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Abstract 

Objective : Genome-wide association studies of coronary heart disease (CAD) have identified 

many variants that contribute to its etiology, frequently with small effect sizes. When combined 

into a genetic risk score (GRS), the sum of these variants demonstrates larger effects, allowing 

for a personalized prediction of risk. However, a GRS may interact with known risk factors and 

GRS associations with diseases may not be consistent across all sub-populations. My study 

aimed to identify potential GRS interactions with age, sex, hypertension, dyslipidemia, obesity, 

lipoprotein(a), smoking and diabetes. 

Approach and Results : Using Cox proportional hazard models for incident CAD in 344,130 

unrelated individuals of European ancestry in the UK Biobank, I analyzed a CAD GRS 

containing 204 single nucleotide polymorphisms (SNPs) (denoted as GRS204). I also examined 

GRS subsets by partitioning variants based on their effects on four atherosclerotic risk factors: 

apolipoprotein B (apoB), lipoprotein a (Lp(a)), diabetes mellitus (DM) and hypertension (HTN). 

The GRS204 was significantly associated with incident CAD (HR per standard deviation (95% 

CI), 1.37 (1.35, 1.40); P <2 x 10-16). The effect of the GRS204 on incident CAD decreased with 

age (HRs of 1.47 (1.43, 1.52); and 1.33 (1.31, 1.36) for individuals <55 and ≥55 respectively 

(interaction P = 3.60 x 10-8)). The GRS204 demonstrated a significantly stronger association in 

men (HRs of 1.40 (1.38, 1.43); and 1.32 (1.29, 1.36) for men and women respectively; both P <2 

x 10-16; interaction P = 1.09 x 10-4). The GRS204 also significantly interacted with diabetes and 

dyslipidemia, with a stronger association observed in non-diabetic individuals compared to 

diabetics (HRs of 1.39 (1.37, 1.41), and 1.26 (1.21, 1.32), respectively; interaction P = 7.28 x 10-

7) and in individuals with dyslipidemia (HR of 1.40 (1.36, 1.45), compared to those without 



dyslipidemia (HR (95% CI), 1.34 (1.32, 1.37), interaction P = 4.11 x 10-3). These results were 

generally consistent across all of the GRS subsets.  

Conclusion : The GRS204 demonstrated a stronger association in men, younger individuals, those 

without diabetes, and those with dyslipidemia. GRS interactions may identify subgroups of 

individuals at higher genetic risk and improve risk prediction. 

 

 

 



Résumé 

Objectif : Des études d’associations pangénomiques sur la maladie coronarienne (MC) ont 

identifié des variants génétiques qui contribuent à son étiologie, typiquement avec de faibles 

effets individuels. Quand ces variants sont combinés dans un score de risque génétique (GRS), 

leur somme démontre des effets plus importants, permettant une prédiction plus précise du 

risque. Un GRS peut toutefois être influencé par des facteurs de risque connus et les associations 

entre GRS et MC peuvent ne pas être constants dans toutes les sous-populations. La présente 

étude visait à identifier les interactions potentielles du GRS avec l'âge, le sexe, l'hypertension, la 

dyslipidémie, l'obésité, la lipoprotéine(a), le tabagisme et le diabète. 

Approches et résultats :  En utilisant des modèles de risques proportionnels de Cox pour la MC 

incidente chez 344 130 individus d'ascendance européenne non apparentés de la UK Biobank, 

j’ai analysé un GRS de la maladie coronarienne contenant 204 polymorphismes de nucléotides 

simples (SNP). J’ai également examiné certains sous-ensembles de ce GRS en séparant les 

variants en fonction de leurs effets sur les facteurs de risque de l'athérosclérose: l’apolipoprotéine 

B (apoB), la lipoprotéine a (Lp(a)), le diabète (DM) et l’hypertension artérielle (HTN). Le 

GRS204 a été associé de manière significative à la MC incidente (ratio de risque (RR) par écart-

type (intervalle de confiance à 95%), 1.37 (1.35, 1.40); P <2 x 10-16). L'effet du GRS204 sur 

l'incidence de la MC diminue avec l'âge (RR de 1.47 (1.43, 1.52) et 1.33 (1.31, 1.36) pour les 

individus âgés <55 et ≥55 ans respectivement). Le GRS204 a aussi démontré une association 

significativement plus forte chez les hommes (RR de 1.40 (1.38, 1.43); et 1.32 (1.29, 1.36) pour 

les hommes et les femmes respectivement; P <2 x 10-16 dans les deux cas; interaction P = 1.09 x 

10-4). Le GRS204 interagit également de manière significative avec le diabète et la dyslipidémie, 

avec une association plus forte observée chez les non-diabétiques que chez les diabétiques (RR 



de 1.39 (1.37, 1.41), et 1.26 (1.21, 1.32), respectivement; interaction P = 7.28 x 10-7) et chez les 

personnes souffrant de dyslipidémie (RR de 1.40 (1.36, 1.45), par rapport aux personnes sans 

dyslipidémie (RR de 1.34 (1.32, 1.37), interaction P = 4.11 x 10-3). Ces résultats sont 

généralement constants pour tous les sous-ensembles du GRS analysés. 

Conclusion : Le GRS204 a démontré une association plus forte chez les hommes, les individus 

plus jeunes, ceux qui n'ont pas de diabète et ceux qui souffrent de dyslipidémie. Les facteurs 

d’interaction avec le GRS peuvent permettre d'identifier des sous-groupes d'individus présentant 

un risque génétique plus élevé et d'améliorer la prédiction du risque.
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Chapter 1: Introduction 

 

Coronary artery disease (CAD), the most common type of heart disease, is the leading 

cause of death worldwide1. In the last few decades, genome-wide association studies (GWAS) 

have enabled the large-scale detection of single nucleotide polymorphisms (SNPs) associated 

with CAD2-6. CAD risk variants can be integrated into a CAD genetic risk score (GRS), 

capturing and quantifying part of an individual’s genetic susceptibility to CAD7-9, and several 

CAD GRS studies based on previously identified genome-wide significant variants have been 

performed8,10,11. Recently, age and sex12,13 have both been shown to interact with a CAD GRS, 

but fewer studies8,14,15 have investigated interactions with other risk factors or specific pleiotropy 

between CAD GRS and other atherosclerotic risk factors such as diabetes, hypertension, 

dyslipidemia, smoking and body mass index (BMI). In this study, I aimed to investigate the 

relationship between a CAD GRS, including specific SNP subsets based on their association with 

risk factors, and several prominent CAD risk factors. 

1.1 Coronary Artery Disease 

Coronary artery disease (CAD) accounts for one third of all deaths worldwide1,16,17. 

According to the 2022 Heart Disease and Stroke Statistics update from the American Heart 

Association, CAD prevalence is 7.2% in American adults above the age of 20 years old. Notably, 

American men have a higher CAD prevalence than women (8.3% and 6.2%, respectively)17. In 

Canada in 2022, 2.6 million people aged 20 and older were living with CAD18. In addition, Zhu 

et al. detected opposing trends of CAD prevalence in developed and developing countries, noting 

that the prevalence is rising in developing countries, while decreasing in developed countries19. 

In terms of socioeconomic status, individuals with a low socioeconomic status have a higher 
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prevalence than individuals with a high socioeconomic status20. They are also more likely to 

have poorer outcomes20.  

The number of CAD cases has increased by over five million in the United States in the 

past decade in part due to the rise in the number of individuals affected by metabolic CAD risk 

factors such as obesity, diabetes, hypertension and dyslipidemia16,17,21. This has created a large 

economic burden on the healthcare system. From 1996 to 2016, total spending on cardiovascular 

care in US adults increased from 212 billion dollars to 320 billion dollars (public, private payers 

and out-of-pocket spending included)22. This budget, which represents 15% of all United States 

health care spending, is needed to treat and manage CAD and CAD risk factors22. Likewise, 

CAD has also generated a substantial societal burden whereby affected individuals prematurely 

exit the labor market following dire disability or death23,24. In addition, medical leave of 

absences, long-term leave of absence due to hospitalization, and reduction of working hours due 

to disability all contribute to the societal burden of CAD25.  

1.1.1 CAD Pathogenesis 

Atherosclerosis is the main driver of CAD pathogenesis26 (Figure 1). Characterized by a 

deregulation of lipid homeostasis, this process develops over a long period of time, up to 50 

years in some cases27. The initial stage of atherosclerosis is endothelial cell dysfunction. This 

occurs when the lining of the arterial intima becomes unstable, allowing for the accumulation 

and retention of monocytes and various lipids, including LDL-C and Lp(a), through leaky 

junctions28,29. The injured endothelial cells involved in endothelial activation release numerous 

chemokines, inflammatory cytokines, and mediators which leads to increased reactive oxygen 

species (ROS) levels30-32. High ROS levels can, in turn, stimulate an inflammatory response33. 
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This creates a cycle where high ROS levels and high levels of inflammatory markers positively 

influence one another34.  

Monocytes retained in the arterial intima mature into macrophages through specific 

chemokines and cytokines such as interleukin-829,35. Elevated ROS levels establish an ideal 

environment where LDL-C and Lp(a) are oxidized and subsequently phagocytosed by 

macrophages28. As oxidized LDL-C accumulates in macrophages, these cells convert into foam 

cells28,29, which cluster together to form fatty streaks30. With time, the latter evolve into fibrous 

plaques which are characterized as stable or unstable depending on the amount of inflammation 

still present36. An inflammation-rich plaque is susceptible to thinning of its fibrous cap and 

rupture of the plaque30. This results in thrombus formation and adverse cardiac events such as 

myocardial infarction, stroke, and death27,30.  

1.1.2 Risk Factors 

Risk factors for CAD can, for the most part, be classified into two categories: non-

modifiable (age, sex, and family history) and modifiable (e.g. obesity, smoking, dyslipidemia, 

diabetes, and hypertension)37. Age is an independent risk factor for CAD despite it being 

associated with other risk factors such as diabetes and hypertension38,39. Ageing acts through 

various pathways including increased endothelial cell dysfunction and greater ROS production 

levels38,40,41. Another non-modifiable risk factor is sex: women tend to develop CAD 7 to 10 

years later than men42,43. Additionally, women have poorer clinical outcomes than men following
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Figure 1: Steps involved in atherosclerosis 

Stepwise sequences of atherosclerosis development in the arterial lumen and intima. LDL, low-

density lipoprotein; GM-CSF, granulocyte-macrophage colony-stimulating factor; M-CSF, 

macrophage colony-stimulating factor; IL-1B, interleukin 1 beta; CRP, C-reactive protein. 

(Gistera A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. Jun 

2017;13(6):368-380) (Reproduced with permission of the publisher) 
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CAD diagnosis44. As for family history of CAD, it was found by the Framingham study to 

increase CAD by 2.6 and 2.3-fold in men and women, respectively, when defined as a parental 

CAD event45. 

Many modifiable risk factors are also independent and affect different stages of the 

atherosclerosis process. First, obesity, defined as a BMI greater or equal to 30kg/m2 46, is an 

independent risk factor for CAD47. It primarily affects early stages of atherosclerosis. For 

example, obese individuals overexpress pro-inflammatory cytokines which leads to an 

upregulation of LDL-C and Lp(a) oxidation in the arterial intima48,49. Additionally, obesity is a 

contributor to diabetes as it predisposes individuals to insulin resistance and beta-cell 

dysfunction, among other processes50,51. A second independent risk factor for CAD is diabetes 

mellitus (type I and type II). Diabetes-induced inflammation triggers a pro-inflammatory 

cytokine response, thus accelerating endothelial dysfunction and ROS production52,53 which in 

turn hastens the accumulation and oxidation of lipids in the arterial intima and the formation of 

foam cells. The third modifiable CAD risk factor to highlight is hypertension, defined as a 

systolic blood pressure above 130 mmHg or a diastolic blood pressure above 80 mmHg54. High 

blood pressure increases the permeability of the endothelium in the arterial intima, thus allowing 

more monocytes and lipids to migrate into the arterial wall55. In addition, hypertension also 

increases the likelihood of plaques becoming unstable or rupturing56. Dyslipidemia, defined as 

deregulation of lipid levels in the blood (i.e., high total cholesterol or LDL-C or triglyceride 

levels or low HDL cholesterol levels), is another independent risk factor for CAD which 

increases the accumulation of various lipids in the arterial wall, and is a major contributor to 

atherosclerosis57,58. Lastly, smoking, a preventable risk factor for CAD, aggravates many 

pathways involved in atherosclerosis by promoting vascular and endothelial dysfunction, 
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increasing the build up of lipids in the arterial intima and their oxidization, and creating a 

procoagulant state susceptible to thrombosis59,60. 

One exception is Lp(a), an independent risk factor for CAD. High Lp(a) is noted clinically when 

the concentration is greater than 50mg/dL61.  High Lp(a) levels accelerate atherosclerosis by, in 

part, promoting endothelial activation and the formation of foam cells through increased Lp(a) 

phagocytosis62,63. Notably, elevated Lp(a) plasma levels are largely independent of LDL-C 

plasma levels even though both lipid particles are atherogenic30.  

 

1.1.3 CAD Assessment and Treatment 

 Clinicians often use assessment tools to estimate the risk of CAD in individuals. The 

American Heart Association advocates for the use of the Pooled Cohort Equations (PCE) if the 

individuals have no pre-existing cardiovascular disease and they are between the ages of 40 and 

7964. The PCE estimates an individual’s 10-year risk of atherosclerotic cardiovascular disease. It 

relies on age, sex, race and atherosclerotic risk factors including diabetes, smoking status and 

systolic blood pressure64,65. Individuals with an elevated 10-year risk (≥ 7.5%) can either be 

recommended a high-intensity or moderate-intensity treatment plan in addition to diet and 

lifestyle recommendations for primary prevention of cardiovascular disease66.  

CAD treatment can vary between individuals as any treatment and recommendations are 

tailored to an individual’s disease severity and comorbidities. One of the initial treatment options 

for CAD is diet and lifestyle modifications aiming to mitigate certain risk factors67. Diet changes 

can include following dietary guidelines to help maintain an appropriate body weight and lower 

cholesterol and blood pressure levels. Lifestyle modifications including limiting alcohol 

consumption, weight management, regular and consistent exercise and cigarette cessation can 
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mitigate atherosclerosis progression and the risk of thrombosis. Additionally, medical therapy 

ranges from anti-ischemic drugs like beta-blockers and antiplatelet drugs to antithrombotic and 

cholesterol-lowering medications such as statins36. Finally, heart surgery can be a critical 

component of CAD treatment depending on disease progression68. Surgeries such as minimally 

invasive heart surgery, percutaneous coronary intervention and coronary artery bypass grafting 

are routinely used to treat CAD.  

1.2 Genetics 

Since the late 20th century, scientists and epidemiologists noted familial clustering of 

CAD: individuals with a positive family history of CAD are far more likely to be diagnosed with 

the disease. Family aggregation studies from the 1990s onwards estimated that the presence of a 

family history of CAD increased an individual’s risk of CAD by 2.5 to 4-fold compared to no 

family history69-71. As these studies did not account for environmental factors such as smoking 

and diet, later studies focused on twins who shared the same common environment. Well-known 

twin studies from Nordic countries have evaluated CAD heritability to be around 40 to 60%72-74. 

Although twin studies hinted at a significant genetic component, it was the completion of the 

Human Genome Project in 2003, which provided the first sequence of the human genome. This 

initial sequence covered around 92% of the total human genome75 and paved the way for 

tremendous progress in CAD genetics.  

While identifying genetic variants was not the main goal of the Human Genome Project, 

it provided an ideal opportunity to annotate and analyze around 3 million SNPs found in the 

human genome76. Shortly thereafter another global research project, the International HapMap 

Consortium, characterized SNPs genotyped in 270 individuals77. Notably, these individuals come 

from four diverse populations (or genetic ancestries) to acquire and compare the allele frequency 
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and linkage disequilibrium (LD) differences across populations77. In total, the International 

HapMap Consortium eventually annotated approximately 3.1 million SNPs78.  

1.2.1 Genome-Wide Association Studies  

The publication of human sequences and polymorphism databases by the Human 

Genome Project and the International HapMap Consortium paved the way for the first genome-

wide association studies (GWAS) to be performed5. The purpose of a GWAS is to detect genetic 

variants statistically associated with a disease or trait by comparing allele or genotype 

frequencies of variants in cases versus controls. A GWAS for a particular disease or trait usually 

consists of three main steps: recruitment or identification of cases and controls, genotyping 

individuals to identify genetic variants and performing association analyses79 (Figure 2). 

In 2007, the first GWAS for CAD was conducted in individuals of European ancestry and 

published by three independent research groups80-82. They discovered the first locus predisposing 

to CAD at chromosome 9p21. The 9p21 locus contains around 60 SNPs in high linkage 

disequilibrium with each other. In addition, many of these SNPs are very common in individuals 

of European ancestry2. Approximately 75% of individuals of European ancestry carry at least one 

risk allele. These research groups also emphasized that the risk conferred by variants in the 9p21 

locus was independent of known risk factors for CAD80-82. Notably, these findings from the first 

GWAS were replicated in many studies of European individuals83 as well as other ancestries84,85.  

In the years following these GWAS publications, databanks accelerated recruitment of 

cases and controls for a myriad of diseases and disorders, facilitating the production and 

publication of dozens of cardiovascular GWAS. Larger sample sizes enabled the discovery of 

more associated novel loci with smaller effect sizes. Research groups from around the world
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Figure 2: Synopsis of steps necessary to conduct a GWAS 

Step-wise visual representation of the different steps involved in conducting a GWAS. 

(Uffelmann E, Huang Q, Munung N, et al. Genome-wide association studies. Nature Reviews 

Methods Primers. 2021;1(1):1-21) (Reproduced with permission of the publisher) 
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came together to create international consortia such as CARDIoGRAM and C4D which were 

extremely successful in discovering novel CAD polymorphisms7. In the past decade, these two 

consortia as well as their combined consortium (CARDIoGRAMplusC4D) have identified over 

80 novel CAD SNPs, mostly in individuals of European ancestry. Moreover, extremely large 

databanks have started releasing their genotypic data to researchers. For example, since 2017, the 

UK Biobank (UKB), a large prospective study that recruited over 502,000 participants and 

collected their genotypic and phenotypic information, has become a rich resource for the entire 

scientific community86. Subsequent CAD GWAS publications using UKB data alone or in a 

meta-analysis discovered over 150 novel CAD variants. For example, van der Harst and Verweij 

utilized the UKB to perform a GWAS in the UKB which identified 64 novel CAD loci. Likewise, 

Tcheandjieu et al. discovered 95 novel CAD loci through a GWAS using the Million Veteran 

Program (MVP) and a meta-GWAS which included the UKB3. To date, at least 321 genome-

wide independent significant loci for CAD have been identified87. 

These CAD loci constitute potential causal variants and genes for CAD, and thus provide 

potential drug targets for CAD management and treatment88-90. In 2003, scientists identified 

gain-of-function mutations in the PCSK9 gene which led to extremely high LDL-C levels91. In 

contrast, further research from Cohen et al. highlighted the protective effect of loss-of-function 

variants in the PCSK9 gene that disrupt its function; effectively, individuals carrying these 

variants have lower LDL-C levels and, thus, a lower risk of CAD diagnosis92. Ultimately, this 

observation led to the creation of two monoclonal antibodies that mimic the protective variants 

by inhibiting the PCSK9 protein in blood93,94. Indeed, randomized clinical trials for these two 

drugs demonstrated that they significantly lowered LDL-C levels and reduced the risk of 

cardiovascular events93,94. This provided robust proof of concept that genetics can contribute to 
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the understanding and development of therapeutics. Additional studies have investigated the 

clinical translation and druggability of other CAD loci87,95. 

1.2.2 Genetic Risk Scores 

On their own, the discovered common variants associated with CAD typically have small 

effect sizes87,96,97, limiting their individual use as predictors of CAD risk. However, identified 

variants can be integrated into a genetic risk score (GRS) in which the summation shows a 

stronger effect. A GRS can be calculated for any disease or disorder as long as that phenotype 

has sufficient GWAS summary statistics and relevant available data. GRS are based on 3 key 

information from GWAS: SNP IDs, risk alleles and effect sizes (odds ratio (OR)) (Figure 3). The 

traditional way of calculating a GRS (also known as a polygenic risk score or a genome-wide 

risk score) is by summing the risk alleles multiplied by their effect size (also known as a 

weighted sum)98. As GRS are based on germline variants, they are not age-dependent and can be 

calculated at birth99. Importantly, a CAD GRS captures and quantifies only a part of an 

individual’s genetic susceptibility and predisposition to CAD.  

Recently, there has been a rise in direct-to-consumer genetic testing (i.e., at-home DNA 

kits). Valued at 1.56 billion USD in 2022, this market has capitalized on GRS, which companies 

can perform using a DNA sample sent in by consumers sometimes in conjunction with ancestry 

testing. Indeed, companies such as 23andMe and Color Genomics are offering a wide array of 

commercialized GRS ranging from breast and hereditary prostate cancer to heart disease and 

type 2 diabetes 100. While some companies clearly state that their commercialized GRS are “for 

people who are of mainly European ancestry”101, 23andMe claim they
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Figure 3: Steps to calculate a GRS 

Four essential steps required to calculate a GRS and assess its distribution. PRS, polygenic risk 

score. (Uffelmann E, Huang Q, Munung N, et al. Genome-wide association studies. Nature 

Reviews Methods Primers. 2021;1(1):1-21) (Reproduced with permission of the publisher) 
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“can adjust and test our computer models on people from many backgrounds to make sure they 

also work well for non-Europeans”102 despite recent research demonstrating a clear difficulty of 

GRS transferability between European and non-European ancestries103-105. Although many 

concerns persist concerning this business, especially surrounding the validity of a client’s 

interpretation of the GRS and the variability in the GRS methods used, direct-to-consumer GRS 

appear to be here to stay. To be certain that customers benefit the most from access to 

commercialized GRS, it will be crucial for further research to focus on GRS construction 

methods, possible interpretation, and the role of physicians100,101,106.  

Based on summary results data from GWAS, dozens of GRS construction methods have 

been developed and optimized including pruning and thresholding (P+T) and LDpred2107-109. The 

former creates clusters of SNPs in high LD that also meet a p-value threshold and then selects 

the most significant variant from each cluster110. The latter is a more recent Bayesian technique 

which incorporates GWAS summary statistics and a linkage disequilibrium (LD) matrix107,111. A 

recent study by Wang et al. noted that a CAD LDpred2-based GRS had a stronger predictive 

ability for CAD than others built using more traditional methods like P+T112. One main 

difference between the two methods that could partially explain this result lies in the number of 

SNPs included in the GRS107,108. As the LDpred2 method does not filter out any SNPs, the GRS 

can contain hundreds of thousands or more than a million SNPs whereas a P+T-based GRS 

usually contains a few hundred SNPs.  

Many CAD GRS studies have been performed based on previously identified genome-

wide significant variants. Researchers such as Tada et al. and Inouye et al. have emphasized that 

individuals with a high GRS had a significantly higher risk of CAD than those with a low GRS 

(2.4-fold and 4.17-fold risk, respectively)10,113, highlighting the reliability of GRS as a predictive 
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tool. Importantly, Mega et al. concluded that individuals with a high genetic risk for CAD (top 

20% of GRS) displayed the greatest risk reductions of CAD events with the use of statins11. 

Ference et al. observed a 3-fold reduction in risk of CAD in individuals with long-term exposure 

to low LDL-C due to genetic variants compared to LDL-C lowering medications later in life114. 

This result suggests that targeted therapeutic interventions earlier in life can have a significant 

impact on CAD risk. A possible weakness in CAD GRS published to date is that the 

overwhelming majority are exclusively autosomal and do not include variants from the X and Y 

chromosome. Only one CAD GRS that included X chromosome (X-chr) variants has been 

published3. This study concluded that their trans-ethnic GRS which also included X-chr variants 

outperformed other existing autosomal GRS for risk prediction. 

Another important characteristic of GRS is that they are independent of family history. 

Tada et al. observed that the significant association between a CAD GRS and CAD events did 

not vary according to self-reported family history113. Similarly, Hindieh et al. reported a similar 

trend with their 30-SNP CAD GRS while highlighting that common variants are unlikely to give 

rise to a family history of CAD115. Thus, GRS have the potential to be an effective additional tool 

for risk assessment and primary prevention.  

1.3 Hypothesis and Objectives 

In recent years, a few studies have shown that CAD GRS are significantly associated 

with some traditional CAD risk factors (e.g., hypertension, diabetes, age and more). In 2019, a 

CAD GRS containing 300 polymorphisms was significantly associated with hypertension, type 2 

diabetes, and hypercholesterolemia in the UKB8. Additionally, Inouye et al. developed a 

“metaGRS” consisting of 1.7 million genetic variants and analyzed its association with many risk 

factors in the UKB10. They observed that the “metaGRS” was significantly associated with BMI, 
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diabetes, hypertension, smoking, high cholesterol and family history of heart disease. This last 

result is notable because family history and a CAD GRS are usually viewed as 

independent113,115,116, and it could be partially explained by the increased power of the UKB. 

Recently, a small number of studies have demonstrated that two main risk factors for CAD, age 

and sex, can interact with a CAD GRS. Using a 161-loci CAD GRS, Huang et al. identified a 

significant interaction between the GRS and sex and a CAD GRS with over a million variants 

was able to detect an interaction with sex in the UKB12,13. Moreover, Marston et al. recently 

illustrated a significant interaction between a 241-variant CAD GRS and age for incident cases in 

the UKB117. Further, in 2023, a group led by Cristen Willer used the "metaGRS" developed by 

Inouye et al. to investigate CAD GRS interaction with age and sex118. They confirmed a 

significant interaction with age and sex in both HUNT2, a Norwegian-based data bank, and the 

UKB. However, only a few studies have investigated interactions between CAD GRS SNPs and 

other atherosclerotic risk factors including diabetes, hypertension, dyslipidemia, smoking, and 

BMI9,15. While one study from Cole et al. reported pleiotropy between BMI and CAD14, little 

research has been done to directly explore the possible pleiotropic effects between CAD and 

atherosclerotic risk factors.  

As part of this thesis, I hypothesized that a CAD GRS would significantly interact with 

various atherosclerotic risk factors. I also hypothesized that a CAD GRS will not have the same 

strength in different atherosclerotic risk factor subgroups. I tested these through the three 

following objectives: 

1.3.1 Objective 1: Determine if the known association between a CAD GRS and CAD interacts 

with specific risk factors. 
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  I performed cox proportional hazard analyses to test for interactions between a CAD 

GRS and atherosclerotic risk factors (age, sex, dyslipidemia, hypertension, diabetes, BMI, 

smoking behavior, Lp(a) levels). 

1.3.2 Objective 2: Determine if the known association between a CAD GRS and CAD varies in 

risk factor specific subsets of the GRS.  

I performed cox proportional hazard analyses for each subset of the CAD GRS based on 

atherosclerotic risk factors in individuals of European ancestry in UKB. I then compared these 

results to each other and to the complete CAD GRS. 

1.3.3 Objective 3: Determine if GRS construction methods influence the association between 

GRS and CAD and interactions between the GRS and atherosclerotic risk factors. 

I contrasted two different construction methods, pruning and thresholding and LDpred2, 

by performing generalized linear models to test for cross-sectional association between each 

CAD GRS and CAD and interactions between each CAD GRS and atherosclerotic risk factors. 
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Chapter 2: Methods 

2.1 Study Design and Participants 

The UKB recruited approximately 502,000 British participants aged between 38 and 73 years 

from the general population, through one of 22 assessment centers, between 2006 and 2010. 

Participants completed a standardized questionnaire and provided blood samples, as previously 

described86. Additionally, the UKB sample data was linked with data from the UK’s National 

Health Service which allowed diagnoses to be identified in participant’s medical records119. UKB 

received ethics approval from the Northwest Multi-Centre Research Ethics committee. All 

participants gave written informed consent. I excluded participants with missing genetic sex 

information or genetic sex that differed from the self-reported as well as samples that were 

identified as outliers for heterozygosity and missing rates. Participants taking cholesterol-

lowering medication at baseline were also excluded. Among 1st degree relatives, only one 

(selected randomly) from each family was kept. This yielded 344,130 individuals of European 

ancestry, 5,207 individuals of South Asian ancestry, 6,104 of African ancestry and 1,288 Chinese 

ancestry individuals for this study. Individuals of European ancestry include 321,403 White 

British individuals, 9,533 White Irish individuals and 13,194 White Other individuals (Ethnic 

terms defined by the UKB). 

  

2.2 GRS and Subdivisions 

I used a weighted CAD GRS composed of 204 autosomal SNPs (denoted as GRS204) as 

previously described9. All included SNPs had an imputation quality score > 0.3. The P + T 

method, which involves creating clusters of SNPs in high LD, that also meet a p-value threshold 
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and selecting the most significant variant from each cluster110, was used to compile this GRS and 

linkage disequilibrium in Europeans between any pair of SNPs was r2 < 0.29.  

 

The GRS204 was partitioned according to significant associations in the UKB of included 

variants with Lp(a), apoB, DM or HTN. SNPs with a nominally significant p value (p <0.05) for 

a given risk factor were included in the risk-factor-specific GRS. Thus, the risk factor-specific 

GRS contained 41, 90, 66 and 121 SNPs for Lp(a), apoB, DM and HTN, respectively. The GRS 

without these risk factor SNPs contained 163, 114, 138 and 83 SNPs for Lp(a), apoB, DM and 

HTN, respectively (Table 1). This subdivision method was validated by comparing each GRS 

subset pair (GRSrf(+) and GRSrf(-)) for its association with risk factors (Table 2). 

 

While my work with the GRS204 was in progress, the Million Veteran Program (MVP) 

CAD GWAS was published in 20223. Specifically, it identified 95 novel CAD loci including nine 

X chromosome loci. Notably, 33 novel loci were identified in a European-ancestry GWAS while 

62 novel loci were identified in a multi-ancestry GWAS. I created a weighted CAD GRS with 

established and novel SNPs from that study (denoted as GRSMVP). The GRSMVP contained 258 

SNPs (249 autosomal SNPs and nine X chromosome SNPs), and the effect sizes for my GRS 

calculations are from Tcheandjieu et al.’s summary statistics.  

 

In additional sensitivity analysis, I used LDpred2 (grid model) to build a CAD GRS 

based on the 2015 CARDIoGRAMplusC4D GWAS summary statistics (denoted as 

GRSLDpred2)
97,107. This model allows tuning of two hyperparameters: SNP heritability (h2) and the 

proportion of causal variants (p)107. As the LDpred2-grid model requires testing and validation 
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cohorts, the UKB European-ancestry cohort was split into two cohorts. The LD correlation 

matrix was computed in the testing cohort among 1,316,447 SNPs. In total, 102 grid models 

were generated from p, h2 and sparsity combinations (17 p values, 3 h2 values and 

presence/absence of sparsity). I used the GRS model determined by the best AUC among the 102 

grid models for the association with CAD, adjusting for age and sex. Statistical analyses were 

performed in the validation samples with the best LDpred2-grid model and 556 552 SNPs.  

 

2.3 Outcome Definitions 

Briefly, I included myocardial infarction, acute and chronic ischemic heart disease, 

coronary artery disease and replacement of a coronary artery, but not angina. Specifically, CAD 

in UKB was defined as the presence of one or more of the following ICD9, ICD10 and OPCS4 

codes: 410, 411, 412, 413, 414, I21, I22, I23, I24, I25, K40, K41, K42, K43, K44, K45, K46 and 

K49.  



31 
 

Table 1. SNP classification according to GRS204 subdivisions 

Locus# Locus CHR 
Position 

(hg19) 
rsID Classification 

1 MORN1 1 2252205 rs36096196 b, d, e, h 

2 PRDM16 1 3325912 rs2493298 b, d, e, h 

3 FHL3 1 38461319 rs61776719 b, d, e, h 

4 PCSK9 1 55496039 rs11206510 a, c, f, h 

4 PCSK9 1 55505647 rs11591147 a, c, f, h 

5 PLPP3(PPAP2B) 1 56966350 rs17114046 b, d, e, h 

5 PLPP3(PPAP2B) 1 57016950 rs112470402 b, d, e, h 

5 PLPP3(PPAP2B) 1 56986303 rs147055617 a, d, e, g 

6 PSRC1(SORT1) 1 109821511 rs602633 a, c, f, h 

7 NGF 1 115753482 rs11806316 b, d, f, h 

8 TDRKH 1 151762308 rs11810571 a, c, e, h 

9 IL6R 1 154422067 rs4845625 b, c, f, h 

10 ATP1B1 1 169094459 rs1892094 b, d, e, g 

11 DDX59,CAMSAP2 1 200646073 rs6700559 b, d, f, g 

12 LMOD1 1 201872264 rs2820315 b, d, e, g 

13 HHAT 1 210468999 rs60154123 b, d, e, h 

14 MIA3 1 222823529 rs17465637 b, d, f, h 

15 AGT 1 230845794 rs699 a, c, e, h 

16 OSR1(AK097927) 2 19942473 rs16986953 a, d, e, h 

17 APOB 2 21291529 rs668948 a, c, f, g 

18 ABCG8,ABCG5 2 44081627 rs4076834 a, d, f, h 

18 ABCG8,ABCG5 2 44073881 rs6544713 a, d, f, h 

19 PRKCE 2 45896437 rs582384 b, d, e, h 

20 VAMP8,VAMP5 2 85809989 rs1561198 a, d, f, h 

21 ZEB2,TEX41 2 145801461 rs2252641 b, d, e, h 

21 ZEB2,TEX41 2 145270592 rs6740731 b, d, f, h 

21 ZEB2,TEX41 2 145286559 rs17678683 b, d, f, h 

Legend: 

a: apoB (+) subset 

b: apoB (-) subset 

c: Lpa (+) subset 

d: Lpa (-) subset 

e: HTN (+) subset 

f: HTN (-) subset       

g: DM (+) subset 

h: DM (-) subset  
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22 FIGN 2 164957251 rs12999907 a, d, e, h 

23 CALCRL 2 188196469 rs840616 b, d, e, h 

24 WDR12,NBEAL1 2 203893999 rs115654617 a, d, f, g 

25 FN1 2 216304384 rs1250229 a, d, e, h 

 25 FN1 2 216291359 rs17517928 a, d, e, h 

26 TNS1 2 218683154 rs2571445 a, d, e, h 

26 TNS1 2 218669225 rs61741262 a, d, e, h 

27 LOC646736 2 227100698 rs2972146 a, d, e, g 

28 KCNJ13,GIGYF2 2 233633460 rs1801251 b, d, f, g 

29 COL6A3 2 238223955 rs11677932 b, d, f, h 

30 FGD5 3 14901525 rs13079221 b, d, e, g 

31 SNORD77,ALS2CL 3 46688562 rs7633770 a, d, e, g 

32 CDC25A 3 48193515 rs7617773 b, d, e, h 

33 RHOA 3 49448566 rs7623687 b, d, e, h 

34 UMPS,ITGB5 3 124450081 rs4678145 b, d, f, h 

35 DNAJC13 3 132257961 rs10512861 a, d, f, h 

36 STAG1 3 136069472 rs667920 a, c, e, g 

37 MRAS 3 138092889 rs185244 b, d, e, g 

38 ARHGEF26 3 153839866 rs12493885 a, d, e, g 

39 CCNL1 3 156852592 rs4266144 b, d, e, h 

40 FNDC3B 3 172115902 rs12897 b, d, f, h 

41 HGFAC,RGS12 4 3449652 rs16844401 a, d, e, h 

42 REST,NOA1 4 57838583 rs17087335 a, d, f, h 

43 SHROOM3 4 77416627 rs12500824 a, d, e, h 

44 FGF5 4 81181072 rs10857147 a, d, e, h 

45 HNRNPD 4 82587050 rs11099493 a, d, f, h 

46 UNC5C 4 96117371 rs3775058 b, c, e, g 

47 MAD2L1 4 120909501 rs7678555 a, d, e, g 

48 ZNF827 4 146782837 rs35879803 b, d, e, h 

49 EDNRA 4 148281001 rs4593108 b, d, f, h 

49 EDNRA 4 148400819 rs6842241 b, d, e, h 

Legend: 

a: apoB (+) subset 

b: apoB (-) subset 

c: Lpa (+) subset 

d: Lpa (-) subset 

e: HTN (+) subset 

f: HTN (-) subset       

g: DM (+) subset 

h: DM (-) subset  
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50 GUCY1A3,MAP9 4 156635309 rs7692387 b, d, e, g 

50 GUCY1A3,MAP9 4 156436517 rs13118820 a, d, e, g 

51 PALLD 4 169687725 rs7696431 b, d, e, h 

52 SEMA5A 5 9556694 rs1508798 b, d, f, h 

53 LOC101928448 5 55860781 rs3936511 a, d, e, g 

54 LOX 5 121413208 rs1800449 b, d, f, h 

55 SLC22A4-SLC22A5 5 131667353 rs273909 a, d, e, h 

56 ARHGAP26 5 142516897 rs246600 b, d, e, h 

57 FOXC1 6 1617143 rs9501744 b, d, e, h 

58 PHACTR1 6 12756658 rs1412748 b, d, f, h 

58 PHACTR1 6 12903957 rs9349379 b, d, e, h 

59 HDGFL1 6 22598259 rs7766436 a, d, f, h 

60 C2 6 31919578 rs2072633 a, c, e, g 

61 ANKS1A,C6orf16 6 34618893 rs2814993 a, c, e, h 

61 ANKS1A,C6orf16 6 35034800 rs17609940 b, d, e, h 

62 CDKN1A,PANDAR 6 36638636 rs1321309 b, d, e, h 

63 KCNK5 6 39174922 rs10947789 b, d, e, h 

64 VEGFA 6 43758873 rs6905288 a, d, e, g 

65 PRIM2 6 57160572 rs9367716 b, d, f, h 

66 RP11-379B8.1 6 82612271 rs4613862 a, d, f, h 

67 CENPW 6 126717064 rs1591805 a, d, f, g 

68 TCF21 6 134209837 rs2327429 b, d, e, h 

68 TCF21 6 134214227 rs2327433 b, d, e, h 

69 PLEKHG1 6 150997401 rs17080091 a, d, e, h 

70 LPA,PLG,LPAL2,SLC22A3 6 160679400 rs624249 a, c, f, g 

70 IGF2R 6 160465291 rs688359 b, c, e, h 

70 LPA,PLG,LPAL2,SLC22A3 6 160863532 rs2048327 a, c, e, g 

70 LPA,PLG,LPAL2,SLC22A3 6 161143608 rs4252120 b, c, f, g 

70 LPA,PLG,LPAL2,SLC22A3 6 161056112 rs9365196 a, c, f, h 

70 LPA,PLG,LPAL2,SLC22A3 6 161102643 rs9457995 a, c, e, h 

70 LPA,PLG,LPAL2,SLC22A3 6 161005610 rs55730499 a, c, e, g 

Legend: 

a: apoB (+) subset 

b: apoB (-) subset 

c: Lpa (+) subset 

d: Lpa (-) subset 

e: HTN (+) subset 

f: HTN (-) subset       

g: DM (+) subset 

h: DM (-) subset  
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70 LPA,PLG,LPAL2,SLC22A3 6 160911596 rs147555597 a, c, e, h 

70 LPA,PLG,LPAL2,SLC22A3 6 161111700 rs186696265 a, c, e, g 

71 MAD1L1 7 1937261 rs10267593 b, d, e, g 

72 DAGLB* 7 6446027 rs10951983 b, d, f, h 

73 TMEM106B 7 12261911 rs11509880 b, d, f, g 

74 HDAC9 7 19049388 rs2107595 b, d, e, h 

75 CCM2 7 45077978 rs2107732 b, d, e, g 

76 7q22(BCAP29) 7 107244545 rs10953541 b, d, e, h 

77 CFTR,CCTNBP2 7 117332914 rs975722 b, d, e, h 

78 ZC3HC1 7 129663496 rs11556924 b, d, e, h 

79 PARP12 7 139757136 rs10237377 b, d, e, h 

80 NOS3 7 150690176 rs3918226 a, d, e, g 

81 NAT2 8 18286997 rs6997340 a, d, e, g 

82 LPL 8 19824667 rs15285 a, c, e, g 

82 LPL 8 19800529 rs6997330 a, c, e, g 

83 BMP1 8 22033615 rs6984210 b, d, f, g 

84 ZFPM2 8 106565414 rs10093110 b, d, f, h 

85 TRIB1 8 126490972 rs2954029 a, d, e, h 

86 CDKN2B,CDKN2A 9 21706571 rs896655 b, d, f, h 

86 CDKN2B,CDKN2A 9 22073996 rs1855185 b, d, f, g 

86 CDKN2B,CDKN2A 9 22098619 rs2891168 a, d, e, g 

86 CDKN2B,CDKN2A 9 21970916 rs3731249 b, c, f, h 

86 CDKN2B,CDKN2A 9 22062012 rs4977754 b, c, e, h 

86 CDKN2B,CDKN2A 9 22113324 rs13301964 a, d, f, g 

87 KLF4 9 110517794 rs944172 a, d, f, h 

88 SVEP1 9 113169775 rs111245230 b, d, e, g 

89 DAB2IP 9 124420173 rs885150 b, d, f, h 

90 ABO 9 136149399 rs507666 a, d, e, g 

91 CDC123 10 12303813 rs61848342 b, d, e, g 

92 KIAA1462 10 30317073 rs9337951 b, c, e, h 

93 CXCL12 10 44777560 rs1657346 b, d, f, h 

Legend: 

a: apoB (+) subset 

b: apoB (-) subset 

c: Lpa (+) subset 

d: Lpa (-) subset 

e: HTN (+) subset 

f: HTN (-) subset       

g: DM (+) subset 

h: DM (-) subset  
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93 CXCL12 10 44480811 rs1870634 b, d, f, h 

94 TSPAN14 10 82251514 rs17680741 b, d, e, h 

95 LIPA 10 91004886 rs2246942 a, c, f, h 

96 AS3MT,CYP17A1,CNNM2 10 104638480 rs3740390 b, d, e, h 

97 STN1 10 105693644 rs4918072 b, d, e, g 

98 HTRA1 10 124237612 rs4752700 b, d, f, h 

99 TRIM5,TRIM22 11 5701074 rs11601507 a, d, f, g 

100 SWAP70 11 9751196 rs10840293 a, d, e, h 

100 MRVI1,CTR9 11 10745394 rs11042937 b, c, e, h 

101 ARNTL 11 13301548 rs1351525 b, d, e, g 

102 HSD17B12 11 43696917 rs7116641 a, d, e, g 

103 PCNX3 11 65391317 rs12801636 a, d, e, g 

104 SERPINH1 11 75274150 rs590121 b, d, f, h 

104 SERPINH1 11 75284334 rs659418 b, d, f, g 

105 ARHGAP42 11 100624599 rs7947761 b, d, e, h 

106 PDGFD,DYNC2H1 11 103660567 rs974819 b, d, f, h 

107 APOA1-A5-A4-C3,ZNF259 11 116648917 rs964184 a, d, f, g 

108 C1S 12 7175872 rs11838267 b, d, f, h 

109 LOC156393 12 20220033 rs10841443 b, d, e, h 

110 HOXC4 12 54513915 rs11170820 b, d, f, h 

111 LRP1 12 57527283 rs11172113 a, d, f, h 

112 ATP2B1 12 90013089 rs2681492 b, d, e, h 

113 NDUFA12 12 95355541 rs7306455 b, d, e, h 

114 SH2B3,ATXN2,HNF1A 12 111884608 rs3184504 a, d, e, g 

115 KSR2 12 118265441 rs11830157 b, d, f, h 

116 HNF1A 12 121416988 rs2244608 a, c, e, g 

117 SCARB1,CCDC92 12 124427306 rs11057401 a, c, f, g 

117 SCARB1,CCDC92 12 125307053 rs11057830 a, d, e, h 

118 FLT1 13 28973621 rs9319428 b, d, f, h 

119 N4BP2L2 13 33058333 rs9591012 b, d, e, g 

120 COL4A1/A2 13 110960943 rs3809346 a, d, f, h 

Legend: 

a: apoB (+) subset 

b: apoB (-) subset 

c: Lpa (+) subset 

d: Lpa (-) subset 

e: HTN (+) subset 

f: HTN (-) subset       

g: DM (+) subset 

h: DM (-) subset  
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Legend: 

a: apoB (+) subset 

b: apoB (-) subset 

c: Lpa (+) subset 

d: Lpa (-) subset 

e: HTN (+) subset 

f: HTN (-) subset       

g: DM (+) subset 

h: DM (-) subset  

 

 

 

120 COL4A1/A2 13 111049623 rs9515203 a, c, f, h 

120 COL4A1/A2 13 110818102 rs11617955 b, d, f, g 

120 COL4A1/A2 13 111040681 rs11838776 a, c, e, h 

121 MCF2L 13 113631780 rs1317507 a, d, e, h 

122 ARID4A 14 58794001 rs2145598 b, d, f, g 

123 TMED10 14 75614504 rs3832966 a, d, e, h 

124 SERPINA1,SERPINA2 14 94838142 rs112635299 b, d, e, g 

125 HHIPL1,CYP46A1 14 100133942 rs2895811 a, d, e, h 

125 HHIPL1,CYP46A1 14 100148961 rs8003602 b, d, f, h 

126 OAZ2,RBPMS2 15 65024204 rs6494488 b, d, f, h 

127 SMAD3 15 67450305 rs17228058 b, d, e, g 

128 ADAMTS7 15 79017861 rs8039034 b, d, e, h 

128 ADAMTS7 15 79139000 rs11637783 a, d, f, h 

129 MFGE8-ABHD2 15 89574218 rs8042271 b, d, f, h 

130 FURIN 15 91416550 rs17514846 a, d, e, h 

131 LINC00924 (15q26.2) 15 96146414 rs17581137 b, d, f, g 

132 CETP 16 56995236 rs1800775 a, c, e, h 

133 DHX38,TXNL4B 16 72130815 rs1050362 a, c, e, h 

134 CFDP1 16 75462055 rs12930452 a, d, e, h 

135 PLCG2 16 81906423 rs7199941 b, c, f, h 

136 CDH13 16 83045790 rs7500448 b, d, f, h 

137 SMG6,SRR 17 2170216 rs170041 a, d, f, h 

137 SMG6,SRR 17 2126504 rs216172 a, d, e, h 

138 RASD1, SMCR3, PEMT 17 17543722 rs12936587 a, c, f, h 

139 CORO6,ANKRD13B 17 27941886 rs13723 b, d, e, g 

140 (17q11.2) 17 30033514 rs76954792 b, d, e, h 

141 DHX58,KAT2A 17 40257163 rs2074158 a, d, f, h 

142 GOSR2 17 45013271 rs17608766 b, d, e, h 

143 UBE2Z,GIP 17 47047868 rs3895874 a, d, e, g 

143 UBE2Z,ZNF652 17 47440466 rs16948048 b, d, e, h 

144 BCAS3 17 59013488 rs7212798 b, d, e, h 
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Each SNP was classified to different GRS subsets depending on its association with each risk factor (apoB, Lpa, HTN, DM). 

GRS indicates genetic risk score; CHR, chromosome; CAD, coronary artery disease; apoB, apolipoprotein B; HTN, hypertension; DM, diabetes mellitus; Lp(a), 

lipoprotein (a). 

145 PECAM1 17 62387091 rs1867624 b, d, e, g 

146 ACAA2 18 47229717 rs9964304 b, d, e, h 

147 PMAIP1,MC4R 18 57838401 rs663129 b, d, f, g 

148 ANGPTL4 19 8429323 rs116843064 a, c, e, g 

149 LDLR 19 11277232 rs4804573 a, c, f, h 

149 LDLR 19 11202306 rs6511720 a, c, e, h 

150 MAP1S,FCHO1 19 17855763 rs73015714 b, d, f, h 

151 ZNF507,LOC400684 19 32882020 rs12976411 b, d, f, h 

152 TGFB1,CCDC97 19 41851509 rs4803455 b, d, e, h 

152 TGFB1,CCDC97 19 41832231 rs12980942 b, d, f, g 

152 TGFB1,CCDC97 19 41790086 rs138120077 a, d, e, h 

153 APOE,APOC1,TOMM4 19 45412079 rs7412 a, c, e, h 

153 SNRPD2 19 46190268 rs1964272 b, c, f, g 

153 APOE,APOC1,TOMM4 19 45422946 rs4420638 a, d, f, g 

154 PROCR 20 33764554 rs867186 b, d, f, h 

154 NCOA6 20 33313566 rs6088590 b, d, e, g 

155 ZHX3 20 39924279 rs6102343 a, d, f, h 

156 PCIF1,ZNF335 20 44586023 rs3827066 a, d, f, h 

157 ZNF831 20 57714025 rs260020 b, c, e, h 

158 MAP3K7CL 21 30533076 rs2832227 b, d, f, g 

159 MRPS6 21 35593827 rs28451064 a, d, e, h 

160 POM121L9P,ADORA2A 22 24658858 rs180803 b, d, f, h 

Legend: 

a: apoB (+) subset 

b: apoB (-) subset 

c: Lpa (+) subset 

d: Lpa (-) subset 

e: HTN (+) subset 

f: HTN (-) subset       

g: DM (+) subset 

h: DM (-) subset  
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Table 2: Association of CAD GRS subsets with Lp(a), apoB, DM and HTN in UKB individuals of European ancestry 

  Lp(a) apoB HTN 

 SNPs Effect size (95%CI) P value Effect size (95%CI) P value Adj. OR (95%CI) P value 

GRS204 204 16.07 (15.88, 16.27) <2.00 x 10-16 0.031 (0.030, 0.032) 4.38 x E10-9 1.07 (1.07, 1.08) <2.00 x 10-16 

GRSapoB(-) 114 1.12 (0.92, 1.32) 2.79 x 10-14 0.002 (0.001, 0.003) 2.03 x E10-8 1.05 (1.05, 1.06) <2.00 x 10-16 

GRSapoB(+) 90 20.29 (20.10, 20.48) <2.00 x 10-16 0.039 (0.038, 0.040) <2.00 x 10-16 1.05 (1.04, 1.06) <2.00 x 10-16 

GRSHTN(-) 83 2.84 (2.64, 3.04) 5.28 x 10-8 0.024 (0.023, 0.025) <2.00 x 10-16 0.99 (0.98, 1.00) 4.72 x 10-3 

GRSHTN(+) 121 18.53 (18.34, 18.72) <2.00 x 10-16 0.022 (0.022, 0.023) <2.00 x 10-16 1.10 (1.10, 1.11) <2.00 x 10-16 

GRSLpa(-) 163 -0.07 (-0.27, 0.13) 0.50 0.01 (0.01, 0.01) <2.00 x 10-16 1.08 (1.07, 1.09) <2.00 x 10-16 

GRSLpa(+) 41 29.36 (29.19, 29.54) <2.00 x 10-16 0.042 (0.041, 0.042) <2.00 x 10-16 1.01 (1.01, 1.02) 2.14 x 10-4 

GRSDM(-) 138 4.54 (4.34, 4.74) <2.00 x 10-16 0.025 (0.025, 0.026) <2.00 x 10-16 1.06 (1.05, 1.07) <2.00 x 10-16 

GRSDM(+) 66 20.32 (20.13, 20.51) <2.00 x 10-16 0.019 (0.018, 0.020) <2.00 x 10-16 1.04 (1.04, 1.05) <2.00 x 10-16 

 

 

 

 

 

 

 

 

 

 

  DM 

 SNPs Adj. OR (95%CI) P value 

GRS204 204 1.02 (1.01, 1.04) 6.00 x 10-3 

GRSapoB(-) 114 1.04 (1.02, 1.06) 3.91 x 10-6 

GRSapoB(+) 90 1.00 (0.98, 1.02) 0.87 

GRSHTN(-) 83 0.99 (0.97, 1.01) 0.30 

GRSHTN(+) 121 1.04 (1.02, 1.05) 1.83 x 10-5 

GRSLpa(-) 163 1.03 (1.01, 1.05) 2.81 x 10-4 

GRSLpa(+) 41 1.00 (0.98, 1.01) 0.62 

GRSDM(-) 138 0.98 (0.96, 1.00) 1.70 x 10-2 

GRSDM(+) 66 1.06 (1.05, 1.08) 1.35 x 10-13 
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Cox proportional hazard analyses were performed for GRS associations with CAD, apoB, HTN and DM. All analyses are age and sex adjusted. Each GRS is 

weighted per standard deviation. 

GRS indicates genetic risk score; HR per SD, hazard ratio per standard deviation; CI, confidence interval; P, p value; SNPs, single nucleotide polymorphisms; 

CAD, coronary artery disease; apoB, apolipoprotein B; HTN, hypertension; DM, diabetes mellitus. 
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Thresholds used to define risk factors were age ≥55 years old for older age, BMI ≥30 for 

obesity, high Lp(a) was considered ≥100 nmol/L, and dyslipidemia was defined as ≥1.3 g/L 

apoB. Diabetes mellitus was defined as the presence of any of the following: (i) use of diabetes 

medication or (ii) a diagnosis of diabetes mellitus or (iii) HbA1c levels 6.5%. Hypertension was 

defined as the presence of any of the following: (i) use of blood pressure medication or (ii) a 

diagnosis of hypertension or (iii) a systolic blood pressure level 140 mm Hg or a diastolic blood 

pressure level 90 mm Hg. I constructed a risk factor score for each individual based on the 

presence or absence of four risk factors: BMI ≥30, hypertension, diabetes mellitus, and current 

smoker. Thus, the score was an integer from 0 to 4. 

2.4 Statistical Analysis 

In the primary analysis, the CAD GRS204 was tested for association with incident CAD 

with Cox proportional hazard models adjusted for age and sex. To evaluate interaction, models 

included a multiplicative interaction term (GRS x risk factor) for each CAD risk factor (age, sex, 

dyslipidemia, hypertension, diabetes, BMI, smoking behavior, Lp(a) levels). In addition, 

stratified analysis for each risk factor was performed. The different GRS construction methods 

(GRS204, GRSMVP and GRSLDpred2) were compared using generalized linear models testing the  

association with incident CAD adjusted for age and sex. All results are presented as HR per SD 

or OR per SD with 95% confidence intervals. A p-value < 0.05 was considered statistically 

significant. All analyses were performed using PLINK 2.0120 and R studio version 4.2.2. 
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Chapter 3: Results 

A total of 344,130 European ancestry individuals with complete data were included in the 

study. Characteristics of the study population are presented in Table 3. The median age was 57 

years with an interquartile range [IQR] of [49, 62] and 145,042 (42.3%) were male. Following 

enrolment in UKB (baseline), 16,118 incident CAD cases occurred during a median follow-up of 

10.95 years [10.06, 11.68]. 

3.1 Interaction Analyses 

The GRS204 was strongly associated with CAD in individuals of European ancestry 

(Hazard Ratio (HR) 1.37 (95% CI, 1.35, 1.40), P <2.00 x 10-16) (Table 4). The GRS204 also had a 

significant positive interaction in men (P = 1.09 x 10-4) and a significant negative interaction 

with increasing age (P = 3.63 x 10-8) (Figure 4). The GRS also had a significant positive 

interaction with dyslipidemia (P = 4.11 x 10-03), on incident CAD, but a negative interaction with 

diabetes (P = 7.28 x 10-7) (Table 5). 

3.2 Subset Analyses 

Because these interactions could be due to SNP subsets associated with specific 

atherosclerotic risk factors, I investigated interactions with GRS subsets. All risk factor GRS 

subsets showed a significant interaction with age (P values < 8.00 x 10-3) and, with the exception 

of the GRSDM(-). All GRS subsets demonstrated a significant interaction with sex (Table 6). Five 

CAD GRS subsets had significant interactions with diabetes: the GRSapoB(-) (P = 0.012), the 

GRSapoB(+) (P = 0.013), the GRSHTN(+) (P = 1.45 x 10-4), the GRSDM(+) (P = 2.03 x 10-3) and the 

GRSLpa(-) (P = 1.45 x 10-4) (Table 6). Further, five CAD GRS subsets showed a significant 

interaction with dyslipidemia: GRSapoB(-) (P = 6.97 x 10-3), GRSHTN(+) (P = 8.18 x 10-3) , GRSLpa(-) 
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(P = 1.66 x 10-3), GRSDM(+) (P = 3.60 x 10-2) and GRSDM(-) (P = 0.041)  (Table 6). Only the 

GRSHTN(-) demonstrated a significant interaction with hypertension (P = 0.03) (Table 6). 

Consistent with the GRS204, there were no significant interactions between the CAD GRS subsets 

and BMI, smoking, or Lp(a) (Table 6). 

3.3 Stratified Analyses 

In stratified analyses of each risk factor (Figure 4), males and those with dyslipidemia 

had higher HR (men, HR 1.40, (95% CI, 1.38, 1.43); women, 1.32 (1.29, 1.36); individuals with 

dyslipidemia, 1.40 (1.36, 1.45); those without, 1.34 (1.32, 1.37); all P <2x10-16). Age and 

diabetes had higher HRs for those without the risk factor (age <55, 1.47 (1.43, 1.52); age ≥55, 

1.33 (1.31, 1.36); diabetics, 1.26 (1.21, 1.32); non-diabetics, 1.39 (1.37, 1.41); all P <2x10-16). 

Consistent directions of effect were also observed in the stratified analysis of GRS subsets (Table 

7).  

3.4 Other Genetic Ancestries 

The GRS204 was also predictive of CAD in individuals of South Asian ancestry (HR 1.31, 

(95% CI, 1.19, 1.45), P = 9.75 x 10-08) (Tables 8-9) with an effect size consistent with the 

European ancestry sample. However, the GRS204 had no significant interactions with any of the 

risk factors in individuals of South Asian ancestry (Table 9). The GRS204 was not significant in 

individuals of African and Chinese ancestries (Table 10).  
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Table 3: Characteristics of European participants with genetic data from UK Biobank 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

Data are n (%) or median [interquartile range].  

BP indicates blood pressure; BMI, body mass index; CAD, coronary artery disease; HDL, high-density lipoprotein; 

LDL, low-density lipoprotein. 

 

Characteristic Participants 

N 344,130 

Male 145,042 (42.3) 

BP medication 45,362 (13.2) 

Diabetes medication 2,605 (0.8) 

Current smoker 35,123 (10.2) 

Diabetes mellitus  13,311 (3.9) 

Hypertension  170,520 (49.7) 

Incident CAD cases 16,118 (4.7) 

Cross-sectional CAD cases 19,336 (5.6) 

Median follow-up (years) 10.95 [10.06, 11.68] 

Age 57.00 [49.00, 62.00] 

BMI 26.30 [23.81, 29.33] 

Systolic BP (mm Hg) 135.50 [124.00, 148.50] 

Diastolic BP (mm Hg) 82.00 [75.00, 89.00] 

Apolipoprotein B (g/L) 1.05 [0.91, 1.21] 

Total cholesterol (mmol/L) 5.86 [5.19, 6.58] 

Triglycerides (mmol/L) 1.44 [1.02, 2.09] 

HDL cholesterol (nmol/L) 1.44 [1.21, 1.72] 

LDL cholesterol (nmol/L) 3.68 [3.16, 4.24] 

Lipoprotein(a) (nmol/L) 19.90 [9.35, 58.80] 

Non-HDL cholesterol (mmol/L) 4.37 [3.72, 5.08] 



44 
 

Figure 4: Stratified analysis of CAD GRS204 with CAD by risk factors in the European 

ancestry individuals of the UK Biobank 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cox proportional hazard analyses were performed stratified by the presence or absence of risk factors among 

individuals of European ancestry in UKB. Age stratified analyses were adjusted for sex. Sex stratified analyses were 

adjusted for age. All other risk factor stratified analyses were age and sex adjusted. 

GRS indicates genetic risk score; HR, hazard ratio per standard deviation; CI, confidence interval; CAD, coronary 

artery disease. 
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Table 4: Associations of CAD GRS subsets with incident CAD in UKB individuals of 

European ancestry 

Cox proportional hazard analyses were performed for GRS association with CAD. All analyses were age and sex 

adjusted.  

GRS indicates genetic risk score; HR, hazard ratio per standard deviation; CI, confidence interval; P, p value; SNPs, 

single nucleotide polymorphisms; CAD, coronary artery disease. 

 

 

 

 

 

 

 

 

  CAD 

GRS model SNPs HR (95%CI) P value 

GRS204 204 1.37 (1.35, 1.40) <2.00 x 10-16 

GRSapoB(-) 114 1.24 (1.22, 1.26) <2.00 x 10-16 

GRSapoB(+) 90 1.27 (1.26, 1.29) <2.00 x 10-16 

GRSHTN(-) 83 1.20 (1.18, 1.22) <2.00 x 10-16 

GRSHTN(+) 121 1.31 (1.30, 1.34) <2.00 x 10-16 

GRSLpa(-) 163 1.31 (1.29, 1.33) <2.00 x 10-16 

GRSLpa(+) 41 1.19 (1.17, 1.20) <2.00 x 10-16 

GRSDM(-) 138 1.28 (1.26, 1.30) <2.00 x 10-16 

GRSDM(+) 66 1.22 (1.20, 1.24) <2.00 x 10-16 
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Table 5: Risk factor interactions with the GRS204 for incident CAD in UKB individuals of 

European ancestry 

 

Cox proportional hazard analyses with risk factor interactions. Risk factor interactions were adjusted for age and sex 

except age interaction was adjusted only for sex and sex interaction was adjusted only for age. Risk factor score had 

no covariates in the model. 

GRS indicates genetic risk score; Lp(a), lipoprotein (a); HR, hazard ratio per standard deviation; CI, confidence 

interval; P, p value; CAD, coronary artery disease; HRint, hazard ratio per standard deviation of the interaction; Pint, p 

value of the interaction. 

 

 CAD 

Risk factor HR (95%CI) P HRint (95%CI) Pint 

Age 1.41 (1.38, 1.43) <2.00 x 10-16 0.95 (0.94, 0.97) 3.63 x 10-8 

Sex 1.32 (1.29, 1.35) <2.00 x 10-16 1.07 (1.03, 1.10) 1.09 x 10-4 

Diabetes 1.39 (1.37, 1.41) <2.00 x 10-16 0.92 (0.88, 0.97) 7.28 x 10-7 

Hypertension 1.38 (1.34, 1.43) <2.00 x 10-16 0.98 (0.94, 1.02) 0.24 

Obesity 1.38 (1.35, 1.40) <2.00 x 10-16 1.00 (0.96, 1.03) 0.82 

Current smoker  1.38 (1.35, 1.40) <2.00 x 10-16 1.00 (0.96, 1.04) 0.94 

Lp(a)  1.36 (1.33, 1.38) <2.00 x 10-16 1.00 (0.96, 1.04) 0.96 

Dyslipidemia  1.34 (1.32, 1.36) <2.00 x 10-16 1.05 (1.01, 1.09) 4.11 x 10-3 

Risk factor score 1.36 (1.33, 1.40) <2.00 x 10-16 0.98 (0.96, 1.00) 1.70 x 10-2 
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Table 6: Interactions of CAD GRS subsets with risk factors on incident CAD 

 

A  Age interaction Sex interaction Diabetes interaction Current smoker interaction 

GRS model SNPs HRint (95%CI) Pint HRint (95%CI) Pint HRint (95%CI) Pint HRint (95%CI) Pint 

GRS204 204 0.95 (0.94, 0.97) 3.63 x 10-8 1.07 (1.03, 1.10) 1.09 x 10-4 0.92 (0.88, 0.97) 7.28 x 10-4 1.00 (0.96, 1.04) 0.49 

GRSapoB(-) 114 0.96 (0.95, 0.98) 2.51 x 10-5 1.04 (1.00, 1.07) 4.80 x 10-2 0.94 (0.90, 0.99) 0.012 0.98 (0.94, 1.05) 0.33 

GRSapoB(+) 90 0.96 (0.95, 0.98) 3.27 x 10-5 1.06 (1.02, 1.09) 8.44 x 10-4 0.94 (0.90, 0.99) 0.013 1.02 (0.97, 1.06) 0.47 

GRSHTN(-) 83 0.97 (0.95, 0.98) 9.23 x 10-5 1.04 (1.00, 1.07) 4.20 x 10-2 0.98 (0.93, 1.02) 0.34 0.98 (0.94, 1.02) 0.39 

GRSHTN(+) 121 0.96 (0.95, 0.98) 1.24 x 10-5 1.06 (1.02, 1.10) 6.84 x 10-4 0.91 (0.87, 0.96) 1.45 x 10-4 1.02 (0.98, 1.06) 0.42 

GRSLpa(-) 163 0.95 (0.94, 0.97) 1.61 x 10-7 1.05 (1.01, 1.08) 8.16 x 10-3 0.93 (0.89, 0.97) 2.14 x 10-3 0.98 (0.94, 1.02) 0.42 

GRSLpa(+) 41 0.98 (0.96, 0.99) 8.00 x 10-3 1.05 (1.01, 1.08) 7.15 x 10-3 0.96 (0.92, 1.01) 0.12 1.03 (0.99, 1.07) 0.19 

GRSDM(-) 138 0.97 (0.95, 0.98) 1.84 x 10-4 1.03 (0.99, 1.06) 0.10 0.96 (0.91, 1.00) 0.056 0.98 (0.94, 1.02) 0.25 

GRSDM(+) 66 0.96 (0.94, 0.98) 2.68 x 10-6 1.07 (1.03, 1.10) 7.70 x 10-5 0.93 (0.89, 0.97) 2.03 x 10-3 1.03 (0.99, 1.08) 0.11 
 

B  Dyslipidemia interaction Hypertension interaction BMI interaction Lp(a) interaction 

GRS model SNPs HRint (95%CI) Pint HRint (95%CI) Pint HRint (95%CI) Pint HRint (95%CI) Pint 

GRS204 204 1.06 (1.02, 1.10) 4.11 x 10-3 0.98 (0.94, 1.02) 0.24 1.00 (0.96, 1.03) 0.82 1.00 (0.96, 1.04) 0.96 

GRSapoB(-) 114 1.05 (1.01, 1.09) 6.97 x 10-3 0.98 (0.94, 1.02) 0.24 1.00 (0.96, 1.03) 0.84 1.03 (1.00, 1.07) 7.40 x 10-2 

GRSapoB(+) 90 1.03 (0.99, 1.07) 0.13 0.99 (0.95, 1.03) 0.52 1.00 (0.97, 1.03) 0.91 0.98 (0.94, 1.01) 0.19 

GRSHTN(-) 83 1.02 (0.98, 1.06) 0.28 0.96 (0.92, 0.99) 3.00 x 10-2 1.02 (0.98, 1.05) 0.37 1.02 (0.98, 1.06) 0.30 

GRSHTN(+) 121 1.05 (1.01, 1.09) 8.18 x 10-3 1.00 (0.96, 1.04) 0.93 0.98 (0.95, 1.01) 0.26 0.99 (0.95, 1.02) 0.49 

GRSLpa(-) 163 1.06 (1.02, 1.10) 1.66 x 10-3 0.98 (0.94, 1.02) 0.43 1.01 (0.98, 1.04) 0.60 1.03 (0.99, 1.07) 0.17 

GRSLpa(+) 41 1.01 (0.97, 1.04) 0.72 0.98 (0.94, 1.02) 0.34 0.98 (0.95, 1.02) 0.31 0.97 (0.93, 1.01) 0.10 

GRSDM(-) 138 1.04 (1.00, 1.08) 3.60 x 10-2 0.99 (0.96, 1.03) 0.75 1.01 (0.97, 1.04) 0.67 1.02 (0.98, 1.06) 0.37 

GRSDM(+) 66 1.04 (1.00, 1.08) 4.10 x 10-2 0.97 (0.94, 1.01) 0.13 0.98 (0.95, 1.02) 0.35 0.97 (0.94, 1.01) 0.13 
Cox proportional hazard analyses were performed including risk factor interactions among individuals of European ancestry in the UKB. Age interaction was 

adjusted for sex. Sex interaction was adjusted for age. All other risk factor interactions were age and sex adjusted. Each GRS is weighted per standard deviation. 

Panel A: interactions for age, sex, dyslipidemia and current smoker; Panel B: diabetes, hypertension, BMI and Lp(a). 
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GRS indicates genetic risk score; Lp(a), lipoprotein (a); BMI, body mass index; CI, confidence interval; P, p value; SNPs, single nucleotide polymorphisms; 

CAD, coronary artery disease; HRint, hazard ratio per standard deviation of the interaction; Pint, p value of the interaction. 
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Table 7: Associations of CAD GRS subsets with incident CAD in risk factor related subsets of UKB 

A  Age <55 Age ≥ 55 Men Women Hypertension (+) Hypertension (-) 

GRS model SNPs HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) 

GRS204 204 1.47 (1.43, 1.52) 1.33 (1.31, 1.36) 1.40 (1.38, 1.43) 1.32 (1.29, 1.36) 1.35 (1.33, 1.37) 1.39 (1.35, 1.44) 

GRSapoB(-) 114 1.29 (1.25, 1.34) 1.22 (1.20, 1.24) 1.25 (1.23, 1.28) 1.21 (1.18, 1.24) 1.22 (1.20, 1.24) 1.25 (1.21, 1.30) 

GRSapoB(+) 90 1.35 (1.31, 1.40) 1.24 (1.22, 1.26) 1.30 (1.27, 1.32) 1.23 (1.20, 1.27) 1.26 (1.24, 1.28) 1.28 (1.24, 1.33) 

GRSHTN(-) 83 1.26 (1.22, 1.30) 1.18 (1.16, 1.20) 1.21 (1.19, 1.24) 1.18 (1.15, 1.21) 1.19 (1.17, 1.21) 1.25 (1.21, 1.29) 

GRSHTN(+) 121 1.39 (1.35, 1.44) 1.28 (1.26, 1.30) 1.34 (1.31, 1.37) 1.27 (1.24, 1.31) 1.29 (1.27, 1.31) 1.30 (1.26, 1.34) 

GRSLpa(-) 163 1.39 (1.34, 1.43) 1.28 (1.25, 1.30) 1.33 (1.30, 1.35) 1.27 (1.24, 1.31) 1.28 (1.26, 1.30) 1.31 (1.27, 1.36) 

GRSLpa(+) 41 1.24 (1.20, 1.28) 1.16 (1.14, 1.18) 1.20 (1.18, 1.23) 1.16 (1.13, 1.18) 1.18 (1.16, 1.20) 1.21 (1.17, 1.25) 

GRSDM(-) 138 1.35 (1.30, 1.40) 1.26 (1.24, 1.28) 1.29 (1.27, 1.32) 1.26 (1.23, 1.30) 1.27 (1.25, 1.29) 1.29 (1.24, 1.33) 

GRSDM(+) 66 1.30 (1.26, 1.34) 1.20 (1.17, 1.22) 1.25 (1.23, 1.27) 1.18 (1.15, 1.21) 1.21 (1.19, 1.23) 1.25 (1.21, 1.29) 
 

B  Non obese Obese Dyslipidemia (+) Dyslipidemia (-) Current smoker 
Former/never 

smoked 

GRS model SNPs HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) 

GRS204 204 1.38 (1.36, 1.41) 1.37 (1.33, 1.41) 1.40 (1.36, 1.45) 1.34 (1.32, 1.37) 1.36 (1.31, 1.41) 1.38 (1.36, 1.40) 

GRSapoB(-) 114 1.24 (1.22, 1.26) 1.23 (1.20, 1.27) 1.28 (1.24, 1.32) 1.22 (1.20, 1.25) 1.21 (1.16, 1.26) 1.24 (1.22, 1.26) 

GRSapoB(+) 90 1.28 (1.26, 1.30) 1.27 (1.24, 1.31) 1.27 (1.23, 1.31) 1.25 (1.23, 1.27) 1.28 (1.24, 1.33) 1.27 (1.25, 1.30) 

GRSHTN(-) 83 1.20 (1.17, 1.22) 1.21 (1.18, 1.25) 1.20 (1.16, 1.24) 1.18 (1.16, 1.20) 1.17 (1.13, 1.22) 1.20 (1.18, 1.23) 

GRSHTN(+) 121 1.33 (1.30, 1.35) 1.29 (1.26, 1.33) 1.34 (1.30, 1.39) 1.29 (1.27, 1.31) 1.32 (1.27, 1.38) 1.31 (1.29, 1.34) 

GRSLpa(-) 163 1.31 (1.28, 1.33) 1.31 (1.28, 1.35) 1.35 (1.31, 1.40) 1.29 (1.26, 1.31) 1.28 (1.23, 1.33) 1.31 (1.29, 1.35) 

GRSLpa(+) 41 1.19 (1.17, 1.22) 1.17 (1.14, 1.20) 1.16 (1.13, 1.20) 1.16 (1.14, 1.18) 1.21 (1.16, 1.25) 1.18 (1.16, 1.20) 

GRSDM(-) 138 1.29 (1.26, 1.31) 1.29 (1.25, 1.33) 1.30 (1.26, 1.35) 1.26 (1.24, 1.28) 1.25 (1.20, 1.30) 1.29 (1.27, 1.31) 

GRSDM(+) 66 1.23 (1.21, 1.25) 1.21 (1.17, 1.24) 1.24 (1.20, 1.28) 1.20 (1.18, 1.22) 1.25 (1.20, 1.30) 1.22 (1.20, 1.24) 
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C  Diabetics (+) Diabetics (-) Lp(a) < 100 Lp(a) ≥100 

GRS model SNPs HR (95%CI) P HR (95%CI) HR (95%CI) HR (95%CI) P 

GRS204 204 1.26 (1.21, 1.32) <2.00 x 10-16 1.39 (1.37, 1.41) 1.36 (1.33, 1.38) 1.36 (1.31, 1.40) <2.00 x 10-16 

GRSapoB(-) 114 1.16 (1.11, 1.21) 2.80 x 10-11 1.25 (1.23, 1.27) 1.23 (1.21, 1.25) 1.27 (1.23, 1.31) <2.00 x 10-16 

GRSapoB(+) 90 1.20 (1.15, 1.25) <5.67 x 10-16 1.29 (1.27, 1.31) 1.26 (1.24, 1.28) 1.23 (1.19, 1.27) <2.00 x 10-16 

GRSHTN(-) 83 1.17 (1.12, 1.22) 1.24 x 10-11 1.21 (1.19, 1.23) 1.19 (1.17, 1.21) 1.21 (1.17, 1.25) <2.00 x 10-16 

GRSHTN(+) 121 1.20 (1.15, 1.25) <2.00 x 10-16 1.33 (1.31, 1.35) 1.30 (1.28, 1.32) 1.28 (1.24, 1.32) <2.00 x 10-16 

GRSLpa(-) 163 1.21 (1.16, 1.27) <2.00 x 10-16 1.32 (1.30, 1.34) 1.30 (1.28, 1.32) 1.34 (1.29, 1.38) <2.00 x 10-16 

GRSLpa(+) 41 1.14 (1.09, 1.18) 5.35 x 10-9 1.19 (1.17, 1.21) 1.16 (1.14, 1.19) 1.13 (1.09, 1.16) 5.46 x 10-14 

GRSDM(-) 138 1.22 (1.17, 1.28) <2.00 x 10-16 1.30 (1.28, 1.32) 1.27 (1.25, 1.29) 1.29 (1.25, 1.33) <2.00 x 10-16 

GRSDM(+) 66 1.13 (1.08, 1.18) 2.13 x 10-8 1.23 (1.21, 1.25) 1.20 (1.18, 1.23) 1.17 (1.13, 1.21) <2.00 x 10-16 
Cox proportional hazard analyses for different risk factors among individuals of European ancestry in UKB. All stratified analyses with no p value indicated have 

a p value < 2.00 x 10-16. Age stratified analyses were adjusted for sex. Sex stratified analyses were adjusted for age. All other risk factor stratified analyses were 

age and sex adjusted. Each GRS is weighted per standard deviation. Panel A indicates stratified analyses for age, sex and hypertension; Panel B for obesity, 

dyslipidemia and current smoker; Panel C for diabetics and Lp(a). 

GRS indicates genetic risk score; Lp(a), lipoprotein (a); HR, hazard ratio per standard deviation; CI, confidence interval; SNPs, single nucleotide 

polymorphisms; CAD, coronary artery disease; P, p value.
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Table 8: Characteristics of South Asian ancestry participants with genetic data from UK 

Biobank 

                                                                              

BP indicates blood pressure; BMI, body mass index; CAD, coronary artery disease; HDL, high-density lipoprotein; 

LDL, low-density lipoprotein. 

 

 

 

     

 

 

 

 

 

Characteristic n (%) or median (interquartile range [IQR]) 

N 5,207 

Male 2,581 (49.6) 

BP medication 751 (14.4) 

Diabetes medication 250 (4.8) 

Current smoker 465 (8.9) 

Diabetes mellitus 724 (13.9) 

Hypertension  2,562 (49.2) 

Incident CAD 399 (7.7) 

Median follow-up (years) 10.61 [10.10, 11.28] 

Age 51.00 [45.00, 58.00] 

BMI 26.36 [24.00, 29.21] 

Systolic BP (mm Hg) 132.00 [121.00, 144.50] 

Diastolic BP (mm Hg) 82.50 [76.00, 89.50] 

Apolipoprotein B (g/L) 1.04 [0.90, 1.18] 

Total cholesterol (mmol/L) 5.52 [4.91, 6.17] 

Triglycerides (mmol/L) 1.66 [1.17, 2.41] 

HDL cholesterol (nmol/L) 1.23 [1.05, 1.46] 

LDL cholesterol (nmol/L) 3.52 [3.05, 4.02] 

Lipoprotein(a) (nmol/L) 29.20 [12.00, 66.40] 

Non-HDL cholesterol (mmol/L) 4.26 [3.66, 4.89] 
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Table 9: Interaction of CAD GRS204 with risk factors on incident CAD in the UK Biobank 

South Asians 

Cox proportional hazard analyses were performed with the different risk factor interactions among individuals of 

South Asian ancestry in UKB. Age interaction was adjusted for sex. Sex interaction was adjusted for age. All other 

risk factor interactions except risk factor score were age and sex adjusted. Risk factor score had no covariates in the 

model. Each GRS is weighted per standard deviation. GRS204 interactions with risk factors were not performed in 

individuals of African and Chinese ancestries as the GRS204 was not significant in those ancestries. 

GRS indicates genetic risk score; Lp(a), lipoprotein (a); HR, hazard ratio per standard deviation; CI, confidence 

interval; CAD, coronary artery disease; P, p value; HRint, hazard ratio per standard deviation of the interaction; Pint, p 

value of the interaction. 

 

 CAD 

Risk factor HR (95%CI) P HRint (95%CI) Pint 

Age 1.31 (1.18, 1.46) 7.68 x 10-7 1.00 (0.91, 1.10) 0.97 

Sex 1.29 (1.07, 1.55) 6.23 x 10-3 1.02 (0.82, 1.27) 0.85 

Diabetes 1.30 (1.14, 1.48) 6.38 x 10-5 1.05 (0.86, 1.29) 0.63 

Hypertension 1.47 (1.17, 1.84) 9.82 x 10-4 0.85 (0.66, 1.10) 0.22 

Obesity 1.31 (1.17, 1.46) 4.11 x 10-6 1.02 (0.81, 1.28) 0.88 

Current smoker  1.33 (1.20, 1.48) 1.42 x 10-7 0.87 (0.65, 1.17) 0.37 

Lp(a)  1.32 (1.19, 1.48) 4.57 x 10-7 0.93 (0.71, 1.20) 0.56 

Dyslipidemia  1.28 (1.15 (1.43) 4.99 x 10-6 1.09 (0.82, 1.46) 0.55 

Risk factor score 1.29 (1.08, 1.54) 5.75 x 10-3 0.98 (0.89, 1.08) 0.75 
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Table 10: Association of GRS204 with incident CAD in UK Biobank ancestries 

 

 

 

 

 

 

 

Cox proportional hazard analyses were performed for CAD among individuals of different ancestries in UKB. All 

analyses are age and sex adjusted.  

GRS indicates genetic risk score; HR, hazard ratio per standard deviation; CI, confidence interval; CAD, coronary 

artery disease.

 CAD 

Ancestry HR (95%CI) P value 

European 1.37 (1.35, 1.40) <2.00 x 10-16 

South Asian 1.31 (1.19, 1.45) 9.75 x 10-8 

Black 1.02 (0.88, 1.19) 0.76 

Chinese 0.90 (0.57, 1.42)  0.66 
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3.5 GRS Comparison 

In a sensitivity analysis, I compared the GRS204 results with two other GRS. The GRSMVP 

and the GRSLDpred2 were also strongly associated with CAD in European ancestry individuals 

(Table 11) (OR 1.38, (95% CI, 1.36, 1.41), 1.38 (1.35, 1.42), all p values P < 2.00 x 10-16, 

respectively). Furthermore, all three GRS had significant interactions with age, sex, and 

dyslipidemia in Europeans and the GRS204 and GRSLDpred2 also had a significant interaction with 

diabetes. Additionally, I replicated six out of the nine X-chr SNPs from Tcheandjieu et al.’s study 

in men of European ancestry in UKB (Figure A1). In women of European ancestry in UKB, I 

replicate two out of the nine X-chr SNPs (Figure A2). To further quantify the addition of the nine 

X-chr SNPS to an autosomal GRS, I compared the GRS204 with two versions of the GRSMVP – 

one with the nine X-chr SNPs and one without the X-chr SNPs. I concluded that the GRS204 and 

the GRSMVP(with X chr) were both strongly associated with CAD in European ancestry individuals 

with a similar effect size whereas the GRSMVP(no X chr) had a slightly lower effect size (HR 1.37, 

(95% CI, 1.35, 1.40), 1.35 (1.33, 1.38), 1.37 (1.34, 1.39), all p values P < 2.00 x 10-16, 

respectively) (Table B2). Moreover, I contrasted both the GRSMVP(with X chr) and the GRSMVP(no X 

chr)  in individuals of non-European ancestry in the UKB. I observed that both of these GRS were 

able to replicate the GRS association in South Asian (Table B3). However, both GRS were not 

significant among individuals of African and Chinese ancestries. 
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Table 11: Comparison of different GRS methods (GRSLDpred2 vs GRS204 vs GRSMVP) 

in European subset of UK Biobank for various associations and interactions with CAD 

Generalized linear models were performed with the different CAD GRS among individuals of European ancestry in 

UKB. Age interaction was adjusted for sex. Sex interaction was adjusted for age. All other risk factor interactions 

were age and sex adjusted. All results are presented as OR per SD (95%CI) with their respective p value. The 

GRS204 and the GRSMVP analyses were conducted in the European cohort of UKB. The GRSLDpred2 was conducted in 

the validation cohort of UKB.  LDpred2 uses maximum AUC.  

GRS indicates genetic risk score; HTN, hypertension; DM, diabetes mellitus; BMI, body mass index; Lp(a), 

lipoprotein (a); OR per SD, odds ratio per standard deviation; CI, confidence interval; P, p value; AUC, area under 

the curve; SNPs, single nucleotide polymorphisms; CAD, coronary artery disease. 

 

 

 

Method GRS204 GRSMVP GRSLDpred2 

Number of SNPs 204 258 556 552 

GRS 

 

1.39 (1.37, 1.41) 

P < 2.00 x 10-16 
1.38 (1.36, 1.41) 

P < 2.00 x 10-16 

1.38 (1.35, 1.42) 

P < 2.00 x 10-16 

GRS*age 

 

0.99 (0.99, 1.00) 

P = 3.63 × E10-08 

0.97 (0.95, 0.99) 

P = 4.00 × E10-04 

0.94 (0.92, 0.97) 

P = 8.84 × E10-06  

GRS*sex 

 

1.08 (1.05, 1.12) 

P = 5.11× E10-06  

1.09 (1.06, 1.13) 

P = 3.55 × E10-07 

1.07 (1.02, 1.12) 

P = 3.75 × E10-03  

GRS*HTN 

 

0.99 (0.95, 1.03) 

P = 0.51 
1.00 (0.96, 1.04) 

P = 0.88 

0.99 (0.94, 1.05) 

P = 0.83 

GRS*DM 

 

0.94 (0.89, 0.99) 

P = 1.95× E10-02  

0.96 (0.91, 1.01) 

P = 0.09 

0.92 (0.85, 0.99) 

P = 1.86 × E10-02  

GRS*current smoker 

 

0.98 (0.94, 1.01) 

P = 0.10 
1.00 (0.96, 1.04) 

P = 0.98 

0.98 (0.92, 1.04) 

P = 0.53 

GRS*dyslipidemia 

 

1.06 (1.02, 1.11) 

P = 3.83 × E10-03 

1.07 (1.03, 1.11) 

P = 1.14 × E10-03 

1.08 (1.02, 1.15) 

P = 5.50 × E10-03 

GRS*BMI 

 

0.99 (0.95, 1.03) 

P = 0.61 
1.01 (0.97, 1.04) 

P = 0.66 

0.96 (0.91, 1.00) 

P = 0.11 

GRS*lpa 

 

1.00 (0.97, 1.04) 

P = 0.87 
1.02 (0.96, 1.07) 

P = 0.56 

1.01 (0.97, 1.05) 

P = 0.78 
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Chapter 4: Discussion 

4.1 Thesis Overview 

 In this thesis I sought to elucidate the impact of risk factors on the strength of a CAD 

GRS. In addition, I examined the impact of GRS subdivisions and GRS construction methods on 

CAD associations. I used Cox proportional hazard analyses to investigate CAD GRS interactions 

with atherosclerotic risk factors (i.e., age, sex, diabetes, dyslipidemia, hypertension, current 

smoking, obesity, Lp(a)) in individuals of European ancestry in the UKB. I found that 

subdividing a CAD GRS according to the possible role of the SNPs in specific atherosclerotic 

risk factors (i.e., hypertension, diabetes, Lp(a), apoB) attenuated the strength of the GRS 

associations with CAD but they remained significant. To determine if a similar pattern could be 

distinguished with CAD GRS interactions, I specifically compared interaction results between 

the GRS204 and each GRS subset for each risk factor. I found that for age, sex, diabetes, and 

dyslipidemia interactions, most CAD GRS subsets followed the same significant direction of 

effect as the GRS204. In stratified analyses for each risk factor for GRS interactions. I determined 

that sex and dyslipidemia both had higher HRs for those with the risk factor (i.e., men and 

dyslipidemia) whereas age and diabetes had higher HRs for those without the risk factor. 

Consistent direction of effects was also identified in the stratified analysis of each risk factor for 

every sub-GRS. I also compared the GRS association with CAD and interactions with risk 

factors across different GRS construction methods. I found that all three GRS were strongly 

associated with CAD in European-ancestry individuals independent of the GRS construction 

method. Furthermore, consistent significant interactions with age, sex, diabetes, and 

dyslipidemia were observed among individuals of European ancestry. 
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4.2 Interactions 

My data confirmed significant interactions between the GRS204 with sex, age and 

dyslipidemia and identified a novel interaction with diabetes.   

My study observed that the CAD GRS204 has a stronger effect in men than women. In 

addition, the effect of the GRS204 and each sub-GRS, except the GRSDM(-), was significantly 

different between the sexes. My results are consistent with prior studies including one that 

demonstrated that a GRS composed of 161 variants had a stronger association with incident 

CAD in men (HR 1.38, (95% CI, 1.34, 1.41)) than in women (1.25 (1.21, 1.30))13. My results are 

also in line with those of Manikpurage et al. which demonstrated that a CAD GRS constructed 

with the LDpred software identified a significantly higher risk for CAD among men (HR 1.62, 

(95% CI, 1.59, 1.64)) compared to women (1.45 (1.42, 1.48)) in the UKB12. Although 

Manikpurage et al. reported stronger associations than I report, this is most likely due to their 

inclusion of prevalent and incident CAD cases (for a total of 32,694 CAD cases) whereas I 

included only incident cases (for a total of 23,752 CAD cases). Although some studies have 

proposed explanations for these sex differences, such as age differences in CAD diagnosis 

between men and women13 or the greater proportion of men in the GWAS studies3,4,121, it 

remains unclear why men have an increased genetic susceptibility to CAD based on a CAD 

GRS. Regardless of the source, the difference will need to be taken into consideration for the 

eventual clinical application of a CAD GRS.  

In addition, my findings also demonstrated that the GRS204, as well as every sub-GRS, 

had a stronger effect size in younger individuals than older individuals. This is consistent with 

previously observed significant variation in the risk associated with a CAD GRS between 

individuals above and below the age of 57.6 years old113. My results are also in line with those of 
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Manikpurage et al. which demonstrated that a CAD GRS had a stronger association for 

individuals between 40 and 51 years old than in individuals between the ages of 63 and 73 (HR 

(95% CI), 1.89 (1.77, 2.02) and 1.48 (1.42, 1.53), respectively)12. Similarly, Marston et al. 

recently illustrated a significant interaction between a 241-variant CAD GRS and age in the 

UKB (p <0.001)117. These findings of an age interaction have also been extended to individuals 

with diabetes. Lithovius et al. reported that the strength of a 158-variant CAD GRS differed 

significantly in diabetic individuals above and below a median age of 38.6 years. The CAD GRS 

had better risk discrimination in the younger age-group than the older age-group (C-index 0.637 

(95% CI, 0.580, 0.695) and C-index 0.546 (95% CI, 0.516, 0.577), respectively)122. The stronger 

CAD GRS association at earlier ages is somewhat expected for genetic exposures and is 

consistent with other diseases as well123-125. 

My study also demonstrated an interaction of the GRS204 with dyslipidemia (defined as 

high plasma apoB levels). With the exception of GRSLPA(+), every sub-GRS also had a higher HR 

in individuals with dyslipidemia than in individuals without dyslipidemia. In a similar vein, 

previous work by Bolli et al. concluded that a CAD GRS had a stronger effect among individuals 

with a high LDL-C (4.71 (2.23, 9.94) for ≥190 mg/dL; 3.14 (1.52, 6.50) for 160-<190 mg/dL; 

2.23 (1.08, 4.59) for 130-<160 mg/dL and 1.15 (0.54, 2.46) for 100-<130 mg/dL)126. Moreover, 

my finding is also consistent with the observations that a CAD GRS can identify individuals who 

demonstrate the greatest relative risk reduction with statin therapy11,127. Thus, a targeted 

approach consisting of apoB plasma levels in conjunction with a CAD GRS could lead to earlier 

interventions and risk reduction for individuals with dyslipidemia who also have a higher genetic 

predisposition for CAD, as quantified by the CAD GRS.   
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Our important novel result revealed that the GRS204 had a significantly weaker 

association with CAD in diabetes patients. A similar trend was also seen in every GRS risk factor 

subset. These results suggest that in those individuals with the prominent cardiovascular risk 

factor, diabetes, their CAD GRS may be less predictive. Consistent with my work, it has been 

shown that a CAD GRS is independent of traditional risk factors among type 2 diabetics patients 

but does not add to predictive performance128. Interestingly, Lee et al. observed an increased risk 

from a CAD PRS when type 2 diabetes was diagnosed at an earlier age129. In addition, a 

significantly larger effect of the GRS was observed in diabetic individuals with a higher HbA1c 

level9. Importantly, recent work points to the existence of novel genetic contributors to CAD 

among diabetics and more accurate CAD prediction in diabetics could come from the inclusion 

of such variants130. I would also not expect all SNPs in the GRS204 to have the same strength in 

diabetics. Future research should explore specific loci to identify those with a differing effect in 

diabetics. 

4.3 GRS Construction Methods 

 My data suggest that two different GRS construction methods (pruning and thresholding 

and LDpred2) as well as the addition of chromosome X SNPs to an autosomal GRS do not 

substantially modify the strength of the association with CAD nor do they alter the significance 

of the observed atherosclerotic risk factor interactions with CAD GRS. Each GRS construction 

method demonstrated significant interactions with the same four risk factors, as previously 

discussed above.  

 My findings surrounding the two construction methods contradict those from some 

existing studies about LDpred2 efficiency107,112,131. For instance, previous work focusing on the 

different predictive ability of 15 GRS construction methods found that LDpred2 had the best 
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predictive power for CAD among individuals of European descent in the UKB112. Similarly, 

another study by Prive et al. noted that LDpred2 outperforms many other methods such as 

pruning and thresholding and lassosum for CAD in the UKB107. A few factors that might explain 

these differing results are different CAD definitions and differing statistical tools chosen to 

compare the methods (general linear models versus area under the receiver operating curve). In 

addition, fewer studies have used the LDpred2 method as it was only published and made 

publicly available three years ago107. Additional studies conducted in other large-scale cohorts 

such as the Million Veteran Program could further shed light on the distinctions and ideal 

parameters to optimize and select GRS methods.  

 While interest in X-chr SNPs has grown in the past decade, resulting in more 

publications132, this still has not resulted in substantial X-chr-inclusive GWAS and GRS 

publications. To date, there has been only one published study (Tcheandjieu et al.) that has 

incorporated X-chr variants in a CAD GRS3 and therefore limited opportunity to compare my 

results to previous studies. A notable difference between my results and those of Tcheandjieu et 

al. is that their GRS including the X-chr outperformed their autosomal GRS whereas my two 

GRS showed similar prediction abilities. However, in their publication, other parameters 

including a multi-population cohort and GRS construction techniques were also changed when 

the X-chr variants were used. Interestingly, the GRS based on the MVP GWAS results from my 

analyses and the GRS from Tcheandjieu et al.‘s paper were strongly associated with CAD with 

similar effect size (1.37 (1.34, 1.39); 1.35 (1.31, 1.38), respectively) despite their different 

construction methods. Indeed, my GRSMVP was created with the pruning and thresholding 

technique whereas Tcheandjieu et al.‘s GRS utilised the PRSice2 method.  
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In addition, while the inclusion of X-chr SNPs to the GRSMVP(no X) demonstrated a 

stronger predictive ability for CAD, the GRSMVP(X chr) didn’t outperform the GRS204. It suggests 

that in certain cases the addition of X-chr variants can be beneficial for risk prediction. As the 

study led by Tcheandjieu didn’t specifically look at the differential impact of adding X-chr SNPs 

to an autosomal GRS, these findings cannot be compared to another study. Furthermore, adding 

X-chr SNPs to an autosomal GRS didn’t affect the CAD GRS associations in individuals of 

South African ancestry (i.e., both GRSMVP(X chr)  and GRSMVP(no X) had significant associations 

with CAD with similar effect sizes). Additional research which will only be possible when more 

CAD GWAS including X-chr variants are published will be able to explore this potential benefit. 

 

The lack of studies on CAD GRS including the X-chr variants can be explained by two 

factors. First, only 25% of all GWAS have X-chr data, of which only a small fraction pertains to 

CAD132. This severely limits the pool of CAD summary statistics to use as the basis for GRS 

construction. Second, not all GRS construction approaches can currently accommodate the 

inclusion of X-chr SNPs. For instance, the LDpred2 method is frequently used with an LD 

matrix provided by Prive et al.107 which does not currently include any X-chr SNPs. 

 

4.4 GRS Ancestry 

 My findings confirmed a significant association between GRS204 and CAD in individuals 

of South Asian and European ancestries while no significant association was identified in 

individuals of African and Chinese ancestries. The successful replication of a European CAD 

GRS in individuals of South Asian ancestry has been observed in other CAD studies as 

well103,104,116,133. These prior studies replicated their GRS association in individuals of South 
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Asian ancestry with a strong but attenuated effect size when compared to European results104. 

One study from Joseph et al. demonstrated that a 25-SNP CAD GRS, using just 25 SNPs, was 

significantly associated with myocardial infarction in both South Asian and European 

ancestries116. Notably, individuals of South Asian ancestry are known to be more closely related 

to individuals of European ancestry than individuals of African and Chinese ancestries105,134, 

which may partially explain my results (Figure 5). These replication trends in non-European 

ancestries are consistent with those from other diseases as well135-138. Moreover, the lack of 

replication of European results among individuals of African and Chinese ancestries is most 

likely due to the small sample sizes139-141 and specifically the low number of CAD cases in those 

subsets 10.  
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Figure 5: Comparison of relative variance and its association with PC distance 

The relative predictive performance of a GRS in each ancestry is compared with each other 

while also factoring in the PC distance with the UK. UK, United Kingdom; PC, principal 

component. (Prive F, Aschard H, Carmi S, et al. Portability of 245 polygenic scores when 

derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. Am J Hum 

Genet. Feb 3 2022;109(2):373) (Reproduced with permission of the publisher) 
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4.5 Implementation of a CAD GRS in Clinical Settings 

 My results highlight interactions as an essential aspect to consider for any clinical use of 

a CAD GRS in the future. Specifically, the results emphasize the stronger impact of a CAD GRS 

at younger ages, a relevant concept for many diseases as genetics has a stronger role than 

environment at that age. Importantly, younger individuals are also less likely to have developed 

atherosclerotic risk factors which contribute directly to disease but also interact with the CAD 

GRS as my work has shown. This is a crucial factor to consider because results from my study 

suggest that an individual’s susceptibility to a high CAD GRS may be less clear in the presence 

of certain atherosclerotic risk factors like diabetes. Younger ages may be the ideal time to discuss 

an individual's genetic risks including CAD142,143. While these are important considerations to 

keep in mind for any clinical use of a CAD GRS, an in-depth analysis about costs and benefits is 

detailed below. 

4.5.1 CAD GRS Benefits 

In the past decade, numerous studies have showcased the various ways in which a CAD 

GRS can be an effective addition to CAD management and treatment in clinical settings. 

Previous works have shown that CAD GRS can help predict drug efficacy in certain subgroups 

of individuals11,127,144,145. One study observed that individuals with a high CAD GRS had the 

greatest reduction in major cardiovascular events and death when treated with a PCSK9 

inhibitor144. Further studies will be needed to fully elucidate the role and impact of using a CAD 

GRS for predicting response to cardiovascular drugs.  

Many studies have shown that the addition of a CAD GRS to the PCE (PCE+CAD GRS) 

produced significant improvement in risk stratification as measured by net reclassification 

indices (NRI) and GRS risk prediction117,143,146-150. Another study using the QRISK3 score to 
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assess conventional risk factors also observed an improvement in risk stratification151. Thus, an 

assessment of PCE+CAD GRS could result in a higher proportion of individuals correctly 

identified for early statin intervention. Consistent with this, individuals with a high genetic risk 

are reclassified to statin intervention when genetic risk is considered along with the conventional 

risk factors152.  Notably, a recent study by Martson et al. emphasized that younger individuals 

had the strongest NRI improvement rates among various age brackets117. These findings are 

consistent with those from Riveros-Mckay et al. and Saadatagah et al.143,150. These observations 

are consistent with my observation that every GRS evaluated in this study had a stronger effect 

in younger individuals. Moreover, the additive effect of PCE+CAD GRS is likely due to the fact 

that they capture different genetic components of CAD. PCE incorporates CAD family history 

which often stems from rare CAD variants whereas a CAD GRS includes common CAD variants 

(minor allele frequency > 1%). Indeed, multiple studies have confirmed the independence of 

family history and CAD GRS in various cohorts such as the Malmö Diet and Cancer study and 

the Gender and Sex Determinants of Cardiovascular Disease From Bench to Beyond in 

Premature Acute Coronary Syndrome study103,113,115,150. The combination of PCE+CAD GRS 

could be a valuable clinical tool that integrates a larger proportion of an individual’s genetic 

background than either PCE or the CAD GRS alone. Taken altogether, these results provide 

further evidence that a CAD GRS can be an asset in preventing CAD, particularly when provided 

to younger individuals. Ultimately, risk assessments with genetic information can improve 

primary prevention of CAD through pharmacological therapy and lifestyle modifications. Early 

intervention following specific genetic risk disclosure has the potential to reshape CAD 

prevention and intervention by putting a larger emphasis on prevention.  
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Clearly, PCE+CAD GRS has major potential economic consequences, as previously 

described by Mujwara et al.153. Their analysis of PCE+CAD GRS concluded that the addition of 

the CAD GRS was cost-effective with the mean cost diminishing by 181$ per person over 10 

years. Considering that 2.6 million Canadians aged 20 and older were living with CAD in 

2022154, this decline in mean cost would represent a substantial savings. The results of Mujwara 

et al.153 also highlighted another significant ramification of the PCE+CAD GRS: there were 50 

fewer CAD events compared to PCE alone over 10 years in a cohort of 10,000 individuals, 

which resulted in an average cost savings of 36,000$ per event averted. In total, this would save 

1.8 million dollars and much more when a larger population is considered. Previous work by 

Hynninen et al. also confirmed the cost-effectiveness of traditional risk factors and CAD GRS18. 

Notably, they observed that a combination of traditional risk factors and CAD GRS had a larger 

net monetary benefit compared to traditional risk factors alone. Further research should help to 

optimize the economic impact of PCE+CAD GRS. 

Disclosing CAD genetic risk to individuals has been linked to positive behavioural health 

changes such as weight loss, smoking cessation, and consulting with a doctor155. Specifically, a 

recent prospective study which communicated a 10-year risk based on genetic and conventional 

risk factors to individuals concluded that individuals with a high genetic risk were more likely to 

make health changes than individuals with a low genetic risk155. In addition, an observational 

study has shown that disclosure of genetic risk led to a modest increase in physical exercise and 

weight loss156. Likewise, the Myocardial Infarction Genes (MI-GENES) study demonstrated that 

disclosing genetic risk to CAD in addition to evaluating conventional cardiovascular risk factors 

prompted a greater reduction of LDL-C levels when compared to only evaluating conventional 

cardiovascular risk factors157. Indeed, the disclosure of genetic risk of CAD caused a higher 
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proportion of individuals, in collaboration with their doctor, to initiate statin therapy. Additional 

prospective large-scale studies will be needed to validate the hypothesis that positive health 

changes can be increased when individuals are provided with their CAD GRS. 

 

A complete assessment of individual disease risk prior to the development of 

atherosclerotic risk factors may have consequential ramifications for CAD prevention, risk 

assessment and cardiovascular healthcare expenditure. The latter is of crucial significance as 

Canada faces an ageing population which exacerbates the growing burden of cardiovascular 

disease on the healthcare system158.  

 

4.5.2 CAD GRS Limitations 

Although the field of CAD GRS has been the subject of a sizeable number of studies in 

the past decade, issues still exist regarding the implementation of a CAD GRS in clinical 

settings. Ancestry portability, GRS optimization, and addition to risk calculators such as the PCE 

are some of the considerations that need to be addressed in relation to the clinical use of a CAD 

GRS. 

First of all, a current limitation of CAD GRS is their transferability to non-European 

ancestries, as observed above in chapter 3. Multiple studies confirm that performance of a CAD 

GRS is biased towards the ancestry which provided the summary statistics3,104,105,133,149,159. In the 

case of European ancestry, a GRS based on European summary statistics (GWAS), will perform 

better among individuals of European ancestry than in individuals of non-European ancestries. 

For instance, my findings detailed in chapter 3 are based on individuals of European ancestry and 

they illustrate the reduced predictive ability of the GRS204 in non-European ancestries, though 
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the issue of reduced power must also be considered. Eurocentric CAD GRS results cannot 

necessarily be extrapolated to other ancestry groups as the causal genetic variants of CAD and 

their linkage disequilibrium patterns vary between ethnic groups160. This trend has been seen in 

GRS for other diseases as well135,161-164. However, some improvements have been observed when 

using an ancestry-specific GRS for non-European ancestries. This was exemplified by Onengut-

Gumuscu et al. when they noted that an African GWAS-based GRS provided stronger prediction 

for DM among individuals of African ancestry than a European GWAS-based GRS163.These 

issues bring forth an ethical concern: that the implementation of a CAD GRS in clinical settings 

will not be equally effective for all individuals. In fact, a recent study emphasized that any 

clinical use of a eurocentric GRS may exacerbate health disparities between individuals of 

various ancestries135. One possible solution would be to create an ancestry-specific CAD GRS 

(e.g. a South Asian ancestry CAD GWAS would be used to create a South Asian GRS). 

However, as Martin et al. pointed out in their 2019 paper, 79% of GWAS participants are of 

European ancestry even though they only account for 16% of the global population135 (Figure 6). 

This profound imbalance has led to the creation of hundreds of eurocentric GRS and very few 

non-European GRS. Although many recent efforts have focused on recruiting ethnically diverse 

participants for large data banks, it will take many years, perhaps over a decade, for GWAS 

parity between ancestries to be achieved. Once large-scale GWAS for various ancestries are 

available, additional studies should be performed to validate the efficacy of ancestry-specific 

GRS as well as differences in risk factor interactions.  

A possible solution to this problem is to train and validate a GRS in a diverse group of 

individuals despite using summary statistics from a European-ancestry GWAS.
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Figure 6: Ancestry of GWAS participants with reference to the global population 

 A comprehensive analysis of GWAS participants and their ancestries over time as well as in 

comparison to the global population. (Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, 

Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat 

Genet. Apr 2019;51(4):584-591) (Reproduced with permission of the publisher) 
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This method has had inconclusive results in recent years: Prive et al. reported that in Europeans 

and Caribbeans a mixed-ancestry GRS had comparable predictive ability to a Eurocentric GRS 

whereas Márquez-Luna et al. and Cavazos and Witte illustrated the benefit of using a mixed-

ancestry GRS instead of a Eurocentric GRS105,164,165. Factors such as different GRS construction 

methods and different sizes of non-European samples could explain these contradicting results. It 

is worth noting that the study from Prive et al. focused on CAD GRS among other diseases while 

the other two studies did not include CAD in their analyses. The mixed-ancestry GRS method 

might be more applicable for some diseases than others. Nonetheless, while some studies have 

investigated mixed-ancestry approaches for CAD3,97,166, further studies are needed to get a 

clearer understanding of the potential advantages of this method.  

Another issue that has risen in the past few years is the lack of consensus surrounding 

GRS construction approaches. While over 20 different construction methods for single-ancestry 

and multi-ancestry GRS exist109, the scientific community has not come to a decision regarding 

which method is the best for clinical settings. Although it has become standard for studies to 

compare their own CAD GRS to existing ones in the literature, it can be very difficult to contrast 

these GRS comparisons studies with one another due to many factors. For example, different 

CAD definitions, cohorts, inclusion criteria, GRS construction methods and the number of 

genetic variants included in the GRS are all factors that can hinder the comparison of CAD GRS 

studies. Additionally, as most of these methods are mainly being evaluated in individuals of 

European ancestry, specific methods may perform differently for different mixtures of ancestries.  

Recent work by Patel et al. explored combining multi-ancestry GRS for CAD and related 

risk factors to create a multi-ancestry multi-trait GRS including GRS for CAD, BMI, LDL, HDL, 

and DM147. They concluded that their multi-trait GRS outperformed many published CAD GRS 
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in an independent cohort, the MVP. Although the composition of ancestries in each trait was 

heavily skewed towards European ancestry, their findings illustrated that the multi-trait GRS had 

a stronger association with CAD in four different ancestries (European, African, East Asian, 

South Asian) when compared to other published CAD GRS. However, this method may only be 

advantageous for young individuals as the CAD risk factors themselves will be more predictive 

in older adults. Consequently, the GRS for those risk factors may not be useful. Additional 

studies are needed to determine in which situations (e.g., younger individuals) this multi-trait 

CAD GRS provides a better way to optimize GRS prediction.  

While numerous studies have highlighted the positive impact of adding a CAD GRS to 

the conventional risk factors (RF+CAD GRS)117,143,146-151, others have contradicted these 

findings over the past few years167-169. Specifically, they all noted that RF+CAD GRS did not 

significantly improve prediction accuracy, nor did it improve reclassification (net reclassification 

indices). Although there are possible explanations for the differing results, such as different CAD 

GRS construction method, SNP number, QC parameters, inclusion criteria, ancestry distribution, 

the lack of consistent evidence gives rise to some hesitation about the use of a CAD GRS in 

clinical settings. Furthermore, detailed guidelines about the application, interpretation and 

communication of CAD GRS results to individuals still need to be worked out. For example, 

would individuals with an extreme GRS need to consult genetic counsellors for an understanding 

of the genetic risk for CAD in their relatives? These queries still need to be addressed as more 

CAD GRS research occurs in the next few years. If future large-scale research can address some 

of the concerns detailed above, such as ancestry portability, then more conclusive data regarding 

the clinical use of a CAD GRS should be uncovered. GRS optimization, including risk factor 

interactions, could positively affect the accuracy of a CAD GRS. 
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4.6 Limitations  

My study was conducted in the UKB, a large, well-characterized cohort, and across 

multiple ancestries. I also included 204 variants in my primary GRS, as well as evaluated 

different subsets and different GRS building approaches. Despite these strengths, the study has 

several limitations. First, as previously mentioned above, findings based on individuals of 

European ancestry cannot always be replicated in other ancestries. The frequency of CAD 

variants and their LD arrangements which vary between ancestry groups account for some of this 

discordance160. However, many studies are under way to increase the amount of available genetic 

data from diverse and minority populations, which should in turn improve GRS predictions in 

diverse cohorts3,135,170. In the present work, I observed that the association of the CAD GRS was 

replicated in South Asian individuals but not Chinese or Black individuals. This failure to 

replicate is most likely due at least in part to the small sample sizes139-141 and specifically the low 

number of available CAD cases in these ethnic groups10. Second, all the observed interactions 

may be misestimated due to the exclusion of prevalent CAD cases. Third, participants of the UK 

Biobank have been shown to be healthier than the general population171. For example, 

participants were less likely to drink alcohol or smoke and self-reported fewer health conditions 

when compared to characteristics of the general British population and thus, participants may not 

be representative of the overall population. Fourth, copy number variants (CNVs) and structural 

variants were not considered in my CAD GRS despite certain CNVs being associated with 

various cardiovascular diseases172. Finally, it has been demonstrated that higher numbers of 

genetic markers in a GRS can improve prediction113,173 even if some of these variants are not 

genome-wide significant3. Thus, partitioning a GRS, as I did for my risk factor defined subsets, 

and others have done13,15 might decrease the power. 



73 
 

Chapter 5: Conclusions and Future directions 

5.1 Conclusions  

In summary, I assessed the strength of a CAD GRS in atherosclerotic risk factor 

subgroups. I identified four atherosclerotic risk factors that have significant interactions with a 

CAD GRS – age, sex, dyslipidemia, and diabetes – in individuals of European ancestry. I also 

replicated the GRS association with CAD in individuals of South Asian ancestry. Additionally, I 

investigated the impact of different GRS construction methods on the strength of a CAD GRS 

and the identified interactions. I concluded that each method had comparable CAD GRS 

associations with CAD. Approaches to include a CAD GRS in clinical prediction should consider 

these interaction results to optimize predictive performance.    

 

5.2 Future Directions 

5.2.1 Analyses in Other Large-Scale Cohorts of Non-European Ancestry 

Future research should attempt to replicate my analyses and observations to other cohorts 

with a larger representation of non-European ancestries such as the MVP, All Of Us, Japan 

BioBank, etc. This may address the lack of replication of the CAD GRS association in Black and 

Chinese individuals when compared to European individuals, which is a problem that has been 

observed in other studies104,105,133 . As mentioned above, it was most likely due to the small 

sample size available in these ancestries135. Performing my analyses in more diverse ancestries 

will allow an assessment of the transferability of European findings but also potentially highlight 

novel interactions between a CAD GRS and risk factors in non-European ancestries. The ability 

to transfer specific GRS construction methods and SNP sets (e.g. GRS204, GRSMVP, GRSLDpred2, 

etc.) to non-European ancestries, will also be of great importance. Moreover, collaborations with 
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other groups in Canada and around the world including large databanks with a higher proportion 

of non-European ancestries could yield additional novel results, some of which may be specific 

to non-European ancestries. Such a meta-analysis would also provide another opportunity to 

analyze the application of a European-derived GRS to individuals of non-European ancestries to 

determine its generalizability. 

 

5.2.2 The Responsibility of Informing Individuals About Their Risk Scores 

In addition, future research must include detailed analyses on the best ways to accurately 

and responsibly inform individuals about their risk scores for certain diseases. Many gaps remain 

in the translation of risk scores from bioinformatics teams to clinicians to individuals174. For 

instance, it is crucial that clinicians make accurate interpretations and individuals have an in-

depth understanding of their risk score. One study helped individuals fully comprehend their risk 

scores by having a genetic counsellor explain it to them in addition to meeting with their health 

care provider to discuss potential medical changes (e.g., statin usage)157. The lack of anxiety that 

individuals felt about their risk score in this study by Kullo et al. could partially be due to the 

genetic counselling session they all had. Moreover, other aspects of informing individuals about 

their risk scores to consider are consent and cost-effectiveness174. Can parents consent to learn 

about their child’s risk score? Should that right be reserved for the child when they reach 

adulthood? Additionally, while some GRS for certain diseases might be cost-effective, additional 

research will need to be conducted before a blanket statement can be made about the cost-

effectiveness of all GRS. Proper national or international guidelines including clinical 

recommendations to make based on GRS would help remedy the translation gap and set clinical 

standards.  
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Appendices 

 

Appendix A 

 

Figure A1. MVP X-chromosome SNP replication in men of European ancestry in the UKB 
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Figure A2. MVP X-chromosome SNP replication in women of European ancestry in the UKB 
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Appendix B 

Table B1.  MVP X-chromosome SNP replication among individuals of European ancestry in 

UKB 

 

 

 

 

 

 

 

 

POS, position; EA, effect allele; NEA, non-effect allele; OR, odds ratio. Cross-sectional CAD cases. 

 MVP UKB 

POS ID EA NEA OR P value OR P value 

X:135986549 rs5975828 T C 1.03 9.40×E10-9 1.03 4.48×E10-04 

X:67280381 rs1410127 C T 1.02 1.39×E10-9 1.05 2.61×E10-06 

X:135318977 rs5929743 A G 1.02 4.91×E10-9 1.03 3.03×E10-04 

X:109809489 rs7884019 A C 1.03 4.16×E10-15 1.03 2.73×E10-04 

X:80177630 rs2066280 A T 1.03 4.63×E10-8 1.03 2.36×E10-03 

X:84069371 rs2342572 C T 1.02 2.02×E10-8 1.03 1.01×E10-03 

X:77599469 rs398484 T C 1.02 1.59×E10-8 1.00 0.83 

X:153639255 rs147967693 T C 1.04 2.23×E10-8 1.00 0.87 

X:9578104 rs5934659 C T 1.04 5.78×E10-9 1.02 0.24 
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Table B2. Adjusted* associations of CAD GRS with incident CAD among individuals of 

European ancestry in the UK Biobank 

*age and sex adjusted.  

 

 

  CAD 

WGRS (SD) SNPs HR (95%CI) P value 

GRS204 204 1.37 (1.35, 1.40) <2.00 × E10-16 

GRSMVP (no x chr) 249 1.36 (1.34, 1.38) <2.00 × E10-16 

GRSMVP (x chr) 258 1.37 (1.35, 1.39) <2.00 × E10-16 
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Table B3. Adjusted* associations of CAD GRS with incident CAD in various ancestry subsets of 

the UK Biobank  

*age and sex adjusted. 

   CAD 

WGRS (SD) SNPs subset HR (95%CI) P value 

GRSMVP(no x chr) 249 European 1.35 (1.33, 1.38) <2.00 × E10-16 

  Chinese 1.18 (0.76, 1.85) 0.47 

  Black 1.03 (0.88, 1.18) 0.75 

  
South 

Asian 
1.24 (1.13, 1.37) 1.73 × E10-05 

GRSMVP(x chr) 258 European 1.37 (1.34, 1.39) <2.00 × E10-16 

  Chinese 1.17 (0.74, 1.83) 0.50 

  Black 1.01 (0.87, 1.18) 0.85 

  
South 

Asian 
1.24 (1.12, 1.37) 2.44 × E10-05 
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