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Abstract

In order to combat channel failures in data communications, multiple description coding

(MDC) produces two or more equally important bitstreams or descriptions, and transmits

them independently over erasure channels. If only one description is correctly received, a

coarse copy of the source is obtained. The more descriptions correctly received, the finer

the accomplished quality. When all descriptions are correctly received, the transmitted

signal can be completely reconstructed.

In this work, we apply MDC to accommodate multimedia transmissions over hybrid

wireline-wireless networks, which require low delay and high robustness against both packet

losses and bit errors. In addition to the classical MDC channel model, i.e., on/off channels,

we study channels that are also suffering from bit errors. Based on this channel model, we

design what we call ERMDC or error resilient multiple description coding.

The proposed ERMDC encoder maximizes the Hamming distance between used code-

words in MDC, so as to make as many errors as possible detectable at the decoder. In order

to reduce the reconstruction distortion, the proposed ERMDC decoder can detect binary

transmission errors and estimates their output values in two means: (i) one is MSE-optimal,

but requires information about channel conditions; (ii) the other is suboptimal, but does

not require channel conditions. The ERMDC achieves graceful performance degradation

associated with BERs, and outperforms classic MDC when meeting with both packet losses

and bit errors.

In order to avoid long time of design optimization, simplified index assignment (IA)

algorithm for easy ERMDC encoder design is developed. This algorithm obtains “close-to-

optimal” solutions as well as low computational complexity. Furthermore, this IA algorithm

can be extended to embedded coding in progressive transmissions.

Moreover, we study performance of the ERMDC over Rayleigh fading channels by

utilizing modulated signals as inputs. We also discuss usages of the ERMDC and its system-

level performance over channels with both packet losses and bit errors. Experimental results

show that, in general, the ERMDC system outperforms classic MDC systems.
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Résumé

Le codage à descriptions multiples (MDC) vise à combattre les effets néfastes des défaillances

du canal de transmission; à cette fin, il produit deux (ou plusieurs) flux binaires ou de-

scriptions d’égale importance, qui sont ensuite transmis indépendamment sur des canaux

à effacement. Si seulement une des descriptions est reçue correctement, une copie grossière

de la source est alors obtenue. Plus le nombre de descriptions reçues correctement aug-

mente, plus la qualité de reproduction augmente. Lorsque toutes les descriptions sont

reçues correctement, le signal transmis peut être reconstruit complètement.

Dans le présent travail, nous appliquons le MDC au cas de la transmission de multimédia

sur des canaux hybrides filaire/sans-fil, qui requiert d’atteindre un délai faible et une grande

robustesse vis-à-vis des pertes de paquets et des erreurs binaires. Au-delà du modèle

classique de canal MDC (de type “on/off”), nous étudions des canaux qui créent des erreurs

individuelles sur les bits transmis. En se basant sur ce modèle de canal, nous concevons ce

que nous appelons ERMDC, pour codage à descriptions multiples résistant aux erreurs.

Le codeur ERMDC proposé ici maximise la distance de Hamming entre les mots-codes

du MDC, de manière à permettre au décodeur de détecter autant d’erreurs que possible.

Afin de réduire la distorsion à la reconstruction, le décodeur ERMDC proposé ici a la

capacité de détecter les erreurs de transmission binaires, et peut estimer les échantillons

à reconstruire de deux façons : (i) l’une est optimale au sens de la distorsion quadra-

tique moyenne, mais requiert la connaissance d’informations à propos de l’état du canal;

(ii) l’autre est sous-optimale, mais ne nécessite pas cette connaissance. Le système ERMDC

permet d’obtenir une dégradation graduelle de performance en fonction du taux d’erreur

binaire (BER), et offre des performances supérieures au MDC classique dans le cas où les

pertes de paquets et les erreurs sur les bits sont considérées conjointement.

Afin d’éviter des temps de conception trop longs liés à des optimisations complexes, un

algorithme d’assignation d’indices (IA) simplifié est développé pour simplifier la conception

de l’encodeur ERMDC. Cet algorithme obtient des solutions proches de l’optimum, à un

coût de complexité réduit. Qui plus est, cet algorithme d’IA est étendu au cas du codage

progressif (embedded) pour la transmission progressive.

Finalement, nous étudions la performance du système ERMDC sur des canaux à

évanouissement de Rayleigh, en utilisant des signaux modulés en entrée. Nous discutons

aussi de la performance au niveau système de ERMDC sur des canaux à pertes de paquets
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et erreurs binaires. Les résultats expérimentaux confirment, en général, que le système

ERMDC offre des performances supérieures aux systèmes MDC classiques.
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Chapter 1

Introduction

As required by today’s telecommunications subscribers, emerging communications devices

are not only telephones, but also data and video terminals. They connect with service

providers via wireline and wireless connections. Service providers are trying to more ef-

ficiently support such users’ requirements in means of reducing communication cost and

improving the end users’ experience. As a result, wireline-wireless convergence has become

an important trend in the telecommunications industry [1].

Multimedia communications, especially, voice, audio, image and video transmissions,

become important applications over the Internet. For example, a study predicted that the

market for IPTV (Internet Protocol Television) services would rise from $779.2 million in

2006 to $26.3 billion in 2011 [2]. A report showed that the number of worldwide residential

VoIP (Voice over Internet Protocol) subscribers reached over 75 million in 2007, 60% more

than the number in 2006 [3].

However, many technical challenges exist in converging wireline and wireless networks.

For example, channel characteristics of wireline and wireless networks are different: the

main reason of channel failures over wireline networks is packet losses, because of conges-

tion control and/or buffer overflow at edges between high and low-speed networks; on the

other hand, channel failures and bit errors over wireless networks are usually caused by

noisy channels. Normally, different error resilient methods are applied to deal with dif-

ferent channel characteristics. Instead, over hybrid wireline-wireless networks or wireless

packet networks, an end-to-end solution is needed to provide robust transmissions with

high efficiency and flexibility.
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1.1 Why is multiple description coding used?

The quality of radio signals is influenced by various factors, such as other radio signals,

obstacles, fading channels, multipath propagation and so on. Thus, wireless communication

is suffering from error-prone channels. Techniques such as retransmission and error control

coding or channel coding are developed to combat transmission errors [4].

Retransmission, well-known as Automatic Repeat reQuest (ARQ) in TCP, can provide

error-free transmission, if an unlimited number of retransmissions are allowed. However,

the low-delay requirement of multimedia communications prevents this from happening.

By adding redundancy, channel coding, also known as forward error correction (FEC)

coding, works well for data file transmission. The added redundancy provides the capa-

bility of correcting transmission errors. Since different components of multimedia signals

are not equally important, losses of more important signal components may result in sig-

nificant performance degradation; losses of less important signal components may result in

less or even invisible performance degradation. It is preferable to transmit more important

information with higher reliability under the constraint of a limited bandwidth. There-

fore, layered coding [5], [6], progressive transmission [7]–[10] and unequal error protection

(UEP) [11]–[14] have been developed. In layered coding, more important signals are trans-

mitted over more reliable channels. In progressive transmission, more important signals

are transmitted earlier. UEP protects signals according to their importance: it provides

more protection for more important signals, less protection for less important signals.

In a layered coding system, the source is encoded into several bitstream layers. There

are two types of layers: base layer and enhancement layer(s). In general, enhancement

layers can only be encoded/decoded based on encoding/decoding base layers that are more

important.

In a progressive transmission system, the source is encoded into several packets. The

receiver reconstructs the transmitted signals as packets arrive. The quality of reconstructed

signals improves steadily with the number of consecutive packets received. The order of

packets is so critical that the quality of reconstructed signals is only determined by the

packets received before the missed one. For example, imagine that the source is encap-

sulated in seven packets. If six packets except the third one are received, the quality is

only determined by the first two packets. Although the last four packets are received, they

cannot be used, because they need the third packet to be received before decoding can
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Fig. 1.1 An MDC system with two channels and three receivers.

proceed.

In both layered coding and progressive transmission systems, the quality of recon-

structed signals depends on layers or packets that are more important than the lost one;

on the other hand, the received information that is less important than the lost one is not

usable. Therefore, multiple description coding (MDC), which will be described in details in

the next section, is developed, so that all received information is usable, no matter which

parts of information are lost [15].

1.2 Multiple Description Coding

Multiple description (MD) coding produces two or more equally important bitstreams,

called descriptions, from a single information source. Descriptions are transmitted inde-

pendently over erasure channels. At the receiver end, if all descriptions are received, the

transmitted signals are reconstructed. If only one description is correctly received, a coarse

copy of the transmitted signals with acceptable quality in the sense of distortion is achieved.

The more descriptions correctly received, the finer the accomplished quality.

A typical MD coding (MDC) system with two channels and three receivers is demon-

strated in Fig. 1.1. The distortion of the signals reconstructed from all descriptions is called

the central distortion, which can be achieved by a single description encoder at the central

bit rate. The side distortion is the distortion of the signals reconstructed from one or sev-

eral, but not all, descriptions. In the MDC system with two channels and three receivers,

if both channels work well, Central receiver 0 attempts to recover the source from the

two correctly received descriptions. Ideally, the central distortion is only caused by source

coding, such as quantization. If one channel fails, the corresponding side decoder 1 or 2
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can only recover part of the transmitted signals from the only received description. The

resulting side distortion is much higher than the central distortion. The bit rate associated

with each description is called the side bit rate.

Two descriptions can be generated in simple ways, for example:

• Sending two duplicated copies of the source signal. The side distortion is as low as

the central distortion; however, the side bit rate is the same as the central bit rate.

• Sending one half of the source signal over one channel. The side bit rate is one half of

the central bit rate; nevertheless, the side distortion is much higher than the central

distortion.

Therefore, the target of the MDC problem is to find a best tradeoff between the central

distortion and the side distortion at the cost of a modest side bit rate, which is usually

smaller than the central bit rate. These kinds of problems were studied first by Ozarow [16],

El Gamal and Cover [17]. As a typical MDC system, the multiple description scalar quan-

tizer (MDSQ) was developed by Vaishampayan [18] to decompose source samples into two

descriptions.

1.3 Motivation and Contributions

In this section, the motivation and contributions of this work are respectively summarized.

1.3.1 Motivation

In a typical MDC system, all channels are modeled as on/off characteristic. That is to say,

descriptions, which are encapsulated in packets over packet networks, are either received

correctly or lost completely [18]–[21]. Since nowadays most data networks are transmitting

packets, here, we consider channel failures equivalent to packet losses.

In wireless communications, descriptions transmitted over radio channels suffer from

bit errors. Even though FEC codes are regularly applied to protect descriptions from bit

errors, descriptions after decoding FEC codes may still contain bit errors, as the result of

the fact that the amount of errors exceeds the error correcting capability of the applied FEC

codes. In a typical MDC system, such erroneous descriptions are usually dropped, although

residual information is contained in these descriptions. Discarding erroneous descriptions
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or packets [18], [19] results in significant degradation in the sense of rate-distortion perfor-

mance, because a large performance gap exists between the central distortion and the side

distortion.

Therefore, we propose an enhanced MDC decoder to utilize residual information in er-

roneous descriptions so as to achieve graceful performance degradation [22]. In order to

combat channel failure or packet losses, redundancy is usually added to generate multiple

descriptions. More redundancy provides higher robustness. The enhanced MDC decoder

exploits the inherent redundancy and dependency among multiple descriptions to detect

transmission errors, and estimate output values so as to reduce the reconstruction distor-

tions.

Since in the design of the traditional MDC encoder, index assignment (IA) is achieved

based on naturally labeled indices, which means that a smaller index represents a smaller

quantity, one-bit errors may not be detected at the decoder. A robust IA algorithm is

proposed by us to enlarge the Hamming distance between any two MD index pairs, so that

one or more bit errors can be found more easily [23]. Consequently, the reconstruction

distortion can be decreased further, especially, when this encoder works with the enhanced

MDC decoder.

This pair of encoder and decoder constitutes what we will call the error resilient multiple

description coding (ERMDC) system [24]. The objective of the ERMDC is to design a pair

of encoder and decoder that attempts to detect as many bit errors as possible with inherent

redundancy among multiple descriptions so as to minimize the distortion introduced by bit

errors. Because it is very difficult to obtain an optimal IA scheme according to multiple

criteria, such as rate distortion and robustness, a heuristic algorithm (in this case, the

genetic algorithm (GA)) is utilized to find a “close-to-optimum” solution in a reasonable

time. Experimental results show that the ERMDC not only achieves graceful performance

degradation, but also effectively improves the performance in the presence of bit errors.

In addition, performance of the ERMDC is tested over slow Rayleigh fading channels [25].

With the help of the ERMDC encoder, by utilizing received analog signals as soft inputs,

performance of the ERMDC exceeds performance of other MDC methods.

As mentioned above, the GA is applied in the ERMDC encoder to obtain a “close-to-

optimum” IA scheme. However, the computational complexity of this algorithm increases

exponentially, as the search space, i.e., the bit rate of the information source, grows. We

develop a fast robust IA algorithm for the ERMDC to add one-bit redundancy [26]. This
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fast IA algorithm achieves similar performance to the GA at low bit rates, and even better

performance at high bit rates in a limited design time. It is further generalized to add

any arbitrary number of redundancy bits in the ERMDC [27]. Compared with existing

methods, the ERMDC obtained by using this generalized fast IA scheme accomplishes

similar robustness against packet losses, and higher robustness against bit errors. More-

over, because of its high flexibility and low computational complexity, the procedures of

encoding/decoding two descriptions and detecting transmission errors only introduce fixed

and short processing delays, and the added redundancy can be easily adapted to channel

conditions.

In order to compare performance of the proposed ERMDC system with other error

resilient techniques, such as the classical MDC and FEC-based techniques, we apply a

three-state Markov chain to model the scenario where both packet losses and bit errors

exist [28]. Experimental results show that the ERMDC system provides higher robustness

against both packet losses and bit errors, and more consistent performance. Furthermore,

we derive the optimal redundancy to minimize the average reconstruction distortion at a

given packet loss rate (PLR) and bit error rate (BER) for the classical MDC system. The

behaviour of the classical MDC system in the presence of both packet losses and bit errors

is also analyzed. Even though this method is not always suitable for the ERMDC system,

it provides a good reference.

1.3.2 Contributions

The main contributions of this dissertation are summarized as follows:

• The ERMDC decoder: The ERMDC decoder estimates outputs of detected trans-

mission errors so as to minimize the reconstruction distortion in the presence of bit

errors. As a result, it achieves graceful performance degradation in the rate-distortion

sense.

• The ERMDC encoder: The ERMDC encoder enlarges the minimum Hamming dis-

tance between MD index pairs, so that more transmission errors can be detected,

and the reconstruction distortion can be reduced further. Consequently, the dis-

tortion obtained by the ERMDC decoder is further reduced. In the design of the

ERMDC encoder, exhaustive search and the GA are applied.
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• A generalized fast IA algorithm for the ERMDC encoder: A generalized fast IA al-

gorithm for the ERMDC encoder is proposed to reduce the design complexity of the

ERMDC encoder. Compared with exhaustive search and the GA used before, in ad-

dition to significantly lower computational complexity, this fast IA algorithm achieves

similar rate-distortion performance at low bit rates, and even better performance at

high bit rates in a limited design time.

• The soft inputs ERMDC for Rayleigh fading channels: The ERMDC encoder-decoder

pair utilizes modulated inputs received from noisy wireless channels, such as Rayleigh

fading channels, to decrease the reconstruction distortion.

• The system-level evaluation of the ERMDC system: In the presence of both packet

losses and bit errors, the ERMDC system outperforms other existing robust transmis-

sion systems in the rate-distortion sense by utilizing redundancy in both MDC and

FEC. In order to conduct this system-level evaluation, a three-state Markov chain is

proposed to model channels where both packet losses and bit errors exist.

• The optimal redundancy of the ERMDC system: The optimal redundancy is derived

for the ERMDC system to achieve the lowest average reconstruction distortion at a

given PLR and BER.

In addition, this work has been partially published in a series of papers:

• R. Ma and F. Labeau, “Enhanced multiple description decoder for error-prone chan-

nels,” in Proc. IEEE Int. Conf. Image Processing, Oct. 2006, pp. 805–808.

• R. Ma and F. Labeau, “Robust index assignment for MDSQ encoder over noisy

channels,” in Proc. IEEE Int. Workshop Multimedia Signal Processing, Oct. 2006,

pp. 286–290.

• R. Ma and F. Labeau, “Soft input error resilient multiple description coding for

Rayleigh fading channels,” in Proc. IEEE Int. Conf. Multimedia Expo, July 2007,

pp. 1147–1150.

• R. Ma and F. Labeau, “Error-resilient multiple description coding,” IEEE Trans.

Signal Processing, vol. 56, no. 8, pp. 3996–4007, Aug. 2008.
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• R. Ma and F. Labeau, “Fast index assignment for robust multiple description coding,”

in Proc. IEEE Int. Conf. Image Processing, Oct. 2008, pp. 2052–2055.

• R. Ma and F. Labeau, “Generalized fast index assignment for robust multiple de-

scription scalar quantizers,” in Proc. Asilomar Conf. Signals, Syst., Computers,

Oct. 2008, pp. 1287–1291.

• R. Ma and F. Labeau, “End-to-end performance of robust multiple description scalar

quantizer,” in Proc. IEEE Veh. Technol. Conf., Apr. 2009.

1.4 Organization

In Chapter 2, existing work related to this dissertation is reviewed. As a typical joint source-

channel coding technique, the noisy channel quantizer is briefly reviewed. Robust quantizers

and channel-optimized quantizers are two classes of noisy channel quantizers. The robust

quantizer is later used to develop the ERMDC. Next, after introducing basic concepts,

methodologies and applications of MDC, the MDSQ is described in details, because it is

not only a classical MDC system, but is also used as a foundation for our work. Thereafter,

FEC-based MDC techniques are presented concisely.

In Chapter 3, the ERMDC as a whole is briefly introduced, followed by detailed de-

scription of the ERMDC decoder. Optimal and suboptimal ERMDC decoders are derived.

Experimental results indicate that the ERMDC decoder achieves graceful performance

degradation. The ERMDC decoder effectively improves the performance against isolated

and burst bit errors. In addition, the suboptimal decoder with low computational complex-

ity does not require knowledge of channel conditions, and provides consistent performance

in various circumstances.

Design of the ERMDC encoder is elaborated in Chapter 4. The general design procedure

is given in Section 4.2. In order to enlarge the Hamming distance between any two MD

index pairs, the exhaustive search is used to find qualified MD index pairs. Then, the GA is

exploited to assign indices so as to achieve as low side distortion as possible. Experimental

results show that with the help of the ERMDC encoder, the performance achieved by the

ERMDC decoder is further improved. At low bit rate, the GA achieves better performance

than the traditional IA applied by the MDSQ.

However, as the bit rate of the information source grows, the computational complexity
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of assigning indices by using the GA increases significantly. Therefore, in Chapter 5, a

generalized fast robust IA algorithm is proposed. This IA algorithm is described in de-

tails for different numbers of bits of redundancy. The optimal IA scheme is also provided.

Experimental results show that this fast IA scheme not only substantially reduces the com-

putational complexity, but also provides robustness that is similar to the schemes obtained

by the GA, and better than other existing methods. In addition, the average side distortion

is computed through numerical solutions for arbitrary source signals in high rate systems.

The analytical results for uniform distributed source signals are also derived. Thereafter,

the fast IA algorithm is extended to embedded coding.

In Chapter 6, we attempt to test the proposed ERMDC in different scenarios. First,

the ERMDC is applied in wireless communications over slow Rayleigh fading channels. By

utilizing received analog signals as soft inputs, the ERMDC outperforms previous methods.

Second, the ERMDC system is tested in the presence of both packet losses and bit errors.

Combining with FEC codes, the ERMDC system provides higher and more consistent

robustness against packet losses and bit errors. Third, the optimal redundancy of the

classic MDC system is derived, and regarded as a good reference for the ERMDC system.

In addition, the behaviour of the classic MDC system in the presence of packet losses and

bit errors is analyzed.

Finally, we conclude this work, summarize the main contributions, and discuss future

work in Chapter 7.
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Chapter 2

Joint Source-Channel Coding for

Robust Transmissions

Shannon’s separation theorem states that source coding (compression) and channel coding

(error protection) can proceed individually and optimally [29], [30]. However, the optimality

can only be ensured in the case of asymptotically long block lengths of data, which is usually

not practical. In addition, multimedia communications have been widely applied over

wireline and wireless networks. Thus, joint source-channel coding has attracted substantial

interest in the area of robust multimedia transmission over wireline and wireless networks.

In this chapter, we will review existing research related to our work. First, we intro-

duce the typical techniques of designing noisy channel quantizers for one single description.

Secondly, the basic idea and the existing works of the multiple description coding (MDC)

are briefly reviewed. Thereafter, a short review of the MDC applied over noisy channels

is provided. Finally, as a supplement, FEC-based packet-loss recovery techniques are re-

viewed.

2.1 Noisy Channel Quantizers

As a typical technique of source coding, quantizers, such as scalar and vector quantizers,

approximate infinite real values to a relatively small number of integer values. In this

work, we only consider scalar quantizers, even though the proposed ideas can be extended

to vector quantizers.

A data compression system removes, to some possible extent, the redundancy in the
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source, and keeps useful (non-redundant) information so as to decrease the data rate. The

removal of redundancy introduces higher sensitivity to the transmission noise or the storage

device errors. These kinds of noise (generally referred to as the channel noise) may incur

significant degradations in the performance of the compression algorithm. Therefore, noisy

channel quantizers are developed against noisy channels.

Generally speaking, design methods of quantizers against noisy channels, called noisy

channel quantizers, fall into two categories:

1. Robust quantizer [31]– [33]: A robust quantizer encoder is trained for an error-free

channel, and designed to be robust against noisy channels by assigning appropriate

indices to the code words so as to minimize the distortion introduced by transmission

errors. The robust quantizer is usually used under the circumstances where codebook

training time is of primary concern.

2. Channel-optimized quantizer (COQ) [34] [35]: The encoder-decoder pair in a

COQ system is jointly trained according to a given channel. The COQ is more

suitable when higher reliability is needed.

Compared with the robust quantizer, the COQ requires more computations and provides

lower performance when channel conditions are good, or when its design parameters are

not matched to actual channel conditions. Thus, we utilize the robust quantizer technique

to design the ERMDC encoder.

Developing a robust index assignment (IA) scheme is the critical step of designing a

noisy channel quantizer. In IA, quantizer outputs are one-to-one mapped to a series of

indices, which usually are integers. For a noisy channel quantizer, the overall process of IA

was described [36] in three stages:

(i) an encoder mapping,

(ii) a channel index mapping, and

(iii) a decoder mapping.

The encoder mapping is the output of a quantizer. Generally, the encoder mapping is based

on natural binary representation, e.g., 2 is coded as 010. The channel index mapping,

which is mainly discussed in this work, attempts to re-order the encoder mapping for

robust transmission. In this work, unless otherwise specified, IA refers to the channel index
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mapping. The decoder mapping is the inverse function of the encoder and channel index

mapping.

Index Assignment is a class of combinatorial optimization problems that are usually

referred to as the class of NP -complete problems [37]. Heuristic algorithms are widely used

to find a “good” or “close-to-optimal” solution for these problems, since the complexity of

exhaustive search becomes prohibitively high when the problem size is large. Most heuristic

algorithms perform a deterministic search in a set of admissible configurations, and often

terminate in a local minimum. Typical IA approaches in noisy channel quantizers are:

1. Binary Switching Algorithm (BSA) [31], [32]

2. Simulated Annealing [21], [35]

3. Genetic Algorithm [33]

Experimental results indicated that the genetic algorithm found more accurate and more

consistent solutions than the BSA and the simulated annealing [33]. Therefore, we will use

the genetic algorithm in this work.

In the following, we are going to give more details about noisy channel quantizers.

2.1.1 Design Procedure of Noisy Channel Quantizers

Zeger and Gersho presented a typical design procedure of a noisy channel quantizer, called

a generalized Lloyd-Max algorithm [38]. They proposed an algorithm to design a vector

quantizer to find a quantizer with minimum expected distortion between an input vector

and a decoded (or quantized) output vector. Even though this algorithm was originally

proposed for a vector quantizer, it can be easily applied to other types of quantizers, such

as scalar quantizers and the COQ.

Let I be the set of possible indices. A noisy channel quantizer Q, illustrated in Fig. 2.1,

is defined as

Q = q ◦ Π ◦ τ ◦ Π−1 ◦ q−1 (2.1)

where τ : I → I is a memoryless noisy channel index mapping, and Π : I → I is a one-to-

one function that permutes the assignment of indices to code vector. Π−1 “unpermutes”

the IA at the receiver end. For a binary channel, the noise function τ can be represented

by

τ(i) = i⊕ n0 (i ∈ I) (2.2)
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Table 2.1 Generalized Lloyd-Max algorithm for noisy channel quantizers.

Step 1: Pick an initial codebook and IA function.

Step 2: Partition the training set optimally by using code vectors and channel conditions.
Compute centroids.

Step 3: Find an optimal IA function for the current codebook and partition.

Step 4: Find the best codebook from centroids and channel probabilities. Go to Step 2.

where n0 is the channel noise, and the operation ⊕ is the modulo-2 addition. Therefore, the

Quantizer IA

channel noise

Inverse IA Dequantizer

input

X
i j

output

Y

n0

q Π Π−1 q−1

Fig. 2.1 A noisy channel quantizer Q.

goal of finding the optimal quantizer is equivalent to finding a quantizer which minimizes

the average distortion

D
△
= E[d(X,Q(X))]. (2.3)

where d(·, ·) denotes the distortion between the input source X and the output Q(X) at

the receiver end. Minimizing D requires the joint optimum of the codebook, the partition,

and the IA function Π. When n0 = 0, this is a robust quantizer; when n0 6= 0, it is a COQ.

Generalized Lloyd-Max algorithm is applied to find the optimal noisy channel quan-

tizer Q. This leads to iterative quantizer “design loops” with monotonically reducing

distortions. The design algorithm is described in Table 2.1 and illustrated in Fig. 2.2. In

each step of Steps 2–4 of Table 2.1, the other two factors other than the objective are

assumed fixed.
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Find New
Partition

Find New
Codebook

Find New
IA

Fig. 2.2 Design loop for noisy channel quantizer.

2.1.2 Robust Quantizers

A robust quantizer encoder is trained for an error-free channel and designed to be robust

against noisy channels by assigning appropriate indices to code words. The robust quantizer

is usually used under the circumstances where codebook training time is of primary concern.

Zeger and Gersho developed an algorithm of locally optimal pseudo-Gray coding to

reduce the expected distortion caused by channel bit errors [31], [32]. Gray code is de-

veloped to minimize the Hamming distance between neighbour codewords. By applying

Gray coding, zero redundancy error control was developed by optimizing IA to minimize

the average signal distortion. This technique was applied in low-bit-rate (4.8 kb/s) speech

transmission [39], in which few redundancy bits could be allocated for error protection. An

important observation was that there always existed some reordering of a given codebook

with a nonnegative decrease in overall average distortion in the quantizer system. There-

fore, an improvement could always be achievable in any quantizer system by using optimal

pseudo-Gray coding.

Anti-Gray coding was proposed by Kou et al. to encode code vectors as far as possible in

the sense of Hamming distance [40]. Consequently, at the receiver end, more erroneous code

vectors were detected, and associated output values were approximated so as to achieve

lower distortion of the reconstructed signals. This implies that some signal property, such

as smoothness, can be used to detect errors.

Chang et al. studied parametric modeling of noisy channel by using an N -transition-

state Markov channel model and IA to achieve a vector quantizer with high robustness

against channel errors [33]. A genetic algorithm was applied to find a suboptimal IA to

minimize the distortion introduced by bit errors. The experimental results showed that
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the genetic algorithm helped to find a more accurate and more consistent solution than the

BSA and the simulated annealing.

2.1.3 Channel-Optimized Quantizer

The encoder-decoder pair in a COQ system is jointly trained according to a given channel

with a certain bit error rate (BER). The COQ is more suitable when transmission is needed

over a channel with a high BER.

As a typical COQ, a channel-optimized scalar quantizer (COSQ) was developed by

Farvardin and Vaishampayan [34]. Compared with the robust quantizer, the improvements

achieved by the COSQ were obvious at high BERs. This method was extended to design

a channel-optimized vector quantizer (COVQ) [35]. In addition to further study on Gauss-

Markov sources, they provided a geometric structure of the COVQ [36]. As a step of

this method, the simulated annealing was applied to find a “good” solution for IA. The

experimental results showed that a COVQ could obtain higher robustness than a robust

vector quantizer according to the actual channel characteristics. The COVQ was designed in

terms of k-dimension and one bit per source sample (bpss). For the purpose of comparison,

a simple method of unequal error protection (UEP) was applied to improve the robustness

of a vector quantizer against noisy channel. In UEP, the first bit of each k bits in a code

vector was replaced by the second bit. The resulting vector quantizer was equivalent to a

vector quantizer with k−1
k

bpss. When k = 8, the performance of the COVQ was close to

and even higher than that of the vector quantizer with UEP. Furthermore, a COVQ did not

bring extra complexity and delay compared with a conventional source encoder followed by

a channel code.

However, since the COQ is trained for certain channel conditions, its design usually

requires more computations than that of the robust quantizer. Moreover, it provides lower

performance when channel conditions are good, or when its design parameters are not

matched to actual channel conditions.

2.2 Multiple Description Coding

Multiple description coding (MDC) was originally proposed to provide protection from

channel failure for multimedia transmissions, in which some distortion at the receiver is

tolerable [16], [17], [41]. Later on, MDC has been widely studied as a packet-loss recovery
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technique in speech, image and video transmissions over erasure networks [12], [42]–[66].

2.2.1 Introduction

In multiple description coding, the source signals are decomposed into two or more highly

correlated descriptions, and, then, sent over independent erasure channels. At the receiver,

if all descriptions are correctly received, a fine copy of the transmitted signals is recon-

structed. Otherwise, if just a portion of descriptions is correctly received, a coarse copy

can be obtained. The more descriptions are correctly received, the higher fidelity of the

reconstructed signals is.

Multiple description coding provides protection from channel failure or packet losses at

the cost of higher coding rate, since some redundancy is added. The challenge in designing

a multiple description encoder is to obtain a good tradeoff between the coding gain and

the reconstruction quality from one description.

In general, methods of generating multiple descriptions fall into two categories:

• source coding: In techniques based on source coding, the source data are partitioned

into several sets, and then compressed independently to obtain descriptions. It in-

volves two typical families:

– MD quantization, which is applied in our work;

– MD correlating transforms (MDCT).

These techniques are briefly reviewed in this section.

• channel coding: When channel coding is utilized to generate multiple descriptions,

more powerful FEC codes are applied to protect more important information. More

details will be described in Section 2.4.

Multiple description quantization

Techniques of MD quantization, such as MD scalar quantizer (MDSQ) and MD vector

quantizer, are usually applied for memoryless sources. The MDSQ is flexible to choose the

relative importance of the central distortion and each side distortion by index assignment

(IA) [18], [67]. The basic idea of the MDSQ is easy to extend to the MD vector quan-

tizer. Various techniques, such as MD lattice vector quantization and MD trellis-coded

quantization, were developed to reduce the difficulty of the IA problem [68]–[71].
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The MDSQ was applied to sources with memory in multiple description transform

coding by Batllo and Vaishampayan [72]. Sources are transformed into independent coef-

ficients by using the Karhunen-Loéve transform (KLT). Transform coefficients are further

decomposed into multiple descriptions by using the MDSQ. The asymptotic analysis of the

performance is provided. It is inferred that the optimal MD coding for the transform coef-

ficients is equivalent to the optimal MD coding for the original source. Thus, dependency

between transform coefficients is produced and used to estimate transform coefficients,

when a description is lost. This method is further applied in audio, image and video coding

(See details in Section 2.2.3).

Multiple description correlating transforms

In the MDCT, transforms are applied to generate correlated multiple descriptions. Goyal

et al. utilized a tight frame expansion to generate multiple descriptions [46]. It is similar

to block channel coding, except that it is applied on analogue signals before quantization.

Furthermore, Goyal et al. proposed an algorithm to generate two or more descriptions

by using square, linear transforms and scalar quantization. If one description or more is

lost, the output levels are estimated by using the statistical correlation introduced by the

transform [73]. This algorithm was further generalized and applied for image and audio

coding [74].

Similar to the algorithm proposed by Goyal et al. [74], Wang et al. developed pairwise

correlating transform, by which controlled dependency among the transformed coefficients

was set up [75]. After deriving the optimal redundancy allocation among a given set of

pairs and the optimal pairwise strategy, the authors applied this transform to image coding.

MDC over noisy channels

MD techniques based on channel coding utilize forward error control (FEC) codes to pro-

duce multiple descriptions, and recover lost description(s) [12], [13], [48], [53], [76].

Since our work is based on the MDSQ, we will focus on the existing work based on the

MDSQ. A more thorough survey was provided by Goyal [15]. In the following, we will go

through the MDSQ in details, and use it as the example to explain the MD problem.
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2.2.2 The MD Rate Distortion Region

In the MDC system with two channels and three receivers, illustrated in Fig. 1.1, source

samples at the bit rate R0 bpss are split into two descriptions, which are encoded at

rates R1 bpss and R2 bpss respectively. In order to reconstruct the original signal with

acceptable quality from each description at the receiver, two descriptions are required to

be correlated. Thus, source coding efficiency (in the rate-distortion sense) is reduced and

redundancy is increased. The tradeoff between central and side distortions is constrained

by the correlation between the descriptions. The theoretical framework in the sense of rate

distortion was discussed in [16], [17], [41].

The central distortion D0(R0) represents the distortion achieved with both descriptions.

Side distortions D1(R1) and D2(R2) represent the average distortion achieved respectively

by one individual description. Therefore, for the two-channel case, the MD rate distortion

region is defined by the set of achievable 5-tuples (R1, R2, D0, D1, D2). Rs = R1+R2

2
denotes

the average side bitrate in bpss. Ds = D1+D2

2
denotes the average side distortion. In our

work, we only study the balanced case, where Rs = R1 = R2 and Ds = D1 = D2.

For an independent and identically distributed (i.i.d.) Gaussian random source X with

variance σ2, the MD region (R1, R2, D0, D1, D2) satisfies

Di ≥ σ2 2−2Ri , for i = 1, 2, (2.4)

D0 ≥ σ2 2−2(R1+R2) · γD(R1, R2, D1, D2), (2.5)

where γD = 1, if D1 + D2 > σ2 + D0; and

γD =
1

1−
[√

(1−D1)(1−D2)−
√

D1D2 − 2−2(R1+R2)

]2 , otherwise. (2.6)

In the balanced case, under the assumptions Rs = R1 = R2 >> 1 and D1 = D2,

there exist encoders, for which D0 and Ds reduce no faster than 2−2Rs(1+α) and 2−2Rs(1−α)

respectively, where 0 < α < 1. Letting α close to 1 minimizes the redundancy and the

central distortion decreases at the cost of greater side distortion. Letting α close to 0

maximizes redundancy with the extreme case that duplicates information over the two

descriptions.
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2.2.3 Applications on Image Coding

The MDC has been widely studied in areas of image communications, which is a potential

application of this work. Transmitted over packet networks, images are usually split and

encapsulated into packets. Channel failures in conventional MDC systems are generally

treated as packet losses. The objective of MDC systems in image communications is to

obtain acceptable reconstruction quality with receiving some packets, and the finest qual-

ity with all packets. In addition, conventional MDC approaches, which were developed

originally based on independent signals, are also modified to adapt to the state-of-the-

art techniques in image compression, such as embedded subband coding and progressive

transmissions. A short review is given here as reference for the future work.

Although there is a lot of existing work to achieve MD image coding, a typical system

of MD image coding can be summarized and illustrated in Fig. 2.3. In MD image coding,

signals of an image are first converted to less correlated coefficients by transform coding,

such as discrete cosine transform and wavelet transform. An MD encoder splits coefficients

into two or more correlated descriptions, followed by entropy coding, such as arithmetic

coding and Huffman coding. After adding FEC codes, packets are transmitted through

error-prone channels. At the receiver end, transmission errors are detected and possibly

corrected by utilizing the error correcting capability of the applied channel codes. After

entropy decoding, an MD decoder attempts to reconstruct transform coefficients from re-

ceived descriptions. The reconstructed coefficients are inverse transformed into an image.

Wavelet subband coding and embedded progressive coding are widely utilized in cur-

rent standards and techniques of image compression, such as EZW [7], SPIHT [8] and

JPEG2000 [10], [77]. Techniques developed based on MD quantization and MDCT have

been adapted to these techniques to improve the robustness of image transmissions over

noisy channels.

Image coding based on MD quantization

First, MD quantizers are utilized to decompose transform coefficients into multiple de-

scriptions. Srinivasan and Chellappa tried to generate optimal multiple descriptions based

on the classification of subbands [44]. This classification scheme divides each subband

into several classes by minimizing the resulting central distortion. Coefficients in different
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Fig. 2.3 A typical system of multiple description image coding.

classes are optimally decomposed into two descriptions by using appropriate MDSQs under

constraints of rates and the average side distortion.

Servetto et al. utilized the MDSQ to decompose a wavelet subband coded image into

two descriptions, each of which were entropy encoded [51]. An algorithm based on dy-

namic programming was developed to find an approximate optimal solution in the sense

of rate-distortion function. Furthermore, this algorithm of MD image coding was extended

to generate arbitrary number of descriptions by applying repetition codes (n, 1, n) on two

descriptions of low frequency subband coefficients. Consequently, the quality of the re-

constructed image depended on the number of received packets, instead of exactly which

packets were received. Experimental results showed that in the case of two descriptions, the

proposed algorithm outperformed MD image coders of Wang et al. [75], and of Srinivasan

and Chellappa [44]; in the case of many descriptions, it outperformed MD image coders of

Goyal et al. [45], and of Jiang and Ortega [47].

The original MD quantizers have also been modified to accommodate to embedded

image coding. Guionnet et al. developed two embedded multiple description coding algo-

rithms for progressive image transmissions [54]. Embedded index assignment was developed

based on the uniform MDSQ in the first algorithm. The resulting indices were compressed

by EBCOT-based bit-plane coding to achieve progressive bitstreams. The second method

was based on a combination of subband polyphase decomposition of wavelet coefficients and

selective quantization of polyphase components. It was followed by JPEG2000 or SPIHT
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coding to accomplish progressivity. At low bit rates and high redundancy, the first one

achieved better performance than the second one.

Gavrilescu proposed another type of embedded scalar quantizer, named the embedded

MDSQ [78], [79], based on quad tree coding [80]. This algorithm was generalized to M

channels. The experimental results showed that the embedded MDSQ outperformed the

uniform MDSQ.

Coarser quantizers have been applied to generate redundancy as well. Jiang and Or-

tega attempted to achieve MDC by using polyphase transform and selective quantization

(PTSQ) [47]. Redundancy in the PTSQ was generated by using a lower resolution scalar

or vector quantizer at a given bit rate. The authors also derived the optimal bit alloca-

tion to achieve minimum central distortion and average side distortion for a given total

coding rate. Thereafter, the PTSQ was applied to transmit SPIHT-encoded images over

erasure channels. Furthermore, the PTSQ was extended to generate arbitrary number of

descriptions by Sagetong and Ortega [49].

An advantage of the PTSQ is its simplicity and flexibility, so that it is widely utilized

in progressive image transmissions. Some variants of the PTSQ are developed for various

image coding, such as EZW, SPIHT and JPEG2000. An MD construction algorithm for

SPIHT was proposed by Miguel et al. [81]. By combining differently important bitstreams

from various trees into one description, each description provided more or less information

of other trees. Eom and Kim modified the thresholds of EZW to the powers of 1/4, instead

of 1/2 in the original EZW algorithm, so as to form two descriptions [60]. The PTSQ

was also applied in generating multiple descriptions in JPEG2000. In the environment of

noisy channels, Pereira et al. tried to optimally allocate bit rates among subband blocks

so as to achieve minimal central distortion with constraints of a certain side distortion and

BER [56]. Tillo and Olmo [62] utilized coarser codeblock truncation with lower bit rates

to generate redundancy, instead of coarser quantization.

Furthermore, the PTSQ has been combined with packetization in robust image trans-

missions [64]–[66]. Since the lowest frequency subband in wavelet transformed images

provides most energy, the PTSQ-based techniques are applied to provide more protection

for coefficients from this subband. Coefficients of higher frequency subbands are separately

packetized. Consequently, each packet consists of information from all subbands.
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Image coding based on MDCT

The multiple description correlating transforms are applied on image coding. Goyal et al.

applied square correlating transforms [73] and overcomplete frame expansions [46] to deal

with images [45]. Wang et al. utilized pairwise correlating transforms to image coding as

well [75].

In addition, other types of MDC techniques have been developed for image coding.

Ashwin et al. utilized correlation among wavelet coefficients to generate two descriptions

and achieve better concealment performance [55]. The correlation matrix of wavelet coef-

ficients is produced by the encoder and transmitted. Based on the correlation matrix, the

lost wavelet coefficients are estimated.

2.2.4 Applications on Video Coding

The MDC is also used in video transmissions, such as work by Puri et al. [53] and Goshi et

al. [14]. Wang et al. gave a broad review on MD video delivery [63]. A particular challenge

in MD video transmissions is how to deal with motion compensation.

2.2.5 Summary

As a joint source-channel coding approach, the MDC was originally developed to provide

high fidelity over error-free channels as well as high robustness against channel failures.

For the Gaussian random source, the optimal MDC was theoretically discussed in the rate-

distortion sense. The MDC has been widely studied in image and video transmissions. MD

quantization and MD correlating transforms are two typical methods to generate multiple

descriptions. Usually, however, the MDC is individually designed for specific kinds of

signals, such as images and videos.

In this work, we will focus on MD quantization and extend the MDC to combat not

only channel failures but also bit errors.

2.3 The Multiple Description Scalar Quantizer

The multiple description scalar quantizer (MDSQ) was developed for decomposing the

quantized source samples into two correlated descriptions, which are sent over two indepen-

dent channels [18]. The MDSQ was refined further under the constraints of equal entropy
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over two balanced channels, i.e., the entropy-constrained MDSQ [67]. In the entropy-

constrained MDSQ, entropy coding, such as Huffman coding, was applied after MDSQ to

achieve higher compression efficiency.

The model of the MDSQ system is the same as the typical MDC system, shown in

Fig. 1.1. It consists of two channels, which may fail at any time. Channel conditions are

available at the decoder, but not at the encoder. The encoder of an MDSQ sends data over

each channel at Rs bpss. The decoder reconstructs the signals received from the channel(s)

working correctly. The objective of designing a pair of encoder and decoder is to minimize

the average distortion when both channels work, subject to the constraint on the average

distortion when only one channel works.

2.3.1 Problem Formulation

Let x ∈ X be the output of a discrete-time, continuous alphabet source without memory.

fX(x) is the pdf of the source X. Let each real-valued sample x be quantized by an L-level

single description scalar quantizer (SDSQ) to an index l through the quantizer function

q0(x) = l. L denotes the set of the SDSQ indices l, i.e., L = {0, 1, · · · , L − 1}. The

quantization partition Al associated with l is given by Al =
[
xL

l , xH
l

)
. The reproduction

level cl associated with l is chosen as the centroid of the corresponding Al:

cl
△
= q−1

0 (x)
△
=

∫

Al

xfX(x)dx.

Each SDSQ index l ∈ L is then mapped to a pair of MDSQ indices (i, j) through an

IA function a(l): (i, j) = a(l). MDSQ indices i and j are two descriptions of the source

sample x transmitted over independent channels. I denotes the set of MDSQ indices i:

I △
= {i ∈ N : ∃l ∈ L, j ∈ N : (i, j) = a(l)},

and J denotes the set of MDSQ indices j:

J △
= {j ∈ N : ∃l ∈ L, i ∈ N : (i, j) = a(l)}.

When i and j are represented in Rs bpss respectively, i, j ∈ {0, 1, · · · ,M − 1}, where

M = 2Rs , and M ≤ L. The IA function a(l) can be represented in mapping a cell of a
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Fig. 2.4 SDSQ indices 0, 1, 2 are mapped to MDSQ index pairs (i, j).

matrix to a row and column pair, as illustrated in Fig. 2.4. SDSQ indices l appear in the

matrix, whereas MDSQ indices i and j are the row and column numbers, respectively. The

two components of the mapping are referred to i = a(1)(l) and j = a(2)(l), respectively. At

the decoder, the inverse mapping, which can be deduced, e.g., from Fig. 2.4, is denoted by

l = a−1(i, j).

The MDSQ maps the source sample x to the reconstruction levels cl, c
(1)
i , and c

(2)
j . The

values of cl, c
(1)
i , and c

(2)
j are accordingly taken from their codebooks, X (0) = {cl, l ∈ L},

X (1) = {c(1)
i , i ∈ I}, and X (2) = {c(2)

j , j ∈ J }. The MDSQ consists of one central encoder,

q0, two side encoders, q1 and q2, one central decoder, g0, and two side decoders, g1 and g2:

q0 : q0(x) = l, l ∈ L, (2.7)

q1 : q1(x) = i, i ∈ I, (2.8)

q2 : q2(x) = j, j ∈ J , (2.9)

and

g0 : g0(l) = cl, l ∈ L, (2.10)

g1 : g1(i) = c
(1)
i , i ∈ I, (2.11)

g2 : g2(j) = c
(2)
j , j ∈ J , (2.12)

where q0, q1 and q2 produce indices l, i and j, respectively; g0, g1 and g2 output the

reconstruction levels corresponding to indices l, i, and j from the codebooks X (0), X (1),

and X (2), respectively. Let q = (q0, q1, q2) be the encoder, g = (g0, g1, g2) be the decoder.

The central partition used by q0 is denoted as A = {Al, l ∈ L} on R, where Al =
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{x : q0(x) = l}. Side partitions

A
(1)
i = {x : ∃l ∈ L, q(x) = l, i = a(1)(l)} (2.13)

and

A
(2)
j = {x : ∃l ∈ L, q(x) = l, j = a(2)(l)} (2.14)

satisfy conditions:

A
(1)
i =

⋃

j∈J

Aa−1(i,j), (2.15)

A
(2)
j =

⋃

i∈I

Aa−1(i,j). (2.16)

Because l is one-to-one mapped from (i, j) by a−1(i, j), where i ∈ I and j ∈ J , for

convenience of presentation, we use the two variables ij to represent the mapping function

a−1(i, j). Therefore, two side partitions are written by

A
(1)
i =

⋃

j∈J

Aij , (2.17)

A
(2)
j =

⋃

i∈I

Aij . (2.18)

Then, the MDSQ is completely defined by A, X (0), X (1), and X (2).

Let random variables X̂(m) represent the output of decoder gm, m = 0, 1, 2. Let d(·, ·)
be the per-sample distortion between the source sample and the output of the central or

side decoders. The average central and side distortions are given, respectively, by

D0 = E
{

d
(
X, X̂(0)

)}
=

∑

l∈L

∫

Al

d (x, cl) fX(x)dx, (2.19)

D1 = E
{

d
(
X, X̂(1)

)}
=

∑

i∈I

∫

A
(1)
i

d
(
x, c

(1)
i

)
fX(x)dx, (2.20)

D2 = E
{

d
(
X, X̂(2)

)}
=

∑

j∈J

∫

A
(2)
j

d
(
x, c

(2)
j

)
fX(x)dx. (2.21)
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And the average side distortion is given by

Ds =
D1 + D2

2
(2.22)

2.3.2 Optimum Encoder and Decoder

For given values M , D1max
, and D2max

, an MDSQ is said to be optimal if it minimizes D0

subject to D1 ≤ D1max
and D2 ≤ D2max

. The same as [18], in our work, only balanced

descriptions are considered, where two equal rate descriptions are said to be balanced if

they result in identical average distortions when being used individually.

The optimum encoder A∗ and decoder g∗ are obtained by taking the derivative of the

Lagrangian function, H(A, g , λ1, λ2), which is given by

H(A, g , λ1, λ2) = D0 + λ1(D1 −D1max
) + λ2(D2 −D2max

), (2.23)

where λ1 ≥ 0 and λ2 ≥ 0. Let A∗ and g∗ be such that A∗ minimizes H(A, g∗, λ1, λ2) for

all A, and g∗ minimizes H(A∗, g , λ1, λ2) for all g . An iterative descent algorithm can be

used to determine the optimal partition A∗ and codebook g∗.

By using square error distortion, (2.23) is simplified. Here, we omit the details of this

derivation, which is available in [18], and only provide the results, which are used in our

work to form balanced multiple descriptions adaptive to the source statistics.

Define

αl = cl + λ1c
(1)
i + λ2c

(2)
j , (2.24)

βl = (cl)
2 + λ1

(
c
(1)
i

)2

+ λ2

(
c
(2)
j

)2

, (2.25)

and

LL
l = {l′ ∈ B : αl′ < αl}, (2.26)

LH
l = {l′ ∈ B : αl′ > αl}, (2.27)

where B = L \ {l}. Then the optimum central partition A∗ is defined by the lower and



28 Joint Source-Channel Coding for Robust Transmissions

upper endpoints, tLl and tHl , of Al:

Al =





∅, if tLl > tHl ,

(
tLl , tHl

)
, if LL

l = ∅,

[
tLl , tHl

)
, otherwise,

(2.28)

where

tLl =





−∞, if LL
l = ∅,

max
l′∈LL

l

βl−βl′

2(αl−αl′ )
, otherwise;

(2.29)

and

tHl =





∞, if LH
l = ∅,

min
l′∈LH

l

βl−βl′

2(αl−αl′ )
, otherwise.

(2.30)

Once the optimum partitions are obtained, the reconstruction levels are calculated as

the centroids of all source samples falling into the same intervals. The optimum decoders

are given by

g1(i) = E
{

X̂(1)
∣∣̂i = i

}
, i ∈ I, (2.31)

g2(j) = E
{

X̂(2)
∣∣ĵ = j

}
, j ∈ J , (2.32)

g0(l) = E
{

X̂(0)
∣∣l̂ = l

}
, l ∈ L, (2.33)

where î and ĵ are the received indices corresponding to transmitted i and j, respectively;

and l̂ = a−1(̂i, ĵ).

For a given L, if λ1 = λ2 = 0, the MDSQ is actually an L-level Lloyd-Max quantizer,

that is to say, D0 is minimized. In order to achieve balanced side distortions, i.e., D1 = D2,

we set λ1 = λ2 > 0. If λ1 and λ2 are very small, the central distortion of the MDSQ is

close to the optimal distortion obtained by a Lloyd-Max quantizer, but side distortions

may not be close, i.e., D1 6≈ D2. On the contrary, if λ1 and λ2 are large, it may achieve

close side distortions at the cost of a higher central distortion. Thus, the MDSQ is a

modified Lloyd-Max quantizer with considering balanced side distortions. It attempts to
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Table 2.2 The design algorithm of the optimal MDSQ.

Step 1: SET iteration counter n = 0.

Select an IA function,

Select an initial central partition A(n),

Select Lagrange multipliers λ1, λ2 ≥ 0.

SET H(n) =∞.

SET the stopping threshold δ to a suitably small value.

Step 2: n←− n + 1.

Determine the optimum decoder g (n) for using (2.31)–(2.33) for fixed A(n−1).

Step 3: Determine the optimum partition A(n) for fixed decoder g (n) according to
(2.28)–(2.30).

Step 4: Compute the Lagrangian function, H(n), using (2.23).

Step 5: IF H(n)−H(n−1)

H(n) < δ

THEN STOP
ELSE GOTO Step 2.

find a good tradeoff between a “close-to-minimum” central distortion and well-balanced

low side distortions.

2.3.3 Design Algorithm

The design algorithm of the optimal MDSQ is described in Table 2.2. This design procedure

is actually a specific implementation of the generalized Lloyd-Max algorithm described in

Table 2.1 and Fig. 2.2. Here, the IA scheme is given. At each iteration, the optimum

decoder g is first calculated in terms of the current partition A. Based on the refreshed

decoder, a new partition A is obtained. Then the objective function is computed so as to

judge if this function has converged; if so, the algorithm terminates.

2.3.4 The Index Assignment Problem

We use a simple example to demonstrate the IA problem. Assume that X is uniformly

distributed over (−2, 2) and that R0 = 2 bpss is used in the SDSQ. Consider various MDSQ



30 Joint Source-Channel Coding for Robust Transmissions

designs illustrated in Fig. 2.5, Fig. 2.6, Table 2.3 and Table 2.4. Figure 2.5 gives four IA

schemes: (a) R1 = R2 = 2 bpss, each SDSQ index l is duplicated as MDSQ indices i

and j respectively; (b)(c)(d) R1 = R2 = 1 bpss. SDSQ indices l are filled in cells. IA

matrices indicate mapping between SDSQ indices l and MDSQ index pairs (i, j). Blank

cells suggest that associated MDSQ index pairs are not mapped to SDSQ indices. For

instance, in Fig. 2.6(a), the SDSQ index 0 is mapped to the MDSQ index pair (0 , 0 ); in

the mean time, the MDSQ index pair (0 , 1 ) is not mapped to any SDSQ index. Figure 2.6

shows SDSQ partitions, reconstruction codebooks, indices l and MDSQ index pairs (i, j),

which correspond to the four IA schemes illustrated in Fig. 2.5.

Tables 2.3 and 2.4 shows side codebooks, central distortions and side distortions in

mean square errors (MSE). Table 2.4 indicates that IA schemes (a)–(c) provide the same

central distortions, which is lower than that of the IA scheme (d). The IA scheme (a)

provides the lowest and balanced side distortions; however, the total bit rate R1 + R2 of

two descriptions is two times as much as other schemes. Even though the total bit rate

R1 +R2 and central distortions of IA schemes (b) and (c) are low, their side distortions are

high and not balanced. Therefore, the IA scheme (d) provides a good tradeoff between the

total bit rate R1 + R2, central and side distortions.

From this example, we infer that the achievable total bit rate R1 + R2, central and side

distortions can be determined by the IA. It is easy to search for an optimal solution in this

example; nevertheless, the computational complexity grows significantly, as the total bit

rate R1 + R2 increases. The total number of all possible IA schemes is L! ·
(

M2

L

)
= M2!

(M2−L)!

for given M and L. In this subsection, we introduce the IA algorithms developed by

Vaishampayan [18]. In later chapters, we will propose robust IA algorithms for the MDSQ

to provide protection against packet losses and bit errors.

Vaishampayan gave two IA schemes: modified nested (MN) and modified linear (ML)

IA [18]. The MLIA showed better performance in the sense of rate-distortion. In order to

encode the source at Rs bpss on each channel, L index pairs are selected from the main di-

agonal and the 2k diagonals closest to the main diagonal of an M×M IA matrix. Examples

of MNIA and MLIA are illustrated in Figs. 2.7 and 2.8. Each IA implementation is defined

by (Rs, k, L), such as MNIA(3, 1, 22) in Fig. 2.7(a) and MLIA(3, 1, 21) in Fig. 2.8(a).
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Fig. 2.5 Four index assignment schemes.

Table 2.3 Side codebooks associated with IA schemes illustrated in Fig. 2.5.

x̂
(1)
0 x̂

(1)
1 x̂

(1)
2 x̂

(1)
3 x̂

(2)
0 x̂

(2)
1 x̂

(2)
2 x̂

(2)
3

(a) -1.5 -0.5 0.5 1.5 -1.5 -0.5 0.5 1.5
(b) -1 1 — — -0.5 0.5 — —
(c) -1 1 — — 0 0 — —
(d) -2/3 4/3 — — -4/3 2/3 — —

Table 2.4 Central and side distortions in MSE associated with IA schemes
illustrated in Fig. 2.5.

D0 D1 D2

(a) 1/12 1/12 1/12
(b) 1/12 1/3 13/12
(c) 1/12 1/3 2/3
(d) 4/27 4/9 4/9

2.3.5 Extensions on MD Index Assignment

As described above, the design of an MD quantizer can be divided into two stages: the IA

and codebook training. The index assignment plays an important role in the MD quantizer.

Some work has been done to obtain the optimal IA scheme of an MD quantizer. Because

of its prohibitively high computational complexity, heuristic algorithms are widely applied.

Berger-Wolf and Reingold modeled IA over two and more channels as a combinational

optimization problem of number arrangement in a matrix [19]. The authors proposed a

method to derive lower bounds on the distortions at given channel rates, as well as an

algorithm to give the upper bound for the arbitrary number of channels. Furthermore,
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Balogh and Csirik studied the IA problem of the MDSQ with two identical channels for an

unbounded discrete information source [82]. They used two measures of side distortions:

the spread and the variance. For both measures, new lower and upper bounds were derived.

Görtz and Leelapornchai extended the binary switching algorithm [32] to obtain the

optimal IA of an MD vector quantizer with an arbitrary number of descriptions [83]. The

experimental results showed that this algorithm achieved higher robustness against packet

losses than the ML IA scheme provided in [18]. Yahampath applied simulated annealing to

obtain the optimal IA for an MD vector quantizer with an arbitrary number of descriptions

at equal or unequal transmission rates [20].

2.3.6 The MDSQ over Noisy Channels

As a direct application, the MDSQ was applied in wireless communications by Yang and

Vaishampayan [84]. Over slow fading Rayleigh channels, the MDSQ resulted in not only a

smaller interleaving delay than the conventional channel code-based approaches, but also

significant improvement over a system with a maximum ratio combiner.

The technique of the COQ was applied in the MD system as well. Yahampath developed

an algorithm to allocate MD index pairs so as to minimize the overall distortion in the

presence of packet loss [20]. Zhou and Chan applied an extended multiple-channel optimized

quantizer design to compensate the distortion introduced by erased symbols [21]. However,

if the actual channel conditions, such as packet loss rate, symbol error probability and loss

probability, were quite different from those at the design stage, the performance of COQ-

based MDC algorithms developed in [20] [21] degraded much, even worse than that of the

original MDSQ.

2.4 FEC-based Multiple Description Coding

Forward error correction (FEC) is a well-known channel coding technique that provides

protection against bit errors. FEC is also utilized to provide protection in MDC. Puri

and Ramchandran exploited unequal error protection (UEP) to generate robust multiple

descriptions from prioritized source bit streams [48]. Different from “source coding” based

MDC techniques mentioned above, FEC-based MDC distributes non-overlapping informa-

tion evenly in multiple descriptions according to its importance. More powerful FEC codes

are exploited to protect more important information. As a result, more important infor-
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mation is more likely to be recovered by the applied FEC codes. This technique can be

widely and easily extended to various source, such as images [12], [13], [48], [76], [85], and

videos [14], [53].

Puri and Ramchandran interleaved the source bit stream, and utilized Reed-Solomon

(RS) codes to provide protection from lost descriptions [48]. The mechanism is illustrated

in Fig. 2.9. The original progressive bit stream of the source is partitioned into m quality

levels, which are protected by RS codes, and then grouped into n descriptions. Stronger RS

codes are applied to protect more important quality levels. Every description is designed

to be “equally” important. The ith level is protected by RS(n, i, n − i + 1)1 code. As the

result, when the number of lost descriptions is not more than n− i, the lost description(s)

can be recovered. This idea was further utilized to generate MD of videos so as to protect

from lost packets [14], [53]. Moreover, based on FEC-based MDC, Sachs et al. added FEC

codes within every packet so as to provide protection against both bit errors and packet

losses for image transmissions over wireless packet networks [12].

2.5 Summary

Due to limited bandwidth in transmissions, source signals are compressed by quantizers.

Compressed data are vulnerable to bit errors incurred by noisy channels. Techniques for

noisy channel quantization are developed to improve the fidelity of reconstructed signals

at the receiver without ARQ. Over erasure channels, the MDC was introduced to achieve

fine quality of the reconstructed signals with all descriptions, and acceptable quality with

some descriptions. As an important step, approaches of IA are widely studied in the MDC

system. In addition, the MDC system is applied in image and video communications to

accomplish acceptable reconstruction quality in the presence of packet loss.

Existing work on IA in an MD system only used natural binary codes of the chosen

index pairs, which are vulnerable to bit errors. In the MDC system, once bit errors are

so many that applied FEC codes fail to decode, the contaminated descriptions are usually

dropped. It results in significant performance degradation.

In our work presented in the following chapters, we, first, try to improve the robust-

ness of MD index pairs against bit errors. Furthermore, we intend to utilize the residual

1An i-tuple message is mapped to an n-tuple RS codeword, where the minimum Hamming distance is
n− i + 1.
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information in the contaminated descriptions to reduce adverse effects of bit errors. There-

fore, we propose the error resilient multiple description coding (ERMDC). With deliberate

design, the ERMDC exploits the same redundancy as the traditional MDSQ to achieve

higher robustness against both bit errors and packet losses, which usually occur in hybrid

wireline-wireless networks.
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Fig. 2.6 SDSQ partitions, codebooks, indices and MDSQ index pairs asso-
ciated with IA schemes illustrated in Fig. 2.5.



36 Joint Source-Channel Coding for Robust Transmissions

0 2

1 3 4

5 6 8

7 9 10

11 12 14

13 15 16

17 18 20

19 21

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

ro
w
 (
i 
)

column ( j )

(a)

0 2 4

1

3

5 7 9

6 10 11 13

8 12 15 16 18

14 17 20 22 24

19 21 25 27 29

23 26 30 31

28 32 33

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

ro
w
 (
i 
)

column ( j )

(b)

0 2 4 6

1

3

5

7 9 11 13

8 14 16 18 20

10 15 21 22 24 26

12 17 23 28 29 31 33

19 25 30 35 36 38

27 32 37 40 42

34 39 41 43

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

ro
w
 (
i 
)

column ( j )

(c)

0 2 4 6 8

1

3

5

7

9 11 13 15 17

10 18 20 22 24 26

12 19 27 29 31 33 35

14 21 28 36 37 39 41

16 23 30 38 43 44 46

25 32 40 45 48 49

34 42 47 50 51

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

ro
w
 (
i 
)

column ( j )

(d)

Fig. 2.7 Modified nested index assignment (MNIA) for Rs = 3, (a) k = 1,
L = 22; (b) k = 2, L = 34; (c) k = 3, L = 44; and (d) k = 4, L = 52.
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Fig. 2.8 Modified linear index assignment (MLIA) for Rs = 3, (a) k = 1,
L = 21; (b) k = 2, L = 33; (c) k = 3, L = 41; and (d) k = 4, L = 49.
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Fig. 2.9 FEC-based MDC: The progressive source bit streams are parti-
tioned into m quality levels protected by RS codes, and grouped into n de-
scriptions.
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Chapter 3

Error Resilient Multiple Description

Coding

As mentioned in Chapter 2, the MDC was originally proposed to provide protection against

channel failures, and, further, packet losses over packet networks. We propose the error

resilient multiple description coding (ERMDC) to combat both packet losses and bit errors.

In this chapter, after a brief overview of the proposed ERMDC principle, the optimum

ERMDC decoder is obtained. Experimental results indicate that, with similar redundancy,

the ERMDC decoder outperforms the classical MDSQ decoder in the presence of bit errors1.

3.1 Introduction

The encoder of the MDC decomposes source samples into two or more correlated descrip-

tions, and transmits them independently over vulnerable channels. MDC decoders recon-

struct the received signals with acceptable quality from each individual description, and

finer quality from more descriptions. In this work, we only consider the situation with two

descriptions. A classical MDC system with two channels and three decoders is illustrated

in Fig. 1.1.

In a single description (SD) quantizer, the index assignment (IA) is a one-to-one map-

ping between quantizer outputs and a series of integers, called indices. In a quantizer-based

MDC system, such as the MDSQ [18], the IA is a one-to-one mapping between SD indices

1This work has been presented at the 13th IEEE International Conference on Image Processing
(ICIP’06), Oct. 2006 [22], and in IEEE Transactions on Signal Processing, Aug. 2008 [24].
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and MD index pairs from multiple descriptions. It splits a single description into multi-

ple descriptions with approximately equal and minimized side distortions. IA methods for

MDSQ design was described by Vaishampayan [18]. An IA approach for more than two

descriptions was developed by Berger-Wolf and Reingold [19]. Gortz and Leelapornchai

presented a practically feasible IA algorithm for an MDVQ with an arbitrary number of

descriptions [83]. A refined IA method was proposed by Balogh and Csirik to obtain two

well-balanced descriptions [82].

In a conventional MDC system, all channels are assumed to have an on/off characteristic,

i.e., data is either received correctly or lost completely [18]–[21]. However, due to noisy

wireless channels, received descriptions usually contain bit errors. Channel codes or FEC

codes are applied to accomplish average reliability in delay-constrained transmissions, such

as image [48] and video communications [86].

Since the error correction capability of applied channel codes is usually limited and

fixed, not all bit errors can be corrected. Therefore, after decoding FEC codes in the two

descriptions, three scenarios usually exist at the receiver end:

• Scenario I : both descriptions are error-free;

• Scenario II : one description is error-free, but not both;

• Scenario III : both contain errors.

The conventional MDC system deals with Scenario I by using the central decoder. The

achieved distortion is called the central distortion. In Scenario II, the erroneous description

is thrown away. The correct description is decoded by a side decoder. The resulting side

distortion is much higher than the central distortion. In Chapters 3 and 4, the error resilient

multiple description coding (ERMDC) is developed to deal with Scenario I and II by

utilizing the inherent redundancy and dependency among multiple descriptions to improve

the capability of error detection and, furthermore, reduce the distortion of the reconstructed

signals. This new technique is related to the noisy channel quantizer. The existing work

on the IA in an MDC system only used natural binary labelling of the chosen index pairs.

The minimum Hamming distance between two binary representations of selected index

pairs is one bit. Therefore, as a result of one-bit transmission error, a selected index pair

may be changed to either an unused index pairs, which is a detectable error, or another

used index pair, which cannot be detected. In addition to achieve balanced descriptions,
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an ERMDC encoder is proposed to improve the error detection capability of the ERMDC

decoder. Since the ERMDC does not utilize such extra redundancy as channel codes and

iterative decoding techniques, the computational complexity of the ERMDC is lower than

those of [87], [88].

For Scenario III, the noisy channel quantizer, channel coding and the dependency

between descriptions can be utilized to combat error-prone channels. The technique of

channel-optimized quantizer for noisy channels was applied in the MDC system. An IA

algorithm was developed by Yahampath for an MDVQ so as to minimize the overall distor-

tion in the presence of packet loss [20]. An extended multiple-channel optimized quantizer

design was applied by Zhou and Chan to compensate the distortion introduced by symbol

erasures [21]. However, mismatching parameters resulted in serious performance degrada-

tion. On the other hand, with the help of extra redundancy, such as channel coding, the

dependency between descriptions was utilized to combat bit errors in both descriptions.

Combined with channel coding, multiple description block coding was studied by Barros

et al. by using turbo cross decoding [87]. With the aid of index mapping, Barros et al.

decoded the received bit flow over slow fading channels. Reconstruction levels of unused

index pairs were replaced by the mean of the source data, which is a very coarse approxi-

mation. Similarly, characteristics of MD index mapping were also observed and exploited

in [21], [88]. A Bayesian network was applied by Guionnet et al. to decode received data

through noisy channels by using the dependency among MDSQ index pairs and variable

length coding [88].

The main contribution of Chapters 3 and 4 is to develop a technique of designing an

ERMDC system. The design procedure of an ERMDC consists of developing a robust

MD encoder and an enhanced central decoder, called an ERMDC encoder and decoder,

respectively. This ERMDC encoder-decoder pair is called an ERMDC codec. When used

with the traditional MDC encoder, the ERMDC decoder alone exploits the inherent re-

dundancy and dependency among multiple descriptions to achieve higher error tolerance

and lower distortion than existing MDC encoder-decoder pairs. By enlarging the mini-

mum Hamming distance, hmin, between binary representations of any two selected index

pairs, the ERMDC encoder enhances the error detection capability of the ERMDC de-

coder. A genetic algorithm (GA) is used to design the IA scheme applied in the ERMDC

encoder. Experimental results show that the ERMDC codec outperforms both the conven-

tional MDC encoder-decoder pair and the pair of the conventional MDC encoder and the
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ERMDC decoder.

This chapter is organized as follows: In Section 3.2, the ERMDC is briefly introduced

as a big picture before describing details. The proposed ERMDC decoder is discussed in

Section 3.3. Analytical and experimental results are shown in Section 3.4, followed by a

discussion and conclusion in Section 3.5.

3.2 Error Resilient Multiple Description Coding

We develop here the concept of the ERMDC by using the MDSQ to generate two descrip-

tions. We focus on resolution-constrained MDSQs, although the principles underpinning

the ERMDC (decoding a corrupted description by using a correctly received one) can be

exploited with other MD systems, including MD vector quantizers, and with more than

two descriptions. In this section, after summarizing the MDSQ, we will introduce the basic

idea of the ERMDC.

3.2.1 The Multiple Description Problem Revisited

In the MDSQ described in Section 2.3, the source samples are decomposed into index pairs

at Rs bpss per channel. Each description is sent over a channel. Channel conditions are

available at the decoder, but not at the encoder. If both channels work, the central decoder

reconstructs the transmitted signals by using two received descriptions. If one channel fails,

a side decoder reproduces the transmitted signals by using the received description. The

objective of designing a pair of encoder and central decoder is to minimize the average

central distortion when both channels work, subject to constraints on the maximum average

side distortion and the equality of two side distortions when only one channel works.

If an MDSQ index pair (i, j) is transmitted over noisy channels, î and ĵ are obtained

at the receiver end after decoding FEC codes. In this chapter, we will discuss how to deal

with transmission errors that incur received MD index pairs (̂i, ĵ) cannot be mapped to

SDSQ indices l, specifically, l 6= a−1(̂i, ĵ).

Let the central decoder be denoted as g0 : (̂i, ĵ) 7−→ R, and two side decoders be denoted

as g1 : î 7−→ R and g2 : ĵ 7−→ R, respectively. So the corresponding reproduction levels are

g0(̂i, ĵ), g1(̂i) and g2(ĵ), accordingly. For Scenario I, where both descriptions are correct,

i.e., i = î and j = ĵ, l = a−1(̂i, ĵ) and, then, g0(̂i, ĵ) = g0(i, j) = cl. For Scenarios II

and III, where at least one description carries errors, i.e., i 6= î or j 6= ĵ, g0(̂i, ĵ) 6= cl.
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In this work, we use mean square error (MSE) to evaluate the distortion between the

source and the reconstructed signals. The square error between two real values is denoted

by d(·, ·), i.e., d(x, y) = (x − y)2. Let X̂ represent the output of the central decoder, X̂(1)

and X̂(2) represent the outputs of side decoders, respectively. Accordingly, the average

central distortion d0 is given by

D0 = E
{

d(X, X̂)
}

=
∑

l∈L

∫

Al

d
(
x, g0(̂i, ĵ)

)
fX(x)dx, (3.1)

and side distortions D1 and D2 are given by

D1 = E
{

d
(
X, X̂(1)

)}
=
∑

i∈I

∫

A
(1)
i

d
(
x, g1(̂i)

)
fX(x)dx, (3.2)

D2 = E
{

d
(
X, X̂(2)

)}
=
∑

j∈J

∫

A
(2)
j

d
(
x, g2(ĵ)

)
fX(x)dx. (3.3)

And the average side distortion ds is given by (2.22).

When one description is correctly received and the other one is lost, i.e., î = i or ĵ = j,

g1(̂i) = c
(1)
i and g2(ĵ) = c

(2)
j . That is to say, (3.2) and (3.3) are equivalent to (2.20) and

(2.21), respectively. However, in Scenarios II and III, g0(̂i, ĵ) 6= g0(i, j), when either î 6= i

or ĵ 6= j. Therefore, the ERMDC decoder is designed to minimize E
{

d
(
g0(i, j), g0(̂i, ĵ)

)}
.

3.2.2 ERMDC Decoder

For Scenario I and, especially, Scenario II, we propose an ERMDC decoder to utilize the

residual information in the erroneous description. By referring to the correct description,

the ERMDC decoder detects symbol errors in the erroneous description and, then, estimates

the corresponding reconstruction levels so as to minimize the distortion caused by those

errors. The structure of an ERMDC decoder with two channels and three receivers is

illustrated in Fig. 3.1.

In Scenario II, if Description 1 is correct and Description 2 contains errors, symbol errors

in Description 2 are detected by referring to Description 1, as demonstrated in Fig. 3.2.

Here, we use classic MDSQ IA schemes [18] to explain how this decoder detects errors. In

Fig. 2.8(b), the SDSQ index 0 is assigned to (0, 0). If (0, 0) is transmitted, and (0, 1) is

obtained after channel decoding at the receiver end, we cannot tell if (0, 1) is right or wrong,
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Fig. 3.1 General architecture of an ERMDC decoder.
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Fig. 3.2 The ERMDC decoder with corrupted Description 2 and correct
Description 1.

since it is assigned to another SDSQ index 2. This is an undetectable error. Nevertheless, if

the obtained index pair is (0, 5), we know that this is an error, because (0, 5) is not mapped

to an SDSQ index. This is a detectable error. Furthermore, if we know that Description 1

is right and Description 2 incurs some errors in decoding FEC code, 5 is determined as

an error. Thereafter, we estimate the output value by using the methods described in

Section 3.3.
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Fig. 3.3 Gray cells correspond to the valid index pairs in the selected IA
schemes. (a) and (b) are two equivalent schemes of the robust IA with Rs = 3,
N = 32, and hmin = 2.

3.2.3 ERMDC Encoder

Let i and j denote binary representations of i ∈ I and j ∈ J , respectively, i.e.,

i = [i(Rs−1) · · · i1i0] (3.4)

j = [j(Rs−1) · · · j1j0] (3.5)

(3.6)

are two binary Rs-tuples, where ik, jk ∈ {0, 1}, k = 0, 1, · · · , Rs − 1. i(Rs−1) and j(Rs−1)

are the most significant bits (MSBs), i0 and j0 are the least significant bits (LSBs) of i

and j. i and j are combined to form a 2Rs-bit codeword w:

w
△
= [i, j] = [i(Rs−1) · · · i1i0j(Rs−1) · · · j1j0]. (3.7)

In the MDSQ, when w’s are encoded in natural binary encoding as usual, any number

of bit errors may result in undetectable errors. For example, in Fig. 2.8(b), a transmitted

codeword [000001] or (0, 1) may be changed to [001001] or (1, 1) by a one-bit error. Since

(0, 1) and (1, 1) are mapped to SDSQ index 2 and 4 respectively, 2 will be decoded as 4
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as the result of an undetectable error.

A robust IA algorithm is proposed for the ERMDC encoder to help the ERMDC decoder

to achieve a higher ability of error detection. This IA approach assigns w to l with larger

minimum Hamming distance, hmin, between any two w’s. Thus, whenever the number of

bit errors in a w is less than hmin, this w can be detected as an error. Figure 3.3 gives

examples with Rs = 3, N = 32, hmin = 2. Index pairs corresponding to grayed cells

are mapped to SDSQ indices. In this way, without using extra redundancy, the ERMDC

decoder can detect all one-bit errors. Design details will be provided in the next chapter.

3.3 Design of ERMDC Decoder

Since the ERMDC decoder can work with the classical MDC encoder, we introduce the ER-

MDC decoder first in this section. The design goal is to find an optimal central decoder g0 to

minimize D0 in Scenarios I and II. After deriving two optimal ERMDC decoding methods,

a suboptimal decoder with lower computational complexity is also developed.

For a given i ∈ I, the set of j that leads to a mapped index pair (i, j) is defined as

Ji
△
= {j ∈ J : ij ∈ L}; (3.8)

the set of j that does not lead to a mapped index pair (i, j) is defined as

J̄i
△
= {j ∈ J : ij 6∈ L}. (3.9)

Then, Ji ∪ J̄i = J , and Ji ∩ J̄i = ∅. For example, in Fig. 2.8(a), at the second row,

J1 = {0, 1, 2} and J̄1 = {3, 4, 5, 6, 7}.
Similarly, for a given j ∈ J , two sets are

Ij
△
= {i ∈ I : ij ∈ L} (3.10)

and

Īj
△
= {i ∈ I : ij 6∈ L}, (3.11)

where Ij ∪ Īj = I and Ij ∩ Īj = ∅.
According to whether the ERMDC decoder can detect them or not, transmission errors



3.3 Design of ERMDC Decoder 47

are classified into two types: detectable and undetectable errors. Dd and Du are expected

distortions caused by detectable and undetectable errors, respectively. Therefore, the over-

all distortion caused by transmission errors, De, is given by

De = Du + Dd, (3.12)

where

De =
∑

l∈L

Pq(l)De(l), (3.13)

Du =
∑

l∈L

Pq(l)Du(l), (3.14)

Dd =
∑

l∈L

Pq(l)Dd(l). (3.15)

Pq(l) = P{x ∈ Al} is the probability of the source falling in the partition Al. De(l), Du(l)

and Dd(l) are expected distortions of the source in the partition Al due respectively to all,

undetectable and detectable transmission errors. When an index pair (i, j) is transmitted,

the corresponding received pair is (̂i, ĵ). A transmission error can be detected as long as

ĵ ∈ J̄î or î ∈ Īĵ. Thus, for a given l, (i, j) and the corresponding received (̂i, ĵ),

De(l) = De(i, j) =

{
Dd(l) = Dd(̂i, ĵ), if (̂i, ĵ) is a detectable error;

Du(l) = Du(̂i, ĵ), otherwise.
(3.16)

The overall expected distortion caused by quantization (i.e., without transmission er-

rors), Dq, is given by

Dq =
∑

l∈L

Pq(l)Dq(l), (3.17)

where

Dq(l) =

∫

Al

d(x, cl)fX(x)dx (3.18)

is the distortion contribution from the partition Al.
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3.3.1 Necessary Conditions for Optimal Decoder Design

Assuming high-rate quantization, the overall expected distortion contribution from the

partition Al is given by

D0(l) =

∫
Al

fX(x) d
(
x, g0(̂i, ĵ)

)
dx

∫
Al

fX(x)dx

≈
fX(cl)

∫
Al

d
(
x, g0(̂i, ĵ)

)
dx

fX(cl)∆l

=
1

∆l

∫

Al

(
x− g0(̂i, ĵ)

)2
dx

=
1

∆l

∫

Al

(
x− cl + cl − g0(̂i, ĵ)

)2

dx

=
∆2

l

12
+
(
cl − g0(̂i, ĵ)

)2

= Dq(l) + De(l), (3.19)

where ∆l =
∫

Al
dx, and Dq(l) ≈ ∆2

l

12
in the high-rate system. Then, the overall average

central distortion D0 is given by

D0 =
∑

l∈L

Pq(l)D0(l) (3.20)

=
∑

l∈L

Pq(l)
[
Dq(l) + De(l)

]

= Dq + De (3.21)

= Dq + Du + Dd. (3.22)

In an ideal system, all errors are found, so that the lower bound is given by

Dlow = lim
Du→0

D0 = Dq + Dd (3.23)

In (3.22), only Dd can be minimized to reduce D0 by optimizing the reconstruction levels

g0(̂i, ĵ) of the detectable errors.

For Scenario II, all bit errors are assumed independent and identically distributed

(i.i.d.). For a given bit error rate (BER) p, the transfer probability from a b-bit symbol j
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to ĵ is

Pe(ĵ|j) = ph(1− p)Rs−h, (3.24)

where h is the Hamming distance between j and ĵ.

Without losing generality, we assume that after FEC decoding, Description 1 is correct;

however, bit errors in Description 2 are detected, but not corrected, i.e., î = i, ĵ 6= j, and

ĵ ∈ J̄i. Therefore, the expected distortion D
(1)
d (i, ĵ) introduced by the detected error (i, ĵ)

is given by

D
(1)
d (i, ĵ) = E

{
d
(
g0(i, j), g0(̂i, ĵ)

)
| î = i, ĵ 6= j, ĵ ∈ J̄i

}

=
∑

j∈Ji

Pq(ij)Pe(ĵ|j) d
(
g0(i, j), g0(i, ĵ)

)
. (3.25)

Thus,

Dd =
∑

i∈I

∑

ĵ∈J̄i

D
(1)
d (i, ĵ). (3.26)

In order to minimize Dd, the reconstruction level g0(i, ĵ) is estimated by e(1)(i, ĵ) in

terms of all possible transmitted index pairs (i, j), j ∈ Ji. By solving

dD
(1)
d (i, ĵ)

d g0(i, ĵ)

∣∣∣∣
g0(i,ĵ)=e

(1)
opt(i,ĵ)

= 0, (3.27)

the optimal value is given by

e
(1)
opt(i, ĵ) =

∑
j∈Ji

Pq(ij)Pe(ĵ|j) g0(i, j)∑
j∈Ji

Pq(ij)Pe(ĵ|j)
. (3.28)

Another way to estimate g0(i, ĵ) is to use the average reconstruction level ē
(1)
i cor-

responding to the MDSQ index i. The expected distortion caused by detectable errors

associated with the MDSQ index i is given by

D
(1)
d (i) =E

{
d
(
g0(i, j), g0(̂i, ĵ)

)
| î = i, ĵ 6= j, ĵ ∈ J̄i

}

=
∑

j∈Ji

Pq(ij)
∑

ĵ∈J̄i

Pe(ĵ|j) d(g0(i, j), g0(i, ĵ)). (3.29)
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Thus,

Dd =
∑

i∈I

D
(1)
d (i). (3.30)

By solving

dD
(1)
d (i)

dg0(i, ĵ)

∣∣∣∣
g0(i,ĵ)=ē

(1)
iopt

= 0, (3.31)

the optimal ē
(1)
i is given by

ē
(1)
iopt

=

∑
j∈Ji

∑
ĵ∈J̄i

Pq(ij)Pe(ĵ|j) g0(i, j)∑
j∈Ji

∑
ĵ∈J̄i

Pq(ij)Pe(ĵ|j)
. (3.32)

According to (3.28) and (3.32), if probabilities of transmitting j ∈ J and receiving

ĵ ∈ J̄i are the same, i.e., Pe(j1|j) ≈ Pe(j2|j), j1 6= j2, and j1, j2 ∈ J̄i, a suboptimal value is

obtained by:

ē
(1)
sub(i, ĵ) ≈

∑
j∈Ji

Pq(ij) g0(i, j)∑
j∈Ji

Pq(ij)

= g1(i). (3.33)

3.3.2 Optimal and Suboptimal Decoders

In this work, we propose three methods to estimate reconstruction levels of erroneous MD

index pairs to decrease Dd:

1. Optimal : Assuming that the a-priori source probabilities Pq(l) or Pq(ij) and the

BER p are known at the receiver end, reconstruction levels of unused index pairs are

calculated by using (3.32) or (3.28). We refer to the optimal method using (3.32)

as Optimal method 1, which provides optimal solutions in the sense of average per-

formance. Optimal method 2 that uses (3.28) provides optimal solutions when the

design parameters are very well matched to actual channel conditions.

2. Suboptimal : In the light of (3.33), reconstruction levels of unused index pairs are

replaced by g1(i).
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According to (3.25) (3.26) and (3.29) (3.30),

D
(1)
d (i) =

∑

ĵ∈J̄i

D
(1)
d (i, ĵ). (3.34)

Hence, the performance achieved by Optimal method 1 is the average result of the per-

formance achieved by Optimal method 2. That is to say, if the design parameters match

the channel conditions very well, Optimal method 2 gives better performance; otherwise,

Optimal method 1 is better.

The optimal ERMDC decoders require knowledge about the source and channels. How-

ever, the suboptimal decoder does not require such information. In Section 3.4, we will

compare the performance of these three decoders.

3.4 Analytical and Experimental Results

At the transmitter end, entropy coding, such as Huffman coding and arithmetic coding, is

usually applied to compress the quantized data further. At the receiver end, because of

entropy coding, a single bit error may incur that the remaining bits are decoded incorrectly.

Therefore, in the following experiments, we will test the performance of the proposed

ERMDC in two situations: (i) no entropy coding is used, and (ii) entropy coding is applied.

In the first situation, only transmission errors, which are simulated by separate bit errors,

are considered. The statistics of errors are similar to the design parameters, in particular,

the BER. In the second situation, incorrectly entropy decoding after receiving a bit error is

simulated by burst bit errors. This situation is also used to test the sensitivity of proposed

methods to parameter mismatch.

Analytical and experimental results are presented for i.i.d. Gaussian source samples

with zero mean, unit variance and at the transmission rate of Rs = 3 bpss/channel. Since

the ERMDC decoder can work with the traditional MDSQ encoder, the performance of

the ERMDC decoder against separate and burst bit errors is presented in Sections 3.4.1

and 3.4.2. In the following experiments, 80000 samples are applied.

3.4.1 ERMDC Decoders Against Separate Bit Errors

Separate bit errors are independent, identically and uniformly distributed throughout the

binary sequence of the description. Figure 3.4 shows analytical and experimental results of
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MLIA(3, 1, 21) and (3, 2, 33), which are illustrated in Figs. 2.8(a) and (b).

In the existing work, if unused MD index pairs are found, the corresponding output

levels are usually estimated by the mean of the source data [87]. The performance of

this method is called mean in the figures. Curves plotted based on Optimal methods 1

and 2 are obtained in terms of (3.32) and (3.28), respectively. The suboptimal curves of

experiments are obtained by using (3.33). The central distortion D0 and the side distortion

Ds are shown as references. It shows that Optimal method 2 achieves lower distortion than

Optimal method 1. Even without knowledge about the source and channels, the suboptimal

decoder achieves similar performance with Optimal method 1.

We define the bit error tolerance (BET) as the BER at which the distortion of a cen-

tral decoder reaches Ds. Performance of ERMDC decoders degrades gracefully to Ds as

the BER increases. Nevertheless, they achieve higher BET than mean. With higher re-

dundancy, Fig. 3.4(a) shows that MLIA(3, 1, 21) gives higher BETs at 19.86% of Optimal

method 1, and 21.63% of Optimal method 2, in contrast with 3.265% of mean. In Fig. 3.4(b),

the BETs of MLIA(3, 2, 33), 16.72% of Optimal method 1 and 17.63% of Optimal method 2,

are still much higher than 8.565% of mean. In general, as the redundancy decreases, per-

formance improvement achieved by the ERMDC decoder reduce. The reason is that less

errors are detected with less redundancy.

3.4.2 ERMDC Decoders Against Burst Bit Errors

Experimental results associated with burst bit errors are shown in Fig. 3.5. Burst bit errors

are simulated by inverting all bits from a certain position to the end of the binary sequence

of the description. This position is determined by the ratio of the number of bit errors to

the number of transmitted bits, i.e., the BER. Due to (3.23), ideally, the lower bound Dlow

can be achieved when Du = 0.

As mentioned before, we are going to test the performance of the ERMDC on entropy

encoded bitstreams or parameter mismatch. When the entropy decoder losses sync with

the encoder, even though in some cases, some bits are still possibly correct, it is almost

impossible to correctly decode the remaining part of the bitstream after losing sync. Thus,

here inverting all bits after a certain position is simulating the worst case of losing sync in

entropy decoding.

In Fig. 3.5, curves of Dlow, called lower bound (Method 1), lower bound (Method 2)

and lower bound (suboptimal), are obtained by replacing reconstruction levels of all er-
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rors, including undetectable and detectable errors, with the optimal and suboptimal values

accordingly. According to (3.22), the overall distortion is caused by quantization, unde-

tectable and detectable errors. Therefore, the difference between the results and lower

bounds is caused by undetectable errors. For MLIA(3, 1, 21), because only two pairs of

codewords, (3, 4) and (4, 4), (3, 3) and (3, 4), have three-bit Hamming distance, the differ-

ence between the experimental results and the lower bounds is marginal. It confirms that

if there exist fewer undetectable errors, better performance can be achieved. Similarly, as

the redundancy decreases, the performance improvements become smaller.

Because ERMDC decoders are not designed for burst bit errors, the design parameters

do not match the bit error patterns in such circumstances. It is necessary to test whether

the ERMDC decoders still keep their improvements under such circumstances. It indicates

that they can highly tolerate burst bit errors. With the help of some redundancy, even at

BER 50%, the achieved distortions of ERMDC decoders are still lower than Ds; whereas,

curves of mean touch Ds at BERs lower than 20%. However, the performance of Optimal

method 2 is much worse than Optimal method 1 and suboptimal. The reason is that

Optimal method 2 is more sensitive to parameter mismatch, even though it gives more

accurate estimation with perfect knowledge of channels.

3.5 Discussion and Conclusion

In error-prone environment, instead of discarding a description that contains errors, we

utilize the residual information in the corrupted description to achieve lower distortion

than one single description does. After giving a short introduction of the ERMDC, we

propose three ERMDC decoders to estimate the outputs of detectable errors.

By estimating reconstruction levels of unused index pairs, ERMDC decoders outper-

form the conventional MDSQ decoder. ERMDC decoders achieve graceful performance

degradation as the BER increases. However, the performance improvements reduce, as the

redundancy decreases. Since the optimal ERMDC decoders are designed based on BERs,

inaccurate BERs affect their performance, in particular, Optimal method 2. With lower

computational complexity and without accurate knowledge of the source data and channel

conditions, the suboptimal ERMDC decoder accomplishes very similar performance with

the optimal. Therefore, the suboptimal decoder can be widely used in various scenarios.

From experimental results, we infer that a proper IA scheme may assist the ERMDC
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decoder to provide more accurate estimation. Therefore, in the next chapter, we attempt

to develop a procedure to find an IA scheme that is helpful in detecting errors.
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Fig. 3.4 Performance of ERMDC decoders associated with separate bit er-
rors: (a) MLIA(3, 1, 21), (b) MLIA(3, 2, 33).
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Fig. 3.5 Performance of the ERMDC decoder associated with burst bit er-
rors: (a) MLIA(3, 1, 21), (b) MLIA(3, 2, 33).
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Chapter 4

Design of ERMDC Encoder

After describing the decoder, in this chapter, we provide the design procedure of the ER-

MDC encoder. Experimental results show that, with the help of the ERMDC encoder, the

performance of the ERMDC decoder is improved further1.

4.1 Introduction

As mentioned in Section 2.1, the noisy channel quantizer was developed to achieve robust-

ness against error-prone channels without the help of FEC coding. It is an approach of

combining source and channel coding. Typical design methods of the noisy channel quan-

tizer are the robust quantizer (RQ) and the channel-optimized quantizer (COQ). Compared

with the RQ, the COQ needs more computations and provides lower performance, when

channel conditions are different with its design parameters. Thus, we apply the RQ tech-

nique to realize the ERMDC encoder with low computational complexity and no extra

redundancy.

Developing a robust IA scheme is the key step of designing a noisy channel quantizer.

The best IA scheme provides the highest robustness against transmission errors. Although

it is possible to find the optimal solution by using the exhaustive search, the cost is pro-

hibitively high. Thus, a “close-to-optimal” IA scheme is usually found by using heuristic

algorithms, such as the binary switching algorithm [32], the genetic algorithm (GA) [33],

and the simulated annealing [21], [35]. In [33], experimental results indicated that the GA

1This work has been presented at the eighth International Workshop on Multimedia Signal Processing
(MMSP’06), Oct. 2006 [23], and in IEEE Transactions on Signal Processing, Aug. 2008 [24].
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found more accurate and more consistent solutions than the binary switching algorithm

and the simulated annealing. Therefore, we use the GA in this chapter.

4.2 Design Procedure

Goals of designing an ERMDC encoder are (i) to find a robust IA scheme so as to improve

the error detection capability of the ERMDC decoder; and (ii) to achieve two balanced

descriptions with as low side distortions as possible. According to the ERMDC decoders

described in Chapter 3, the higher error detection capability the decoder has, the more

distortion is reduced. In order to improve the capability of detecting errors, we propose a

novel method to find a robust IA scheme by increasing the minimum Hamming distance

hmin between any two codewords. Then, based on the optimal partition and codebook of

the SDSQ, the GA is applied to find an IA scheme to achieve two balanced descriptions

with as low side distortions as possible. Thereafter, the algorithm developed in [18] is used

to tune the partition and codebook of the selected IA scheme so as to reduce the side

distortions further at the cost of slightly higher central distortion.

The design procedure of the ERMDC encoder is summarized in three steps:

1. Given an hmin, searching for qualified index pairs (i, j), the minimum Hamming

distance between any two of which is hmin, within a 2Rs × 2Rs IA matrix.

2. Assigning SDSQ indices l to selected index pairs (i, j) to achieve balanced descriptions

with as low side distortions as possible.

3. Tuning the partition and codebook of the chosen IA scheme to fit the source data

better by using the algorithm provided in [18].

In the following subsections, we will describe the algorithms for Step 1) and 2) in details,

respectively. As for the algorithm for Step 3), it is developed by Vaishampayan [18] and

briefly described in Section 2.3.2.

4.3 Searching for Qualified Index Pairs

An SDSQ index l is represented in m bits, i.e., the binary representation of l is l =

[lm−1 · · · l0]. By using an IA scheme, each SDSQ index l is mapped to a 2Rs-bit code-

word w, where 2Rs ≥ m. Let q = 2Rs −m denote the number of redundancy bits in each
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Table 4.1 Algorithm to search qualified code words

n← 0

FOR each w
(n)
0 ∈ C

v← w
(n)
0

k ← 0
FOR each v ∈ C

v← w
(n)
k + 1

FOR each v ∈ C AND ‖v−w
(n)
t ‖ < hmin, ∀t, t = 0, · · · , k

v← v + 1
END
IF v ∈ C

k ← k + 1

w
(n)
k ← v

END
END

L(n) ← k

n← n + 1
END

codeword w, which is defined as (3.7). If q = 0, no redundancy is provided. If q > 0, q-bit

redundancy is provided in each w.

Let C = {0, 1}2Rs be the set of all possible codewords w. In order to achieve the

robustness against bit errors, we search for a subset W ⊂ C, so that

W = {w ∈ C : ∀v ∈ W,v 6= w, ‖v−w‖ ≥ hmin}, (4.1)

where ‖v−w‖ represents the Hamming distance between v and w. The number of code-

words w ∈ W is L, and ‖w‖ represents the Hamming weight of w.

Given Rs and hmin, we search C to find a satisfactory W . The searching algorithm

is described in Table 4.1. We use exhaustive search to find all possible n solutions. For

example, if Rs = 3, at the first try, the first valid w is w0 = [000000]. Then every possible

code word compares with w0, if the Hamming distance is equal or greater than hmin,

this code word is kept as the second code word w1. Once again, the other combinations

compare with w0 and w1, if both Hamming distances are equal or greater than hmin, this

combination is kept as the third valid code word w2, and so on. At each time, the remaining
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Fig. 4.1 A set of selected index pairs with Rs = 3, N = 8, and hmin = 3.
Gray cells correspond to selected index pairs.

combinations compare with the valid code words, if all Hamming distances are equal or

greater than hmin, this combination is kept as a valid code word. This kind of comparison

terminates when no more combinations satisfy the requirement. In the nth solution, there

are L(n) valid code words w’s. Next iteration, w0 begins with [000001], until [1111111].

Of course, we can shorten this search by stopping iterations at the initial w0 = [000111],

because [i, j] is actually equivalent to [j, i].

After exhaustively searching C, we chooseW with the largest L. If there are more than

oneW with the largest L, the first one is selected. As examples, provided Rs = 3, solutions

of hmin = 2 are shown in Fig. 3.3, one solution of hmin = 3 is shown in Fig. 4.1. We choose

the first one for our experiments. Once w’s are determined, they need to be assigned to

the indices l’s.

4.4 Index Assignment by Using Genetic Algorithm

The IA is a kind of permutation problem, in particular, an NP-complete problem. For W
with L codewords, the total number of possible W ’s is O(L!). Finding the best solution

by using exhaustive search is impractical. A heuristic algorithms performs a deterministic

search in a set of admissible configurations and often terminates in a local minimum. We

apply the GA to find a “close-to-optimal” solution at a reasonable cost. The cost function
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is used to evaluate solutions found in each iteration of the IA algorithm. The cost function

is discussed first, followed by the description of the IA algorithm.

4.4.1 Cost Function

First, we describe the cost function for evaluating the candidate solutions in each generation

(iteration). We consider the cost from two aspects, spreads and distortions. Distortions

are defined in Chapter 3. Next, we give the definition of spreads.

Spreads

Unless otherwise specified, in this work, SDSQ indices l are naturally labeled. That is to

say, a quantization partition associated with larger source values x is mapped to a larger

index l.

Let

l(1)max(i) = max
j

a−1(i, j), (4.2)

l
(1)
min(i) = min

j
a−1(i, j), (4.3)

l(2)max(j) = max
i

a−1(i, j), (4.4)

l
(2)
min(j) = min

i
a−1(i, j), (4.5)

where l
(1)
max(i) and l

(1)
min(i) are the maximum and minimum SDSQ indices l associated with a

given MD index i, respectively; l
(2)
max(j) and l

(2)
min(j) are the maximum and minimum SDSQ

indices l associated with a given MD index j, respectively.

The spread s(m)(n) is defined as

s(m)(n) = l(m)
max(n)− l

(m)
min(n) + 1, (4.6)

where n = 0, 1, · · · , M − 1, and m = 1, 2. For example, in Fig. 2.8(b), the spread

associated with j = 3 is

s(2)(3) = max
i∈I3

a−1(i, 3)−min
i∈I3

a−1(i, 3) + 1

= 17− 8 + 1 = 10.
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In terms of the definition of spreads, spreads are independent on characteristics of source

signals and channel noise. If only the m-th description is received, the centroid of all SDSQ

partitions corresponding to the MDSQ index n is used as the reconstruction level of n.

Thus, the smaller a spread s(m)(n) is, the more accurate the reconstruction level is, in

particular, in high rate systems.

S(m) denotes the set of all spreads associated with the m-th description, where m = 1, 2.

The average spread s̄(m) associated with the m-th description is defined as

s̄(m) = E
{
S(m)

}
, (4.7)

where m = 1, 2. In high rate systems,

s̄(m) =
1

M

M−1∑

n=0

s(m)(n). (4.8)

The overall average spread s̄ is given by

s̄ =
s̄(1) + s̄(2)

2
. (4.9)

In high rate systems, s̄(m) and s̄ can be used as metrics of the corresponding side distortion

and the average side distortion, respectively.

The maximum spread smax is the maximum value of all row and column spreads in an

IA scheme, i.e.,

smax = max
m,n

s(m)(n). (4.10)

smax is used to evaluate possible reconstruction distortions of an IA scheme. smax of the

IA scheme shown in Fig. 2.8(b) is 11. A smaller smax suggests a lower side distortion.

Similarly, the minimum spread

smin = min
m,n

s(m)(n). (4.11)

The difference between smax and smin is

sdif = smax − smin. (4.12)

A smaller sdif indicates less variance among spreads s(m)(n). It, furthermore, indicates
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that the IA scheme is less sensitive and more robust to the statistics of source signals as

well as bit error patterns.

The Cost

In order to achieve robustness as well as low and similar side distortions, we use three

factors to evaluate each possible IA scheme: the maximum spread smax, the average of the

two side distortions, Ds = D1+D2

2
, and the difference of the two side distortions, |D1−D2|.

By applying different weights α, β and γ on those factors accordingly, we obtain the cost

function:

cost = α · smax + β ·Ds + γ · |D1 −D2|. (4.13)

Spreads and smax only depend on IA schemes. Once an IA scheme is determined, they

are fixed and not affected by the statistics of actual source data and channel conditions.

Therefore, the solution chosen based on smax is insensitive to specific application environ-

ments.

The central decoder is independent on the specific IA scheme. The Lloyd-Max algorithm

is used to obtain the optimal central partition and codebook of the source. Side distortions

D1 and D2, then, Ds and |D1−D2| are calculated for each possible IA scheme. Smaller Ds

and |D1 −D2| are preferred so as to achieve lower and closer side distortions.

Because the central partition and codebook are optimized according to the training data,

side distortions are highly related to the statistics of the training data. If the actual signals

are not similar to the training data, the performance of the quantizer selected only based

on distortions will degrade. Considering the influence of varying channel conditions, the

performance degradation will be increased further. Therefore, by using different weights α,

β and γ, the importance of three factors is adjusted so as to accommodate to the specific

source data and application environment. If the applied source data are similar to the

training set, and the transmission channels are almost error-free, lower and more balanced

side distortions are preferred, i.e., β, γ >> α in (4.13). In the other hand, if the applied

source data vary much or are transmitted over error-prone channels, smax is used as the

primary factor in the cost function, i.e., α >> β, γ.
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Table 4.2 The IA algorithm by using the GA.

1. At the first generation, each chromosome is initialized by a random permutation of
integers 0 to L− 1.

2. Evaluating and sorting chromosomes according to the increasing cost. The chromo-
some with the lower cost obtained by (4.13) is better.

3. The best 50% chromosomes are kept as parents. The other 50% are dropped.

4. Exchange the k-th and (L−k−1)-th integers in each parent to generate an offspring,
where 0 ≤ k ≤ ⌊L

2
⌋.

5. Except the best one, randomly exchange two integers within each chromosome at a
certain mutation rate.

6. Go to Step 2 unless it converges.

4.4.2 Index Assignment Algorithm

The GA is an optimization and search technique based on the principles of genetics and

natural evolution [89]. The GA provides attractive results when traditional optimization

approaches fail. It uses a population with many chromosomes (individual realizations)

to evolve according to certain selection rules so as to minimize the cost. There are Lpop

chromosomes in each generation (iteration). Each chromosome is a permutation of all L

SDSQ indices l over the selected W .

The IA algorithm is described in Table 4.2. In each generation, all chromosomes are

evaluated by using (4.13). Chromosomes with lower cost are better. In order to enlarge

the search area, new chromosomes, called offsprings, are generated by mating parents

that are the best 50% chromosomes. In order to avoid duplicated elements in each off-

spring, at Step 4, elements in each parent are switched in pairs. For example, if a parent

is [1, 3, 2, 4, 0, 5], the offspring may be [5, 0, 4, 2, 3, 1]. Thereafter, at Step 5, a small

portion of elements are switched randomly. This step is called mutation. For exam-

ple, if in [5, 0, 4, 2, 3, 1], 0 is chosen to mute, it swaps with 3 to obtain a chromosome

[5, 3, 4, 2, 0, 1]. The portion is determined by the mutation rate, which is the number of

switched elements divided by the number of all elements. The best chromosome is kept
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Fig. 4.2 (a) A robust IA with Rs = 3 and N = 32; (b) MLIA(3, 2, 32).

intact during mutations. At Step 6, the algorithm terminates if it converges, that is to say,

if no better chromosome is found in a pre-determined number of generations. After the

algorithm terminates, the best chromosome is chosen as the solution.

4.5 Experimental Results

The ERMDC encoder combines with the ERMDC decoder to form the ERMDC codec. An-

alytical and experimental results are presented for i.i.d. Gaussian source samples with zero

mean, unit variance and at the transmission rate of Rs = 3 bpss/channel. In Section 4.5.1,

the ERMDC codec is tested under two circumstances where separate and burst bit errors

are respectively dominant. In Section 4.5.2, the performance of the GA is compared in

terms of different cost weights and design steps.

4.5.1 Performance of ERMDC Codecs

An ERMDC encoder with 3 bpss/channel is developed in terms of the procedure described

in Section 4.2. The solution with Rs = 3, hmin = 2, as illustrated in Fig. 3.3(a), is used

as the template for the IA. In the GA algorithm, α = β = γ = 1, Lpop = 1024, and 2242

iterations are used. The mutation rate is 5%. A robust IA scheme as shown in Fig. 4.2(a)

is found as the result. Then, the ERMDC encoder associated with the robust IA scheme

is refined to adapt to the statistics of the source based on the algorithm provided in [18].
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Fig. 4.3 Experimental results of the traditional method, ERMDC decoders
and codecs associated with separate bit errors.

Separate Bit Errors

Experimental results associated with i.i.d. and uniformly distributed bit errors are plotted

in Fig. 4.3. For the purpose of comparison, the performance of the ERMDC decoder and

mean based on MLIA(3, 2, 32), shown in Fig. 4.2(b), is also drawn. By exploiting the

MDSQ encoder and the ERMDC decoders, reconstruction distortions are decreased up

to 2.45 dB from mean. Reconstruction distortions of ERMDC codecs are further reduced

up to 2.9 dB in the range of BERs < 25%. Meanwhile, the BET increases from 8.39% of

mean, to about 16.3% of ERMDC decoders, and then 24.1% of ERMDC codecs, accordingly.

This gain is accomplished by detecting all one-bit errors and estimating the associated

reconstruction levels. On the contrary, in conventional IA schemes, some one-bit errors

cannot be detected. As the BER increases further, two- and three-bit errors appear more

frequently, so advantages of the ERMDC encoder decrease.
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Fig. 4.4 Experimental results of the traditional method, ERMDC decoders
and codecs associated with burst bit errors.

Burst Bit Errors

In Section 3.4.2, it indicates that Optimal method 2 degrades significantly when parameters

are mismatching. Here, we only test Optimal method 1 and suboptimal that are more robust

against parameter mismatch. Performance of the ERMDC codec associated with burst bit

errors is shown in Fig. 4.4. For comparison, experimental results of Optimal method 1 and

suboptimal ERMDC decoders, and mean based on MDSQ IA(3, 2, 32) are plotted. The

performance of Optimal method 1 and suboptimal ERMDC codecs is similar, and it is

about 3 dB lower than their side distortions Ds at BER 50%. Because ERMDC codecs

find all three-bit errors, their performance reaches the lower bound of the ERMDC codec.

Since the side distortion Ds of the ERMDC codec is a little higher, the lower bound of the

ERMDC codec is slightly higher than that of the ERMDC decoder.



68 Design of ERMDC Encoder

Table 4.3 GA performance associated with various weights of the cost func-
tion before tuning. The performance is evaluated by using spreads, side dis-
tortions and generations. The first row shows the results obtained by using
the algorithm provided in Section 2.3. D0 = 0.002525.

No. α β (γ) smax smin sdif D1 D2 Ds σ (%) generations

1 – – 11 3 8 0.226995 0.221651 0.224323 1.19 –

2 10 7 3 0.227438 0.259546 0.243492 6.59 2168

3 11 7 4 0.222710 0.299554 0.261132 14.71 223

4 1 0 10 6 4 0.220707 0.240115 0.230411 4.21 1828

5 11 7 4 0.238648 0.305612 0.272130 12.30 162

6 11 7 4 0.247601 0.238988 0.243295 1.77 268

7 10 7 3 0.239491 0.231814 0.235653 1.63 3208

8 10 7 3 0.231615 0.230856 0.231236 0.16 1677

9 1 1 10 7 3 0.232924 0.240670 0.236797 1.64 1249

10 10 6 4 0.234178 0.232148 0.233163 0.44 3716

11 10 7 3 0.229554 0.236221 0.232888 1.43 1449

12 16 5 11 0.166404 0.170360 0.168382 1.17 1994

13 16 4 12 0.162541 0.165867 0.164204 1.01 1393

14 0 1 16 4 12 0.170261 0.166736 0.168498 1.05 1316

15 16 4 12 0.164386 0.162549 0.163468 0.56 1009

16 16 4 12 0.160618 0.168664 0.164641 2.44 1975

4.5.2 Performance of Genetic Algorithm

In order to demonstrate the performance of the proposed GA as well as the influence of

three factors smax, Ds and |D1 − D2| in (4.13) on choosing IA scheme, we test the GA

with various weights α, β, γ on i.i.d. Gaussian source samples with zero-mean and unit

variance. Let β = γ so as to simplify the discussion. In experiments, we investigate the

influence of various (α, β) combinations. The GA is applied on the candidate index pairs

shown in Fig. 3.3(a).

Experimental results before using the tuning algorithm, which is the third step of de-

signing an ERMDC encoder, are illustrated in Table 4.3. For each (α, β), the GA is run
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Table 4.4 Distortions after tuning partitions and codebooks by using the
algorithm described in Table 2.2. λ1 = λ2 = 0.005. The stopping threshold is
5× 10−5.

No. No. in Table 4.3 D0 D1 D2 Ds σ (%)

1 1 0.002626 0.192798 0.191860 0.192329 0.24

2 4 0.002610 0.205491 0.223683 0.214587 4.24

3 8 0.002644 0.209272 0.213795 0.211534 1.07

4 15 0.002650 0.149784 0.152058 0.150921 0.75

five times with 1024 chromosomes and the mutation rate 5%. In Table 4.3, the maximum

spread smax, the minimum spread smin, two side distortions D1, D2, and the average side

distortion Ds are provided. For evaluating IA schemes according to the spread, a smaller

smax and an smin closer to smax are preferred.

σ =
|D1 −Ds|+ |D2 −Ds|

2Ds

(4.14)

is used to evaluate the balance of two descriptions. A smaller σ means that the balance

is better. The number of generations to converge is also provided. For the purpose of

comparison, the performance achieved by the traditional IA scheme illustrated in Fig. 4.2(b)

without using the tuning algorithm is shown in the first row.

When β = 0, the GA searches for a best solution only taking into account smax. α = 0

means that the GA searches for minimum side distortions without considering spreads. As

the result, the achieved side distortions Ds at α = 0 are significantly lower than those at

β = 0 and the traditional IA scheme. At α = β = 1, the GA achieves good and consistent

smax, smin, Ds and σ. A good trade-off among the spread, the side distortions and the

balance is achieved at the cost of more generations.

According to the design procedure of the ERMDC encoder described in Section 4.2, the

algorithm described in Table 2.2 is used at the third step to tune the partition and codebook

of the selected IA scheme. In Table 4.4, the performance of ERMDC encoders after tuning

is compared. For the purpose of comparison, distortions achieved by the traditional IA

scheme illustrated in Fig. 4.2(b) are shown in the first row. The other three IA schemes

are No. 4, 8, and 15 in Table 4.3. They are the IA schemes with the lowest Ds with respect
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to (α = 1, β = 0), (α = 1, β = 1), and (α = 0, β = 1) accordingly. It shows that

after tuning, the side distortions are further reduced at the cost of slightly higher central

distortions. Similar to the results before tuning, at (α = 0, β = 1), the IA scheme selected

by the GA achieves much lower side distortions than the traditional IA scheme described

in Section 2.3.4.

It indicates that the spread and the side distortions are, to some extend, conflicting.

When the test signal is similar to the training signal, the side distortions are preferable,

that is to say, (α = 0, β = 1); otherwise, the spread is preferable, specifically, α = 1.

Furthermore, it suggests that the GA provides excellent flexibility for the encoder design.

4.6 Discussion and Conclusion

In this chapter, we propose an ERMDC encoder so as to enhance the error detection capa-

bility of the ERMDC decoder. Instead of natural binary codes, we enlarge the minimum

Hamming distance among codewords so that the ERMDC decoder can detect more errors.

Once the ERMDC decoder finds an error, it applies the proposed optimal or suboptimal

methods to estimate the reconstruction value. Consequently, the reconstruction distortion

is reduced. In addition, the GA is utilized to search for a good IA scheme. The GA is

generalized to find a good trade-off by taking into account both the spread and side dis-

tortions. Experimental results showed that, compared with the conventional MDC system,

the ERMDC codecs achieve significant improvements against both separate and burst bit

errors.

However, since exhaustive search and the GA are used in finding a good IA scheme, the

computational complexity is prohibitively high, especially, at large bit rates. Therefore, in

the next chapter, we are going to simplify this procedure.

The ERMDC System

When applying the ERMDC in the MDC system to generate an ERMDC system, the

ERMDC encoder and decoder substitute the classical MDC encoder and central decoder,

respectively. If we assume that the BET and BER are known at the receiver end, the

ERMDC decoder works when the BER is lower than the BET; once the BER becomes

higher than the BET, the side decoder takes the place. The ERMDC system can achieve

the best performance at the receiver end in terms of current channel conditions.
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Compared with the conventional MD system, such as the MDSQ, the ERMDC system

achieves almost the same central distortion in the error-free situation, a slight degradation

in the packet-loss environment, and much improvement in the presence of noisy channels.

Also, since the designs of ERMDC encoder and suboptimal decoder have nothing to do with

channel conditions, the achieved performance is not affected by parameter mismatching

between the design and application stages. Therefore, the ERMDC system can be applied

in a wide range of communication environments.

Performance of the ERMDC system will be also tested in various environments in

Chapter 6, such as slow Rayleigh fading channels in Section 6.1 and hybird wireline-wireless

networks in Section 6.2.



72



73

Chapter 5

Generalized Fast Index Assignment

for ERMDC

5.1 Introduction

In Chapter 4, a robust IA algorithm is developed for the ERMDC encoder to increase

the minimum Hamming distance among MD index pairs, so that the ERMDC decoder

can detect more transmission errors, and, furthermore, reduce the reconstruction distor-

tion. However, because this IA algorithm is realized by exhaustive search and the GA,

the training time of the ERMDC encoder becomes significantly longer, as the number of

quantization levels increased. This time-consuming process is improper in applications

where short training time is preferred. Moreover, the solution obtained by the GA changes

with different initial conditions and mutations. Hence, it is necessary for the encoder to

transmit the obtained IA scheme to the decoder. This transmission increases the overhead

and the complexity of the ERMDC system. Therefore, an IA technique with low compu-

tational complexity and less transmission overhead is required so as to make the ERMDC

applicable.

In this chapter, we propose a novel generalized robust IA algorithm with low computa-

tional complexity for the ERMDC encoder1. Any arbitrary number of parity bits can be

easily added to combat both packet losses and bit errors. This algorithm can be imple-

mented “on-the-fly” so as to produce two descriptions as soon as possible. Experimental

1This work has been partially presented at the IEEE International Conference on Image Processing,
Oct. 2008 [26], and the Asilomar Conference on Signals, Systems and Computers [27].
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results indicate that the proposed algorithm outperforms existing algorithms, such as IA

algorithms applied in the MDSQ [18] and the polyphase transform selective quantization

(PTSQ) [47], in the sense of computational complexity or rate distortion. Moreover, by

using this algorithm, the IA scheme used at the encoder does not need to be transmitted.

The proposed IA algorithm is described in Section 5.3, followed by the optimal bit al-

location scheme derived in Section 5.4. In Section 5.5, experimental results show that the

proposed algorithm outperforms existing algorithms. In Section 5.6, a numerical method

for arbitrary source and IA scheme is provided. Moreover, closed form formulas are derived

for uniformly distributed signals and the proposed IA scheme. In order to accommodate

progressive transmissions, two embedded IA schemes are provided and compared in Sec-

tion 5.7. Further discussion and conclusion is given in Section 5.8.

5.2 Problem Formulation and Notations

As discussed in the previous chapter, searching for the optimum IA scheme of the ER-

MDC encoder-decoder pair is an NP-complete problem. Even though we provide a feasible

method to obtain a “close-to-optimum” solution, the computational complexity of the

proposed method grows significantly, as the bit rate increases. In order to simplify this

optimization, in this chapter, the ERMDC is designed for a high rate system without tak-

ing into account the source properties. Thus, instead of the average side distortion Ds,

the average spread s̄ is minimized as a measurement of Ds subject to the constraint of

having approximately balanced descriptions, i.e., s̄(1) ≈ s̄(2). As a result, in addition to
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lower computational complexity, the obtained ERMDC system can be applicable to a wide

range of source signals.

We define F2 = {0, 1} as a set, on which modulo-2 addition ⊕ is defined. Let F
n
2

consist of binary vectors w = [wn−1 · · ·w1w0] of length n, where wk ∈ F2, k = 0, 1, · · · , n−
1. In addition, each element of the binary vector w corresponds to a bit in the binary

representation of the integer w with n bits. wn−1 corresponds to the most significant bit

(MSB), w0 corresponds to the least significant bit (LSB).

Let l ∈ F
R0
2 be binary representations of l:

l =
[
l(R0−1) · · · l1 l0

]
. (5.1)

Bits of l are information bits. As defined in (3.4) and (3.5), i ∈ F
Rs

2 and j ∈ F
Rs

2 are binary

representations of i and j respectively. [i, j] denotes the binary representation of the index

pair (i, j). The total code rate R of each source sample is R = 2Rs bpss.

We also call the binary vectors w = [i, j] codewords, i.e.,

w = [ w(R−1) · · · w1 w0 ]

= [i(Rs−1) · · · i0 j(Rs−1) · · · j0].

Let W ⊆ F
R
2 be the set of codewords w with minimum Hamming distance hmin. ‖w− v‖

denotes the Hamming distance between w and v, where w,v ∈ W and w 6= v. So,

‖w− v‖ ≥ hmin.

ρ = R−R0 denotes the number of bits of redundancy. B(R0, ρ) represents an ERMDC

encoder that adds ρ redundancy bits to each Rs information bits. If R0 = ρ, the redundancy

is generated by duplicating information bits. In the following, we only consider the situation

where R0 > ρ.

5.3 Generalized Fast Index Assignment Algorithm

In this section, the proposed generalized fast IA algorithm consists of three steps according

to the number of redundancy bits ρ:

1. B(R0, 0): No redundancy is added. Information bits are split into two descriptions

with similar side spreads.
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2. B(R0, 1): One-bit redundancy is added. Two descriptions are generated with R =

R0 + 1 bpss and the same side spreads.

3. B(R0, ρ), ρ ≥ 2: ρ-bit redundancy is added. Two descriptions are generated with

R = R0 + ρ bpss and the same side spreads.

In addition, the optimal bit allocation algorithm is provided.

5.3.1 Index Assignment without Redundancy

When ρ = 0, since no redundancy is added in converting l to [i, j], information bits are

simply split into i and j. In order to minimize s̄ subject to similar s̄(1) and s̄(2), the

MSB l(R0−1) should be arranged in a different description than the next R0

2
significant

bits, i.e., l(R0−2) l(R0−3) · · · l(R0
2
−1
). In order to keep the same numbers of bits in both

descriptions, the remaining bits in the description where l(R0−1) is located have to be filled

with R0

2
− 1 LSBs, i.e., l(R0

2
−2
) · · · l1 l0. Thus, B(R0, 0) is produced by

i =
[

l(R0−2) l(R0−3) · · · l(R0
2
−1
)
]
, and (5.2)

j =
[

l(R0−1) l(R0
2
−2
) · · · l1 l0

]
. (5.3)

Side spreads are given by

s̄(1) = 2(R0−1) + 2

(
R0
2
−1
)
, (5.4)

s̄(2) = 2(R0−1) − 2

(
R0
2
−1
)

+ 1. (5.5)

Thus,

s̄ = 2(R0−1) + 0.5. (5.6)

(5.2) and (5.3) indicate that generating two descriptions is actually to split information

bits into two descriptions. Therefore, the computational complexity of encoding each R0

information bits, which correspond to a source sample, is O(R0).

As an example, generation of B(4, 0) is illustrated in Fig. 5.2. Four information bits are

split into i and j in Fig. 5.2(a), specifically, i1 ← l2, i0 ← l1, j1 ← l3, and j0 ← l0. The

resulting map between indices l and index pairs (i, j) is shown in Fig. 5.2(b). As a result,

s̄1 = 10, s̄2 = 7 and s̄ = 8.5.
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Fig. 5.2 Generation of B(4, 0): (a) four bits of l are split to i and j. (b) the
resulting map between SDSQ indices l and ERMDC index pairs (i, j).

5.3.2 Index Assignment with One-Bit Redundancy

When ρ = 1, one-bit redundancy is added. First, we prove Theorem 5.3.1, based on which

the bit allocation algorithm is provided.

Theorem 5.3.1. Let a codeword w consist of (R − 1)-bit binary vector l = [lR−2 · · · l0]

without redundancy and a parity bit e. For a binary constant n, n ∈ {0, 1}, let a set Wn

be defined by

Wn =
{
w :

R−1⊕

k=0

wk = n
}

. (5.7)

Wn has minimum Hamming distance hmin = 2.

Proof. Let l and l′ be two different (R− 1)-bit binary vectors without redundancy. Thus,

||l− l′|| ≥ 1, (5.8)

that is to say,
R−2∑

k=0

(lk ⊕ l′k) ≥ 1. (5.9)
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Let w = [l e], v = [l′ e′], and
R−1⊕

k=0

wk =
R−1⊕

k=0

vk. Therefore,

R−2⊕

k=0

lk ⊕ e =
R−2⊕

k=0

l′k ⊕ e′, (5.10)

that is to say,

e′ ⊕ e =
R−2⊕

k=0

(lk ⊕ l′k). (5.11)

Then,

||w− v|| = ||l− l′||+ (e⊕ e′)

=
R−2∑

k=0

(lk ⊕ l′k) +
R−2⊕

k=0

(lk ⊕ l′k).
(5.12)

If ||l− l′|| is a positive even number,

R−2⊕

k=0

(lk ⊕ l′k) = 0. (5.13)

Thus, ||w− v|| ≥ 2. Otherwise, ||l− l′|| is a positive odd number,

R−2⊕

k=0

(lk ⊕ l′k) = 1. (5.14)

Thus, ||w− v|| ≥ 2, too.

Consequently, ||w − v|| ≥ 2. Therefore, Wn has minimum Hamming distance hmin =

2.

There are two sets satisfying (5.7):

W0 =

{
w :

R−1⊕

k=0

wk = 0

}
, and (5.15)

W1 =

{
w :

R−1⊕

k=0

wk = 1

}
. (5.16)
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In the following, without loss of generality, we only consider W =W0.

In terms of Theorem 5.3.1, B(R0, 1) is generated by one-to-one mapping indices l ∈ L
to codewords [i, j] ∈ W so as to minimize s̄, subject to

Rs−1⊕

k=0

(ik ⊕ jk) = 0, (5.17)

s̄(1) = s̄(2). (5.18)

The minimum Hamming distance between any two [i, j] is 2. Therefore, one-bit errors are

detectable.

For the purpose of minimizing s̄, except l(R0−1), the MSB of l, all other information

bits l(R0−2) · · · l1 l0 are split to i(Rs−1) · · · i2 i1 and j(Rs−1) · · · j2 j1, respectively. Due to

satisfying (5.17), the LSBs of i and j, i.e., i0 and j0, are used as parity bits and generated

by using modulo-2 addition of corresponding information bits. Specifically, B(R0, 1) is

produced by

i =
[
l(R0−3) · · · l(R0−3

2

) i0

]
, and

j =
[
l(R0−2) l(R0−5

2

) · · · l0 j0

]
,

(5.19)

where

i0 = l(R0−1) ⊕
R0−3⊕

k=
R0−3

2

lk, and

j0 = l(R0−1) ⊕ l(R0−2) ⊕
R0−5

2⊕

k=0

lk.

(5.20)

Hence, side spreads are given by

s̄(1) = 2(R0−2) − 2(
R0−3

2
) + 1 (5.21)

s̄(2) = 2(R0−2) + 2(
R0−3

2
). (5.22)

In order to achieve (5.18), when l(R0−1) = 1, i and j are exchanged. Therefore, when

l(R0−1) = 0, the output codewords are w = [i, j]; when l(R0−1) = 1, the output codewords
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Table 5.1 Fast index assignment algorithm for the ERMDC.

SET R0;

l←
[

l(R0−1) l(R0−2) · · · l0
]
;

n← R0 − 2;

k ← R0−1
2 ; h← R0−1

2 ;

i0 ← l(R0−1); j0 ← l(R0−1);

WHILE n ≥ 0

IF n < (R0 − 2) AND n > R0−5
2

ik ← ln;

i0 ← i0 ⊕ ln;

k ← k − 1;

ELSE

jh ← ln;

j0 ← j0 ⊕ ln;

h← h− 1;

END

n← n− 1;

END

IF l(R0−1) = 1

swap i and j;

END

output i and j.

are w = [j, i].

Consequently, s̄, s̄(1) and s̄(2) are given by

s̄ = s̄(1) = s̄(2) = 2(R0−2) + 0.5. (5.23)

The bit allocation algorithm is elaborated in Table 5.1. Except the MSB l(R0−1), the

other (R0−1) information bits are directly sent to two descriptions. Two parity bits i0 and

j0 are generated by modulo-2 summation of corresponding information bits. Hence, the

computational complexity of dealing with each R0 information bits is O(2R0). Generation

of B(5, 1) is shown in Fig. 5.3 as an example, where s̄ = s̄(1) = s̄(2) = 8.5.
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Fig. 5.3 Generation of B(5, 1): (a) generation of i and j when l4 = 0; (b) the
resulting map between indices l and index pairs (i, j).

5.3.3 Geometric IA Algorithm for One-Bit Redundancy
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Fig. 5.4 The ERMDC index pairs used in the IA scheme illustrated in
Fig. 5.3(b) can be divided into two non-overlapping groups A and B.

In this subsection, a geometric IA algorithm for one-bit redundancy is proposed. One-

bit redundancy is added by allocating specific slots, instead of modulo-2 operations used

in the previous subsection.

Figure 5.3(b) suggests that the ERMDC index pairs (i, j) can be divided into two groups
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A and B, as illustrated in Fig. 5.4. Since the rows and columns that are occupied by the

slots located in Group A are not occupied by the slots of Group B, these two groups are

non-overlapping.

We use Theorem 5.3.2 to explicitly explain this observation. Theorem 5.3.2 claims that

these two groups are determined by the bit lR0−1. That is to say, Group A is associated

with lR0−1 = 0; Group B is associated with lR0−1 = 1.

Theorem 5.3.2. For B(R0, 1), SDSQ indices l and l′ are respectively decomposed into

ERMDC codewords [i, j] and [i′, j′] by using (5.19) and (5.20). Provided that lR0−1 6= l′R0−1,

where lR0−1 and l′R0−1 are MSBs of l and l′ respectively, i 6= i′ and j 6= j′.

Proof. Let l =
[
lR0−1 lR0−2 · · · l1 l0

]
, i = [iRs−1 · · · i1 i0], j = [jRs−1 · · · j1 j0]; and l′ =[

l′R0−1 l′R0−2 · · · l′1 l′0
]
, i′ = [i′Rs−1 · · · i′1 i′0], j′ = [j′Rs−1 · · · j′1 j′0], where lR0−1 and l′R0−1 are

MSBs of l and l′ respectively, R0 = 2Rs − 1.

In terms of (5.17), (5.19) and (5.20),

Rs−1⊕

k=0

(ik ⊕ jk) = 0

Rs−1⊕

k=0

(i′k ⊕ j′k) = 0

(5.24)

where

i0 = lR0−1 ⊕
Rs−1⊕

k=1

ik,

j0 = lR0−1 ⊕
Rs−1⊕

k=1

jk,

i′0 = l′R0−1 ⊕
Rs−1⊕

k=1

i′k,

j′0 = l′R0−1 ⊕
Rs−1⊕

k=1

j′k.

(5.25)
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Fig. 5.5 Two IA patterns associated with one-bit redundancy: (a) the
IA pattern corresponds to (5.15); (b) the IA pattern corresponds to (5.16).
Greyed cells are selected ERMDC index pairs.

According to (5.25),

lR0−1 =
Rs−1⊕

k=0

ik =
Rs−1⊕

k=0

jk,

l′R0−1 =
Rs−1⊕

k=0

i′k =
Rs−1⊕

k=0

j′k.

(5.26)

Suppose that lR0−1 6= l′R0−1,

Rs−1⊕

k=0

ik 6=
Rs−1⊕

k=0

i′k,

Rs−1⊕

k=0

jk 6=
Rs−1⊕

k=0

j′k.

(5.27)

Therefore, i 6= i′ and j 6= j′.

Because i and j are used as the row and column numbers in the IA matrix, Theorem 5.3.2

indicates that the rows and columns are exclusively occupied by Group A or B.

According to Theorem 5.3.2, if (5.15) is satisfied, we get the IA pattern shown in

Fig. 5.5(a); if (5.16) is satisfied, we get the IA pattern shown in Fig. 5.5(b). In Fig. 5.5,
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Fig. 5.6 Using the geometric IA algorithm to obtain the IA scheme shown
in Fig. 5.3(b): (a) LA is assigned to Group A illustrated in Fig. 5.4; (b) LB is
assigned to Group B illustrated in Fig. 5.4.

greyed cells are selected ERMDC index pairs. Two patterns shown in Fig. 5.5 are the same

as those illustrated in Fig. 3.3, which are found by using exhaustive search in Chapter 4.

Therefore, we obtain the same IA pattern with much lower computational complexity.

Based on Theorem 5.3.2, we develop a geometric IA method to map SDSQ indices to

ERMDC index pairs. The resulting IA scheme is equivalent to that obtained by using the

method described in (5.19) and (5.20).

In Fig. 5.6, we use an example to illustrate how to use the geometric IA method. In

this example, without losing generality, we use the IA pattern given in Fig. 5.5(a). R0 = 5,

Rs = 3, and ρ = 1. The target IA scheme is shown in Fig. 5.3(b).

First, as shown in Fig. 5.4, selected cells are divided into two non-overlapping groups A

and B. All cells in Group A are taken out to reshape a 2R0−1× 2R0−1 matrix, as illustrated

in Fig. 5.6(a). i and j are row and column numbers of the original 2R0+1 × 2R0+1 matrix;

r and c are row and column numbers of the new 2R0−1 × 2R0−1 matrix. SDSQ indices

l ∈ L = {0, 1, · · · , 2R0 − 1} are divided into two sets LA and LB according to lR0−1 = 0

and lR0−1 = 1 respectively. Hence, LA = {0, 1, · · · , 2R0−1 − 1} and LB = {2R0−1, 2R0−1 +

1, · · · , 2R0 − 1}. SDSQ indices in LA are assigned to Group A by using the IA method

provided in Section 5.3.1. The resulting IA scheme is shown in Fig. 5.6(a). Thereafter,

referring to i and j, Group A is mapped back to the original matrix. Similarly, SDSQ indices

in LB are assigned to Group B, as illustrated in Fig. 5.6(b). However, in order to keep

balanced spreads, before mapping back to the original matrix, the matrix is transposed.
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At last, the IA scheme shown in Fig. 5.3(b) is obtained.

Therefore, according to this algorithm, it can be inferred that the average spread of

B(R0, 1) equals to that of B(R0 − 1, 0).

5.3.4 Index Assignment for More Than One Bit Redundancy

...

MSB LSB

Partition #: 01

Partition size: 

(bits)
b1 b0

-1

bρ-1

...... b0+b1-1l b0l b0-1l l0R0-bρ-1l ......lR0-1

Fig. 5.7 R0 bits of l are divided into ρ partitions in sequence in B(R0, ρ),
ρ ≥ 2.

Next, we describe the algorithm producing B(R0, ρ), ρ ≥ 2. In order to add ρ-bit

redundancy, the methods to add one-bit redundancy are recursively applied. As illustrated

in Fig. 5.7, R0 information bits of each l are divided into ρ partitions in sequence. Each

partition is protected by one-bit redundancy. The granularity of the k-th partition bk

denotes the number of information bits involved in this partition, k = 0, 1, · · · , ρ − 1.

Thus,

R0 =

ρ−1∑

k=0

bk. (5.28)

We use a partition sequence 〈bρ−1, · · · , b0〉 to represent a partition scheme for B(R0, ρ).

There may exist more than one partition sequence for a B(R0, ρ). For instance, two partition

sequences for B(7, 3) are 〈1, 3, 3〉 and 〈1, 1, 5〉, as illustrated in Fig. 5.8. Specifically, in

Fig. 5.8(a), 〈1, 3, 3〉 means to divide l = [l6l5l4l3l2l1l0] to three partitions: [l6], [l5l4l3] and

[l2l1l0], each of which is protected by one-bit redundancy.

For a given partition sequence of B(R0, ρ), the IA scheme is accomplished partition

by partition. For partitions with bk = 1, two descriptions are generated by duplicating

the information bit; then, the modulo-2 summation of these two bits is 0, i.e., (5.17) is

satisfied. For partitions with bk ≥ 3, two descriptions are produced in the same way

as B(R0, 1). Therefore, in each partition, two descriptions are generated with the minimized

average side spread and balanced side spreads, and (5.17) is satisfied. Consequently, with
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l6 l5 l4 l3 l2 l1 l0MSB LSB

Partition #: 012

Number of bits: b2 = 1 b1 = 3 b0 = 3

(a)

l6 l5 l4 l3 l2 l1 l0MSB LSB

Partition #: 012

Number of bits: b2 = 1 b1 = 1 b0 = 5

(b)

Fig. 5.8 Two realizations of of B(7, 3): (a) 〈1, 3, 3〉; (b) 〈1, 1, 5〉.

minimized s̄ and s̄1 = s̄2, the IA scheme is uniquely determined by this partition sequence;

furthermore, each [i, j] satisfies (5.17). Similar to the algorithm described in Section 5.3.2,

the computational complexity corresponding to each source sample is O(2R0).

5.3.5 Error Detection, Correction and Estimation

Redundancy added in the ERMDC system provides protection from packet losses and bit

errors. At the receiver, the correctness of each packet can be determined by checking

applied FEC codes, such as cyclic redundancy check (CRC). If both descriptions are lost or

carry bit errors, this transmission fails. When only one description is received and correct,

the corresponding side decoder reconstructs signals with the side distortion. When both

descriptions are received correctly, the central decoder recovers received signals with the

central distortion. In the case that one of two received descriptions carries bit errors, each

code word [i, j] is checked partition by partition in terms of (5.17). If (5.17) is not satisfied,

the reconstruction value is estimated by using the algorithms provided in Section 3.3.2. In

particular, at partitions with unit granularities, taking the bits from the correct descriptions

means not to introduce bit errors, because the duplicated information bits are decomposed

into two descriptions.
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5.4 Optimal Bit Allocation Schemes

In the previous section, we present how to assign indices with low complexity. In particular,

in Section 5.3.4, more than one bit of redundancy is added, and each bit of redundancy

is allocated to a partition. As shown in Fig. 5.8, for a given B(R0, ρ), more than one bit

allocation schemes may exist. So, we discuss how to measure the quality of different bit

allocation schemes, and the optimal bit allocation scheme based on the measurement.

5.4.1 Performance Measurement of Bit Allocation Schemes

As mentioned in Section 4.4.1, spreads are used in evaluating IA schemes, specifically, Smax

and Sd. In a high rate system, we derive the overall average spread s̄ of the IA method

proposed in Section 5.3.4.

For a given B(R0, ρ), ρ ≥ 2, we use s̄ as the metric of the average side distortion Ds.

Provided a partition sequence 〈bρ−1, · · · , b0〉, the average side spread of the k-th partition

s̄pk
is given by

s̄pk
=

{
1, bk = 1;

2bk−2 + 0.5, bk ≥ 3.
(5.29)

bk is the granularity of the k-th partition defined in Section 5.3.4.

Therefore, the overall average side spread s̄ is given by

s̄ = s̄p0 +

ρ−1∑

k=1

(s̄pk
− 1) · 2

Pk−1
t=0 bt . (5.30)

s̄ is a good measurement of Ds associated with IA schemes with the same SDSQ levels.

However, since the influence of different SDSQ levels on Ds is not considered in calculating s̄,

it is not enough to evaluate Ds of IA schemes with different SDSQ levels. Thus, taking

into account the total number of SDSQ levels L = 2R0 , the normalized average spread s̄n

is introduced as

s̄n =
s̄

2R0
. (5.31)

5.4.2 Optimal Bit Allocation

In terms of (5.29)–(5.30), a principle for designing B(R0, ρ) can be inferred: (i) in terms

of (5.29), smaller granularity bk produces lower s̄pk
; (ii) in addition to (5.30), it can be in-
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ferred that in order to get smaller s̄, larger granularities should be located in less significant

partitions, namely, bk ≤ bk−1, k = 1, 2, · · · , ρ − 1. For example, for 〈1, 1, 5〉, s̄ = 8.5; for

〈1, 3, 3〉, s̄ = 14.5. Thus, 〈1, 1, 5〉 is better than 〈1, 3, 3〉.
We derive the optimal bit allocation scheme for B(R0, ρ). In terms of (5.29), for the

k-th partition, the minimum average side distortion

min
bk

s̄pk
= 1, (5.32)

is achieved, when bk = 1.

Let

s̄pH
=

ρ−1∑

k=1

(s̄pk
− 1) · 2

Pk−1
t=0 bt . (5.33)

When bk = 1, k = 1, · · · , ρ− 1,

min s̄pH
= 0 (5.34)

is achieved.

Based on (5.30), s̄ = s̄p0 +s̄pH
. Therefore, given B(R0, ρ), when bk = 1, k = 1, · · · , ρ−1,

and b0 = R0 − ρ + 1,

min s̄ = s̄p0 =

{
1, b0 = 1;

2b0−2 + 0.5, b0 ≥ 3
(5.35)

is achieved.

Hence, the optimal bit allocation scheme is

〈 1, 1, · · · , 1︸ ︷︷ ︸
ρ− 1

, R0 − ρ + 1 〉 . (5.36)

5.5 Experimental Results and Performance Comparison

In this section, we exploit experimental results to demonstrate performance of the fast

IA algorithm proposed above. In Section 5.5.1, computational complexity of the fast IA

algorithm, the GA algorithm and the MDSQ is compared. In Section 5.5.2, we demon-
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Table 5.2 Comparison among the fast IA, the GA and the MDSQ. For the
fast IA and the GA, ρ = 1.

Fast IA GA MDSQ

R smax sdif Ds (dB) smax sdif Ds (dB) t (mins) ρ smax sdif Ds (dB)

6 10 3 -19.8 10 1 -19.3 0.37 0.96 11 7 -20.7

8 36 7 -19.8 51 2 -17.6 90 1.08 37 26 -21.6

10 136 15 -19.8 439 51 -11.5 503 1.01 172 126 -21.7

strate which metric, the average spread s̄ or the normalized average spread s̄n, is better

to represent the average side distortion Ds. Then, performance of the fast IA algorithm is

compared with that of existing algorithms over erasure and noisy channels in Section 5.5.3.

5.5.1 Computational Complexity

The fast IA is designed to cut down the computational complexity of designing the ERMDC

encoder. In this section, we compare computational complexity of the proposed fast IA

algorithm for B(R0, 1) with the IA algorithm proposed in Chapter 4, in which the GA

is used to find a “close-to-optimum” solution, and the MDSQ [18]. In the following, we

mention the algorithm provided in Chapter 4 as the GA, which is the key step and consumes

most of the computational complexity.

Experimental results are shown in Table 5.2. In experiments, uniformly distributed

source samples in [−0.5, 0.5] are quantized by uniform scalar quantizers. Average side

distortions Ds in dB are shown as references. In the fast IA and the GA, ρ = 1, and, thus,

R = R0 + 1.

As mentioned in Section 4.4.1, spreads are independent on characteristics of source

signals and channel noise. A smaller spread suggests that the reconstruction value is more

accurate. A smaller maximum spread smax means a lower side distortion. Smaller spread

difference sdif represents smaller variance of spreads and, hence, a more balanced system.

Therefore, we use smax and sdif to evaluate IA schemes in high rate systems.

Simulations written in C++ run on a PC with Intel Pentium IV 3 GHz CPU, 1 G

bytes memory, which means there is no memory limitation, especially, on the GA. The

computational complexity of the GA is influenced by many factors, such as the number of

genes, chromosomes, generations, and sorting algorithms. The elapsed time t in minutes
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is utilized to evaluate the computational complexity of the GA. It indicates that if the

time is long enough, GA can find a better IA scheme, i.e., smaller sdif . As the size of

the search space that is represented by R increases, the speed of finding a good solution

decreases significantly. In a small search space, such as R = 6 bpss, the GA finds a better

solution than the fast IA in less than one minute. However, when it searches a space

with R = 10 bpss, a good solution cannot be obtained even in more than eight hours. In

contrast, with substantial lower computational complexity of O(2R0), the fast IA algorithm

always produces a “close-to-optimum” IA scheme in a constant time that is not more than

one millisecond.

The performance achieved by using the MLIA of the MDSQ, illustrated in Section 2.3.4,

is also shown in Table 5.2. In the MDSQ, ρ is usually not an integer. For purposes of

comparison, we chose ρ of the MDSQ close to 1. It shows that IA schemes obtained by the

fast IA algorithm have both smaller smax and sdif , even though side distortions Ds are a

little higher. However, the MDSQ is not robust to bit errors. It suggests that IA schemes

obtained by the fast IA algorithm are more robust against bit errors at the cost of higher

side distortions, which is similar to the results shown in Chapter 4.

Index assignment of an MDSQ is realized in two steps: (i) all L ≈ 2R0 MDSQ index

pairs are scanned and, then, stored in an IA table; (ii) each SDSQ index l is mapped to

an MDSQ index pair (i, j) by checking the IA table with 2R0 entries. Consequently, for

encoding K indices l, the total computational complexity is (2R0 + KR0). It is a little

higher than that of the fast IA algorithm, which is 2KR0.

As for B(R0, ρ), ρ ≥ 2, the computational complexity of the fast IA remains O(2R0).

Moreover, because the fast IA algorithm decomposes each SDSQ index l to an ERMDC

index pair (i, j) bit by bit, the ERMDC encoder can output two descriptions as information

bits are being fed. That is to say, the implementation of the decomposition is so-called

“on-the-fly”. In addition, when applying MDSQ in bitplane-based image compression al-

gorithms, since ρ is not an integer, a conversion between the number of bitplanes and the

number of MDSQ quantization levels is required. In contrast, the fast IA algorithm can be

easily adapted without this kind of conversion.

5.5.2 Spreads vs. Side Distortions

In Section 5.4.1, we claim that in high rate systems, the average spread s̄ and the normalized

average spread s̄n can be used as metrics of the average side distortion so as to evaluate
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Table 5.3 Bit allocation schemes of B(R0, ρ), where R0 + ρ = 10 and ρ ≥ 1.

Partition sequences R0 s̄ s̄n Ds (×10−4)

〈9〉 9 128.5 0.2510 104

〈1, 7〉 8 32.5 0.1270 26.1

〈3, 5〉 8 56.5 0.2207 99.3

〈1, 1, 5〉 7 8.5 0.0664 6.54

〈1, 3, 3〉 7 14.5 0.1133 24.8

〈1, 1, 1, 3〉 6 2.5 0.0391 1.73

different bit allocation schemes. Here, we use experiments to verify the validity of this

statement.

In experiments, bit allocation schemes for B(R0, ρ), where R0 + ρ = 10 and ρ ≥ 1,

are compared. A uniform scalar quantizer is applied with i.i.d. source samples uniformly

distributed in [−0.5, 0.5]. Six bit allocation schemes are obtained: B(9, 1) = 〈9〉, B1(8, 2) =

〈1, 7〉, B2(8, 2) = 〈3, 5〉, B1(7, 3) = 〈1, 1, 5〉, B2(7, 3) = 〈1, 3, 3〉, B(6, 4) = 〈1, 1, 1, 3〉.
Associated s̄, s̄n and Ds are shown in Table 5.3. Behaviours of Ds and s̄n are further

compared in Fig. 5.9. It indicates that compared with s̄, s̄n provides more accurate de-

scription of the behaviour of Ds with respect to central distortions. Therefore, we use s̄n

as the metric in following experiments. According to experimental results, the optimal

bit allocation schemes associated with ρ = 1, 2, 3, 4 are B(9, 1) = 〈9〉, B1(8, 2) = 〈1, 7〉,
B1(7, 3) = 〈1, 1, 5〉, B(6, 4) = 〈1, 1, 1, 3〉 respectively. This experimental result is consis-

tent with the optimal bit allocation scheme (5.36) obtained in Section 5.4.2.

5.5.3 Performance Against Packet Losses and Bit Errors

In order to evaluate performance over erasure and noisy channels, we compare the proposed

method with the MDSQ (Section 2.3), and a variant of the PTSQ [47]. In this variant of

the PTSQ, in order to protect from bit errors, the redundancy of B(R0, ρ) is generated

by repeating ρ most significant information bits. For example, for B(7, 3), l = [l6 · · · l0],
i = [l6l5l4l3l2l0] and j = [l6l5l4]. Therefore, the side distortion of this variant is higher than

that of the original PTSQ [47], in which the redundancy is optimized according to the side

bitrate.
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(b) Normalized average spread

Fig. 5.9 Comparison between behaviours of side distortions and normalized
average spread with respect to the central distortion at the total coding rate
10 bpss. Data points in each figure from the left to the right correspond to
partition sequences 〈1, 1, 1, 3〉, 〈1, 1, 5〉, 〈1, 3, 3〉, 〈1, 7〉, 〈3, 5〉, 〈9〉.

Over erasure channels, we test these three algorithms at the total coding rate 10 bpss.

Experimental results are shown in Figs. 5.10 and 5.11. In Fig. 5.10, the source signal

is i.i.d. uniformly distributed and quantized by a uniform scalar quantizer. In contrast,

in Fig. 5.11, the source signal is i.i.d. normally distributed and quantized by a Lloyd-

Max scalar quantizer. In both figures, only performance of the best schemes of the fast

IA algorithm at given ρ, i.e., B(9, 1) = 〈9〉, B(8, 2) = 〈1, 7〉, B(7, 3) = 〈1, 1, 5〉, and

B(6, 4) = 〈1, 1, 1, 3〉, is plotted. Performance of B(9, 1), B(8, 2), B(7, 3) and B(6, 4) of

the PTSQ is also plotted. The redundancy of the MDSQ is generated by selecting different

numbers of diagonals within the IA matrix (referred to Section 2.3).

Figures 5.10 and 5.11 show that side distortions of the fast IA are much lower than

those of the PTSQ, and close to those of the MDSQ, no matter which source signal is
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Fig. 5.10 Side distortions of various bit allocations with respect to central
distortions at the total code rate 10 bpss. The source signal is i.i.d. uniformly
distributed and quantized by a uniform scalar quantizer.

used. Especially, at low redundancy, the PTSQ provides poor performance, since its side

distortions are greater or equal to the variance of the source. In contrast, side distortions of

the proposed algorithm are still lower than the variance, and even lower than those of the

MDSQ. Therefore, the proposed IA algorithm achieves higher robustness against packet

losses than the PTSQ, and similar robustness with the MDSQ.

Figures 5.10 and 5.11 also indicate that except with one-bit redundancy, the relative

performance of all three IA algorithms associated with different source signals is similar.

Therefore, in following experiments, i.i.d. Gaussian source samples with zero mean and

unit variance are used as the source signal and quantized by Lloyd-Max quantizers.

Thereafter, we compare the robustness of various IA schemes against both packet losses

and bit errors. Bit errors are i.i.d. and uniformly distributed.

In Fig. 5.12, the performance of the proposed algorithm is plotted in the sense of

distortions associated with BERs. For R0 = 7, we compare performance of three fast IA

schemes: B(7, 1) = 〈7〉, B1(7, 3) = 〈1, 1, 5〉, and B2(7, 3) = 〈1, 3, 3〉. The performance
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Fig. 5.11 Side distortions of various bit allocations with respect to central
distortions at the total code rate 10 bpss. The source signal is i.i.d. normally
distributed and quantized by a Lloyd-Max scalar quantizer.

of the MDSQ is also provided for the purpose of comparison. Since the redundancy of the

MDSQ is determined by the number of diagonals chosen in the IA matrix, as described in

Section 2.3.4, the number of SDSQ levels usually cannot be represented in integer number

of bits. Hence, we choose an MDSQ with 4 bpss at each description and 124 SDSQ levels,

which is close to 128 = 27, the number of quantization levels of the SDSQ for the fast IA

algorithm.

Figure 5.12 shows that with similar redundancy, the fast IA scheme B(7, 1) is more

robust than the MDSQ against both packet losses and bit errors. As the redundancy

increases, the proposed algorithm provides higher robustness against packet losses and bit

errors. In addition, 〈1, 1, 5〉 outperforms 〈1, 3, 3〉 even with the same redundancy.

Figure 5.13 shows performance achieved by the proposed algorithm and the PTSQ

against bit errors. B(7, 3) is realized respectively by the proposed algorithm, i.e., 〈1, 1, 5〉,
and the PTSQ. In the proposed algorithm, the optimal and suboptimal estimations de-

scribed respectively in (3.28) and (3.33) are applied. The average side distortion Ds of
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Fig. 5.12 Central distortion achieved by different ERMDC schemes and the
MDSQ associated with BERs. The average side distortions associated with
the MDSQ, 〈7〉, 〈1, 3, 3〉 and 〈1, 1, 5〉 are -4.26 dB, -6.78 dB, -8.65 dB and
-13.86 dB, respectively.

〈1, 1, 5〉 is also plotted as the reference. It shows that with knowledge of statistics of

source samples and BERs, the optimal ERMDC apparently outperforms the PTSQ. With

little knowledge of channel conditions and low computational complexity, the suboptimal

ERMDC slightly outperforms the PTSQ. However, because Ds of the PTSQ scheme is

much higher than that of 〈1, 1, 5〉, as shown in Fig. 5.11, the proposed algorithm achieves

much higher robustness against packet losses than the PTSQ. Therefore, the PTSQ cannot

provide as consistent robustness against both bit errors and packet losses as the proposed

algorithm.
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Fig. 5.13 Performance comparison between the ERMDC and the PTSQ
associated with BERs.

5.6 Performance Analysis

In the previous sections of this chapter, we provide generalized fast IA algorithms for the

ERMDC system, and their performance based on experiments. In order to provide a fast

and simple means of evaluating the performance of the proposed algorithms, in this section,

we give numerical solutions and/or closed-form formulas under such circumstances as high

rate systems, uniform random signals and Gaussian random signals.

In the following, we summarize the derivation results. Please see Appendix A for

the details. The obtained solutions are later utilized in Chapter 6 to derive the optimal

redundancy associated with a given packet loss rate and BER.

5.6.1 High rate systems

Assume a high rate system, the source x ∈ [xmin, xmax) with the pdf fX(x) as the source

signals. Let the range of x be δ = xmax − xmin. Source samples x are uniformly quantized

into L = 2R0 levels. The quantization partition associated with l or (i, j) is given by
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vij :
[
xL

ij, xH
ij

)
. Thus, each interval

∆ = xH
ij − xL

ij =
δ

L
= 2−R0δ.

The side bit rate is Rs bpss. Therefore, SDSQ indices l = 0, 1, · · · , L − 1, and RMDSQ

indices i, j = 0, 1, · · · ,M − 1, where M = 2Rs . The output associated with l or (i, j) is

approximately given by

cij ≈
xH

ij + xL
ij

2
. (5.37)

Side codebooks associated with i and j are respectively given by

c
(1)
i ≈

∑

j∈J

cij · fX(cij)

∑

j∈J

fX(cij)
, and (5.38)

c
(2)
j ≈

∑

i∈I

cij · fX(cij)

∑

i∈I

fX(cij)
, (5.39)

where I and J are defined in Section 3.2.1. See the details of the derivation in Ap-

pendix A.1.

Therefore, side distortions associated with i and j are respectively given by

D
(1)
i =

∑

j∈J

(
cij − c

(1)
i

)2

fX(cij)

∑

j∈J

fX(cij)
+

∆2

12
, (5.40)

D
(2)
j =

∑

i∈I

(
cij − c

(2)
j

)2

fX(cij)

∑

i∈I

fX(cij)
+

∆2

12
. (5.41)
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Average side distortions corresponding to two descriptions are given by

D1 =

∑

i∈I

D
(1)
i fX(i)

∑

i∈I

fX(i)
, (5.42)

D2 =

∑

j∈J

D
(2)
j fX(j)

∑

j∈J

fX(j)
, (5.43)

where fX(i) =
∑

j∈J

fX(cij), and fX(j) =
∑

i∈I

fX(cij).

Therefore, the overall average side distortion Ds is obtained by (2.22).

Assume that x are i.i.d. Gaussian random variables with zero mean and unit variance.

Then,

fX(x) =
1√
2π

e−
x2

2 .

Therefore,

c
(1)
i =

2 ·
∑

j∈J

[
exp

(
−(xL

ij)
2

2

)
− exp

(
−(xH

ij )
2

2

)]

∑

j∈J

[
erf

(
xH

ij√
2

)
− erf

(
xL

ij√
2

)] , (5.44)

c
(2)
j =

2 ·
∑

i∈I

[
exp

(
−(xL

ij)
2

2

)
− exp

(
−(xH

ij )
2

2

)]

∑

i∈I

[
erf

(
xH

ij√
2

)
− erf

(
xL

ij√
2

)] , (5.45)

where the error function is defined as

erf(x) =
2√
π

∫ x

0

e−t2 dt .

Thereafter, Ds can be obtained by using (5.40)(5.41) and (2.22).
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Fig. 5.14 Comparison between experimental and analytical results associ-

ated with B(10, 0): (a) side codebook c
(1)
i , (b) side codebook c

(2)
j , (c) side

distortion D
(1)
i , and (d) side distortion D

(2)
j .

Experimental and Analytical Results

We use Gaussian random variables with zero mean and unit variance to test the numerical

solutions we obtained above. Side codebooks c
(1)
i and c

(2)
j , side distortions D

(1)
i and D

(2)
j

for R0 = 10 bpss, Rs = 5 bpss and ρ = 0 bpss in high rate systems are calculated

according to (5.38)–(5.41), respectively. c
(1)
i and c

(2)
j can also be calculated specifically for

Gaussian random variables in high rate systems according to (5.44) and (5.45), respectively.

Experimental and analytical results are compared in Fig. 5.14. It shows that analytical
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Table 5.4 Comparison of side distortions between experimental and analyt-
ical results associated with B(10, 0).

Results D1 D2 Ds

Experiment 0.2430 0.3691 0.3061

High rate 0.2110 0.3625 0.2867

Gaussian 0.2110 0.3625 0.2867

and experimental results are close. Furthermore, average side distortions are illustrated in

Table 5.4. It indicates that numerical methods provide very similar side distortions to the

actual ones.

Therefore, numerical methods, especially, the numerical method for arbitrary random

signals in high rate systems, give us a good way to estimate actual side distortions based

on a-priori statistics of the source signals. Based on this, in the next chapter, we try

to determine the optimal redundancy associated with a given BER and PLR in order to

achieve the highest robustness in the sense of rate distortion.

5.6.2 Uniform input

Assume that the source x ∈ [0, σ) is an i.i.d. and uniformly distributed random signal. The

overall average side distortion Ds of B(R0, ρ) is defined as a function of ρ. When ρ ≥ 2, we

only consider the optimal bit allocation provided in (5.36). That is to say, the bit allocation

scheme is

〈 1, 1, · · · , 1︸ ︷︷ ︸
ρ− 1

, R0 − ρ + 1 〉 .

Therefore, based on the derivation provided in Appendix A.2,

Ds(ρ) =





σ2

24
, ρ = 0;

2−2ρ · σ
2

24
, otherwise,

(5.46)

i.e., Ds(ρ) = Ds(0)− 6.02ρ dB. When σ = 1, Ds(ρ) = −13.8− 6.02ρ dB.
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Fig. 5.15 Comparison of experimental and analytical results associated with
IA schemes: B(10, 0), B(9, 1) = 〈9〉, B(8, 2) = 〈1, 7〉, B(7, 3) = 〈1, 1, 5〉, and
B(6, 4) = 〈1, 1, 1, 3〉.

Experimental and analytical results

Uniformly distributed random signals x ∈ [−1, 1] are used as the source. IA schemes with

the total coding rate R = 10 and ρ ≥ 0 are obtained according to the method provided

in Section 5.3. We only consider the optimal IA schemes in terms of (5.36). Therefore,

there are five IA schemes: B(10, 0), B(9, 1) = 〈9〉, B(8, 2) = 〈1, 7〉, B(7, 3) = 〈1, 1, 5〉, and

B(6, 4) = 〈1, 1, 1, 3〉. It shows that analytical results according to (5.46) are very close to

experimental results. There is a little difference at B(6, 4), because we ignore ∆2

24
when

making an approximation in (A.26).

5.6.3 Gaussian random signals

Assume a high rate system, i.i.d. Gaussian random variables x ∈ [− δ
2
, δ

2
] with mean µ = 0

and variance σ = 1 are uniformly quantized and represented by SDSQ indices

l = −L

2
, · · · ,−1, 0, 1, · · · , L

2
− 1 .

Then, the partition interval ∆ = δ
L
. Assume δ >> σ, that is to say, very few variables fall

out of this range [− δ
2
, δ

2
], so that the effect of clipping can be ignored.
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SDSQ indices l are one-to-one mapped to MDSQ index pairs (i, j) by using the IA

method for B(R0, 0) provided in Section 5.3.1, where

i = −M

2
, · · · ,−1, 0, 1, · · · , M

2
− 1,

j = −M

2
, · · · ,−1, 0, 1, · · · , M

2
− 1.

Note that for convenience of derivation, SDSQ indices l, ERMDC indices i and j are here

defined as signed integers, instead of unsigned integer as usually defined in the rest of this

dissertation.

Let lL and lH denote SDSQ indices l < 0 and l ≥ 0, respectively. When l < 0 or j < 0,

lL =
M

2
i + j − M

2
;

when l ≥ 0 or j ≥ 0,

lH =
M

2
i + j +

L

4
.

We distinguish lL and lH by replacing two-sided j with corresponding j̃ = |j|, that is

to say, j̃ = 0, 1, · · · , M
2
− 1. Then,

lL =
M

2
i + j̃ − L

4
; (5.47)

lH =
M

2
i + j̃ +

L

4
. (5.48)

So lL and lH are symmetric.

In a high rate system, according to (5.37),

cij =
xH

ij + xL
ij

2
=
(
l +

1

2

)
·∆. (5.49)

Probability density functions fL
i and fH

i associated with x < 0 and x ≥ 0 respectively

are given by

fL
i ≈ fX(xL

ij)

=
1√
2π
· exp

{
−
(

Mi− L

2

)2

· ∆
2

8

}
,

(5.50)
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and

fH
i ≈ fX(xH

ij )

=
1√
2π
· exp

{
−
(

Mi +
L

2

)2

· ∆
2

8

}
(5.51)

Define Φi as

Φi =
fH

i

fL
i + fH

i

=
1

1 + exp
(

M3

4
i ·∆2

) . (5.52)

Hence, side codebooks c
(1)
i and c

(2)
j are given by

c
(1)
i =

M

2
·
(

i + MΦi −
M

2

)
·∆ ; (5.53)

c
(2)
j ≈





−
√

2

π
, j < 0 ,

√
2

π
, j ≥ 0 .

(5.54)

Average side distortions D1 and D2 are given by

D1 =
M5

8
∆3 ·

M
2
−1∑

i=−M
2

fL
i fH

i

fL
i + fH

i

+
∆2

12
; (5.55)

D2 ≈ 1− 2

π
+

∆2

12
. (5.56)

It shows that (5.55) is still not very simple. In addition, (5.55) and (5.56) are only for

a given IA scheme and Gaussian distribution. Therefore, the numerical method provided

in Section 5.6.1 is preferred in further analysis.

5.7 Embedded Fast Index Assignment

Embedded coding is usually utilized in progressive image transmissions. The embedded

MDSQ was proposed in [54] for progressive image transmissions over unreliable channels.
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The IA algorithm proposed in Section 5.3 is not originally designed for progressive

transmission. Especially, in the case of B(R0, 1), since the parity bits, which are the LSBs

of i and j, are generated by using the MSB lR0 of SDSQ index l, decoding and error

detection has to proceed after receiving all bits of i and j.

However, the proposed IA algorithm can be easily modified to generate embedded cod-

ing. Here, we provide two ways to extend the proposed IA algorithm to accommodate

robust progressive transmissions.

In order to develop these embedded codes, we consider a more general case of allocating

information bits and redundancy bits. Specifically, for B(R0, ρ), R0 bits of information

are divided into γ partitions, so that in the k-th partition there are bk bits of information

protected by ek bits of redundancy, subject to

R0 =

γ−1∑

k=0

bk , (5.57)

ρ =

γ−1∑

k=0

ek . (5.58)

The corresponding bit allocation scheme is
〈
(bγ−1, eγ−1), · · · , (b1, e1), (b0, e0)

〉
, where the

(γ − 1)-th partition is the most significant partition, and the zeroth partition is the least

significant partition.

Different from previous discussion, γ may not equal to ρ, and ek may not be one. As a

particular case, when γ = ρ and ek = 1, the bit allocation scheme is
〈
(bρ−1, 1), · · · , (b1, 1), (b0, 1)

〉
.

By omitting ek = 1, we get
〈
bρ−1, · · · , b1, b0

〉
, which is the bit allocation scheme discussed

before.

Unequal error protection

In the first method, for B(R0, ρ), R0 bits of information are divided into (ρ + 1) partitions,

so that in each of ρ most significant partitions, one-bit information is protected by one-bit

redundancy. Specifically, the bit allocation scheme is given by

〈
(1, 1), · · · , (1, 1)︸ ︷︷ ︸

ρ

, (R0 − ρ, 0)
〉

. (5.59)
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Fig. 5.16 Embedded IA scheme obtained by the proposed algorithm.

This is actually an unequal error protection (UEP) method. Redundancy bits are gen-

erated by duplicating information bits in the same partition. The IA of the least significant

partition is obtained by using the method for B(R0−ρ, 0), which is provided in Section 5.3.1.

For a given B(R0, ρ), the average spread of this method equals to the IA method provided

in Section 5.3.

Therefore, in this method, once an information bit is received, the decoder starts to set

the corresponding bit in the output symbol until all bits are received. In addition, (5.17)

is still satisfied and allows for error detection.

Equal error protection

The second method exploits equal error protection (EEP) to generate ERMDC index

pairs (i, j). This method is almost the same as the method provided in Section 5.3, except

that for B(R0, 1), parity bits i0 and j0 are produced by using the LSB l0 instead of the

MSB lR0−1. Specifically,

i =
[
l(R0−2) · · · l(R0−1

2

) i0

]
, and

j =
[
l(R0−1) l(R0−3

2

) · · · l1 j0

]
,

(5.60)
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where

i0 = l0 ⊕
R0−2⊕

k=
R0−1

2

lk, and

j0 = l0 ⊕ l(R0−1) ⊕
R0−3

2⊕

k=1

lk.

(5.61)

In cases of ρ = 0 and ρ ≥ 2, the IA methods given in Sections 5.3.1 and 5.3.4 are utilized

respectively.

The embedded EEP IA scheme for B(5, 1) is illustrated in Fig. 5.16. The average

spread s̄ of this IA scheme is 16. It is larger than 8.5, which is the average spread of the

IA scheme shown in Fig. 5.3(b). The IA scheme shown in Fig. 5.3(b) is designed according

to the method provided in Section 5.3.2, i.e., using the MSB lR0−1 to produce parities.

Similar to the UEP method, in this method, once an information bit is received, decod-

ing can proceed. In addition, (5.17) is still satisfied and allows for error detection.

Performance comparison

Here, we compare performance of three fast IA methods, which are the ERMDC IA method

provided in Section 5.3, embedded UEP and EEP IA algorithms proposed in this section.

Performance of the MDSQ and PTSQ is also plotted as the reference. In the following

experiments, Gaussian signal with zero mean and unit variance is used as the source and

uniformly quantized.

Side distortions with respect to central distortions of various IA methods are compared

in Fig. 5.17. The total coding rate R = 10, and ρ = 1, 2, 3, 4. It shows that performance

of the ERMDC and embedded UEP IA methods is very close. Their performance is much

better than that of the PTSQ, a little worse than that of the MDSQ at high redundancy,

and better at low redundancy. The embedded EEP IA method is worse than the other two

fast IA methods, but outperforms the PTSQ, especially at low redundancy.

In Fig. 5.18, central distortions achieved by these IA methods at R = 10 and ρ = 1

are plotted. It shows that the ERMDC accomplishes the highest robustness. The UEP

achieves similar robustness to the MDSQ and PTSQ; however, the EEP outperforms UEP

marginally.
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Fig. 5.17 Central distortions achieved by various IA methods associated
with side distortions.

In summary, the EEP and UEP outperform the MDSQ and PTSQ against both packet

losses and bit errors, even though they are worse than the ERMDC. Taking into account

their low computational complexity and high robustness, they are very attractive in pro-

gressive transmissions.

5.8 Discussion and Conclusion

In this chapter, a novel generalized fast IA algorithm for the ERMDC is proposed. The

proposed algorithm exploits the redundancy equivalent to any arbitrary number of parity

bits to enhance the robustness of the ERMDC system against both bit errors and packet

losses. Without checking a predetermined IA table, the proposed algorithm is able to be

implemented “on-the-fly”. Experimental results show that the proposed algorithm achieves

consistent robustness against both bit errors and packet losses. When only taking into ac-

count packet losses, the proposed algorithm accomplishes performance close to the MDSQ,

and much better than the PTSQ. When only considering bit errors, the proposed algorithm
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Fig. 5.18 Distortion achieved by various IA methods associated with BERs.

outperforms both the MDSQ and the PTSQ.

In the MDSQ, since IA schemes must be determined before MDSQ encoding, it is

difficult to change the redundancy thereafter. In contrast, the proposed algorithm can

flexibly adjust granularities of partitions at any time during ERMDC encoding in terms of

the current requirement of robustness and channel conditions.

So as to conduct further analysis of the proposed ERMDC system, a numerical method

for arbitrary IA scheme and source is provided in high rate systems. In addition, closed form

formulas of the overall average side distortion are derived for the proposed IA algorithm

with uniformly distributed signals. Experimental results show that the numerical method

and closed form formulas provide very good description of the associated ERMDC codec.

In order to accommodate to progressive transmissions, based on the IA algorithm pro-

posed in Section 5.3, two embedded fast IA algorithms are presented in Section 5.7. Both of

them are capable of protecting from packet losses and bit errors. It suggests that the IA al-

gorithms proposed in this chapter can be flexibly and easily adapted to various application

requirements.
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In the next chapter, we will try to apply the ERMDC codec over slow Rayleigh fading

channels. Because FEC codes are well-known for their high efficiency on protecting from

bit errors, we are going to combine the ERMDC with FEC codes to achieve higher efficiency

and robustness. In addition, we will investigate how much redundancy is appropriate for a

certain channel condition.
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Chapter 6

Performance of ERMDC

In Chapters 3 and 4, we propose the decoder and encoder of the ERMDC. Experimental

results show that the ERMDC codec outperforms the traditional MDSQ. In this chapter,

we will test the proposed ERMDC codec over typical wireless channels, such as Rayleigh

fading channels, in Section 6.11. In Chapter 5, a generalized fast IA algorithm is developed

to simplify the design of the ERMDC encoder. In Section 6.2, the ERMDC is combined

with FEC codes to form an ERMDC system, which provides protection against packet

losses and bit errors2. This ERMDC system is tested on a novel test bed that is a three-

state Markov chain. The experimental results show that the ERMDC system outperforms

both packet loss recovery techniques respectively based on MDC and FEC. Furthermore,

the optimal redundancy in the ERMDC system is derived in Section 6.3.

6.1 Soft Input ERMDC for Rayleigh Fading Channels

Instead of binary symmetric channels (BSC) used in previous chapters, in this section, we

attempt to apply the ERMDC codec over wireless channels. The MDSQ was applied by Yan

and Vaishampayan to achieve low-delay communications over Rayleigh fading channels [84].

In order to match the Rayleigh fading model to the classic on/off channel model of MDC

systems, a fading parameter was predetermined as a threshold. Even though an upper

bound of the channel erasure probability was derived, it was too loose to be used for

1This work has been presented at the IEEE International Conference on Multimedia and Expo, July
2007.

2This work has been presented at the 69th IEEE Vehicular Technology Conference, April 2009.
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the MDSQ design at low channel signal-to-noise ratio (SNR). Zhou et al. extended the

multiple-channel optimized quantizer to Rayleigh fading channels by applying soft decision

at the receiver [90]. In order to determine reconstruction symbols “0”, “1” and “erasure”,

thresholds were set up in terms of derived channel erasure rates and BERs. Based on

the dependency between descriptions, symbol “erasure” was estimated so as to reduce the

resulting distortion. Since “erasures” were assumed in both descriptions, the achieved

improvement was very limited.

Because FEC codes can only provide limited protection from bit errors, it is possible

that the number of bit errors in only one description exceeds the error correction capa-

bility of the applied FEC codes. We considered this situation and the situation with two

correct descriptions, and developed optimal and suboptimal ERMDC decoders to reduce

the distortion caused by detectable transmission errors in Chapter 3. A robust IA scheme

is provided in Chapter 4 to improve the performance of the ERMDC decoder. This pair

of ERMDC encoder and decoder can be seen as a kind of joint source-channel coding.

In Chapters 3 and 4, received modulated signals are demodulated to a bitstream. Once

transmission errors in this bitstream are detected, the reproduction values are estimated

so as to reduce the reconstruction distortion. Instead, in this section, by directly exploit-

ing received modulated signals, we estimate more accurately the reproduction levels of

detected transmission errors so as to achieve higher robustness against noisy and fading

channels. The resulting distortions of reconstructed signals over additive white Gaussian

noise (AWGN) and slow Rayleigh fading channels are lower than those obtained by the

conventional soft detector. This performance improvement is achieved without introducing

any extra redundancy or much computational complexity.

We will present the details of the novel soft decoder based on AWGN in Section 6.1.1.

This soft decoder is further applied for slow Rayleigh fading channels. In Section 6.1.2,

experimental results show that the proposed algorithm achieves graceful performance degra-

dation, and outperforms existing works. The conclusion is given in the last subsection.

6.1.1 ERMDC over Rayleigh Fading Channels

We consider that information is transmitted over two independent wireless channels without

memory. These two channels might be two realizations of the same channel at different time

instances. In this subsection, two scenarios are discussed: first, the transition probability

is derived for AWGN channels without fading; thereafter, this probability is extended to



6.1 Soft Input ERMDC for Rayleigh Fading Channels 113

channels with slow Rayleigh fading and AWGN.

AWGN channels

Each source sample x ∈ X is encoded into an R0-bit SDSQ index l, then decomposed into

an ERMDC index pair (i, j), and, thereafter, transmitted via a BPSK modulator over two

independent wireless channels. In particular, each ERMDC index i and j is coded in Rs

bits as [iRs−1 · · · i1 i0]
T and [jRs−1 · · · j1 j0]

T . Each bit of i and j is modulated as s
(1)
m

and s
(2)
m , respectively, where s

(1)
m or s

(2)
m ∈ {+

√
Es,−

√
Es}, m ∈ {0, · · · , Rs − 1}. Thus,

each symbol of i and j is modulated via BPSK as S(n) =
[
s
(n)
Rs−1, · · · , s

(n)
0

]T
, respectively,

where n = 1, 2. When only considering wireless channels with AWGN W(n), the received

signal Y(n) corresponding to the transmitted signal S(n) of n-th channel is given by

Y(n) = S(n) + W(n), n = 1, 2, (6.1)

where W(n) is AWGN with zero mean and variance σ2, i.e., its distribution is

p
W

(w) =
1

σ
√

2π
exp

(
− w2

2σ2

)
. (6.2)

The received indices î and ĵ can be determined by using soft detector

î = arg min
i∈I

Rs−1∑

m=0

∥∥∥y(1)
m − s(1)

m

∥∥∥
2

, (6.3)

ĵ = arg min
j∈J

Rs−1∑

m=0

∥∥∥y(2)
m − s(2)

m

∥∥∥
2

, (6.4)

where y
(1)
m and y

(2)
m are received signals corresponding to m-th bits in binary representations

of received indices î ∈ I and ĵ ∈ J , respectively. Because î and ĵ are separately determined,

if a−1(̂i, ĵ) 6∈ L, transmission errors occur.

The FEC codes added in each description at the transmitter is utilized to correct bit

errors. In order to illustrate the soft decoder’s operation, we assume that all bit errors

in Description 1 are corrected after FEC decoding, i.e., i = î; however, bit errors in

Description 2 cannot be corrected due to exceeding the error correction capability of applied

FEC codes, i.e., j 6= ĵ. In this case, soft decision is used by Yang and Vaishampayan [84].
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Referring to the corrected index î, ĵ can be determined by

ĵ = arg min
j∈Ji

Rs−1∑

m=0

∥∥∥y(2)
m − s(2)

m

∥∥∥
2

. (6.5)

Instead, we utilize (3.28) to develop a novel method to estimate the reconstruction

level e
(1)
opt(i, ĵ) corresponding to the unused index pair (i, ĵ), where ĵ ∈ J̄i. The transition

probability Pe(ĵ|j) in (3.28) is given by

Pe(ĵ|j) =
Rs−1∏

m=0

Pe(ĵm|jm), (6.6)

where jm is the m-th bit of transmitted index j, ĵm is the received bit corresponding to jm.

In light of (6.1) and (6.2), (6.6) can be written as

Pe(ĵ|j) =

(
1

σ
√

2π

)Rs

exp



−

Rs−1∑

m=0

∥∥∥y(2)
m − s(2)

m

∥∥∥
2

2σ2




. (6.7)

Rayleigh fading channels

Next, we consider the scenario with slow Rayleigh fading channels. Let Z(n), A(n) and

W(n), n = 1, 2, represent respectively the received signal, the Rayleigh parameter, and

AWGN corresponding to the transmitted signal S(n), where

Z(n) = A(n)S(n) + W(n), n = 1, 2. (6.8)

Under the assumption of slow fading, the Rayleigh parameter A(n) is assumed to be constant

over the interval of transmitting a symbol. A(n) = diag
{
a(n)
}
, n = 1, 2, where a(n) are

Rayleigh parameters corresponding to indices i and j, respectively. The distribution of

A(n) is

p
A
(a) =

2a

Ω
exp(−a2

Ω
), a ≥ 0,

where Ω = E{A2}.
With the assumption that perfect estimates of the Rayleigh parameters A(n) are avail-
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able at the receiver, the soft decision described in (6.3), (6.4) and (6.5) are changed corre-

spondingly to

î = arg min
i∈I

Rs−1∑

m=0

∥∥z(1)
m − a(1)s(1)

m

∥∥2
, (6.9)

ĵ = arg min
j∈J

Rs−1∑

m=0

∥∥z(2)
m − a(2)s(2)

m

∥∥2
, (6.10)

and

ĵ = arg min
j∈Ji

Rs−1∑

m=0

∥∥z(2)
m − a(2)s(2)

m

∥∥2
. (6.11)

The transition probability Pe(ĵ|j) for slow Rayleigh fading channels can be calculated

by

Pe(ĵ|j) = (
1

σ
√

2π
)Rs exp


−

∑Rs−1
m=0

∥∥∥z(2)
m − a

(2)
j s

(2)
m

∥∥∥
2

2σ2


 . (6.12)

For either AGWN or slow Rayleigh fading channels, once Pe(ĵ|j) is obtained according

to (6.7) or (6.12), e
(1)
opt(i, ĵ) can be calculated by using (3.28).

6.1.2 Experimental Results

Experimental results are expressed as signal-to-distortion ratio (SDR) in dB versus channel

SNR measured at the receiver end. Specifically, SDR = Es

D0
, SNR = Es

W0
for AWGN channels

and SNR = Ω Es

W0
for Rayleigh fading channels, where W0 is the power of AWGN.

In the following experiments, we test various combinations of three decoders and two

encoders:

• Encoders:

– MDSQ encoder : The traditional IA scheme such as Fig. 6.1(a) is used.

– ERMDC encoder : The robust IA scheme such as Fig. 6.1(b), which is developed

in Chapter 4, is applied.

• Decoders:
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Fig. 6.1 IA schemes at 3 bpss/channel: (a) MDSQ IA, (b) robust IA.

– Soft detector : The conventional soft detector developed by Yang and Vaisham-

payan [84] uses the algorithm described by (6.5).

– ERMDC decoder : The soft input ERMDC decoder proposed in this section is

utilized.

– ERMDC BER decoder : The ERMDC decoder realized by calculating Pe(ĵ|j) via

BERs. The BER p is calculated approximately by p = Q

(√
2Es

W0

)
.

Experimental results over AWGN channels are shown in Fig. 6.2. The conventional soft

detector and ERMDC decoder proposed here are applied with MDSQ and ERMDC en-

coders, respectively. The ERMDC encoder-decoder pair outperforms other encoder-decoder

pairs up to 7 dB. As a result of cooperating with the ERMDC encoder, the soft input ER-

MDC decoder achieves improvement of up to 2 dB compared with the soft detector, and up

to 5 dB compared with the ERMDC BER decoder. The reason of the improvement brought

by the ERMDC encoder is that any one and three-bit errors are detected. With the help of

the ERMDC encoder, soft decoders reduce the distortion caused by detectable errors. Fur-

thermore, the soft input ERMDC decoder decreases more effectively the distortion caused

by detectable errors. It should be emphasized that the improvement is achieved without

extra redundancy. In addition, SDRs at SNR ≥ 0 dB are higher than side distortions,

because bit errors in one description are assumed to be corrected by applied FEC codes.
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Fig. 6.2 Performance comparison of various MD encoder-decoder pairs over
AWGN channels.

Figure 6.3 shows results over slow Rayleigh fading channels. Similar to the performance

shown in Fig. 6.2, with the aide of FEC codes, the achieved performance is higher than

side distortions. Even though due to channel fading, the performance improvement is not

as significant as that with AGWN channels, the soft input ERMDC encoder-decoder pair

still outperforms other encoder-decoder pairs up to 2 dB. It indicates that the soft input

ERMDC encoder-decoder pair provides not only graceful performance degradation, but

also more robustness against noisy wireless channels. As we expect, based on soft receiver

inputs, the estimates can be made more precisely than that based on BER. Thus, the

soft input ERMDC decoder always provides better performance than the ERMDC BER

decoder.
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Fig. 6.3 Performance comparison of various MD encoder-decoder pairs over
slow Rayleigh fading channels.

6.1.3 Conclusion

The ERMDC is extended for AWGN and slow Rayleigh fading channels. With soft receiver

inputs, reproduction levels are estimated by using the proposed algorithms to decrease the

distortion introduced by detectable transmission errors. Experimental results show that

this novel ERMDC encoder-decoder pair achieves more robustness against noisy and slow

fading channels, and significantly outperforms the existing algorithms.

6.2 Joint MD-FEC Coding

In this section, we attempt to combine MDC and FEC techniques to provide protection

from packet losses and bit errors. Hybrid wireline and wireless networks are utilized as a

typical environment in the presence of packet losses and bit errors to test the performance
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of the proposed algorithm.

After a brief introduction of existing packet recovery techniques in Section 6.2.1, an

ERMDC system with joint MD-FEC coding is proposed in Section 6.2.2. A three-state

Markov chain is proposed to model the environment in the presence of packet losses and

bit errors in Section 6.2.3, followed by experimental results in Section 6.2.4. A short

conclusion is provided in Section 6.2.5.

6.2.1 Introduction

Nowadays, wireline and wireless networks are converging to form hybrid networks. It has

become an important trend in the telecommunications industry [1]. Packet losses and

bit errors are two important reasons that cause high reconstruction distortions, or even

transmission failure at the receiver end. When data is transmitted from a high-speed

wireline network to a low-speed wireless network, packets are usually dropped in order to

alleviate traffic congestion. Due to the vulnerability of wireless channels, wireless networks

usually suffer from bit errors and channel failure. As a result, end-to-end transmissions

through hybrid networks are often affected adversely by not only packet losses but also bit

errors. Meanwhile, as important sources of revenues for service providers, delay-sensitive

services, such as voice, audio and video communications, play very important roles in

current and future networks. Therefore, reliable and low-delay transmission techniques are

required by these services to protect information from bit errors and packet losses.

Reliable delivery mechanisms for delay-sensitive services have been widely studied to

combat packet losses and bit errors. Forward error correction (FEC) has been widely

applied to protect information from bit errors. Packet-loss recovery techniques are usually

classified into two categories: (i) sender-based and (ii) receiver-based [4]. Typical sender-

based techniques are: automatic repeat request (ARQ), FEC, multiple description coding

(MDC) and interleaving. Because the delay is of critical importance in delay-sensitive

services, FEC and MDC are applied at the cost of some redundancy and short delays.

When sender-based mechanisms fail, receiver-based error concealment schemes, such as

insertion, interpolation, and regeneration, produce replacements of lost packets.

As a means of joint source-channel coding, MDC was originally proposed to protect

from channel failure [16], [41]. The performance of the MDSQ was studied by Yang and

Vaishampayan in low-delay communications over a Rayleigh fading channel, and compared

with a maximum ratio combining system and FEC-based systems [84]. It showed that
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with the same interleaving delay, the MDSQ-based system outperformed the other two

systems. Furthermore, Kim and Kleijn compared rate-distortion performance over one

and two channels between FEC and MDC-based packet-loss recovery on Gilbert channel

model [91]. Experimental results indicated that FEC-based techniques were robust against

single-packet loss; on the other hand, MDC-based techniques were more robust against

burst-packet loss.

However, in the existing work, the performance of MDC-based techniques is only inves-

tigated in the presence of either packet losses or noisy channels, but not both. Since the

ERMDC achieves high robustness against both packet losses and bit errors with the help of

FEC, in this section, we propose an enhanced ERMDC system, in which MDC and FEC are

utilized jointly to protect from both packet losses and bit errors. FEC provides protection

against bit errors, and MDC provides protection against packet losses. In addition, the

central decoder is refined to deal with the situation, in which both received descriptions

carry bit errors after decoding FEC. We investigate the end-to-end performance of the

proposed ERMDC system over hybrid networks. Experimental results show that the joint

application of MDC and FEC-based techniques outperforms each individual.

Furthermore, due to characteristics of hybrid networks, namely, the combination of

packet losses and bit errors, the traditional testbed, such as the two-state Gilbert channel

model [92], is not suitable. Therefore, we propose a novel three-state Markov chain channel

model. In the proposed channel model, there are three states:

(i) packets are received correctly, or

(ii) packets are received with bit errors, or

(iii) packets are lost.

In experiments, given a packet error rate (PER) and a packet loss rate (PLR), we

investigate distortions of the enhanced ERMDC system associated with different BERs

at the bit-error state. For purposes of comparison, performance of traditional MDC and

FEC-based methods is also provided. To compare fairly, source samples are quantized with

the same number of levels, and protected by similar redundancy; nevertheless, processing

delays are different.
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6.2.2 Enhanced ERMDC System with Joint MD-FEC Coding

Due to high efficiency in protection from bit errors, FEC codes are utilized to achieve

an enhanced ERMDC system with joint MD-FEC coding. At the receiver end, received

descriptions are checked, and bit errors are possibly corrected based on the applied FEC

codes. Based on results of FEC decoding, the ERMDC system reduces the reconstruction

distortion by estimating outputs of received index pairs with errors.

Generally speaking, at the transmitter end, different types of FEC codes are added

according to characteristics of the network. If congestion is the dominant reason of packet

losses, and channel conditions are not severe, cyclic redundancy check (CRC) is added

to check the correctness of received packets. Otherwise, FEC codes with low redundancy

should be added to provide basic protection from bit errors.

At the receiver end, there exist six possible situations when two descriptions are trans-

mitted. When both descriptions are received, the refined central decoder, which will be

described in details later, is applied. When only one description is received and correct, side

decoders are used. Otherwise, the transmission fails. All possible situations and associated

solutions are listed in Table 6.1.

The Refined Central Decoder

As mentioned in previous chapters, at the receiver end, a central decoder is used when

both descriptions are received and the applied FEC codes are decoded. The dependency

between i and j, i.e., (5.17), is checked to determine if every index pair (̂i, ĵ) is received

correctly.

In the case that both descriptions are received correctly, the output level x̂0 = g0(̂i, ĵ).

If only one description is correct, but the other one carries bit errors, each index pair (i, j)

is checked in terms of (5.17). If (5.17) is satisfied, the output level x̂0 = g0(̂i, ĵ). Otherwise,

the output level x̂0 is estimated according to the suboptimal method provided in Chapter 3,

specifically, side codebooks.

However, as for the case that both received descriptions still carry bit errors after

decoding applied FEC codes, in the previous chapters, both descriptions were dropped,

and the transmission is considered as a failure. Here, we propose a simple method that

does not require knowledge of channel conditions. By checking (5.17), index pairs are

discriminated whether they carry bit errors or not. Outputs of correct index pairs are
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Table 6.1 Possible receiving cases and their solutions in an ERMDC system
with joint MD-FEC coding.

No. Receiving cases Solutions

1 Two descriptions are received correctly. Central decoder: The output level
x̂0 = g0(̂i, ĵ).

2 One description is received correctly, but
the other one carries bit errors.

Central decoder: If (5.17) is satisfied,
x̂0 = g0(̂i, ĵ); otherwise, x̂0 is estimated
according to the associated side codebook.

3 Both descriptions carry bit errors. Central decoder: If (5.17) is satisfied,
x̂0 = g0(̂i, ĵ); otherwise, estimated by the
mean of the source µ.

4 One description is received correctly, the
other one is lost.

Side decoder is applied.

5 One description carries bit errors, the
other one is lost.

The transmission fails.

6 Both descriptions are lost. The transmission fails.

obtained by x̂0 = g0(̂i, ĵ), and those of index pairs with bit errors are estimated by the

mean of the source µ. Therefore, if the BER is not too high, an improvement may be

achieved.

6.2.3 Channel Model in the presence of Packet Losses and Bit Errors

For channels with memory, the discrete-time, finite-state Markov models are commonly

used. As a two-state Markov model, the Gilbert channel model has been widely exploited

to simulate scenarios with either bit errors or packet losses. In the scenario with bit errors,

the two states are a good error-free state, and a bad state with a BER. In the scenario

with lost packets, the two states are a state where a packet is received, and a state where

a packet is lost.

It is obvious that the classical Gilbert model is not suitable to simulate the situation

where both packet losses and bit errors should be taken into account simultaneously, such

as the hybrid wireline and wireless network. Therefore, we propose a novel three-state

Markov model as illustrated in Fig. 6.4. In the proposed model, there are three states at
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Fig. 6.4 Channel model based on a three-state Markov chain.

the receiver end:

(i) “Good”: The transmitted packet is received without error.

(ii) “Bad”: The transmitted packet is received with bit errors at a certain BER, and

(iii) “Lost”: The transmitted packet is lost.

Transition probabilities between any two states are given in a transition probability

matrix T . The transition probability matrix T is given by

T =

Good Bad Lost

Good

Bad

Lost




pGG pGB pGL

pBG pBB pBL

pLG pLB pLL




(6.13)

Assume communications start only when channel conditions are good, that is to say, the

initial state distribution is Π0 =
(
1 0 0

)
. And the steady-state distribution is

Πss =
(
pG pB pL

)
,
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where pG, pB and pL are the probabilities of the three states “good”, “bad”, and ”lost”.

pL is actually the PLR.

At the transmitter, as a typical FEC code, assume that Reed-Solomon codes RS(N, K)

are applied to each packet to protect from bit errors. RS(N, K) codes are defined over

Galois field GF (2Rf ), thus, N = 2Rf −1. Let pb be the BER at the “Bad” state. Therefore,

for each Rf -bit symbol, the symbol error probability is

ps = 1− (1− pb)
Rf . (6.14)

We assume that one packet contains only one RS codeword. Consequently, the RS codeword

error probability pe after RS decoding at the receiver end is given by

pe =
N∑

t=N−K+1

(
N

t

)
pt

s (1− ps)
N−t. (6.15)

Taking into account the distribution of the “Bad” state, the actual PER pE after decoding

the RS codes is

pE = pe · pB . (6.16)

In the following experiments, given a transition probability matrix T, we are going to

investigate performance of various techniques in the rate-distortion sense, associated with

various BERs at the “Bad” state.

6.2.4 Experimental Results

Redundancy is exploited to protect information from packet losses and bit errors. According

to the targets of its protection, redundancy or protection can be basically classified into

two categories:

(i) packet level, which provides the capability of packet-loss recovery; and

(ii) bit level, which provides the capability of detecting and recovering bit errors.

Let R = k
n

be the code rate, where k input bits yield n output bits at a certain encoding

stage. Let Rp and Rb be code rates at packet level and bit level, respectively. Thus, the

total code rate is Rt = Rp ·Rb.
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Fig. 6.5 Generation of parity packets: The k-th bit pk of the parity packet
is generated by pk ⊕

∑6
h=1 ih,k = 0, where ih,k is the k-th bit in the h-th

information packet.

An example is illustrated in Fig. 6.5. Each six information packets are protected by a

parity packet. The parity packet is generated by exclusive OR (XOR) of the six information

packets. These six information packets and the parity packet constitute a packet group.

In each packet, RS(N,K) codes are applied to protect from bit errors. If one packet in

a packet group is lost or cannot be corrected by the applied RS code, this packet can be

recovered. Therefore, the bit-level code rate is Rb = K
N

, the packet-level code rate is Rp = 1
6
,

and the total code rate is Rt = K
6N

.

In experiments, we investigate various combinations of bit-error and packet-loss recovery

techniques:

• SD-RS : Single description protected by RS codes.

• SD-FEC : Single description protected by RS codes and parity packets.

• MDSQ-1 : Two descriptions are encoded by using the classical MDSQ encoder-

decoder pair (referred to Section 2.3) and protected by RS codes.

• MDSQ-2 : Two descriptions are generated by the ERMDC encoder provided in Chap-

ter 5 and decoded by the MDSQ decoder. These descriptions are protected by RS

codes. That is to say, after decoding RS codes, any received descriptions with bit

errors are treated as being lost, and estimated by µ.
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• ERMDC-1 : Two descriptions are generated by ERMDC encoder provided in Chap-

ter 5 and decoded by using the ERMDC decoder proposed in Chapter 3. Descriptions

are protected by RS codes. Specifically, when both received descriptions carry bit er-

rors, the outputs are estimated by the mean of the source µ.

• ERMDC-2 : This is the enhanced ERMDC system proposed in this section. That

is to say, two descriptions are generated by ERMDC encoder provided in Chapter 5

and decoded by using the ERMDC decoder refined in Section 6.2.2. Descriptions are

protected by RS codes.

In order to compare them fairly in the sense of rate distortion, similar redundancy is added,

that is to say, total code rates of these techniques are similar.

Experimental setting

Independent Gaussian random variables with zero mean and unit variance are used as the

source. They are quantized by a uniform scalar quantizer. Then, packet-level redundancy

is added by using FEC or MDC, and followed by bit-level protection provided by RS codes.

Thereafter, each description is encapsulated into a series of packets, and transmitted over

one channel, which is simulated by the proposed channel model with a given T and a BER.

At the receiver, bit errors are detected and possibly recovered by the applied RS codes.

Packet-level redundancy is utilized to recover lost packets. If bit errors or lost packets are

unable to be recovered, µ = 0 is used as the output.

The detailed settings of various techniques are shown in Table 6.2. Each source sam-

ple is uniformly quantized as widely applied in image and video compression, and, then,

represented in seven bits. The quantization distortion is −32.83 dB.

In the SD-RS and SD-FEC, packets are only transmitted over one channel. Each packet

consists of two RS codes as indicated in Table 6.2. That is to say, each packet consists of

⌈7×127×2/8⌉ = 223 bytes. As illustrated in Fig. 6.5, in the SD-FEC, each six information

packets are protected by a parity packet, and RS(N,K) codes are applied in every packet.

For MDC-based techniques, each source sample is decomposed into two descriptions

with 4 bpss each. Each description is split into 255-byte packets. Two descriptions are

transmitted over two independent channels. In the MDSQ-1, since it is hard to find a

proper index assignment scheme with 128 levels, we choose the scheme with 124 levels. In

the ERMDC, one parity bit is added in each seven information bits.



6.2 Joint MD-FEC Coding 127

Table 6.2 Experimental settings of various techniques.

Schemes SDSQ levels Channels Rp (%) RS code Rb (%) Rt (%)

SD-RS 128 1 1 (255, 215) 84.31 84.31

SD-FEC 128 1 85.71 (255, 251) 98.43 84.37

MDSQ-1 124 2 84.77 (255, 247) 96.86 82.11

MDSQ-2, ERMDC-1, 2 128 2 87.5 (255, 247) 96.86 84.75

Various techniques have different processing delays. The SD-RS processes each packet as

soon as a packet is received. MDC-based techniques need to wait for receiving two packets

from two channels before decoding. Hence, the SD-RS and MDC-based techniques have

similar delays. Nevertheless, the SD-FEC requires the longest processing delay, namely,

seven packets here.

Performance Comparison

First, we try the situation where bit errors and packet losses are equally important reasons

in performance degradation. Experimental results associated with various BERs at the

“Bad” state are shown in Figs. 6.6 and 6.7. The transition probability matrix T1 is given

by

T1 =




0.8 0.1 0.1

0.8 0.1 0.1

0.8 0.1 0.1


 .

Therefore, Πss =
(
0.8 0.1 0.1

)
. Specifically, pB and pL are 10%, respectively.

In Fig. 6.6, MDC-based techniques are compared with respect to various BERs. It

shows that ERMDC-2 achieves lower distortion than ERMDC-1 until a high BER of 6%.

At higher BERs, distortions achieved by ERMDC-2 are higher than those of ERMDC-1,

because (5.17) cannot detect high proportion of bit errors, specifically, even number of bit

errors in an MD index pair. In addition, it shows that MDSQ-1 achieves much higher

distortion than ERMDC-2. The reason is that the average side distortion ds of MDSQ-1,

which is −3.4 dB, is higher than that of ERMDC-2, which is −7.05 dB. Thus, in order to

compare them fairly, we use the performance of the ERMDC encoder provided in Chapter 5

combined with the MDSQ decoder, called MDSQ-2 here, to represent the performance of
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Fig. 6.6 Performance comparison of MDC-based techniques with respect
to various BERs. Each channel is constrained by the transition probability
matrix T1.

the traditional MDSQ. That is to say, after decoding RS codes, any received packets with

bit errors are treated as being lost, and estimated by µ. For clarity, ERMDC-1 and MDSQ-1

will not be used in the following comparisons with FEC-based techniques.

In Fig. 6.7, MDC and FEC-based techniques are compared with respect to various

BERs. At low BERs, distortions are mainly caused by packet losses. Therefore, techniques

with packet-loss recovery, such as the SD-FEC, MDSQ-2 and ERMDC-2, are more robust

against packet losses than the SD-RS, which is unable to recover any lost packet. The

distortion obtained by the SD-FEC is about 1 dB higher than the ERMDC-2, because

ERMDC-2 can still obtain partial information, even though only one description is received.

MDSQ-2 provides similar robustness with ERMDC-2.

As the BER increases, the distortion of the SD-RS stays constant until the applied

RS codes begin to fail. Starting from this point, the performance of the SD-RS degrades

rapidly. Similarly, performance of MDSQ-2 degrades fast, because the MDSQ decoder does
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Fig. 6.7 Performance comparison of MDC and FEC-based techniques with
respect to various BERs. Each channel is constrained by the transition prob-
ability matrix T1.

not provide the capability of recovering bit errors. In contrast, the SD-FEC and ERMDC-2

achieve graceful performance degradation. Especially, due to the capability of detecting

error index pairs and estimating outputs, ERMDC-2 achieves the highest robustness against

both packet losses and bit errors. At the BER 2%, the distortion of ERMDC-2 is 4 dB

lower than those of the SD-RS and the SD-FEC. At the BER 4%, ERMDC-2 reaches the

lowest distortion obtained by the SD-RS.

Second, we try the situation where bit errors are the dominant reason of performance

degradation. Experimental results associated with various BERs is shown in Fig. 6.8. The
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Fig. 6.8 Performance comparison with respect to various BERs. Each chan-
nel is constrained by the transition probability matrix T2.

transition probability matrix T2 is given by

T2 =




0.8 0.19 0.01

0.8 0.19 0.01

0.8 0.19 0.01


 .

Πss =
(
0.8 0.19 0.01

)
. Specifically, pB = 19%, and pL = 1%.

Figure 6.8 indicates that when BER < 6×104, the SD-FEC obtains the lowest distortion,

because each parity packet can recover all information from one lost packet in a packet

group, whereas ERMDC-2 can only recover partial information of lost packets. As the

BER increases, the distortion of the SD-FEC rises fast. However, thanks to its higher

bit-error resilience, the performance of ERMDC-2 deteriorates more slowly.

Third, we try the situation where packet losses are the dominant reason of performance
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degradation. Experimental results associated with various BERs is shown in Fig. 6.9. The

transition probability matrix T3 is given by

T3 =




0.8 0.01 0.19

0.8 0.01 0.19

0.8 0.01 0.19


 .

Πss =
(
0.8 0.01 0.19

)
. Specifically, pB = 1%, and pL = 19%.

Figure 6.9 indicates that MDC-based methods significantly outperform FEC-based

methods when packet losses are dominant. ERMDC-2 still achieves the highest robust-

ness until the BER reaches 15%. When the BER is very high, error detection in ERMDC-2

may make mistakes. Specifically, because (5.17) can only detect one-bit or odd number

bits of errors, even number bits of errors are unable to be detected. Therefore, higher

estimation distortion is introduced at high BERs. As the result, MDSQ-2 achieves lower

distortion at high BERs (> 15%).

In the fourth experiment, we consider the situation where lost and erroneous packets

occur in bursts. Experimental results associated with various BERs is shown in Fig. 6.10.

The transition probability matrix T4 is given by

T4 =




0.7 0.25 0.05

0.25 0.7 0.05

0.25 0.05 0.7


 .

Πss ≈
(
0.46 0.40 0.14

)
. Specifically, pB ≈ 40%, and pL ≈ 14%. Consequently, in this

experiment, the average length of burst packet losses is about 3.33 packets.

Figure 6.10 shows that at low BERs, MDC-based techniques substantially outperform

FEC-based techniques. SD-FEC can only recover one lost packet out of each seven consec-

utive packets. Hence, when packet losses occur in bursts, i.e., on average about 3.3 packets

in this experiment, the performance of SD-FEC is poor. Its performance is similar to that

of SD-RS at low BERs, and becomes poorer as the BER increases. The traditional MDC

technique, i.e., MDSQ-2, achieves similar performance to that of the ERMDC at low BERs.

However, once the number of bit errors exceeds the error correction capability of applied

RS codes, its performance degrades rapidly as the BER increases, and becomes worse than

those of FEC-based techniques. Similarly, the performance of ERMDC-2 deteriorates as
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Fig. 6.9 Performance comparison with respect to various BERs. Each chan-
nel is constrained by the transition probability matrix T3.

the BER grows, when the number of bit errors begins to exceed the error correction ca-

pability of applied RS codes. Nevertheless, the error resilient capability of the ERMDC

offsets, to some extent, the performance degradation. Thus, the performance degradation

becomes slower, but continues, as the BER increases. Furthermore, since a higher density

of bit errors exceeds the error resilient capability of ERMDC-2, more false error detection

makes its performance worse than those of SD-RS and MDSQ-2. Consequently, ERMDC-2

achieves the lowest end-to-end distortion in a wide range of BERs, and its performance

gracefully degrades as the BER increases.

6.2.5 Discussion and Conclusion

In this section, the end-to-end performance of the ERMDC system with joint MD-FEC

coding against both packet losses and bit errors is investigated in the sense of rate distor-
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Fig. 6.10 Performance comparison of MDC-based techniques with respect
to various BERs. Each channel is constrained by the transition probability
matrix T4.

tion. Redundancy is added by means of FEC and/or MDC so as to protect information

against bit errors and/or packet losses. In order to simulate the environment where packet

losses and bit errors are two important reasons of performance degradation, a novel three-

state Markov model is proposed. In the proposed model, three states are an error-free

state, a state with bit errors, and a packet-loss state. Various techniques with capabilities

of recovering bit errors and/or packet losses are compared based on the proposed channel

model. Experimental results show that the ERMDC system with joint MD-FEC coding

achieves the highest robustness against both packet losses and bit errors. The method of

FEC-based packet-loss recovery achieves the closest behaviour; however, its processing de-

lay is much longer. Although the single description protected by FEC codes achieves higher

robustness against bit errors, it cannot alleviate adverse effects of packet loss. Therefore,

it is appropriate to apply the ERMDC system on delay-sensitive communications in the
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presence of both packet losses and bit errors.

6.3 Optimal MDC Redundancy

In the last section, it was showed that the joint application of MD and FEC coding outper-

forms either technique applied individually. Since redundancy is added in both MDC and

FEC, the problem of optimally allocating redundancy between MDC and FEC arises for a

given total code rate. In this section, we will only consider a simple method, specifically,

received packets with remaining errors after decoding FEC codes are dropped. That is to

say, for a given FEC code and a given total code rate, we are exploring how to optimize

MDC redundancy with respect to the PER pE and PLR pL by only applying the traditional

MDC decoding method.

In Section 6.3.1, after briefly describing the optimization problem, the problem is solved

for such source signals as uniformly distributed inputs and arbitrarily distributed inputs in

the high rate regime. Analytical and experimental results are provided in Section 6.3.2.

6.3.1 The Redundancy Optimization Problem

In the ERMDC system protected by FEC coding, redundancy in MDC and FEC is added

to provide protection from packet losses and bit errors. For a given total code rate R bpss

and FEC coding scheme, we are going to minimize the overall average distortion at the

receiver end as a function of MDC redundancy ρ bpss associated with channel conditions,

such as PLRs pE and PERs pL. Therefore, the source is represented in R0 = R − ρ bpss.

In the following discussion, assume that RS(N,K) codes are applied, and the source is

uniformly quantized at R0 bpss.

As described in Table 6.1, six possible receiving cases exist at the receiver end. Here,

we only consider a simple situation where received packets with remaining errors after

decoding FEC codes are dropped in Receiving cases 2 and 3 described in Table 6.1. That

is to say, we only apply the traditional MDC decoding method.

Let D0 be the central distortion, Ds be the average side distortion, and Dl be the

distortion when transmission fails. Thus, Dl equals to the variance of the source. We list

probabilities and distortions of all possible receiving cases in Table 6.3.

Therefore, as a function of MDC redundancy ρ, the overall average distortion D of the
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Table 6.3 Probabilities and distortions of all possible receiving cases.

Receiving case Probability Distortion

1. Both descriptions are received (1− pL)2

a) both are correct ×(1− pE)2 D0

b) only one is correct ×2pE(1− pE) Ds

c) both are wrong ×p2
E Dl

2. Only one description is received 2pL(1− pE)

a) the received is correct ×(1− pE) Ds

b) the received is wrong ×pE Dl

3. Both descriptions are lost p2
L Dl

ERMDC system at the receiver is given by

D(ρ) = A ·D0 + B ·Ds + C ·Dl, (6.17)

where

A = (1− pL)2 · (1− pE)2; (6.18)

B = 2(1− pL)(1− pE) [(1− pL)pE + pL] ; (6.19)

C = (1− pL)2p2
E + 2pL(1− pL)pE + p2

L. (6.20)

Uniformly distributed inputs

When source samples x ∈ [0, σ] are uniformly distributed. The central distortion D0 is

given by [93]

D0 =
σ2

12
· 2−2R0 =

σ2

12
· 2−2(R−ρ). (6.21)
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In terms of (5.46), the average side distortion Ds is given by

Ds =
σ2

24
· 2−2ρ. (6.22)

Let ρ∗
u be the minimum redundancy, i.e., ∂D

∂ρ

∣∣∣
ρ=ρ∗u

= 0. Hence, by applying (6.21)

and (6.22) in (6.17),

ρ∗
u =

R

2
+

1

4
log2

(1− pL)pE + pL

(1− pL)(1− pE)
. (6.23)

Since all ρ should be a non-negative integer, we round the calculation result to get the

actual ρ∗
u. Various methods to get the integer value of ρ∗

u will be discussed in Section 6.3.2.

In case that the result obtained by using (6.23) is negative, set ρ∗
u = 0. When pL, pE << 1,

(6.23) is simplified to

ρ∗
u =

R

2
+

1

4
log2(pE + pL). (6.24)

That is to say, the optimum redundancy ρ∗
u is a function of the sum of the PER and PLR.

Arbitrary distribution in high rate systems

For arbitrary source signals, we assume high rate systems. Based on Section 5.6.1, D0 =
∆2

12
, Ds is obtained by using (5.42), (5.43) and (2.22). According to (6.17), the minimum

redundancy ρ∗ at a given R, pL and pE can be obtained by exhaustively searching all

possible cases, specifically,

ρ∗ = arg min
ρ

D(ρ), (6.25)

where ρ = 1, 2, · · · , R
2
− 1.

6.3.2 Analytical and Experimental Results of the MDC System

In the following, we investigate the relationship among the redundancy ρ, the total coding

rate R of the MDC system, the packet loss rate pL, and the packet error rate pE after

decoding applied RS codes. In addition, we compare analytical and experimental results.
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Uniformly distributed inputs

In this subsection, we use uniformly distributed random variables x ∈ [0, 1] as the source.

As in (6.23), since the redundancy ρ∗
u should be a non-negative integer, three methods,

namely, rounding, flooring and ceiling, can be used to get the integer value of ρ∗
u. In

Fig. 6.11, analytical results obtained by three methods are compared. Specifically, ac-

cording to the optimum redundancy ρ∗
u obtained by different methods, the overall average

distortions D(ρ∗
u) associated with various pL and pE are plotted in Fig. 6.11. It shows that

rounding always provides the best solution. The simplified solution provided in (6.24),

called estimated, is also plotted in this figure. Integer values of the simplified solution are

obtained by rounding. It indicates that when pL, pE << 1, the simplified solutions are the

same as (6.23). Therefore, in the following, we use the rounded simplified solution as the

analytical results.

Thereafter, we investigate the relation among ρ∗
u and pL, pE by using analytical results.

D(ρ∗
u), D(ρ) at R = 10 bpss, ρ = 1, 2, 3, 4, associated with various pL and pE are plotted

in Fig. 6.12. It shows that ρ = 3 usually provides the lowest distortion except at very low

pL and pE, where ρ = 2 gives the best solution.

The relation among ρ∗
u, R and pL (pL = pE) is shown in Fig. 6.13. Figure 6.13(a) shows

that basically higher redundancy is needed for higher pL and pE. Figure 6.13(b) indicates

that given pL and pE, for every two more bits in R, one bit goes to the redundancy, another

one goes to the information.

Finally, we test the analytical solution in experiments. The experimental results at

R = 8 bpss, ρ = 1, 2, 3 bpss are shown in Fig. 6.14(a). The optimal solutions obtained

by (6.24) are marked by circles. In experiments, RS(255, 247) are applied. Every 255 bytes

are encapsulated into an individual packet. The PLR pL = 0.01. Since we are investigating

the effects of both packet losses and RS decoding failures, we set a high BER pb = 0.01 so

as to achieve a high probability of RS decoding failure. Thus, after decoding the received

packet, the probability that RS decoding fails is pe = 0.9981. As the result, the PER

pE = 0.9981 × pB ≈ pB. In these experiments, only traditional MDC decoding method

is used, that is to say, erroneous packets after decoding applied RS codes are dropped. It

shows that the analytical method accurately gives the best solutions in experiments.
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High rate system

In order to investigate performance under the assumption of high rate systems, we use i.i.d.

Gaussian random variables with zero mean and unit variance as the source.

Figure 6.14(b) gives experimental results associated with R = 8 bpss, ρ = 1, 2, 3 bpss

at pL = 1% and pb = 1%. Optimal solutions obtained respectively according to (6.24) and

(6.25) are also plotted. It shows that (6.25) can accurately find the best solution. On the

contrary, (6.24) cannot always provide optimal solutions, because of the different statistics

of source signals. However, as a fast and coarse estimate, (6.24) is still usable.

Next, we investigate the optimal redundancy ρ∗ associated with the total coding rate

R of the MDC system based on analytical results at pb = 1%. Figure 6.15(a) shows the

relation at various pL and pE. Figure 6.15(b) shows the relation when pL = pE. It shows

that at low PLRs and PERs, one-bit redundancy can provide the best protection, even

though R increases up to 10 bpss; as R increases further, one of every two more bits is

approximately assigned to redundancy.

6.3.3 Experimental results of the ERMDC system

In this subsection, we attempt to utilize the analytical methods developed for the MDC

system in the ERMDC system. We investigate the difference between the optimal redun-

dancy of the MDC and the ERMDC systems by experiments. Encoder-decoder pairs of

MDSQ-2 and ERMDC-1, which were explained in Section 6.2.4, are used in experiments

as typical systems of MDC and ERMDC respectively.

In Figs. 6.16(a) and 6.16(b), curves associated with MDSQ-2 and ERMDC-1 systems

are plotted when ρ = 1, 2, 3 bpss, R = 8 bpss, pL = 1%, and pb = 1%. Figure 6.16(a) shows

experimental results when using uniformly distributed signals as the source. Figure 6.16(b)

shows experimental results when using Gaussian random signals with zero mean and unit

variance as the source. Both figures show that the ERMDC system significantly improves

the robustness against erroneous packets. For example, in Fig. 6.16(a), the crossover be-

tween the best two curves associated with ρ = 2 and ρ = 3 is moved from 0.6% to 9%; in

Fig. 6.16(b), the crossover between the best two curves associated with ρ = 1 and ρ = 2 is

moved from 0.6% to 2.5%. In addition, the lowest overall distortions of ERMDC systems

at pE = 9% are about 4 dB lower for both types of source signals. Furthermore, from the

point view of the optimal redundancy, the ERMDC systems save up to two bits.
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It is obvious that analytical methods for the MDC system cannot provide accurate

optimal solutions for the ERMDC system. However, the analytical solutions for the MDC

system are still able to be used as a good estimate for the ERMDC system. Specifically,

at low and very high PERs, the optimal solutions of the ERMDC system are the same as

those of the MDC system. Since the ERMDC system provides high robustness, in general

case, a good guess is the optimal analytical solution at low PERs.

6.4 Conclusion

In this chapter, we tested the proposed ERMDC system in various application environ-

ments, such as slow Rayleigh fading channels, hybrid wireline and wireless networks. Ex-

perimental results show that the ERMDC system is easily adapted to these environments,

and its performance exceeds that of existing methods. In addition, under the same circum-

stances, the ERMDC system uses lower bit rate to provide lower reconstruction distortions

than the traditional MDC systems.
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Fig. 6.11 Optimal distortion D(ρ∗u) with respect to different methods that
convert the value obtained by (6.23) to an integer.
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Fig. 6.12 D(ρ) with respect to various ρ, pL and pE at R = 10 bpss.
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Fig. 6.14 D(ρ) with respect to various ρ and pE at R = 8 bpss: (a) Source
samples are uniformly distributed; (b) Source samples are Gaussian random
variables.
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Fig. 6.16 D(ρ) of MDSQ-2 and ERMDC-1 systems with respect to various
ρ and pE at R = 8 bpss: (a) Source samples are uniformly distributed; (b)
Source samples are Gaussian random variables.
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Chapter 7

Conclusion and Future Work

In this work, based on techniques of noisy channel quantizers and classical MDC systems,

the ERMDC system is proposed to provide protection from packet losses and bit errors. In

this chapter, the main contributions of the dissertation are summarized, and future work

is discussed.

7.1 Contribution

The classic MDC system was originally developed to combat channel failure. It has been

extended to protect from erasure packets over packet networks, where packet loss is equiv-

alent to channel failure. In wireless communications, even though FEC codes are regularly

applied to protect from bit errors, descriptions after decoding FEC codes may still contain

bit errors. In a typical MDC system, erroneous descriptions are usually dropped, although

this method results in significant degradation in the sense of rate-distortion performance,

because of the large performance gap between the central distortion and the side distortion.

Therefore, in order to provide high robustness against both packet losses and bit errors,

we propose the ERMDC that comprises a robust MDC encoder and an enhanced MDC

decoder. Three main objectives of designing the ERMDC includes:

(i) Exploiting the inherent redundancy and dependency among multiple descriptions;

(ii) Minimizing the distortion introduced by bit errors;

(iii) Minimizing effects of losing any arbitrary description(s).
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Corresponding to the design objectives of the ERMDC, in Chapter 4, methods applied at

the ERMDC encoder are as follows:

(i) Compared with FEC coding, the technique of robust quantizers that is applied does

not add extra redundancy and encoding/decoding delays.

(ii) Instead of natural labeling in classic MDC, the Hamming distance between any two

MD index pairs is expanded as far as possible, so that the ERMDC decoder is able

to detect transmission errors more easily. Exhaustive search is applied to achieve this

task.

(iii) It is preferred to achieve balanced or equally important multiple descriptions with

as high fidelity as possible. Since obtaining an optimal ERMDC encoder is an NP-

complete problem, the GA is exploited to find a “close-to-optimum” solution in an

acceptable time.

The ERMDC decoder fulfills the design targets by following means:

(i) Unused MD index pairs are treated as transmission errors.

(ii) Output values associated with unused MD index pairs are optimally estimated based

on channel conditions.

(iii) Instead of discarding erroneous descriptions, residual information in them is utilized

by the means mentioned above.

Consequently, the ERMDC achieves graceful performance degradation in the presence

of bit errors. With the same redundancy, the ERMDC successfully accomplishes higher

robustness against bit errors than existing MDC techniques as well as similar robustness

against packet losses. Furthermore, by utilizing analog received signals as soft input, the

ERMDC outperforms other MDC methods over typical wireless channels, such as AWGN

and slow Rayleigh fading channels.

As mentioned above, exhaustive search and the GA is applied in the ERMDC encoder

to achieve the design targets. However, the computational complexity of these methods

increases exponentially, as the search space grows. In Chapter 5, a generalized fast robust

IA scheme is proposed for the ERMDC encoder to add arbitrary bit numbers of redun-

dancy in a systematic way. The computational complexity of this algorithm is significantly
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lower than the ERMDC encoder developed before. Compared with existing methods, the

ERMDC with this algorithm accomplishes similar robustness against packet losses, and

higher robustness against bit errors. Moreover, because of its high flexibility and low com-

putational complexity, it is possible to implement “on-the-fly”, and the added redundancy

is easily adapted to channel conditions. Furthermore, this algorithm is modified to meet

the requirement of embedded coding with low complexity at the cost of lower robustness.

In order to examine its overall performance, the ERMDC system is compared with

other error resilient techniques, such as the classical MDC and FEC-based techniques, in

the presence of both packet losses and bit errors. Since there is no proper model to simulate

channels with both packet losses and bit errors, a three-state Markov chain is proposed.

With similar redundancy, the ERMDC system with simple FEC codes provides the highest

and most consistent robustness against both packet losses and bit errors.

In addition, the performance of the ERMDC is analyzed in a theoretical way. Based

on analytical and numerical solutions, the redundancy is optimized for cases of discarding

all erroneous packets. Experimental results show that it provides a good reference for

designing an optimal ERMDC system.

7.2 Future work

The work presented in this dissertation is just the beginning of the ERMDC. There are

still many possibilities to explore.

Even though in this dissertation we always use scalar quantizers, the ERMDC should

be extended to vector quantizers without difficulty. Of course, it is necessary to adapt

the ERMDC somehow so as to accommodate to vector quantizers. In addition, here, we

only consider two descriptions. It is possible to apply the ERMDC in more than two

descriptions.

When MDC and FEC are jointly applied, the ERMDC system achieves better perfor-

mance against both packet losses and bit errors. We discuss a simple situation where the

average distortion achieved by a traditional MDC system is minimized at a given PLR and

PER. Experimental results suggest that the analytical methods for the MDC system are

not suitable for the ERMDC systems. More accurate and faster methods are needed to

obtain an optimal ERMDC system.

Since redundancy is added in both MDC and FEC, it is necessary to investigate how to
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optimally allocate redundancy between MDC and FEC depending on channel conditions.

Moreover, it is possible for FEC decoding to utilize information provided by the ERMDC

so as to reduce the reconstruction distortion further. How to achieve this task is very

interesting.

The MDC system is actually a diversity system. Typical diversity systems in wireless

communications are multiple input/multiple output (MIMO) and orthogonal frequency

division multiplexing (OFDM). An example of typical diversity systems in wireless networks

is adhoc networks. It is possible to apply the ERMDC over these diversity systems so as

to improve the robustness of these systems.

It is important to apply the ERMDC in transmitting multimedia signals, such as speech,

images and videos. Since characteristics of various multimedia signals are quite different,

the ERMDC has to be modified so as to accommodate to the specific signals.
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Appendix A

Derivation of Side codebooks and

side distortions

Here, we provide the derivation of side codebooks and side distortions for the RMDSQ

system respectively based on source signals with uniform distribution and Gaussian distri-

bution.

A.1 High rate systems

In this section, assuming high rate systems, we derive side codebooks and side distortions for

arbitrary random signals, and Gaussian random signals. The resulting numerical solutions

can be used with arbitrary IA schemes.

A.1.1 Arbitrary Random Signals

Assume that in a high rate system, the source x ∈ [xmin, xmax) with the pdf fX(x) as the

source signals. Let the range of x be δ = xmax − xmin. Source samples x are uniformly

quantized into L = 2R0 levels. The quantization partition associated with l or (i, j) is given

by Aij :
[
xL

ij, xH
ij

)
. Thus, each partition interval has the length

∆ = xH
ij − xL

ij =
δ

L
= 2−R0δ.

The side bit rate is Rs bpss. Therefore, SDSQ indices l = 0, 1, · · · , L − 1, and RMDSQ

indices i, j = 0, 1, · · · ,M − 1, where M = 2Rs . The output associated with l or (i, j) is
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approximately given by

cij =

∫
Aij

x · fX(x)dx
∫

Aij
fX(x)dx

≈
fX

(
xL

ij

)
·
∫

Aij
xdx

fX

(
xL

ij

)
·∆

=
1

2∆

(
xH

ij − xL
ij

) (
xH

ij + xL
ij

)

=
xH

ij + xL
ij

2
.

(A.1)

The side output associated with a certain i is given by

c
(1)
i =

∑

j∈J

∫

Aij

x fX(x) dx

∑

j∈J

∫

Aij

fX(x) dx

≈

∑

j∈J

fX(x) ·
∫

Aij

xdx

∑

j∈J

fX(x) ·
∫

Aij

dx

=

∑

j∈J

fX(x) · cij ·∆
∑

j∈J

fX(x) ·∆

=

∑

j∈J

cij · fX(cij)

∑

j∈J

fX(cij)
.

(A.2)
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Similarly, the side output associated with a certain j is given by

c
(2)
j =

∑

i∈I

∫

Aij

x fX(x) dx

∑

i∈I

∫

Aij

fX(x) dx

≈

∑

i∈I

cij · fX(cij)

∑

i∈I

fX(cij)
.

(A.3)

Therefore, the side distortion associated with a certain i is given by

D
(1)
i =

∑

j∈J

∫

Aij

(x− c
(1)
i )2fX(x)dx

∑

j∈J

∫

Aij

fX(x)dx

=

∑

j∈J

fX(x) ·
∫

Aij

(x− c
(1)
i )2dx

∑

j∈J

fX(x)

∫

Aij

dx

=

∑

j∈J

fX(x) ·
∫

Aij

(x− c
(1)
i )2dx

∆ ·
∑

j∈J

fX(x)
.

(A.4)
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Let

A =
1

∆
·
∫

Aij

(
x− c

(1)
i

)2

dx

=
1

∆
·
∫

Aij

(
x− cij + cij − c

(1)
i

)2

dx

=
1

∆
·
{∫

Aij

(x− cij)
2dx + 2

(
cij − c

(1)
i

)
·
∫

Aij

(x− cij)dx +
(
cij − c

(1)
i

)2
∫

Aij

dx

}

=
1

∆
·
{∫ ∆

2

−∆
2

u2 du + 2
(
cij − c

(1)
i

)
·
∫ ∆

2

−∆
2

u du +
(
cij − c

(1)
i

)2

·∆
}

=
∆2

12
+
(
cij − c

(1)
i

)2

,

(A.5)

then

D
(1)
i =

∑

j∈J

fX(x) · A
∑

j∈J

fX(x)

=

∑

j∈J

(
cij − c

(1)
i

)2

fX(cij)

∑

j∈J

fX(cij)
+

∆2

12
.

(A.6)

The average side distortion corresponding to all possible i is given by

D1 =

∑

i∈I

D
(1)
i fi

∑

i∈I

fi

, (A.7)

where fi =
∑

j∈J

fX(cij).
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Similarly, the side distortion associated with a certain j is given by

D
(2)
j =

∑

i∈I

(
cij − c

(2)
j

)2

fX(cij)

∑

i∈I

fX(cij)
+

∆2

12
(A.8)

The average side distortion corresponding to all possible j is given by

D2 =

∑

j∈J

D
(2)
j fj

∑

j∈J

fj

, (A.9)

where fj =
∑

i∈I

fX(cij).

Therefore, the overall average side distortion is obtained by using (2.22).

A.1.2 Gaussian Random Signals

Assume that x are i.i.d. Gaussian random variables with zero mean and unit variance.

Then,

fX(x) =
1√
2π

e−
x2

2 .
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Therefore,

c
(1)
i =

∑

j∈J

∫ xH
ij

xL
ij

x fX(x) dx

∑

j∈J

∫ xH
ij

xL
ij

fX(x) dx

=

∑

j∈J

∫ xH
ij

xL
ij

x
1√
2π

e−
x2

2 dx

∑

j∈J

∫ xH
ij

xL
ij

1√
2π

e−
x2

2 dx

=

2 ·
∑

j∈J

[
exp

(
−(xL

ij)
2

2

)
− exp

(
−(xH

ij )
2

2

)]

∑

j∈J

[
erf

(
xH

ij√
2

)
− erf

(
xL

ij√
2

)] ;

(A.10)

c
(2)
j =

2 ·
∑

i∈I

[
exp

(
−(xL

ij)
2

2

)
− exp

(
−(xH

ij )
2

2

)]

∑

i∈I

[
erf

(
xH

ij√
2

)
− erf

(
xL

ij√
2

)] , (A.11)

where the error function

erf(x) =
2√
π

∫ x

0

e−t2 dt .

Thereafter, Ds can be obtained by using (A.6)–(A.9) and (2.22).

A.2 Uniform random signals

To derive the closed form for uniformly distributed random signals, we begin with the

IA without redundancy; thereafter, closed forms associated with index assignment with

redundancy are derived.
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A.2.1 No redundancy is added (ρ = 0)

First, we consider B(R0, 0), i.e., the total coding rate R = R0, and no redundancy is added.

We use uniformly distributed x ∈ [0, 1] as the source signals. Source samples x are

uniformly quantized into L = 2R0 levels. Thus, the pdf is fX = 1
L
; each interval ∆ = 1

L
=

2−R0 . The side bit rate is Rs =
R0

2
bpss. SDSQ indices l = 0, 1, · · · , L − 1 are mapped

to RMDSQ index pairs (i, j) by using the IA algorithm provided in Section 5.3.1, where

i, j = 0, 1, · · · ,M − 1, where M = 2Rs . An example of this IA scheme is shown in Fig. 5.2.

The partition associated with l is given by vl = [l ·∆, (l + 1) ·∆). The output associated

with l or (i, j) is cl = cij = (l + 1
2
) ·∆.

Due to

l = [l(R0−1) · · · l1 l0], (A.12)

i = [i(Rs−1)i(Rs−2) · · · i1i0] = [l(R0−2)l(R0−3) · · · l(R0
2
−1)

] and (A.13)

j = [j(Rs−1)j(Rs−2) · · · j1j0] = [l(R0−1)l(R0
2
−2)
· · · l1l0], (A.14)

j =
Rs−1∑

k=0

jk · 2k, and (A.15)

i =
Rs−1∑

k=0

ik · 2k; (A.16)

therefore, l = a−1(i, j) is given by

l = lR0−1 · 2(R0−1) +

(Rs−2)∑

k=0

lk · 2k +
2Rs−2∑

k=Rs−1

lk · 2k

= l(R0−1) · 2(R0−1) +
Rs−1∑

k=0

jk · 2k − j(Rs−1) · 2(Rs−1) + 2(Rs−1) ·
Rs−1∑

k=0

ik · 2k

=
M

2
· i + j +

1

2
(L−M) · j(Rs−1)

(A.17)
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Therefore, cij is given by

cij =

[
j +

1

2
(L−M) · j(Rs−1) +

M

2
· i +

1

2

]
∆. (A.18)

Side codebooks c
(1)
i and c

(2)
j

The side output c
(1)
i associated with a certain i is given by

c
(1)
i =

M−1∑

j=0

[
j +

1

2
(L−M) · j(Rs−1) +

1

2
+

M

2
· i
]
· fX ·∆

M−1∑

j=0

fX

=

fX ·∆ ·
M−1∑

j=0

[
j +

1

2
(L−M) · j(Rs−1) +

1

2
+

M

2
· i
]

L · fX

=
∆

M
·
[

M−1∑

j=0

j +
1

2
(L−M) · M

2
+ M ·

(
1

2
+

M

2
· i
)]

= (2Mi + L + M) · ∆
4

. (A.19)

Similarly, the side output c
(2)
j associated with a certain j is given by

c
(2)
j =

∆

M
·

M−1∑

i=0

[
j +

1

2
(L−M) · j(Rs−1) +

1

2
+

M

2
· i
]

=

[
j +

1

2
+

1

2
(L−M) ·

(
j(Rs−1) +

1

2

)]
·∆. (A.20)
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Side distortions D1 and D2

According to (A.6),

D
(1)
i =

M−1∑

i=0

(
cij − c

(1)
i

)2

fX

M−1∑

i=0

fX

+
∆2

12

=
1

M

M−1∑

i=0

(
cij − c

(1)
i

)2

+
∆2

12

(A.21)

Due to (A.18) and (A.19), (A.21) is simplified to

D
(1)
i = (L− 1) (3L + 4)

∆2

48
+

∆2

12
. (A.22)

Since x is uniformly distributed, D1 = D
(1)
i .

Similarly, due to (A.8), (A.18) and (A.20), the side distortion associated with a certain

j is given by

D
(2)
j =

1

M

M−1∑

i=0

(
cij − c

(2)
j

)2

+
∆2

12

= (L− 1) L
∆2

48
+

∆2

12
.

(A.23)

Therefore, D2 = D
(2)
j .

Overall average side distortion Ds

Here, we define the overall average side distortion Ds(ρ) as a function of the bit number

ρ of redundancy per source sample. Therefore, according to (A.21) (A.23) and (2.22), the
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overall average side distortion at ρ = 0 is given by

Ds(0) = (L2 − 1)
∆2

24
+

∆2

12
(A.24)

= (L2 + 1)
∆2

24
(A.25)

≈ L2

24L2
(A.26)

=
1

24
, (A.27)

i.e., Ds(0) ≈ −13.8 dB.

If X = [0, σ), ∆ =
σ

L
,

Ds(0) =
σ2

24
. (A.28)

A.2.2 One-bit redundancy is added (ρ = 1)

According to the conclusion obtained in Section 5.3.3, the IA scheme of B(R0, 1) is com-

prised of two non-overlapping IA schemes of B′(R0−1, 0), which are associated with SDSQ

index sets LA = {0, 1, · · · , 2R0−1 − 1} and LB = {2R0−1, 2R0−1 + 1, · · · , 2R0 − 1} respec-

tively. Therefore, the average side distortion of B(R0, 1) equals to that of each B′(R0−1, 0).

That is to say, for the source X = [0, σ), the source associated with B′(R0 − 1, 0) is

X ′ =
[
0,

σ

2

)
or
[σ
2
, σ
)
. Hence, in terms of (A.28), the overall average side distortion is

Ds(1) =
σ2

96
. (A.29)

If σ = 1, Ds =
1

96
, i.e., -19.8 dB.

A.2.3 Arbitrary number of redundancy bits are added

For B(R0, ρ), R0 ≥ 3 and ρ ≥ 2, we only consider the optimal bit allocation provided

in (5.36). That is to say, the bit allocation scheme is

〈 1, 1, · · · , 1︸ ︷︷ ︸
ρ− 1

, R0 − ρ + 1 〉 .
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Therefore, the side distortion is determined by the least significant bit partition. Let ∆0 be

the quantization partition interval associated with the least significant bit partition. Thus,

∆0 = 2−(ρ−1)σ. In terms of (A.29), the overall average side distortion B(R0, ρ) is given by

Ds(ρ) =
∆2

0

96

=
[2−(ρ−1)σ]2

96

= 2−2(ρ−1) · σ
2

96

= 2−2ρ · σ
2

24

= 2−2ρ ·Ds(0) .

(A.30)

In addition, when ρ = 1, according to (A.29), Ds(1) = 2−2 ·Ds(0). Therefore, for arbitrary

B(R0, ρ), ρ ≥ 0,

Ds(ρ) = 2−2ρ · σ
2

24

= 2−2ρ ·Ds(0) ,

(A.31)

i.e., Ds(ρ) = Ds(0)− 6.02ρ dB.

A.3 Gaussian random signals

In this section, assume that in a high rate system, i.i.d. Gaussian random variables x with

mean µ = 0 and variance σ = 1 are uniformly quantized and represented by SDSQ indices

l. Let xmin = − δ
2

and xmax = δ
2
. Then x ∈ [− δ

2
, δ

2
], partition interval ∆ = δ

L
, and the

partition vl or Aij associated with l is given by

Aij =
[
xL

ij, x
H
ij

)
= [l ·∆, (l + 1) ·∆).

SDSQ indices

l = −L

2
, · · · ,−1, 0, 1, · · · , L

2
− 1
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Fig. A.1 Index assignment without redundancy.

are one-to-one mapped to MDSQ index pairs (i, j), where

i = −M

2
, · · · ,−1, 0, 1, · · · , M

2
− 1,

j = −M

2
, · · · ,−1, 0, 1, · · · , M

2
− 1.

Note that for convenience of derivation, SDSQ indices l, ERMDC indices i and j are here

defined as signed integers, instead of unsigned integer as usually defined in the rest of this

dissertation. An example is illustrated in Fig. A.1.

lL and lH denote SDSQ indices l < 0 and l ≥ 0, respectively. When l < 0 or j < 0,

lL =
M

2
i + j − M

2
;

when l ≥ 0 or j ≥ 0,

lH =
M

2
i + j +

L

4
.

We distinguish lL and lH by replacing two-sided j with corresponding j̃ = |j|, that is

to say, j̃ = 0, 1, · · · , M
2
− 1. Then,

lL =
M

2
i + j̃ − L

4
; (A.32)

lH =
M

2
i + j̃ +

L

4
. (A.33)

So lL and lH are symmetric.
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In a high rate system, according to (A.1),

cij =
xH

ij + xL
ij

2
=
(
l +

1

2

)
·∆. (A.34)

A.3.1 Side codebook c
(1)
i

Let c
(1)
i be the output corresponding to i, when i is given.

c
(1)
i =

M
2
−1∑

j=−M
2

cij · fX(cij)

M
2
−1∑

j=−M
2

fX(cij)

(A.35)

Since M << L, we assume that when l < 0, namely, j < 0, fX (cij) ≈ fL
i ; and when

l ≥ 0, namely, j ≥ 0, fX (cij) ≈ fH
i . Then, the denominator of (A.35) can be simplified by

M
2
−1∑

j=−M
2

fX (cij) ≈
M

2
·
(
fL

i + fH
i

)
(A.36)
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The numerator of (A.35) can be simplified by

M
2
−1∑

j=−M
2

cij · fX (cij) =
−1∑

j=−M
2

cij · fL
i +

M
2
−1∑

j=0

cij · fH
i

= ∆ · fL
i ·

−1∑

j=−M
2

(lL +
1

2
) + ∆ · fH

i ·
M
2
−1∑

j=0

(lH +
1

2
)

= ∆ · fL
i ·

−1∑

j=−M
2

lL + ∆ · fH
i ·

M
2
−1∑

j=0

lH + ∆ ·
(
fL

i + fH
i

)
· M

2

= ∆ · fL
i ·

M
2
−1∑ej=0

[
M

2
i + j̃ − L

4

]
+ ∆ · fH

i ·
M
2
−1∑ej=0

[
M

2
i + j̃ +

L

4

]

+ ∆ ·
(
fL

i + fH
i

)
· M

2

= ∆ ·
(
fL

i + fH
i

)
·

M
2
−1∑ej=0

j̃ + ∆ ·
(
fL

i + fH
i

)
· L

4
i

+ ∆ ·
(
fH

i − fL
i

)
· M

3

8
+ ∆ ·

(
fL

i + fH
i

)
· M

2

= ∆ ·
(
fL

i + fH
i

)
· M

4

(
M

2
− 1

)
+ ∆ ·

(
fL

i + fH
i

)
· L

4
i

+ ∆ ·
(
fH

i − fL
i

)
· M

3

8
+ ∆ ·

(
fL

i + fH
i

)
· M

2
.

(A.37)

Therefore, according to (A.36) and (A.37), (A.35) can be simplified as

c
(1)
i =

{
1

2

(
M

2
− 1

)
+

M

2
i +

fH
i − fL

i

fL
i + fH

i

· L
4

+ 1

}
·∆

=

{
M

2
i +

L

2
· fH

i

fL
i + pH

i

+
M

4
− L

4
+

1

2

}
·∆ .

(A.38)
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Taking into account the pdf of Gaussian distribution, fL
i and fH

i are respectively given by

fL
i ≈ fX(xL

ij) = fX(l ·∆)

= fX

{(
M

2
i + j̃ − L

4

)
·∆
}

≈ fX

{(
Mi− L

2

)
· ∆

2

}

=
1√
2π
· exp

{
−
(

Mi− L

2

)2

· ∆
2

8

}
,

(A.39)

and

fH
i ≈ fX(xH

ij ) = fX(l ·∆)

= fX

{(
M

2
i + j̃ +

L

4

)
·∆
}

≈ fX

{(
Mi +

L

2

)
· ∆

2

}

=
1√
2π
· exp

{
−
(

Mi +
L

2

)2

· ∆
2

8

}

(A.40)

Therefore,

fL
i

fH
i

= exp

{(
Mi +

L

2

)2

· ∆
2

8
−
(

Mi− L

2

)2

· ∆
2

8

}

= exp

(
M3

4
i ·∆2

)
.

(A.41)

Define Φi as

Φi =
fH

i

fL
i + fH

i

=
1

1 +
fL

i

fH
i

=
1

1 + exp
(

M3

4
i ·∆2

) .
(A.42)
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Hence, c
(1)
i is finally given by

c
(1)
i =

{
M

2
i +

L

2
· Φi +

M

4
− L

4
+

1

2

}
·∆

≈
{

M

2
i +

L

2
· Φi −

L

4

}
·∆

=
M

2
·
(

i + MΦi −
M

2

)
·∆ .

(A.43)

A.3.2 Average side distortion D1

Let Dl or Dij be the side distortion with respect to each l. When l < 0, lL =
M

2
i + j̃− L

4
,

cL
ij =

(
l +

1

2

)
·∆ ≈

(
M

2
i− L

4

)
·∆ . (A.44)

Thus,

DL
ij =

(
cL
ij − c

(1)
i

)2

≈
{(

M

2
i− L

4

)
·∆−

(
M

2
i +

L

2
· Φi −

L

4

)
·∆
}2

=
L2

4
· Φ2

i ·∆2 .

(A.45)

When l ≥ 0, lH =
M

2
i + j̃ +

L

4
,

cH
ij =

(
l +

1

2

)
·∆ ≈

(
M

2
i +

L

4

)
·∆ . (A.46)

Thus,

DH
ij =

(
cH
ij − c

(1)
i

)2

≈
{(

M

2
i +

L

4

)
·∆−

(
M

2
i +

L

2
· Φi −

L

4

)
·∆
}2

=
L2

4
· (1− Φi)

2 ·∆2

(A.47)
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Let Di be the side distortion associated with each i, when i is given. According to

(A.6),

D
(1)
i ≈

M
2
−1∑

j=−M
2

(
cij − c

(1)
i

)2

· fX(cij)

M
2
−1∑

j=−M
2

fX(cij)

+
∆2

12

≈

M
2
−1∑ej=0

(
DL

ij · fL
i + DH

ij · fH
i

)

M
2
· (fL

i + fH
i )

+
∆2

12

≈
M
2
·
(
DL

ij · fL
i + DH

ij · fH
i

)

M
2
· (fL

i + fH
i )

+
∆2

12

= DL
ij · (1− Φi) + DH

ij · Φi +
∆2

12
+

∆2

12

=
{
Φ2

i · (1− Φi) + (1− Φi)
2 · Φi

}
· L

2

4
·∆2 +

∆2

12

= Φi(1− Φi) ·
L2

4
·∆2 +

∆2

12

(A.48)
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The distribution of each i is given by

fi =

M
2
−1∑

j=−M
2

fX(cij)

M
2
−1∑

i=−M
2

M
2
−1∑

j=−M
2

fX(cij)

=

M
2
−1∑

j=−M
2

fX(cij) ·∆

M
2
−1∑

i=−M
2

M
2
−1∑

j=−M
2

fX(cij) ·∆

≈
M
2

(
fL

i + fH
i

)
·∆∫∞

−∞
fX(x) dx

=
M

2

(
fL

i + fH
i

)
∆

(A.49)

Therefore, the average side distortion of this description is given by

D1 =

M
2
−1∑

i=−M
2

Di fi

M
2
−1∑

i=−M
2

fi

+
∆2

12
=

M1
2

−1∑

i=−
M1
2

Di fi +
∆2

12

=
M

2

L2

4
∆3 ·

M
2
−1∑

i=−M
2

fL
i fH

i

(fL
i + fH

i )
2 ·
(
fL

i + fH
i

)
+

∆2

12

=
M5

8
∆3 ·

M
2
−1∑

i=−M
2

fL
i fH

i

fL
i + fH

i

+
∆2

12
.

(A.50)
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A.3.3 Side codebook c
(2)
j

Let c
(2)
j be the output with respect to j, when j is given. According to (A.2),

c
(2)
j =

M
2
−1∑

i=−M
2

cij · fX (cij)

M
2
−1∑

i=−M
2

fX (cij)

. (A.51)

Therefore, when j < 0,

c
(2)
j ≈

∫ 0

−∞
x · fX(x) dx

∫ 0

−∞
fX(x) dx

= −
√

2

π
; (A.52)

when j ≥ 0,

c
(2)
j ≈

∫∞

0
x · fX(x) dx∫∞

0
fX(x) dx

=

√
2

π
. (A.53)

A.3.4 Average side distortion D2

Let D
(2)
j be the distortion corresponding to each j, when j is given. According to (A.8),

D
(2)
j =

M
2
−1∑

i=−M
2

(
cij − c

(2)
j

)2

fX(cij)

M
2
−1∑

i=−M
2

fX(cij)

+
∆2

12

= D̃
(2)
j +

∆2

12
,

(A.54)
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where

D̃
(2)
j =

M
2
−1∑

i=−M
2

(
cij − c

(2)
j

)2

fX(cij)

M
2
−1∑

i=−M
2

fX(cij)

. (A.55)

When l < 0,

D̃
(2)
j ≈

∫ 0

−∞
(x− c

(2)
j )2 · fX(x) dx

∫ 0

−∞
fX(x) dx

=

∫ 0

−∞
x2 · fX(x) dx

∫ 0

−∞
fX(x) dx

− 2 c
(2)
j ·

∫ 0

−∞
x · fX(x) dx

∫ 0

−∞
fX(x) dx

+
(
c
(2)
j

)2

·
∫ 0

−∞
·fX(x) dx

∫ 0

−∞
fX(x) dx

= 1− 2 c
(2)
j · c(2)

j +
(
c
(2)
j

)2

= 1−
(
c
(2)
j

)2

= 1− 2

π

(A.56)

Similarly, when l ≥ 0, D̃
(2)
j ≈ 1− 2

π
. Thus, for all l, D̃

(2)
j ≈ 1− 2

π
.

Consequently, according to (A.54),

D
(2)
j ≈ 1− 2

π
+

∆2

12
. (A.57)

Therefore, according to (A.9), the average side distortion D2 of this description is given by

D2 =

M
2
−1∑

j=−M
2

D
(2)
j · fX

(
D

(2)
j

)

M
2
−1∑

j=−M
2

fX

(
D

(2)
j

)

≈ 1− 2

π
+

∆2

12
.

(A.58)
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Consequently, the overall average side distortion Ds can be obtained in terms of (A.50)(A.58)

and (2.22).
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[45] V. K. Goyal, J. Kovavcević, R. Arean, and M. Vetterli, “Multiple description transform
coding of images,” in Proc. IEEE Int. Conf. Image Processing, vol. 1, Oct. 1998, pp.
674–678.
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