9 shows that as the thickness 
d2 of the PML layer is increased, the absorbing capability of the PML is increased. In this 

case, thickness of 0.592 gives almost perfect absorption. Further increasing the thickness 

does not improve the absorbing capability significantly as the reflection coefficient is 

almost already the lowest. From Figure 5-10 it can be observed that as the 
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Number of Iterations Vs Thickness of PMl 
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Figure 5-10: Iteration Vs the thickness ofthe PML Layer. 

thickness d2 of the PML layer is increased, the number of iterations are increased. So, 

there has to be a compromise between computational cost and absorption capability. But, 
by carefully choosing the thickness d 2 , it is possible to obtain a very good absorption for 

lower computational cost. In this case, it can be concluded that the thickness d2 = 0.59..1, 

provides very good absorption for a comparatively low computational cost. 
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The effects of the PML material properties Si and /1 on the absorption capability and the 

resulting computational cost have been tested. To find out how / and Sil affect the 

performance of the PML, aU parameters have been kept the same as before, and the 
thickness of the PML layer d2 = O.59/l, has been used. Figure 5-11 shows that 

Si = /1 = 1.85 gives the best absorption. It is observed that there is a range of values for 

/ and /1 for which the reflection coefficient is very small. Larger values of 

/ and Sil result in larger number of iterations as shown in Figure 5-12. In fact, larger 

values of / and /1 result in larger discretization errors due to the fact that the fields 

inside the PML region change more and more drastically and the mesh becomes less and 

less capable to model them correctly. In this case, / = Sil = 1 provides very good 

absorption for comparatively low computational cost. 
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5.4 Waveguide with Flange in Rectangular PML Box 

A flange tenninated rectangular waveguide surrounded by a PML box as shown in Figure 

5-13 has been considered. In this example, from the experimental value of Sil, the 

WI 

Flange 

~-r -----------------~--... 1" ... 1 1 ; 

-~-::::~~-~------------------l--
... -"'" ... " 'V 

Figure 5-13: Flange inside Rectangular PML Box 

Box 

aperture impedance has been calculated and then compared with the measured values. 

Equation 5-14 can be rewritten as 

Equation 5-25 
Z -1 

Sil = lin = Z: + 1 

where Zc = Z1 is the nonnalized impedance. From Equation 5-25 the value of Zc can be 
Zth 

derived as 

Equation 5-26 

69 



• 

5.4.1 Verifying 8 11 

In this example, the reflection coefficient at the input end of a rectangular waveguide of 

dimensions a = 1.57988 cm, b = 0.78994 cm, and with a flange at the end of dimension 

3.3655 x 3.3655 cm2 as shown in Figure 5-13 has been studied. The rectangular 

waveguide with the flange has been surrounded by a rectangular PML box of inner 

dimensions oflength 1 = 4.3815 cm (parallel to x - axis), width w = 4.3815 cm (parallel 

to y - axis) ,height h = 2.54 cm (parallel to z - axis), as shown in Figure 5-13, and 

the distance between the flange (aperture) and the inner side of the PML box is 

dl = 1.016 cm, with the cross-sectional view given as in Figure 3-3. The material 

property of the PML box has Si = Sil = 1. 
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Figure 5-14: Amplitude of Reflection Coefficient Vs Frequency. 

First, the effect of the thickness d2 of the PML box as shown in the cross-sectional view 

of Figure 3-3 is illustrated. In particular, two different values of d2 (0.254 and 0.762 cm) 

have been selected for illustration. Note that the element size of 0.2 cm and (2,3) order 

basis functions have been used in aIl the cases. Figure 5-14 shows the comparison 

between the computed and measured reflections for the TEIO incident mode. From Figure 

5-14, it is dear that as the thickness of the PML increases, computed results become 

doser to the measured results, as expected. The computed results of thickness 
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d 2 = 0.762 cm are in good agreement with the measured values . 
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Figure 5-15: Refledioll Coefficient Vs Frequellcy. (a) Real Part (b) Imaginary Part. 
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The effect of the order of the basis function has also been tested. The PML box has the 

same dimensions as the previous experiment along with the thickness of the PML box 
d2 = 0.254 cm. In particular, three different orders «0, 1), (1, 2), and (2, 3) have been 

selected for illustration. Note that element size of 0.2 cm has been used in aU cases. 

Figure 5-15 (a) and (b) show the comparison between the computed and the measured 

real and imaginary parts of the reflection for the TElO incident mode. From the figure, it 

is clear that as the order of the basis function increases, computed results become closer 

to the measured results. From the figure, it can also be observed that as the frequency 

increases, discrepancy between the measured and the computed result increases due to 

the fact that higher frequency requires a smaller element. 

5.4.2 Normalized aperture Impedance 

Using Equation 5-26, normalized impedance has been derived and compared with the 

measured value [4]. Results of section 5.4.1 have been used to derive the impedances 

from reflection coefficients. The FEM provides an excellent solution, which is almost 

indistinguishable from the measured value. These results validate the behavior of the 

PML. 
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Imaginary Part of Impedance 
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Figure 5-16: Impedance Vs Frequency. (a) Real Part (b) Imaginary Part. 

Figure 5-16 shows the comparison between computed and measured real and imaginary 

parts of the aperture impedance for the TElO incident mode. There is good agreement 

between the measured and the computed results. 

5.5 Waveguide with Horn in Rectangular PML Box 

A horn terminated rectangular waveguide surrounded by a PML box as shown in 

Equation 5-17 has been considered. As the horn is inside the PML box, there should not 

be any reflection from the interface of the PML box and air. 
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Figure 5-17: Horn inside Rectangular PML Box 

There will be reflection because of the impedance mismatch at the interface of the 

aperture of the horn and the air. As the horn has larger flare dimensions than the flange, it 

will have less reflection. To make sure everything has been set-up properly, the input 

return loss has been compared with the measured values. Finally, the experimental value 

of the far field radiation pattern has been compared with the measured value. 

5.5.1 Input Return Loss 

In this experiment, a pyramidal horn of wave guide dimension 0.01905 x 0.009525 m2
, 

aperture dimension 0.034417 x 0.034417 m2
, and length 0.077724 m has been analyzed. 

The rectangular waveguide with the flange has been surrounded by a rectangular PML 

box of inner dimensions of length 1 = 0.043815 m (parallel to x - axis), width 
w=0.043815 m(parallelto y-axis) ,height h=0.1l43 m(parallelto z-axis) as 

shown in Figure 5-13, distance dl = 0.01016 m between the horn aperture and the inner 

side of the PML box as shown in the cross-sectional view of Figure 3-3. The material 

properties / and // of the PML box have been assigned to be / = // = 1. From the 

experimental value of the reflection coefficient, the return 10ss has been calculated and 

compared with the measured value [4]. 
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Figure 5-18: Return Loss Vs Frequency. 

Figure 5-18 shows the comparison between computed and measured Retum Loss values 

for the TElO incident mode. Note that (1,2) order basis function has been used. From the 

figure, it is clear that as the thickness of the PML increases, computed results become 

closer to the measured results. From Figure 5-18 it can be observed that as the frequency 

gets higher, measured values become closer to the computed values due to the fact that 

higher frequency requires thinner PML layer for the same absorption. 
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Figure 5-19: Return Loss Vs Frequency. 
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Figure 5-19 shows the comparison between computed (PML thickness d2 = 0.762 cm) 

and measured Return Loss of the TElO incident mode. From the figure, it is clear that as 

the order of the basis function increases, computed results become closer to the measured 

results. 

5.5.2 Far Field Radiation Pattern 

Finally, the far-field radiation pattern of the PML surrounded horn of section 5.5.1 has 

been computed. U sing the software written for ca1culating the far field, the normalized 

radiation pattern has been obtained and compared with the measured result [4]. 

To make sure the code for the far field works properly, a rectangular aperture as in Figure 

5-20 with uniform illumination has been considered. 
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Figure 5-20: Uniformly iIluminated aperture 

1\ 1\ 

F or an aperture field E = 5 a x + 10 a y V 1 m , at a distance r = 100m the far-field radiation . 

pattern has been ca1culated analytically and compared with the computed results. In the 

far-field, the shape of the field pattern is independent of the distance r as mentioned in 

section 4.4. In this case, distance r = 100 m was just an arbitrary number. Figure 5-21 
shows the radiation pattern for the H-plane eut (rjJ = 0). As each plane has two field 

components (E g and E çl)' two separate field patterns are drawn. The computed results 

for Eg and Eçl as shown in Figure 5-21 (a) and (b) respectively, are almost same as the 

analytical results. This shows that the code written for far field radiation pattern is 

working properly. 
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Figure 5-21: Normalized H-plane Far Field Radiation Pattern. 

(a) Ee component (b) Eq, compone nt. 

o 

Finally, the far field radiation patterns of the horn has been computed and compared with 

the measured data. Figure 5-22 shows the radiation pattern for the E-plane eut (if; = 1C ). 
2 

As the magnitude of the Eq, component of the E-plane is very small (by symmetry it 

should be zero), only the E e component is shown here. There is a diserepaney between 

the eomputed and the measured results. As it has already been shown for the uniform 
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illumination that the pro gram for evaluating far field has been working properly, the error 

could be due to the field at the horn aperture. Either there is an error in retrieving the 

correct field from the horn aperture, or/and FE analysis is not computing the correct field 

at the aperture. 
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Figure 5-22: Far Field Radiation Pattern for E-Plane eut (rjJ = - ). E e Component. 
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Et/> Component (H-plane Pattern) - - - A- - - Computed 

--0- Measured 

Figure 5-23: Far Field Radiation Pattern for H-Plane eut (rjJ = 0 ). Et/> Component. 

o 
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Figure 5-23 shows the radiation pattern for the H-plane eut (rjJ = 0). As the magnitude of 

the Eecomponent of the H-plane is very small (by symmetry it should be zero), only 

the E,p component is shown here. The computed pattern does not match with the measured 

pattern. It could be due to the same reasons as for the E-plane pattern. Due to time 

constraints this issue could not be solved at this time . 
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6 Conclusion 

The finite element method is one of the most successful frequency domain computational 

methods for electromagnetic simulations. It combines geometrical adaptability and 

material generality for modeling arbitrary geometries and materials of any composition. 

The latter is particularly important in electromagnetics since many applications dealing 

with antennas, microwave circuits, and scatters, etc. require the simulation of 

nonmetallic/composite materials. However, open problems, like radiation and scattering, 

present a unique challenge to finite domain methods. Since the mesh of the computational 

domain cannot be extended to infinity, boundary conditions must be applied to simulate 

the effect of infinite domain. The need for efficiently truncating the computational 

domain for radiation problems is the motivation for the research carried out and described 

in this thesis. There are several interesting approaches that have been proposed for 

truncating an infini te computational domain. Among them the PML holds the most 

promise, as explained in section 1.2.2 

In this thesis, an artificial PML with anisotropic material properties was implemented for 

terminating the FEM mesh for propagation and scattering examples. It was shown that by 

properly choosing the constitutive parameters, a lossy uniaxial media can be perfectly 

matched to isotropic space. Unlike Berenger' s technique, the PML absorbing media 

presented here is based on a Maxwellian formulation. It was demonstrated that 

reasonable performance can be achieved with a relatively thin absorbing layer placed 

close to the eomputational domain. From the numerical results, we see that the 

anisotropie PML can be very effective for scattering problems, provided the appropriate 

material properties and geometry of the PML are used. It was aiso shown that the 

computational effieiency can be improved by carefully considering the relations of the 

element size and the order of the basis function. 
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The reflection coefficient of short-circuited rectangular and paraUel plate waveguides 

were computed and compared with the measured results. A good agreement between the 

results validated the problem set-up and.the code used for the FE analysis. Then PML­

ended waveguides were studied to investigate the performance of the PML parameters. 

As the main purpose of this thesis was to analyze open-ended waveguides, a flange 

terminated rectangular waveguide was studied. The retum 10ss and aperture impedance 

were computed and compared with the measured results. Finally, a horn terminated 

rectangular waveguide was studied. The computed return 10ss agrees weIl with the 

measured results. However, there was a discrepancy between the computed and measured 

far field radiation patterns. The error could have arisen from the aperture field that was 

used for ca1culating far field. Due to lack of time this problem could not be solved. 

The research was successful for applying the PML and high-order edge elements to hom 

antennas. But the optimized parameters of the thicknesses of the PML layer, its material 

properties, and the spacing between the scatter and the PML layer have to be found 

manually by trial and error. It would be interesting in future to try to come up with sorne 

adaptive algorithm so that the pro gram user is not required to have any knowledge of the 

PML. 
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