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as advisors and editors.
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Abstract

The personalized medicine (PM) approach provides patients with treatments that align most

closely with their individual profiles. Challenges can arise when learning about individualized

treatments, both in the design and the analysis of clinical trials aimed at learning about

PM. In my thesis, I use Bayesian approaches to tackle problems in both of these domains,

first focusing on the design of a randomized trial suitable for learning about proposed PM

strategies, and next, focusing on estimation approaches that can be applied to multi-center

studies or multiple randomized studies to leverage large datasets which may be subject to

restrictions on data-sharing across sites or trials.

To integrate PM into routine clinical practice, it is imperative to evaluate the efficacy and

safety of tools for individualized treatments in randomized controlled trials. Many such tools

are best provided at a group level, making cluster-randomized trials (CRTs) an appealing

option. However, CRTs are less efficient compared with individually randomized trials and

flexible designs for CRTs are not common. In the first manuscript, motivated by a CRT

designed to assess the effectiveness of a clinical decision support system for physicians, I

develop two Bayesian group sequential designs for CRTs to allow for early stopping for efficacy

at pre-planned interim analyses. One design sequentially enrolls the clusters, and individual

participants for each cluster are recruited all at once. The other enrolls all clusters at one

time, but the individual participants for each cluster are sequentially enrolled. I explore and

compare the design operating characteristics of the two designs in simulations, and provide

some practical recommendations.

The second challenge that I tackle arises in estimation of individualized treatment rules

(ITRs) from multiple sources or data sites. ITR estimation can suffer from low power when

attempting to detect the often subtle variability in treatment effect, making collaboration

across sites or pooling of data across trials attractive. However, sensitive individual infor-

mation may sometimes not be shared due to policy restrictions, motivating approaches that
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avoid individual-level data sharing for ITR estimation. In my second manuscript, I adopt a

two-stage Bayesian meta-analysis approach to estimate ITRs using multisite data without

disclosing individual-level data beyond the sites. However, different data sites may recruit

from different populations, making it infeasible to estimate identical models or all param-

eters of interest at all sites, and the number of non-zero parameters in the model for the

treatment rule may be small. Simulations show that the proposed approach can provide

consistent estimates of the parameters which characterize the optimal ITR. I apply Bayesian

meta-analysis with shrinkage priors to estimate the optimal Warfarin dose strategy using the

International Warfarin Pharmacogenetics Consortium data.

In the third manuscript, drawing from the network meta-analysis literature, I extend methods

in the second manuscript to synthesize information across multiple, independent randomized

trials where it is possible that not all trials included the same set of treatment randomization

options. An application of the proposed method to data from three depression studies: Se-

quenced Treatment Alternatives to Relieve Depression (STAR*D), Establishing Moderators

and Biosignatures of Antidepressant Response in Clinical Care (EMBARC), and Research

Evaluating the Value of Augmenting Medication with Psychotherapy (REVAMP) is also

presented.

My thesis contributes to statistical trial literature by proposing new efficient designs that

may be appealing to clinical scientists, and to ITR literature by developing novel approaches

that allow researchers to estimate optimal strategies using siloed data sources.
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Abrégé

L’approche de médecine personnalisée (MP) offre aux patients des traitements qui correspon-

dent le mieux à leurs profils individuels. Des défis peuvent survenir lors de l’apprentissage

des traitements individualisés; optimaux tant dans la conception que dans l’analyse des essais

cliniques visant à apprendre sur la MP. Dans ma thèse, j’utilise des approches bayésiennes

pour aborder des problèmes dans ces deux domaines, en me concentrant d’abord sur la con-

ception d’un essai randomisé adapté à l’apprentissage sur les stratégies proposées de MP,

puis sur les approches d’estimation applicables aux études multicentriques ou à la combinai-

son d’études randomisées pour exploiter de grands ensembles de données qui peuvent être

soumis à des restrictions de partage des données entre sites ou essais.

Pour intégrer la MP dans la pratique clinique courante, il est impératif d’évaluer l’efficacité

et la sécurité des outils de traitements individualisés dans des essais contrôlés randomisés.

Beaucoup de ces outils sont mieux fournis à un niveau de groupe, ce qui rend des essais

randomisés par grappes (CRTs) attrayants. Cependant, les CRTs sont moins efficaces que

les essais randomisés individuels et des devis flexibles pour des CRTs sont rares. Dans

le premier manuscrit, motivé par un CRT conçu pour évaluer l’efficacité d’un système de

soutien à la décision clinique pour des médecins, je développe deux plans séquentiels bayésiens

de groupes pour des CRTs permettant un arrêt précoce pour efficacité lors des analyses

intermédiaires planifiées. Une conception recrute séquentiellement des regroupements, et les

participants individuels pour chaque groupe sont recrutés en une seule fois. L’autre recrute

toutes les groupes en une fois, mais les participants individuels pour chaque groupe sont

recrutés séquentiellement. J’explore et compare les caractéristiques de fonctionnement des

deux conceptions dans des simulations et fournis quelques recommandations pratiques.

Le deuxième défi que j’aborde concerne l’estimation des règles de traitement individualisées

(ITR) à partir de multiples sources ou sites de données. L’estimation des ITR peut souffrir

d’une faible puissance lorsqu’on tente de détecter la variabilité souvent fiable de l’effet du
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traitement, ce qui rend la collaboration entre sites ou le regroupement de données entre

essais attrayant. Cependant, des informations individuelles sensibles peuvent parfois ne pas

être partagées en raison de restrictions administratives, motivant des approches qui évitent le

partage des données individuelles pour l’estimation des ITR. Dans mon deuxième manuscrit,

j’adopte une approche de méta-analyse bayésienne en deux étapes pour estimer les ITR en

utilisant des données multisites sans divulguer les données individuelles au-delà des sites.

Cependant, les différents sites de données peuvent recruter à partir de différentes populations,

ce qui rend infaisable l’estimation de modèles identiques ou de tous les paramètres d’intérêt

sur tous les sites. De plus, le nombre de paramètres non nuls dans le modèle de la règle

de traitement peut être faible. Les simulations montrent que l’approche proposée peut

fournir des estimations cohérentes des paramètres qui caractérisent l’ITR optimal. J’applique

la méta-analyse bayésienne avec des méthodes de rétrécissement pour estimer la stratégie

optimale de dose de Warfarine en utilisant les données du Consortium International de

Pharmacogénétique de la Warfarine.

Dans le troisième manuscrit, en m’inspirant de la littérature sur la méta-analyse en réseau,

j’étends je généralise les méthodes dans le deuxième manuscrit pour synthétiser l’information

à travers plusieurs essais randomisés indépendants où il est possible que tous les essais n’aient

pas inclus le même ensemble d’options de randomisation de traitement. Une application de

la méthode proposée aux données de trois études sur la dépression: Sequenced Treatment

Alternatives to Relieve Depression (STAR*D), Establishing Moderators and Biosignatures

of Antidepressant Response in Clinical Care (EMBARC), et Research Evaluating the Value

of Augmenting Medication with Psychotherapy (REVAMP) est présentée.

Ma thèse contribue à la littérature sur les essais statistiques en proposant de nouvelles

conceptions efficaces qui peuvent attirer les scientifiques cliniques, et à la littérature sur

les ITR en développant de nouvelles approches permettant aux chercheurs d’estimer des

stratégies optimales en utilisant des sources de données cloisonnées.
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Chapter 1

Introduction

Treatment responses can vary among patient subgroups, which are defined by combinations

of factors such as demographics, genetic makeup, and clinical measures. To enhance health

outcomes, personalized medicine (PM) aims to provide treatments that are closely aligned

with individual patient profiles by leveraging this variability in treatment effects (Kosorok

and Laber, 2019). Implementing individualized treatments in real-world settings requires

statistical analysis of clinical trial data to establish rules for tailored treatment assignments,

as well as clinical trial designs to evaluate the clinical utility and efficacy of tools that apply

these rules in practice. In my thesis, I tackle problems in both domains. I first focus on

the design of a randomized trial suitable for learning about proposed PM strategies. Next,

I explore estimation approaches that can be applied to multi-center studies or multiple

randomized studies to leverage large datasets, which may be subject to restrictions on data

sharing across sites or trials.

Bayesian statistics offers a powerful tool for integrating prior knowledge, data, and uncer-

tainty from heterogeneous sources. Statistical modelling within the Bayesian paradigm is

increasingly gaining popularity in PM. Bayesian adaptive designs that incorporate individual

characteristics in design components (e.g., the randomization ratio) or analyses have been
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proposed to identify subgroup treatment effect and more efficiently treat patients (e.g., Zhou

et al., 2008; Zhang et al., 2021). Bayesian approaches to estimate personalized treatment

strategies have also been proposed in the literature (e.g., Arjas and Saarela, 2010; Murray

et al., 2018; Logan et al., 2019; Hahn et al., 2020). My thesis focuses on Bayesian approaches

for the design and analysis of studies in PM.

With the increasing number of scientific findings on PM, information technology platforms

and systems have been developed to deliver targeted information to guide clinical decisions.

One example is the clinical decision support system (CDSS) designed by Aifred Health for

physicians treating patients with depression (Benrimoh et al., 2018). The CDSS takes patient

characteristics, such as sociodemographic and clinical information, as inputs and employs a

deep-learning model to recommend a range of possible treatments based on their efficacy.

Physicians can then determine how to utilize this information in their clinical decision-making

processes for individual patients. However, the real-world efficacy of the CDSS remains to

be evaluated, which motivates the research presented in Chapter 3.

Randomized controlled trials are the gold standard for evaluating efficacy. Since the CDSS is

used at the physician level, a cluster-randomized trial (CRT) that randomizes physicians as

“clusters” is appropriate. Compared to individually randomized trials with the same sample

size, CRTs often suffer from low power to detect true differences between treatment arms

due to the reduced variability of responses in clustered samples, resulting from the positive

correlation between subjects within the same cluster (Donner and Klar, 2004). To overcome

this and potentially reduce the required sample sizes, I propose two Bayesian group sequential

designs for CRTs in Chapter 3. The philosophy behind group sequential designs is that groups

of participants are sequentially enrolled, with pre-planned interim assessments of cumulative

data over the course of the trial. These interim assessments provide opportunities for early

trial termination (Pocock, 1977). Group sequential designs naturally fit into the Bayesian

framework, as estimates are updated based on the accumulated information from interim
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data (Chevret, 2012). The two Bayesian group sequential designs I consider in Chapter 3

differ in their approaches to sequential recruitment: given the maximum number of clusters

and maximum cluster size, either entire clusters or individual participants within the same

cluster are sequentially recruited. Both continuous and binary outcomes are considered,

and Bayesian models are used for interim analyses to estimate the posterior probability of

efficacy, which can be used to inform the choice to terminate or continue the trial.

The CDSS implements an individualized treatment rule (ITR). Given patient-level infor-

mation, candidate treatments ordered by their predicted efficacy are obtained from a deep

learning model. Without considering practical factors such as tolerance or side effects, the

optimal treatment can be the one with the highest predicted efficacy. Generally, an ITR is

a decision rule that customizes treatment assignments based on individual patient charac-

teristics at a single decision point. An optimal ITR optimizes expected patient outcomes.

Estimation of the optimal ITRs is essential to the development of the CDSS and should be

carefully considered before conducting efficacy assessment. In a regression-based approach

such as Q-learning (Watkins, 1989; Sutton and Barto, 2018), G-estimation (Robins, 2004),

or dynamic weighted ordinary least squares (dWOLS) (Wallace and Moodie, 2015), the ex-

pected outcome is modelled as a function of treatment, covariates, and their interactions.

The optimal treatment for a given patient is the one that leads to the best estimated out-

come. While treatment-covariate interactions are essential in such approaches, their estima-

tion from a single study can suffer from low power (Greenland, 1983), potentially requiring

multisite collaboration to increase sample sizes. Common regression-based approaches rely

on individual-level data to estimate ITRs, but in multisite studies, sharing highly sensitive

patient-level health data across sites may be constrained. This challenge is addressed in

Chapter 4.

Chapter 4 describes a two-stage Bayesian meta-analysis approach for ITR estimation. In

the first stage, site-specific analyses are conducted using patient-level data within each site.
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In the second stage, site-specific ITRs are pooled in a Bayesian hierarchical model, treating

the parameter estimates characterizing these ITRs from the first stage as the data, rather

than the individual-level data itself. This approach takes between-site heterogeneity into

account. Sparsity in both the data and the model are also considered. I further apply the

proposed approach to estimate an individualized Warfarin dosing strategy using data from

the International Warfarin Pharmacogenetics Consortium (2009).

The method proposed in Chapter 4 applies to binary or continuous treatment settings, and

assumes that all participating sites have the same treatment sets. This assumption may

not always be met, as for some diseases the treatment landscape can be quite heteroge-

neous. Due to time or funding constraints, it may not be possible to include all candidate

treatments in all sites, but an ITR of all available treatments is typically preferred. In

Chapter 5, I extend the method proposed in Chapter 4 to a multiple treatment setting with

each site encompassing varying sets of treatment options, using network meta-analysis tech-

niques (Cipriani et al., 2013). The method is illustrated through an analysis of data from

the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study (Rush et al.,

2004), Establishing Moderators and Biosignatures of Antidepressant Response for Clinical

Care (EMBARC) study (Trivedi et al., 2016), and Research Evaluating the Value of Aug-

menting Medication with Psychotherapy (REVAMP) study (Trivedi et al., 2008) to establish

an ITR for the treatment of depression.

My PhD thesis is in a thesis-by-manuscript format: Chapters 3, 4, and 5 were originally

written as stand-alone manuscripts and therefore, there is some overlap with Chapter 2,

which provides a literature review of the core concepts and theories I use in this thesis.

Chapter 3 has been published in Stat. Chapters 4 and 5 are under review in statistical

journals. I conclude in Chapter 6 with an overview of the three manuscripts, a discussion of

limitations, and some directions for future work.
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Chapter 2

Literature review

This chapter provides a review of the core concepts and theories I use in this thesis and

consists of six sections. Section 2.1 reviews CRTs. Section 2.2 describes group sequential

methods of clinical trials in both frequentist and Bayesian frameworks. Section 2.3 sum-

marizes the statistical framework of estimating ITRs including basic concepts, assumptions,

and common estimation methods. An introduction to individual participant data (IPD)

meta-analysis and network meta-analysis is provided in Sections 2.4 and 2.5, respectively. A

brief summary is given in Section 2.6.

2.1 Cluster-randomized trials

CRTs differ from individually randomized trials in that clusters of participants, rather than

individual participants, are randomly assigned to different treatment arms (Hales and Moul-

ton, 2017). CRTs are particularly appealing when the intervention under study is naturally

applied to groups of individuals. For example, the CDSS I consider in this thesis is designed

for physicians, each with multiple patients, naturally forming a group of participants. Ran-

domizing by clusters is logically sound in such cases. In contrast, randomizing by individuals

in this setting may lead to contamination, as physicians might find it challenging to treat
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patients from different treatment arms strictly differently. This contamination effect can

dilute outcome differences between treatment arms, bias the treatment effect estimates, and

undermine the study’s reliability and validity.

Even for interventions that can be delivered at the individual level, cluster randomization

may sometimes offer better logistical and administrative convenience. For instance, Ross

et al. (1993) studied the effect of Vitamin A supplementation on child mortality in north

Ghana. In this study, child mortality is a rare outcome, requiring a large sample size to detect

an assumed effect size. Additionally, the study area was rural and underserved by health

services. It was practically difficult to randomize by individual children, as Vitamin A and

placebo had to be delivered by field workers through monthly household visits and identifying

the treatment group for each individual child would have been excessively burdensome (Hales

and Moulton, 2017). Therefore, in this study, while Vitamin A can be assigned to individual

children, the study area was divided into geographical clusters, which were then used for

randomization.

A key feature of CRTs is that outcomes of subjects within the same cluster are usually

more similar, and this positive correlation is measured by intra-cluster correlation coeffi-

cient (ICC). Standard methods for design and analysis of individually randomized trials

assume independence between subject-level outcomes. When this assumption is violated,

these methods may be inappropriate. Analysis of CRTs can be conducted at either cluster

or individual level. In a cluster-level analysis, a summary measure is obtained for each clus-

ter, and these measures are then compared between treatment groups by standard statistical

methods, as cluster-level outcomes can be assumed to be independent in CRTs. For exam-

ple, in a two-arm CRT with a continuous outcome, a cluster-level analysis might compute

a mean outcome for each cluster, and these mean outcomes may be compared between the

two groups by a two-sample t-test. While the cluster-level analysis is conceptually simple,

it is inefficient due to information loss when summarizing individual outcomes within the
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same cluster into a single measure. Alternatively, regression analysis can be performed on

individual-level data. In this case, regression models must account for the ICC. Common

regression models used for analysis of CRTs include random-effects models and generalized

estimation equations (Hales and Moulton, 2017).

In addition to the different statistical methods required to account for the ICC in the anal-

ysis of CRTs, the ICC also results in lower power of CRTs compared with individually

randomized trials that randomize the same number of individuals, as variability of responses

is reduced. Research on adaptive methods for improving trial efficiency and flexibility in

CRTs is limited. Lake et al. (2002) and van Schie and Moerbeek (2014) consider interim

re-estimation of the required number of clusters and the required number of individuals per

cluster, respectively. Zou et al. (2005) introduce group sequential designs for CRTs with

binary outcomes in the frequentist framework. In addition to the work focused on parallel

two-arm CRTs, Grayling et al. (2017) and Grayling et al. (2022) explore group sequential

designs and response-adaptive randomization, respectively, for stepped-wedge CRTs, where

all clusters enter the trial in the control arm and are gradually moved to the intervention

group over a number of time periods (Hales and Moulton, 2017). In this thesis, I focus on

Bayesian group sequential designs. A brief review of group sequential designs is provided in

the next section.

2.2 Group sequential designs

Group sequential designs are a family of designs that allow interim decision making accord-

ing to pre-determined decision rules in clinical trials. Unlike fixed-sample designs, where

the sample size is pre-determined to detect an assumed effect with sufficient power and a

controlled false positive rate, and a final analysis is conducted once all data are collected,

group sequential designs divide participant entry into multiple groups. Interim assessments

of accumulating data are pre-planned, enabling researchers to make early decisions about
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continuing or terminating the trial (Pocock, 1977).

Group sequential designs are more efficient than fixed-sample designs. Throughout the trial,

evidence of treatment efficacy or futility may emerge early. In such cases, early trial termina-

tion can save resources and accelerate the trial process. In addition, interim adjustment such

as early stopping or randomization adjustment is ethically necessary to ensure participants

are not assigned to ineffective or even unsafe treatments. Both frequentist and Bayesian

approaches have been proposed for group sequential designs.

2.2.1 Frequentist methods

In frequentist group sequential designs, a hypothesis test of the treatment effect involves

constructing test statistics, and the distributions of these statistics are derived under appro-

priate assumptions. Conclusions about statistical significance and trial termination decisions

are made by comparing the observed statistics to a decision boundary or computing a p-

value (Pocock, 1977).

Consider an example with two treatment arms, A and B, and up to K waves of patient

recruitment, each with size n for both arms. Assume the outcome is normally distributed

with known variance σ2 and unknown means µA and µB for treatments A and B, respectively.

Without loss of generality, the treatment with a larger mean outcome is superior. Suppose

that the hypotheses are formulated as H0 : θ ≤ 0 against HA : θ > 0, where θ = µA − µB

represents the treatment effect. At analysis point k ≤ K, a sufficient statistics for θ can be

constructed as Dk = (nk)−1(
∑︁k

i=1

∑︁n
j=1 yA,ij −

∑︁k
i=1

∑︁n
j=1 yB,ij), where yA,ij and yB,ij are

the observed outcomes for the jth participant in the ith sample group in treatment groups A

and B, respectively. The statistics Dk is also normally distributed with mean θ and variance

I−1
k = 2σ2/(nk). Then, given a preset value of ck, a decision rule can be constructed at

any interim point: if the standardized statistics Dk

√
Ik > ck, one should reject the null

hypothesis, stop the trial, and claim that treatment A is superior to treatment B; otherwise,
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the next group of samples are recruited and observed.

The decision boundaries ck, k = 1, . . . , K, should be specified such that the overall false pos-

itive rate is below a desired value, e.g., 0.05. Pocock (1977) proposes using constant values,

resulting in equal significance levels at each analysis. O’Brien and Fleming (1979) propose

ck ∝
√︂

K
k

and the test significance levels at each analysis increase as the trial progresses.

Both Pocock (1977) and O’Brien and Fleming (1979) provide the decision boundaries for cer-

tain values of K and the overall false positive rate. While these authors focus on two-sided

tests, extensions to one-sided tests have also been studied (e.g., Demets and Ware, 1980;

DeMets and Ware, 1982). Lan and DeMets (1983) propose an alpha-spending function,

which characterizes the rate at which the overall false positive rate is spent. The decision

boundaries are then determined by the alpha-spending function.

2.2.2 Bayesian methods

In contrast to frequentist methods, Bayesian group sequential designs employ Bayesian analy-

sis and summaries of the posterior distribution to make interim decisions. Prior information

can be incorporated into design and analysis, and inference as well as decision making is

based on the posterior distributions given the data. Consider the same example as in Sec-

tion 2.2.1. A Bayesian decision criterion could be constructed as follows: at analysis point

k, if P (θ > 0 | yA,ij, yB,ij; i = 1, . . . , k, j = 1, . . . , n) > Uk, the trial stops; otherwise, the next

group of samples is recruited and observed. Alternative criteria based on predictive distri-

butions, such as the posterior predictive probability of declaring trial success or statistical

significance at the end of the study, can also be used (Dmitrienko and Wang, 2006; Gsponer

et al., 2014; Saville et al., 2014). In most cases, the posterior probabilities in the decision

criteria are not analytically tractable and can be evaluated using Markov chain Monte Carlo

(MCMC) methods.

While false positive rate and power are frequentist concepts, they often need to be assessed
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for Bayesian designs due to regulatory requirements (Food and Drug Administration, 2010).

Similar to ck in frequentist group sequential designs, the decision boundaries Uk are usually

chosen to control the overall false positive rate. A common choice is to use a constant

value, i.e., U1 = . . . = UK = U , where U can be obtained through simulations (Berry et al.,

2010). Methods to calculate varying Uk based on alpha-spending functions in Bayesian group

sequential designs have also been proposed (e.g., Zhu and Yu, 2017; Shi and Yin, 2019).

Bayesian group sequential designs can also be approached from a decision-theoretic frame-

work. A loss or utility function needs to be defined, and the optimal decision rule at each

analysis point is obtained by optimizing the posterior expected loss or utility (Lewis and

Berry, 1994; Zhou and Ji, 2023). Bayesian group sequential designs in the decision-theoretic

framework can incorporate factors such as the costs of patient enrollment by specifying cer-

tain loss or utility functions. The control of false positive rate or other operating characteris-

tics can be achieved by placing constraints on optimization of expected loss or utility (Ventz

and Trippa, 2015).

In summary, Bayesian group sequential designs offer two main advantages over frequentist

methods: first, they allow for the inclusion of prior information, which is particularly ap-

pealing in scenarios such as rare diseases, where the sample size is limited; second, they

use interim stopping criteria based on posterior (predictive) probabilities, which align more

closely with clinical decision making and are more intuitive for investigators (Gsponer et al.,

2014). Though there are different types of Bayesian group sequential designs, in this thesis,

I constrain my attention to stopping rules for efficacy based on posterior probabilities.

2.3 Individualized treatment rules

In this section, I introduce the general framework of ITRs, including the concepts, the

assumptions, and the common estimation methods. Let Y denote a continuous outcome

of interest, where larger values of Y are preferable. Let A denote the treatment received
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by the patient. Let X be a vector of pre-treatment covariates. Uppercase, lowercase, and

bold denote random variables, realizations of random variables, and vectors respectively.

Throughout this section, let i index individual patients.

An ITR d(X ) : X → A is a decision rule that utilizes patient-level information, X, such as

demographics, genetic makeup, or disease history, to customize treatment plans at a single

decision point. Statistical estimation of optimal ITRs can be considered in the potential

outcomes framework (Rubin, 1974; Splawa-Neyman et al., 1990). Let Y a be the potential

outcome a patient would experience if assigned treatment a. The axiom of consistency

states that the potential outcome under the observed treatment and the observed outcome

should agree: Y = Y a, if A = a. Define a value function of the ITR d(X), V(d), as the

expected potential outcome if all patients in the population were treated according to d, i.e.,

V(d) = E(Y d(X )). The optimal ITR is defined as dopt = argmaxd V(d).

Statistical models for the optimal ITR from randomized trials and observational studies rely

on several assumptions:

1. Stable unit treatment value assumption (SUTVA): a patient’s outcome is not influenced

by other patients’ treatments (Rubin, 1980).

2. No unmeasured confounding (Robins, 1997): given X = x, the treatment assignment

A is independent of potential outcomes Y a for all possible a.

3. Positivity: there is a positive probability of receiving every possible treatment for every

combination of covariate values that occur among individuals in the population (Cole

and Hernán, 2008).

SUTVA assumes no interference between individual patients. This may be violated in cer-

tain cases, for example, in the case of a vaccination against an infectious disease. It is highly

possible that the potential risk of the disease for an individual, regardless of his or her vac-

cination status, will be reduced if the surrounding people are vaccinated. The methodology
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developed in Chapter 4 and 5 is not applicable to such cases. The no unmeasured confound-

ing assumption implies E(Y a | X) = E(Y a | A = a,X). This assumption is expected to

be valid in ideal randomized trials by design. However, in observational studies, it is not

testable, and expert knowledge is required to collect data on as many potential confounders

as possible to make this assumption approximately true. The positivity assumption en-

sures that all possible treatments can be observed in every patient subgroup defined by the

covariates. This assumption is often satisfied in randomized trials by design and can be em-

pirically assessed in observational studies by checking the overlap region of the distribution

of propensity score, i.e., the conditional probability of receiving the treatment of interest,

across treatment groups. If the positivity assumption is violated, estimation of ITRs requires

extrapolation, which may introduce bias.

There are two general approaches to estimate the optimal ITRs: value search approaches

and regression-based approaches. For a value search method, a space of possible ITRs D is

first specified, and an appropriate method is used to estimate the value of each candidate

ITR to find the best one. Inverse probability weighting (Robins, 2000) is the building block

of many methods in this category. The value function can be expressed as

V(d) = E(Y d) = E

[︃
I{A = d(X)}
p(A |X)

Y

]︃
,

giving the inverse probability of treatment weighted (IPTW) estimator based on n sam-

ples

ˆ︁V(d) = 1

n

n∑︂
i=1

I{Ai = d(xi)}
p(Ai = ai | xi)

yi.

The propensity score p(Ai = ai | xi) is either known in randomized trials or estimated from

a propensity score model, e.g., logistic regression, in observational studies. The optimal ITR

is obtained as dopt = argmaxd∈D ˆ︁V(d).
12



Finding the optimal ITR by maximizing E [I{A = d(X)}{p(A |X)}−1Y ] is equivalent to

identifying an ITR that minimizes E [I{A ̸= d(X)}{p(A |X)}−1Y ], which can be consid-

ered as a weighted misclassification error (Zhao et al., 2012). Therefore, the problem of

estimating the optimal ITR can then be recast as a classification problem and machine

learning methods can be used to estimate the optimal ITR. For example, Zhao et al. (2012)

propose using a hinge loss function to approximate the non-smooth indicator function in

E [I{A ̸= d(X)}{p(A |X)}−1Y ] and solving the optimization problem through support vec-

tor machine techniques. Classification-based methods have also been studied in Zhang et al.

(2012); Zhou et al. (2017); Zhu et al. (2017); Liu et al. (2018); Zhang et al. (2020).

Value search methods directly estimate the value of ITRs and pick the one with the optimized

value, often using non-parametric or semi-parametric models. Limited assumptions are re-

quired for the data in value search methods, giving more flexibility. However, the estimation

of the value function can be unstable, resulting in high variability of the estimated optimal

ITR (Chakraborty and Moodie, 2013). Furthermore, classification-based methods that adopt

machine learning algorithms often generate uninterpretable ITRs, which can be difficult to

use in clinical practice. In contrast, regression-based methods indirectly find the optimal

ITR through a two-step procedure: first, the expected outcomes or contrasts of expected

outcomes are modelled by regression models; then, the optimal ITR is identified to maxi-

mize the expected outcomes or contrasts of expected outcomes. Common regression-based

methods include Q-learning (Watkins, 1989; Sutton and Barto, 2018), G-estimation (Robins,

2004), and dWOLS (Wallace and Moodie, 2015).

In regression-based approaches, the expected outcomes can be modelled by a treatment-free

function f and a blip function γ (Robins, 2004) through:

E(Y | A = a,X = x ) = f(x(β);β) + γ(a,x(ψ);ψ).

Here, both x (β) and x (ψ) are subvectors of x, and include predictive covariates and covariates
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that interact with treatment (prescriptive variables), respectively. The prescriptive covariate

vector x (ψ) is a subvector of x (β). The treatment-free function f represents the expected

outcome at a reference treatment or a “zero” level of the treatment. Therefore, the function

f is unrelated to treatment assignment. The blip function γ characterizes the difference

in the expected potential outcome of patients between receiving treatment A = a and the

reference A = 0, i.e., γ(a, x (ψ);ψ) = E(Y a − Y 0 | X = x (ψ);ψ). The functions f and γ

are parameterized by vectors β and ψ, respectively. The optimal ITR can then be identified

as dopt(x) = argmaxa γ(a,x
(ψ);ψ). Its estimation relies on the estimation of ψ, requiring

correct specification of both f and γ in Q-learning.

Consider a binary treatment setting A ∈ {0, 1}. By definition, γ(0,x(ψ);ψ) = 0. A common

choice for the blip function satisfying this condition is γ(a, x (ψ);ψ) = ag(x(ψ);ψ), where

g is a function only depending on the prescriptive covariates x(ψ) and is specified by the

analysts. For illustration purposes, consider linear models for both f and g. In this setting,

the outcome model becomes

E(Y | A = a,X = x) = β⊤x(β) + aψ⊤x(ψ),

where we now assume x(β) and x(ψ) both contain a leading column of ones, respectively

corresponding to an intercept and a main effect of treatment. The parameters β and ψ are

estimated based on n samples by solving

(ˆ︁β, ˆ︁ψ) = argmin
(β,ψ)

1

n

n∑︂
i=1

(︂
yi − β⊤x

(β)
i − aiψ

⊤x
(ψ)
i

)︂2
.

Therefore, in a single stage setting with a continuous outcome, Q-learning can be imple-

mented as a linear regression model. The estimated optimal ITR is ˆ︁dopt(x) = I( ˆ︁ψTx(ψ) > 0).

Similarly, for a binary or an unbounded discrete-valued outcome, Q-learning can be imple-

mented as logistic regression and Poisson regression (Moodie et al., 2014), respectively.
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While Q-learning is straightforward, the outcome regression models must be correctly spec-

ified to yield consistent estimators of model parameters. In reality, the true relationship

between treatment, covariates, and outcome may be complex and may not be captured by

simple linear models. In this case, flexible specifications in either frequentist or Bayesian

frameworks can be considered (e.g., Moodie et al., 2014; Wager and Athey, 2018; Murray

et al., 2018; Logan et al., 2019; Hahn et al., 2020). For example, Moodie et al. (2014) use

generalized additive models for Q-learning. A generalized additive model is still additive

but the relationship between the covariates and the outcome can be modelled by smooth

functions, e.g., the outcome model may take the form

E(Y | A = a,X = x) = β⊤x(β) + aψ⊤x(ψ) + f1(x1) + f2(x2) + f3(x3) + · · · ,

where x1, x2, x3, . . . are different specific covariates contained in x(β), and f1, f2, f3, · · · are

smooth functions, e.g., penalized regression splines. Murray et al. (2018) provide a general

framework for Bayesian machine learning approaches to Q-learning. While they focus on a

dynamic treatment regime (DTR) setting, which is an extension of ITRs to multiple stages,

they argue that in a single stage setting, standard Bayesian regression models would be

sufficient. Specifically, they describe the use of Bayesian additive regression trees, which in

an ITR setting, is similar to the work of Logan et al. (2019). The latter propose that the

outcome could be modelled by an ensemble of regression trees in an additive fashion:

E(Y | A = a,X = x) =
∑︂
s

ϕ(x, a;Ts,Ms),

where ϕ(x, a;Ts,Ms) represents a binary tree function, Ts represents a specific tree structure,

including interior and terminal nodes as well as decision rules in the interior nodes, and Ms

includes the function values at the terminal nodes. Then, priors are assigned to both Ts and

Ms. For details of prior specification, see Murray et al. (2018) and Logan et al. (2019). In

such a model, posterior predictive samples of the outcome for an individual with X = x and
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under treatment A = a can be obtained from MCMC. The treatment that maximizes E(Y |

X = x, A = a), approximated by the mean of the posterior predictive samples, is identified

as the optimal treatment. While these flexible models provide a powerful way to model the

complex relationship, the estimated optimal ITRs are usually hard to interpret.

Semi-parametric approaches that are more robust to model misspecification, such as G-

estimation (Robins, 2004) and dWOLS (Wallace and Moodie, 2015), have also been devel-

oped. In G-estimation, the blip parameter vector ψ is estimated by solving the estimating

equation

n∑︂
i=1

[S(Ai)− E{S(Ai) | xi, ˆ︁α}](︂Gi(ψ)− E[Gi(ψ) | xi, ˆ︁β(ψ)])︂ = 0,

where S(A) is a vector-valued function chosen by the analysts to contain prescriptive covari-

ates; a common choice is S(A) = ∂γ(a,x(ψ);ψ)/∂ψ, ensuring that the estimating function

is linked to the blip function, and is of the same dimensionality of the parameters ψ of γ.

The parameter estimate ˆ︁α is obtained from a treatment model, e.g., a logistic regression

for a binary treatment assignment. A model is posited for the treatment-free component

G(ψ) = Y −γ(a,x(ψ);ψ), and the parameters are estimated in terms of ψ, i.e., ˆ︁β(ψ).
The dWOLS method estimates parameters β and ψ by minimizing a weighted least squares.

With linear models for both f and γ,

(ˆ︁β, ˆ︁ψ) = argmin
(β,ψ)

1

n

n∑︂
i=1

wi

(︂
yi − β⊤x

(β)
i − aiψ

⊤x
(ψ)
i

)︂2
.

Here, the weight wi is chosen to satisfy a balancing property and may depend on E(Ai |

xi, ˆ︁α), e.g., wi =| ai − E(Ai | xi, ˆ︁α) |. Both G-estimation and dWOLS satisfy the doubly-

robust property: only one of the two models, a treatment model or an outcome model,

needs to be correctly specified to obtain a consistent estimator of ψ. However, dWOLS is

slightly more restrictive, in that the treatment-free model must contain all tailoring variables
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whereas in G-estimation, the treatment-free model could follow any specification, even a null

(intercept-only) model.

2.4 Individual participant data meta-analysis

Clinical decision making should be guided by evidence from high-quality studies. However,

a single study may not be sufficient to draw definitive conclusions, as different studies can

report varying or even conflicting results. In this case, it is often hard to know which

result is more reliable, and combining evidence from multiple studies is necessary to enhance

reliability, confidence, and generalizability.

Meta-analysis is a widely-used quantitative approach for evidence synthesis (Borenstein et al.,

2021). Traditional meta-analysis relies on aggregate data extracted from study publications,

which refers to the information averaged or estimated across all participants in the study.

For example, to obtain an overall measure of the effect of a particular treatment with evi-

dence from multiple studies, treatment effect estimates and their uncertainty (e.g., standard

errors or confidence intervals) can be obtained from individual studies and synthesized into

a weighted average. Aggregate data meta-analysis is subject to limitations. First, even if

individual studies target the same research question, they may differ in study designs, popu-

lations, data measurements, and analysis methods. These differences can result in substantial

heterogeneity in estimates, and a weighted average may be less informative and meaningful.

Second, in the PM paradigm, it is important to identify individual-level treatment-covariate

interactions, but aggregate data meta-analysis such as meta-regression is prone to ecological

bias (Berlin et al., 2002; Simmonds and Higgins, 2007). The relationship identified based

on the aggregate data may not reflect the relationship at the individual level. In addition,

identification of treatment-covariate interactions based on aggregate data may suffer from

low power, as typically there are only a small number of studies that cannot provide sufficient

variability in study-level aggregated covariates.
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An alternative approach that can address these limitations is individual participant data

(IPD) meta-analysis. IPD refers to the raw information for each participant in a study, such

as baseline characteristics, treatment assignment, and outcome (Riley and Fisher, 2021).

Having access to IPD provides an opportunity to standardize eligibility criteria, outcome

or covariate definitions, and analysis methods. It also allows for more flexible modelling.

For example, covariate adjustment can be incorporated at the individual level, and missing

data mechanisms, if applicable, can also be modelled consistently. In addition, IPD from

unpublished studies may be included to reduce publication bias (Riley et al., 2010). While

IPD meta-analysis is increasingly in demand, its implementation can be resource-intensive.

It may take a long time to obtain IPD, as study investigators may not be contactable or they

may not be willing to share their IPD. Even if IPD are available, more advanced statistical

expertise may be required for flexible modelling, and there may be practical and ethical

concerns about using or managing patient-level data.

One may approach the IPD meta-analysis using a two-stage method, which resembles the

aggregate data meta-analysis in that the IPD for each study are analyzed separately to pro-

duce study-level aggregate data (e.g., treatment effect estimates), which are then combined

to obtain an overall summary result. Alternatively, a one-stage analysis pools the IPD from

different sources/studies, and analyzes them in a single statistical model.

The two-stage approach is conceptually straightforward. Standard methods for aggregate

data meta-analysis can be used in the second stage, making it more accessible to researchers,

especially non-statisticians, who often are already familiar with aggregate data meta-analysis.

In contrast, the one-stage approach provides a flexible framework to incorporate data at both

individual and study levels. Moreover, the one-stage approach avoids the need to synthe-

size study-level estimates which are typically assumed to follow some probability distribu-

tions (e.g., a normal distribution) in the two-stage approach. Instead, it directly models

the outcome distributions, which is advantageous when included studies have small sample
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sizes.

Researchers have also explored the differences in the results obtained from the one- and two-

stage approaches either theoretically, empirically, or via simulations (Smith and Williamson,

2007; Koopman et al., 2008; Bowden et al., 2011; Morris et al., 2018; Kontopantelis, 2018,

e.g.,). When the same modelling assumptions and estimation methods are used, differences

in the results between one- and two-stage approaches tend to be small. However, the two-

stage approach is often computationally faster and naturally separates within-study and

across-study information, which is important when estimating treatment-covariate interac-

tions (Riley and Fisher, 2021). In addition, even if access to IPD is feasible for individual

studies, a two-stage approach may be necessary if IPD from different studies cannot be re-

leased and merged into a single dataset directly, which is the case considered in Chapters 4

and 5. In the next section, I use a toy example for illustration.

2.4.1 Two-stage approach

Throughout this section, assume a continuous outcome Y , a binary treatment A ∈ {0, 1} and

a single covariate X. Therefore, the IPD in this example include information on treatment

assignment, covariate X, and outcome Y for each individual. Suppose that, in addition

to the treatment effect, the treatment-covariate interaction is also of interest. In the first

stage, the IPD will be analyzed separately for each study. Various modelling options can be

considered, however, I use a linear regression model for illustration purposes, i.e.,

yij = αi + βixij + θiaij + ψiaijxij + ϵij,

ϵij ∼ N(0, σ2
i ).

(2.1)

Here, i and j index the study and individual participants for each single study, respectively.

The parameters αi, βi, θi ψi, and σ2
i represent separate intercept, covariate effect, treatment

effect, treatment-covariate interaction effect, and error variance for study i, respectively.
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Model (2.1) is only fitted among observations in study i, using only within-trial information to

estimate the parameters, which automatically avoids study-level confounding and ecological

bias.

Treatment effect estimates θ̂i, treatment-covariate interaction estimates ψ̂i, and their vari-

ances var(θ̂i), var(ψ̂i) can be obtained from model (2.1), and are then synthesized in the

second stage to produce an overall estimate under either a common effect or a random

effects assumption. Since the second-stage analysis can be applied analogously to both

treatment effect estimates and treatment-covariate interactions, I only describe the analysis

for treatment effect here.

Under the common effect assumption, the θ̂is are estimates of a common treatment effect

θ. That is, the true treatment effect is assumed to be the same for all studies, and the

differences in the observed study estimates are purely due to chance. The meta-analysis

model in the second stage can be written as

θ̂i ∼ N(θ, var(θ̂i)). (2.2)

In model (2.2), the treatment effect estimates θ̂i are assumed to be normally distributed,

which is plausible for a sufficiently large sample size. In addition, the variance of θ̂i is

assumed to be estimated with no error. Estimate of the overall treatment effect θ can be

analytically obtained as a weighted average: θ̂ = (
∑︁K

i=1 θ̂iwi)(
∑︁K

i=1wi)
−1, and the variance

var(θ̂) = (
∑︁K

i=1wi)
−1, with wi = var−1(θ̂i).

The common effect assumption may not be appropriate when differences exist in the true

treatment effects across studies, referred to as between-study heterogeneity in meta-analysis.
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To allow for between-study heterogeneity, the model (2.2) is extended to

θ̂i ∼ N{θi, var(θ̂i)},

θi ∼ N(θ, τ 2).

(2.3)

Here, the different true treatment effects for individual studies are assumed to come from a

normal distribution with mean θ and between-study variance τ 2. Setting τ 2 = 0 will reduce

model (2.3) to model (2.2). Given an estimate of τ 2, the maximum likelihood estimator

of θ can also be expressed as a weighted average: θ̂ = (
∑︁K

i=1 θ̂iw
∗
i )(
∑︁K

i=1w
∗
i )

−1 with w∗
i =

(var(θ̂i) + τ̂ 2)−1. There are various approaches for estimating τ 2; see, e.g., Cochran (1954);

Paule and Mandel (1982); DerSimonian and Laird (1986); Hardy and Thompson (1996);

DerSimonian and Kacker (2007). Bayesian approaches can also be used in the second stage.

A likelihood is defined by model (2.2) or model (2.3). Then, prior distributions are required

for the unknown model parameters, such as θ and τ .

2.4.2 One-stage approach

The one-stage approach analyzes IPD from all studies together in a single statistical model,

which typically is hierarchical to account for clustering of samples from the same study.

Consider the same example described in Section 2.4.1. A one-stage model without treatment-

covariate interactions could be

yij = αi + βixij + θiaij + ϵij,

ϵij ∼ N(0, σ2
i ).

This model is fitted on all IPD. The parameters αi, βi, and θi are assumed to be either

common (e.g., θ1 = . . . = θK), stratified (e.g., θ1, . . . , θK are different fixed effects), or random

(e.g., θ1, . . . , θK are different but come from a common distribution). The residual variances

can also be stratified or common. When treatment-covariate interaction is incorporated,
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Riley and Fisher (2021) recommend that within-study and across-study information should

be disentangled to avoid ecological bias. They propose two approaches: (1) stratify all

parameters outside the interaction terms by study, or (2) center the covariate about its

study-specific mean and include another term for study-specific covariate mean to explain

the between-study heterogeneity in the treatment effect.

2.5 Network meta-analysis

Traditional meta-analysis approaches typically compare two treatments at a time. However,

in real-world scenarios, multiple treatments are often available for a single disease, and a

single study will rarely compare all of these treatments simultaneously. Instead, only a

subset of the treatments is included in individual studies. Network meta-analysis assesses

the comparative effectiveness of multiple treatments by synthesizing evidence from a network

of studies (Salanti, 2012; Cipriani et al., 2013). It relies on simultaneous analysis of both

direct and indirect evidence. Here, direct evidence of a treatment comparison refers to the

information from studies comparing the two treatments of interest, while indirect evidence

refers to the information from studies comparing the treatments of interest with one or more

common comparators.

Consider an example with three treatments, d1, d2, and d3. Suppose some studies compare

d1 and d2, while others compare d1 and d3. In network meta-analysis, the network struc-

ture of studies is usually represented by a graph where a node represents a treatment and

a line (or an edge) connecting two treatments indicates that direct comparisons exist for

the two treatments (see Figure 2.1 for the network structure of the hypothetical example).

For real studies, it is also common that the sizes of the nodes are proportional to the num-

ber of participants in the corresponding treatment groups, and the widths of the lines are

also proportional to the number of studies including the two treatments connected by the

lines.
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Figure 2.1: Illustration of the network structure for the hypothetical example.

While no direct comparisons are possible between d2 and d3, indirect comparison can be

made through the common comparator d1. The indirect estimate of the effect of d2 relative

to d3, ˆ︁θindirect
d2d3

, can be obtained by subtracting the pairwise meta-analytic estimate of studies

of d3 and d1, ˆ︁θd3d1 , from the estimate of studies of d2 and d1, ˆ︁θd2d1 , i.e., ˆ︁θindirect
d2d3

= ˆ︁θd2d1 −ˆ︁θd3d1 .
When the direct estimate ˆ︁θdirect

d2d3
is also available, it can be combined with the indirect es-

timate to obtain a mixed estimate, which is potentially more precise than a single direct

estimate or an indirect estimate (Cooper et al., 2011; Caldwell et al., 2015). The validity of

indirect and mixed comparisons relies on the transitivity assumption that the studies com-

paring different sets of treatments should be sufficiently similar with respect to all important

factors other than the treatments being compared (Cipriani et al., 2013). This assumption is

often evaluated qualitatively, e.g., by comparing the distributions of effect modifiers across

studies.

The consistency assumption, which states that indirect and direct evidence for the same

treatment comparison are in agreement, is the statistical manifestation of transitivity (Cipri-

ani et al., 2013). For the example provided, the consistency assumption suggests a consis-

tency equation: θd2d3 = θd2d1 − θd3d1 , where θd2d1 , θd3d1 , and θd2d3 are the true overall effects

of d2 versus d1, d3 versus d1, and d2 versus d3, respectively. Unlike transitivity, consistency

can be quantitatively assessed when both indirect and direct estimates are available. Meth-
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ods of assessing consistency in network meta-analysis can be broadly categorized as local

or global approaches. Local approaches evaluate consistency for particular comparisons in

the network. For example, for a particular treatment comparison, the node-splitting method

(Dias et al., 2010b) calculates a direct estimate from studies including both the treatments

being compared and an indirect estimate from the remaining studies, and the difference

between the two estimates are examined. Global approaches assess consistency across the

entire network. For example, models can be constructed by relaxing the consistency assump-

tions (Lu and Ades, 2006), e.g., modifying the consistency equation to add an inconsistency

factor δd1d2d3 : θd2d3 = θd2d1 − θd3d1 + δd1d2d3 . Consistency can be assessed by examining the

inconsistency factors or comparing models under consistency and inconsistency.

To evaluate the comparative effectiveness of multiple treatments, a common reference treat-

ment should be identified, but this treatment does not have to be present in every study.

Typically, the effects of the remaining treatments relative to this common reference treatment

are of particular interest and can be used to derive the effects of other treatment comparisons

under the consistency assumption. Except for consistency, the statistical framework of net-

work meta-analysis is similar to that of traditional meta-analysis. The study-level estimates

can be combined under a common effect or a random effects assumption to produce overall

estimates. For example, assume that d3 is the common reference treatment. Given study-

level treatment effect estimates ˆ︁θi,d2d1 , ˆ︁θi,d3d1 and their variances var(ˆ︁θi,d2d1), var(ˆ︁θi,d3d1), the

network meta-analysis model assuming random effects and consistency could be

ˆ︁θi,d2d1 ∼ N(θi,d2d1 , var(ˆ︁θi,d2d1)),
θi,d2d1 ∼ N(θd2d3 + θd3d1 , τ

2
d2d1

),

ˆ︁θi,d3d1 ∼ N(θi,d3d1 , var(ˆ︁θi,d3d1)),
θi,d3d1 ∼ N(θd3d1 , τ

2
d3d1

).

Here, different between-study variances (τ 2d2d1 , τ
2
d3d1

) are assumed for different treatment
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comparisons. This may be feasible in this particular example, as only two different treatment

comparisons in two-arm studies are considered. For multi-arm studies, vectors of treatment

effect estimates as well as variance-covariance matrices of the estimate vector can be obtained.

For these studies, a model under the random effects assumption will require a between-

study variance-covariance matrix. For example, if there also exist studies including d1, d2,

and d3, under the random effects assumption, treatment effect estimate vectors ˆ︁θi,d1d2d3 =

(ˆ︁θi,d1d3 , ˆ︁θi,d2d3) and their variance-covariance matrices ˆ︁Σ(ˆ︁θi,d1d2d3) can be modelled by

ˆ︁θi,d1d2d3 ∼ MVN(θi,d1d2d3 , ˆ︁Σ(ˆ︁θi,d1d2d3)),
θi,d1d2d3 ∼ MVN(θd1d2d3 ,Σd1d2d3),

(2.4)

where MVN represents a multivariate normal distribution. The parameters θi,d1d2d3 and

θd1d2d3 are the study-specific and overall true treatment effect parameter vector, and Σd1d2d3

is a 2 × 2 variance-covariance matrix for the between-study heterogeneity. The between-

study variance-covariance matrix could be unstructured in theory, but this will induce a

large number of parameters when many treatments and multi-arm studies are available.

In this case, parameter estimators obtained from a limited number of studies may suffer

from low precision. Alternatively, a common specification that can reduce the number of

model parameters to be estimated is that the between-study variance-covariance matrix has

diagonals of a between-study variance that is common to all treatment comparisons, and

off-diagonals of half of the common between-study variances (White et al., 2012; Riley and

Fisher, 2021).

Parameters in network meta-analysis models are usually estimated in the Bayesian frame-

work. Bayesian approaches naturally provide a convenient way to estimate ranking prob-

abilities, i.e., the probability of each treatment to be the best, the second best, etc. In

addition, posterior probability statements are more interpretable and intuitive for decision

making. Frequentist estimation is also possible by formulating the model as a multivari-
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ate meta-regression and using data augmentation techniques (White et al., 2012). Network

meta-analysis based on IPD has the same advantages as the traditional IPD meta-analysis.

An additional value of IPD for network meta-analysis is the detection and reduction of in-

consistencies. For example, distributions of covariates can be compared across studies. If

the covariate distributions in studies that provide direct evidence are different from those in

studies giving indirect evidence, the transitivity and also the consistency assumption may

not be reliable. In this case, including patient-level covariates in the model may help reduce

both inconsistency and between-study heterogeneity.

2.6 Summary

The literature review introduced important concepts and theories I use in this thesis. I

first discussed CRTs and group sequential designs, which are related to the research work

presented in Chapter 3. Then, I described the assumptions and some estimation methods

for ITRs. An overview of IPD meta-analysis and network meta-analysis were also presented

for Chapters 4 and 5.
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Chapter 3

Bayesian group sequential designs for

cluster-randomized trials

Preamble to Manuscript 1. Clinical decision support systems (CDSSs) are crucial for

integrating PM into routine clinical practice by providing physicians with tailored treatment

recommendation information for individual patients. Therefore, evaluating their efficacy

and safety through randomized controlled trials is essential. This chapter is motivated by a

real-world CRT of a machine learning-based CDSS designed for physicians treating patients

with depression. CRTs often have low power due to the positively correlated responses

of subjects within the same cluster. Group sequential designs can enhance trial efficiency

by recruiting participants sequentially and incorporating pre-planned interim analyses to

decide on trial continuation or early termination. However, most group sequential designs,

whether frequentist or Bayesian, focus on individually randomized trials. This manuscript

develops two Bayesian group sequential designs for CRTs which differ in how participants

are sequentially recruited. The power and false positive rate of the two designs are evaluated

and compared across two outcome types and a wide range of scenarios in a simulation study.

The corresponding manuscript was published in Stat (Shen et al., 2022).
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Abstract

Flexible approaches have been proposed for individually randomized trials to save time or

reduce sample size. However, flexible designs for cluster-randomized trials in which groups of

participants rather than individuals are randomized to treatment arms are less common. Mo-

tivated by a cluster-randomized trial designed to assess the effectiveness of a machine-learning

based clinical decision support system for physicians treating patients with depression, two

Bayesian group sequential designs for cluster-randomized trials are proposed to allow for

early stopping for efficacy at pre-planned interim analyses. The difference between the two

designs lies in the way that participants are sequentially recruited. Given a maximum num-

ber of clusters as well as maximum cluster size allowed in the trial, one design sequentially

recruits clusters with the given maximum cluster size, while the other recruits all clusters

at the beginning of the trial but sequentially enrolls individual participants until the trial

is stopped early for efficacy or the final analysis has been reached. The design operating

characteristics are explored via simulations for a variety of scenarios and two outcome types

for the two designs. We make recommendations for Bayesian group sequential designs of

cluster-randomized trials based on the simulation results.
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3.1 Introduction

Randomized controlled trials, which can ensure that subjects assigned to each treatment

group are comparable with respect to all characteristics of interest to draw a causal conclu-

sion, have played an essential role in evaluating the effectiveness of interventions (Friedman

et al., 2015). In most trials designed to assess the effect of a drug or a treatment, individual

participants are randomly allocated to each treatment arm. However, some interventions

naturally operate at a group level, or target either a social network or physical environment.

For example, in a trial assessing the clinical utility, safety, and potential effectiveness of a

machine-learning based clinical decision support system (CDSS) developed by Aifred Health

(Benrimoh et al., 2018; Popescu et al., 2021; Benrimoh et al., 2021; Tanguay-Sela et al.,

2022), the decision support tool is designed for physicians, naturally forming clusters of in-

dividual patients being treated by that physician (Mehltretter et al., 2020b,a). For these

types of interventions, a population-level effect is of more interests to researchers.

In addition, randomizing by individuals in this setting may lead to a contamination effect

between trial arms, as physicians might struggle to treat patients from different treatment

arms strictly differently. Contamination can cause dilution bias and affect the reliability and

validity of the study. One way to reduce the possibility of contamination is to randomize by

physicians who act as ‘clusters’ (Torgerson, 2001; Puffer et al., 2005). Thus, it may not be

advisable to randomize individual participants to different treatment arms, and groups of

subjects being treated by their clinicians can instead be randomly assigned to the treatment

arms in what is known as a cluster-randomized trial (Donner and Klar, 2000; Puffer et al.,

2005; Hales and Moulton, 2017; Turner et al., 2017). In other cluster-randomized trials,

clusters may be formed by subjects sharing other common features such as geographical

areas, communities, or worksites (Hales and Moulton, 2017).

Due to the difference in randomization unit, the design and analysis of cluster-randomized

trials differ from individually randomized trials (Klar and Donner, 2001; Campbell et al.,
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2007, 2001). The independence assumption between participants’ outcomes is violated in

a cluster-randomized trial since subjects from the same cluster tend to have more similar

responses than subjects from a different cluster. Positive correlation between subjects within

the same cluster, as measured by intra-cluster correlation coefficient (ICC), should be consid-

ered carefully when analyzing data from cluster randomized trials. The positive correlation

reduces the variability of responses in a clustered sample and thus reduces the statistical

power to detect true differences between treatment arms relative to trials that randomize

the same number of individuals (Killip et al., 2004; Donner and Klar, 2004).

A natural way to improve trial efficiency without undermining the validity and integrity of

the trial is through the use of group sequential methods which divide participant entry into

a number of groups and allow for planned assessments of the evidence in the cumulative data

that incorporate decision-making regarding trial continuation (Chow et al., 2005; Pocock,

1977). In addition to flexibility and efficiency, group sequential designs are attractive to

clinical scientists because they may reflect medical practice in the real world and they are

ethical with respect to the need to determine and monitor efficacy as well as safety of the

treatment (Chow and Chang, 2008).

Group sequential designs naturally fit into the Bayesian framework as results or estimates

are continually updated based on the accumulated information from interim data (Chevret,

2012). Group sequential designs based on Bayesian approaches have been extensively stud-

ied in recent years (Berry et al., 2010; Gsponer et al., 2014; Yin et al., 2017; Freedman

et al., 1994; Lewis and Berry, 1994; Freedman and Spiegelhalter, 1989). However, most

group sequential designs, regardless of whether they are frequentist or Bayesian, focus on

individually randomized trials and are categorized under the broad family of adaptive trial

designs. Adaptive designs for cluster-randomized trials are less common and the incorpo-

ration of adaptive features poses significant statistical challenges. Some specific adaptive

features such as sample size re-estimation and frequentist group sequential analyses have
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been proposed in combination with cluster-randomized trials (Lake et al., 2002; van Schie

and Moerbeek, 2014; Grayling et al., 2017; Zou et al., 2005). However, no formal statistical

design of Bayesian adaptive cluster-randomized trials has been developed. We address this

gap by proposing two Bayesian group sequential designs for cluster-randomized trials.

The organization of this paper is as follows. The motivating trial is briefly described in section

3.2, followed by the development of two Bayesian group sequential designs and models for

continuous and binary outcomes in section 3.3. Simulation studies are carried out in section

3.4, assessing the performance of the two proposed designs across a range of scenarios. The

paper concludes in section 3.5.

3.2 Motivating setting

Aifred Health has designed a machine-learning based clinical decision support system (CDSS)

for physicians treating patients with depression (Benrimoh et al., 2018; Popescu et al., 2021;

Benrimoh et al., 2021; Tanguay-Sela et al., 2022). Patient characteristics of interests such

as sociodemographic information, clinical information and medical history are input into the

CDSS. The CDSS then, using a deep learning model, outputs the predicted efficacy for a

number of possible treatments for that patient (Mehltretter et al., 2020b,a). Treatments are

ordered by efficacy and presented to the physician when they reach the treatment selection

step of a clinical algorithm based on best practice guidelines (Popescu et al., 2021; Kennedy

et al., 2016). Physicians with the CDSS can, on an individual patient basis, decide whether or

not to use the information presented by CDSS as part of their medical decision-making.

An important step is to establish the clinical utility, safety, and potential effectiveness of a

tool such as the CDSS. Practically, an intervention such as the CDSS must be delivered at

the physician level, such that a cluster-randomized design would be appealing for the reasons

described above. Participating physicians could be randomized, with patients recruited from

physicians’ usual practices in order to approximate the real-world clinical conditions and
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populations as closely as possible.

Typical outcomes in a study of depression in such a trial could be a continuous measure of

symptoms (e.g., a visual analog scale, the Quick Inventory of Depressive Symptomatology

(Trivedi et al., 2004), the 9-question depression scale from the Patient Health Questionnaire

(Kroenke and Spitzer, 2002), the World Health Organization Disability Assessment Schedule

2.0 (Gold, 2014), etc.) or a binary measure of treatment response, minimum clinically

significant change in symptoms, or remission, perhaps defined by a dichotomization of a

standard depression score (Beck and Alford, 2014; Smarr and Keefer, 2020; McGlothlin and

Lewis, 2014). The importance of mental health treatment and the often relatively slow rate

of patient accrual motivate the use of a Bayesian group sequential design to ensure adequate

sample size and the possibility of early termination due to treatment effectiveness.

3.3 Methods

3.3.1 Two Bayesian group sequential designs for cluster-randomized

trials

Suppose that the maximum number of clusters and maximum cluster size are equal across the

two treatment arms. Let K, n, m be the number of interim analyses (not including the final

analysis), the maximum number of clusters for each treatment arm, and the maximum cluster

size, respectively. For simplicity of exposition, we will assume that all clusters enroll the same

number of participants. Two Bayesian designs, design 1 and design 2 in the remainder of this

paper, are developed to sequentially enroll participants and analyze interim data in different

ways.

In design 1, [n/(K + 1)] clusters enter the trial at the start where [x] denotes the largest

integer not exceeding x, and m individual participants will be enrolled for each cluster. At

the subsequent analysis point, if the accumulated information up to the current analysis is
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sufficient to conclude the efficacy of the treatment or the final analysis has been reached, the

trial will be terminated. Otherwise, another [n/(K + 1)] new clusters will be enrolled, and

m individual participants will be recruited for each new cluster. The trial then proceeds to

the next analysis with new samples. This procedure is repeated until termination.

In design 2, at the beginning of the trial, all n clusters enter the trial, but only [m/(K + 1)]

individual participants are enrolled for each cluster. At the subsequent analysis point, if the

trial is not to be terminated, another [m/(K + 1)] individual participants are recruited for

the same n clusters. The trial then proceeds to the next analysis. This procedure is repeated

until termination.

The fundamental difference between the two designs lies in the way that participants are

sequentially recruited. In design 1, the clusters are sequentially enrolled, and individual

participants for each cluster are recruited all at once. In design 2, all clusters are enrolled

at one time, but the individual participants for each cluster are sequentially enrolled. For

illustration, consider an example for one treatment arm with K = 1, n = 4 and m = 6. That

is, there is only one interim analysis planned (thus two analyses in total, including the final

analysis). The maximum number of clusters is 4, and the maximum cluster size is 6. Figure

3.1 gives a graphical illustration. The circles represent different individual participants for

the corresponding clusters. In design 1, clusters 1 and 2 will be first enrolled, and for each,

six individual participants will be recruited. The interim analysis is based on data from

clusters 1 and 2. If we decide to continue the trial, then we will further recruit clusters 3 and

4 and their respective six individual participants for the final analysis. The final analysis is

based on data from all the four clusters. In design 2, all four clusters will be recruited at

the start, but for each cluster, only three participants will be enrolled. If evidence based on

the 12 individuals from 4 clusters is unable to conclude the efficacy of the intervention at

the interim analysis, then an additional three individual participants for each cluster will be

recruited, and the trial proceeds to the final analysis.
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Figure 3.1: An illustration of the two designs for one treatment arm when there is only
one pre-planned interim analysis, and at most four clusters with a total of six individual
participants within each cluster over the course of the trial.The black labelled circles represent
different individual participants for each cluster.

3.3.2 Early stopping at interim analysis

At each interim look, one should determine whether to stop the trial early or continue based

on the interim result. The goal is to evaluate the efficacy of the treatment by testing the

hypothesis

H0 : θ ≤ δ vs HA : θ > δ,

where θ is the mean difference for continuous outcome and risk difference for binary outcome,

and δ is the minimal important difference. The efficacy of the treatment can be concluded

and the trial can be stopped early for efficacy at the kth interim analysis if

P (θ > δ | Dk) > U, (3.1)
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whereDk is all the available data up to the kth analysis, and U is the decision boundary.

Continuous outcomes

Based on the context of the motivating trial and without loss of generality, assume that a

smaller value of the continuous outcome is preferred (as most depression and disability rating

scales associate worse symptoms with larger total scores). Then, θ = µc−µt where µc, µt are

the mean outcome for control and treatment groups, respectively. We further assume that at

the kth analysis, k = 1, . . . , K+1, there are nk clusters with mk observations in each cluster.

Let Yij be the continuous outcome of the ith subject in the jth cluster at current analysis

point, j = 1, . . . , nk, and i = 1, . . . ,mk. The normality assumption in cluster-randomized

trials states

µj ∼ N(µ, σ2
B) and Yij | µj ∼ N(µj, σ

2
W ),

where µj is the cluster-specific mean, µ is the population mean, σ2
W and σ2

B are within- and

between-cluster variances respectively, and they can be related via the ICC, ρ = σ2
B/(σ

2
W +

σ2
B). It can be shown that the marginal distribution of Yij is normal with mean µ and variance

σ2
B + σ2

W . Let Y = (Y ⊤
1 , . . . ,Y

⊤
nk
)⊤ be the response vector where Yj = (Y1j, . . . , Ymkj)

⊤, for

j = 1, . . . , nk. The covariance structure satisfies

Var(Yij) = σ2
B + σ2

W

Cov(Yij, Ysj) = σ2
B, ∀i ̸= s

Cov(Yij, Ytl) = 0, ∀j ̸= l

(3.2)

36



so that Y ∼ MVN(µ,Σ) where µ is a vector of nk ×mk with all elements equal to µ and Σ

is a block matrix of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ΣY1 0 · · · 0

0 ΣY2 · · · 0

...
... . . . 0

0 0 · · · ΣYnk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and ΣYj

= cov(Yj) specified in equation (3.2), and MVN indicates a multivariate normal

distribution.

In the Bayesian framework, we assume a normal prior for µ,

µ ∼ N(a, b2)

where a is the prior mean and b2 is the prior variance. Then, using Bayes’ theorem, the

posterior distribution for µ is:

µ | Y ∼ N

(︃
b21⊤Σ−1Y + a

b21⊤Σ−11 + 1
,

b2

b21⊤Σ−11 + 1

)︃
.

The above result applies to both µt and µc. The quantity of interest P (µc − µt > δ | Y )

can be obtained analytically from the posterior distributions of µt and µc, as the difference

between two normal random variables is still normal.

At any interim analysis, if P (µc − µt > δ | Y ) > U , the trial is stopped early for efficacy.

Otherwise, the trial continues to enroll clusters/participants and proceeds to the next anal-

ysis. These steps are repeated until either the trial is stopped early for efficacy or reaches

the final analysis.

37



Binary outcomes

For binary outcomes, assume that a larger proportion is preferred (e.g., a larger proportion

of patients meeting the criteria for treatment response). Let θ = πt − πc where πc, πt are

the population proportion for the control and treatment groups, respectively. For binary

outcomes, the joint distribution of all observations cannot be obtained analytically and thus

a tractable form of the posterior distribution of the parameters of interest is not available.

Therefore, we propose the following hierarchical model

πj ∼ Beta(α, β)

rj | πj ∼ Binomial(mk, πj)

where rj is the number of events in the jth cluster and πj is the cluster-specific proportion,

j = 1, . . . , nk. Then, under the model, the cluster-specific proportion πj have the mean-

variance relationship

Var(πj) = E(πj){1− E(πj)}
1

α + β + 1
. (3.3)

However, in cluster-randomized trials with binary outcomes, it is assumed that

E(πj) = π,

Var(πj) = ρπ(1− π),

(3.4)

where π is the population proportion and ρ is the ICC.

To make (3.3) and (3.4) consistent, define two transformed parameters

π =
α

α + β
,

v = α + β,
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where π is exactly the mean of the Beta distribution and v measures the information in the

corresponding Beta distribution. Also, due to the consistency of (3.3) and (3.4), once ρ is

fixed or estimated, v can also be determined through v = (1 − ρ)/ρ. Thus, the only free

parameter for the hierarchical model is π.

In the Bayesian framework, assume a uniform prior for π,

π ∼ Unif[0, 1].

Then the posterior probability P (πt − πc > δ | R), where R = (r1c, . . . , rnk,c, r1t, . . . , rnk,t)

includes the number of events per cluster within each treatment group, can be approximated

by

π̂ =
1

M

M∑︂
i=1

I{πpostci − πpostti > δ}

where πpostci , πpostti are sampled from the corresponding posterior distributions of πc and πt,

and M is the number of Monte Carlo samples drawn from the posterior. The posterior

distributions of πc and πt are not analytically available; posterior samples can be obtained

using Markov Chain Monte Carlo (MCMC) implemented in any Bayesian software. In this

paper, we use RStan (Stan Development Team, 2021, 2020).

3.4 Simulation studies

The false positive rate and power cannot be obtained analytically in Bayesian adaptive trials

since the sampling distributions of the test statistics (i.e., posterior probability statements

(3.1) in section 3.3.2) are not known. Therefore simulation studies are required to specify the

decision boundaries and other design characteristics (Berry et al., 2010). For both outcomes,

a single interim analysis was explored first; multiple interim analyses were then investigated.

In the presence of cluster-level covariates, stratified randomization could be considered to
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help reduce covariate imbalance between treatment arms. In our simulation, covariates were

not considered, and thus stratified randomization was not required; permuted block random-

ization with block size 4 was implemented for treatment allocation. The minimal important

difference was set as 0 in the simulation but it is straightforward to generalize to other values.

For each scenario, 3000 simulation replications were performed. The performance of designs

was compared based on overall false positive rate and power, accounting for the rejection of

the null at either interim or final analysis. The false positive rate is estimated as

False positive rate =
Number of times the null hypothesis is falsely rejected

Number of simulation runs
,

where falsely rejecting the null hypothesis means that for some k ≤ K + 1,

Pθ=0(θ̂k > δ | Dk) > U

for θ̂k the estimated mean difference for continuous outcome or estimated risk difference

for binary outcome at the kth analysis, θ is the true mean or risk difference, δ is minimal

important difference, and δ = 0 in our simulation. Dk is all the available data up to the kth

analysis, and U is the decision boundary as described in section 3.3.2.

Power is estimated as

Power =
Number of times the null hypothesis is correctly rejected

Number of simulation runs

where correctly detecting the difference means that for some k ≤ K + 1,

Pθ=θA(θ̂k > δ | Dk) > U

for θA the value of θ under the alternative hypothesis.

For continuous outcomes, the prior mean and variance for the population mean for both
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Table 3.1: Simulation parameters for continuous and binary outcome

Continuous Binary

Parameters Single Multiple Single Multiple
interim analysis interim analyses interim analysis interim analyses

Population mean for control† (µc) 0 0 \ \
Within-cluster variance† (σ2

W ) 1 1 \ \
Baseline risk‡ (πc) \ \ 0.25, 0.35, 0.45 0.25, 0.35, 0.45

Number of clusters per group (n) 20, 40, 60 20, 40, 60 20, 40, 60 20, 40, 60

True treatment effect (θ) 0, 0.1, . . . , 0.9 0, 0.1, . . . , 0.9 0, 0.1, 0.2, 0.3 0, 0.1, 0.2

Decision boundary (U) 0.95, 0.98 0.95, 0.98 0.95, 0.98 0.95, 0.98

Intra-cluster correlation coefficient (ρ) 0.05, 0.1, 0.15 0.05, 0.1, 0.15 0.05, 0.1 0.05, 0.1

Cluster size (m) 8 8, 16 8 8, 16

Number of interim looks (K) 1 1, 2, 3 1 1, 3

† Not applicable to binary outcomes.
‡ Not applicable to continuous outcomes.

groups are fixed at 0 and 1000, respectively. In real-world cluster-randomized trials, the ICC

tends to be small (e.g. around 0.05 in primary care trials (Campbell, 2000)). Similar values

of ICC were explored in simulation and the between-cluster variance σ2
B was determined

through σ2
B = σ2

Wρ/(1 − ρ). To generate clustered continuous data, we first generate the

n cluster-specific means from normal distributions with mean µc (control group) and µt

(treatment group) and variance σ2
B. Then, within each cluster, m samples are drawn from

a normal distribution with mean equal to the cluster-specific mean and variance σ2
W . The

resulting m × n samples are expected to satisfy the preset correlation structure. For

binary outcomes, clustered binary data are generated via Beta and binomial distributions;

see Appendix A.1 for details. All simulation parameters are summarized in Table 3.1.

Only results for continuous outcomes are presented here. The results for binary outcomes

can be found in the Appendix A.1. Figures 3.2 and 3.3 show the false positive rate and power

when a single interim analysis is planned. In general, the two designs have comparable power

but design 1 has higher false positive rates. The accrual of information (measured by Fisher

information) for design 1 is linear with increasing number of analyses, as the newly recruited

clusters are independent from already-recruited clusters, while diminishing return in the
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accrual of information for design 2 can be expected due to the correlation between responses

on individuals from the same cluster. The information at final analysis, if reached, is the

same for both designs. However, at any interim analysis, design 2 contains more information

than design 1, leading to smaller false positive rates.

The effect of ICC on false positive rate is quite small whereas the effect on power is more

evident. Under the same conditions, if the underlying ICC is higher, power is lower. In

conventional cluster-randomized trials, the sample size needed to maintain a sufficient power

is jointly determined by ICC, effect size, cluster size as well as outcome variance. In the

Bayesian group sequential design, the decision boundary should also be determined to achieve

desired operating characteristics and sample sizes. In all scenarios, with U = 0.95, the false

positive rates for both designs are well above 0.05. With U = 0.98, both false positive rates

and powers are reduced. In practice, the value of U is specified to achieve a small false positive

rate (e.g. 0.05), while maintaining a required level of power. A larger decision boundary

corresponds to a more conservative test since more evidence is required to conclude the

treatment efficacy. However, an over-conservative boundary may increase the cost as more

samples may be needed to maintain sufficient power.

(a) U = 0.95 (b) U = 0.98

Figure 3.2: Plot of false positive rate versus ICC when n = 20, 40, 60 for (a) U = 0.95 and
(b) U = 0.98 with single interim analysis planned. The dashed lines show the false positive
rate of 0.05.

Figures 3.4 and 3.5 show the false positive rate and power when multiple interim looks

are built into the study design. Design 1 still has higher false positive rate and similar
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(a) U = 0.95 (b) U = 0.98

Figure 3.3: Plot of power versus true treatment effect when n = 20, 40, 60, ρ = 0.05, 0.1, 0.15
for (a) U = 0.95 and (b) U = 0.98 with single interim analysis planned. The dashed lines
show the power of 0.8.

power compared with design 2. As was observed in Figures 3.2 and 3.3, a larger decision

boundary can reduce false positive rate and the resulting reduction in power can be remedied

by recruiting a larger number of clusters. Adding more interim analyses may increase the

false positive rate and power. Given a fixed decision boundary, with more interim analyses

planned, there is higher chance of rejecting the null hypothesis. The effect of cluster size on

both false positive rate and power is very modest. The results for a larger cluster size can

be found in the Appendix A.2.

(a) U = 0.95 (b) U = 0.98

Figure 3.4: Plot of false positive rate versus number of interim looks for n = 20, 40, 60,
ρ = 0.05, 0.1, 0.15, m = 8 for (a) U = 0.95 and (b) U = 0.98. The dashed lines show the
false positive rate of 0.05.

To conclude, both designs perform better in terms of false positive rate with U = 0.98 as

compared to U = 0.95, and design 1 has a higher false positive rate as compared to design 2
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in almost all scenarios. The choice between the two designs as well as the decision boundaries

depends on the research question, phase of the study, and the information we have about the

treatment. For example, in some early phase clinical trials, if a relatively high false positive

rate is acceptable, then a smaller decision boundary (e.g. U = 0.95) may be recommended.

However, in late phase clinical trials, controlling false positive rate may be more important,

and so design 2 with a larger decision boundary may be preferred. For the situation we

explored, a single interim analysis is preferred no matter which design or decision boundary

is chosen, as the false positive rate with single interim analysis is lowest and an increase in

power by incorporating multiple interim analyses is not needed. General recommendations

require further exploration regarding the trade-off between false positive rate and power as

well as other practical consideration.

3.5 Discussion

Motivated by a potential real-world cluster-randomized trial, we explore the statistical prop-

erties of Bayesian group sequential designs for cluster-randomized trial. We explore stopping

rules for efficacy in a cluster-randomized trial. Interim analyses may be planned over the

course of the trial and at each interim analysis the trial may be stopped early if sufficient

evidence is established to conclude efficacy otherwise the trial proceeds to the next analysis.

We proposed two designs which sequentially enroll participants in different ways. The first

design sequentially enrolls clusters, and individual participants for each cluster are recruited

all together. The second recruits all clusters at the start of the trial, then sequentially enrolls

batches of participants. The difference between the designs lies in the sequential enrollment

of participants and thus the information accrual process. In design 1, as the clusters re-

cruited for each analysis are independent of each other, the information is accrued linearly

with increasing number of analysis stages. However, in design 2, more information may be ac-

cumulated at the start of the trial, and due to the positive ICC there are diminishing returns
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in information accumulation with more participants enrolled for the same clusters.

Interim analyses of both continuous and binary outcomes are performed based on common

models. For continuous outcomes, on the basis of the normality assumption, we obtained the

analytical form of the posterior distribution of the population mean. Based on Monte Carlo

simulation, the posterior probability of efficacy can be easily estimated by drawing random

samples directly from the two posterior distributions calculated from the accumulated data,

one for each treatment group. For design 1, due to the independence between the clusters

enrolled at each analysis, it is also possible to update prior distribution at each analysis

by the posterior distribution obtained from the previous analysis and base each analysis

on new samples only. This computation allows us to use only interim analysis estimates

rather than the original data for later analysis. However, for design 2, analysis should

be performed on all accumulated data in order to avoid loss of information regarding the

correlation between the responses on individuals within the same clusters and thus avoid

inflation of false positive rate. For binary outcomes, due to the complex correlation structure,

the posterior distribution of population proportion cannot be obtained analytically. Instead,

a hierarchical model was used and the posterior probability of efficacy is estimated via

MCMC.

Given that our motivating trial will be the first clinical trial of CDSS, accurate estimates

for design parameters such as effect size are not known with much certainty. The simulation

parameters in Table 3.1 were informed by rough estimates provided by Aifred Health but

covered a wider range of scenarios. Simulation results showed that design 2 with a single

interim analysis would be recommended for our motivating trial based on design operating

characteristics, as it has smaller false positive rates and comparable powers to design 1 or

multiple interim analyses. However, in practice the feasibility of the two designs is also a

determinant factor. For example, if the recruitment process of physicians is very slow, it

may not be possible to recruit all physicians simultaneously or in a short time. In this case,
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design 1 may be preferred. The company would need to consider these issues carefully before

implementing a real trial. A more general recommendation for other cluster-randomized

trials requires further exploration, as different cluster-randomized trials may have different

research goals or different design parameters that we did not explore in our simulation.

In addition, increasing cluster size may not necessarily bring much improvement in design

performance. Keeping a small cluster size may not hurt design operating characteristics very

much but in some instances it may save time and cost. In our motivating trial, a smaller

cluster size is also more realistic, as it reduces the burden on the individual clinician to find

suitable patients from their practice.

There are some limitations to our work. First, we only considered implementing a stop-

ping rule for efficacy. There are many other adaptive features that we have not considered.

One example is adaptive randomization in cluster-randomized trials. Second, we only focus

on two-arm trials. Extension to multi-arm trials which may involve arm dropping can be

considered in the future. Third, we only considered continuous and binary outcomes. The

work can be extended to other outcome types such as time-to-event outcomes. An extension

to survival outcomes based on survival models can also improve the framework of Bayesian

adaptive cluster-randomized trial. In addition, the effect of unequal cluster sizes has not

been explored for our designs. However, the effect of varying cluster sizes on design op-

erating characteristics in standard cluster-randomized trials has been extensively discussed

(Campbell et al., 2007; Eldridge et al., 2006; Guittet et al., 2006; Kerry and Martin Bland,

2001; Manatunga et al., 2001). Typically, designs are most efficient for equal cluster sizes.

Inflation of false positive rate will occur for imbalanced studies, and with the same sample

size, imbalanced trials may be underpowered compared with their balanced counterparts.

Similar impacts of unequal cluster sizes on power or false positive rate may also exist for our

Bayesian adaptive cluster-randomized trials, and this would need to be determined in future

work. Also, practical issues in planning a Bayesian group sequential design for a cluster-

randomized trial are not taken into account in our paper. For example, sometimes it may not
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be realistic to plan the preferred design recommended by design operating characteristics. In

this case, feasibility may be the main reason for design choice. These context-specific issues

require more exploration in the future.
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(a) ρ = 0.05, U = 0.95 (b) ρ = 0.05, U = 0.98

(c) ρ = 0.1, U = 0.95 (d) ρ = 0.1, U = 0.98

(e) ρ = 0.15, U = 0.95 (f) ρ = 0.15, U = 0.98

Figure 3.5: Plot of power versus number of interim looks for n = 20, 40, 60, θ = 0.2, 0.5, 0.8,
m = 8 with the subpanels (a)-(f) indicating all possible combinations of ρ = 0.05, 0.1, 0.15
and U = 0.95, 0.98. The dashed lines show the power of 0.8.

48



Chapter 4

Sparse two-stage Bayesian meta-analysis

for individualized treatments

Preamble to Manuscript 2. In Manuscript 1, I described two statistical designs to

address the low power of CRTs when evaluating the efficacy of the CDSS. Since such a

CDSS relies on a particular ITR, it is crucial to accurately estimate the ITR before assessing

the CDSS’s efficacy. One way to increase the power and generalizability of estimating ITRs

in regression-based approaches is to combine data from multiple studies and sites. While

individual-level data are thought to be essential for estimating ITRs in regression-based

approaches, sharing these highly sensitive health data can be restricted by policies, creating

a methodological gap. Manuscript 2 addresses this challenge with a two-stage Bayesian meta-

analysis approach. The proposed two-stage approach is compared to a one-stage approach,

where individual-level data from different sites are pooled together and analyzed in a single

statistical model to estimate an ITR. Practical solutions to sparsity in both the data and

the model are also discussed. An application of the proposed method to the International

Warfarin Pharmacogenetics Consortium data (2009) is presented. This manuscript has been

submitted for peer review.
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Abstract

Individualized treatment rules tailor treatments to patients based on clinical, demographic,

and other characteristics. Estimation of individualized treatment rules requires the identifi-

cation of individuals who benefit most from the particular treatments and thus the detection

of variability in treatment effects. To develop an effective individualized treatment rule, data

from multisite studies may be required due to the low power provided by smaller datasets for

detecting the often small treatment-covariate interactions. However, sharing of individual-

level data is sometimes constrained. Furthermore, sparsity may arise in two senses: different

data sites may recruit from different populations, making it infeasible to estimate identical

models or all parameters of interest at all sites, and the number of non-zero parameters in

the model for the treatment rule may be small. To address these issues, we adopt a two-stage

Bayesian meta-analysis approach to estimate individualized treatment rules which optimize

expected patient outcomes using multisite data without disclosing individual-level data be-

yond the sites. Simulation results demonstrate that our approach can provide consistent

estimates of the parameters which fully characterize the optimal individualized treatment

rule. We estimate the optimal Warfarin dose strategy using data from the International

Warfarin Pharmacogenetics Consortium, where data sparsity and small treatment-covariate

interaction effects pose additional statistical challenges.
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4.1 Introduction

In the traditional one-size-fits-all approach, patients with the same disease receive the same

treatment regardless of their individual characteristics. This strategy can be suboptimal,

as the best treatment for one patient might be ineffective for another due to treatment

effect heterogeneity among patient subgroups. The personalized medicine approach has

emerged as an alternative, leveraging this treatment effect heterogeneity in clinical decision

making to recommend the most appropriate treatment to individual patients (Chakraborty

and Moodie, 2013). Dynamic treatment regimes (DTRs), which consist of a sequence of

decision rules, formalize the statistical framework of personalized medicine in the setting of

multiple treatment stages (Chakraborty and Moodie, 2013; Chakraborty and Murphy, 2014;

Laber et al., 2014). When only a single treatment stage is considered, a DTR reduces to an

individualized treatment rule (ITR), which is the focus of our work.

Several methods have been proposed to estimate optimal ITRs (i.e., rules to optimize ex-

pected patient outcomes) or their multi-stage counterparts for various outcome or expo-

sure types based on individual-level data. Among the many alternatives, regression-based

approaches indirectly estimate the optimal ITR by first modelling the expected outcome

as a function of treatment, covariates, and their interactions and then determining the

treatment that, for each covariate combination, will optimize the estimated expected out-

come. Common regression-based approaches include Q-learning (Watkins, 1989; Sutton and

Barto, 2018), G-estimation (Robins, 2004), and dynamic weighted ordinary least squares

(dWOLS) (Wallace and Moodie, 2015). One practical challenge of ITR estimation is the

low power for detecting treatment-covariate interactions (Greenland, 1983). To increase the

sample size and generalizability of the findings, multisite data are attractive. Ideally, in a

multisite study one could pool the individual-level data from different sites together and an-

alyze the pooled data in a common analysis center. However, this may be infeasible due to,

e.g., institutional policies which restrict the sharing of individual-level information. There-
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fore, it is desirable to develop valid methods for ITR estimation that avoid sharing individual

records.

Different strategies have been proposed for analyses under constrained data sharing (Rassen

et al., 2013), but few have focused specifically on restrictions on data sharing in the context

of ITR estimation (Danieli and Moodie, 2022; Moodie et al., 2022) and none account for

the possibility that parameters of interest may vary across centers or sites. Meta-analysis,

a widely-used approach for evidence synthesis, can avoid releasing individual-level records

when analyzing multisite data (Rassen et al., 2013). However, classic meta-analysis tech-

niques based on aggregate data may be unsuitable for identifying treatment effects within

subgroups under heterogeneity (Berlin et al., 2002; Simmonds and Higgins, 2007), which is

the target of personalized medicine, and so it is unclear whether a meta-analysis approach

to ITR estimation is feasible. While using individual participant data (IPD) for meta-

analysis (Riley and Fisher, 2021) appears promising for ITR analysis, a one-stage IPD meta-

analysis requires combining all individual-level data into a single dataset, and thus cannot

be used in settings where individual records cannot be shared and thus a two-stage approach

is required. In this work, we adopt a Bayesian two-stage IPD meta-analysis approach to

estimate the optimal ITR using multisite data without the need for sharing individual-level

information across sites. We note that treatment-covariate interactions sometimes are de-

scribed as “treatment effect heterogeneity” in the literature. However, in the meta-analysis

literature, heterogeneity typically refers to the variability across sites. To avoid confusion,

from now on, we adopt the meta-analysis tradition and reserve the word heterogeneity for

variability across sites.

Warfarin is a widely-used oral anticoagulant for thrombosis and thromboembolism treat-

ment and prevention (Rettie and Tai, 2006). Establishing an optimal Warfarin dose strategy

is of vital importance due to the narrow therapeutic window and the large interindividual

variability in patients’ response to the drug (Rettie and Tai, 2006; International Warfarin
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Pharmacogenetics Consortium, 2009). The data from the International Warfarin Pharmaco-

genetics Consortium was collected in nine countries from four continents. These data have

suggested factors that are possibly associated with Warfarin dosing (International Warfarin

Pharmacogenetics Consortium, 2009). However, statistical challenges arise in the context of

a two-stage Bayesian meta-analysis of the optimal Warfarin dose strategy.

One challenge is data sparsity, a term we use to refer to the phenomenon of not observing

a sufficient number of patients with a given set of characteristics. For example, VKORC1

genotype (AA, AG or GG) is potentially a tailoring variable for Warfarin dosage. In certain

sites all patients fall under only one or two categories of VKORC1 genotype and therefore

inference about the interaction between VKROC1 genotype and Warfarin dose cannot be

made based on the data from these sites. A naïve approach would remove sites with sparse

data, leading to a significant loss of information.

A second challenge is model sparsity, i.e., extremely small (practically zero) treatment-

covariate interactions resulting from variables that are irrelevant for the dosing decision.

The small effect estimates can lead to invalid dose recommendations (e.g., outside of the

appropriate range) or the estimated optimal dose for an individual being highly volatile or

sensitive to the parameter estimates. Including covariates with no tailoring effect also makes

the estimated optimal dosing strategy unnecessarily complex.

We address data sparsity by reparametrizing the likelihood such that the site-specific esti-

mates are linked to the correct set of parameters. To address the second challenge, we use

shrinkage priors (van Erp et al., 2019), opting for a horseshoe prior due to its proven advan-

tages in maintaining large effects and efficiently handling sparsity (Carvalho et al., 2010).

Methods including the notation and assumptions are described in section 4.2. In section 4.3,

we explore the performance of the proposed method across a range of scenarios via simula-

tion studies. In section 4.4, we estimate an optimal individualized Warfarin dose strategy

without the need for sharing patient-level data. The paper concludes with a discussion.
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4.2 Methods

4.2.1 Preliminaries

Let Y denote a continuous outcome of interest, where larger values of Y are preferable. Let

A denote the binary or continuous treatment received by the patient, and X be a vector

of pre-treatment covariates. Let Y a be the potential outcome a patient would experience if

assigned treatment a. Uppercase, lowercase, and bold denote random variables, realizations

of random variables, and vectors respectively.

An ITR d(X ) : X → A tailors treatment to patients based on individual characteristics,

X. An optimal ITR dopt(X ) maximizes the value function under dopt(X ), that is, the

expected potential outcome E(Y d(X )) if all patients in a population are treated according

to d(X ). Identification of an optimal ITR relies on several assumptions: (i) the stable

unit treatment value assumption (SUTVA): a patient’s outcome is not influenced by other

patients’ treatment (Rubin, 1980); (ii) no unmeasured confounding (Robins, 1997); (iii)

positivity: p(A = a | X = x) > 0 almost surely for all possible x and a (Cole and Hernán,

2008). Additional modelling assumptions will also be required for the (regression-based)

meta-analytic approach that we pursue.

To identify the optimal ITR, an outcome model could be specified and decomposed into

two components: E(Y | A = a,X = x ) = f(x (β);β) + γ(a, x (ψ);ψ), where both x (β)

and x (ψ) are subvectors of x, and include predictive covariates and covariates that interact

with treatment (prescriptive variables), respectively. The prescriptive covariate vector x (ψ)

is a subvector of x (β). The parameter vectors in the treatment-free function f(x (β);β)

and the blip function γ(a, x (ψ);ψ) (Robins, 2004) are denoted by β and ψ, respectively.

The treatment-free function depends on covariates x (β) but not treatment, and thus is not

relevant to treatment or dosing decisions. The difference in the expected potential outcome

of patients receiving treatment A = a and reference A = 0, with the same prescriptive
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covariates X = x (ψ), is represented by the blip function: γ(a, x (ψ);ψ) = E(Y a − Y 0 |

X = x (ψ);ψ). The blip function satisfies γ(0, x (ψ);ψ) = 0 and the optimal ITR is then

defined as dopt(x ) = argmaxa γ(a, x (ψ);ψ), since the treatment assignment influences the

expected outcome only through the blip function. Therefore, estimation of the optimal

ITR requires correct specification of the blip function and estimation of the blip parameter

ψ. A common form for the blip function in the binary treatment setting A ∈ {0, 1} is

γ(a, x (ψ);ψ) = ag(x(ψ);ψ), and linear models could be assumed for both f and g. Under a

linearity assumption, the outcome model becomes

E(Y | A = a,X = x) = β⊤x(β) + aψ⊤x(ψ), (4.1)

where, in this form, we assume that x(β) and x(ψ) have been augmented by a column

of ones to ensure an intercept and main effect of treatment, respectively. In this set-

ting, the optimal ITR is given by dopt(x) = I(ψ⊤x(ψ) > 0). For a continuous treat-

ment (e.g., a dose of a drug), a blip function should be specified so that the optimal

treatment can be an interior point of the set of possible treatments. For example, a

quadratic or higher order term for the treatment could be included in the blip function:

γ(a, x (ψ);ψ) = (ψ(1)⊤,ψ(2)⊤)(ax (ψ(1)), a2x (ψ(2)))⊤.

Various approaches are available for unbiased and consistent estimation of the blip param-

eter ψ. For example, basic Q-learning can fit a standard linear regression to the model in

equation (4.1) or indeed a more flexible model; consistency of the estimation is guaranteed

under correct model specification (Chakraborty and Moodie, 2013). Other regression-based

methods such as G-estimation and dWOLS, both of which are doubly robust, could also

be employed (Robins, 2004; Wallace and Moodie, 2015). Bayesian approaches have also

been proposed, such as Bayesian G-computation (Arjas and Saarela, 2010), a Bayesian ma-

chine learning approach to Q-learning (Murray et al., 2018), Bayesian additive regression

trees (Logan et al., 2019), and Bayesian causal forest (Hahn et al., 2020).
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4.2.2 Two-stage IPD meta-analysis

We now describe a two-stage IPD meta-analysis approach in the Bayesian framework to

estimate the optimal ITR when multisite data are available but data sharing across sites is not

allowed. Let K be the number of sites. For illustration purposes, we assume linear models for

both treatment-free and blip functions. The extension to other parametric outcome models

is straightforward. The site-specific outcome model can be written as: E(Yij |X = xij , A =

aij) = β⊤
i x

(β)
ij + aijψ

⊤
i x

(ψ)
ij , where i ∈ {1, . . . , K} and j ∈ {1, . . . , ni} index the site and

individual patient in a given site respectively, and ni is the number of patients in site i. The

predictive and prescriptive covariate vectors are denoted by x(β)
ij and x(ψ)

ij , respectively. The

p-dimensional site-specific treatment-free parameter βi = (βi0, . . . , βi,p−1) and q-dimensional

blip parameter ψi = (ψi0, . . . , ψi,q−1) have similar interpretations to those in equation (4.1),

except that the target here is the site-specific ITR. The site-specific parameters βi and ψi

may not be identical across sites. We initially assume that the specific variables included in

the vectors x(β)
ij , x(ψ)

ij are identical across sites; we later relax that assumption.

Suppose that our interest is not in the site-specific optimal ITRs but a common optimal ITR

that could be applied to all sites and, more generally, to future patients at comparable sites

that may not have contributed data to the estimation. When the site-specific parameters

are not identical across sites, it may be reasonable to assume that a common distribution

exists for the varying site-specific blip parameters:

ψi ∼ MVN(ψ,Σψ), (4.2)

where MVN represents the multivariate normal distribution, and ψ = (ψ0, . . . , ψq−1) and

Σψ are the common mean vector and variance-covariance matrix, respectively.

The two-stage IPD meta-analysis approach estimates a common optimal ITR by first con-

ducting separate analyses of site-specific optimal ITRs and then combining the site-specific

optimal ITRs via a hierarchical model. Specifically, at the first stage, each site obtains
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estimates of blip parameters ψ̂it and the associated standard deviations sd(ψ̂it), for t =

0, . . . , q − 1, As mentioned in the last section, ψ̂it and sd(ψ̂it) can be obtained from vari-

ous approaches such as Q-learning or dWOLS, using only site-specific data. At the second

stage, only those site-specific estimates will be transferred to a common analysis center

(and thus the individual-level data are preserved), and combined in a Bayesian hierarchical

model:

ψ̂it ∼ N(ψit, sd(ψ̂it)
2), ψit ∼ N(ψt, σ

2
ψt),

ψt ∼ pψt(ψt), σ2
ψt ∼ pσ2

ψt
(σ2

ψt).

(4.3)

Here, ψit and ψt are the (t + 1)th elements of the site-specific and common blip parameter

vectors. The between-site heterogeneity associated with ψit is denoted by σ2
ψt

. Prior dis-

tributions pψt and pσ2
ψt

can be assigned for the unknown parameters ψt and σ2
ψt

. Popular

prior choices include a normal prior with large variance for the mean parameter ψt and a

half-Cauchy prior for the variance component parameter σψt (Gelman, 2006; Gelman et al.,

2013). We use these prior choices in our simulation studies and the optimal Warfarin dosing

analysis that follows. The Bayesian hierarchical model can be easily fitted in any Bayesian

software. In this paper, we use RStan (Stan Development Team, 2020, 2021).

The two-stage IPD meta-analysis approach requires each site to provide estimates of blip

parameters and the associated standard deviations only, which avoid sharing the individual-

level data. At the first stage, the treatment-free parameters are estimated together with

the blip parameters. However, they are irrelevant for the optimal treatment decision and

will not be used in the second stage. We make no common distribution assumptions of site-

specific treatment-free parameters in (4.2). In reality, if the blip parameters come from a

common distribution, then it is highly likely that the treatment-free parameters are also from

a common distribution. However, this is not required for our approach. The model at the

second stage depends on unbiasedness, consistency, and normality of site-specific estimates

from the first stage. Therefore, alternative stage-one models could be considered for different
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site-specific ITRs, as long as unbiasedness, consistency, and normality are assured. In the

following sections, we assume no model misspecification exists. We establish the link between

the proposed two-stage approach and a one-stage approach based on full individual-level data

in Appendix B.1 of the Supplementary Materials.

4.2.3 Sparsity

So far, we have assumed that the specific variables included in the vectors x(β)
ij , x(ψ)

ij are iden-

tical across sites. However, estimation of identical models at all sites may be infeasible due

to heterogeneity of patient populations across sites (data sparsity). In addition, when a large

number of covariates are available, we may believe that the number of non-zero parameters

in the model is small (model sparsity). We now describe our approach to sparsity.

Data sparsity

Data sparsity occurs when insufficiently many patients with a given set of characteristics

are represented in the samples at all sites. Then, not all site-specific parameters can be

estimated for sites with sparse data. We employ a Bayesian hierarchical model which borrows

information across sites; this requires modification of likelihood contribution for sites with

data sparsity.

To illustrate this, consider a toy example, with a binary covariateX ∈ {0, 1} (i.e., p = q = 2),

and the following true outcome model for an individual at site i: E(Y | X) = βi0 + βi1X +

A(ψi0 + ψi1X). Therefore, ψi0 is the difference in the mean outcome between A = 1 and

A = 0 when X = 0 in site i; ψi1 is the difference in the treatment effect between patients

with X = 1 and X = 0 in site i; ψi0 + ψi1 is the treatment effect for patients with X = 1 in

site i. Then we consider two scenarios for data sparsity.

In the first scenario, X = 0 for all patients in site i. In this case, the main effect of X, βi1,

and the treatment-covariate interaction ψi1 cannot be estimated. The site-specific outcome
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model reduces to E(Y | X) = γi0 + Aξi0. Since this model is fitted among patients with

X = 0, ξi0 is the treatment effect for patients with X = 0. That is, ξi0 = ψi0. The likelihood

contribution of site i is then ξ̂i0 ∼ N(ψi0, sd(ξ̂i0)2). In the second scenario, X = 1 for all

patients in site i. The same reduced outcome model is fitted among patients with X = 1.

Therefore, ξi0 is the treatment effect for patients with X = 1 in site i, i.e., ξi0 = ψi0 + ψi1.

In this case, without examining the data one might naïvely link the estimate ξ̂0 to ψ0 via

ξ̂0 ∼ N(ψ0, sd(ξ̂0)2), but the correct specification is ξ̂i0 ∼ N(ψi0 + ψi1, sd(ξ̂i0)2). A second

toy example is provided in Appendix B.2 of the Supplementary Materials.

Model sparsity

Often, many potential tailoring variables are available but only a few are truly predictive of

patient response to treatment. Including all available covariates in the ITR estimation will

result in near-zero treatment-covariate interactions, which may result in invalid treatment

recommendations and an uninterpretable optimal ITR. To address this, shrinkage priors

which aim to shrink small effects towards zero are considered. We use horseshoe priors,

though alternatives exist (see van Erp et al., 2019, for a review). Specifically, for treatment-

covariate interactions, we assume ψt ∼ N(0, τ 2λ2t ), where λt and τ are local and global

shrinkage parameters, respectively, and λt, τ ∼ Half-Cauchy(0, 1). The shrinkage prior is not

placed on the main effect of treatment, ψ0, as we assume the treatment under consideration

has at least some effect on the outcome of interest. We select the treatment-covariate inter-

actions based on posterior credible intervals (van Erp et al., 2019): if [ψt,0.025, ψt,0.975] does

not include zero, the treatment-covariate interaction corresponding to ψt will be selected,

where ψt,0.025 and ψt,0.975 are the 2.5th and 97.5th percentiles of the posterior distribution of

ψt, respectively.
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4.3 Simulation studies

The simulation study is reported following the scheme proposed in Morris et al. (2019). A

brief summary is given below, with details provided in Appendix B.3 of the Supplementary

Materials.

4.3.1 Overview

The simulation study aims to evaluate ITR estimation for a continuous outcome when the

individual-level data from multisite studies are not shared across sites, varying: the con-

founding across sites (both variable set and strength), the degree of heterogeneity across

sites, and the choice of prior distribution used in the analysis. Simulations consider both

the case of binary treatments and, inspired by our motivating example of the International

Warfarin Pharmacogenetics Consortium, a continuous dose. We include a sparse data set-

ting (again, mimicking an aspect of the Warfarin data) and explore the use of shrinkage

priors in a setting where many covariates are available, but most are not relevant for optimal

treatment decisions. See Appendices B.3 and B.4 for details.

Performance is measured via the bias of estimators of the blip parameters relative to their true

values, the standard deviation of the estimators, the difference between the value function

(dVF) under the true optimal ITR and the value function under the estimated optimal ITR,

and the standard deviation of dVF when the estimated treatment rule was applied to the

same population. For the many covariates setting, these measures are assessed over: (1) a full

set of 2000 iterations, and (2) a subset of iterations where the non-zero treatment-covariate

interactions are correctly selected. Results are compared to those obtained from a one-stage

analysis based on the full individual-level data.
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4.3.2 Results

Here, we present the simulation results for the small sample size and binary treatment

under different confounding scenarios, heterogeneity levels, and half-Cauchy (0,1) prior. For

brevity, only results for ψ0 and dVF are presented here; we also present the estimates of blip

parameters in the sparse data setting with small sample size, different heterogeneity levels

and half-Cauchy (0,1) prior, and results for ψ1, ψ2 and dVF in the many covariates setting;

all other results are presented in the Supplementary Materials, Appendix B.5.

Estimates of ψ0 are presented in Figure 4.1. Relative bias is typically less than 1%, and

neither relative bias nor standard deviation vary much across different confounding scenarios.

When the confounding effect is larger, the relative bias is slightly larger. Relative bias is

similar for different heterogeneity levels, but the variability of the estimators increases with

the heterogeneity level. The variation in ψ̂0 in the common rule setting is greater than that

in the varying effects setting, a consequence of the data-generating mechanism was such

that heterogeneity in ψi0 is greater in the common rule setting than in the varying effects

setting.

The dVF is shown in Figure 4.2. A smaller dVF corresponds to better ITR estimation. The

values of the estimated optimal ITR are comparable across different confounding scenarios.

When the confounding effect is larger, the dVF is slightly larger. In the common rule and

common effect settings, the dVF is near 0 and varies little. The dVF is larger with increasing

heterogeneity. This is unsurprising, since this is a scenario where a single ITR will not provide

the optimal treatment for all individuals; rather, the truly optimal treatment is site-specific.

However, implementing site-specific rules in a real-world setting is impractical.

Blip parameter estimates in the sparse data setting are shown in Figure 4.3. The estimators

are unbiased and variability increases with heterogeneity. In the sparse data setting, the

dVF (not shown) is zero for all but one or two simulation runs, and it does not change much

with different heterogeneity levels.
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Choice of prior made little difference to performance. The model results also do not differ

much between the one- and two-stage approaches, but the variability in the two-stage ap-

proach is slightly larger than in the one-stage approach when the heterogeneity is small since

the two-stage approach cannot share information across sites.

The relative bias and standard deviation of ψ̂1 and ψ̂2, the proportion of selection and the

dVF between the true and estimated optimal ITR for the many covariates setting are reported

in Table 4.1. It is more difficult to correctly detect the treatment-covariate interaction when

the effect is small or a large number of noisy variables is present. When only 10 candidate

tailoring variables are considered, non-zero ψ1 is detected in the one- and two-stage models

across 75.4 % and 71.8% simulation runs, respectively; these numbers drop to 49.2% and

46.5% when 20 covariates are considered. In all cases, the larger ψ2 is correctly identified for

all simulated datasets. Due to the poorer performance in detecting the small non-zero ψ1, the

relative bias of ψ̂1 assessed over all simulation runs is large; among the simulation iterations

when ψ1 is correctly identified, the relative bias is 1 − 2%. Consistent observations can be

found for dVF. The horseshoe prior and the selection criterion we adopt may not accurately

detect smaller treatment-covariate interactions. However, if the non-zero effect has been

identified, we achieve low bias for parameter estimation and small dVF, corresponding to

good ITR estimation.

4.4 Estimating an optimal Warfarin dose strategy

4.4.1 Context and data source

Warfarin is a widely-used oral anticoagulant for thrombosis and thromboembolism treatment

and prevention. Establishing an optimal Warfarin dose strategy is vital due to the narrow

therapeutic window and the large interindividual variability in patients’ response to the drug

(International Warfarin Pharmacogenetics Consortium, 2009). The international normalized

ratio (INR) is a measure of the time needed for the blood to clot. It should be closely moni-
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Figure 4.1: Simulation results for the small sample size and the binary treatment setting.
Performance of the methods is assessed over 2000 iterations. Estimates (posterior means) of
ψ0 are shown under different confounding scenarios, heterogeneity levels (I2 = 0.1, 0.2, 0.3),
and half-Cauchy (0,1) prior. The triangles represent the mean of the estimates in each case.
The dashed line shows the true value of 2.5.

tored for the safety and effectiveness of Warfarin dosing. Many methods have been proposed

for finding the optimal dose rule, and clinical factors, demographics, and genetic variability

may play an essential role in interindividual variations in the required dose of Warfarin.

The International Warfarin Pharmacogenetics Consortium(2009) compared several Warfarin

dose algorithms and concluded that a pharmacogenetic algorithm in which both genetic and
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Figure 4.2: Simulation results for the small sample size and the binary treatment setting.
Performance of the methods is assessed over 2000 iterations. The difference in the value
function (dVF) between the true and estimated optimal ITR is shown under different con-
founding scenarios, heterogeneity levels (I2 = 0.1, 0.2, 0.3), and half-Cauchy (0,1) prior. The
triangles represent the mean of the estimates in each case. A smaller dVF corresponds to a
better optimal ITR estimation.

clinical variables are used to inform the appropriate Warfarin dose performs best.

We use the International Warfarin Pharmacogenetics Consortium data and the proposed

approaches to data and model sparsity to estimate an optimal individualized Warfarin dose

strategy without sharing individual-level data. Following the work of Schulz and Moodie

(2021); Danieli and Moodie (2022), observations with missing values are removed, leading

to a sample size of n = 2853 from 14 different sites. One of the 14 sites was removed as

it only includes seven patients, too few to allow a center-specific analysis. Therefore, the
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Figure 4.3: Simulation results for the small sample size and the sparse data setting. Perfor-
mance of the methods is assessed over 2000 iterations. Estimates (posterior means) of ψ0,
ψ1, ψ2, ψ3 are shown under different heterogeneity levels (I2 = 0.1, 0.2, 0.3) and half-Cauchy
(0,1) prior. The triangles represent the mean of the estimates in each case. The dashed lines
show the true values of ψ0, ψ1, ψ2, ψ3.

sample size is reduced to n = 2846. The final dataset used in the analyses includes several

variables: patient age (binned into 9 groups), sex, race, weight and height centered by the

site mean, an indicator for taking amiodarone (an important interacting drug of Warfarin),

and VKORC1 and CYP2C9 genotypes, where the latter two variables are genes that may be

associated with the interindividual variation in Warfarin dose requirement. Information on

these variables is collectively denoted by the vector x including the leading constant term of

one. The stable Warfarin dose and the corresponding INR for each patient are also available

in the data.
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4.4.2 Analyses and results

In accordance with previous work (Schulz and Moodie, 2021; Danieli and Moodie, 2022),

the outcome variable is defined as Y = −
√︁

| 2.5− INR | such that larger values of Y are

clinically preferable. When Y is closer to zero, the INR is closer to the midpoint of the

therapeutic window. The observed distribution of the outcomes is roughly symmetric, with

values varying from -1.38 to 0. We define a treatment-free function including the main effects

of all available variables for the stage-one analysis of the site-specific data. The blip function

is assumed to be quadratic in Warfarin dose, including the main effects of dose, squared-

dose, and their interactions with the available variables not including height, weight, and

race (x(ψ
(1)
i ) = x(ψ

(2)
i ) = x/{weight, height, race}). Therefore, the outcome model for site i is

E(Yi |X = x, A = a) = β⊤
i x+aψ

(1)⊤
i x(ψ

(1)
i )+a2ψ

(2)⊤
i x(ψ

(2)
i ), where a is the Warfarin dose,

and βi represents the main effects of the available variables on the outcome in site i through

the treatment-free function. The site-specific blip parameter vectors ψ(1)
i = (ψ

(1)
i0 , . . . , ψ

(1)
i7 )

and ψ(2)
i = (ψ

(2)
i0 , . . . , ψ

(2)
i7 ) include main effects of dose and squared-dose (i.e., ψ(1)

i0 and ψ(2)
i0 ),

and their interactions with all predictors contained in x(ψ
(1)
i ) = x(ψ

(2)
i ) (i.e., ψ(1)

i1 , . . . , ψ
(1)
i7

and ψ(2)
i0 , . . . , ψ

(2)
i7 ).

To assess the impact of attempting to preserve individual-level data, the proposed two-stage

IPD meta-analysis is implemented. A frequentist linear regression is used as the stage-one

model to obtain the site-specific blip parameter estimates ψ̂(1)
i and ψ̂(2)

i . The site-specific

blip parameter estimates were found to be small in magnitude (i.e., close to zero), raising the

question of whether the available covariates have important tailoring effects on the optimal

Warfarin dosing in the dataset. Additionally, in some sites there are not enough patients to

estimate the site-specific amiodarane effect, VKORC1 or CYP2C9 genetic effects. Therefore,

the Bayesian hierarchical model in the second stage has to be adapted for data sparsity to

estimate the common blip parameters ψ(1) = (ψ
(1)
0 , . . . , ψ

(1)
7 ) and ψ(2) = (ψ

(2)
0 , . . . , ψ

(2)
7 ).

Horseshoe priors (Carvalho et al., 2010) are assumed for all treatment-covariate interactions

67



to select variables that truly influence Warfarin dosing by shrinking small effects to zero.

Normal priors with mean zero and variance 10,000 are used for the main effects of dose and

squared-dose, as Warfarin dose does have effects on the outcome and thus there is no reason

to shrink its effects towards zero. The details of the model is described in the Supplementary

Materials, Appendix B.6.

The posterior distribution of the optimal dose for an individual with vector x is then ap-

proximated by substitution of posterior samples of ψ(u)
t , t = 0, . . . , 7, u = 1, 2 in the maxi-

mizer to the common blip function, i.e., aopt = −(ψ(1)Txψ
(1)
i )/(2ψ(2)Txψ

(2)
i ). No significant

treatment-covariate interactions are selected. Therefore, the optimal dose is fully deter-

mined by ψ(1)
0 and ψ

(2)
0 , leading to the same recommended dose distribution to all patients

and the optimal dose is 40.12 mg/week (posterior median). Not knowing the true optimal

dose in this real-data analysis, we also compare the results of the two-stage approach that

avoids disclosing site-specific individual-level data to a one-stage approach that requires all

individual-level data to be used at once (and thus requires sharing of data outside the sites

at which they were collected). A consistent conclusion is obtained in the one-stage approach

that none of the covariates under consideration have significant tailoring effect on the opti-

mal Warfarin dose, and the posterior median estimate of the common recommended dose is

38.80 mg/week.

4.5 Discussion

Estimation of optimal ITRs requires the identification of individuals who benefit most from

particular treatments and thus the detection of treatment-covariate interactions. Due to

the low power associated with detecting the interactions, large datasets may be required to

develop an effective optimal ITR, which motivates collaboration across different sites. In

multisite studies, the sharing of individual-level data is sometimes constrained, which poses

statistical challenges for estimating ITR. In this paper, we adopt a Bayesian two-stage IPD
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meta-analysis approach to estimate the optimal ITR using multisite data without sharing

individual-level data.

In the presence of treatment-covariate interactions, traditional meta-regression based on ag-

gregate data are prone to ecological bias and may not reflect the individual-level interactions.

However, a two-stage IPD meta-analysis avoids such bias by estimating treatment-covariate

interactions within each site separately at the first stage and then synthesising these esti-

mates at the second stage (Berlin et al., 2002; Simmonds and Higgins, 2007; Fisher et al.,

2011). In our Bayesian two-stage IPD meta-analysis approach, we estimate site-specific opti-

mal ITRs using the regression-based method of Q-learning implemented via linear regression

at the first stage, however alternatives such as dWOLS or G-estimation could also have been

employed. At the second stage, the site-specific blip parameter estimates are shared to the

common analysis center where a Bayesian hierarchical model is used to combine the esti-

mates. We also consider sparsity: estimation of identical models or all parameters of interest

at all sites may be infeasible due to heterogeneity of patient populations across sites, and the

number of non-zero parameters is often small. We address data sparsity by reparametrizing

the likelihood in the second stage such that the site-specific estimates are linked to the cor-

rect set of parameters, and use a horseshoe prior and a credible interval selection criterion to

select significant treatment-covariate interactions to account for model sparsity. Simulations

demonstrate that our approach gives consistent estimation of the common blip parameters

which fully characterize the optimal ITR. When the site-specific optimal ITRs are not very

heterogeneous, the value function of the estimated optimal ITR is also close to that of the

true optimal ITR.

We estimate an optimal Warfarin dosing strategy using data from the International Phar-

macogenetics Warfarin Consortium. Shrinkage priors are used to select the covariates that

truly have effect on the optimal Warfarin dosing. We compare the results obtained from

the two-stage approach with the results obtained from a one-stage approach using the full
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individual-level data. We found that both approaches are consistent in the sense that none

of the covariates are selected for the Warfarin dosing strategy, and both provide very close

dose recommendations (40.12 vs. 38.80 mg/week). We also emphasize that although our

results may provide some guidance for the establishment of the optimal Warfarin dosing

strategy, it is unlikely to provide the whole picture. Several important predictors are not

included in the dataset such as alcohol consumption or Vitamin K intake (International

Warfarin Pharmacogenetics Consortium, 2009), and thus could not be considered in the

analysis.

The simulation results and Warfarin analysis illustrate our approach’s potential to avoid

individual-level data sharing when using multisite data to estimate the optimal ITR. Our

approach allows for heterogeneity across sites, which has not been explored in the previous

work of Danieli and Moodie (2022); Moodie et al. (2022) but may be a more reasonable and

realistic assumption. In addition, our approach is quite flexible in the sense that at the first

stage we could use any regression-based method to estimate the site-specific blip parameters,

as long as the unbiasedness, normality and consistency of the estimators are guaranteed. We

focus on simple and interpretable regression, but this approach does require correct spec-

ification of the regression model. If the regression model is misspecified, the site-specific

estimators obtained in the first stage could be biased for the true site-specific parameters,

leading to biased common parameter estimators (and thus a suboptimal ITR) in the second

stage. Semi-parametric alternatives that offer double robustness (Robins, 2004; Wallace and

Moodie, 2015) could also be considered for stage-one models, allowing for the use of more

flexible specifications of the covariate effects (i.e., the treatment-free model, which is essen-

tially a nuisance model). Additionally, the use of a Bayesian approach in the second stage

allows for the seamless incorporation of the accumulating or external information regarding

the optimal ITR from various sources. We may also incorporate variable selection without

much additional efforts by using shrinkage priors. This is useful, especially in observational

studies where many variables that are irrelevant for the treatment decision may also be col-
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lected. In this paper, we use a horseshoe prior and select the treatment-covariate interactions

if the 95% posterior credible intervals do not include zero. The horseshoe prior and credible

interval selection criterion are standard in Bayesian variable selection. Simulation shows that

our choice may not be powerful enough to detect very small effects. Other shrinkage priors

and alternative selection criteria can also be considered (Bondell and Reich, 2012; Hahn and

Carvalho, 2015; Li and Pati, 2017; van Erp et al., 2019).

The proposed approach can be easily adapted for data sparsity, as demonstrated both in

simulation and with the Warfarin data. The data sparsity within individual sites considered

in this paper only occurs in covariates. The sites in the Warfarin study, as well as in our

simulated examples, recruited from different (but not entirely distinct) populations, but all

treatment choices under investigation were available in all sites. Sparsity in covariates may

restrict the generalization of the estimated site-specific ITRs to a broader population. For

example, without additional assumptions, the estimated site-specific ITRs for sites with

only White patients in the samples may not generalize well to the non-White population or

a target population including non-White people. However, this is not, in general, of concern

since our estimand of interest is a common rather than site-specific optimal ITR. However, a

related concern is that the positivity (or overlap) assumption, often made in the context of

causal inference, is violated. There was, in fact, a moderate lack of overlap in the Warfarin

data (visual inspection of the overlap can be found in Figure B.11 in the Appendix B.6 of the

Supplementary Materials). In the presence of the non-overlap, estimation of parameters of

interest requires extrapolation which may introduce bias. However, the induced bias might

be negligible, if the model is correctly specified and the relationship between treatment,

covariates and outcome is consistent across the covariate space, which is possible in our case.

A more concerning issue resulting from the lack of overlap is the increased variability of

parameter estimators, especially when the estimated effects are all very small (as in this

analysis) leading to a more variable and less reliable estimate of the optimal ITR.
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Although this paper focuses on a continuous outcome, it could be easily extended to out-

comes of other types by directly using the existing model of the particular outcome type as

the stage-one model (Tchetgen Tchetgen et al., 2010; Linn et al., 2017; Kidwell et al., 2018;

Simoneau et al., 2020). Besides the concerns regarding the individual-level data sharing, the

two-stage approach is also computationally efficient compared with the one-stage approach

using the full individual-level data (Burke et al., 2017). In our Warfarin analysis, consis-

tent conclusions are obtained in both approaches. However, the one-stage approach requires

evaluating the likelihood with a large amount of IPD and estimating a large number of pa-

rameters simultaneously in a single model, which increases the computational burden.

Our approach also has some limitations. First, each site is required to have sufficient sta-

tistical knowledge of ITR estimation, as site-specific optimal ITRs are estimated separately

at each site. This might increase the funding burden for each site in practice. Second, our

simulations show that in comparison with the estimated optimal ITR obtained under the sce-

nario of homogeneous optimal ITRs across sites, the estimated optimal ITR obtained in the

presence of heterogeneity in site-specific optimal ITRs performs worse in terms of the value

function. A larger number of sites might be needed to account for the heterogeneity in the

site-specific optimal ITRs. However, it may not be realistic to have a large number of sites.

Heterogeneity could arise from the diversity in various aspects across sites such as patient

characteristics, treatment delivery, measurements, and study designs (Higgins et al., 2019).

When planning a multisite trial for optimal ITR estimation, one may consider standardiz-

ing the research protocol (e.g., eligibility criteria, sampling, and study designs) to reduce

extraneous heterogeneity. Standardizing research staff training might also be necessary to

ensure that each site follows the common protocol strictly and that the data are measured

and collected uniformly (Weinberger et al., 2001; Noda et al., 2006).

Another approach to aggregate heterogeneous linear ITRs in the binary treatment setting

across sites could be a maximin projection learning method proposed by Shi et al. (2018).
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However, this method assumes a common main effect of treatment for which the estimation

requires the pooling of all individual-level data (Shi et al., 2018) and thus cannot be applied

in our setting, where we aim to avoid sharing any individual-level records. The extension

of the maximin projection learning method to varying main treatment effects across sites

and more generalized settings (e.g., continuous treatment) may be of interest to consider in

future as an alternative approach to the privacy-preserving estimation of ITRs.

In addition to the pooling and other approaches to ITR estimation without sharing individ-

ual data noted in the introduction, a more general approach with stronger guarantees on

privacy that has been pursued in other non-ITR contexts is the use of differentially private

algorithms (Dwork, 2008). Standard linear regression is not differentially private, therefore,

our two-stage approach may not be differentially private, although it does offer some degree

since the treatment-free parameter estimates never need to be published or shared under

our proposed approach. An interesting avenue of future work is to investigate whether the

sharing of only the blip model estimates would pose a violation of differential privacy.
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Chapter 5

Two-stage Bayesian network

meta-analysis of individualized

treatment rules for multiple treatments

with siloed data

Preamble to Manuscript 3. In Manuscript 2, I considered a binary or continuous treat-

ment setting and assume the same treatment sets across all sites. However, this assumption

may not hold when there are numerous candidate treatments, but only a subset of them are

available at individual sites due to time or funding constraints. In Manuscript 3, I extend

the two-stage Bayesian meta-analysis approach presented in Manuscript 2 to accommodate

multiple treatment settings with varying treatment sets across sites, drawing on techniques

from network meta-analysis literature. A simulation study is conducted to investigate the

finite sample behavior of the proposed method. Specifically, the feasibility of the common

between-site heterogeneity assumption, which is recommended in network meta-analysis to

reduce model complexity, is explored. The proposed method is used to establish an ITR
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for the treatment of depression, recommending from among six therapeutic options. This

manuscript has been submitted for peer review.
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Abstract

Individualized treatment rules leverage patient-level information to tailor treatments for in-

dividuals. Estimating these rules, with the goal of optimizing expected patient outcomes,

typically relies on individual-level data to identify the variability in treatment effects across

patient subgroups defined by different covariate combinations. To increase the statistical

power for detecting treatment-covariate interactions and the generalizability of the findings,

data from multisite studies are often used. However, sharing sensitive patient-level health

data is sometimes restricted. Additionally, due to funding or time constraints, only a subset

of available treatments can be included at each site, but an individualized treatment rule

considering all treatments is desired. In this work, we adopt a two-stage Bayesian network

meta-analysis approach to estimate individualized treatment rules for multiple treatments

using multisite data without disclosing individual-level data beyond the sites. Simulation re-

sults demonstrate that our approach can provide consistent estimates of the parameters which

fully characterize the optimal individualized treatment rule. We illustrate the method’s ap-

plication through an analysis of data from the Sequenced Treatment Alternatives to Relieve

Depression (STAR*D) study, the Establishing Moderators and Biosignatures of Antidepres-

sant Response for Clinical Care (EMBARC) study, and the Research Evaluating the Value

of Augmenting Medication with Psychotherapy (REVAMP) study.
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5.1 Introduction

It is widely recognized in medical research that treatment responses often exhibit variabil-

ity among different patient subgroups. Personalized medicine leverages this heterogeneity

in treatment effect to enhance healthcare service quality by delivering tailored treatments

to individual patients (Kravitz et al., 2004; Chakraborty and Moodie, 2013; Kosorok and

Laber, 2019). An individualized treatment rule (ITR) is a decision rule that utilizes patient-

level information, such as demographics, genetic makeup, or disease history, to customize

treatment plans at a single decision point. An optimal ITR guides treatment selection for in-

dividual patients with the goal of optimizing patient outcomes. Estimating the optimal ITR

is essential for the practice of personalized medicine and has attracted significant research

focus.

Regression-based approaches are commonly employed to indirectly estimate the optimal ITR.

These methods model the expected patient outcome as a function of treatment, covariates,

and treatment-covariate interactions. Then, the optimal treatment is determined as the one

that leads to the best estimated outcome for any given covariate profile. Q-learning (Watkins,

1989; Sutton and Barto, 2018), G-estimation (Robins, 2004), and dynamic weighted ordi-

nary least squares (dWOLS) (Wallace and Moodie, 2015) are three popular regression-based

approaches. Estimating treatment-covariate interactions based on individual-level data is

essential in these approaches. With advancements in technologies, the availability of large

collections of health data from multiple data sites has facilitated the identification of factors

that contribute to differential treatment responses, provided a higher statistical power of

treatment-coavariate interaction estimation that cannot be offered by a single site (Green-

land, 1983), and improved the generalizability of the findings. However, patient-level health

data are typically highly sensitive, and their disclosure could cause a violation to data shar-

ing agreements or policies, presenting a challenge for ITR estimation with multisite data.

Therefore, valid approaches to ITR estimation without releasing patient-level information
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are desired.

Several approaches have been proposed to avoid individual-level data sharing for ITR esti-

mation. Spicker et al. (2024) investigate differential privacy (Dwork, 2006) in the context

of dynamic treatment regimes, which is an extension of ITRs to multiple treatment decision

points. Instead of regression-based approaches, they focus on an outcome weighted learn-

ing method (Zhao et al., 2012), which frames the estimation of ITRs as a classification loss

minimization problem and identifies the optimal treatment through support vector machine

classifiers. Danieli and Moodie (2022) study the use of data pooling (Saha-Chaudhuri and

Weinberg, 2017) and distributed regression (Rassen et al., 2013) to protect individual-level

data from release in multisite studies in the context of ITR estimation with generalized

dWOLS for continuous outcomes. In their approach, estimators characterizing the optimal

ITR are computed using data summaries (e.g., pooled data or matrix products) shared by

each single site, rather than individual-level data. Moodie et al. (2022) also explore dis-

tributed regression in dynamic weighted survival modelling, a generalization of dWOLS to

survival outcomes (Schulz and Moodie, 2021). One limitation of both approaches is that they

typically assume parameters of interest are fixed and common to all sites. To overcome this

limitation, our recent work (Shen et al., 2024) adopted a two-stage Bayesian meta-analysis

approach, which requires only site-specific analyses of individual-level data within each site

and sharing site-specific estimates, as summary data, to construct a common optimal ITR

in settings where all sites assigned the same treatment options. Conventional meta-analysis

approaches typically assume that the treatment is binary and that each site consists of the

same treatment comparison, limiting their applicability in a wide range of diseases where the

treatment landscape can be quite heterogeneous, as is the case with conditions like depres-

sion. In such cases, due to funding or time constraints, only a subset of available treatment

options can be delivered in each site, and yet establishing an optimal ITR that considers

all treatments is often desired. Analogously, in our motivating example, we wish to draw

inferences using randomized trial data from trials whose randomization groups are overlap-
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ping but not identical. In this manuscript, we consider ITR estimation in multisite studies

without sharing individual-level data, when more than two treatments are available and each

site may encompass different sets of treatment assignment options.

An extension of classic meta-analysis to multiple treatments is network meta-analysis (Salanti,

2012; Cipriani et al., 2013). Network meta-analysis compares multiple treatments within a

network of studies, involving the simultaneous analysis of direct evidence obtained from

head-to-head trials and indirect evidence from studies including the treatments of interest

and one or more common comparator treatments, when comparing any two treatments in

the network. This drives the extension of the two-stage Bayesian meta-analysis approach

proposed in our previous work (Shen et al., 2024) to the current setting where treatments

are not common across all sites or studies, which is the objective of this work.

The remainder of this paper is organized as follows: Section 5.2 describes the proposed

method including the notations and assumptions. A simulation study is presented in Section

5.3 to explore the performance of ITR estimation using the proposed method. Section 5.4

demonstrates the application of the proposed method via an analysis of real data from

three randomized clinical trials for the treatment of depression. The paper concludes with a

discussion in Section 5.5.

5.2 Methods

5.2.1 Preliminaries

Consider the data (X, A, Y ), whereX includes pre-treatment covariates, A ∈ A = {d1, . . . , dG}

represents the treatment received by individual patients with G unique options. Without loss

of generality, we assume d1 is the reference treatment, and Ã = (I(A = d2), . . . , I(A = dG))
⊤

codes the treatment assignment in a vector of dummy variables. We denote Y to be the con-

tinuous outcome of interests, with larger values preferred. We use uppercase, lowercase, and
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bold letters to denote random variables, their observed values, and vectors, respectively.

We make the following assumptions: (i) the stable unit treatment value assumption (SUTVA):

a patient’s outcome is not influenced by other patients’ treatment (Rubin, 1980); (ii) no

unmeasured confounding (Robins, 1997); (iii) positivity: there is a positive probability of re-

ceiving every possible treatment for every combination of covariate values that occur among

individuals in the population (Cole and Hernán, 2008).

Define a treatment-free function f(x) = E(Y | A = d1,X = x), which represents the

expected outcome at the reference treatment d1 for patients with covariates X = x. A

blip function γ(a,x) (Robins, 2004) is defined such that γ(dh,x) = E(Y | A = dh,X =

x)−E(Y | A = d1,X = x) for h ̸= 1, and γ(d1,x) = 0. Therefore, γ(dh,x) is the expected

difference in the outcomes between receiving treatment dh and the reference treatment d1 for

patients with covariates X = x. For example, it can be the main effect of dh and interaction

effects between dh and covariates x. With f and γ, the outcome can be decomposed:

E(Y | A = a,X = x) = f(x) + γ(a,x).

We aim to identify the optimal ITR, i.e., a decision rule that, given individual characteristics,

outputs a tailored treatment which can maximize the expected outcome. The treatment-free

function f is not related to any terms of treatments d2, . . . , dG. Therefore, the optimal ITR

dopt(x) only depends on γ, i.e., dopt(x) = argmaxa∈{d1,...,dG} γ(a,x). However, the estimation

of the optimal ITR requires model specifications for both f and γ. For example, we can posit

functional forms: f(x) = βw(x) and γ(a,x) = z(ã)ψl(x), where w, z, and l are multivariate

functions specified by analysts, with z(ã) = 0 for a = d1 to ensure the condition γ(d1,x) = 0

is met for every possible x. The dimensions of w, z, l and parameters β and ψ should

be compatible to guarantee both f and γ output scalar values. In this manuscript, for

illustration purposes, we assume w(x) = x(β), z(ã) = ã and l(x) = x(ψ). We use x(β) and

x(ψ) to indicate that not all collected variables in x, but those related to patient outcomes
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or treatment selection are included in f and γ. A total of p covariates that contribute to the

outcome (predictive variables) are included in x(β), among which q have tailoring effects on

treatment assignment (prescriptive variables) and are included in x(ψ). Both x(β) and x(ψ)

are augmented with an intercept term and are subvectors of x, and x(ψ) is also contained

in x(β), i.e., x(ψ) = (1, x1, . . . , xq)
⊤ and x(β) = (1, x1, . . . , xq, xq+1, . . . , xp)

⊤ with q ≤ p.

Alternative parametric choices such as nonlinear models can also be considered for w and l.

Given a linear specification of w, z and l, for example, the outcome model becomes

E(Y | A = a,X = x) = β⊤x(β)⏞ ⏟⏟ ⏞
treatment-free function

+ ã⊤ψx(ψ)⏞ ⏟⏟ ⏞
blip function

, (5.1)

where the treatment-free function f and blip function γ are parameterized by a (p + 1)-

dimensional vector β and a (G− 1)× (q + 1) matrix ψ, i.e.,

ψ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ψ20 ψ21 · · · ψ2q

ψ30 ψ31 · · · ψ3q

...
... . . . ...

ψG0 ψG1 · · · ψGq

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

respectively, and ψht is the main effect of treatment dh (t = 0) or the interaction ef-

fect between xt and I(a = dh) (t = 1, . . . , q). We use ψ·t = (ψ2t, . . . , ψGt)
⊤ and ψh· =

(ψh0, . . . , ψhq)
⊤ to represent the (t + 1)th column and the hth row of ψ, containing all blip

parameters related to a given covariate xt and a given treatment dh, respectively. Then, the

outcome model can also be written as

E(Y | A = a,X = x) = β⊤x(β) +

q∑︂
t=0

ψ⊤
·t ãxt,

= β⊤x(β) +
G∑︂
h=2

I(a = dh)ψ
⊤
h·x

(ψ).

(5.2)
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Since the treatment assignment only influences the outcome through the blip model γ, the

parameter ψ will solely determine the optimal ITR. Given the parameter ψ in the model

(5.2), the optimal ITR dopt(x) = argmaxa∈{d1,...,dG} γ(a,x) can be written as

dopt(x) =

⎧⎪⎪⎨⎪⎪⎩
dh0 , h0 = argmaxh∈{2,...,T}ψ

⊤
h·x

(ψ) and ψ⊤
h0·x

(ψ) > 0

d1, ψ⊤
h·x

(ψ) ≤ 0 ∀h = 2, . . . , G

.

The parameter ψ can be estimated by different approaches. In the absence of model mis-

specification, consistent and unbiased estimators of ψ can be obtained from a Q-learning

method (Chakraborty and Moodie, 2013), which, in our setting, reduces to a standard linear

regression for the model (5.1). Doubly robust alternatives such as dWOLS or G-estimation

can also be employed. Bayesian approaches have also been proposed for ITR estimation,

such as Bayesian G-computation (Arjas and Saarela, 2010), a Bayesian machine learning ap-

proach to Q-learning (Murray et al., 2018), Bayesian additive regression trees (Logan et al.,

2019), and Bayesian causal forest (Hahn et al., 2020).

5.2.2 Two-stage Bayesian network meta-analysis

In this section, we describe the use of a two-stage Bayesian network meta-analysis approach

to avoid disclosing individual-level data, when estimating the optimal ITR for multiple treat-

ments using multisite data. We first describe the model when all G treatments are present

in all sites and then explain the extension to varying sets of treatments across sites. Suppose

we have K sites. For site i ∈ {1, . . . , K}, the outcome model can be expressed as

E(Yij | A = aij,X = xij) = β
⊤
i x

(β)
ij +

q∑︂
t=0

ψ⊤
i·tãijxijt,

where j ∈ {1, . . . , ni} indexes individual patients within each site and ni is the number of

patients in site i. We include index i in βi and ψi·t to indicate that these parameters are

site-specific and can vary across sites. The varying site-specific blip parameters ψi·t are
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assumed to come from a common distribution, i.e.,

ψi·t = (ψi2t, . . . , ψiGt)
⊤ ∼ MVN(ψ·t,Σt), (5.3)

where MVN(ψ·t,Σt) represents a multivariate normal distribution with meanψ·t and variance-

covariance matrix Σt. The common parametersψ·t, t = 0, . . . , q, fully characterize a common

optimal ITR applicable to a broader population, encompassing subpopulations from various

sites in the dataset, and potentially for future patients at comparable sites. Estimation of

ψht, h = 2, . . . , G, t = 0, . . . , q, is of primary interest.

In the two-stage Bayesian meta-analysis approach, we first obtain a set of estimates for

the site-specific parameters by conducting analyses on data from each single site, and then

combine these estimates in a Bayesian hierarchical model to obtain estimates of common

parameters ψ·t and thus a common optimal ITR. That is, in the first stage, estimates for

ψi·t, i.e., ψ̂i·t, and the corresponding (G−1)×(G−1) variance-covariance matrix ˆ︁Σ(ψ̂i·t) can

be acquired from approaches mentioned in Section 5.2.1, based on solely site-specific data.

In the second stage, these site-level estimates, rather than individual records, are shared to

a central analysis site and combined in a Bayesian hierarchical model:

ψ̂i·t ∼ MVN(ψi·t, ˆ︁Σ(ψ̂i·t)),

ψi·t ∼ MVN(ψ·t,Σt),

ψht ∼ pψht(ψht),

Σt ∼ pΣt(Σt).

(5.4)

Here, prior distributions pψht and pΣt(Σt) can be assigned for the unknown parameters ψht

and Σt. A popular prior choice for ψht could be a normal prior with large variance (Gelman

et al., 2013). The between-site heterogeneity matrix Σt could be structured under the as-

sumption that the between-site heterogeneity is the same across different treatment compar-

isons (White et al., 2012; Riley and Fisher, 2021). In this case, a common specification in the
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network meta-analysis literature (White et al., 2012; Riley and Fisher, 2021) is that Σt has

diagonal elements σ2
t and off-diagonal elements 0.5σ2

t (i.e., the correlation between any two

treatment contrasts is 0.5), where σ2
t is the between-site variance associated with ψht for all

h = 2, . . . , G. By assuming the same variance for all ψht with a given t and fixing the correla-

tion between ψh1t and ψh2t, h1 ̸= h2, h1, h2 = 2, . . . , G, at 0.5, we have that the variance of the

contrast ψh1t−ψh2t is given by : var(ψh1t−ψh2t) = var(ψh1t)+var(ψh2t)−2cov(ψh1t, ψh2t) = σ2
t .

This is referred to as the common between-site heterogeneity assumption, and the contrast

ψh1t − ψh2t will be needed in a consistency equation (5.6) described later. This specification

also reduces the number of parameters to be estimated in Σt, and can also improve model

convergence. With the structured heterogeneity, a prior is needed only for σt or σ2
t . In

this manuscript, we use a half-Cauchy prior for σt, however alternatives may also be em-

ployed (Gelman, 2006). If the variance-covariance matrix Σt is deemed to be unstructured,

i.e., a separate between-site heterogeneity is to be estimated for each different treatment

comparison, we can have the decomposition Σt = UV U , where U is a diagonal matrix of

between-site standard deviations and V is an unknown correlation matrix. Then, priors can

be assigned to those between-site standard deviations and also correlation matrix V . We still

use a half-Cauchy prior for standard deviation parameters and a Lewandowski-Kurowicka-

Joe (LKJ) prior for correlation matrix V (Lewandowski et al., 2009; Stan Development Team,

2021). We consider both heterogeneity structures in the simulation studies. The Bayesian

hierarchical model is implemented in RStan (Stan Development Team, 2020, 2021).

Model (5.4) requires all G candidate treatments under consideration to be observed at all

sites. However, in reality, some treatments are not administered in specific sites possibly

due to the insufficient sample size and funding to implement a large number of treatments.

When the set of treatments differs across sites, we can still implement a two-stage approach.

However, in this setting, not all ψiht in the site-specific outcome models are estimable and

modifications based on the network meta-analysis approach are made to (5.4).
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To proceed, the treatment set in site i is denoted by Ai = {d
a
(1)
i
, . . . , d

a
(νi)
i

}, where νi is the

number of treatments in site i, νi < G and 1 ≤ a
(1)
i < a

(2)
i < · · · < a

(νi)
i ≤ G. Without loss

of generality, we assume d
a
(1)
i

is the reference treatment for site i. When d1 is available in

site i, we have d
a
(1)
i

= d1 (i.e., the site-specific reference treatment is the common reference

treatment). Otherwise, d
a
(1)
i

̸= d1. Then, with treatment set Ai, we can fit a site-specific

outcome model

E(Yij | A = aij,X = xij) = β
⊤
i x

(β)
ij +

q∑︂
t=0

ψ̃
⊤
i·tã

(2)
ij xijt,

where ã(2)
ij = (I(a = dai(1)), . . . , I(a = dai(νi)))

⊤ is a subvector of ãij , and the vector

ψ̃i·t = (ψ̃
i,a

(2)
i a

(1)
i ,t

, . . . , ψ̃
i,a

(νi)
i a

(1)
i ,t

)⊤ includes the estimable site-specific blip parameters, such

that ψ̃
i,a

(h̃)
i a

(1)
i ,t

, h̃ = 2, . . . , νi , are the main effect (t = 0) or the treatment-covariate inter-

action (t = 1, . . . , q) of treatment d
a
(h̃)
i

relative to the site-specific reference treatment d
a
(1)
i

.

The estimates and common means of ψ̃
i,a

(h̃)
i a

(1)
i ,t

are denoted by ψ̂̃
i,a

(h̃)
i a

(1)
i ,t

and ψ̃
a
(h̃)
i a

(1)
i ,t

, re-

spectively. However, the parameters of interest are still ψht, h = 2, . . . , G, t = 0, . . . , q, which

characterize a common optimal ITR.

With the site-specific estimates ˆ̃
ψi·t and the associated (νi−1)× (νi−1) variance-covariance

matrix ˆ︁Σ(ψ̂̃i·t), the first two levels of model (5.4) will be modified to

ψ̂̃i·t ∼ MVN(ψ̃i·t, ˆ︁Σ(ψ̂i·t)),

ψ̃i·t ∼ MVN(ψ̃
(2)

i·t ,
˜︁Σit),

(5.5)

where ψ̃(2)
i·t = (ψ̃

a
(2)
i a

(1)
i ,t

, . . . , ψ̃
a
(νi)
i a

(1)
i ,t

)⊤ is a vector of length νi−1, and ˜︁Σt is a (νi−1)×(νi−1)

variance-covariance matrix reflecting between-site heterogeneity. We include index i in both

ψ̃
(2)
i·t and ˜︁Σit to indicate their dependence on the treatment set Ai, and the vector ψ̃(2)

i·t

includes common rather than site-specific blip parameters.

When d
a
(1)
i

= d1, we have ψ̃
a
(h̃)
i a

(1)
i ,t

= ψ
a
(h̃)
i t

, and the vector ψ̃(2)
i·t is a subvector of ψ·t :
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ψ̃
(2)
i·t = (ψ̃

a
(2)
i a

(1)
i ,t

, . . . , ψ̃
a
(νi)
i a

(1)
i ,t

)⊤ = (ψ
a
(2)
i t
, . . . , ψ

a
(νi)
i t

)⊤. Therefore, ψht can still be esti-

mated through borrowing information across sites but with lower precision, as not all ˆ̃
ψi·t

include information relevant to estimating ψht. When d
a
(1)
i

̸= d1, all ψiht are not estimable

and ψ̃
a
(h̃)
i a

(1)
i ,t

̸= ψ
a
(h̃)
i t

. We make the consistency assumption as common in the network

meta-analysis literature. In network meta-analysis, two treatments d1 and d2 can be ei-

ther (1) directly compared in head-to-head studies, referred to as direct evidence, or (2)

indirectly compared via studies comparing d1 or d2 with one or more common comparator

treatments (i.e., indirect evidence). Then, the consistency assumption states that the indi-

rect and direct estimates are in agreement (Salanti, 2012). In our setting, the consistency

assumption ensures that we can link ψ̃
a
(h̃)
i a

(1)
i ,t

, h̃ = 2, . . . , νi, to ψht, h = 2, . . . , G, through

the equation:

ψ̃
a
(h̃)
i a

(1)
i ,t

= ψ
a
(h̃)
i t

− ψ
a
(1)
i t
. (5.6)

Then, priors can be assigned to all between-site variance and common mean parameters as

in model (5.4).

5.3 Simulation studies

The simulation study is reported following the ADEMP (aims, data-generating mechanisms,

estimands, methods, and performance measures) scheme proposed in the work of Morris

et al. (2019).

5.3.1 Aims

We aim to evaluate ITR estimation for a continuous outcome and multiple treatments when

individual-level data are protected from disclosure via a two-stage Bayesian network meta-

analysis approach, under assumptions regarding (1) network sizes, (2) network shapes, (3)
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the true between-site heterogeneity, and (4) the assumed between-site heterogeneity in the

Bayesian hierarchical model. Points (1) - (3) concern the data-generating mechanisms, while

(4) concerns the analysis model. We have explored ITR estimation with the two-stage

Bayesian pairwise meta-analysis under different confounding scenarios, between-site hetero-

geneity levels, prior choices and sample sizes in the previous work (Shen et al., 2024); note

that in this previous work, we did not consider settings where the assigned treatments var-

ied across site. While that previous work did not include settings where treatments offered

varied by site, we expect similar results can be obtained when we have a network of studies

and thus do not consider those particular features in the simulations here.

5.3.2 Data-generating mechanisms

The network structures considered in the simulation are shown in Figure 5.1. Sites included

in each network structure with their site-specific treatment set Ai are summarized in Table

5.1. A network can comprise sites with different treatment arms. Both networks (a) and

(b) depicted in Figure 5.1 include three treatments d1, d2, and d3. However, in network (a),

each site only includes two treatments: either comparing d1 and d2 or comparing d1 and d3,

while in network (b), we also have a third site only including d2 and d3, forming a loop.

Similarly, for networks (c) and (d), a larger treatment set is considered and the networks

may or may not include loops. Network (e) reflects the network structure for the real data

application to three trials considering six treatments of depression described in Section 5.4.

With a given site-specific treatment set Ai, the number of sites could be 1 or 3. That is,

for any particular pair of site-specific treatments, there is either 1 or 3 sites that considered

that set of treatment options. For each site, the sample size is fixed at 300.
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(a) (b)

(c) (d)

(e)

Figure 5.1: Graphics of simulated networks (a) – (e). Network (e) reflects the network
structure for the real data application to three trials described in Section 5.4. Connecting
lines indicate the two treatments can be directly compared. The treatment d1 is considered
as the common reference treatment in each network.
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For site i, we first generate a random number si uniformly from {0, 1, 2}. Then, a continuous

covariate X1 and a binary covariate X2 are generated from the following distributions:

X1 ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
N(5, 1) si = 0,

6Beta(4, 4) + 2 si = 1,

U[2, 8] si = 2,

X2 ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Bernoulli(0.5) si = 0,

Bernoulli(0.3) si = 1,

Bernoulli(0.7) si = 2,

.

Given the site-specific treatment set Ai = {d
a
(1)
i
, . . . , d

a
(νi)
i

}, the treatment assignment A

follows a multinomial distribution with probabilities determined by

P (A = dh | x1, x2,Ai) =
exp(α0,h + α1,hx1 + α2,hx2)∑︁

dh∈Ai exp(α0,h + α1,hx1 + α2,hx2)
,

where the coefficients α0,h, α1,h, and α2,h are shown in Table 5.2. That is, although our real-

data analysis focuses on randomized trial data, we perform our simulations under a more

general setting where treatment allocation may depend on covariates.

Table 5.1: Sites included in each network.

Network Treatment set A Number of arms per site Site-specific treatment set Ai

(a) {d1, d2, d3} 2 {d1, d2}, {d1, d3}

(b) {d1, d2, d3} 2 {d1, d2}, {d1, d3}, {d2, d3}

(c) {d1, d2, d3, d4, d5}
2 {d1, d2}, {d1, d3}, {d1, d4}, {d1, d5}
3 {d2, d3, d5}, {d3, d4, d5}

(d) {d1, d2, d3, d4, d5, d6, d7} 2 {d1, d2}, {d1, d3}, {d1, d4}, {d1, d5},
{d3, d7}, {d5, d6}

(e) {d1, d2, d3, d4, d5, d6}
2 {d1, d2}
5 {d1, d2, d3, d4, d5}
4 {d1, d2, d3, d6}
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Table 5.2: Coefficients in multinomial probabilities for treatment assignment.

Treatment α0,h α1,h α2,h

d1 0 0 0

d2 0 0.03 0.08

d3 0.01 0.09 0.03

d4 0.05 0.02 0.09

d5 0.08 0.02 0.04

d6 0.01 0.01 0.08

d7 0.08 0.09 0.03

Suppressing the individual-specific subscript, the continuous outcome for an individual at

site i is generated by

Yi = βi0 + βi1x1 + βi2x2 + (ψ⊤
i·0 +ψ

⊤
i·1x1)ã+ ϵ,

where ã = (I(a = d2), . . . , I(a = d7))
⊤, ψi·t = (ψi2t, . . . , ψi7t)

⊤, t = 0, 1, βi0+βi1x1+βi2x2 is

the site-specific treatment-free function, and (ψ⊤
i·0+ψ

⊤
i·1x1)ã is the site-specific blip function.

The random error ϵ follows a normal distribution with mean zero and residual variance

σ2
ϵ = 0.25. We note that in the above outcome generation model, seven treatments are

assumed, whereas in all scenarios shown in Table 5.1, all sites employ fewer than seven

treatments. This common form of data generation is appropriate. When a treatment dh is

not present in a given site i, the blip parameters related to dh, i.e., ψih0 and ψih1, will not

contribute to the outcome as I(a = dh) = 0. This outcome generation model is different

from the outcome model we fit in the first stage:

E(Yi | a, x1x2) = βi0 + βi1x1 + βi2x2 + (ψ̃
⊤
i·0 + ψ̃

⊤
i·1x1)ã

(2),

where a general definition of ã and ψ̃i·t have been provided in Section 5.2.1, and the notations

should be accordingly adapted here.
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The site-specific parameters θi = (βi0, βi1, βi2,ψi·0,ψi·1) in the outcome generation model

are simulated by: βis ∼ N(βs, σ
2
B), s = 0, 1, 2, and ψi·t ∼ MVN(ψ·t,Σt), t = 0, 1. For the

6× 6 variance-covariance matrix Σt, we consider two scenarios:

– common between-site heterogeneity: Σt has diagonals σ2
B and off-diagonals 0.5σ2

B;

– varying between-site heterogeneity: Σt has diagonals (0.7, 1, 1.3, 0.7, 1, 1.3)σ2
B and off-

diagonals 0.5σ2
B,

where the between-study variance σ2
B is derived from heterogeneity level I2 = σ2

B/(σ
2
B+σ

2
ϵ ) =

0.1. We note that for each distinct t, the variance-covariance matrix Σt can be different.

Fundamentally, under the common between-site heterogeneity mechanism, for a given t, the

between-site variance for ψht is the same regardless of h (i.e., the diagonals of Σt are equal

with a given t), but the between-site variance in different Σt can be different. However,

the between-site variance is not our primary interest. Therefore, for simplicity, we assume

a single between-site variance parameter σ2
B in all Σt, as well as for βs. The common

treatment-free function parameters are β0 = 4, β1 = 1, β2 = 1, and the common blip function

parameters are ψ·0 = (5, 8, 4, 6, 2, 3), and ψ·1 = (−0.9,−1.6,−1.3,−1.5,−0.8,−1.1). Let

ωdh(x) = ψh0 + ψh1x1, dh ∈ A/{d1} and ωd1(x) = 0. The common optimal ITR is given by

dopt(x) = argmaxdh∈A ωdh(x), which, in all networks, can be reduced to

dopt(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
d1 x1 >

50
9
,

d2
30
7
< x1 <

50
9
,

d3 x1 <
30
7
.

5.3.3 Estimands, methods, and performance metrics

The estimands of interest are the common blip function parameters ψht, dh ∈ A, t = 0, 1,

which fully characterize the optimal ITR in each network. We implement a two-stage

Bayesian network meta-analysis approach, using linear regression in the first stage and a
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Bayesian hierarchical model for the second stage. For the mean parameters, we use a normal

prior with mean 0 and variance 10,000. Regarding variance-covariance matrix ˜︁Σit in (5.5),

we consider two scenarios:

1. When only a single site exists for each different site-specific treatment set Ai in the

network, we lack sufficient data to estimate the between-site heterogeneity, and thus˜︁Σit = 0.

2. When we have three sites for each unique sites-specific treatment set, priors will be

assigned under different modelling assumptions:

– Under common between-site heterogeneity assumption, ˜︁Σit has diagonal entries

σ2
t and off-diagonal entries 0.5σ2

t , and a half-Cauchy (0,1) prior is assigned to σt.

– For unstructured ˜︁Σt under varying between-site heterogeneity assumption, we

have decomposition ˜︁Σt = UV U , where U is a diagonal matrix with diagonals

σ
a
(h̃)
i ,a

(1)
i ,t

and V is an unknown correlation matrix. Then, a half-Cauchy (0,1)

prior and a LKJ (1) prior are assumed for σ
a
(h̃)
i ,a

(1)
i ,t

in U and V , respectively.

We are unaware of any existing methods that can estimate common ITRs across multiple

studies with differing treatment values at different sites without individual-level data being

shared. Thus, our analyses consist of comparing different model specifications within our

Bayesian network meta-analysis approach. As no alternatives were found in the literature,

no competing methods were included. We assess: (i) the relative bias of blip parameter

estimators, which can be calculated by the difference between the mean of the estimates and

the true value, divided by the latter, (ii) the standard deviation of the estimates, (iii) the

difference in the value function (dVF) under the true and estimated optimal ITR, where

the value function with respect to an ITR is approximated by the expected outcome if all

patients in a new cohort of size 100,000 were treated according to the ITR, and (iv) the

empirical standard deviation of the dVF when the estimated treatment rule was applied to

the same population.
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5.3.4 Results

In this section, for the sake of space, only simulation results for ψ̂20, ψ̂21, and dVF are

presented. All results related to other blip parameters are presented in the Supplementary

Materials. Tables 5.3 and 5.4 show simulation results when the true site-specific blip pa-

rameters are generated under varying and common between-site heterogeneity assumptions,

respectively. Across all scenarios, the relative bias remains below 1%. When multiple sites

exist for each Ai, in the Bayesian hierarchical model, we can assume either common between-

study heterogeneity or an unstructured form for Σ̃t. Irrespective of the true generation

mechanisms of site-specific blip parameters, the relative bias of blip parameter estimators

is similar in the two specifications. However, the estimators have greater variability when

varying between-study heterogeneity is assumed, which is reasonable due to the increased

number of parameters to be estimated. The ITRs estimated under the common between-

study heterogeneity also have slightly higher values. Overall, in the explored scenarios, the

results are insensitive to the heterogeneity assumptions in the model, but assuming the

common between-site heterogeneity will result in fewer parameters and a more practically

feasible model.

With more sites contributing to the common ITR estimation, we have more precise blip

parameter estimators and a smaller dVF, corresponding to a better ITR estimation. When

there is only one site for each Ai, due to the limited information, the variability is higher

even without considering any between-site heterogeneity, and dVF is also larger. Networks

(a) and (b) only differ in the additional sites for d2 and d3, which will not provide direct

information for the parameters of interest (the main effects or treatment-covariate interac-

tions relative to the common reference treatment d1). However, we still have more precise

parameter estimates and ITRs with higher values in network (b). This suggests indirect

evidence can also help with the common ITR estimation. Networks (c), (d), and (e) present

more complex structures with relatively limited data information. No obvious difference in
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results are observed, indicating that the complexity of the network structure may not sig-

nificantly impact the ITR estimation as long as the model is adapted accordingly based on

the consistency equation (5.6).

Table 5.3: Simulation results when the data are generated under an unstructured between-
site heterogeneity model. Relative Bias (%, denoted by RB) and standard deviations (SD) of
ψ̂20 and ψ̂21, and difference in value function (dVF) between true and estimated ITR and its
standard deviation are reported across different networks, numbers of sites and heterogeneity
assumptions in the Bayesian hierarchical model based on 2000 simulation runs.

Network Number of sites Heterogeneity ψ̂20 ψ̂21 dVF (SD)
RB (SD) RB (SD)

a
1 0 −0.062 (0.417) 0.311 (0.182) 0.162 (0.125)

3 Common 0.007 (0.325) -0.004 (0.204) 0.087 (0.075)

Varying 0.016 (0.471) −0.017 (0.331) 0.089 (0.076)

b
1 0 0.023 (0.330) 0.341 (0.158) 0.126 (0.101)

3 Common −0.103 (0.235) 0.062 (0.143) 0.058 (0.052)

Varying −0.087 (0.276) 0.137 (0.169) 0.063 (0.056)

c
1 0 −0.124 (0.315) −0.236 (0.138) 0.107 (0.083)

3 Common 0.042 (0.197) 0.177 (0.112) 0.051 (0.046)

Varying 0.061 (0.238) 0.219 (0.135) 0.058 (0.052)

d
1 0 0.134 (0.411) −0.759 (0.183) 0.219 (0.299)

3 Common −0.089 (0.268) −0.221 (0.155) 0.091 (0.079)

Varying −0.088 (0.470) −0.267 (0.326) 0.095 (0.094)

e
1 0 0.107 (0.290) 0.125 (0.124) 0.109 (0.111)

3 Common 0.039 (0.180) −0.205 (0.092) 0.042 (0.044)

Varying 0.042 (0.188) −0.190 (0.097) 0.044 (0.060)

5.4 Estimating individualized depression treatment

In this section, we apply the proposed method to estimate an ITR for patients with major

depressive disorder (MDD) using data from three studies: The Sequenced Treatment Alter-

natives to Relieve Depression (STAR*D) study (Rush et al., 2004), Establishing Moderators
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Table 5.4: Simulation results when the data are generated under the assumption of common
between-site heterogeneity. Relative Bias (%, denoted by RB) and standard deviations
(SD) of ψ̂20 and ψ̂21, and difference in value function (dVF) between true and estimated
ITR and its standard deviation are reported across different networks, numbers of sites and
heterogeneity assumptions in the Bayesian hierarchical model based on 2000 iterations.

Network Number of sites Heterogeneity ψ̂20 ψ̂21 dVF (SD)
RB (SD) RB (SD)

a
1 0 −0.064 (0.416) 0.315 (0.182) 0.148 (0.109)

3 Common 0.017 (0.322) 0.023 (0.195) 0.081 (0.068)

Varying −0.004 (0.461) 0.032 (0.327) 0.082 (0.068)

b
1 0 0.024 (0.327) 0.321 (0.152) 0.113 (0.088)

3 Common −0.104 (0.230) 0.061 (0.134) 0.052 (0.047)

Varying −0.089 (0.272) 0.149 (0.162) 0.056 (0.051)

c
1 0 −0.123 (0.315) −0.232 (0.135) 0.099 (0.074)

3 Common 0.042 (0.196) 0.177 (0.110) 0.047 (0.044)

Varying 0.057 (0.237) 0.187 (0.133) 0.054 (0.049)

d
1 0 0.135 (0.411) −0.760 (0.183) 0.194 (0.259)

3 Common −0.090 (0.267) −0.215 (0.153) 0.084 (0.069)

Varying −0.082 (0.463) −0.244 (0.330) 0.089 (0.086)

e
1 0 0.083 (0.299) 0.168 (0.145) 0.190 (0.278)

3 Common −0.030 (0.197) 0.284 (0.115) 0.065 (0.064)

Varying −0.041 (0.206) 0.297 (0.116) 0.071 (0.126)

and Biosignatures of Antidepressant Response for Clinical Care (EMBARC) study (Trivedi

et al., 2016), and Research Evaluating the Value of Augmenting Medication with Psychother-

apy (REVAMP) study (Trivedi et al., 2008).

All the three studies are multistage randomized trials, with details of their designs described

elsewhere (Rush et al., 2004; Trivedi et al., 2016, 2008). STAR*D include four stages.

Due to single treatment assignment in the first stage and limited sample size in stages 3

and 4, we use data from stage 2 where patients without a satisfactory clinical outcome to

citalopram (CIT) in the first stage were randomized to seven treatments. Among these,
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Figure 5.2: Network structure of analysis of STARD, EMBARC, and REVAMP data. The
size of each node (in red) is proportional to the total sample size in the corresponding
treatment group, and the width of the connecting line (in gray) between any two treatments
is proportional to the number of studies that directly compared the two treatments.

our focus on medications only: venlafaxine (VEN), sertraline (SER), bupropion (BUP), CIT

augmented with BUP (CIT + BUP) or buspirone (BUS). In the case of EMBARC, we focus

on SER and BUP in the second stage, as patients received only one active treatment SER

and placebo in the first stage. For REVAMP, data from the first stage is used where a

medication algorithm was implemented for treatment assignment, and SER, BUP, VEN,

and escitalopram (ESCIT) are included. Therefore, in total, 6 treatments are identified:

A = {SER,BUP,VEN,CIT + BUP,CIT + BUS,ESCIT}, forming a network structure as

shown in Figure 5.2, which corresponds to the scenario 5.1e in the simulation. The common

reference treatment is SER, as it was included in all three studies and is often considered

as the front-line treatment of MDD (Cipriani et al., 2008). In this case, study-specific and

common reference treatments were considered the same.

Depression severity is measured by the 17-item Hamilton Depression Rating Scale (HDRS-

17), with a larger value corresponding to more severe symptoms. In our analysis, we consider

the negative of HDRS-17 as the outcome. We choose covariates based on meta-reviews of
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antidepressant treatment outcome predictors and modifiers (Kessler et al., 2017; Perlman

et al., 2019). The following covariates that are common in the three studies and potentially

related to differential treatment effects were identified and included in the model at the

first stage: (1) socio-demographic variables: age (in years), sex (male, female), race (White,

Non-White), marital status (single, married, divorced/widowed), number of years in for-

mal education, employment status (employed, unemployed), number of people in household;

(2) clinical variables: age at onset of first MDD (in years), number of depressive episodes,

chronicity of current episode, baseline HDRS-17, and baseline 16-item Quick Inventory of

Depressive Symptomatology (QIDS-16) before receiving the treatments. Among these vari-

ables, race was only used as an adjustment variable rather than a tailoring variable for

treatment assignment, as basing treatment decisions on racial or ethnic groups can lead to

healthcare disparities and inequities (Vyas et al., 2020). Additionally, while the number of

depressive episodes was small for many patients, there were also several large values (e.g.,

120), making it unsuitable to include this variable as a continuous linear term in the model.

Therefore, the number of depressive episodes was dichotomized using a cutoff point of four;

that is, a binary variable was created based on whether the number of episodes is greater

than or equal to four. This threshold value of four was chosen based on the data to ensure

sufficient sample sizes for estimating the parameters associated with the dichotomized vari-

able. Since the inclusion criteria differ among the three studies, patients who had their first

MDD after the age of 30 in STAR*D and REVAMP studies were excluded from the analy-

sis to make the study populations more similar, thereby making the positivity assumption

more plausible. Information on the included variables is collectively denoted by the vector

x. Records with missing values are removed. Finally, in our analysis dataset, we have 407,

87, and 308 samples from STAR*D, EMBARC, and REVAMP studies, respectively. The

distributions of covariates were summarized in Table 5.5.

Linear regression models with above mentioned covariates and their interactions with treat-

ments were used to obtain site-specific blip parameter estimates and the corresponding
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variance-covariance matrix. Since for most treatment comparisons only one or two study-

specific estimates are available, a Bayesian hierarchical model with Σ̃it = 0 was used to

obtain the common blip parameter estimates. The estimated ITR can thus be expressed as

dopt(x) = argmaxdh∈A ω̂dh(x), where ω̂SER(x) = 0, and for dh ̸= SER,

ω̂dh(x) =ψ̂h0 + ψ̂h1Age + ψ̂h2Male + ψ̂h3Single + ψ̂h4Divorced/Widowed

+ ψ̂h5Years of Education + ψ̂h6Unemployed + ψ̂h7Number of People in Household

+ ψ̂h8Age of First MDD + ψ̂h9Number of Episodes + ψ̂h,10Non-chronic

+ ψ̂h,11Baseline HDRS-17 + ψ̂h,12Baseline QIDS-16.

with parameter estimates ψ̂ht and the corresponding 95% posterior credible intervals shown

in Table 5.6.

All estimated effects including the main treatment effects have wide credible intervals that

include zero. This is not surprising, given the limited number of studies available for this

analysis. Additionally, most variables in the analysis are binary, providing less information

than continuous variables. Applying the estimated ITR to the 802 patients in the analysis

dataset, we found that the optimal treatment recommendation was SER, BUP, VEN, CIT +

BUP, CIT + BUS, and ESCIT for 27, 142, 292, 163, 93, and 85 patients, respectively.

5.5 Discussion

An optimal ITR can be estimated in a regression-based approach by including predefined

treatment-covariate interactions. To increase the power for detecting differential treatment

effects by covariates, large collections of datasets from multiple sites or studies are often

needed. Different sites or studies may have varying treatment sets, however, an ITR analy-

sis of all available treatments is desired. This presents a methodological gap which, to our

knowledge, has not previously been considered. To address this gap, we adopt a two-stage
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Bayesian meta-analysis approach: at the first stage, study-specific analyses are conducted

on the single study data only; at the second stage, summary measures including blip param-

eter estimates and variance or covariance estimates are shared and combined in a Bayesian

hierarchical model to estimate a common optimal ITR.

The conventional pairwise meta-analysis approach focuses on binary treatments and assumes

that all studies consist of the same treatment comparisons. In this manuscript, we consider

multiple treatments and different studies may encompass different sets of treatments. With

different treatment sets across studies, the estimated ITRs using study-specific data will

only include a subset of the available treatments, and treatments that are not present in

the same study cannot be simultaneously considered in an estimated ITR. To address this

issue and construct an ITR for all treatments, we employ a network meta-analysis approach,

and construct the Bayesian hierarchical model at the second stage based on the consistency

equation (5.6). The consistency assumption relates our parameters of interest and param-

eters that can be estimated with direct evidence, and is essential to ensure the validity of

the Bayesian hierarchical model at the second stage. However, this assumption can be vi-

olated in certain cases. For example, a treatment in a given site may be inappropriate for

patients in another site due to the heterogeneity in population. In this case, not only will

the consistency assumption be violated, but so too will the positivity assumption if specific

covariate combinations preclude receipt of particular treatments. Therefore, the proposed

method will be inappropriate due to the violation of the assumptions in both the network

meta-analysis and causal inference aspects of the analysis. The consistency assumption can

be statistically assessed when both direct and indirect evidence are available. A discussion

of these approaches can be found elsewhere (Lu and Ades, 2006; Dias et al., 2010a,b; White

et al., 2012; Piepho et al., 2012; Donegan et al., 2013). We can reduce the possibility of

inconsistency in both the design and analysis stages. When designing a multisite trial, it

is recommended to standardize the study protocol to guarantee the same or similar pop-

ulations, treatment delivery, and assessment of the outcomes and covariates (Weinberger

101



et al., 2001; Noda et al., 2006). Before the two-stage analysis of the data, we may also

pre-screen participants based on some analyst-defined harmonized eligibility criteria to en-

sure the samples in the analysis are similar across sites. If the consistency assumption is

deemed unfeasible, incorporation of inconsistency may be considered (Lu and Ades, 2006).

For example, an inconsistency factor δ
ah̃i ,a

(1)
i ,1

may be added to the consistency equation

(5.6), i.e., ψ̃
a
(h̃)
i a

(1)
i ,t

= ψ
a
(h̃)
i t

− ψ
a
(1)
i t

+ δ
ah̃i ,a

(1)
i ,1

, and a model or a distribution can be posited

for δ
ah̃i ,a

(1)
i ,1

. However, this adaptation in our setting requires further investigation and the

implications for positivity violations should also be considered; this is beyond the scope of

this manuscript.

In the consistency equation (5.6), to identify parameters ψ
a
(h̃)
i t

and ψ
a
(1)
i t

from ψ̃
a
(h̃)
i a

(1)
i ,t

,

data information should be available for at least one of the two parameters ψ
a
(h̃)
i t

and ψ
a
(1)
i t

.

This requires a connected network, i.e., every two treatments in the network can be either

directly or indirectly compared. A disconnected network complicates the model (Goring

et al., 2016; Stevens et al., 2018; Schmitz et al., 2018; Béliveau and Gustafson, 2021). It

would be of interest to explore whether proposed methods for meta-analysis in a discon-

nected network setting can be adapted in our context. For example, in a random baseline

model (Béliveau et al., 2017), a disconnected network will be connected by assuming the

baseline effects are exchangeable across studies. In our context, this could be translated

into the exchangeability of the site-specific treatment-free parameters and including their

estimates in the Bayesian hierarchical model. One criticism of the random baseline model

is that it breaks the randomization by assuming randomization not only within studies but

also across studies. This limitation might be less of a concern in our case. Although we only

assume a common distribution for the blip parameters in (5.3), in reality, it is also likely

that the treatment-free parameters have a common distribution, as the populations in each

site should be similar or be a subset of a larger target population. If the population (or the

site-specific ITR) is totally different or unrelated across sites, estimating a common optimal

ITR is not meaningful.
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The estimated common optimal ITR is not necessarily better than the site-specific optimal

ITRs at individual sites; however, it is applicable to a larger target population. Schnitzer

et al. (2016) defined this large target population to be the union of populations represented

by the individual sites, referring to it as a metapopulation. They also nonparametrically

established target parameters in a network meta-analysis that can be causally interpreted

on the metapopulation. Since their definition is model-independent, it may also help with

the causal interpretation of the common optimal ITR in our work.

In this manuscript, we focus on a continuous outcome, and a linear regression model is used

at the first stage. The implementation at the first stage assumes linearity and thus the

results are sensitive to model specification. In practical cases, the linear relationship may

not fully capture the true dynamics between covariates, treatments, treatment-covariate in-

teractions, and the outcome. When the outcome model is misspecified in the Q-learning

approach, the estimator in the first stage loses its consistency and unbiasedness, leading to

biased estimation of the common blip parameters. However, linear models offer the advan-

tage of interpretability, which is crucial in treatment decision-making. Alternatives such as

dWOLS and G-estimation, which provide both double robustness and interpretability, can

also be considered in the first stage; these options are particularly attractive in the context

of randomized trials, where the treatment allocation is known by design. Extension to other

outcome types is also straightforward; we can apply existing ITR estimation methods for a

specific outcome type at the first stage (Tchetgen Tchetgen et al., 2010; Linn et al., 2017;

Kidwell et al., 2018; Simoneau et al., 2020).

We evaluate the ITR estimation through simulations. In all scenarios explored, the proposed

method yielded consistent estimation. Additionally, simulation results support the feasibility

of assuming common between-site heterogeneity when specifying the structure of variance-

covariance matrix Σ̃t, regardless of the true underlying structure. The application of the

proposed method is illustrated through an analysis of real data from the STAR*D, EMBARC,
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and REVAMP studies. Common covariates in the three studies that are considered to be

related to the depression outcome or treatment response in the literature were selected and

included in the model.

Although statistical associations between these covariates and the depression outcome have

been established in the literature, in clinical settings some variables such as marital status

and the number of people in the household are seldom considered by physicians when pre-

scribing depression medications. We considered these covariates in the analysis as a proxy

for social support, but whether and how to deploy these in clinical contexts requires careful

consideration. We dichotomized the number of depressive episodes, which will lead to infor-

mation loss. The cutoff point was determined solely based on the data and thus lacks clinical

interpretations. In clinical settings, patients with two or more episodes are considered to

have recurrent depressive disorders. However, most patients in the EMBARC study had two

or more episodes, making a threshold value of two less appealing and feasible. There would

be little information available to learn about treatment tailoring by episodes if the standard

threshold is used. Moreover, only patients who had their first MDD before the age of 30

could be included in EMBARC study. Patients not satisfying this condition in the STAR*D

and REVAMP studies were excluded from the analysis. While this reduced the sample sizes

in individual studies, it could be practically recommended when populations from different

studies are quite different as a means of ensuring the positivity assumption is met.

All estimated effects were relatively small in magnitude compared to their wide credible

intervals, indicating a lack of strong evidence for the need to tailor treatment assignments

based on the covariates considered in the analysis. This aligns with findings in the literature

that baseline anxiety level and common socio-demographic variables, such as age, mari-

tal/employment status, or education level, do not contribute to the differential treatment

effects (Rush et al., 2001; Archer et al., 2024). However, Noma et al. (2019) found that

several variables including age, age at onset, and HDRS subscales could be potential effect
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modifiers for response to depression treatments through a meta-analysis. We also observed

that the main effects of CIT+ BUP, and ESCIT are negative. However, combination ther-

apy is generally expected to be superior to monotherapy (Henssler et al., 2016) and ESCIT

is known to be more or at least similarly effective compared to a range of antidepressants

including CIT, SER, VEN, and BUP (Kennedy et al., 2009; Kirino, 2012). The discrepancy

could arise from the limited evidence available in our analysis, as both CIT + BUP and ES-

CIT were only represented in a single study. Additionally, only 35 patients in the REVAMP

study received ESCIT, resulting in estimates with low precision. No modelling assumptions

were found to be heavily violated for the linear regressions at the first stage, but the R2

was relatively low (about 30% to 40%). The covariates included in the analysis only reflect

the socio-demographic and symptom information. Some important features that are predic-

tive of the outcome, such as those related to genetic information or comorbidities (Perlman

et al., 2019), are missing. These limitations highlight the need for further research to identify

reliable effect modifiers and predictive covariates, as well as to obtain more data from ad-

ditional samples or studies. Our analysis therefore provides an important proof-of-concept,

and important additional refinements would be required before deploying findings from such

an analysis in a clinical setting. Nevertheless, the results showcase a promising approach

to leveraging multiple data-sources to learn about effect modification of a potentially large

number of treatment options by important patient characteristics, leveraging those covariates

to better allocate treatment for improved patient care.
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Table 5.5: Patient characteristics for STAR*D, EMBARC, and REVAMP studies.

Variables STAR*D EMBARC REVAMP
(n = 407) (n = 87) (n = 308)

Age 38.41 (12.57) 38.70 (13.13) 40.06 (12.29)

Sex
Female 251 (61.7) 53 (60.9) 191 (62.0)
Male 156 (38.3) 34 (39.1) 117 (38.0)

Race
White 348 (85.5) 60 (69.0) 259 (84.1)
Non-White 59 (14.5) 27 (31.0) 49 (15.9)

Marital Status
Married 165 (40.5) 23 (26.4) 111 (36.0)
Single 136 (33.4) 50 (57.5) 113 (36.7)
Divorced/Widowed 106 (26.0) 14 (16.1) 84 (27.3)

Years of Education 13.78 (2.81) 15.24 (2.39) 14.72 (2.62)

Employment Status
Employed 243 (59.7) 44 (50.6) 195 (63.3)
Unemployed/Retired 164 (40.3) 43 (49.4) 113 (36.7)

Number of People in Household 2.67 (1.48) 2.62 (2.31) 2.53 (1.57)

Age of First MDD 16.81 (6.11) 16.51 (5.41) 17.47 (5.85)

Number of Episodes
< 4 194 (47.7) 39 (44.8) 245 (79.5)
≥ 4 213 (52.3) 48 (55.2) 63 (20.5)

Chronicity
Chronic 95 (23.3) 37 (42.5) 294 (95.5)
Non chronic 312 (76.7) 50 (57.5) 14 ( 4.5)

Baseline HRSD-17 16.91 (7.12) 15.69 (5.47) 20.85 (4.30)

Baseline QIDS-16 11.86 (4.73) 17.85 (2.84) 15.13 (3.55)
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Chapter 6

Conclusion

6.1 Summary

The three manuscripts (Chapters 3, 4 and 5) presented in this thesis address practical

challenges in PM and contribute novel insights to the literature on statistical trials and

ITRs.

In Chapter 3, motivated by a potential real-world CRT of a CDSS, I develop two Bayesian

group sequential designs for CRTs to improve trial efficiency. These designs aim to enhance

trial efficiency by dividing participant recruitment into groups and allowing for early effi-

cacy stopping. The two designs differ in participant recruitment methods: one sequentially

recruits clusters with a preset maximum cluster size, while the other recruits all clusters

at once but sequentially enrolls individual participants within each cluster until early trial

termination for efficacy or final analysis. As literature on Bayesian adaptive CRTs is scarce,

the proposed designs and the investigation of their operating characteristics serves as an

important contribution to this area. Through simulation studies, I evaluate the power and

false positive rates of both designs across various scenarios and two outcome types. Practical

design recommendations are provided based on the simulation results.
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Chapter 4 focuses on addressing the challenge of estimating ITRs using multisite data under

constrained individual-level data sharing. I adopt a two-stage Bayesian meta-analysis ap-

proach. In the first stage, site-specific analyses are conducted based on individual-level data

within each site. In the second stage, site-specific estimates rather than individual-level data

are shared and modelled in a Bayesian hierarchical model to obtain a common ITR. This

approach allows for heterogeneity across sites, a potentially more realistic scenario that has

not been thoroughly explored in previous work (Danieli and Moodie, 2022; Moodie et al.,

2022). Challenging aspects that might occur in real-life data, in particular, sparsity in both

the data and the model, are also discussed. In the presence of data sparsity, it is crucial to

examine how the lack of variability in some covariates at some sites will change the interpre-

tation of the site-specific estimates and link these estimates to correct common parameters.

For model sparsity, I propose to use shrinkage priors and the 95% credible interval criterion

to select the variables that truly have tailoring effects on treatment assignment. The simu-

lation results suggest that the proposed approach can provide consistent estimation of the

parameters that fully characterize the optimal ITR. The estimation results are stable across

different confounding scenarios and prior choices explored in the simulation study. However,

with a larger degree of heterogeneity across sites, the estimated optimal ITR will have a

lower value, requiring more sites to obtain accurate estimation. The Warfarin analysis sug-

gests none of the covariates under consideration have tailoring effects on Warfarin dosing and

thus a common dose is recommended. Both the simulation study and the Warfarin analysis

demonstrate that the proposed method produces similar estimates to a one-stage approach

where individual-level data are pooled together and analyzed as a single dataset, illustrating

its potential to estimate the optimal ITR using multisite data without the need for sharing

individual-level data beyond the sites.

Chapter 4 considers a conventional pairwise meta-analysis approach, assuming all treatments

are available at all sites. Building upon this, Chapter 5 extends the methodology from

Chapter 4 to settings involving multiple treatments and varying treatment sets across sites.
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In this case, site-specific ITRs may not encompass all available treatments, and an ITR of all

treatments needs to be derived from a network of evidence across multiple sites. To handle

the network structure, a consistency assumption is made and the consistency equation (5.6) is

incorporated in the Bayesian hierarchical model in the second stage. The simulation study

suggests that the proposed two-stage Bayesian network meta-analysis approach can yield

consistent estimators for the parameters characterizing the optimal ITR. It also supports the

feasibility of assuming common between-site heterogeneity across treatment comparisons,

a pivotal consideration in network meta-analysis for simplifying model complexity. This

approach is illustrated using the data from STAR*D, EMBARC, and REVAMP studies to

establish an ITR for the treatment of depression.

6.2 Limitations and Future Work

While the two designs proposed in Chapter 3 are straightforward, they are restricted with

respect to stopping criteria, designs, and outcome types. Particularly I only considered

stopping for efficacy, a two-arm design and binary and continuous outcomes. Extending the

two designs to incorporate other decision criteria is feasible. For example, given the efficacy

and futility decision boundaries Ue and Uf , a decision rule incorporating both efficacy and

futility criteria can be as follows: at interim analysis k, if P (θ > δ|Dk) > Ue, the trial stops

early for efficacy; if P (θ > δ|Dk) < Uf , the trial stops early for futility; otherwise, the trial

will continue to recruit the next group of samples.

Extension to multi-arm CRTs is also an interesting direction for future work. In individu-

ally randomized trials, with multiple treatments, instead of a simple continue-or-terminate

decision at interim analyses, researchers can choose to drop ineffective treatments or select

effective ones. Among the multiple treatments, one will be identified as the control. Arm

dropping or selection at each interim point can then be facilitated by assessing a series of

decision criteria. For example, for each active treatment, the posterior probability that the
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treatment effect relative to the control arm is greater than a preset minimal important differ-

ence can be evaluated. If this probability is smaller than a pre-specified decision boundary,

this specific treatment can be dropped. Extending this procedure to the proposed two de-

signs can create new challenges. For example, design 2 recruits all clusters and randomizes

them into different treatment arms at the start of the trial. If, at an interim point, one

arm is dropped, it is unclear whether the clusters in the dropped arm should be completely

removed from the trial or be reassigned to the remaining arms. Future work can compare

how these choices will influence the analysis and design performance.

The proposed designs assume that randomization probabilities are fixed over the course of

the trial. Adaptive randomization may also be incorporated for design 1. For instance, after

assessing interim results, randomization probabilities can be adjusted in proportion to the

posterior probability that a treatment arm yields better outcomes or is the best if multi-

ple treatments are available. This response-adaptive randomization approach (Rosenberger

et al., 2012) can improve resource allocation and also has ethical implications, as more clus-

ters along with their individual participants are assigned to the better treatment. However,

this adaptive feature may not be feasible for design 2, as all clusters are assigned to different

treatment arms from the start.

Bayesian group sequential designs with survival outcomes have been less studied compared

with continuous or binary outcomes. The Cox proportional hazards model is standard in

analysis of survival outcomes. It is a semi-parametric model where the baseline hazard is

unspecified and the parameters can be estimated by maximizing a partial likelihood function

in the frequentist framework. Its Bayesian version, however, requires specification of the full

likelihood. One can model the baseline hazard function by splines or directly assign priors to

the baseline hazard function, such as the Gamma process (Ibrahim et al., 2001). To account

for the correlation resulting from clustering, a frailty term may also be included (Hougaard,

1995). Then, decision criteria can be constructed similarly based on posterior statements of
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hazard ratio. A more recent approach for Bayesian group sequential designs for individually

randomized trials with survival outcomes has been studied by Zhu et al. (2019). The number

of events at each unique event time is modelled by Bernoulli distributions and the stopping

rule is constructed based on the Bayes factor (Kass and Raftery, 1995): given the hypotheses

H0 and HA, at each interim point, if the Bayes factor in favor of H0 is smaller than a specified

decision boundary, then a recommendation is made to stop the trial early, where the decision

boundary is chosen to maintain the overall false positive rate at a desired level through an

alpha-spending function. Adapting such approaches for CRTs with survival outcomes may

be considered in future work.

As described in Section 2.2.2, Bayesian group sequential designs can also be developed based

on decision theory, where loss or utility functions can be defined to incorporate factors such

as different costs of recruiting clusters and individual patients. By optimizing expected

loss or utility, trials can be designed to balance practical considerations, while maintaining

statistical performance. Extending the framework of Bayesian adaptive CRTs to include the

additional features and methodologies described above can significantly improve their utility

and applicability. These extensions will provide researchers with more tools and flexibility in

designing and conducting clinical trials, leading to more efficient and ethical studies.

Chapters 4 and 5 explore the two-stage Bayesian meta-analysis approach for ITR estimation

in different settings. Both focus solely on continuous outcomes, using Q-learning imple-

mented via linear regressions for the first stage. However, Q-learning does require correct

specification of the outcome regression model. Model misspecification can lead to biased

blip parameter estimators and thus suboptimal ITRs. To address this limitation, exploring

alternative stage-one models such as G-estimation (Robins, 2004) and dWOLS (Wallace and

Moodie, 2015) might be of interest. Both G-estimation and dWOLS offer double robustness,

which means they can provide consistent estimators of blip parameters even if one of the

treatment assignment and outcome models is misspecified. Such doubly robust models are
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particularly appealing when the data come from randomized trials in which the treatment

assignment model is already known by the design.

Extensions to other outcome types, such as binary or survival outcomes, are also feasible

given the existing methods for ITR estimation for these outcome types (Tchetgen Tchetgen

et al., 2010; Linn et al., 2017; Kidwell et al., 2018; Simoneau et al., 2020). For example,

Simoneau et al. (2020) extend dWOLS to survival outcomes and use accelerated failure

time models. That is, the logarithm of survival time under a specific treatment can be

decomposed into a treatment-free function, a blip function and some random error, where

the treatment-free and blip functions are defined similarly as those in this thesis. Consistency

and asymptotic normality of the blip parameter estimators have also been established. In

this case, only the stage-one model which provides the estimates used in the meta-analysis

procedure will be influenced and the Bayesian hierarchical model in the second stage can

remain the same.

In this thesis, the Q-learning approach in the first stage is considered within the frequentist

framework, while the model in the second stage is Bayesian, incorporating prior information

for the common blip parameters through prior distributions. This choice is partly due to

the fact that frequentist models for ITR estimation are well-established in the literature,

although there is growing interest in Bayesian approaches; see, for example, Murray et al.

(2018); Logan et al. (2019); Rodriguez Duque et al. (2022). However, there are instances

where individual sites possess additional information about the site-specific ITRs. In such

cases, Bayesian models may be considered for the first stage as well. This might allow for

a more nuanced integration of site-specific information and potentially yield more accurate

estimates of the optimal ITRs.

Although Chapters 4 and 5 focus on ITRs, healthcare services and treatments can span long-

term periods. Some patient characteristics and outcomes can change over time, requiring

treatment to be adapted over time for it to remain optimal. Consequently, a single ITR for
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the entire treatment period may not be feasible. DTRs extend ITRs to multiple treatment

stages, and the regression-based approaches mentioned in this thesis are applicable to DTRs

using backward induction. To extend the proposed methods to DTRs, a natural choice is that

individual sites estimate their own DTRs and the two-stage model will be repeated for the

multiple stages. However, such an approach would require significant further investigation as

combining DTRs across sites where there is model selection at each stage may be significantly

more challenging than estimating and combining single-stage ITRs.

Another approach that allows a quantification of whether data can be analyzed without

releasing individual-level data is differential privacy. Differentially private algorithms to

estimate the optimal DTR have been studied by Spicker et al. (2024), focusing on outcome

weighted learning, which is a classification-based method. Standard linear regression, which

I employed for Q-learning in the first-stage estimation, is not differentially private, but in

the proposed two-stage approach, only blip model estimates from the first stage are shared.

Exploring whether this poses a violation of differential privacy would be an interesting area

of research.

A horseshoe prior and a 95% credible interval selection criterion are used in both the simu-

lation and the Warfarin analysis in Chapter 4 to select variables that have tailoring effects

on the optimal treatment. While these choices are common in Bayesian variable selection,

simulation shows that they may not be powerful enough to detect very small effects. In

real-world scenarios, without knowing the true effects, it is recommended to explore a series

of shrinkage priors and selection criteria (Bondell and Reich, 2012; Hahn and Carvalho, 2015;

Li and Pati, 2017; van Erp et al., 2019) and compare their results to obtain potentially more

robust conclusions.

The method described in Chapter 5 relies on the consistency assumption in network meta-

analysis literature, which guarantees that the indirect and direct evidence are in agreement

and further leads to the consistency equation (5.6). Before applying the method to real-

115



world data, it is essential to carefully evaluate the validity of the consistency assumption

using methods summarized in Section 2.5. However, for the real data application in Chapter

5, consistency assessment is not required. The consistency assumption is only necessary

when both direct and indirect evidence exist. In the analysis of STAR*D, EMBARC, and

REVAMP data, a common reference treatment, SER, is identified, and parameters of interest

are all defined with respect to SER. Therefore, there is no indirect evidence related to pa-

rameters of interest in that real data analysis. In general cases, if the consistency assumption

is not satisfied, it is necessary to incorporate the inconsistency into the Bayesian hierarchical

model at the second stage (Lu and Ades, 2006). One possible approach is to add an inconsis-

tency factor δ
ah̃i ,a

(1)
i ,1

to the consistency equation (5.6), i.e., ψ̃
a
(h̃)
i a

(1)
i ,t

= ψ
a
(h̃)
i t

−ψ
a
(1)
i t

+δ
ah̃i ,a

(1)
i ,1

,

and posit a model, such as a normal model, for the inconsistency factor. However, in my

simulation study, I only consider consistent scenarios. Future work can focus on the per-

formance of ITR estimation under inconsistency to accommodate more complex scenarios.

This could involve exploring various types of inconsistency, for example, the loop and de-

sign inconsistencies defined in Higgins et al. (2012), and their impact on the estimation of

ITRs.

Identifying the parameters of interest from the consistency equation (5.6) requires a con-

nected network, where each pair of treatments can be compared either directly or indirectly.

If the network is disconnected, it is challenging to estimate these parameters accurately

due to identifiability issues. In such cases, exploring whether existing methods for meta-

analysis in disconnected networks can be adapted would be of interest. For instance, one

possible approach is the random baseline model (Béliveau et al., 2017), which connects a

disconnected network by assuming the exchangeability of the baseline effects. To adapt

this method for the proposed two-stage approach, in addition to blip parameter estimates,

site-specific treatment-free parameter estimates will also be incorporated in the Bayesian hi-

erarchical model. A common distribution can be assumed for the site-specific treatment-free

parameters which are defined with respect to a common reference treatment. While this
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approach can address the disconnectedness, its use in randomized trials is criticized since

the assumed common distribution for the baseline effects may interfere with randomization.

This may not be a significant problem in the case considered in this thesis. Although I

only assume a common distribution for the blip parameters, in reality, it is also likely that

the treatment-free parameters have a common distribution, as the populations in each site

should be similar or be a subset of a larger target population. If the populations (or the site-

specific ITRs) are totally different or unrelated across sites, estimating a common optimal

ITR is not meaningful.

The real data analyses in Chapters 4 and 5 may offer some insights into individualized

Warfarin dosing and individualized treatment of depression. However, caution is needed

when using this information to support clinical decision making in practice. One signif-

icant limitation is that some important predictors might not be included in the datasets

and, consequently, are not considered in the analyses. This can lead to incomplete or less

accurate models. For instance, in the real data analysis presented in Chapter 5, while no

modeling assumptions appear to be violated in the first stage, the low R2 value indicates

that the model has limited explanatory power. Therefore, the real data analyses should be

viewed as illustrative examples of the proposed methods rather than guides for clinical prac-

tice. Further model refinement and validation with comprehensive datasets, including all

relevant variables, will be necessary before these findings can be reliably applied in clinical

settings.

Practical issues should also be carefully considered when implementing the methods pre-

sented in this thesis. For example, in Chapter 3, the two designs are compared primarily

in terms of power and false positive rate in the simulation study. Depending on the con-

texts, other characteristics may also be considered, such as probability of early stopping

or expected sample size. These characteristics evaluate the designs from a statistical per-

spective. However, feasibility is also a critical factor for design decisions. For instance, one
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design may exhibit better operating characteristics, but its implementation could be more

time-consuming or expensive. In such cases, the balance between improved design perfor-

mance and additional costs resulting from choosing this design must be carefully considered,

requiring comprehensive investigation into specific contexts.

For the two-stage approach considered in Chapters 4 and 5, sufficient statistical expertise

at individual sites is necessary for site-specific analyses. Consistency is crucial for the valid-

ity of the proposed two-stage Bayesian network meta-analysis approach, and simulation in

Chapter 4 also shows the estimated optimal ITR has a lower value for a larger between-site

heterogeneity. Therefore, when planning a multisite trial to estimate ITRs, it is important

to reduce extraneous heterogeneity or inconsistency by uniform staff training, treatment

delivery, data collection, and measurement.

6.3 Concluding Remarks

PM is of growing importance in healthcare. This thesis addresses practical challenges in PM

by proposing new, efficient designs that are appealing to clinical scientists and developing

novel approaches that allow researchers to estimate optimal treatment strategies using siloed

data sources.
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APPENDIX A

Appendix to Manuscript 1

A.1 Simulation for binary outcomes

To generate clustered binary data, we first generate n cluster-specific proportions from Beta

distributions with Beta parameters determined by the preset population mean and ICC so

that all cluster-specific proportions are strictly between 0 and 1. Then, within each cluster,

the number of events were generated from a binomial distribution with the cluster size at

current stage and the cluster-specific proportions. Then the resulting m×n binary variables

satisfy the predetermined correlation structure.

The performance of the two designs in terms of false positive rate and power, when only

one interim analysis is planned, is displayed in Figures A.1 and A.2. It can be observed

that design 1 has higher false positive rate and both designs perform almost equally well in

terms of power over the parameter space we explored. Also, an ad hoc decision boundary

of U = 0.98 helps control false positive rate compared with U = 0.95 while the decrease

in power coming with a larger decision boundary is acceptable. However, for design 2,

even with a smaller decision boundary, the false positive rates for most cases are acceptable

considering that they are fluctuating around 0.05. In addition, as in the continuous case,
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when the underlying ICC is larger, power is relatively small.

(a) U = 0.95 (b) U = 0.98

Figure A.1: Plot of false positive rate versus baseline risk when n = 20, 40, 60, ρ = 0.05, 0.1
for (a) U = 0.95 and (b) U = 0.98 with single interim analysis planned. The dashed lines
show the false positive rate of 0.05.

The design performance for multiple interim analyses is shown in Figures A.3 and A.4.

Design 1 still has higher false positive rates and the powers for the two designs are similar

over the parameter space we explored. With multiple interim analyses, both false positive

rate and power will increase for most cases. However, similar to continuous outcomes, when

the available sample size is large, only a slight increase in power can be expected with

more interim analyses planned. With multiple interim analyses a larger boundary value can

evidently help reduce false positive rate, especially for design 1. The resulting decrease in

power is acceptable for a sufficient sample size. However, with a small sample size, a larger

decision boundary may lead to insufficient power. The results for a larger cluster size are

also displayed in Figures A.5 and A.6.

Therefore, for binary outcomes, for the parameters explored in the simulation, design 2 may

be recommended based on design operating characteristics since it has smaller false positive

rate and performs comparably with design 1 in terms of power. Additionally, a single interim

analysis is sufficient to control false positive rate while maintaining satisfactory power for

the scenarios we explored. Regarding the decision boundary, if design 2 with single interim

analysis is planned, for the settings in our simulation, the smaller decision boundary (e.g.

U = 0.95) may be conservative enough for obtaining a satisfactory false positive rate as well
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(a) ρ = 0.05, U = 0.95 (b) ρ = 0.05, U = 0.98

(c) ρ = 0.1, U = 0.95 (d) ρ = 0.1, U = 0.98

Figure A.2: Plot of power versus true treatment effect for n = 20, 40, 60, πc = 0.25, 0.35, 0.45,
with the subpanels (a)-(d) indicating all possible combinations of ρ = 0.05, 0.1 and U =
0.95, 0.98 for single interim analysis. The dashed lines show the power of 0.85.

as power. However, if due to feasibility, design 1 is preferred or multiple interim analyses

are of interest a larger decision boundary (e.g. U = 0.98) may be considered. Developing a

more general set of recommendations requires further exploration.
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(a) ρ = 0.05, U = 0.95 (b) ρ = 0.1, U = 0.95

(c) ρ = 0.05, U = 0.98 (d) ρ = 0.1, U = 0.98

Figure A.3: Plot of false positive rate versus number of interim looks for n = 20, 40, 60,
πc = 0.25, 0.35, 0.45, m = 8 with subpanels (a)-(d) indicating all possible combinations of
ρ = 0.05, 0.1 and U = 0.95, 0.98. The dashed lines show the false positive rate of 0.05.
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(a) ρ = 0.05, U = 0.95, θ = 0.1 (b) ρ = 0.1, U = 0.95, θ = 0.1

(c) ρ = 0.05, U = 0.98, θ = 0.1 (d) ρ = 0.1, U = 0.98, θ = 0.1

(e) ρ = 0.05, U = 0.95, θ = 0.2 (f) ρ = 0.1, U = 0.95, θ = 0.2

(g) ρ = 0.05, U = 0.98, θ = 0.2 (h) ρ = 0.1, U = 0.98, θ = 0.2

Figure A.4: Plot of power versus number of interim looks for n = 20, 40, 60, πc =
0.25, 0.35, 0.45, m = 8 with subpanels (a)-(h) indicating all possible combinations of
ρ = 0.05, 0.1, U = 0.95, 0.98 and θ = 0.1, 0.2. The dashed lines show the power of 0.8.
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(a) ρ = 0.05, U = 0.95 (b) ρ = 0.1, U = 0.95

(c) ρ = 0.05, U = 0.98 (d) ρ = 0.1, U = 0.98

Figure A.5: Plot of false positive rate versus number of interim looks for n = 20, 40, 60,
πc = 0.25, 0.35, 0.45, m = 16 with subpanels (a)-(d) indicating all possible combinations of
ρ = 0.05, 0.1 and U = 0.95, 0.98. The dashed lines show the false positive rate of 0.05.
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(a) ρ = 0.05, U = 0.95, θ = 0.1 (b) ρ = 0.1, U = 0.95, θ = 0.1

(c) ρ = 0.05, U = 0.98, θ = 0.1 (d) ρ = 0.1, U = 0.98, θ = 0.1

(e) ρ = 0.05, U = 0.95, θ = 0.2 (f) ρ = 0.1, U = 0.95, θ = 0.2

(g) ρ = 0.05, U = 0.98, θ = 0.2 (h) ρ = 0.1, U = 0.98, θ = 0.2

Figure A.6: Plot of power versus number of interim looks for n = 20, 40, 60, πc =
0.25, 0.35, 0.45, m = 16 with subpanels (a)-(h) indicating all possible combinations of
ρ = 0.05, 0.1, U = 0.95, 0.98 and θ = 0.1, 0.2. The dashed lines show the power of 0.8.
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A.2 Simulation results for continuous outcomes with clus-

ter size m=16

(a) U = 0.95 (b) U = 0.98

Figure A.7: Plot of false positive rate versus number of interim looks for n = 20, 40, 60,
ρ = 0.05, 0.1, 0.15, m = 16 for (a) U = 0.95 and (b) U = 0.98. The dashed lines show the
false positive rate of 0.05.
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(a) ρ = 0.05, U = 0.95 (b) ρ = 0.05, U = 0.98

(c) ρ = 0.1, U = 0.95 (d) ρ = 0.1, U = 0.98

(e) ρ = 0.15, U = 0.95 (f) ρ = 0.15, U = 0.98

Figure A.8: Plot of power versus number of interim looks for n = 20, 40, 60, θ =
0.2, 0.5, 0.8,m = 16 with subpanels (a)-(f) indicating all possible combinations of ρ =
0.05, 0.1, 0.15 and U = 0.95, 0.98. The dashed lines show the power of 0.8.
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APPENDIX B

Appendix to Manuscript 2

B.1 Link with a one-stage approach

In this section, we illustrate that, under certain assumptions, similar estimates of the blip

function parameters ψ can be obtained in the proposed two-stage approach and a one-stage

approach based on the full individual-level data. As mentioned in the main manuscript, in

site i, we have the site-specific outcome model:

E(Yij |X = xij , A = aij) = β
⊤
i x

(β)
ij + aijψ

⊤
i x

(ψ)
ij ,

where i ∈ {1, . . . , K} and j ∈ {1, . . . , ni} index the site and individual patient in a given

site respectively, and ni is the number of patients in site i. The predictive and prescriptive

covariate vectors are denoted by x(β)
ij and x(ψ)

ij , respectively. The p-dimensional site-specific

treatment-free function parameter and q-dimensional blip function parameter are denoted

by βi = (βi0, . . . , βi,p−1) and ψi = (ψi0, . . . , ψi,q−1), respectively. Then, with site-specific

estimates ψ̂it and the associated standard deviations sd(ψ̂it), for t = 0, . . . , q − 1, obtained

from the stage-one models, a Bayesian hierarchical model is implemented in the second
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stage:

ψ̂it ∼ N(ψit, sd(ψ̂it)
2),

ψit ∼ N(ψt, σ
2
ψt),

ψt ∼ pψt(ψt),

σ2
ψt ∼ pσ2

ψt
(σ2

ψt),

where ψit and ψt are the (t + 1)-th elements of the site-specific and common blip function

parameter vectors. The between-site heterogeneity associated with ψit is denoted by σ2
ψt

.

Prior distributions pψt and pσ2
ψt

can be assigned for the unknown parameters ψt and σ2
ψt

.

The joint posterior distribution for the two-stage approach is then

p(ψ,ψ1, . . . ,ψK ,σ
2
ψ | ψ̂i, var(ψ̂i)) ∝

K∏︂
i=1

q−1∏︂
t=0

p(ψ̂it | ψit, var(ψ̂it))⏞ ⏟⏟ ⏞
Likelihood

×
K∏︂
i=1

q−1∏︂
t=0

p(ψit | ψt, σ2
ψt)p(ψ,σ

2
ψ)⏞ ⏟⏟ ⏞

Prior

,

where ψ̂i = (ψ̂i0, . . . , ψ̂i,q−1), var(ψ̂i) = (var(ψ̂i0), . . . , var(ψ̂i,q−1)), and

p(ψ,σ2
ψ) =

q−1∏︂
t=0

p(ψt)

q−1∏︂
t=0

p(σ2
ψt)

.

With the full individual-level data, a one-stage model can be implemented:

Yij = β
⊤
i x

(β)
ij + aijψ

⊤
i x

(ψ)
ij + ϵij,

=

p−1∑︂
s=0

βisx
(β)
ijs + aij

q−1∑︂
t=0

ψitx
(ψ)
ijt + ϵij,

where the residual error ϵij follows a normal distribution with mean 0 and within-site residual
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variance σ2
i . The site-specific parameters βis, ψit for i = 1, . . . , K, s = 0, . . . , p − 1, t =

0, . . . , q − 1 satisfy

βis ∼ N(βs, σ
2
βs),

ψit ∼ N(ψt, σ
2
ψt),

(B.1)

where β = (β0, . . . , βp−1) and ψ = (ψ0, . . . , ψq−1) are the common treatment-free and

blip function parameters, respectively. We note that the distributional assumption (B.1)

is slightly different from the distributional assumption

ψi ∼ MVN(ψ,Σψ). (B.2)

As discussed in the main manuscript, in the two-stage approach, the site-specific treatment-

free function parameter estimates are ignored in the second stage. Therefore, only assump-

tion (B.2) is required to pool the blip function parameter estimates, although assumption

(B.1) is also reasonable. In the Bayesian framework, priors will be assigned to the unknown

parameters βs, ψt, σ2
i , σ2

βs
, σ2

ψt
, i = 1, . . . , K, s = 0, . . . , p− 1, t = 0, . . . , q − 1:

βs ∼ pβs(βs), ψt ∼ pψt(ψt),

σ2
i ∼ pσ2

i
(σ2

i ), σ2
βs ∼ pσ2

βs
(σ2

βs), σ2
ψt ∼ pσ2

ψt
(σ2

ψt).

Therefore, the joint posterior distribution for the one-stage approach is

p(β,ψ,β1, . . . ,βK ,ψ1, . . . ,ψK ,σ
2,σ2

β,σ
2
ψ | Y1, . . . ,YK)

∝
K∏︂
i=1

ni∏︂
j=1

p(Yij | βi,ψi, σ2
i )⏞ ⏟⏟ ⏞

Likelihood

×
K∏︂
i=1

p−1∏︂
s=0

p(βis | βs, σ2
βs)

K∏︂
i=1

q−1∏︂
t=0

p(ψit | ψt, σ2
ψt)p(β,ψ,σ

2,σ2
β,σ

2
ψ)⏞ ⏟⏟ ⏞

Prior

,

131



where Yi = (Yi1, . . . , Yi,ni), σ2 = (σ2
1, . . . , σ

2
K), σ2

β = (σ2
β0
, . . . , σ2

βp−1
), σ2

ψ = (σ2
ψ0
, . . . , σ2

ψq−1
),

and independent priors can be assigned to βs, ψt, σ2
i , σ2

βs
, σ2

ψt
such that p(β,ψ,σ2,σ2

β,σ
2
ψ) =∏︁p−1

s=0 p(βs)
∏︁q−1

t=0 p(ψt)
∏︁K

i=1 p(σ
2
i )
∏︁p−1

s=0 p(σ
2
βs
)
∏︁q−1

t=0 p(σ
2
ψt
). Thus, all parameters are esti-

mated at once in the one-stage approach, while only blip function parameters and their

related between-site variances are estimated separately in the two-stage approach. To

see the similarity between the two approaches, we show that, under certain assumptions,∏︁ni
j=1 p(Yij | βi,ψi, σ2

i ) and p(ψ̂it | ψit, var(ψ̂it)) carry the same information of ψit. Define

Yijt = Yij−
∑︁p−1

s=0 βisx
(β)
ijs −aij

∑︁
t′ ̸=t ψit′x

(ψ)
ijt′ and Ỹ ijt = Yij−

∑︁p−1
s=0 β̂isx

(β)
ijs −aij

∑︁
t′ ̸=t ψ̂it′x

(ψ)
ijt′ .

Without loss of generality, assume that the focus now is only on ψt0 , ψit0 , and σ2
ψt0

for some

t0 ∈ {0, . . . , q − 1}, and other parameters (e.g., σ2
i , βis, ψit, t ̸= t0) are nuisance parameters.

The likelihood in the one-stage approach is

ni∏︂
j=1

p(Yij | βi,ψi, σ2
i ) ∝ exp

{︄
− 1

2σ2
i

ni∑︂
j=1

(︂
Yijt0 − aijψit0x

(ψ)
ijt0

)︂2}︄

∝ exp

{︄
− 1

2σ2
i

(︄
ψ2
it0

ni∑︂
j=1

a2ij(x
(ψ)
ijt0

)2 − 2ψit0

ni∑︂
j=1

aijx
(ψ)
ijt0
Yijt0

)︄}︄
.

The likelihood in the two-stage approach is

p(ψ̂it0 | ψit0 , var(ψ̂it0)) ∝ exp

{︄
−
(ψ̂it0 − ψit0)

2

2var(ψ̂it0)

}︄

∝ exp

{︄
−
(ψ2

it0
− 2ψ̂it0ψit0)

2var(ψ̂it0)

}︄

∝ exp

{︄
−
ψ2
it0

∑︁ni
j=1 a

2
ij(x

(ψ)
ijt0

)2 − 2ψit0
∑︁ni

j=1 aijx
(ψ)
ijt0
Ỹ ijt0

2var(ψ̂it0)
∑︁ni

j=1 a
2
ij(x

(ψ)
ijt0

)2

}︄
,

since the ordinary least squares (OLS) estimator is

ψ̂it0 =

∑︁ni
j=1 Ỹ ijt0aijx

(ψ)
ijt0∑︁ni

j=1 a
2
ij(x

(ψ)
ijt0

)2
.

When β̂is = βis, and ψ̂it = ψit for s = 0, . . . , p − 1, t ̸= t0, that is, βis and ψit are esti-
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mated with negligible error in the site-specific linear regression model, then Ỹ ijt0 ≈ Yijt0 and

var(ψ̂it0) = σ2
i /{
∑︁ni

j=1 a
2
ij(x

(ψ)
ijt0

)2}. Thus, we have

p(ψ̂it0 | ψit0 , var(ψ̂it0)) ∝ exp

{︄
− 1

2σ2
i

(︄
ψ2
it0

ni∑︂
j=1

a2ij(x
(ψ)
ijt0

)2 − 2ψit0

ni∑︂
j=1

aijx
(ψ)
ijt0
Yijt0

)︄}︄
,

and p(ψ̂it0 | ψit0 , var(ψ̂it0)) contains the same information of ψit0 as
∏︁ni

j=1 p(Yij | βi,ψi, σ2
i ).

This applies to all sites under the assumption that βis and ψit are estimated with negligible

error (i.e., β̂is = βis, ψ̂it = ψit) in the stage-one linear regression models. This assumption is

plausible and approximately true for a moderate to large sample size, given the unbiasedness

and consistency of the OLS estimators, if the model is correctly specified. Then, with the

same common distribution for ψit0 , i = 1, . . . , K, and the same priors for ψt0 and σ2
ψt0

,

the posterior distribution of ψt0 , ψ(t0) = (ψ1,t0 , . . . , ψK,t0), σ2
ψt0

conditional on Yi, βi, σ2,

ψi(−t0) = ψi/{ψi,t0}, for i = 1, . . . , K, in the one-stage approach

p(ψt0 ,ψ(t0), σ
2
ψt0

| Yi,βi,ψi(−t0),σ2)

∝
K∏︂
i=1

ni∏︂
j=1

p(Yij | βi,ψi, σ2
i )

K∏︂
i=1

p(ψit0 | ψt0 , σ2
ψt0

)p(ψt0)p(σ
2
ψt0

),

is equivalent to the joint posterior distribution of ψt0 ,ψ(t0), σ
2
ψt0

given ψ̂(t0) = (ψ̂1,t0 , . . . , ψ̂K,t0)

and var(ψ̂(t0)) = (var(ψ̂1,t0), . . . , var(ψ̂K,t0)) in the two-stage approach:

p(ψt0 ,ψ(t0), σ
2
ψt0

| ψ̂(t0), var(ψ̂(t0)))

∝
K∏︂
i=1

p(ψ̂it0 | ψit0 , var(ψ̂it0))
K∏︂
i=1

p(ψit0 | ψt0 , σ2
ψt0

)p(ψt0)p(σ
2
ψt0

),

which leads to similar estimates in the two approaches.
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B.2 Data sparsity: A second toy example

A simply toy example is provided in the main text. Here, in a second example, we assume

one categorical covariate X consisting of three levels (i.e., p = q = 3). The true outcome

model for an individual at site i is E(Y | X) = βi0+βi1X2+βi2X3+A(ψi0+ψi1X2+ψi2X3).

We choose the first category as the reference, and two indicators X2, X3 are created for

the second and third categories. Therefore, ψi0 is the treatment effect for patients in the

first category in site i; ψi0 + ψi1 is the treatment effect for patients in the second category

in site i; and ψ10 + ψi1 is the treatment effect for patients in the third category in site i.

When (i) all patients in site i have a covariate value that is in the same category, or (ii)

none take the second (or the third) category, but there are patients in the first and the third

(or the second) categories, the situations are similar to the first example, and we do not

duplicate the discussion. We consider a different scenario where none lie in the reference

category, but both the second and third categories are represented in the samples. In this

case, one of the last two categories will automatically become the “new” reference. Without

loss of generality, assume the second category as the new reference. The site-specific outcome

model then becomes E(Y | X) = γi0 + γi2X3 + A(ξi0 + ξi2X3), where ξi0 is the treatment

effect for patients in the second category in site i, i.e., ξi0 = ψi0 + ψi1; ξi2 is the difference

in treatment effects for patients between the third and the second categories in site i, i.e.,

ξi2 = ψi2−ψi1. Then the likelihood contribution of site i becomes γ̂i0 ∼ N(ψi0+ψi1, sd(γ̂i0)2),

γ̂i2 ∼ N(ψi2 − ψi1, sd(γ̂i2)2). Therefore, it is essential to examine the data in each site to

detect any cases of sparsity in variable levels before incorporating the site-specific estimates

into the model. For each site with sparse data, we update the likelihood contribution in the

Bayesian hierarchical model based on the impact of data sparsity on the model parameter

interpretation. Then, priors can be assigned to the common mean parameters and variance

component parameters as is shown in the main text.
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B.3 Simulation studies: ADEMP reporting

B.3.1 Aims

The aim of the simulation study is to evaluate ITR estimation for a continuous outcome

when the individual-level data from multisite studies is protected from release via a two-

stage IPD meta-analysis, under assumptions concerning (1) the confounder sets across sites,

(2) the strength of confounding, (3) the degree of heterogeneity across sites, and (4) the

choice of prior distribution. Points (1) - (3) concerns the data-generating mechanisms, while

(4) concerns the analysis model.

B.3.2 Data-generating mechanisms

In the simulation, we primarily focus on the binary treatment setting but include a reduced

set of scenarios for the continuous treatment to illustrate the use of the proposed approach in

a dosing setting. We also include a sparse data setting which mimics a particular, challenging

feature of the International Warfarin Pharmacogenetics Consortium data: not all parameters

can be estimated at all sites due to differences in populations across sites. Additionally, a

small simulation is conducted to explore the use of shrinkage priors when a number of

covariates are available, but only some are truly relevant for optimal treatment decisions.

For all settings (except for the simulations with many covariates) , K = 10 sites with an

average sample size of n = 50 (small sample size) or 200 (large sample size) are assumed for

all scenarios. The site-specific sample sizes vary between 0.6n and 1.4n. For simulations with

shrinkage priors in the many covariates setting, only a large sample size is assumed.

Binary treatment setting

Two covariates X1, X2 are considered and their distributions vary across sites: for sites 3, 6,

and 9, X1 ∼ N(5, 1), X2 ∼ Bernoulli(0.5); for sites 1, 4, 7, and 10, X1 ∼ 6Beta(4, 4)+2, X2 ∼

Bernoulli(0.3); for sites 2, 5, and 8, X1 ∼ U[2, 8], X2 ∼ Bernoulli(0.7).
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The treatment assignment A follows a Bernoulli distribution with the propensity score Pi(x)

at site i determined by Pi(A = 1 |X = x) =
[︁
1 + e−(αi0+αi1x1+αi2x2)

]︁−1, where (αi0, αi1, αi2)

for different confounding scenarios are given in Table B.1. In scenarios 1 and 2, propensity

score models are identical across sites, and the confounding effect can be either large (scenario

1) or small (scenario 2). In scenarios 3 and 4, site-specific propensity score models with the

same set of confounders are assumed for each site, and two different confounding effects are

also assumed. In scenarios 5 and 6, both propensity score model parameters and confounder

sets are different across sites.

Table B.1: Parameters in the propensity score model for binary treatment simulations in
different scenarios

Scenario 1 Scenario 2

αi0 0.1 0.01
αi1 0.1 0.01
αi2 0.1 0.01

Scenario 3 Scenario 4

αi0 U[0.06, 0.14] U[0.006, 0.014]
αi1 U[0.06, 0.14] U[0.006, 0.014]
αi2 U[0.06, 0.14] U[0.006, 0.014]

Scenario 5 Scenario 6

αi0 U[0.3,0.7] U[0.03, 0.07]

αi1

{︄
0 i = 1, 3, 5, 7, 9

U[0.06, 0.14] i = 2, 4, 6, 8, 10

{︄
0 i = 1, 3, 5, 7, 9

U[0.006, 0.014] i = 2, 4, 6, 8, 10

αi2

{︄
U[0.3, 0.7] i = 1, 3, 5, 7, 9

0 i = 2, 4, 6, 8, 10

{︄
U[0.03, 0.07] i = 1, 3, 5, 7, 9

0 i = 2, 4, 6, 8, 10

Suppressing the individual-specific subscript, the continuous outcome for an individual at site

i is generated by Yi = βi0+βi1x1+βi2x2+a(ψi0+ψi1x1)+ϵ, where the random error ϵ follows

a normal distribution with mean zero and residual variance σ2
ϵ = 0.25. For the site-specific

parameters θi = (βi0, βi1, βi2, ψi0, ψi1), we consider three different scenarios:

– common effect: θ1 = θ2 = . . . = θ10 = θ and θ = (β0, β1, β2, ψ0, ψ1) is the common
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population parameter;

– common rule: βit ∼ N(βt, σ
2
B), ψi1 ∼ N(ψ1, σ

2
B), for t = 0, 1, 2, i = 1, . . . , 10 and

ψ10/ψ11 = ψ20/ψ21 = . . . = ψ10,0/ψ10,1 = −5, where the between-site variance σ2
B is

derived from heterogeneity level I2 = σ2
B

σ2
B+σ2

ϵ
∈ {0.1, 0.2, 0.3};

– varying effects: θi ∼ MVN(θ,Σθ), where Σθ is a 5 × 5 diagonal matrix where the

between-site variance is derived from I2 as in the common rule setting.

In all three scenarios, the common treatment-free parameters are β0 = 4, β1 = 1, β2 = 1 and

the common blip parameters are ψ0 = 2.5, ψ1 = −0.5 such that the common optimal ITR

is given by dopt(x) = I(ψ0 + ψ1x1 > 0) = I(x1 < 5). The common effect setting assumes

that all site-specific parameters are equal to the common population parameters as in the

simulation studies in Danieli and Moodie (2022); Moodie et al. (2022). No heterogeneity

exists in the site-specific blip parameters ψi0 and ψi1 and the site-specific optimal ITRs are

dopti (x) = I(ψi0 + ψi1x1 > 0). The varying effects setting assumes a common multivariate

normal distribution for the site-specific parameters. The two blip parameters ψi0 and ψi1

are freely varying across sites. Therefore, heterogeneity exists in (ψi0, ψi1) and dopti (x). The

common rule setting considers heterogeneity scenarios that can be viewed as intermediate

between common effect and varying effects; the blip parameters ψi0, ψi1 are varying across

sites, however, the site-specific optimal ITRs dopti (x) are fixed by restricting the ratio ψi0/ψi1

to be identical across sites. In this setting, heterogeneity only exists in the blip parameters

but not the site-specific optimal ITRs.

Continuous treatment setting

For the continuous treatment setting, the same covariates X1, X2 are generated in the same

way as the binary treatment setting. The treatment A ∼ N(X1, 1). The outcome for

an individual at site i is generated by Yi = βi0 + βi1x1 + βi2x2 + a(ψi0 + ψi1a + ψi2x1) +

ϵ, where the random error ϵ follows a normal distribution with mean zero and residual
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variance σ2
ϵ = 0.25. Two different settings are considered for the site-specific parameters

θi = (βi0, βi1, βi2, ψi0, ψi1, ψi2):

– common effect: θ1 = θ2 = . . . = θ10 = θ and θ = (β0, β1, β2, ψ0, ψ1, ψ2) is the common

population parameter;

– varying effects: θi ∼ MVN(θ,Σθ), where Σθ is a 6 × 6 diagonal matrix where

the between-site variance is obtained from the heterogeneity level I2 =
σ2
B

σ2
B+σ2

ϵ
∈

{0.1, 0.2, 0.3}.

In both settings, the common treatment-free parameters are β0 = 4, β1 = 1, β2 = 1, and

the common blip parameters are ψ0 = 1, ψ1 = −2, ψ2 = 1. The common optimal ITR is

dopt(x) = argmaxa(−2a2 + a+ ax1) = (1 + x1)/4.

Sparse data setting

As discussed, it is possible in multisite studies that the site-specific parameters cannot be

estimated due to an insufficient number of patients with a given set of characteristics. To

show how the proposed method deals with this scenario, a small simulation focusing on a

sparse data setting is performed. For simplicity, a binary treatment A ∼ Bernoulli(0.5) is

considered. A binary covariate X1 and a categorical covariate X2 consisting of three levels

are assumed and their distributions vary across sites: for sites 3, 6, and 9, X1 = 1, X2 ∼

Multinomial(1; 0, 0.5, 0.5); for sites 1, 4, 7, and 10, X1 = 0, X2 ∼ Multinomial(1; 0.5, 0, 0.5);

for sites 2, 5, and 8, X1 ∼ Bernoulli(0.5), X2 ∼ Multinomial(1; 1/3, 1/3, 1/3). The continuous

outcome for an individual at site i is generated by Yi = βi0 + βi1x1 + βi2x2,2 + βi3x2,3 +

a(ψi0 +ψi1x1 +ψi2x2,2 +ψi3x2,3) + ϵ, where the random error ϵ follows a normal distribution

with mean 0 and residual variance σ2
ϵ = 0.25. For X2, the first category is assumed as

the reference level, and two binary indicators X2,2 and X2,3 are created for the second and

third categories of X2. Two different settings are considered for the site-specific parameters

θi = (βi0, βi1, βi2, βi3, ψi0, ψi1, ψi2, ψi3):
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– common effect: θ1 = θ2 = . . . = θ10 = θ and θ = (β0, β1, β2, β3, ψ0, ψ1, ψ2, ψ3) is the

common population parameter;

– varying effects: θi ∼ MVN(θ,Σθ), where Σθ is a 8 × 8 diagonal matrix where

the between-site variance is obtained from the heterogeneity level I2 =
σ2
B

σ2
B+σ2

ϵ
=

0.1, 0.2, 0.3.

In both settings, the common treatment-free parameters are β0 = 4, β1 = 1, β2 = 1, β3 = −1,

and the common blip parameters are ψ0 = 1, ψ1 = 1, ψ2 = −2.5, ψ3 = 2. The common

optimal ITR is dopt(x) = I(ψ0 + ψ1x1 + ψ2x2,2 + ψ3x2,3 > 0). The model details in a sparse

data setting is described in Appendix B.4.

Many covariates setting

We consider two scenarios: a total of either 10 or 20 covariates is collected, but only three

covariates, X1, X2, and X3 are related to optimal treatment assignment. The covariates X1

and X2 are generated in the same way as in the binary treatment setting. We generate X3

by the following distribution: for sites 3, 6, and 9, X3 ∼ Exponential(1); for sites 1, 4, 7, and

10, X3 ∼ Exponential(1.7); for sites 2, 5, and 7, X3 ∼ Exponential(0.7). Other covariates

are generated by Xj ∼ N(0, 1), for j ≥ 4. For simplicity, we assume a binary treatment

A ∼ Bernoulli(0.5). The continuous outcome for an individual at site i is generated by

Yi = βi0 +
∑︁p

s=1 βisxis +A(ψi0 +
∑︁p

t=1 ψitxit) + ϵ, for p = 10 or 20, and ϵ ∼ N(0, 0.25). The

site-specific parameters βis and ψit are generated under the assumption of varying effects:

θi = (βi0, . . . , βip, ψi0, . . . , ψip) ∼ MVN(θ,Σθ), where θ = (β0, . . . , βp, ψ0, . . . , ψp) is a vector

of common parameters and β0 = 4, βs = 1 for s ≥ 2, ψ0 = 2.5, ψ1 = −0.5, ψ2 = 2, ψ3 = −1,

and ψt = 0 for t ≥ 4. The common optimal ITR is thus dopt(x) = I(ψ0+ψ1x1+ψ2x2+ψ3x2 >

0). The between-site variance in the diagonal variance-covariance matrix Σθ is obtained from

the heterogeneity level I2 = σ2
B

σ2
B+σ2

ϵ
= 0.1.
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B.3.3 Estimands, methods, and performance metrics

The estimands of interest are the common blip parameters which fully characterize the op-

timal ITR. All analyses rely on the two-stage IPD meta-analysis, using linear regression as

the stage-one model. For all scenarios, we use a Bayesian hierarchical model for the second

stage. For the mean parameters in all settings other than the many covariates setting, we

use a normal prior with mean 0 and variance 10,000. In the setting of many covariates, we

assign the same normal prior to the common main treatment effect parameter but a horse-

shoe prior to all treatment-covariate interactions, selecting only those whose 95% posterior

credible intervals do not include zero. For variance component parameters, three priors with

varying levels of informativeness are considered: half-Cauchy priors with location 0 and scale

parameters 1, 10, or 100. However, in the many covariates setting, only a half-Cauchy (0,1)

prior is used for the variance component parameters.

For all scenarios, 2000 iterations are performed. Measures of performance used to assess

the ITR estimation are: (i) the relative bias of estimators of the blip parameters, which

represents the difference between the mean of the estimates and the true value, divided by

the latter, (ii) the standard deviation of the estimators, (iii) the difference between the value

function (dVF) under the true optimal ITR and the value function under the estimated

optimal ITR, where the value function with respect to an ITR is the expected outcome if all

patients in a population (in our simulation, it is a new cohort of patients of size n = 100, 000)

were treated according to the ITR, and (iv) the empirical standard deviation of the value

function difference when the estimated treatment rule was applied to the same population.

For the many covariates setting, these measures are assessed over: (1) a full set of 2000

iterations, and (2) a subset of iterations where the non-zero treatment-covariate interactions

are correctly selected. The proportion of selection, calculated as the number of times the

covariate is selected divided by the total number of simulation iterations, is also measured.

The results are compared with results obtained from a one-stage approach based on the full
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individual-level data.

B.4 Model details in a sparse data setting in simula-

tion

To illustrate how the proposed two-stage approach can deal with data sparsity, a small

simulation is performed and a binary treatment A ∈ {0, 1} is considered for simplicity. A

binary covariate X1 and a categorical covariate X2 consisting of three levels are assumed:

for the i-th site,

X1 ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 i = 3s

0 i = 3s+ 1

Bernoulli(0.5) i = 3s+ 2

, X2 ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Multinomial(1; 0, 0.5, 0.5) i = 3s

Multinomial(1; 0.5, 0, 0.5) i = 3s+ 1

Multinomial(1; 1/3, 1/3, 1/3) i = 3s+ 2

,

where s = 0, . . . , 3. The continuous outcome for an individual at site i is generated by

Yi = βi0 + βi1x1 + βi2x2,2 + βi3x2,3 + a(ψi0 + ψi1x1 + ψi2x2,2 + ψi3x2,3) + ϵ, (B.3)

where the random error ϵ follows a normal distribution with mean 0 and residual variance

σ2
ϵ = 0.25. For X2, the first category is assumed as the reference level, and two binary

indicators X2,2 and X2,3 are created for the second and third categories of X2. As discussed

in the main manuscript, both common effect and varying effects settings are explored for the

site-specific parameters θi = (βi0, βi1, βi2, βi3, ψi0, ψi1, ψi2, ψi3).

Due to the data-generating mechanism, the implied (correctly-specified) linear regression

models at the first stage for sites i = 3s, s = 1, 2, 3, are

E(Yi | x, a) = γi0 + γi2x2,2 + a(ξi0 + ξi2x2,2). (B.4)
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Since no patients within sites i = 3s are in the reference category of X2, in site-specific

analyses, one of X2,2 and X2,3 will be chosen as the new reference category, and its main

effect as well as the interaction effect with the treatment in (B.3) cannot be estimated.

Here, without loss of generality, we assume that X2,3 is the new reference category. Then,

the site-specific main effect estimator of X2,2, γ̂i2, and its interaction effect estimator, ξ̂i2,

in (B.4) will be biased for βi2 and ψi2 respectively, as γi2 = βi2 − βi3 and ξi2 = ψi2 − ψi3.

In addition, since X1 = 1 for all patients within sites i = 3s, the effect of X1 (i.e., βi1)

and its interaction with treatment (i.e., ψi1) cannot be estimated. The site-specific intercept

and main treatment effect estimators in (B.4) (i.e., γ̂i0 and ξ̂i0) are biased for the original

parameters βi0 and ψi0 in (B.3), as γi0 = βi0 + βi1 + βi3 and ξi0 = ψi0 +ψi1 +ψi3. Therefore,

to recover the original parameters, the likelihood model for these sites at the second stage

should be reparametrized as

ξ̂i0 ∼ N
(︂
ψi0 + ψi1 + ψi3, sd(ξ̂i0)

2
)︂
, ξ̂i2 ∼ N

(︂
ψi2 − ψi3, sd(ξ̂i2)

2
)︂
,

ψi0 ∼ N
(︁
ψ0, σ

2
ψ0

)︁
, ψi1 ∼ N

(︁
ψ1, σ

2
ψ1

)︁
,

ψi2 ∼ N
(︁
ψ2, σ

2
ψ2

)︁
, ψi3 ∼ N

(︁
ψ3, σ

2
ψ3

)︁
.

For sites i = 3s+ 1, s = 0, . . . , 3, the site-specific linear regression models are

E(Yi | x, a) = γi0 + γi3x2,3 + a(ξi0 + ξi3x2,3). (B.5)

In these sites, X1 = 0 for all patients, and no patients are in the second category of X2.

Therefore, βi1, βi2, ψi1, ψi2 cannot be estimated. However, the estimators γ̂i0, γ̂i3, ξ̂i0 and ξ̂i3

in (B.5) are still be consistent for the parameters βi0, βi3, ψi0 and ψi3 in (B.3), as there are

patients with X1 = 0 and X2,2 = X2,3 = 0. Thus, the likelihood model for these sites at the
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second stage will be

ξ̂i0 ∼ N
(︂
ψi0, sd(ξ̂i0)

2
)︂
, ξ̂i3 ∼ N

(︂
ψi3, sd(ξ̂i3)

2
)︂
,

ψi0 ∼ N
(︁
ψ0, σ

2
ψ0

)︁
, ψi3 ∼ N

(︁
ψ3, σ

2
ψ3

)︁
.

For sites i = 3s + 2, s = 0, 1, 2, all levels of all covariates are represented and thus all

parameters are estimable. The regression estimators in

E(Yi | x, a) = γi0 + γi1x1 + γi2x2,2 + γi3x2,3 + a(ξi0 + ξi1x1 + ξi2x2,2 + ξi3x2,3)

will be consistent for the corresponding parameters in (B.3). The likelihood model at the

second stage will be

ξ̂i0 ∼ N
(︂
ψi0, sd(ξ̂i0)

2
)︂
, ξ̂i1 ∼ N

(︂
ψi1, sd(ξ̂i1)

2
)︂
,

ξ̂i2 ∼ N
(︂
ψi2, sd(ξ̂i2)

2
)︂
, ξ̂i3 ∼ N

(︂
ψi3, sd(ξ̂i3)

2
)︂
,

ψi0 ∼ N
(︁
ψ0, σ

2
ψ0

)︁
, ψi1 ∼ N

(︁
ψ1, σ

2
ψ1

)︁
,

ψi2 ∼ N
(︁
ψ2, σ

2
ψ2

)︁
, ψi3 ∼ N

(︁
ψ3, σ

2
ψ3

)︁
.

B.5 Additional simulation results

This section presents additional results from the simulations carried out. Figures B.1 and B.2

shows estimates of ψ0 and the dVF under half-Cauchy (0,10) and half-Cauchy (0,100) priors

in the binary treatment setting with small sample size, and Figure B.3 shows simulation

results for ψ1. Figures B.4 - B.6 present simulation results for the large sample size and

binary treatment setting, including the estimation of (ψ0, ψ1) and the dVF. Figures B.7 and

B.8 present the simulation results in the continuous treatment setting with both small and

large sample sizes, including the estimation of (ψ0, ψ1, ψ2) and the dVF. Figures B.9 and
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B.10 present simulation results of (ψ0, ψ1, ψ2, ψ3) in the sparse data setting with the large

sample size.

Similar patterns to those in the main manuscript are observed. The results are not sensitive

to the different prior choices. The one- and two-stage approaches give similar results. Both

provide unbiased estimations of blip function parameters. However, when the heterogeneity

is small, the variability of estimators in the two-stage approach is larger than that in the one-

stage approach, as the one stage approach is able to borrow information across sites when

the heterogeneity is small. When the heterogeneity is large, this difference is smaller, and

variability in both approaches increase compared to that with small heterogeneity. In both

binary and continuous treatment settings, the dVF increases with increasing heterogeneity,

suggesting a worse optimal ITR estimation. In the sparse data setting, the dVF is zero

or close to zero in all scenarios, regardless of the heterogeneity levels. We only consider

binary covariates and binary treatment in the sparse data setting. The indicator function

I(ψ0+ψ1x1+ψ2x2,2+ψ3x2,3 > 0) is less sensitive to the errors in the blip function parameter

estimation compared with the optimal ITR in the setting of continuous treatment/covariates.

Therefore, even if the parameter estimators are more varied with large heterogeneity, the

dVF does not change much with different heterogeneity levels, and we (almost) obtain the

true optimal ITR in all cases. Also, in all settings, with a larger sample size, we obtain a

more precise optimal ITR estimation, as the variability of blip parameter estimation and the

dVF are smaller.
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Figure B.7: Simulation results for the small sample size and the continuous treatment setting.
Performance of the methods is assessed over 2000 iterations. Estimates (posterior means) of
ψ0, ψ1, ψ2, and the difference in the value function (dVF) between the true and estimated
optimal ITR are shown under different heterogeneity levels (I2 = 0.1, 0.2, 0.3), and prior
choices. The triangles represent the mean of the estimates in each case. The dashed lines
show the true values of ψ0, ψ1, ψ2.
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Figure B.8: Simulation results for the large sample size and the continuous treatment setting.
Performance of the methods is assessed over 2000 iterations. Estimates (posterior means) of
ψ0, ψ1, ψ2, and the difference in the value function (dVF) between the true and estimated
optimal ITR are shown under different heterogeneity levels (I2 = 0.1, 0.2, 0.3) and prior
choices. The triangles represent the mean of the estimates in each case. The dashed lines
show the true values of ψ0, ψ1, ψ2.
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Figure B.9: Simulation results for the small sample size and the sparse data setting. Perfor-
mance of the methods is assessed over 2000 iterations. Estimates (posterior means) of ψ0,
ψ1, ψ2, ψ3 are shown under different heterogeneity levels (I2 = 0.1, 0.2, 0.3) and half-Cauchy
(0,10) and half-Cauchy (0,100) priors. The triangles represent the mean of the estimates in
each case. The dashed lines show the true values of ψ0, ψ1, ψ2, ψ3.
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Figure B.10: Simulation results for the large sample size and the sparse data setting. Per-
formance of the methods is assessed over 2000 iterations. Estimates (posterior means) of
ψ0, ψ1, ψ2, ψ3 are shown under different heterogeneity levels (I2 = 0.1, 0.2, 0.3) and prior
choices. The triangles represent the mean of the estimates in each case. The dashed lines
show the true values of ψ0, ψ1, ψ2, ψ3.
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B.6 Analysis of Warfarin data

B.6.1 Visual inspection of the overlap assumption

The overlap assessment was conducted by discretizing the continuous dose into four ordinal

dose groups based on the minimum, 25th, 50th, and 75th quantiles, and maximum of the ob-

served doses. Then, following that suggested by Li and Li (2019), a proportional odds logistic

model including all potential confounders was used to estimate the generalized propensity

score (Imbens, 2000). The distribution of the generalized propensity score is shown in Figure

B.11. A moderate lack of overlap was observed, particularly within the dose groups [4.5, 22.8]

and [42, 95].

Figure B.11: Distribution of the generalized propensity score by dose group in the Warfarin
analysis.
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B.6.2 Details of the models in the Warfarin analysis

As discussed in the main paper, the blip functions are quadratic in Warfarin dose. The linear

regression model for site i can be explicitly stated as:

E(Yi | x, a) = βi0 + βi1Age + βi2Amiodarone + βi3Female

+ βi4VKORC1(AG) + βi5VKORC1(AA) + βi6CYP2C9(12)

+ βi7CYP2C9(other) + βi8Weight + βi9Height + βi,10Non-White

+ a×
{︃
ψ

(1)
i0 + ψ

(1)
i1 Age + ψ

(1)
i2 Amiodarone + ψ

(1)
i3 Female + ψ

(1)
i4 VKORC1(AG)

+ ψ
(1)
i5 VKORC1(AA) + ψ

(1)
i6 CYP2C9(12) + ψ

(1)
i7 CYP2C9(other)

}︃
+ a2 ×

{︃
ψ

(2)
i0 + ψ

(2)
i1 Age + ψ

(2)
i2 Amiodarone + ψ

(2)
i3 Female + ψ

(2)
i4 VKORC1(AG)

+ ψ
(2)
i5 VKORC1(AA) + ψ

(2)
i6 CYP2C9(12) + ψ

(2)
i7 CYP2C9(other)

}︃
.

(B.6)

We assume that ψ(u)
it ∼ N(ψ

(u)
t , (σ

(u)
t )2), t = 0, . . . , 8, u = 1, 2. The parameters of interests

are the common blip function parameters ψ(1) = (ψ
(1)
0 , . . . , ψ

(1)
8 ) and ψ(2) = (ψ

(2)
0 , . . . , ψ

(2)
8 )

which fully characterize the optimal Warfarin dosing. The unknown between-site variability

associated with ψ(u)
it is denoted by (σ

(u)
t )2.

Tables B.2 and B.3 show site-specific blip function parameter estimates obtained from the

stage-one (frequentist) linear regression models and the associated standard deviations for

the Warfarin data. Due to data sparsity, some site-specific blip function parameters cannot

be estimated in some sites. As demonstrated in the simulation, we need to modify the

proposed two-stage model.
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For i = 3, the linear regression model in the first stage is

E(Yi|x, a) = γi0 + γi1Age + γi2Amiodarone + γi3Female + γi4VKORC1(AG)

+ γi5VKORC1(AA) + γi7CYP2C9(other) + γi8Weight + γi9Height

+ a×
{︃
ξ
(1)
i0 + ξ

(1)
i1 Age + ξ

(1)
i2 Amiodarone + ξ

(1)
i3 Female

+ ξ
(1)
i4 VKORC1(AG) + ξ

(1)
i5 VKORC1(AA) + ξ

(1)
i7 CYP2C9(other)

}︃
+ a2 ×

{︃
ξ
(2)
i0 + ξ

(2)
i1 Age + ξ

(2)
i2 Amiodarone + ξ

(2)
i3 Female

+ ξ
(2)
i4 VKORC1(AG) + ξ

(2)
i5 VKORC1(AA) + ξ

(2)
i7 CYP2C9(other)

}︃
.

(B.7)

The parameters in equation (B.7) satisfy

γil = βil, ξ
(1)
it = ψ

(1)
it , ξ

(2)
it = ψ

(2)
it ,

γi0 = βi0 + βi,10

for l ̸= 0, 6, 10 and t ̸= 6, since all patients in Site 3 are non-White and none carry CYP2C9

genotype 12. The modified likelihood model in the second stage is then

ξ̂
(u)

it ∼ N
(︂
ψ

(u)
it , sd(ξ̂

(u)

it )2
)︂
,

ψ
(u)
it ∼ N

(︂
ψ

(u)
t , (σ

(u)
t )2

)︂
,

for t ̸= 6 and u = 1, 2.
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For i = 6, the linear regression model in the first stage is

E(Yi|x, a) = γi0 + γi1Age + γi2Amiodarone + γi3Female + γi4VKORC1(AG)

+ γi7CYP2C9(other) + γi8Weight + γi9Height

+ a×
{︃
ξ
(1)
i0 + ξ

(1)
i1 Age + ξ

(1)
i2 Amiodarone + ξ

(1)
i3 Female + ξ

(1)
i4 VKORC1(AG)

+ ξ
(1)
i7 CYP2C9(other)

}︃
+ a2 ×

{︃
ξ
(2)
i0 + ξ

(2)
i1 Age + ξ

(2)
i2 Amiodarone + ξ

(2)
i3 Female + ξ

(2)
i4 VKORC1(AG)

+ ξ
(2)
i7 CYP2C9(other)

}︃
.

(B.8)

The parameters in equation (B.8) satisfy

γi0 = βi0 + βi5 + βi,10, ξ
(1)
i0 = ψ

(1)
i0 + ψ

(1)
i5 , ξ

(2)
i0 = ψ

(2)
i0 + ψ

(2)
i5 ,

γi4 = βi4 − βi5, ξ
(1)
i4 = ψ

(1)
i4 − ψ

(1)
i5 , ξ

(2)
i4 = ψ

(2)
i4 − ψ

(2)
i5 ,

γil = βil, ξ
(1)
it = ψ

(1)
it , ξ

(2)
it = ψ

(2)
it ,

for l ̸= 0, 4, 5, 6, 10 and t ̸= 0, 4, 5, 6, since all patients in Site 6 are non-White, and none carry

VKORC1 genotype GG or CYP2C9 genotype 12. The modified likelihood model is

ξ̂
(u)

i0 ∼ N
(︂
ψ

(u)
i0 + ψ

(u)
i5 , sd(ξ̂

(u)

i0 )2
)︂
,

ξ̂
(u)

i4 ∼ N
(︂
ψ

(u)
i4 − ψ

(u)
i5 , sd(ξ̂

(u)

i4 )2
)︂
,

ξ̂
(u)

it ∼ N
(︂
ψ

(u)
it , sd(ξ̂

(u)

it )2
)︂
,

ψ
(u)
il ∼ N

(︂
ψ

(u)
l , (σ

(u)
l )2

)︂
,

for t = 1, 2, 3, 7, l ̸= 6, u = 1, 2.
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For i = 7, the linear regression model in the first stage is

E(Yi|x, a) = γi0 + γi1Age + γi3Female + γi4VKORC1(AG)

+ γi6CYP2C9(12) + βi7CYP2C9(other) + γi8Weight + γi9Height

+ a×
{︃
ξ
(1)
i0 + ξ

(1)
i1 Age + ξ

(1)
i3 Female + ξ

(1)
i4 VKORC1(AG)

+ ξ
(1)
i6 CYP2C9(12) + ξ

(1)
i7 CYP2C9(other)

}︃
+ a2 ×

{︃
ξ
(2)
i0 + ξ

(2)
i1 Age + ξ

(2)
i3 Female + ξ

(2)
i4 VKORC1(AG)

+ ξ
(2)
i6 CYP2C9(12) + ξ

(2)
i7 CYP2C9(other)

}︃
.

(B.9)

The parameters in equation (B.9) satisfy

γi0 = βi0 + βi,10, ξ
(1)
it = ψ

(1)
it , ξ

(2)
it = ψ

(2)
it ,

γil = βil,

for l ̸= 0, 2, 5, 10 and t ̸= 2, 5, since all patients in Site 7 are non-White and none take

amiodarone or carry VKORC1 genotype AA. The modified likelihood model is

ξ̂
(u)

it ∼ N
(︂
ψ

(u)
it , sd(ξ̂

(u)

it )2
)︂
,

ψ
(u)
it ∼ N

(︂
ψ

(u)
t , (σ

(u)
t )2

)︂
,

for t ̸= 2, 5, u = 1, 2.

For i = 1, 2, 4, 5, 8, 9, 10, 11, 12, 13, no modification is needed, as all levels of all covariates

are represented in the sites’ data. Therefore, the likelihood model is

ξ̂
(u)

it ∼ N
(︂
ψ

(u)
it , sd(ξ̂

(u)

i0 )2
)︂
,

ψ
(u)
it ∼ N

(︂
ψ

(u)
t , (σ

(u)
t )2

)︂
,
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Table B.2: Site-specific blip function parameter estimates ξ̂(1)i in the stage-one (frequentist)
linear regression models and the associated standard deviations (in parantheses) in the anal-
ysis of International Warfarin Pharmacogenetics Consortium data. The results are rescaled
by a factor of 1000.

Site 1 2 3 4 5

Intercept 8.51 (11.84) -24.8 (81.93) 27.14 (45.78) 10.05 (18.13) 5.24 (24.95)
Age -0.63 (2.15) 0.95 (9.77) -1.43 (6.57) -1.18 (3.34) -2.35 (3.82)
Amiodarone -40.12 (35.86) 16.08 (74.61) -102.99 (82.5) 10.28 (21.91) 55.34 (356.95)
Female 0.39 (6.12) 15.67 (64.71) -23.85 (17.18) -1.66 (11.45) -4.77 (10.79)
VKORC1 (AG) 0.85 (7.98) 0.62 (78.88) -3.6 (38.47) -4.67 (7.67) 15.81 (8.72)
VKORC1 (AA) 18.7 (21.97) -114.16 (399.46) 22.33 (37.04) 4.21 (25.11) 8.32 (28.86)
CYP2C9 (12) -11.29 (9.87) 16.21 (33.51) NA 7.92 (13.4) 0.09 (16.29)
CYP2C9 (other) -16.1 (17.9) -243.63 (562.22) 17.63 (37.39) 11.1 (12.83) 1.41 (18.21)

Site 6 7 8 9 10

Intercept 1.96 (41.61) 4.01 (24.56) -9.02 (32.16) 3.05 (14.61) 14.23 (12.31)
Age 6.33 (9.76) -2.46 (5.1) 1.16 (4.81) -4.68 (2.71) -4.1 (1.74)
Amiodarone -82 (155.67) NA 15.18 (24.78) -17.29 (20.42) -17.27 (19.31)
Female -19.48 (19.06) -7.57 (16.65) -4.54 (14.14) 15.03 (7.98) 5.7 (6.83)
VKORC1 (AG) -10.33 (31.52) -3.36 (22.95) -3.27 (16.99) 13.01 (7.18) 3.48 (9.28)
VKORC1 (AA) NA NA -28.17 (76.13) -11.57 (23) -7.08 (15.56)
CYP2C9 (12) NA -61.24 (116.28) 31.57 (14.58) 13.54 (12.28) -1.79 (8.46)
CYP2C9 (other) -3.04 (53.03) 75.87 (43.38) -15.36 (29.83) -12.19 (8.7) 4.83 (9.23)

Site 11 12 13

Intercept 9.32 (19.44) 36.21 (29.18) -10.13 (13.22)
Age 0.6 (3.27) -9.94 (5.84) 2.18 (2.67)
Amiodarone -55.53 (58.3) -77.95 (72.19) 8.87 (21.42)
Female 5.34 (9.88) -1.68 (19.07) 0.17 (7.81)
VKORC1 (AG) -11.19 (20.17) 33.44 (29.42) 3.54 (9.86)
VKORC1 (AA) -20.34 (15.77) 34.67 (49.1) -59.53 (43.27)
CYP2C9 (12) -8.15 (14.56) -95.07 (43.58) -10.29 (13.55)
CYP2C9 (other) 40.9 (31.66) -49.45 (62.55) 9.82 (21.24)

for t = 0, . . . , 7, u = 1, 2.

To select the variables that are truly relevant for the treatment decision, a horseshoe prior (Car-

valho et al., 2010) is assumed for all treatment-covariate interactions. Specifically, for
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Table B.3: Site-specific blip function parameter estimates ξ̂(2)i in the stage-one (frequentist)
linear regression models and the associated standard deviations (in parantheses) in the anal-
ysis of International Warfarin Pharmacogenetics Consortium data. The results are rescaled
by a factor of 1000.

Site 1 2 3 4 5

Intercept -0.07 (0.12) 0.23 (0.9) -0.45 (0.67) -0.02 (0.21) -0.22 (0.31)
Age 0 (0.02) 0 (0.16) 0.06 (0.12) -0.01 (0.04) 0.05 (0.05)
Amiodarone 0.92 (0.7) -0.22 (1.15) 2.75 (2.45) -0.12 (0.29) -1.19 (7.7)
Female 0.03 (0.07) -0.22 (0.99) 0.5 (0.36) 0.03 (0.14) 0.02 (0.15)
VKORC1 (AG) -0.03 (0.09) 0.16 (1.1) -0.15 (0.48) 0.01 (0.09) -0.15 (0.1)
VKORC1 (AA) -0.39 (0.41) 3.3 (9.72) -0.82 (0.54) -0.06 (0.49) -0.21 (0.53)
CYP2C9 (12) 0.17 (0.13) -0.26 (0.38) NA (NA) -0.11 (0.19) -0.1 (0.23)
CYP2C9 (other) 0.29 (0.31) 6.43 (14.62) -0.03 (0.89) -0.2 (0.19) -0.02 (0.33)

Site 6 7 8 9 10

Intercept 0.04 (0.66) -0.06 (0.24) 0.07 (0.36) -0.02 (0.18) -0.22 (0.13)
Age -0.13 (0.16) 0.03 (0.05) -0.01 (0.05) 0.06 (0.03) 0.05 (0.02)
Amiodarone 1.18 (2.71) NA (NA) -0.01 (0.27) 0.2 (0.3) 0.24 (0.29)
Female 0.32 (0.3) 0.07 (0.16) 0.05 (0.18) -0.21 (0.1) -0.08 (0.07)
VKORC1 (AG) 0.34 (0.44) 0.12 (0.28) 0.05 (0.19) -0.16 (0.08) 0.02 (0.1)
VKORC1 (AA) NA (NA) NA (NA) 0.86 (1.7) 0.19 (0.41) 0.11 (0.23)
CYP2C9 (12) NA (NA) 1.22 (1.69) -0.42 (0.17) -0.17 (0.14) 0.01 (0.09)
CYP2C9 (other) 0.07 (1.15) -0.96 (0.55) 0.26 (0.53) 0.13 (0.09) 0 (0.11)

Site 11 12 13

Intercept -0.13 (0.24) -0.36 (0.35) 0.1 (0.14)
Age -0.01 (0.04) 0.11 (0.07) -0.03 (0.03)
Amiodarone 0.89 (1.21) 1.05 (1.17) -0.12 (0.31)
Female 0.01 (0.14) -0.02 (0.23) 0.01 (0.09)
VKORC1 (AG) 0.11 (0.36) -0.43 (0.34) -0.05 (0.12)
VKORC1 (AA) 0.27 (0.21) -0.76 (0.84) 1.27 (0.96)
CYP2C9 (12) 0.09 (0.21) 1.23 (0.6) 0.13 (0.17)
CYP2C9 (other) -0.89 (0.7) 0.9 (1.04) -0.15 (0.34)
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t = 1, . . . , 7 and u = 1, 2, we have

ψ
(u)
t ∼ N(0, τ 2(λ

(u)
t )2),

λ
(u)
t ∼ Half-Cauchy (0,1),

τ ∼ Half-Cauchy (0,1),

where τ and λ
(u)
t are, respectively, the global and local shrinkage parameters. If the 95%

credibility interval of ψ(u)
t , t = 1, . . . , 7, u = 1, 2, contains zero, the corresponding treatment-

covariate interaction will not be selected, suggesting that the associated covariate has no

evidence of a tailoring effect on the optimal Warfarin dosing. For ψ(u)
0 , u = 1, 2, the priors

are

ψ
(u)
0 ∼

⎧⎪⎪⎨⎪⎪⎩
N(0, 1002)+, u = 1

N(0, 1002)−, u = 2

.

Here, we use truncated priors for ψ(1)
0 and ψ

(2)
0 , as a positive dose effect and a negative

squared-dose effect on the defined outcome are substantively reasonable and have been found

in previous work (Schulz and Moodie, 2021). Regarding the variance component parameters

σ
(u)
t , a half-Cauchy (0,1) prior is used. The Bayesian hierarchical model is implemented in

RStan (Stan Development Team, 2021, 2020); 2000 posterior samples are drawn from two

chains for each parameter.
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APPENDIX C

Appendix to Manuscript 3

The supplementary material includes simulation results for all blip parameters other than

ψ20 and ψ21. Tables C.1 and C.2 show the simulation results of ψh0 and ψh1 for h = 3, . . . , 7,

respectively, for the setting where the data are generated under an unstructured between-

site heterogeneity model, while tables C.3 and C.4 show the simulation results of the same

set of parameters but for the setting where the data are generated under the assumption

of common between-site heterogeneity. We note that not all parameter ψht, h = 3, . . . , 7,

t = 0, 1 are available for all networks due to the difference in treatment sets.
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